

Head Office - Cape Town

6 Driefontein Lane, Noordhoek Cape Town, 7979

Gauteng Office

6393 Silvera Street Soshanguve Block VV6, 0183

Limpopo Office

91 Celliers Street Bergridge Flat 19 Louis Trichardt, 0920 **GEOTECHNICAL ENGINEERING**

ENGINEERING GEOLOGY

ENVIRONMENTAL SERVICES

CONSTRUCTION MATERIALS TESTING

HYDROGEOLOGY

AIR AND DUST MONITORING

Company Registration 2018/267207/07

Email: lutendo@matavha.com

Cell: 072 688 7758

www.matavha.com

ECOLOGICAL IMPACT ASSESSMENT FOR THE PROPOSED WASTEWATER TREATMENT WORKS IN LANSERIA BUSINESS PARK, WITHIN CITY OF JOHANNESBURG METROPOLITAN MUNICIPALITY IN GAUTENG PROVINCE

Prepared by:

MATAVHA ENVIRONMENTAL (Pty) Ltd

Contact Person(s): Lutendo Ndou

Cell: (072) 688 7758

E-mail: <u>lutendo@matavha.com</u>

Prepared for:

NALI SUSTAINABILITY

Contact Person(s): Pirate Ncube

Cell: (082) 451 7120

E-mail: ncube.nali@gmail.com

DOCUMENT CONTROL

REPORT NAME	MOLEPO, M. 2022. ECOLOGICAL IMPACT ASSESSMENT PROPOSED WASTEWATER TREATMENT WASTERIA BUSSINES PARK WITHIN CITY OF JOHAN METROPOLITAN MUNICIPALITY IN GAUTENG PROVIN	VORKS IN INESBURG
REFERENCE	ME0005/Ecology	
SUBMITTED TO	Nali Sustainability Solutions (Pty) Ltd	
AUTHORS	Mokgatla Molepo Pr. Nat. Sci (009509)	alege

EXECUTIVE SUMMARY

MATAVHA Environmental (Pty) Ltd was appointed by Nali Sustainability Solutions (Pty) Ltd to conduct an ecological study for the proposed wastewater treatment works in Lanseria within the City of Johannesburg Metropolitan Municipality, Gauteng.

Floral features:

According to Mucina and Rutherford (2012), there is only one vegetation type found within the study site, namely Egoli Granite Grassland. The current vegetation composition of the study site has been transformed. This is due to previous borrow pits which were not rehabilitated.

Faunal features:

Due to the smaller size of the property, mammals and reptiles were surveyed through direct and indirect methods, while birds were surveyed through direct methods. From the survey conducted, no Species of Conservation Concern were observed.

Conclusions and Recommendations:

The study site is of low – medium ecological function. During construction phase all the watercourses should be avoided to prevent further degradation. Disturbed areas which will not be used, should be rehabilitated. Based on the outcome of this assessment, there are no evident fatal flaws that would prevent this development from being authorised, nor being conducted in a sustainable manner.

TABLE OF CONTENTS DOCUMENT CONTROL.....i EXECUTIVE SUMMARY.....ii DECLARATION OF INDEPENDENCE INDEMNITYv 3. SURVEY METHODS AND REPORTING4 Climate 4 Vegetation of the study site.......4 Distribution 5 Occurrence of important flora 5 4. LEGAL REQUIREMENTS....... METHODOLOGY 13 Plants 17 Mammals 19 Reptiles 19 9. CONCLUSION AND RECOMMENDATIONS 26 10. REFERENCES 27 11.

LIST OF FIGURES

Figure 1: Locality map of the project area	2
Figure 2: Vegetation map of the study site	
Figure 3: Gauteng C-Plan Map.	12
Figure 4: Site sensitivity of the study site	
Figure 5: Site conditions	22
LIST OF TABLES	
Table 1: Red Data Status definitions (SANBI, 2010).	14
Table 2: List of plant species recorded at the study site	17
Table 3: List of weeds and invasive species for the study area	18
Table 4: List of bird species recorded at the study site	19

DECLARATION OF INDEPENDENCE

I, Mokgatla Molepo, in my capacity as a specialist consultant, hereby declare that I:

- Act/acted as an independent specialist to Nali Sustainability Solutions (Pty) Ltd for this project.
- Do not have any personal, business, or financial interest in the project expect for financial remuneration for specialist investigations completed in a professional capacity as specified by the Environmental Impact Assessment Regulations, 2017.
- Will not be affected by the outcome of the environmental process, of which this report forms part of.
- Do not have any influence over the decisions made by the governing authorities.
- Do not object to or endorse the proposed developments but aim to present facts and my best scientific and professional opinion with regard to the impacts of the development.
- Undertake to disclose to the relevant authorities any information that has or may have the potential to influence its decision or the objectivity of any report, plan or document required in terms of the Environmental Impact Assessment Regulations, 2017.

INDEMNITY

- This report is based on survey and assessment techniques which are limited by time and budgetary constraints relevant to the type and level of investigation undertaken.
- This report is based on a desktop investigation using available information and data related to the site to be affected, in situ fieldwork, surveys and assessments and the specialists best scientific and professional knowledge.
- The Precautionary Principle has been applied throughout this investigation.
- The findings, results, observations, conclusions and recommendations given in this report are based on the specialist's best scientific and professional knowledge as well as information available at the time of study.
- Additional information may become known or available during a later stage of the process for which
 no allowance could have been made at the time of this report.
- The specialist reserves the right to modify this report, recommendations and conclusions at any stage should additional information become available.
- Information and recommendations in this report cannot be applied to any other area without proper investigation.
- This report, in its entirety or any portion thereof, may not be altered in any manner or form or for any purpose without the specific and written consent of the specialist as specified above.
- Acceptance of this report, in any physical or digital form, serves to confirm acknowledgement of these terms and liabilities.

Mokgatla Molepo Pr. Nat. Sci. (009509)

24 January 2022

1. INTRODUCTION

Humans alter their environment to suit their needs, to improve their quality of life, and to encourage economic growth. Generally, it is now accepted that development should be planned to make the best possible use of natural resources and to avoid degradation of the environment. Hence the need to pay explicit attention to environmental factors in the decision-making process. This should entail an accurate prediction and assessment of the impact of any development on the environment. It is essential for such assessment procedures to be developed alongside development planning, with the necessary mitigation that could inform development projects to conserve the natural environment.

MATAVHA Environmental (Pty) Ltd was appointed by Nali Sustainability Solutions (Pty) Ltd to conduct an ecological impact assessment for the proposed wastewater treatment works in Lanseria Business Park within City of Johannesburg Metropolitan Municipality, Gauteng Province.

A site visit was undertaken on the 15th of January 2022. The proposed project area is located approximately 700 m west of Lanseria Airport, in Gauteng (Figure 1). The site was accessed via R512 and Ashenti Road.

The following are the central coordinates of the site: 25°55'49.93"S, 27°54'44.49"E

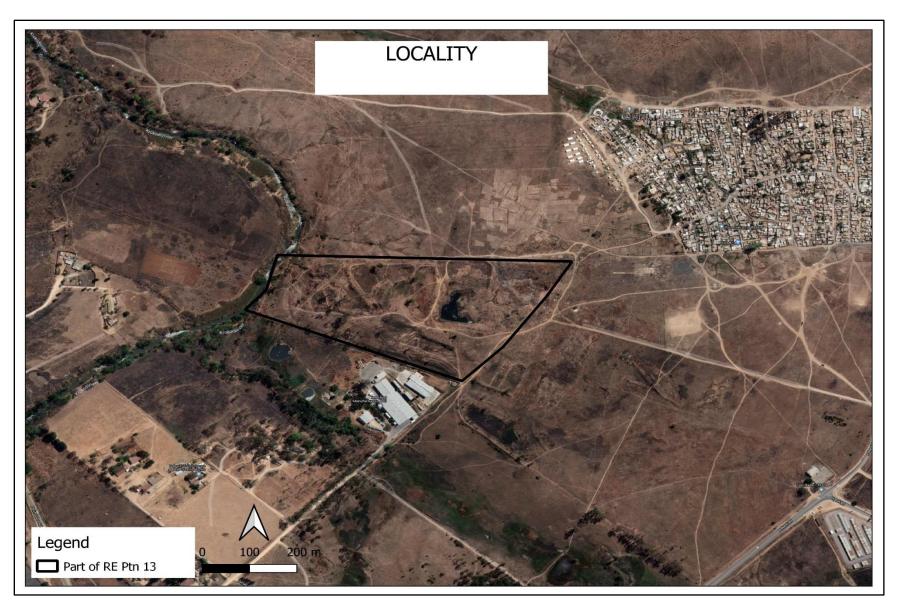


Figure 1: Locality map of the project area.

