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Abstract 23 

 24 

A new species of the rare, deep-sea genus Sciadonus Garman, 1899 (Bythitidae) is described 25 

based on two specimens obtained by the Brazilian R/V Alpha Crucis on the continental slope 26 

off São Paulo State, Southeastern Brazil, western South Atlantic. It differs from its congeners 27 

by the combination of the following characters: body pale lacking dark pigmentation except 28 

for on female claspers; a pair of dermal tissue flaps anteriorly on lower jaw; pelvic-fin rays 29 

present; precaudal vertebrae 39 or 40 and total vertebrae 74. The key to the species of 30 

Sciadonus is updated. A discussion of the presence and differentiation between troglomorphic 31 

and miniature characteristics among the species in the aphyonid clade is provided and 32 

compared with other bythitids. 33 

 34 

Keywords: aphyonid clade; continental slope; western South Atlantic; R/V Alpha Crucis 35 

 36 

1. Introduction 37 

The genus Sciadonus Garman, 1899 was revised by Nielsen (1969, 2018) and holds five 38 

valid species of deep-benthopelagic fishes inhabiting continental slopes and rises,  steeps of 39 

oceanic islands and seamounts, and the sea floor in the Pacific and Atlantic oceans (Fricke et 40 

al., 2021). The genus is currently allocated in the family Bythitidae, as part of the aphyonid 41 

clade, which includes additional five genera and 22 valid species: Aphyonus Günther, 1878 42 

with a species; Barathronus Goode & Bean, 1886, with seven species; Paraphyonus Nielsen, 43 

2015, with six species; Nybelinella Nielsen, 1972, with three species; and Meteoria Nielsen, 44 

1969, with four species (Nielsen et al., 1999, 2019; Møller et al., 2016; Nielsen, 2019; Fricke 45 
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et al., 2021). The aphyonid clade includes some of the deepest living species of vertebrates, 46 

with records down to 5,300 m and, since collecting at these depths rarely take place, are rare 47 

in scientific collections (Nybelin, 1957; Nielsen, 2003). 48 

Sciadonus was erected by Garman (1889), as part of the family Brotulidae, during the 49 

description of S. pedicellaris, which was described based on a single specimen collected off 50 

the Cocos Islands, in the Eastern Pacific. Sciadonus pedicellaris is widely distributed in the 51 

western North Atlantic, western South Pacific and eastern North Pacific (Nielsen, 2018; 52 

Nielsen et al., 2019). Within the Brotulidae, Zugmayer (1911a) erected Leucochlamys to 53 

include L. cryptophthalmus, described based on a specimen obtained from off Spain, Eastern 54 

North Atlantic, at 5,000 meters, diagnosing Leucochlamys from Sciadonus by the absence of 55 

pelvic fin in the former. Later, Zugmayer (1911b) proposed the family Aphyonidae to include 56 

Aphyonus gelatinosus Günther 1878, Bellottia apoda Giglioli, 1883, L. cryptophthalmus, and 57 

S. pedicellaris; Mead et al. (1964) briefly discussed the family diagnosis; and Nielsen and 58 

Cohen (1968) redescribed Bellottia apoda placing it outside the aphyonid clade. 59 

Nybelin (1957) described two aphyonids from the eastern North Atlantic, Leucochlamys 60 

jonassoni and Sciadonus kullenbergi, from the Cape Verde Islands and the Azores, 61 

respectively. The first taxonomic revision of the family Aphyonidae was made by Nielsen 62 

(1969), in which L. galatheae was described from the Kermadec Trench, southern Pacific, at 63 

4,410 meters, and S. kullenbergi was synonymized with S. pedicellaris. Nielsen (1969) also 64 

recognized the affinities among the species allocated in Leucochlamys and Sciadonus but 65 

maintained them as separate genera. However, a few years later, Leucochlamys was placed in 66 

synonymy with Sciadonus, and the three species previously allocated in the first were 67 

assigned to the latter (Rannou et al., 1975; Cohen and Nielsen, 1978). As more material 68 

became available, Nielsen (2018) reviewed the genus Sciadonus, placing L. galatheae as a 69 

junior synonym of L. pedicellaris and adding two new species, S. longiventralis Nielsen, 2018 70 
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from off New Zealand, at 1,000 meters depth, and Sciadonus robinsi Nielsen, 2018 from the 71 

western North Atlantic, about 280 nautical miles (ca. 530 Km) off Northeastern Brazil, at 72 

