
 
 

 

 

 

 

 

 

 

  

  

Faculty of Biosciences, Fisheries and Economics 

Metazoan Parasites in deep-sea sharks 

Part I. A Review of the Parasite Fauna of sharks of the 
genus Etmopterus  

Part II. Metazoan gastrointestinal parasites of 
Etmopterus spinax (L., 1758) from southern Norwegian 
waters 

Diogo Costa Ramos da Rocha Marques 

FSK-3910 Master's Thesis in International Fisheries Management  
 

November 2019 



 
 

  



 
 

 
 
 

Faculty of Biosciences, Fisheries and Economics 

Metazoan Parasites in deep-sea sharks 

Part I. A Review of the Parasite Fauna of sharks of the 
genus Etmopterus  

Part II. Metazoan gastrointestinal parasites of 
Etmopterus spinax (L., 1758) from southern Norwegian 
waters 

Diogo Costa Ramos da Rocha Marques 

FSK-3910 Master's Thesis in International Fisheries Management – 30 ECTS 
 

November 2019  

 

 

 

Supervisor  

Willy Hemmingsen, The Arctic University of Norway (UiT) 

 

External supervisors 

Kenneth MacKenzie, The University of Aberdeen 

Claudia Junge, Institute of Marine Research (IMR) 



 
 



v 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Front page photo of Etmopterus spinax (Velvet belly lanternshark) 

By Rudolf Svensen



vi 
 

 

  



vii 
 

Acknowledgments 
 

First and foremost, I would like to show my endless gratitude to my supervisor, Willy 

Hemmingsen (UiT). The guidance, working experience and the professional and knowledge 

input which he has provided me with throughout this process has been vital.  

A huge thank you must also be addressed to both my advisors/mentors Kenneth MacKenzie 

(The University of Aberdeen), for his hospitality, help and for generously sharing his great 

academic and life knowledge, and Claudia Junge (IMR), an example of true passion for 

science and leadership who has been essential for the conclusion of this academic chapter of 

my life.  

A big thank you must also be addressed to all my closest friends, especially the ones helping 

me with this thesis.  

My friends all around the World and fellow classmates also deserve a thank you, for their 

love, for sharing life and knowledge perspectives and for the support I received.  

Por fim queria dar um agradecimento da imensidão de um Oceano à minha família, 

especialmente à minha irmã, Mãe e Pai, pelo vosso apoio e o Amor. Vocês são as minhas 

raízes e tal e qual como uma árvore sem elas não consigo sobreviver. 

 

Tromsø, 15th of November 2019 

Diogo Rocha Marques 

 

 

 

 

 



viii 
 

 

 

 

 

 

 

 

 

 

  



ix 
 

Abstract  
 

Parasites play an important role in ecology due to their potential influence on the biodiversity 

and dynamics of ecosystems. The complexity of interaction between parasites and their hosts 

is crucial to understanding the host’s populations dynamics, behaviour as well as 

interconnections between food chains in an ecosystem. Parasites have wide applications as bio-

indicators for example to detect and monitor pollution and to provide additional information 

on the host’s population connectivity. With increasing fishing pressures globally, an 

understanding of affected ecosystems including the species and their dynamics therein is 

crucial in order to implement effective management strategies. The velvet belly lanternshark 

(Etmopterus spinax) is a small deep-sea shark which is a common bycatch species in North Sea 

fisheries. There have been only few studies on the parasites of E. spinax in Norwegian waters 

and none of them included mature individuals studying the entire parasite community. 

Therefore, this study investigated a total of 115 E. spinax specimens from box sexes in different 

sexual stages were sampled at eight stations with different depths in the North Sea in January 

2016. In addition, this thesis aimed to review all available literature on metazoan parasites 

within the entire genus Etmopterus to lay the basis for the expectations of the empirical study 

and to identify potential knowledge gaps. The literature review indicated 21 existing parasite 

species on 9 host species belonging to the Etmopterus genus, on 13 different sites of the host’s 

body. The empirical data from eight stations in southern Norwegian waters revealed fairly low 

parasite prevalence and diversity on E. spinax. From a total of 115 studied shark specimen in 

this study only a total of four different parasite species (from four taxonomic groups) were 

recorded and only 18 host specimens were infected with at least one parasite species. The 

comparison of E. spinax individuals showed that larger sharks had a significantly higher 

prevalence of the parasite species A. simplex and A. squalicola, although the same could not be 

found for the other two parasite species. The generally lower values compared to the literature 

could be explained by e.g.  parasite seasonality, diet shifts or methodological constraints, which 

are all discussed. The parasites species found here presented both strong and weak points for 

potential use as biological tags for host dynamics and food web interactions in the future. 

 

Keywords: Metazoan parasites; population tag; Etmopterus; North Sea; management 
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Introduction 
 

Parasitism, from an evolutionary perspective, is defined as the relationship between species, 

where one organism, the parasite, lives on or in another organism, the host, causing it some 

harm, and is adapted structurally to this way of life (Poulin, 2007). The definitions for 

parasitism may differ significantly however, reflecting the research interests and backgrounds 

of academics, but one fact that is obvious and undisputed is that it is one of the most successful 

life strategies of all living systems (Poulin, 2007; Poulin & Morand, 2000; Rohde, 2015). This 

is evidenced by the diversity and absolute numbers of existing parasites (Poulin & Morand, 

2000; Rohde, 2015). Parasites play an important role not only in commerce and economics 

(e.g. loss of quality of fish harvest and costs associated with the infection control and 

prophylaxis), but also in marine conservation (e.g. infection level of certain parasites species 

can provide information about host density) (Marcogliese, 2005; Sasal & Thomas, 2005; 

Catalano et al., 2014; Shinn et al., 2015). Parasites can consist of one single cell (eukaryote) 

or multiple cells (metazoan) (Loker & Hofkin, 2015). The group of metazoan parasites includes 

(i) roundworms (Nematoda), (ii) flatworms (Platyhelminthes) such as digeneas (endoparasitic 

flatworms), monogeneans (ectoparasitic flatworms) and cestodes (tapeworms), (ii) arthropods 

(Arthropoda) with crustaceans such as copepods and barnacles (Cirripedia) (Caira & Healy, 

2004) and (iii) rotifers (Syndermata/Rotifera) like Acanthocephala. 

The life cycle of parasites can be direct (i.e. implies only a single host to achieve their 

development and to reproduce) or indirect (i.e. requires at least two different hosts to complete 

their biological cycle) (Rohde, 2005; Loker & Hofkin, 2015). Metazoan parasites present 

numerous and diverge types of interaction with their host, which in some ecological cases are 

difficult to distinguish (Rohde, 2005). They include commensalism (i.e. parasites benefit from 

the host while the host is unaffected), phoresis (i.e. parasites use exclusively the host as a 

transport or shelter/support), mutualism (i.e. parasites and hosts benefit with the interaction, 

however is not obligatory), symbiosis (i.e. compulsory relationship between hosts and 

parasites) (Rohde, 2005; Loker & Hofkin, 2015).  

Host-parasite interactions are crucial to our understanding of the host as an individual, within 

a population including its dynamics, and as part of an ecological community structure (Scott, 

1988; Poulin, 2000; Marcogliese, 2004, Sasal & Thomas, 2005). Parasite species are often host-

specific (i.e. with respect to their final host and/or the intermediate host) and within a host even 
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organ-specific (Caira et al., 2012; Rohde, 2015), and the distributional patterns of that host will 

contribute to parasite distribution (Poulin & Morand, 2000; Marcogliese, 2004). The ecological 

study of parasites can therefore not only reveal crucial information about their role in food 

webs but also about the feeding habits and behaviour of the hosts (Marcogliese, 2004; Irigoitia 

et al., 2017). The largest host species, the vertebrates, commonly populate the most abounding 

parasite fauna and provide a wide number of niches to parasites (Rohde, 1993).  The 

physiological response by the host to parasitic infections may result in loss of energy (e.g. 

defence mechanism against parasitic infection), decrease of grown rate and may reduce host 

tolerance to stressors (Poulin, 2000; Marcogliese, 2004; Rynkiewicz et al., 2015). 

Consequently it could induce competition for limited resources or deprivation of physiological 

responses such as reproduction and growth, and ultimately resulting in a pathological impact 

on host body and death of the host (Poulin, 2000; Rynkiewicz et al., 2015). Hence, parasites 

indirectly have the ability to regulate and control populations densities and abundances 

(Dobson, 1988; Hatcher et al., 2012, Catalano et al., 2014). Parasites can play a negative role 

in biodiversity (e.g. causing local extinctions) (McCallum & Dobson, 1995). Under different 

conditions, they can fundamentally contribute to the stability of ecosystems, and consequently 

have been suggested as a proxy of ecosystem quality (Hudson et al., 2006).   

The complexity of interactions between parasites and their hosts can give promising 

information regarding the ecosystem that the parasite is inserted in (MacKenzie & Abaunza, 

1998; Hermida et al., 2013). Because of that, the use of parasites as indicators (or “tags”) has 

gained wide acceptance in the last decades, for example as bio-indicators which are markers 

that are inside of an individual which can have physiological or pathological ethology and may 

give information about the organism, population and ecosystem surround (MacKenzie, 1998; 

MacKenzie, 1999; Catalano et al., 2014) Such bio-indicators can be used as proxies to assess 

for example fish (host) population structure (i.e. identification, discrimination and evaluation 

of fish stocks) and migratory behaviour (Williams et al., 1992; MacKenzie, 1998; MacKenzie, 

1999; Mosquera et al., 2003; Marcogliese, 2004; Catalano et al., 2014). Parasites can also 

provide evidence of past movements of their hosts while eliminating concerns about the 

influence of abnormal behaviour of the tagged animal as one might expect from artificial tags 

(e.g. acoustic tags, coded wire tags) which could inhibit the host’s movement (Mosquera et al., 

2003).  



3 
 

The diversity of parasites differs in different marine habitats, depending on biotic (e.g. species 

composition among the fish community) and abiotic factors (environmental conditions, as 

depth and habitat) (Willig, 2001; Rohde, 2005). Parasites have therefore been used as bio-

indicators for abiotic conditions  and for pollution (Williams et al., 1992; MacKenzie, 1999; 

Marcogliese, 2004; Catalano et al., 2014). Several parasites have delicate short-lived free-

living transmission stages that consequently turn them highly sensitive to environmental 

conditions and their variations (Bush et al., 1997; Hemmingsen & MacKenzie, 2001). So that 

each stage should be assessed individually, to ensure a higher number of potential indicators 

(Hemmingsen & MacKenzie, 2001). Often with increasing levels of pollution, infections of 

endoparasitic helminths (i.e. parasites which inhabit the interior of the host - cavities, ducts, 

organs and musculature) with complex life cycles tend to decrease. On the other hand, 

infections of ectoparasites (i.e. parasites which reside on the host’s surface - exterior site or 

orifice) with single-host life cycle tend to increase (Gallagher et al., 1994; Hemmingsen et al., 

1995; MacKenzie, 1999; Rohde, 2015). Despite this overall tendency, there are significant 

variations in the responses among different parasite species to different pollutants 

(Hemmingsen & MacKenzie, 2001).   

For a parasite to be considered a good tag or bio-indicator, some recommendations should be 

taken into consideration (Timi, 2007; Catalano et al., 2014; Timi & MacKenzie, 2015), see 

summary below:  

1- The parasite species should have different levels of infection in the host at different 

geographical locations;  

2- The life cycle of the parasite species should preferably involve only a single host as more 

information is needed on the biotic and abiotic factors influencing transmission between 

hosts for those parasite species with multi-host life cycles;  

3- The life span of the parasite species in the host needs to cover the duration of the investigation 

as a minimum 

4- The prevalence of the parasite species should remain relatively stable between seasons and 

years;  

5- The parasite species should be easily detected, preferably by gross examination;  

6- The parasite species should have no effects on the behaviour or survival of the host;  

 

A potential candidate species for use as a population tag does not necessarily have to fulfil all 

these requirements (MacKenzie & Abaunza, 1998). However, parasites selected as tags need 
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to be correctly identified before they can be considered as a useful biological tag (Catalano et 

al., 2014). The taxonomic identification of the parasite species involves morphological 

examination under a microscope and measurement of character traits in combination with a 

species identification key deciphering between those traits (Mosquera et al., 2003; Catalano et 

al., 2014; Irigoitia et al., 2017). “Parasite tagging” can therefore be more time consuming (e.g. 

some of the larvae stage of certain parasites require a scanning electron microscopy due to their 

morphological complexity and size) and results could be biased due to uncertainty in the 

literature for the taxonomic identification and the used morphologic features  of certain 

parasites species (Mosquera et al., 2003; Catalano et al., 2014). Nevertheless, tagging through 

parasites is becoming more widely used and does have a short-term economic advantage 

compared to molecular methods for identification and the added value of the possibility to also 

study host-parasite interactions (Mosquera et al., 2003; Catalano et al., 2014; Timi & 

MacKenzie, 2015). The combination of taxonomic identification and parasite genetics reveals 

to be most efficient, albeit most expensive ( Mosquera et al., 2003; Catalano et al., 2014). 