2. TERMS OF REFERENCES

The study included the following activities:

- Provide a broad-scale map of the vegetation of the proposed site;
- A description of the dominant and characteristic species within the broad-scale plant communities;
- Provide a list of Red data plant and animal species previously recorded within the study site, and information obtained from the relevant authorities and literature reviews;
- Identification of sensitive habitats and plant communities;
- Preliminary investigation of the impacts of the project and the provision of recommended mitigation measures; and
- Recommend practical mitigation measures to minimize or eliminate negative impacts and or enhance potential project benefits.

2.1. Objectives of this study

- To provide a description of the flora and fauna occurring around the proposed project area.
- To provide description of any threatened species occurring or likely to occur within the study area in terms of the National Red List Status (SANBI, 2012) and Red Data List (IUCN, 2018) specifying species that are either: rare, threatened, endangered, or critically endangered.
- Determine conservation priory areas according to authorised Critical Biodiversity Areas (CBAs).
- To describe the available habitats on the study site including areas of important conservation value.
- Identify and assess the potential impacts associated with a proposed development.

The investigation determined how the habitats and biota may be affected by the current activities on the site. The significance ratings of the anticipated impacts were evaluated, and recommendations and deductions were made.

2.2. Assumptions, Limitations, Uncertainties, and Gap analysis

 The findings, results, observations, conclusions and recommendations provided in this report are based on the author's best scientific and professional knowledge as well as available information regarding the perceived impacts on terrestrial environment.

- A description of vegetation was based on the physical field surveys and site walkthrough and investigations as performed on site.
- Results presented in this report are based on a snapshot investigation of the study site and not on detailed and long-term investigations of all environmental attributes and the varying degrees of biological diversity that may be present in the study site.
- The assessment of impacts and recommendation of mitigation measures were informed by the site-specific ecological issues arising from the field survey and based on the assessor's working knowledge and experience with similar projects.

3. SURVEY METHODS AND REPORTING

Climate

The climate in the area is mild, and generally warm and temperate. In winter, there is much less rainfall than in summer. This location is classified as Cwa by Köppen and Geiger. The average annual temperature is 16.8°C while the rainfall here averages 675 mm. According to Köppen -Geiger system (Kottek et al. 2006), the study site falls within the Cwa climatic region.

Biophysical Environment Vegetation of the study site

Floral diversity was determined by walkthroughs around the project area. To attain scientifically reliable results, obviously distinct vegetation communities were surveyed by selecting representative site in each homogenous unit. The vegetation units of Mucina and Rutherford (2006) were used as references but where necessary communities are named according to the recommendations of a standardised South African Syntaxonomic nomenclature system. By combining the available literature with the survey results, stratification of vegetation communities was possible.

Selected sites within the area were also searched for important species and the potential for Red Data Listed (RDL) and other important species were established, and cross referenced with New Plants of South Africa (POSA) database. The aim was to identify distinct vegetation types and to establish their integrity and representation in the study area. The veld types are described on a local level. The study site is covered, predominantly by graminoinds and woody spece, with few shrubs and large alien trees. This type of vegetation has the potential to support a variety of faunal species including birds, but due to human settlements, very few animals can remain.

The natural vegetation type found in the area Egoli Granite Grassland (Fig. 5). Due to anthropogenic activities within the proposed project area, the natural vegetation has been transformed and there are presence of alien vegetation throughout the area.

Vegetation & Landscape Features

Moderately undulating plains and low hills supporting tall, usually *Hyparrhenia hirta* dominated grassland, with some woody species on rocky outcrops or rock sheets. The rocky habitats show a high diversity of woody species, which occur in the form of scattered shrub groups or solitary small trees.

Geology & Soils

Archaean granite and gneiss of the Halfway House Granite at the core of the Johannesburg Dome supporting leached, shallow, coarsely grained, sandy soil poor in nutrients of Glenrosa form. Small area is built by ultramafics. Dominant land types Bb and Ba.

Distribution

This vegetation is found in Gauteng Province: Johannesburg Dome extending in the region between northern Johannesburg in the south, and from near Lanseria Airport and Centurion (south of Pretoria) to the north, westwards to about Muldersdrift and eastwards to Tembisa. It occurs on a varying altitude ranging between 1280-1660 m a.s.l (Bredenkamp & van Rooyen, 1996).

Occurrence of important flora

Graminoids: Aristida canescens (d), A. congesta (d), Cynodon dactylon (d), Digitaria monodactyla (d), Eragrostis capensis (d), E. chloromelas (d), E. curvula (d), E. racemosa (d), Heteropogon contortus (d), Hyparrhenia hirta (d), Melinis repens subsp. repens (d), Monocymbium ceresiiforme (d), Setaria sphacelata (d), Themeda triandra (d), Tristachya leucothrix (d), Andropogon eucomus, Aristida aequiglumis, A. diffusa, A. scabrivalvis subsp. borumensis, Bewsia biflora, Brachiaria serrata, Bulbostylis burchellii, Cymbopogon caesius, Digitaria tricholaenoides, Diheteropogon amplectens, Eragrostis gummiflua, E. sclerantha, Panicum natalense, Schizachyrium sanguineum, Setaria nigrirostris, Tristachya rehmannii, Urelytrum agropyroides.

<u>Herbs:</u> Acalypha angustata, A. peduncularis, Becium obovatum, Berkheya insignis, Crabbea hirsuta, Cyanotis speciosa, Dicoma anomala, Helichrysum rugulosum, Justicia anagalloides, Kohautia amatymbica, Nidorella hottentotica, Pentanisia prunelloides subsp. latifolia, Pseudognaphalium luteo-album, Senecio venosus.

Geophytic Herbs: Cheilanthes deltoidea, C. hirta.

Small Tree: Vangueria infausta.

Tall Shrub: Rhus pyroides.

<u>Low Shrubs:</u> Anthospermum hispidulum, A. rigidum subsp. pumilum, Gnidia capitata, Helichrysum kraussii, Ziziphus zeyheriana. Succulent Shrub: Lopholaena coriifolia.

Conservation

This vegetation is Endangered. Conservation target is 24% but only about 3% of this unit is conserved in statutory reserves (Diepsloot and Melville Koppies Nature Reserves) and a number of private conservation areas including Motsetse and Isaac Stegmann Nature Reserves, Kingskloof Natural Heritage Site, Melrose and Beaulieu Bird Sanctuaries as well as the Walter Sisulu National Botanical Garden. More than two thirds of the unit has already undergone transformation mostly by urbanisation, cultivation or by building of roads. Current rates of transformation threaten most of the remaining unconserved areas. There is no serious alien infestation in this unit, although species such as *Eucalyptus grandis*, *E. camaldulensis* and *E. sideroxylon* are commonly found. Erosion is moderate and very low.

