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Foreword 
 

 

 

e are glad to present the first number of 2018's volume of MusMat – 

Brazilian Journal of Music and Mathematics. The seven articles of this 

issue address different aspects of the multitude of possible intersections 

between mathematical and musical theories and practice, forming a rich and varied 

pannel of the current research in these fields. Guilherme Bertissolo examines 

applications of some instances of pitch-class cycles in musical composition. Charles 

de Paiva proposes a model for computational assisted-analysis using deterministic 

algorithms, which is applied in an analysis of Steve Reich's Clapping Music. Luigi 

Irlandini correlates the notion of number/proportions and mythic cosmologies as a 

key for understanding his own compositional processes. Luka Marohnić presents an 

interesting approach using Hans van der Laan's plastic number for the study of 

Hepokosky and Darcy's sonata type 3 in Mozart's movements. Pauxy Gentil-Nunes 

exposes the concept of Partitional Complexes, as an expansion of his theory, 

Partitional Analysis, with some proposals for hierarchical analysis of musical texture. 

Dmitri Tymoczko introduces the interable voice-leading schemas, proposing a new 

systematical, mathematical approach for analytical exame of voice-leading 

configurations. Didier Guigue presents the elements of an original methodology 

based on the idea of sounding partitioning, which is applied in the analysis of the 

orchestration of Webern's Variationen op. 30. 
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May 2018 
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Cycles in Music: Spaces, Experience
and Applications in Music Theory

and Composition
Guilherme Bertissolo
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Abstract: This paper focuses the idea of cycle and its approaches in music theory, in order to propose
further application to music composition. The impulse for reseaching cycle was made possible through a
previous research, in which I proposed a conceptual framework for the relationship between music and
movement in Capoeira. Here, I first discuss the idea of cycle, then its theoretical approaches, and finally,
some compositional processes based on cycles.

Keywords: cycle, composition, creative process.

Introduction

This paper focuses the idea of cycle and its approaches in music theory, in order to propose
further application to music composition. The impulse for researching cycle was made
possible through a previous research, in which I proposed a conceptual framework for the

relationship between music and movement in Capoeira1.
In the first section, I discuss the idea of cycle, proposing a definition for the term, in relation to

cognition and our bodily experience. In the second section, I propose a short discussion about
theoretical approaches to cycle, where music and mathematics are co-implicated. Finally, I discuss
some compositional processes based on cycles, in order to exemplify the previous discussion.

I. The notion of cycle: a conceptual territory

Cyclicity is understood here as a property which is somewhat characterized through a cycle2. The
term cycle holds many meanings. We may consider several approaches to define a cycle.

1In my doctoral research – PhD in Music Composition at Universidade Federal da Bahia (Federal University of Bahia
– UFBA) – I focused the complex interaction between music and movement, and specially its uses and functions in the
creation of compositional processes, taking as reference a context in which it is not possible to establish a clear distinction
between them: the Brazilian Capoeira [1]. Capoeira is a combination of music, dance and martial arts that has been
developed in Brazil by West African slaves and its descendants and has been exported all over the world. The combination
of field work and a critique of existing literature on the interaction between music and movement led to the proposition of a
conceptual framework, four concepts which are not mutually exclusive: Cyclicity, Sharpness, Circularity and Surpriseness.

2It is important to mention that this approach to cycle in music is based on a previous – and preliminary – effort in
a presentation entitled as “A noção de Ciclo em música: concepções e aplicações composicionais” [2], realized at the
ANPPOM’s Congress, João Pessoa.
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From a cognitive point of view, the cycle is an image schema based on our bodily experience[3,
p. 362], therefore, it is a basic and easily recognizable concept, since we experience different cycles
everyday.

Brower defines cycle in relation to the container image schema, emphasizing its time dimension:

The CYCLE schema serves to organize our experience of time and the changes by
which we measure time [...] The CYCLE schema combines easily with the CONTAINER
schema, much of its structure. The circle, being closed, can be conceptualized as a
container for motion around its perimeter. [...] [T]emporal containers may be of fixed
duration, as in the case of conventional cycles such as minutes, hours, and weeks, or
they may be subject to expansion and contraction, as in the case of most bodily cycles.
Cycles may also be nested, with larger cycles subsuming smaller ones, producing
a temporal hierarchy [...]. We observe [...] opposition in many bodily cycles – the
alternation of left and right in walking, in and out in breathing, back and forth in
swinging. The alternation may be balanced, so that the halves of the cycle mirror one
another exactly. Or the alternation may be asymmetrical, as in the case of most bodily
processes of tension and relaxation, with the climax sometimes coming well after the
midpoint of the cycle. A wave can assume an infinite variety of forms, and in fact it
is this kind of flexibility that allows the schema to play such a pervasive part in our
understanding of temporal experience [3, p. 329-30]

Notwithstanding, we propose a conceptual approximation, in order to create a territory for
cycle based in three notions (Figure ??).

modeling transformation

reiteration

Figure 1: Notion of cycle based on three concepts

Modeling is conceived here as a virtual connection between two events which allows us to
identify resemblances and correlations between them. In this sense, it is an element capable of
promoting the identification of traces, even changing ones, common features of two subsequent
events spread in time. In other words, it is a sort of design, schema or contour. This modeling is
then continually changing and transforming through time.

Therefore, the definition I would like to propose is: in a cycle, a certain modeling reiterates
itself by transformation (a cycle not necessarily implicates a repetition, even tough the repetition
is the most literal way of reiteration). As a matter of fact, The idea of cycle is one of the most
important schemas for time. Cycles organize our sense of time. In music, cycle plays an important
role: cycles of songs, cycles of fifths, interval cycles, and so on, are obvious examples. Nevertheless,
the notions of cycle should neither be considered as rigid models nor as chains of literal repetition.
Even when they are not assumed, there is no doubt they are sorts of cycles and even the most
literal way of representing a cycle.

It is important to mention that there is no linearity or cause/effect relation between the three
notions, they permeate each other. In other words, most of the time it is not possible to precisely
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the beginning and/or the ending, once we are always in the midst of the cycle. Thus, one can only
delimit the scope of a cycle through the formalizing interference of an observer. The notions of
transformation and reiteration imply temporality, as mentioned by Candace Brower [3]. The cycle
is one of the image schemas based on our body experience (p. 328).

Some questions still remain: are there any cycles which don’t reiterate? Are there any cycles
which don’t transform themselves? Are there any cycles with no modelling (more or less literal)?
I propose here that the approach of cycle as modelling, transformation and reiteration allows us to
understand such nebulous concept.

Concerning the previous research [1], the rhythm, the melodic profiles, the movements and the
game itself are cyclic characteristics of Capoeira Regional. For example, Ginga is a basic Capoeira
movement which plays a role as a basis for all movements3.

II. Notions of cycle in some approaches in music theory

Laske’s Epistemology of Composition [7] takes the creative process in music as a “Compositional
Life Cycle”. In this sense, composition is a cycle per se. For him, the cycle has four interdependent
levels: ideas, materials, implementation, and work. The author discusses the complex network
of the creative process, taking both model-based and rule-based composition as complementary
approaches.

The notion of cycle plays an important hole in contemporary music theory, especially in
neo-riemannian theory. Cohn [4] presents a historical overview of this field of study, taking as
reference the first edition of Lewin’s seminal book [8]. Cohn focuses on Lewin’s essay, written in
1982 five years earlier than the book), in order to propose a series of perspectives for music theory.

As a starting point, the neo-riemannian theory took as reference models of voice-leading applied
to triads, a process also known as triadic post-tonality [4, 11]. Afterward, this model was also
applied to other pitch class sets and collections.

It is important to mention the important role of smooth voice-leading and its geometric
visualization. Voice-leading is related to pitch-spaces, and in some ways it offers us forms to
understand the relationships between aggregates. Morris, for example, asserts [9, p. 95]: “in recent
music theory, graphs—nodes connected by lines or arrows – have become important tools for
modeling music, musical structures, and compositional systems”.

Siciliano [10, p. 222] proposes the maximally smooth cycle of triads as a toggling, as expressed
in Figure 2.

Figure 2: toggling: maximally smooth voice leading [10, p. 222]

Notice that the modeling is the half-step voice leading between two subsequent notes. The
transformation always results in new perfect triadic forms. Figure 3 shows the toogling in a
geometric approach.

Figure 4 shows a cycle of chords which took the pitch class set 026 as a starting point. Note
the smoothness of the voice leading, as the modeling consists of whole steps which transform the
chords gradually until it gets back to the original chord.

3For more examples of cycle in capoeira, its significance, and how the cycle in the context suggested me this approach,
see the PhD dissertation [1].
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Figure 3: Toggling in a geometric form: maximally smooth voice leading [10, p. 225]

Figure 4: Toggling 026 with a whole step voice leading [10, p. 226]

The tonnetz is a network of triads in a pitch space [4, p. 175], where each triad is related to its
homonym and relative forms (Figure 5). This cycle is modeled by four cycles of half-step (marked
by circles) in C, C sharp, D and E, presenting its homonym and relative forms in anticlockwise.
The central square indicates the hyper-hexatonic system.

Straus [11] proposes a series of concepts through which we may discuss atonal voice-leading.
His approach establishes tools for connecting different pitch class sets. We point out important
notions for cycle, such as Pitch-class voice, Transformational voice leading, Uniformity, Balance,
Offset, Consistency, Span, Fuzzy transpositions and Voice-leading smoothness.

In the third edition of his seminal book “Introduction to Post Tonal Theory”, Straus also
approaches interval cycles[12, p. 154], with examples by Bartók, Ives and Varèse. Unfortunately, he
only mentioned simple cycles, with a unique interval. Tymoczko [13, p. 107] also proposes cycles
of intervals and its modes of visualization in a geometry of music. In spite of the simple cycles
he proposes, Tymoczko’s work presents interesting insights for understanding music through
geometry4.

4Due to scope issues, this paper focuses on cycle instead of geometry, Tymoczko’s approach shall not be discussed here
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Figure 5: Tonnetz: hyper-hexatonic system [4, p. 175]

On the other hand, Gollin [6, p. 143] proposes “compound interval cycles” projected in a pitch
space with two or more intervals. Interesting examples are Bartók’s Study Op. 18, 1 (Figure 6)
and Scherzo from Suite Op. 14 (Figure 7), in which the modeling is composed respectively by the
alternation of major/minor thirds and major thirds/minor seconds. Notice in Figure 8 how cycle
4-5 engenders the octatonic collection (Bartok also extensively uses the 4-5 cycle).

Figure 6: Cycle of major and minor thirds in Bartók’s Study Op. 18, 1 [6, p. 144]

As I shall further discuss, the idea of projection of multi-aggregate cycles in pitch spaces is a
powerful tool for generating material, which allows us, on the one hand, to implode the sonority
of a chord by the projection of its constitunt intervals, and, on the other hand, to transform the
chord in a pitch space.

In his turn, Morris [9] proposes musical applications of minimal graph cycles:

Graphs may be constructed from other graphs called input relations. Strictly speaking,
a relation is a graph of two nodes connected by one or two arrows. However, we
will allow input relations to be more complex, assuming they satisfy some context-

in a more detailed way.
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Figure 7: Cycle of major thirds and minor seconds in Scherzo from Suite Op. 14 [6, p. 145]

Figure 8: Cycle 4-5 and the octatonic collection [6, p. 147]

sensitive definition of simplicity and/or basic importance. So, input relations can be
the graphic representation of ordered or unordered sets, partially ordered sets, cycles,
and so forth. Both the input relations and the graphs they construct may or may not
be partitioned into disconnected subgraphs [9, p. 100]

Figure 9, Morris shows the graph cycle through which he composed the flute excerpt presented
in 10. Notice how the cycle starts in 0 (C), and moves step by step, forming a square in the upper
left. Then, he starts the square again and departs to the lower part of the cycle, followed by the
right part of the Figure. All the paths which make the composition of the excerpt possible are
easily recognizable through the graph.

Finally, it is important to mention the work by Pedro Augusto Dias [5], a PhD Dissertation
on combined concentric cycles in structuration of pitch in Thomas Adès. Dias analyzes several
modelings of cycles and proposes important insights though visualization tools made possible by
the geometry of music. Even the work is focused on Adès’ processes, Dias presents and discusses
important issues on cycles in music, with several examples both in analysis and composition.
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Figure 9: Morris graph cycle [9, p. 104]

Figure 10: Morris’ music based on the graph cycle [9, p. 104]

III. Some applications of cycles in composition

In this section I briefly discuss some applications of cycles in composition5. Fumebianas is a series
of works composed in previous research on the relationship between music and movement in
Capoeira [1]. The notion of cycle plays an important role in the process of generation of harmonic
material in the series. Interval cycles made possible the creation of harmonic spaces, by the
projection of a sonority extracted from the context (pentatonic collection) in relation to the pitch
class set 5-16 (especially in its form 03467). Figure 11 shows the smoothness between the two
aggregates.

0

2

4

7

9

0

3

4

6

7

+1

0

0

0

-3

Figure 11: Smoothness between pentatonic collection and the pitch class set 5-16

The dialog between the two sonorities allowed me to propose cycles of transpositions of
5-16 through interpolations of two subsequent pentatonic intervals. Figure 12 shows these
interpolations and how they were constructed, and Figure 13 shows the application of the cycle in

5The intent of this section is to provide examples of applications of cycle in composition. I hope just to show a few
examples, in order to illustrates the issues previously discussed in the paper. For more detailed analysis, the scores and
recordings are available in https://guilhermebertissolo.wordpress.com/.
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Fumebianas Nº 5.

Figure 12: Cycles of 5-16 transformed by two subsequent pentatonic intervals

Figure 13: Cycles of 5-16 transformed by two subsequent pentatonic intervals - Application in Fumebianas Nº 5

In Figure 14 I show a sequence of chords based on the projection of the sonorities in a pitch
space. It is important to notice the three reiterations of the cycle, each generating different trichords.
Figure 15 shows the application of the material in Fumebianas Nº 5.

It is possible to generate, gradually transforming, multiple cycles of chords in this space, while
maintaining resemblance to the sonority of Capoeira.

In Fumebianas Nº 4, I proposed two different interval projections, from 5-16 and pentatonic
collection, in order to generate pitch spaces. Thus, I constructed pitch spaces based on cyclic
projections of the interval of each set, as shown in Figure 16.
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Figure 14: Creating pitch spaces

These pitch spaces were the basic map through which the piece moved. For example, I took
the modeling 3, 2, 2, 5, 5, 5, 6, 4, 4, 5, 5, 4 and 5 and applied to both cycles, generating different
materials from the same path in two different spaces (Figure 17). This type of strategy was applied
throughout the series.

Finally, in Fumebianas Nº 5, I generated material by an algorithmic process made possible
through cycles of superposed patterns of eighth notes. Figure 18 shows the modeling, where
different patterns of eighth notes are separated by pauses. These cycles started with five eighth
pauses, and then four, and so on, until we get just one eighth pause.

Figures 19 and 20 show the application of the first and last cycle. It is important to notice the
gradual intensification process which takes place through the first part of Fumebianas Nº 5. As the
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Figure 15: Creating pitch spaces: application in Fumebianas Nº 5

Figure 16: Two cycles of intervals

texture gets more and more dense with every new cycle.

IV. Final considerations

Cycles plays an important hole both in composition and music theory. The numerous approaches
to cycle allow us to better understand music and its creative process. Cycles are important ways
of visualization, once they allow us to think in terms of espacialization.

As I argue above, I believe cycles connect our bodily experience to the “allegedly abstract” pitch
spaces. Once we think in terms of metaphorical projections, bodily spaces help us to understand

10
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Figure 17: Same path in two different pitch spaces

Figure 18: Cycles of patterns

Figure 19: Cycles of patterns: five eighth pauses

pitch spaces and even create them. I propose that our experience of cycle is a key to understanding
music as a complex of experience, cognition, space, geometry and culture.
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Figure 20: Cycles of patterns: one eighth pause

The concepts of cycle I propose here were inspired by Capoeira’s movements. Therefore, cycle
has a meaningful cultural significance in this context, and my point of view was strongly impreg-
nated by this significance. The cognitive meaning of cycle as an image schema is fundamental,
as expressed by Brower [3, p. 325], since “image schemas that lend coherence to our bodily
experience are metaphorically reflected in conventional patterns of melody, harmony, phrase
structure, and form”.

Finally, I argue that cycles and their graphs in pitch spaces are so capable of making sense
to us, and the geometry of music is so significant, due to the power of metaphorical mapping
through which the relationship between notes, chords and harmonies take on meaning through
our embodied cognition. Ultimately, the space in music is eminently cultural. In other words, we
experience music spaces as we perceive bodily spaces, with both cognitive and cultural meaning.
Thus, it is fundamental to develop tools for understanding music spaces through visualization, in
order to better analyze and create music.
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Computer-Assisted Analysis

Including a Demonstration With
Steve Reich’s Clapping Music

Charles de Paiva Santana

Interdisciplinary Nucleus for Sound Communication - University of Campinas
charles@nics.unicamp.br

Abstract: Based on previous experiments the article presents the most basic principles of a computational
approach for musical analysis that through deterministic algorithms aims to reconstruct and then sim-
ulate neighboring variants (called instances) of existing musical scores. For that, adequate numerical
representations are required, and their use in Computer-Aided Composition (CAC) systems are presented.
Numerical sequences mapping to musical elements such as pitches, durations, and articulations may be
computed or hardcoded for subsequent transformation, concatenation, and superimposition. They allow
the reconstruction of the segments of a given musical score. The rhythmic pattern of Clapping Music can
be modeled as a group of beats being progressively deprived of one beat, each group being separated by
a rest, and the sequence concatenated with its retrograde. The sequence is subsequently transformed by
the successive application of “phase shifts”. A graphical interpretation of the piece is introduced using
barcodes. Variations are envisaged by manipulating parameter values, each different value corresponding
to a specific instance. Usually, parameters reflect compositional choices, but completely arbitrary models
are possible. Such is the case of an alternative model of Clapping Music where a number is converted to
binary representation and then mapped to rests and beats of eighth-notes. The manipulation of strong
parameters modifies structural features of the musical score while weak parameters may only change
the way the score is notated. The set of possible simulations gives rise to a space of instances. It can be
analyzed through diachronic analysis, where a small group of variations is compared to the original piece,
or achronic analysis, where variations are seen as single points in the space.

Keywords: Algorithmic composition, Computer-assisted musical analysis, Computational Musicology,
Steve Reich .

I. Introduction

In the course of the past years, I was involved in the algorithmic modeling of a couple of pieces.
They included:

• The Spectral Canon for Colon Nancarrow by James Tenney [21, 22]
• Spiegel im Spiegel by Arvo Pärt [26]
• Désordre for piano by György Ligeti [23].
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Although very different, they share a strong underlying algorithmic thinking. For this very
reason, I chose those pieces as case studies of a kind of computer-assisted analysis that focus on
the reconstruction and generation of neighboring variants.

In that I was inspired by the work of French researchers André Riotte and Marcel Mesnage [18,
19]. They are known to have developed a musical analysis based on formal models of compositions
from the repertoire 1. Before them, the usual was to simulate a given style, not a single piece,
through the determination of probabilities and the conceptual help of Shannon’s Information
Theory [25]. Following the path opened by Fred Brooks [5], Lejaren Hiller [12] and their compatriot
Pierre Barbaud [3], they used computer simulations to validate deterministic models instead.
However, the possibility of using the same models to simulate variations was only suggested by
Riotte and Mesnage. Figure 1 shows a comparison between the approaches.

In this article, I intend to expose some of the principles that guided me in the elaboration of
such computer models. Naturally, the following ideas are still in development, and I expect them
to be further expanded in future works. For such a short text, I selected what is most relevant and
imperative to understand the general approach.

In the course of the following explanations I will refer to other published experiments but
will include the modeling of Steve Reich’s Clapping Music that was conceived for a pedagogical
purpose 2.

Nico Schüler [24] rightly says that musical analysis, and especially when computer-assisted, is
often taught and practiced with few or any references to the used methods. This article is also my
first answer to that.

II. Theoretical Premise

It was demonstrated that existing musical scores could be rebuilt or generated using computer
models and it was also suggested that neighboring variants could also be produced by such
procedure:

[...] for us, to model a musical score is to model the composition process by an
algorithm able to reproduce, either the score or the neighboring variants obtained by a
different set of parameters.3 [20].

Expanding on the above definition, we can postulate that a musical score is one single occurrence
of a system’s particular configuration. Neighboring variants are then envisaged by modeling the
behavior of such systems and manipulating its parameters values.

The variants are called the instances of the piece. Being similar or unlike, the instances are
ontologically related. Their study should result in further knowledge about the musical work’s
inherent attributes and open for new analytic and creative possibilities.

The model is understood as a computer program that allows the reconstruction of the musical score
or some of its specific aspects. The model inputs are parameter values, and its output is symbolic
musical data. Subroutines implement music composition techniques and related musical tasks.
Aspects of a musical score that reflect compositional “choices” are implemented as parameters.
The model conception is based on the preliminary musical analysis of the chosen piece.

1Those included the Variations for piano, op. 27 by Anton Webern, The Two-Part Invention No. 1 by J.-S. Bach, and the
Troisième Regard sur L’Enfant Jésus by Olivier Messiaen.

2This text is however intentionally devoid of programming examples. For a complete (Common LISP) implementation
of Clapping Music, allowing for the reconstruction of the original piece and generation of variants refer to https:

//github.com/charlesdepaiva/Clapping-Music
3[...] modéliser la partition, pour nous, c’est modéliser le processus de composition par un algorithme capable de

reproduire, soit la partition, soit des variantes voisines obtenues par un nouveau jeu de paramètres.
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The modeling is oriented mostly towards the immanent properties of the musical score (its
neutral level), rather than how the composer made the score (poietic level) or how the piece is
perceived by the listener (esthesic level) [17, 22].

Generalisation
G

Analysis

S1, S2, S3, …, Sn S1, S2, S3, …, Sm

Sample Members New Structures

F. P. BROOKS ET AL. AN EXPERIMENT IN MUSICAL COMPOSITION
(1957)

Model

Analysis

M R

Musical Piece Reconstruction

(V1, V2, …, Vm)

Variations
?

ANDRE RIOTTE,
MODELLED ANALYSIS

(1980-1996)

Model

Analysis

M I1, I2, I3, …, Im
Musical Piece Instances

C. P. SANTANA ET AL. 
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Figure 1: Diagrammatic representation of three different approaches for modeling and simulation of musical scores.
Based on Fred Brooks An experiment in musical composition [5]

To implement the model and run simulations the use of a Computer-Assisted Composition
environment (CAC) is of great help. Those include OpenMusic [4], PWGL [15], and Common Music
/ Grace [28, 29, 30] environments. Those offer a large set of ready-to-use functions performing these
categories of tasks and where new routines can be constructed from them. The output of the
model can be heard as an audio or MIDI file, seen as a musical score and fine-tune edited (see
Figure 2).
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Figure 2: Flowchart illustrating the symbolic data output by the algorithmic model being explored through different
digital formats for representing music.
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III. Numerical Representations

The fundamental step of any computer-assisted analysis is the specification of adequate numerical
representation for the musical structures [8]. The musical score is a representation of sound
phenomena. The score is a space that suggests and privileges certain operations as a result of its
bidimensional aspect. Space and time operations, as transpositions, inversions and retrogradations
result from the possibilities offered by the representation itself. In this sense, the numerical
representation of (notated) musical structures is a representation of a representation, and the
computer model of a score is a model of a model. The numerical representation is the mediation
between musical score and computer.

The numerical representation of musical structures refers us back to French composer Olivier
Messiaen (1912–1992). With the piece Modes de valeurs et d’intensités (1949), he not only laid
the foundations of total serialism, but also introduced a detailed mapping of different musical
dimensions to integer numbers (see Figure 3). This representation allowed Messiaen to operate
space and time transformations, used in polyphonic writing (and by the twelve-tone technique),
not only upon pitches and durations but also intensities and articulations.

In fact, pitch and durations, because of cultural and historical developments, will be more
suitable to this kind of representation and, consequently, to calculations upon them. As we
know, most of the Western musical tradition, in which fall our case studies, privileged those two
dimensions. On the other hand, intensities, articulations and especially timbre, can be seen as
more challenging as they were not explored as much by traditional western music theory. That
probably comes from the fact that, from the perspective of performance and perception, those
dimensions pose some challenges, although the issue may be better handled in the electroacoustic
domain.

Be as it may, one could argue that simulation-based analysis is more suitable to compositional
practices that focus chiefly on the pitch and durational dimensions. Additionally, compositional
practices where an underlying algorithmic thought already exists, as in some serial pieces and
most of the works written by Olivier Messiaen, James Tenney, Arvo Pärt and Steve Reich, among
others, may constitute a corpus more fitted to be studied by the modeling approach presented here.

Pitch can be represented in hertz, savarts, MIDI number and so on. The MIDI standard
assigns an integer number to each key of a standard keyboard (C4=60, C#=61, D=62 . . . ). As the
MIDI system was not conceived for microtonal music, we can use instead the midicent standard,
which is the MIDI number multiplied by one hundred (C4 = 6000). In the midicent system, one
semitone is equal to 100 and one octave is equal to 1200 midicents (see Figure 4). It is used in
CAC environments such as OpenMusic [4] and PGWL [15]. In some cases, as in the model of
James Tenney’s piece [21] and most of spectral music, the representation in hertz is needed for some
calculations.

One way to represent durations and rhythms is to map the traditional rhythmic figures to a
fractional representation. Such representation is already used to formulate measure signatures.
For example, 1/8 (or just 8) refers to the eighth-note, while 1/4 refers to the quarter-note and so
forth. To represent processes not based on rhythm figures (as in proportional notation) the concept
of onset is used. It represents the moment in time (here expressed in milliseconds) where a note is
attacked or an event is started. The onset information is complemented by the determination of
the same event’s duration (see Figure 5).

For dynamics, we use what is already specified by the MIDI standard, a range from 0 (very soft
or silence) to 127 (very loud). It can be mapped to scales of different steps to represent music score
marks, such as piano, forte, and so on. For articulations such as legato, non legato and staccato, which
have a durational nature, we may think of a scale that goes from 0, a very short interpretation of
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Figure 3: Numeric representations in Modes de valuers et d’intensités (1949) by Olivier Messiaen.

19



Journal MusMat • May 2018 • Vol.II, No.1

Numerical Representation of Musical Structures 
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Figure 4: Numerical representation of pitches as they are used in CAC systems such as OpenMusic and PWGL. The
midicent number is the MIDI number multiplied by 100, allowing the use of steps smaller than the semitone.
Common Music / Grace however uses a decimal MIDI number representation for micro intervals.
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Numerical Representation of Musical Structures  (Rhythm)
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Figure 5: Numeric Representation of rhythm and durations. Onsets and durations are represented in milliseconds.
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the ’written’ duration as in staccatissimo, to 100, as in legato, where the duration, if needed, may be
prolonged to connect the notes one after another (see Figure 6).

Numerical Representation of Musical Structures

Dynamics

Articulation

fFS R Q Pp ihg
73 to 8461 to 720 to 12 13 to 24 25 to 36 49 to 6037 to 48 109 to 12797 to 10885 to 96

Ten Step Scale

p
0 to 42

P
43 to 84

f
85 to 127

Three Step Scale

Stacatissimo

0

Legato

100

Figure 6: Numeric Representation: dynamics (from MIDI standard) and articulation (as used in OpenMusic).

IV. Generation of Numerical Sequences

Very often, modeling scores and compositional processes involve the segmentation of sequences
of symbolic data, like pitches, durations, etc. More precisely, it is interested in the formalisms that
correlate those segments and generate them. For instance, a model can describe the rules from
which a sequence, or pattern, is transformed, concatenated and superimposed to reconstruct a given
musical score or excerpt. Such is the case when a melody is consistently repeated (concatenation)
and transposed (transformation), as in Ligeti’s Désordre [30, 14]. That is also the case when a
rhythmic pattern is repeated, rotated (transformation) and played in a texture of two voices
(superimposed), as it happens in Clapping Music.

The model can treat a sequence, or segment of, monolithically, that is to say, consider it as a
“given series” and “hardcode” it on the implementation. Or the model can describe how its most
basic patterns can be computed and generated. In both cases, such endeavor often overlaps with
some domains in discrete mathematics and computer science, especially those of Formal languages
and Automata theory [19, 6]. Those fields are interested in the study of numerical sequences and
the different, often abstract, machines that can compute them [31, 1, 9, 16].

In the modeling of James Tenney’s Spectral Canon for Conlon Nancarrow there is almost any
transformations, and the entire sequence of durations is modeled by a single equation (the
sequence is then concatenated with its reverse and superimposed) [21]. On the other hand, the
modeling of a twelve-tone piece may be interested only in the row’s transformations and not in
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how the twelve-tone series itself can be computed.
In short, the modeling process means finding algorithms that can reconstruct and transform

numerical sequences which, in turn, are mapped to different musical elements as pitches, durations,
dynamics and so on.

Another aspect that can be part of the modeling process is the generation of music materials. It is
considered as musical material the set of chords, scales, articulations and so on. Broadly speaking
it involves the study of “sets", where the sequential or temporal aspects are not considered yet.
For instance, it concerns the generation of pitches from the harmonic series for the Spectral Canon
for Colon Nancarrow [21], or the generation of pitches from the concept of “combinatoric tonality"
in György Ligeti’s Désordre [27, p. 8]. According to the categorization presented by Chemilier [7],
after Xenakis, the generation of music materials is part, essentially, of what can be called the
outside time domain.

Now, to demonstrate the modeling of a rhythmic sequence I will refer to the pattern of Clapping
Music (also used in Music for Pieces of Wood). The pattern can be interpreted as a borrowing from
Subsaharan African music or an exercise drum pattern. In any case, we could see it as a result of
an algorithmic process where (1) a group of eighth notes is progressively deprived of one beat,
(2) each group is separated by a rest, (3) and the current sequence is followed by its retrograde.
Figure 7, shows its analysis. This sequence is repeated, transformed, and arranged in a particular
form. Figure 8 shows a graphical interpretation of the piece.

Steve Reich’s Clapping Music rhythmic pattern

C B A B

a b

C
3 2 1 2 3

Palindrome of groups

Figure 7: Analytic decomposition of Steve Reich’s Clapping Music rhythmic pattern.

V. Transformations and Operations

Once established the representations, materials, and segmentation, the next step is the deter-
mination of the transformations that operate on those numerical structures. Some of the most
recognizable transformations of Western music literature can be implemented by simple arithmetic,
for example, transpositions can be made by adding to a sequence of numbers (representing a
melody or chord) a particular interval. The intervals between pitches can be implemented as the

23



Journal MusMat • May 2018 • Vol.II, No.1

Clapping Music Form
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1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0
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13

1 1 1 0 1 1 0 1 0 1 1 0

1 1 1 0 1 1 0 1 0 1 1 0

Base Rhythm (shift 0) Shift 1 Shift 2 Shift 3 Shift 4 Shift 5

Shift 6 Shift 7 Shift 8 Shift 9 Shift 10 Shift 11 B.R. (shift 12)

0 1 

Figure 8: Musical form of Steve Reich’s Clapping Music. The rhythmic pattern is numerically represented by zeros
(rests) and ones (eighth-notes). While the first voice only repeats the pattern, the second voice successively
transforms it through the application of phase shifts (cf. Figure 10). The repetitions and shifts are also
represented by the different ‘barcodes’.
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subtraction of highest and lowest notes. Processes as rhythmic augmentation and diminution can
be calculated as multiplications of the pattern.

Very often special transformations or operations, that is, compositional processes particular to a
given composer or practice, need to be implemented. An example of special transformation is the
tintinnabulation used by Arvo Pärt, where a melodic sequence is consistently mapped to the tonic’s
triad [13]. Another example of special transformation is the technique of Phase Shifting used by
Steve Reich. In the specific case of Clapping Music, it means the consistent rotation of its rhythmic
pattern (Figure 10).

The implementation of special transformations may involve the preliminary study of available
literature, as the composer’s texts and sketches. Nevertheless, transformations and even complete
models could be made from independent, arbitrary generative processes. To demonstrate the
modeling by an arbitrary process, in the Figure 9 we see Clapping Music’s rhythmic pattern
represented through the mapping of rests and eighth-notes to zeros and ones. Then successive
phase shifts are applied to the that binary sequence (Figure 13). We consider this process as arbitrary
because it displays a weak musical thought; the manipulation of its only parameter, a decimal
number that is then converted to a binary string, gives very little control of the musical output.

Modeling by an arbitrary process Clapping Music

Decimal Representation of number

3 7 9 8

Conversion to 
binary 

represantion

1 1 1 0 1 1 0 1 0 1 1 0

Rhythmic 
representation

Figure 9: Clapping Music’s rhythmic pattern. By changing the representation of a decimal number, 3798, to binary
and mapping its ones and zeros to beat and rests the pattern can be reconstructed. Applying this same
procedure to different decimal numbers can generate new patterns, but there is so little control of the musical
output that this procedure is not so different from a random process. Compare with Figure 11.

VI. Scope of the Model and Its Parameters

In most cases, a model will reproduce a partial section of a piece or one of its specific dimensions.
For instance, Rokita [20] modeled only the rhythmic aspects of the first of the Three Pieces for
Clarinet Solo by Igor Stravinsky. Chemillier [7] modeled only a few measures of Ligeti’s Melodien.
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Figure 10: Examples of special transformations or operations. In (a) each pitch of a melodic sequence is mapped
to the closest one of the tonic’s triad. This technique is used in pieces such as Für Alina and Spiegel im
Spiegel. In (b) a rhythmic pattern (from Clapping Music) is consistently rotated. When those rotations
are superimposed with the original underlying “phase patterns” emerge.
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Occasionally one can conceive an exhaustive model for a piece in all its extension and most of its
dimensions (pitch, rhythm, dynamics, etc.), like the model for James Tenney’s Spectral Canon [21]
or most of Riotte and Mesnage examples [19]. Alternatively, the modeling can be concerned
uniquely with a particular technique or set of them.

The conception of parameters is an essential step; they control the model’s behavior and are
responsible for generating neighboring variants.

