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1.1 Bacground and objective�  

� Anaerobic treatment technology such as up-flow anaerobic sludge blanket (UASB) system has been widely 

applied for high- and medium- strength industrial wastewater treatment because of no need aeration, less excess 

sludge production, and energy recovery as methane (Rajeshwari et al., 2000; Frankin, 2001). Furthermore, the 

UASB has been of great interest to developing countries for domestic sewerage treatment because it has the 

following advantages against conventional aerobic activated sludge systems; cheaper operational costs and high 

performance stability even when stable power supply is not available (Syutsubo et al., 2011). Although UASB 

system has been applying to domestic sewage treatment in both tropical and subtropical regions, including India 

and Brazil (Sato et al., 2007; Heffernan et al., 2011; Florencio et al., 2001), this system has not applied to 

domestic sewage treatment in cooler region such as Japan. This is due to low temperature and characteristic of 

domestic sewage.  

� Domestic sewage is characterized by low chemical oxygen demand (COD) concentrations (100–600 mg/L), 

high fractions of suspended solids (SS) components such as cellulose and protein (50–60% of the total COD). 

Because application of anaerobic treatment processes at low temperatures (lower than 20 °C) requires a longer 

sludge retention time (SRT) (de Man et al. 1986), the accumulation of SS inside the UASB reactor treating 

domestic sewage can occur and lead to washout of active biomass. Thus, these conditions lead to a decrease in 

methanogenic activity and process performance (Zeeman and Lettinga 1999). In addition, anaerobic microbial 

activities are very low at low temperature (Uemura and Harada, 2000). Although previous study had applied 

pilot-scale UASB systems for domestic sewage in japan, cellulose accumulation occurred at also lower 

temperature season (Syutsubo et al., 2011). Takahashi et al. (2011) reported that Ruminococcus-related bacteria 

species as a cellulose decomposer was detected in UASB reactor treating domestic sewage by 16S rRNA gene 

analysis, but accumulation of cellulose has occurred at condition of longer SRT and low temperature. Therefore, 

research on organic matter removal by sulfate reducing bacteria instead of methanogen under psychrophilic 

conditions and improvement of anaerobically treated effluent quality using aerobic post treatment systems have 

been advanced (Sumino et al., 2007; Takahashi et al., 2011).  

� In an UASB pilot plant treating domestic sewage, anaerobic bacteria, archaea and also protozoa are 

coexisting (Fig. 1-1). In anaerobic wastewater treatment processes, a complex community consisting of 

many interacting microbial species degrades organic compound such as carbohydrate, proteins, and 

lipids, in the absence of oxygen, into methane and CO2 (Mao et al., 2015). However, although 

prokaryotes (bacteria and archaea) play major role in these processes, how much protist contributes to 

wastewater treatment in the UASB reactor was poorly understood. In contrast, protist are important 

component in both ecosystems and treatment performance in aerobic treatment processes like activated 

sludge. Protist is used as indicator of treatment performance in aerobic treatment processes because 

information about relationship between protists and operation condition was accumulated (Foissner, 
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2016). In aerobic treatment systems, protist and metazoa were predator of prokaryotes, protist was used 

with metazoa for decreasing sludge production from aerobic wastewater treatment plant (Lee and 

Welander, 1996; Ghyoot and Verstraete, 2000). In addition, predation by protist could not only reduce 

bacterial population but also stimulate bacterial activity in microbial ecosystems (Pussard, 1994; 

Mattison and Harayama, 2001). Furthermore, protist can feed particle organic matter include bacterial 

cell and contribute high COD removal efficiency and low effluent turbidity (Fenchel, 1980; Holubar et 

al., 2000).  

� Anaerobic protists are also predator of bacteria in anaerobic ecosystems and could ingest particle 

organic matter (Fenchel and Finlay, 1992; Narayanan et al., 2007). In addition, protist population 

correlated with COD removal and methane production in anaerobic continuous stirred tank reactors 

(CSTR) (Priya et a., 2007). Therefore, anaerobic protists in UASB reactor also may contribute and 

improve treatment performance such as SS and COD removal and reduction of excess sludge 

production. However, very limited information on protist in anaerobic wastewater treatment systems is 

available compared to aerobic wastewater treatment processes. In particular, function of protists in the 

UASB reactor treating domestic sewage has been not reported previously. 

� The study in this thesis has focused on anaerobic protist in the UASB reactor treating domestic 

sewage. Protists are important components of ecosystems in wastewater treatment processes. However, 

little is known about their function and community structure in anaerobic wastewater treatment systems, 

in particular, in an UASB reactor. Hence, the main objective of this doctoral thesis was to accumulate 

the fundamental knowledge about function and community structures of anaerobic protist in UASB 

reactor. For these purpose, we aimed to 1) characterize anaerobic protist community and its temporal 

Metopus-like sp. Metopus -like sp.Prorodon-like sp.

Cyclidium-like sp.Caenomorpha-like sp. Trichomitus-like sp.

Prorodon-like sp.

Trimyema-like sp.

Figure 1-1. Anaerobic protists observed in UASB reactor treating domestic sewage. The scale bar is 

50 µm. 
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variation, 2) isolate anaerobic protists and examine their physiological characteristics, and 3) investigate 

the influence of predation by protists on prokaryotic community function, structure, and diversity in 

UASB reactor treating domestic sewage. 

 

1.2 Outline of this thesis 

� The thesis organized five chapters to achieve our objectives. The background, objectives and outline 

of this thesis are introdeucd in Chapter I. A literature review on anaerobic protist is provided in Chapter 

II. Application of 18S rRNA gene amplicon sequencing for protist community structure and analysis of 

its temporal variation in UASB reactor treating domestic sewage is described in Chapter III. In Chapter 

IV, Isolation of anaerobic protists and thier physiological characteristics such as ingestion rate, 

generation time, predation behavior and metabolite are described. Effect of predation by anaerobic 

protists on prokaryotic community function, structure, and diversity in the UASB reactor treating 

domestic sewage is described in Chapter V. Lastly, the summarized work and conclusions are 

discussed in Chapter VI. 
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2.1 Anaerobic protist 

� Anaerobic protists have been found in a wide range of anoxic ecosystems including anoxic 

freshwater (Massana and Pedrós-Alió, 1994; Bourland et al., 2014), marine sediments (Esteban et al., 

1994; van Bruggen et al., 1986), landfill sites (Fenchel and Finlay., 1990; Finlay and Fenchel, 1991), 

rice field soil (Schwarz and Frenzel, 2005; Murase et al., 2006), rumen (Ivan et al., 2001; Ohene-Adjei 

et al., 2007), termite gut (Ohkuma et al., 2015; Kuwahara et al., 2017), and also wastewater treatment 

plant (Agrawal et al., 1997). Among anaerobic protists, parasite species of human and animal such as 

Trichomonas are also well known in field of parasitology (Dimasuay et al., 2013; Wen-Chao et al., 

2018). Although parasite species absorbed nutrients by osmotrophy, most of free-living protists ingest 

bacteria for growth (Fenchel and Finlay, 1990). Additionally, anaerobic protists could ingest not only 

bacteria but also particle organic matter. Anaerobic ciliate Metopus sp. was cultivated axenically by 

using wheat powder as a substrate (Narayanan et al., 2007). Priya et al. (2007) reported that anaerobic 

ciliate could ingest directly particle organic matter from results of batch test fed with colloidal sodium 

oleate. Rumen protists such as Diploplastron, Entodinium and Eudiplodinium can degrade cellulose 

particle and starch grain directly and digest intracellularly (Coleman, 1992; Bełżecki et al., 2017; 

Czauderna et al., 2019). 

� As characteristics of anaerobic protists, they lack mitochondria and have a unique organelle, 

hydrogenosome instead of mitochondria, in which organic matter (i.e., pyruvate) is oxidized to 

hydrogen, carbon dioxide, and volatile fatty acids for ATP synthesis (Fig. 2-1) (Steinbuchel and 

Müller, 1986; Finlay and Fenchel, 1989; Mueller, 1993; Shinzato et al., 2007). The hydrogenosome 

could have evolved from mitochondria by adaptations under anaerobic conditions of ecological 

constraints (Germot et al., 1996; Boxma et al., 2005). Hence, hydrogenosome is found in various 

groups of fungi and protist, not limited to specific group (Müller et al., 2012; Zimorski et al., 2019). In 

addition to hydrogenosome, anaerobic organelle mitosome that are the most highly reduced forms of 

mitochondria, that do not produce ATP was also found in protist group such as Amoebozoa and 

Excavata and fungi of Microsporidia (Goldberg et al., 2008; Van Der Giezen et al., 2009). Among other 

than pritst and fungi, several groups of invertebrates also have reported to possess anaerobic 

mitochondria (Tielens et al., 2002; Hellemond et al., 2003).  

 Anaerobic protists in anoxic ecosystems harbor endosymbiotic prokaryotes (Fig. 2-1, Shinzato et al., 

2018). Methanogen was most popular endosymbiont of free-living anaerobic protist (van Bruggen et 

al., 1983). In addition, Metopus ciliates host endosymbiotic methanogens affliated with the archaeal 

genera Methanobacterium, Methanoplanus, Methanocorpusculum, or Methanosaeta (Narayanan et al., 
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2009; Embley et al., 1992a,b). Trimyema ciliates also have been reported to possess archaeal genera 

Methanobrevibacter or Methanocorpusculum as endosymbiont (Finlay et al., 1993; Shinzato et al., 

2007). Therefore, anaerobic protist seemed to be able to construct symbiotic relationship with various 

methanogen speceis. These endosymbiotic methanogens convert hydrogen produced by anaerobic 

protist to methane gas (Müller, 1993). The elimination of endosymbiotic methanogens by the specific 

methanogen inhibitor, 2-bromoethanesulfornic acid (BES), was previously reported to result in a 30% 

reduction in the growth yield of Metopus contortus (Fenchel a nd Finlay, 1991). In addition to 

endosymbiotic methanogens, ectosymbiotic sulfate-reducing bacteria have been detected in M. 

contortus; however, the molecular phylogeny of these bacteria remains unknown (Fenchel and 

Ramsing, 1992). Endosymbiotic bacteria were often detected in anaerobic protist cells by 

fluorescence in situ hybridization analysis (Clarke et al., 1993). These Endosymbiotic bacteria are 

expected to contribute growth of host prtists although thier function remains unknown (Shinzato et al., 

2007). In anaerobic wastewater treatment processess, anaerobic protists that possess endosymbiotic 

methanogen could degrade particle organic matter like bacterial cell to methane gas, suggesting 

contribution to sludge reduction and methane production.  

 

1990b). These observations suggested that T. compressum could use oxygen as a
terminal electron acceptor depending on the situation.

The details of carbohydrate metabolism in Trimyema, however, remain to be
elucidated, since no biochemical or molecular studies have been performed. There-
fore, metabolite profiles are the only available information to allow the speculation
of metabolic features of this ciliate. As mentioned previously, ethanol, lactate,
acetate, formate, CO2, and hydrogen have been reported as major fermentative
products of T. compressum. Based on the metabolic profiles, Hackstein et al.
(2008a) presented a speculative metabolic scheme of carbohydrate degradation
pathway in Trimyema (Fig. 2). In this scheme, pyruvate formate lyase (PFL) is
hypothesized to be involved in pyruvate oxidation, since apparent formate produc-
tion has been found in T. compressum cultures. This type of carbohydrate metabo-
lism resembles those of some anaerobic Chytridiomycota fungi (Boxma et al. 2004;
Hackstein et al. 2008a).

2 Methanogenic Symbiont

Symbiotic associations between protozoa and methanogenic archaea are found in
various anoxic environments (Hackstein andVogels 1997).Methanogenic symbionts
in protozoa can be easily detected by bluish-green fluorescence of coenzyme F420,
which is characteristic of methanogens (Doddema and Vogels 1978). The association
of methanogenic symbionts is normally found in hydrogenosome-bearing protozoa,

Acetate               AcCoA               Pyruvate               AcCoA               Acetate

CO2

ATP        ADP ATP       ADPXred Xox

H+ H2

HYD

PFO?

PFL?

Formate

Glucose                        Pyruvate                Lactate, Ethanol formation  

Butyrate
formation?

Methanogenic symbiont

?

Bacterial symbiont ?
Unknown substrate

Hydrogenosome

CH4

Fig. 2 Speculative metabolic schemes of carbohydrate metabolism in the symbiotic consortium of
T. compressum. Abbriviations: AcCoA, acetyl-CoA; HYD, hydrogenase; PFL, pyruvate formate
lyase; PFO, pyruvate ferredoxin oxidoreductase. Xox, red, unknown electron carrier. Methanogenic
symbionts are capable to use both hydrogen and formate as the substrate for methanogenesis.
Substrate and contribution of bacterial symbionts are unknown (modified from Fig. 5 of Hackstein
et al. 2008a)

40 N. Shinzato et al.

Figure 2-1. Speculative metabolic schemes of carbohydrate metabolism in the symbiotic 

consortium of T. compressum. Abbriviations: AcCoA, acetyl-CoA; HYD, hydrogenase; PFL, 

pyruvate formate lyase; PFO, pyruvate ferredoxin oxidoreductase. Xox, red, unknown electron 

carrier. Methanogenic symbionts are capable to use both hydrogen and formate as the substrate for 

methanogenesis. Substrate and contribution of bacterial symbionts are unknown (from Shinzato et 

al., 2018). 

Trimyema cells 
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2.2 Protist observed in anaerobic wastewater treatment plant  

� Observation of Metopus-like free-living anaerobic ciliates in a high-rate anaerobic reactor that 

received low-strength wastewater by Agrawal et al. (1997) was first report about anaerobic protist in 

wastewater treatment plant. However, involvement of anaerobic protist in anaerobic treatment process 

was not investigated in their reports.  

 In anaerobic continuous stirred tank reactors (CSTR) fed with oleate and acetate under mesophilic 

condition (30 ± 2˚C), ciliate such as Prorodon, Cyclidium, Metopus, Spathidium, Loxodes, Vorticella, 

Loxophyllum, Brachonella, and Discomorphella and flagellates such as Rhynchomonas, Naeglaria, 

Amoeboflagellates, Tetramitus, Trepomonas and Bodo, and Menoidium have been observed 

microscopically (Priya et al., 2007; 2008). The population of ciliate was ranged 103-4 cells mL-1 and 

flagellate was ranged 104-6 cells mL-1 in CSTR. Among protist speceis, flagellates were observed 

during increased VFA concentration and affected periods of biomethanation. On the other hand, 

abundance of ciliates significantly correlated with the reduction of MLSS, higher COD removal and 

methane production Priya et al. (2008) also performed comparative experiment between batch culture 

fed with oleate and acetate and protist-inhibited culture that obtained by adding cycloheximide. In 

batch tests, increased COD removal and methane production was observed in sludge having ciliates as 

compared with sludge without protozoa.  

 In also anaerobic leach bed reactor (ALBR) for biomethanation of lignocellulose biomass, protist has 

been observed (Prabhakaran et al., 2016). In ALBR, the protist community in the digester composed 

of ciliates including Metopus, Cyclidiumand, and Colpoda and flagellates like Menoidium, 

Rhyncomonas, and Bodo. Protist abundance were ranged 102-4 cells mL-1, flagellate Menoidium was 

most dominant protist in ALBR. Methane production and hydrolytic enzyme activities, volatile fatty 

acid production, and biogas production in ALBR were correlated positively with ciliate and flagellate 

populations. These reports suggested that anaerobic protist may play important role in anaerobic 

wastewater treatment systems. 

 Previous studies have not observed anaerobic protists in anaerobic wastewater treatment system for 

high- and medium- strength industrial wastewater (Kuroda et al., 2016; Tran et al., 2017; Watari et al., 

2017). Growth of anaerobic protist Metopus sp. was strongly inhibited by high acetate, butyrate, and 

propionate concentration (> 0.05 M) (Narayanan et al., 2007). Thus, anaerobic protists in anaerobic 

systems for industrial wastewater also could be inhibited by high VFA concentration resulted from 

high organic loading rate. 
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2.3 Role of anaerobic protists in anoxic ecosystems 

 Anaerobic protist is major predator in anoxic ecosystems, bacterial abundance was controlled by 

predation (Fenchel and Finlay, 1990). In sediment microbial fuel cells, predation by anaerobic protist 

greatly decreased anode biofilms and reduced current up to 91% (Holmes et al., 2015). On the other 

hands, anaerobic protist cannot control the bacteria in anoxic layer of lake because of both the low 

abundance and low feeding rate (Massana and Pedrós-Alió, 1994; Oikonomou et al., 2014). Thus, 

protist number needs to be maintained high concentration through long term for analyze effect of 

predation by protist on prokaryotes.  

� Anaerobic protists are known to be stimulated microbial activity in ecosystem. Biagini et al. (1998) 

reported that introduction of anaerobic ciliate Metopus palaeformis to anaerobic microcosms resulted 

in reduction of bacterial abundance but increase of methanogenic and sulfide reduction activities. 

Metopus palaeformis also has been reported to harbor endosymbiotic methanogen in inside of thier 

cells (Fenchel and Finlay, 1992; Embley et al., 1992), contributes to methane production. However, if 

the methanogenic endosymbionts in each ciliate assume to produce 0.37 pM CH4 h-1 (Fenchel and 

Finlay, 1992), with an average number of 200 cells ml-1 over a period of 450 h, thier contribution was 

estimated very low (8 % of total methane production at best). Biagini et al. (1998) concluded that 

protist excretions such as organic acids (acetate and propionate) were most likely responsible for 

stimulation of microbial activity.  

� Endosymbiotic prokaryotes of anaeorbi protists have also known to play important role such as 

methane production. Julian Schwarz and Frenzel (2005) reported that nearly all methane produced 

from H2/CO2 could be attributed to endosymbiotic methanogen of anaerobic ciliate in rice field soil. 

This could be due to these endosymbiotic methanogens protected from the competition for substrates 

with other bacteria. This contribution to methane production by endosymbiotic methanogen of 

anaerobic protists was also observed in municipal landfill and subsurface sediments (Finlay and 

Fenchel, 1991; Holmes et al., 2014). 

� Prabhakaran et al. (2016) proposed a hypothetical scheme through which protist could increase 

methane gas in anaerobic reactors (Fig. 2-2). One possibility is that endosymbiotic methanogens can 

increase methane production. Second possibility is that extracellular hydrolytic enzymes from protist 

can enhance the breakdown of complex organics leading to increased VFA production that can 

subsequently enhance methanogenesis. Third possibility is that protists contirbute to hydrolyze 

particulate organic matter, and released soluble organics released by the grazing fauna can contribute 

to the pool of substrate like organic acids for methanogenesis.  
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2.4 Protist community analysis base on 18S rRNA gene sequencing 

� To investigate ecological role of anaerobic protist, monitoring and understanding of their species 

and abundance in each ecosystem are needed. Microscopic observation has been used traditionally for 

analysis of protist community structure and abundance (Curds and Cockburn, 1970; Foissner, 2016). 

However, identify of anaerobic protist species morphologically by microscopic observation was 

difficult because some protist species are indiscernibly small (Miyaoka et al., 2017). For this reason, 

molecular methods based on 18S rRNA genes of eukaryotes instead of microscopic observation have 

been applying to analyze for protist community structure (Matsunaga et al., 2014; Matsubayasi et al., 

2017; Ntougias et al., 2011). In many cases, 18S rRNA gene analysis showed greater diversity of 

eukaryotes than previously recognized. Indeed, some protist species in river water that overlooked by 

microscopic observation were detected by 18S rRNA gene sequencing (Liu and Gong, 2012). 

Matsubayasi et al. (2017) reported clone library of 18S rRNA gene sequencing for eukaryotic 

community in anaerobic digesters. As result of this analysis, 85% of the sequences clones were less 

than 97.0% sequence identity to known eukaryotes, indicating that most of the eukaryotes in 

that large protozoa likeMetopus can ingest particulate organics and
hydrolyze them intracellularly. The soluble organics released by the
grazing fauna can contribute to the pool of substrate like organic
acids for methanogenesis. More experimental studies are required
to establish this view.

4. Conclusions

The present study discloses the presence of ciliates such as
Metopus, Cyclidium and Colpoda and flagellates such as Menoidium,
Rhyncomonas and Bodo in an anaerobic digester for biomethanation
of a typical lignocellulosic waste. In addition to the release of hy-
drolytic enzymes, both ciliates and flagellates were found to be
important for acidogenesis as well as methanogenesis. More spe-
cifically the activity of some the enzymes, volatile fatty acid accu-
mulation and biogas production can be well correlated with the
population of specific protozoa in the sludge. The information
about the role of anaerobic protozoa will help to design and
develop anaerobic digesters harboring higher trophic community
for better performance.

Acknowledgements

The infrastructural support from CSIR for conducting the study
is acknowledged. Mrs. Priya would like to acknowledge Depart-
ment of Science & Technology (Govt. of India) for her INSPIRE
fellowship for her INSPIRE fellowship and AcSIR academy for the
academic support.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.renene.2016.03.085.

References

[1] T. Noike, G. Endo, J.E. Chang, J. Yaguchi, J. Matsumoto, Characteristics of car-
bohydrate degradation and the rate-limiting step in anaerobic digestion,
Biotechnol. Bioeng. 27 (1985) 1482e1489.

[2] W.S. Adney, C.J. Rivard, S.A. Ming, M.E. Himmel, Anaerobic digestion of
lignocellulosic biomass and wastes, cellulases and related enzymes, Appl.
Biochem. Biotechnol. 30 (1991) 165e183.

[3] B.F. Pycke, C. Etchebehere, P. Van de Caveye, A. Negroni, W. Verstraete,

N. Boon, A time-course analysis of four full-scale anaerobic digesters in rela-
tion to the dynamics of change of their microbial communities, Water Sci.
Technol. 63 (2011) 769e775.

[4] H.J. Gijzen, P.J.L. Derikx, G.D. Vogels, Application of rumen microorganisms for
a high rate anaerobic digestion of paper mill sludge, Biol. Wastes 32 (1990)
169e179.

[5] H.J. Gijzen, K.B. Zwart, F.J.M. Verhagen, G.P. Vogels, High-rate 2-phase process
for the anaerobic degradation of cellulose, employing rumen microorganisms
for an efficient acidogenesis, Biotechnol. Bioeng. 31 (1998) 418e425.

[6] B.J. Finlay, T.M. . Embley, T. Fenchel, A new polymorphic methanogen closely
related to Methanocorpusculum parvum, living in a stable symbiosis within
the anaerobic ciliate Trimyema sp. J. Gen. Microbiol. 139 (1993) 371e378.

