Regularity for C*-algebras and the Toms–Winter conjecture

Aaron Tikuisis a.tikuisis@abdn.ac.uk

University of Aberdeen

Aaron Tikuisis Regularity for C*-algebras and the Toms–Winter conjecture

Parts of this talk concern joint work with:

Wilhelm Winter;

George Elliott, Zhuang Niu, and Luis Santiago;

Joan Bosa, Nate Brown, Yasuhiko Sato, Stuart White, and Wilhelm Winter.

Definition

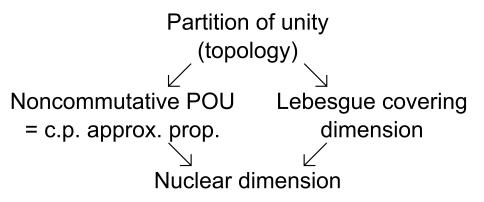
An Elliott algebra is a simple separable amenable C*-algebra.

Conjecture (Toms-Winter, ~2008)

If A is an Elliott algebra, then the following are equivalent:

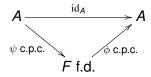
- (i) A has finite nuclear dimension;
- (ii) A is \mathcal{Z} -stable (where \mathcal{Z} is the Jiang–Su algebra);
- (iii) A has strict comparison of positive elements.

Strict comparison of positive elements is a property of the Cuntz semigroup (an algebraic invariant); in practice, it is the easiest property to verify.



Nuclear dimension

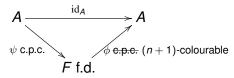
Completely positive approximation property:



commuting in point- $\|.\|$, i.e., $\|\phi(\psi(a)) - a\|$ small on a finite subset.

Nuclear dimension

Nuclear dimension at most *n* (Kirchberg–Winter '04, Winter–Zacharias '10):



commuting in point- $\|.\|$, i.e., $\|\phi(\psi(a)) - a\|$ small on a finite subset.

(n+1)-colourable: $F = F_0 \oplus \cdots \oplus F_n$ such that $\phi|_{F_i}$ is c.p.c. and orthogonality-preserving (a.k.a. order zero).

Eg. dim_{nuc} $C(X) = \dim X$.

Finite nuclear dimension is preserved by:

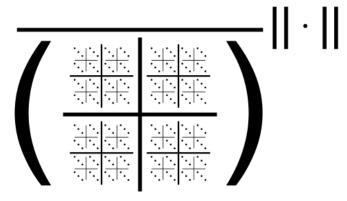
- quotients;
- hereditary subalgebras;
- extensions;
- tensor products;

- inductive limits. if $\dim_{nuc} (\varinjlim A_k) \leq \sup \dim_{nuc} (A_k)$ (this was a mistake).

Eg. dim_{nuc} $O_n = 1$ (Winter–Zacharias '10)

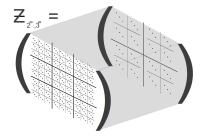
 $\dim_{nuc} A = 0$ if and only if A is AF.

Recall: a UHF algebra is an inductive limit of matrix algebras



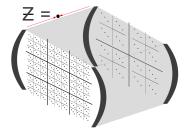
 $M_{2^{\infty}}$

 $M_{k^{\infty}}\cong M_{k^{\infty}}\otimes M_{k^{\infty}}\cong M_{k^{\infty}}^{\otimes\infty}.$



$$\begin{aligned} \mathcal{Z}_{2^{\infty},3^{\infty}} &:= \{ f \in C([0,1], M_{2^{\infty}} \otimes M_{3^{\infty}}) \mid \\ f(0) \in \mathbf{1}_{M_{2^{\infty}}} \otimes M_{3^{\infty}}, \\ f(1) \in M_{2^{\infty}} \otimes \mathbf{1}_{M_{3^{\infty}}} \}. \end{aligned}$$

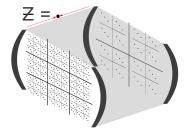
This has no nontrivial projections.



The Jiang-Su algebra is

$$\mathcal{Z} := \varinjlim(\mathcal{Z}_{\mathbf{2}^{\infty},\mathbf{3}^{\infty}},\alpha),$$

where $\alpha : \mathbb{Z}_{2^{\infty},3^{\infty}} \to \mathbb{Z}_{2^{\infty},3^{\infty}}$ is a trace-collapsing unital *-homomorphism.



$$\mathcal{Z} := \varinjlim(\mathcal{Z}_{\mathbf{2}^{\infty},\mathbf{3}^{\infty}},\alpha).$$

 \mathcal{Z} is simple.

 $K_0(\mathcal{Z}) = \mathbb{Z}; K_1(\mathcal{Z}) = 0.$

 $\ensuremath{\mathcal{Z}}$ has unique trace.