4,000 meters depth.  73 

The status of the family Aphyonidae was not questioned until recently, when the 74 

phylogenies including molecular data became available (Betancur-R et al., 2013, 2017; 75 

Møller et al., 2016). The aphyonids were recovered as monophyletic, but nested within the 76 

family Bythitidae, therefore, losing the status of family and becoming the aphyonid clade. The 77 

phylogenetic relationships within the aphyonid clade, however, remain uncertain as a better 78 

taxon-sampling is needed (Møller et al., 2016; Nielsen et al., 2019). 79 

In the western South Atlantic, records of aphyonids are scarce and include only three 80 

specimens of Barathronus bicolor Goode & Bean, 1886 obtained on the continental slope off 81 

Rio de Janeiro State, and the holotype of Barathronus linsi Nielsen, Mincarone & Di Dario, 82 

2015 from the continental slope off Rio Grande do Norte State (Andreata and Séret, 1995; 83 

Franco et al., 2007; Costa and Mincarone, 2010; Nielsen et al., 2015; Melo et al., 2020). 84 

Recent collections made by the Brazilian R/V Alpha Crucis, on the Brazilian continental 85 

slope off São Paulo State, Southern Brazil, obtained two specimens of Sciadonus. Those 86 

findings represent the first record of the genus in the South Atlantic, and a new species, which 87 

is described herein, with an updated key to the species of Sciadonus, the evaluation of its 88 

conservation status, and a discussion of troglomorphic and reductive characters in the 89 

aphyonid clade. 90 

 91 



5 
 

2. Material and Methods 92 

2.1. Sample collection 93 

The present material was collected by the Brazilian R/V Alpha Crucis, using a bottom 94 

trawl net with 27 meters in the lower hope, 10 cm mesh in the body and wings and 2.5 cm 95 

mesh in the codend. The water temperature was measured by the MARPORT sensors on 96 

doors and upper hope and by a CTD sensor. Permits for the collections were issued by the 97 

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis  IBAMA (8054-98 

1) and Secretaria da Comissão Interministerial para Recursos do Mar da Marinha do Brasil 99 

(Portaria No. 223).  100 

 101 

2.2. Morphological analyses 102 

Morphometric and meristic data were taken according to Nielsen et al. (1999) 103 

preferably from the left side, unless otherwise stated. Because the eye is tiny and deeply 104 

embedded under the skin, the eye diameter was not measured, and the interorbital distance 105 

was substituted by the head width at the level of the eye. Accounts given along text are 106 

followed by the frequency with an asterisk indicating values for the holotype. Comparative 107 

material as listed in Nielsen (1969) and Nielsen (2018). 108 

Neuromast observations and mapping were made under a stereomicroscope with direct 109 

observation of superficial neuromasts and transparency observation of canal neuromasts. 110 

Terminology for the groups of neuromasts follows Coombs et al. (1988), but innervation was 111 

not checked for homology inference. For observations of osteological characteristics, counts 112 

of vertebrae and dorsal-fin and anal-fin rays, both specimens were x-rayed at the Laboratório 113 

de Caracterização Tecnológica, Escola Politécnica of the Universidade de São Paulo using a 114 

ZEISS Xradia 510 Versa X-Ray Microscope: VoxelSizeX=4017 microns, voltage 30.165Kv, 115 
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power 2.0 W, exposure time 60 s. Pictures of the female clasper and gill arches were made 116 

using a ZEISS Discovery V12 Modular Stereo Microscope equipped with an camera and the 117 

auto-montage system to produce a composite image resulted from in-focus focal planes from 118 

multiple images. 119 

 120 

3. Results 121 

3.1. Taxonomy  122 

Order Ophidiiformes Berg, 1937 123 

Family Bythitidae Gill 1861 124 

Sciadonus alphacrucis n. sp. (Figs. 1 9, Table 1) 125 

urn:lsid:zoobank.org:act:A277F257-4B6D-4C10-B723-62C66393535C 126 

 127 

3.1.1 Material Examined 128 

Holotype. MZUSP 125949, 82.7 mm SL, female, western South Atlantic, continental slope 129 

off Ilhabela, off São Paulo State, Brazil, 24°53'55.80"S, 44°24'13.80"W, depth 794 m, 30 130 