Usually, the parameters reflect a compositional choice. It can concern aspects like instru-
mentation, tonality, mode, tunning, and so forth. For example, in a canonic piece, one of the
parameters could be the starting point for each voice or how many canonic voices should be
written (see [21]). The creation of parameters for a model may depend on the creativity and
purposes of the researcher. The determination of the parameters will significantly influence the
implementation process and the model’s capacity for generating more or less neighboring variants.
To exemplify the elaboration of parameters, Figure 11, shows the modeling of Clapping Music
rhythmic pattern this time using an essentially more musical procedure. Aspects as the number of
beats inside rhythmic groups, the inclusion of gaps between groups and the notational figures (in
this case the beat-unit) can be considered as parameters (compare with Figure 9).

Parameters may have a strong or weak effect on the simulations of the model. Strong parameters
change structural features of the modeled piece while weak parameters may only transpose the
whole structure maintaining the same structural relations between its elements or only change the
way the score is notated. In the illustration showed in Figure 11 parameters length and step are
strong parameters that can the structure of the rhythmic pattern. On the other hand, parameter
figure only changes the speed of the pattern or the way it is notated. In the model of the Spectral
Canon [21]), the parameter fundamental is weak because its effect is only a transposition of the
whole pitch structure; its internal relationships are not modified when its value changes.

In the case of a deterministic model, every single parameter value will correspond to a
particular output, to a specific instance (cf. Figure 12). When we plug the same values to the
parameters in successive simulations, we can be sure that the instances produced will also be the
same. By using deterministic algorithms we can adjust the model according to the simulation’s
results, i.e., we can modify the model to shape a determined space of instances.
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Clapping Music Rhythmic Pattern

C B A B

C B A B

C B A B
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16
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C B A B

C B AD B C

E D C B A B C D

3

4

5

C B A B

C B A B

2

1

Parameter: Figure

Parameter: Length

Parameter: Step

Figure 11: Conceptualization of parameters for the rhythmic pattern used in Clapping Music. The parameter figure
changes the notation and speed of the pattern, 8 meaning an eighth-note. Parameter length controls the
length and the number of beats in a rhythmic group while the parameter step can insert gaps between the
rhythmic groups of the pattern.
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binary and then mapped to beats and rests. The resulting patterns are phase shifted and repeated accordingly to build the original piece and the variations.
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The fewer parameters a model has, the higher is its explanatory potential, as a more compre-
hensive systematization will be required to connect all the generative process with fewer variables.
On the other hand, the more parameters a model has, the greater is its potential to generate
different instances, thus serving to more creative (compositional) or speculative purposes [2]
(Figure 14).

LESS PARAMETERS MORE PARAMETERS

Exploratory Level

Music Composition

Explanatory level

Music Analysis

Number of parameters

Figure 14: The less parameters the model has, higher is its explanatory potential. The more parameters a model has,
higher is its potential to generate different instances.

Different models can be conceived for one single piece. The conception of a model depends
on the hypothesis and purposes of the researcher. In the same way, different implementations
are possible for one single model. Also, as with any computer program, an implementation can
have several versions and be developed in several forms (see Fig 15). During the modeling and
implementation process, adaptations can continuously be made to better adjust the model’s output
to the numerical representation of piece being modeled.

Implementation A v1 Implementation B Implementation C

Implementation A v2

Implementation A v3

Model ω  Model γModel μ

Musical Score

Figure 15: Modeling and implementation process. Different models can be conceived for one single musical score. A
single model, in turn, can be implemented by different implementations.

In the case of the model presented in [21], we first developed a model with only a few
parameters, to test compositional decisions, to understand the underlying principles of the
composition, and then we added more parameters as a way to explore the potential of the model
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itself and not only the features of the original composition. Those type of additional parameter
were introduced as Extended Parameters Another way to see this process is to think as a composer
who first analyses a piece to learn about the aspects he is interested in but wants, in a later
moment, to emulate them in a new composition, adding to the model his particular procedures.

VII. The Space of Instances

The set of possible variations for each parameter gives origin to a space of instances. One way to
analyze this space is to simulate the effect of a specific parameter on the musical features of a
sample of different instances. This analysis can be done in two ways, the diachronic and achronic
analysis (see Figure 16), concepts borrowed from the Sonic Object Analysis Library (SOAL) written
for OpenMusic and conceived in a different context [11].

In the diachronic analysis, a small sample of different instances is selected, and some features
of the musical structures are analyzed. Those features are then compared to the original piece,
always considering their evolution through time, throughout its extension. One single instance
can be represented as a series of points in a specific time span, as is the case of a piano roll. It can
be seen as a way to test hypothesis on a limited number of specific instances, where some of its
precise details will be taken into account. Diachronic analysis is seen in [22, p. 75] (cf. Figures
5–8).

On the other hand, this method may not be the most appropriate to evaluate the dynamics
of a larger sample of the space of instances. The achronic analysis supplies this need (see Figure
17). In this analysis, each instance is reduced to one measurement (or descriptor) such as total
duration, shortest duration, ambitus, mean pitch, and so forth. Individual instances are seen as a
single point in a determined space, where the instances’ internal time is considered only implicitly.
Diachronic analysis is seen in [22, pp. 77–78] (cf. Figures 10–16).
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Figure 17: Some strategies to visualize the space of instances with achronic analysis. The 2D visualization is a Cartesian
plane where a subset of values of a given parameter is plotted against a measurement from the resulting
instances (such as total duration, or the mean pitch, or the smallest durations, etc). In the 3D visualization
subsets of values from two distinct parameters are plotted in a heat-map where a shade of gray represents a
measurement from the resulting instances.
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Through achronic and diachronic analysis, we observed that, as a result of the utilization of
deterministic algorithms, there might be a consistent, very linear behavior in such spaces of
instances. That is to say, changes in the value of parameters lead to proportional responses of the
simulation results. For example, if one of the parameters is the first duration, increasing it will
make the total duration of the resulting instance proportionally bigger. If the parameter is the
fundamental frequency (as in the case of a spectral composition), we may also expect that increasing
it will also increase every frequency (pitch) of the instances produced by the simulation.

On the one hand, the linearity observed in the space of instances can be interpreted as a sort of
validation, an element of coherence, of the model’s behavior and therefore would be a desirable
feature from a more musicological and pedagogical perspective. It can be used as a way to further
understand specific compositional processes and explore the consequences of particular decisions.
On the other hand, from a more creative, speculative attitude such a space of instances could
appear as too homogeneous and predictable for some purposes.

We tried to conceive some strategies to break this linearity and introduce more heterogeneity
on the space of instances. One method was to generate perturbations in a structural element of the
model, namely a variable, by multiplying it by a pseudo-random, controlled, number. In this way,
the higher the perturbation, the higher is the probability of unexpected simulation results [22, pp.
77–78].

VIII. Final Considerations

The basics of a simulation-based, computer-assisted approach for musical analysis were introduced
in this paper. Some of those principles are common to other methodologies, and some are original.
The case studies are not too many and come from a somewhat restricted compositional context.
Nevertheless, I hope that some of the original concepts here presented will form the basis to bolder
and more encompassing experiments.

The modeling of musical scores, with the explicit goal of generating neighboring variants,
perhaps is one step further into the direction of a more creative analysis, like the one forecast and
advocated decades ago by both Luciano Berio and Pierre Boulez. On the other hand, there are
indeed still too much to be explored and to be learned from it. The field is open, and there is an
infinity of solutions that could be tried to examine the potential for creating new musical forms
from a given model.

Unsurprisingly, presenting such a method also poses some challenges. One of them is how
to describe the algorithms or model implementations comprehensively without turning it a too
tedious, tiresome endeavor. Additionally, the description and evaluation of several instances can
be too burdensome, as the discussion around just one single neighboring variant can be not easily
exhaustible. The automatic estimation of symbolical and psychoacoustic measurements may help
in this exploration. Also, much more is needed to support better the visualization of the space of
instances that a model can produce.

To paraphrase pioneer Stanley Gill [10], the musical results produced by the different models
we worked so far “touched” me quite enough. I believe that the favorable results come from
having implemented expressive parameters that give greater control of the musical result. For
instance, some variations of Tenney’s Spectral Canon or Steve Reich’s Clapping Music seems to be
authentic enough to be conceivably appreciated on its own. For that, the neighboring variants
need only to be coherent, to retain a sense of form and achievement.

Finally, I feel that to use the computer to automate the process of discovering and reconstructing
patterns, in the context of computational musicology, is not what is more important. It is more
desirable to reveal new meanings to already known musical phenomena, to favor polysemy, and
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avoid the trap of reducing musical expressiveness to a fixed, inflexible algorithm.
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Abstract: The compositional practice to be described in this article includes number and proportion as
decisive factors for the problem of musical form. The role of number and proportion in my music is entirely
dependent on the idea of music composition as cosmology, which has two aspects: the “scientific”, in which
musical form is determined by formative principles or techniques, and the “contemplative”, which confers
to the music an iconic relationship with mystical or mythic cosmologies such as those of the Pythagoreans
and of ancient India Vedas and Vedanta. To better understand the context in which number and proportion
relate to musical form in some of my works, I will first develop the ideas of composition as cosmology,
composition as cosmogony, and spiral time. After this, I will briefly study the role of proportion in the
temporal organization of a few key works, and conclude with some other general considerations concerning
number and proportion in contemporary music. The idea of “cosmicizing sound” will surface naturally
from the considerations about the poetics and aesthetics of my music.

Keywords: Compositional Processes. Formative Principles. Cosmology. Number and Music. Cosmology
and Music.

“(...)music is natural law as related to the sense of hearing.”

“(...)and finally we have the impression

of being faced by a work not of man but of Nature.”

Anton Webern

Number 1 and proportion take an important role in the compositional processes of my
music, not as a simple and arbitrary “application”, but as an integral part of its poetics 2,
in the sense that several aspects of the composition are shaped and structured by numbers,

though not only by numbers, from the beginning of the creative process. A poetics, as described
by philosopher Luigi Pareyson (1918-1991) in his I Problemi dell’Estetica (1966), “is a certain taste
converted into a program of art, in which taste is understood as the whole spirituality of an epoch
or of a person turned into expectation of art” ([37, p. 26]) Poetics encompasses everything that

1This article presents the academic findings of a research stage concluded within the Research Project entitled “Ancient
and Non-European Contents in 20th- and 21st Century Music Composition”, currently coordinated by myself within
the Research Group “Processos Músico-Instrumentais”, in the Research Line “Processos Criativos em Interpretação e
Composição Musical” of the graduate studies program PPGMUS, at the Universidade do Estado de Santa Catarina
(UDESC).

2From the Greek poiesis – πoιησιζ, meaning the activity that brings forth something that did not exist before.
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determines and defines the creative praxis of a composer, one part of which, in my case, is number
and proportion.

Together with number and proportion comes also cosmology. In fact, the relationship between
cosmology, number and music is a key feature in a music theory tradition that starts at the very
beginnings of Western philosophical thinking, with Pythagorean philosophers, who conceived the
universe as being organized by musical ratios, an idea that was called musica mundis, music of
the spheres, one of the most important cosmological conceptions of Antiquity. The study of the
relationship between musical ratios and the universe has persisted, in a way or another, even all
the way into the 21st century, when, for example, physicists have associated cosmic microwave
background to harmonious sound waves ([21, p. 44]).

This theoretical tradition linking music, number and cosmology reaches a moment of maturity
in the 8th- and 9th- centuries Quadrivium, which developed through the educational ideas about
music set up by Plato in chapter VII of his The Republic, Aristotle (384-322 B.C.E.), St. Augustine
of Hippo (354 – 430) and Boethius (ca. 480 – 524). Arithmetic, Geometry, Music and Cosmology
(or Astronomy) are the four mathematical disciplines of the Middle Ages that, together with the
disciplines of the Trivium (Grammar, Logic and Rhetoric), formed the seven Liberal Arts required
for the study of Theology and Philosophy. In this context, music is not discussed as a performance
or compositional practice, but is seen as a contemplative science; music, as one of the mathematical
disciplines of the Quadrivium is Number in time, while Arithmetic is Number in itself, Geometry
is Number in space, and Astronomy is Number in space and time ([17, p. 34]:34).

This essay is an opportunity to focus on the role of number and proportion in the construction
of the “musical building” (the whole form or macroform) of a few of my works. Probably, it is
about musical architecture, but also describes the role of number and proportion in the production
of a type of musical becoming that I call “spiral” because it consists of musical contents that evolve
expanding or contracting, like a spiral. Construction and architecture are, in any case, only two
aspects, among others, in the creative processes that generate music, more important in certain
composers than in others 3 : definitely very important in Karlheinz Stockhausen (1928-2007),
constructivism, and Iannis Xenakis (1922-2001), architecture, for example. While music cannot be
reduced to constructivism and architecture, they sometimes require the fully focused attention
from the composer, the performer, the listener, the musicologist, the theorist, or the student.
Therefore, if other aspects—other than number, proportion, cosmology, architecture, form—are not
mentioned here, it is because of the chosen focus, and not for lack of recognizing that the activity
of composing music involves, at the same time, several kinds of creative processes that may be
identified as intuitive, intellectual, emotional, planned, pre-determined, written (as derived from
ècriture), extemporaneous, improvisatory, experimental, systemic, symbolic, and so on.

The compositional practice to be described here does include number, proportion and a
relationship with cosmology that takes spatial and temporal conceptions into the realm of music.
To better understand the context in which number and proportion relate to musical form in some
of my works, I will first develop the ideas of composition as cosmology and spiral time. After
this, I will briefly study the role of proportion in the temporal organization of a few key works,
and conclude with some other general considerations concerning number and proportion in
contemporary music. The idea of “cosmicizing sound” 4 will surface naturally from the following
considerations.

3 Or, at times more important than at other times, for the same composer.
4 I decided to re-use the title, Cosmicizing Sound, which was first given to a Lecture I presented at the Institute of World

Culture in Santa Barbara, California, on 21 August 2004. The text of that Lecture remained unpublished and, although
some of its topics are discussed here, only a few fragments have been included, but modified, in the present, much larger
article.
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From the aesthetic point of view, the sense of beauty (or of aesthetic satisfaction) brought
to music by proportion 5 consists in the existence of a single organizing and ordering principle,
and of the resulting structural relationships in action within this (micro) cosmos. Important for
both poetics and aesthetics is to explore the interdependence between proportion and cosmology
and the capacity both (proportion and cosmology) may have to provide coherence to music, a
coherence that sometimes comes from outside the limits of music, bringing to the latter a specular
or symbolic quality, in the sense that this music reflects a reality exterior to itself. This quality will
be studied on the section about contemplative cosmology.

I. Composition as Cosmology

Having briefly considered this historical and theoretical background, and turning now to musical
composition as a creative practice, it is natural to say that a composition, “piece” or musical work,
seen as an object resulting from a creative process, is comparable to a microcosm, in fact, a musical
kosmos, in all its integrated space-time constitution. The Greek term kosmos(κoσµoζ) means order
and implies holistic ideas of totality and unity. It was applied to the world or universe for the first
time by Pythagorean philosophers.

“kosmos does not signify primarily universe. Calling the universe by this name denotes
already a particular kind of cosmological interpretation. The original meaning of
κóσπoς is all kind of order whatsoever. The mere fact that Neo-Platonism speaks of
κóσπς υoητóς (intelligible world), or that eventually the state in which reign justice and
order— εύνoµία καί δίκη — is said to be a κóσπoς, should prevent from interpreting
the name, in its ancient and medieval use, according to the limited signification it has
been given in modern times, especially under the influence of science.” ([1, p. 321],
footnote 5).

Applied to music in the context of my composition, the term “cosmos” emphasizes that music
is not just the sounds but also the order of sounds, the music’s own formative and ordering
principles, and implies a more contemplative conception of the cosmos, according to “its ancient
and medieval use”. For now, however, it is in the sense of cosmos as “all kind of order whatsoever”
that I will focus my analogy between music composition and cosmology.

Already in the 1920s, Edgard Varèse (1883-1965) called his music “organized sound”. This
statement clearly defines the difference between music and sound to be a question of order: he
argues that “to stubbornly conditioned ears, anything new in music has always been called noise.
But after all what is music but organized noises? And a composer, like all artists, is an organizer of
disparate elements. Subjectively, noise is any sound one doesn’t like”([43, p. 18]) 6 . Luciano Berio
(1925-2003), on the other hand, defines music with an apparently more open statement: “music is
that which is heard with the intention of hearing music” ([5, p. 7]) (my translation). In reality, this
statement is in no contradiction with Varèse’s “music as organized sound”, as the intention to hear
music is, in itself, a form of sound organization, the act of making sense of a becoming of sounds.
Even John Cage’s (1912-1992) attitude towards music composition denotes an extreme concern
with order, with his indeterminate music always searching for chance procedures to determine
ordering principles.

My compositions are microcosms that imitate the macrocosm (the universe), either by simply
following the idea of composition as a cosmos and thereby creating their own “kinds of musical

5 “Proportion” will be used in the place of “number and proportion”, since proportion implies number, as it puts
numbers in relationship.

6This quotation is from a lecture given by Varèse at Yale University in 1962.
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order whatsoever”, or by imitation of actually existent conceptions or images of the macrocosm. In
both cases, these conceptions may present a rich variety of roles assumed by number as one of the
factors that generate musical phenomena. To explain all this is the goal of this article, but first, it
is necessary to establish the meaning of a few important terms.

A cosmology, simply defined, is an image or conception of the cosmos; or, more exactly,
“cosmology is the term for the study of cosmic views in general and also for the specific view or
collection of images concerning the universe held in a religion or cultural tradition. (...) it relates
also to inquiries in the natural sciences” ([6, p. 100]).

The creation process of a composition is, unfortunately, also called “composition” and, to
avoid confusion, I will only refer to it as “the compositional process”, and reserve the word
"composition" to the final microcosm resulting from the compositional process. In the same way,
the word “cosmology” could refer to both the universe and the creation process generating this
universe, but I will only use the word “cosmogony” to refer to the creation process, and reserve
the word “cosmology” to talk about the structures and “laws of nature” that sustain the universe.

It would be fair enough to equate the idea of formative/organizing principles and codes with
that of a compositional “system” or compositional technique or method. However, while referring
to the composition in the neutral level 7 , it is preferable to speak about principles of immanent
order, since this emphasizes the composition as cosmology. “System” is avoided here in favor of
the notion of cosmology, which includes contemplative aspects—to be seen further ahead—that
the idea of a system tends to exclude, due to its avoidance of anything exterior to itself.

As for “compositional technique” or “method”, due to the emphasis of “technique” on the
action of a composer, these terms should be reserved for the compositional process, the musical
cosmogony, that is, when speaking about the poietic level. Meanwhile, “formative principle”,
although in Pareyson’s sense applies to the act of forming or shaping, should be reserved for the
composition in the neutral level, because “principle” is not a composer’s action, but the cause of a
phenomenon.

The analogy between composition and cosmology first came to me from the awareness that
each musical style—and musical culture —has its own set of rules for creating music. These
rules (principles of order) result in the way the music sounds, and reflect the way music is
conceived and enjoyed. The obvious difference between how a classical Hindustani rāga and
a Mozart symphony sound denotes two different modes of creation and poetics, of perception
and aesthetics, of spirituality and corporeity 8, of mind set and world view. I will use the term
“cosmovision” (Weltanschauung) to join all these aspects together (mind/spirit/body set, world
view, aesthetics and poetics) in a general large idea expressing that which conditions the way
human beings act, think, behave, and exist in the world. Music poetics (musical making) belongs
to the realm of human action. Cosmovision, in relationship to music, and applied to a whole
culture or an individual composer, is

a great artistic imaginary which covers the composer’s (or culture’s) entire poetic,
aesthetic and technical thought, as well as psychic life and capacity to produce meaning,
including his image, perception, cognition and interpretation of the world and his mode
of interaction with it. Cosmovision determines the contextuality 9 that is observed in

7I am using Jean-Jacques Nattiez’s semiological tripartite approach to the discourse about music, by which the work
(composition) can be studied from the point of view of the poietic level (the composer’s activity), the esthesic level (the
listener’s activity), and the neutral level (the work itself). The latter “describes the immanent organization of the object,
and is said to be neutral because not necessarily pertinent poietically or esthesically” ([35, p. 4]) (my translation).

8I mean spirituality very much in the sense given by Pareyson in his definition of poetics, given above, but not only: the
soul (psyche) and spirit as integral parts of the human being, should not be forgotten in a discourse about music or its
structure. Corporeity should include all physical and body aspects of making music, as well as one’s own body perception.

9 For a discussion of Milton Babbitt’s notion of contextuality, see more further ahead.
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20th- and 21st- centuries musical compositions. ((...)) Cosmovision is the background
which allows the formation of a cognitive perspective that generates contents, meanings,
and worldly practices” ([27, p. 241]) (my translation).

Cosmovision is reflected in music because it determines the way music is practiced and
conceived by a subject (an individual, a community). “Musical systems or languages are always
more than organized sounds, vocabularies, and syntaxes. They are instances of the way a specific
people understand and relate to the phenomenal world” ([4, p. 215]). It is in the sense of music
as a reflection of a conception of the phenomenal world that musical systems or languages can
be thought of as musical cosmologies, because a cosmology is just that: a conception of the
phenomenal world. I will return to this point further ahead.

Because they contrast greatly with one another, collective cosmovisions that are farther dis-
tanced or isolated in space or time from one another (such as serial music and medieval plainsong,
jazz and maculelê, Javanese gamelan and Romantic sonatas for piano, candomblé music and Lakota
singing—the examples could go on forever...) are easier to be recognized as such than those that
are closer to each other, such as Javanese gamelan and Balinese gamelan, Roman plainchant and
Ambrosian chant, Romantic sonatas and Classical sonatas, serial music and free atonal music,
maculelê and maracatu, American jazz and ECM jazz, candomblé music and Ewe drumming,
Lakota singing and Inuit singing, etc. The latter examples are closely related but do not completely
share the larger cosmovision they belong to, because they are less general. These musics, due to
some particularities, became more distinct within the more general cosmovision and, therefore,
they start to be considered as subcategories of the larger one. Otherwise, it would not make sense
to distinguish, say, between the contemplative and slow Javanese gamelan from its sanguine and
loud sibling, Balinese gamelan, for example. Their musical communities are smaller, i.e., their
cosmovisions are no longer shared completely and collectively by so many people in a wider
context, because there exist notable differences preventing them to be placed in the same large
category, therefore the need for subcategories. This individualization process seems to be an
effect of local ecology, kinship, derivation, or cross-fertilization that makes the matter all the more
complex, enhancing the particular and individual, rather than the universal and collective.

In the Western world 10 , since the 20th century and continuing today, cosmovision tends to
become such an increasingly individualized phenomenon. Although composers do share common
musical practices, have studied according to mostly the same musical methods, know and enjoy
more or less the same repertoire, they also have their own blend of musical vocabularies, tastes,
interests, points of reference and of preference, and may act from disparate points of departure, so
much that they will tend to conceive music quite differently from each other, and produce highly
individualized styles of music. Individualization makes the cultural context more complex and
fragmented, and, in an attempt to make sense of this, or out of a “necessity” to label them in some
expedite mode of promotion or diffusion, there is a tendency to group composers together in
a certain “ism” or genre. Most often than not, the result is a grouping that does not do justice
to what composers are actually proposing. As an example of this is the term “contemporary
music”: one needs to be more explicit about what this term entitles rather than simply using it
indiscriminately, so that there will be no misunderstanding about what it stands for.

10 It seems safe to say that the universe of “20th-century and contemporary composition” is still a “Western world”, a
“Western music”, notwithstanding the international and global scenario in which composers from the entire world (Brazil,
Bolivia, Mexico, South Africa, Australia, New Zealand, China, Japan, Korea, to name but a few) join the practice of musical
composition, a practice that cannot ignore the European/North American past and present tradition. Western music
became something like Tibetan Buddhism: it has spread worldwide, and can no longer be identified with its geographic
place of origin.
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The task seems to be to embrace individualization as part of our “learning to live together
with chaos” 11 . Since there is no longer a necessarily common canon to be followed, composers
have found themselves seized by the opportunity to create their own individual canon according
to what they see fit (world vision). This should not be understood as indulgence and caprice; it
has to do with one’s own artistic inclinations, instinct, intuition, and consciousness that identify
what one wants to become. From this desire to become something comes a consequent choice of
education: while education is received in childhood not by one’s own choice but from someone
else’s choice, in a later or more mature age, a person may choose consciously their own continued
education and acquire the skills and knowledge that the first education failed to provide. It is
like recognizing one’s own destiny and place in the world, like the favorable habitat not only for
surviving but for thriving. I have called this situation of the 20th- and 21st- centuries composers a
“cosmological state of things” ([27, p. 243]), a situation that favors composers to come up with
individualized ways of organizing sound and music for their creative practices. “Individualized”
does not mean always unique and certainly never completely independent from other practices,
since creatio ex nihilo does not apply to human practices. It means the freedom to choose one’s
artistic and theoretical references and to dialogue with that chosen segment of history.

The repertory of New Music created since 1945 is a large reservoir of examples of the “cos-
mological state of things” in which their creators are living. The work of Karlheinz Stockhausen
is probably the most consistent example of a poetics in which there is an entirely new creative
endeavor for each composition: each piece is born from a specific new way of structuring and
organizing sounds. Milton Babbitt (1926-2002), speaking about what he calls “for now, serious
music”, introduces the term “contextuality”, a helpful notion in the recognition of the cosmological
status of New Music, since it refers to the new and autonomous context created at each new work
of a composer. It starts with serial music, where a tone row, being created for each composition,
defines the context of each piece always in a different way, turning the piece into a self-referential,
autonomous entity.

“musical compositions of the kind under discussion possess a high degree of contex-
tuality and autonomy. That is, the structural characteristics of a given work are less
representative of a general class of characteristics than they are unique to the individual
work itself. Particularly, principles of relatedness, upon which depends immediate
coherence of continuity, are more likely to evolve in the course of the work than to
be derived from generalized assumptions. Here again greater and new demands are
made upon the perceptual and conceptual abilities of the listener.” ([3, p. 2])

Serial contextuality also means freedom; this was Anton Webern’s (1883-1945) feeling about
composing: “but now I can invent more freely; everything has a deeper unity. Only now is it
possible to compose in free fantasy, adhering to nothing except the row” ([44, p. 59]). Contextuality
becomes acute in indeterminate and aleatory music, where each composition is created by a
completely new set of rules the result of which is always somewhat different. Somewhat or
entirely, as in the case of Earle Brown (1926-2002) and his composition December 1952, which is
a one-page graphic score with lines and dots to be freely realized by an indeterminate number
of musicians, and read in any position (upside or upside down, vertically or horizontally) with
no established starting or ending point. As an extreme case of indeterminacy and contextuality,
December 1952 seems to have lost its own contextuality, or this contextuality becomes entirely
dependent on the performer’s interpretation of the score.

11The phrase is one of the many aphorisms by my composition teacher in Brazil, German composer Hans-Joachim
Koellreutter (1915-2005): “we must learn to live together with chaos” (“precisamos aprender a conviver com o caos”).

42



MusMat: Brazilian Journal of Music and Mathematics • May 2018 • Vol. II, No. 1

Luigi Pareyson’s theory of formativity is also helpful in the recognition of the cosmological
status of the poietic activity of an artist. Applying to music what he says about art, composing
music is an act of forming or shaping a form, a doing that, while doing, invents how to do. The
creative process is the process of realization of the whole or idea (forma formante), which provides
the direction of the creative activity since its beginning, guiding the artist “like an omen of the
work it desires to actualize” ([38, p. 75])(my translation). It is clear that, in this conception, the
forma formante not only creates contextuality at each work, but also is what creates the final form
(forma formata).

The analogy between composition and cosmology may be applied to a musical style as well,
or a music period in history, but, because of the individualization process, I mean it mainly
in regards to a single composer’s production, and more exactly to my own, since it would not
be correct to generalize and say that all (or the majority of) composers agree that composition
is a cosmology. In fact, I have not found other composers that conceive music as cosmology.
Karlheinz Stockhausen comes closest in conception, as exemplified by several statements such
as the following: “Mantra, as it stands, is a miniature of the way a galaxy is composed (...) As
it was being constructed through me, I somehow felt that it must be a very true picture of the
way the cosmos is constructed” ([13, p. 242]). Japanese composer Jōji Yuasa (b. 1929), mentions
that a “composer’s music reflects his individual cosmology, and that this cosmology encompasses
both his cultural identity and the collective consciousness of the society which shares his language
(...) music is a metaphor or metonymy of a composer’s cosmology” ([46, p. 197]). However, his
article does not go any further on this idea, except for attributing an important role to language in
shaping cultural identity, and stating that a person’s sensibility, way of thinking and perceptions
are ruled by language. Yuasa’s idea corresponds to what I have been saying about cosmovision; in
my words, Yuasa’s statement is that music reflects a composer’s cosmovision. His statement does
not proceed to conceiving compositional formative and organizational principles as a musical
cosmology. Hans-Joachim Koellreutter speaks of the different aesthetic phases in the history of
western music as determined by different levels of human consciousness. This idea certainly has
to do with cosmovision but, again, not with musical cosmology as I am proposing here.

As mentioned above, a composition is a microcosm, a universe (kosmos) of sounds. But in
addition to the sounds themselves, music is also the order of sounds, the whole of formative and
ordering principles which put sounds together, creating the mutual relationships and ways of
interaction of sounds, in the same way as, in the Greek concept of kosmos, natural phenomena
are in relationship and interaction creating a tight unit. Sounds must be organized to acquire
the status of music. Sounds, textures, chords, melodies, sound masses, rhythms, gestures, motifs,
phrases, whatever morphological units in a given composition are like natural phenomena in the
acoustic universe called “composition”. The relationship between them is determined by formative
principles or codes. These musical principles and relationships give shape to a universe of sounds;
they are the laws of nature of this sound world. A principle, in the sense of classical Greek and
Latin philosophy, “is a fundamental rule or cause (principle, arché - άρχή – the beginning, which
rules and governs everything)” ([39, p. 28]). A formative principle gives shape and form to
music. Therefore, there are principles (or causes) that give form/existence to the consequent
phenomena observed (or heard) in music, integrating them in a unified whole. Music composition
is a cosmology, seen as the rationale of its creation.

The analogy between compositional formative principles and laws of nature must be investi-
gated a little closer, since there is a fundamental difference between the two. The term “laws of
nature” is generally used in reference to moral, politic, and legal doctrines, but the meaning that
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relates to music composition, viewed as a physis (nature) 12 , a microcosm, comes from its use in
the natural sciences, as the attempt to describe, understand and even predict natural phenomena
based on the observation of empirical evidence. Newton’s Law of Gravity, or Darwin’s Law of
Natural Selection are good examples of laws of nature in the natural sciences. In this analogy
between musical cosmology and the natural sciences, where the composition is identified with
an acoustic cosmos, it is possible to speak of a scientific cosmology of composition to identify the
principles that shape this musical natural world. In this case, the term “laws of nature” are better
understood as “physical or scientific law”. However, while “physical law” is a scientific gener-
alization based upon repeated experimental observations that describe aspects of the universe,
the “laws of nature” of a composition are the principles governing the generation of musical forms;
they are not obtained or inferred from observation and empirical evidence; laws resulting from
these activities would be the findings of musical analysis, and not of musical creation. For this
is what musical analysis does when it analyses a composition: it observes the forma formata with
the goal of describing aspects of that universe of sounds by general ideas inferred by means of
that empirical observation. Compositional formative principles are not descriptive, but rather
prescriptive; they are invented by the composer, who acts according to them, even when breaking
them13, in order to generate the desired musical result. In this sense, there are moments in the
compositional process when techniques, methods, rules and formative principles are tested and
evaluated as achieving or not the desired results by means of observation and analysis of the
“empirical evidence”, i.e., the results obtained by them; some of them might not be what had been
“requested and ordered by the whole as forma formante along the forming process” ([38, p. 101])
(my translation), in which case they are discarded by the composer, until the right ones are found.
The moment of adopting the formative principle that “works”, the right technique, is immediately
recognized by the composer because it transforms the forma formante in the right forma formata. In
any case, and to conclude, formative principles are not like scientific laws because the latter are
descriptive and the former are prescriptive; the term “laws of nature” may only be used with this
distinction in mind and, preferably, referring to the results of a musical analysis.

At this point, it would be important to provide concrete examples of formative principles,
“laws of nature” at work in a composition. One simple example is the principle of imitation, by
which a melody written on a part is written on another part starting after one or two beats from
the beginning of the first part, and transposed according to a given interval (for example, an
octave above or a fifth below). This technical procedure is, in the poietic level, a group of actions:
repeating a melody in another part, transposing, making adjustments, etc, while, from the point of
view of the neutral level, that is, the composition itself, it is an immanent principle of organization.

With the purpose of providing more examples of formative principles in my own music, I
should refer the reader to the article “Expanded Modal Rhythm” which describes in detail and
with examples, part of the temporal/rhythmic organization principles I have been using since
1989.

The above considerations establish composition as cosmology based on two causes: 1) the high
contextuality and autonomy of composers’ works since 1945, and 2) the simple analogy between
music as organized sound and the world as organized matter (a cosmos). In the first cause, as
already argued, the composer, in a “cosmological state of things”, may create music according to a
very particular prospective (cosmovision, world view) and produce a music that is consequently,

12 There is no word that translates all the meanings of the Greek word physis (φν́σιζ), but “nature” is a generally
accepted one.

13 My composition teacher in Italy, Franco Donatoni (1927-2000) used to say that, to avoid becoming a bureaucrat, the
composer created the codes (“i codici”) or laws in order to break them. Furthermore, and however, I believe that formative
principles may be general enough as to provide a great flexibility in their application, without the composer needing to go
against them.
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highly individualized and, nonetheless, authentic, valid and contemporary, in the sense that it
could not have been produced in another time. It is the research for and creation of one’s own
techniques and formative principles, and not the simple adoption of the already existing ones,
that allows the composer to create a new musical thought, a new musical cosmology. As for the
second cause, the analogy musical order/world order consists in the recognition that, because the
musical composition is conceived according to the ancient Greek concept of kosmos, it reflects the
Greek conception that the universe is an ordered, organized whole of phenomena. Therefore, it is
possible to affirm that (my) compositions are microcosms that imitate nature, the macrocosm (the
universe). However, this is not all that is meant by the analogy: there is also the musical imitation
of actually existent conceptions of the macrocosm that interest me the most.