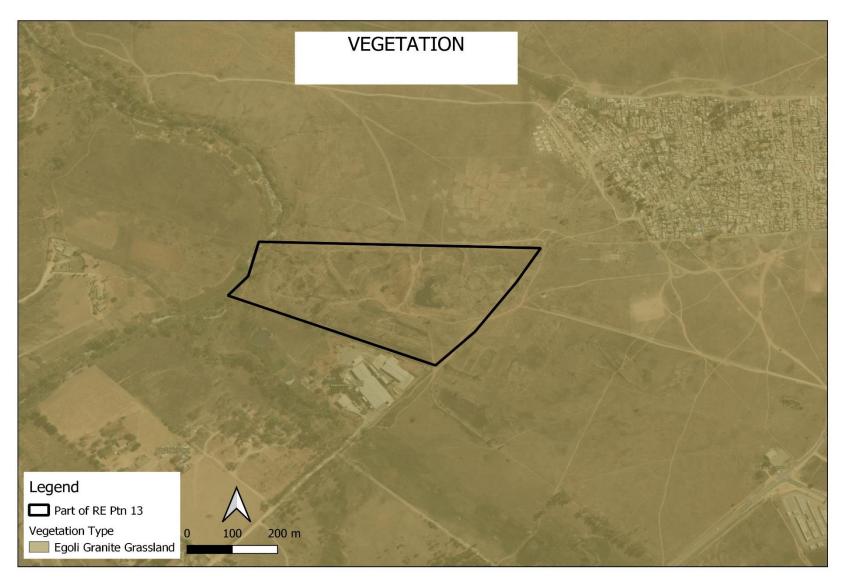


Figure 2: Vegetation map of the study site.

4. LEGAL REQUIREMENTS

4.1. RELEVANT LEGISLATION

The Constitution of the Republic of South Africa Act (Act No. 108 of 1996) - Section 24.

The Constitution is South Africa's overarching law. It prescribes minimum standards with which existing and new laws must comply. Chapter 2 of the Constitution contains the Bill of Rights in which basic human rights are enshrined. Government's commitment to give effect to the environmental rights enshrined in the Constitution is evident from the enactment of various pieces of environmental legislation since 1996, including the National Water Act, the National Environmental Management Act, etc.

The Constitution deals with the environment in Section 24 and proclaims the right of everyone:

- (a) To an environment that is not harmful to their health or well-being; and
- (b) To have the environment protected, for the benefit of present and future generations, through reasonable legislative and other measures that:
- (i) Prevent pollution and ecological degradation;
- (ii) Promote conservation; and
- (iii) Secure ecologically sustainable development and use of natural resources while promoting justifiable economic and social development.

National Environmental Management Act (Act No. 107 of 1998) (NEMA), as amended.

NEMA replaces a number of the provisions of the Environment Conservation Act, 1989 (Act No. 73 of 1989). The Act provides for cooperative environmental governance by establishing principles for decision-making on matters affecting the environment, institutions that will promote cooperative governance and procedures for coordinating environmental functions. The principles enshrined in NEMA guide the interpretation, administration and implementation of the Act with regards to the protection and / or management of the environment. These principles serve as a framework within which environmental management must be formulated. Section 2(4) specifies that "sustainable development requires the consideration of all relevant factors including aspects specifically relevant to biodiversity":

National Environmental Management: Biodiversity Act (Act No. 10 of 2004) (NEMBA).

NEMBA provides for the management and conservation of biological diversity and components thereof; the use of indigenous biological resources in a sustainable manner;

the fair and equitable sharing of benefits rising from bio-prospecting of biological resources; and cooperative governance in biodiversity management and conservation within the framework of NEMA.

National Water Act (Act No. 36 of 1998) (NWA).

The National Water Act (NWA) is a legal framework for the effective and sustainable management of water resources in South Africa. Central to the NWA is recognition that water is a scarce resource in the country which belongs to all the people of South Africa and needs to be managed in a sustainable manner to benefit all members of society. The NWA places a strong emphasis on the protection of water resources in South Africa, especially against its exploitation, and the insurance that there is water for social and economic development in the country for present and future generations.

The National Water Act, requires any development to secure Water Use Licences with the following activities:

Section 21 (a), abstractive use of water for construction (if possible and required).

Section 21 (c) and (i) use, i.e. river or wetland crossings, which includes any drainage lines by any infrastructure.

In terms of the definitions provided, activities included under Sections 21(c) and 21(i) are (amongst others) the construction of roads, bridges, pipelines, culverts and structures for slope stabilisation and erosion protection. DWS will however need to be approached to provide guidance on whether approval for Section 21 (c) and (i) water uses would be required.

GENERAL AUTHORISATION IN TERMS OF SECTION 39 OF THE NWA

According to the preamble to Part 6 of the NWA, "This Part established a procedure to enable a responsible authority, after public consultation, to permit the use of water by publishing general authorisations in the Gazette..." "The use of water under a general authorisation does not require a licence until the general authorisation is revoked, in which case licensing will be necessary..."

The General Authorisations for Section 21 (c) and (i) water uses (impeding or diverting flow or changing the bed, banks or characteristics of a watercourse) as defined under the NWA have recently been revised (Government Notice R509 of 2016). Determining if a water use licence is required for these water uses is now associated with the risk of degrading the ecological status of a watercourse. A low risk of impact could be authorised in terms of a General Authorisations (GA).

Provincial legislation

In addition to national legislation such as Protected Areas Act No. 57 of 2003, National Environmental Management: Biodiversity Act No. of 2004 and Conservation of Agricultural Resources Act No. 43 of 1983, some of South Africa's nine provinces have their own provincial biodiversity legislation, as nature conservation is a concurrent function of national and provincial government in terms of the Constitution (Act 108 of 1996).

4.2.1. Gauteng Conservation Plan

The C-plan places different habitats in different categories. These categories need to be considered during the environmental assessment process. The categories are the following: Critica Biodiversity Areas (CBA's) and Ecological Support Areas (ESA's). The CBA's is in turn further divided into CBA Irreplaceable Areas and CBA Important Areas. According to the Gauteng conservation plan or C-plan a part the study site is classified as an Ecological Support Area, an Irreplaceable area and an Important area.

The Gauteng Conservation Plan or C-plan of 2012 version 3.3 as set out by the Gauteng Department of Agriculture and Rural Development (GDARD) main aim is to conserve as many representative habitats, species and ecological processes so as to maintain biodiversity. According to SANBI the main purposes of C-Plan 3.3 are:

- To serve as the primary decision support tool for the biodiversity component of the Environmental Impact Assessment (EIA) process;
- To inform protected area expansion and biodiversity stewardship programmes in the province;
- To serve as a basis for development of Bioregional Plans in municipalities within the province.

The C-Plan 3 considers the following biodiversity features:

- Plants (Including priority ranking of species of conservation concern in Gauteng);
- · Bird habitat models;
- Invertebrates;
- Mammals;
- Fish;
- Reptiles;
- · Pan clusters:
- Near pristine quaternary catchments;
- Bioclimatic zones:

- Carbon sequestration; and
- Primary vegetation.

The C-plan places different habitats in different categories. These categories need to be considered during the environmental assessment process. The categories are the following: Critical Biodiversity Areas (CBA's) and Ecological Support Areas (ESA's). The CBA's is in turn further divided into CBA Irreplaceable Areas and CBA Important Areas. According to the Gauteng conservation plan or C-plan a portion of the northern and western boundaries fall under Ecological Support Area, and Irreplaceable area. These are associated with drainage lines and rivers (Fig 3).

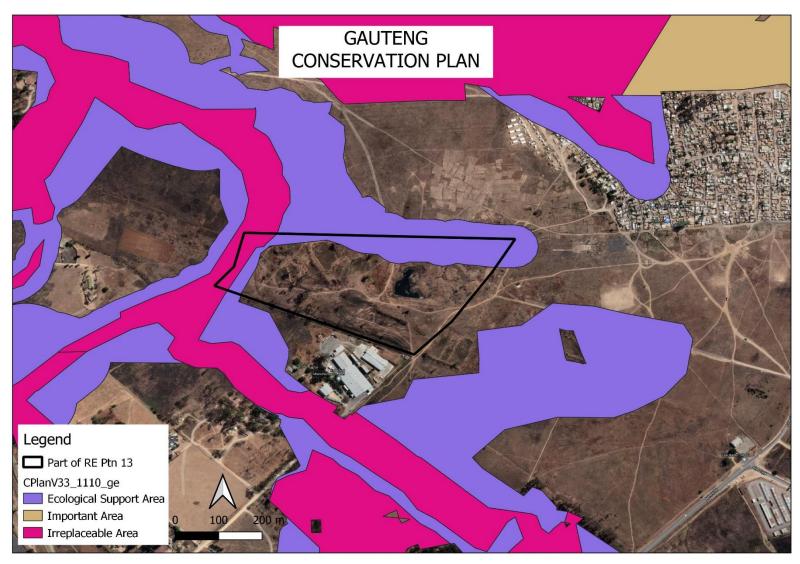


Figure 3: Gauteng C-Plan Map.

