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Abstract. The notion of low rank approximations arises from many important applications. When the
low rank data are further required to comprise nonnegative values only, the approach by nonnegative matrix
factorization is particularly appealing. This paper intends to bring about three points. First, the theoretical
Kuhn-Tucker optimality condition is described in explicit form. Secondly, a number of numerical techniques, old
and new, are suggested for the nonnegative matrix factorization problems. Thirdly, the techniques are employed
to two real-world applications to demonstrate the difficulty in interpreting the factorizations.
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1. Introduction. Let Y = [yij ] ∈ Rm×n denote the matrix of “observed” data where
yij represents, in a broad sense, the score obtained by entity j on variable i. One way to
characterize the interrelationships among multiple variables that contribute to the observed data
Y is to assume that yij is a linearly weighted score by entity j based on several factors. We shall
temporarily assume that there are p factors, but it is precisely the point that the factors are to
be retrieved in the mining process. A linear model, therefore, assumes the relationship

Y = AF, (1.1)

where A = [aik] ∈ Rm×p is a matrix with aik denoting the loading of variable i from factor k or,
equivalently, the influence of factor k on variable i, and F = [fkj ] ∈ Rp×n with fkj denoting the
score of factor k by entity j or the response of entity j to factor k. Depending on the applications,
there are many ways to interpret the meaning of the linear model.

The receptor model, for example, is an observational technique within the air pollution re-
search community which makes use of the ambient data and source profile data to apportion
sources or source categories [13, 14, 16]. The fundamental principle in this model is that mass
conservation can be assumed and a mass balance analysis can be used to identify and apportion
sources of airborne particulate matter in the atmosphere. One approach to obtaining a data set
for receptor modelling is to determine a large number of chemical constituents such as elemental
concentrations in a number of samples. The relationships between p sources which contribute m
chemical species to n samples, therefore, lead to a mass balance equation,

yij =

p
∑

k=1

aikfkj , (1.2)

where yij is the elemental concentration of the ith chemical measured in the jth sample, aik

is the gravimetric concentration of the ith chemical in the kth source, and fkj is the airborne
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mass concentration that the kth source has contributed to the jth sample. In a typical scenario,
only values of yij are observable whereas neither the sources are known nor the compositions
of the local particulate emissions are measured. Thus, a critical question is to estimate the
number p, the compositions aik, and the contributions fkj of the sources. Tools that have
been employed to analyze the linear model include principal component analysis, factor analysis,
cluster analysis, and other multivariate statistical techniques. In this modelling, however, there is
a physical constraint imposed upon the data. That is, the source compositions aik and the source
contributions fkj must all be nonnegative. The identification and apportionment, therefore,
becomes a nonnegative matrix factorization problem of Y . Classical tools cannot guarantee to
maintain the nonnegativity.

As another example, the notion of linear model has been proposed as a way to find a set
of basis functions for representing nonnegative data [6, 18, 29]. It is argued that the notion is
particularly applicable to image articulation libraries made up of images showing a composite
object in many articulations and poses. It is suggested that the factorization would enable
the identification and classification of intrinsic “parts” that make up the object being imaged
by multiple observations. More specifically, each column yj of a nonnegative matrix Y now
represents m pixel values of one image. The columns ak of A are basis elements in Rm. The
columns of F , belonging to Rp, can be thought of as coefficient sequences representing the n
images in the basis elements. In other words, the relationship,

yj =

p
∑

k=1

akfkj , (1.3)

can be thought of as that there are standard parts ak in a variety of positions and that each
image yj is made by superposing these parts together in some ways. Those parts, being images
themselves, are necessarily nonnegative. The superposition coefficients, each part being present
of absent, are also necessarily nonnegative.

In either case above and in many other applications [2, 28, 30], we see that the p factors,
interpreted as either the sources or the basis elements, play a vital role. In practice, there is a need
to determine as fewer factors as possible and, hence, a low rank nonnegative matrix factorization
(NNMF) of the data matrix Y arises. The mathematical problem can be stated as follows:

(NNMF) Given a nonnegative matrix Y ∈ Rm×n and a positive integer p < min{m,n},
find nonnegative matrices U ∈ Rm×p and V ∈ Rp×n so as to minimize the functional

f(U, V ) :=
1

2
‖Y − UV ‖2F . (1.4)

We shall call the product UV of the least squares solution a nonnegative matrix factorization
of Y , though Y is not necessarily equal to the product UV . Clearly the product UV is of rank
at most p. The objective function (1.4) can be modified in several ways to reflect the application
need. For example, a penalty term could be added to f(U, V ) in order to enforce sparsity or to
enhance smoothness in V [15, 27]. Also, because UV = (UD)(D−1V ) for any invertible matrix
D ∈ Rp×p, sometimes it is desirable to “normalize” columns of U . For simplicity, we shall
concentrate on (1.4) only in this paper, but the idea certainly can be generalized.

There are quite a few numerical algorithms proposed in the literature for NNMF. See, for
example, [15, 19, 20, 27]. Nonetheless, it is mentioned in the survey [33] that the current devel-
opments seem to lack a firm theoretical foundation in general. The difficulty lies in the fact that
nonnegative matrices form a cone with many facets which make it hard to characterize which
and when a facet is active or not in the optimization. Indeed, the article [6] interprets the NNMF
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geometrically as the problem of finding a simplicial cone which contains a cloud of data points
and which is contained in the positive orthant.