[7] M. Henze, P. Harremoes, J.L.C. Jansen, E. Arvin, Wastewater Treatment: Bio-
logical and Chemical Processes, third ed., Springer, Berlin, 2000.

[8] Y. Lee, J.A. Oleszkiewicz, Effects of predation and ORP conditions on the per-
formance of nitrifiers in activated sludge systems, Water Res. 37 (2003)
4202e4210.

[9] N. Nimi, M. Priya, Ajit Haridas, V.B. Manilal, Isolation and culturing of a most
common anaerobic ciliate, Metopus sp, Anaerobe 13 (2007) 14e20.

[10] M. Priya, Ajit Haridas, V. B. Manilal, Involvement of protozoa in anaerobic
wastewater treatment process, Water Res. 41 (2007) 4639e4645.

[11] M. Priya, Ajit Haridas, V.B. Manilal, Anaerobic protozoa and their growth in
biomethanation systems, Biodegradation 19 (2008) 179e185.

[12] G.K. Anderson, G. Yang, Determination of bicarbonate and total volatile acid
concentration in anaerobic digesters using a simple titration, Water Environ.
Res. 64 (1992) 53e59.

[13] APHA, AWWA, WEF, Standard Methods for Examination of Wastes and
Wastewater, twentieth ed., 1998. Washington DC, USA.

[14] G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing
sugar, Anal. Chem. 31 (1959) 426e428.

[15] D.J. Patterson, Free Living Freshwater Protozoa, A Colour Guide, Wiley, Syd-
ney, 1995.

[16] W. Foissner, H. Berger, A user-friendly guide to the ciliates (Protozoa. Cil-
iophora) commonly used by hydrobiologists as bioindicators in rivers, lakes,
and waste waters, with notes on their ecology, Freshw. Biol. 35 (1996),
375e482.

[17] D.W. Martindale, C.D. Allis, P.J. Bruns, Conjugation in Tetrahymena thermo-
phila: a temporal analysis of cytologicalstages, Exp. Cell Res. 140 (1982)
227e236.

[18] K. Kivaisi, M. Mtila, Production of biogas from water hyacinth (Eichhornia
crassipes) (Mart) (Solms) in a two-stage bioreactor, World J. Microbiol. Bio-
technol 14 (1998) 125e131.

[19] H. Bouallagui, M. Torrijos, J.J. Godon, R. Moletta, R. Ben Cheikh, Y. Touhami,
J.P. Delgenes, M. Hamdi, Two-phase anaerobic digestion of fruit and vegetable
wastes: bioreactor performance, Biochem. Eng. J. 21 (2004) 193e197.

[20] A. Srinidhi, R. Ramya, B.B. Shankar, H. Jagadish, C.R. Geetha, Anaerobic
digestion of water hyacinth, poultry litter, cow manure and primary sludge: a
comparative study, ICBEM 42 (2012) 15e18.

[21] B. Frølund, R. Palmgren, K. Keiding, P.H. Nielsen, Extraction of extracellular
polymers from activated sludge using a cation exchange resin, Water Res. 30
(1996) 1749e1758.

[22] A. Gessesse, T. Dueholm, S.B. Petersen, P.H. Nielsen, Lipase and protease
extraction from activated sludge, Water Res. 37 (2003) 3652e3657.

[23] C. Bera-Maillet, E. Devillard, M. Cezette, J.P. Jouany, E. Forano, Xylanases and
carboxy methyl cellulases of the rumen protozoa Polyplastron multi-
vesiculatum, Eudiplodinium maggii and Entodinium sp. FEMS Microbiol. Lett.
244 (2005) 149e156.

[24] H. Watanabe, G. Tokuda, Animal Cellulases, Cell Mol. Life Sci. 58 (2001)
1167e1178.

[25] P. .Tomme, R.A. Warren, N.R. Gilkes, Cellulose hydrolysis by bacteria and fungi,
Adv. Microb. Physiol. 37 (1995) 1e81.

[26] C. Arunachalam, S. Asha, Pectinolytic enzyme e a review of new studies, Adv.
BioTech J. Online (2010) 01e04.

[27] Coleman, The amylase activity of 14 species of entodiniomorphid protozoa
and the distribution of amylase in rumen digest a fractions of sheep con-
taining no protozoa or one of seven different protozoal populations, J. Agric.
Sci. 107 (1986) 709e721.

[28] K. Wereszka, T. Michałowski, The ability of the rumen ciliate protozoan Dip-
loplastron affine to digest and ferment starch, Folia Microbiol. 57 (2012)
375e377.

[29] C.T. Wang, C.M.J. Yang, Z.S. Chen, Rumen microbial volatile fatty acids in
relation to oxidation reduction potential and electricity generation from straw
in microbial fuel cells, Biomass Bioenerg. 37 (2012) 318e329.

[30] T.M. Embley, B.J. Finlay, Systematic and morphological diversity of endo-
symbiotic methanogens in anaerobic ciliates, Ant. Leeuwenhoek 64 (1993)
261e271.

[31] T. Fenchel, B.J. Finlay, Synchronous division of an endosymbiotic methano-
genic bacterium in the anaerobic ciliate Plagiopyla frontata Kahl, J. Protozool.
24 (1991) 154e163.

[32] B.J. Finlay, T. Fenchel, An anaerobic protozoan with symbiotic methanogens
living in municipal land fill material, FEMS Microbiol. Ecol. 85 (1991)
169e180.

Fig. 8. A hypothetical scheme role of protozoa in anaerobic digestion of complex
organics.

P. Prabhakaran et al. / Renewable Energy 98 (2016) 148e152152

Figure 2-2. A hypothetical scheme role of protozoa in anaerobic digestion of complex 

organics. (from Prabhakaran et al., 2016) 
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anaerobic digesters are largely unknown.  

 Matsunaga et al. (2014) also investigated microbial eukaryotic community in activated sludge, 

anoxic/oxic activated sludge, and oxidation ditch, and detected protists that observed microscopically 

and uncultured eukaryotes by clone library of 18S rRNA gene sequencing. However, some 

eukaryotes like amoebas that identified by microscopic observations were not found in the clone 

libraries. This could be resulted from bias of PCR primer and difference of rRNA gene copy number 

in each eukaryotes cell (Zhu et al., 2005). In particular, difference of rRNA gene copy number is 

serious concern for 18S rRNA gene sequencing. Therefore, combination of molecular methods and 

microscopic observation is needed to accurately evaluate for eukaryotic community in wastewater 

treatment systems (Miyaoka et al., 2017). In addition, the universal eukaryotes specific primer set (e.g., 

EukA and EukB, Medlin et al., 1988) for 18S rRNA gene sequencing can detect metazoa and fungi 

also. In case of eukaryotic community analysis including metazoa and fungi, large bias occurs in 

relative abundance of each group. In general, multicellular organisms such as metazoa and fungi have 

more rRNA gene copy number than unicellular organism of protists. Thus, 18S rRNA gene 

sequencing should be separated and analyzed in each eukaryotes group. 

� Furthermore, in case that 18S rRNA gene sequencing apply for analysis of anaerobic protist 

community, there are problems derived from using molecular methods, which cannot determine 

whether the eukaryotes are anaerobic or not, except for known species. This is due to anaerobic protist 

cannot identify by molecular methods because anaerobic protists don't construct to specific molecular 

phylogenetic group (Zimorski et al., 2019). Indeed, our previous study could not identify anaerobic 

eukaryotes by just 18S rRNA gene sequencing because some eukaryotic taxonomic groups include 

both anaerobic and oxic organisms (Fig. 2-3) (Triadó‐Margarit and Casamayor, 2015; Hirakata et al., 

2017). Microbial communities in most wastewater treatment systems could be influenced by the 

immigration of other microorganisms via wastewater. For especially analyze anaerobic protists in 

wastewater treatment, this problem on immigration must be considered. 

2.4.1 18S rRNA gene sequencing using high-throughput sequencing 

� Recently, high-throughput sequencing of metabarcoding is becoming the standard approach for 

exploring microbial community structure in various environments. The 16S rRNA amplicon 

sequencing used to evaluate a wide range of bacterial communities in wastewater treatment processes 

(Kuroda et al., 2016; Watari et al., 2016). High-throughput sequencing provides a very large number 

of sequencing reads though only short sequences (Van Dijk et al., 2014). Thus, current methods for 

high-throughput sequencing of eukaryotic diversity studies rely on sequencing of variable regions of 
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the 18S rRNA gene. The 18S rRNA genes have nine hypervariable regions (V1 to V9), which can be 

used for species identification of high-throughput sequencing. The PCR primer sets for 

high-throughput sequencing that previously reported are described in Table 2-1. Goux et al. (2016) 

have applied high-throughput sequencing using V1-V5 region of 18S rRNA gene for anaerobic 

eukaryotic community in farm anaerobic digestion reactor, and reported that relative abundance of the 

eukaryotic sequences belonging to the phylum Ciliophora (ciliates) showed a positive correlation with 

the methane content in the reactor headspace. However, several study pointed out that problems on 

PCR bias of primer set also occurred in High-throughput sequencing (Bradley et al., 2010). Thus, 

multiple PCR primer sets were used for analysis eukaryotic community structure to examine these 

PCR and primer bias. In particular, both V4 and V9 regions have been reported to use diversity of 

eukaryotes found in various environments (Stoeck et al., 2010; Bradley et al., 2010; Dunthorn et al., 

2012; Decelle et al., 2014; Inaba et al., 2016). 
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455 OTUs found in the data set were distantly (< 97%
identity) related to any sequence available in public
databases. Within Discoba, we found the lowest
GenBank match (64% of OTUs), and the highest was
found within the algae Haptophyta, Cryptophyceaea and
Chlorophyceaea (Fig. 6). OTUs within Alveolata showed

the highest rank of variation in GenBank match (< 85%
identity to 100%). Some largely unknown in databases
(i.e. identity < 95%) and abundant protists in the amplicon
mixture (i.e. relative abundances > 1%) were found within
Holozoa (Corallochytium), Discoba (Eubodonida and
Jakobida) and Alveolata (ciliates), which deserve further
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Fig. 3. Relative abundances of the different taxa identified by DGGE in oxic and sulfidic waters.
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Figure 2-3. Relative abundances of the different taxa identified by DGGE in sulfidic and anoxic 

(euxinic) stratified karstic lakes and coastal lagoons. (from Triadó-Margarit and Casamayor, 2015) 
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2.5 Cultivation of anaerobic protist 

� The isolation and cultivation of anaerobic protist are the major limitations for assessing their roles 

in anaerobic treatment process. Despite many kinds of anaerobic protists were found in various 

environments, most of them were still uncultured. Many studies of anaerobic protists were focused on 

their morphology, phylogeny, and endosymbiotic prokaryotes (Bass et al., 2009; Omar et al., 2016; 

Lewis et al., 2018). Thus, limited information is available on the cultivation and physiological 

characteristics of anaerobic protist predation on anoxic ecosystems, except for the parasite species.  

� Among anaerobic protists, the best-studied species is T. compressum. T. compressum has been 

isolated from polluted ditch and sewage treatment plant and cultured monoxenically or axenically 

using synthetic medium added with living or dead bacteria as substrate (Wagener and Pfennig 1987; 

Goosen et al. 1990a; Broers et al., 1991; Yamada et al. 1994; Shinzato et al., 2007). T. compressum 

could grow in temperature range of 10-35˚C, in which optimum condition was ranged 25-30˚C 

(Wagener and Pfennig 1987; Goosen et al. 1990a).  

� Food selectivity of T. compressum was also examined. Schulz (1990) tested 15 chemotrophic and 

27 phototrophic bacterial strains as sole food bacteria of protist and concluded that only 

gram-negative bacteria could support growth of T. compressum. However, Yamada et al. (1994) 

reported that T. compressum could ingest both gram-negative and gram-positive bacteria in addition 

to archaea. The maximum growth number of T. compressum was changed depending on food bactrial 

species. The highest number of ciliates reached 9300 cells ml-1 when Desulfovibrio vulgaris was used 

as food bacteria. These results suggested that growth of T. compressum is influenced by nutritions of 

food bacteria. Their metabolite compositions such as ethanol, acetate, lactate, and formate were also 

changed depending on food bactrial species (Yamada et al. 1994), and this also indicates that effect of 

nutrition of food bacteria.  

� In addition, T. compressum are known have sterol requirements as growth factor (Wagener and 

Pfennig, 1987). The nutritional requirements for sterol and fatty acid as growth factor are known in 

also other aerobic or parasite protist such as Paramecium sp., Tetrahymena sp., and P. shumwayae 

(Holz et al. 1962; Skelton et al., 2008). Therefore, understanding not only food bacteria but also 

nutrition requirement of each protist species is a necessity for establishment of isolation and 

cultivation of anaerobic protists.  
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3.1 Introduction 

� In order to investigate protists function in anaerobic treatment systems, information about characteristics of 

protist community structures needs to accumulate at first. Microbial eukaryotes such as protist, fungi, and 

metazoa play important roles in aerobic wastewater treatment systems. In particular, bacterivorous protists and 

metazoa contribute to the reduction of sludge production, the improvement of sludge sedimentation, and the 

quality of effluent water (Madoni, 1994; Pernthaler et al., 2005; dos Santos et al., 2014). Additionally, some 

fungi, for example phylum Ascomycota, are also known to contribute to denitrification and cellulose 

degradation (Hayatsu et al., 2008; Baldrian and Valášková, 2008). Eukaryotic communities involved in 

activated sludge have been widely studied, so their community compositions and populations are used as 

biological indicators of these processes (Griffiths et al., 2001; Foissner and Berger, 1996).  

� Eukaryotes have been commonly identified morphologically by microscopic observation. However, 

identifying protists by microscopic observation is prone to error because some species are fast moving 

and indiscernibly small (Zhu et al., 2005). Furthermore, most fungi are difficult to identify by 

microscopic observation. Recently, instead of by microscopic observation, molecular biological 

techniques such as clone libraries (Miyaoka et al., 2017), quantitative real-time PCR (Bien et al., 2017), 

fluorescence in situ hybridization (Matsubayashi et al., 2017), and high-throughput sequencing 

techniques (Simon et al., 2015) have been applied to analyze a greater diversity of eukaryotes in 

wastewater treatment systems and other enrivonments (e.g. lake and marine). Among them, 18S rRNA 

gene amplicon sequencing using high-throughput sequencing techniques is reported as an effective and 

sensitive method for investigating eukaryotic diversity (Tanakaet al., 2014).  

� High-throughput sequencing provides a very large number of reads though only short sequences are 

generated (Van Dijk et al., 2014). Thus, current methods for high-throughput sequencing of eukaryotic 

diversity studies rely on sequencing of variable regions of the 18S rRNA gene. The 18S rRNA genes of 

eukaryotes have nine hypervariable regions (V1 to V9), which can be used for species identification. A 

number of recent studies have used different variable regions within the 18S rRNA gene for 

amplification, including V1-V2 (Mohrbeck et al., 2015), V3 (Medinger et al., 2010), V4, and V9 regions 

(Stoeck et al., 2010). In particular, both V4 and V9 regions have been used to describe the diversity and 

variation of eukaryotes found in aerobic wastewater treatment systems (Bradley et al., 2010; Inaba et al., 

2016). Previous studies reported that the molecular markers have different characteristics such as V4 

region provide more depth and unique reads and V9 region provide wider coverage of higher 

taxonomic groups.  

� In contrast to aerobic eukaryotes, limited information is available on the eukaryotic community 

structures found in anaerobic wastewater treatment systems. Microbial eukaryotes such as protists and 

fungi also exist and contribute to the degradation of organic matter in anaerobic wastewater treatment 

systems (Hirakata et al., 2016; McMullan et al., 2001). A few studies have reported that some protists of 
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phylum Ciliophora positively correlated with the removal of organic matter in anaerobic digesters 

(Priya et al., 2007; Prabhakaran et al., 2016). Therefore, anaerobic eukaryotic communities, especially 

protists, are expected to change in response to environmental conditions and may be used as indicators 

of operational conditions, as with aerobic eukaryotes. However, no reports characterize what eukaryotic 

species living in anaerobic wastewater treatment system and its temporal variation. Therefore, most 

species of anaerobic eukaryotes have not been extensively investigated, and the relationships between 

changing eukaryotic community structures and treatment performance in anaerobic wastewater 

treatment systems remain unclear. In addition, although 18S rRNA gene amplicon sequencing has been 

applied to investigate eukaryotic communities in anaerobic environments such as marine (Stoeck et al., 

2010) and rumen environments (Ishaq et al., 2014), few studies have used this method for anaerobic 

wastewater treatment systems (Goux et al., 2016).  

� Furthermore, there are problems derived from using molecular methods, which cannot determine 

whether the detected eukaryotes are anaerobic or not, except for known species. Indeed, our previous 

study could not identify anaerobic eukaryotes by just 18S rRNA gene sequencing because some 

eukaryotic taxonomic groups include both anaerobic and aerobic organisms (Triadó‐Margarit and 

Casamayor, 2015; Hirakata et al., 2017). In particular, microbial communities in anaerobic wastewater 

treatment systems may be influenced by the immigration of aerobic microorganisms via wastewater. 

To characterize the anaerobic eukaryotes involved in wastewater treatment, this issue must be 

considered. 

� The primary objective of Chapter III was to investigate eukaryotic community structures in an anaerobic 

wastewater treatment system. For this purpose, we analyzed eukaryotic communities in an up flow anaerobic 

sludge blanket (UASB) reactor treating domestic sewage over a two-year operational period. We used 18S 

rRNA gene amplicon sequencing using two primer pairs, targeting the V4 and V9 regions. Eukaryotic 

communities in aerobic wastewater treatment systems (i.e., activated sludge) and influent sewage were also 

analyzed and used as the references for aerobic eukaryotic species to characterize anaerobic eukaryotes. In 

addition, multivariate statistics were applied to elucidate any correlation between eukaryotic communities and 

the operational conditions of the UASB reactor using the retrieved anaerobic eukaryotic sequences. 

 

3.2 Materials and methods 

3.2.1 Sample collection 

� Sludge samples of 50 mL were collected over two years (October 2010–October 2012, Fig. 3-1a) from a 

sampling port 1.278 m above the bottom of the UASB reactor. The reactor had a total volume of 1,178 L, 

was 4.7 m in height, and was located at a domestic sewage treatment center of Nagaoka City, Japan. 

The UASB reactor was operated without temperature control. To activate the microorganisms 

responsible for sulfur redox cycles, the system was fed with raw sewage that was supplemented with 
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50–150 mg-S L−1 sodium sulfate. Additional details on the UASB reactor have been previously 

described (Tandukar et al., 2007). To classify the anaerobic and aerobic eukaryotes species, activated 

sludge and influent sewage were collected from the same domestic sewage treatment center in February 

2017. The collected samples were concentrated by centrifugation at 12,000 rpm and removed supernatant, then 

immediately stored at −20 °C for 4-6 years until DNA extraction was performed. 

 

 

3.2.2 Measurement of environmental parameters 

� The water temperature and the pH were measured using a pH meter (HM-20P; TOA DKK, Tokyo, 

Japan). The oxidation-reduction potential (ORP) were measured using an ORP meter (RM-20P; TOA 

DKK). The chemical oxygen demand (COD) concentration was determined using a HACH water 

quality analyzer (DR2500; HACH, Loveland, CO, USA). The suspended solid (SS) concentration was 

also measured using a glass fiber filter (0.4 µm, GB140; Advantec, Tokyo, Japan). The sulfate 

concentrations were determined by a high-performance liquid chromatography (HPLC) system (LC 
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Figure 3-1. Time courses of (a) water temperature and (b) reduced sulfate (sulfide) of the UASB 

reactor and sampling date of sludge samples. 
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20-ADsp; Shimadzu, Kyoto, Japan). The sulfide concentration was measured according to the standard 

methods published by the Japan Sewage Works Association (Japan Sewage Works Association, 1997). 

 

3.2.3 DNA extraction, PCR amplification, and 18S rRNA gene sequencing 

� Genomic DNA was extracted from the collected samples using a FastDNA SPIN Kit for Soil (MP 

Biomedicals, Carlsbad, CA, USA), according to the manufacturer’s protocol. The DNA concentration 

was determined using a NanoDrop Spectrophotometer ND-1000 (Thermo Fisher Scientific, Waltham, 

MA, USA). Amplifications of V4 and V9 regions of 18S rRNA genes were performed using 

eukaryote-specific primer pairs of V4_1F (5’-CCAGCASCYGCGGTAATWCC-3’) - TAReukREV3 

(5’-ACTTTCGTTCTTGATYRA-3’) and Euk1391F (5’-GTACACACCGCCCGTC-3’) - EukBR (5’- 

TGATCCTTCTGCAGGTTCACCTAC-3’), respectively (Stoeck et al., 2010; Bass et al., 2016). The 

adapters for Illumina MiSeq sequencing were attached for each primer according to previous study 

(Caporaso et al., 2012). Premix Ex Taq Hot Start Version (TaKaRa Bio Inc., Shiga, Japan) was used 

for PCR amplification. The following were the conditions of PCR amplification. For amplification of 

V4 region, 5 min at 94 °C; 15 cycles of 30 s at 94 °C, 45 s at 53 °C, and 1 min at 72 °C; 20 cycles of 30 

s at 94 °C, 45 s at 48 °C, and 1 min at 72 °C; with a final extension step of 10 min at 72 °C. For 

amplification of V9 region, 5 min at 94 °C; 30 cycles of 30 s at 94 °C, 30 s at 57 °C, and 1 min at 

72 °C; with a final extension step of 10 min at 72 °C. The amplicon was purified using an Agencourt 

AMPure XP Kit (Beckman Coulter, Brea, CA, USA) and concentrations were measured using a 

BioAnalyzer DNA 1000 (Agilent Technologies, Santa Clara, CA, USA). 18S rRNA gene sequencing 

was conducted using a MiSeq Reagent Kit v2 nano and a MiSeq system (Illumina, San Diego, CA, 

USA). 

