УДК.582.579.2

Т.А. Фёдорова Т.А. Feodorova

ФИЛОГЕНЕТИЧЕСКИЕ ОТНОШЕНИЯ ЮЖНОАФРИКАНСКИХ СОЛЯНОК (СЕКЦИИ *CAROXYLON* И *TETRAGONAE* РОДА *CAROXYLON*, CHENOPODIACEAE) ПО ДАННЫМ МОРФОЛОГИИ И МОЛЕКУЛЯРНОЙ ФИЛОГЕНИИ

PHYLOGENETIC RELATIONS OF THE SOUTH AFRICAN SPECIES OF *CAROXYLON*SECT. *CAROXYLON* AND *TETRAGONAE* (CHENOPODIACEAE) BASED ON THE MORPHOLOGY AND nrITS SEQUENCES

Аннотация. Данные по морфологии опушения показывают, что изученные виды секций *Caroxylon* и *Tetragonae* имеют трихомы как одно- так и многоклеточные в верхней части, короткие или длинные, тогда извитые, с гладкой поверхностью. Такой же тип трихом имеют изученные виды секции *Belanthera*. Виды секций *Cardiandra, Malpigipila* и *Vermiculata*, относимых к роду *Caroxylon*, имеют трихомы других типов.

На основании молекулярно-филогенетического анализа участков ITS 1, 2 ярДНК проанализированы отношения девяти представителей секций *Tetragonae* и *Caroxylon* рода *Caroxylon*, из которых 4 распространены исключительно в Южной Африке. *Salsola calluna*, *S. columnaris*, *S. humifusa*, *S. tuberculata* образуют монофилетическую кладу поздней дивергенции. Таким образом, эти виды являются производными видов, произрастающих в юго-западной Африке и заселившие территории Южной Африки позднее. Виды ранней дивергенции распространены в Северной Африке, на западном побережье Северной Африки, Аравийском полуострове и в Малой Азии. *Caroxylon cyclophyllum*, ранее отнесенный к секции *Caroxylon*, оказался близок к *C. leptoclada* из секции *Cardiandra* из другой клады, которая включает секции *Malpigipila* и *Vermiculata*, что делает секцию *Caroxylon* полифилетической. Также впервые определено филогенетическое положение *S. azaurena*, которая объединилась с видами *C. canescens* и *C. carpathum* полифилетичной секции *Belanthera*.

Ключевые слова: Caroxylon, секция Caroxylon, секция Tetragonae, морфология, трихомы, молекулярная филогения, внутренний транскрибируемый спейсер (ITS).

Summary. Species of Caroxylon sect. Caroxylon and Tetragonae have dense indumentums, the basis of trichomes is multicellular, the top of trichomes is multi- or one-celled, short or long, short trichomes appressed to surface, long trichomes are tortuous, surface of trichomes is smooth. Trichoms in sect. Belanthera are multi- or one-celled, short or long with smooth surface. Species of sect. Cardiandra, Malpigipila and Vermiculata have trichomes of other types.

Molecular phylogeny of tribes *Caroxyloneae* and *Salsoleae* is presented based on Maximum Parsimony and Neighbor joining (NJ) analyse of nuclear ribosomal internal transcribed spacer (nrITS1, 2) sequences. Some species of *Caroxylon* sect. *Caroxylon* and *Tetragonae* form well supported monophyletic clade. Four South African species (*Salsola calluna, S. columnaris, S. humifusa, S. tuberculata*) form monophyletic clade of late divergence. They originate from taxa of North African distribution and obviously colonized South Africa later. Species of early divergence of sect. *Caroxylon* and *Tetragonae* grow in North Africa, Arabian peninsula and South-West Asia. *Caroxylon cyclophyllum* formerly placed in the sect. *Caroxylon* is close to *C. leptoclada* (sect. *Cardiandra*) within the clade which also includes species of sect. *Malpigipila* and *Vermiculata*. Thus, sect. *Caroxylon* is found polyphyletic. Firstly analyzed *S. azaurena* grouped together with *C. canescens* and *C. carpathum* from the polyphiletic sect. *Belanthera*.

Key words: Caroxylon, Caroxylon section, Tetragonae section, morphology, trichomes, molecular phylogeny, ITS.

