
Page 1

1 CS6810
School of Computing
University of Utah

Multiprocessors

 Today’s topics:

SMP cache coherence

 general cache coherence issues

 snooping protocols

Improved interaction

 lots of questions

 warning – I’m going to wait for answers

 granted it’s an experiment

 pace will be SLOWer

2 CS6810
School of Computing
University of Utah

SMP Review

•  Characteristics
  global physical address space

»  UMA and hence “symmetric”

  each processor has it’s own cache
»  for now let’s just assume 1 level to simplify things

  physically shared main memory
»  easy export of shared memory programming model

Page 2

3 CS6810
School of Computing
University of Utah

Bus Based Coherence

•  Cache coherence
  for shared lines: simple version

»  all copies of the cached line have the same contents

  simultaneous update is hard: complex version
»  for any read: return value of the last write

  problem: 2 processors write to same value at the same
 time

»  how is order determined?

»  need a single atomic “decider”

4 CS6810
School of Computing
University of Utah

Bus Based Coherence

•  Cache coherence
  for shared lines: simple version

»  all copies of the cached line have the same contents

  simultaneous update is hard: complex version
»  for any read: return value of the last write

  problem: 2 processors write to same value at the same
 time

»  how is order determined?

»  need a single atomic “decider” [Bush’ism ack’d]

•  Bus – single thing so it becomes the “decider”
  limited scalability

»  even 4 cores is a stretch at today’s clock speeds

  clear broadcast win
»  all caches see whatever happens on the bus

•  bus order is the write order

•  not good enough then the programmer needs to synchronize

Page 3

5 CS6810
School of Computing
University of Utah

Private vs. Shared Data

•  SMP should support both
  private

»  normal cache policies and benefits

  shared: 2 options
»  NCC-UMA

•  forces all shared data to be via main memory
–  too slow

–  forces programmer to deal with all synchronization

•  requires write- and read-no-allocate instructions
–  otherwise caching could create a problem

–  how?

»  CC-UMA
•  today’s focus

•  How to partition shared vs. private?

6 CS6810
School of Computing
University of Utah

Private vs. Shared Data

•  SMP should support both
  private

»  normal cache policies and benefits

  shared: 2 options
»  NCC-UMA

•  forces all shared data to be via main memory
–  too slow

–  forces programmer to deal with all synchronization

•  requires write- and read-no-allocate instructions
–  otherwise caching could create a problem

–  how?

»  CC-UMA
•  today’s focus

•  How to partition shared vs. private?
  variable declarations in the code

  partition by page or segment

Page 4

7 CS6810
School of Computing
University of Utah

Other Sharing Issues

•  Consider conventional cache wisdom
  write-back is good (faster)

»  problems?

  large line sizes help exploit spatial locality
»  problems?

  valid and dirty tag bits
»  are they enough?

  TLB
»  what changes with page sized partitioning pvt:shared?

  bus requests
»  normally always mastered from the cache side

»  what changes?

8 CS6810
School of Computing
University of Utah

Consistency vs. Coherence

•  Terminology
  some confusion in literature

»  but it’s rare so be clear and avoid “mutt” status

  key is that they are different

•  Coherence
  defines what value is returned by a read

»  e.g. value of the last write

•  Consistency
  defines when things are coherent

  bigger issue as systems get bigger

  sequential consistency value of the last write
»  as determined by the “decider”

•  Both are critical for correctness
  varies as to whether consistency is exposed to programmer

»  sequential consistency doesn’t need to be exposed
•  same as usual sequential programming model

Page 5

9 CS6810
School of Computing
University of Utah

Coherence Implications

•  Additional cost
  caches now need to snoop the bus

»  watch for writes, tag compare and “update” if they have a copy
•  update options?