5. METHODOLOGY

Our methodology included both background information search (Desktop) and field survey. Below is the method used in our study for each of the subfields of biodiversity and the limitations encountered:

6.1. Flora Study

Transect walk method was used to identify the plants and vegetation structure occurring on the study site. Plants that could not be identified on site were photographed for later identification.

Limitations:

- Duration of the field survey. Not all sections were covered during this phase.
- Plants that were not flowering at the time of the survey
- Sampling frequency

Recommendations:

 Majority of the habitats have been transformed. Remaining alien plants should be eradicated and controlled.

6.2. Fauna Study

Visual observations stand counts and indirect counts method were used to assess the animals occurring on the study site. Observations were made while walking through the site and while driving in some instances. The stand counts involved two observers who would sit quietly and wait for the animals to pass. Whereas the indirect counts included the searching of faecal matter/ pellets. Active search for reptiles and other small mammals was conducted by turning rocks and dead logs.

Limitations:

- Duration of the field survey
- Sampling frequency
- Circadian rhythm of animals (diurnal animals could not be detected)

Red Data Analysis and Floral Assessment

SANBI NEW POSA was compared to relevant literature detailing Protected and Red Data plant species lists in order to compile a list of Red Data plant species that may potentially

occur within the study area. Historical floral records of the surrounding area is listed in the appendix. The status is determined in table 1 below.

Table 1: Red Data Status definitions (SANBI, 2010).

	p- protected Species						
M- Me	dicinal species						
EX	Extinct	A taxon is Extinct when there is no reasonable doubt that the last individual has died. Taxa should be listed as extinct only once exhaustive surveys throughout the historic range have failed to record an individual.					
EW	Extinct in the Wild	A taxon is Extinct in the Wild when it is known to survive only in cultivation or as a naturalized population (or populations) well outside the past range.					
CR PE	Critically Endangered (Possibly Extinct	Critically Endangered (Possibly Extinct) taxa are those that are, on the balance of evidence, likely to be extinct, but for which there is a small chance that they may be extant. Hence, they should not be listed as Extinct until adequate surveys have failed to record the taxon.					
CR	Critically Endangered	A taxon is Critically Endangered when the best available evidence indicates that it meets any of the five IUCN criteria for Critically Endangered and is therefore facing an extremely high risk of extinction in the wild.					
EN	Endangered	A taxon is Endangered when the best available evidence indicates that it meets any of the five IUCN criteria for Endangered and is therefore facing a very high risk of extinction in the wild.					
VU	Vulnerable	A taxon is Vulnerable when the best available evidence indicates that it meets any of the five IUCN criteria for Vulnerable and is therefore facing a high risk of extinction in the wild.					
NT	Near Threatened	A taxon is Near Threatened when available evidence indicates that it nearly meets any of the five IUCN criteria for Vulnerable and is therefore likely to qualify for a threatened category in the near future.					
CRITIC	CALLY RARE	A taxon is Critically Rare when it is known to occur only at a single site but is not exposed to any direct or plausible potential threat and does not qualify for a category of threat according to the five IUCN criteria.					
RARE		A taxon is Rare when it meets any of the four South African criteria for rarity but is not exposed to any direct or plausible potential threat and does not qualify for a category of threat according to the five IUCN criteria.					
DECLI	INING	A taxon is Declining when it does not meet any of the five IUCN criteria and does not qualify for the categories Critically Endangered, Endangered, Vulnerable or Near Threatened, but there are threatening processes causing a continuing decline in the population.					

DDD	Data Deficient— Insufficient Information	A taxon is DDD when there is inadequate information to make an assessment of its risk of extinction, but the taxon is well defined. Data Deficient is not a category of threat. However, listing of taxa in this category indicates that more information is required, and that future research could show that a threatened classification is appropriate.
LC	Least Concern	A taxon is Least Concern when it has been evaluated against the five IUCN criteria and does not qualify for the categories Critically Endangered, Endangered, Vulnerable or Near Threatened, and it is not rare, and the population is not declining.

Ecological function

Ecological function relates to the degree of ecological connectivity between systems within a landscape matrix. Therefore, systems with a high degree of landscape connectivity amongst one another are perceived to be more sensitive and will be those contributing to ecosystem service (for example wetlands for water and food) or overall preservation of biodiversity. Conservation importance relates to species diversity, endemism (unique species or unique processes) and the high occurrence of threatened and protected species or ecosystems protected by legislation.

Sensitivity scale

- High ecological function: Sensitive ecosystems with either low inherent resistance
 or resilience towards disturbance factors or highly dynamic systems considered to be
 stable and important for the maintenance of ecosystems integrity for example pristine
 grasslands, pristine wetlands and pristine ridges.
- Medium ecological function: Relatively important ecosystems at gradients of intermediate disturbances. An area may be considered of medium ecological function if it is directly adjacent to sensitive/pristine ecosystem.
- Low ecological function: Degraded and highly disturbed systems with little or no ecological function.
- No Go Areas: Areas that have irreplaceable biodiversity or important ecosystem function values which may be lost permanently if these ecosystems are transformed, with a high potential of also affecting adjacent and/or downstream ecosystems negatively.

Conservation status of the vegetation

• **High conservation importance**: Ecosystems with high species richness which usually provide suitable habitat for several threatened species. Usually termed 'no-go' areas and unsuitable for development and should be conserved.

- **Medium conservation importance**: Ecosystems with intermediate levels of species diversity without any threatened species. Low-density development may be accommodated, provided the current species diversity is conserved.
- Low conservation importance: Areas with little or no conservation potential and usually species poor (most species are usually exotic).

Cognisance was taken of the following environmental attributes and general information:

- Regional and local vegetation
- Current status of habitats
- Red Data habitat suitability, and
- Digital photographs

Phytosociological data accumulated include the following:

- Plant species and growth forms
- Dominant plant species
- Cover abundance values, and
- Samples or digital images of unidentified plant species

The site was observed to be of **Low-Medium Ecological Function**. Sensitive areas are associated with watercourses.

6. RESULTS

Biological diversity everywhere is at great risk as a direct result of an ever-expanding human population and its associated needs for energy, water, food and minerals. Landscape transformation that is needed to accommodate these activities inevitably leads to habitat loss and habitat fragmentation, resulting in the mosaical appearance of undisturbed habitat within a matrix of transformed areas. These remaining areas of natural habitat are frequently too small to support the biodiversity that previously occupied the area, and the region loses its ecological integrity (Kamffer 2004). Conservation of the remaining ecosystem is vital and beneficial in the long run.

The assessment results revealed that the site has been transformed already due to existing borrow pits. Historical records faunal species previously recorded around the study area is listed in the appendices.

Plants

Table 2: List of plant species recorded at the study site.

Species	Common Name	Growth Form	IUCN Conservation Status
Helichrysum kraussii	Curry Bush	Shrub	LC
Celtis africana	White Stinkwood	Tree	LC
Asparagus laricinus	Bergkatbos	Shrub	LC
Setaria sphacelate	Bristle Grass	Grass	LC
Aristida congesta	Tassel Three-awn	Grass	LC
Hyparrhenia hirta	Common Thatch Grass	Grass	LC
Themeda triandra	Red Grass	Grass	LC
Aristida congesta subs congesta	Cat's-tail Three-awned Grass	Grass	LC
Eragrostis rigidior	Curly leaf grass	Grass	LC
Panicum maximum	Buffalo grass	Grass	LC
Themeda triandra	Red grass	Grass	LC
Imperata cylindrica	Cotton wool grass	Grass	LC

Weeds and Invasive Plants

Alien invasive species

Alien invasive species were recorded during the field surveys. Declared weeds and invaders have the tendency to dominate or replace the herbaceous layer of natural ecosystems, thereby transforming the structure, composition and function of natural ecosystems. Therefore, it is important that all these aliens be eradicated and controlled by means of an eradication and monitoring programme. Invader plants degrade

ecosystems through superior competitive capabilities to exclude indigenous plant species. Below is a discussion of the four categories of Invasive Alien Plants as per the National Environmental Management Biodiversity Act (NEMBA).

