

ECOLOGICAL IMPACT ASSESSMENT FOR THE PROPOSED CEMETERY ON PORTION 0 OF FARM JERUSALEM 1757, MANGAUNG MUNICIPALITY IN FREE STATE PROVINCE

Prepared for: Nali Sustainability Solutions (Pty) Ltd 65 Country Club Drive, Irene Farm Villages Centurion Tel: (012) 676 8315 E-mail: <u>ncube.nali@gmail.com</u> Prepared by: MATAVHA Environmental (Pty) Ltd 6393 Silvera Street, Soshanguve Block VV6 Pretoria Cell: (072) 688 7758 E-mail: <u>lutendo@matavha.com</u>

DOCUMENT CONTROL

REPORT NAME	MOLEPO, M., NDOU, L. & MOTHWA, R. 2021. ECOLOGICAL IMPACT ASSESSMENT FOR THE PROPOSED CEMETERY ON PORTION 0 OF FARM JERUSALEM 1757, MANGAUNG MUNICIPALITY IN FREE STATE PROVINCE			
REFERENCE	ECO-NSS/1121			
SUBMITTED TO	Nali Sustainability Solutions (Pty) Ltd			
AUTHORS	MOKGATLA MOLEPO <i>PR. NAT. SCI</i> (009509)	- fradage		
	LUTENDO NDOU <i>PRI. NAT. SCI</i> (127690)			
	RAMOKONE MOTHWA (SAAB)	Prestone		

Project Team Table 1: Project Team

Project Role	Name	Qualifications
Floral Specialist	Ramokone Mothwa	BSc. Botany & Microbiology (University of Venda), BSc. Hons. Botany (University of Limpopo) MSc. Botany (University of Pretoria – Current)
Ecologist & Faunal Specialist	Mokgatla Molepo	BSc. Botany & Zoology (University of Venda), BSc. Hons. Zoology (University of Limpopo) MSc. Zoology (Nelson Mandela University)
Project Manager and Wetland Specialist	Ndou L	BES (Hon) Mining and Environmental Geology (University of Venda)

EXECUTIVE SUMMARY

Matavha Environmental (Pty) Ltd was appointed by Nali Sustainability Solutions (Pty) Ltd to conduct an Ecological Impact Assessment as part of Environmental Authorisation for the proposed cemetery in Tiepoort outside Bloemfontein City within Mangaung Metropolitan Municipality in Free State Province.

The site is an open grassland with few shrubs scattered around, and two streams within the site that make a confluence which feeds into Tiepoort River. There are also few residential houses including a school and a police station.

The site was investigated to determine the potential impacts which may result from the proposed activities.

The site is located between a rural settlement and farms and below are the existing impacts that have been identified.

- Presence of Invasive Alien Plants
- Solid and Wet Waste

No Floral species of conservation concern (SCC) were observed within the study area.

Ecological Assessment revealed that the majority of the vegetation located west of the site has been exposed to minimal disturbance. As a result, the proposed activities may impact negatively the ecological integrity of the habitats located west of the site.

The management of the impacts as well as recommendations were developed for the current and potential impacts identified. The recommendations and mitigations will need to be strictly adhered to.

TABLE OF CONTENTS

	Error! Bookmark not defined.
DOCUMENT CONTROL	i
Project Team	i
EXECUTIVE SUMMARY	ii
List of figures	iv
List of tables	iv
DECLARATION OF INDEPENDENCE	v
INDEMNITY	v
1. NTRODUCTION AND PROJECT LOCATION AND DESCRIPTIO	N 1
2. TERMS OF REFERENCES	3
3. ASSUMPTIONS, LIMITATIONS, UNCERTAINTIES, AND GAP A	NALYSIS3
4. SURVEY METHODS AND REPORTING	4
4.1. General	4
4.2. Climate	4
4.3. Vegetation of the study site	6
5. LEGAL REQUIREMENTS	9
Provincial legislation	11
Free State Biodiversity Plan	11
Sensitivity Analysis	11
6. RED DATA ANALYSIS	13
Ecological function	14
Sensitivity scale	14
Conservation status of the vegetation	15
7. RESULTS	16
7.1. Plants	
7.2. Weeds and Invasive Plants	
7.3. Birds	
8. THE MAIN IMPACTS	
Impact Assessment methodology	
8.1. IMPACT SIGNIFICANCE	20
9. RECOMMENDATIONS AND CONCLUSIONS	22
10. REFERENCES	23
11. APPENDIX	24
Appendix A: Site photos	24

List of figures

Figure 1: Location of the study site	2
Figure 2: Climatic figures of the region.	
Figure 3: World map of Köppen -Geiger Climate Classification	
Figure 4: Vegetation map of the study site	8
Figure 5: Site sensitivity of the site.	12
Figure 6: Sensitivity areas within the site	16
Figure 7: Transformed areas within the site; houses and stands of Eucalyptus.	17

List of tables

Table 1: Project Team	i
Table 2: Red Data Status definitions (SANBI, 2010).	13
Table 3: Plant species observed at the study area.	17
Table 4: Plant species observed at the study area	
Table 5: List of bird species observed at the study area	
Table 6: Impact Assessment Parameters	19
Table 7: Significance threshold limits.	20
Table 8: Vegetation	20
Table 9: Birds	21
Table 10: Mammals	21
Table 11: Reptiles and Amphibians	21

DECLARATION OF INDEPENDENCE

I, Mokgatla Molepo, in my capacity as a lead specialist consultant, hereby declare that I:

- Act/acted as an independent specialist to Nali Sustainability Solutions (Pty) Ltd for this project.
- Do not have any personal, business, or financial interest in the project expect for financial remuneration for specialist investigations completed in a professional capacity as specified by the Environmental Impact Assessment Regulations, 2017.
- Will not be affected by the outcome of the environmental process, of which this report forms part of.
- Do not have any influence over the decisions made by the governing authorities.
- Do not object to or endorse the proposed developments but aim to present facts and my best scientific and professional opinion regarding the impacts of the development.
- Undertake to disclose to the relevant authorities any information that has or may have the potential to influence its decision or the objectivity of any report, plan or document required in terms of the Environmental Impact Assessment Regulations, 2017.

INDEMNITY

- This report is based on survey and assessment techniques which are limited by time and budgetary constraints relevant to the type and level of investigation undertaken.
- This report is based on a desktop investigation using available information and data related to the site to be affected, *in situ* fieldwork, surveys and assessments and the specialists best scientific and professional knowledge.
- The Precautionary Principle has been applied throughout this investigation.
- The findings, results, observations, conclusions, and recommendations given in this report are based on the specialist's best scientific and professional knowledge as well as information available at the time of study.
- Additional information may become known or available during a later stage of the process for which no allowance could have been made at the time of this report.
- The specialist reserves the right to modify this report, recommendations and conclusions at any stage should additional information become available.
- Information and recommendations in this report cannot be applied to any other area without proper investigation.
- This report, in its entirety or any portion thereof, may not be altered in any manner or form or for any purpose without the specific and written consent of the specialist as specified above.
- Acceptance of this report, in any physical or digital form, serves to confirm acknowledgement of these terms and liabilities.

Mokgatla Molepo Pr. Nat. Sci (009509)

16 November 2021

1. NTRODUCTION AND PROJECT LOCATION AND DESCRIPTION

Matavha Environmental (Pty) Ltd has been appointed as independent specialist to undertake an ecological impact assessment as part of Environmental Authorisation for the proposed cemetery in Tiepoort outside Bloemfontein City within Mangaung Metropolitan Municipality in Free State Province. (Fig. 1). The study site is located within a rural settlement of Tiepoort and it is approximately 2 km west of the N1 National Route.

The ecological sensitivity of the entire study area was assessed, however, during the field survey, the ecological impacts were narrowed down to the receiving environment. The investigation determined how several habitats and biota will be affected by the proposed cemetery and associated activities. The significance ratings of the anticipated impacts were evaluated, and recommendations and deductions were made.