3.2.4 Data Analysis 

� Sequence reads were processed using Quantitative Insights Into Microbial Ecology (QIIME) version 

1.9.0 (Caporaso et al., 2012). Sequence reads with low quality scores (Phred quality score ≤ 30) were 

eliminated using the Trimmomatic v0.33 program; specifying a sliding window of 4 with average 

Phred quality of 30 and 60 as the minimum read length to be conserved for quality control (Bolger et al., 

2014). Paired-end sequence reads were then assembled using the paired-end assembler within the 

Illumina sequence software package (PANDAseq), and at least 20 bp overlapping region was retained 

(Masella et al., 2012). Putative chimeric sequences were detected and removed using UCHIME software 

(Edgar et al., 2011). Operational taxonomic units (OTUs) clustering at 97% sequence identity was 

conducted with the de novo strategy using the UCLUST algorithm (Edgar et al., 2010). Taxonomic 

classifications were determined using the SILVA database 128 (Quast et al., 2013) and BLAST searches 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) in the National Center for Biotechnology Information (NCBI) 

database. The OTU that assigned to prokaryotes using SILVA and NCBI database were excluded from 



Chapter III 

 27 

multivariate statistics. Alpha diversity index of eukaryotic sequences from each sample was calculated 

at a subsampling depth of lowest reads from each amplicon library, protist and fungi sequences. The 

phylogenic tree was constructed in MEGA software using neighbor-joining methods (Tamura et al., 

2013). 

� After detrended correspondence analysis (DCA) was performed to determine the appropriate type of 

model for direct gradient analysis, canonical correspondence analysis (CCA) or redundancy analysis 

(RDA) were performed to investigate correlations between eukaryotic communities and environmental 

factors using the 'vegan' R package (Oksanen et al., 2013). In this study, CCA analysis was used because 

gradient length was calculated as 3.1. The value is greater than 2, it is suitable for using CCA (Ter Braak 

and Verdonschot, 1995). A Monte Carlo test was used to check the significance of multivariate analysis 

using the 'ade4' R package (Dray et al., 2007). These analyses included the environmental parameters of 

the UASB reactor, and 17 anaerobic protist genera, representing at least 0.3% mean relative abundance 

per sample. The change of protist and fungi community structure in the UASB reactor was evaluated 

by principal coordinates analysis (PCoA) based on Bray-Curtis distance. The difference of individual 

eukaryotes groups at a different time was determined by one-way analysis of variance (ANOVA) or 

Welch's t-tests. 

3.2.5 Nucleotide sequence accession numbers 

Sequence data were deposited in the DDBJ nucleotide sequence database under accession numbers 

DRA007151. 

 

3.3 Results 

3.3.1 Overall eukaryotic communities determined by V4 and V9 regions of 18S rRNA gene 

sequencing  

� In this study, eukaryotic community structures were analyzed for 10 samples from a UASB reactor (Fig. 

3-1a), influent sewage, and activated sludge, based on 18S rRNA gene sequencing. A total of 180,678 

sequences of the V4 region amplicon library and 340,054 sequences of the V9 region amplicon library were 

obtained (Supplementary Table S3-1). The phylogenetic affiliations of all sequences in each ecosystem were 

classified as archaea, bacteria, protist, fungi, metazoa, and algae at the kingdom or domain level (Fig. 3-2). The 

results using the V4 region-specific primer pair showed that the dominant group was fungi in the UASB reactor 

and influent sewage, whereas protists were dominant in activated sludge. The relative abundances of fungi were 

76.1% and 50.8% of the total number of sequences in the UASB reactor and influent sewage, respectively. The 

relative abundance of fungi in the UASB was continuously high throughout the year (Supplementary Fig. 

S3-1a). In contrast, the relative protist abundance was very low in the UASB reactor, accounting for 3.8% of all 

sequences. Additionally, the relative abundance of algae and metazoa were detected as 0.3–3.9% and 7.1–9.8%, 

respectively.  



Chapter III 

 28 

� However, the results using the V9 region-specific primer pair showed that not only eukaryotic but also a large 

portion of prokaryotic sequences also detected from the UASB reactor and influent sewage (Fig. 3-2, 

Supplementary Tables S3-2, S3-3). The bacteria and archaea in the UASB reactor were accounted for 52.2% 

and 35.6% of total number of sequence, respectively. On the other hand, protists were dominant in activated 

sludge samples, where the relative abundance of bacteria was low.  

� To evaluate eukaryotic communities, sequences classified as archaea and bacteria were excluded from the 

rest of the analyses. Thus, in the present study, a total of 169,385 and 45,510 eukaryotic sequence reads were 

generated from the V4 and V9 amplicon libraries, respectively. The alpha diversity was calculated using the 

lowest sample sizes of eukaryotic sequences for comparison of each amplicon library (Supplementary Table 

S3-2). The values of species richness estimates, observed species, Chao1, and ACE were higher in the V4 

amplicon library than in the V9 amplicon library. In both amplicon libraries, these values were greater in the 

UASB reactor than in activated sludge.  

 

3.3.2 Protist Community Structures  

 Taxonomic classification of the protist community structures analyzed by V4 and V9 region-specific primer 

pairs were compared at the phylum level (Fig. 3-3). In the present study, a total of 3,204 OTUs and 691 OTUs 

of V4 and V9 amplicon libraries, respectively, were identified (Supplementary Table S3-4). In the V4 amplicon 

library, the dominant heterotrophic protist groups in the UASB reactor were phyla Ciliophora and Amoebozoa, 

with average relative abundances of 27.2% and 10.6%, respectively. Phyla Apicomplexa, Ichthyosporea, and 

Figure 3-2. Relative abundance of (a) V4 and (b) V9 region amplicons assigned to kingdom or 

domain level in the UASB reactor (N = 10), influent sewage, and activated sludge. Sequence reads 

that are not classified into any known group were labeled as “No blast hit.” 
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Perkinsozoa, which are known as parasitic protists (Ajonina et al., 2012; Mangot et al., 2011; Mendoza et al., 

2002), were also detected in the UASB reactor at average relative abundances of 18.6%, 11.0%, and 10.6%, 

respectively. The heterotrophic protists identified included phyla Cercozoa, Sulcozoa, Bicosoecida, 

Choanomonada, Dinoflagellata, and Metamonada (>1% on average).  

� In the V9 amplicon library from the UASB reactor, phyla Metamonada, Apicomplexa, Amoebozoa, and 

Ciliophora were dominant, displaying average relative abundances of 23.9%, 21.8%, 12.5%, and 11.0%, 

respectively. Phyla Ciliophora, Ichthyosporea, Perkinsozoa, and Sulcozoa were found at lower levels in the V9 

amplicon library than in the V4 amplicon library. In contrast, phyla Metamonada, Heterolobosea, and 

Euglenozoa were more abundant in the V9 amplicon library. Although changes in community composition at 

phylum level were observed in the UASB reactor over the two years, the effect of seasonal changes on protist 

communities (e.g., winter and summer) was unclear in both amplicon libraries. The alpha diversity indexes of 

protist sequences includes observed species, Chao1, and ACE had also changed regardless of seasonality in the 

UASB reactor throughout the two years, while simpson and shannon indexes were not significantly different 

(Supplementary Table S3-4). This suggested that protist community could be affected by operational condition 

than seasonality. 

� In the V4 amplicon library from influent sewage, the dominant groups were phyla Ciliophora and Cercozoa 

and the RT5iin25 group, with relative abundances of 54.5%, 9.9%, and 20.5%, respectively. Phyla Ciliophora 

and Euglenozoa were dominant in the V9 amplicon library from influent sewage, with relative abundances of 

41.9% and 37.2%, respectively. In the V9 amplicon library from the UASB reactor and influent sewage, 

Excavata groups were detected as being more dominant than in the V4 amplicon library. The major groups in 

activated sludge were similar in both V4 and V9 amplicon libraries, where phyla Ciliophora, Cercozoa, and 

Figure 3-3. Relative abundance of (a) V4 and (b) V9 region amplicons assigned to protist phylum 

level in all samples from the UASB reactor, influent sewage, and activated sludge. 
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RT5iin25 groups were dominant. 

3.3.3 Temporal variation in anaerobic protist communities 

 To determine the factors that influence temporal changes in protist communities in UASB reactors, 

multivariate statistical analysis was conducted to assess correlation between the major anaerobic protists and 

environmental parameters. For the analysis, the V4 amplicon libraries were used due to the primer pair’s 

specificity for eukaryotic sequences. Anaerobic protist genera in the UASB reactor were identified by using 

eukaryotic sequence obtained from activated sludge and influent sewage as reference of aerobic protist 

(Supplementary Fig. S3-2). In the UASB reactor, some protists were from known aerobic genera such as 

Epistylis, Telotrochidium, Tetrahymena, Vorticella, within phylum Ciliophora (Foissner, 2016); Phalansterium 

and Saccamoeba within phylum Amoebozoa (Cavalier-Smith et al., 2004); Cercomonas, Heteromita, and 

Rhogostoma within phylum Cercozoa (Howe et al., 2011; Ekelund, 2002); and Protoperidinium within phylum 

Dinoflagellata (Yamaguchi and Horiguchi, 2008) which were frequently detected. These protist genera were 

also detected in influent sewage and activated sewage. The parasitic protist Cryptosporidium (phylum 

Apicomplexa) was detected in both influent sewage and in the UASB reactor. Although genera Acanthamoeba 

and Tracheloraphis that could prey other protist cell (Anderson et al., 2005; Hamels et al., 2005) were also 

detected in the UASB reactor, these protist and other protist genera were not correlated. These common protist 

genera in both influent sewage and the UASB reactor accounted for 25.8% of the total protist sequences from 

the UASB reactor. In contrast, the general anaerobic protists of Metopus (phylum Ciliophora) and Trimastix 

(phylum Metamonada) (Fenchel and Finlay, 1990; Hampl et al., 2008) were detected only in the UASB reactor. 

Additionally, protist genera belonging to phyla Sulcozoa, Bicosoecida, Choanozoa, and Metamonada were 

exclusively found in the UASB reactor.  

� The correlations between anaerobic protist genera and treatment performance in the UASB reactor were 

examined using CCA (Fig. 3-4). CCA includes the anaerobic protist genera that were specific to the UASB 

reactor (Supplementary Fig. S3-2) and the environmental parameters (Supplementary Table S3-5). As shown 

by CCA, genus Subulatomonas  (phylum Sulcozoa) positively correlated with effluent in COD, SS, and 

sulfide, whereas Platyophrya and Cyclidium (phylum Ciliophora) showed negative correlations. Furthermore, 

comparisons of variation of operational condition and alpha diversity over two years showed that value of 

estimated species, Chao1 and ACE of protist in V4 amplicon library seemed high when COD concentration of 

UASB effluent was low (Supplementary Table S3-4, S3-5). These results also supported that some protist 

population changed in response to environmental conditions. There were no protist genera that were correlated 

clearly with water temperature. The one-way analysis of variance (ANOVA) was also performed to analyze 

difference of relative abundance of protist genera at different season; summer (23.6 - 26.4˚C); winter (10.3 - 

14.5˚C); spring and fall (18.7 - 21.6˚C). However, no significant differences were found (data not shown). The 

principal coordinate analysis (PCoA) showed that protist community structures were not influenced by 

temperature and reduced sulfate (Supplementary Fig. S3-3).  
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3.3.4 Fungal community structures 

� Taxonomic classification of the fungal community structures analyzed by V4 and V9 region-specific primer 

pairs were compared at the phylum level (Fig. 3-5). In total, 15,109 and 527 OTUs were identified from fungal 

amplicons using V4 and V9, respectively (Supplementary Table S3-6). These sequence reads were classified as 

phyla Ascomycota, Basidiomycota, Chytridiomycota, Discicristoidea, Hyphochytriomycetes, and 

uncultured LKM11 and LKM15 groups in phylum Cryptomycota. The relative abundance of the fungi was 

17.4–85.8% of the V4 amplicon library in all sequences of each sample. In the V4 amplicon library from the 

UASB reactor, the dominant fungi were the LKM11 and LKM15 groups, with average relative 

abundances of 38.8% and 31.7% of all fungal sequences, respectively. In the activated sludge, the LKM11 

group was most abundant, accounting for 81.5%. Phylum Ascomycota and the LKM11 group were also 

detected in the influent sewage, with relative abundances of 60.5% and 34.2%, respectively. In comparison with 

the V4 amplicon library, the V9 amplicon library showed a drastically different composition (Fig. 3-5), and 

phylum Ascomycota was dominantly detected in all samples. Within sequences belonging to phylum 
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Figure 3-4. Canonical correspondence analysis based on treatment performance and on the 17 

unique protist genera of the UASB reactor having a mean relative abundance per sample of 0.3% or 

above. 
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Ascomycota in the V9 amplicon library from the UASB reactor, genus Candida accounted for 84.7%. The 

community structures and alpha diversity of fungi had changed regardless of seasonality and reduced sulfate in 

the UASB reactor throughout the two years as with protist community (Supplementary Table S3-6). The PCoA 

results supported that fungi community structures were not influenced by temperature and reduced sulfate 

(Supplementary Fig. S3-4). 

� Phylogenetic analyses of predominant OTUs belonging to uncultured LKM11 and LKM15 groups in 

phylum Cryptomycota were performed using 18S rRNA gene sequences from the V4 amplicon library 

(Supplementary Fig. S3-5). The abundance of OTUs belonging to the LKM11 group varies between samples. 

The OTU denovo13315 was detected only in the UASB reactor, with an average relative abundance of 

8.1%. The OTU denovo4805 was most dominant in activated sludge, at a relative abundance of 49.5%, and 

was hardly detected in other samples. These results suggested that these two species, OTU denovo13315 and 

denovo4805, could live in the UASB reactor or activated sludge. Additionally, the OTU denovo9985 was 

dominant in influent sewage. Other OTUs denovo15978, 18515, 20531, and 22061 belonged to the LKM11 

group and were detected in all samples. By contrast, OTUs belonging to the LKM15 group were detected only 

in the UASB reactors. The OTU denovo23550 was the most dominant, accounting for 97.6% of all OTUs 

belonging to the LKM15 group. 

 

3.4 Discussion 

� In this study, the eukaryotic community structures in a UASB reactor fed with domestic sewage were 

investigated by amplicon sequencing of the V4 and V9 regions of 18S rRNA gene. Eukaryotic communities 

Figure 3-5. Relative abundance of (a) V4 and (b) V9 region amplicons assigned to fungi phylum 

level in all samples of UASB reactor, influent sewage, and activated sludge. 
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involved in anaerobic wastewater treatment systems have remained poorly understood in comparison to aerobic 

processes. To the best of our knowledge, this is the first study of eukaryotic communities involved in anaerobic 

wastewater treatment that were characterized by comparison between the UASB reactor and influent sewage 

based on 18S rRNA gene sequencing analysis. Additionally, this study evaluated the applicability of V4 and V9 

region-specific primer pairs to characterize eukaryotic communities in the UASB reactor via high-throughput 

sequencing. The V4 and V9 region-specific primer pairs have been used recently to describe the diversity and 

communities of eukaryotes in several studies as their flanking regions are well conserved (Massana et al., 2014; 

De Vargas et al., 2015). The observed species, Chao1, and ACE indexed of eukaryotic communities were 

higher in the V4 amplicon library than V9 amplicon library (Supplementary Table S3-2). This could have 

resulted from the V4 region amplicon being longer than the V9 region amplicon (V4 : 341 bp and V9 : 102 bp). 

In addition, the V4 region-specific primer pair of V4_1F and TAReukREV3 could be used to specifically 

amplify eukaryotic sequences from all samples, making them available for investigations of eukaryotes in 

anaerobic treatment systems. 

� The V9 region-specific primer pair of Euk1391F and EukBR amplified eukaryotic and prokaryotic 

sequences from samples collected from the UASB reactor and influent sewage (Fig. 3-2, Supplementary Table 

S3-2). Although there is possibility that detection of prokaryotes resulted from the combined effects of read 

errors during PCR and sequencing, PCR chimera formation, a total of 288,723 sequences assigned to 

prokaryotes passed QC (Supplementary Table S3-1). The V9 region specific primer amplified relatively short 

sequences (<500 bp) in comparison to Sanger sequencing based methods like clone library (>1 kb). In 

theoretically, short read sequences minimize the occurrence of chimera formation (Stoeck et al., 2010). 

Additionally, contig length of eukaryotes and prokaryotes obtained from V9 amplicon libraries were different 

for 123 ± 13 bp and 103 ± 17 bp, respectively. Thus, detection of large number of prokaryotic sequences is 

considered not for PCR chimera formation and read errors. The forward primer of Euk1391F is targeted at 

highly conserved rRNA gene sequence regions among the three domains, meaning that non-eukaryotic 

sequences have often been amplified (Stoeck et al., 2010). The dominant prokaryotes detected by the primer 

pair of Euk1391F and EukBR from the UASB reactor and influent sewage were genera Pseudomonas, 

Syntrophobacter, and Arcobacter within phylum Proteobacteria, and Methanomassiliicoccus and 

Methanobacterium affiliated with phylum Euryarchaeota. These anaerobes and facultative anaerobes that have 

0-1 and 2-4 mismatches with Euk1391F and EukBR, respectively (Supplementary Table S3-3, Fig. S3-6). 

Despite previous studies using the same V9 region-specific primer pair for both anoxic and aerobic samples, the 

relative abundance of prokaryotes was very low in all sequences (<1%) (Stoeck et al., 2009; 2010). The high 

detection ratio of prokaryotes in the present study may be due to the microbial community including a high 

proportion of prokaryotes that have no, or low levels of, mismatches with Euk1391F and EukBR. Those 

prokaryotes were detected from the UASB reactor samples based on 16S rRNA gene sequencing (Watari et al., 
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2017; Kuroda et al., 2015). Therefore V9 region-specific primer pair of Euk1391F and EukBR was not suitable 

for analysis of eukaryotic communities in the UASB reactor.  

� Protists and fungi are known to be the dominant eukaryotes in anaerobic environments (Hackstein et al., 

1999; Müller, 1993). Nevertheless, not only protists and fungi but also metazoa and algae were detected in the 

UASB reactor (Fig. 3-2). In V4 and/or V9 amplicon libraries, phyla Charophyta and Chlorophyta in algae and 

phyla Nematoda and Arthropoda in metazoa were the dominant groups in the UASB reactor and were also 

detected in influent sewage (Supplementary Figs. S3-7 and S3-8). The members of phyla Chlorophyta and 

Charophyta are known as either photosynthetic or aerobic heterotrophic organisms (Chiu et al., 2015; Khataee 

et al., 2010). Some species of phylum Nematoda were often observed in wastewater treatment plants and raw 

municipal wastewater, at the egg stage of their life cycle (Ayed et al., 2009). However, phylum Arthropoda that 

known to be intolerant of anoxic conditions and was therefore probably introduced into the UASB reactor via 

influent sewage, in which they were also detected. Furthermore, aerobic, parasitic protists and some fungal 

species were detected in the UASB reactor and influent sewage (Fig. S3-3, 3-5; Supplementary Figs S3-2, 

S3-5); this indicates that the presence of these species in influent sewage affects eukaryotic communities in the 

UASB reactor. These data suggest that eukaryotic species in influent sewage should be considered during 

identification of anaerobic eukaryotes. 

� The result of this study showed that 18S rRNA gene amplicon sequencing could reveal larger numbers of 

protist species in the UASB reactor and activated sludge than the microscopic observations (Hirakata et al., 

2016; Foissner, 2016) and clone libraries used in previous studies (Matsunaga et al., 2014; Prabhakaran et al., 

2016). Although many protist groups that are barely observable microscopically were detected by 18S rRNA 

gene amplicon sequencing, V4 and V9 amplicon libraries detected different compositions within protist 

sequences. Consistent with our previous study, phylum Ciliophora, which was dominantly observed 

microscopically in the UASB reactor (Hirakata et al., 2016), was the most dominant group in V4 amplicon 

library. However, phylum Metamonada, which was not found in microscopic observations, were more 

dominant than phylum Ciliophora in the V9 amplicon library from the UASB reactor. In addition, some protist 

groups that were detected at low levels in the V4 amplicon library were strongly detected in the V9 amplicon 

library (e.g., phylum Metamonada, Heterolobosea, and Euglenozoa). Previous studies have reported that V4 

and V9 region-specific primer sequences preferentially detected different protist groups (Stoeck et al., 2010; 

Tragin et al., 2018). This may be caused by the different detection biases of each primer pair. These protist 

groups, especially phylum Metamonada, were the most likely to be overlooked microscopically; therefore, their 

populations in UASB reactors should be examined in future studies.  

� The protist community structures in the UASB reactor were distinctly different and composed of a wide 

range of taxonomic groups, compared with influent sewage and activated sludge (Fig. 3-3). Phyla Cercozoa, 

Amoebozoa, and Ciliophora were detected in both samples. These phyla are found frequently in both aerobic 

and anaerobic environments (Bernard et al., 2000; Cavalier-Smith et al., 2004; Triadó‐Margarit and Casamayor, 
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2015). In addition, protist groups including these phyla detected from influent sewage and activated sludge in 

this study were also detected in previous studies throughout the year (Matsunaga et al., 2014; Zahedi et al., 

2019). This result showed that anaerobic protist species could be retrieved by using these eukaryotic sequences 

obtained from activated sludge and influent sewage as a reference of aerobic species (Supplementary Fig. S3-2). 

Contrary to these, the protist phyla Sulcozoa, Bicosoecida, Choanozoa, and Metamonada were found 

exclusively in the UASB reactor, and not in the influent sewage. These protists were previously found in many 

anaerobic environments such as animal gut (Mostegl et al., 2012), anoxic sediment of saline lake (Takishita et 

al., 2007), anoxic zone of freshwater lake (Lepère et al., 2016), and marine environments (Walker et al., 2006; 

Wylezich et al., 2012; Yubuki et al., 2015). Thus, these protists are anaerobic and could live in the UASB 

reactor.  

� The parasitic protists, such as phyla Ichthyosporea and Perkinsozoa, were detected only in the UASB reactor 

in both amplicon libraries. Species of phyla Ichthyosporea and Perkinsozoa were previously detected in marine 

(Takishita et al., 2005) and freshwater environments (Matsubayashi et al., 2017) and have free-living stages and 

cyst stages during their life cycles (Mendoza et al., 2002; Mangot et al., 2011). Although it is unclear whether 

those organisms occur in free-living or parasitic forms in the UASB reactor, this result suggested that these 

species could grow in the UASB reactor. 