Before considering this, it is important to understand correctly the idea of art as an “imitation
of nature”. Even today, in this respect, Aristotle’s concept of poetic mimesis (µίµησιζ) as “a kind
of recreation of reality according to the laws of possibility and likelihood” ([39, p. 168, v. IX])
seems to be the appropriate theoretical reference. It is not the case that the artist copies nature:
the painter is not imitating nature for drawing a tree, for example; what is “copied”, better say,
what is imitated, is the activity of nature, in the sense that the artist “imitates nature in the process
of creating a world or a whole” ([42]). Or, quoting Anton Webern, who quotes Goethe, “art is
a product of nature in general, in the particular form of human nature” ([44, p. 19]), or still,
“everything must be just as in Nature, since here (in art), too, Nature expresses herself in the
particular form ‘man’. That’s what Goethe says.” ([44, p. 44]).

The whole created by the artist is a microcosm (µικρóζ κóσµoζ), a “miniature thing” that
encloses the characteristics of something much larger. Theories of the microcosm/macrocosm
appear first in history comparing the human being (minor mundus) with the universe (maior
mundus), as they share, in these theories, the same aspects or elements in structure or nature (and
vice-versa) ([1, p. 321]). The idea developed since ancient Greece through the Renaissance, and
lost momentum due to the advent of modern science 14 , in the philosophy and sciences of the
18th century. It is not an exclusivity of the western world either, as it appears, for example, in
Indian religions such as Buddhism and in the Vedic idea of Purus.a, Cosmic Person (R. g Veda X, 90
hymn) 15. In the realm of the arts, the idea turns the art work into a microcosm.

“The idea of the microcosm, the notion that the structure of the universe can be
reflected on a smaller scale in some particular phenomenon, has always been a favorite
in the history of aesthetics. ((...)) Even the famous doctrine of art as the imitation of
nature lies in germ in these early cosmologies, if we take imitation in its liberal and
true meaning, not as the duplication of isolated things, but as the active attempt to
participate in a superior perfection”. ([18, p. 6])

Therefore, a musical composition is a microcosm when it reflects the structure of the universe
on its own small scale.

Some ethnomusicological studies corroborate this statement, as they identify a relationship
between the way music is structured in a music culture and the cosmological conception of that
culture, that is, “a way a specific people understand and relate to the phenomenal world”: musical
form as cosmology. Although ethnomusicologists do not speak of microcosm, it is, in fact, the case
of a macrocosm/microcosm equivalence. For example, in their studies of Javanese gamelan music,
ethnomusicologists Judith and Alton Becker use the term “iconic” to refer to this relationship. I
will adopt this meaning of the word “iconic” hereinafter in relationship to my own music. The

14 Throughout this article, the expressions “modern science”, “modern world”, and “Modernity” refer to the historical
Modern Era, which starts roughly around the year 1500 and arguably finishes (?) in 1989.

15For the relationship of this idea with composition, see the article “Música e Sacrifício”,[24].
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idea is that a music’s power (truth or beauty) is associated with the iconicity (or “naturalness”,
non-arbitrariness) of the coherence system behind that music. “Iconicity can be defined using
Burke’s categories 16 as finding the image of something in another realm” ([4, p. 205]). Therefore,
finding the image of the cosmos (cosmology) in music makes music iconic with cosmology. This
is exactly what Becker describes Javanese gamelan’s music structure to be: it is iconic with the
Javanese system of calendrical cycles. “In Java, a day is reckoned by describing its position within
a number of simultaneous cyclic systems all moving at a different rate or all of different lengths.”
([4, p. 209]). In a similar way, gamelan music is ruled by multiple cycles with pitches “coinciding
at predictable points in the music system” ([4, p. 208]). The coherence system in case here is that
of coincidence, for, “as pitches coincide at important structural points in gamelan music, so certain
days coincide to mark important moments in one’s personal life. One might say that gamelan
music is an idea made audible(...)” ([4, p. 210]).

Another example is given by ethnomusicologist Paul Humphreys in his study of ceremonial
songs of the Pueblo Indians. In the coherence system that informs the music of these ceremonial
songs, the Tewa cosmos is ordered in six levels of spiritual and corporeal existence, with both
spatial extremes (the center and the periphery) considered as sacred. Katcina dance songs’

“musical organization has iconic significance in relation to cosmological orientation.
((...)) ‘centripetal organization’ and the activity of composing songs stand in iconic
relationship as well. Song makers must work ‘inwards’ from large-scale formal require-
ments through a somewhat more flexible web of prescribed vocable formulas to the
melodic content of initial and final sections, only last composing the portion of the
song identified as ‘song’s middle’ and which song makers from a number of pueblos
acknowledge as ‘the hardest part’ to compose” ([22, p. 74]).

The ethnomusicological examples above are sufficient to make the point that the traditional
music of a given culture is a microcosm; it expresses its own underlying cosmology; it imitates,
in its structure and formative principles, the image of the cosmos prevailing in that culture. It
does not seem to matter whether or not the iconicity described is a conscious element of its
culture’s people, their musicians and listeners, as the cosmological foundation of human behaviors
is often buried in the unconscious. What matters is that the cosmology does find its reflection
in musical form: form as cosmology. This “symbolic reflection of cultural meaning”, to use the
words of ethnomusicologist Alan P. Merriam, shows one of the ways music is symbolic, and helps
“to understand music not simply as a constellation of sounds, but rather as human behavior”
([34, p. 258]). Yet, at the same time I bring this citation to provide the academic context (the
study of music as culture) in which ethnomusicologists see the relationship between music and
cosmology, I feel the “but rather” part of Merriam’s statement needs a “correction”. Since “but
rather” implies “instead” and indicates that the understanding of music as human behavior is a
better understanding of music than the structural understanding, I prefer to simply state that it is
important to understand music in both ways at the same time, as a constellation of sounds and as
human behavior. Musical structure (music as a “constellation of sounds”), as proven by Becker
or Humphreys, has much to say about creative processes and human actions, and to abandon or
diminish its study is to waste a good opportunity for advancing the study of music as culture.
Therefore, in order to avoid defending the point that cosmovision is defined by society or culture,
it is important to stress that, on the contrary, it is culture, as a complex of learned human behavior
patterns that expresses its cosmovision and cosmology. It is not possible to dwell on this subject
any longer because the goal of this article is another. However, as in all situations in which there

16 Kenneth Burke’s The Rhetoric of Religion: Studies in Logology (1961) describes four realms of referentiality, i.e., realms
which words can refer to: the natural, the socio-political, logology (the realm of words about words), and the supernatural.
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are two aspects in a possible relationship of cause and effect, it is more likely that the two elements
in question (in this case, society/culture and cosmovision) influence each other in a feedback
relationship. While agreeing to say that a cosmology is a cultural construct, I am only recognizing
that cosmology is partially a cultural construct; culture is the realm of manifestation, the temporal
and spatial limiting factor or context in which human beings bring to manifestation ideas and
objects of art (among other things). Therefore, ideas and objects of art will always be formed in
relationship to whatever is already manifest in the culture, but in the creative process—which
includes both the formation of (even cosmological) ideas and or artistic objects—it is not the
forma formata (the finished cultural idea or object of art) that determines what is being created
next, but rather, the forma formante, the archetype. If it were not so, cultures would be static and
unchanging, ideas would never change, and their music would be stuck with the repetition of a
limited repertory of pieces.

In addition, following modern science’s line of questioning, which limits truth or knowledge
exclusively to that which can be proved empirically, one might argue that, for example, the Tewa
cosmos of the Pueblo Indians mentioned above in Humphreys’ study is a mistaken idea of what
the universe “is in reality”. For this has been the main concern of modern science, to explain the
universe objectively and quantitatively, once and for all. This line of questioning seems out of
place.

Firstly, for the purpose of the iconic relationship between music and cosmology to take place, it
does not matter whether the cosmological view is scientifically “true” or not: the lack of scientific
truth in a given conception does not invalidate its influence on the music, nor the music itself,
with which it is iconic. In this context of iconicity, it is irrelevant whether the earth is flat or not,
or that it is at the center of the universe or not. Cosmology is an image of the cosmos, a set of
ideas. The imitation of nature in art is always the imitation of what human beings think nature is.
Cosmology is a conception about the universe and not the universe itself, and this conception is,
in fact, the order human beings see in the world; the conception is the cosmos. Without a cosmic
conception, the world is an unintelligible mystery, just like sound without order is not music.

Secondly, because cosmology, as a science of the world, exists since Antiquity, it should not be
limited to the conceptions of modern science. The common use of the term "cosmology" currently
in the media, popular knowledge and outside of academic circles of the Humanities (Philosophy,
Comparative Religion, Anthropology, Mythology) has reduced its meaning to a purely physical
description of the cosmos, leading straight to the notions of “space, the last frontier” and the
Big Bang theory. Because of this overwhelming propaganda in mass culture, it is easy for the
layperson to forget, or even to ignore, that traditional cosmologies did exist before modern science,
were not limited to a simple cosmography and should not be dismissed as nonsense.

Once studying the non-scientific cosmologies of Antiquity, European Middle Ages, and
non-western cultures from the Middle to the Far East, one not only discovers the existence of
several culturally diverse conceptions, but also, that they frequently express a fundamental unity
transcending their differences. It is an awesome phenomenon that disparate cosmologies such
as those found in Vedanta, Platonism, Pythagoreanism, Sām. khya, Sufism and Buddhism, among
others do have important points of connection, similarities and even identities. Philosopher Titus
Burckhardt (1908-1984), whose main concern is metaphysics, explains, from that prospective, the
reason why there is such a variety of cosmological conceptions:

“Cosmology is thus the science of the world inasmuch as this reflects its unique cause,
Being. This reflection of the uncreated in the created necessarily presents itself under
diverse aspects, and even under an indefinite variety of aspects, each of which has
about it something whole and total, so that there are a multiplicity of visions of the
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cosmos, all equally possible and legitimate and springing from the same universal and
immutable principles.” ([8, p. 17]).

Although the main object of a traditional cosmology is the world as it exists, it is also concerned
with metaphysics, differently from modern science, which is satisfied with the mechanistic
explanation of the world.

“Cosmology as such does not refer to the Absolute or pure Being, but rather to
existence, the totality of created and manifested worlds. However, as the cosmos
would not exist without its divine origin, and, from the point of view of its essence, it
cannot be but a limited image of the divine, cosmology is interested indirectly in the
metaphysical truths, those from which it receives its ultimate certainties” ([7, p. 19])
(my translation).

This statement clearly shows the transcendental background of a traditional cosmology, its
connection to religious and theological traditions, and its concern with the relationship between the
human being and the world, and between them and a “metaphysical truth” or, in other words, the
Sacred. In the majority of the cases (in fact, I cannot think of any exception), traditional cosmologies
are in accordance with their related religion. Religion may be defined here as a cultural or a
people’s ensemble of ideas, beliefs and practices that follow their conception (theology) of the
Sacred. By its turn, I understand by sacred that which religious scholar Rudolf Otto (1869-1937), by
derivation of the Latin term numen (divine, or non-personified divine presence), defined as the
“numinous” in his 1917 book Das Heilige: while “((...)) ‘the holy’ is a category of interpretation and
valuation peculiar to the sphere of religion ((...)) it completely eludes apprehension in terms of
concepts ((...)) ”([36, p. 5]), the numinous is “((...)) ‘the holy’ minus its moral factor ((...)) minus its
‘rational’ aspect altogether” ([36, p. 6]).

Therefore, traditional cosmologies confer to music other meanings beyond that which, up
to now, I have identified as the “scientific cosmology of music”, and which generates a rational
knowledge (episteme - έπιστήµη) about the physical aspect of the musical microcosm: its structure,
formative principles and compositional techniques. I mean episteme very much in the ancient
Greek sense of a rational science. In the analogy with a traditional cosmology, I should speak of
a contemplative cosmology of music, as this assigns a specular or symbolic quality and scope that
generate a gnostic knowledge (gnosis - γνω̃σιζ) about the musical microcosmos, i.e., the physics
of the musical microcosm, its structure, formative principles and compositional techniques. I
do not mean gnosis specifically as in the mystical knowledge of certain late Antiquity religious-
philosophical groups, which is the immediate reference of the term, but rather in a wider sense, as
an intellectual intuition of the numinous.

In order to describe this relationship of the music with the numinous, as opposed to a
relationship with the immediate empirical reality, I prefer the term “contemplative” instead of
“traditional” or “cultural” cosmology. Until recently, I have used the term “cultural cosmology of
music”. However, this turns out to be a reductive approach, as “cultural” emphasizes only the
relativity of cultural diversities, it only refers to the fact that traditional cosmologies vary according
to culture. Also, “cultural”, in terms of knowledge, is not in the same level as “scientific”. The
term “contemplative”, or even “gnostic”, is a better complement to “scientific” than “cultural” or
“traditional”, the latter often being used in opposition to “modern”.

Contemplation, from the Latin contemplatio, means consideration, observation and study, and
“is the prolonged insistence of the gaze or thought over a source of wonder or admiration” ([14,
p. 568]) (my translation). The Latin root templum (a sacred place) indicates that this insistent
gaze aims at a mystical henosis (ἕνωσις, oneness or unity) with the numinous. German theologist
Friedrich Heiler (1892-1967) writes, in 1933, about the definition of contemplation:
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“The clearest definition of contemplation was perhaps presented by St. Thomas
Aquinas (...) ‘contemplation is the simple intuition of divine truth, proceeding from
a supernatural principle’. Contemplation is spiritual vision, a total vision, directed
toward the divine reality in its transcendental totality, a vision that is not voluntarily
induced by human activity but that arises without our volition, that—speaking in
religious terms—is inspired, infused, bestowed as a divine charisma” ([20]).

Therefore, a contemplative cosmology reflects the mystical or spiritual vision over which it is
founded. The idea of a contemplative cosmology of music returns to contemporary musicians
an element of poetics, aesthetics and the philosophy of art that has been present in the art of
practically all times and of probably every people, and that had been rejected and forgotten,
perhaps, only by Modernity: the sacredness of the creative act and the function of art as a vehicle
for spiritual truth. It seems fair to say that in the late modern (post-modern?) world, generally
speaking, materialistic and utilitarian values have emptied music (and art in general) from any
spiritual meaning and reduced it to the status of a disposable item, while, in tribal societies, for
example and also generally speaking, the sacred is seen in everything, and consequently, even the
most banal utensil is crafted as an art piece, because, in fact, they are all sacred objects.

In the same way, the words of the Parisian architect Jean Mignot (fl. 14th and 15th- centuries) in
1398, at the time of the construction of the Milan cathedral, "Ars sine scientia nihil" (art without
science is nothing), summarize the nature of sacred art and the close relationship between art
and science in the Middle Ages, a conception that was beginning to be challenged already at
that time 17. In medieval understanding, the term ars means techné, the ability to make things,
and scientia does not mean science as we understand it, but the reason (ratio), the theme, the
content, or dominant motif of the work, which is spiritual truth ([10, p. 229]). Therefore, in the
Middle Ages, art without spiritual content is nothing. The tendency to separate art from science
eventually led to the modern scientific view that traditional cosmology’s attempts to explain
natural phenomena are naïve or plainly wrong—who could possibly defend the idea that the earth
is flat, after science’s discovery that it is round? Traditional cosmologies, as they are not scientific
in the modern sense of the word, express themselves by means of allusions, parables, myths, and
symbols in a way that is comparable to art.

It is in the spirit of this engagement with existing traditional cosmologies that the analogy
between composition and cosmology is finally complete: by means of the musical imitation of
actually existent contemplative or mystical conceptions of the macrocosm. While the medieval
musicus was more a cosmologist than a practical musician, concerned with what Boethius called
musica mundana and the concept of harmonia tou kosmos, harmony of the cosmos or universal
harmony, the contemporary composer becomes invested by the cosmologist role, similar to that
of the musicus, by means of associating musical composition with a contemplative cosmology.
This, in its turn, does not have to be limited to Pythagorean philosophy, but may be expanded
by contemplative cosmologies of other traditions. The scientific cosmology of composition and the
contemplative cosmology of composition stand to each other not in a relationship of contradiction or
opposition but in that of complementarity and interdependence.

I should briefly mention that, although it has been my choice to engage exclusively with
contemplative cosmologies, there still is the possibility for composers to work at an iconic
relationship of their music with contemporary scientific cosmological thought. A good example
of this is found in the late works of Hans-Joachim Koellreutter, those he called “essays” instead
of “compositions”. Works like Dharma (1990) or Wu-li (1992) are iconic with certain principles

17 Coomaraswamy narrates that Mignot’s phrase was the answer he gave to the nascent opinion that “science is one
thing and art another”.
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of Quantum Physics, which explain the composer’s choice for open form and his “relativistic
aesthetic of the imprecise and paradoxal”. These two works in particular refer, at least in their
titles, to concepts which come, respectively, from Indian and Chinese contemplative cosmologies.
Koellreutter’s permanence in India and Japan from 1964 to 1974 ([28]) seems to have been a
decisive period for the development of this tendency to connecting several works to concepts from
Buddhism (Sunyata, 1968), monistic Vedanta (Advaita, 1968), and Zen Buddhism (Yūgen, 1970).
In fact, aligned with ideas from Fritjof Capra’s book The Tao of Physics, Koellreutter also saw a
connection between Quantum cosmology and Hindu, Buddhist and Taoist philosophies. Curiously,
while none of his works’ titles indicate a relationship of the music with Quantum Physics, several
indicate Buddhist or Hindu mysticism. Conversely, in his discourse about his musical work,
Koellreutter was much more eloquent about establishing a connection with Quantum Physics
instead of mysticism, as if Quantum Physics provided a safer rhetoric which corroborated, in a
scientific way, that which was already present in these mystical traditions (this is, in fact, one
of the points defended in Capra’s book). Certainly, these musical compositions of Koellreutter
display a strong attraction towards the transcendent, numinous Being, and this fact places them in
direct relationship with contemplative cosmologies.

Several of my musical works have included one or as many elements as possible, to convey,
musically, the symbolic coherence that constitutes or is found in an existing contemplative
cosmology. A particularly expressive work in this regard is my Sacrifício (1998), for mixed choir
a cappella, which is composed according to the Vedic idea of sacrifice (yajña) as cosmic law, by
means of “sacrificial structures”, interdependence, complementarity and inversion as formative
principles in the music 18. The role of number in this composition will be described further ahead.

I have a great interest in the philosophical and cosmological thought of pre-Socratic philoso-
phers, especially Pythagoras of Samos (c.570-c.495) and sixth century Heraclitus of Ephesus,
(c.535-c.475 B.C.E.), which has helped me engender a number of musical works. In Madrigal de
Fogo (1996, for mezzo-soprano, strings—vn., vla., vc., db.—and two percussionists), the voice
sings, in Greek, selected cosmological fragments by Heraclitus about fire, cosmic fire, and the
elements. This piece is a "madrigal" in the sense that it "imitates" the content of the text. The
composition as a microcosm establishes an analogy with Heraclitus’ conception of cosmos, by
which all phenomena are generated by fire, all are transmutations of the primordial element, fire.
In the music’s universe of sounds, the element that corresponds to fire is rhythm, understood
as becoming (devenir), since both fire and time live by self-consumption, in the same way as
music. The syllabic and quantitative nature of Greek language allows the rhythm of the text to
become rhythm in the other instrumental parts 19. There is no thematicism, but simply a constant
transmutation of the words into instrumental sounds, following the Heraclitean cosmological
principle sung in the first fragment of the text: “panton hen kai ex enos panta”, “from All, one; from
One, all".

In another work, “...a natureza ama esconder-se...” (1989), for oboe, Bb trumpet and cello, the title
itself is a fragment by Heraclitus which states that “nature loves to hide”, meaning that the real
constitution of things, i.e., the formative principle that shapes them, “loves to hide” from plain
view. This idea prompt me to conceive a music which sounds according to a certain organization
or order principle which is not easily perceived neither clearly apparent. This notion surely has to
do with Franco Donatoni’s emphasis on procedimenti nascosti, hidden compositional techniques or
codes that he used in his own works.

18 As this article is concerned with the role of number or mathematical models applied to composition, I should refer
the reader again to the article “Música e Sacrifício” ([24]), which describes the relationship between music form and the
Vedic sacrificial cosmology.

19 See expanded modal rhythmic principles in [23]
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At this point, it is necessary to conclude the description of the poetic context in which number
and proportion find an application in my music by briefly approaching the ideas of composition
as cosmogony and spiral musical time.

II. Composition as Cosmogony

A cosmology always implies a cosmogony, to the extent that it may be very difficult to separate
one from the other, the description of the cosmos (cosmology) from the account of its origin
(cosmogony or cosmogenesis). As a discipline in the Humanities, cosmogony “has to do with
myths, stories, or theories regarding the birth or creation of the universe as an order or the
description of the original order of the universe” ([32, p. 94]). Regarding the musical composition
as a microcosmos, this corresponds to looking at the creative, compositional process as analogous
to a cosmogony. Each composition has its own compositional process, and a detailed description
of it would take into consideration the composer’s method (from the Greek methodos, the path
to reach a goal). This means that we would be back to the issue of the ensemble of techniques
which, used in a certain sequence of steps (the path) obtains a certain result, even if this path
had not been foreseen by the composer. In fact, it may not be clearly foreseen, but, according to
the idea of forma formante, which guides the creative process, it might be envisioned intuitively.
Therefore, this leads back again to cosmology, the formative principles of the neutral level, seen as
techniques, in the light of the artist’s poietic level.

Such is the conundrum between cosmology and cosmogony. Therefore, the discussion about
compositional process as cosmogony must not be about methodology or technique (which belongs
to the scientific cosmology of composition), but about its meaning from a contemplative and
artistic point of view, which is how the compositional process and the resulting composition
“reflect the uncreated in the created”, reflect their “unique cause, Being”. One could say that what
follows is a metaphysic of musical creation.

In “the active attempt to participate in a superior perfection”, the contemplative point of view
sees the compositional process as a repetition of the creation of the universe, the sacred act par
excellence. It is a repetition in the human scale, a re-enactment of an act attributed to (a) god, or to
a reality that transcends the human being. This idea comes directly from Romanian philosopher
and comparative religion scholar Mircea Eliade’s (1907-1989) thesis that the cosmogonical myth
is a model for every significant human activity including rituals and artistic creation: “every
construction or fabrication has the cosmogony as paradigmatic model. The creation of the world
becomes the archetype of every creative human gesture, whatever its plane of reference may be”
([15, p. 45]). When I first read, in 1988, in Eliade’s 1949 book The Myth of Eternal Return, about the
re-enactment of Creation that takes place in the process of a city’s foundation, for example, the
idea was for me perfectly natural and applicable to the work of creating music, even if Eliade was
referring to “archaic societies”:

“If the act of the Creation realizes the passage from the nonmanifest to the manifest,
or to speak cosmologically, from chaos to cosmos (...) all this beautifully illuminates
for us the symbolism of sacred sites (centers of the world), the geomantic theories that
govern the foundation of towns, the conceptions that justify the rites accompanying
their building. We studied these construction rites and the theories which they imply
(...) every creation repeats the pre-eminent cosmogonic act, the Creation of the world”
([16, p. 18]).

As strange as it seems, the notion that the creation myth of an “archaic” society could be a
model for the compositional work of myself, a contemporary Brazilian composer, at the time (1988)
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living in Italy, sounded to me as unquestionable and true. I still wonder to this day how this can
be... A couple of years later, another reading that was for me “as lightning in a calm sky” was
the Purus.a Sukta, R. g Veda X, 90 hymn, which narrates a Vedic cosmogonic myth by which the
universe is created from the sacrifice and dismemberment of Purus.a, the Cosmic Person: it was, to
me, like a clear description of the process of musical composition. . . , and eventually led to the
1998 choral piece Sacrifício.

I am probably not the only composer who could talk about their personal experience of this
cosmic creation re-enactment through composing music. But I do it while being aware of the
sacredness inherent in the process, or aware that I am attributing to it this sacred quality, which
ultimately amounts to the same thing. When I am about to start working on a new piece, I feel it
as a latent, unmanifest sonic energy or sound that I can visualize or imagine as a sphere, unless it
already comes as a musical idea. Most often, the hearing comes later in the process, but initially,
I sense this kind of entity that I am willing to bring to the outside world through the intuition
of a title, or of a formative principle and technique, or through a musical structure. There is no
formula to approaching this sphere. Most of the times, because of a structural rationale that seems
to dominate my way of thinking, I start planning the macroform, the macrocosm of the piece (the
macrocosm of the microcosm...), its proportions, its larger sections. Then, these ideas become
material for the microform, i.e., the local structures that the listener experiences directly when
listening to the finished work. This is clearly a desire to establish, in music, traditional cosmologies’
principle of identity or similarity between the macrocosm (universe) and the microcosm (human
being) within the piece itself, i.e., by creating identity or similarity between musical macroform
and microform.

My conscience of what the piece is grows gradually. Along the working process, I feel like
the explorer of a terra incognita that I am creating at the same time that I am exploring it. I think
this applies to every composer whose work is born from research of something new. It is through
the work of composing, by trial and error, that I become conscious of the sound universe of the
composition, therefore, giving to it a meaning and a final form. Probably, as in Pareyson’s theory
of formativity, the composition is bound to have that final form from the very beginning, the time
in which it was still unmanifest, as forma formante, which becomes forma formata along the process.
The composer should just be able to get in the right syntony with forma formante’s vibrations. The
piece, before it is composed, lives only in potentiality, outside of existence. Unmanifest, it remains
part of the undifferentiated absolute until the composer becomes gradually conscious of it by
bringing it to light through the compositional process (cosmogony), which consists in the creation
and application of the necessary, appropriate and rightful formative principles and structural
relationships (scientific cosmology).

This process of creation I have just narrated above is, to a contemplatively inclined mind,
sacred in itself simply because it is a poetic act, i.e., an act that brings forth into nature-existence-
something that did not exist before. Therefore, this human creative act of composing music shares
the same nature of the act of Creation of the world. It turns undifferentiated sound (chaos) into
music (cosmos); the composer witnesses in first hand, experiences directly, and actively helps the
conduction of the transformation path travelled by forma formante from potential to actual, from
archetypal to typal. And this is probably what Karlheinz Stockhausen meant by “as it (the piece)
was being constructed through me” in a previously presented quotation.

To compose music with this awareness of artistic creation’s sacredness and with the intention
of conveying an existing contemplative image of the cosmos (cosmology) at the structural level of
the music’s organizing and formative principles is to cosmicize sound. I have borrowed the idea of
“cosmicization” from Mircea Eliade:

“The cosmicization of unknown territories is always a consecration; to organize a space
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is to repeat the paradigmatic work of the gods. . . . Establishment in a particular place,
organizing, inhabiting it, are acts that presuppose an existential choice—the choice
of the universe that one is prepared to assume by ‘creating’ it. Now, this universe is
always a replica of the paradigmatic universe created and inhabited by the gods, hence
it shares in the sanctity of the god’s work” ([15, p. 32-34]).

As the composer creates and explores the terra incognita of a new musical language through
work, research, listening, and, last but not least, inspiration, this “land” takes shape and becomes
music, home and style: becomes a cosmos. The awareness of this musical process “from nonmani-
fest to manifest” as being sacred cosmicizes sound, or, in other words, consecrates it (con-secrate
= to associate with the sacred): cosmicization “is always a consecration”. This is the first part
of cosmicization: the consecration of the musical creation act (or the awareness that it is sacred)
because it repeats the Creation of the world by transforming, like world into cosmos, sound into
music. But to a non-contemplatively inclined mind, this idea will be questioned in this way: since
concert music is not liturgical, how can it be sacred music; where does this power to consecrate come from?
With what authority can a composer declare their secular work to be sacred?

No one would question that Olivier Messiaen’s (1908-1992) La Nativité du Seigneur (1935) or
Quatour pour la Fin du Temps (1941) are pieces of sacred music, since the Catholic themes are
evident in their titles, although these pieces are concert, non-liturgical music. However, the same
can be said of anyone of Messiaen’s bird pieces from his Catalogue des Oisexaus (1956-8) i. e., that
these are sacred music as well, since birds are sacred for Messiaen. And even Modes des Valeurs
et d’Intensités (1949), an “abstract” piece and almost a technical experiment, can also be seen as
sacred, as, in Messiaen, the same musical cosmology (as a group of techniques) generates all of his
pieces, whether or not he associated them with religion. The recognition that Messiaen’s music is
sacred comes from the authority of his religion’s faith, which is Catholicism. Therefore, Messiaen’s
power to consecrate his music comes from a culturally established world religion. However, when
Karleinz Stockhausen attributes sacredness to works such as Stimmung (1968) or Inori (1974)
(inori is a Japanese word for prayer or adoration), the recognition of this attribution is not—and
has not been, historically—so straightforward. The frequent negative criticism of these works
exemplifies the rejection, within the concert music world, of “foreign mysticism” and other notions
that express the disagreement with a composer’s authority to attribute sacredness to their music
when they are not members of their own society’s predominant religion or when their music does
not reflect it. A non-contemplatively inclined mind—one that does not perceive the sacred—will
never find a satisfying rational argument that can support the idea that the individual’s awareness
of the artistic creative act’s sacredness is enough in itself to empower the individual to state that
their art is sacred.

What to say about the case in which the composer does not valuate or is unaware of their
own creative act as being a sacred act? Can one speak of cosmicization in this case? One uses
the adjective “sacred” to emphasize a perceived quality (“sacred”) of the substantive “act”. Is this
quality still there, in the substantive, when one is unaware of it or cannot perceive it? I will leave
these questions open... However, the individual does not live in isolation from culture and society.
Ideas about the sacred will necessarily be confronted with cultural ideas about the sacred, found
in world’s religions, in other people’s experiences of the sacred. The ideas of an individual will
never come “out of the blue, and, for this reason, for the composer that considers their creative act
as sacred, their authority comes exactly from this perception”.

Music is certainly capable of “sharing the sanctity of the god’s work of cosmic creation” with
renewed force when its formative principles are intimately connected to an existing, traditional
contemplative image of the cosmos. We have seen it in the examples of Pueblo Indians and
Javanese gamelan above. This image becomes manifest in music, thus re-enacting cosmic creation
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by repetition or mimesis of that cultural sacred image of the cosmos. In other words, music is
capable of conveying cosmological contents when it is iconic with that cosmology, or when a
composer organizes music by formative principles similar, analogous or same as the cosmological
formative principles (believed to be) in operation within a given cosmology.

Therefore, it is by conveying a traditional contemplative cosmology that composers are finally
or ultimately invested with the authority to consecrate their music as sacred, an authority that,
in the view of those who do not perceive the sacredness of artistic creation, was lacking. Thus,
composers (and artists in general) may no longer be accused of simply inventing a personal
cosmology or a personal symbolism. In fact, in Eliade’s archaic societies, the foundation and
building of a city always follows the traditional cosmology of the people, thus enabling them to
consecrate or cosmicize territories as a “replica of the god’s work”; the god’s work remains the
model and primordial reference.

As shown before, the traditional music of a society tends to be iconic with its cosmology.
Iconicity had been defined as “naturalness” and “non-arbitrariness” in Judith Becker’s article on
Javanese gamelan because “music systems are instances of the way a specific people understand
and relate to the phenomenal world” ([4, p. 215]). Again, playing the role of the devil’s advocate, a
question could be rightfully raised about this relationship between a contemporary composer and
a traditional cosmology: what is natural and non-arbitrary about the music of a contemporary composer
who obviously does not live in the traditional cosmology his music is supposed to be iconic with?

The only answer to this question is that such composer should make all effort to establish
that traditional cosmology as their own, to fully engage with it in all possible aspects of life and
work, so that it won’t be just an intellectual abstraction or an arbitrary choice, but a lived one.
In fact, it is a choice because one sees in it truth and sense. It is “the existential choice of the
universe that one is prepared to assume by ‘creating’ it”, to repeat Eliade’s words on cosmicization.
Contemplative cosmologies contrast sharply with the contemporary regular, most commonly
stereotyped, urban, modern, consumerist, individualist way of life. To go against that could turn
into a daunting or even impossible task: it would involve taking personal choices in a very opposed
direction to the “natural” tendencies of contemporary society. However, if one seeks coherence
and integration between life, knowledge and art, it is not because of the seeming difficulty of
the path that one should refrain from travelling it. Study in depth of the different contemplative
traditions is one of the paths to attaining a full understanding and assimilation of their contents;
to the willing researcher, these traditional contents are easily accessible nowadays, the idea that
they are remote, difficult to find and passé being an entirely equivocated prejudice. From study
comes the possibility of these contents being applied to one’s life, not as a nostalgic return to
the past, or a superficial reproduction of behaviors, but rather as part of their assimilation into a
new, albeit individual, cosmovision. Evidently, an “individual cosmovision” is not conceivable
without it sharing its content with cultural, collective cosmovision(s), for the simple reason
that, as mentioned before, the individual does not live in a bubble, isolated from any contact
whatsoever with cultural practices. A traditional cosmology can become, today, an integral part of
a contemporary cosmovision and, in this sense, the music composed accordingly will be iconic
with it.

III. Spiral Musical Time

The spiral is a complex symbol that human beings have drawn or carved for centuries since
the Paleolithic; it appears in the Vedic, Yogic, Tantric, Hermetic, Celtic, Christian, Taoist, Maori,
and Cabbalistic traditions, to name but a few, each emphasizing perhaps different aspects of the
spiral, but always revealing it as an archetypal symbol of the creative processes’ great strength
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and emanation. The spiral is also seen in natural phenomena as growth processes such as
waves, hurricanes, shells, animals, plants, the moon phases, the seasons becoming, and the sun’s
ecliptic path. “Growth” must be understood as intensification in either of the two complementary
directions of the spiral—coiling and uncoiling—by which the expanding, outward, movement
represents cosmogony, creation and multiplication of phenomena, towards manifestation or birth,
while the contracting, inward movement, represents eschatology, destruction, retraction from
multiplicity of manifestation, decline or death ([11, p. 156]).