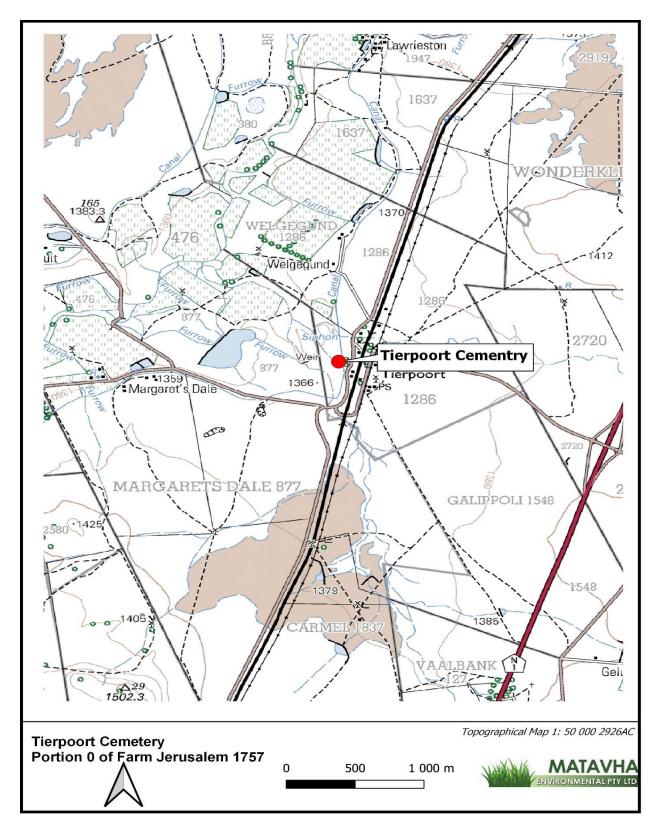


Figure 1: Location of the study site.

2. TERMS OF REFERENCES

The study was undertaken following these Terms of Reference:

- Provide a broad-scale map of the vegetation of the site.
- Describe dominant and characteristic species within the broad-scale plant communities.
- Provide a list of Red Data plant and animal species previously recorded within the site which the study area is situated, obtained from the relevant authorities and literature reviews.
- Identification of sensitive habitats and plant communities.
- Preliminary investigation of the impacts of the project; and
- Recommend practicable mitigation measures to minimize or eliminate negative impacts and or enhance potential project benefits.

3. ASSUMPTIONS, LIMITATIONS, UNCERTAINTIES, AND GAP ANALYSIS

The findings, results, observations, conclusions, and recommendations provided in this report are based on the author's best scientific and professional knowledge as well as available information regarding the perceived impacts on terrestrial environment.

A description of vegetation was based on the physical field surveys and site walkthrough and investigations as performed on site. Limited time and access to other private properties was a constraint during field surveys.

The site assessment did not include the adjacent properties.

Results presented in this report are based on a snapshot investigation of the study site and not on detailed and long-term investigations of all environmental attributes and the varying degrees of biological diversity that may be present in the study site.

Once-off assessments such as this may potentially miss certain ecological information, thus limiting accuracy, detail, and confidence.

The assessment of impacts and recommendation of mitigation measures were informed by the site-specific ecological issues arising from the field survey and based on the assessor's working knowledge and experience with similar projects.

4. SURVEY METHODS AND REPORTING

4.1. General

The report relies on aerial images and ortho photos to gather background information on a variety of features and vegetation communities occurring on the study site. On site data was collected by a walkthrough in November 2021 that covered the whole study site. All literature used in this study is listed in the reference section. Survey walks are displayed below in black, red and pink colours.

4.2. Climate

The climate in this area is influenced by the local steppe climate. There is not much rainfall all year long. The climate here is classified as BSk by the Köppen-Geiger system. The average annual temperature is 17.1 °C. In a year, the rainfall is 545 mm (Fig. 2).

According to Köppen -Geiger system (Kottek *et al.* 2006), the study site falls within the BSk climatic region (Fig. 3).

	January	February	March	April	May	June	July	August	September	October	November	December
Avg. Temperature °C	23.4 °C	22.5 °C	20.6 °C	16.2 °C	12.5 °C	9 °C	8.9 °C	12 °C	16.2 °C	19.4 °C	21.2 °C	22.9 °C
(°F)	(74.1) °F	(72.5) °F	(69) °F	(61.2) °F	(54.6) °F	(48.2) °F	(48) °F	(53.5) °F	(61.2) °F	(67) °F	(70.2) °F	(73.1) °F
Min. Temperature °C (°F)	16.8 °C	16.3 °C	14.3 °C	10 °C	5.9 °C	2.3 °C	1.6 °C	4 °C	7.8 °C	11.3 °C	13.4 °C	15.7 °C
	(62.2) °F	(61.3) °F	(57.8) °F	(50) °F	(42.7) °F	(36.1) °F	(35) °F	(39.3) °F	(46.1) °F	(52.4) °F	(56.1) °F	(60.2) °F
Max. Temperature °C	30.2 °C	29.1 °C	27.2 °C	22.9 °C	19.7 °C	16.6 °C	16.9 °C	20.1 °C	24.4 °C	27.3 °C	28.8 °C	30 °C
(°F)	(86.3) °F	(84.3) °F	(81) °F	(73.2) °F	(67.4) °F	(61.8) °F	(62.4) °F	(68.2) °F	(75.9) °F	(81.1) °F	(83.8) °F	(86.1) °F
Precipitation / Rainfall	85	75	76	50	21	12	9	16	16	44	65	76
mm (in)	(3.3)	(3)	(3)	(2)	(0.8)	(0.5)	(0.4)	(0.6)	(0.6)	(1.7)	(2.6)	(3)
Humidity(%)	45%	49%	51%	54%	52%	52%	44%	36%	29%	32%	35%	40%
Rainy days (d)	9	8	7	6	3	2	1	2	2	5	6	8
avg. Sun hours (hours)	11.5	11.0	10.1	9.3	9.0	8.7	9.1	9.6	10.4	11.1	11.6	11.8

Figure 2: Climatic figures of the region.

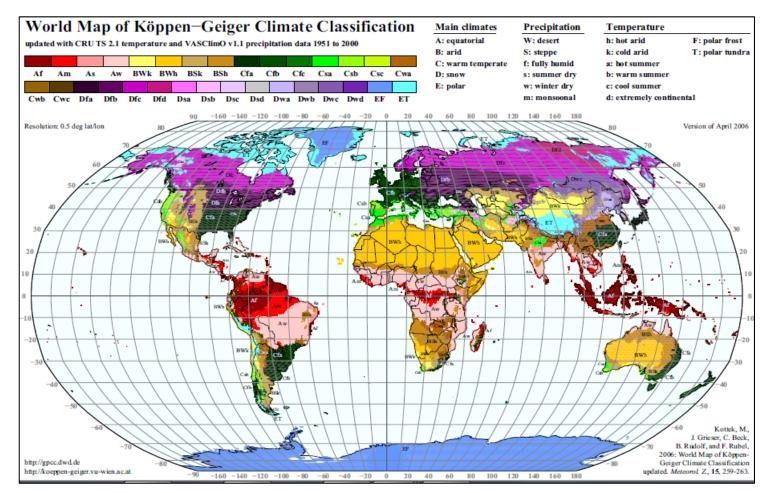


Figure 3: World map of Köppen -Geiger Climate Classification.

4.3. Vegetation of the study site

Floral diversity was determined by completing site walkthrough throughout the site to assess the vegetation status and composition. The vegetation units of Mucina and Rutherford (2006) were used as references but where necessary communities are named according to the recommendations of a standardized South African Syntaxonomic nomenclature system. By combining the available literature with the survey results, stratification of vegetation communities was possible.

The aim was to identify distinct vegetation types and to establish their integrity and representation in the study area. The veld types are described on a local level.