Extensive knowledge of the Earth’s ecosystems, their habitat threats and the biology, ecology 

and population dynamics of key species is vital to ensure their future preservation (Hoggarth 

et al., 2006). To achieve this, the establishment and implementation of effective and holistic 

management strategies and systems (e.g. marine protected area) are fundamental for promoting 

population recovery, and maintain and protect biological diversity, habitats and ecosystem 

functions (Aranha et al., 2009; Rui Coelho & Erzini, 2010; Irigoitia et al., 2017). To increase 

the quality of available biological data for such holistic approaches, a combination of various 

methods should therefore be applied, including the use of artificial as well as biological tags  ( 

Mosquera et al., 2003; Irigoitia et al., 2017).  

Many marine environments around the world are experiencing an increase in fishing pressure 

due to the increasing world population and technological development of the harvest 

techniques of industrial fisheries (FAO, 2011; Martínez et al., 2007). In addition, the unceasing 

increase of human population densities, mainly along world’s coasts and the rapid advances in 

technology are actively contributing to alarming levels of anthropogenic effects on marine 

ecosystems (Martínez et al., 2007; FAO, 2011; Brander, 2013; Dulvy et al., 2014; Pendleton 

et al., 2018). The consequences of these actions start to be more evident and alarming (e.g. 

species extinctions), and have become an essential issue of pressing social and political concern 

(Brander, 2013; Díaz et al., 2019). 
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The North Sea is experiencing those anthropogenic pressures and is at the same time an 

important area for some important commercial species in Norwegian fisheries which include 

shrimps, Pandalus borealis and Aristeus antennatus, Atlantic cod, Gadus morhua, saithe, 

Pollachius virens,  North Sea herring, Clupea harengus, ling, Molva molva, and Norway pout, 

Trisopterus esmarkii (Coelho et al., 2010; Isbert et al., 2015; McMillan et al., 2017; ICES, 

2018). Some of these stocks have been strongly reduced by the intensive fishing pressure 

(McMillan et al., 2017; ICES, 2018). The ICES (2018) annual report informed that several 

North Sea stocks (i.e. cod, haddock, mackerel, and blue whiting) have fishing mortality rates 

above the fishing mortality consistent with achieving maximum sustainable yield (= the highest 

possible annual catch that can be sustained over time, by keeping the stock at the level 

producing maximum growth). Additionally, not only target fishing species are affected (ICES, 

2018), but certain fisheries may also catch protected, endangered, or threatened species as non-

targeted bycatch (Lent & Squires, 2017; ICES, 2018). Some of these classic “bycatch-species” 

are sharks, skates, rays and chimaera, all belonging to the group of cartilaginous fishes 

(Klimpel et al., 2003; Isbert et al., 2015; ICES, 2018).  

Many cartilaginous fishes are either considered top or meso-predators (i.e. on the top, or near 

the top, of the food chain within their ecosystem) and therefore have a fundamental role for the 

balance of the food webs and ecosystems which they are a part of (Heithaus et al., 2008; Ferretti 

et al., 2010; Roff et al., 2016). Variations on shark abundance for example have been shown 

to cause changes in prey abundance or behaviour and consequently induce trophic cascades 

(Heithaus et al., 2008; Ferretti et al., 2010). This in return implies that increasing the catch rate 

of sharks may not only reflect changes on the population size, migration patterns, habitat 

expansions of this species but may also lead to variations in population density and behaviour 

of (other) intermediate predators, first order consumers and ultimately on primary consumers 

(i.e. algae and phytoplankton) (Ferretti et al., 2010; Roff et al., 2016). A significant decrease 

of high trophic level specimens, may induce changes in the ecosystem which may consequently 

decrease biodiversity (Simpfendorfer & Kyne, 2009; Więcaszek et al., 2018). This can have an 

even stronger impact on marine areas which are hot spots of biodiversity and where food webs 

are incredibly complex as shown for example for coral reefs (Ruppert et al., 2013; Roff et al., 

2016). Sharks also play an important selection role on the ecosystem because they remove the 

weak and diseased individuals by predation, therefore keeping certain diseases and populations 

under control (Heupel et al., 2014; Roff et al., 2016). Some shark species are acting as 
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scavengers, removing carcasses, which is an important function to maintain nutrient cycling 

dynamics (Techera & Klein, 2011; Roff et al., 2016). 

Deep-sea sharks are in various degrees affected by anthropogenic stressors like fisheries 

(including bycatch and illegal harvesting), pollution and habitat destruction (Dulvy et al., 

2014). In combination with some of their intrinsic biological features like slow growth rates, 

late maturity and low fecundity (compared to most teleosts), this leads to their very low 

recovery potential and high susceptibility to overexploitation (Klimpel et al., 2003; Aranha et 

al., 2009; Ferretti et al., 2010; Dulvy et al., 2014; Isbert et al., 2015). In the North Sea, some 

shark species are some of the most affected bycatch species from commercial fisheries 

(McMillan et al., 2017; ICES, 2018). The velvet belly lanternshark, Etmopterus spinax 

(L.1758), is a non-commercial deep-sea shark species, which is frequently captured as bycatch 

for Norway lobster, Nephrops norvegicus, deepwater rose shrimp, Parapenaeus longirostris, 

and red shrimp, Aristeus antennatus from bottom trawlers and deep-water longliners in 

Norwegian waters (Monteiro et al., 2001; Aranha et al., 2009; Coelho et al., 2010; Isbert et al., 

2015). When discarded after catching, the shark is usually either dead or has severe lesions 

(Aranha et al., 2009). In order to reduce this detrimental bycatch some input measures were 

implemented to the fishing techniques for example the development of a selective grid for the 

bottom trawling nets and removing the hooks near the bottom for the long liners (Aranha et al., 

2009; Isbert et al., 2015; Sistiaga et al., 2019). The International Union for Conservation of 

Nature (IUCN) has categorized E. spinax as “least concern” overall (Coelho et al., 2009). 

Although for deep-sea sharks, as for the velvet belly lanternshark, there is still a lack of data 

on the population structure and reproductive biology to inform the development of appropriate 

management and conservation strategies (Coelho & Erzini, 2010). 

The velvet belly lanternshark (Etmopterus spinax) presents sexual dimorphism with females 

growing more and maturing at larger sizes than males (Coelho et al., 2010; Porcu et al., 2013). 

Females can reach a total body length of 60 centimetres (cm)  (Compagno, 1984). Although it 

is a small-sized shark, it has a relatively slow growth rate and consequently matures relatively 

late in its life cycle (Coelho & Erzini, 2008; Isbert et al., 2015). According to Coelho & Erzini 

(2008), the velvet belly lanternshark might only reproduce once every 2 to 3 years, suggesting 

a low fecundity rate. E. spinax is aplacental viviparous which means that embryos develop 

inside eggs that are retained within the mother's body until they are ready to hatch. E. spinax 

has a wide diet range (cephalopods, crustaceans and small fish), which is habitat-dependent 
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(Compagno, 1984; Klimpel et al., 2003; Isbert et al., 2015). With the increase of body length 

there is a tendency for it to become more piscivorous (mostly comprising meso, bentho- and 

bathypelagic fish species) (Klimpel et al., 2003; Neiva et al., 2006; Isbert et al., 2015). It plays 

a valuable ecological role within the ecosystem helping to maintain food web balance 

(McMillan et al., 2017).  

Sharks (and also other cartilaginous fishes) in general are hosts to a number of metazoan 

endoparasites and ectoparasites which inhabit several organs and tissues (Caira et al., 2012). 

The great diversity of parasites for which squaliform sharks, like E. spinax, present a suitable 

habitat includes Cestoda, Nematoda, Digenea, Monogenea, Cirripedia and Copepoda 

(Gallagher et al., 1994; Caira et al., 2012). Some parts of the sharks (e.g. skin and 

gastrointestinal system) have a tendency to have higher diversity of metazoan parasites (Caira 

et al., 2012). The level of parasite diversity and load on sharks depends on numerous host 

variables, such as physiological condition, feeding behaviour, breeding behaviour, social 

interactions (e.g. schooling behaviour), diet (Benz & Bullard, 2004; Caira et al., 2012; Isbert 

et al., 2015). Cartilaginous fishes are frequently single host or final host for the majority of 

metazoan parasites which infect them, due to the higher trophic level (Benz & Bullard, 2004). 

Also, the older specimens of sharks tendentially have more parasites due to the long-term 

accumulation of parasites with a long life-cycle (Hemmingsen & MacKenzie, 2001; Benz & 

Bullard, 2004; Caira et al., 2012; Caira & Pickering, 2013). 

There have been only very few studies on the parasites of E. spinax in the NE Atlantic, and 

only four of them were in Norwegian waters (Klimpel et al., 2003, Rees et al., 2014; 

Ommundsen et al., 2016, Rees et al., 2019). The studies by Rees et al. (2014, 2019) and 

Ommundsen et al. (2016) focused only on the ectoparasite Anelasma squalicola and did not 

include any data or comparisons with endoparasites within E. spinax. Klimpel et al. (2003) 

provided good first insights into the endo- and ectoparasites in Norwegian E. spinax, however, 

the study focused only on juvenile specimen. There is to date no published information on the 

parasite load and composition of adult E. spinax and no data on any differences between sexes 

or different life history stages.  

Motivation of this study was therefore to investigate the parasite diversity and load of the deep-

sea shark Etmopterus spinax in the North Sea and to investigate the potential of using this type 

of data to inform management. This is the first study conducted in Norwegian waters analyzing 

the metazoan parasites (endo- and ectoparasites) of sexual immature as well as mature E. spinax 
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specimens, and the first one to investigate the North Sea. Due to the scarcity of published data 

on the species, I decided to conduct an extensive literature review comprising the entire genus 

Etmopterus as a first step of this thesis. This is followed by the empirical study of over 100 

individuals of E. spinax from southern Norway with the aims to 1) investigate the level of 

infections of ectoparasites (on the skin and nostril) and gastrointestinal (endo)parasites and 2) 

to explore whether parasite communities differed between locations, sex and various life 

history traits of the host.  

Informed by my literature review, I hypothesized that: (i) seven parasite species will be found, 

(ii) most sharks will have at least one endo- or ectoparasite, and (iii) parasite prevalence in E. 

spinax is positively correlated with the shark’s total length.  
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Material and Methods 
 

Part I. A Review of the Parasite Fauna of sharks of the genus 

Etmopterus - Literature Review 
 

I conducted a systematic review of all published literature on the parasitic fauna of squaliform 

sharks of the genus Etmopterus. This review contains peer-reviewed journal articles, 

proceedings from conferences and book chapters, and contains to the best of my knowledge all 

available published information on the subject (up to 30.07.2019). I used the following search 

engines: google scholar, PubMed and ELVISIR, together with key word and project searches 

in ResearchGate.  

Below is an introduction of the parasite groups found in marine vertebrates: 

Digenea 

Digeneans are one of the most diverse parasite group amid fish endoparasites. (Cribb, 2005). 

This parasite group belongs to the class Trematoda (Platyhelminthes) and as the Monogeneans, 

is frequently referred to as flukes (Cribb et al., 2003; Cribb, 2005). Digeneans have a great 

plasticity and complexity range of life cycles. This characteristic makes it possible to find a 

great diversity of these flukes on several groups of invertebrate and vertebrate hosts (i.e. sexual 

adult digeneas infect all classes of marine vertebrates) (Cribb, 2005).  

Diverse larval stages are included in this parasite group, including free-living and parasitic. 

Often its life cycle contains two intermediate hosts (Cribb et al., 2002; Cribb et al., 2003; Cribb, 

2005). In the majority of the digenean species, the first host in the life cycle is a mollusc (first 

host), where asexual reproduction occurs. Followed by transmission to a definitive host 

(vertebrate) in which the parasite’s sexual reproduction occurs (Cribb et al., 2002). 

Digeneans are mostly parasites that inhabit the gastrointestinal system, although they can also 

appear in the urinary system (i.e. urinary bladder), reproductive system (i.e. ovaries), 

circulatory system, musculature, and body cavity (Cribb, 2005). Morphologically, the majority 

of digeneans presents an oral sucker which opens into the gut, and a ventral sucker for 

attachment (Cribb et al., 2002; Cribb, 2005). 
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Monogenea 

Monogeneans are mainly ectoparasites on fish hosts (Cribb et al., 2002; Hayward, 2005). 

Ecologically, this group presents a strong host-specificity (Rohde, 1993; Whittington et al., 

2000). This parasite group is usually found attached by a small flattened opisthaptor to the host 

gills, fins or skin (Rohde, 1993; Cribb et al., 2002; Hayward, 2005). The life cycle of a 

monogenean is a direct cycle (i.e. there is exclusively a single host) (Rohde, 1993; Whittington 

et al., 2000). 