Из южной и юго-восточной Африки было описано более 80 видов рода *Caroxylon* и 30 близких к ним видов без указания таксономического положения. Первая группа видов была отнесена к секциям *Caroxylon* и *Tetragonae* Ulbrich. Виды, отнесенные к роду *Caroxylon*, но имеющие другое распространение, относятся к секциям *Caro-*

xylon, Distichia Botsch., Irania Botsch., Tetragonae, Vermiculata Botsch. (Бочанцев, 1971, 1972, 1974а, б, 1975а, б, 1986).

Позже в род *Caroxylon* были отнесены виды секций *Malpigipila* Botsch., *Cardiandra* Aellen, *Belanthera* Iljin (Akhani et al., 2007), которые ранее относились к роду *Salsola* s. l. Филогене-

M.V. Lomonosov Moscow State University, Faculty of Biology, Department of Higher Plants, Leninskie Gory 1/12; 119991, Moscow, Russia

Московский государственный университет им. М.В. Ломоносова, биологический факультет, кафедра высших растений, Ленинские Горы, д. 1, стр. 12; 119991, Москва, Россия; torreya@mail.ru

тические отношения между секциями Caroxylon и Tetragonae рода Caroxylon и новыми секциями неясны, как и отношения между самими секциями Malpigipila, Cardiandra и Belanthera. Филогенетическое положение видов секций Distichia Botsch. (C. verdoorniae Tolken) и Tetragonae также не было выяснено.

В нашем анализе исследованы важнейшие для диагностики и таксономии морфологические признаки, такие как характер опушения и типы трихом. Типы трихом сопоставлены с молекулярной филогенией формальной группы *Caroxylon*, с помощью чего предложены возможные эволюционные пути их диверсификации в роде.

В молекулярно-филогенетическом анализе впервые исследуется положение южно-африканских видов секции *Tetragonae* и *Caroxylon* и других видов, относящихся к вышеназванным секциям.

Материалы и методы. 1. Источники растений. Были изучены образцы растений, хранящиеся в гербариях университета Кейптауна (ВОL) (Южно-Африканская Республика) и Ботанического института им. В.Л. Комарова РАН (LE), а также экземпляры из естественных популяций Нижнего Поволжья, Средней Азии, собранных автором, и Монголии.

- 2. Морфологический анализ трихом. Части побегов и листьев видов растений, относящихся к секции Belanthera рода Salsola и секциям Caroxylon и Tetragonae, напыляли золотом-палладием и платиной-палладием и анализировали на аналитическом сканирующем электронном микроскопе JEOL JSM-6380 LA (JEOL Ltd., Tokyo, Japan), оснащенном цифровой камерой, с напряжением 20 kV, в Межкафедральной лаборатории электронной микроскопии МГУ.
- 3. Изученные виды: Sect. Caroxylon S. albida Botsch., C. aphyllum (L. f.) Tzvel., S. apterygea Botsch., S. barbata Aellen, S. calluna Fenzl ex Moq., S. columnaris Botsch., C. cyclophyllum (Baker) Akhani & E.H. Roalson, S. dinteri Botsch., S. esterhuyseniae Botsch., S. gemmifera Botsch., C. glabrescens (Burtt Davy) Akhani & E.H. Roalson, S. kalaharica Botsch., S. merxmuelleri Aellen, S. namibica Botsch., S. nollothensis Aellen, S. rabieana Verdoorn, S. tuberculata Fenzl ex Moq., S. tuberculatiformis Botsch., C. zeyheri Moq.

Sect. *Tetragonae – S. decussata* C.A. Sm. ex Botsch., *S. geminiflora* Fenzl ex C.H. Wright, *S. humifusa* C.A. Sm. ex A.E. Brueckner, *S. tetragona* Delile.

Sect. *Belanthera – C. canescens* (Moq.) Akhani & E.H. Roalson, *C. carpathum* (P.H. Davis) Akhani & E.H. Roalson и *S. azaurena* Mouterde.

Типы опушения были сопоставлены с филогенетическим деревом группы.