Sept. 2019, R/V Alpha Crucis station 679. 131 

Paratype. MZUSP 125950, 60.3 mm SL, male, collected with holotype. 132 

 133 

3.1.2. Diagnosis 134 

Sciadonus alphacrucis can be diagnosed by the following combination of characteristics: 135 

body pale, lacking dark pigmentation except for female claspers; a pair of dermal tissue flaps 136 

anteriorly on lower jaw; pelvic-fin rays present; precaudal vertebrae 39 or 40 and total 137 
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vertebrae 74 or 75. Sciadonus alphacrucis can be separated from S. cryptophthalmus, S. 138 

jonassoni, and S. robinsi by the pelvic fin present (vs. pelvic fin absent), anterior nostril 139 

tubular (vs. anterior nostril with low rim), and vomer edentate (vs. one or two vomerine fangs 140 

present); from S. longiventralis by the pelvic fin shorter (2.6% vs. 3.5 % in SL), anal-fin 141 

origin below dorsal-fin rays 44 45 (vs. 36);  from S. pedicellaris by the precaudal vertebrae 142 

fewer (39 40 vs. 43 49), total vertebrae fewer (74 75 vs. 79 88), and the very thin, thread-143 

like female claspers (vs. thick female claspers). It further differs from S. cryptophthalmus and 144 

S. jonassoni by lacking black pigmentation on body, except for female claspers (vs. distinct 145 

black spots present below dorsal edge, along mid-body and above anal fin). 146 

 147 

Figure 1. Sciadonus alphacrucis sp. n. MZUSP 125949, holotype, female, 82.7 mm SL; 148 

western South Atlantic, São Paulo State, off Ilhabela, 794 m depth; in (A) soon after 149 

collection; (B) preserved specimen. Scale bar equals 10 mm. 150 

 151 
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 152 

Figure 2. Sciadonus alphacrucis sp. n., MZUSP 125950, paratype, male, 60.3 mm; western 153 

South Atlantic, São Paulo State, off Ilhabela, 794 m depth; in (A) soon after collection (B) 154 

preserved specimen. Scale bar equals 10 mm. 155 

 156 

3.1.3. Description 157 

Morphometric data presented in Table 1. Body elongated, oval in cross section anteriorly, 158 

tapering along caudal region. Skin loose, transparent, and lacking scales.  159 

Dorsal-fin origin on anterior fourth of body, at level of 13th (1) or 14th* (1) vertebra; 160 

dorsal-fin rays 93 (1) or 95* (1). Anal-fin origin at posterior third of body, at level of 44th* 161 

(1) or 45th (1) dorsal-fin ray, and at level of 41st* (1) or 42nd (1) vertebra; anal-fin rays 44* 162 

(1) or 45 (1). Pectoral fin peduncular, lateral on body, below vertical that passes through tip of 163 

snout, pectoral-fin rays 11* (2). Pelvic fin ventral on body, at level of base of pectoral-fin 164 

peduncle; pelvic-fin ray single* (2), filamentous and short, right and left pelvic-fin rays 165 

present (1) or only left pelvic-fin ray present* (1). Caudal fin rays 6* (2).  166 

Head small and rounded, tip of snout blunt in lateral profile. Eye deep-set, tiny, barely 167 

visible, at level of mid-upper jaw. Anterior nostril tubular, placed close to upper lip than to 168 

posterior nostril; posterior nostril opening dorsally on snout, lacking dermal flap. Mouth 169 
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terminal, cleft oblique, posterior tip of upper jaw extending posterior to level vertical passing 170 

through level of eye. Dermal flap present anteriorly on tip of lower jaw (Fig. 3).  171 

 172 

Figure 3. Head of Sciadonus alphacrucis n. sp. in detail (MZUSP 125949, holotype, 82.7 mm 173 