Cestoda 

Cestodes, also known as tapeworms, are endoparasites, and the majority are hermaphrodites 

(Keneedy, 1965; Caira & Reyda, 2005). The cestode’s adult form is commonly found in the 

digestive track (and sporadically in the associated organs of gastrointestinal tissues) in the 

definitive vertebrate host (Caira & Reyda, 2005; Pereira & Velloso, 2016). The Archigetes 

genus is the exception of the known species, in which adult forms occur in invertebrates (e.g. 

Polychaeta, Serpulidae) (Pereira & Velloso, 2016). One of the most singular characteristics of 

cestodes is their polyzoic condition (i.e. each segment has a complete male and female 

reproductive system) (Caira & Reyda, 2005; Pereira & Velloso, 2016). Also, most tapeworms 

undergo strobilation (i.e. external segmentation, called strobila, that separates the various sets 

of reproductive structures in adult forms, called the proglottid). In the proglottids, cestode eggs 

are stored for regular shedding into the host environment (Pereira & Velloso, 2016). 

Tapeworms present a strong evolutionary specialization on their parasitic condition (e.g. 

absence of gastrointestinal tract) (Caira & Reyda, 2005; Pereira & Velloso, 2016). 

Anatomically they do not present gut or mouth (Caira & Reyda, 2005). Instead, cestodes have 

a cover of neodermal cuticles on their tegument, which allows them to absorb nutrients from 

the host's alimentary tract. (Keneedy, 1965; Pereira & Velloso, 2016). Tapeworm lifecycles are 

usually complex, including one to three intermediate hosts. In the marine environment, bony 

fishes are often hosts of larval forms of cestodes. The adult forms can be found in 

elasmobranchs, sea birds and mammals, which have fish as a part of their diet (Pereira & 

Velloso, 2016). 
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Copepoda 

Copepods are the most abundant group among the parasitic crustaceans in the world’s oceans 

(Boxshall, 2005; Gunn & Pitt, 2012). This large range size of parasites presents a diverse 

variety of hosts (i.e. practically every available phylum in the marine environment is a potential 

host) (Boxshall, 2005; Gunn & Pitt, 2012; Eiras & Castro, 2016). Also, their microhabitat range 

on the host is wide (i.e. they can be ectoparasites and endoparasites) (Boxshall, 2005, Eiras & 

Castro, 2016), although most species of this parasite group are free-living ectoparasites in the 

marine environment (Boxshall, 2005; Gunn & Pitt, 2012). Copepods represent a higher 

economic factor as vectors of diseases and pathomorphological effects in wild and aquaculture 

fish populations (e.g. salmon sea lice, Lepeophtheirus salmonis and Atlantic Salmon, Salmo 

salar) (Boxshall, 2005; Nekouei et al., 2018). 

Morphologically, like other crustacean groups, they have an exoskeleton, divided into two body 

plans (Boxshall, 2005; Gunn & Pitt, 2012) The first plan is gymnoplean plan, where the body 

is separated into two distinct tagmata: a prosome (on its anterior part) and urosome (on its 

posterior part) ( Boxshall, 2005). The articulation between these parts there are five pedigerous 

(leg-bearing) and genital segments (somites) (Boxshall, 2005; Eiras & Castro, 2016) The 

second plan is the podoplean, where occur the articulation of prosome and urosome with one 

somite nearer to the cranial part of the parasite (usually between the fourth and fifth pedigerous 

somites) (Boxshall, 2005; Eiras & Castro, 2016). Its appendages contain five cephalic and 

seven thoracic limbs, also on the anal somite is located a pair of caudal rami (Boxshall, 2005).  

Usually these ectoparasites are located on the skin, gills and tegument of the fish hosts (Eiras 

& Castro, 2016). The majority of marine parasitic copepods present sexual dimorphims (i.e 

body size/form and appendage assembly) (Boxshall, 2005). Basically the life cycle of this 

crustacean group is usally divided into naupliar and copepodid phases (in some cases it can 

have six naupliar stages and five copepodid stages) (Boxshall, 2005; Gunn & Pitt, 2012). 

Nematodes  

Marine nematodes are endoparasites, which frequently are found as adults or larval stages in 

the gut and musculature of the fish (Möller & Anders, 1986; McClelland, 2005). Nematoda 

present complex life cycles, involving at least three hosts (McClelland, 2005; Lamps & Lamps, 

2009). Typically  roundworms present a bilateral symmetry and commonly have an elongate 
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cylindrical form, tapered at both ends (McClelland, 2005; Roberts & Janovy, 2008b). 

Morphologically this phylum of parasites has a complete gut with a mouth, pharynx, intestine, 

and anus (McClelland, 2005; Janovy et al., 2013). The body wall of a roundworm has a cuticle, 

hypodermis and a single layer of longitudinal  musculature (Roberts & Janovy, 2008b). 

Commonly roundworms are dioecious (i.e. the male and female reproductive organs are in 

separate individuals), dimorphic and females are larger than males (McClelland, 2005; Roberts 

& Janovy, 2008b). 

The roundworms present a short duration life cycle, consequently there can be a large variation 

in their population levels in a short period (i.e. weeks) (McClelland, 2005; Janovy et al., 2013). 

Many nematodes are also able to utilise paratenic hosts (i.e. a host that harbors the sexually 

immature parasite but is not necessary for the parasite's development cycle to progress) to 

maximise transmission to the final hosts (which frequently is a bird or a marine mammal) 

(Lamps & Lamps, 2009). Few parasitic nematodes have successfully invaded the deep sea, 

although a significant number of parasites of this phylum normally occurs in shallower water, 

such as Pseudoterranova spp., Contracaecum spp. and Anisakis spp., are also found in deep 

water fish (Alioshkina et al., 1985; Blaylock et al., 2003; Lamps & Lamps, 2009). 

Isopoda 

Isopods are classic marine parasites and often inhabit warmer waters (Lester, 2005). 

Morphologically they have a carapace and the body is frequently dorsoventrally flattened 

(Lester, 2005; Roberts & Janovy, 2008a). They have antennules which are often uniramous 

(i.e. comprise of a single series of segments attached end-to-end), sometimes vestigial (i.e. 

rudimentary) (Roberts & Janovy, 2008a). The majority of Isopods are ectoparasites and have a 

short life cycle (Lester, 2005; Roberts & Janovy, 2008a). The larval stages cryptoniscus and 

praniza and the juvenile stage are the infective phases of Isopods to the hosts and the 

transmission mode is active by attachment (Roberts & Janovy, 2008a). 

Thoracica  

A small number of species of the Thoracica superorder are parasitic (Boxshall & Lützen, 2005). 

Actually, they are better known as conventional epizoic filter-feeding barnacles than parasites 

because the majority of them do not penetrate into their host (Boxshall & Lützen, 2005; Roberts 

& Janovy, 2008a; Eiras & Castro, 2016). Although there are some exceptions such as Anelasma 
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squalicola (e.g. Rees et al., 2014; Eliassen, 2016). Generally, they have  sixwell-developed 

pairs of thoracic appendages (Roberts & Janovy, 2008a). 

Hirudinea 

Commonly known as leeches, this diverse group inhabits different aquatic ecosystems, from 

seashore and deep ocean to rivers and lakes (Govedich et al., 2005). Leeches can be predators 

(large range of invertebrate and vertebrate preys) or ectoparasites (often temporary) (Govedich, 

2001; Davies & Govedich, 2001; Govedich et al., 2005). Morphologically, their bodies do not 

have a complex division into different regions and are not externally divided into distinct 

regions (Govedich et al., 2005).  They lack chaetae bristle (chaetae) and they have on the 

anterior and posterior extremities of their bodies a sucker (oral and caudal sucker) (Govedich, 

2001; Davies & Govedich, 2001; Govedich et al., 2005). 
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Part II.  Metazoan gastrointestinal parasites of Etmopterus spinax (L., 

1758) from southern Norwegian waters – Empirical Study 
 

The study species: Etmopterus spinax 
 

The velvet belly lanternshark, Etmopterus spinax (L.1758) is a small-sized deep-water 

squaliform shark which inhabits predominantly the outer continental and insular shelves and 

upper to lower slopes near or at the bottom at depths of between 70 and 2,000 m (usually at 

200–500m) (Compagno, 1984; Coelho & Erzini, 2008; Coelho et al., 2010; Porcu et al., 2013). 

E. spinax uses different depth ranges during its life cycle (Isbert et al., 2015) and has a wide 

geographic distribution, from the eastern Atlantic Ocean (Iceland and Norway) to southern 

Africa (including the Azores, Madeira, Canaries and Cape Verde archipelagos) and in the 

Mediterranean Sea (western and central areas) (Compagno, 1984; Reiner, 1996; Klimpel et al., 

2003; Serena, 2005; Coelho & Erzini, 2010; Porcu et al., 2013; Isbert et al., 2015). 

Morphologically, it is characterized by having a compact body with a fairly long tail, very short 

gill slits, with brown coloration above and an abruptly black abdomen (Compagno et al, 2005; 

Aranha et al., 2009). Like other species belonging to the genus Etmopterus, the velvet belly 

lanternshark is bioluminescent (Renwart et al., 2015; Więcaszek et al., 2018). Over its flanks 

and abdomen there are photophores (cup-shaped organs), composed of a protective layer of 

pigments and a reflector structure that encloses photocytes (light-emitting cells) (Renwart et 

al., 2015). 

 

The study area: The North Sea 
 

The North Sea is one of the most extensive shallow shelf seas in the world (ICES, 1983; 

Huthnance, 1991; Ottesen, 2009). It is adjacent to the North Atlantic Ocean (Sündermann & 

Pohlmann, 2011). The North Sea presents a water volume of 40 300 km3  and an area of 575 

300 km2 (ICES, 1983; Huthnance, 1991; Rodhe et al., 2004). The average depth is 70 m, 

although in the Norwegian Trench it can increase until 700m (e.g. in Skagerrak) (Huthnance, 

1991). The Norwegian Trench presents a fjord-like topography, and it cuts into the shelf along 

the Norwegian coast (Huthnance, 1991; Rodhe, 1998; Rodhe et al., 2004).  

The North Sea presents a cyclonic circulation, most of the time, which renews its water on a 

period of approximately one year. The largest amount of its water enters from the north and 
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flows through Norwegian Trench, in a cyclonic direction (Huthnance, 1991; Rodhe, 1998; 

Rodhe et al., 2004). Along Norwegian channel, there is an all-year stratification by salinity, 

caused by an outflow from the local rivers and Baltic Sea. The salinity along this area is about 

25–30 PSU (Rodhe et al., 2004). On the western slope of the Norwegian Trench, there is an 

inflow of high-saline Atlantic water which renews the underlying water gradually in this 

section (Rodhe et al., 2004).There is moderately constant upwelling from eastern Skagerrak 

(i.e. the deepest part of Norwegian Trench) and outwards along the Norwegian coast, which 

provide nutrient rich water for primary production (Rodhe, 1998; Rodhe et al., 2004). The 

water temperature varies between 3°C and 18°C depending upon seasonally changes 

(Huthnance, 1991).  

The North Sea presents a decreasing trend in biomass, in total biomass and in different 

taxonomic groups with increase of latitude (Heip et al., 1992; Callaway, 2002). Phytoplankton, 

zooplankton and fish (pelagic and demersal) are key species on the North Sea waters (ICES, 

2018). 

 

Fish sampling and examination 
 

This study benefited from the annual shrimp research survey conducted in southern Norwegian 

waters (57° 52' 30''-59° 39' 06'' N; 3° 57' 24''-10° 36' 54'' E) on board of F/F Håkon Mosby in 

January 2016 by the Institute of Marine Research. All stations were trawled with a bottom 

sampling trawl (Campelen 1800 Shrimp Survey Trawl) with mesh size 20 mm in the channel. 

The E. spinax sampled in each station were then frozen on board in blocks at −20∘C. Sharks 

were grouped per station. One hundred and fifteen (n=115) sharks from eight stations were 

selected to investigate the parasite prevalence and abundance at depths ranging from 173 m to 

402 m (see Table 1, Figure 1). 
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Table 1 - Stations and sampling information. Shown are coding of stations, maximum trawl depth, geographic localization 
of the stations (lat/long), and number of sampled individuals of E. spinax. 

Stations code Depth (m) Latitude Longitude  Number of 
individuals  

A 307 58° 36' 30'' N 5° 23' 24'' E 27 

B 402 58° 46' 42'' N 9° 45' 42'' E 19 

C 236 58° 17' 24'' N 10° 36' 54'' E 14 

D 318 58° 03' 18'' N 5° 59' 42'' E 10 

E 273 57° 55' 12'' N 5° 58' 00'' E 11 

F 173 57° 52' 30'' N 5° 37' 24'' E 9 

G 314 57° 57' 24'' N 6° 22' 36'' E 9 

H 277 59° 39 06'' N 3° 57' 24'' E 16 

 

 

 

Figure 1 – Sampling stations circles in southern Norwegian waters. Map showing the eight sampling stations (coded A-H; see 
Table 1) with black circles in southern Norwegian waters. The size of the circle is proportional to the sampling size at a given 
station.  