The purpose of the note is threefold: First, we describe a first order optimality condition
which can be regarded as the Kuhn-Tucker condition in closed-form. We then discuss general
ideas, old and new, for solving the NNMF. Some of the approaches can automatically detect which
facet is active along the integration while others have apparent simplicity for computation. The
objective of this study is to offer some additional insights into this challenging NNMF problem.
Finally, we apply these methods to some real-world problems and demonstrate by comparisons
the limitation and difficulty in interpreting the NNMF results.

2. First Order Optimality Condition. The cone Rm×p
+ of nonnegative matrices in

Rm×p can be written as

Rm×p
+ = {E. ∗ E|E ∈ Rm×p}, (2.1)

where we have adopted the MATLAB syntax M.∗N = [mijnij ] to denote the Hadamard product
of two matrices. In a sense, the expression E.∗E is one way to parameterize nonnegative matrices
over the open set Rm×p. In this way, the parametrization is differentiable and the problem of
nonnegative matrix factorization can now be expressed as the minimization of

g(E,F ) :=
1

2
‖Y − (E. ∗ E)(F. ∗ F )‖2F (2.2)

where variables (E,F ) are from the open set Rm×p × Rp×n. This parametrization effectively
transformed the constrained optimization over the cones into a problem with no constraint at all.

Consider g as a differentiable functional over the space Rm×p×Rp×n with product Frobenius
inner product,

〈(X1, Y1), (X2, Y2)〉 = 〈X1, X2〉+ 〈Y1, Y2〉, (2.3)

whenever X1, X2 ∈ Rm×p and Y1, Y2 ∈ Rp×n. The Fréchet derivative of g therefore can be
calculated component by component. In particular, the partial derivative of g with respect to E
acting on an arbitrary H ∈ Rm×p is given by

∂g

∂E
.H = 〈−(H. ∗ E + E. ∗H)(F. ∗ F ), δ(E,F )〉

= 〈−2H,E. ∗
(

δ(E,F )(F. ∗ F )>
)

〉, (2.4)

where, for convenience, we have adopted the notation

δ(E,F ) := Y − (E. ∗ E)(F. ∗ F ). (2.5)

Similarly, the partial derivative of g with respect to F acting on an arbitrary K ∈ Rp×n is given
by

∂g

∂F
.K = 〈−2K,F. ∗

(

(E. ∗ E)>δ(E,F )
)

〉. (2.6)

By the Riesz representation theorem, the gradient of g at (E,F ) can be expressed as

∇g(E,F ) =
(

−2E. ∗
(

δ(E,F )(F. ∗ F )>
)

,−2F. ∗
(

(E. ∗ E)>δ(E,F )
))

. (2.7)

We are now ready to characterize the first order optimality condition for the nonnegative
matrix factorization problem as follows:
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Theorem 2.1. If (E,F ) is a local minimizer of the objective functional g in (2.2), then
necessarily the equations

E. ∗
(

δ(E,F )(F. ∗ F )>
)

= 0 ∈ Rm×p, (2.8)

F. ∗
(

(E. ∗ E)>δ(E,F )
)

= 0 ∈ Rp×n, (2.9)

are satisfied. The corresponding stationary point to the nonnegative matrix factorization problem
is given by U = E. ∗ E and V = F. ∗ F .

Corollary 2.2. The necessary condition for (U, V ) ∈ Rm×p
+ ×Rp×n

+ to solve the nonnegative
matrix factorization problem is

U. ∗
(

(Y − UV )V >) = 0 ∈ Rm×p, (2.10)

V. ∗
(

U>(Y − UV )
)

= 0 ∈ Rp×n, (2.11)

It is interesting to note the complementarity condition of zeros in (2.10) and (2.11), that is,
if the (i, j) entry of U is not zero, then the corresponding entry in the product (Y − UV )V >

must be zero, and vise versa. Indeed, (2.10) and (2.11) effectively characterize the Kuhn-Tucker
conditions for the minimization of (1.4) subject to the nonnegative constraint [17]. In particular,
the following inequalities are also necessary.

Corollary 2.3. The two matrices −(Y − UV )V > and −U>(Y − UV ) are precisely the
Lagrangian multipliers specified in the Kuhn-Tucker condition. At a solution (U, V ) of the non-
negative matrix factorization problem, it is necessary that

(Y − UV )V > ≤ 0, (2.12)

U>(Y − UV ) ≤ 0. (2.13)

3. Numerical Methods. Several existing numerical methods for solving the NNMF
have already been reviewed in [20, 33]. Although schemes and approaches are different, any
numerical method is essentially centered around satisfying the first order optimality condition.
That is, at the local solution either the nonlinear systems (2.8) and (2.9) for general E and
F or the systems (2.10) and (2.11) for nonnegative U and V must be satisfied. It should be
cautioned, however, that merely satisfying the first order optimality condition is not enough to
guarantee that the critical point be a minimizer. Various additional mechanisms, such as the
Hessian information or some descent properties, are built into the different schemes to ensure
that a critical point is a solution to (1.4).