 \mathcal{Z} is also strongly self-absorbing.

 $\mathcal{Z}\cong\mathcal{Z}^{\otimes\infty}.$

\mathcal{Z} -stability

A C*-algebra A is \mathcal{Z} -stable if $A \cong A \otimes \mathcal{Z}$.

Theorem

If A is separable and unital, then it is $\mathcal{Z}\text{-stable}$ if and only if \mathcal{Z} embeds into

$$A_{\infty}\cap A',$$

where $A_{\infty} := c_b(\mathbb{N}, A)/c_0(\mathbb{N}, A)$.

Trivial observation: for any *B*, the C*-algebra $B \otimes \mathcal{Z}$ is \mathcal{Z} -stable.

 \mathcal{Z} -stabilization is a way to tame a wild C*-algebra.

 \mathcal{Z} -stability is preserved by:

- quotients;
- hereditary subalgebras;
- extensions;
- tensor products;
- inductive limits.

Just like finite nuclear dimension.

Conjecture (Elliott, '90s)

Elliott algebras are classified by K-theory paired with traces.

Disproven by examples of Villadsen ('98), refined by Rørdam ('03), Toms ('08).

Villadsen's C*-algebras have "high topological dimension" (in some vague sense).

Classification results apply to C*-algebras of "low topological dimension", eg., purely infinite C*-algebras, AH algebras of slow dimension growth.

The Toms–Winter conjecture is an attempt to make "low topological dimension" less vague, more robust.

Origins of the Toms-Winter conjecture: classification

Classification can be used to prove (ii) \Rightarrow (i) in many cases:

Theorem (Kirchberg \sim '94, Phillips '00)

Purely infinite Elliott algebras in the UCT-class satisfy the Elliott conjecture.

It follows that if A is an infinite Elliott algebra, in the UCT class, and is \mathcal{Z} -stable, then

$$A=\varinjlim A_n,$$

where A_n is a direct sum of $C(\mathbb{T}) \otimes M_k \otimes \mathcal{O}_m$'s.

Hence $\dim_{nuc}(A) < \infty$ (in fact \leq 5).

Origins of the Toms-Winter conjecture: classification

Classification can be used to prove (ii) \Rightarrow (i) in many cases:

Theorem (Gong '02, Elliott-Gong-Li '07, Lin '11)

Simple \mathcal{Z} -stable AH algebras satisfy the Elliott conjecture.

It follows that if A is a \mathcal{Z} -stable AH algebra then

 $A=\varinjlim A_n,$

where A_n is a direct sum of $C(X) \otimes M_k$'s where dim $X \leq 3$.

Hence, $\dim_{nuc} A < \infty$ (in fact, \leq 3).

Origins of the Toms-Winter conjecture: classification

Classification can be used to prove (ii) \Rightarrow (i) in many cases:

Similarly, Gong-Lin-Niu classification (arXiv '15) shows that if *A* is a \mathcal{Z} -stable Elliott algebra that is "rationally generalized tracial rank one" and in the UCT-class, then dim_{*nuc*} (*A*) \leq 2.

Finite nuclear dimension implies *Z*-stability

Theorem (Winter '10 & '12, T '14)

If *A* is simple and separable and dim_{nuc} $A < \infty$ then $A \cong A \otimes \mathcal{Z}$.

It is desirable to establish that \mathcal{Z} -stability implies finite nuclear dimension without using classification, because:

- Classification requires strong hypotheses (UCT, simplicity, tracial approximation, ...);

- Classification arguments are lengthy (Gong: 208 pages; Elliott-Gong-Li: 72 pages; Gong-Lin-Niu: 271 pages);

- Finite nuclear dimension is a useful hypothesis for classification (eg. Winter, arXiv '13).

Z-stability implies finite nuclear dimension

"Von Neumann algebraic" approach

If A is a Z-stable unital Elliott algebra then it has finite nuclear dimension provided:

- A is infinite (Matui-Sato '14);
- A has unique trace and is quasidiagonal (Matui-Sato '14);
- A has unique trace (Sato-White-Winter, arXiv '14);
- the extreme boundary of T(A) is compact (Brown-Bosa-Sato-T-White-Winter arXiv '15).

Subhomogeneous algebra approach

 $A \otimes \mathcal{Z}$ has finite nuclear dimension provided:

- *A* is a commutative C*-algebra (T-Winter '14) (hence also if *A* is AH);

- *A* is a subhomogeneous C*-algebra (Elliott-Niu-Santiago-T arXiv '15) (hence also if *A* is ASH).

Using this fact, Elliott-Gong-Lin-Niu showed that simple \mathcal{Z} -stable ASH algebras are classifiable.