 

In the laboratory, the sharks were thawed and prepared for dissection. For each station all the 

sharks were defrosted, and all specimens processed individually. For each station all the sharks 

were processed. Prior to dissection, total length (length, in cm) and body weight (weight, in g) 

were measured and the sex determined (based on presence or absence of claspers on the pelvic 

fins, see Figure 2). 

 

D 
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Figure 2 – Length measurement of E. spinax. Measurement of overall length (in 
centimetres) from the tip of the snout to the tip of the upper lobe of the caudal fin. Red 
circle shows the location of claspers on the male specimen.  

 

Dissections 
 

Sharks were dissected following the protocol of Jobling (2015). Two small incisions of 

surrounded skin to each nostril were made (dorsally and ventrally to the axis of the shark) to 

access the snout content. An incision in the mid-ventral line was made from just anterior to the 

cloaca to the level of the pectoral fins. Then lateral incisions were made from the extreme 

regions of the initial incision. Lateral displacement of the skin flaps was then made to expose 

the internal organs. Sex was confirmed by examination of the gonads, and the reproductive 

stage was assessed based on Myrlund (2018) (see Appendix Table 1 and 2; Figure 3). Then the 

three-lobed liver was freed by dissection of mesenteric tissue close to the pectoral girdle, 

removed from the body cavity, and its weight recorded in order to calculate the hepatosomatic 

index (HSI). Then, with the help of Mosquito pins the distal part of the intestine and the 

oesophageal connection to the pharynx were occluded (avoiding the spread of gastrointestinal 

content). Incisions were made adjacent to the cloaca and the pharynx to free the gastro-

intestinal tract. Then the gastro-intestinal tract was gently removed from the body cavity by 

cutting the supporting mesenteries. An incision was made at the level of the pyloric sphincter, 

dividing the gastro-intestinal tract into two portions. The two portions were transferred to 

separate Petri dishes, and the contents of the portions were gently squeezed onto the Petri 

dishes. A longitudinal incision was then made to each portion of the gastrointestinal tract, and 

the preparation allowed lying flat. 
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Figure 3- Female specimen of E. spinax classified as “Mature - Stage 3”, according to Myrlund (2018). 

 

 

Parasite identification 
 

- Before host dissection  

External surfaces (i.e. skin) and buccal cavity were examined macroscopically and under the 

stereomicroscope looking for ectoparasites (e.g. Anelasma squalicola) (see Figure 4). 

A. squalicola is the only ectoparasite found on E. spinax (see Introduction and Results from 

literature review) and therefore easy to identify. It is a monophyletic species of stalked barnacle 

which parasitizes certain deep-sea sharks of the family Etmopteridae (Yano & Musick, 2000; 

Rees et al., 2014). Usually, it is attached to the dorsal spine or the area of the pectoral and 

pelvic fins of their hosts (Baer, 1951; Yano & Musick, 2000).  
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Figure 4 - E. spinax parasitized by two A. squalicola specimens. 

 

-  After host dissection  

The contents retrieved from the dissections were examined using a Leica dissecting 

microscope at 20 and 200× magnification for counting any parasites. All metazoan parasites 

were collected (with thin brushes and forceps) and preserved in 70% ethanol (for future genetic 

studies) or fixed in 4% borax-buffered formaldehyde for subsequent taxonomic confirmation. 

All retrieved parasites were identified to the lowest possible taxonomic level and counted. The 

taxonomic identification had the supervision of Dr Kenneth Mackenzie, who has a solid and 

long experience on the identification of marine fish parasites. 

Nematodes 

To retrieve potential nematodes, the internal surfaces of the two portions of the host’s 

gastrointestinal tract were immersed in saline solution (2,5% NaCl) and scraped with a 

microscopic slide. Thereafter, a dissecting microscope at 20 to 200× magnification was used 

for the species identification. The identification of nematodes was based on published 

morphological characteristics such as body shape, cuticle shape, mouth and lip shape, shape 

and dimensions of the buccal capsule, spicules and esophagus, tail shape, the position of the 

vulva and excretory pore  and number of caudal papillae in males (Petter et al., 1995; Moravec, 

1998; Coomans, 2000). 
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Cestodes 

Cestodes were collected from the gastrointestinal samples. The taxonomic identification of 

these parasites was done based on general morphologic characteristics (long, flat, ribbon-like 

organisms) and anatomic featuring (scolex with suckers, proglottids, absence of digestive 

system, presence of a male and female reproductive system in each proglottid).  

Monogeneans 

The E. spinax snots were extracted from each nostril, with the help of dissection forceps, and 

they were placed on a separate Petri dishes. Then each nasal cavity was subjected to a sequence 

of consecutive washes with flush of saline solution (2,5% NaCl) until the remaining snout 

inside of the nostril was dissolved. The monogenoid specimens collected were fixed and stored 

in 5% formaldehyde (Varella & Malta, 1995; Varella & Malta, 2001; Jobling, 2015). 

The taxonomical identification of Monogeneans was based on qualitative analysis of 

characteristics of morphological and anatomical features: the shape of the body, the form, and 

structure of haptor (anterior haptor, prohaptor, and posterior haptor, opisthaptor), hooks, 

anchors, and clamps, the reproductive system (male copulatory organ, female reproductive 

organ) and the arrangement of the organs (Brinkmann, 1952; Boeger et al., 2006). 

 

Statistical analysis 
 

Host life history data  
 

As the number of sharks per gender on each sampling location was not normally distributed, a 

few additional statistical considerations had to be made and the reasoning for using the different 

statistical tests are outlined in each case.   

To investigate the relationship between E. spinax gender and locations/stations a non-

parametric Fisher’s exact test was used. This test is used to determine if there are non-random 

associations between two categorical variables. To test if there is a significant correlation 

between length or weight among different locations/stations the non-parametric Kruskal-

Wallis test was used. If a significant difference was detected between these associations, a post 

hoc Dunn's non-parametric comparison (pairwise multiple comparisons) was performed 

(Whitlock & Schluter, 2015).  
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The Hepatosomatic index (HSI) is an index describing the relationship of the liver weight 

relative to the overall body weight of an individual and is often used to infer the health status 

of an individual. It was calculated according to Coelho & Erzini (2008) for all sampled 

individuals as:  

HSI= liver weight (g) / shark weight (g) × 100  

Statistical terminology and measurements of infection rates 
 

To investigate differences in parasite species load on the eight sampled stations, two 

quantitative parameters (prevalence and mean abundance) were analysed for each station. 

Prevalence and mean abundance are suitable statistical descriptors to quantify parasites in 

whole host populations (including the uninfected hosts (Gallagher et al., 1994; Bush et al., 

1997). The statistical parameters used in this master dissertation are standardized and based on 

the terminology suggested by Bush et al. (1997):  

 

Prevalence (P) is the number of hosts (sharks) in a sample which are infected with one or more 

individuals of a particular parasite species (a), divided by the number of the host sample 

(station) (N). It is frequently expressed in percentage.  

 

P = (a / N) * 100 

 

Mean abundance (A) is the arithmetic mean of the total number of individuals of a parasite 

taxon in a sample (b) per host examined on that sample (N) - regardless of infection-status 

(infected/non-infected). 

A = b / N   

 

In addition, the epidemiological term Intensity will be also used in the following parts of this 

study, so a definition should be revealed. 

Intensity, or intensity of infection, corresponds to the number of individuals of a parasite taxon 

in a single infected host. 
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Influence of host length/age and maturity stage on parasite infection 
 

Since only few sharks were infected by parasites in this study and no apparent pattern in the 

infection was evident, the use of a generalized linear model (GLM) was taken into 

consideration. A logistic regression was used to analyse for effects of length and location on 

the presence/absence of parasites. Separate logistic regressions were performed for each 

parasite species, using length and location as a predictor variables and presence/absence of 

parasite as the response variable. Subsequently, a Kruskal-Wallis test (regarded as a non-

parametric alternative to ANOVA type I) was performed to summarize the main effects. If any 

effect on parasite prevalence could be detected for any of the detected parasite species, a graph 

with a fitted negative binomial was used to visualize the pattern of parasite infections. To fit 

the model, parasite intensity (i.e. number of a parasite of a certain species (or other taxon) 

found in a single infected host) was used (Bush et al., 1997).  

In order to statistically assess if the prevalence of parasites differed between females and males 

of E. spinax, Fisher’s exact test was applied. This test examines the relationship in a 2x2 

contingency table and tests the independence of categorical small values (Whitlock & Schluter, 

2015). 

 

Software used 
 

Mathematical calculations and descriptive analyses were performed in Microsoft ® Excel ® 

for Office 365 MSO (16.0.11328.20420) 64-bit. Statistical analysis, graphs and maps relied on 

the open source software R (version 3.5.1, R Core Team) and its visual representation in 

Rstudio (version Version 1.1.456 – 2009-2018 RStudio, Inc.). The packages for statistical 

analysis used in R were “dplyr”, “car”, “factoextra”, “factoMineR”, “FSA”, “ggplot2”, 

”ggpubr”, “gridExtra”, “MASS”, “muStat”, “rcompanion”, “readr”, “reshape2” (Seefeld, 

2007; Meur, 2012). 
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Results  
 

Part I. A Review of the Parasite Fauna of sharks of the genus 

Etmopterus - Literature Review 
The summary data presenting the parasitic fauna of squaliform sharks of the Etmopterus genus 

presented in Table 2 were gathered from the systematic literature review. The binomial 

nomenclature of the host of each parasite species (when possible) or genus, the parasite’s 

location in the host, and references ranked by year of publication are shown. In addition, the 

most important parasites are being discussed below, giving important morphological and life 

history background information.  

The results indicated 21 identified parasite species on 9 host species belonging to the 

Etmopterus genus. The parasites were identified from 13 different sites of the host’s body. The 

intestines were the host’s sites which had the highest diversity of parasite species. The parasite 

that had the largest geographic distribution was A. squalicola and it was also the most studied 

parasite among the Etmopterus genus hosts. The Atlantic Ocean was the most studied area and 

showed the highest diversity of found parasites.  

E. spinax was the host species within the genus Etmopterus with the highest number of found 

metazoan parasites species (n=12). The parasite species were S. spinacis, A. menezesi, A. 

norvegicus, A. pickeringae, A. tasmaniensis, A. tenuis, P. squali, L. longibrachia, L. spinacis, 

A. simplex, H. aduncum, A. squalicola. The cestode A. norvegicus was the most studied parasite 

for the E. spinax host. Only four articles investigated metazoan parasites in E. spinax in 

Norwegian waters, two of them on A. squalicola (Rees et al., 2014; Ommundsen et al. 2015, 

Rees et al., 2019) and one of them describing parasites of only immature specimen (Klimpel 

et al., 2003). For all details see Table 2. 
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Table 2 - Parasitic fauna of squaliform sharks of the Etmopterus genus. 

Parasite  Site of Infection Host species  Location Reference  

Digenea 

Otodistomum plunketi 
(Fyfe, 1953) Body cavity  Etmopterus princeps 

(Collett, 1904) Rockall, NE Atlantic Gibson & Bray, 1977 

Otodistomum sp. 