Category 1a: invasive species that may not be owned, imported into South Africa, grown, moved, sold, given as a gift or dumped in a waterway. These species need to be controlled on your property, and officials from the Department of Environmental Affairs must be allowed access to monitor or assist with control.

Category 1b: invasive species that may not be owned, imported into South Africa, grown, moved, sold, given as a gift or dumped in a waterway. Category 1b species are major invaders that may need government assistance to remove. All Category 1b species must be contained, and in many cases, they already fall under a government sponsored management programme.

Category 2: These are invasive species that can remain in your garden, but only with a permit, which is granted under very few circumstances.

Category 3: These are invasive species that can remain in your garden. However, you cannot propagate or sell these species and must control them in your garden. In riparian zones or wetlands all Category 3 plants become Category 1b plants.

The presence of several weeds and poor-quality species strongly reflects the transformed and degraded nature of the study site. The infestation of the listed invasive plants is low-moderate and require intervention. The following weeds and invasive plant taxa were recorded within the study site.

Table 3: List of weeds and invasive species for the study area

Species	Common Name	Growth Form	IUCN Conservation Status
Lantana camara	Lantana	Shrub	Declared Category 1b
Eucalyptus camaldulensis	River red gum	Tree	Declared Category 1b
Melia azedarach	Syringa	Tree	Declared Category 1b
Campuloclinium macrocephalum	Pompom weed	Herb	Declared Category 1b
Verbena bonariensis	Tall Verbena	Herb	Declared Category 1b

Birds

Birds are regarded as one of the most useful bioindicators, and they have been used extensively as models to determine ecosystem function (see review Koskimies 1989; Potts et al. 2014; Bregman et al. 2016). High levels of human disturbance as well as habitat transformation and degradation on the study site and adjacent areas would result in the disappearance of the more elusive bird species. Majority of the birds recorded

around the study site are generalists. All of the observed birds are all least concern, and no species of concern were noted.

Table 4: List of bird species recorded at the study site.

Species	Common Name	IUCN Conservation Status
Vanellus armatus	Blacksmith Lapwing	LC
Corythaixoides concolor	Grey go-away Bird	LC
Ardea purpurea	Purple Heron	LC
Alopochen aegyptiaca	Egyptian Goose	LC
Bostrychia hagedash	Hadeda Ibis	LC
Tockus rufirostris	Southern Red-billed Hornbill	LC
Turdoides jardineii	Arrow marked Barbbler	LC
Lybius torquatus	Black-collared Barbet	LC
Dicrurus adsimilis	Fork-tailed Drongo	LC
Cinnyris talatala	White-bellied Sunbird	LC
Uraeginthus angolensis	Blue Waxbill	LC
Oenanthe pileata	Capped Wheater	LC
Plectropterus gambensis	Spur-winged Goose	LC

Mammals

Most of the mammals were not observed during the survey considering the time in which the survey took place, but there was evidence of animal dung of different mammals. The mammals that could potentially occur within this area have been listed in the appendix.

Reptiles

Herpetofauna do occur in human modified landscapes, so encouraging appropriate matrix land uses could contribute to their conservation. No reptiles were recorded during the survey.

SENSITIVITY ANALYSIS

Vegetation has been used as a common biological indicator to identify the Present Ecological State (PES) or ecological health of ecosystems, given their overall ability to respond rapidly to disturbance. Conservative plant species are the most commonly affected species given their high conservatism status, high sensitivity, narrow distribution ranges and low tolerance to disturbance, these species are the first to be eradicated in disturbed conditions (Rocchio, 2007).

The sensitivity within the study area was predominantly low, with the exception of the western boundary which runs along the river. The are is classified as High Sensitivity. (Fig. 4). Most areas have been disturbed to a level where the current habitat offers little or no ecological function. Figure 5 shows some of the site vegetation and conditions.

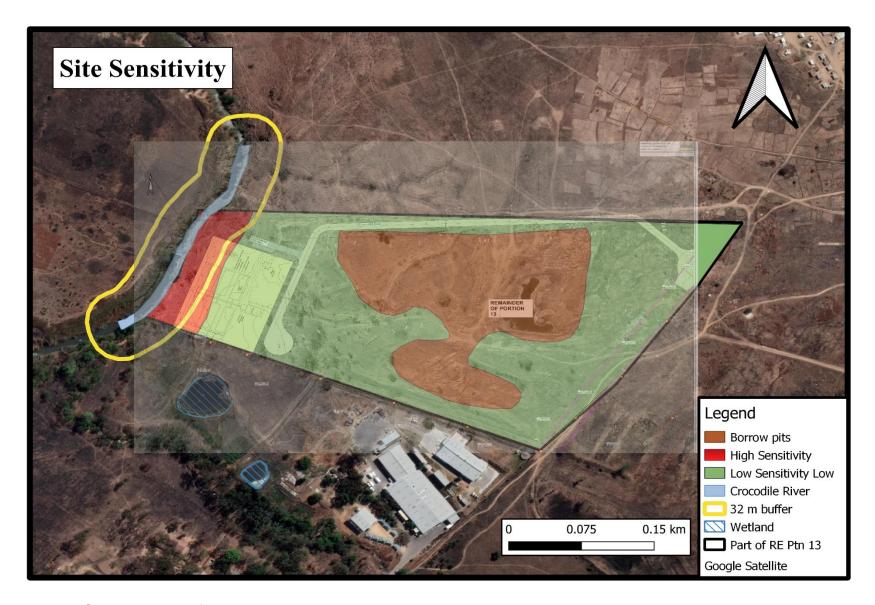


Figure 4: Site sensitivity of the study site.

Figure 5: Site conditions.

7. IMPACT ASSESSMENT AND MITIGATIONS

THE MAIN IMPACTS

- Permanent loss of vegetation on disturbed sites;
- Animal displacement;
- Soil erosion and sedimentation; and
- Introduction and spread of declared weeds and alien invasive plants: This may occur in disturbed areas and/or where propagules of these plants are readily available.