When the musical composition as forma formata, sense form, the microcosmos, takes the spiral
as a constructive principle of its whole macroform, it coincides with the spiral and leads back
to the archetype (forma formante, not sense form). The spiral becomes present, not only as the
formative principle but also as the musical time experienced by the listener, when it establishes, in
organized sounds, its cyclic and intensifying trajectory. The music becomes a symbol of the spiral
and, consequently, also of the archetype.

Apparently, the spiral seems to be a spatial symbol, as it has been traditionally represented
visually in petroglyphs, sculptures, architecture, paintings, drawings, etc, and, therefore, is most
often seen than heard. However, it is naturally not only spatial, but temporal as well, since its line
denotes a progressive process of transformation in time. The spiral is a space-time continuum.
Furthermore, depending on its own momentum, this identity macroform/spiral results in a more
or less gradual musical becomingness. The speed of the spiral can be as intense as a vertiginous
vortex or as gradual and slow as not to be immediately noticeable. In this respect, two ideas are
important guidelines for my conception of spiral form composition or composition in spiral time: one
from American composer Steve Reich (b. 1933) and another from Hungarian composer György
Ligeti (1923-2006).

The idea of music as a gradual process originates in Reich’s short 1968 essay, Music as a Gradual
Process, in which he talks about a music that is, literally, the process. For him, this process must
be perceivable, this being the reason why Reich’s music of that time is repetitive. This idea is
also important, in a similar way, in my spiral forms as it is desired and intended that the spiral
as a formative process/principle be aurally recognizable and perceivable. However, there is
neither minimalism nor repetitive music in my spiral form compositions, since they aim to the
accumulative effect of the spiral’s different return. Reich’s idea that “once the process is set up
and loaded it runs by itself” ([40, p. 33]) is, to a certain extent, present in these spiral works, but
only insofar the general principle needs to be preserved and needs to function as Ligeti’s idea
of “notional compositional structure”. Ligeti suggested that the composition needs to provide
the listener with a notion of its structure and of the formative principles through sound, by ear,
without the recourse to complex analysis and intellectual effort over the musical score. His exact
words are: “in working out a notional compositional structure the decisive factor is the extent to
which it can make its effect directly on the sensory level of musical perception” ([30, p. 31]). His
point of view is diametrically opposed to Franco Donatoni’s poetics of hidden procedures.

Musical time, understood as musical form as it enfolds in time —and, therefore, as experienced
by the listener—acquires a direction, a teleological sense, when it is organized as a spiral. In this
case, musical time is linear and cyclical at the same time. Cyclical time 20, which is a special
case of temporal circularity in music, turns over itself and, as it does so, it does not progress
any further and remains ultimately static. Spiral time, which is another special case of temporal
circularity, has the cyclical auto-referentiality combined with a linear aspect, which consists in the
production of difference by the accumulative effect of its outward or inward tendency. The spiral
turns around itself but, when it arrives at the “same” point, this is no longer the same point: it

20 For a reflection on cyclical musical time, see my article “Tempo musical cíclico no Miserere mei, Deus de Gregorio
Allegri ([25])
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is the same in another level of realization. The spiral’s telos (τέλος , end or purpose) lies in the
infinite, either when expanding or contracting, and it consists in its own ordering tendency: the
process is the purpose; this will become clear with the following musical examples. However, as a
composition cannot last forever, the spiral form ends by simple interruption of the process, either
because, if expanding, it would not make aesthetic sense for it to continue indefinitely, or because,
if contracting, the process had arrived at its center, which is always a point of origin and of no
manifestation, which requires the music to stop.

The spiral as a dynamic structure, constructive principle or musical process appeared for the
first time in my 1984 violin and piano duo De Natura but, at that time, I was not aware of it
as a spiral. In fact, it is composed of two alternating or entangled spirals, one contracting, the
other expanding, characterized by two kinds of contrasting textures: the contracting spiral is
multilayered or polyphonic, and the expanding is monodic, a growing unison in both instruments.
Both spirals use Fibonacci numbers to control their expansion or contraction: the contracting
spiral starts with a section of 144 eighth notes, then 89, 55, 34, 21, 13, 8, while the expanding spiral
growths from 8 eighth notes to 13, 21, ... until 144. Therefore, the macroform is sectioned by the
numbers 144 – 8 – 89 – 13 – 55 – 21 etc.

The spiral has been a conscious object of my compositional research since 1988, beginning
with the piano solo work Pralāya. Since then, several other compositions have created different
spiral temporalities: musical time organized by the cyclic, continuous and intensified winding
/unwinding transformation process, which is characteristic of the spiral. In the same way that
diverse spiral lines may be defined by different geometries and mathematics, innumerable are the
ways by which musical time may appear to be expanding or contracting as a spiral.

A characteristic of spiral musical time is that it most often applies to the whole macroform of a
work, and only a few works have explored spiral time only in certain parts or sections. Although
it is a continuous movement, spiral musical time can be articulated by phrase cycles. The expression
“phrase cycle” tries to relate musical “phrases” with the context of spiral time, but it should not be
understood as “phrases” in western classical/romantic morphology, which belongs to a linear and
dialectic time context. The expression is abbreviated to “cycle”, and is meant to simply indicate a
structure of musical course (or duration) which has, like the “phrase”, a complete sense, within
the context of spiral temporality. This complete sense, therefore, is reached by the completion
of a spiral turn or cycle. After this completion, the spiral starts over, but at another level of
manifestation. The moment between completion and re-start may or may not include a break
(interruption, caesura, fermata) in the movement.

Two aspects of spiral time are naturally mathematical: duration and gnomonic growth. Du-
ration can be ruled by pre-established ratios either in a linear time composition or in a spiral
time composition. In the latter case, the macroform is the total duration of the spiral, and the
sections are the durations of its expanding or contracting cycles. The rate of growth or decrease of
the length (duration) of each spiral cycle defines such proportion, as will be seen in the musical
examples ahead. Gnomonic growth, on its turn, is more specific of spiral time, as it is a form
of “growth by accretion or accumulative increase, in which the old form is contained within the
new (...) all figures which grow by gnomonic expansion create intersections upon which spirals
can be drawn” ([29, p. 65-66]). Lawlor provides an ancient definition of a gnomon according to
mathematician Hero of Alexandria (ca. 10 C.E. – ca. 70 C.E.): “a gnomon is any figure which,
when added to an original figure, leaves the resultant figure similar to the original”, therefore, just
like the modern fractals.

Gnomonic growth appears in the construction of Hindu temples, in the horns of rams and
antelopes, mollusk shells, in the Pythagorean tetraktys and other triangular numbers, in rectangular
numbers, and in several geometrical processes of recursive self-similarity such as the infinite
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accumulation of alternating pentagrams and pentagons (in figure 1), or the equally infinite process
of marking a square inside golden rectangles (figure 2). Gnomonic growth is certainly not the only
form of growth or increment that I have applied to my compositions, but it does provide a sense of
beauty as in mathematics as in art, especially in relation to the principle of macroform/microform
identification. The role of proportion in gnomonic structures is decisive for the rhythmic quality
of the perceived process.

Figure 1: Left: The diagonals of a pentagon form a pentagram. The intersections of the pentagram form a smaller
pentagon. Draw again the diagonals of the smaller pentagon, ad infinitum. Right: Draw a square inside a
golden rectangle. Inside the smaller rectangle, draw another square, ad infinitum. A logarithmic spiral is
formed by linking the opposed corners of the squares by a continuous curved line).

By presenting the ideas of spiral time and composition as cosmogony before tackling the
subject of number and proportion in composition, I expect to have made easier to discuss the
musical examples, because in their majority, these proportions define the durations of spiral cycles
and of the whole macroformal spiral. I also thought that presenting first the poetic context in
which number and proportion find their musical application in my own music would result in a
better understanding of why these proportions are brought into the music.

IV. Number and Music

Number and proportion appear in my music at all levels of temporal organization, from the
microform to the macroform. Since 1989, I have made extensive use of a set of formative rhythmic
principles designed to generating ametric textures, complex polyrhythm, cross-rhythms and certain
specific qualities of rhythmic flow defined by syllabic rhythms ruled by numerical ratios. I call this
set of principles expanded modal rhythm because they greatly expand the kind of organization found
in the rhythmic modes of 12th- century polyphony of the Notre Dame School. A full description of
the general principles of expanded modal rhythm is available in a previous article ([?]), in which
my main concern was to explain what modal rhythm is and what is “expanded” about it. These
principles do organize local rhythms (microform) as well as the work as a whole (macroformal
design).

Expanded modal rhythm ([24]) is based on the idea that durations are either long (—) or short
(∪), and that they can be quantified by a temporarily fixed — : ∪ (long : short) ratio involving
any whole number of time units (chronos protos). Notre-Dame rhythmic modes not only fit in
this description, since they were mostly constructed at the 2:1 ratio, but also indicated that their
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formative principles could be expanded. The appearance of long and short durations in Notre
Dame polyphony was related to Greek feet such as íambos, dactylos etc. In my music, I work
with rhythmic patterns called “syllabic meters”, which are combinations (or permutations) of any
given number of durations, called syllables. Therefore, the Greek feet are only a small part of this
collection of patterns, obtainable from combinatoriality. As an example, the six-syllable meter
— ∪ — — ∪ ∪ can be assigned a 2:1 ratio with the quarter note as chronos protos resulting in the
rhythm of Example 1. The same pattern, with a 4:3 ratio and the eighth note as time unit is shown
in Example 2. It is the combination of ratio syllabic structures alternating long and short syllables
that forms a rhythmic mode, and a mode should be understood as exactly what it is: a mode, a
manner, therefore, a quality, a rhythmic quality, a quality of movement.

Figure 2: a) Syllabic meter — ∪— — ∪ ∪ (2:1) ♩ ; b) Syllabic meter — ∪— — ∪ ∪ (4:2) ♩.

At the same time that the application of numbers to music implies quantification, it also brings
quality to music. This quality is the qualitative aspect of the number: two-ness, three-ness, etc.
The proportion, as it puts two (or more) quantities in relationship, creates relativity between these
quantities to each other. Proportion, “or Reason (ratio) is the comparison, correspondence or
relation that exists between a number and another” ([33, p. 6]). As in the Quadrivium, Music is
Number in Time. While this quality of rhythmic movement is immediately perceived aurally at the
microformal level, as shown in the examples above, it is still perceived in the macroformal level,
albeit less directly, or in a different manner, since the length and content of durations is much
bigger. I should now concentrate on the role of proportion in the macroform, i.e., compositional
design, as much more about the relationship between number and microformal rhythms has
already been shown in the article on expanded modal rhythm.

When I start working on a new piece, one of my first compositional actions is to attribute
a ratio to the largest (and also the smaller) sections of the work’s macroform: to determine (or
pre-determine) how many parts will constitute the piece, and what is the balance or proportion
between their durations is a decision that pertains to an abstract and numerical level, since the
music has not yet been composed, but only its “size” and the size of its parts is being decided.
What the macroformal ratio suggests in terms of its numerical relationship should be explored by
the content of these pre-determined durations of sections.

The simplest macroformal ratio is 1:1, and it is found in the piece Sacrifício, for choir, which
is iconic with the cosmogonic Vedic myth of Purus.a and the philosophy of the Brāhmanas and
Upanis.ads. The macroform is symmetrical and is governed by a 1:1 ratio, since the first and second
parts have exactly the same duration. A dotted quarter note rest on measure 186 at the exact
center of the music separates the first half of the piece from the second. This rest is the arrival of
the first section’s spiral contraction towards the point of non-manifestation, silence, bindu. The
second part is a spiral expansion towards multiplicity of phenomena. In this way, the macroform
shares the same cosmological symbolism of god Shiva’s drum, the damaru, which has the shape
of an hourglass 21. Because the piece is sung in Sanskrit, the microformal rhythm of vocal parts
respects the long and short syllables of the Sanskrit language even when, in the music, syllables
assume values different from 2:1, which is Sanskrit’s original long-to-short ratio.

21 The article “Música e Sacrifício” ([24]) describes this subject at length.
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There is a static quality about the 1:1 ratio. This is easily perceived in the microformal level,
as equal values result rhythmically in a series of regular pulses. Depending on how long this
pulsating rhythm goes on, it will, eventually, reveal itself not only as regular but as static, unless
it changes. The richer are the combination of different values in a line, the more varied and,
therefore, kinetic is the line’s rhythm. Seen from another angle, the pulsation, in all measured
music, is the simplest, most primordial level of rhythmic organization, one that remains “behind”
or “underneath” varying rhythms. As pulses are grouped in meters (2-beat, 3-beat, 4-beat meters),
a second level of regularity is generated: meter, which is, in itself, a higher level beat. If meter
remains unchanged for the duration of the macroform, meter is no longer just regular, but becomes
non-moving, a static element. In this case, because it never changes, meter moves from the en-temps
to the hor-temps category 22. In the other hand, if meter changes frequently, it tends to disappear,
because there will be no regularity at its level. This is when longer morphological units will take
over the reference role for measuring this higher (metric) level flow or rhythm.

As a ratio governing the macroform of two equal sections, the 1:1 ratio is static for a number
of reasons. First, because there are only two occurrences of the “1” duration (as in Sacrifício),
this results in the simplest case of a binary relationship: that of equality, a sense of perfect
balance, like two equal weights on a scale. This, however, is what the ratio means as a numerical
relationship; this is what the ratio suggests to what will happen in the musical time. As it concerns
the macroform, each part is really a section of music, during which something happens, this
“something” being the content of their duration. At least in theory, it is possible to imagine that,
even in a macroform divided in a 1:1 ratio, the sections could be out of balance because of the
effect produced by the music filling that duration.

In the spiral contraction that makes the first section of Sacrifício, the music gradually loses
momentum, while the opposite happens with the second section, which gains momentum with
its spiral expansion and multiplication of rhythmic and polyphonic activities. Other elements in
the pitch organization and morphology concur to create a sense of balance suggested by the 1:1
ratio, even with the opposite momentum qualities of each section. In fact, the whole conception of
sacrifice as a creative principle consists in the interdependent or complementary balance of the
two aspects of a same coin, just exactly in the same way that breathing alternates inspiration and
expiration or objective time alternates days and nights.

A more familiar example of 1:1 macroformal ratio is found in Johan Sebastian Bach’s Goldberg
Variations. The Aria and practically all of the thirty Variations are made of two sections of exactly
the same duration, each with sixteen measures 23. Bach respects the 1:1 ratio and symmetry by
creating music in the first part that is balanced by the music of the second part, by several means
such as morphological quadratura, motivic consistency and tonal route (the route from one tonal
region to another).

An elementary aspect of music composition is that whatever the composer intended to be
sections of a piece should actually result in sections: this is produced by creating contrast between
the content of the sections, using characteristic materials and processes for each one. A certain
level of ambiguity may be desirable and there is no need to be didactic, as the listener is capable
of perceiving such contrasts, just as long as the sections are notional compositional structures, as
mentioned before.

22 En-temps and hors-temps are terms created by Iannis Xenakis to differentiate music as a phenomenon in time from
music as a set of formative principles ([45, p. 68]).

23 Variations 3, 9, 21 and 30 have two eight-measure sections, a different 1:1 ratio. Variation 16, an Overture, contrasts
with all other Variations with its 2:1 ratio: the first section, in 2/2 has 16 measures, while the second section, in 3/8 has 32
measures. Because the eight note is performed as a triplet and not as a regular eighth note, each 3/8 measure of the second
section corresponds to one quarter note in the 2/2 of the first. It follows that four 3/8 measures (one hypermeasure) are
equivalent to one 2/2 measure, resulting, therefore, in eight hypermeasures or in a 2:1 macroformal ratio for Variation 16.

59



MusMat: Brazilian Journal of Music and Mathematics • May 2018 • Vol. II, No. 1

The macroform of the first piece composed using expanded modal rhythm, “. . . a natureza ama
esconder-se. . . ” (1989), was defined, as I was mainly concerned with Greek feet, as kretykos (– ∪
–) at the ratio 2:1. Therefore, the piece has three sections, starting with a large one, followed
by a short and ending again with a long. Long sections are twice as long as the short section.
The rhythmic lines are constructed using a sequence of Greek feet, which, because they are used
reiteratively, is called a time cycle. In the second piece with expanded modal rhythm, Mojave (1989),
for piano and two percussionists, I started to use the time cycle as a time unit for measuring the
macroform. Used in this manner, the time cycle was called a “theoretical cycle” because it is not
audible as a rhythm in the music, but serves the main purpose of measuring the macroform (it is
not the case to dwell on the other purposes at this moment). Mojave is clearly articulated in two
sections, the first kinetic, the second static, and the “theoretical cycle” corresponds to the duration
of 21 eighth notes 24. The ratio is 33:15, meaning that there are 33 cycles in the first, longer section,
and 15 in the second (corresponding to a ratio of 2,2:1). However, because of the tempo change
between sections (the first is at quarter note MM = 72 and the second at MM = 54), the actual
proportion between sections is 1,65:1, which would correspond to 24,75:15 in terms of “theoretical
cycles”. One of the basic principles is to only use cycles in their entire length, so this shows that
the cycle as a time unit is subordinate to tempo. Later on, I decided to call “theoretical cycles” by
the Sanskrit name tāla, which comes from classical Indian music; the Indian tāla has similarities
with the tāla in my music. For the purpose of this article, it is enough to understand the tāla as a
time unit measuring the macroform and the ratios of its sections.

In the following section of this article I will describe in greater detail the ratios at work in a few
key compositions: Pythagoras (2001), Metagon (2008), Phoînix (2010), Triskelion (2015), and Santuário
de Baleias (Whale Sanctuary) (2016).

Pythagoras

Pythagoras, for tenor recorder solo, is iconic with Pythagorean cosmology, for it applies to music
composition the original Pythagorean idea of cosmos, in the specific meaning by which “the world
is order when it is harmony and number, which keeps the Whole unified and such as it is” ([39, p.
62, v. IX]) (my translation). I have mentioned before that number is such a fundamental element
in Pythagorean cosmology. In fact, in Pythagoreanism, number was the principle of all things;
“All is number”, would have said Pythagoras. Number “is the principle, the source, and the root
of all things”, writes Theon of Smyrna ([17, p. 21]).

“. . . the so-called Pythagoreans, the first to be absorbed in mathematics, not only
advanced this particular science, but, having been brought up on it, they believed that
its principles are the principles of all things. Now, of these principles, numbers are
naturally the first. As a result, they seemed to see in numbers, rather than in fire,
earth and water, many similarities to things as they are and as they come to be: for
one sort of modification of numbers, so to speak, is justice; another, soul and mind;
still another, opportunity; and so forth. Musical modes and relations, too, they saw in
terms of numbers. And all other matters appeared to be ultimately of the nature of
numbers; and numbers were for them the primary natures. In view of all this, they
took the elements of numbers to be the elements of all things, and the whole heaven to
be harmony and number. They were adept at finding numbers and harmonies, both
in patterns of change and in the structure of parts. And they organized and unified

24 This is actually one of the possible forms of the rhythmic cycle used for the construction of rhythmic lines, and results
from the 4:2 ratio combined with the sixteenth note as chronos protos.
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the whole arrangement of the heavens to exhibit its harmony. And if they discovered
defects anywhere, they invented the necessary additions in order to make their whole
system hang together perfectly.” ([2, p. 15, Book A, 5, 985b])

This rather long citation from Aristotle’s Metaphysics was included here because it is not
only a description of Pythagorean ideas about number, but also a criticism of them. Aristotle’s
rationalism is in great contrast with Pythagorean’s thought: it is with Aristotle that number starts
acquiring the sense it has for us now, i.e., that of mere quantification, an operation of the mind,
an abstraction. However, for the Pythagoreans, number is “a real thing, actually, the most real
of all things, which, as such, can be the constitutive principle of all other things” ([39, p. 80, v.
1]) (my translation). It is important to read, instead of Aristotle’s, the surviving texts from actual
Pythagorean philosophers such as Archytas (first half of 4th century B.C.E.), Iamblichus (c. 250 – c.
325 C.E.), or other anonymous ones preserved in the writings of other authors such as Photius
(c. 820-891 C.E.), so that one may grasp the Pythagorean point of view and the right frame of
mind to understand them. In fact, Aristotle’s way of looking at the “so-called” Pythagoreans
leads, in the best cases, to appreciating them as having been “probably the first to recognize the
abstract concept that the basic forces in the universe may be expressed through the language of
mathematics” ([31, p. 31]) and nothing more.

The macroform of Pythagoras represents the Pythagorean tetraktys (the sequence of the first
whole numbers, adding to the perfect number 10, the decad) and is divided in four spiral
movements: Monas, Katharsis, Theoria and Theosis. The connection established between each
movement and the tetraktys is that these movements are in the ratio 1:2:3:4. The sum total of these
durations is 1 + 2 + 3 +4 = 10, as in the “tetraktys of the decad”. According to the Pythagorean
oath, the tetraktys expresses

“the Pythagorean conception of the process by which the One goes out into the
manifold world. The tetractys is not only a symbol of static relations linking the various
parts of the cosmos: it contains also the cosmogonical movement of life, evolving out
of primal unity the harmonized structure of the whole. It is a fountain of ever-flowing
life” ([12, p. 207]).

English classical scholar Francis M. Cornford (1874-1943) also explains that “Pythagoras
regarded (the tetraktys) as ‘the nature of number, because all men, whether Hellenes or not, count
up to ten, and, when they reach it, revert again to unity’.” This reversion symbolizes the life
cycle, by which mortals are born, grow, reach maturity, grow old and pass away and are re-born:
“Nature causes them to come to their goal in her region of darkness, and then back again out of
the darkness they come round in mortal form, by alternation of birth and repayment of death”
([12, p. 208]).

Another important concept is that of the Monad, monas, which is both the cosmos as a whole
and the principle that generates everything in the cosmos. In fact, the Monad, or Unity, the One,
is not a number, but the principle behind Number: “numbers—especially the first ten—may be
seen as manifestations of diversity in a unified continuum” ([17, p. 21]). As an example of such
continuum, the One as the source of all numbers, Fideler suggests a circle in which to inscribe
various polygons, or the vibrating monochord string as unity, which sounds, when plucked, the
complete harmonic series.

The Monad is represented by the 10-note melody that starts the first movement (Monas) and is
called “nucleus”: the nucleus is the source of everything else in the piece. The creative power of
the number One is reflected in the outward spiral motion of the first movement, which, although
subtle, increases melodic manifestation. The other three movements, Katharsis (purification),
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theoria (contemplation of the first principles, i.e., numbers), and theosis (union with God) relate
to the three paths of spiritual development in ancient Pythagoreanism and, since these are the
individual’s attempts of reconnection with the creative principle, are represented, in the music by
spiral structures with inward direction. While Monas and Theosis use the same melodic nucleus,
Katharsis and Theoria each use “their own” nucleus form, but these are derived forms from the
original nucleus in Monas, as shown in the Fig. 3.

Figure 3: Melodic nucleus in each movement of Pythagoras (2001): a) Monas; b) Katharsis; c) Theoria.

Because the first movement is the Monad, it represents the number One. The second movement,
Katharsis, as the number Two, is twice as long as Monas. It is ruled by the dualism of long and short
notes, loud and soft intensities, and the sense of struggle or strife. The nucleus melody is placed
at the end of each phrase cycle. As the cycles approach the end of the spiral, the nucleus appears
gradually less ornamented, until, at the end, it is stated twice, reaching its pure, completely
unornamented form at the very last time. The third movement, Theoria, is three times as long
as Monas. As representing the number Three, it overcomes the struggling tone of dualism of
the previous movement by means of its tranquil fluidity. Synthesis over long/short rhythmic
dualism is achieved by the creation of a new level of temporal organization, namely, the three-beat
meter which, in the a-metric context of the piece, is a new feature. A sense of temporality, of
past, present and future is established by the melodic nucleus placement in the middle of each
phrase cycle (and no longer in the end, as in Katharsis). Therefore, each cycle is formed by
an antecedent, followed by the nucleus, and by a consequent. Antecedent and consequent are
structurally related by complementary formative principles. As their durations shrink, all that
remains, at the end of Theoria, is the nucleus, stated three times, and reaching its pure form at the
very last time. The fourth movement, Theosis, is four times as long as Monas. The number Four, as
well as the concept of theosis, represents completion and union with God. For this reason, it is the
movement that most resembles Monas. Each phrase cycle is a rhythmically augmented and heavily
ornamented version of the Monas nucleus. As the spiral contracts, each cycle becomes shorter and
less ornamented, until at the end, the nucleus is stated four times, reaching, at the very last time,
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the final identification with the pure, original melodic nucleus, as a drop of water dissolves in the
ocean.

In Pythagoras, the tāla works basically as a measure unit to control the ratios involved between
movements and phrase cycles. One tāla has the length of the nucleus, i.e., ten quarter-notes. The
first movement, Monas, is a microcosm of the four-movement macroform, as it has four phrase
cycles growing in the same ratio 1:2:3:4 as the macroform’s movements 1:2:3:4 ratio, and this is
easily seen by the duration of notes in the melody: the nucleus is stated in Monas’ phrase cycle
A as 10 quarter notes. Cycle B is formed by ten half notes, with a slight ornamentation; cycle
C further increases ornamentation and time values become dotted half notes; finally, cycle D, is
formed by ten whole notes. In terms of tāla-s 25, this leads to the Table 1:

Table 1: Duration of phrase cycles in Monas

Monas phase cycle
A

phase cycle
B

phase cycle
C

phase cycle
D

number of tāla-s
and durations in ♩

1 = 10♩ 2 = 20♩ 3 = 30♩ 4 = 40♩

Consequently, the entire duration of the Monas spiral is equal to 100 quarter notes on the
metronome mark of MM = 96. Here, the phrase cycles are not in accordance with Fibonacci
numbers, but only with the tetraktys.

The length of each phrase cycle in the other movements is ruled by the golden ratio phi, φ, as
expressed by Fibonacci numbers. The Fibonacci sequence, which is fixed in the numbers 1, 2, 3,
5, 8, 13, 21, 34, 55, etc, and the 1:2:3:4 ratio between movements are not commensurate elements.
There is a different solution for each movement to the problem of fitting together the Fibonacci
sequence and the 1:2:3:4 ratio between movements.

The duration of the Katharsis spiral is equal to 200 quarter notes (twice as long as Monas). It is
easier to see the relation with Fibonacci numbers by looking at the total as equal to 400 eighth
notes. Katharsis contracts in five phrase cycles according to the first five Fibonacci numbers in
retrograde order, because the cycles are decreasing in length: 8, 5, 3, 2 and 1. Multiplication of
these numbers by 20 leads to the number of eighth notes in φ ratio: 160, 100, 60, 40 and 20. Table
2 shows the actual durations of the phrase cycles in the Katharsis spiral to be very close to these
numbers in φ ratio:

What Table 2 does not show is that there are two consecutive statements of the 20 eighth-note-
long nucleus, the first as the last 20 eight-notes of phrase cycle D and the second (and final) as
phrase cycle E. In Katharsis, each phrase cycle is formed by a melodic line followed by the nucleus
ending the cycle. The melodic line is progressively shortened, but the nucleus remains intact
in length, decreasing only in ornamentation. When cycle E arrives, there is nothing left of the
melodic line, and this results in the two consecutive statements of the nucleus. In fact, the sum
total of all phrase cycles (A+B+C+D+E, i.e., 170 + 104 + 64 + 42 + 20) is equal to 400 eight notes,
as it should be, and the two consecutive statements of the nucleus conclude the movement as
reminding the listener that Katharsis is about the number Two.

Table 3 shows the actual durations of the phrase cycles in the Theoria spiral. Initially, in order
to determine the duration of each phrase cycle, the Fibonacci numbers were multiplied by 30

25 I use the plural form tāla-s by adding a hifen and an “s” because the correct plural of this Sanskrit word is not “tālas”.
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Table 2: Duration of phrase cycles in Katharsis

Katharsis phase cycle
A

phase cycle
B

phase cycle
C

phase cycle
D

phase cycle
E

Actual durations
in � 170� 104� 64� 42� 20�

Fibonacci numbers
x 20

160 100 60 40 20

Actual number
of tāla-s

8.5 5.2 3.2 2.1 1

Fibonacci numbers 8 5 3 2 1

(resulting in 8x30=240, 5x30=150, 3x30=90, 2x30=60 and 1x30=30). However, this series of numbers
is, again, incommensurable with the prescribed total duration of 300 quarter notes (thrice Monas),
or 600 eight notes for Theoria’s macroform. The actual durations were arrived at so as to result in a
sum total of 540 eighth notes, since phrase cycle F would, by necessity, include three consecutive
statements of the 20 eighth note-long nucleus, which is equal to 20x3=60 eighth notes. These three
consecutive statements reassure to the listener, the number Three. 540 + 60 = 600 eighth notes.
Therefore, the value of 226 eighth notes of phrase cycle multiplied by φ = 0.618 results in 139.668,
which is rounded up to 140, the duration of phrase cycle B. By the same procedure, multiplying
140 by 0.618 result in 86.52 (rounded up to 87 for phrase cycle C), and so on until 33 is obtained
for cycle E. Notice that the value of 20 eighth notes of the nucleus could never be reached by this
treatment of the Fibonacci numbers.

Table 3: Duration of phrase cycles in Theoria

Theoria phase cycle
A

phase cycle
B

phase cycle
C

phase cycle
D

phase cycle
E

phase cycle
F

Actual durations
in �

226� 140� 87� 54� 33� 20�

Actual number
of tāla-s

11.3 7 4.35 2.7 1.1 −

Therefore, the actual durations of Theoria’s phrase cycles are not Fibonacci numbers, but they
stand in a ratio closer to the φ ratio than Fibonacci numbers do. The actual number of tāla-s also
reflects the φ ratio: 11.3 x 0.618 = 6.9834, which rounds up to 7.0, and so on and so forth for the
other tāla values.

The Theosis spiral was composed according to a particular idea: the ten-note Monas nucleus
is the material for each phrase cycle. Heavily augmented and ornamented at the first cycle, it
is gradually shortened until it reaches its original form in the last cycle, when it is, then, stated
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four times consecutively, to provide the final sense of conclusion of the work. Table 4 shows the
resulting durations for each phrase cycle obtained from the augmentation principle by which, in
each cycle, each note of the nucleus is augmented from one quarter note to a Fibonacci number,
starting with 13 for cycle A, 8 for cycle 8, 5 for C etc.

Table 4: Duration of phrase cycles in Theosis

Theosis phase cycle
A

phase cycle
B

phase cycle
C

phase cycle
D

phase cycle
E

phase cycle
F

Actual durations
in �

130� 80� 50� 30� 20� 10�

Actual number
of tāla-s

13 8 5 3 2 1

By this principle, the sum total of phrase cycles A, B, C, D and E is equal to 310 quarter notes.
The four consecutive statements of the nucleus in cycle F is equal to 40 quarter notes. The Theosis
spiral, therefore, has a total of 350 quarter notes, and not 400, as the 1:2:3:4 ratio would require.
However, the ratio is still at work by a change in tempo: the first three movements were all at
metronome mark MM = 96. The Theosis spiral, with its 350 quarter notes at MM = 84, has the same
duration as 400 quarter notes in MM = 96, i.e., 250 seconds (4’10”), four times the 62.5 seconds
(1’2.5”) of Monas.

Metagon

Written for the Zen Buddhist bamboo flute, the shakuhachi, Metagon (2008) is a solo composition
of approximately fifteen minutes of duration 26. A metagon (Fig. 1) is a spiral line formed by
open polygons. It starts with a triangle, which is circumscribed by a square, then a pentagon, an
hexagon, and so forth, possibly indefinitely. Each polygon is “open” in the sense that its last side
does not close the figure, making it possible for the outer figures to circumscribe the inner ones
with no lines touching each other.

Metagon’s macroform determines a single finite segment of a possibly infinite melodic, rhythmic
and textural tendency which is the formative principle represented by the metagon, the “metagon
principle”, the process by which each polygon has one side added in relationship to the one
immediately circumscribed by itself. Metagon’s macroform entirely respects this principle as
applied to temporal organization: the piece is a monody line segmented in phrase cycles (each is a
turn in the spiral line) which gradually expand in duration: they become longer in the same ratio
as the principle suggested by the metagon’s figure: initially, a polygon with three sides, then with
four, then five, etc. This relationship occurs here with the number of “measures” which, deprived
of any metrical meaning, simply serve as a unit for the measurement of the phrase cycles: the
first cycle lasts two measures, the second three, then four, five, until the last, with twenty seven.
Metagon’s macroformal spiral has a total of twenty six phrase cycles.

The spiral tendency suggested by the metagon is also applied to pitch content, i.e., space. The
monody starts with a single pitch, and gradually includes the greatest multiplicity of pitches
available in the instrument. Tonal centricity (the center is C, third space in treble clef) does not

26 More about Metagon (including the full score) is found in “Tempo Espiral em Metagon” (IRLANDINI, 2013).
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Figure 4: Metagon.

imply tonalism, but simply a central point in a gradually expanding textural pitch space. Pitches
are included accumulatively one by one in each phrase cycle, by adding a new pitch a half-step
above or below the last new note. Explained differently, in relationship to the central C, pitches
are added first by the upper semitone (C]), then the lower semitone (B natural), next by the upper
interval 2 (the whole tone, D), then the lower (B[), next by upper interval 3, and so on and so
forth, gradually expanding the melodic tessitura and the textural space.

Phoînix

I wrote the three pieces of the series Bestiarium, v. I between the years 2008 and 2013. Phoînix was
the second piece to be completed, although it is number one in the series. Each of the compositions
in the Bestiarium explores musical analogies with mythological and symbolic aspects of animals.
The following discussion will concentrate on the role of the φ ratio in the macroformal plan of the
composition, which is not in spiral form.

Figure 2 shows that Phoînix is divided in three large sections preceded by an eight measure-long
Introduction which is not part of the φ calculations. Section I, with 183 quarter notes of duration,
is in a φ ratio with sections II + III, both summing up a duration of 297 quarter notes. 183:297
= 0.61616162, which is very close to φ = 0,618. The ratio between sections III and II is 114:183 =
0.62295082, also approximately close φ.