Intestine  Etmopterus granulosus 
(Günther, 1880) Off coast of Chile, SE Pacific Espínola-Novelo et al., 2018 

Stomach Etmopterus spinax 
(Linnaeus, 1984) Off NE Spain, NE Atlantic Isbert et al., 2014 

 Monogenea 

Asthenocotyle azorensis 
(Kearn, Whittington & 
Thomas, 2012) 

Dermal denticles E. princeps North Atlantic, Azores Kearn et al., 2012 

Squalonchocotyle spinacis 
(Gotto, 1894) Gills 

E. spinax  

 

E. granulosus  

Norwegian Deeps, NE 
Atlantic 

Off NE Spain, NE Atlantic  

Off coast of Chile, SE Pacific 

Klimpel et al., 2003 

Isbert et al., 2014 

Espínola-Novelo et al., 2018 

Monocotylidae indet. Nasal cavities E. spinax  Norwegian Deeps, NE 
Atlantic Klimpel et al., 2003 

Asthenocotyle sp. Skin E. granulosus  Off coast of Chile, SE Pacific Espínola-Novelo et al., 2018 
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Calicotyle sp. Skin E. granulosus Off coast of Chile, SE Pacific Espínola-Novelo et al., 2018 

Monocotylidae gen. sp. Skin 
E. spinax 

E. granulosus  

Norwegian Deeps, NE 
Atlantic 

Off coast of Chile, SE Pacific 

Klimpel et al., 2003 

Espínola-Novelo et al., 2018 

Cestoda 

Aporhynchus cf. menezesi 
(Noever et al, 2010) Intestine  E. spinax 

North Atlantic 

Off NE Spain, NE Atlantic  

Noever et al., 2010 

Isbert et al., 2014 

Aporhynchus norvegicus 
(Olsson, 1868) Nybelin, 
1918 

Stomach,  

Intestine 
E. spinax 

North Atlantic, Azores 

Norwegian Deeps, NE 
Atlantic 

Off NE Spain, NE Atlantic 

NW Mediterranean deep-sea 

Beveridge, 1990  

Klimpel et al., 2003 

Świderski et al., 2012 

Isbert et al., 2015 

Dallarés et al., 2017 

Aporhynchus 
pickeringae (Noever, Caira, 
Kuchta & Desjardins, 
2010) 

Intestine 
Etmopterus pusillus 
(Lowe, 1839) 

E. spinax 
North Atlantic, Azores 

Noever et al., 2010 

Caira & Pickering, 2013 
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Aporhynchus tasmaniensis 
(Beveridge, 1990) Intestine 

Etmopterus baxteri 
(Garrick, 1957) 

E. granulosus 

E. spinax 

SW Pacific SE Indian, 
Tasmania 

North Atlantic, Azores 

Beveridge, 1990 

Palm, 2004 

Ditrachybothridium cf. 
macrocephalum (Rees, 
1959) 

Intestine E. spinax Off NE Spain, NE Atlantic  Isbert et al., 2014 

Gilquinia squali (Fabricius, 
1794) Intestine  E. granulosus 

Off coast of Chile, SE Pacific 

North Atlantic 

Carvajal, 1974 

Alves et al., 2017 

Lacistorhynchus tenuis 
(van Beneden, 1858) Body cavity E. spinax Norwegian Deeps, NE 

Atlantic 
Klimpel et al., 2003 

Palm, 2004 

Plesiorhynchus 
brayi (Palm, 2004) Intestine E. princeps North Atlantic 

Palm, 2004 

Caira & Pickering, 2013 

Plesiorhynchus etmopterid 
(Beveridge, 1990) Intestine 

E. baxteri 

E. granulosus 

Etmopterus lucifer 
(Jordan & Snyder, 
1902) 

East Pacific 
Beveridge, 1990 

Palm, 2004 

Phyllobothrium squali 
(Yamagutti, 1952) Intestine E. spinax Mediterranean Sea Williams, 1968 
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Aporhynchus sp. Stomach 
E. granulosus 

E. princeps 

Off coast of Chile, SE Pacific 

North Atlantic, Azores 

Espínola-Novelo et al., 2018 

Caira & Pickering, 2013 

Gilquinia sp Intestine E. princeps North Atlantic, Azores Caira & Pickering, 2013 

Plesiorhynchus sp. Intestine E. granulosus Off coast of Chile, SE Pacific Espínola-Novelo et al., 2018 

Pseudophyllidea indet Intestine E. spinax Norwegian Deeps, NE 
Atlantic Klimpel et al., 2003 

Hepatoxylon sp. Mesenteries E. granulosus Off coast of Chile, SE Pacific Espínola-Novelo et al., 2018 

Sphyriocephalus sp. Stomach  E. spinax Off NE Spain, NE Atlantic  Isbert et al., 2014 

Tetraphyllidea fam. gen. 
sp. 

Liver, Intestine, 
Stomach  E. spinax 

Off NE Spain, NE Atlantic 

NW Mediterranean deep-sea 

Isbert et al., 2014 

Dallarés et al., 2017 

Trypanorhyncha fam. gen. 
sp. 

Muscle and 
Stomach 

E. princeps 

E. spinax 

E. granulosus 

North Atlantic, Azores 

Off NE Spain, NE Atlantic  

Off coast of Chile, SE Pacific 

Caira & Pickering, 2013 

Isbert et al., 2014 

Espínola-Novelo et al., 2018 

Copepoda 

Lernaeopoda 
longibrachia (Brian, 1912) Gills E. spinax Mediterranean Sea Raibaut et al., 1998 

Lernaeopodina spinacis (Brian, 
1908) Gills E. spinax Mediterranean Sea Raibaut et al., 1998 
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Albionella etmopterid 
(Yamaguti, 1939) Kabata, 
1979 

Skin, Fins E. lucifer North Pacific Benz, 1991 

Neoalbionella sp. Fins E. granulosus Off coast of Chile, SE Pacific 
Rodríguez et al,. 2010 

Espínola-Novelo et al., 2018 

Ommatokoita sp Skin E. princeps NW Atlantic Hogans & Brattey, 1986 

Lernaeopodidae gen sp. Gills E. granulosus Off coast of Chile, SE Pacific Espínola-Novelo et al., 2018 

Nematoda 

Anisakis simplex (Rudolphi, 
1809) 

Stomach, 
Intestine, Liver, 
Muscle and 
Gonads 

E. spinax 

E. granulosus 

Norwegian Deeps, NE 
Atlantic  

Off NE Spain, NE Atlantic 

Off coast of Chile, SE Pacific  

Baltic Sea 

Klimpel et al., 2003 

Isbert et al., 2014 

Espínola-Novelo et al., 2018 

Więcaszek et al., 2018 

Hysterothylacium aduncum 
(Rudolphi, 1802) Gonads, Intestine E. spinax Norwegian Deeps, NE 

Atlantic Klimpel et al., 2003 

Mooleptus rabuka 
(Machida, Ogawa & 
Okiyama, 1982) Özdikmen, 
2010 

Intestine E. granulosus Off coast of Chile, SE Pacific Espínola-Novelo et al., 2018 
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Contracaecum sp. Stomach, Intestine E. spinax Off NE Spain, NE Atlantic Isbert et al., 2014 

Hysterothylacium sp. Oral cavity E. spinax Off NE Spain, NE Atlantic Isbert et al., 2014 

Isopoda 

Elthusa raynaudii (H. 
Milne Edwards, 1840) Oral cavity 

Etmopterus joungi 
(Knuckey, Ebert & 
Burgess, 2011) 

NW Pacific, Taiwan  Williams et al., 2010 

Thoracica  

Anelasma squalicola 
(Lovén, 1844) Darwin, 
1851 

Skin, Eyes, Fins, 
Oral cavity 

E. spinax 

E. granulosus 

Norwegian Deeps, NE 
Atlantic 

Southern Atlantic  

North Atlantic 

Southern Pacific 

SE Pacific 

Causey, 1957 

Hickling, 1963 

Fernandez-Ovies, 1993 

Yano & Musick, 2000 

Rees et al., 2014 

Ommundsen et al., 2016 

Espínola-Novelo et al., 2018 

Rees et al., 2019 
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Anelasma sp. Skin, Eyes, Fins, 
Oral cavity 

Etmopterus schultzi 
(Bigelow et al., 1953) 

Etmopterus unicolor 
(Engelhardt, 1912) 

E. granulosus 

E. princeps 

E. spinax  

Southern Pacific 

SE Pacific 

NW Atlantic 

Yano & Musick, 2000 

Hirudinea 

Piscicolidae gen sp. Skin E. granulosus  Off coast of Chile, SE Pacific Espínola-Novelo et al., 2018 
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The most prevalent endoparasite species of E. spinax in southern Norwegian waters were 

previously reported as: Aporhynchus norvegicus, Anisakis simplex, Hysterothylacium aduncum 

and an underdetermined species of Monocotylidae family (Monogenea) (Klimpel et al., 2003). 

These are discussed in more detail below. 

From those four, the most predominant parasites recorded were an unidentified species of the 

monogenean family Monocotylidae and A. norvegicus, with 83.3% and 81.1% prevalence 

respectively (Klimpel et al., 2003). The two cestodes H. aduncum and A. simplex, had a 

prevalence of 40.5% and 18.9% respectively (Klimpel et al., 2003). A. simplex was isolated 

from the host’s stomach and body cavity. Another study found a 20% prevalence of infection 

of the ectoparasite Anelasma squalicola on E. spinax sampled in southern Norwegian waters 

(Rees et al., 2019). This parasite presents the greatest world distribution among the major 

oceans, on E. spinax and on other hosts within the Etmopteridae family (see Table 2, Yano & 

Musick, 2000).  

 

Crustacea (Thecostraca)  

Anelasma squalicola (Lovén, 1844) 

Anelasma squalicola is a crustacean parasite with the most common host being E. spinax (see 

Table 2) (e.g. Rees et al., 2014; Rees et al., 2019). Morphologically, it is divided into two main 

regions: penduncular (fleshy stalk-like structure) and capitular (where it erects the rest of the 

body structure) region (Darwin, 1851; Johnstone, & Frost, 1927). The capitular region is 

enclosed by a dark purple-brown mantle which also covers the body and feeding appendages 

(Rees et al., 2014; Ommundsen et al., 2016). This anatomical region comprises a probosciform 

mouth, cirri (thoracic appendages), a male reproductive tract and egg mass (Rees et al., 2014; 

Ommundsen et al., 2016) (see Figure 5). The peduncule is attached to the tissues of the host 

(Darwin, 1851; Johnstone, & Frost, 1927; Ommundsen et al., 2016). On the peduncule 

structure there are branching rootlets, which have penetration and anchor functions into the 

shark’s tissues (Darwin, 1851; Ommundsen et al., 2016). 
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Figure 5 – Morphology of A. squalicola.  a. A. squalicola showing the two main morphological regions: the capitulum and 
the exposed peduncle (the whitish lower half). b. A. squalicola with the part of the half of the mantle removed. ci=cirri, 
e=egg mass, m=mouth, ma=mantle, p=penis, r=rootlets; Adapted from Ommundsen et al. (2016). 

 

Nematodes 

Anisakis simplex (Rudolphi, 1809) 

The genus Anisakis does not have a ventricular appendix or an intestinal cecum at any stage of 

its life. This trait anatomically differentiates this nematode genus from Contracaecum genus 

(which is provided of both structures) and Pseudoterranova (which has intestinal cecum) 

(Dallarés et al., 2017). This nematode species has a nerve ring in the anterior region and its tail 

is conical (Carvalho-Varela, 2005). A. simplex stage L3, has two protrusions (i.e. derids), 

diametrically opposed, which follows the nerve ring (Ventura, 2006; Gomes, 2014) (see Figure 

6). In the cranial extremity of the A. simplex stage L3, a slim oesophagus is followed posteriorly 

by a thicker ventriculus (opaque in transmitted light). The ventriculus creates an oblique 

intersection at the posterior end with the intestine (Ishii et al., 1989). 

The life cycle of this nematode is indirect. Fish is are paratenic (intermediate) host of the stage 

L3 of this nematode (Ishii et al., 1989; Ventura, 2006; Gomes, 2014). Free-living larvae of A. 

simplex (Second-Stage Larvae) are ingested by intermediate invertebrate hosts, principally 

planktonic malacostracan crustaceans (Petrie et al., 2005; Smith & Wootten, 1975).  



33 
 

 

Figure 6 - Schematic representation of the third-stage larvae of A. simplex. Adapted from Ishii et al. (1989). 

 

Hysterothylacium aduncum (Rudolphi, 1802) 

The adult form of this nematode species frequently parasitizes fish’s gastrointestinal tract 

(Coomans, 2000; Navone et al., 1998). Morphologically its third-stage larvae (L3) have a 

thinner body anteriorly, a cuticle transversally striated, lateral alae with support v-shaped in 

cross-section, extending immediately behind the anterior extremity up to the caudal end 

(Navone et al., 1998). L3 and adult stage of this species have an identical disposition of their 

digestive organs, where the position of the excretory pore it is just behind the nerve ring. 

(Coomans, 2000; Navone et al., 1998). The first of the two first moults of its life cycle occur 

in the egg stage (Navone et al., 1998). Reaching L3 there is a need for least one intermediate 

crustacean host for transmission of this parasite (Coomans, 2000; Navone et al., 1998). During 

L3, this nematode is only infectious to the host (fish) after a certain development in at least one 

intermediate host (Coomans, 2000). The last two moults occur in the gastrointestinal tract of 

the definitive host (fish) (Coomans, 2000; Navone et al., 1998). 

Cestodes 

Aporhynchus norvegicus (Olsson, 1868) Nybelin, 1918 

A. norvegicus, like other species of the Aporhynchinae subfamily, does not have a rhyncheal 

apparatus (Rees, 1941; Beveridge, 1990) This anatomic characteristic differentiates this genus 
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among the others trypanorhynch cestodes (Beveridge, 1990). This cestode is relatively small 

(up to fifteen millimetres long) and presents with ten not overlapping proglottides (acraspedote) 

in gravid strobilae (segmented part of the cestodes, consisted of proglottids) (Beveridge, 1990). 

This endoparasite has a scolex which fuses practically imperceptibly into strobila. Its frontal 

glands are quite prominent (Rees, 1941; Beveridge, 1990). 