Vegetation types and biophysical descriptions

Vegetation units are broadly classed and may include several distinct vegetation communities within a unit. The study site falls within the Grassland Biome and the vegetation type found on the study site is Xhariep Karroid Grassland (Fig. 4).

Xhariep Karroid Grassland

Distribution

This vegetation is found in Free State Province and very slightly into the Northern Cape Province: Southern regions including the vicinity of Luckhoff (west), Edenburg (north), Gariep Dam (south) and Smithfield (east). Altitude 1 260–1 560 m.

Vegetation & Landscape Features

Extensive, even or slightly undulating bottomland flats forming a matrix of large landscape patches interrupted by high dolerite sills, koppies and conspicuous ring dykes (bearing Gh 4 Besemkaree Koppies Shrubland) and supporting low- to medium-height, open grassland intermingled with small patches of dwarf karroid shrubs. The grass element becomes more visible, especially in summer, particularly in years of high precipitation. The open grassland intermingled with patches of dwarf karroid shrubs resembles the physiognomy of the Gh 2 Aliwal North Dry Grassland, although many of the species show a greater affinity for the slightly lower rainfall than in the latter grassland unit. Low cover of grasses such as *Themeda triandra*, *Cymbopogon pospischilii* and *Digitaria eriantha* is indicative of the relatively low rainfall. In years of low precipitation, dwarf karroid shrubs become more prominent and barren patches of soil become more visible, especially during the winter months and early spring.

Geology & Soils

Alternating layers of mudstone and sandstone mostly of the Permian Adelaide Subgroup (Beaufort Group, Karoo Supergroup). Part of the area is covered with soils with diagnostic

pedocutanic and prismacutanic (dark clayey) B-horizons and belongs to soil forms such as Estcourt, Rensburg and Oakleaf. In some areas, especially towards the more arid west, patches of calcrete on the soil surface are notable—here the soil forms such as Kimberley and Plooysburg prevail (dwarf karroid shrubs usually concentrate on these areas of limestone-rich patches). The entire area has been classified as Da or Db land types.

Important Taxa

Graminoids: Aristida adscensionis (d), A. canescens (d), A. congesta (d), Chloris virgata (d), Cynodon incompletus (d), Eragrostis chloromelas (d), E. lehmanniana (d), E. obtusa (d), Fingerhuthia africana (d), Panicum coloratum (d), P. stapfianum (d), Themeda triandra (d), Tragus koelerioides (d), Aristida diffusa, Cymbopogon pospischilii, Digitaria eriantha, Eragrostis curvula, Sporobolus fimbriatus. Herbs: Gazania krebsiana subsp. krebsiana (d), Convolvulus boedeckerianus, Dimorphotheca zeyheri, Hermannia coccocarpa, Indigofera alternans, Lepidium africanum subsp. africanum, Lessertia pauciflora, Rumex lanceolatus, Salvia stenophylla, Selago densiflora. Geophytic Herbs: Moraea pallida (d), Oxalis depressa. Succulent Herb: Tripteris aghillana var. integrifolia. Low Shrubs: Chrysocoma ciliata (d), Eriocephalus ericoides (d), E. spinescens (d), Felicia filifolia subsp. filifolia (d), F. muricata (d), Pentzia globosa (d), P. incana (d), Amphiglossa triflora, Aptosimum elongatum, Atriplex semibaccata var. appendiculata, Berkheya annectens, Gnidia polycephala, Helichrysum asperum var. albidulum, H. dregeanum, H. lucilioides, Lycium cinereum, Melolobium candicans, Nenax microphylla, Oligomeris dregeana, Osteospermum spinescens, Rosenia humilis, Selago saxatilis, Wahlenbergia albens, W. nodosa. Succulent Shrubs: Euphorbia clavarioides var. clavarioides, Hertia pallens, Ruschia hamata, R. rigida, Salsola calluna, S. glabrescens. Tall Shrub: Rhus ciliata.

Endemic Taxa

Herb: Manulea flanaganii. Succulent Shrubs: Phyllobolus rabiei, Ruschia calcarea.

Conservation This vegetation is Least threatened. Conservation target is 24%. About 2.5% is statutorily conserved in Gariep Dam, Tussen Die Riviere, Kalkfontein Dam, Oviston, Wurasdam and Rolfontein Nature Reserves. Some 4% already transformed by cultivation and dam-building (Bethulie, Gariep, Kalkfontein, Straussfontein and Tierpoort Dams). This dry grassland is prone to encroachment of low, unpalatable karroid shrubs when exposed to heavy grazing. Erosion moderate (71%) and low (19%).

Remarks Xhariep Karroid Grassland occupies a central position along a rainfall gradient between Gh 5 Bloemfontein Dry Grassland (to the north) and dwarf karroid shrubdominated NKu 4 Eastern Upper Karoo (to the south). Most of the unit was viewed by Acocks (1953) as a karoo type of vegetation that had originally been grassland.

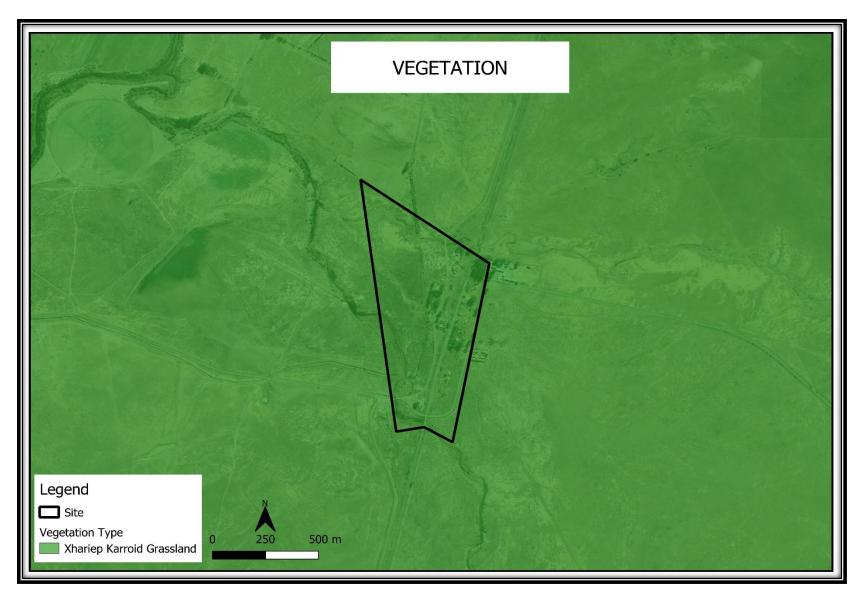


Figure 4: Vegetation map of the study site.

5. LEGAL REQUIREMENTS

The Constitution of the Republic of South Africa Act (Act No. 108 of 1996) – Section 24.

The Constitution is South Africa's overarching law. It prescribes minimum standards with which existing and new laws must comply. Chapter 2 of the Constitution contains the Bill of Rights in which basic human rights are enshrined. Government's commitment to give effect to the environmental rights enshrined in the Constitution is evident from the enactment of various pieces of environmental legislation since 1996, including the National Water Act, the National Environmental Management Act, etc.

National Environmental Management Act (Act No. 107 of 1998) (NEMA), as amended.

NEMA replaces several the provisions of the Environment Conservation Act, 1989 (Act No. 73 of 1989). The Act provides for cooperative environmental governance by establishing principles for decision-making on matters affecting the environment, institutions that will promote cooperative governance and procedures for coordinating environmental functions. The principles enshrined in NEMA guide the interpretation, administration, and implementation of the Act with regards to the protection and or management of the environment. These principles serve as a framework within which environmental management must be formulated. Section 2(4) specifies that "sustainable development requires the consideration of all relevant factors including aspects specifically relevant to biodiversity":

National Environmental Management: Biodiversity Act (Act No. 10 of 2004) (NEMBA).