Furthermore, the inner subdivisions of sections are also in an approximate φ ratio: in section I,
(I1 + I2):I3 = 113:70 = 1.61428571, and I1:I2 = 70:43 = 1.62790698. The same occurs with the inner
subdivisions of sections II and III.

The values involved here (297, 183, 114 or 113, 70 and 43 or 44) are approximately in the φ ratio
in the same way as the Fibonacci numbers express the φ ratio approximately. In fact, the point of
departure was the creation of a number sequence similar to Fibonacci’s. The sequence is based in
the same principle of adding the two previous numbers to form the next, starting arbitrarily with
the values 1 and 3:

[1− 3− 4− 7− 9− 16− 27]−43− 70− 113− 183− 296− 479

Only the terms in bold font are used in the composition because those are the ones that express
the φ ratio more closely. In fact, the ratio between 3 and 4 is 0.75, between 4 and 7 is 0.5714
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Table 5: Phoînix macroform

Introduction

(34 ♩)
I (183 ♩) II (183 ♩) III (13 ♩)

I1 I2 I3 II1 II2 II3 III1 III2

70 43 70 70 43 70 70 43
c. 1-8 c. 9-42 c. 43-62 c. 63-99 c. 100-134 c. 135-154 c. 155-190 c. 191-212 c. 213-227

A B D E G I K N P

Pesante Tranquilo Tranquilissimo
Energico

e preciso

Pesante

e ossessivo

φ1 φ2 φ3

φ
183 296

(...), and between 43 and 27 is 0.62790698. Only from terms 43 and 70 is that the ratio starts to
be acceptably approximate to the φ ratio (43:70 = 0.61428571), and, from then on, they become
progressively closer to φ = 0.618. The same occurs with the Fibonacci sequence, where only with
terms 8 and 13 does the ratio become very close to φ = 0.618 (8:13 = 0.61538462).

Notice that the last measure in the music, a 4/4 measure with two sounds in the percussion
(lion’s roar followed by the tam-tam), does not count for the purpose of ratios between sections.
The two sounds are meant to be as a final period mark. If computed, that measure would add
four extra quarter notes to the 43 that make section III2.

Triskelion

The archetypical sense of wholeness brought about by tri-partition is shown by the fact that so
much music in three parts or for three musicians has been composed throughout the centuries.
“The Triad is the form of the completion of all things” (Nichomachus of Gerasa, c. 100 a.D.), and
this is confirmed by the three-movement sonata form, the Hindu trimurti, or the unity of the circle,
which depends on its center, radius and circumference. The triskelion (τρισκέλιον) is one more
tri-unity (trinity), each of its parts being a spiral.

Triskelion, for piano, viola and percussion (bass marimba, large tam-tam and djembé) explores
relationships between three elements: three movements, three musicians, three simultaneous
musical layers, three percussion instruments. More specifically related to the triskelion shape is the
fact that each movement evolves as a spiral, first expanding from silence, then, reversing direction,
contracting into silence. Each spiral/movement has three expanding and three contracting cycles,
at the fixed ratio of 1:2:3 for the expansion and 3:2:1 for the contraction, thus preserving the
rotational symmetry of the drawn triple spiral line in the formal relationship of the three musical
movements. As a consequence, all movements have the same duration, forming the proportion
1:1:1. Furthermore, each instrument predominates in the texture of each movement: the piano in
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the first, the viola in the second, and the djembé in the third.

Figure 5: Triple spiral on the entrance stone of the Neolithic mound at Newgrange, Ireland (photo: Luigi Irlandini).

There is no fixed symbolic association of each movement or musician to any one of the three
meanings that have been associated to the triskelion, or to any specific interpretation of it. I was
directly inspired by the pre-Celtic triple spirals carved on the entrance stone and inside the inner
chamber of the Neolithic mound at Brú na Bóinne (Newgrange, Ireland) (see the three spirals
at the tip of the stone inthe left corner of figure 4, above). The original meaning of these triple
spirals is unknown but, to me, from their placement on a tomb monument constructed according
to the movements of the sun, it is cosmic and relates to the human being’s journey into and out
of existence. It is suggestive of life in three stages (youth, maturity and old age), a tripartite
cosmology (Earth, Sea and Sky), or even as the tri-unity of Man, Earth and Sky represented by the
Shintoist triskelion-shaped mitsudomoe often painted on taiko drum from Japan. Therefore, the 1:1:1
ratio in the music was suggested by the fact that the three spirals in the Newgrange monument
are approximately of the same size, and each has three cycles or layers of curves.

Santuário de Baleias (Whale Sanctuary)

Composed for soprano saxophone and strings orchestra during the months of September and
October 2016, Whale Sanctuary (Santuário de Baleias) originates from imagining and wishing that
all oceans would be kept in their pristine condition, free from industrial hunting and waste; an
arguably naïve, but legitimate wish. If the oceans were kept in this way, they would become a
sanctuary, a protected environment, therefore a sacred space, for the existence of not only whales
but the entire maritime fauna and flora. . . The idea of composing a "sanctuary" implied, again, a
visualization of music as space, and a treatment of formal proportions and symmetries such as
those found in temple construction and the architecture of sacred spaces.

In order to establish a concrete analogy between the oceans and the musical space-time
continuum, I determined the durations of the five musical sections to be proportional to the
real surface areas of the five oceans. After finding such information 27, I attributed the value

27 I used Google and found the following oceanic surfaces: Pacific: 165,250,000 km2; Atlantic: 106,400,000 km2; Indic:
73,560,000 km2; Antartic: 20,330,000 km2; Artic: 14,060,000 km2. These numbers may vary depending on the source.
Although I could not find again my initial source, the oceanic surfaces indicated at http://www.whatarethe7continents.
com/the-worlds-five-great-oceans/ are very similar to those above: Pacific: 165,200,000 km2; Atlantic: 106,400,000
km2; Indic: 73,556,000 km2; Antartic: 20,327,000 km2; Artic: 13,986,000 km2.

68

http://www.whatarethe7continents.com/the-worlds-five-great-oceans/
http://www.whatarethe7continents.com/the-worlds-five-great-oceans/


MusMat: Brazilian Journal of Music and Mathematics • May 2018 • Vol. II, No. 1

1 to the smallest ocean (the Artic) and, after calculating the other values proportionally for the
other oceans, arrived at the values 1.0; 1.4; 5.2; 7.6 and 11.7. Out of the need to simplify them,
I rounded them up or down to more manageable numbers, first obtaining the values 1.0; 1.5;
5.0; 8.0 and 12.0. The compositional process involved many changes in the use of these values
because several aspects of the composition had to be served by these numbers. In the first place,
the macroform divided in five sections according to the syllabic meter ∪ – – – ∪ has each syllable
representing the oceans in the increasing order of their surfaces: Artic, Indic, Atlantic, Pacific and
Antartic, therefore, 1; 5; 8; 12; 1.5. This needed also to be coherent with the macroformal time unit,
the tāla, for which I finally found the value of 10 quarter-notes. In addition to this, each of the
five sections is divided in the same macroformal syllabic meter, which becomes a middle-form
structure, i.e., the subdivision of each macroformal syllable. Each middle-form syllable contains a
spiral expansion of its musical materials, and the growth rate is the same as that of the oceanic
surfaces. At some point, it was also inevitable to notice the similarity of the numbers 1; 1.5; 5; 8;
12 with Fibonacci numbers, 1; 2 (or 3), 5, 8 and 13. For reasons that have to do with satisfying
all formal needs into a one coherent system, I rounded the numbers to meet the Fibonacci series,
therefore arriving finally to the macroformal durations 1; 5; 8; 13; 3 (not 2, which would have been
the closest approximation to 1.5, if this had been the only matter in question). The growth rate of
each middle-form syllable along the five sections, expressed in terms of how many quarter-notes
they contain is 30, 150, 240, 390 and 90. This, in terms of the number of tāla-s that constitute each
section is 3, 5, 8, 13 and 3.

V. Conclusion

The importance of number and proportion for music composition in the 21st century is probably
a matter of personal choice. Different composers in different periods have not only rejected or
embraced the idea (and practice) of allowing number to determine some aspect of their music
but also have conceived differently how number determines music; and the reasons for this are
of a poetic nature.: poetic, because it is directly related to the composer’s “program of art”.
Musical works may be, even if only partially, at specific aspects of its construction, determined
by numerical relationships. In fact, hadn’t aspects of a work been conceived firstly as number
relations, the resulting music would have changed considerably: music would indeed sound
differently. While putting “number ahead of sound” may feel to some composers as something
unmusical, something alien to the nature of musical creation and inspiration, for others, music
and number have always had an intimate relationship which can still be explored and practiced
today. In my case, the use of number does not harm my compositional freedom, and there remain
plenty of opportunities for spontaneity within the given musical materials.

The presence of number by itself does not guarantee the resulting work to be good music. In
fact, depending on how it is used, there is a good chance number can cause a certain stiffness
in the resulting music, as well as a rigidity in the compositional process and, consequently, in
the compositional mind. Composers who assign a creative role to number in their music are, in
the best cases, fully aware of this danger. After all, music is not number; number and music are
different things, and a proof of this is that Music in the Quadrivium was not concerned with
musical composition. However, were there no good reasons at all for assigning a defining, creative
and active role to number in composition, this practice would not have been so present throughout
western music’s history, not to speak of the role of number in music theory, which has been
important since Antiquity. Again, that there may be actually “good” reasons for number to come
before music in its process of creation is an appraisal for which there is no consensus; it is a matter
of personal choice; it depends on one’s poetics, the way one composes, and it depends on the
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numerical relationships themselves, since not all of them are “musical”.
For this reason, I have not brought to this article a historical review of musical works in which

number takes a defining role in music. The discussion was mainly concerned with my own poetics,
and with the exposition of the particular motivations for such a relationship between music and
number.

Concerning the cosmicization of sound, there still remains one observation. Until now I
have only spoken about the composer in the process of artistic/musical creation, and it would
not be appropriate to exclude the performer, the musician who actually brings the composition
to physically vibrate in the air. Performance corresponds to the final stage of cosmic creation
re-enactment; it gives music a physical reality. The French word used for the moment in which the
musician plays the music composed by someone else, réalisation, means production, actualization,
and expresses the idea that a composition becomes real only when it is played, performed, i.e.,
when it is created in a physical, sounding way. The results of those formative principles acquire
a brief, however concrete existence; it is only when it is performed that the music becomes an
acoustic reality, a concrete universe of sounds. Until this moment, the composition has remained
in potentia, locked inside the musical score, a text, a musical reality in fossilized form, or an
encrypted message a-waiting to be deciphered. This work of deciphering is done by the performer,
during the stage of their work called interpretation.

According to the traditional conception in western music culture, in this model 28 of musical
creation, composer and performer stand in different hierarchical levels within the creation process,
the composer being on a higher level than the performer. This seems to be a logical consequence
of the actions taken by each artist: the composer writes the text, the performer reads it. It is
possible to make an analogy between the roles of composer and performer with the role of divine
creators in creation myths from the world. Ethnomusicologist Marius Schneider (1903-1982) made
an extensive comparative study of several sonic cosmologies, creation myths according to which
the world is created from sound, and their relationship with music, and was able to

“(...) distinguish an Omnipotent God from another god who is assigned to create the
world. The Omnipotent God never gets involved in the action: he only has the idea of
creation and limits himself to “utter” with an almost imperceptible voice, the name of
a lesser god, whom he assigns the execution of his own idea. (...) in America, the god
of thunder, the “big screamer”, executes the work of creation commanded by the great
Manitu. However, this lesser god, who is more properly the creator, still is too high
to occupy himself with the creation of a material world. In order to finish his work
he delegates a demiurge (coyote or transformer according to the English and American
ethnologists) and assigns him the partial materialization of the acoustic world. This
assistant, who sometimes is some sort of lunatic, not always is a faithful server.” ([41,
p. 23-24]) (Translated by the author).

In this context, which finds corporeity and materiality as the lowest level of creation,
even when manifestation should be seen as the crowning of Creation, the composer
would be the lesser god, being gifted with the power of imagination and craftsmanship
to create sounding microcosmos (in the plural), and the performer would be the
demiurge or trickster, who deals directly with matter and creates music by playing an
instrument or singing. This analogy does not intend to deify the composer neither
the performer, neither makes an apology of their egos. In fact, painters, composers,
architects, doctors usually suffer of the God complex without the need of any theoretical
support. Neither does this analogy intend to offend the performer by calling them “a

28 There are other models, such as the composer/performer, or the improviser.
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lunatic”. I bring this analogy only because it lives in western music culture, in the way
artists are frequently compared to gods or geniuses, and because it finds an echo in the
divine figures of worldwide creation myths. If the humanly created universe “shares in
the sanctity of the god’s work”, according to Mircea Eliade, every creative act is sacred,
divine, and it seems logical to connect the facts in this way: that a composer receives
what is uttered by the Omnipotent God, and that the performer brings to realization
what the composer was capable to hear from what had been uttered.

From all this, what is really meaningful and important is to recognize that artistic
creation happens through the artist, composer or performer, who is a channel capable
of shaping that energy that wants to be formed, the forma formante, nature. For Jean
Cocteau (1889-1963), “a poet is in a way the work-hand whose act engages a self
more profound than himself which he doesn’t know too well, mysterious forces which
inhabit him and which he knows poorly” ([9]). The artist is just a physical agent
helping the process to take place, or, to use Anton Webern’s words (themselves quoting
Goethe) from a 1933 lecture, “man is only the vessel into which is poured what ‘nature
in general’ wants to express” ([44, p. 15]).

————————————————————————————

References

[1] Allers, Rudolf. 1944. Microcosmus: from Anaximandros to Paracelsus. Traditio, v.2, pp.
319-407.

[2] ARISTOTLE. Metaphysics. Translated by Richard Hope. Ann Arbor, MI: The University of
Michigan Press, 1966.

[3] Babbitt, Milton. 1958. Who cares if you listen? High Fidelity, February. Available in
http://isites.harvard.edu/fs/docs/icb.topic244629.files/Who%20Cares%20if%

20You%20Listen.pdf

[4] Becker, Judith, and Becker, Alton. A Musical Icon: Power and Meaning in Javanese Gamelan
Music. 1981. In The Sign in Music and Literature, ed. Wendy Steiner, pp. 203-216. Austin:
University of Texas Press.

[5] Berio, Luciano. 1981. Intervista sulla Musica a cura di Rossana Dalmonte. Roma-Bari: Laterza.

[6] Bolle, Kees. 1993. Cosmology. The Encyclopaedia of Religion, Mircea Eliade (ed.) New York,
N.Y.: MacMillan.

[7] Burckhardt, Titus. 1986. Science modern et sagesse traditionnelle. Milano: Archè.

[8] Burckhardt, Titus. 1987. Mirror of the Intellect: Essays on Traditional Science and Sacred Art,
translated and edited by William Stoddart. Albany, N.Y.: SUNY.

[9] Cocteau, Jean. 1962. Jean Cocteau s’addresse... á l’An 2000. Medium length film directed by
Cocteau. Ministere de la Culture. Les Archived du film du Centre national de la cinématogra-
phie.

[10] CoomaraswamyOOMARASWAMY, ANANDA K. Traditional Art and Symbolism. Princeton,
N.J.: Princeton University Press, 1977.

71

http://isites.harvard.edu/fs/docs/icb.topic244629.files/Who%20Cares%20if%20You%20Listen.pdf
http://isites.harvard.edu/fs/docs/icb.topic244629.files/Who%20Cares%20if%20You%20Listen.pdf


MusMat: Brazilian Journal of Music and Mathematics • May 2018 • Vol. II, No. 1

[11] Cooper, J.C. 1978. An illustrated encyclopaedia of traditional symbols. London: Thames & Hudson.

[12] Cornford, F. M. 1991. From Religion to Philosophy. A study in the origins of western speculation.
Princeton, N.J.: Princeton University Press.

[13] Cott, Jonathan. 1973. Stockhausen. Conversations with the Composer. New York, N.Y.: Simon
and Schuster.

[14] Devoto, Giacomo, and Oli, Gian Carlo. 1971. Dizionario della Lingua Italiana. Florence: Le
Monnier.

[15] Eliade, Mircea. 1959. The Sacred and the Profane - the Nature of Religion. New York, N.Y. Harcourt,
Brace & World, Inc.

[16] Eliade, Mircea. 1991. The Myth of Eternal Return – or, Cosmos and History. Princeton, N.J.:
Princeton University Press.

[17] Fideler, David. (ed.) 1987. The Pythagorean Sourcebook and Library. Compiled and translated by
Kenneth Sylvan Guthrie. Edited and introduced by David Fideler. Grand Rapids, MI: Phanes
Press.

[18] Gilbert, Katherine Everett, and Kuhn, Helmut. 1972. A History of Esthetics. New York, N.Y.:
Dover Publications, Inc.

[19] Harley, Maria Ana. 1994. Space and Spatialization in Contemporary Music: History and Analysis,
Ideas and Implementations. Los Angeles, CA: Moonrise Press.

[20] Heiler, Friedrich. 1970. Contemplation in Christian Mysticism. Spiritual Disciplines Papers from
the Eranos Yearbooks 4, pp. 186-238. Princeton, N.J.: Princeton University Press.

[21] Hu, Wayne, and White, Martin. 2004. The Cosmic Symphony. Scientific America, February,
v.290, n. 2, pp. 44–53.

[22] Humphreys, Paul. 1989. Form as cosmology: An Interpretation of Structure in the Ceremonial
Songs of the Pueblo Indians. Pacific Review of Ethnomusicology, v.5, pp. 63–88.

[23] IRLANDINI, Luigi Antonio. Expanded Modal Rhythm. Revista Vórtex, Curitiba, vol.5, no.1.,
2017, p 1-24.

[24] Irlandini, Luigi Antonio. 2016. Música e sacrifício. Fronteiras da Música: Filosofia, Estética,
Histórica e Política - Lia Tomás (org.) Série Pesquisa em Música no Brasil v.6 - Editora
ANPPOM, pp. 301–323. Available in http://www.anppom.com.br/ebooks/index.php/pmb/

catalog/book/6

[25] IRLANDINI, Luigi Antonio. Tempo musical cíclico no Miserere mei, Deus de gregoriio
Allegri. XXIV Congresso da ANPPOM. Anais... São Paulo, 2014

[26] Irlandini, Luigi Antonio. 2013. Metagon – Tempo musical espiral. In: Simpósio de estética
e Filosofia da Música. Proceedings... – SEFiM v.1, n.1, pp. 931-946. UFRGS, Porto Alegre.
Available in http:www.ufrgs.br/esteticaefilosofiadamusica/anais-do-sefim

[27] Irlandini, Luigi Antonio. 2012. Cosmologia da composição e suas interações com a teoria e
análise musicais. In: IV Encontro de Musicologia de Ribeirão Preto, Intersecções da Teoria e
Análise Musicais com os Campos da Musicologia, Composição e das Práticas Interpretativas.
Proceedings... , pp. 239-245. USP: Ribeirão Preto, SP.

72

http://www.anppom.com.br/ebooks/index.php/pmb/catalog/book/6
http://www.anppom.com.br/ebooks/index.php/pmb/catalog/book/6
http:www.ufrgs.br/esteticaefilosofiadamusica/anais-do-sefim


MusMat: Brazilian Journal of Music and Mathematics • May 2018 • Vol. II, No. 1

[28] Kater, Carlos. 1997. Catálogo de Obras de H.J.Koellreutter. Belo Horizonte: FEA/FAPEMIG –
Fundação de Amparo à Pesquisa de Minas Gerais.

[29] Lawlor, Robert. 1982. Sacred Geometry; philosophy and practice. London: Thames & Hudson.

[30] Ligeti, György. 1983. Ligeti in Conversation. London: Eulenburg Books.

[31] Livio, Mario. 2002. The Golden Ratio. The story of Phi, the world’s most astonishing number. New
York, N.Y.: Broadway Books.

[32] Long, Charles H. 1993. Cosmogony. Encyclopedia of Religion. Editor: Mircea Eliade. New York,
N.Y.: MacMillan.

[33] Martini, Giambattista. 1984. Compendio della Teoria dei Numeri per Uso del Musico. (1769)
Bologna: Arnaldo Forni Editore.

[34] Merriam, Alan P. 1964. The Anthropology of Music. Chicago, IL: Northwestern University Press.

[35] Nattiez, Jean-Jacques. 1987. Il Discorso Musicale: per uma semiologia della musica.Torino: Giulio
Einaudi Editore.

[36] Otto, Rudolf. 1950. The Idea of the Holy: An Inquiry into the non-rational factor in the idea of the
divine and its relation to the rational. Oxford: Oxford University Press.

[37] Pareyson, Luigi. 1984. Os Problemas da Estética. São Paulo: Martins Fontes.

[38] Pareyson, Luigi. 1993. Estética: Teoria da Formatividade. Petrópolis, RJ: Editora Vozes.

[39] Reale, Giovanni. 2014. História da Filosofia Grega e Romana, vols. I a IX. São Paulo: Edições
Loyola.

[40] Reich, Steve. 2002. Writings on Music 1965-2000. Oxford: Oxford University Press.

[41] Schneider, Marius. 1992. La Musica Primitiva. Milano: Adelphi Edizioni.

[42] Tonelli, Giorgio. Baumgarten, Alexander Gottlieb (1714–1762). Encyclopedia of Philosophy.
Encyclopedia.com. Accessed on 30 Jul. 2017 <http://www.encyclopedia.com>.

[43] Varèse, Edgard and Chou, Wen-Chung. 1966. The Liberation of Sound. Perspectives of New
Music, v.5, n.1, pp. 11-19.

[44] Webern, Anton. 1960. The Path to New Music. London: Universal Edition.

[45] Xenakis, Iannis. 1994. Kéleütha, direção de Alain Galliari. Paris: L’Arche.
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Abstract: In this paper it is shown that the concept of the Eighteenth-Century Sonata form, under
certain conditions, implies exact constraints to its temporal structure, which are essential to keep its
inner proportions balanced. The plastic number of Hans van der Laan appears to be closely related to the
concordance of lengths of the vital parts of a sonata-form movement of type 3 on Hepokoski and Darcy
scale. Furthermore, a probabilistic model of basic variation in the structure of such movement is devel-
oped from scratch and empirically justified by analyzing instrumental works of Wolfgang Amadeus Mozart.

Keywords: Sonata form. Perception. Plastic number. Morphic number. Lognormal distribution

I. Introduction

Sonata-form is a simple, yet very potent concept. Besides hundreds of musical pieces written
in the last couple of centuries, there also exist dozens of serious books and papers about the
subject. We show that it can still be a subject for original research.

In this paper we try to find an exact formulation of certain restrictions1 inherent to the
temporal structure of the Eighteenth-Century Sonata form. More precisely, we ask ourselves what
restrictions are necessarily imposed to the ratios between lengths of distinct parts of a sonata-form
movement, which we call inner proportions. Knowing these restrictions, one would be able to
answer questions of type “how long should this part be when compared to the one that follows
it?”, for example. It would also be possible to explain what exactly means that inner proportions
of a sonata-form movement are balanced.

To find the restrictions mentioned above we need to apply a mathematical treatment, presented
in Section II, which is similar to the methodology used by Hans van der Laan to develop his
unique theory of architectonic space.

Section III is devoted to Sonata form. It begins with a brief introduction to its structure,
followed by formulating a set of necessary restrictions applying to it, using the concept of ground
ratio formulated in Section II. As we show next, these restrictions imply that the plastic number
of Hans van der Laan is tightly related to the temporal organization of a sonata-form movement.
These theoretical findings, formulated as a probabilistic model, are justified by performing a
simple empirical study based on the set of sonata-form movements from the instrumental opus
of W. A. Mozart. Finally, an example of using the plastic number in structural analysis of a
sonata-form movement is given.

1For an example of such restriction see [11, p. 280].
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Figure 1: 36 squares forming a geometric sequence

II. Perception of Spatial Size

Size is one of the fundamental properties of spatial objects. Human sensory system identifies size
of an object with one of the available one-dimensional quantities related to that object, namely
width, length and breadth. As those are easily compared with one another, the sensory system
instinctively assigns the largest of these quantities to represent its size.

Therefore, we may define size of an object to be equal to the length of the longest edge of the
smallest cuboid containing it. Size s > 0 should be visualized as a thin bar (stick) of length s.
Hence we will use the term length when referring to size in the rest of this text.

In this section we study how the sensory system interprets relations between different sizes.
The goal is to develop a mathematical treatment which is necessary for making assumptions and
drawing conclusions later in this text.

i. Automatic Classification of Lengths

When two lengths are exposed simultaneously, the sensory system in our brain automatically
attempts to relate them and to generate a valuable information for the conscious sphere of mind.
Basically, it decides whether one of the lengths is significantly longer than the other. If that is
not the case, they are considered “equal” in a sense of both being (possibly noticeably different)
elements of the same class (level) of size. Such a class is called type of size [16, p. 55].

For any length `0 the interval L, consisting of all lengths ` ≥ `0 which are "equal" to `0,
represents one type of size. The length `1 = sup L is the smallest length clearly different than `0.
Dom Hans van der Laan (1904–1991), a Dutch architect, devised a simple and easily reproducible
experiment [16, p. 49] to illustrate the concept of type of size. He prepared 36 cardboard squares
of different sizes such that the sides of every two consecutive squares differ in length by 4% and
thus forming a geometric sequence2 (see Figure 1). Van der Laan would randomly scatter the
squares on the table and ask someone to take out the group of the largest ones. He claimed that
it would contain exactly seven squares every time. This action could be repeated until only the
smallest square remains, thus dividing the squares into five consecutive groups, each containing
seven members and representing one type of size. The smallest square represents an unit; its side
is, by design, equal to the difference between sides of the largest members of the first two groups
(see Figure 2). The largest members of five groups together with the unit represent six consecutive
members of a geometric sequence with quotient 1.047 ≈ 1.316.

2The relative difference of 4% was obtained as the result of an auxiliary experiment in which a 50 cm long strip of paper
needed to be cut in two halves. The experiment was conceived to measure the precision of eye judgement.
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6 5 4 3 2 1

Figure 2: 36 squares sorted by size in six groups

ii. Ground Ratio

Relating lengths to each other is the only way for the sensory system to “measure” reality. Namely,
it does not possess an intrinsic reference value, i.e. an unit, so it cannot do any measuring on
its own3. However, when two lengths are perceived, the difference between them becomes the
source of meaningful information. This is a consequence of Weber–Fechner law [2, p. 83] which
states that the sensation s corresponding to a physical stimulus of intensity I is proportional to the
logarithm of I [3, p. 90]:

s = k ln I.

Here k > 0 is a constant, called the Weber fraction [2, p. 83], which is a property of the type of
stimulus. Now, the difference d between two sensations s1 and s2 of stimuli with intensities I1 and
I2 is dimensionless, since the unit in the stimulus intensity domain gets cancelled:

δ = |s2 − s1| = |k ln I2 − k ln I1| = k
∣∣∣∣ln I2

I1

∣∣∣∣ . (1)

In particular, given a positive number r, the relation between any two lengths with ratio equal
to r will always appear to be the same since the perceived difference δ = k | ln r| is the same in
each case. Furthermore, there exists a threshold δ0 > 0 such that two lengths belong to the same
type of size if and only if their perceived difference does not exceed δ0, i.e. the ratio of the longer
length to the shorter does not exceed

λ = eδ0/k,

as follows from (1). The constant λ will be called the ground ratio in the rest of this text. Clearly,
λ > 1 because δ0 and k are both positive.

3Of course, we are all able to remember some concrete quantities used in everyday life, but resorting to these notions of
physical units represents an act of the conscious sphere of mind, the influence of which we tend to ignore in this text.
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Definition II.1. Lengths `1 and `2 such that `1 ≤ `2 are effectively equal if `2/`1 ≤ λ. When `2/`1 ≥ λ
holds, `2 is said to be significantly longer than `1.

Remark II.2. In the case when `2 = λ `1, length `2 is both significantly longer than and effectively
equal to `1 in the sense of Definition II.1. It is the legitimate case characterized by a specific type
of balance which emphasizes the clarity of relation between lengths `1 and `2.

Given a base length m0, called the unit, the elements of geometric sequence

(mn)n≥0, where mn = m0 λn (2)

are called measurements. Every two consecutive measurements delimit a type of size.

iii. Margin

For any fixed length ` there is an unique type of size [`1, `2] such that ` is perceived as its
center. Therefore, ` should seem equally distant from `1 and `2. The distance between ` and
`1 corresponds to the difference `− `1; but, as the sensory system only interprets the relations
between perceived quantities and not the quantities themselves, `− `1 must be perceived relative
to some available reference length. In present case ` is the only such length. Analogously, the
distance between ` and `2, i.e. the difference `2 − `, is perceived relative to `, so we have

`− `1

`
=

`2 − `

`
=⇒ 1− `1

`
=

`2

`
− 1 =⇒ 2 =

`1 + `2

`
=⇒ ` =

`1 + `2

2
.

Hence ` is the arithmetic mean [6, p. 4.1] of `1 and `2. Now there exists ∆` > 0 such that
`1 = `− ∆` and `2 = l + ∆`. Since `1 and `2 delimit a type of size, it follows

`+ ∆`
`− ∆`

= λ.

Rewriting the above equation, one obtains

∆`
`

=
λ− 1
λ + 1

. (3)

Displacement ∆`, which obviously depends solely on `, is called the margin of ` [16, p. 55]. All
lengths obtained by changing the given length for values less than or equal to its margin belong to
the same type of size and are practically equal to `. In other words, the difference between such
length and ` is negligible to `.

The margin of ` represents the smallest length which can be related to `. An interval [∆`, `]
represents one order of size [16, p. 55]. Furthermore, the interval [m, M], where m is equal to the
margin of ` and ` is equal to the margin of M, is called the scope of `. It consists of two consecutive
orders of size.

The following result characterizes effective equality in terms of negligibility.

Theorem II.3. Two lengths are effectively equal if and only if their difference is negligible compared to
their sum.

Proof. Let `1 and `2 be two arbitrary lengths. As the statement is obviously valid for `1 = `2, we
can assume that `2 > `1 without a loss of generality. First, we assume that `2 − `1 is negligible to
`1 + `2, i.e. that the former does not exceed the margin of the latter:

`2 − `1 ≤ ∆(`1 + `2). (4)
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Dividing the inequality (4) by `1 + `2 and using (3), we obtain

`2 − `1

`1 + `2
≤ ∆(`1 + `2)

`1 + `2
=

λ− 1
λ + 1

,

which readily simplifies down to `2
`1
≤ λ, meaning that `1 and `2 are effectively equal.

On the other hand, assuming that (4) is false and reasoning analogously, we conclude that
`2
`1

> λ, which means that `1 and `2 cannot belong to the same type of size. That completes the
proof.

iv. Derived Measurements

Using (3), for any two consecutive measurements `1 and `2 = λ `1 we obtain

`2 − ∆`2 = `2

(
1− ∆`2

`2

)
= λ `1

(
1− λ− 1

λ + 1

)
= `1

2 λ

λ + 1
=

= `1
(λ + 1) + (λ− 1)

λ + 1
= `1

(
1 +

λ− 1
λ + 1

)
= `1

(
1 +

∆`1

`1

)
= `1 + ∆`1.

Hence `′2 = `2 − ∆`2 is the only length which is practically equal to both `1 and `2, so it may
be readily identified with any of the two. It therefore represents the perceived point of balance
between the given measurements. Moreover, `′2 coincides with the harmonic mean [6, p. 4.18] of
`1 and `2 since

`2 − ∆`2 = `2

(
1− λ− 1

λ + 1

)
=

2 `2

λ + 1
=

2 `1 `2

`1 (λ + 1)
=

2 `1 `2

`1 + λ `1
=

2 `1 `2

`1 + `2
=

2
1
`1
+ 1

`2

.

Generally, for any two lengths `1 and `2 such that `2 is significantly longer than `1 there is
a unique length ` which is perceived as the natural point of balance between `1 and `2, i.e. as
being equally distant from both lengths. These distances are equal to differences `− `1 and `2 − `,
which must be taken relative to `1 and `2, respectively, as these are the only available reference
lengths. Therefore,

`− `1

`1
=

`2 − `

`2
=⇒ `

`1
− 1 = 1− `

`2
=⇒ ` (`1 + `2)

`1 `2
= 2 =⇒ ` =

2 `1 `2

`1 + `2
=

2
1
`1
+ 1

`2

,

i.e. ` coincides with the harmonic mean of `1 and `2.
The sequence of measurements (2) is naturally interpolated with another geometric sequence

with ratio λ, denoted by (m′n)n≥1, where m′n = mn − ∆mn is called the derived measurement
corresponding to mn. The two sequences, taken together, embody all three Pythagorean means;
given n ≥ 1,

• mn is the geometric mean [6, p. 4.15] of mn−1 and mn+1,
• m′n+1 is the geometric mean of m′n and m′n+2,
• mn is the arithmetic mean of m′n and m′n+1,
• m′n is the harmonic mean of mn−1 and mn.

v. Plastic Number

As the ground ratio is a fixed numeric constant, we ask ourselves what its exact value is. The
universality of the concept suggests that its origin is environmental. Indeed, a length can be
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perceived only in the context of an object whose size it represents; but every perceivable object
exists within a certain realm, or environment, which itself has certain properties. While the value
of ground ratio may be approximated by conducting the experiment presented in Section i, as van
der Laan has demonstrated, its exact value can only be deduced from these properties.

The deductive approach was used by van der Laan in his study of the relations between sizes
of physical (spatial) objects [16]. He derived the value of ground ratio by using the fact that the
space containing these objects is three-dimensional, showing that λ is equal to the single real root
ψ of the trinomial x3 − x− 1. Its exact value is

ψ =
3
√

108 + 12
√

69 + 3
√

108− 12
√

69
6

≈ 1.324718

which is called the plastic number. It generates the system of measurements shown in Figure 3,
which consists of two consecutive orders of size. The larger order of size contains eight measure-
ments I1, I2,. . . , I8 (blue bars), each one representing a type of size. The smallest measurement I1,
called the unit, is equal to the margin of the largest measurement I8. The other, smaller order of
size contains eight measurements II1, II2,. . . , II8 (red bars), where IIk is equal to the margin of Ik:
thus I1 = II8. The whole system represents the scope of the unit I1.