In this section, we shall study some old and develop some new numerical methods for solving
the NNMF problem. We have learned in our experiments that not all methods work equally well.
Thus far, there is no absolutely superior method. This presentation that considers the pros and
cons of each method therefore might have its merits. We believe that there is much room for
further improvement of any of these methods for the NNMF problem.

3.1. Newton-Type Approach. Any critical points of the NNMF problem must satisfy
the nonlinear matrix equations (2.8) and (2.9) simultaneously. The Newton method seems to be a
reasonable choice of techniques to tackle this problem. We briefly outline three possible variants
in this subsection.
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3.1.1. Constrained Quasi-Newton Methods. The Kuhn-Tucker conditions form
the basis to many nonlinear programming algorithms. The article [11], for example, compares
the performance of 27 computer codes which are all designed to solve the general constrained
nonlinear optimization problem. Among these, one of the most efficient techniques is the Sequen-
tial Quadratic Programming (SQP) methods. The SQP methods solve successively a sequence of
quadratic programming subproblems obtained by linearizing the original nonlinear problems at
various approximate solutions. One unique feature in the SQP methods is that they accumulate
second order information via a quasi-Newton updating procedure. For that reason, the SQP
methods are also known as constrained quasi-Newton methods [17]. There are many established
results concerning the SQP technique, including its superlinear convergence. An overview of the
SQP methods can be found in [8, 9].

We shall not discuss this often very elaborated SQP implementation in this paper. We only
point out that when applied to the NNMF problem, the Kuhn-Tucker conditions are explicitly
given by (2.10), (2.11), (2.12) and (2.13). We believe that the SQP methods can take further
advantage of the underlying structure in a similar way as the ADI Newton method which we
outline below.

3.1.2. ADI Newton Iteration. The matrix size involved in the NNMF problem is
usually very large. An endeavor tackling the system directly would be quite computationally
extensive, if possible at all. A commonly used approach is to alternate between U and V by fixing
the other. This idea of alternating direction iteration (ADI) has been used in many applications.

In our situation, we may start by fixing V in (2.10) and solve the system,

U. ∗ [B − UC] = 0, (3.1)

for a nonnegative matrix U ∈ Rm×p
+ , where both B = Y V > ∈ Rm×p and C = V V > ∈ Rp×p are

fixed and nonnegative matrices. We then fix U and solve next the system

V. ∗ [R− SV ] = 0, (3.2)

for a nonnegative matrix V ∈ Rp×n
+ with fixed R = U>Y ∈ Rp×n and S = U>U ∈ Rp×p. We

call this one sweep of the outer loop iteration. Note that because p is low, the sizes of the square
matrices C and S are relatively small.

It is obvious that merely taking U = BC−1 is not good enough for (3.1) because U could have
negative entries. Extra efforts are needed to satisfy the complementary condition in Corollary 2.2
and the inequalities in Corollary 2.3. Also, it is not clear under what conditions the outer loop
iteration will converge.

One structure inherited in the matrix equation (3.1) is that its solution U could be solved
row by row. Note that each row of U is not related to any other rows. Each row gives rise to a
nonlinear system of equations of the form

u>. ∗ [b> − u>C] = 0. (3.3)

Likewise, if U is fixed, then V in (3.2) can be solved column by column in a similar manner.
Though there are m rows for U and n columns for V to be solved, respectively, note that the
coefficient matrices involved are either C = V V > or S = U>U . These coefficient matrices need
to be updated once per sweep of the outer loop iteration and, more importantly, are of the much
smaller size p× p.

To guarantee the nonnegativity of u>, we rewrite (3.3) as the equation

ψ(e) = (C(e. ∗ e)− b). ∗ e = 0, (3.4)
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by the fact that C is symmetric and by taking e. ∗ e = u with e ∈ Rp. It is easy to see that the
Frèchet of ψ acting on an arbitrary vector h ∈ Rp can be calculated as

ψ′(e).h = 2(C(e. ∗ h)). ∗ e + (C(e. ∗ e)− b) . ∗ h. (3.5)

This expression is equivalent to the matrix-vector multiplication

ψ′(e).h = {2diag(e)Cdiag(e) + diag(C(e. ∗ e)− b)}h. (3.6)

In other words, we have the Jacobian matrix of ψ calculated. A standard Newton iteration
scheme can be applied now to solve ψ(e) = 0 as follows.

Algorithm 3.1. Given e(0) such that C(e(0).∗e(0))−b ≥ 0, do the following for k = 0, 1, . . .
until convergence:

1. Compute r(k) = C(e(k). ∗ e(k))− b.
2. Solve for h from the linear system

{

2diag(e(k))Cdiag(e(k)) + diag(r(k))
}

h = −r(k). ∗ e(k); (3.7)

3. Update e(k+1) = e(k) + α(k)h.
With |e0| large enough, the step size α(k) is adapted so as to maintain r(k) ≥ 0 for all k.

Obviously, at the convergence, the row vector u = e. ∗ e is a nonnegative solution to (3.3).
Repeating the process for each row of U (and indeed these rows can be processed in parallel), we
obtain a nonnegative solution U to (2.10) which also satisfies the inequality requirement (2.12),
for each fixed V . Exchanging roles of U and V , we can obtain a nonnegative solution V to (2.11),
for each fixed U . This completes one sweep of the outer loop iteration.