•  Ordering constraints
  reordering reads is OK

»  but not involving writes
•  same as uniprocessor world

  writes must finish in program order
»  EVEN if they are independent

•  since there may be a hidden dependency in the other processors

•  also because cache management is by line not variable

»  this can be relaxed
•  more on this later

10 CS6810
School of Computing
University of Utah

2 SMP Protocol Options

•  Write-invalidate
  writer needs exclusive copy

»  write forces other copies to be invalidated

»  next read by others is a miss and they get new fresh line

  2 writers
»  one win’s bus arbitration and the “decider” has spoken

  bus broadcast
»  doesn’t need to broadcast write value – only address

•  Write-update
  broadcast write value & address

  if other copies exist
»  then appropriate line is updated

•  What haven’t we considered so far?
  hint: LOTS

Page 6

11 CS6810
School of Computing
University of Utah

Consider All Cases

•  X product
  (read, write) (miss, hit) (valid copy in cache, memory)

  (write invalidate, write update)

•  Simple with write-through caches
  memory always has an updated copy

  new writer gets valid copy
»  either by cache to cache transfer or from memory

•  Harder with write-back caches
  good idea if cache is mostly holding private data

»  but memory may not be up to date
•  force invalidate of write back to memory

–  snoop grabs latest copy

•  cache-to-cache copy and no-update of memory
–  if write update and previous owner keeps copy then must clear D bit

–  key: only 1 D-bit can exist max single “exclusive” owner

•  What happens?
  write miss, read miss

12 CS6810
School of Computing
University of Utah

Performance Issues

•  Too many to exhaustively list

•  Key protocol choice issues
  multiple writes to the same line write invalidate

»  less bus traffic
•  1st write bus invalidate

–  and data transfer on a write miss

•  subsequent writes are kept local
–  as long as there is a write hit

»  typically Wr-Inv is best choice
•  when line is hammered by one processor at a time

  write-update
»  every write generates bus traffic

•  bus scalability is an issue so it easily saturates

»  still it wins when
•  a certain line is being hammered by multiple processors

–  and when there is 1 writer and the rest are consumers

•  Programs share variables not cache lines
  issues?

Page 7

13 CS6810
School of Computing
University of Utah

Snooping Cache Complexities

•  Cache now has 2 masters
  processor side – same as before

»  each line still has state I, D tags
•  but add private/shared

»  tag match the same
•  action can vary

–  write-miss & shared?

–  write-back, clean, and shared?

–  write-back, dirty, and shared?

  bus side
»  sees write transactions

•  write-back & dirty?

•  clean?

•  End result
  cache controller FSM now gets more complicated

»  will vary with
•  cache policy, organization, and share protocol

14 CS6810
School of Computing
University of Utah

Simplest Possible Protocol

•  Write-through, Write-allocate, Write-invalidate
  Processor transactions: PrRd, PrWr

  Bus transactions: BusRd, BusWr
  Line state: I/V

»  no D bit since write through

Page 8

15 CS6810
School of Computing
University of Utah

MSI Protocol

•  Write-invalidate protocal w/ Write-back cache

•  Line states: Modified, Shared, Invalid
•  Proc side events: PrRd, PrWr

•  Bus transactions
  BusRd – asks for copy of line w/ no intent to modify

»  e.g. PrRd miss

»  line supplied by either main memory or another cache

  BusRdX – asks for exclusive copy of line
»  PrWr miss or PrWr hit to clean line (not Modified)

»  note new type of bus transaction

  BusWB
»  imposed by write back policy choice

»  note write data is an entire line

16 CS6810
School of Computing
University of Utah

MSI State Diagram

Page 9

17 CS6810
School of Computing
University of Utah

MSI Analysis

•  Seq. Consistency
  write completion

»  BusRdX & data return complete

  bus atomicity “decider point” makes this easy
»  other cache snoopers can see when their pending write is

 issued when the controller wins arbitration

•  Other options
  BusRd in M: go to I rather than S

»  migratory protocol – line always just migrates to writer
•  Synapse machine choice

»  tradeoff
•  another owner likely to write soon then I is better

•  old owner likely to read soon then S is better

»  hybrid is possible with extra protocol bit
•  choice of Sequent Symmetry and MIT Alewife machines

•  flexibility potential for increased cost & performance
–  question is how much of each?