Van der Laan’s system of measurements can be used to approximate the Weber fraction
corresponding to the visual length stimulus. Since II1 is the smallest length non-negligible to I1,
which is the margin of I8, it follows that II1 approximates the just-noticeable-difference (JND)
threshold [2, p. 37–38] associated with I8. The corresponding Weber fraction is equal to the ratio
of II1 to I8, i.e. ψ−14 ≈ 0.0195. This is coherent with values, reported by Weber himself, “[...] of
about 0.01 or 0.02. The majority of later studies yield similar values [...]” [15, p. 344].

vi. Morphic Numbers

A real number x > 1 such that x− 1 = x−m and x + 1 = xn for some positive integers m and n is
called the morphic number. A geometric sequence based on morphic number has certain additive
properties (their definitions depend on values m and n), i.e. some members of the sequence may
be computed by adding/subtracting other members. The above definition may be generally
interpreted as follows. Given an unit quantity x0 = 1, assume that x is the smallest quantity
significantly greater than x0. Then x is equal to the corresponding ground ratio. If x is a morphic
number, then the difference x− x0 between two quantities, as well as their sum x + x0, belongs to
the same system of measurements as x does. This allows the entire system to be reconstructed
from any n consecutive measurements using only addition and subtraction.

It can be shown that only two morphic numbers exist [1], namely the plastic number (for m = 4
and n = 3) and the golden ratio

ϕ =

√
5− 1
2

≈ 1.618033

(for m = 1 and n = 2).
Additive properties of the system of measurements based on the plastic number are illustrated

in Figure 3. For example, in a sequence of four consecutive measurements the sum of the smallest
two is equal to the largest; similarly, in a sequence of six consecutive measurements the difference
between the largest two is equal to the smallest. There is also an additive rule which combines
authentic and derived measurements: in a sequence of four consecutive measurements, the first
one is twice smaller than the derived measurement corresponding to the last.
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I1
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II2

I3
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I4
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I5
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II7

I8
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Figure 3: system of measurements based on the plastic number

The analogous system based on the golden ratio has similar (albeit not as rich) additive
properties. However, the golden ratio is not related to our perception of three-dimensional reality
[16, p. 75]. Also, in [18, p. 138] we find:

For van der Laan, the Golden Section in its application is nothing more than an
artificial concept to order matter, as abstract as the discrete quantity of mathematical
numbers. Because of its abstract nature, it proves inadequate when brought into
relation to concrete and singular reality, since it remains on the level of analysis.

According to van der Laan, the plastic number ratio directly grew from discernment (the human
ability to differentiate sizes) and from the necessity of relations [18, p. 138]. As such, it would be
an improvement over the golden ratio [19, p. 1].

Nevertheless, many authors still consider ϕ to be an important proportion in art, architecture
and music; see, for example, [11], [12] and [4].

III. Sonata Form

Sonata form is the central musical concept of the Classical period and one of the most important
ideas in the history of Western music. During the Classical period it was conceived in two
parts: the Exposition (A), in which certain themes are introduced, and the Development and
Recapitulation (B) in which the themes are developed and revisited [11], as shown in Figure 4.

Hepokoski and Darcy list five types of sonata-form movements [7]. Type 1 features no Devel-
opment section and is often used in slow and more peaceful movements. Type 2 is characterized
by eliding the end of the Development with the beginning of the Recapitulation, making it difficult
to determine a clear bound between them. Types 4 and 5 refer to sonata rondos and concerto
sonata movements, respectively. In this paper we focus on type 3, which features full Exposition,
Development, and Recapitulation. From now on, the term “sonata-form movement” will refer to
that type.

The Exposition is divided in two parts establishing the two different but well-blending tonalities,
called the primary key and the secondary key (the latter usually being either the dominant key for
a major primary key or the parallel key for a minor primary key). Often these two tonalities
are expressed by mutually contrasting groups of thematic material called the first subject and the
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DevelopmentExposition Recapitulation

Primary key Secondary key

A B

Figure 4: Sonata form

second subject. We will assume that the two subjects are distinct and disjoint; however, it is not
always the case, as they may sometimes blend into each other partially.

The end of the Exposition is marked with a cadence in secondary key, called the essential
expositional closure (EEC) [7]. Sometimes, however, a short section may follow EEC before the onset
of the Development. In this text we consider such a passage to be part of the Exposition.

The end of the Development is marked with a cadence in primary key, called the essential struc-
tural closure (ESC) [7]. It may be followed by a short passage before the onset of the Recapitulation.
We consider such a passage to be part of the Development.

The length of each of three major parts of a sonata-form movement, as well as the length of
each subject, is always well-defined with respect to the above conventions. Now we can study how
the lengths of different parts are, in general, related to each other. We may use tools developed in
the previous section to do so, as the length of each part can be numerically expressed as a number
of measures by doing simple counting.

Due to the fact that we are able to memorize, it is not difficult to imagine perceiving a relation
between two distinct chunks of music played in succession. However, we may not assume the
value of ground ratio a priori; we have to obtain it by studying the general properties of Sonata
form which organizes the time flow.

From now on, we use the symbols a, b, c, s1 and s2 to denote the lengths of parts A and B, the
Development and the two subjects, respectively.

i. Inherent Restrictions

The Sonata form itself imposes certain restrictions [11, p. 280]. Hence some of its key aspects may
be expressed in form of a set of four structural “rules” (we will call them propositions) based on
the concept of ground ratio.

The first restriction is related to the shape of Exposition which is determined by the proportion
of lengths of two subject groups. The main premise is that the two necessary belong to different
keys which are considered equally important in the course of Exposition. Therefore, if the second
group was much longer than the first group it would shadow out the importance of the primary
key. On the other hand, if it was much smaller, it would be shadowed by the primary key. As
the two subject groups have equally demanding tasks of establishing the respective tonalities,
effectively equal amounts of time for them to do so should be granted, implying the following
statement.

Proposition III.1. The lengths of two subject groups in the Exposition are effectively equal.

The Development represents a passage which “renders the established tonal tension[4] more
fluid an complex [, . . . ] typically [initiating] more active, restless, or frequent tonal shifts—a sense
of comparative tonal instability. Here one gets the impression of a series of changing, coloristic

4Key displacement at the end of the Exposition results in an unresolved tension.
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moods or tonal adventures [. . . ] with shadowed, melancholy, or anxious connotations” [7, ch. 2,
p. 7]. As the general characteristic of the Development is its tonal instability, it should not dominate
over the parts of well-established tonality. Hence the Development should not be significantly
longer than both subjects. It should not be significantly shorter than both of them either, since
there would be no time for it to build tension, most often by developing thematic material or
modulating through distant keys, and to include a retransition before the Recapitulation; it would
seem all too tight and undeveloped to the listener who expects a meaningful contrast to the
Exposition. This implies the second important inherent restriction of Sonata form, stated below.

Proposition III.2. The length of the Development is effectively equal to the length of at least one subject
group.

Discussing Mozart’s style in context of Sonata form, D. F. Tovey says that “the return to the
tonic [the beginning of Recapitulation] always has the effect of being accurately timed” [17, p. 215].
Onset of the Recapitulation is indeed the crucial moment in the course of a sonata-form movement;
it is better to say that it is the moment in which the Development ends, i.e. in which its length
becomes definitive. The listener’s mind therefore has the data required to guess of how long the
entire movement should be, which in turn makes possible to determine whether the Development
has the “right” length, i.e. is “accurately timed”. Namely, as a reflection of the Exposition is
expected to follow, the mind naturally assumes that length of the Recapitulation equals that of
the Exposition. Hence b = a + c, i.e. c = b− a. Since Sonata form has a distinct ternary shape,
we assume that c is not negligible to the expected length a + b of the whole movement. Now
Theorem II.3 implies that b is (expected to be) significantly longer than a. Therefore, to prevent
the Development of being too short, we acknowledge the following restriction.

Proposition III.3. The Exposition with Development is significantly longer than the former.

The Development can be realized in a myriad of ways once the subject material is presented
in the Exposition. A composer should have the highest possible degree of freedom to express
his or her ideas within the central section. In particular, it should be possible for the length
of Development to vary considerably when compared to the length of Exposition (enough to
discourage an educated listener from trying to guess it). In order to measure the variation, we
introduce a property called the central magnitude:

µ =
max c
min c

,

where max c and min c are equal to the longest and shortest Development possible (for an arbitrary
but fixed a) such that conditions stated in propositions III.2 and III.3 hold. The central magnitude
measures the “amount of variation" in length of the Development. Its value is an answer to the
question “how many times is the longest possible development section longer than the shortest
one?”. To ensure the maximal amount of variation, we state the following condition, which is
naturally imposed as inherent to Sonata form.

Proposition III.4. The central magnitude has to be as high as possible.

ii. Parametrization of Shape

The ratio c/a, i.e. the relative length of Development with respect to the length of Exposition, is
crucial for the shape of a sonata-form movement. Therefore it will be called the shape parameter
in the subsequent text. In this section we use propositions III.1, III.2, III.3 and III.4 to compute
the exact value of ground ratio and subsequently determine the range of the shape parameter.
Without a loss of generality we may assume that s2 ≥ s1.
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Lemma III.5. For s2 ≥ s1 the following inequalities hold:

s2

s1
≤ λ,

s1

c
≤ λ and

c
s2
≤ λ. (5)

Proof. The first inequality readily follows from Proposition III.1. The statement of Proposition III.2
is equivalent to

s1

λ
≤ c ≤ λ s1 or

s2

λ
≤ c ≤ λ s2. (6)

But, since s2
s1
≤ λ and λ > 1, we obtain

s2
λ

λ s1
=

1
λ2 ·

s2

s1
≤ 1

λ2 · λ =
1
λ
< 1,

implying s2
λ < λ s1. Because of that, the statement (6) is equivalent to

s1

λ
≤ c ≤ λ s2,

implying s1
c ≤ λ and c

s2
≤ λ. That completes the proof.

Theorem III.6. The ground ratio for Sonata form is equal to the plastic number ψ.

Proof. Multiplying the first two inequalities in (5) yields s2
c ≤ λ2. Hence from Lemma III.5 follows

a
c
=

s1

c
+

s2

c
≤ λ + λ2. (7)

On the other hand, multiplying the first and the third inequality in (5) yields c
s1
≤ λ2. Therefore,

Lemma III.5 also implies
a
c
=

s1

c
+

s2

c
≥ 1

λ
+

1
λ2 =

λ + 1
λ2 . (8)

Inverting the inequalities (7) and (8) yields

1
λ + λ2 ≤

c
a
≤ λ2

λ + 1
. (9)

Furthermore, Proposition III.3 implies

c
a
=

a + c− a
a

=
a + c

a
− 1 ≥ λ− 1. (10)

Let m1(λ) = 1
λ+λ2 , m2(λ) = λ − 1 and M(λ) = λ2

λ+1 . It is obvious that, for positive λ, the
function m1 is strictly decreasing and the function m2 is strictly increasing. As both m1 and m2 are
continuous, the fact that m2(1) = 0 < 1

2 = m1(1) implies that there exists an unique λ0 > 1 such
that m1(λ0) = m2(λ0). Using the equality 1 + ψ = ψ3, which follows from the fact that the plastic
number is the root of polynomial x3 − x− 1, we readily check that λ0 = ψ. Therefore, from (9)
and (10) follows

m(λ) ≤ c
a
≤ M(λ), where m(λ) =

{
m1(λ), 1 < λ < ψ,
m2(λ), λ ≥ ψ.

(11)

Now we can compute the central magnitude:

µ =
max c
min c

=
1
a max c
1
a min c

=
max c

a
min c

a
=

M(λ)

m(λ)
.
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Using (11), it follows

µ =


M(λ)
m1(λ)

= λ3, 1 < λ < ψ,
M(λ)
m2(λ)

= λ2

λ2−1 , λ ≥ ψ.
(12)

According to Proposition III.4, µ must have the highest possible value. Differentiating µ with
respect to λ using (12) yields d µ

d λ = 3 λ2 > 0 for 1 < λ < ψ and d µ
d λ = − 2 λ

(λ2−1)2 < 0 for λ > ψ.
Therefore µ is strictly increasing for 1 < λ < ψ and strictly decreasing for λ > ψ. It follows that µ,
being a continuous function of variable λ on (1,+∞), attains the maximum value for λ = ψ.

We have shown that the essential features of Sonata form imply that the ground ratio must be
equal to the plastic number. Therefore, inner proportions of the temporal structure of Sonata form
are organized with respect to the same system (imposed by the nature itself) used to organize
proportions in a spatial, architectonic structure.

Corollary III.7. The central magnitude is equal to ψ3.

Corollary III.8. The shape parameter may vary between ψ−4 and ψ−1.

Corollary III.9. The Development is significantly shorter than the Exposition5.

The bounds established by Corollary III.8 should not be interpreted as literary as our theoretical
deduction suggests. Instead of forcing the shape parameter between some fixed bounds, we should
ask ourselves how its value is distributed in probabilistic sense. Hence let us denote X = c/a,
X > 0. Now we use the interval T = [ψ−4, ψ−1] to deduce the probability distribution of the
continuous random variable X.

It should be noted that X may attain any positive value in our model. However, X ∈ T has
to be much more probable than X /∈ T . Therefore it is reasonable to assume that the probability
distribution function for X is bell-shaped, peaking somewhere near the center of T , i.e. the average
of its endpoints Xl = ψ−4 and Xu = ψ−1. Since X is dimensionless value represented as a ratio,
the appropriate averages are geometric and harmonic mean [6, p. 4.17–4.18]. Indeed, the geometric
mean Xg =

√
Xl Xu satisfies

Xg

Xl
=

Xu

Xg
.

Hence the relation between lengths a Xg and a Xl is the same as the relation between a Xu and
a Xg, where a > 0 is arbitrary. In other words, ranges [Xl , Xg] and [Xg, Xu] are perceived as being
equally wide, so the possibilities Xl ≤ X ≤ Xg and Xg ≤ X ≤ Xu should be equally probable.
Now, as ln Xg is the arithmetic mean of ln Xl and ln Xu, the probability density curve of ln X
appears to be symmetric, so we simply assume that ln X is normally distributed with mean ln Xg.
Therefore the distribution of X is lognormal [5, p. 1–2.]:

X ∼ lnN (µ, σ). (13)

Now it follows Xg = Med[X], which yields [5, p. 9]

eµ = Xg =⇒ µ = ln Xg. (14)

In Section iv we showed that the naturally perceived middle between two fixed lengths
coincides with their harmonic mean. In particular, this is valid for (relative) lengths Xl and Xu,

5D. F. Tovey also points this out by saying that the Development in a sonata-form movement of Mozart is generally
“short” compared to the Exposition [17, p. 215].
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implying that their harmonic mean Xh = 2 Xl Xu
Xl+Xu

is the natural center of the interval T and a
measure of central tendency of X. In statistics, the main measures of central tendency are the mean
(expectation), median and mode [6, p. 4.1]; since it was already stated that Med[X] = Xg, it remains
to identify Xh with the mode Mode[X] or the mean E[X]. But Mode[X] < Med[X] < E[X] holds
for any lognormal distribution [5, p. 9] and Xh < Xg [6, p. 4.20], hence we assume Xh = Mode[X].
Because Mode[X] = eµ−σ2

[5, p. 9], we have

Xh = eµ−σ2
=⇒ ln Xh = µ− σ2.

Using (14) it follows

σ =

√
ln

Xg

Xh
.

As Xg = ψ−5/2 and Xh = 2
ψ+ψ4 , we have

µ = ln Xg = −5
2

ln ψ = −5 ln
√

ψ

and

Xg

Xh
=

1 + ψ3

2 ψ3/2 =
ψ−3/2 + ψ3/2

2
=

1
2

(
e

3
2 ln ψ + e−

3
2 ln ψ

)
= cosh

(
3
2

ln ψ

)
= cosh(3 ln

√
ψ).

Letting ω = ln
√

ψ, we finally obtain

µ = −5 ω ≈ −0.7029989, σ =
√

ln(cosh(3 ω)) ≈ 0.2940039. (15)

Parameters in (15) define the probability distribution of X. Now, using the plnorm function from
computer software R [13], we compute the probability P(Xl ≤ X ≤ Xu) = 0.8486196, which means
that probability for X /∈ T is practically equal to 15%.

Proposition III.10. Let κ = 1
2

√
1 + ψ−3. Then the expected value and the standard deviation of X are

E[X] =
κ
√

2
ψ7/4 ≈ 0.5169651 and SD[X] =

κ (ψ3/2 − 1)
ψ5/2 ≈ 0.1553341.

Proof. The expectation and the variance of X are [5, p. 9]

E[X] = eµ+ 1
2 σ2

and Var[X] = e2 µ+σ2
(

eσ2 − 1
)

,

hence
SD[X] =

√
Var[X] = eµ+ 1

2 σ2
√

eσ2 − 1.

Using (15), we define

F1 = eµ = ψ−5/2 and F2 = eσ2
= cosh(3 ω) =

1
2

(
ψ3/2 + ψ−3/2

)
.

Now we have
E[X] = F1

√
F2 and SD[X] = F1

√
F2

2 − F2.

The statement follows by rewriting the above equations using the equality 1 + ψ = ψ3.
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iii. An Empirical Study

The probability distribution (13) applies to sonata-form movements of type 3 in general, defining
the probability P(p ≤ X ≤ q) for arbitrary 0 < p < q. It would be meaningless trying to apply it
to a single sonata-form movement. However, given a large number of such movements written
by the same composer, a statistical analysis may be performed in order to compare the empirical
distribution of X to the theoretical one.

In this section we use a set of sonata-form movements from the instrumental (solo, chamber
and orchestral) opus of Wolfgang Amadeus Mozart, which represents a peak of elegance in
Western classical music. There are several objective reasons to choose Mozart:

1. a large amount of unified data is at our disposal (see [9]) due to his immense productivity,

2. the quality of his work is uniform; there are no mediocre pieces in his opus,

3. his work is constantly praised for the perfectness of temporal proportions; several distin-
guished authors are quoted in [11, p. 276]:

. . . the genius of [W. A. Mozart] is manifested in form and balance. His music has
been revered, among other things, for its “beautiful and symmetrical proportions”
[34, p. 217]. In 1853, Henri Amiel opined that “the balance of the whole is perfect”
[I, p. 54]. Hanns Dennerlein described Mozart’s music as reflecting the “most
exalted proportions,” and the composer himself as having “an inborn sense for
proportions” [quoted in 7, p. 1], a thought echoed by H. C. Robbins Landon [20,
p. 268]. Eric Blom wrote that Mozart had “an infallible taste for saying exactly the
right thing at the right time and at the right length” [5, p. 265].

The total of 188 sonata-form movements of type 3 can be extracted from the instrumental part
of Mozart’s opus as published in [9]; these are listed in Table 1, each of them denoted by the
respective Köchel catalog number together with position of the movement in question (expressed
in roman numerals) within the corresponding piece.

As noted before, the Exposition and the Development are always well defined in a sense that
their lengths can be unambiguously determined. Thus the lengths a (of the Exposition) and c (of
the Development) are given for every movement listed in Table 1.

Mathematical expectation of X with respect to the data set D = {ck/ak : 1 ≤ k ≤ 188} with
ak, ck given in k-th row of Table 1, is

X =
1

188

188

∑
k=1

ck
ak
≈ 0.5145557.

This differs for less than 0.5% from the value E[X] given in Proposition III.10. In particular, E[X]
represents a statistical measure of Mozart’s choice of shape parameter. The important fact is that
it was not necessary to include any information from Mozart’s music to compute it.

To compare empirical probability distribution of data from D with the lognormal distribution
with parameters given in (15) we apply the Kolmogorov-Smirnov test, available in R as ks.test
[13]. The test gives p-value of 0.3882 which is significantly greater than the suggested rejection
threshold 0.1 (or commonly used 0.05), indicating that there exist strong evidence to support the
null hypothesis (that data from D is log-normally distributed). Next we use the function fitdistr

available in R [13] to fit a lognormal distribution to data using the method of maximum-likelihood.
We obtain the distribution lnN (µ f , σf ), where

µ f = −0.71041299 and σf = 0.29738620. (16)
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Table 1: 188 instrumental sonata-form movements composed by W. A. Mozart

Köchel a c

Piano sonatas
279 I 38 19
279 II 28 14
279 III 56 30
280 I 56 26
280 II 24 12
280 III 77 30
281 I 40 29
281 II 46 12
282 I 15 6
282 III 39 22
283 I 53 18
283 II 14 9
283 III 102 69
284 I 51 20
309 I 58 35
310 I 49 30
310 II 31 22
311 I 39 39
330 I 58 29
330 III 68 27
332 I 93 39
332 III 90 57
333 I 63 30
333 II 31 19
457 I 74 25
533 I 102 43
533 II 46 26
545 I 28 13
570 I 79 53
576 I 58 40

Piano four-hands
381 I 30 21
381 III 70 27
358 I 45 11
521 I 84 52

Two pianos
448 I 80 29
448 II 48 22

Sonatas for organ
68 26 10
144 27 24
145 37 12
212 30 10
241 35 12
224 45 21
225 50 19
244 46 21
245 35 13
263 35 11
274 32 21
328 41 19

Piano trios
254 I 81 52
254 II 14 91⁄2
496 I 78 38
502 I 82 35
542 I 101 34
548 I 62 41
548 II 32 23
564 I 41 36

Piano quartets
478 I 99 41
493 I 95 52
493 II 46 23

Flute quartets
285 I 65 34
285a I 34 14
285b I 66 44

Köchel a c

370 I 63 34
Violin sonatas

301 I 84 44
302 I 68 38
304 I 84 28
305 I 73 27
306 I 74 37
306 II 34 23
296 I 68 31
378 I 82 31
376 I 47 26
377 I 51 31
380 I 58 40
454 I 52 24
481 I 92 47
526 I 100 39
526 II 41 15
403 I 24 10
372 I 67 59
547 II 78 37

Bassoon and cello duo
292 I 46 18
292 II 22 8

Basset horn trios
439b I/I 51 20
439b III/I 37 20
439b IV/I 28 16

Quintets
452 I 45 16
452 II 43 30
581 I 79 38
407 I 56 16
407 II 44 25

String Quintets
174 I 86 34
174 IV 94 68
515 I 151 53
516 I 94 38
593 I 80 43
614 I 86 38

String quartets
155 I 53 18
156 I 71 38
157 I 52 22
158 I 45 29
159 I 29 15
160 III 54 32
168 I 41 21
169 I 36 36
171 III 10 8
171 IV 71 20
172 I 52 19
172 IV 80 32
173 I 45 19
387 I 56 51
421 I 41 28
458 I 90 47
428 I 68 32
458 I 90 47
458 IV 133 65
464 I 87 74
464 IV 80 64
465 I 84 48
465 IV 136 62
499 I 98 43
575 I 77 39
589 I 71 59
590 I 74 37
590 IV 133 51

Köchel a c

String trio
563 I 73 37

String duos
423 I 48 33
424 I 70 43
424 II 80 43

Marches
189 27 12
237 28 12

Divertimentos
113 I 27 14
113 IV 50 20
251 I 40 27
213 I 30 10
188 I 14 8
188 II 24 12
240 I 42 22
240 IV 66 24
252 I 18 7
270 I 51 14
136 I 36 28
136 III 58 28
137 II 25 14
137 III 44 20
138 I 35 18
205 I 37 15
334 I 83 42
334 IV 33 16

Serenades
239 I 25 17
525 I 55 20
388 I 94 35
361 I 76 48
250 I 91 46
203 I 54 35
203 VIII 109 44
185 I 77 22

Symphonies
48 I 33 26
110 I 69 23
112 I 54 16
112 II 25 12
114 I 59 20
114 IV 73 28
124 I 36 36
128 I 53 31
129 I 46 21
130 I 62 21
199 I 58 28
183 I 82 34
200 I 67 23
201 I 76 30
201 II 38 14
201 IV 61 40
202 I 78 34
202 IV 79 47
204 I 67 21
425 I 103 40
425 II 36 29
425 IV 163 68
504 I 106 65
504 IV 151 64
543 I 117 41
543 IV 104 48
550 I 100 65
550 II 52 21
550 IV 124 82
551 I 120 68
551 IV 157 67
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Figure 5: empirical distribution of X compared to the fitted lognormal: Q–Q plot (left) and CDF plot (right)
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These values come very close to those given in (15), with relative errors of 1.05% and 1.15%,
respectively. The Q–Q and CDF plots shown in Figure 5 present no reason to suspect that data
from D is not log-normally distributed. Figure 6, which includes the histogram and probability
density curve corresponding to the empirical data from D, shows that fitted and theoretical
distributions of X are practically coincidental.

The results of this simple study suggest that purely theoretical consequences of the inherent
restrictions in Sonata form as presented in Section i indeed act as practical necessities, at least
in Mozart’s work. We can say that this observation justifies our theoretical deductions; since
the probability distribution of X depends on two independent parameters, it would be virtually
impossible for both values from (15) to coincide with the respective values in (16) so closely simply
by chance.

iv. Scope as a Temporal Frame

The notion of scope defined in Section iii may be used to construct a natural time frame for a
sonata-form movement. To avoid risking negligibility, the total length of the piece, as well as the
length of its opening phrase, should be contained within the scope defined by the length of its
first subject, which is the first self-contained part of the movement. In other words, the opening
phrase, the first subject and the whole movement should correspond to measurements II1, I1 and
I8 from the system shown in Figure 3. These relations are particularly sharp in, for example, first
movements of Mozart’s piano sonatas K. 279 (C major) and K. 281 (B-flat major). In K. 279 the
first subject, ending with half cadence after 15 measures, defines the scope in which the smallest
length is 2 measures long and the largest length is 107 measures long. That fits tightly around the
span between the length of the opening motive (2 measures) and the total length (100 measures).
In K. 281, the first subject is 16 measures long: lengths of the opening motive (2 measures) and the
whole movement (109 measures long) again fits within the scope of the first subject, ranging from
2 to 115 measures.

v. An Example of Formal Analysis

The shape of a particular sonata-form movement may be analyzed using the measurements from
the system of van der Laan, shown in Figure 3. A remarkable example is the first movement from
Mozart’s Piano Sonata in B-flat major, KV 333. It is schematically shown in Figure 7 (the black
bar).

Let the length of the whole movement be associated with the largest measurement I8. Then I1,
I2, I3 and I5 approximate lengths of the first subject, the Development, the second subject and the
Recapitulation, respectively. The first subject is divided in two parts by the cadence in measure 10;
these parts correspond to the margins of I5 and I6. The first subject is recapitulated in measures
93–118 and the second subject (including the final closure) in measures 118–165. These two parts
correspond to the derived measurements of I2 and I4, denoted by Ia2 and Ia4, respectively. The
measurements are shown as colored bars in Figure 7.

The opening phrase is 33/4 measures long (including the upbeat). It is only slightly larger
than II1, which is approximately equal to 31/4 measures. Therefore the temporal frame of this
movement can be practically identified with the scope of I1.

It should be noted that Proposition III.1 does not apply here. It is due to the fact that there are
two consecutive closures in F major contained in measures 22–63. However, it does not matter
as the transition between two subjects cannot be unambiguously determined. For example, one
could claim that the transition happens between measures 22 and 38, in which case the subject
lengths would be treated as being practically equal.
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Figure 7: W. A. Mozart: Piano Sonata in B-flat major KV 333, first movement

It is obvious that the Recapitulation practically equal to the Exposition, which is coherent to
the listener’s expectation (forming with the onset of Recapitulation) that the two should be of the
same length. It also should be noted that the Recapitulation is prolonged as much as it could be
while staying practically equal to the Exposition.

The onset of Recapitulation divides the movement in ratio 93/72 ≈ ψ, while the end of Exposition
divides it in ratio 102/63 ≈ ϕ. Hence both morphic numbers are built in the structure, defining
the two most prominent moments in the course of movement. Relative errors of the above
approximations are equal to 2.50% and 0.06%, respectively.

Although the structure of the movement illustrated in Figure 7 appears as it was consciously
designed by combining measurements based on the plastic number (including the derived ones),
chances that it actually happened are next to nothing. Namely, Mozart could not know about the
plastic number as it was first discovered in 1928 [10] by Hans van der Laan6. As this excludes
the possibility of a thoughtful mathematical design, it could only happen as a consequence of the
plastic number indeed being a natural necessity [18, p. 138]. Many more examples of analyzing
piano sonatas of Mozart in a similar way can be given; plastic number tends to appear frequently
in his work.

The appearance of the golden ratio is significant as it indicates that measurements from the
system of van der Laan can be combined to approximate it:

I2 + Ia2 + Ia4

I1 + I3
≈ ϕ.

Relative error of this approximation is equal to 0.16%.

IV. Conclusion

We have shown some exact structural aspects of Sonata form can be deduced from its very
concept. Length c of the Development can be chosen by simply using a generator of log-normally

6According to some sources, the plastic number was actually discovered in 1924 by a French engineer Gérard Cordonnier,
who called it the radiant number [14, p. 9].
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distributed random variable. Since theoretically any value c > 0 could be generated, inherent
upper and lower bound ψ−4 and ψ−1 of the shape parameter X = c/a also have to be taken into
consideration. There need to exist strong musical reasons for X not being between these bounds.
According to our probabilistic model it should happen in about 15% of cases. Indeed, we find
X /∈ T = [ψ−4, ψ−1] in about 13% of movements from Table 1.

A strong relation between Sonata form and the plastic number is established by our findings.
The fact that the plastic number takes the role of ground ratio may characterize Sonata form
as a “spatial” construction within the temporal domain. This may be one of the reasons for its
popularity. Also, the plastic number acts as a bridge between music and architecture, from which
it originated.

Results of the empirical study described in Section iii also give additional credit to Mozart (if
that is even possible). Namely, an analysis of his work shows that proportions of the movements
from Table 1 are coherent with the abstract concept of Sonata form. In fact, his work may serve
as an detailed illustration of the concept, exploring all possible combinations of well-balanced
proportions. In particular, values of the shape parameter for movements in Table 1 densely cover
the whole theoretical range T . Taking only a set of movements from piano sonatas, we find the
shortest development section in the first movement of Piano Sonata in G major, KV 283 (X ≈ 0.34)
and the longest one7 in the first movement of Piano Sonata in B-flat major, KV 281 (X = 0.725).
The corresponding values of the shape parameter are almost equal to the extreme values ψ−4 ≈ 1

4
and ψ−1 ≈ 3

4 . Although Mozart’s treatment of Sonata form may appear rigid and uniform at first
(compared to, for example, Beethoven’s), we have shown that his choices of the shape parameter
are as diverse as possible.
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Abstract: The formalization of musical texture is the main objective of Partitional Analysis. Each
integer partition corresponds to a specific textural configuration and is used as a tool to organize and
systematize the work with textures through the compositional process. Partitional complexes, on the
other hand, are sets of partitions, observed in the analysis of musical excerpts, that work in tune to create
stable temporal domains where a referential partition projects, extends or presents itself as dominant. The
number of partitions and complexes for a certain instrumental, vocal or electronic medium is finite and
implies nestings and intersections that can provide important information about textural possibilities
available to the composer. In the present work, the relationships established between distinct partitional
complexes are discussed, as well as the characterization of an hierarchy related to the number of total
choices that each complex offers to the composer.

Keywords: Partitional Analysis. Partitional Complexes. Musical Texture. Musical Analysis. Theory of
Integer Partitions.

Musical texture is a diffuse concept and is often interpreted in distinct and even contra-
dictory ways in its various uses ([8]). Two major interpretations have overcome since the
term was coined in the early twentieth century, and today the term has acquired many

meanings, due to an extreme diversification of sonorous and instrumental resources that occurred
from the 1950s to the present day, with the popularization of recording techniques and electronic
and digital instruments.

The first interpretation (texture-plot), inherited from the traditional classification of texture
in generalized categories of monophony, homophony, polyphony and heterophony, refers to the
combination of vocal or instrumental parts, based mainly on compositional production (poiesis)
and covering music based on notes.

The second one (texture-sonority), developed from the instrumentation and orchestration
manuals, is mainly concerned with perception (esthesis) and the sound quality of the timbral
combinations, as well as sonological researches.

In any case, the texture is still a sub-formalized field at the present and needs further investiga-
tion and systematization

One of the pioneering and most influential authors in the work of formalizing the texture is
Wallace Berry ([3], pp. 184-199). Berry proposed a coding of the textured configurations taking
into account two forces, which he calls quantitative and qualitative curves. The quantitative curve
is determined by the number of sounding components at each time point (called by him as
density-number), while the qualitative curve is the result of the evaluation of dependence and
independence relations between vocal or instrumental parts, determined by the congruence or
contrast between them.
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The representation of the qualitative curves is given by stacked numbers, corresponding to
the various lines and blocks involved in a given point of time (Figure 1). It is curious that, as
a pioneer, Berry did not concern with the investigation of the set of these configurations per se,
independent of the analytical applications that are presented in his book. Berry’s representations
are, in fact, finite, and can be read through the Theory of Integer Partitions simply as partitions, that
is, representations of integers through sums of integers (called, then, parts).
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Figure 1: Textural configurations in Milhaud, first sonnet for choir A Peine si le coeur, images et figures ([3], p.
187).

Partitional Analysis (PA for short), on the other hand, is an original contribution that can be
viewed as a radical expansion of Berry’s work, which, in addition to offering the exhaustive
taxonomy of the field of textural configurations, as well as its topological and metric mapping,
presents formal structures that can be applied to various fields of texture, such as melodic texture,
orchestration, form, among many others. In this sense, these formal structures gain as much
or even greater importance than the original application as creative tools, because they end up
describing a deep level of the organization of musical flows and the possibilities of discourses
based on simultaneous, even non-musical, temporal transformations. A much broader field to
explore.