We stress again that it is not clear under what conditions the outer loop iteration converges.
Even if the outer loop converges, we have to point out that the Newton iteration only finds
critical points satisfying the first order optimality condition. The iteration does not distinguish
a minimizer from a maximizer unless additional second order information is brought in. It is
possible that the iteration converges to, for example, a saddle point.

3.1.3. Projected Newton Method. Consider the fact that the objective function
(1.4) is separable in columns. For a fixed U ∈ Rm×p, each single column of V amounts to a least
squares minimization for an objective function of the form

φ(v) =
1

2
‖y − Uv‖22, (3.8)

subject to the constraint that v ∈ Rp is nonnegative. Such a nonnegative least squares problem
has been studied extensively in the literature. For example, the MATLAB routine lsqnonneg

using a scheme that essentially is a projected Newton method [22, Chapter 23] is readily available
for exactly this type of least squares problem.

Alternating between U and V and employing the projected Newton method or the existing
lsqnonneg for each column of V and each row of U , we now have another numerical method
for the NNMF problem.

3.2. Reduced Quadratic Model Approach. In contrast to the Newton-type ap-
proach outlined above, the notion of reduced quadratic model approach is considerably simpler
to use. Similar to the SQP methods where the original nonlinear programming problem is approx-
imated by a sequence of quadratic programming subproblems, the idea is to replace the quadratic
function φ(v) defined in (3.8) by a sequence of simpler quadratic functions. More specifically,
near any given vc, the quadratic function φ(v) which can be rewritten as

φ(v) = φ(vc) + (v − vc)>∇φ(vc) +
1

2
(v − vc)>U>U(v − vc) (3.9)
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is approximated by a simpler quadratic model of the form

ϕ(v; vc) = φ(vc) + (v − vc)>∇φ(vc) +
1

2
(v − vc)>D(vc)(v − vc), (3.10)

where D(vc) is a diagonal matrix depending on vc. The minimizer of φ(v) is approximated by
the minimizer v+ of ϕ(v; vc), near which a new quadratic model is created. The definition of
D(v(c)) is quite intriguing, which we now describe below.

3.2.1. Lee and Seung Method. Let the entries be noted by vc = [vc
i ] ∈ Rp, D(vc) =

diag{d1(vc), . . . , dp(vc)}, and so on. First introduced by Lee and Seung [19], one way to define
the diagonal entries is by

di(v
c) :=

(U>Uvc)i

vc
i

, i = 1, . . . , p. (3.11)

Four important consequences follow from this choice of D(v(c)). First, it can be shown that [19]

(v − vc)>
(

D(vc)− U>U
)

(v − vc) ≥ 0 (3.12)

for all v. In other words, the matrix D(vc) − U>U is positive semi-definite, implying that ϕ
dominates φ in the sense that φ(v) ≤ ϕ(v; vc) for all v. Secondly, the minimum of any quadratic
function always has a closed form solution, but with D(vc) being diagonal the close form solution
is easy. In fact, the minimum v+ of ϕ(v; vc) is given by

v+ := vc −D−1(vc)(U>Uvc − U>y). (3.13)

Thirdly, note from the definition of D(vc) that the entries of v+ are precisely

v+
i = vc

i

(U>y)i

(U>Uvc)i

, i = 1, . . . , p. (3.14)

and, hence, remain nonnegative if vc is nonnegative. Finally, it is important to note that

φ(v+) ≤ ϕ(v+; vc) ≤ ϕ(vc; vc) = φ(vc), (3.15)

showing that v+ is an improved update from vc.
Repeating the above process for each individual column and assembling all columns together,

the updated matrix V + = [v+
ij ] for (1.4) from a given nonnegative matrix V c = [vc

ij ] and a fixed
nonnegative matrix U can be defined by the multiplicative rule:

v+
ij := vc

ij

(U>Y )ij

(U>UV c)ij

, i = 1, . . . , p, j = 1, . . . , n. (3.16)

In terms of the element-by-element multiplication .∗ and division ./, the relationship (3.16) can
simply be written as

V + := V c. ∗ (U>Y )./(U>UV c). (3.17)

In a similar way, the update U+ = [u+
ij ] for (1.4) from a given nonnegative matrix U c = [uc

ij ] and
a fixed nonnegative matrix V can be defined by the rule:

U+ := U c. ∗ (Y V >)./(U cV V >). (3.18)

Alternating these multiplicative update rules between U and V has been proposed in [19] as
means of solving (1.4).

Distinguishing itself from that Newton-type approach, note that the descent property (3.15)
of the Lee and Seung method ensures that the objective function f(U, V ) is nonincreasing under
the update rules.
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3.2.2. Ellipsoid Method. The choice of D(vc) as is defined in (3.11) deserves further
comments. It is clear that there are many other ways to set forth the simpler model (3.10). For
example, if all diagonal entries of D are sufficiently large, say, larger than the spectral radius of
U>U , then D − U>U is positive definite. Nonetheless, the larger the D, the smaller the D−1

and, hence, the less difference between v+ and vc according to (3.13). The challenge thus lies in
finding a diagonal matrix D that is large enough to make D − U>U positive definite, yet is also
small enough to signify the difference between v+ and vc. In this section we propose a different
quadratic model in the form of (3.10) where the diagonal matrix D = diag{d1, . . . , dk} carries
the additional property that its trace is minimized. The notion is based on the semidefinite
programming (SDP) technique [34].