SL). Black arrow indicates position of eye; white arrow indicates soft-tissue flap of lower jaw. 174 

Scale bar equals 1 mm. 175 

 176 

Table 1. Morphometric data of Sciadonus alphacrucis n. sp., holotype (MZUSP 125949) and 177 

paratype (MZUSP 125950) 178 

 

Holotype  

(female) 

Paratype 

(male) 

Standard Length (mm) 82.7 60.3 

Head Length (mm) 9.9 8.6 

Proportions of Standard Length    

Head length  10.7 14.2 

Depth of body at anal-fin origin 7.9 8.1 

Upper-jaw length  5.9 7.9 

Pigmented eye diameter  NA NA 

Head width at level of eye 5.6 6.2 

Postorbital length  6.1 8.1 
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Preventral length  11.4 14.6 

Preanal length  57.5 62.2 

Predorsal length  24.9 27.2 

Base of pelvic fin to anal fin  46.6 48.6 

Pectoral-fin length  5.9 9.3 

Pelvic-fin length 0.7 (left), 0.0 (right) 2.6 

Clasper length  1.9 (left) / 2.77 (right)  4.4 

 179 

First gill arch with one raker on basibranchial* (1), nine rakers on ceratobranchial* (1) 180 

and one raker on epibranchial* (1); rakers shorts, with small crown of one to four teeth (Fig. 181 

4). Pseudobranchia absent. Branchiostegal rays 7* (2). 182 
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 183 

Figure 4. Gill arch and rakers of Sciadonus alphacrucis sp. n (MZUSP 125949, holotype, 184 

82.7 mm SL). (A) anterior gill arch in ventral view with B) red square indicating portion in 185 

detail. Scale bar equals 1 mm. 186 

 187 
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Lateral line (based on holotype). Lateral line and cephalic pores absent (Fig. 5). Canal 188 

neuromasts present only on head, deeply embedded under skin, with one postotic neuromast, 189 

one otic neuromast, one supraorbital neuromast, and four infraorbital neuromasts. 190 

Preopercular, mandibular, temporal, supratemporal and trunk neuromasts absent or not 191 

observed. Superficial neuromasts present on head only. Superficial neuromasts in lateral 192 

view: six around anterior nostril, one between anterior and posterior nostril, two posterior to 193 

posterior nostril, and one neuromast anteroventral to supraorbital neuromast; one neuromast 194 

on preopercle; seven neuromasts on mandibular line, and one on dentary dermal flap. 195 

Superficial neuromasts in dorsal view: two next to tip of snout, between anterior nares, and 196 

one between posterior nares. Tip of snout with two papillae.   197 



13 
 

 198 

Figure 5. Latero-sensory organs on head of Sciadonus alphacrucis sp. n (MZUSP 125949, 199 

holotype, 82.7 mm SL) in (A) lateral and (B) dorsal views. The canal neuromasts are 200 

indicated by gray triangles and the superficial neuromasts, by black dots. Abbreviations: IO, 201 

infraorbital canal; OT, otic canal; SO, supraorbital canal; and PO, postotic canal; NA, anterior 202 

nostril; NP, posterior nostril; and PP papillae.  203 
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 204 

Axial skeleton (from radiographs). Skeleton poorly calcified and difficult to observe in x-205 

rayed specimens. Precaudal vertebrae 39 (1) or 40* (1), total vertebrae 74 (1) or 75* (1). 206 

Pleural ribs and epipleural ribs not observed. Vertebral centra truncate, rectangular in lateral 207 

view, with height 1.5 times length, lacking zigapophysis, basapophysis, and parapophysis 208 

(Fig. 6). Neural arch and spines thin, present in all precaudal and caudal vertebrae, about 209 

equal in anterior half of body, gradually decreasing in size in caudal region; haemal arch and 210 

spine thin, present in all caudal vertebrae, gradually decreasing in size posteriorly.  211 