18 CS6810
School of Computing
University of Utah

MESI Protocol

•  Add Exclusive state
  deals w/ PrRd followed by PrWr problem

  meanings change a bit
»  E = exclusive clean – memory is consistent

»  M = exclusive dirty – memory is inconsistent

»  S = 2 or more sharers, no writers, memory consistent

»  I = same as always

•  New S semantics adds an additional problem
  a shared signal must be added to the bus

»  single wired-OR wire is sufficient
•  note scaling problem – doesn’t work well at today’s frequencies

»  BusRd(S) – shared signal asserted

»  BusRd(S’) – shared signal not asserted

»  BusRd – means don’t care about shared signal

»  FLUSH – optional for cache to cache copy?

Page 10

19 CS6810
School of Computing
University of Utah

MESI State Machine

Errors Exist: Find them!!

20 CS6810
School of Computing
University of Utah

MESI Analysis

•  Flush issues
  don’t want redundant suppliers when a new sharer comes

 on line
»  last exclusive owner knows who they are

»  so that one does the flush

»  if no sharing then supplied from memory

  complicates bus

  Stanford Dash & SGI Origin series choice

•  What haven’t we worried about yet?

Page 11

21 CS6810
School of Computing
University of Utah

MESI Analysis

•  Flush issues
  don’t want redundant suppliers when a new sharer comes

 on line
»  last exclusive owner knows who they are

»  so that one does the flush

»  if no sharing then supplied from memory

  complicates bus

  Stanford Dash & SGI Origin series choice

•  What haven’t we worried about yet?
  what happens when a line gets victimized?

»  exercise to figure out the new state machine

22 CS6810
School of Computing
University of Utah

Dragon Protocol

•  Write-back and Write-update*
  Xerox PARC Dragon

»  subsequently modified somewhat for Sun’s SparcServer

  states
»  E – exclusive clean

»  SC – shared clean

»  SM – shared modified – this one used to update memory

»  M – exclusive dirty

»  no explicit I state – there implicitly

  new bus transactions
»  BusUpd – update request with same S and S’ variants

Page 12

23 CS6810
School of Computing
University of Utah

Dragon FSM

24 CS6810
School of Computing
University of Utah

Key Points

•  Status tags
  need to encode the local line status

»  protocol dependent

•  2 ported cache controller
  priority becomes the bus

»  since it’s the atomicity point

  possibly stalls process requests

•  New miss source
  the 4th C: Coherence

»  true shared miss: reads and writes to same target

»  false shared miss: reads and writes to different target but
 same line

•  Increased bus pressure
  due to coherence traffic

»  increased power

  already a scaling problem

Page 13

25 CS6810
School of Computing
University of Utah

Classifying Misses

•  For a particular reference stream
  define the lifetime for a block in the cache

  do per word accounting
»  e.g. remote reference from processor x causes eviction

•  Ideas for how to do this?

26 CS6810
School of Computing
University of Utah

Miss Classification

Page 14

27 CS6810
School of Computing
University of Utah

Getting More Real

•  2 level cache hierarchy is likely
  Harvard L1$

  Unified L2

•  L2 is the one that sits on the bus now
  L2 is coherent but what about L1’s

»  L1 write and read misses don’t cause much problem
•  percolate through to L2 and then the rest is similar

»  L1 read hit – no problem

»  L1 write hit
•  write has to percolate all the way to the bus

  L2 line eviction
»  due to invalidate

»  L2 needs to pass eviction up and evict L1’s entry

•  More synchronization through the cache hierarchy
  will slow things down

»  question is how much

28 CS6810
School of Computing
University of Utah

Concluding Remarks

•  How well does it work
  see Chap. 4.3 data

•  Is SMP dead because buses are dead?
  small way SMP may make sense

»  on multi-core socket

»  or in small clusters where socket is multi-cluster

  short buses aren’t so bad
»  easy enough to extend life with point to point interconnect

•  Next we move onto DSM variant of CC-Numa
  protocol ideas are still valid

»  hence the time spent to understand these protocols is well
 spent

•  note exam question is highly likely

  main difference with DSM
»  lines have both

•  local state: similar to today’s discussion

•  global state: more on that next lecture