NEMBA provides for the management and conservation of biological diversity and components thereof; the use of indigenous biological resources in a sustainable manner; the fair and equitable sharing of benefits rising from bioprospecting of biological resources; and cooperative governance in biodiversity management and conservation within the framework of NEMA.

National Water Act (Act No. 36 of 1998) (NWA).

The National Water Act (NWA) is a legal framework for the effective and sustainable management of water resources in South Africa. Central to the NWA is recognition that water is a scarce resource in the country which belongs to all the people of South Africa and needs to be managed in a sustainable manner to benefit all members of society. The NWA places a strong emphasis on the protection of water resources in South Africa, especially against its exploitation, and the insurance that there is water for social and economic development in the country for present and future generations.

The National Water Act, requires any development to secure Water Use Licences with the following activities:

Section 21 (a), abstractive use of water for construction (if possible and required).

Section 21 (c) and (i) use, i.e., river or wetland crossings, which includes any drainage lines by any infrastructure.

In terms of the definitions provided, activities included under Sections 21(c) and 21(i) are (amongst others) the construction of roads, bridges, pipelines, culverts and structures for slope stabilisation and erosion protection. DWS will however need to be approached to provide guidance on whether approval for Section 21 (c) and (i) water uses would be required.

GENERAL AUTHORISATION IN TERMS OF SECTION 39 OF THE NWA

According to the preamble to Part 6 of the NWA, "This Part established a procedure to enable a responsible authority, after public consultation, to permit the use of water by publishing general authorisations in the Gazette..." "The use of water under a general authorisation does not require a licence until the general authorisation is revoked, in which case licensing will be necessary..."

The General Authorisations for Section 21 (c) and (i) water uses (impeding or diverting flow or changing the bed, banks, or characteristics of a watercourse) as defined under the NWA have recently been revised (Government Notice R509 of 2016). Determining if a water use licence is required for these water uses is now associated with the risk of degrading the ecological status of a watercourse. A low risk of impact could be authorised in terms of a General Authorisations (GA).

CMS

The Convention on the Conservation of Migratory Species of Wild Animals (also known as CMS or Bonn Convention) aims to conserve terrestrial, aquatic, and avian migratory species throughout their range. It is an intergovernmental treaty, concluded under the aegis of the United Nations Environment Programme, concerned 22 with the conservation of wildlife and habitats on a global scale. Since the Convention's entry into force, its membership has grown steadily to include 117 (as of 1 June 2012) Parties from Africa, Central and South America, Asia, Europe, and Oceania. South Africa is a signatory to this convention.

AEWA

The African-Eurasian Waterbird Agreement. The Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) is the largest of its kind developed so far under the CMS. The AEWA covers 255 species of birds ecologically dependent on wetlands for at least part of their annual cycle, including many species of divers, grebes, pelicans, cormorants, herons, storks, rails, ibises, spoonbills, flamingos, ducks, swans,

geese, cranes, waders, gulls, terns, tropic birds, auks, frigate birds and even the South African penguin. The agreement covers 119 countries and the European Union (EU) from Europe, parts of Asia and Canada, the Middle East and Africa.

Provincial legislation

In addition to national legislation, some of South Africa's nine provinces have their own provincial biodiversity legislation, as nature conservation is a concurrent function of national and provincial government in terms of the Constitution (Act 108 of 1996).

Free State Biodiversity Plan

Critical Biodiversity Areas (CBAs) are terrestrial and aquatic areas of the landscape that need to be maintained in a natural or near-natural state to ensure the continued existence and functioning of species and ecosystems and the delivery of ecosystem services. In other words, if these areas are not maintained in a natural or near-natural state then biodiversity targets cannot be met. Maintaining an area in a natural state can include a variety of biodiversity compatible land uses and resource uses.

Ecological Support Areas (ESAs) are terrestrial and aquatic areas that are not essential for meeting biodiversity representation targets (thresholds), but which nevertheless play an important role in supporting the ecological functioning of critical biodiversity areas and or in delivering ecosystem services that support socio-economic development, such as water provision, flood mitigation or carbon sequestration. The degree or extent of restriction on land use and resource use in these areas may be lower than that recommended for CBAs.

Sensitivity Analysis

In terms of Free State Biodiversity Sector Plan, the entire site falls within Ecological Support Area, but upon site assessment, a site sensitivity map was produced (see Fig. 5). This is to guide the developer in terms of no go areas.

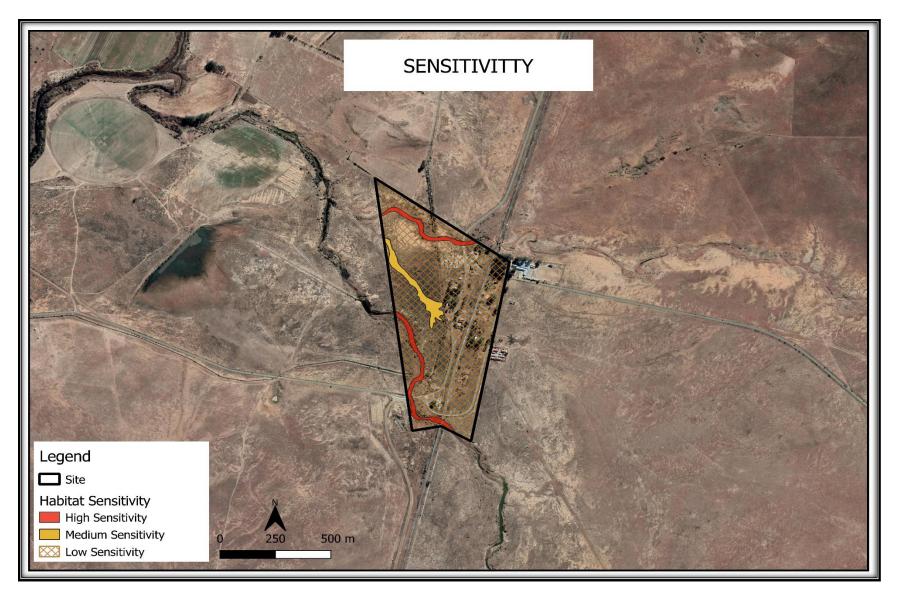


Figure 5: Site sensitivity of the site.

6. RED DATA ANALYSIS

South African National Biodiversity Institute (SANBI) Red List website was used to determine the conservation status of the species. This is done to conserve sensitive species and their immediate environment. The status is determined in Table 2 below.

	ted Species inal species	
EX	Extinct	A taxon is Extinct when there is no reasonable doubt that the last individual has died. Taxa should be listed as extinct only once exhaustive surveys throughout the historic range have failed to record an individual.
EW	Extinct in the Wild	A taxon is Extinct in the Wild when it is known to survive only in cultivation or as a naturalized population (or populations) well outside the past range.
CR PE	Critically Endangered (Possibly Extinct	Critically Endangered (Possibly Extinct) taxa are those that are, on the balance of evidence, likely to be extinct, but for which there is a small chance that they may be extant. Hence, they should not be listed as Extinct until adequate surveys have failed to record the taxon.
CR	Critically Endangered	A taxon is Critically Endangered when the best available evidence indicates that it meets any of the five IUCN criteria for Critically Endangered and is therefore facing an extremely high risk of extinction in the wild.
EN	Endangered	A taxon is Endangered when the best available evidence indicates that it meets any of the five IUCN criteria for Endangered and is therefore facing a very high risk of extinction in the wild.
VU	Vulnerable	A taxon is Vulnerable when the best available evidence indicates that it meets any of the five IUCN criteria for Vulnerable and is therefore facing a high risk of extinction in the wild.
NT	Near Threatened	A taxon is Near Threatened when available evidence indicates that it nearly meets any of the five IUCN criteria for Vulnerable and is therefore likely to qualify for a threatened category soon.
CRITICAL	LYRARE	A taxon is Critically Rare when it is known to occur only at a single site but is not exposed to any direct or plausible potential threat and does not qualify for a category of threat according to the five IUCN criteria.
RARE		A taxon is Rare when it meets any of the four South African criteria for rarity but is not exposed to any direct or plausible potential threat and does not qualify for a category of threat according to the five IUCN criteria.