We outline the idea by working on the least squares problem (3.8) where U ∈ Rm×p is fixed.
Denote S = U>U ∈ Rp×p and gc = [gc

i ] := U>Uvc − U>y ∈ Rp. Let λi(D) denote the ith

eigenvalue of D − S. Consider the function

ω(D) :=

p
∑

i=1

ln
1

λi(D)
+

p
∑

i=1

ln
1

di

+

p
∑

i=1

ln
1

divc
i − g

c
i

. (3.19)

Because the (real-valued) logarithm is defined only for positive arguments, the function ω can be
defined only for diagonal matrices D such that D−S is positive definite, D has positive diagonal
entries, and Dvc − gc is a positive vector. The barrier function ω(D) is introduced because its
level curves serve as reasonable approximations to the boundary of the desirable feasible domain.

The following two results give rise to the gradient ∇ω(D) and the Hessian ∇2ω(D). The
proofs can be found in [4]. More general results can be found in [1, 24].

Lemma 3.1. The gradient vector of ω(D) with D = diag{d1, . . . , dp} is given by

∇ω(D) = diag
(

(D − S)−1 −D−1
)

−









vc
1

d1vc
1−gc

1

...
vc

k

dkvc
k
−gc

k









. (3.20)

Lemma 3.2. The Hessian matrix H(D) of ω(D) is given by

H(D) = (D−S)−1.∗(D−S)−1+D−1.∗D−1+diag

{

(

vc
1

d1vc
1 − g

c
1

)2

, . . . ,

(

vc
k

dkvc
k − g

c
k

)2
}

. (3.21)

We note from the well known Schur product theorem [12, Theorem 7.5.3] that H(D) is
positive definite if D is feasible, which also shows that the function ω is strictly convex over its
feasible domain.

Recall that an ellipsoid E ⊂ Rp can best be characterized by its center γ ∈ Rp and a
symmetric and positive definite matrix Γ ∈ Rp×p in such a way that

E = E(Γ,γ) :=
{

x ∈ Rp|(x− γ)T Γ−1(x− γ) ≤ 1
}

. (3.22)

Within the feasible domain of ω, we can approximate its level curves by a sequence of inscribed
ellipsoids determined by the Hessians of ω in the following sense due to Dikin [5].

Theorem 3.3. Suppose Dc = diag(dc) is a strictly feasible point with respect to (3.19).
Then every diagonal matrix D+ = diag(d+) with d+ from the ellipsoid E(H(Dc)−1,dc) is also
strictly feasible.
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Proof. It has been argued in [4] that D+ is positive and that D+ − S is positive definite. It
only remains to show that D+vc − gc is positive. Denote ∆ := D+ −Dc = diag{δ1, . . . , δp}. It
follows that

D+vc − gc = (Dcvc − gc) + ∆vc.

Since

p
∑

i=1

(δiv
c
i )2

(dc
iv

c
i − g

c
i )2

< 1,

it is clear that |δiv
c
i | < dc

iv
c
i − g

c
i for all i = 1, . . . , p.

Given a feasible Dc, any point from the ellipsoid E(H(Dc)−1, dc) will carry the four properties
that Lee and Seung’s choice (3.11) possesses. It is a matter of which point d+ on E(H(Dc)−1, dc)
will serve the “goal” better. For instance, in attempting to make D+ small, one possible objective
is to minimize the trace of D+, i.e.,

minimize 1>d, (3.23)

subject to d ∈ E(H(Dc)−1,dc) (3.24)

where 1 := [1, . . . , 1]>. Clearly, one can choose to weight the diagonal entries of D differently
and end up with different linear objective functional. Such an optimization of linear objective
functional over ellipsoids has a closed form solution [10, Page 68].

Lemma 3.4. For p 6= 0, the minimal value of the linear functional p>x subject to the
condition x ∈ E(Γ,γ) occurs at

x∗ := γ −
1

√

pT Γp
Γp. (3.25)

Using (3.21) and by the fact that p is low, it is extremely easy to be implemented a basic Dikin
algorithm as follows:

Algorithm 3.2. (Basic Dikin Method)
Given d(0) ∈ Rp strictly feasible, do for k = 0, 1, . . . the following:
1. If D(k) − S is singular, then stop;
2. Otherwise,

(a) Solve H(D(k))d = 1 for d;
(b) Update d(k+1) := d(k) − 1√

1>d
d.

Theorem 3.3 guarantees that d(k) is strictly feasible and hence D(k) − S is never singular in
exact arithmetic. However, in floating point arithmetic, one has to settle the singularity (or rank
deficiency) of a matrix for an eigenvalue (or a singular value) less than a prescribed tolerance.
A usual choice of tolerance for zero is ε‖S‖ where ε is the machine dependent floating point
relative accuracy. For this reason it is possible that the algorithm stops at a point where D − S
is numerically semi-definite yet trace(D) may have not reached its minimal value. To reduce the
risk of hitting the boundary of the feasible domain too soon, we find it is a good idea to start
out the Dikin’s method from a sufficiently large scalar matrix.