� Some correlation was found between certain anaerobic protist genera and the environmental parameters of 

the UASB reactor (Fig. 3-4). The genera Cyclidium and Platyophrya (phylum Ciliophora) were negatively 

correlated with COD and SS concentrations of effluent, suggesting the importance of these protists as indicators 

of good treatment performance in UASB reactors. These protist genera are bacterivorous species in anaerobic 

environments (Clarke et al., 1993; Petz et al., 2007), and may contribute to the degradation of particulate organic 

matter. Notably, a positive correlation between genus Cyclidium and COD removal, volatile fatty acid (VFA) 

concentration, and gas production, have been observed in anaerobic digesters previously (Priya et al., 2007; 

Prabhakaran et al., 2016). In contrast, genus Subulatomonas (phylum Sulcozoa) and effluent COD and SS were 

positively correlated. The genus Subulatomonas, isolated from anoxic marine sediment, can grow anaerobically 

with mixed bacteria as a substrate (Katz et al., 2011). Additionally, Xie et al (2018) investigated microbial 

communities in coastal sediment impacted by oil pollution, reporting that the Subulatomonas genus was 

dominant in sediments containing high concentrations of oil. Therefore, it is possible that these species 

preferentially grow under high organic matter concentrations and might be considered as indicators of poor 

treatment performance in the UASB reactors.  

� The seasonality of most protist genera in the UASB reactor was unclear. However, growth efficiency of 

protists was influenced by water temperature (Straile, 1997), while some anaerobic protist species showed 

increased growth rates at temperatures higher than 20 ˚C (Wagener and Pfennig, 1987). Thus, the total protist 

population of the UASB reactor may be different in every season, resulting from water temperature changes. To 
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use protists as biological indicators of the UASB reactor, further studies are required to establish associations 

between protist diversity, population changes, and environmental parameters in detail.  

� The effect of reduced sulfate on the eukaryotic community was also not found in the UASB reactor even 

though sulfide could be an important factor of growth inhibition of microorganism. The reduced sulfate 

increased during high temperature period, and decreased during low temperature period (Fig. 3-1). No 

significant differences of relative abundance of protist genera were found between low reduced sulfate period 

(10.6 - 21.8 mg-S L-1) and high reduced sulfate period (28.9 - 42.9 mg-S L-1) (data not shown). The inside of the 

UASB reactor is sulfide-rich environment compared than natural environment such as freshwater lake because 

sulfide-rich sewage was fed into the UASB reactors for a long time and sulfate reduction was always occurred 

(Tandukar et al., 2007; Aida et al., 2015; Hirakata et al., 2016). This situation possibly resulted in the selective 

construction of the sulfide-resistant protist community, thus they were not susceptible to sulfide. This 

phenomenon could also result in the fungi community in the UASB reactor. 

� Fungi were the dominant eukaryotes in the UASB reactor (Fig. 3-2). The dominant fungal groups were 

different in the V4 and V9 amplicon libraries, likely due to differences in the detection biases of the primer pairs, 

as discussed above. In the V9 amplicon library from the UASB reactor, the dominant fungus group was genus 

Candida (phyla Ascomycota), which was found in the anaerobic digester and known to grow under anaerobic 

conditions (Matsubayashi et al., 2017). On the other hand, the uncultured fungal groups of LKM11 and 

LKM15 in phylum Cryptomycota were dominantly detected in the V4 amplicon library. Although the 

uncultured LKM11 group in phylum Cryptomycota was detected in all samples, the dominant OTUs of each 

environment were different (Supplementary Fig. S3-5). This could have resulted from the LKM11 group 

including both aerobic and anaerobic species. The LKM11 group was previously detected in activated sludge 

treating domestic sewage (Matsunaga et al., 2014), anaerobic digester (Matsubayashi et al., 2017), anoxic 

sediments (Dawson et al., 2002), and freshwater lake (Lepère et al., 2010). Some members of the LKM11 

group in freshwater are expected to be parasitic fungi or be involved in the decomposition of detritus (Lepère et 

al., 2007; Simon et al., 2015). In contrast, the LKM15 group was detected only in the UASB reactor, 

indicating their ability to survive and grow in this environment. Sequences of the LKM15 group were 

found in anoxic environments such as lake or pond sediments (Wurzbacher et al., 2016). However, the 

functions of the LKM11 and LKM15 groups in the sewage treatment process are still largely unknown. Our 

results showed that some members of the LKM11 and LKM15 groups were independent in the UASB reactor 

from the influent sewage and may be involved in organic degradation in anaerobic wastewater treatment 

systems. Their functions should be examined in more detail in future studies.  

 

3.5 Summary of this Chapter 

� In summary, this study revealed protist and fungi communities existing in a UASB reactor treating 

domestic sewage, using the V4 and V9 regions of 18S rRNA for gene amplicon sequencing. The V4 
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region-specific primer pair was suitable for analysis of eukaryotic communities in the UASB reactor 

because eukaryotic sequences were specifically amplified. Eukaryotic community structures in the 

UASB reactor were influenced by the immigration of eukaryotes via influent sewage, but were clearly 

different from influent sewage and activated sludge. The changes of protist and fungi community 

structure in the UASB reactor were not influenced by seasonality. The most dominant protist groups in 

the UASB reactor were phylum Ciliophora throughout the two years. Multivariate statistics indicated 

that protist genera Cyclidium, Platyophrya (phylum Ciliophora) and Subulatomonas (phylum 

Sulcozoa) correlated with chemical oxygen demand and suspended solid concentration, and could be 

used as bioindicators of treatment performance. In addition, uncultured eukaryotes such as parasitic 

protists and LKM11 and LKM15 groups of fungi were exclusively detected in the UASB reactor. The 

physiological roles of these uncultured eukaryotes need to be examined to understand their 

contributions to anaerobic processes in future studies. 
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3.7 Supplementary Information 

Supplementary Figure S3-1. Relative abundance of a) V4 and b) V9 region amplicons assigned to 

kingdom or domain level in the UASB reactor. Sequence reads that are not classified into any known 

group were labeled as “No blast hit.” 
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Supplementary Figure S3-2. Relative abundance of V4 region amplicons assigned to protist genus 

level in all samples from the UASB reactor, influent sewage, and activated sludge. Protist genera 

(represented by the areas of dots) representing at least 0.3% mean relative abundance per sample are 

shown. The size of each dot indicates the percentage of protist genera within the protist sequences. The 

gray colored part indicates shared protist genera in the UASB reactor, influent sewage, and activated 

sludge. 
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Supplementary Figure S3-3. Principal coordinates analysis (PCoA) based on Bray-Curtis distance of 

the protist OTU of the UASB reactor. Data colored by sampling date (A), reduced sulfate (sulfide) level 

(B), and temperature (C). 

 

 

 

 
Supplementary Figure S3-4. Principal coordinates analysis (PCoA) based on Bray-Curtis distance of 

the fungal OTU of the UASB reactor. Data colored by sampling date (A), reduced sulfate (sulfide) 

level (B), and temperature (C). 
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Supplementary Figure S3-5. A phylogenetic tree based on neighbor-joining (NJ) methods and 

relative abundance of OTUs assigned to uncultured LKM11 and LKM15 groups in phyla 

Cryptomycota, using the 18S rRNA gene. The 18S rRNA gene of Diplogaster sp. (GenBank accession 

number FJ516756) was used as an out-group (not shown). The OTUs obtained in this study are shown 

in bold type in the tree. The OTUs (represented by the areas of dots) representing at least 1.0% mean 

relative abundance per sample are shown. The size of each dot indicates the percentage of OTUs within 

the fungal sequences. 
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Supplementary Figure S3-7. Relative abundance of a) V9 and b) V4 region amplicons assigned to 

Metazoa phylum level in all samples from the UASB reactor, influent sewage, and activated sludge 

 

Supplementary Figure S3-8. Relative abundance of a) V4 and b) V9 region amplicons assigned to 

Algae phylum level in all samples from the UASB reactor, influent sewage, and activated sludge 
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Supplementary Table S3-1. Number of raw sequence reads and post QC sequence reads 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples 

V4�  
 

V9 

Raw sequences After QC* 
After 

assembly 
non-chmeric  OTUs �  Raw sequences After QC* After assembly non-chmeric OTUs 

2010 
Oct. 44873 40092 23119 22742 4342 

 
71112 68908 62796 62735 1356 

Nov. 35723 30305 16010 15609 4141 
 

54145 52851 48424 48385 1357 

2011 

Feb. 35025 30883 18351 18060 3110 
 

28450 27581 25431 25404 1042 

Jun. 30551 26693 16787 16537 2966 
 

39604 38412 35410 35400 1234 

Sep. 37367 32203 18862 18472 4095 
 

35459 34113 31356 31354 1138 

2012 

Jan. 30420 24427 11761 11554 2733 
 

19937 19202 15448 15435 1020 

Apr. 25133 22435 14185 14020 2205 
 

24792 23971 19827 19822 929 

Jun. 26277 24197 15761 15583 2360 
 

20766 20171 16900 16893 809 

Aug. 29707 25655 13784 13604 2656 
 

31287 30172 24970 24957 1206 

Oct. 39014 34249 20784 20412 3840 
 

38763 37618 31192 31181 1078 

Influent sewage 40959 17288 7160 7075 1400 
 

16695 16550 15453 15429 663 

Activated sludge 54805 23916 7174 7010 1377 
 

17125 16497 13060 13059 697 

Total 429854 332343 183738 180678 23908 �  398135 386046 340267 340054 4772 

*QC: quality control  
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Supplementary Table S3-2. SSU rRNA gene data and alpha�diversity indices of eukaryotic communities 

resulting from V4 and V9 regions of 18S rRNA gene sequencing 

 

 

 

 

 

 

 

 

 

 

 

 

V4             

2010 Oct. 22742 20940 0 5 1797  247 0.97 4.49 821 988 0.85 

Nov. 15609 14171 0 3 1435  310 0.96 4.64 1517 1448 0.79 

2011 Feb. 18060 16781 0 7 1272  211 0.88 3.70 888 1090 0.87 

Jun. 16537 14685 0 4 1848  196 0.84 3.37 1243 1150 0.86 

Sep. 18472 16460 0 6 2006  251 0.93 4.10 1298 1165 0.83 

2012 Jan. 11554 10089 0 2 1463  254 0.96 4.36 1279 1248 0.83 

Apr. 14020 13146 0 3 871  149 0.69 2.58 809 938 0.88 

Jun. 15583 14633 0 2 948  170 0.76 2.92 1200 1462 0.89 

Aug. 13604 12695 0 5 904  212 0.88 3.61 1239 1615 0.85 

Oct. 20412 18916 0 5 1491  241 0.92 4.04 1726 1383 0.86 

Influent sewage 7075 5891 0 8 1176  199 0.90 3.75 703 689 0.88 

Activated sludge 7010 5513 0 3 1494  193 0.93 3.84 742 793 0.88 

Total 180678 163920 0 53 16705        

*Calculation at a sampling depth of 700 reads. 

 

  Sequence number  Alpha�diversity indices of eukaryotes* 

V9 Total reads Eukaryotes Archaea Bacteria No blast hit  Observed species Simpson Shannon Chao1 ACE Goods_coverage 

2010 Oct. 35187 4998 9395 20697 97  161 0.94 3.81 291 348 0.96 

Nov. 62511 4132 34684 23628 67  143 0.90 3.51 247 286 0.95 

2011 Feb. 48796 6350 23761 18571 114  143 0.90 3.52 404 364 0.96 

Jun. 25258 6714 8636 9848 60  132 0.73 2.76 368 436 0.97 

Sep. 31131 5444 10622 14983 82  151 0.93 3.68 298 334 0.97 

2012 Jan. 15746 1220 2389 11560 577  170 0.95 3.91 443 473 0.87 

Apr. 20176 1081 4994 13419 682  159 0.96 4.07 337 350 0.89 

Jun. 17067 766 5262 10621 418  155 0.92 3.71 327 389 0.86 

Aug. 25477 1788 6794 15784 1111  182 0.95 4.05 507 542 0.91 

Oct. 31600 1109 9395 20471 917  157 0.92 3.82 238 270 0.91 

Influent sewage 15812 1593 47 13454 718  123 0.90 3.26 286 331 0.93 

Activated sludge 14384 11765 0 807 1812  62 0.67 2.01 121 119 0.99 

Total 340054 46286 115750 173389 4629        
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Supplementary Table S3-3. The relative abundances of dominant prokaryotic OTUs in all prokaryotic 

sequences of the V9 amplicon library 

 

 

 

Supplementary Table S3-4. Alpha diversity indexes calculated from protist sequences. 

 

 

 

 

 

 

OTUs* 
Accession 

No. 
Closely related species UASB 

(N = 10) 
Influent 
sewage 

Activated 
sludge 

denovo1429 JQ045817 Pseudomonas poae 0.1% 29.3% 0.1% 

denovo3211 MG195900 Arcobacter suis 0.0% 18.5% 0.0% 

denovo2044 NR_075002 Syntrophobacter fumaroxidans 14.7% 0.0% 0.0% 

denovo428 CP005934 Methanomassiliicoccus intestinalis 12.6% 0.0% 0.0% 

denovo3974 MG195891 Arcobacter bivalviorum 0.0% 8.0% 0.0% 

denovo3298 AF028688 Methanobacterium bryantii 6.5% 0.0% 0.0% 

denovo913 NR_028247 Methanobacterium subterraneum 5.1% 0.0% 0.0% 

denovo3127 FJ193683 Acinetobacter sp. 0.1% 5.0% 0.1% 

denovo694 KT862103 Dickeya chrysanthemi 0.6% 4.8% 0.1% 

denovo4667 X97691 Pedomicrobium manganicum 4.2% 0.0% 0.0% 

* Top 10 OTUs selected from all prokaryotic sequences of the V9 amplicon library among all samples 

 1 

Samples 

V4 �  V9 

sequences 

OTU

s 

shannon

a simpsona 

observed 

speciesa Chao1a ACEa �  

sequence

s OTUs 

shannon

b simpsonb 

observed 

speciesb Chao1b ACEb 

2010 
Oct. 1106 370 4.08 0.96 131 519 647 

 

935 141.0 3.03 0.90 40 79 86 

Nov. 833 378 4.41 0.98 151 1120 962 

 

1005 144 2.66 0.87 32 67 68 

2011 

Feb. 787 307 4.16 0.96 139 772 692 

 

1444 171 3.05 0.91 28 57 104 

Jun. 428 211 4.23 0.96 154 1268 1515 

 

1016 155 2.79 0.88 42 96 147 

Sep. 829 395 4.64 0.98 174 1150 1240 

 

1089 141 2.85 0.90 38 66 87 

2012 

Jan. 324 204 4.87 0.99 188 713 891 

 

177 70 3.27 0.94 45 123 131 

Apr. 517 201 3.69 0.90 127 443 706 

 

239 61 2.87 0.90 33 52 72 

Jun. 324 156 4.45 0.98 148 555 559 

 

132 46 2.90 0.88 38 147 176 

Aug. 546 283 4.51 0.97 167 724 835 

 

362 87 3.11 0.91 41 104 137 

Oct. 611 285 4.53 0.98 152 479 583 

 

200 53 2.81 0.89 38 173 133 

Influent 

sewage 1510 426 4.33 0.97 138 499 452 �  1080 114 2.84 0.89 34 97 99 

Activated 

sludge 3799 617 3.26 0.88 93 313 440 �  11285 171 1.80 0.70 19 45 75 

Total 11614 3204 �  �  �  �  �  �  18964 691 �  �  �  �  �  

a Calculation at a sampling depth of 300 reads, b Calculation at a sampling depth of 100 reads 
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Supplementary Table S3-5. Operational conditions and performance of the UASB reactor treating 

domestic sewage 

 

 

 

Supplementary Table S3-6. Alpha diversity indexes calculated from fungi sequences. 

 

 

 

 1 

Samples 

V4 �  V9 

sequences OTUs shannona simpsona 

observed 

speciesa Chao1a ACEa �  sequences OTUs shannon b simpson b 

observed 

species b Chao1 b ACE b 

2010 
Oct. 17024 2729 4.35 0.95 308 1434 1247 

 

2444 169 2.48 0.78 55 94 114 

Nov. 12141 2707 4.34 0.95 326 2321 1622 

 

1966 156 2.17 0.66 54 104 123 

2011 

Feb. 14229 1792 3.28 0.82 235 1200 1505 

 

3266 200 2.21 0.71 53 132 189 

Jun. 12835 1862 2.98 0.78 215 1022 1116 

 

4565 180 1.50 0.48 42 135 159 

Sep. 14221 2652 3.70 0.90 272 1937 1519 

 

1995 145 2.67 0.83 57 113 141 

2012 

Jan. 5834 1160 3.95 0.93 289 1711 1965 

 

387 99 3.26 0.90 86 200 233 

Apr. 11978 1344 2.27 0.62 171 1315 985 

 

434 94 3.00 0.85 73 141 176 

Jun. 13375 1579 2.67 0.71 191 976 1076 

 

435 80 2.68 0.80 64 117 158 

Aug. 9207 1389 3.01 0.78 221 1250 1553 

 

813 139 3.05 0.84 80 170 180 

Oct. 15926 2305 3.59 0.86 249 1046 1168 

 

576 97 2.72 0.76 76 149 208 

Influent 

sewage 3594 419 2.30 0.73 144 1233 1378 �  452 58 1.80 0.56 45 133 90 

Activated 

sludge 1222 257 2.85 0.74 221 1187 1661 �  302 44 2.73 0.87 44 76 73 

Total 131586 15109 �  �  �  �  �  �  17635 527 �  �  �  �  �  

a Calculation at a sampling depth of 1,000 reads, b Calculation at a sampling depth of 300 reads 

 1 

Year Month 

UASB reactor �  Water quality of influent  Water quality of effluent 

Temp. 
pH 

ORP 
 

SO42− Sulfide SS COD  SO42− Sulfide SS COD 

°C mV 

 

mg-S L−1 mg-S L−1 mg L−1 mg L−1  mg-S L−1 mg-S L−1 mg L−1 mg L−1 

2010 
Oct.  21.6 6.8 −241 �  7.2 0.0 93.0 299.3  8.1 17.0 31.7 120.1 

Nov. 18.7 7.0 −246 

 

86.4 1.3 76.4 288.8  78.1 21.8 27.6 144.7 

2011 

Feb. 10.3 7.0 −182 

 

109.6 1.5 92.4 317.8  79.0 15.0 48.5 198.8 

Jun. 21.6 6.8 −211 
 

35.7 1.6 128.8 341.9  10.0 36.1 41.6 164.5 
Sep. 25.6 6.8 −277 

 

34.2 3.5 89.2 383.0  4.2 31.7 38.9 145.1 

2012 

Jan. 10.6 7.3 −175 

 

54.1 2.5 71.2 314.7  47.6 10.6 29.6 188.0 

Apr. 14.5 7.1 −203 

 

45.8 1.1 110.6 383.8  12.6 33.4 58.5 265.0 

Jun. 21.4 6.9 −234 

 

58.1 1.6 103.1 384.3  2.3 38.5 38.7 238.1 

Aug. 26.4 6.8 −280 

 

37.3 2.7 98.7 372.7  3.7 28.9 40.3 172.7 

Oct. 23.6 6.8 −262 �  54.0 2.7 117.4 377.4  1.4 42.9 47.4 229.6 
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Chapter IV 

Fermentative metabolites and predation behavior of Cyclidium sp., Paracercomonas sp., and 

Trichomitus sp. isolated from anaerobic granular sludge 

 

 

 

 

 
 

Hirakata et al. (2019) in prep. 
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4.1 Introduction 

� In Chapter III, 18S rRNA gene sequencing revealed that many kinds of anaerobic protists such as 

amoeba, ciliate, and flagellate were existing in the UASB reactor treating domestic sewage. However, 

most anaerobic protists were still uncultured, physiological characteristics of those have poorly 

understood. Anaerobic protists are known as the major predator of prokaryotes that influence 

abundance, structure and diversity of prokaryotic communities in various anaerobic environments such 

as lake, groundwater, rumen, and bioreactor (Hirakata et al., 2016; Biagini et al., 1998; Holmes et al., 

2014; Massana et al., 1994; Santra et al., 2002; Saccà et al., 2009). Bacterivorous protists have different 

hunting characteristics and species-specific prey preferences, and each of these protists has its own 

ecological niche (Šimek and Chrzanowski, 1992, Martinez-Garcia et al., 2012; Jousset 2012). 

Therefore, predation behavior and food selectivity of each protist species need to be investigated in 

order to understand their role in the UASB reactor treating domestic sewage.  

� In wastewater treatment process, anaerobic protist could contribute sludge reduction by predation, in 

addition, degrade particulate organic matter including bacterial cell and supply metabolite like soluble 

organic matter to prokaryotes (Priya et al., 2007; Prabhakaran et al., 2016). Anaerobic protists have 

produced various metabolites through the fermentative metabolism of food bacteria; ethanol, fatty acids, 

hydrogen, and carbon dioxide were reported as major product (Goosen et al., 1990; Shinzato et al., 2007; 

Zimorski et al., 2019). Our previous study suggested that supply of metabolite by anaerobic protist 

increased abundance of anaerobic syntrophic bacteria that prefer fatty acids and resulted high microbial 

diversity (Hirakata et al., 2016). Thus, metabolites of anaerobic protist are also one of important factor 

that influence microbial community in anaerobic ecosystems.  

� In addition, some anaerobic protists harbor endosymbiotic methanogen in the cytoplasm (van 

Bruggen et al., 1983; Finlay and Fenchel, 1991; Hirakata et al., 2015). A number of studies inferred that 

these endosymbiotic methanogens closely associated metabolism of host protist by scavenging 

hydrogen produced by protist (Hackstein and Vogels, 1997; Gast et al., 2009; Nowack and Melkonian, 

2010; Shinzato et al., 2018). However, metabolisms of anaerobic protist including endosymbiotic 

methanogen have not been demosntrated. For investigation of decomposition pathway of substrate, s 

isotope tracer techniques have been applied previously (Wintsche et al., 2018; Teh et al., 2009). 

Although 13C tracer techniques have been applied to investigate metabolism of parasite protist 

(Chapman et al., 1985; Saunders et al., 2015; Creek et al., 2015), no study reported about anaerobic 

protist and methanogen. 

� In this Chapter, we report the establishment of monoxenic culture of ciliate Cyclidium sp. strain YH 

that harbor endosymbiotic methanogen, flagellate Trichomitus sp. strain YH and Paracercomonas sp. 

strain YH isolated from anaerobic granular sludge in a domestic wastewater treatment plant. In addition, 

their characteristics such as predation behavior, ability, and metaboilte were investigated. Ingestion and 

digestion of bacteria by three protists and methane production by endosymbiotic methanogen were 
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demonstrated by tracer experiment using green fluorescent protein (GFP) and stable carbon isotope of 13C. 

In addition, effects of food bacteria on these protist growth and metabolites were also investigated by 

feed experiment using various food bacteria.  