- 4. Выделение ДНК, ПЦР, очистка ДНК, секвенирование ДНК. Тотальная ДНК была изолирована с использованием Diatom DNA Prep 100 Кіт для выделения ДНК (Лаборатория Изоген, Москва) из гербарного материала как указано в протоколе. Для получения большего числа копий нужного участка проводили амплификацию с помощью полимеразной цепной реакции (ПЦР) (White et al., 1990), как указано в протоколе для Encyclo PCR Kit для амплификации ДНК (Евроген, Москва) с использованием праймеров ITSL: 5'-TCGTAACAAGGTTTCCGTAGGTG-3'; ITS4 5' TCCTCCGCTTATTGATATGC 3' (White et al., 1990). Наличие ПЦР-продуктов проверяли электрофорезом в 1% агарозном геле, используя в качестве буфера 1*ТАЕ с добавлением бромистого этидия для подтверждения наличия единственного продукта. Очистку ПЦР-продукта производили с помощью набора для очистки ДНК (Цитокин, Санкт-Петербург), как указано в протоколе. Очищенный ПЦР-продукт (от 0,3 до 1 мкл) каждого вида и соответствующие праймеры (прямой или обратный) высушивались и использовались для приготовления реакционных смесей для секвенирования. При секвенировании ITS1 и ITS2 дополнительно использовали пару внутренних праймеров 2 и 3 (White et al., 1990): PrL: 5' TCGTAACAAGGTTTCCGTAGGTG, Pr2: GCTGCGTTCTTCATCGATGC, Pr3: GCATCGA TGAAGAACGCAGC, Pr4: TCCTCCGCTTATTG ATATGC. Секвенирование участков ДНК проводили методом циклического секвенирования с использованием набора реагентов ABI Prism BigDye Terminator Cycle Sequencung Ready reaction Kit v. 3.1. (PE Biosystems) с последующим анализом продуктов реакции на автоматическом секвенаторе ДНК ABI Prism 3730 Genetic Analyzer в Межинститутском Центре коллективного пользования «Геном» (Институт молекулярной биологии РАН им. В.А. Энгельгардта).
- 5. Филогенетический анализ. Автоматизированные ДНКсеквенс-хроматограммы были вычитаны, отредактированы и выравнены с использованием программ Chromas 4.6 и Bioedit. Матрица для филогенетического анализа содержит 187 последовательностей для 170 видов триб Salsoleae и Caroxyloneae (для большинства родов

и клад согласно предыдущим исследованиям). Кроме секвенированных последовательностей, другие последовательности ITS1, 2, полученные в предыдущих исследованиях других авторов, были взяты из базы данных NCBI GenBank с указанием номера ваучера (рис. 4). Внешняя группа была выбрана из представителей основных линий Chenopodiaceae как сестринких линий к Salsoleae и Caroxylonea (Akhani et al., 2007). Из интересующих видов, пять новых последовательностей, добавленных в матрицу, принадлежат представителям пяти видов рода Caroxylon, из которых четыре относятся к секции Caroxylon — S. albida, S. tuberculata, S. calluna, S. columnaris и один к секции Tetragonae — S. humifusa.

Филогенетические деревья были построены методами максимальной экономии (Махіmum Parsimony, далее MP) в филогенетической программе PAUP 4.0b8 (Swofford, 2003) и «объединения соседей» (neighbor joining, далее NJ). Для MP-анализов использовали эвристический поиск лучшей топологии с оптимизацией методом TBR, поиск проводился 100 раз со случайным порядком добавления видов, в каждом поиске сохраняли по 1000 наиболее экономных деревьев. Был выполнен анализ 10 млн. генераций, деревья из первых 6 млн. генераций из дальнейшего рассмотрения исключались. Для оценки устойчивости топологии полученных деревьев применяли метод бутстрепа (bootstrap) (Felsenstein, 1985; Hillis & Bull, 1993), при котором путем многократного взятия случайных выборок признаков производится набор псевдоданных. Для каждого такого набора строится свое дерево в соответствии с выбранным методом реконструкции филогении, а затем на основе всех полученных деревьев строится одно консенсусное. Частота, с которой та или иная группировка появляется в результатах обработки псевдоданных, показывает меру ее поддержки. При бутстреп-анализе проводили 1000 повторений, в каждой реплике проводили эвристический поиск оптимальной топологии со случайным порядком добавления таксонов и сохраняли по 1000 деревьев.

Названия таксонов даны согласно работе Akhani et al. (2007), кроме секций *Cardiandra, Malpigipila* и *Vermiculata*, для отнесения видов которых к роду *Caroxylon*, на наш взгляд, недостаточно морфологических и молекулярнофилогенетических оснований.

Результаты. *Морфологический анализ трихом.* Морфологическое разнообразие опуше-

ния и составляющих его типов трихом является важнейшим диагностическим и таксономическим признаков маревых. Важнейшими признаками трихом являются строение основания и самого волоска: одно- или многоклеточность, характер сочленения клеток и разветленность или неразветвленность верхней части трихомы, скульптура поверхности.