Impact Phase: Construction								
Potential impact description: Introduction of alien invasive plants								
eas which a	are not rehab	ilitated are lil	kely to be inv	aded by aliens	and pioneer pla	ants.		
Extent	Duration	Intensity	Status	Significance	Probability	Confidence		
L	Н	М	Negative	М	Н	Н		
L	L	L	Negative	L	L	Н		
Can the impact be reversed?		This impact can be prevented through appropriate mitigation measures such as eradication.						
Will impact cause irreplaceable loss of resources? No. If this impact is correctly addressed, then no loss of resources will occurrence in the correctly addressed, then no loss of resources will occurrence in the correctly addressed, then no loss of resources will occurrence in the correctly addressed, then no loss of resources will occurrence in the correctly addressed, then no loss of resources will occurrence in the correctly addressed, then no loss of resources will occurrence in the correctly addressed.				will occur.				
Can impact be avoided, followed. Yes. This impact can be avoided if appropriate mitigation measures a followed. managed or mitigated?			s are					
	mpact deseas which a Extent L L pact be cause le loss of	mpact description: Intreas which are not rehable Extent Duration L H L L pact be This impact eradication cause le loss of the Section Sect	mpact description: Introduction of a cas which are not rehabilitated are like Extent	mpact description: Introduction of alien invasive eas which are not rehabilitated are likely to be inverse. I have a likely to be inverse which are not rehabilitated are likely to be inverse. I have a likely to be inverse which are not rehabilitated are likely to be inverse. I have a likely to be inverse which are not rehabilitated are likely to be inverse. I have a likely to be inverse which are not rehabilitated are likely to be inverse. I have a likely to be inverse which are not rehabilitated are likely to be inverse. I have a likely to be inverse which are not rehabilitated are likely to be inverse. I have a likely to be inverse which are not rehabilitated are likely to be inverse. I have a likely to be inverse which are not rehabilitated are likely to be inverse. I have a likely to be inverse which are not rehabilitated are likely to be inverse. I have a likely to be inverse which are not rehabilitated are likely to be inverse. I have a likely to be inverse which are not rehabilitated are likely to be inver	mpact description: Introduction of alien invasive plants eas which are not rehabilitated are likely to be invaded by aliens at the seas which are not rehabilitated are likely to be invaded by aliens at the seas which are not rehabilitated are likely to be invaded by aliens at the seas which are not rehabilitated are likely to be invaded by aliens at the seas which are not rehabilitated are likely to be invaded by aliens at the seas which are not rehabilitated are likely to be invaded by aliens at the season. State Duration Intensity Status Significance M	mpact description: Introduction of alien invasive plants eas which are not rehabilitated are likely to be invaded by aliens and pioneer place as which are not rehabilitated are likely to be invaded by aliens and pioneer place as which are not rehabilitated are likely to be invaded by aliens and pioneer place as which are not rehabilitated are likely to be invaded by aliens and pioneer place as which are not rehabilitated are likely to be invaded by aliens and pioneer place as which are not rehabilitated are likely to be invaded by aliens and pioneer place are not rehabilitated are likely to be invaded by aliens and pioneer place as which are not rehabilitated are likely to be invaded by aliens and pioneer place and pioneer place. He was a significance probability and propriet mitigation measure followed.		

Mitigation measures:

 Any cleared areas that are no longer or not required for construction activities should be reseeded with locally sourced seed of suitable species. Bare areas can also be packed with brush removed from other parts of the site to encourage natural vegetation regeneration and limit erosion.

Impact Phase: Construction									
	Potential impact description: Impacts on watercourses								
The major	impact durir	ng this phase	may result f	rom infilling	and impediment	of watercours	es		
	Extent	Duration	Intensity	Status	Significance	Probability	Confidence		
Without	M	Н	M	Negative	M	Н	Н		
Mitigation									
With	L	М	L	Negative	M	M	Н		
Mitigation				_					
Can the im	pact be	Yes, Watercourses can be rehabilitated.							
reversed?									
Will impact	cause	No.							
irreplaceab	le loss of								
resources?									
Can impact be		Yes. All watercourses should be avoided.							
avoided, managed or									
mitigated?									
B 4141 41	B. Atrict. — (1)								

Mitigation measures:

- Watercourses must be cordoned off to prevent workers from encroaching into sensitive areas.
- No washing of equipment is allowed near watercourses.

Impact Phase: Construction

Potential impact description: Impacts on vegetation

The major impact during this phase will result from vegetation clearance for construction purposes

The major impact daming the phace will result from vegetation electrone for construction purposes							
	Extent	Duration	Intensity	Status	Significance	Probability	Confidence
Without Mitigation	М	Н	М	Negative	М	Н	н
With Mitigation	L	Н	М	Negative	М	М	н
Can the impact be reversed?		No, once vegetation is cleared, it would not be possible to return it to its previous state.					
Will impa irreplaceab resources?	le loss of	No. The site has already been exposed to severe modifications. There is minimal intact vegetation remaining.					
Can impavoided, m	pact be anaged or	No. Althoug	h mitigations	s will be prov	rided, vegetation	n loss would be	e inevitable.

Mitigation measures:

- All natural vegetation not required to be removed should be protected against damage.
- All cleared areas not used for construction should be rehabilitated.

Impact Phase: Construction

Potential impact description: Direct and indirect avifauna and faunal Impacts

The construction phase will result in habitat loss, noise and disturbance on site. This will lead to direct and indirect disturbance of fauna. Slow-moving species such as the tortoises are likely to be killed by machinery.

	Extent	Duration	Intensity	Status	Significance	Probability	Confidence	
Without	М	L	M	Negative	M	Н	Н	
Mitigation								
With	L	L	L	Negative	M	M	Н	
Mitigation								
Can the im	pact be	Yes. This impact can be prevented through appropriate mitigation measures.						
reversed?								
Will impact	cause	No. No Species of Conservation Concern are likely to be impacted by the						
irreplaceab	le loss of	activities.						
resources?								
Can impact	be	Yes. Contractors should be informed about slow moving species that are likely						
avoided, managed or		to be crushed by construction vehicles.						
mitigated?								

Mitigation measures:

- No animal may be hunted, trapped, snared or captured for any purpose whatsoever.
- Speed of vehicles should be limited to allow for sufficient safety margins.

8. REHABILITATION

The traditional definition of rehabilitation aims at returning the land in a given area to some degree of its former state after a particular process has resulted in its damage.

Rehabilitation requires that there is an attempt to imitate natural processes and reinstate natural ecological driving forces in such a way that it aids the recovery (or maintenance) of dynamic systems so that, although they are unlikely to be identical to their natural counterparts, they will be comparable in critical ways so as to function similarly (Jordan et al.1987). Rehabilitation should be based on an understanding of both the ecological starting point and on a defined goal endpoint and should accept that it is not possible to predict exactly how the disturbed area is likely to respond to the rehabilitation interventions.

During and post construction activities, all disturbed areas should be rehabilitated. This should be done using indigenous plant species.

9. CONCLUSION AND RECOMMENDATIONS

Majority of the habitats that have been earmarked for the establishment of the wastewater treatment works have been exposed to severe levels of disturbance due to the borrow pits which were never rehabilitated.

The following are recommended:

- Watercourses must be avoided at all times expect when moving across the sites.
 This should be done on existing crossings.
- All temporary stockpile areas including litter and dumped material and rubble must be removed on completion of construction.
- No painting or marking of vegetation shall be allowed. Marking shall be done by steel stakes with tags, if required.
- Only necessary damage must be caused: for example, unnecessary driving around in the site should not take place.

The impacts associated with the proposed wastewater treatment works are likely to be from Medium to Low after implementation of mitigation measures. Based on the outcome of this assessment, the permanent structures should be placed outside the 32 m buffer of the watercourse to prevent any possible pollution during construction. After a revision of the layout there would be no evident fatal flaws that would prevent this development from being authorised, nor being conducted in a sustainable manner.