 212 
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Figure 6. Vertebrae micro-radiography at level of anal-fin origin in Sciadonus alphacrucis sp. 213 

n., with the transition from pre-caudal to caudal vertebrae (MZUSP 125949, holotype, 82.7 214 

mm SL). Asterisk indicates the first anal-fin ray; scale bar equals 1 mm. 215 

 216 

Dentition. Premaxillary teeth 34 (1), 31* (1), conical, straight, arranged in one to two 217 

irregular rows, fangs absent. Dentary teeth 25 (1), 35* (1), conical, posteriorly curved, 218 

arranged in one to two irregular rows, fangs absent. Vomerine teeth 4 (1), 5* (1), conical, 219 

tiny, and arranged in small patch.  220 

 221 

Coloration. Freshly collected specimens uniformly pale. Skin, bones, visceral and parietal 222 

peritonea transparent, body musculature white. Melanophores present exclusively in the eye, 223 

almost indistinguishable in adults, and on female claspers, but easily discernible in embryos. 224 

Internal structures of head (brain, facial nerves, bones of upper and lower jaws, eye, and gill 225 

filaments), pericardial cavity (heart), abdominal cavity (liver, digestive tube, testes or uterus 226 

with embryos), and body musculature (epaxial and hypaxial muscles, muscles of the pectoral, 227 

dorsal and anal fins) visible (Figs. 1A, 2A). Color of specimens after fixation in formalin and 228 

preservation in ethanol pale beige (Figs. 1B, 2B).  229 

 230 

Sexual dimorphism. Species with internal fertilization and lecithotrophic viviparity. Male with 231 

single penis, bulb-shaped; urogenital opening dorsal to penis, surrounded by left and right, 232 

possibly, vestigial claspers; urogenital hood dorsal to penis, ending in a sulcus formed by two 233 

wing-like prolongations on each side of penis; distal tip of penis pointy and triangular; anal 234 

papilla opening ventrally and anteriorly to penis (Fig. 7A). 235 
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Female pregnant, with well-developed uterus containing many embryos. Urogenital 236 

opening large, positioned immediately posterior to anus (Fig. 7B). A pair (left and right) of 237 

thin and slender claspers present immediately posterior to urogenital opening; left clasper 1.6 238 

mm (1.9% in SL), right clasper 2.3 mm (2.8 % in SL).  239 
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 240 

Figure 7. Reproductive apparatus of Sciadonus alphacrucis n. sp. (A) detail of male in lateral 241 

view (MZUSP 125950, paratype, 60.3 mm SL); in (B) detail of female in ventral view 242 



18 
 

(MZUSP 125949, holotype, 82.7 mm SL). Abbreviations: a: anus, b: vestigial male clasper, c: 243 

wing-like prolongations. Scale bar equals 1 mm. 244 

 245 

Description of embryos. Lecitotrophic embryos visible through transparent skin, about 4.0 246 

mm TL (Fig. 8). Body thin and elongated, with well-developed yolk sack; no structure 247 

connecting embryo to uterus. Head of embryo small and rounded; eyes black, enlarged and 248 

occupying most part of head. Pigmentation on body present, with small melanophores 249 

arranged in three rows along entire body; few scarce melanophores on dorsal part of yolk 250 

sack.  251 

 252 

Figure 8. Embryos of Sciadonus alphacrucis sp. n. in detail, visible through transparent skin 253 

(MZUSP 125949, holotype, 82.7 mm SL). Scale bar equals 1 mm. 254 

 255 
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3.2. Etymology 256 

The specific name honors the Brazilian R/V Alpha Crucis. A noun in apposition. 257 

 258 

3.3. Distribution and habitat 259 

The two known specimens of S. alphacrucis were collected by the same haul, on the 260 

continental slope off Southeastern Brazil, western South Atlantic, at 794 meters depth, 261 

suggesting that the species is benthopelagic (Fig. 9). It is the only species in the genus 262 

inhabiting depths shallower than 1,000 meters. The presence of mud/clay on the fishing doors 263 

and nets indicates the predominance of muddy bottom in the region. The water mass is 264 

composed by the Antarctic Intermediate Water (Silveira et al., 2020), with temperature of 265 

266 

female, were collected on the same station and recovered close to each other in the net wing. 267 
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 268 