Секция *Caroxylon*. Опушение густое. Основание трихом многоклеточное.

Первая группа видов (*C. aphyllum, S. apterygea, S. barbata, S. calluna, S. kalaharica, S. merxmuelleri, S. namibica, S. nollothensis, C. rabieana, S. tuberculata*) имеет короткие, гладкие, прижатые к поверхности, одноклеточные в верхней части трихомы. Цветки и стебли могут иметь более длинные, многоклеточные трихомы (Федорова, 2010) (рис. 1).

Вторая группа видов (*S. albida, S. dinteri, S. esterhuyseniae, S. gemmifera, C. glabrescens, C. zeyheri*) имеет длинные, курчавые, гладкие, многоклеточные трихомы. В целом, виды с длинными, курчавыми, гладкими и многоклеточными трихомами из секции *Caroxylon* относятся к видам ранней дивергенции, тогда как *S. columnaris* относится к группе видов поздней дивергенции. (Федорова, 2010) (рис. 1, 2).

Виды *S. decussata*, *S. geminiflora*, *S. humi- fusa* секции *Tetragonae* имеют густое опушение.
Основание трихом многоклеточное, верхняя
часть трихомы одноклеточная, короткая, широкая, гладкая. Трихомы прижаты к поверхности. *Salsola tetragona* имеет несколько иное опушение. Трихомы более длинные, узкие, верхняя
часть трихом многоклеточная (рис. 2, 3).

Виды *C. canescens*, *C. carpathum* и *S. azaurena* секции *Belanthera* также имеют густое опущение из коротких и гладких трихом (рис. 3). Эти виды распространены на островах Средиземного моря, Ближнем Востоке и в Иране.

Сагохуlon cyclophyllum имеет короткие и гладкие трихомы (рис. 3), но на дереве занимает положение в кладе секций Cardiandra+Malpigipila+Vermiculata как сестринский вид к S. leptoclada, тогда как С. cyclophyllum, по данным Akhani и др. (2007), занимает сестринскую позицию (ВР 100%) к S. baryosma (Северная Африка, Аравийский полуостров, Сирия).

Предварительный анализ опушения представителей секций *Cardiandra*, *Malpigipila* и *Vermiculata* показал высокое морфологическое разнообразие составляющих его трихом, которые

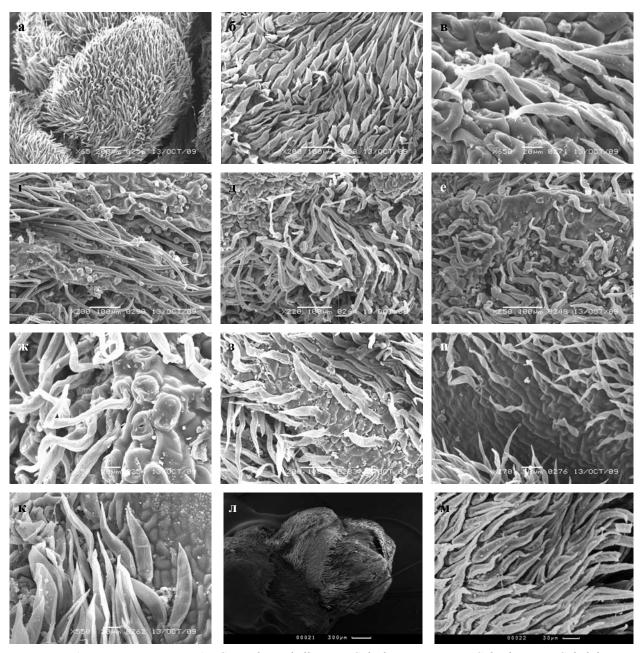


Рис. 1. Трихомы видов: a, δ – *Caroxylon aphyllum*; B – *Salsola apterygea*; Γ – S. barbata; μ – S. kalaharica; μ – S. merxmuelleri; μ – S. namibica; μ – S. nollothensis; μ – S. rabieana; μ – S. tuberculata; μ – S. albida.

могут значительно отличаются по строению от трихом описываемых здесь секций.