Monogeneans (Platyhelminthes) 

It was not possible to identify the exact species, and it is therefore referred to “Monogenean 
unident.” throughout the rest of the thesis. 
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Part II.  Metazoan gastrointestinal parasites of Etmopterus spinax (L., 

1758) from southern Norwegian waters – Empirical Study 
 

Host life history data  
 

A total of 115 individuals of E. spinax were examined from 8 stations (see Table 3) ranging 

from 12 cm to 45 cm total length, with a mean of 28.7 cm (±7.7 SD), shown in Table 3 and 4. 

The body weight of these sampled sharks ranged from 7 g to 454 g with a mean of 114.8 g 

(±81.2 SD). The station with the highest average length and average weight was station B (see 

Appendix Table 3, Table 1). 

Table 3 - Number and gender E. spinax sampled per station. 

 

 

 

 

 

 

In total, the selected stations contained 63 females and 52 males. Station E presented the higher 

sex ratio among the sampled station (7 females:4 males). There was no significant difference 

between E. spinax gender composition and location (stations) based on Fisher's Exact Test 

(p>0.05) (see Appendix Table 4). However, there was a significant difference between length 

and location and between weight 

and location (Kruskal-Wallis test, p <0.05) (see Appendix table 5). The station combinations 

which showed significant differences in length distributions were: station A vs. stations B and 

C, and station B vs. stations F and H (Dunn's test, p<0.05). The station combinations which 

showed significant differences in weight were: station A vs. station B and C, and station B vs.  

stations E, F and H (Dunn's test, p<0.05). The average length was higher in males (x̅= 28.8 ± 

Stations Code   Number of individuals  Females Males 

A 27 16 11 

B 19 11 8 

C 14 7 7 

D 10 6 4 

E 11 7 4 

F 9 4 5 

G 9 4 5 

H 16 8 8 
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7.4 SD), although females had higher average body weights with 120.3 g (± 94.0 SD) (see 

Table 4). The average length and average weight of the sampled sharks was highest in the 

station with highest maximum depth (station B) (see Figure 7).  

Most sampled specimens were immature (n=77, out of 115) (see Appendix Table 7). Of this 

approximately 60% (n=46) were females and 40% (n=31) males. There were no sampled 

immature males in the station D and no mature females in the station F. Mature females had 

the highest length and weight overall. 

 

Table 4 - Life history data by gender and maturity status. Average length (in centimetres) ±SD, average weight (in grams) 
±SD, maximum and minimum of length and weight of sampled shark per gender and sexual maturity and the total of sharks 
sampled on this study. 

 

 

 Average 
Length (cm) 

Average 
Weight (g) 

Length 
(cm) Weight (g) 

Min Max Min Max 
 Female 28.7 ± 7.9 120.3 ± 94.0 12 45 7 454 

 Male 28.8 ± 7.4 108.2 ± 62.8 13 40 9 232 

Sample 
size 

 

46 
Female 

Immature 25.2 ± 5.8 75.7 ± 48.3 12 35 7 194 

17 Mature 38.2 ± 3.8 241.1 ± 80.2 32 45 122 454 

         

31 
Male 

Immature 24.6 ± 5.9 68.9 ± 36.4 13 34 9 136 

21 Mature 34.7 ± 4.6 138.8 ± 87.4 25 40 62 232 
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Figure 7 - Average length and average mean of males and females of E. spinax, captured in each station. Vertical bars show 
standard deviation from the mean. Circles show the values of length and weight of each shark sampled. Green circles 
correspond to male sharks and orange to female sharks. 

 

 

The individuals of E. spinax which were analysed had relatively small livers: about 15.5% 

(±6.1 SD) of body weight for females and 16.3% (±5.5 SD) for males. Males presented a higher 

average HSI both in mature (x̅= 18.7 ± 5.0) and immature (x̅= 14.6 ± 5.4) sexual stages, 

compared to the females with 17.7 (± 5.5 SD) and 14.2 (± 6.1 SD) respectively. The average 

HSI is higher in both sexes in the mature stages (see Appendix Table 8). 
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Parasite composition 
 

Out of 115 E. spinax examined from eight sampling stations only 18% (n=21) were infected 

with at least one parasite. Four parasites species from four taxonomic groups were found in the 

following organs: skin, snout (nasal cavity), stomach wall and intestine. Station B had the 

highest parasite diversity, where all four parasite species were detected, and station D the 

lowest with no parasite found at all (see Table 5, Appendix Table 9). 

 

Table 5 -  Number of infected hosts per station infected by given parasite species. Shown are the site within the host, the 
parasite development stage, and the number of infected hosts by stations (A-H). Dashes indicate absence of parasite. A = 
adult, I = intestine, L3 = Larval stage 3, S = Skin, Sn = Snout, Sw= Stomach wall 

 

Four specimens (n=4) in the adult stage of the endoparasite A. norvegicus were found within 

four host intestines. Eight (n=8) A. squalicola specimens were found in six E. spinax 

individuals. Three of those were found embedded near to the spiracle region, three anterior to 

the first dorsal spine and two on the orbit area (see Figure 8). Four (n=4) specimens in the adult 

stage of the endoparasite A. norvegicus were found within four host intestines. Sixteen (n=16) 

specimens of the nematode A. simplex were found on the wall of twelve analysed stomachs. 

All the specimens were on Third-Stage Larvae (L3). Some of the specimens were encapsulated 

within the stomach walls. Only one monogenean was found in the nasal cavity of one E. spinax. 

This monogenean was severely damaged which only made it possible to taxonomically identify 

Species Site Stage         Number of infected hosts  
A B C D E F G H 

Monogenean           
Monogenea indet. Sn            A - 1 - - - - - - 

Cestoda           

Aporhynchus norvegicus  I A 1 1 1 - 1 - - - 

Nematoda           

Anisakis simplex  Sw L3 2 2 - - 1 2 3 2 

Crustacea           

Anelasma squalicola  S A - 2 - - - - 1 3 

http://www.marinespecies.org/aphia.php?p=taxdetails&id=105334
https://en.wikipedia.org/wiki/Crustacean
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the class of the parasite. As it was possible to visualize its haptor attached posteriorly, it allowed 

the distinction from the other classes of Neodermata (e.g. Cestodes and Trematodes).  

 

 

Figure 8 - E. spinax caught in one of the analysed stations that was parasitized by A. squalicola on the orbital area. 

 

. 

Host-parasite interaction 
 

Of the twenty-one (n=21) E. spinax specimens infected with at least one parasite, twelve (n=12) 

were females and nine (n=9) males. Around 67% (n=14) of those infected E. spinax were 

sexually mature (see Table 6), five of them females and nine males. There was no immature 

males among the infected specimens. 

 

Table 6 – Infection Status and sexual maturity of sampled E. spinax. 

Infected Status Female Male 

 Immature Mature Immature Mature 

Infected  7 5 0 9 

Non-infected  39 12 31 12 
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The most common parasite found was Anisakis simplex (Nematoda, Ascaridida) in its larval 

form, which was present in twelve of the stomachs analysed and was also the most numerous 

overall of the parasites found (n=16). Only four hosts were infected with two specimens of A. 

simplex. 75% (n=3) of these infected hosts were mature. The second most prevalent parasite 

(n=8) was Anelasma squalicola (Maxillopoda, Pedunculata) which was found in six sharks. 

Monogeneans and A. norveggicus were instead the least common parasites. Females and males 

of E. spinax showed no significant differences in parasite prevalence of each found species 

(Fisher’s exact test; for each parasite species p > 0.05) (see Appendix Table 10, 11).   

Among the eight sampling stations, A. simplex was found to be more common at location G 

whereas A. squalicola in location H (see Figure 9). The Monogenean was only recorded from 

station B, whereas A. norvegicus was generally present in most stations at low intensities. Due 

to the low parasite load on the sharks (only five hosts were infected with more than one parasite 

individual of a particular species), mean abundance followed the same pattern. The stations 

that had the highest prevalence of a specific species also had the highest mean abundance of 

that species (see Figure 9; Appendix Table 10). 



41 
 

 

Figure 9 - Prevalence and mean abundance of the four found parasite species by location 

 

Location had no significant effect on parasite infections (see Appendix table 12). Parasite 

infection in fact, seems to be driven mainly by host size (length), i.e. larger sharks had more 

parasites than the smaller hosts. This was particularly evident for A. simplex and A. squalicola 

(Kruskal-Wallis, p < 0.05), shown in Figure 10, where it was possible to visualize the pattern 

of parasite infections in relation to shark length (i.e. increasing host size did result in an increase 

of infections). Although no effect of length or location was detected on Aporhynchus 

norvegicus and on the Monogenean indet. (Kruskal-Wallis, p > 0.05). 

A. squalicola A. simplex A. norvegicus Monogenea indet. A. squalicola 
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Figure 10 - Relationship between infection intensity and host length. Fitted GLM negative binomial 
regression for intensity of parasites infecting E. spinax with 95% confident interval.

Anelasma squalicola 

Anisakis simplex 
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Discussion  

The literature review indicated 21 existing parasite species on 9 host species belonging to the 

Etmopterus genus, on 13 different sites of the host’s body. The empirical data from eight 

stations in southern Norwegian waters revealed fairly low parasite prevalence and diversity on 

E. spinax. From a total of 115 studied shark specimen in this study only a total of four different 

parasite species (from four taxonomic groups) were recorded and only 18 host specimens were 

infected with at least one parasite species. The comparison of E. spinax individuals showed 

that larger sharks had a significantly higher prevalence of the parasite species A. simplex and 

A. squalicola, although the same could not be found for the other two parasite species.  

Parasite diversity 
During the present study only 4 parasite species were observed and the parasite community 

therefore differs from the only other previous study in Norwegian waters by Klimpel et al. 

(2003). Klimpel et al.'s (2003) study based on samples from May 2001 from the Norwegian 

Deep waters identified seven endo- and ectoparasite species in total (Klimpel et al., 2003). 

Another study from two areas located in the NE Atlantic off Spain during the period July and 

August 2010, found seven and nine parasite species per area (Isbert et al., 2015). The parasitic 

data for different geographic locations is still too scarce for E. spinax for complex and 

comparative epidemiologic studies (Isbert et al., 2015; Dallarés et al., 2017).  Differences 

between the Atlantic and the Mediterranean are however not unexpected as those have been 

observed in several studies which could show a widespread dichotomy in teleost parasite 

diversity and abundance between the two water bodies (Klimpel et al., 2010; Dallarés et al., 

2017).  

As it can be expected that the parasite composition might change based on the diet of the host 

organism as this is often the primary route of entry for parasites, an investigation into E. spinax 

diet preferences is important. Unfortunately, it was not able to investigate the stomach content 

of the here analysed individuals, which is described in more detail under the section 

methodological considerations below. The diet of E. spinax seems to vary with location due to 

a variation of abiotic factors and with its morphological development (Isbert et al., 2015). Isbert 

et al. (2015) showed that E. spinax exhibits opportunistic feeding habits, and that they capture 

the available benthopelagic prey of suitable size and exploite aggregations of organisms. E. 

spinax from the Skagerrak Deep-water, somewhat east of the current sampling locations, were 
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found to mostly feed on micronektonic crustaceans such as euphausids (krill) but may also 

have scavenged on fish carcasses (Bergstad et al. 2003). In the study by Klimpel et al. (2010) 

only two species were found in the analysed stomachs: krill Meganyctiphanes norvegica (in 

91.9% of the stomachs) and hatchetfish Maurolicus muelleri (in 40.5% of the stomachs). The 

same study showed a transition of feeding composition from krill to fish with the increase of 

length of E. spinax. Interestingly, the individuals with stomachs only containing the krill, i.e. 

the small individuals, were not infected by A. simplex, which the authors explained by the 

hatchetfish functioning as a vector, even if it has been described that this parasite use 

euphausiids as intermediate host (Klimpel et al., 2003; Nagasawa, 1990). Klimpel et al. (2010) 

have shown a higher A. norvegicus prevalence (81.1%) which might be explained by the krill 

being a second intermediate host of this parasite species and by the juvenile E. spinax 

investigated in Klimpel et al. (2003) feeding on mainly krill as they have not transitioned to 

fish yet.  

The highest parasite diversity, with all four parasite species detected, was found in the deepest 

location (station B) with 402 m. However, there is no indication that there are significant 

temperature differences (suggested in the literature to affect diversity) (ICES, 1983; 

Huthnance, 1991; Ottesen, 2009) between this station and the next deepest stations between 

300 and 400 m which could explain such differences in diversity patterns. Interestingly, this 

deepest station was also the station with the highest average length and average weight. This 

station had a prevalence between 5 and 11 % for all four parasite species and was the only 

station where in fact all four species were detected. At this point, given the small infection 

intensities and methodological limitations (see below), it is not clear what could explain this 

pattern. 