 

4.2 Materials and methods 

4.2.1 Isolation and cultivation of protists 

 Anaerobic granular sludge containing protist cells were obtained from sampling port at bottom of the UASB 

reactor at a domestic sewage treatment center of Nagaoka City, Japan (Hirakata et al., 2019), and 

cultured anoxically at room temperature (25˚C) in ciliate mineral medium containing the following per L of 

solution: 0.125 g K2HPO4, 0.025 g NH4Cl, 0.4 g NaCl, 0.2 g MgCl2·6H2O, 0.15 g KCl, 0.25 g CaCl·2H2O, 

1.26 g NaHCO3, 0.5 g Na2S·9H2O, 0.5 g L-cysteine hydrochloride monohydrate, 1 mg resazurin sodium salt, 1 

mL vitamin solution, and 1 mL trace element solution. The pH of the media was adjusted to 7.0 with 1N HCl or 

NaOH. Culture bottles were flushed with N2/CO2 (80:20) gas and closed with a butyl rubber stopper. E. coli 

strain K-12 was used as the food bacteria for cultivation of anaerobic protist. E.coli was grown overnight in M9 

minimal medium (Sambrook et al., 1989) containing 10 mM of glucose and 0.03% Yeast Extract at 37#°C, with 

shaking at 200#r.p.m. The cells were harvested by centrifugation at 8000×g, washed three times with 0.1M PBS 

and resuspended in the ciliate mineral medium. For cultivation of protist, stigmasterol and ergosterol dissolved 

in ethanol was also added to culture media at concentration of 1 µg mL-1 each, as previously reported (Wagener 

and Pfennig, 1987). Monocultures of anaerobic protists were obtained by transferring individual cells to culture 

bottle of fresh ciliate mineral medium containing food bacteria (i.e. E. coli strain K-12) from enriched culture 

using MM-89 and IM-9B micromanipulators (Narishige, Tokyo, Japan). Subculturing of each protists was 

performed every two or three week. 

 

4.2.2 Confirmation of protist feeding of bacterial cells by using GFP expressing E.coli 

 To confirm feeding of bacterial cells by protist, green fluorescent protein (GFP)-expressing E. coli was used 

as the food bacteria. The chemically competent E. coli TOP10 (Invitrogen) was transformed with the vector 

pUC18-GFP (Nippon Gene) following the procedure provided by Invitrogen. E. coli transformants were 

selected for by growth in Luria broth (LB) supplemented with ampicillin 100 mg ml-1. The GFP-expressing E. 

coli cells were harvested by centrifugation at 8000 rpm, washed two times with 0.1M PBS and resuspended in 

the fresh ciliate mineral medium in culture bottle. Each protist cells were inoculated into this culture bottles. 

After incubation for 30 minutes, protists in the suspension were taken out and checked for ingested bacteria with 

a fluorescence microscope (BX51, Olympus, Tokyo, Japan).  

 

 

 

4.2.3 Tracer experiment using isotopically labelled E. coli 
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 To investigate the metabolism of protists, each protists were incubated with 13C-labelled E. coli as a food 

bacteria in culture bottles of 50 mL fresh ciliate mineral medium. In addition, culture bottles containing medium 

with 13C-labelled E. coli but no protist cells were incubated in parallel as the control. For food bacteria, E.coli 

was grown overnight in M9 minimal medium containing 10 mM of fully 13C-labelled glucose (Wako 

Chemicals, Tokyo, Japan) as the sole carbon source at 37#°C, with shaking at 200#r.p.m (Haig et al., 2015). The 
13C-labelled E. coli cells were harvested by centrifugation at 8000 rpm, washed two times with 0.1M PBS and 

resuspended in the fresh ciliate mineral medium in culture bottle (ca. 108 cells mL-1). The initial bacterial density 

was 5.0 × 108 cells mL-1. Incubation in tripricate was carried out at 25˚C in the dark. At appropriate intervals, 

samples were taken out for measurement of the protist and bacterial number and fermentation products. 

 

4.2.4 Feeding experiments of anaerobic protists on various food bacteria 

 Propionibacterium acnes (strain UasXy-5) and Trichococcus flocculiformis (strain UasXy-4) were isolated 

in our laboratory, and Bacteroides luti strain UasXn-3 (JCM 19020) was isolated from anaerobic granular 

sludge as described in our previous study (Hatamoto et al., 2014). Bacteroides graminisolvens (JCM 15093T), 

Methanospirillum hungatei (JCM10133), Clostridium acetobutylicum (JCM1419), and Moorella 

thermoacetica (JCM 9319) were purchased from Japan Collection of Microorganisms (JCM, RIKEN, Saitama, 

Japan). Methanobacterium beijingense strain 8-2 (DSM15999) was obtained from the German Resource 

Centre for Biological Material (DSMZ). Escherichia coli strain TOPO10 was purchased from Invitrogen Corp. 

In addition, T. flocculiformis that grew filamentous form with chain of coccoid cells was divided to single 

coccus cells by sonication and also used as the food bacteria (designated T. flocculiformis-b). These 

characteristics of each food bacteria for protist culture are shown in Table S4-1.  

 Theses microorganisms except for E.coli were cultivated anoxically at 37°C in anaerobic basal medium 

reported previously (Hatamoto et al., 2014) with the following substrate: 10 mM glucose and 0.03% yeast 

extract for B. luti, B. graminisolvens, C. acetobutylicum, M. thermoacetica, C. acnes, and T. flocculiformis; 

H2/CO2 (80/20, v/v) for M. beijingense and M. hungatei  As described above  E.coli was cultivated in M9 

minimal medium containing 10 mM glucose at 37#°C, with shaking at 200#r.p.m.  

 The food bacterial cells were harvested by centrifugation at 8,000 rpm, washed two times with 0.1M PBS 

and resuspended in the fresh ciliate mineral medium in culture bottle. The initial cells concentration adjusted to 

108 cells mL-1. Each protist cells were inoculated into this culture bottles from monoculture. At appropriate 

intervals, samples were taken out for measurement of the protist and bacterial number and fermentation 

products. These experiments were repeated and subcultured at least three times for each culture per food 

bacteria. 

 

 

4.2.5 Analytical procedures 
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 The number of protists was determined manually by counting the numbers of ciliate cells in a 

Neubauer chamber (ERMA, Tokyo, Japan) under an IX71 light microscope (Olympus, Tokyo, Japan). 

For count of total bacterial concentrations, the samples were filtered on a black polycarbonate 

membrane after sonication; the membrane was air-dried and mounted with 

4,6-diamidino-2-phenylindole (DAPI). The bacteria on DAPI-stained membranes were enumerated by 

counting the total number of blue fluorescing bacteria. At least three randomly selected visual fields 

were used for the counting.  

� Methane was determined by gas chromatography with flame ionization detector (GC-2014, 

Shimadzu). Concentrations of 13CO2 and 13CH4 were analyzed using GCMS-QP2010SE gas 

chromatograph (Shimadzu, Kyoto, Japan). The generation time, feeding rates, and methane production 

rates of each protist were calculated from time courses of protists and bacterial number and methane 

production during exponential growth phase. 

� After filtration of the samples through 0.2-µm-pore-size membranes (Advantec, Tokyo, Japan), the 

fermentation products were analyzed by capillary electrophoresis (Agilent 7100 Photal, Otsuka 

Electronics).  

 

4.2.6 DNA Extraction, PCR Amplification and 18S rRNA gene sequencing 

� The genomic DNA was extracted from cultured cells using a FastDNA SPIN Kit for Soil (MP 

Biomedicals, Carlsbad, CA, USA). The DNA concentration was determined using a NanoDrop 

Spectrophotometer ND-1000 (Thermo Fisher Scientific, Waltham, MA, USA). Amplifications of 

near-full-length eukaryotic 18S rRNA genes were performed using universal eukaryote specific primer 

pairs of EukA (5'-AAC CTG GTT GAT CCT GCC AGT-3') and EukB (5'-TGA TCC TTC TGC 

AGG TTC ACC TAC-3') (Miyaoka et al., 2017). Premix Ex Taq Hot Start Version (TaKaRa Bio Inc., 

Shiga, Japan) was used for PCR amplification and the conditions were as follows; 5 min at 94°C; 40 

cycles of 1 min at 94°C, 1 min at 58°C, and 2 min at 72°C; and the final extension step 10 min at 72°C. 

The PCR products were purified using a QIAquick PCR Purification Kit (QIAGEN) and the 

concentrations were measured using Qubit dsDNA HS assay kit in a Qubit fluorometer (Thermo Fisher 

Scientific, USA). After purification of PCR products were sequensed with EukA, Ek-555F (5'-AGT 

CTG GTG CCA GCA GCC GC-3') (Miyaoka et al., 2017) and EukB by using a 3730xl DNA 

Analyzer (Applied Biosystems, CA, USA). 

 The nucleic acid sequences obtained were aligned in Clustal W software and a phylogenetic tree was 

constructed in MEGA 6.06 software (Tamura et al., 2013) by means of the maximum likelihood (ML; 

Jones-Taylor-Thornton model), neighbor joining (NJ; Poisson model), maximum parsimony (MP; close 

neighbor interchange in the random-tree search algorithm), and unweighted pair group methods with an 

arithmetic mean (UPGMA; a maximal composite likelihood model) using the 16S rRNA gene of Bacteroides 

graminisolvens (GenBank accession number NR_041642) as an outgroup. 
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4.2.7 Fluorescence in situ hybridization (FISH) 

� Protists used for FISH analyses were cultured with CMV medium without resazurin to minimize the 

amount of autofluorescence (Takeshita et al., 2019). Protist cells were collected by centrifugation 

(1,000 × g) and fixed with 4% paraformaldehyde for 1 h at 4°C, followed by two washes with 10 mM 

PBS. Fixed protist cells were embedded in low-melting agarose (Sigma-Aldrich, Steinheim, Germany) 

in each well of a 10-well glass slide. After drying, the cells on slides were dehydrated in 50%, 80%, and 

100% ethanol for 4, 2, 1 min, respectively and dried again. Then, the fixed cells were hybridized with 

the oligonucleotide probe Arc915 for methanogenic archaea (Raskin et al., 1994). The samples were 

counterstained with DAPI before observation under a fluorescence microscope (BX51, Olympus, 

Tokyo, Japan). 

 

4.2.8 Nucleotide Sequence Accession Numbers 

� Sequence data were deposited in the DDBJ nucleotide sequence database under accession numbers 

LC497866 to LC497868. We deposited all sequences in GenBank. 

 

4.3 Results 

4.3.1 Isolation of protist 

 As the results of isolation process, monoxenic cultures of three anaerobic protists that have different 

morphologically features were obtained from the UASB reactor treating domestic sewage. These protists were 

identified as Cyclidium sp. YH, Paracercomonas sp. YH, and Trichomitus sp. YH based on morphologically 

features as reported previously (Clarke et al., 1993; Bass et al., 2009; Krishnamurthy, 1967). Cyclidium sp. YH 

was ciliate, Paracercomonas sp. YH and Trichomitus sp. YH were flagellate. Cyclidium sp. YH and 

Paracercomonas sp. YH could grow with only food bacteria. However, growth of Trichomitus sp. YH required 

food bacteria with ergosterol and stigmasterol as the co-substrates. Phylogenetic affiliations were further 

analyzed by examining 18S rRNA gene sequences amplified from each protist cultures. The length and GC 

content of the 18S rRNA gene sequences in this study are as follows: Paracercomonas sp. YH, 1,700 bp, 

45.71%; Cyclidium sp. YH, 1,673 bp, 44.47%; and Trichomitus sp. YH, 1,471 bp, 47.99%. The 18S rRNA 

gene sequences that were obtained from three protist cultures were affiliated with the phylum Ciliophora, 

Metamonada and Cercozoa, respectively (Fig. 4-1): the sequence similarity of the 18S rRNA gene to Cyclidium 

porcatum was 97% (accession number Z29517) and to an Paracercomonas anaerobica was 97% (AF411272), 

and to Trichomitus batrachorum was 94% (AF124610). In addition, the endosymbiotic methanogens in inside 

of Cyclidium sp. YH cells were confirmed by fluorescence in situ hybridization with universal archaeal probe 

(Fig. S4-1). The endosymbiotic methanogens were not detected from Paracercomonas sp. YH and Trichomitus 

sp. YH cells.  

  



Chapter IV 

 59 

 

  

Figure 4-1. Neighbor-joining tree showing the phylogenetic affiliation of Cyclidium sp., 

Paracercomonas sp., and Trichomitus sp. isolated this study. Branching points that support a 

probability of >75% in the bootstrap analyses (based on 1,000 replications, estimated using the NJ 

method for the upper left sector, the MP method for the upper right sector, the ML method for 

bottom left sector, and the UPGMA method for the bottom right sector) are shown as black squares. 

The scale bars represent sequence divergence. 
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4.3.2 Confirmation of protist feeding of bacterial cells by using GFP expressing E.coli 

 To confirm feeding of bacterial cells by protist, GFP-expressing E. coli was used as the food bacteria. 

Internalization of GFP-expressing E. col in all protists cell were confirmed by a fluorescence microscope and 

showed that all protist species tested in present study ingested E. coli cell (Fig. 4-2). Cyclidium sp. YH seemed 

to ingest large number of bacterial cells than Trichomitus sp. YH and Paracercomonas sp. YH, because of the 

largest cell size of three protists. In addition, GFP-expressing E. coli cells ingested were localized in inside of 

Cyclidium sp. YH cell, suggesting that food vacuole formed in their cell. However, localizization of E. coli cells 

could not be observed in inside of Trichomitus sp. YH and Paracercomonas sp. YH cell. 

 

  

a b

c d

e f

Figure 4-2. Internalization of GFP-E.coli by Cyclidium sp. (a and b), Paracercomonas sp. (c and 

d), and Trichomitus sp. (e and f). These images were obtained within 30 minutes after inoculation of 

GFP-E.coli to protists culture. Panels a, c, and e are bright field. Panels b, d, and f are fluorescence 

field. The scale bar represents 20 µm. 
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4.3.3 Feeding experiments using isotopically labelled E. coli 

� As shown in Figure 4-3, the time courses of each protists growth were different. After cultivation for 

10 days, maximum number of Trichomitus sp. YH and Paracercomonas sp. YH reached to 1.2 × 104 

cells mL-1 and 6.2 × 104 cells mL-1, respectively. Cyclidium sp. YH grew to a maximum number of 2.2 

× 103 cells mL-1 after 18 day of cultivation. The generation time of Cyclidium sp. YH, Trichomitus sp. 

YH and Paracercomonas sp. YH were 53.6 ± 13.6 h, 29.2 ± 5.4 h, and 35.5 ± 5.7 h, respectively. After 

exponential growth, the number of cells of each protist rapidly decreased, probably because 

accumulation of metabolites such as VFA to toxic levels in each culture (Narayanan et al., 2007). The 

number of bacteria decreased in all cultivation of protist than control. During exponential growth phase, 

ingestion rates of Cyclidium sp. YH, Trichomitus sp. YH and Paracercomonas sp. YH were 1.8 × 103, 

1.2 × 102, and 0.6 × 102 cells per protist per hour, respectively. 

� The metabolite profiles in cultivation of each protists were clearly different (Fig. 4-4). In cultivation 

of Cyclidium sp. YH, major metabolite was acetate. Propionate, butyrate, and valerate were also 

detected in smaller amounts. On the other hands, acetate and butyrate were major metabolites of 

Trichomitus sp. with smaller amounts of propionate. In cultivation of Paracercomonas sp. YH, acetate 

and propionate were detected as major products. Lactate, formate, and ethanol were not detected in all 

cultivation. Hydrogen was increased in culture of Trichomitus sp. YH and Paracercomonas sp. YH. 

However, methane was detected instead of hydrogen in culture of Cyclidium sp. YH that harbor 

endosymbiotic methanogen. Acetate increased in culture of only food bacteria without protist, this is 

possibly due to autolysis of E.coli cells.  

� To examine digestion of 13C-labelled E. coli by protist, 13CO2 and 13CH4 were measured in 

cultivation of protist (Table 4-1). After cultivation for 21 days, percentage of 13CO2 increased in all 

cultivation of protist than control. The percentages of 13CO2 were more abundance in order of 

cultivation of Cyclidium sp. YH, Paracercomonas sp. YH and Trichomitus sp. YH; this was resulted 

from amount of 13C-labelled E. coli ingested by each protist. These results showed that 13C-labeled 

E.coli was ingested and digested by protists. In addition, 13CH4 was also detected in only cultivation of 

Cyclidium sp. YH. In case of Cyclidium sp. YH, it demonstrated that endosymbiotic methanogens 

convert CO2 produced by protist to methane gas. 
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Figure 4-3. Growth of each protists with 13C labeled E. coli as a food bacteria. 

Figure 4-4. Production of fermentation products by each protists with 13C labeled E. coli as a food 

bacteria. 
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4.3.4 Feeding behaviour of anaerobic protists 

� Table 4-2 shows the generation times of Cyclidium sp. YH, Paracercomonas sp. YH, and 

Trichomitus sp. YH during exponential growth phase cultured with various food bacteria. These three 

protists could not grow when archaea: Methanobacterium beijingense and Methanospirillum hungatei 

were used as substrate. The feeding experiments revealed that predation behavior of each protists on a 

range of bacteria were different. Cyclidium sp. YH could grow when all bacteria except for T. 

flocculiformis were used as the substrates. These results showed that Cyclidium sp. YH could ingest 

both gram-positive and gram-negative bacteria. However, no growth of Cyclidium sp. YH was 

observed on the culture with T. flocculiformis, suggesting that they can ingest rod and coccus cells but 

not filamentous form of bacteria. In contrast, Trichomitus sp. YH could ingest filamentous form of T. 

flocculiformis. Although Trichomonas sp. YH could grow regardless of gram staining properties of 

food bacteria, no growth was observed when P. acnes and M. thermoacetica were used. The growth of 

Paracercomonas sp. was observed on the feeding with only gram-negative bacteria: E. coli, B. luti, and 

B. graminisolvens. No growth of Paracercomonas sp. YH was observed when gram-positive bacteria 

Table 5-1. Percentage of 13CO2 and 13CH4 after cultivation. 

Protist 13CO2 (%) 13CH4 (%) 

Cyclidium sp. 7.0 ± 0.3 12.9 ± 2.3 

Trichomitus sp. 3.9 ± 0.7 - 

Paracercomonas sp. 4.6 ± 0.3 - 

Control* 1.7 ± 0.1 - 

-: no detected, *E.coli only. (no protists) 

 

Table 4-1. Percentage of 13CO2 and 13CH4 after cultivation. 

Table 5-2. Generation time of each protist fed various food bacteria and archaea. 

Food Cyclidium sp. Paracercomonas sp. Trichomitus sp. 

E.coli 53.6 ± 13.6a 35.5 ± 5.7a 29.2 ± 5.4a 

Bacteroides luti 96.8 ± 14.4b 33.3 ± 5.9a 40.8 ± 9.5a 

Bacteroides graminisolvens 52.0 ± 8.7a 27.1 ± 10.4a 38.6 ± 15.0a 

Propionibacterium acnes 94.8 ± 15.5b - - 

Trichococcus flocculiformis - - 29.2 ± 9.6a 

Trichococcus flocculiformis -b 38.2 ± 4.2a - 31.4 ± 7.4a 

Moorella thermoacetica 53.2 ± 4.4a - - 

Clostridium acetobutylicum 49.1 ± 6.6a - 42.6 ± 9.8a 

Methanobacterium beijingense - - - 

Methanospirillum hungatei - - - 

-; not growth. Different superscript letters indicate ANOVA grouping with Tukey’s test at 95% confidence.  

 

Table 4-2. Generation time of each protists fed various food bacteria and archaea. 
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were used as the food bacteria. This showed that cell-wall structure of bacteria could influence 

predation of Paracercomonas sp. YH. 

� The generation times of Cyclidium sp. YH were significantly different depending on food bacteria 

species (p < 0.05), even if they could grow. Among the food bacteria tested, generation times of 

Cyclidium sp. YH were faster on feeding with E.coli, B. graminisolvens, Trichococcus flocculiformis-b, 

M. thermoacetica, and Clostridium acetobutylicum, and slower on feeding with B. luti and P. acnes. 

Therefore, generation time of protists was influenced by food bacteria species. However, the generation 

times of Trichomitus sp. YH and Paracercomonas sp. YH were not different depending on food 

bacteria species tested in present study.  

� The ingestion rates during exponential growth phase cultured with various food bacteria were faster 

in the order of Cyclidium sp. YH, Paracercomonas sp. YH, and Trichomitus sp. YH (Fig. 4-5). The 

ingestion rates of Cyclidium sp. YH, Paracercomonas sp. YH, and Trichomitus sp. YH were 1.5-2.7 × 

103, 1.3-1.5 × 102 and 0.4-0.6 × 102 cells·protist-1·hour-1, respectively. There were not significantly 

different for ingestion rates of each protist depending on food bacterial species in case of using bacteria 

that can be ingest by protist.  

� The VFA compositions in cultivation of each protists varied markedly according to food bacteria 

species (Fig. 4-6). Although acetate was detected in all cultivation, propionate, butyrate, and valeric 

acid were not detected in some cases. In cultivation of Cyclidium sp. YH on feeding with B. luti, B. 

graminisolvens, and M. thermoacetica, acetate, propionate, butyrate, and valeric acid were detected as 

same as when E. coli was used as food bacteria. However, propionate was slightly or not detected when 

T. flocculiformis-b, Clostridium acetobutylicum, and P. acnes were used as food bacteria in cultivation 

of Cyclidium sp. YH. Furthermore, valeric acid was not detected in case of using T. flocculiformis-b 

and P. acnes, and butyrate was not detected in case of using P. acnes. Although major products were 

acetate, butyrate, and smaller amount of propionate in cultivation of Trichomitus sp. YH, butyrate and 

Figure 4-5. Ingestion rate of each protists fed various food bacteria during exponential growth 

phase. 
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propionate were not detected when Clostridium acetobutylicum was used as food bacteria. The major 

products in all culture of Paracercomonas sp. YH were acetate and propionate. Regardless of food 

bacteria species, hydrogen was detected in cultivation of Trichomitus sp. YH and Paracercomonas sp. 

YH, and methane was detected in culture of Cyclidium sp. YH (data not shown). 