Филогенетический анализ. Для 48 видов, относящихся к трибам Salsoleae и Caroxyloneae, были получены новые последовательности ITS. В комбинации с секвенсами видов этих триб из GenBank, 187 последовательностей, из которых последовательности 5 видов, не относящиеся к этим трибам, были взяты как внешняя группа, была получена матрица данных ITS длинной 760 пар оснований (bp) с 605 вариабельными сайтами, из которых 365 информативны. МР анализ ITS-матрицы представлен тремя наиболее эко-

номными деревьями (length = 2990 steps, CI = 0.3070, RI = 0.8013, RC = 0.2460; HI = 0.6930). MP-дерево включает впервые полученные и анализируемые последовательности 5 видов, относящихся к секциям *Caroxylon* и *Tetragonae*, 1 вида секции *Belanthera*, 4 видов секции *Vermiculata*, 1 вида секции *Cardiandra*. В этой роботе мы приводим фрагмент MP-дерева, отображающий филогению видов изучаемых секций (рис. 4).

Клада, включающая представителей *Ca*roxylon и *Tetragonae*, выявляется как монофилетическая с высокими уровнями поддержки независимо от метода (MP или NJ) построения дере-

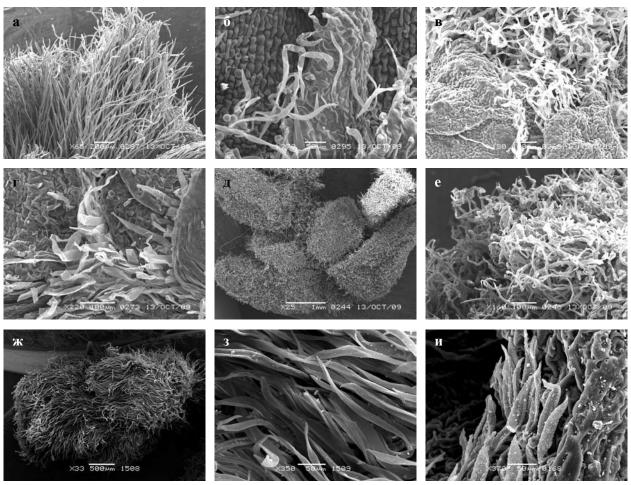


Рис. 2. Трихомы видов: $a - Salsola\ dinteri;\ 6 - S.\ esterhuyseniae;\ B - S.\ gemmifera;\ r - Caroxylon\ glabrescens;\ д, <math>e - C.\ zeyheri;\ ж,\ 3 - S.\ columnaris;\ u - S.\ geminiflora.$

вьев. Консенсусные деревья MP и MP+bootstrap существенно топологией не отличаются. Монофилия секций *Caroxylon* и *Tetragonae* представлена на обоих деревьях и хорошо поддержана (BP 96%).

Азиатские, североафриканские, западноафриканские и южноафриканские виды секций Caroxylon и Tetragonae формируют монофилетическую кладу. Caroxylon abarghuense (секция Irania, Иран) занимает базальное положение в этой кладе. Далее ответвляются виды S. albida, C. glabrescens, C. araneosum, C. zeyheri, произрастающие в юго-западной и южной Африке. Виды самой поздней дивергенции – S. calluna, S. humifusa и S. tuberculata – встречаются только в Южной Африке. По отношению к южноафриканским видам базальное положение занимает Salsola columnaris. S. humifusa (секция Tetragonae) включается между видами поздней дивергенции секции Caroxylon. Таким образом, южноафриканские виды возникли от видов, распространенных в Юго-Западной Африке, т. е., вопреки мнению В.П. Бочанцева, солянки проникли в южную Африку, а не наоборот (Бочанцев, 1969; Федорова, 2009).

Сагохую сусюрнувши (Hafarat al Nisah, Саудовская Аравия), относимая ранее к секции Сагохую, группируется с S. leptoclada (ВР 100%) из секции Саrdiandra, тогда как последовательность С. cyclophyвши, полученная Акhani и др. (2007) из растения, собранного в Иране, группируется с S. baryosma (ВР 100%) из секции Vermiculata, естественно произрастающей на побережье Персидского залива.