Parasite prevalence 

Only 18 out of 115 host specimens were infected with at least one parasite species. This was 

lower than expected based on previous studies (e.g. Klimpel et al. 2003, Rees et al. 2014, Isbert 

et al. 2015). No correlation was found between catch depth of the host and its parasite 

prevalence; however, the deepest station contained host specimen with the highest parasite 

diversity (see section above). The station depths ranged from 173 m to 402 m, and only one of 

the eight stations was shallower than the sampled stations by Klimpel et al., (2003). It does not 

seem that depth is the most deterministic and defining abiotic variable for this species as E. 
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spinax can be found in a large depth range from 70 to 2000 m including reported frequent 

vertical migrations (Isbert et al., 2015). 

When addressing the parasite species individually, the prevalence of A. simplex was lower in 

the majority of sampling stations compared to Klimpel et al. (2003), however, the highest 

prevalence was found in stations F (station with lowest depth) and G (station with third highest 

depth). Fish feeding ecology play a role for a specific parasite species distribution (Klimpel et 

al., 2010). This diet shift might be due to a relatively high availability of benthic infected 

invertebrates and crustaceans (Hemmingsen  & Halvorsen, 1995; Hemmingsen & MacKenzie, 

2001; Klimpel et al., 2010). Although, in most stations here A. simplex prevalence was lower 

than values found in Isbert et al. (2015) (location 1: 26.7 % and 2: 48.3 %), the results in Isbert 

et al. (2015) could be explained with high fishing and disposal rate of infected discharge (i.e. 

liver and stomach from evisceration on board of caught fish) and the opportunist scavenging 

behaviour of E. spinax. Here, station G has a prevalence of 33.3% which is 10% higher than 

the next highest prevalence station (F), and much higher than all the other stations with 

prevalence between 0 and 13%.   

The second highest prevalence among the parasite species found in this study was A. squalicola 

which has a wide distribution among the major oceans, and on various hosts within the genus 

Etmopterus (Yano & Musick, 2000). Although its prevalence varies also among the world, and 

may therefore suggest that this parasite is dependent on the specific abiotic and host conditions 

(Rees et al., 2014; Rees et al., 2019). The mean abundance of each parasite per each station 

followed the pattern of the prevalence’s results because the majority of infected host are 

infected with a single parasite of a specific species. This can be explained by ecological 

variations and the availability of potential intermediate hosts (Rohde, 1993; Marcogliese, 2004; 

Klimpel et al., 2006). Mean abundance followed the same pattern due to the fact that there 

were only very few E. spinax that were infected with more than one parasite of a specific 

species. From the eight stations, F was the station that had a depth most similar to the sampling 

location from Klimpel et al. (2003) and apparently also had the most similar prevalence of A. 

simplex. 
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Host-parasite relationship 

The length-ranges observed in the collected E. spinax specimen ranged from 12-45 cm TL for 

females and 13-40 cm for males, which are similar to the values from other studies comprising 

immature and mature individuals (e.g. Isbert et al., 2015). According to Poulin (2000), as body 

size increases over time, consequently there will also be an increase in energetic demands, so 

larger individuals ingest a greater amount of food and have had more time to accumulate 

parasites than smaller hosts. It was therefore hypothesized that the hosts with larger length 

should be more parasitized, i.e. show a higher prevalence and mean abundance. The results 

from this study revealed such apparent positive correlation between length (and indirectly 

therefore age) and the parasitic prevalence. This correlation was however only significant for 

two parasite species, A. simplex and A. squalicola, the two most common among the detected 

species. This might be explained by the long-term life cycle which these two parasites have 

(Nagasawa, 1990, Rees et al., 2014; Ommundsen el al., 2016). A similar correlation between 

A. simplex and the length of the host was found in the Klimpel et al. (2003) study which was 

also on Norwegian E. spinax specimen. The apparent non-correlation for the other two detected 

parasites A. norvegicus and Monogenea indet. can most likely be explained by very low, or 

even null, prevalence of these specimen in some stations. This lack of correlation between A. 

norvegicus with the shark length contradicts the results from Klimpel et al. (2003) where all 

the shark individuals with length up to 17.1 cm were not infected, but specimens with lengths 

above 19.4 cm had a prevalence of infection of 100%. However, it needs to be pointed out that 

the study from Klimpel et al. (2003) only comprised juvenile individuals of E. spinax whereas 

this study contained also adult individuals of both sexes. 

The average hepatosomatic index (HSI), that is the ratio between the liver weight and the total 

body weight, was highest in mature individuals (males and females), but in direct comparison 

the HSI was higher for males than for females (i.e. mature males vs. mature females, and 

immature males vs. immature females). The higher HSI in males was contrary to literature 

expectations from populations studied in the North East Atlantic (e.g. Aranha et al. 2009). It is 

not clear why and would need further investigations with larger sample sizes from a variety of 

maturity stages from both, the NE Atlantic and the North Sea. Generally, the HSI is higher in 

sharks compared to bony fishes, as expected given the generally very large livers. In dusky 

sharks for example, Hussey et al. (2009) reported values between 6 and 11, with differences in 

HSI values based on size class, sex and reproductive state. In other species similar values are 
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published, e.g. in salmon shark (Lamna ditropis) with 6.8-8.1 (Jayasinghe et al. 2003), and in 

species within the genus Carcharinus (5.7–10%) (Jayasinghe, 1999). Deep-sea sharks on the 

other hand, have been reported with much higher values, e.g. for Centrophorus granulosus 

(21.4–26.2%), Dalatias licha (23.9–26.5%) or Centroscymmus coelolepis (25.4–33.3%) 

(Batista and Nunes, 1992). The values from this study with an HSI of 18-19 are therefore 

situated somewhere in between those estimates but are more closely resembling estimates of 

other deep-sea sharks. 

Hussey et al. (2009) also reported that HSI estimates are further complicated by season and 

that they reflect short-term energetic and reproductive states, combined with metabolic 

demands regulated  by  temperature  and  other  environmental  factors, making it necessary to 

consider a more complex range of indices which could also include reproductive measures and 

environmental  parameters  to  fully  understand  HSI data trends. When investigating the effect 

of various levels of pollution and infection stress, Al-Ghais (2013) found that the HSI in Tilapia 

sp. was over 60% higher in individuals raised in sewage water as compared to the control fish, 

and Lenhardt et al. (2009) reported the highest HSI value in the month with greatest parasite 

infection numbers for the sterlet (Acipenser ruthenus L.) by a factor of 6. These studies all 

show the importance of sampling different life history stages, seasons and additional areas with 

different exposure properties where possible. 

Seasonality 

The opportunity of a holistic comparison between the present study and the one from Klimpel 

et al. (2003), both conducted within a relatively close area but on different seasons, allows for 

an observation of temporal variation in the intestinal parasite communities of E. spinax. 

Potential explanations can however only be speculated on with the amount of available data.  

For parasites which present a short-term life cycle, such as monogeneans, in some cases it is 

possible to observe a variation with season which follows an annual fixed pattern (parasite 

seasonality) (Willy Hemmingsen et al., 1995). In Klimpel et al. (2003), Monogenean indet. 

presented a prevalence of 84% from spring/summer (May 2001) which is in strong contrast to 

the null prevalence for the majority of the stations sampled in winter (January 2016) in this 

study, with the exception of one station which had a 5% prevalence. Although seasonality 

apparently cannot be applied to A. simplex, due to its several year encompassing life cycle in 

the intermediate fish host, and can therefore not explain the lower values in some stations 
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(Smith, 1983; Hemmingsen et al., 1995). The seasonality is depended on surrounding abiotic 

factors, and water temperature might be one of the most important environmental factors 

influencing the seasonal abundance of aquatic marine parasites (Willy Hemmingsen et al., 

1995; Hemmingsen & MacKenzie, 2001; Klimpel et al., 2010). This abiotic variable can  affect 

either the parasite transmission directly by effecting the free-living transmission stages (larvae) 

or indirectly by its effects on paratenic hosts (Hemmingsen et al., 1995). Temperature may 

cause changes on host feeding behaviour (because of variations in food availability) and on 

immune response of the host (i.e. producing seasonal variations in resistance to infection  

(Hemmingsen et al., 1995; Marcogliese, 2004).  

Potential use of the parasites as tags/bio-indicators  

From the several studies on marine parasite tags, very few have focused on cartilaginous fishes 

as hosts (Irigoitia et al., 2017). This could probably be associated with the fact that many sharks 

are considered apex predators (i.e. predators which are on the top of food chain), which 

decreases the probability that they are hosts for long-lived larval parasites (Timi & MacKenzie, 

2015; Irigoitia et al., 2017). They are thus not the most obvious candidates for using parasites 

as natural markers for stock assessment (Irigoitia et al., 2017). Following the arguments of 

MacKenzie & Abaunza (1998) and Catalano et al. (2014), none of the parasites species found 

in this study fulfils all suggested guidelines. Although some can be useful as potential 

biological tags based on their life cycle and geographic distribution, they present strong and 

weak points (depending on the purpose of use). However, the ability of the parasites to measure 

impacts in these E. spinax populations will dependent on: 1) improving knowledge on the life 

history patterns of local populations of E. spinax, 2) obtaining information on the parasites 

affecting individuals at various stages in their growth, and 3) establishing trend information on 

prevalence of infection for each parasite species individually. 

A pilot study to investigate potential seasonality of the parasite species would be a pre-requisite 

before consideration as tags. If they exhibit seasonality, they might be not the best candidates 

because it would increase the complexity of interactions between the parasite and the 

ecosystem. The availability of intermediate hosts impacts the parasite species composition in 

host population and varies between geographically among different habitats (Rohde, 1993; 

Marcogliese, 2004).  
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The presence of A. simplex in the shark intestines gives an important diet information. Sharks 

infected by A. simplex reveal what they have been feeding on some species  (e.g. crustacean) 

(Smith, 1984; Lamps & Lamps, 2009). Observing Table 1, A. simplex presents a large 

geographic distribution for two Etmopterus species inhabiting the northern hemisphere, 

including E. spinax. The combinations of studying feeding ecology, parasite taxonomy and 

parasite genetics (e.g. frequencies of different acid phosphatase allozymes in the L3 A simplex 

it might be easier) might make it easier to distinguish between host populations (Catalano et 

al., 2014). Although A. simplex accumulates during the host life due to their long-term life 

cycle (Nagasawa, 1990). Also, sharks are not often the final host of this parasite (Smith, 1983; 

Lamps & Lamps, 2009; Isbert et al., 2015). 

The unidentified species of Monogeneans might be a potential parasite tag species, because 

monogeneans only have single definitive host (direct life cycle) and are often considered highly 

host-specific (Whittington et al., 2000; Cribb et al., 2002). Biotic factors such as host schooling 

behaviours (which E. spinax can present) and density may affect variations in parasites of this 

class between locations (Grutter, 1998; Sikkel et al., 2009; Isbert et al., 2015). However, the 

exact species could not be identified, because the specimen was damaged, and only one 

monogenean was collected from a single host. Species-level identification is however 

necessary to provide replicable tagging results and this specimen is therefore not suited for the 

application as a parasite tag. 

A. norvegicus presents a typical trypanorhynch life cycle, with elasmobranchs as final hosts 

(Beveridge, 1990; Klimpel et al., 2003). Some of the species of invertebrates and teleosts which 

are a part of the diet of E. spinax from southern Norwegian waters (e.g. Meganyctiphanes 

norbegica) are second intermediate hosts (Klimpel et al., 2003). The presence or absence of A. 

norvegicus which is typically found in that area can be important to explain ontogenetic shifts 

in the host diet and its trophic interactions (Hemmingsen, 1995; Münster et al., 2015; Dallarés 

et al., 2017). However, like the undetermined species of Monogenean, the number of A. 

norvegicus specimens found in this study was extremely low, which makes tag applicability 

evaluations very difficult.  

It is suggested that A. squalicola is transmitted by close contacts between host and infected 

host. This might give an indication about the location of breeding grounds (i.e. A. squalicola 

found in mature hosts) and feeding grounds (i.e. A. squalicola found in immature hosts) 

(Magnhagen, 2008). In addition, this parasite is found to have a high geographic distribution, 
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together with its host and could therefore be very useful as parasite genetic tag. Also, the 

parasite species could potentially be used as a bio-indicator for pollution (toxicologic studies 

should be developed for potential calibration of the parasite as a bio-indicator). As for A. 

simplex, this crustacean parasite can accumulate during the host life (Rees et al., 2014; 

Ommundsen et al., 2016). 