Table 2: Red Data Status definitions (SANBI, 2010).

DECLINING		A taxon is Declining when it does not meet any of the five IUCN criteria and does not qualify for the categories Critically Endangered, Endangered, Vulnerable or Near Threatened, but there are threatening processes causing a continuing decline in the population.
DDD	Data Deficient— Insufficient Information	A taxon is DDD when there is inadequate information to assess its risk of extinction, but the taxon is well defined. Data Deficient is not a category of threat. However, listing of taxa in this category indicates that more information is required, and that future research could show that a threatened classification is appropriate.
LC	Least Concern	A taxon is Least Concern when it has been evaluated against the five IUCN criteria and does not qualify for the categories Critically Endangered, Endangered, Vulnerable or Near Threatened, and it is not rare, and the population is not declining.

Ecological function

Ecological function relates to the degree of ecological connectivity between systems within a landscape matrix. Therefore, systems with a high degree of landscape connectivity amongst one another are perceived to be more sensitive and will be those contributing to ecosystem service (for example wetlands) or overall preservation of biodiversity. Conservation importance relates to species diversity, endemism (unique species or unique processes) and the high occurrence of threatened and protected species or ecosystems protected by legislation.

Sensitivity scale

- High ecological function: Sensitive ecosystems with either low inherent resistance or resilience towards disturbance factors or highly dynamic systems considered to be stable and important for the maintenance of ecosystems integrity for example pristine grasslands, pristine wetlands, and pristine ridges.
- Medium ecological function: Relatively important ecosystems at gradients of intermediate disturbances. An area may be considered of medium ecological function if it is directly adjacent to sensitive/pristine ecosystem.
- Low ecological function: Degraded and highly disturbed systems with little or no ecological function.

 No Go Areas: Areas that have irreplaceable biodiversity or important ecosystem function values which may be lost permanently if these ecosystems are transformed, with a high potential of also affecting adjacent and or downstream ecosystems negatively

Conservation status of the vegetation

- *High conservation importance*: Ecosystems with high species richness which usually provide suitable habitat for several threatened species. Usually termed 'no-go' areas and unsuitable for development and should be conserved.
- **Medium conservation importance**: Ecosystems with intermediate levels of species diversity without any threatened species. Low-density development may be accommodated, provided the current species diversity is conserved.
- Low conservation importance: Areas with little or no conservation potential and usually species poor (most species are usually exotic).

The system ecological function is Low-Medium due to intact vegetation and watercourses within the sites.

7. RESULTS

Biological diversity everywhere is at great risk as a direct result of an ever-expanding human population and its associated needs for energy, water, food, and minerals. Landscape transformation that is needed to accommodate these activities inevitably leads to habitat loss and habitat fragmentation, resulting in the mosaical appearance of undisturbed habitat within a matrix of transformed areas. These remaining areas of natural habitat are frequently too small to support the biodiversity that previously occupied the area, and the region loses its ecological integrity (Kamffer 2004).

Although the proposed cemetery will be located in a rural settlement which has undergone habitat transformation, there are still parts of the site which are intact and should be avoided. These areas are located on the west of the site are associated with the watercourses.

Figure 6: Sensitivity areas within the site.

Figure 7: Transformed areas within the site; houses and stands of Eucalyptus.

Below are tables containing species recorded on site during the survey. It should be noted that no mammals or herpetofauna were recorded during the survey. Historical faunal records are listed in the appendix.

7.1. Plants

The vegetation near the residential houses has been transformed, whereas the vegetation towards the west of the site is still intact. One of the concerns is the presence of alien plants and illegal dumping of carcass and other solid waste.

Species	Common Name	Growth Form	IUCN Conservation Status
Setaria sphacelata	Common Bristle Grass	Grass	LC
Hyparrhenia hirta	Common Thatching Grass	Grass	LC
Aristida congesta	Tassel Three-awn	Grass	LC
Cynodon dactylon	Couch Grass	Grass	LC
Themeda triandra	Red Grass	Grass	LC
Eragrostis racemosa	Narrow-heart Love Grass	Grass	LC

Table 3: Plant species observed at the study area.

Asparagus laricinus	Bergkatbos	Shrub	LC
Knophofia uvaria	Cape red hot poker	Succulent herb	LC
Searsia ciliata	Sour karee	Tree	LC

7.2. Weeds and Invasive Plants

The presence of several weeds and poor-quality species strongly reflects the transformed and degraded nature of the study site. The site has low levels of infestation. The following weeds and invasive plant taxa were recorded within the study site (Table 4).

Table 4: Plant species observed at the study area.

Species	Common Name	Growth Form	Categoty
Eucalyptus camaldulensis	River red gum	Tree	Declared Category 1b
Populus alba	White poplar	Tree	Declared Category 2
Opuntia ficus indica	Sweet prickly pear	Succulent	LC
Cylindropuntia imbricata	Imbricate cactus	Succulent	Declared Category 1b

7.3. Birds

Birds are regarded as one of the most useful bioindicators, and they have been used extensively as models to determine ecosystem function (see review Koskimies 1989; Potts et al. 2014; Bregman et al. 2016). Birds observed during the survey were mainly generalists that are not sensitive to habitat transformation (Table 5).

Table 5: List of bird species observed at the study area

Species	Common Name	IUCN Conservation Status
Bostrychia hagedash	Hadeda Ibis	LC
Corvus albus	Pied Crow	LC
Elanus caeruleus	Black-shouldered Kite	LC
Lagonosticta rubricata	African Firefinch	LC
Saxicola torquatus	African Stonechat	LC
Sigelus silens	Fiscal Flycatcher	LC
Uraeginthus angolensis	Blue Waxbill	LC
Vanellus armatus	Blacksmith Lapwing	LC
Cisticola fulvicapilla	Neddicky	LC
Lanius collaris	Common Fiscal	LC
Spilopelia senegalensis	Laughing Dove	LC
Ploceus velatus	Southern Masked Weaver	LC

Vanellus coronatus	Crowned Lapwing	LC
Streptopelia capicola	Cape Turtle Dove	LC

8. THE MAIN IMPACTS

- Loss of micro habitat
- Loss of foraging grounds

Impact Assessment methodology

To assess the significance of the identified impacts, the following characteristics of each potential impact will be identified:

- The severity (the disturbance of the impact).
- The extent (the spatial extent of the impact).
- The duration (the length of period).
- The probability (the likelihood of the impact occurring); and
- The significance (a synthesis of the above).

The impact rating process is designed to provide a numerical rating of the various environmental impacts identified for various project activities. The significance rating process follows the established impact/risk assessment formula:

Significance = Consequence x Probability

Where Consequence = Severity + Extent + Duration

And Probability = Likelihood of an impact occurring

The matrix first calculates the rating out of 75 and then converts this into a percentage out of 100. The percentage is the figure quoted in the matrix. The weight assigned to the various parameters for positive and negative impacts in the formula is presented in Table 6 below.

Table 6: Impact Assessment Parameters.