In the present work, the textural possibilities available to the composer (as he makes his choices
about textural configurations) will be approached. This interaction between the composer’s choices
and the possibilities that open up at each stage of his actions is referred inside PA as a compositional
game.

It will be shown later that each textural configuration has a specific number of possible
realizations, which can significantly impact compositional thinking. In addition, since partitions
always work in sets, also specific, the intersections between different Partitional Complexes (that is,
sets of partitions that work in tune to make up a global partition) also turn important, by defining
how successive partitional domains interact.

Partitional Analysis

The main feature of Partitional Analysis ([16], [13]) and its main distinction from Berry’s Textural
Analysis lies in the understanding of how partitions are established, that is, through binary relations
([13], p. 33-38).
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Every composer of concert music has gone through the experience of searching for a musical
interval within a harmonic structure, either in choral exercises, or in the process of analysis of the
harmonic content of an instrumental chord, for instance. This exhaustive search can eventually be
mandatory. For instance, in a choir, comparing the voices, (e. g., SA, ST, SB, AT, AB, TB) to be
assured of all intervals. In this case, the number of assessments is provided by the two-by-two
combination of the number of voices, a very well known mathematical function.

In the domain of textural configurations, it is not just the intervals that are evaluated, but the
quality of collaboration or counterposition, which will produce, after all, the individualization of
textural elements, like lines and blocks, and, at the same time, the vertical differentiation from
one to another element. In the present work, we will consider just the rhythmic congruence or
counterposition, determined by the combination of point of attack (or onset) and duration - what
is called in PA by Rhythmic Partitioning ([13], p. 35 et seqs, [7]) .

For each textural configuration, there is a pair of indices corresponding to the total number
of found collaborations and counterpositions between the sounding components (in the case of
the string quartet, these components could be each musician, playing in ordinary mode, as an
example). This counting reflects how much there is homogeneity and agreement between the
sound sources, on one hand; on the other, how much there is diversity, disagreement. These two
indices are called in PA by agglomeration and dispersion indices, respectively, or, for short, (a, d).

Once the pair of indices (a, d) is established, two graphical tools are elaborated to visualize the
textural progressions in a particular piece or musical work: the indexogram and partitiogram.
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Figure 2: Indexogram of Le Marteau sans Maître – I - avant “L’Artisanat furieux” ([4], [12], p. 3). The peaks
in dispersion area indicate points of maximum polyphony, while the peaks in agglomeration area mark the
more massive blocks. The two indices are partially independent, as variety and mass can assume many
combinations. Graph produced by Parsemat R© ([15]).

The Indexogram shows the individual progression of each index over time, updated in each
new attack or time point where any event occurs (usually, the onset of a single note or chord). The
graph is splitted horizontally in its median portion, so that agglomeration index is presented with
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negative signal. The intention is to allow the visualization of the interval between indices, in a
wave chart-like design.

Partitiogram presents all the partitions referring to a certain density-number, plotted in a plane
according to their indices of agglomeration (x axis) and dispersion (y axis). Besides being an
exhaustive taxonomy of all available textural configurations (called in PA as lexset), it is also
a topological representation of its metrics (which reveal adjacencies, proximity, and degrees of
similarity or kinship between partitions).
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Figure 3: Partitiogram of Leo Brower’s Estudio 20 from Estudios Sencillos for guitar ([6]). Partitions are mapped by
agglomeration and dispersion indices. Used partitions from lexset of integer 4 are marked in blue squares
and connections are established between successive configurations presented in the piece. In this case, there
are three unused partitions (13), (122) and (14) – precisely the most polyphonic ones. Graph produced by
Parsemat R© ([15]).

Since it represents all the available vocabulary for a particular instrumental, vocal or sound
environment, it is possible to read the texture in specific excerpts or works as a sequence of
partitions, considering that they are finite and therefore treatable from a compositional point of
view.

The adjacency relationships found in the partitiogram can be classified according to their
intrinsic qualities, thus forming networks of operators. divided in two general categories: simple
and compound.

Simple operators (resizing and revariance) are the very basis of the construction of texture
itself. Compound ones (transfer and concurrence) are combinations of simple operators and are
necessary to explain some adjacencies in PA diagrams. For each one, it is assigned a letter for
easier reference.

Resizing (m) a part means to change its thickness. The positive resizing implies the inclusion of
more sounding components to a block, making it "fatter"; the negative resizing is, on the contrary,
the thickening of a part, subtracting a sounding component from a block.

Revariance (v) is the changing of variety (number of parts) inside a textural configuration.
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Positive revariance implies adding an unitary part to the partition and negative revariance means
subtracting an unitary part from it.

Transference (t) arises when resizing and revariance are applied together, but with opposite
signals (positive resizing with negative revariance, and vice-versa). The consequence is that one
sounding component is displaced from a part to another, without affecting the overall density-
number. This kind of operation is very common in traditional concert music.

Concurrence (c), on the other side, is the consequence of articulation of resizing and negative
revariance, with the same signals (positive resizing and revariance, or the opposite). This causes
increment of the distinctions between parts (blocks become more massive and lines are multiplied)
and the change in the global density-number. In this way, concurrence is different of the former
operators, in the sense that it is not and relation of adjacency. The concept is included here,
anyway, because it is relevant to describe some musical situations, where the contrast between
successive textural configurations are the rule (for instance, in some avant-garde styles).
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Figure 4: Networks of operators for dn = 10: mnet (a), vnet (b), tnet (c), and the overall combination of the three
basic nets (d). Each point corresponds to a partition or group of h-related partitions ([19], p. 70). Graph
produced by Parsemat R© ([15]).

According to the used operators, some networks are formed, each with a different type of
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connection, transformation or syntax ([8]).
The three basic networks, constructed from the resizing (m), revariance (v) and transfer (t)

operators respectively, are presented.
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Figure 5: Partition Young Lattice for dn = 6. Basic operators (resizing, revariance, [simple] transfer and concur-
rence)are presented along with compound and auxiliary ones. The overall resultant net can be used by the
composer as a board game, where each type of move means a kind of textural transformation ([19], p. 69)

Mnet is a fractal structure, whose lines always start with polyphonic configurations, which have
their parts gradually resized, and which allows the bifurcation in some points, when there is more
than one part available for the resizing. This operator is the one that brings for the partitiogram
the greatest irregularity and unpredictability, especially in densities greater than 6.

Vnet is a more predictable network, where each row maintains the fixed agglomeration index,
only with more parts being added. For this reason, vertical lines are formed, which start whenever
there is a new configuration imbricated by the resizing.

Tnet is a network delimited by density-numbers, that is, all elements components of the same
line have the same number of sounding components. Up to density-number 6, tnet presents itself
in a linear, simple way. From there, bifurcations make the network increasingly complex, as some
partitions start to establish multiple transfers. This unfortunately is not visible in the tnet graph,
as the lines are superimposed.

Partitiogram can be read also as a Hasse Diagram. This graph is constructed with the basic
elements of a list or taxonomy, connected by the relation of inclusion, in a bottom-up arrangement.
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Each element can be docked in its superior connected neighbour (and in all the connected superior
elements) as a subgroup. This graph can show all the relations of a set with maximum economy
of information. The representation of a lexset of a number, for example, the integer 4, in a Hasse
diagram, shows 11 elements ([2], p. 108) .

Partitional Young Lattice (PYL), on the other side, is an adaptated visualization of the original
Hasse Diagram for integer partitions. It includes, beyond the partitions themselves, the subscrip-
tion of agglomeration and dispersion indices and the qualification of the relations of inclusion as
operators ([13], [19]).

In PA, concepts are generally observed as tools within compositional games (even though they
may be used in many other ways, for example in musical analysis or hermeneutics). In this sense,
both the partitiogram and PYL are seen as a phase space or a board game, respectively, where
trajectories are traced, as the composer progresses in his creative work.

There are currently some important theoretical expansions and applications of PA in musical
analysis and composition. They just fall outside the scope of this paper.

Partitional Complexes

Partitional Complexes can be defined as a bunch of partitions that cooperate to set a referential
partition domain.

The main ideia is that the independence between parts transcends the simple contraposition.
In a texturally diverse environment, independence is built when there is complete autonomy
between parts. This situation presupposes a certain detachment among parts, which can cause
eventual congruences, as a result of fortuitous movements that come to occur without detriment
of the global textural conception.

For an organic realization of a given textural configuration, it is necessary to take this dynamics
into account, organizing the textural thinking into hierarchical layers.

One of the possibilities of organizing textural configurations comes from the consideration of:

• Subpartitions: those textures that are revealed in the partial or incomplete presentations of a
referential partition;

• Subsums: eventual congruences that their parts offer, constituted by all the sums of the parts
of the referential partition.

• Subsums of subpartitions: when both processes can be applied concurrently.

As an example, the partition (13) or (1.1.1) have, as incomplete presentations of its parts, the
subpartitions (1) and (1.1). The subsums are (2) and (3), resulting from the sums of (1.1) and (1.1.1),
respectively. There are a subsum of subpartitions, (1.2), where two parts are summed and one
preserved. Finally, the partitional complex of (13) has six elements: {(13), (1), (1.1), (2), (3), (1.2)}.
This is equivalent to say that constructing a three voice polyphony implies in the articulation of
some or all the partitions of the complex.

We then have a distinct development of each ingredient for each partition, thus defining
a differentiated number of choices for the composer. Massive partitions are the most limited,
including only themselves in its partitional complex, while polyphonic ones offer the most
numerous alternatives, encompassing all the partitions for the correspondent density-number.
Among the massive and polyphonic partitions, there are those partitions that mix blocks and lines
together (Table 1).

The information presented in Table 1 can be arranged in a Hasse Diagram through the
combination of two relationships: "is subpartition" and "is subsum" (Figure 6). Complexes can be
constituted by following a top-down direction from the chosen referential partition through all
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Table 1: Partitional complexes for quartets: referential partitions, with their cardinalities, density-number, subpartitions,
subsums, subpartitions of subsums, partitional complex, and the cardinality of the partitional complex [20], p.
123, [9], p. 35-36.

referential
partition

card. DN subpartitions
(Sp)

subsums
(Ss)

subpartitions
of subsums

partitional
complex

complex
card.

(1) 1 1 - - - (1) 1

(2) 1 2 - - - (2) 1

(12) 2 2 (1) (2) - (12),
(1), (2)

3

(3) 1 3 - - - (3) 1

(1.2) 2 3 (1), (2) (3) - (1.2), (1),
(2), (3)

4

(13) 3 3 (1), (12) (2), (3) (1.2) (13), (1),
(12), (2), (3),
(4), (1.2)

6

(4) 1 4 - - - (4) 1

(1.3) 2 4 (1), (3) (4) - (1.3), (1),
(3), (4)

4

(22) 2 4 (2) (4) - (22),
(2), (4)

3

(122) 3 4 (1), (12),
(1.2), (2)

(3), (4) (1.3), (22) (122), (1),
(12), (1.2)
(2), (3), (4),
(22), (1.3)

9

(14) 4 4 (1), (12),
(13)

(2), (3), (4) (1.2), (1.3),
(22), (122)

(the whole
lexset)

11
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Figure 6: Partitions for quartet, arranged in partitional complexes. Each partition constitutes its own complex by
gathering all top-down connections departing from it. Lines are read bottom-up: dotted lines indicate
subpartitions and full lines indicate subsums. Four levels of crescent textural complexity are constituted.

connections below. From this point of view, it turns clear that for a quartet (density-number 4)
there are four levels of gradual complexity, read bottom-top. Once more, massive partitions – (1),
(2), (3) and (4) – stay alone inside its own complexes, as stated before. Complexes of polyphonic
partitions – (12), (13) and (14), on the other hand, embrace all partitions from integer 1 to its own
density number. The arrangement of Figure 6 shows also some imbalanced distribution, as the
partition (122) have four immediate bottom connections (and 13 in total), while (13) has only two
(7 in total). Each connection corresponds to an available path for more or less (depending on the
number of moves in the graph) parsimonious transformation between textural configurations.
In this specific case (partitional complexes), the transformations occurs with the ommision or
addition of a part (line or block), or the merging of existent parts without any subtraction.

Intersection, nesting and partitional complexes

The introit of the tenth piece from Schoenberg’s Pierrot Lunaire (Raub) is a remarkable example of
an organization of textural language through a hierarchical arrangement. There are two distinct
regions, the first (mm. 1-2.3), with more rarefaction and discontinuity, with loose notes in staccatto;
the second (mm.2.2.2-3), more continuous and repetitive, with coordination between the majority
of the attacks of all instruments.

Change from one region to the other occurrs smoothly, as the flute begins the second region
while the strings are still finishing the first one, drawing a quite diagonal division line between
the two domains.

Inside the atomic level of partitions, there are a sudden change of behaviour as well. The
sequence of partitions of the first region orbits around a limited set of configurations, all belonging
to the partition complex of (1.1.4), yet the referential partition in fact does not appear at all:
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Figure 7: Partition complexes in Schoenberg’s Raub, from Pierrot Lunaire ([21], p. 89, mm. 1-3)

subpartitions (1), (1.1), (1.4), (4); subsums (1.5), (5) and (2.4).
The emergence of the referential partition (1.1.4) is not surprising at all, considering the motivic

role of the wind instruments against the massive blocks of the strings on the initial measures
of the piece. What is more striking here is that it was not necessary, at any point of the region,
to present this relations literally, through a real partition. That is, an concrete realization of a
polyphony with extense lines with attacks and prolongations sustained by blocks configured to
working all together. On the contrary, the referential partition is, in this little region, quite virtual.

The second region brings partitions which would not be compatible with the previous complex
- for instance, (3) and (2.3). But all the presented partitions can be ascribed to another referential
partition - in this case, (1.2.2), with subpartition (2) and subsums (3), (2.3) and (4). The elements
that induce this result are identifiable as well - the clarinet, assuming a more independent role,
due to a periodic interruption, distinguishing itself from the flute and cello, which are at this point
filling in a layer of continuous successive attacks. The violin has a more independent role, with
the isolated articulation of two notes in a more distant register.

The constitution of the complex can be observed in more detail by the way the partitions are
vertically structured. For instance, the alternation between (2) and (3) at the beginning of second
region is due to the gesture of clarinet, sometimes participating in the block, sometimes absent.
This indicates a textural structure that tends to (1.2), which would be a subpartition of (1.2.2), but
in fact is not explicitly stated as such. Similarly, the partition (2.3) is the result of the interval of
the violin (2), opposed to the simultaneity formed by the winds and cello (3), in the moments
where the clarinet is mixed in the block.

Looking further, the two complexes – (1.1.4) and (1.2.2) – are, in its turn, a subpartition and a
subsum, respectively, of (1.1.2.2). This super-complex is also never stated literally, but it can be
seen in the overall instrumental partition, in the first region – flute (1), clarinet (1), violin in double
stops (2) and cello in double stops (2). In the second region, we have the clarinet motive (1), the
insistent notes of flute and cello (2), the double stop of violin in treble register (2) and, finally, the
open string of the violin, that can be thought as an independent layer (1), in a lower register.

All these relations are presented then in a partial hierarchical graph of the complex (1.1.2.2),
where the two branches of referential partitions (1.1.4) and (1.2.2) generate the remaining ones
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(Figure 8).
The branches are also not equally balanced, with the first region, represented by the branch

(1.1.4), more populated than the second one, correspondent to partition (1.2.2). This implies that
the involved transformation from first to last region is descendent in terms of information – there
are more redundancy and confination inside the second branch.

This inference is also supported by formal features. In the first region, blocks articulated by
the strings are superimposed and followed by a brief polyphony played by the winds, and that
structure is repeated once with little variation in the temporal interval between its elements, at a
time distance of nearly five eighths relative to the first presentation.

The second region, in turn, presents more repetitions of shorter modules. The pattern of
winds and cello is constructed gradually, lasting three beats and, after presented in its complete
form, is stated four times, three of them with a repeated pattern of the violin. This foreground
repetition is reflected too in the sequence of partitions, that exhibits for three times the pattern
< (2.3)(4)(2) >. In the first region, due to the displacement of the elements in the repetition,
there are no recognizable patterns in the surface flux of partitions, which grants a bigger amount
of information.

1 5 4 3

2.4

1.1.4

1.1.2.2

1.4 2.3

2

1.1 1.5

1.2.2

2.2

Figure 8: Partial presentation of partitional complex (1.1.2.2) in Pierrot Lunaire, X - Raub ([21], p. 89).

The only relation that is not motivated by internal operations of the complex occurs between
partitions (3) and (4). Partition (4), specifically, do not fit very well in the frame of second region
(1.2.2), because the intermediary partition, (2.2), a subpartition of (1.2.2), is absent, and this gap
between (4) and (1.2.2) creates a disconnection between the two configurations. The partition (4)
arises when an extraneous pitch is added (just the open string of the violin) to the sounding block
(3). This operation is, in fact, not a relation inside a complex, but a real transformation – a simple
resizing from (3) to (4).

A return to the Berry’s example ([3], p. 187) can bring some insights about the deep interaction
of partitions and complexes. Berry used an observation window corresponding to the measure,
which arises some analytical questions – for example, the binary metric structure of the fugato, that
leads the author to disregard some combinations that occurs in shorter durations, like, for instance,
the convergence between S and A in measure 4, or the beginning of the tutti in measure 6, which
is registered by Berry only in measure 7 (Figure 1). Some papers was addressed on this subject,
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trying to explain the cognitive process of defining intuitively what partitions are more important
or valid, covering, without expressive results, some hyphotesis like "the most prominent ones"
(in terms of peaks of dispersion or agglomeration), or "the more extensive in terms of temporal
durations" ([10], [14])

Assessing the configurations with a more refined window (as PA re-evaluate the configuration
for each attack, detecting, exhaustively, all used partitions) leads to a more complex and counter-
intuitive result. On the other way, it brings some information that is not accessible through an
intuitive appreciation.

Applying the concept of complexes can bring some enlightment, even in a very know structure
as the fugato, where each partial complex gradually blooms from the previous one.
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Figure 9: Partitions and complexes in Milhaud, A Peine si le coeur, images et figures. Every complex is encompassed
by the coming one, in a nested structure. Referential partition (13) is not explicitly articulated.

The interaction between the complexes lead to a embracing structure (14), which is compatible
with the polyphonic language proposed by the composer. One of the intriguing questions that
arouse from the comparation of Berry’s analysis and the PA results was the complete absence of
the partition (13) in the micro-surface of the texture. Even if we consider the traditional gesture
of gradual accrual of voices in fugato style, a cognitive basis to sustain this so naturally placed
conclusion was considered as necessary. The concept of partitional complex can answer this
question with ease.

The main point, in this case, is that the construction of partition (13) cannot be confined just
to the observation of measure 3, where in fact it is not present. It is just the accumulation of
all partitions that were articulated until this point that constitutes the complex. The partitions
(3) and (1.2) are not sufficient to characterize the complex (13). If the piece were summarized
by a discourse based on the third measure, certainly it would not be possible to understand the
complex as such, but as a complex (1.2), instead.

After the progression reaches its apex, the gradual agglomeration that follows occurs within
the complex (14), being just an possibility of the writing for voice quartet or choir. In fact, this
simplification, as Berry states, is very common in endings and leads to closure.
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Figure 10: Sucession of partitional complexes in Milhaud, A Peine si le coeur, images et figures: (1), m. 1 (a); (12),
mm. 1 through 1.3.2 (b); (13), mm. 1 through 3.3.1 (c); (14), all the excerpt (d). Referential partition (13) is
never explicitly articulated.

The middle section of the second movement (mm. 12-28) of Gyorgy Ligeti’s Bagatelles for
woodwind quintet ([17]) is an example of construction of a dramatic curve based mainly in textural
development. This time, all regions are very well defined and all referential partitions are stated
very clearly (FIgure 11).

There are four domains, referring to partitions (12), (132), (122) and (15). They are grouped in
two large segments with progressive accrual, each one with two domains.

First segment lasts for 10 measures. It begins with an sparse texture, with only two voices in a
calm polyphony, that is suddenly filled with long notes in the fifth to seventh measures, until all
the instruments are presented. After that, the initial texture returns, with a profile slightly more
prominent.

The second segment lasts for eight measures, where the overall density is noticeably greater
than previous one. It begins with a more dramatic tensioning, articulated through the gradual nar-
rowing of the recursive motives, creating superpositions that make the texture also more weighted.
The arrival of the massive partition (5) is the apex, from which the following configurations
constitute a dissolution.

As the example of Schoenberg, we have also, in the second segment, greater redundancy
caused by cyclic return of a partitional segment, in this case the sequence < (3)(1.2)(122) >. That
repetition is clearly used to articulate saturation and to value the arrival of the climax.

Referential partition of first region is (12) and, in fact, it stays as the only significant one, as the
(1) is only a departure to start the structure. In this sense, the region is very static.

The second region has (132), denser partition, found in the local apex. Flute and clarinet are
working together, with some sintony with the horn, because of dynamics (whose consideration
would cause a trigger of partition (123), belonging also to the local complex)

Third region (122) seems as a recession compared to the previous complex, but this occurs, as
stated before, for balancing further crescendo of the fourth region. A sequence is repeated, just to
prepare the arrival of fourth region. In this sense, this complex is a prefix for the last one.

The last region is far more complex, as it articulates the most disperse partition, (15), and
begins the descent to the more agglomerated one, (5). This contrast is just the main resource to
give to this region its dramatic character. The dissolution just uses two partitions kin to (5) in
terms of agglomeration. The imbalance of the parts, in this case, have an important role to the
rest of the music to come, that will be entirely structured in blocks of (2) and (3), being the (2)
constituted by unisons, most of the time.
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Figure 11: Sucession of partitional complexes in Ligeti, Sechs Bagatellen für Bläserquintett (II, mm. 12-28)
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Conclusions

Different variety of choices provided by each refential partition can be read as degrees of liberty
that a composer have in his creative process. Building a section of a piece with a massive partition
– for instance, (4) – implies in a restriction that would be lighter with some other partition, like
(122). Obviously, the composer always have the freedom to explore other qualities or possibilities
he has at hand - harmonies, timbres, rhythms, among many others; but within the specific field of
rhythmic partitioning, the distinction is substantial and certainly has a considerable impact on
other aspects of compositional work.

In this sense, each partition offers a different potential to develop parsimounious relations
inside its complex.

Relations of the various levels of nesting and intersections create an hierarchy comparable to
the Schenkerian concepts of foreground, middleground and fundamental structure. Here is a rich field
to be explored further by analysts and composers.

There are at the present moment some research being made inside MusMat Research Group
concerning this type of analysis, and considering also other kinds of partitional organization,
drawn from observation of textural repertoire.

Applications of the partitional complexes to diverse partitionings, like melodic partitioning,
event partitioning, spectral partitioning and others ([13]) are in course. Each partitioning has its own
idiosyncrasy and has to be evaluated from scratch in this respect, since each handled material has
its own nature.
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Abstract: An iterable voice-leading schema combines a voice leading with a permutation that determines
how the voice leading is to be reapplied. These structures model a wide range of repeating musical patterns
from the Renaissance to the present day.
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This paper uses simple mathematics to analyze a not-so-simple collection of musical patterns
in which a single voice leading is repeatedly reapplied. The resulting collection encompasses
classical sequences as a special case, while also including a wider range of phenomena

familiar from other musical styles. Mastering these repeatable patterns is an important component
of contrapuntal expertise.

The mathematical background is adapted from previous work ([3],[4],[5],[1]): pitches are points
in a line R, with integer-valued pitches being scale tones; a scale here acts as a both a coordinate
system and a metric whose unit is the scale step. Pitch classes are points in the circle R/c with c
the (integral) size of the octave. A path in pitch class space is an ordered pair (p, r) with p a pitch
class and r a real number indicating how that pitch moves; this lifts to a directed line-segment p
→ p+r in the pitch space R. In this context, paths in pitch-class space can be understood either as
points in the circle’s tangent space or as homotopy classes of paths in the circle itself. Paths can
be related by transposition or inversion, with Tx((p, r)) ≡ (Tx(p), r) and Ix((p, r)) ≡ (Ix(p),-r). A
voice leading is a multiset of paths in pitch-class space, determining how the notes of one chord
move to those of another; these are described colloquially by phrases such as “C major moves to F
major by keeping the root fixed, moving E up by semitone to F, and G up by two semitones to A.”
A transpositional voice leading is one in which every path has the same real number—moving all its
notes in the same direction by the same number of scale steps.

A voice leading V = A→ B defines a transpositional voice-leading schema V that can be uniquely
applied to any transposition of the initial chord, so long as it contains no pitch-class duplications
and is not transpositionally symmetrical: V (Tx(A)) ≡ Tx(V). When B is transpositionally related
to A we can therefore reapply the voice-leading schema V in a chain, generating a repeating
musical pattern that sends each note n cycling through chordal elements:

n, Tx(ϕ(n)), T2x(ϕ2(n)), T3x(ϕ3(n)), ..., Tix(n)) (1)

with i the order of the permutation, so that ϕi(n) = n. When B is a transposition of A, then the
permutation ϕ is uniquely determined by the voice leading (so long as both chords are suitably
nonredundant). In the general case, where A is symmetrical or B is not related to A, we have to
supply the permutation ϕ explicitly. (Geometrically, the permutation ϕ contains information about
the path along which the vector V is parallel-transported from point A to B.) We therefore define
an iterable voice leading schema V I as a pair (V ,ϕ) with V a voice-leading and ϕ a permutation acting
on the musical voices, allowing us to iterate the schema in analogy to (1).
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Figure 1 shows iterated voice-leading schemas spanning more than four centuries. The period
of a schema is the minimum number p such that the voice leading connecting chord 1 to chord 1 +
p moves every voice by the same interval modulo the size of the scale; this is shown by the brackets
on Figure 1. The wraparound voice leading connects the chord at the start of one period to the chord
at the start of the next: a sequence is transpositional if this voice leading is transpositional (Figure
1b-d); if not, we have a contrary-motion sequence where the relative distance of voices changes by
one or more octaves with each period (Figures 1a and 2).

Figure 1: . Iterated voice-leading schemas. (a) Beethoven Op. 90, I, mm. 105–107; (b) a central intervallic pattern
in Stravinsky’s Firebird; (c) a passage from the Sanctus of Josquin’s Mass L’Ami Baudichon, mm. 14ff.;
and (d) a reduction of the descending-fifth sequence in the development section of the first movement of
Beethoven’s Op. 2 no. 1. The cyclic notation (12) indicates that the music of voice 1 in the first chord passes
to voice 2 in the second (counting from bottom to top), with the music of voice 2 passing to voice 1.

110



Journal MusMat • May 2018 • Vol. II, No. 1

Such sequences generally produce canons, with the nature of ϕ determining the structure of
the canonic voices. When ϕ has a single cycle, each voice articulates the same pattern of intervals,
forming a single canon as in Figure 1b-d. When ϕ has two cycles, repeated applications produce
a double canon with two distinct groups of canonically related voices, as in Figures 1d and 2;
more generally an n-cycle permutation produces an n-fold canon. (In the limiting case, where
the schema uses n distinct cycles to connect n-voice chords, each voice progresses along its own
interval independent of the others.) In Renaissance music, iterated voice-leading schemas tend to
link adjacent chords (Figure 3); in classical music, they frequently connect nonadjacent sonorities
(Figure 4).

Figure 2: A contrary-motion sequence in the first F-major fugue from the Well-Tempered Clavier, mm. 56ff.

Figure 3: Iterated voice leadings in (a) the Sanctus of Palestrina’s Mass Ave Regina Coelorum, m. 19ff. and (b) the
Sanctus of Palestrina’s Mass Spem in Alium, mm. 93ff., presenting six successive ascending fifths in a row.
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Figure 4: The “Omnibus sequence,” a common Romantic contrary-motion pattern [6].

Many familiar musical patterns can be analyzed using this framework. In some cases, these
structures have traditional music-theoretical names: for instance, a round is an iterable voice-
leading schema whose generating voice leading is of the form A→A, connecting a chord to itself
(Figure 5). Similarly, previous theorists have explored wedges generated by the combination of a
nontranspositional voice leading V with trivial permutation ϕ, so that all voices move along their
own individual paths (e.g. Figure 1a, [2, p. 124ff.]). Sequences are canonic when ϕ is nontrivial (as
in all but one of the preceding examples), and noncanonic otherwise (Figure 1a, Figure 6 below).
A final possibility is a variable sequence in which either the transposition or the permutation
changes over the course of the sequence: for instance, in Figure 6 V6

5–I progressions descend by
three thirds and one second, returning to their initial position after four units rather than seven;
here the voice leading from C to F is individually T-related to the previous voice leadings [4], with
the second chord being one step too high. More remarkable is Figure 7, where Bach changes the
permutation while preserving the voice leading.

Figure 5: The round “Row, row, row your boat.”

112



Journal MusMat • May 2018 • Vol. II, No. 1

Figure 6: A variable sequence in Beethoven’s Op. 31 no. 3, I, mm. 68–70.

Figure 7: The final phrase of Bach’s chorale “Ach lieben Christen, seid getrost” (BWV 256, Riemenschneider 31).

All of which is fairly clear when set out in abstract, mathematical form. However, I can
testify that even an analytically minded musician can spend a lifetime working with iterated
voice-leading patterns without clearly understanding their general structure.
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Abstract: Webern’s Variationen op. 30 constituted a well-known milestone in the consolidation of
serialism as a compositional technique. It has been the target of a large number of investigations focused
on the way the composer developed a broader concept. As could it not be otherwise, his orchestral design is
also closely tied to his structural concerns. However, it appears to lack a systematization of the composer’s
orchestration principles. Thus, to propose an analysis of Webern’s orchestration, one need to elaborate
an ad hoc method, virtually starting from scratch. This paper aims to describe the main points of this
method in its current experimental stage. At the same time, we point to some conclusions about Webern’s
orchestration according to his aesthetics.
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1. The Variations op. 30 by Webern

Webern’s Variationen op.30 of 1940 (WEBERN, 1956) constituted a milestone in the consoli-
dation of serialism as a compositional technique. For this reason it has been the target of
a large number of investigations, seeking the scrutinization of the peculiar way in which

the composer absorbed the technique inherited from Schoenberg to develop a broader concept.
This includes a rethinking of elements of the German tradition of composition, especially when
trying to achieve a synthesis between the principles, formerly mutually excludent, of permanent
variation and cyclic form—in this case, which is named by Webern as the adagio form—and the
parsing of the total chromatic into smaller, musically significant units. This Webern’s last row is
precisely known by the complex manner with which it operates multiple symmetries. Generated
from a motive of four notes, this row is systematically subdivided into tetrachordal subsets
(Figure.1), labeled as O1, O2 and O3. However, Kathryn Bailey specifically demonstrates how the
Gestalt of Webern has also a rhythmic order ([1], p. 224). Indeed, the serial material is supported

*I thank the MusMat research team who provided the English translation and the LATEX’ typeset of this paper and
Charles de Paiva (NICS/Mus3) for his contribution to the mathematical model and its implementation in the OpenMusic’s
SOAL library.
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by two initial rhythmic motives enunciated in the first three bars and then declined, in order to
permeate the entire work in all of its moments. In other words, with Webern the rhythmic patterns
acquire as much functionality as the pitch ones.

% ϖ ϖα ϖα ϖ ϖµ ϖµ ϖα ϖα ϖ ϖµ ϖ ϖα
O1 O2 O3

a b br (inv.) ar (inv.)
a b br (aug.) ar (dim.)

œ œ ιœ œ −œ œ œ −œ œ œ œ œ
Figure 1: Original row and basic motives of the Variations ([1]:224)

As could it not be otherwise, his orchestral design is also closely tied to his structural concerns,
because the orchestral polyphony corresponds “to the extreme point of a motivic-thematic work in
which the whole group of voices participates at each moment”([4], p. 31)1, which necessarily leads
to an orchestration with high “timbral chromaticism”([11], p. 426, 434)2. However, we conclude
that the ways by which the orchestration strategies integrate the process of his compositional
project still lack a specific research. Moreover, there is not apparently a systematization of the
composer’s orchestration principles.3 There are several reasons for this: first, the composer
himself has little reported on this aspect, although, as we can remember, at least considering
his orchestration of Bach’s Ricercare—or, rather, his "analytical instrumentation" ([4])—how this
dimension becomes relevant for the consolidation of his serialism. Another reason is the lack of a
methodological apparatus that can be compared to the solidity of the tools that a musicologist
keeps in hand to turn evident the logical organization of other dimensions, particularly those of
pitch and rhythmic patterns, even though Hallis points its relative fragility in the case of Webern.4

Thus, to propose an analysis of Webern’s orchestration is equivalent to elaborate an ad hoc method
virtually starting from scratch. This paper aims to describe the main points of this method in its
current experimental stage.5 Faced with the magnitude of this task, it is needless to say that we
will only come to some insights about the subject. We expect, however, that this first step may
encourage the continuation of the project.

1Dahlhaus refers to Schoenberg.
2This author employs the term “chromaticism” in its etymological meaning, referring thus to the "color" of the sound,

that is, to the timbre.
3The thesis of Jinho Kim ([11]) is one of the few studies that make some deeper investigation about the question of

timbre in the Variationen. This author grounds his approach on the question of the setting of relational databases, which is
followed by his own interpretation.

4“Octatonic collections, the whole-tone scale, symmetry relations, all of them are evident in many of his atonal works
[...]. However, his letters, annotations, and conferences do not give support to the idea that he used intentionally them
when structured his music ” ([9], p. vi).

5The publication about the theoretical-analytical model that is presented here is currently being prepared for the
Editions IRCAM/Delatour. The procedure described in this article is aided by a computational support developed for
this purpose by our research group Mus3: the library SOAL– SonicObjectAnalysisLibrary, for the environment OpenMusic,
proposes a series of functions that incorporate the equations and other calculations explicitly or implicitly described here,
and in particular the soal-texture-complexity function that specifically addresses the method of textural analysis (GUIGUE,
2016). Last version at: http://git.nics.unicamp.br/mus3-OM/soal4/tags
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2. Seven “Sonic States”

Both the genesis and the Variations’ formal framework are well known, including through data
informed by the composer himself. In a famous letter addressed to Hildegard Jones, Webern
comments: “Here are six notes enunciated in a certain way by succession and rhythm and what
follows...it is nothing more than this form, always present !!! [...] All these metamorphoses of the
first form give birth to the ’theme’. This new unity, in turn, passes through several metamorphoses,
which, merged into a new unity, results in the form of the whole” ([16], preface).6 Webern
organized the overall format of the piece in seven sections (which are intended to meet, as already
pointed out, the format of a three-part adagio):

• Introduction (mm. 0-20);
• Theme 1 (mm. 21-55);
• Transition 1 (mm. 56-73);
• Theme 2 (mm. 74-109);
• Recapitulation / “in the manner of a development” (mm. 110-134);
• Transition 2 (mm. 135-145); and
• Coda (mm. 146-180).