Methodological considerations and recommendations 

The lower prevalence and also diversity could have been facilitated through a few 

methodological shortcomings with respect to the sampling and the storage of the host 

specimen. The sharks were collected through an annual research survey as part of an ongoing 

research effort studying their life history and population structure and have not been intended 

to be used for parasite study purposes. Hence, all individuals from a station were bulk frozen 

together by cryopreservation (slow freezing). The ice crystals are hereby relatively bigger than 

the ones formed with nitrogen preservation. These ice crystals mechanically destroy the cells 

of the host, as well as the parasite structure. For example, nematodes do not have a cuticula as 

cestodes, which decreases the probability that the morphological structure of nematodes 

survives intact during the cryopreservation process. Also, the cryopreservation increased the 

difficulty to identify the preys on the gastrointestinal content of the sharks. For processing, 

initially all the sharks of the same station which were frozen in bulk needed be defrosted 

together and then afterwards individuals needed to be frozen again in smaller batches for 

individual processing. So, the mechanical damage associated with the ice crystal was induced 

two times.   

In addition, many samples from the range of the survey had already been processed at the point 

of the project start, leaving a smaller selection of sampling depths to choose form. For 

consecutive studies additional depths down to 600 m should be chosen for parasite 

investigation, as well as other areas of the host species’ distribution with deeper depth profiles, 

taking advantage of the topography of the area and depth distribution of the E.spinax 

(Huthnance, 1991; Coelho & Erzini, 2010; Coelho et al,. 2010). It would be a great value for 

future studies to sample the same areas in two distinct seasons of the year (e.g. one between 

December-January and another July-August), but this is more difficult to implement given that 

the sampling in those areas is part of an annual survey to monitor shrimps at a specific time of 

the year. During the sampling a maximum of abiotic parameters should be registered per station 
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(e.g. depth, salinity, temperature, pressure, light). Considering a balanced sampling design, per 

station a minimum of 12 specimens should be collected, with equal composition of males and 

females and immature and mature individuals. When finer-scale maturity stages should be 

considered, the same sizes need to be increased per group accordingly. When the sharks are 

sampled freshly, the total weight needs to be recorded and the gastrointestinal tract should be 

removed from the body cavity and frozen in separate portions (pharynx-pyloric sphincter; 

pyloric sphincter-cloaca) in two distinct bags per shark. The remaining body should either be 

processed directly or frozen for later maturity determination and measurements. Additional 

stomach content analysis would add value by allowing for direct comparisons with the host’s 

diet. Combining the examination of the gastrointestinal content, which provides a short-term 

view of the most recent trophic utilization and analysing the structure of shark parasite fauna, 

which gives an overview of a long-term feeding niche, the study would gain more detailed 

information on the role of E. spinax in the food web in the different locations. Ultimately, this 

could provide information for the assessment of geographical variation of parasites and their 

hosts and their combined potential impact on the ecosystem they inhabit (Williams et al., 1992; 

Marcogliese, 2004; Catalano et al., 2014; Isbert et al., 2015). 

Conclusion 
 

Parasites are fundamental pieces in the biological knowledge puzzle of marine ecosystems. 

Parasites can contribute to fill numerous knowledge gaps through for example their application 

as populations tags in order to inform management plans about population structure and 

potential host migrations (Techera & Klein, 2011; Shiffman & Hammerschlag, 2016). In that 

way, using parasites as biological tags presents a great potential for future use in ecology 

studies but also as bio-indicator to advise on the implementation of management strategies for 

protection or restoration of complex marine ecosystems which are constantly being threatened 

by anthropogenic activities. Therefore, the comprehensive study of parasites together with their 

hosts cannot be emphasised enough. I hope that this thesis will contribute to those and 

hopefully future efforts to design effective management plans for our natural resources. 
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Appendix  
 

Appendix Table 7 - Reproduction scales for female specimens of E. spinax (Myrlund, 2018) 

Maturity  Stage  Description 

Immature  

1. Immature 

Ovaries: small dimensions and albicans; without 
differentiated oocytes. 
 
Oviductal gland: frequently not visible. 
 
Uterus: entangled and small diameter 
(hypoplasic) 

2. Developing 
(Maturing) 

Ovaries: increasing dimensions; oocytes on 
different development stages. Possible 
visualization of small and medium sized yolked 
follicles. 
 
Oviductal gland: possible to distinguish each 
gland although it is still underdevelopment   
 
Uteri: Hypoplasic 

Mature 3. Capable to 
Reproduce 

Ovaries: large size; presence of large yolked 
follicles ready to be ovulated. 
 
Oviductal glands: fully developed 
 
Uteri: fully developed 

Maternal 4a. Early Pregnancy 

Ovaries: different sized follicles are present 
according to stages of ovulation. 
 
Oviductal glands: fully developed (possibility of 
regression) 
 
Uterus: enlarged rounded shape with yolk 
content. Embryos cannot be observed. 
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4b. Mid Pregnancy  

Ovaries: small to medium, possibly yolked 
follicles (active gonads) or small, unyolked 
and/or atretic follicles (inactive gonads). 
 
Oviductal glands: fully developed (possibly 
regressing) 
 
Uterus: Presence of oedema. Enlarged and round 
shape. rounded. Embryos are always visible 
(small and with a relatively large yolk sac) 

4c. Late Pregnancy  

Ovaries: medium to large yolked follicles (active 
gonads) or small, unyolked follicles and/or atretic 
follicles (inactive gonads) 
 
Oviductal glands: fully developed 
 
Uterus: embryos fully developed (yolk sacs 
reduced or absent) 

5. Post-Partum  

Ovaries: Similar to stage Late Pregnancy (4c) 
 
Oviducal glands:  Similar to stage 4c 
 
Uterus: enlarged and flaccid  

 6. Early Regeneration 

Ovaries: small or medium yolked follicles.  
 
Oviducal glands: fully developed (may be 
reduced in size, depending when the partum was).  
 
Uterus: enlarged (oedema) post-maternal, but not 
so flaccid 

 7. Late Regeneration 

Ovaries: large yolked follicles of ovulatory size. 
 
Oviducal glands: fully developed.  
 
Uteris: enlarged post- maternal, but not flaccid. 
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Appendix Table 2 - Reproduction scales for male specimens of E. spinax (Myrlund,, 2018) 

Maturity  Stage  Description 

Immature  

1. Immature 

Testes: small dimensions and 
undeveloped. 
Ducts: narrow and entangled 
Claspers: soft, flexible, noncalcified 
and usually shorter dimensions than 
pelvic fins 

2. Developing (Maturing) 

Testes: maturing with segments 
visible at this stage - although does 
not occupy whole surface. 
Ducts: underdeveloped, although the 
ducts are starting to coil. 
Claspers: flexible, partially calcified 
and as long as or longer than pelvic 
fins. 

Mature 

3a. Capable to Reproduce 

Testes: fully developed and matured 
(segments completed). 
Spermatogenesis  
Ducts: tightly coiled and filled with 
sperm. Seminal vesicles are 
developed. 
Claspers: rigid, calcified and longer 
than the pelvic fins. 

3b. Capable to Reproduce 

Testes: similar to stage 3a  
Ducts: sperm flowing out of the 
cloaca on pressure. Seminal vesicles 
can be full 
Claspers: fully developed (clasper 
gland dilated, sometimes swollen 
and/or with erythema). Sperm may be 
present in clasper groove and glans. 

4. Spent (regressing and regenerating) 

Testes: anthropic and flaccid 
Ducts: empty and flaccid. Seminal 
vesicles (when present) empty. 
Claspers: fully formed. 
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Appendix Table 3– Average total length (in centimetres) ±SD and average weight (in grams) ±SD of sampled 
shark per station and the total of sharks sampled on this study. 

Station codes Average length (cm) Average weight (g) 

A 24.4 ± 7.0 65.9 ± 51.7 

B 33.9 ± 3.8 183.3 ± 50.1 

C 31.00 ± 2.5 116.9 ± 29.9 

D 30.1 ± 10.9 160.2 ± 139.0 

E 28.6 ± 8.7 117.1 ± 84.5 

F 26.3 ± 3.5 71.3 ± 31.2 

G 33.7 ± 8.4 137.6 ± 97.4 

H 27.4 ± 9.5 96.2 ± 79.7 

   

Total of all 
individuals sampled 28.7 ±7.7 114.8 ±81.2 

 

 

 

Appendix Table 4 – Fisher's Exact Test - investigate the relationship between E. spinax gender and stations. 

Fisher's Exact Test 
p-value 0.9726 

Alternative hypothesis Two sides 
 

 

Appendix Table 5 – Non-parametric Kruskal-Wallis test for analysing association between length or weight 
between different stations. 

 p-value 
Indiscriminate gender Weight per station 4.672e-06 

Indiscriminate gender Length per station 5.537e-04 
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Appendix Table 6 – Stations that have shown significative difference on these associations (p<0.05) - Dunn's 
nonparametric comparison for post hoc (pairwise multiple comparisons) 

Stations comparison - 
Significative difference – length P.adj 

A - B 0.0002323629 
A - C 0.0295225090 
B - F 0.0296576428 
B - H 0.0316867754 

 

Stations comparison - 
Significative difference – weight P.adj 

A - B 9.144125e-07 
A - C 3.402296e-02 
B - E 4.919704e-02 
B - F 1.620276e-03 
B - H 1.879170e-03 

 

 

 

Appendix Table 7 – Gender and sexual maturity of sampled E. spinax per station. 

Station codes   Female Male 

 Immature Mature Immature Mature 

A 15 1 9 2 

B 5 6 1 7 

C 5 2 4 3 

D 2 4 4 0 

E 5 2 3 1 

F 4 0 4 1 

G 3 1 2 3 

H 7 1 4 4 
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Appendix Table 8 - Average of the Hepatosomatic index (HIS) between gender and sexual maturity stage and 
for each gender. 

 

 

 

 

 

 

 

 

 

 

Appendix Table 9 – Number of parasites found per station. Parasite development stage, location within the host. 
Dashes indicate absence of parasite.  

 A = adult, I = intestine, L3 = larval stage 3, S = skin, Sn = snout, Sw = stomach wall 

 

 

 

Sexual Maturity 
Stage Gender 

 Female  Male  

Immature 14.2 ± 6.1 14.6 ± 5.4  

Mature 17.7 ± 5.5 18.7 ± 5.0  

    

    

Total of specimens 15.1 ± 6.1 16.3 ± 5.5  

Species Site Stage 
      Number of parasites  

A B C D E F G H 
Monogenean           
Monogenea indet. Sn            A - 1 - - - - - - 
Cestoda           

Aporhynchus norvegicus  I A 1 1 1 - 1 - - - 
Nematoda           

Anisakis simplex  Sw L3 3 2 - - 1 3 4 3 

Crustacea           

Anelasma squalicola  S A - 2 - - - - 2 4 

http://www.marinespecies.org/aphia.php?p=taxdetails&id=105334
https://en.wikipedia.org/wiki/Crustacean
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Appendix Table 10 – Prevalence and Mean abundance of each parasite species per sampled station.  

Species 
Prevalence %       

A B C D E F G H          

Monogenea     
 

   
 

Monogenea indet. 0 5.26 0 0 0 0 0 0 

     
 

   

Cestoda     
 

   

A.  norvegicus  3.7 5.25 7.14 0 9.09 0 0 0 

         
 

Nematoda     
 

   

A. simplex  7.41 10.53 0 0 0 22.22 33.33 12.5 

      
 

   

       Crustacea     
 

   

         
A. squalicola 0 10.53 0 0 0 0 11.11 18.75 

                                             

Species 
Mean Abundance        

A B C D E F G H          
Monogenea         

Monogenea indet. 0 0.053   
± 0.029 0 0 0 0 0 0 

         

Cestoda         

A.  norvegicus  0.037 
± 0.192 

0.053 
± 0.229 

0.071  
± 0.267 0 0.091   

± 0.302 0 0 0 

Nematoda         

A. simplex  0.111   
± 0.424  

0.105   
± 0.315 0 0 0.091   

± 0.302 
0.333   

± 0.707 
0.444   

± 0.726 
0.188   

± 0.544 

       Crustacea 

         

A. squalicola 0 0.105   
± 0.315 0 0 0 0 0.222   

± 0.667 
0.25 

± 0.577 
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Appendix Table 11 – Number of infected species per gender and Fisher's exact test for each parasite 
species per host gender.  

       
Prevalence A. simplex - Male vs. Female  Prevalence A. squalicola - Male vs. Female 

       
 Infected Non-infected   Infected Non-infected 

Female 8 55  Female 2 61 
Male 4 48  Male 4 48 

fisher's exact test: P=0.5425  fisher's exact test: P=0.4074 
       
       
       

Prevalence A. norvegicus - Male vs. Female  Prevalence Monogenean - Male vs. Female 
       
 Infected Non-infected   Infected Non-infected 

Female 2 61  Female 1 62 
Male 2 50  Male 0 52 

fisher's exact test: P=1  fisher's exact test: P=1 
 

 

 

Appendix Table 12 - Length is important as you can see in the PCA and is confirmed also by the Kruskal-
Wallis test results (below) whereas location is not so important as the data are not separated. 

Effects A. simplex A. squalicola 
 

A. norvegicus Monogenea indet. 

Length 0.01573 * 0.002833 **  0.1492 0.7557 

Location 0.11688 0.156344  0.6853 0.8851 
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