Rati	g Severity	Extent	Duration	Probability
5	Very significant impact/destruction of a highly valued species, habitat or ecosystem or extremely positive impact over baseline environmental condition.	National/ International	Permanent/ Irreversible (More than 50 years)	Certain/ Normally happens in cases of this nature (80-100% chance of happening)

4	Serious impairment of ecosystem function or very positive impact over baseline environmental condition.	Provincial/ Regional	Long Term (25 to 49 years or Beyond closure)	Will more than likely Happen (60-79% chance)
3	Moderate negative alteration of ecosystem functioning or moderately positive impact over baseline environmental condition.	Regional (substantially beyond site boundary)	Medium Term (5-24 years)	Could happen and has happened here or elsewhere (40- 59% chance)
2	Minor effects not affecting ecosystem functioning or slightly positive impact over baseline environmental condition.	Local (beyond site boundary and affects neighbours)	Medium- Short Term (1-4 years)	Has not happened yet, but could happen (20-39% chance)
1	Insignificant effects on the biophysical environment or insignificantly positive impact over baseline environmental condition.	Site (does not extend beyond site boundary)	Short term (Less than a year)	Conceivable, but only in a set of very specific and extreme circumstances (0- 19% chance)

Impacts are rated prior to mitigation and again after consideration of the mitigation measure proposed for the Environmental Management Programme (EMPr). The significance of an impact is then determined and categorised into one of four categories, as indicated in Table 7.

Table 7: Significance threshold limits.

Category	Description	Colour
High	76%-100%	
Medium – High	51% - 75%	
Low-Medium	26% - 50%	
Low	0% - 25%	

8.1. IMPACT SIGNIFICANCE

Table 8: Vegetation

Parameter	Description	Rating (Pre- mitigation)	Description	Rating
	(Pre-mitigation)	. ,	(Post-mitigation)	(Post-mitigation)
Duration	Permanent	6	Permanent	5
Extent	Site	1	Site	1
Severity	Medium	2	Medium	2
Probability	Definite	3	Definite	2
Significance	Medium	70%	Medium	40%

Table 9: Birds

Parameter	Description (Pre- Mitigation)	Rating (Pre-Mitigation)	Description (Post-mitigation)	Rating (Post mitigation)
Duration	Medium term	3	Short term	2
Extent	Site	1	Site	1
Severity	Medium	2	Low	1
Probability	Probable	2	Probable	2
Significance	Medium	55%	Low - Medium	35%

Table 10: Mammals

Parameter	Description (pre- Mitigation)	Rating (Pre- Mitigation)	Description (post-mitigation)	Rating (post mitigation)
Duration	Long term	4	Medium term	3
Extent	Site	1	Site	1
Severity	Medium	2	Low	1
Probability	Possible	1	Possible	1
Significance	Medium	55%	Low - Medium	30%

Table 11: Reptiles and Amphibians

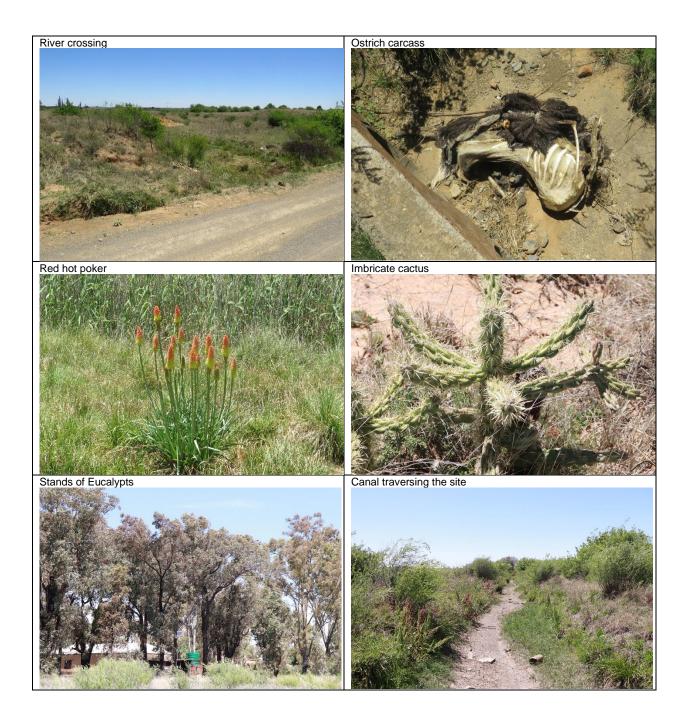
Parameter	Description (pre- Mitigation)	Rating (Pre- Mitigation)	Description (post-mitigation)	Rating (post mitigation)
Duration	Medium term	3	Short term	2
Extent	Site	1	Site	1
Severity	Medium	2	Low	1
Probability	Probable	1	Probable	1
Significance	Medium	50%	Low-Medium	40%

9. RECOMMENDATIONS AND CONCLUSIONS

Although there are some disturbed habitats within the proposed site, there are also areas that still have intact grassland vegetation and it warrants conservation. As a result, the ecological integrity of the site is in fair-good condition, and it can still maintain the ecological processes.

The following are recommended:

- Watercourses and their buffers should be treated as a no go area.
- All temporary stockpile areas including litter and dumped material and rubble must be removed on completion of site establishment.
- No wastewater from the site is to flow into the nearby watercourses.
- Any erosion problems observed on the site must be attended to.
- No painting or marking of vegetation shall be allowed. Marking shall be done by steel stakes with tags, if required.
- Avoid translocating topsoil stockpiles from one place to another or importing topsoil from other sources that may contain alien plant propagules.
- All construction plant and vehicles should be maintained and be in good condition.
- Only necessary damage must be caused: for example, unnecessary driving around in the site should not take place.
- An open space management plan must be developed for the area, which will manage the habitats within the site.


The impacts associated with the proposed cemetery are likely to be Medium-Low after implementation of mitigation measures.

10.REFERENCES

- Branch, B. 1998. Field guide to snakes and other reptiles of southern Africa. Struik Nature, Cape Town.
- Bredenkamp, G., Granger, J.E. & van Rooyen, N. 1996. Moist Sandy Highveld Grassland. In: Low, A.B. & Robelo, A.G. (eds) *Vegetation of South Africa, Lesotho, and Swaziland*. Department of Environmental Affairs and Tourism, Pretoria.
- Kamffer, D. 2004. Community-level effects of fragmentation of the Afromontane grassland in the escarpment region of Mpumalanga, South Africa. M.Sc. Theses, University of Pretoria, Pretoria.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. 2006. World Map of Köppe Geiger Climate Classification updated. *Meteorology. Z.* **15**. 259-263.
- Kotze, D.C., Marneweck, G.C., Batchelor, A.L., Lindley, D.S. & Collins, N.B., 2007, Wet EcoServices: A technique for rapidly assessing ecosystem services supplied by wetlands, WRC Report No. TT 339/09, Water Research Commission, Pretoria.
- Mucina, L., Hoare, D.B., Lötter, M.C., Du Preez, P.J., Rutherford, M.C., Scott Shaw,C.R., Bredenkamp, G.J., Powrie, L.W., Scott, L., Camp, K.G.T., Cilliers, S.S.Bezuidenhout, H., Mostert, T.H., Siebert, S.J., Winter, P.J.D., Burrows, J.E., Dobson, L., Ward, R.A., Stalmans, M., Oliver, E.G.H., Siebert, F., Schmidt, E.,Kobisi, K., Kose, L. 2006. Grassland Biome. In: Mucina, L. & Rutherford, M.C. (eds.). Vegetation map of South Africa, Lesotho, and Swaziland: an illustrated guide. Strelitzia 19. South African National Biodiversity Institute, Pretoria.
- Raap, T., Pinxten, R. & Eens, M. 2015. Light pollution disrupts sleep in free-living animals. *Scientific Report*, 5.
- Ross, M. & Ross, T. 2016. Enviross_Haakdoornboomspruit_ Wet, F&F_03/16.
- Sinclair, I., Hockey, P., Tarboton, W. & Ryan, R. 2011. Birds of Southern Africa. Struik Nature, Cape Town.
- Trimble, M.J. & Van Aarde. 2014. Amphibian and reptile communities and functional groups over a land-use gradient in a coastal tropical forest landscape of high richness and endemicity. Animal Conservation.