Обсуждение и выводы. Южно-африканские виды рода *Caroxylon* образуют монофилетичную кладу, которая включает как представителей секций *Caroxylon*, так и *Tetragonae*. *Salsola humifusa*, относящаяся к секции *Tetragonae*, включается между видами поздней дивергенции, относящимися к секции *Caroxylon*. Типовой вид секции *Tetragonae* – *S. tetragona*, произрастает в Марокко, Алжире, Тунисе, Ливии, Египте, Палестине и относится к базальной группе видов секции *Caroxylon*. *Caroxylon cyclophyllum*

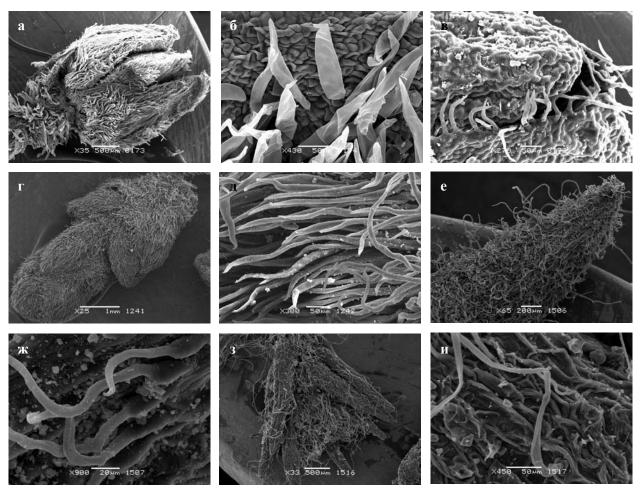


Рис. 3. Трихомы видов: a, δ – Salsola decussata; B – S. humifusa; Γ , π – S. tetragona; E, π – E. azaurena; E, E0. leptoclada.

(как по данным, полученным ранее, так и и по данным автора) относится к группе секций Cardiandra + Malpigipila + Vermiculata. Salsola nitraria, отнесенная В.П. Бочанцевым к однолетним видам секции Caroxylon, в действительности относится к секции Vermiculata, что подтверждается как морфологическими признаками опушения, так и данными молекулярной филогении. Таким образом, секции Caroxylon и Tetragonae – полифилетичные, а южноафриканские виды секции Tetragonae следует относить к секции Caroxylon.

Филогенетическое положение секций *Caroxylon, Tetragonae* и *Vermiculata*, с одной стороны, противоречит точке зрения В.П. Бочанцева о структуре рода *Caroxylon*, т. к. секция *Vermiculata* объединяется с секциями *Cardiandra* и *Malpigipila* из рода *Salsola*, правда, с низкой статистической поддержкой. С другой стороны, исследование подтверждает его точку зрения о понимании рода *Caroxylon* в узком смысле, т. е. с секциями *Caroxylon*, *Tetragonae*, *Vermiculata* (без секций *Belanthera*, *Cardiandra*, *Malpigipila*).

Виды секций *Caroxylon, Tetragonae* и *Belanthera*, образующие самостоятельную базальную кладу с высокой поддержкой, сближаются по признакам опушения: волоски короткие, и тогда верхняя часть волоска — одноклеточная, или длинные и извитые, и тогда верхняя часть волоска — многоклеточная; базальная часть волосков многоклеточная; поверхность волосков гладкая. Диагностические признаки секций *Caroxylon* и *Tetragonae* совпадают. Основной признак, положенный в основу разделения этих секций — характер ветвления стебля — также не является надёжным.

Напротив, опушение видов секций *Cardiandra*, *Malpigipila* и *Vermiculata* характеризуется большим морфологическим разнообразием и совершенно отличается от опушения видов секций *Caroxylon*, *Tetragonae* и *Belanthera*.

Новые комбинации

Caroxylon albidum (Botsch.) T.A. Theodorova, comb. nov. – *Salsola albida* Botsch., 1973, Bot. Zhurn. 58 (6): 816.

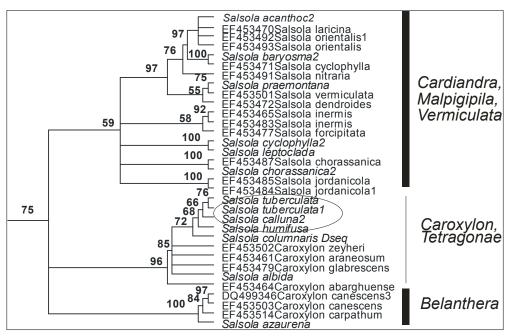


Рис. 4. Фрагмент MP-дерева, отражающего филогенетические отношения представителей рода *Caroxylon* и секций *Cardiandra*, *Malpigipila* и *Vermiculata* рода *Salsola*. Числа над ветвями показывают значение bootstrap-поддержки. Курсивом указаны виды, для которых последовательности анализируются впервые. Овалом выделены южноафриканские виды.