4.4 Discussion 

� In this study, we established monoxenic cultures of anaerobic protists Cyclidium sp. YH, 
Paracercomonas sp. YH, and Trichomitus sp. YH from a UASB reactor used to treat domestic 
sewage. These protist genera belong to the phyla Ciliophora, Cercozoa, and Metamonada, 
respectively, and are frequently found in anaerobic environments (Matsunaga et al., 2014; 
Triadó-Margarit and Casamayor, 2015). Although most studies have shown that anaerobic 
protists in these phyla are bacterivorous heterotrophic organisms in various environments 
(O’Kelly et al., 1999; Fenchel and Finlay, 1990; Takishita et al., 2007), very little is known about 
their specific roles in anaerobic reactors and natural ecosystems (Bayané and Guiot, 2011). In 
anaerobic granular sludge of UASB reactors, particularly, the ecological roles and functions of 
each anaerobic protist have not been characterized, despite the fact that these protist genera are 
frequently detected by 18S rRNA gene sequencing (Hirakata et al., 2019). Therefore, the 
present study provides important information of these protists’ physiological characteristics 
such as generation time, ingestion rate, predation behavior, and metabolites. 
� Tracer experiments using GFP and 13C-labeled E. coli showed that these three protists can 
ingest and digest bacterial cells. Members of the phyla Ciliophora and Cercozoa, which 
include our isolates Cyclidium sp. YH and Paracercomonas sp. YH, respectively, are well 
known predators of prokaryotes (Özen et al., 2018; Cunliffe and Murrell, 2010). The phylum 
Metamonada, to which Trichomitus sp. YH belongs, comprises both parasites and free-living 
protists. Trichomitus batrachorum, the species most closely related to our isolate Trichomitus sp. 

Figure 4-6. Fatty acid composition of each protists after cultivation with various food bacteria. 
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YH, is an obligate commensal and parasitic protist found in the digestive tract of animals such 
as carabao, dogs, and pigs (Dimasuay et al., 2013). However, Trichomitus sp. YH demonstrated 
a free-living bacterivorous lifestyle, which is different from that described for T. batrachorum.  
� The three protists isolated from the UASB reactor have physiological characteristics that 
differ from one another. The rate of bacterial ingestion of Cyclidium sp. YH was the fastest of 
the three. Cyclidium sp. YH, which is a ciliate, was larger than the two other isolates, which 
are flagellates, suggesting that the difference in ingestion rates is associated with cell size. As a 
result of comparing the ingestion rates of 12 aerobic and 6 anaerobic protists species that 
similar to our experimental conditions (Table S4-2, Figure 4-7), it seems to logarithmically 
proportional to the cell volume regardless of either anaerobic or aerobic species. Our data and 
other anaerobic protist are in the same trends. The slope of regression line is 0.75 (Figure 4-7), 
which is close to slope of respiration rates of aerobic protists against cell volume (Fenchel and 
Finlay, 1983). Thus, we might be roughly estimate an ingestion rate based on protist cell size. 
Most ciliates have a large cell size and can consume more prokaryotic cells than flagellates 
(Meira et al., 2018; Gonzalez et al., 1990; Epstein and Shiaris, 1992). In particular, members of 
the genus Cyclidium have shown great efficiency in removing organic matter and can 
contribute to sludge reduction and treatment by predation in anaerobic treatment processes 
(Hirakata et al., 2019; Narayaman et al., 2016). Moreover, predation by protists strongly affect 
bacterial and archaeal community structures in anaerobic ecosystems (Ohene-Adjei et al., 
2007; Murase et al., 2009). However, the predation ability of most anaerobic protists has not 
been reported. The ingestion rates of anaerobic protists are important considerations in 
determining the potential of various protists to contribute to sludge reduction in anaerobic 
ecosystems. In addition, flagellates reach higher cells numbers than ciliates (Gasol, 1993), as 
we found in this study. This suggests that Trichomitus sp. YH and Paracercomonas sp. YH 
can better contribute to control of bacterial populations than Cyclidium sp. YH in actual 
environments.  
� The generation time of flagellates was faster than that of the ciliate. Generation times of the 
ciliate Cyclidium sp. YH ranged from 38.2 to 96.8 h, which was similar to that of other 
anaerobic ciliates such as Metopus contortus (45–60 h), Metopus palaeformis (35 h), and 
Plagiopyla frontata (34 h), but faster than Scuticociliatia strain GW7 (112.8 h) and slower 
than T. compressum (10–33 h) (Fenchel and Finlay, 1990; Wagener and Pfennig, 1990; Holler 
and Pfennig, 1991; Takeshita et al., 2019). The generation times of the two isolated flagellates 
Paracercomonas sp. YH (27.1–35.5 h) and Trichomitus sp. YH (29.2–46.7 h) were also close 
to those previously reported for anaerobic flagellates such as Psalteriomonas lanterna (38 h) 
(Broers et al., 1993). However, the generation times of Trichomitus sp. YH were longer than 
the minimum generation times of 4–6 h for parasite species such as Trichomonas vaginalis in 
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axenic culture (Nix et al., 1995). This could be because ingestion of bacterial cells by 
phagotrophy requires more energy than parasites’ absorption of nutrients by osmotrophy.  
� Tracer experiments using 13C-labelled E. coli showed that all protists ingested bacterial cells 
and digested them to produce CO2 (Table 4-1). Hydrogen and CO2 has been reported to be a 
common product of anaerobic protists (Yamada et al., 1994; Müller, 2003; Zimorski et al., 2019). 
Anaerobic ciliates and trichomonads have unique organelles, hydrogenosomes, instead of 
mitochondria, in which organic matter is oxidized to volatile fatty acids, hydrogen, and carbon 
dioxide for ATP synthesis (Müller. 1993). An anaerobic cercomonad (i.e, Brevimastigomonas 

motovehiculus) was also found to possess anaerobic mitochondrion-related 
(hydrogenosome-like) organelles (Gawryluk et al., 2016). Hydrogen and 13CO2 were detected 
in the Trichomitus sp. YH and Paracercomonas sp. YH cultures, which suggested that these 
protists might also possess hydrogenosome-like organelles.  
� However, methane instead of hydrogen was detected in cultures of Cyclidium sp. YH (Fig. 
4-4) because Cyclidium sp. YH harbors hydrogenotrophic methanogen inside its cells (Fig. 
S4-1). The presence of hydrogenosomes and methanogens in cells of the genus Cyclidium was 
observed previously (Esteban et al. 1993; Clarke et al., 1993). In addition, the present study 
showed that Cyclidium sp. YH directly supplied CO2 and hydrogen to endosymbiotic 
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Figure 4-7. Ingestion rate of various protists under high prey concentration (107 cells mL-1 ≤) against cell 

volume. The plotted data is obtained this study and from the references listed in Table S2. 
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methanogens because both 13CO2 and 13CH4 were detected in a tracer experiment using 
13C-labelled E. coli. Many researchers have speculated that the relationship between host 
protist cells and endosymbiotic methanogens is based on syntrophic hydrogen and CO2 
transfer; however, this transfer has not been demonstrated previously (Goosen et al., 1990; 
Hirakata et al., 2015; Shinzato et al., 2007). This is the first study to show direct evidence of a 
symbiotic relationship between an anaerobic protist and endosymbiotic methanogens in a 
tracer experiment using a stable carbon isotope. However, the percentage 13CH4 was low 
(12.9%), even though 13C-labelled E. coli was used as the sole carbon source. This was 
probably because the endosymbiotic methanogens utilized bicarbonate in the medium and 
may indicate that the endosymbiotic methanogens used both CO2 produced from 
hydrogenosomes and dissolved CO2 from outside of host protist cells. Thus, endosymbiotic 
methanogens can contribute to the maintenance of hydrogen concentrations at very low levels 
by scavenging exterior hydrogen or that produced from hydrolysis.  
� Feeding experiments in this study showed that the feeding behaviors of the protists were affected 
by the cell shape and cell wall structure of food bacteria. The predation behavior of Cyclidium sp. YH 
was strongly affected by cell shape, because these cells ingested sonicated single coccus T. 
flocculiformis-b cells but not filamentous-form T. flocculiformis cells. Effects of bacterial cell shape 
on protist predation are well known; size-selective predation by protists exists, and filamentous 
bacteria are morphologically resistant to predation (Hahn et al., 1991; Corno and Jürgens, 2006). 
However, Trichomitus sp. YH was able to grow using both T. flocculiformis and T. flocculiformis-b 
as food bacteria. Some protists such as Ochromonas sp. and Trochilioides recta do have the ability to 
prey on filamentous bacteria (Wu et al., 2004; Bitton 2010). Our results showed that Trichomitus sp. 
YH may have similar predation ability. Furthermore, although Trichomitus sp. YH can take up both 
Gram-positive and -negative bacteria, P. acnes and M. thermoacetica did not support growth, 
suggesting that cell shape and cell wall structure of food bacteria were not the only factors associated 
with the growth of Trichomitus sp. YH. Yamada et al. (1994) also reported that food selectivity of the 
anaerobic ciliate T. compressum depends on the digestibility of food bacteria rather than on 
differences in general cell wall structure.  
� The feeding experiment with Paracercomonas sp. YH revealed, however, that the cell wall 
structure of food bacteria does influence feeding behavior. Paracercomonas sp. YH can grow only 
on Gram-negative bacteria. This might indicate that this protist does not have enzymes to digest the 
thick peptidoglycan layer of Gram-positive bacteria. None of the three protists grew when fed 
archaea. This also could be related to the indigestibility of their cell walls. Archaea possess cell walls 
like sheaths and pseudomurein as a cell wall component, which differs from the walls of bacterial 
cells. Digestive enzymes in protists should be examined in future studies.  



Chapter IV 

 69 

 In addition, we observed different predation behaviors of the three protists isolated in this study. 
Differences in the metabolites from each protist, such as propionate, butyrate, and valerate, also 
indicated differences in digestive pathways used by the organisms. These differences in predation 
behaviors are the result of the size, shape, and components of food bacterial cells and suggest that 
these three protists may play different roles or occupy different niches in anaerobic ecosystems. 
� Previous studies have suggested that food bacterial species influence fermentation patterns 
and growth rates of anaerobic protists such as T. compressum (Goosen et al. 1990; Holler and 
Pfennig 1991; Yamada et al., 1994). We also observed that the metabolites from and 
generation times of Cyclidium sp. YH changed depending on food bacteria. The metabolite 
profiles of Trichomitus sp. YH also changed depending on food bacterial species, although its 
generation times were not affected. Thus, our results support the idea that the metabolisms of 
anaerobic protists are affected by food bacterial species, and that anaerobic protists can supply various 
metabolites to environments based on the bacterial species ingested.  
� The generation times of Cyclidium sp. YH were affected by food bacteria, but its ingestion rates 
did not differ significantly based on food bacterial species. This suggests that the amount of 
nutrients obtained varies by food bacterium. To compare the relationship between each food 
bacterium and protist growth, we estimated the cell number and volume required for protist 
growth (Fig. S4-2). Significant differences were observed in the number and volume of cells 
need for Cyclidium sp. YH growth. Significantly more food bacterial cells or cell volume was 
needed for growth of Cyclidium sp. YH with B. luti and P. acens than T. flocculiformis-b. 
Therefore, it is likely that T. flocculiformis-b cells were better substrates for Cyclidium sp. YH 
than B. luti and P. acens for growth and a source of energy. This is consistent of cell yields 
(increased number of protist cells / number of ingested bacterial cells) for Cyclidium sp. YH. 
When T. flocculiformis-b used as food bacteria the cell yield was 1.1 × 10-5 ± 3.8 × 10-6, this 
was significantly higher than that of B. luti (2.8 × 10-6 ± 7.0 × 10-7) or P. acens (3.1 × 10-6 ± 3.1 
× 10-7) (p < 0.05). A previous study showed that use of specific bacteria as a substrate 
stimulated protist growth and maximum cell number (Caron et al., 1991; Odelson and Breznak, 
1985). In addition, protists such as Trimyema sp., Paramecium sp., and P. shumwayae are 
known to need sterol and fatty acids as a growth factor (Wagener and Pfennig, 1987; Soldo and 
van Wagtendonk 1967; Skelton et al., 2008). In the present study, only Trichomitus sp. YH 
required ergosterol and stigmasterol for growth, which might be associated with food bacterial 
species and community structures in natural environments. Moreover, T. compressum cell 
yields were reported to change based on bacterial cell qualities like carbohydrate and protein 
contents (Holler and Pfennig, 1994). Although the metabolite composition of Cyclidium sp. YH 
with each food bacterium had no apparent association with fast or slow generation times, our results 
suggest that differences in the nutrients contained in food bacteria can affect protist growth. This 
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could be occurring in other protists species as well, because the metabolite compositions of 
Trichomitus sp. YH and Paraceromonas sp. YH were also altered depending on the food bacteria 
consumed. Further studies are required for elucidating the effects of different food bacteria on the 
growth of protists.  
 

4.5 Summary of this chapter 

� In the present study, we isolated three bacterivorous protists representing different phyla 
from a UASB reactor used to treat domestic sewage. A tracer experiment using GFP and 
13C-labeled E. coli cells demonstrated ingestion and digestion of bacteria by these protists. In 
addition, the present study also showed that Cyclidium sp. YH directly supplied CO2 and 
hydrogen to endosymbiotic methanogens. Moreover, our results showed that the physiological 
characteristics of these protists are clearly different. These reported generation times, ingestion 
rates, predation behaviors, and metabolite patterns provide important insights into the 
ecological roles of these protists in anaerobic ecosystems. 
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4.7 Supplementary Information 

 

Supplementary Figure S4-1. Microscopic observations of Cyclidium sp.. a: Blight field. b: DAPI 

image. c: Fluorescent micrograph after hybridization with archaea-specific probe (Arc915) for the 

endosymbiotic methanogen of Cyclidium sp.. The scale bar represents 10 µm. 

 

Supplementary Figure S4-2. Required cell number and volume for each protist growth estimated 

from increased of each protist number and decreased of food bacteria cell number during exponential 

growth phase, and food bacterial size such as wide, long, and diameter. Different letters indicate 

significantly different values (P < 0.05) by one-way ANOVA analysis. 
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Supplementary Table S4-1. Characteristics of food bacteria and archaea. 

 

 

  

Species Phylum Gram-staining properties Cell shape Average cell size (µm wide and long) 

Escherichia coli Proteobacteria negative rod 1.0 - 3.0 

Bacteroides luti Bacteroidetes negative rod 0.5 - 1.4 

Bacteroides graminisolvens Bacteroidetes negative rod 0.5 - 2.9 

Propionibacterium acnes Actinobacteria positive rod 0.4 - 4.0 

Moorella thermoacetica  Firmcutes positive rod 0.4 - 2.8 

Clostridium acetobutylicum  Firmcutes positive rod 1.0 - 3.7 

Trichococcus flocculiformis  Firmcutes positive filamentous chains of coccoid cells (twenty to several hundred cells) 

Trichococcus flocculiformis -b  Firmcutes positive coccus 2.3  

Methanospirillum hungatei Euryarchaeota negative curved rods 0.5 and 7.0 (form long chains of cells 

Methanobacterium beijingense Euryarchaeota negative rod 0.5 - 5.0 
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Effects of predation by protists on prokaryotic community function, structure, and diversity in 

anaerobic granular sludge 
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5.1 Introduction 

� Chapter IV described that predation behavior and metabolite of three anaerobic protists Cyclidium sp. 

(phylum Ciliophora), Trichomitus sp. (phylum Metamonada), and Paracercomonas sp. (phylum Cercozoa). 

Anaerobic protists have different predation behavior and selectivity of food bacteria depending on each species. 

In addition, these predation behaviors could contribute sludge reduction and change microbial community in the 

UASB reactor. Predation by protists is a major cause of prokaryotic community attrition in natural and artificial 

ecosystems (Pace, 1988) and modulates prokaryotic abundance and function, structure, and diversity. The 

impact of protist predation has been well documented in aerobic ecosystems (Pernthaler, 2005), in which 

protists consume up to 100% of prokaryotic standing stock per day (Anderson et a., 2012; 2013; Azam et al., 

1983). Aerobic protists often show species-specific prey preferences (González et al., 1990; Šimek and 

Chrzanowski, 1992; Martinez-Garcia et al., 2012), which result in the disappearance of specific prokaryotes in 

ecosystems (Šimek et al., 2001; Murase et al., 2006; Rosenberg et al., 2009) as well as an increase or 

decrease in community diversity (Šimek et al., 1997; Pernthaler et al., 2001; Bell et al., 2010). Furthermore, 

predation by protists increases microbial activities including bacterial growth (Šimek et al., 1997; Bloem et al., 

1988). 

 In contrast, little is known about the influence of protist predation on anoxic ecosystems (Massana and 

Pedrós-Alió, 1994; Schwarz and Frenzel, 2005; Oikonomou et al., 2014) except for the rumen. In the rumen, 

predation by protists increases or decreases the richness of archaeal species (Ohene-Adjei et al., 2007); one 

study showed that the predation influences prokaryotic abundance and methanogenic activities but not 

community diversity (Mosoni et al., 2011). The protists such as free-living ciliates are frequently found in 

anoxic freshwater (Massana and Pedrós-Alió, 1994; Bourland et al., 2014), marine sediments (van Bruggen et 

al., 1986; Esteban et al., 1994), landfill sites (Fenchel and Finlay, 1990; 1991), a rice field soil (Schwarz and 

Frenzel, 2005) and up-flow anaerobic sludge blanket (UASB) reactor (Hirakata et al., 2015). However, the 

impact of predation by these protists on prokaryotic community structure and on diversity in anoxic ecosystems, 

especially engineered ecosystems such as UASB reactor, has been poorly characterized.  

� Long-term cocultivation of ciliates and their prey (i.e. prokaryotic assemblages) is essential to investigate the 

influence of protist predation on anoxic ecosystems because rates of consumption of prokaryotic standing stocks 

are generally low in anoxic ecosystems (less than 0.1–6%) (Finlay et al., 1991; Massana and Pedrós-Alió, 

1994; Saccà et al., 2009). For anoxic cultivation of ciliates, the batch cultivation method has been traditionally 

used (Wagener and Pfennig, 1987; Narayanan et al., 2007), but this method has an intrinsic problem: the 

predator-to-prey ratio changes transiently during the cultivation. Additionally, most of the studies on batch 

cultivation involved artificial substrates other than prokaryotic cells (e.g. wheat powder) to maintain the growth 

of ciliates (Narayanan et al., 2007), where the influence of predation by protists can not be assessed. To 

overcome these problems, a few research groups attempted to cultivate protists using the continuous cultivation 



Chapter V 

 81 

method (Simek et al., 1997; Bloem et al., 1988; Pernthaler et al., 2001) although no one succeeded in 

cultivating Metopus or Caenomorpha ciliates for >100 d in a continuous cultivation system. 

� The impact of predation by protists on prokaryotic community structure and diversity has been studied by 

DNA fingerprinting including denaturing gradient gel electrophoresis and terminal restriction fragment length 

polymorphism (Murase et al., 2006; Ohene-Adjei et al., 2007; Bell et al., 2010; Mosoni et al., 2011) and 

fluorescence in situ hybridization (Jürgens et al., 1999; Rosenberg et al., 2009; Gerea et al., 2013), but the 

resolution of these methods allows researchers to analyze differences only in major prokaryotic populations. 

Thus, the alterations of structure and diversity of a prokaryotic community that are induced by protist predation 

have not been assessed in detail so far. Recently, sequencing of 16S rRNA gene amplicons using Illumina 

MiSeq or HiSeq became the standard method for in-depth analysis of microbial-community structure because 

such analysis yields >10, 000 sequence reads per sample and allows researchers to examine the community 

structure in detail (Caporaso et al., 2010). These methods have recently been also applied to follow changes in 

prey communities upon predation (Baltar et al., 2015).  

� Consequently, our objectives in Chapter V were 1) to cocultivate anaerobic ciliates and prokaryotic 

assemblages in a continuous cultivation system and 2) to study the influence of predation by these protists on 

prokaryotic community function, structure, and diversity in anaerobic engineered ecosystems, in particular, in 

anUASB reactor. A UASB reactor that was packed with granular sludge (i.e. prokaryotic assemblages) was 

operated for 171 d on domestic sewage. Proliferation of Metopus and Caenomorpha ciliates was verified 

microscopically and by sequencing the 18S rRNA gene amplified by single-cell PCR. In order to assess the 

effects of predation by the Metopus or Caenomorpha ciliates, another UASB reactor served as a control reactor, 

where their proliferation was inhibited by cycloheximide, a specific growth inhibitor for eukaryotes. After 171 d 

of operation, sequencing of 16S rRNA gene amplicons using Illumina MiSeq was performed, and 

prokaryotic-community structure and diversity were compared between the two UASB reactors. 

 

5.2 Materials and methods 

5.2.1 Inoculums 

� Granular sludge was collected from a UASB reactor (1148 L; 4 m high, 0.56 m diameter) at a 

domestic wastewater treatment plant (Nagaoka, Japan). The reactor had been continuously and stably 

operated for more than five years on domestic sewage; the operational conditions and chemical oxygen 

demand (COD) removal efficiency were described previously (Takahashi et al., 2011). Ciliates could 

be detected in the inoculums by optical microscopy, and their abundance was less than 10 cells ml-1.  

5.2.2 Operation of laboratory scale UASB reactors 

� Two UASB reactors (500 ml; 6 cm in diameter and 30 cm high; Fig. 5-1) were operated for 171 d 

after inoculation with 400 ml of the granular sludge. The UASB reactors were operated with 

continuous feeding of domestic sewage collected from a domestic wastewater treatment plant 
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(Nagaoka, Japan). Typical composition of the sewage is shown in Table S5-1. Prior to use, the sewage 

was filtered through a polyethylene sieve (mesh size 350 µm) to remove large solid particles. 

Approximate loading rates of total COD were increased stepwise by shortening hydraulic retention 

time (HRT) as follows: 0.5 (g COD) L-1 d-1 with 10 h of HRT for 0–83 d (Run 1), 1.0 (g COD) L-1 d-1 

with 5 h of HRT for 83–138 d (Run 2), 2.5 (g COD) L-1 d-1 with 2 h of HRT for 138–160 d (Run 3), 

and 4.0 (g COD) L-1 d-1 with 1.25 h of HRT for 160–171 d (Run 4). The reactors were operated in an 

isothermal room at 20 ± 2°C. Control of pH was not used during the operation, and pH of the influent 

and effluent was 7.1 ± 0.2 (average ± standard deviation) and 6.7 ± 0.2, respectively. The biogas 

generated in the UASB reactors was collected in a gas-sampling aluminum bag (Techno Quartz, Tokyo, 

Japan) installed on top of the reactors. The granular sludge was collected from a sampling port located 

3 cm above the bottom of the reactors. 