Figure 9. The distribution of Sciadonus: in (A), global map of distribution with all records 269 

known up to date; in (B) a detailed map indicating the type locality of S. alphacrucis sp. n. 270 

Symbols: red star, S. alphacrucis; orange pentagon, S. cryptophthalmus; yellow triangle, S. 271 

jonassoni; purple diamond, S. longiventralis; white circle, S. pedicellaris; and blue hexagon, 272 

S. robinsi. 273 
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  274 

3.4. Conservation status 275 

The genus Sciadonus includes some of the rarest fish species worldwide, with only 36 276 

specimens known in scientific collections, including the two specimens listed herein (Nielsen, 277 

2018)  a misprint in Nielsen (2018) states 304 instead of 34. The members of the family 278 

Bythitidae, including S. alphacrucis, are viviparous and probably lack pelagic larvae, 279 

indicating low fecundity and low larval dispersal capability. However, proper information 280 

about growth, age of first maturation, and reproductive strategies are unavailable for all 281 

species in the family. Anthropogenic impacts include the exploration of oil and gas in the 282 

Santos Basin and fisheries activities targeting deep-sea crabs (e.g., Chaceon spp.), shrimps 283 

(e.g., family Aristeiidae), cephalopods (e.g., Argentine short-fin squid Illex argentinus), and 284 

fishes (e.g., Argentinean hake Merluccius hubbsi, Brazilian coddling Urophycis brasiliensis, 285 

and Brazilian monkfish Lophius gastrophysus) (Perez and Pezzuto, 2006; Pezzuto et al., 286 

2006; Perez et al., 2020). Additionally, a considerable amount of anthropogenic litter was 287 

collected in the same haul as S. alphacrucis, composed mostly of plastic, fisheries debris 288 

(hooks and line), and metal cans (MRSM and AAG pers. obs., 2019). Nevertheless, we are 289 

unable to evaluate the effects of those impacts on the species.  Considering the insufficient 290 

information about the newly described species biology and distribution allied to possible 291 

impacts caused by the presence of human activities in the area where it occurs, following the 292 

IUCN Red List Categories and Criteria (IUCN, 2019), S. alphacrucis is categorized as Data 293 

Deficient. 294 

 295 

4. Key to the species of Sciadonus 296 
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1a. Distinct, black spots below dorsal edge or spots below dorsal edge and along mid-body 297 

and above anal fin  ....................................................................................................................  2 298 

1b. No distinct black spots, but faint black pigmentation may occur dorsally and ventrally ...... 299 

 .................................................................................................................................................... 3 300 

 301 

2a. Black spots dorsally from above gill cover to caudal fin; 13 16 pectoral-fin rays; head 302 

18.0 18.5 % SL; tissue flaps anteriorly on lower jaw absent  ..................................................... 303 

 ........................................................................................  S. cryptophthalmus (Zugmayer, 1911) 304 

2b. Black spots below dorsal edge, above anal fin and in midline; 9 10 pectoral-fin rays; head 305 

14.5 17.0 % SL; a pair of tissue flaps anteriorly on lower jaw present or absent ....................... 306 

 .......................................................................................................  S. jonassoni (Nybelin, 1957) 307 

 308 

3a. Dorsal-fin rays 90 107; anal-fin origin below dorsal-fin rays 44 56, and vertebrae 44 49 . 309 

 ...................................................................................................................................................  4 310 

3b. Dorsal-fin rays 81 87; anal-fin origin below dorsal-fin rays 30 36 and vertebrae 38 41 ....  311 

 .................................................................................................................................................... 5 312 

 313 

4a. Precaudal vertebra 39 40; total vertebra 74 75; anal-fin origin under vertebrae 41 42 .......  314 

 .....................................................................................................................  S. alphacrucis sp. n.  315 

4a. Precaudal vertebra 43 49; total vertebra 79 88; anal-fin origin under vertebrae 44 49  ......  316 

 ....................................................................................................... S. pedicellaris Garman, 1899 317 

 318 
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5a. Predorsal length 28.5% SL; length of pelvic present (3.5% SL); a pair of distinct soft 319 

tissue flaps anteriorly on lower jaw  ...........................................  S. longiventralis Nielsen, 2018 320 