11. APPENDIX

Appendix A: Site photos

No	Common group	Common species	Genus	Species	Latest Adhoc
1		Bokmakierie	Telophorus	zeylonus	2017-02-11
2		Mallard	Anas	platyrhynchos	-
3		Neddicky	Cisticola	fulvicapilla	2017-02-11
4		Quailfinch	Ortygospiza	atricollis	2021-05-31
5		Ruff	Calidris	pugnax	-
6		Secretarybird	Sagittarius	serpentarius	2017-01-08
7	Barbet	Acacia Pied	Tricholaema	leucomelas	2017-02-11
8	Barbet	Crested	Trachyphonus	vaillantii	-
9	Bee-eater	European	Merops	apiaster	2017-12-20
10	Bishop	Southern Red	Euplectes	orix	2020-12-12
11	Bishop	Yellow-crowned	Euplectes	afer	2020-09-13
12	Bulbul	African Red-eyed	Pycnonotus	nigricans	2020-07-03
13	Bunting	Cinnamon-breasted	Emberiza	tahapisi	-
14	Bustard	Ludwig's	Neotis	ludwigii	-
15	Buzzard	Common	Buteo	buteo	2018-01-10
16	Buzzard	Jackal	Buteo	rufofuscus	2020-10-18
17	Canary	Black-throated	Crithagra	atrogularis	2021-05-31
18	Canary	Yellow	Crithagra	flaviventris	2017-12-20
19	Chat	Ant-eating	Myrmecocichla	formicivora	2020-11-28
20	Chat	Familiar	Oenanthe	familiaris	-
21	Chat	Sickle-winged	Emarginata	sinuata	-
22	Cisticola	Cloud	Cisticola	textrix	-
23	Cisticola	Desert	Cisticola	aridulus	2020-07-03
24	Cisticola	Grey-backed	Cisticola	subruficapilla	-
25	Cisticola	Levaillant's	Cisticola	tinniens	-
26	Cisticola	Zitting	Cisticola	juncidis	-
27	Coot	Red-knobbed	Fulica	cristata	-
28	Cormorant	Reed	Microcarbo	africanus	-
29	Cormorant	White-breasted	Phalacrocorax	lucidus	-
30	Courser	Double-banded	Rhinoptilus	africanus	-
31	Crow	Pied	Corvus	albus	2021-04-27
32	Cuckoo	Diederik	Chrysococcyx	caprius	2017-02-11
33	Darter	African	Anhinga	rufa	-
34	Dove	Cape Turtle	Streptopelia	capicola	-
35	Dove	Laughing	Spilopelia	senegalensis	2018-08-13
36	Dove	Namaqua	Oena	capensis	2021-05-31
37	Dove	Red-eyed	Streptopelia	semitorquata	2017-02-11
38	Dove	Rock	Columba	livia	2020-11-28
39	Duck	White-faced Whistling	Dendrocygna	viduata	-

Appendix B: Sabap 2 species list

No	Common group	Common species	Genus	Species	Latest Adhoc
40	Duck	Yellow-billed	Anas	undulata	-
41	Eagle	African Fish	Haliaeetus	vocifer	-
42	Eagle	Black-chested Snake	Circaetus	pectoralis	2019-07-15
43	Egret	Great	Ardea	alba	-
44	Egret	Little	Egretta	garzetta	-
45	Egret	Western Cattle	Bubulcus	ibis	2021-10-03
46	Eremomela	Yellow-bellied	Eremomela	icteropygialis	-
47	Falcon	Amur	Falco	amurensis	-
48	Finch	Red-headed	Amadina	erythrocephala	-
49	Fiscal	Southern	Lanius	collaris	2020-07-03
50	Flycatcher	Fiscal	Melaenornis	silens	2020-07-03
51	Francolin	Orange River	Scleroptila	gutturalis	-
52	Goose	Egyptian	Alopochen	aegyptiaca	-
53	Goose	Spur-winged	Plectropterus	gambensis	2017-02-11
54	Goshawk	Pale Chanting	Melierax	canorus	2017-12-20
55	Grebe	Great Crested	Podiceps	cristatus	2017-11-10
56	Grebe	Little	Tachybaptus	ruficollis	-
57	Guineafowl	Helmeted	Numida	meleagris	2020-11-28
58	Gull	Grey-headed	Chroicocephalus	cirrocephalus	-
59	Harrier	Black	Circus	maurus	2019-08-07
60	Harrier-Hawk	African	Polyboroides	typus	2017-04-22
61	Heron	Black-crowned Night	Nycticorax	nycticorax	-
62	Heron	Black-headed	Ardea	melanocephala	2021-10-03
63	Heron	Goliath	Ardea	goliath	-
64	Heron	Grey	Ardea	cinerea	-
65	Heron	Squacco	Ardeola	ralloides	-
66	Honeyguide	Lesser	Indicator	minor	-
67	Ноорое	African	Upupa	africana	2017-12-20
68	Ibis	African Sacred	Threskiornis	aethiopicus	2020-07-03
69	Ibis	Hadada	Bostrychia	hagedash	2021-10-03
70	Kestrel	Lesser	Falco	naumanni	-
71	Kingfisher	Malachite	Corythornis	cristatus	-
72	Kite	Black-winged	Elanus	caeruleus	2020-12-04
73	Korhaan	Blue	Eupodotis	caerulescens	2018-08-13
74	Korhaan	Northern Black	Afrotis	afraoides	2017-02-11
75	Lapwing	Blacksmith	Vanellus	armatus	-
76	Lapwing	Crowned	Vanellus	coronatus	-
77	Lark	Eastern Clapper	Mirafra	fasciolata	2017-02-11
78	Lark	Melodious	Mirafra	cheniana	2017-02-11
79	Lark	Pink-billed	Spizocorys	conirostris	-

No	Common group	Common species	Genus	Species	Latest Adhoc
80	Lark	Red-capped	Calandrella	cinerea	-
81	Lark	Spike-heeled	Chersomanes	albofasciata	-
82	Longclaw	Саре	Macronyx	capensis	2017-02-11
83	Martin	Brown-throated	Riparia	paludicola	-
84	Martin	Rock	Ptyonoprogne	fuligula	-
85	Moorhen	Common	Gallinula	chloropus	-
86	Mousebird	Red-faced	Urocolius	indicus	-
87	Mousebird	White-backed	Colius	colius	-
88	Myna	Common	Acridotheres	tristis	-
89	Ostrich	Common	Struthio	camelus	-
90	Peafowl	Indian	Pavo	cristatus	-
91	Pigeon	Speckled	Columba	guinea	2020-11-28
92	Pipit	African	Anthus	cinnamomeus	-
93	Pipit	Nicholson's	Anthus	nicholsoni	-
94	Pipit	Plain-backed	Anthus	leucophrys	2020-07-03
95	Plover	Kittlitz's	Charadrius	pecuarius	-
96	Plover	Three-banded	Charadrius	tricollaris	2016-12-07
97	Prinia	Black-chested	Prinia	flavicans	-
98	Quail	Common	Coturnix	coturnix	-
99	Quelea	Red-billed	Quelea	quelea	-
100	Robin-Chat	Саре	Cossypha	caffra	-
101	Sandpiper	Common	Actitis	hypoleucos	-
102	Scrub Robin	Karoo	Cercotrichas	coryphoeus	-
103	Shelduck	South African	Tadorna	cana	-
104	Shoveler	Саре	Spatula	smithii	-
105	Sparrow	Саре	Passer	melanurus	2017-12-20
106	Sparrow	House	Passer	domesticus	2020-11-28
107	Sparrow	Southern Grey-headed	Passer	diffusus	-
108	Sparrow-Lark	Chestnut-backed	Eremopterix	leucotis	-
109	Sparrow-Weaver	White-browed	Plocepasser	mahali	2020-07-03
110	Sparrowhawk	Black	Accipiter	melanoleucus	2018-07-09
111	Spoonbill	African	Platalea	alba	-
112	Spurfowl	Swainson's	Pternistis	swainsonii	-
113	Starling	Саре	Lamprotornis	nitens	2017-12-20
114	Starling	Common	Sturnus	vulgaris	-
115	Starling	Pied	Lamprotornis	bicolor	2017-12-20
116	Starling	Wattled	Creatophora	cinerea	2017-04-16
117	Stilt	Black-winged	Himantopus	himantopus	-
118	Stonechat	African	Saxicola	torquatus	2020-07-03
119	Swallow	Barn	Hirundo	rustica	2017-02-11