 

 

� In one UASB reactor, proliferation of the protists was inhibited by addition of cycloheximide (1 g 

L-1) at the start of operation (day 0) as described previously (Kota et al., 1999; Holmes et al., 2014). 

Cycloheximide is an antibiotic specific for eukaryotes and binds to the initiation factor of the eukaryotic 

60S ribosomal subunit, thereby inhibiting protein synthesis in eukaryotic cells (Schneider-Poetsch et al., 

Sewage 
Sampling port

Pumpstorage

Gas sampling bag

Biogas

Water seal

UASB

30
0 m

m

Refrigerator

Effluent

Fig.1 (Hirakata et al., 2016)

Other reactor
Pump

Figure 5-1. A schematic diagram of an up-flow anaerobic sludge blanket (UASB) reactor. Sewage 

was supplied from a single storage bottle to 2 UASB reactors (i.e., the coculture and control reactors) 

by peristaltic pumps. UASB reactor configuration were the same between the 2 reactors. 
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2012). Cycloheximide has been traditionally employed to prepare prokaryotic culture without 

eukaryotes (Kota et al., 1999; Holmes et al., 2014; Julian Schwarz and frenzel, 2005; Priya et al., 2007). 

Although growth inhibition of anaerobic bacteria by cycloheximide was previously reported (Tremaine 

and Mills, 1987; Ha et al., 1995), the addition of cycloheximide did not influence to bacterial and 

methanogenic activities in anaerobic reactor (Priya et al., 2007). Supplementation with cycloheximide 

was repeated from day 40 to day 70 of the operation every ten days (Run 1’) because the protists were 

detectable in the control reactor on day 40 of the operation. The UASB reactors with and without the 

cycloheximide treatment are hereafter called control and coculture reactors, respectively. 

5.2.3 Chemical analysis 

� The pH levels were measured using pH meter D-51 (Horiba, Kyoto, Japan). Total and soluble COD 

concentrations were determined using the HACH option 435 on a DR-2000 spectrophotometer (Hach, 

Tokyo, Japan) according to the manufacturer’s instructions. For quantification of the soluble COD 

fraction, liquid samples were filtered through the GB-140 glass filter paper (pore size 0.45 µm; 

Advantec, Tokyo, Japan), and the filtrates were subjected to the COD measurement. 

� Suspended solids (SS) and retained sludge (mixed liquor suspended solids : MLSS) concentrations 

were determined in accordance with the standard method (APHA. 2012). Sludge volume in the UASB 

reactors was calculated from the retained sludge concentrations and sludge bed volume. 

� Gas composition was determined by injecting 1 mL of a gas sample into a GC-2014 gas 

chromatograph (Shimadzu, Kyoto, Japan) equipped with a thermal conductivity detector and a 

molecular sieve-5A column (Shimadzu, Kyoto, Japan). Retention time of methane, hydrogen, and 

carbon dioxide gases was determined by analyzing standard gases purchased from GL Science (Tokyo, 

Japan). The volume of the gas that was collected in a gas sampling bag was determined by the liquid 

displacement method using 0.5N NaOH. Methanogenic activities were calculated from volumes of 

daily methane gas production and amounts of anaerobic granular sludge retained in UASB reactors. 

5.2.4 Analysis of protozoan community structure 

� Abundance of ciliates was determined manually by counting the numbers of ciliate cells in a 

Neubauer chamber (ERMA, Tokyo, Japan) under an IX71 light microscope (Olympus, Tokyo, Japan). 

At least five randomly selected visual fields were used for the counting. Metopus and Caenomorpha 

ciliates were identified according to their morphological features as reported previously by Esteban et al. 

(1994) and Martin-Gonzalez et al. (1988), respectively. Phylogenetic affiliation of the ciliates was 

further ascertained by sequencing the 18S rRNA gene. After 171 d of operation, stand-alone cells of the 

Metopus and Caenomorpha ciliates were physically isolated by a MM-89 and IM-9B 

micromanipulators (Narishige, Tokyo, Japan). After several washes, each cell was transferred into a 

sterile PCR tube containing 3 µL of sterile distilled water. The cell was disrupted by three freeze-thaw 

cycles (i.e. freezing at -80°C and thawing at 60°C) and was directly subjected to PCR. Oligonucleotide 
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primers Euk-82F (5'-AAACTGCGAATGGCTC-3') and MedlinB 

(5'-TGATCCTTCTGCAGGTTCACCTAC-3') (Medlin et al., 1988; López-García et al., 2003) were 

used to amplify a region of the eukaryotic 18S rRNA gene. The PCR reaction mixture had a volume of 

10 µL and contained the oligonucleotide primers (0.5 µM each), deoxynucleoside triphosphates 

(dNTPs; 200 µM each), 1× PCR buffer, and AmpliTaq Gold (0.025 U µl-1; Thermo Fisher Scientific, 

Yokohama, Japan). The PCR was performed using a C1000 thermal cycler (Bio-Rad Laboratories, 

Benicia, CA, USA) under the following cycling conditions: 10 min at 95°C; 50 cycles of 45 s at 95°C, 

45 s at 56°C, and 2 min at 72°C; and the final extension step 10 min at 72°C. The amplification of the 

18S rRNA gene region was ascertained by agarose gel electrophoresis using a DNA Size Marker 4 

(Nippongene, Tokyo, Japan). The amplicon was purified using a Gene Clean Turbo Kit (Qiagen, 

Hilden, Germany), and the DNA was sequenced by the Sanger method using a 3730xl DNA Analyzer 

(Thermo Fisher Scientific, Yokohama, Japan). The determined nucleic acid sequences were aligned in 

the Clustal W software and a phylogenetic tree was constructed in the MEGA 6.06 software (Tamura et 

al., 2013) by means of the maximum likelihood (ML; Jones-Taylor-Thornton model), neighbor joining 

(NJ; Poisson model), maximum parsimony (MP; close neighbor interchange in the random-tree search 

algorithm), and unweighted pair group methods with arithmetic mean (UPGMA; a maximal composite 

likelihood model) using the 18S rRNA gene of Discophrya collini (GenBank accession number 

L26446) as an outgroup. 

 

5.2.5 Analysis of the bacterial- and archaeal-community structure 

� Genomic DNAs were extracted from the granular sludge using an ISOIL Beading Kit for Beads 

(Nippongene, Tokyo, Japan). Genomic DNA extraction was replicated from granular sludge in both 

reactors. Concentrations of the extracted DNAs were measured by means of the Picogreen dsDNA 

Quantification Kit (Thermo Fisher Scientific, Yokohama, Japan) and a Versafluor fluorometer 

(Bio-Rad Laboratories, Benicia, CA, USA). Amplification of the 16S rRNA gene region was 

performed using oligonucleotide primers 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R 

(5'-GGACTACHVGGGTWTCTAAT-3') corresponding to the V4 region of the 16S rRNA gene 

(Caporaso et al., 2012). The PCR mixture had a volume of 50 µl and contained 50 ng of the extracted 

DNAs, the oligonucleotide primers (0.5 µM each), dNTPs (200 µM), 1×PCR buffer, and AmpliTaq 

Gold (0.025 U⋅µl-1). The cycling conditions were as follows: 3 min at 94°C; 30 cycles of 45 s at 94°C, 

followed by 1 min at 50°C, then 1 min 30 s at 72°C; and finally 5 min at 72°C. The amplicon was 

purified and used for preparation of a library by means of the MiSeq Reagent Kit v2 nano (Illumina, 

San Diego, CA, USA) for sequencing on Illumina MiSeq. The amplicon library concentrations were 

determined using BioAnalyzer DNA 1000 (Agilent Technologies, Santa Clara, CA, USA). Quality of 

the sequencing analysis was verified by examining a PhiX library prepared from a PhiX spike-in 
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control (Illumina). Sequence reads with a low quality score (Phred quality score ≤ 30) were eliminated 

using the fastx_trimmer tool, and then paired-end sequence reads were assembled in the paired-end 

assembler for the Illumina sequence software package (PANDAseq) (Masella et al., 2012). Nucleic 

acid sequences with ≥97% of similarity were grouped into an operational taxonomic unit (OTU) by the 

UCLUST algorithm (Edgar, 2010). 

� Phylogenetic affiliations of the OTUs were identified using a blastn search against reference 

sequences in the Greengenes database, version 13_5 (DeSantis et al., 2006) and the nr database 

(National Center for Biotechnology Information). Phylogenic tree was constructed as described above, 

and the 16S rRNA gene of Methanopyrus kandleri (GenBank accession number AB301476) was used 

as an outgroup. Species richness estimates Chao1 and phylogenetic diversity (PD) were calculated in 

the Quantitative Insight into Microbial Ecology (QIIME) software, version 1.7.0. (Caporaso et al., 

2010). The Simpson index-meaning species evenness-was also calculated in QIIME. Principle 

component analysis (PCA) and Welch’s t test were performed in the STAMP software (Parks and 

Beiko, 2010). 

5.2.6 Accession numbers 

� The partial 18S rRNA gene sequences of Metopus sp. and Caenomorpha sp. were deposited in the 

GenBank/EMBL/DDBJ databases under the accession numbers LC027270 (1,190 bp) and LC027271 

(1,195 bp). The bacterial and archeal 16S rRNA gene sequences are available under accession numbers 

AB938329 to AB948126 and LC152435 to LC152737. 

 

5.3 Results 

5.3.1 Reactor performance 

 Two UASB reactors were operated in parallel with continuous feeding of domestic sewage for 171 d. 

Reactors operation were stopped because granular floatation occurred at Run4 (172 d) in control reactor.  

The coculture and control reactors showed similar COD and SS removal efficiencies (Table 5-1); i.e. 

average total COD and SS removal efficiency were >57% and >85%, respectively. Methanogenic 

activities of the coculture reactor from Run 2 to Run 4 were significantly higher (P <0.05, Student’s t 

test) than those of the control reactor. The activities increased with the increase of COD loading rates 

and reached 7.3 ± 0.7 and 4.7 ± 1.5 mL (g Sludge)-1 d-1 (average ± standard deviation) in the coculture 

and control reactors, respectively, during Run 4. 

 

5.3.2 Population dynamics of the Metopus and Caenomorpha ciliates 

� Abundance of ciliates in the coculture reactor increased with the increase in COD loading rates (Fig. 

5-2). In the coculture reactor, two types of morphologically different ciliates were found under an 

optical microscope (Fig. 5-3a and 5-3b). They were swimming around the granular sludge and  
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predating microbial cells. On the basis of the morphological features, those protists were identified as  

Metopus sp. and Caenomorpha sp.; Caenomorpha ciliates accounted for 80% of the total population of 

ciliates. Proliferation of protists other than the Metopus sp. and Caenomorpha sp. was not found in the 

coculture reactor. The phylogenetic affiliations were further analyzed by determining 18S rRNA gene 

sequences amplified from physically isolated Metopus and Caenomorpha ciliate cells. The 18S rRNA 

gene sequences that were obtained from the Metopus and Caenomorpha ciliate cells were affiliated 

with the family Metopidae and Caenomorphidae, respectively (Fig. 5-4); sequence similarity of the 18S 

rRNA gene to Metopus contortus was 95% (accession number Z29516) and to an uncultured  

Caenomorpha-like ciliate 97% (AY821933), respectively. The Caenomorpha ciliates contained 
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(COD) loading rates in up-flow anaerobic sludge blanket (UASB) reactors: R1, Run 1; R1’, Run 1’; 

R2, Run 2; R3, Run3; and R4, Run4. Error bars represent standard deviation. 

 1 

Table 3-1. Performance of the coculture reactor and control reactor. Two up-flow anaerobic sludge 
blanket (UASB) reactors—with and without ciliates (i.e., coculture and control reactors, 
respectively)—were operated for 171 d. HRT: hydraulic retention time, COD: chemical oxygen 
demand, SS: suspended solids, n.d.: not determined. The data are presented as mean ± standard 
deviation. 

period HRT 
reactor 

sample 
(N) 

COD removal  SS 
removal 

methane 
production  

retained 
sludge total soluble 

(d) (h) (%) (%) (%) ml (g Sludge)-1 d-1 (g l-1) 
Run 1 

10 
coculture 

N = 15 
75 ± 7 52 ± 9 97 ± 2 n.d. 

38.5 
0 - 37  control 73 ± 7 51 ± 8 97 ± 1 n.d. 
Run 2 

6 
coculture 

N = 19 
73 ± 13 51 ± 17 97 ± 2 1.4 ± 1.1 31.5 

83 - 138 control 67 ± 13 50 ± 16 95 ± 3 0.6 ± 0.5 35.2 
Run 3 

3-4 
coculture 

N = 16 
64 ± 16 48 ± 11 95 ± 4 3.5 ± 1.2 31.1 

139 - 159 control 61 ± 21 46 ± 12 93 ± 5 2.3 ± 0.9 33 
Run 4 

1-2 
coculture 

N = 12 
67 ± 14 50 ± 6 92 ± 7 7.3 ± 0.7 27.6 

160 - 171 control 57 ± 19 47 ± 10 85 ± 16 4.7 ± 1.5 31.2 

Table 5-1. Performance of the coculture reactor and control reactor. Two up-flow anaerobic 
sludge blanket (UASB) reactors—with and without ciliates (i.e., coculture and control reactors, 
respectively)—were operated for 171 d. COD: chemical oxygen demand, SS: suspended solids, 
n.d.: not determined. Data are presented as the mean ± standard deviation. 



Chapter V 

 87 

endosymbiotic methanogens (i.e., Methanobacterium sp.) according to F420-fluorescence (Fig. S5-1) 

and 16S rRNA gene amplicon sequencing data (Table S5-2) (van Bruggen et al., 1983); this finding is 

in agreement with the other studies, which also showed the presence of endosymbiotic methanogens in 

Caenomorpha ciliates (Finlay et al., 1991). 

   

Fig.3 (Hirakata et al., 2016)

a b

Figure 5-3. Microscopic observation of ciliates. (a) and (b) Microscopy of the Metopus and 

Caenomorpha ciliates that were found in the UASB reactor. The scale bar is 50 µm. 

Figure 5-4. 18S-rRNA based neighbor joining (NJ) tree showing phylogenetic affiliation of the 

Metopus and Caenomorpha ciliates found in an up-flow anaerobic sludge blanket (UASB) reactor. 

Branching points that support probability >75% in the bootstrap analyses (based on 1000 replicates, 

estimated using the NJ method, maximum likelihood method [ML], maximum parsimony method 

[MP], and unweighted pair group method with an arithmetic mean [UPGMA]) are shown as black 

squares. The scale bar represents 5% sequence divergence. 
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5.3.3 Structure of the bacterial and archaeal communities  

� These structures in the seeding anaerobic granular sludge (0 d) and the sludge collected from the 

coculture and control reactors after 171 d of reactor operation were examined by sequencing 

PCR-amplified 16S rRNA gene regions using Illumina MiSeq. Two replicate libraries were prepared 

from each sample, and a total of 14,367 to 32,809 valid bacterial and archaeal sequences were 

recovered (Table 5-2). The sequences were clustered into OTUs (≥97% sequence similarity), and 

community structures in each sludge samples were compared by PCA (Fig. S5-2). The PCA analysis 

indicated that shifts in community structure occurred during the 171 d of reactor operation. A number 

of OTUs increased from the 0 d to 171 d of reactor operation, and a larger number of OTUs was found 

in the coculture reactor than in the control reactor: 2,885–3,190 and 2,387–2,426 OTUs, respectively 

(Table 5-2). The values of the species richness estimates Chao1 and PD were also greater in the 

coculture reactor, indicating that the bacterial and archaeal community structures in the coculture 

reactor were more diverse than those in the control reactor. 

 

 

� Bacteria accounted for 96% of the total number of sequences, and taxonomic classification of the 

bacterial communities was shown in Fig. 5-5a. The class Deltaproteobacteria and the phyla 

Bacteroidetes and Firmicutes dominated both systems, while relative abundance was different between 

the samples; i.e. Deltaproteobacteria were more abundant but Bacteroidetes and Firmicutes were less 

abundant in the coculture reactor. Especially, relative abundance of the following bacterial genera was 

different between the control and coculture reactors: the Syntrophus, Syntrophorhabdus, 

Syntrophobacter, Desulforhabdus, Desulfovirga (class Deltaproteobacteria), Paludibacter, 

OTU-Blvii28 (phylum Bacteroidetes), and Clostridium (phylum Firmicutes) (Fig. 5-5b). 

� Taxonomic classification of the archaeal community structures was shown in Fig. 5-6a. All the 

sequence reads were affiliated with the archaeal classes Methanobacteria, Methanomicrobia, or 

Table 3-2. Community richness, diversity, and evenness indices of the anaerobic granular sludge 
collected from the coculture reactor and control reactor. Anaerobic granular sludge was collected after 
171 d of operation, and two replicate libraries were prepared for each sludge sample. OTU: 
operational taxonomic unit (≥97% sequence similarity), PD: phylogenetic diversity. 

 
Number of  

sequence reads 
OTUs coverage Chao1 PD Simpson 

seed sludge 14,367 1,600 0.92  8,914  115  0.91  
(N=2) 14,422 1,436 0.93  7,526  107  0.91  

coculture 32,809 3,134 0.95  9,498  204  0.99  
(N=2) 27,870 2,839 0.94  8,127  191  0.99  
control 28,277 2,372 0.96  5,052  162  0.99  
(N=2) 30,378 2,321 0.96  4,717  158  0.99  

 1 

Table 5-2. Community richness, diversity, and evenness indices of anaerobic granular sludge 
collected from the coculture reactor and control reactor. Anaerobic granular sludge was collected 
after 171 d of operation, and two replicate libraries were prepared for each sludge sample. OTU: 
operational taxonomic unit (≥97% sequence similarity), PD: phylogenetic diversity. 
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Thermoplasmata in the phylum Euryarchaeota. The class Methanobacteria and Methanomicrobia 

were abundant in both systems, while the class Methanobacteria was more abundant in the coculture 

reactor than in the control reactor. Phylogenetic analysis of archaeal 16S rRNA gene sequeneces 

indicated that the genus Methanobacterium were more abundant while Methanosaeta were less in the 

coculture reactor (Fig. 5-6b). 
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Fig. 5  (Hirakata et al., 2016) Figure 5-5. Taxonomic classification of the bacterial communities in anaerobic granular sludge 

collected after 171 d of operation of an up-flow anaerobic sludge blanket (UASB) reactor. (a) 

Abundance of 16S rRNA gene sequences from each bacterial phylum and class. Sequence reads that 

are not classified into any known bacterial group were labeled as “other”. Approximately 4% of all 

reads were archeal 16S rRNA gene sequences, which are not shown in this figure (but shown in Fig. 

3-6a). (b) Abundance of 16S rRNA gene sequences from each bacterial genus in major bacterial 

group (the class Deltaprteobacteria and the phylum Bacteroidetes, Firmicutes and Chloroflexi). 

Coculture and control: UASB reactors with and without Metopus and Caenomorpha ciliates, 

respectively. 



Chapter V 

 91 
 

Figure 5-6. Taxonomic classification of the archaeal communities in the anaerobic granular sludge 

that was collected after 171 d of operation of an up-flow anaerobic sludge blanket (UASB) reactor. 

(a) Abundance of 16S rRNA gene sequences from each archaeal class. Coculture and control: UASB 

reactors with and without Metopus and Caenomorpha ciliates, respectively. (b) 16S rRNA-based 

neighbor-joining (NJ) tree showing phylogenetic affiliations of archaeal operational taxonomic units 

(OTUs) in the UASB reactors. Boldface indicates OTUs found in the present study. The scale bar 

represents substitution of 5% of bases. Branching points that support probability >75% in the 

bootstrap analyses (based on 1,000 replicates, estimated using the NJ method, maximum likelihood 

method [ML], maximum parsimony method [MP], and unweighted pair group method with an 

arithmetic mean [UPGMA]) are shown as black squares. Abundance of sequence reads that are 

affiliated with each OTU is shown in the graph on the right. 
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Fig.6 (Hirakata et al., 2016)
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5.4 Discussion 

� Cocultivation of ciliates and prokaryotic assemblages is a first step during analysis of the impact of 

predation by protists, and long-term cocultivation is necessary to assess this impact because the rates of 

consumption of prokaryotic standing stocks by ciliates are generally low in anoxic ecosystems (Finlay 

et al., 1991; Massana and Pedrós-Alió, 1994; Saccà et al., 2009). Metopus ciliates were previously 

detected in a UASB reactor processing diluted wastewater (Agrawal et al., 1997); this finding is 

suggestive of suitability of a UASB reactor as a cultivation tool for those ciliates. In the present study, it 

was demonstrated that a UASB reactor fed with sewage allows for cocultivation of Metopus and 

Caenomorpha ciliates and prokaryotic assemblages for 171 d. Notably, Caenomorpha ciliates have 

been detected in a wide range of natural freshwater systems (Finlay et al., 1991; Guhl and Finlay, 1993; 

Massana and Pedrós-Alió, 1994), whereas cultivation of the Caenomorpha ciliates has been rarely 

described to date. UASB reactors have excellent capacity for biomass retention (Lettinga et al., 1980); 

this characteristic probably allows for proliferation of the slow-growing Metopus and Caenomorpha 

ciliates; the doubling time of these ciliates in the coculture reactor were roughly estimated to be 2.5–5 d, 

judging by the increase in their cell numbers after 96–106 d and 137–148 d (Fig. 5-2). In addition, 

sulfide-rich sewage (4.3 mg-S L-1 i.e. 0.13 mM; Table S5-1) was fed into the UASB reactors; this 

situation possibly resulted in the selective growth of Metopus and Caenomorpha ciliates. These ciliates 

prefer sulfide-rich (>1 mM) ecosystems (van Bruggen et al., 1986; Finlay et al., 1991; Massana et al., 

1994), whereas other anaerobic ciliates are sensitive to sulfide (Massana and Pedrós-Alió, 1994); e.g. 

the minimum inhibitory concentration of sulfides for Coleps ciliates is 0.01 mM (Pedrós-Alió et al., 

1995). In the present study, Metopus and Caenomorpha ciliates could be cultivated in the range of 102 

to 103 cells mL-1, which is higher than that in a freshwater lake (<102 cells mL-1) but smaller than that in 

the rumen (105 cells mL-1) (Dehority, 1984; Guhl et al., 1996; Massana and Pedrós-Alió, 1994). 