10. REFERENCES

- Bregman T. P., Lees, A. C., MacGregor, H. E. A., Darski, B., de Moura, N. G., Aleixo, A., Barlow, J. & Tobias, J. A. 2016 Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. *Proceedings of the Royal Society B* 283: 1-10.
- Branch, B. 1998. Field guide to snakes and other reptiles of southern Africa. Struik Nature, Cape Town.
- Bredenkamp, G., Granger, J.E. & van Rooyen, N. 1996. Moist Sandy Highveld Grassland. In: Low, A.B. &Robelo, A.G. (eds) *Vegetation of South Africa, Lesotho and Swaziland*. Department of Environmental Affairs and Tourism, Pretoria.
- Gelderblom, C.M. & Bronner, G.N. 1995. Patterns of distribution and protection status of the endemic mammals in South Africa, South African Journal of Zoology, 30:3, 127-135
- Koskimies, P. Birds as a tool in environmental monitoring. *Annales Zoologici Fennici*, 26: 153-166.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. 2006. World Map of Köppe Geiger Climate Classification updated. *Meteorology. Z.* **15**. 259-263.
- Kotze, D.C., Marneweck, G.C., Batchelor, A.L., Lindley, D.S. & Collins, N.B. 2007. Wet EcoServices: A technique for rapidly assessing ecosystem services supplied by wetlands, WRC Report No. TT 339/09, Water Research Commission, Pretoria.
- Manning, J. 2009. Field guide to the wild flowers of South Africa. Struik, Cape Town.
- Mucina, L., Hoare, D.B., Lötter, M.C., Du Preez, P.J., Rutherford, M.C., Scott Shaw, C.R., Bredenkamp, G.J., Powrie, L.W., Scott, L., Camp, K.G.T., Cilliers, S.S.Bezuidenhout, H., Mostert, T.H., Siebert, S.J., Winter, P.J.D., Burrows, J.E., Dobson, L., Ward, R.A., Stalmans, M., Oliver, E.G.H., Siebert, F., Schmidt, E.,Kobisi, K., Kose, L. 2006. Grassland Biome. In: Mucina, L. & Rutherford, M.C. (eds.). Vegetation map of South Africa, Lesotho and Swaziland: an illustrated guide. Strelitzia 19. South African National Biodiversity Institute, Pretoria.
- Nieto, M., Hortal, J., Martínez-Maza, C., Morales, J., Ortiz-Jaureguizar, E., Pelaez Campomanes, P., Pickford, M., Prado, J.L., Rodríguez, J., Senut, B., Soria, D. & Varela, S. 2005. Historical Determinants of Mammal Diversity in Africa: Evolution of Mammalian Body Mass Distribution in Africa and South America During Neogene and Quarternary Times. *African Biodiversity*.
- Ollis, D., Snaddon, K., Job, N., & Mbona, N. 2013. Classification Systems for Wetlands and other Aquatic Ecosystems in South Africa. User Manual: Inland Systems. SANBI Biodiversity Series 22. Pretoria: South African National Biodiversity Institute.

- Potts, J. R., Mokross, K., Stouffer, P. C. & Lewis, M. A. 2014. Step selection techniques uncover the environmental predictors of space use patterns in flocks of Amazonian birds. *Ecology and Evolution*,4(24): 4578-4588.
- Raimondo, D., von Staden, L., Foden, W., Victor, J.E., Helme, N.A., Turner, R.C., Kamundi, D.A. and Manyama, P.A. 2009. Red List of South African Plants. Strelitzia 25. South African National Biodiversity Institute, Pretoria
- Rocchio, J., 2007. Floristic quality assessment indices for Colorado plant communities.

 Report prepared for Colorado Department of Natural Resources and US EPA

 Region 8. 234 pp
- Sinclair, I., Hockey, P., Tarboton, W. & Ryan, R. 2011. Birds of Southern Africa. Struik Nature, Cape Town.

11. APPENDICES

Appendix 1: Historical Faunal and Floral Records *A, Mammal Records. Animal Demographic Unit*

NO.	Family	Scientific name	Common name	Red list category	Number of records	Last recorded
1	Bovidae	Aepyceros melampus	Impala	Least Concern	28	2020-11-04
2	Bovidae	Alcelaphus buselaphus	Hartebeest		5	2014-03-06
3	Bovidae	Alcelaphus buselaphus caama	Red Hartebeest	Least Concern (2008)	2	2020-11-02
4	Bovidae	Antidorcas marsupialis	Springbok	Least Concern (2016)	1	2013-09-12
5	Bovidae	Connochaetes sp.	African Antelopes and Gnus		2	2014-03-02
6	Bovidae	Connochaetes taurinus	Blue Wildebeest	Least Concern (ver 3.1, 2017)	1	2020-11-03
7	Bovidae	Connochaetes taurinus taurinus		Least Concern (2016)	15	2015-04-19
8	Bovidae	Damaliscus lunatus lunatus	(Southern African) Tsessebe	Vulnerable (2016)	2	2013-09-07
9	Bovidae	Damaliscus pygargus phillipsi	Blesbok	Least Concern (2016)	20	2014-01-04
10	Bovidae	Damaliscus pygargus pygargus	Bontebok	Vulnerable (2016)	14	2013-02-11
11	Bovidae	Hippotragus niger	Sable Antelope	Least Concern (ver 3.1, 2017)	1	2014-06-15
12	Bovidae	Kobus ellipsiprymnus	Waterbuck	Least Concern (Ver 3.1, 2016)	3	2020-11-04
13	Bovidae	Kobus ellipsiprymnus ellipsiprymnus		Least Concern (2016)	14	2013-09-23
14	Bovidae	Oryx gazella	Gemsbok	Least Concern (2016)	1	2012-01-14
15	Bovidae	Raphicerus campestris	Steenbok	Least Concern (2016)	3	2013-09-23
16	Bovidae	Sylvicapra grimmia	Bush Duiker	Least Concern (2016)	1	2012-09-30
17	Bovidae	Syncerus caffer	African Buffalo	Least Concern (2008)	4	2014-06-15
18	Bovidae	Taurotragus oryx	Common Eland	Least Concern (2016)	10	2014-06-15
19	Bovidae	Tragelaphus angasii	Nyala	Least Concern (2016)	8	2014-06-15
20	Bovidae	Tragelaphus strepsiceros	Greater Kudu	Least Concern (2016)	34	2020-11-03
21	Canidae	Canis mesomelas	Black-backed Jackal	Least Concern (2016)	4	2017-11-26
22	Cercopithecidae	Chlorocebus pygerythrus	Vervet Monkey	Least Concern (2016)	2	2020-11-02
23	Cercopithecidae	Papio ursinus	Chacma Baboon	Least Concern (2016)	1	2017-01-08
24	Elephantidae	Loxodonta africana	African Bush Elephant	Vulnerable A2a (2008)	16	2015-04-11
25	Equidae	Equus sp.	Asses and Zebras		1	2014-02-22
26	Equidae	Equus quagga	Plains Zebra	Least Concern (2016)	15	2020-11-03

27	Felidae	Acinonyx jubatus	Cheetah	Vulnerable (2016)	9	2020-11-02
28	Felidae	Caracal caracal	Caracal	Least Concern (2016)	1	
29	Felidae	Leptailurus serval	Serval	Near Threatened (2016)	3	2003-10-13
30	Felidae	Panthera leo	Lion	Least Concern (2016)	11	2014-02-20
31	Giraffidae	Giraffa giraffa	South African Giraffe	Least Concern (2016)	16	2020-11-03
32	Herpestidae	FAMILY Herpestidae	Unidentified Herpestidae (mongoose)		1	2013-03-08
33	Herpestidae	Herpestes sanguineus	Slender Mongoose	Least Concern (2016)	1	2015-04-26
34	Herpestidae	Mungos mungo	Banded Mongoose	Least Concern (2016)	2	2015-04-11
35	Hippopotamidae	Hippopotamus amphibius	Common Hippopotamus	Least Concern (2016)	3	2014-01-02
36	Hyaenidae	Hyaena brunnea	Brown Hyena	Near Threatened (2015)	4	2003-10-15
37	Leporidae	Lepus saxatilis	Scrub Hare	Least Concern	3	2020-08-22
38	Macroscelididae	Elephantulus brachyrhynchus	Short-snouted Elephant Shrew	Least Concern (2016)	2	1987-05-15
39	Macroscelididae	Elephantulus myurus	Eastern Rock Elephant Shrew	Least Concern (2016)	8	1949-11-22
40	Muridae	Aethomys ineptus	Tete Veld Aethomys	Least Concern (2016)	1	1931-02-13
41	Muridae	Gerbilliscus leucogaster	Bushveld Gerbil	Least Concern (2016)	1	1948-07-28
42	Muridae	Lemniscomys rosalia	Single-Striped Lemniscomys	Least Concern (2016)	2	1987-05-15
43	Muridae	Mus (Nannomys) minutoides	Southern African Pygmy Mouse	Least Concern	2	2017-04-02
44	Muridae	Thallomys paedulcus	Acacia Thallomys	Least Concern (2016)	3	1931-11-02
45	Mustelidae	Mellivora capensis	Honey Badger	Least Concern (2016)	4	2003-10-16
46	Nesomyidae	Saccostomus campestris	Southern African Pouched Mouse	Least Concern (2016)	3	1987-05-13
47	Sciuridae	Paraxerus cepapi	Smith's Bush Squirrel	Least Concern (2016)	4	2020-11-03
48	Soricidae	Crocidura hirta	Lesser Red Musk Shrew	Least Concern (2016)	1	2017-10-12
49	Suidae	Phacochoerus africanus	Common Warthog	Least Concern (2016)	17	2020-11-03
50	Viverridae	Genetta genetta	Common Genet	Least Concern (2016)	1	1932-10-23
51	Viverridae	Genetta tigrina	Cape Genet (Cape Large-spotted Genet)	Least Concern (2016)	1	2014-06-09

B, Reptile Records. Animal Demographic Unit.