The main difference between the Lee and Seung diagonal matrix DLee&Seung defined by
(3.11) and the Dikin diagonal matrix DDikin defined by Algorithm 3.2 is that DLee&Seung is
always on the boundary of the feasible domain because DLee&Seung − S has a zero eigenvalue
with eigenvector vc. While the Dikin algorithm produces a diagonal matrix that has minimal
trace, the Lee and Seung algorithm is remarkably cheap for computation.
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3.3. Gradient Approach.

3.3.1. Gradient Flow. The gradient of the objective function g(E,F ) is explicitly
known in (2.7). The dynamical system

dE

dt
= E. ∗

(

δ(E,F )(F. ∗ F )>
)

∈ Rm×p, (3.26)

dF

dt
= F. ∗

(

(E. ∗ E)>δ(E,F )
)

∈ Rp×n, (3.27)

therefore defines a continuous flow that moves in the space Rm×p × Rp×n along the steepest
descent direction of the objective functional g. It is easy to check that along the solution flow
(E(t), F (t)),

dg(E(t), F (t))

dt
= −〈

(

δ(E,F )(F. ∗ F )>
)

. ∗ E,
(

δ(E,F )(F. ∗ F )>
)

. ∗ E〉

−〈F. ∗
(

(E. ∗ E)>δ(E,F )
)

, F. ∗
(

(E. ∗ E)>δ(E,F )
)

〉 ≤ 0.

The objective functional g(E,F ) therefore can be used as the Lyapunov function for the dynamical
system. Furthermore, because the gradient flow is defined by an analytic vector field, by the well-
known ÃLojasiewicz-Simon theorem [3, 23, 32] the flow converges to a single point of equilibrium.
At the limit point, the first order optimality conditions (2.8) and (2.9) are satisfied. Although
the global convergence is guaranteed, there might be multiple and separated limit points each of
which is a local solution the NNMF problem.

Employing any available ODE solvers to integrate the system (3.26) and (3.27) constitutes
another numerical method for solving the NNMF problem.

3.3.2. Steepest Descent Method. Instead of integrating (3.26) and (3.27) by high
precision ODE integrators, the Euler method with appropriate step size selection is another way
of making use of the gradient information. One way to implement the steepest descent scheme
is to update E and F in the following iterations:

E(k+1) := E(k) + µkE
(k). ∗

(

δ(E(k), F (k))(F (k). ∗ F (k))>
)

, (3.28)

F (k+1) := F (k) + µkF
(k). ∗ ((F (k). ∗ F (k))>δ(E(k), F (k))). (3.29)

Recently, Shepherd [31] has proposed an update scheme as follows:

U (k+1) = U (k+1)(µk) := max
{

0, U (k) + µk(Y − U (k)V (k))(V (k))>
}

, (3.30)

V (k+1) = V (k+1)(µk) := V (k) + µk(U (k))>(Y − U (k)V (k)), (3.31)

where max is taken component by component. In either case, the selection of µk is critical. In
general practice, a backtracking line search using, say, a cubic interpolation and a merit function,
is performed to determine the step length µk [8, 9]. For the NNMF problem, the selection of step
length is easier. For example, the function,

Θ(µ) := F (U (k+1)(µ), V (k+1)(µ)), (3.32)

with U (k+1)(µ) and V (k+1)(µ) defined by (3.31) is a quartic polynomial in µ. It has been suggested
by Shepherd [31] to use the Tartaglia formula to compute directly the roots of Θ

′

(µ) and hence
locate the optimal µ.
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4. Numerical Experiments. We have outlined three distinct approaches — Newton-
type, reduced quadratic model, and gradient — to the NNMF problem. Each approach itself
has several variants. Because these methods have different features and wide-ranging degrees
of complexities, they perform differently. It is not easy to make a fair comparison of their
performance. In this section, we apply the various techniques to two real-world problems. We
demonstrate the limits and difficulties in interpreting the factorizations.

Example 1. Consider the 10 irises given in Figure 4.1, each of which is represented by a
matrix of size 120×160. These image came from a large database used to test computational iris
recognition methods for biometric identification [29]. As grey-scaled images, the entries of these
matrices are values between 0 and 1. Form the matrix Y of size 19200×10 by “vectorizing” each
iris matrix into a column. The NNMF of Y is meant to seek and identify any intrinsic parts that

Fig. 4.1. Intensity image of an iris

make up these poses. We do not know a priori the number p of parts. We thus experiment with
different numbers of p. Once we have found a factorization UV of Y , we normalize columns of
U to unit length for uniformity. This can be done via

UV = (UD−1)(DV ))

where D = diag(diag(U>U)). Columns of the normalized U will be considered as the bases of
these images. The bases for the case p = 2 and p = 4 are plotted in Figure 4.2 and Figure 4.3,
respectively. While Figure 4.2 suggests quite clearly that there are two positions of the irises in the
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Fig. 4.2. Basis images for p = 2.

Fig. 4.3. Basis images for p = 4.

ten images, the somewhat fuzzier Figure 4.3 indicates that there are two basic images overlaying
each other. In either case, the basic “parts” that make up these irises remain disappointedly
complicated. We note that separation by parts is generally much more effective if a larger
database of images is used, as shown by Lee and Seung [18] . We would expect better results
would be obtained using a larger database, say 100 or more images, but we used only a small
number for computational simplicity.