No	Common group	Common species	Genus	Species	Latest Adhoc
120	Swallow	Greater Striped	Cecropis	cucullata	2019-10-15
121	Swallow	Red-breasted	Cecropis	semirufa	-
122	Swallow	South African Cliff	Petrochelidon	spilodera	2020-12-12
123	Swallow	White-throated	Hirundo	albigularis	-
124	Swift	Little	Apus	affinis	2020-12-04
125	Swift	White-rumped	Apus	caffer	2017-12-08
126	Teal	Саре	Anas	capensis	-
127	Tern	Whiskered	Chlidonias	hybrida	-
128	Tern	White-winged	Chlidonias	leucopterus	-
129	Thrush	Karoo	Turdus	smithi	-
130	Tit	Cape Penduline	Anthoscopus	minutus	-
131	Wagtail	Саре	Motacilla	capensis	-
132	Warbler	African Reed	Acrocephalus	baeticatus	-
133	Warbler	Rufous-eared	Malcorus	pectoralis	-
134	Waxbill	Common	Estrilda	astrild	-
135	Weaver	Southern Masked	Ploceus	velatus	2017-02-11
136	Wheatear	Mountain	Myrmecocichla	monticola	2020-11-28
137	White-eye	Orange River	Zosterops	pallidus	-
138	Whydah	Pin-tailed	Vidua	macroura	2016-11-29
139	Widowbird	Long-tailed	Euplectes	progne	-
140	Wryneck	Red-throated	Jynx	ruficollis	2017-02-11

No Family	Scientific name	Common name	Red list category	Number of records	Last recorded
1 Bathyergidae	Cryptomys hottentotus	Southern African Mole-rat	Least Concern (2016)	2	2006-11-08
2 Bovidae	Antidorcas marsupialis	Springbok	Least Concern (2016)	1	2009-02-08
3 Bovidae	Connochaetes gnou	Black Wildebeest	Least Concern (2016)	2	2009-02-08
4 Bovidae	Hippotragus niger	Sable Antelope	Least Concern (ver 3.1, 2017)	1	2006-11-08
5 Bovidae	Redunca fulvorufula	Mountain Reedbuck	Least Concern	1	2009-02-08
6 Canidae	Otocyon megalotis	Bat-eared Fox	Least Concern (2016)	1	2014-09-25
7 Felidae	Caracal caracal	Caracal	Least Concern (2016)	1	2009-02-07
8 Felidae	Felis silvestris	Wildcat	Least Concern (2016)	1	2021-11-14
9 Herpestidae	Cynictis penicillata	Yellow Mongoose	Least Concern (2016)	3	2006-11-08
10 Hyaenidae	Proteles cristata	Aardwolf	Least Concern (2016)	1	1972-08-07
11 Hystricidae	Hystrix africaeaustralis	Cape Porcupine	Least Concern	1	1975-04-30
12 Mustelidae	Poecilogale albinucha	African Striped Weasel	Near Threatened (2016)	1	1985-10-07
13 Nesomyidae	Malacothrix typica	Large-eared African Desert Mouse	Least Concern (2016)	1	1974-07-25
14 Procaviidae	Procavia capensis	Cape Rock Hyrax	Least Concern (2016)	1	2021-08-01
15 Sciuridae	Xerus inauris	South African Ground Squirrel	Least Concern	2	2020-01-09

Appendix C: Mammal list (based on known historical distribution data). Animal Demographic Unit.

Appendix D: Frog list (based on known historical distribution data). Animal Demographic Unit.

		5 (,	0		
No	Family	Scientific name	Common name	Red list category	Number of records	Last recorded
1 E	Bufonidae	Poyntonophrynus vertebralis	Southern Pygmy Toad	Least Concern	1	1974-01-15
2 E	Bufonidae	Sclerophrys capensis	Raucous Toad	Least Concern	2	1974-01-17
3 H	Hyperoliidae	Kassina senegalensis	Bubbling Kassina	Least Concern	2	1997-01-06
4 F	Pipidae	Xenopus laevis	Common Platanna	Least Concern	2	1997-01-06
5 F	Pyxicephalidae	Amietia delalandii	Delalande's River Frog	Least Concern (2017)	1	1974-01-17
6 F	Pyxicephalidae	Amietia fuscigula	Cape River Frog	Least Concern (2017)	2	1997-01-06
7 F	Pyxicephalidae	Cacosternum boettgeri	Common Caco	Least Concern (2013)	1	1974-01-17
8 F	Pyxicephalidae	Pyxicephalus adspersus	Giant Bull Frog	Near Threatened	2	2017-12-20
9 F	Pyxicephalidae	Tomopterna sp.			1	2011-04-15
10 F	Pyxicephalidae	Tomopterna cryptotis	Tremelo Sand Frog	Least Concern	1	1974-01-17

Appendix E: Reptile list (based on known historical distribution data). Animal Demographic Unit.

No Family	Scientific name	Common name	Red list category	Number of records	Last recorded
1 Agamidae	Agama aculeata distanti	Distant's Ground Agama	Least Concern (SARCA 2014)	2	2017-12-20
2 Agamidae	Agama atra	Southern Rock Agama	Least Concern (SARCA 2014)	4	1973-03-03
3 Cordylidae	Karusasaurus polyzonus	Karoo Girdled Lizard	Least Concern (SARCA 2014)	8	1973-03-30
4 Elapidae	Naja nivea	Cape Cobra	Least Concern (SARCA 2014)	3	1974-10-09
5 Gekkonidae	Pachydactylus capensis	Cape Gecko	Least Concern (SARCA 2014)	3	1973-03-30
6 Gerrhosauridae	Gerrhosaurus flavigularis	Yellow-throated Plated Lizard	Least Concern (SARCA 2014)	1	1900-06-15
7 Lacertidae	Nucras holubi	Holub's Sandveld Lizard	Least Concern (SARCA 2014)	2	1974-01-17
8 Lacertidae	Pedioplanis lineoocellata lineoocellata	Spotted Sand Lizard	Least Concern (SARCA 2014)	1	1973-03-30
9 Lamprophiidae	Aparallactus capensis	Black-headed Centipede-eater	Least Concern (SARCA 2014)	1	1980-02-06
10 Lamprophiidae	Boaedon capensis	Brown House Snake	Least Concern (SARCA 2014)	2	1973-03-30
11 Lamprophiidae	Psammophis trinasalis	Fork-marked Sand Snake	Least Concern (SARCA 2014)	2	1973-03-30
12 Lamprophiidae	Psammophylax tritaeniatus	Striped Grass Snake	Least Concern (SARCA 2014)	7	1990-11-29
13 Lamprophiidae	Pseudaspis cana	Mole Snake	Least Concern (SARCA 2014)	3	2017-01-02
14 Pelomedusidae	Pelomedusa galeata	South African Marsh Terrapin	Not evaluated	2	1976-06-15
15 Scincidae	Trachylepis capensis	Cape Skink	Least Concern (SARCA 2014)	1	1973-03-30
16 Scincidae	Trachylepis punctatissima	Speckled Rock Skink	Least Concern (SARCA 2014)	2	1973-03-30
17 Scincidae	Trachylepis punctulata	Speckled Sand Skink	Least Concern (SARCA 2014)	3	1973-03-30
18 Testudinidae	Homopus femoralis	Greater Padloper	Least Concern (SARCA 2014)	2	1973-03-30
19 Testudinidae	Stigmochelys pardalis	Leopard Tortoise	Least Concern (SARCA 2014)	3	2010-09-04