5b. Predorsal length 42.5% SL; pelvic fins absent; no flaps on tips of lower jaw ....................... 321 

 ...............................................................................................................  S. robinsi Nielsen, 2018 322 

 323 

5. Discussion 324 

5.1. Taxonomic comparisons 325 

Besides Sciadonus, the aphyonid clade include additional five genera  Aphyonus, 326 

Barathronus, Meteoria, Nybelinella, and Parasciadonus  and can be distinguished among 327 

other bythitids by the absence of scales, the skin loose and transparent, the precaudal 328 

vertebrae numbering 26 to 50, and the swim bladder absent (Nielsen et al., 1999; Nielsen, 329 

2015; Møller et al., 2016). The gelatinous body, pigmentation reduced or absent, and eyes 330 

poorly developed or not visible externally are other useful diagnostic characters, although 331 

they can also be found in the anchialine  cave  species of the ophidiiform genera Diancistrus, 332 

Lucifuga, Ogilbia, and Typhliasina (Møller et al., 2004, 2006; García-Machado et al., 2011; 333 

Hernández et al., 2020).  334 

Up to date, only one phylogenetic hypothesis is available for the genera and species 335 

included in the aphyonid clade (e.g., Møller et al., 2016), and the placement of the newly 336 

described species in the genus Sciadonus is based on the presence of the pectoral peduncle 337 

being about three times as long as high (vs. length and height equals in the other genera). 338 

Sciadonus alphacrucis differs from those species placed in Aphyonus by having 11 pectoral-339 

fin rays (vs. 17 19) and distal tip of upper jaw slightly posterior to vertical through the eye 340 

(vs. upper jaw extending well behind the vertical through the eye); from those in Barathronus 341 

by having 10, short gill rakers on first arch (vs. gill rakers on first arch long, 23 25), six 342 
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caudal-fin rays (vs. 9 or 10), and vertebral centra rectangular in lateral view (vs. hourglass 343 

shaped); and from those in Parasciadonus and Meteoria  by the presence of a pelvic fin (vs. 344 

absent) and presence of gill rakers on the first branchial arch (vs. absent) (Nielsen, 1969, 345 

2015, 2016, 2018, 2019; Nielsen et al., 1999). 346 

Among its congeners, S. alphacricus shares with S. jonassoni, S. longiventralis and S. 347 

pedicellaris the presence of a well-developed dermal flap on the anterior tip of the lower jaw, 348 

which is absent in S. cryptophthalmus and S. robinsi. The absence of pigmentation on body 349 

and the reduced eyes brings S. alphacrucis closer to S. longiventralis, S. pedicellaris, and S. 350 

robinsi, and the presence of the pelvic fin, to S. longiventralis and S. pedicellaris  although it 351 

is thinner and shorter in the latter (3.5% in SL in S. alphacrucis and S. longiventrais vs. 0.6 % 352 

SL in S. pedicellaris). The elongated and slender body in S. alphacrucis resembles S. 353 

pedicellaris, but the former has fewer precaudal and total vertebrae (39 40 vs. 43 49 and 74354 

75 vs. 79 88, respectively) (Nielsen, 1969, 2018). Additionally, the female of S. alphacrucis 355 

has very distinctive, long and slender black pigmented claspers, which is unique among its 356 

congeners. 357 

 358 

5.2. Evolution of troglomorphic traits and miniaturization in the aphyonid clade. 359 

Convergent evolution of highly specialized phenotypic and genetic characteristics 360 

between deep-sea and cave fishes had already been noticed (Munk, 1965; Thinès, 1969; 361 

Poulson, 2001; Policarpo et al., 2021). Even though the deep sea and subterranean water 362 

bodies resemble entirely different environments, both are partially or completely depleted 363 

from sunlight and, therefore, are heterotrophic ecosystems dependent upon energy transfer 364 

from the surface (Barr, 1968). Nevertheless, animals that live in these dark habitats might 365 

have two sets of morphological adaptations that evolved convergently: the reductive traits 366 
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include characteristics that lose their functionality in darkness, such as the eyes and body 367 

pigmentation; and constructive traits consist of the characters that enhance non-visual 368 

orientation, the ability to identify food or predators and interspecific communication, such as 369 

the sensory organs of lateral line and dermal papillae (Parzefall, 1996; Romero and Green, 370 