Example 2. The 8 × 15 matrix Y in Table 4.2 represents the annual total masses (in
thousand short tons) of eight pollutants estimated by the EPA over fifteen years [7]. The blanks
at the lower left corner indicate that no data are collected during those years and are assumed
zero (and hence bias the analysis). The 4 × 15 matrix F in Table 4.3 represents the annual
total emissions by four principal sectors across the national economy, each of which contains a
spectrum of many more pertinent subsectors. The collection of such data often is monitored
county by county throughout the USA as a continual task. Details can be found in the report [7]
and other EPA publications.

In our first scenario, suppose that both Y and F are available. The problem is to determine
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a nonnegative matrix A of size 8× 4 that solves the following optimization problem:

minimize
1

2
‖Y −AF‖2F , (4.1)

subject to A ≥ 0, and

8
∑

i=1

aij = 1, j = 1, . . . 4.

Each column of A represents the best fitting percentage distribution of pollutants from the
emission of the corresponding sector. This is a convex programming problem and the global
minimizer is unique.

Using existing software, such as fmincon in MATLAB, we find that the optimal distribution
Aopt to Problem (4.1) is given in Table 4.1. This best fitting distribution is in contrast to the
average distribution Aavg in Table 4.4 that would have to be obtained, otherwise, by extensive
efforts in gathering itemized pollutant emissions of each sector per year [7]. There are several
discrepancies that warrant attention. For example, it is estimated in Aopt that 32.70% emissions
from the fuel burning contribute to the volatile organic compounds whereas Aavg counts only
2.65%. It is estimated in Aopt that only 6.31% emissions from the fuel goes to the nitrogen oxides
whereas Aavg count 27.54%. It is clear that the estimates from Aopt, though best fitting the data,
is inconsistent with the scientific truth.

Fuel Industrial Transportation Miscellaneous

Carbon Monoxide 0.1925 0.3400 0.8226 0.0090
Lead 0 0.0000 0 0.0000

Nitrogen Oxides 0.0631 0 0.1503 0.1524
Volatile Organic 0.3270 0.2759 0.0272 0

PM10 0.0000 0.1070 0.0000 0.6198
Sulfur Dioxide 0.4174 0.2771 0.0000 0

PM2.5 0.0000 0.0000 0 0.1326
Ammonia 0.0000 0 0 0.0862

Table 4.1

Optimal distribution of pollutants from sectors with fixed emission estimates.

In our second scenario, suppose that only Y is available. The problem is to determine
four sectors, not necessarily in any order or any definition, and their corresponding percentage
distributions U and total emissions per year V so as to best fit the observed data Y . This is
precisely a NNMF problem.

By using the Lee and Seung algorithm, we obtain local solutions U and V indicated in
Table 4.5 and Table 4.6, respectively. We stress that we do not know what each column of U
really stand for. It requires a careful interpretation to identify what factor is being represented.
It is likely that a single column could represent a mixture of two or more known economy sectors.
We have noted the improvement in the objective functions, that is,

1

2
‖Y −UV ‖2F = 1.5873× 107 < ‖Y −AoptF‖

2
F = 2.7017× 108 <

1

2
‖Y −AavgF‖

2 = 7.1548× 108.

However, the somewhat unevenness in the NNMF emission estimates per sector given in Table 4.6
seems to make it more difficult to predict the estimate.

Similarly, by using the constrained quasi-Newton method, we obtain another percentage dis-
tribution of pollutants from sectors in Table 4.7. (To save space, the corresponding emission
estimates are not listed.) This much more sophisticated method is computationally more expen-
sive but is able to find local solutions that give smaller objective values (1.0645× 107). Again, it
is not clear how to identify the sectors and to interpret the distributions of pollutants.
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1970 1975 1980 1985 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Carbon Monoxide 129444 116756 117434 117013 106438 99119 101797 99307 99790 103713 94057 101294 101459 96872 97441
Lead 221 160 74 23 5 5 4 4 4 4 4 4 4 4 4

Nitrogen Oxides 20928 22632 24384 23197 23892 24170 24338 24732 25115 25474 25052 26053 26353 26020 25393
Volatile Organic 30982 26080 26336 24428 22513 21052 21249 11862 21100 21682 20919 19464 19732 18614 18145

PM10 13165 7677 7109 41397 40963 27881 27486 27249 27502 28756 25931 25690 25900 26040 23679
Sulfur Dioxide 31161 28011 25906 23658 23294 23678 23045 22814 22475 21875 19188 18859 19366 19491 18867

PM2.5 7429 7317 7254 7654 7012 6909 7267 7065 6773 6773
Ammonia 4355 4412 4483 4553 4628 4662 4754 4851 4929 4963

Table 4.2

Annual pollutants estimates (in thousand short tons).

1970 1975 1980 1985 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
Fuel 41754 40544 43512 41661 40659 39815 39605 40051 38926 38447 36138 36018 35507 34885 34187

Industrial 48222 32364 29615 22389 21909 21120 20900 21102 21438 21467 21190 17469 17988 17868 20460
Transportation 125637 121674 117527 119116 107978 100877 106571 105114 106328 108125 99642 106069 104748 103523 100783
Miscellaneous 10289 6733 10589 46550 46560 45877 42572 40438 41501 45105 39752 43829 46487 42467 39836

Table 4.3

Annual emissions estimates (in thousand short tons.