However, as properly pointed by Kim, who is based on the same source, “the division of the
work into seven sections is inserted not without difficulties or contradictions within the scheme of
the form of variation, in the sense that both the coordination of the introduction with the theme,
and of the theme with the first variation, are not completely successful” ([11], p. 377). Hence,
Kim prefers to support, as Makis Solomos ([13]) had done for opus 21, a structuring based on the
“perception of a succession of seven sounding states” corresponding to the seven sections of the
macro-form ([11], p. 377).

He describes these states by means of some dimensions that resemble those with which we
have approached the notion of sonority as a structuring element of composition ([7]). More
specifically, as summarized in Figure 2: the ambitus; the relative achronic density (which Kim
describes as “the density of notes relative to range”); something that approaches what we define
as relative diachronic density (in this case, Kim counts the number of notes per measure7 ). He
also evaluates the number of notes per section, the number of different notes per section, and the
number of bars. It also addresses the intensity, albeit in a concise way, since it is only limited to the
three broad levels ([11], p. 423). In the following chart, we normalize the data provided by Kim
to produce a visualization of the configuration of each section, according to some of his criteria.
Kim’s representation of the evolution of the ambitus per section is reproduced in Figure 2, bottom.

These surveys bring statistical data that allow us to observe the low density of sounds per unit
of time (diachronic density), which would be “compensated” by a much higher achronic density,
within a generally broad range—where the third section differs from the rest by its somewhat
narrower tessiture. But these data are not sufficient for a more effective analysis of the impact
of parsing of sonorities on formal configuration. A second step includes an investigation of the
orchestration strategies adopted by the composer. Kim analyzes these by means of calculation of
timbral entropy, assuming that the more the music has timbral information, the more the entropy
value rises. This would imply greater activity or complexity, towards disorder. He also collects
this information from the mapping of the frequency of appearance of each instrument of the

6Declaration that perfectly corroborates Bailey’s analytical approach.
7See our definition of these two types of density ([7], p. 396,399). See also [8], p. 5, 12), under the name of spatial-density

and events-density, respectively.
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Figure 2: Some sound characteristics of the Variations, section by section. Histograms (top): the ambitus (AMB.),
blue; the relative achronic density (“Spatial Dens.”), red; the relative diachronic density (“Events
Dens.”), green; bottom: the ambitus of each main formal section, according to Kim [11], p. 395-396.

nomenclature (Ibid., p. 310). Kim then applies the entropy-calculation formula (Equation 1) based
on Shannon-Weaver model ([12]).8

P = −(P1log2P1 + P2log2P2 + P3log2P3 + ... + Pnlog2Pn) = −Σ(Pilog2Pi) (1)

Albeit revealing some aspects peculiar to Webern’s aesthetics, the analysis through entropy
only suggests tendencies—to order and predictability, or to chaos and surprise. Thus, it seems us too
generic. Moreover, in order to assemble his database, Kim only takes into account the instruments
indicated in the nomenclature, thus neglecting the multiple details of timbral variation prescribed
by the composer during the course of the work (mutes, pizzicatos, etc.). We will not, however,
discard the entropy information. It will be applied to our method of gathering information about
the sounding resources employed, during the retrieving of the instrumental resources data, as it
will be described in the next session of this paper.

8We retrieved this formula in order to implement the function relative entropy in the SOAL library ([8]:22).
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Sonic Res.(SRI): bars> 56 58 59 60 62 63 65 67 68 69 70.3 71.2 72 73

Fl. 1 1 1 1 1 1 1
Fl. flatterzung
Ob. 1 1 1 1 1 1 1
Cl.[B[] 1 1 1 1 1 1 1 1 1
Bass Cl. 1 1 1 1 1 1
Hn.[F]
Hn.[F] sord. 1 1 1 1 1 1 1
Tpt.[C]
Tpt.[C] sord. 1 1 1 1 1 1 1
Tbn.
Tbn. sord. 1 1 1 1 1 1 1
Basstuba
Basstuba sord. 1 1 1 1 1
Celesta 4 4
Hp. 4 4 4 4
Hp. harm. fing..
Timp.
Timp. trill
Vn. I solo arco 1 1
Vn. I solo pizz. 1
Vn. I solo pizz. sord.
Vn. I div. pizz. 1
Vn. I tutti arco 2 2
Vn. I tutti arco sord.
Vn. I tutti arco harm.
Vn. I tutti pizz.
Vn. I tutti pizz. sord.
[etc.]
D.B. pizz.

n. Sonic Resources (nSR) 9 5 3 8 2 16 8 4 8 11 8 8 2 2
((partition)(crit.)) ((3 3 3) (2)) ((3 1 1) (2)) ((3) (5)) ((4 4) (1)) ((1 1) (1)) ((4 4 4 4) (1)) ((4 4) (1)) ((2 2) (1)) ((4 2 1 1) (1)) ((4 4 2 1) (1)) ((4 4) (1)) (4 4) (1)) ((1 1) (1)) ((1 1) (1))
WNR 0,67 0,49 0,34 0,64 0,21 0,85 0,64 0,43 0,64 0,74 0,64 0,64 0,21 0,21
(-a) -9 -3 -3 -12 0 -24 -12 -2 -7 -13 -12 -12 0 0
(d) 27 7 0 16 1 96 16 4 21 42 16 16 1 1
(-a + d) 18 4 -3 4 1 72 4 2 14 29 4 4 1 1
RVC 0,17 0,03 -0,02 0,04 0,01 0,72 0,04 0,02 0,14 0,29 0,04 0,04 0,01 0,01
SRC 1 0,39 0,25 1 0,16 1 1 0,34 0,62 0,98 0,47 0,41 0,16 0,16

Table 1: An excerpt of the mapping of Variations’ sonic resources from mm. 58 to 73 (top line; bar numbers also
label the Local Sonic Setups); Left Column: Sonic Resources Index (the full list contains 78 itens); Other
columns: The sonic resources content of each Setup; integer corresponds to the number of simiultaneous notes
the instrument plays; Line ‘n. Sonic Resources (nSR): number of Sonic Resources per Setup. Other lines
antecipate analytic data which will be described later in the paper.

3. An analysis of the instrumental partitioning

3.1. The sonic resources index

The choice of the instrumental colors determined a priori by the composer seems to be a good
starting point for the analytical process. The procedure consists, in a first quantitative stage, of
identifying in the score the complete range of the instrumental sonorities listed by the composer,
establishing a Sonic Resources Index (SRI), which is the set of sonic resources that arise along
the work (see Table 1, left column). This index has the format of a list that corresponds to the
nomenclature of the instrumental parts indicated by the composer, provided in the caput of an
orchestral score (OP, Orchestral Parts), with the addition of all indications and information, textual
or symbolic, that aim at producing a differentiated sonority in the instruments or instrumental
groups, which are indicated by the composer, either in the caput or inside the score. These
correspond, in particular, to divisi and soli indications, and modalities of modifications of the sound
by mechanical means (mutes or others) or specific expanded techniques (flatterzunge, etc.). The SRI
index then encompasses the universe of tone colors, or Sonic Resources, from which the composer
will extract subsets along the work, called Local Sonic Setups (LSS), or, in short, Setups.

3.2. Local Sonic Setup and instrumental distribution

A Local Sonic Setup is a particular instrumental configuration at any given moment. Composed
of one or more Sonic Resources, they form the core of the composer’s orchestration strategy. A
new setup is identified each time the composer changes the instrumental distribution, adds or
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modifies a timbre. The number of sonic resources identified in the Variations, starting from an
initial nomenclature of 15 Orchestral Parts, increases to 78, due to the diversified use of the sonic
modulation resources in the strings (arco, pizz., sordina, sul ponticello, tremolo, harmonics, and various
modalities of divisi and soli), and the permanent alternation of brasses between normal and muted
sounds. A survey of SRs in the Variations is presented in Table 2 (left column).

The complete chart can be used to map the distribution of the instruments, therefore allowing
inferences about prevalent sonorities. In this work, the three higher woodwinds stand out due
to their recurrence (they very often play together, even in unison, as will be seen), as well as the
muted trumpet. In fact, the graph (Figure 3) shows clearly how evident is Webern’s preferential
use of the mutes in the brasses. In contrast, due to the large amount of sonic transformation
techniques employed, each Setup involving the string instruments has a low reiteration rate.

An integer, corresponding to the number of notes that an instrument plays simultaneously, has
been inserted for each Sonic Resource (SR) active in each Setup , which in turn are summed to
reach a global value (see Table 2, line "n. Sonic Resources"). Each Setup is then classified according
to the index Weighted Number of Resources (WNR) (Table 1, line WNR) that corresponds to
the ratio between the number of SRs it contains and the total number of SRs that could be used.
The procedure employed for reaching this number consists of establishing, on the one hand, the
amount of instruments prescribed by the composer, ordered by instrumental sections, and, on the
other hand, the total number of sonic effects that each instrument is called to perform during the
course of the work. From this double list is extracted the minimum value for each instrumental
section. Indeed, of the two things one: either the number of sonic effects is smaller than the
number of instruments in the section (in this case, the number of SR corresponds to the number
of different effects of timbre) or is the number of instruments that is smaller than the number
of requested effects. In the latter case it is this number that imposes its own restriction. Table 1
shows the application of this procedure in the work.

Nomenclature #instr. #SR Min.

Fl 1 2 1
ob 1 1 1
cl 1 1 1
Hn 1 2 1
Tp 1 2 1
Tbn 1 2 1
Tub 1 2 1
Cel 1 1 1
Hp 1 2 1
Timp 1 2 1
vln I solo 1 3 1
Vln I Tutti(div.) 2 5 2
Vln II solo 1 2 1
Vln II Tutti(div.) 3 5 3
Va solo 1 4 1
Va Tutti (div.) 3 5 3
Vc solo 1 3 1
Vc Tutti (div.) 3 5 3
CB 1 3 1

TOTAL 26 52 26

Table 2: Number of Sonic Resources available at once.
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Figure 3: The Sonic Resources Index of Variations, ordered (top-bottom) by recurrence in Setups
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The formula we choose to normalize these two values (the SR number of each LSS and
the constant denominator) is logarithmic. The logarithmic curve introduces a compensatory
equilibrium, giving more visibility to the setups that use less resources - since we them to be the
most usual ones in the work - and to approximate as much as possible those setups that are close
to the maximum to the value of 1. Thus, for each LSS, we have one value for WNR (Equation 2).

WNR =
ln(nRS)
ln(nSRI)

(2)

The graph (Figure 4) shows the evolution of the WNR in Variations, in histograms. We perceive
a process of progressive densification when arriving at Transition 1, with one high point in m.63,
which accumulates 16 SRs (WNR = 0.85, the largest Setup of the work). This is followed by a
sound depression that happens when the composer exposes Theme 2. A second process of sound
incrementation takes place from the Reprise, to reach the other climax of the piece, at the end of
the Coda, m.168, with its 15 SRs (WNR = 0.83).

Figure 4: Evolution of the WNR along the Variations, Setup by Setup. Background colors identify the 7 formal
sections.

However, the numerous histograms of value 0.21 indicate that the most frequent formation
is that contains only two instruments. Considering that Webern works with a universe of 78
possible timbres, it is clear that there is an orchestral strategy that considers each sound resource
individually, each instrument being able to become an agent that defines the articulation of the
work.

Another data, obtained by means of an ad hoc pattern-recognition algorithm, showed that 127
of the 137 instrumental combinations are used only once during the course of the work, and the
remaining 10 are used twice each. Thus, a secondary application of the principle of non-repetition,
which stimulates an investigation into the treatment of sonority from the point of view of Webern’s
economy, is revealed.
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This sound discontinuity would have to be reflected in the calculation of entropy, as this is a
way of evaluating the rate of unpredictability of occurrence of data - a more obvious result of the
principle of non-repetition. In fact, this calculation reveals an interesting behavior, as seen in the
reading of the graph (Figure 5), which summarizes the average number of SRs used per section,
in absolute numbers. It confirms the processes we have already discussed regarding the initial
accumulation followed by a central depression at the moment of Theme 2 (Figure 5, histogram
4). The calculation of the entropy average, in turn, in the lower graph, brings another image of
the orchestral structuring, which can be synthesized by a bipolarization between two states: a
relative state of order - Introduction, Theme 2, Transition 2 9 - destabilized by another, of relative
chaos, this reaching its peak at the end of the piece. In fact, in the comparative observation of our
survey of SRs used, respectively, in Theme 2 (mm.74-109) and Coda (mm.146-179 – Figure 6. See
also Figure 7), one can verify that, in this last section, in spite of accelerated changes of Setups (it
reaches three changes in a single measure: 160), the composer does not repeat any configuration.
A strategy of fuite en avant that asks the listener for a continuous updating of his perception of the
work.

Figure 5: Top: mean number of Sonic Resources per Section; bottom: entropy value of the number of Sonic Resources
per Section

This effect, however, is counterbalanced in some way at the primary level, where the rhythmic
motive values are increased (Figure 7). The rate of motivic changes, therefore, is slower than
that of the sound settings. In other words, there is a compensatory gap between the respective
dynamics of these two levels of articulation.

Theme 2, on the other hand, maintains similar instrumental formulas (the relative constancy of
the flute and clarinets in the first half generates a certain sound stability that highlights motives),
less resources involved (less information, therefore, for the listener) and a little slower change
rate (some Setups last even more than one bar). The entropy rate translates in some way an

9The structural weight of this section may have to be relativized because of its brief duration (10 bars only).
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Figure 7: Variations, mm. 148-152 (apud Universal Edition, p. 25). Red squares identify the sequence of Local
Sonic Setups (circles draw attention to tutti/solo permutations), while blue lines help to follow the subsets
(tetrachords) of the serie.
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orchestration strategy directly linked to the expression of different and contrasting instances of the
formal structure. But before moving further on these considerations, it is necessary to incorporate
a second aspect of orchestration.

3.3. Instrumental Density and Textural Complexity—Relative Voicing Complex-
ity

The impact the manipulation of orchestral resources can have on the formal dynamics in the time
axis, which we have just shown, is affected by the way with which the composer organizes them
into more or less autonomous streams. This distribution characterizes what is conventionally
called texture, a dimension that signals the composer’s personal style of orchestration, since it
reveals his or her way of negotiating instrumental individualities and more or less stratified sonic
masses. In terms of orchestral writing, Webern is known for his economy and pointillism, which
our analysis highlighted. The expectation, then, is to be, in most of the time, in front of fine and
transparent textures.

To support this hypothesis, we developed an algorithm, Relative Voicing Complexity (RVC),
based on Partitional Analysis, a theory proposed by Pauxy Gentil-Nunes ([5]), which refines the
methodological proposal of Wallace Berry ([2], p. 184). The more the instrumental parts are
agglomerated - that is, the more they form homophony and/or homorhythmy - the more the texture
becomes “simpler”, and the reverse when dispersed. In the model proposed by Gentil-Nunes,
the possible partitions for any integer are arranged in a vector format departing from the agglom-
eration units. In this way, a set of five instruments, for example, presents a lexical-sum of 18
partitions, which can be represented as follows:

lex(5) = (5), (4.1), (3.2), (3.1.1), (2.2.1), (2.1.1.1), (1.1.1.1.1), (4), (3.1), (2.2), (2.1.1), (1.1.1.1),
(3), (1.1.1), (2), (1.1), (1)

in which the partition (1.1.1.1.1) indicates that all “voices” are independent, as in a polyphony,
thus qualifying the texture as "complex", and 5, that all instruments play a chord or are in
unison, with a texture resultant described as "simple" ([5], p. 16). Partition (1.4), for example,
would typically indicate a soloist accompanied by a four-voice homophonic harmony. Figure 3,
line ((Partition) (crit.)), shows the format we use so that the parsing analysis is intelligible for
OpenMusic and SOAL, encoded in Common Lisp 10.

The calculation of agglomeration and dispersion indices from the partitions survey and their
vectorialization starts from the counting of the total number T of the binary relations between the
nSRs (the n sound features of a setup), e.g., the two-by-two combination of nSR, according to a
formula borrowed from Tucker’s combinatorial analysis (Equation 3; see [6], p. 2 and [14], p. 181).

T2 : N∗ →N

n 7→ n(n− 1)
2

(3)

This function (Equation 3) allows us to enumerate the agglomeration and dispersion relations
of each partitioning. Indeed,

when Berry attributes these indices to the musical text, he is implicitly dividing the
set of total relations (T) into relations of contrast and identity, since the constitution of

10Cf. [8] for a more detailed explanation on the format.
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the real components is done in terms of relations of identity and the differentiation is
accomplished through relations of contrast. From this observation, we can infer that
the sum of the relations of identity and contrast in a given textural configuration will
always be equal to T. ([6], p. 3).

The agglomeration index (a) corresponds to the sum of all binary combinations of the sound
resources of each real component (Equation 4), where r is the number of real components and r is
the number of sound resources of each real component separately ([6], p. 4 - Equation 4)

a : Nr →N

(a0 . . . ar−1) 7→
r−1

∑
i=0

T2(ai) (4)

In practice, it is enough to apply to each real component the equation T.
The dispersion index (d) is the result of the difference between T and (a) ([6], p. 4).

d : Nr →N

(a0 . . . ar−1) 7→ T2(ρ)− a(a0 . . . ar−1) (5)

A pair of indices a and d is then obtained. The visual arrangement in the form of an indexogram
contributes to the interpretation of the dynamics of the textural configurations in the time axis.
The indices a and d are symmetrically displayed around zero, by inverting the sign of a. This
inversion has another virtue: when added to d, it forms the sum I, then

I(a0 . . . ar−1) = (d− a)(a0 . . . ar−1) (6)

This produces a synthesis evaluation that shows the tendency of the texture, either towards
agglomeration (when the sum is negative) or dispersion (positive sum). The values also provide a
dynamic curve of this trend. In other words, if, as we have argued above, it is the dispersion rate
that determines the complexity of a texture, the integration of the calculation of its agglomeration
rate allows for a finer calibration.

To place I on a single axis of relative complexity ([7], p. 40 et seq.), what we call Relative Voicing
Complexity, we normalize I by dividing it by the T value of the setup that has the highest number of
sound resources, that is, by the largest number of binary relations possible in a given set of setups.
A configuration whose dispersion index would be equal to this number would, in fact, represent
the greatest possible complexity in the context. The RVC index is then obtained (Equation 7)

RVC(a0 . . . ar−1) =
I(a0 . . . ar−1)

T2(ρmax)
. (7)

In Table 1, one can observe the results of these equations for the mentioned section of Webern,
respectively lines -a, d and d - a, corresponding to I.

Partitional Analysis, however, does not stipulate a priori the criteria to determine the lexicon of
a given partition. Still based, in part, on Berry ([2], p. 193), we have observed that the dispersion
of the voices in the textures of Variation are generated by:

1. Heterorhythmy: i. e., divergence or asynchrony between rhythmic structures;

2. Heterodirectionality: voices progress into different directions.
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We believe that the first agent has more impact on the perception of a sound fission than
the second. The second is chosen when the first is idle or when it appears as predominant
in the given context. Thus, the instrumental Setups are weighted not only by the degree of
agglomeration/dispersion of their component parts, but also depending on the method by which
this is brought about. In Webern, serial assumption turns heterorhythmy into a systemic feature -
due, particularly, to techniques derived from the counterpoint and canon - which, through analysis,
proves to be a permanently active agent of dispersion 11 . It follows from these same assumption
that the probability of occurrence of massive agglomerations is quite low, which in fact is the case,
as shown in the indexogram of Figure 8.

In fact, statistically, Webern privileges fine textures or even “null” ones: from 137 Setups 42
contain only one or two SRs. In this sense, the second Theme, unlike the first (to which we will
return), stands out since it is made up almost exclusively of Setups of one or two instruments,
never agglomerated (see Figure 9, left). However, the dispersion index does not decrease in
proportion to the increase in sound resources, as often happens in the orchestral writing of the
nineteenth century: on the contrary, it remains almost always high, so that even when he uses
many instruments, the composer still avoids to agglomerate them. The most remarkable examples
of this procedure are presented in mm. 140-141 and 179. If the Setup of m. 179 still agglutinates
three woodwinds forming the partition (3.1.1.1.1.1.1.1), the Setup of mm. 140-141 does disperse
the eight voices. (Figure 9, right). Because of this configuration, these two Setups are qualified
with the highest rate of relative complexity of the work.

The agglomeration of the three high woodwinds, by the way, is a very common solution of
orchestration that Webern uses to highlight some motive. For instance, it marks, just from the
start, the most salient point of the Introduction (mm. 11-12, see Figure 14 at the end of this paper).
In this moment, the Setup is partitioned into two instrumental subsets, in which six string voices
constitute a chord that punctuates the unison formed by the three woodwinds. The climax of the
Reprise, located between mm. 125 and 131, also brings the main motive to the same trio, in similar
partitions and high complexity. And it is still a unison of this trio that will give an end to the
work, at m. 179 (Figure 9).

In a brief instant, Webern joins the three main instrumental groups in a homophonic texture
and calls them to a dialogue: in this way, he provides a specific sonority to the first Transition
(mm. 56-63). This sonority is caused by the most unusual (and exceptional) partitions up to this
point, like (3.3.3) (m. 56) or (4.4.4.4) (m. 63) (Figure 10).

Another extremely important aspect of textural organization of this piece derives from the
systematic outline of the series in tetrachords: for all chordal agglomerations of the work are
grouped into four instrumental parts. Mm. 60-63, we just comment, are a good example of how
Webern put against each other the homophonic tetrachords, subsets of versions of the series. But
even more remarkable in this view is the First Theme, only section of the piece that draws an
accompanied soloist type partitions (Figure 11) 12 . This ’classicism’ of the thematic presentation
- in a direction which clearly refers to a Schoenbergian practice 13 , and, beyond this, of course,
the common practice of music from previous periods - is unique to this theme, showing how
Webern valued the traditional conventions in moments where he thought they constituted the best

11Heterodirectionality was only taken into consideration in m. 9, and especially in mm. 56-58, in which it acts in an
ostensive fashion (see Figure 10).

12We adopt the convention O, I, R, RI for naming the conventional transformations of the row. If transposed, a letter "T"
will be added with a subscript integer corresponding to the transposition applied (in number of semitones). Lowercases ( a
, b, ...) refer eventually to rhythmic motives according to the nomenclature by Balley ([1]), with the letter r being reserved to
label retrogradation. Information about augmentation and diminution were omitted for clarity. Because the characteristic
Werbenian circular construction it is evident that there are alternative possible nomenclature for a given pitch group.

13Cf. his Variations op. 31.
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Figure 8: Top: indexograms, with agglomeration (blue) and dispersion (red) indices, section per section; bottom:
Sum I.
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Figure 9: Comparing textures (mm. 78-81, 140-141, 179-180 (apud Universal Edition). The Setups Complexity
values will be explained in the last section of the paper. "Part." shows the partitional analysis.
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Figure 10: An excerpt (mm. 56-63) of the Transition 1, where textures present agglomerated subsets (apud Universal
Edition, p. 10-11).
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solution for the realization of musical ideas. In this sense, he did take care of tuning, as before,
in the climax of the Introduction (that we will cover ahead), the two levels: when the goal is to
emphasize the thematic focus, the orchestration can return to its historical function.

Figure 11: Beginning of Theme 1, mm. 9-17 (apud Universal Edition, p. 5).
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The stability of this textural organization is unique: in the beginning of this theme occurs
the most extended Setup of the piece, with five-bar long (mm.19-24). This sounding staticity
(formed by a muted brass quartet below the solo violin) provokes a sudden break on the constantly
changing sonorities that Webern tried to accustom the listener since the beginning of the piece.
Undoubtedly, this is a strategy for calling the attention for the incipit of the solo violin’s theme.
It is still maintained in the following three bar-long Setup (in which the brasses are substituted
by the woodwind quartet, with the violin being reinforced by the second violins group), and
in a lesser extent in some other moments in the same section. The structure of this "harmonic
accompaniment" deserves to be examined, because of its exclusivity. It is formed by a sequence
of twelve tetrachords, shown in reduction in Figure 12, which distributes the chords along the
horizontal plan, proportionally according to their approximate durations.14

Figure 12: Harmonic sequence of Theme 1 (mm. 21-55).

The tetrachords are reduced to three types of intervallic combination. Type A is formed
through superimposition of intervals [3 6 3].15 Type B includes a perfect triad 16 , and type C
forms the most dissonant superimposition [11 4 11]. As one can observe in Figure 12, Webern
adopts a regular chord sequence ABCBCBCBA.17 The last A chord is identical to the first one,
transposed a semitone lower.

This material is reused in the remaining passages in which chords are present. The Transition
initiates just after the Theme, with a restatement of chord A in its original version (m.56, strings -
Figure 10). The same chord is also present in mm.69 and 168, as it will be later detailed (Figure
15).

Back to the theme, now considering it under the perspective of orchestral distribution, we
obtain another sequence, which is expressed in Figure 12 through numbers: "1" represents the
brasses (BR), "2" the woodwinds (WW), "3" the strings (ST), and "4" the combination harp + celesta
(HC) + timpani (HCT). This time the sequence is still more linear: < 1 2 3 4 1 2 3 4 1 >. We observe
that the return of the A chord at the end corresponds to the returning of the same sound Setup
(brasses). Such stability is undoubtedly the most notable aspect of this theme structure. Moreover,
Webern’s music genuinely unfolds through striking adjacent contrasts of instrumentation, as it
will be seen below.

14 Durations are roughly calculated in number of eigth-notes, from one chord to the following.
15That is, superimposition of two minor thirds at the distance of tritone.
16The triad is successively presented in root position, first, and second inversion.
17Due to their very short duration, the "passing" type-A chords of mm.30-1 (strings), 36 (brasses), and 46-7 (strings) are

not considered.
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3.4. SRC—Local Sonic Setups Relative Complexity

Needless to say, these two sets of data, which we have just explored in terms of their structuring
function – the number of sound resources used (WNR) and the way in which they interact (RVC)
– are absolutely interdependent. Indeed, the number of voices in which a texture can stratify
depends, of course, on the number of instruments involved. At the same time, it is more likely that
a small number of instruments will generate more polyphony than the mass of a large orchestra.
Therefore, the complexity of voicing (RVC) makes perfect sense as a qualitative modulator of the
quantities of resources identified in each Setup.

In the practice of the experimental method we apply, RVC weights multiply those of WNR, in a
kind of metaphor of the frequency modulation process, or, describing more specifically: the result
of this multiplication is added to the value of WNR. The weight of the modulator may eventually
be adjusted, up or down. For this analysis, we leave this weight neutral (= 1). The result sets what
we will call Local Sonic Setup Relative Complexity, simplified acronym SRC. From which,

SRC = WNR.RVCp (8)

In which p is the weight (in %) of the RVC modulator.
The reader will notice that the procedure described does not take into account the duration of

the setups. In effect, these are segmented on the basis of their sound configuration. Therefore, the
setups go on as long as the sound configuration does not change. This procedure can generate
segments of very dissimilar durations. Furthermore, there is no doubt that the time factor can be
decisive in the appreciation, or sensation, of the relative impact of a structural unit on the whole.
However, we have decided not to take this parameter into account in this essay, although we plan in
the future to incorporate it into our model. For, since the Webernian agogic is extremely dynamic
and flexible in its prescriptions, it makes it innocuous or inaccurate to deduce realistic temporal
proportions from the score. It is therefore necessary, in order to incorporate this dimension, to
enter into the study of the recorded performances of the work, from which the interpretative
solutions adopted for the management of time can be extracted, a task that would exceed the
scope of this article.

3.5. Orchestration as structuring agent

We will close this essay with more global analytical considerations, woven from the analysis of the
relative complexity of setups. The SRC is represented in Figure 13 in the form of a sequence of
histograms, section by section. Contains trend lines (3rd or 6th order polynomial functions).

We have already identified, based on our previous observations, an orchestral script elaborated
in order to characterize each section by some kind of sonority, through different instrumental
distributions. In Figure 13, the green histograms table (MEAN SRC / section), averaging the
relative complexities of Setups by section, shows a general tendency of economy of resources -
the highest average does not reach 50%—with the "chamber-like" treatment (even soloistic) that
we have already discussed, in the Introduction (Figure 5, histograms 1) and in the second Theme
(Figure 5, histograms 4). The latter forms a sound depression between the two adjacent sections,
which correspond to the denser orchestration moments. In this sense, this section constitutes an
axis after which the sections follow in inverse order of complexity of the sections that precede it.
At this level of abstraction, however, the sensitive impact of a cycle like this remains extraordinarily
diluted. There are other impacts on the surface that most efficiently capture the attention of the
listener.

It is interesting to observe that the Introduction and the transitional sections are developed
through great contrasts of sound complexity: the musical time is very bumpy, the sound renovation
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Figure 13: Histograms of the sequence of SRC (Local Sonic Setups Relative Complexity) for the whole work,
section per section. Green histograms: The mean of SRC values per section.

is permanent, the sonority of the work remains in constant instability, moving abruptly from
solos to duos and suddenly to almost tutti, and so on. However, at the same time, it is revealed,
through the trend lines, a certain directionality in the succession of sonorities, markedly in the
Introduction, which obeys a classic format of growth of complexity followed by resimplification,
by the structural parallelism between Theme 1 and the Transition that follows it (we have seen
that they also share similar chords and textures), in Transition 2 with its central sound reduction,
and by the double focus of growth in the Coda, terminated by abrupt contrast from the silence.

As a more detailed example, Figure 14 shows the heart of the Introduction (mm. 6-17). The
excerpt is constructed from the cross-overlapping of tetrachords of the four forms of the series
supported by elaborations of the two rhythmic motifs a and b (as indicated by colored circles,
symbols, and arrows). Although sound transformations are concomitant with the rapidity of
tetrachordal changes, a complex dialectic is established between the primary level of organization
of these tetrachords and the articulation of orchestral timbres. We note that, in mm. 7-8, I3ar and
RI3ar are divided into 2 successive Setups, which have in common the sonority of the 1st violins
and as complementar sonority the Harp, for the first, and the double basses, for the second, in a
kind of sound symmetry. We note that it is the same tetrachord (the third) and that I and R have
the same rhythmic motion (ar) in phase shift. The following 3 Setups (mm.10, 11, and 13) support
two complete forms of the series, Inverted and Retrograde, in alternating distribution between
strings, brasses and woodwinds. Different from what usually happens in the rest of the work, in
this section the two planes are in synchrony. In other words, the sonorities are exchanged at the
same time as the tetrachords, and the complexity curve of the Setups accompanies and sustains
the formal logic of tension, climax and rest. In effect, the section culminates with the Setup of

134



Journal MusMat • May 2018 • Vol. II, No. 1

Figure 14: Examples of the dialectic between serial organization and orchestration, mm. 5-17 (apud Universal Edition,
p. 2-3).
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Figure 15: Most dense Setups of the work. Circles and arrows emphasize similarities of material: mm. 63, 68-71,
167-168 (apud Universal Edition).
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mm. 11-12, which for the first time requests 11 SRs in strong tutti, opposing a striking unison in
the woodwinds - an orchestral solution structuring in this piece, as we have already mentioned -
to a pizzicato in the strings. These convergences are precisely reserved for moments in which it
is necessary to perceive some structural framework: we have already observed, that they focus,
essentially, on the exposition of Theme 1.

Transition 1, on the other hand, concentrates two exceptionally dense Setups, since they
involve 16 and 11 sound resources, respectively (mm. 63 and 69, Figure 15). They constitute
moments of greater sonic impact. This impact will be far fetched at the end of the Coda, in a
point also culminating, as if it were a reminiscence: it is m. 168, requesting 15 SRs. In fact, there
are many points in common between the three most salient sound objects of the work. We have
already pointed out the most apparent: the repetition of chord A in mm. 69 and 168 - which
consolidates its structural function. In the case, it is played in the two occasions by the brasses, but
the second time, the dynamics is reversed (from p growing to p decreasing): a subtle mirroring,
indeed. In addition, the strings always work as a sound punctuation, by means of pizzicato or
short chords. Woodwind quartet and brass quartet answer each other (in inverted order in mm.
70.3-71), with brief chords of which the secondo one forms a species of echo to the first one. The
harp always intervenes with tetrachords, with emphasis on that intervallic structure of type C, the
most dissonant (in mm.68 and 167).

4. Conclusion

In short, we have tried, through these analytical tools still in the stage of experimentation, to show
how Webern’s serial economy interacts in the plane of the composition of the orchestral sonorities.
We have only approached here the orchestration in its symbolic stage: what the composer lets
us know, by means of the score, of his intentions at this level. A second essential step would
be to evaluate the results produced by analyzing the sound footprints of the work. Only then
could we validate, in the perception level, the sound rhetoric predicted by the composer. In our
discussion about Debussy, we had shown that raw materials, motifs, or cells tended to "manifest
as amorphous elements, the scourge of the sound atmosphere", diluting "within the systems
of articulation of sonorities" ([7], p. 96). We would be inclined to say that Webern radicalizes
this logic by freezing the integrality of his primary material in a single intervallic organization
(the series) and in two rhythmic patterns. It is not difficult to reach the conclusion that the
extraordinary dynamics of this work lies in the ways in which the composer uses this static
material to configure sound units that are renewed every moment: we have shown here many
examples of the procedures adopted. If Webern’s music resists to abstraction by maintaining an
organic bond with nature, inherited from romanticism, as argued by Julian Johnson ([10], p. 212
et seq.), the art of organizing sounds through the manipulation of instrumental resources, then
becomes the locus of the Webernian aesthetics.
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