Caroxylon azaurenum (Mouterde) T.A. Theodorova, comb. nov. – *Salsola azaurena* Mouterde, 1966, Nouv. Fl. Liban & Syrie. 1: 433.

Caroxylon callunum (Fenzl ex Moq.) T.A. Theodorova, comb. nov. *Salsola calluna* Fenzl ex Moq., 1849, in DC., Prodr. 13(2): 191.

Caroxylon columnaris (Botsch.) T.A. Theodorova, comb. nov. Salsola columnaris Botsch., 1973, Bot. Zhurn. 58 (6): 820.

Caroxylon humifusum (C.A. Sm. ex A.E. Brueckner) T.A. Theodorova, comb. nov. Salsola hu-

mifusa C.A. Sm. ex A.E. Brueckner, 1951, Bothalia, 6: 215.

Caroxylon tuberculatum (Fenzl ex Moq.) T.A. Theodorova, comb. nov. *Salsola tuberculata* Fenzl ex Moq., 1849, in DC., Prodr. 13(2): 178.

Благодарности. Автор благодарит Dr. Terry H. Hedde-Smith (BOL Herbarium, Cape-Town University) и д-ра Тагира Самигуллина (Институт физико-химической биологии им. Н.А. Белозерского МГУ).

ЛИТЕРАТУРА

Бочанцев В.П. Однолетние виды секции *Caroxylon* (Thunb.) Fenzl рода *Salsola* L. // Новости сист. высш. раст. – СПб., 1971. – Т. 7. – С. 142–145.

Бочанцев В.П. Виды подсекции *Tetragona* (Ulbrich) Botsch. секции *Caroxylon* (Thunb.) Fenzl. рода *Salsola* L. // Новости сист. высш. раст. – СПб., 1972. – Т. 9. – С. 140–154.

Бочанцев В.П. Дополнение к «Видам подсекции *Tetragonae* (Ulbrich) Botsch. секции *Caroxylon* (Thunb.) Fenzl. рода *Salsola* L.» // Новости сист. высш. раст. – СПб., 1974. – Т. 11. – С. 171–172.

Бочанцев В.П. Виды подсекции *Caroxylon* секции *Caroxylon* (Thunb.) Fenzl рода *Salsola* L. // Новости сист. высш. раст. – СПб., 1974. – Т. 11. – С. 110–171.

Бочанцев В.П. Виды подсекции *Vermiculatae* Botsch. секции *Caroxylon* (Thunb.) Fenzl рода *Salsola* L. // Новости сист. высш. раст. – СПб., 1975. – Т. 12. – С. 160–194.

Бочанцев В.П. Подсекция *Distichae* Botsch. секции *Caroxylon* (Thunb.) Fenzl рода *Salsola* L. // Новости сист. высш. раст. – СПб., 1975. – Т. 12. – С. 194–196.

Бочанцев В.П. Irania – новая секция рода Salsola L. // Бот. журн., 1986. – Т. 71, № 10. – С. 1400–1401.

Бочанцев В.П. Род Salsola L., краткая история его развития и расселения // Бот. журн., 1969. — Т. 54, № 7. - C. 989-1001.

Федорова Т.А. Триба Salsoleae: возможная история возникновения и расселения на основании молекулярной филогении и морфологических данных // Труды VIII междунар. науч.-практ. конф. «Проблемы ботаники Южной Сибири и Монголии» (Барнаул, 19–22 октября, 2009 г.) – Барнаул: АРТИКА, 2009. – С. 54–64.

Федорова Т.А. Таксономическое положение южноафриканских солянок (*Caroxylon* Thunb., секции *Caroxylon* и *Tetragonae*) по данным морфологии и молекулярной филогении // XII Московское совещание по филогении растений, посвященное 250-летию со дня рождения Георга-Франца Гофмана: Материалы (Москва, 2–7 февраля 2010 г.). – М.: КМК, 2010. – С. 185–187.

Akhani H., Edwards G.H., Roalson E.H. Diversification of the old world Salsoleae s. l. (Chenopodiaceae): molecular phylogenetic analysis of nuclear and chloroplast data sets and a revised classification // Int. J. Plant Sci., 2007. - Vol. 168, N = 6. - P. 931-956.