Fuel Industrial Transportation Miscellaneous

Carbon Monoxide 0.1535 0.3116 0.7667 0.3223
Lead 0.0001 0.0002 0.0002 0

Nitrogen Oxides 0.2754 0.0417 0.1177 0.0113
Volatile Organic 0.0265 0.4314 0.0908 0.0347

PM10 0.0368 0.0768 0.0074 0.4911
Sulfur Dioxide 0.4923 0.0996 0.0112 0.0012

PM2.5 0.0148 0.0272 0.0043 0.0761
Ammonia 0.0007 0.0115 0.0016 0.0634

Table 4.4

Average distribution of pollutants from sectors.
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Sector 1 Sector 2 Sector 3 Sector 4

Carbon Monoxide 0.2468 0.0002 0.7969 0.0001
Lead 0 0.0008 0 0.0000

Nitrogen Oxides 0.0000 0 0.1641 0.1690
Volatile Organic 0.3281 0.2129 0.0391 0

PM10 0.0000 0.5104 0.0000 0.5532
Sulfur Dioxide 0.4251 0.2757 0.0000 0

PM2.5 0.0000 0.0000 0 0.1680
Ammonia 0.0000 0 0 0.1097

Table 4.5

NNMF distribution estimates of pollutants from sectors (Lee and Seung algorithm)

.
1970 1975 1980 1985 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Sector 1 58705 57455 57162 3718 4974 47464 46314 47175 47864 43630 44643 42657 43578 42926 43585
Sector 2 25487 11755 7431 81042 75327 10313 10784 8313 6848 12613 4069 3403 3541 3159 1
Sector 3 143614 128945 130225 145512 132349 109442 113118 109881 110295 116521 104440 113926 113910 108437 108828
Sector 4 0 3139 6254 2 4702 40785 39618 41539 43358 40302 43236 43319 43599 44239 42832

Table 4.6

NNMF emission estimates (in thousand short tons

(Lee and Seung algorithm).

Sector 1 Sector 2 Sector 3 Sector 4

Carbon Monoxide 0.3124 0.4468 0.5426 0.6113
Lead 0 0 0.0000 0.0007

Nitrogen Oxides 0.1971 0.1299 0.0366 0.1412
Volatile Organic 0.0239 0.0654 0.1720 0.1191

PM10 0.1936 0.3101 0.0401 0.0220
Sulfur Dioxide 0.0287 0.0477 0.2087 0.1058

PM2.5 0.1480 0.0000 0 0
Ammonia 0.0963 0 0.0000 0.0000

Table 4.7

NNMF distribution estimates of pollutants from sectors (constrained quasi-Newton method).
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Fig. 4.4. Performance comparison of Lee and Sueng’s reduced quadratic model method (solid), Shepherd
quartic line search steepest descent method (dotted), and classical cubic line search steepest descent method
(dashed) for the case m=50,n=30,p=5. The x-axis identifies the random test number.

Example 3. We randomly generate nonnegative matrices A ∈ Rm×p and B ∈ Rp×n and
use the product Y = AB as the test matrix to see if any of the numerical methods can return a
factorization U and V such that Y = UV . Because some of the methods are considerably more
sophisticated than others with features that others do not have, it is difficult to make an across-
the-board comparison. We report in Figure 4.4 only the performance of three descent methods,
these are, the Lee and Sueng’s reduced quadratic model method, the Shepherd’s quartic line
search steepest descent method, and the classical cubic line search steepest descent method. We
choose to compare the number of iterations involved, the CPU time (in seconds) taken, and the
objective value reached by each method.

We carry out twenty random tests by using identical stopping criteria. The algorithm is
terminated whenever the norm of the gradient is less than 10−12 or the number of iterations
exceeds 20050. The numbers of iterations, the CPU time, and the objective values are compared
at the termination of computation. We notice that in all tests the Lee and Sueng algorithm
has used maximal allowable number of iterations without meeting the gradient criterium, yet
its objective values are compatible with those of the classical steepest descent algorithm. The
Shepherd steepest descent method with quartic line search is most expensive in CPU time, yet
it provides much smaller objective values. The classical steepest descent method with cubic line
search is most efficient in CPU time, yet its objective values are not as good as those of the
quartic line search.
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We stress that, though efforts are taken to equalize the complexity of the codes, the compari-
son are based on implementations that might not have been uniformly optimized. As we can find
local solutions only, the limit points produced by these iterations are not necessarily the same
even though they start from the same initial value.

5. Conclusion. The nonnegative matrix factorization has been desired by many im-
portant applications. We have specified in closed form the first-order optimality condition and
suggested a number of numerical procedures that can be employed to obtain a factorization that
is at least locally optimal.

Nonetheless, we have demonstrated by two real-world problems that the factorization itself
does not necessarily provide immediate interpretation of the real data — the basic parts of
the irises are themselves complicated images (and sometimes with overlapped irises); and the
percentage distributions of pollutants from economical sectors are not always consistent with
data obtained by other means (and could represent mixtures across several sectors.) Proper
interpretations or additional constraints on the factors are needed for NNMF applications.
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