� Methane production was more prominent in the coculture reactor; this result is consistent with earlier 

observations (Biagini et al., 1998; Holmes et al., 2014). In those studies, the increase in specific 

microbial activities of methanogenesis and sulfate reduction was found in anoxic ecosystems with 

protists. Although Caenomorpha ciliates contain endosymbiotic methanogens (Fig. S5-1), the 

contribution of symbionts to the increase in methanogenic activities is expected to be minor. If the 

abundance of the ciliates and endosymbiotic methanogens and specific methanogenic activities by the 

symbionts are assumed to be 2,500 ciliates⋅ml-1 (Fig. 5-2), 4,500 cells⋅ciliates-1 (van Bruggen et al., 

1984; Schwarz and Frenzel, 2005), and 0.97 (fmol methane)⋅endosymbiont-1⋅h-1 (Finlay et al., 1991), 

respectively, then the contribution to the methane production during Run 3 is estimated to be less than 

0.1%. Instead of the symbiotic contribution, the Metopus and Caenomorpha ciliates possibly stimulated 

microbial activities in our experiments, through decomposition of organic material and processing of 

minerals as demonstrated previously on aerobic protists (Fenchel and Harrison, 1976; Bloem et al., 
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1988). It should be noted that total COD and SS removal efficiencies were similar between the 

coculture and control reactors while methane gas production was greater in the coculture reactor (Table 

5-1). The greater methane gas production in the coculture reactor possibly resulted from degradation of 

particular COD fractions to soluble organic matters by the ciliates (Narayanan et al., 2007). 

Additionally, hydrogenotrophic methanogens (i.e. Methanobacterium) were more abundant while 

acetotrophic methanogen (i.e. Methanosaeta) were less in the coculture reactor (Fig. 5-6b). Greater 

abundance of hydrogenotrophic methanogens in the coculture reactor possibly contributed to increase 

of methanogenic activities in coculture reactor because hydrogenotrophic methanogens showed higher 

methanogenic activities than those of acetotrophic methanogen (Tagawa et al., 2000). Methane gas 

production and its recovery in the UASB reactors have been implemented for the use of methane gas as 

an energy source alternative to fossil fuels. For this purpose, an increase in methanogenic activities is 

desirable, and the mechanisms involved should be explored in another study. 

� Sequencing of 16S rRNA gene amplicons using Illumina MiSeq was carried out to investigate the 

influence of predation by Metopus and Caenomorpha ciliates to prokaryotic community structure and 

diversity. The community structure and diversity were investigated in the seeding anaerobic granular 

sludge and the sludge collected from the coculture and control reactors after 171 d of reactor operation. 

Our outcomes showed that predation by Metopus and Caenomorpha ciliates resulted in alteration of 

microbial community structure and diversity. This finding was consistent with the previous studies 

describing that predation by aerobic ciliates enhanced community evenness and diversity (Bell et al., 

2010; Saleem et al., 2012). Although grazing by the Metopus and Caenomorpha ciliates on prokaryotic 

assemblages was not measured directly in this study, all of the ciliates contained food vacuoles packed 

with prokaryotic cells as determined by optical microscopy, strongly suggesting that the ciliates were 

consuming the prokaryotic cells. Indeed, the amounts of microbial biomass retained in a UASB reactor 

were smaller in the coculture reactor than in the control reactor (Table 5-1); this phenomenon probably 

resulted from the predation by the protists. 

� Abundance of 16S rRNA gene sequences of Paludibacter, OTU-Blvii28, Clostridium was lower in 

the coculture reactor; this effect may have resulted from selective grazing by the Metopus and 

Caenomorpha ciliates. These ciliates were swimming around prokaryotic assemblages (i.e. granular 

sludge) and consuming microbial cells; therefore, the microbial cells located in the outer layer of the 

granular sludge were preferentially eaten by the ciliates. The outer layer of the granular sludge in the 

UASB reactor was dominated by bacterial cells and performed the function of initial anaerobic 

degradation of complex organic compounds to simpler ones (Sekiguchi et al., 1999; Fang, 2000). 

Bacteria affiliated with the genera Paludibacter, OTU-Blvii28 (Bacteroidetes) (Ueki et al., 2006; Su et 

al., 2014), and Clostridium (Firmicutes) (Chen et al., 2005; Lo et al., 2010) were rod- or coccus-shaped 

bacteria producing extracellular hydrolase and contributed to the anaerobic degradation. Those bacteria 
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were previously found in the outer layer of granular sludge in a UASB reactor, as determined by 

fluorescence in situ hybridization analysis (Fang, 2000; Liu et al., 2002, Tay et al., 2002). On the other 

hand, filamentous bacteria affiliated with the phylum Chloroflexi were also previously found in the 

outer later of granular sludge in a UASB reactor. In the present study, 16S rRNA gene sequences of 

OTU-T78 and OTU-WCHB1-05 showed 91% and 92% of sequence similarities to the 16S rRNA gene 

sequence of Leptolinea tardivitalis (accession number; NR_040971), a known filamentous bacterium 

affiliated with the phylum Chloroflexi (Yamada et al., 2005; 2006; 2009). As shown in Fig. 5-5b, 

abundance of 16S rRNA sequences affiliated with the OTU-T78 and OTU-WCHB1-05 were not 

different between the coculture and control reactors. This finding suggested that Metopus and 

Caenomorpha ciliates selectively grazed the rod or coccus-shaped bacterial cells located in the outer 

layer. These predation behaviors of these ciliates are in consistent with the results of feeding experiment 

of Cyclidium ciliate in Chapter IV.  

� In Chapter IV, ingestion rates of protists seemed to logarithmically proportional to the cell volume to 

the power of about 0.75. Thus, ingestion rate might be roughly estimated based on protist cell size to 

the power of 0.75. The cell volumes of protist Metopus and Caenomorpha were approximately 1.6 × 

105 and 9.2 × 104 µm3, respectively. The ingestion rates of ciliates Metopus and Caenomorpha were 

estimated to 1.1 × 105 and 7.4 × 104 cells of bacteria protist-1 hour-1 from their cell volume and our data 

of Cycliidum sp. YH. In UASB reactor, number of ciliates were ranged 102-103 cells mL-1 (Fig. 5-2) 

and combining the estimated ingestion rate, it is assumed that the maximum contribution of ciliates for 

control of bacterial populations is estimated up to 1.8 × 109 cells of bacteria mL-1 day-1. Although this 

contribution during Run 3 is only 0.2% day-1 of prokaryotes (both bacteria and archaea) of granular 

sludge (more than 1012 cells mL-1), it is increased 35.7% day-1 if limited to bacteria located in the outer 

layer of granular sludge that could be ingested by protist (ca. 5 ×109 cells mL-1) (Wu et al., 1992). 

Therefore, predation by these ciliates could strongly influence on microbial community structures, 

although detailed ingestion rate of ciliates Metopus and Caenomorpha needs to examine in future 

study. 

� The 16S rRNA gene sequences of Syntrophus, Desulfovirga, Syntrophobacter, and 

Syntrophorhabdus were more abundant in the coculture reactor (Fig. 5-5b). Those bacteria prefer 

volatile fatty acids as a carbon source (Boone and Bryant, 1980; Mountfort et al., 1984; Tanaka et al., 

2000; Qiu et al., 2008), whereas the concentrations of these fatty acids were always below the detection 

limit (<0.1 mM) in both UASB reactors in our study. Metopus (van Bruggen et al., 1986; Esteban et al., 

1994) and Caenomorpha (Finlay, 1981) ciliates have a unique organelle, hydrogenosome, instead of 

mitochondria, in which organic matter is oxidized to volatile fatty acids (i.e. acetate, valeric acid, and 

lactic acid) and hydrogen for ATP synthesis (Yarlett et al., 1985; Goosen et al., 1990; Müller, 1993). It 

is possible that the Metopus and Caenomorpha ciliates produced volatile fatty acids in the 
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hydrogenosome, and this situation ensured greater proliferation of Syntrophus, Desulfovirga, 

Syntrophobacter, and Syntrophorhabdus in the coculture reactor. Additionally, the hydrogenosome of 

Metopus and Caenomorpha ciliates produces hydrogen, which enabled greater proliferation of 

hydrogenotrophic methanogens (i.e. Methanobacterium) in the coculture reactor (Fig. 5-6b) as 

demonstrated previously (Müller, 1993; van Hoek et al., 2000; Hirakata et al., 2015). Almost nothing is 

known about the underlying symbiotic associations between the ciliates and prokaryotic assemblages in 

UASB reactors, and specific interactions between the ciliates and Syntrophus, Desulfovirga, 

Syntrophobacter, Syntrophorhabdus, and Methanobacterium must be examined in future studies. 

� Predation by Metopus and Caenomorpha ciliates altered prokaryotic community structure, diversity, 

and functioning (i.e. methanogenesis) in our UASB reactors. Metopus and Caenomorpha ciliates have 

been found in a wide range of anoxic ecosystems including anoxic freshwater (Massana and 

Pedrós-Alió, 1994; Bourland et al., 2014), marine sediments (Esteban et al., 1994; van Bruggen et al., 

1986), landfill sites (Fenchel and Finlay., 1990; Finlay and Fenchel, 1991), and a rice field soil 

(Schwarz and Frenzel, 2005). Predation by protists needs to be taken into consideration in the future for 

a better understanding of prokaryotic ecology in such anoxic ecosystems. 

 

5.5 Summary of this chapter 

� In this study, we investigate the influence of predation by anaerobic protists such as Metopus and 

Caenomorpha ciliates on prokaryotic community function, structure, and diversity. Metopus and 

Caenomorpha ciliates were cocultivated with prokaryotic assemblages in lab-scale UASB reactor for 

171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which 

constituted 155% of those found in a UASB reactor without ciliates. Sequencing of 16S rRNA gene 

amplicons revealed that the prokaryotic community in the UASB reactor with the ciliates was more 

diverse than that in the reactor without ciliates; 2,885–3,190 and 2,387–2,426 OTUs, respectively. The 

effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our 

results show that the influence of predation by protists needs to be examined and considered in the 

future for a better understanding of prokaryotic community structure and function. 
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5.7 Supplementary Information 

 

 

Supplementary Figure S5-1. Endosymbiotic methanogens in Caenomorpha ciliates. Left: F420 

fluorescence, right: a phase contrast image. The scale bar is 100 µm. 

 

 

 

 

Supplementary Figure S5-2. Comparison of the prokaryotic community structures found in seeding 

anaerobic granular sludge (square) and the sludge collected from coculture and control reactors after 

171 d of operation (triangle and circle, respectively). Principle component analysis (PCA) of 

community structures at operational taxonomic units (OTU) (≥97% sequence similarity) level. 

 

  

Fig. S1 (Hirakata et al., 2016)
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Supplementary Table S5-1. Composition of the sewage that was fed into up-flow anaerobic sludge 

blanket (UASB) reactors in the present study. CODCr: chemical oxygen demand determined using a 

dichromate, BOD5: biological oxygen demand for 5 d, SS: suspended solids, VSS: volatile suspended 

solids, TKN: total Kjeldahl nitrogen, T-N: total nitrogen, and T-P: total phosphorus. The soluble 

fraction was prepared by filtration through the glass fiber membrane GB-140. The data are presented as 

mean ± standard deviation. 

 

 

Supplementary Table S5-2. Taxonomic classification of the prokaryotic communities in 

Caenomorpha ciliate cell. A single Caenomorpha ciliate cell was separated after 171 d of operation 

using a micromanipulator, and the prokaryotic 16S rRNA gene sequence was amplified by PCR using 

oligonucleotide primers 515F and 806R as previously described (Hirakata et al., 2015). The amplified 

16S rRNA gene sequence was determined using the MiSeq sequencer (Illumina, San Diego, CA, USA), 

and the sequence data were analyzed using the QIIME software (version 1.8.0). OTU: operational 

taxonomic unit (≥97% sequence similarity). OTUs that abundance was less than 1% were grouped and 

labeled as “other”. n.a: not applicable. 

Reference 

Hirakata, Y., M. Oshiki, K. Kuroda, M. Hatamoto, K. Kubota, T. Yamaguchi, H. Harada and N. Araki. 

2015. Identification and detection of prokaryotic symbionts in the ciliate Metopus from anaerobic 

granular sludge. Microbes Environ. 30: 335-338. 

Supplementary Table S2-1. Composition of the sewage that was fed into up-flow anaerobic 
sludge blanket (UASB) reactors in the present study. CODCr: chemical oxygen demand 
determined using a dichromate, BOD5: biological oxygen demand for 5 d, SS: suspended 
solids, VSS: volatile suspended solids, TKN: total Kjeldahl nitrogen, T-N: total nitrogen, and 
T-P: total phosphorus. The soluble fraction was prepared by filtration through the glass fiber 
membrane GB-140. The data are presented as mean ± standard deviation. 

CODCr BOD5 SS VSS Sulfide 
(mg L-1) (mg L-1) 

(mg L-1) (mg L-1) (mg S) L-1 
Total Soluble Total Soluble 

269 ± 73 122 ± 34 182 ± 92 87 ± 37 80 ± 37 71 ± 27 4.3 ± 0.7 
 

SO42- NH4+ NO3- NO2- TKN T-N T-P 
(mg S) L-1 (mg N) L-1 (mg N) L-1 (mg N) L-1 (mg N) L-1 (mg N) L-1 (mg P) L-1 

14 ± 17 21 ± 6 0.3 ± 0.05 0.18 ± 0.17 29 ± 5 29 ± 5 3.5 ± 0.7 
 1 

 1 

Supplementary Table S2-2. Taxonomic classification of the prokaryotic communities in 
Caenomorpha ciliate cell. A single Caenomorpha ciliate cell was separated after 171 d of 
operation using a micromanipulator, and the prokaryotic 16S rRNA gene sequence was 
amplified by PCR using oligonucleotide primers 515F and 806R as previously described 
(Hirakata et al., 2015). The amplified 16S rRNA gene sequence was determined using the 
MiSeq sequencer (Illumina, San Diego, CA, USA), and the sequence data were analyzed using 
the QIIME software (version 1.8.0). OTU: operational taxonomic unit (≥97% sequence 
similarity). OTUs that abundance was less than 1% were grouped and labeled as “other”. n.a: 
not applicable. 

OTU 
Accession 
number 

Relative 
abundance 

Closely related species 
(accession number) Domain 

Sequence  
similarity (%) 

denovo1 LC152435 89.7% 
Methanobacterium sp. 
(KJ432636.1) 

Archaea 100% 

denovo2 LC152436 3.6% 
Lactobacillus sakei 
(KT968365.1) 

Bacteria 100% 

denovo3 LC152437 1.7% 
Escherichia coli 
( KU161315.1) 

Bacteria 100% 

other n.a 5.0% n.a n.a n.a 
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Chapter VI: Summary of this thesis 
6.1 Summary 

� This thesis focused on anaerobic protist in the UASB reactor. Little is known about protist function 

and community in anaerobic wastewater treatment systems because most of anaerobic protist species 

are still largely uncultured or overlooked. Therefore, for clarify protist community and function in 

anaerobic wastewater treatment processes, molecular biological method, batch experiment, and 

long-term continuous cultivation by lab-scale UASB reactor were performed. The experimental 

outcomes and conclusions in each chapter are as follows: 

� In Chapter III, protist community structures in a UASB reactor treating domestic sewage were 

characterized by the 18S rRNA gene amplicon sequencing. Many protist groups that are barely 

observable microscopically could detect by 18S rRNA gene amplicon sequencing. These protist phyla 

that overlooked by microscopic observation in V4 and V9 amplicon libraries were accounted with 

72.8% and 89.0% of total protist sequences, respectively. As the results of V4 amplicon libraries that 

specifically amplified eukaryotic sequences, phylum Ciliophora was most dominant throughput the 

years in the UASB reactor. CCA analysis indicated that protist genera Cyclidium, Platyophrya (phylum 

Ciliophora) and Subulatomonas (phylum Sulcozoa) correlated with chemical oxygen demand and 

suspended solid concentration, and could be used as bio-indicators of treatment performance.  

� Chapter IV described establishement of monoxenic culture of three anaerobic protists, Cyclidium sp. 

YH (phylum Ciliophora), Paracercomonas sp. YH (phylum Cercozoa), and Trichomitus sp. YH 

(phylum Metamonada), isolated from UASB reactor treating domestic sewage. Tracer experiments 

using GFP and stable carbon isotope showed that these three protists could ingest and digest bacteria 

cell. In addition, tracer experiments using stable carbon isotope demonstrated that Cyclidium sp. YH 

directly supplied CO2 and hydrogen to endosymbiotic methanogen. Thus, anaerobic protists harbor 

endosymbiotic methanogen could contribute to methane production. The ingestion rates of Cyclidium 

sp. YH, Paracercomonas sp. YH, and Trichomitus sp. YH were 1.5-2.7 × 103, 1.3-1.5 × 102 and 

0.4-0.6 × 102 cells·protist-1·hour-1, respectively. Our data and previous study indicated that ingestion 

rates of protist seem to logarithmically proportional to the cell volume regardless of either anaerobic or 

aerobic species. Ingestion rates of anaerobic protists would be important information for consideration 

of their contributions to sludge reduction in anaerobic ecosystems. In particular, ingestion rate of 

Cyclidium sp. YH were the fastest of three protists, suggesting that Cyclidium sp. YH may contribute 

sludge reduction and treatment performance. Importance of Cyclidium sp. in the UASB reactor treating 

domestic sewage was suggested in also Chapter III. Cyclidium sp. YH and Trichomitus sp. YH could 

ingest both gram negative- and positive- bacteria although Paracercomonas sp. could ingest only 

gram-negative bacteria. Notably, only Trichomitus sp. YH could ingest filamentous bacteria (T. 

flocculiformis). All protists in this study can not grow when archaea was used as substrate. Feeding 
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experiments showed that food bacteria species influenced generation time, metabolite of anaerobic 

protists. These difference of predation behaviors suggested that three protists may play different roles 

and have various effects on microbial community structures in anaerobic ecosystems.  

� In Chapter V, the influence of predation by anaerobic protist such as Metopus and Caenomorpha 

ciliates on prokaryotic community function, structure, and diversity in the UASB reactor was 

investigated. Metopus and Caenomorpha ciliates were cocultivated with anaerobic granular sludge in 

UASB reactor for 171 day. Predation by these ciliates increased the methanogenic activities of granular 

sludge, which constituted 155% of those found in a UASB reactor without the ciliates. Sequencing of 

16S rRNA gene amplicons revealed that the prokaryotic community in the UASB reactor with the 

ciliates was more diverse than that in the reactor without ciliates. In addition, syntrophic bacteria (i.e., 

Syntrophus, Desulfovirga, Syntrophobacter, and Syntrophorhabdus) were more abundant in the 

coculture reactor, while abundance of fermentative bacteria such as Paludibacter, OTU-Blvii28, 

Clostridium were lower in the UASB reactor with the ciliates. This effect may have resulted from 

selective grazing by the Metopus and Caenomorpha ciliates because ciliates were swimming around 

granular sludge and consuming fermentative bacteria cells that located outer layer of granule (Figure 

6-1). Growth of syntrophic bacteria suggested that the Metopus and Caenomorpha ciliates may have 

supplied hydrogen and volatile fatty acids to ecosystems (Figure 6-1). Moreover, these effects by protist 

may also result in stimulation of methanogenic activities in anaerobic ecosystem.  

� Over all, this study presented in this thesis revealed involvement of anaerobic protist in treatment 

performance and prokaryotic community of UASB reactor treating domestic sewage. In addition, these 

results showed anaerobic protist relevant to treatment performance, and obtained successfully 

monoxenic culture of three protists that have different physiological characteristics. These results 

granular sludge

(short chain fatty acids)

methane

metabolites

predationmethane

anaerobic protozoa

Hydrolytic bacteria located in the
outer layer of the granular sludge 
are preferentially  eaten by the anaerobic protozoa.  

symbiont
Hydrolytic bacteria

Granular sludge

Anaerobic protist

②Metabolites
(i.e. VFA)

①Predation

Fermentative bacteria : outer layer
(i.e. Bacteroidetes, Firmicutes)

Syntrophic bacteria : middle layer

Methanogen : inter layer 

Figure 6-1. Hypothetical scheme role of anaerobic protist in anaerobic granular sludge. 
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provided valuable information on anaerobic protist species involved in wastewater treatment processes 

and their ecological roles in anaerobic ecosystems of UASB reactor treating domestic sewage.  

 

6.2 Future tasks 

� In Chapter III, the 18S rRNA gene sequenceing analysis of UASB reactor throughout two year 

suggested that protist genera Cyclidium, Platyophrya (phylum Ciliophora) and Subulatomonas 

(phylum Sulcozoa) could be used as bio-indicators of treatment performance in the UASB reactor 

treating domestic sewage. Although only genus Cyclidium was isolated and cultured, and its 

morphological and physiological information were also obtained in experiments of Chapter IV, genera 

Platyophrya and Subulatomonas were not observed microscopically in this study. Therefore, in order to 

use each protists as bio-indicators, it is necessary to link the morphological information and genetic 

information of these protist species in the future research. In addition, uncultured eukaryotes such as 

parasitic protists (phylum Apicomplexa, Ichthyosporea, and Perkinsozoa) and LKM11 and LKM15 

groups of fungi (phylum Cryptomycota) were dominantly detected in the UASB reactor. The 

physiological roles of these eukaryotes need to be examined to understand their contributions to 

anaerobic processes in future studies. 

� In Chapter V, our results show that the influence of predation by protists needs to be examined and 

considered in the future for a better understanding of prokaryotic community structure and function. On 

the other hands, the coculture and control reactors showed similar COD and SS removal efficiencies. 

Although long-term cultivation experiments using lab-scale UASB reactor revealed effect of predation 

by protists on prokaryotic community, contribution of anaerobic protists to treatment processes was 

unclear. The results of Chapter IV and V indicated that more cell number of protists could have more 

contribution to treatment processes. Therefore, maintaining high cell density of anaerobic protists was 

expected to need in order to improvement of treatment performance of UASB systems by using 

function of protists. Moreover, effect of fungi was also unclear in this study even though they were 

detected by 18S rRNA gene sequencing in Chapter III. A cycloheximide inhibits growth of both protist 

and fungi, thus prokaryotic community might be influenced by also fungi. The ecosystems including 

bacteria, archaea, protist, and fungi should to be investigated for better understanding wastewater 

treatment processes in UASB reactor.  

� As mentioned above, although this thesis needs further study, we expect that follow-up studies using 

these data and cultures of protists obtained in this study may contribute to stabilization of domestic 

sewage treatment by UASB reactor in the future. 
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