2005; Klaus et al., 2013; Soares and Niemiller, 2013).  371 

The aphyonid clade is composed of highly modified, deep-sea bythitids that have a 372 

unique morphology including the eye progressively degenerated and covered under the skin, 373 

the body generally transparent or white, with melanophores scarce or absent in most species, 374 

and the skin loose from musculature (Nielsen, 1969, 2018; Policarpo et al., 2021). As in most 375 

cavefishes, the depigmentation of body is normally correlated with the degree of eye 376 

reduction (Pazerfall, 1996), but the presence of melanophores and enlarged eyes in the 377 

embryos of Nybelinia erikssoni (Nybelin, 1957), Barathronus affinis Brauer 1906, and L. 378 

alphacrucis indicate that those characteristics reduce ontogenetically and, therefore, are not 379 

paedomorphic (Nybelin, 1957; Nielsen, 1969; this contribution). The reduction of lateral-line 380 

canals in head and trunk is compensated  by the appearance of superficial neuromasts on the 381 

head, and the presence of papillae on the tip of the snout, which probably improve their ability 382 

to explore their environment (Soares and Niemiller, 2013).  383 

Among the ophidiiforms and in addition to the aphyonid clade, troglomorphic traits 384 

convergently evolved in the bythitid genus Lucifuga and the dinematichthyid genera 385 

Diancistrus, Ogilbia, and Typhliasina, all of which are composed of obligatory-cavernicolous 386 

species (Romero and Paulson, 2001). In those species, the reductive characters appear in 387 

different levels, as follows: eyes reduced and body pigmented in Diancistrus typhlops 388 

Nielsen, Schwarzhans & Hadiaty, 2009, L. lucayana Møller, Schwarzhans, Iliffe & Nielsen, 389 

2006, L. gibarensis Hernández, Møller, Casane & García-Machado, 2020 and L. spelaeotes 390 

Cohen & Robins, 1970, or eyes not externally visible and body lacking pigmentation in L. 391 
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dentata Poey, 1858; L. simile Nalbant, 1981 and L. subterranea Poey, 1858, Ogilbia 392 

galapagosensis (Poll & LeLeup, 1965) and Typhliasina,.pearsei (Hubbs, 1938) (Eigenmann, 393 

1909; Møller et al., 2004, 2006; García-Machado et al., 2011; Hernández et al., 2020). In 394 

other hand, the bythitid genus Grammonus include three cave species  G. nagaredai Randall 395 

& Hughes, G. thielei Nielsen; Daniel & Cohen, 1976, and G. yunokawai Nielsen, 2007   that 396 

have well-developed eyes and pigmented body (Nielsen and Cohen, 2004; Nielsen, 2007; 397 

Randall and Hughes, 2009). 398 

Miniaturization is another evolutionary processes that causes size reduction allied to the 399 

appearance of paedomorphic features, including diminution the latero-sensory canals, number 400 

of fin rays and body scales, and the simplification of osteological structures (Weitzman and 401 

Vari, 1988; Hanken and Wake, 1993; Britz et al., 2009). Aphyonids are relatively small 402 

reaching the maximum 225 mm in total length, and reductive traits include the lack of scales 403 

on body and head, pyloric caeca and swim bladder, the reduction of head lateral-line canals 404 

and absence of the trunk canal, skeleton mostly cartilaginous, operculum lacking spines, 405 

pelvic fins reduced or absent, and neural and haemal spines poorly developed (Nielsen, 1969, 406 

2015, 2019; Nielsen et al., 2019). A detailed osteological description  in a species of the 407 

aphyonid clade is still missing, but the studied conducted by Hilton et al., (2021) in 408 

Parabrotula plagiophthalmus Zugmayer, 1911 revealed severe reductions in several bones of 409 

the neurocranium, suspensorium, opercle, mandibular, hyoid and gill arches, pectoral gridle, 410 

as well as the absence of the infraorbital bones, pelvic gridle, and the extreme reduction of the 411 

fifth ceratobranchial. 412 
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