NO.	Family	Scientific name	Common name	Red list category	Number of	Last recorded
					records	
1	Agamidae	Acanthocercus atricollis	Southern Tree Agama	Least Concern (SARCA 2014)	7	2020-11-04
2	Agamidae	Agama aculeata distanti	Distant's Ground Agama	Least Concern (SARCA 2014)	1	1900-06-15
3	Chamaeleonidae	Chamaeleo dilepis	Common Flap-neck Chameleon	Least Concern (SARCA 2014)	3	2017-01-11
4	Colubridae	Crotaphopeltis hotamboeia	Red-lipped Snake	Least Concern (SARCA 2014)	9	2020-11-07
5	Colubridae	Dasypeltis scabra	Rhombic Egg-eater	Least Concern (SARCA 2014)	11	2017-04-02
6	Colubridae	Dispholidus typus viridis	Northern Boomslang	Not evaluated	3	1996-03-19
7	Colubridae	Philothamnus hoplogaster	South Eastern Green Snake	Least Concern (SARCA 2014)	2	2002-11-15
8	Colubridae	Philothamnus semivariegatus	Spotted Bush Snake	Least Concern (SARCA 2014)	1	1900-06-15
9	Colubridae	Telescopus semiannulatus semiannulatus	Eastern Tiger Snake	Least Concern (SARCA 2014)	6	1989-02-06
10	Colubridae	Thelotornis capensis capensis	Southern Twig Snake	Least Concern (SARCA 2014)	5	1990-06-29
11	Crocodylidae	Crocodylus niloticus	Nile Crocodile	VU (SARCA 2014); LC (global, IUCN 2019)	1	1900-06-15
12	Elapidae	Dendroaspis polylepis	Black Mamba	Least Concern (SARCA 2014)	1	2007-12-07
13	Elapidae	Naja annulifera	Snouted Cobra	Least Concern (SARCA 2014)	4	2015-04-24
14	Elapidae	Naja mossambica	Mozambique Spitting Cobra	Least Concern (SARCA 2014)	5	1976-07-31
15	Gekkonidae	Hemidactylus mabouia	Common Tropical House Gecko	Least Concern (SARCA 2014)	2	2020-11-02
16	Gekkonidae	Lygodactylus capensis	Common Dwarf Gecko	Least Concern (SARCA 2014)	8	2020-11-02
17	Gekkonidae	Pachydactylus affinis	Transvaal Gecko	Least Concern (SARCA 2014)	3	1900-06-15
18	Gekkonidae	Pachydactylus capensis	Cape Gecko	Least Concern (SARCA 2014)	7	2017-02-04
19	Gerrhosauridae	Gerrhosaurus flavigularis	Yellow-throated Plated Lizard	Least Concern (SARCA 2014)	2	1981-12-16
20	Lacertidae	Nucras holubi	Holub's Sandveld Lizard	Least Concern (SARCA 2014)	3	2015-11-01
21	Lacertidae	Nucras intertexta	Spotted Sandveld Lizard	Least Concern (SARCA 2014)	5	2015-05-09
22	Lacertidae	Nucras ornata	Ornate Sandveld Lizard	Least Concern (SARCA 2014)	4	2002-11-24
23	Lacertidae	Pedioplanis lineoocellata lineoocellata	Spotted Sand Lizard	Least Concern (SARCA 2014)	2	2003-10-14
24	Lamprophiidae	Amblyodipsas polylepis polylepis	Common Purple-glossed Snake	Least Concern (SARCA 2014)	2	2016-11-12

25	Lamprophiidae	Aparallactus capensis	Black-headed Centipede- eater	Least Concern (SARCA 2014)	1	2016-12-17
26	Lamprophiidae	Atractaspis bibronii	Bibron's Stiletto Snake	Least Concern (SARCA 2014)	3	2020-11-07
27	Lamprophiidae	Boaedon capensis	Brown House Snake	Least Concern (SARCA 2014)	8	2018-01-02
28	Lamprophiidae	Gracililima nyassae	Black File Snake	Least Concern (SARCA 2014)	4	2016-12-21
29	Lamprophiidae	Limaformosa capensis	Common File Snake	Least Concern (SARCA 2014)	10	1900-06-15
30	Lamprophiidae	Lycophidion capense capense	Cape Wolf Snake	Least Concern (SARCA 2014)	2	1973-02-09
31	Lamprophiidae	Prosymna bivittata	Two-striped Shovel-snout	Least Concern (SARCA 2014)	3	2020-11-07
32	Lamprophiidae	Psammophis angolensis	Dwarf Sand Snake	Least Concern (SARCA 2014)	3	1983-03-17
33	Lamprophiidae	Psammophis brevirostris	Short-snouted Grass Snake	Least Concern (SARCA 2014)	13	2002-11-23
34	Lamprophiidae	Psammophis trinasalis	Fork-marked Sand Snake	Least Concern (SARCA 2014)	1	1900-06-15
35	Lamprophiidae	Psammophylax tritaeniatus	Striped Grass Snake	Least Concern (SARCA 2014)	4	1900-06-15
36	Leptotyphlopidae	Leptotyphlops distanti	Distant's Thread Snake	Least Concern (SARCA 2014)	2	1900-06-15
37	Leptotyphlopidae	Leptotyphlops scutifrons scutifrons	Peters' Thread Snake		2	2002-11-18
38	Pelomedusidae	Pelomedusa galeata	South African Marsh Terrapin	Not evaluated	1	2015-04-25
39	Pelomedusidae	Pelusios sinuatus	Serrated Hinged Terrapin	Least Concern (SARCA 2014)	6	2020-11-02
40	Pythonidae	Python natalensis	Southern African Python	Least Concern (SARCA 2014)	6	2020-02-29
41	Scincidae	Mochlus sundevallii	Sundevall's Writhing Skink	Least Concern (SARCA 2014)	2	1981-12-16
42	Scincidae	Panaspis wahlbergii	Wahlberg's Snake-eyed Skink	Least Concern (SARCA 2014)	6	1900-06-15
43	Scincidae	Trachylepis capensis	Cape Skink	Least Concern (SARCA 2014)	5	2002-11-18
44	Scincidae	Trachylepis damarana	Damara Variable Skink		1	2020-12-21
45	Scincidae	Trachylepis punctatissima	Speckled Rock Skink	Least Concern (SARCA 2014)	3	2002-11-21
46	Scincidae	Trachylepis sp. (Transvaal varia)	Skink sp. 1		1	1900-06-15
47	Scincidae	Trachylepis varia sensu lato	Common Variable Skink Complex	Least Concern (SARCA 2014)	10	2003-10-14
48	Scincidae	Trachylepis varia sensu stricto	Common Variable Skink		1	2020-11-02
49	Testudinidae	Stigmochelys pardalis	Leopard Tortoise	Least Concern (SARCA 2014)	6	2020-11-03
50	Typhlopidae	Afrotyphlops bibronii	Bibron's Blind Snake	Least Concern (SARCA 2014)	2	2002-11-22
51	Typhlopidae	Rhinotyphlops lalandei	Delalande's Beaked Blind Snake	Least Concern (SARCA 2014)	1	2016-12-17
52	Varanidae	Varanus albigularis albigularis	Rock Monitor	Least Concern (SARCA 2014)	1	2020-11-02
53	Varanidae	Varanus niloticus	Water Monitor	Least Concern (SARCA 2014)	8	2020-11-03
54	Viperidae	Bitis arietans arietans	Puff Adder	Least Concern (SARCA 2014)	15	2020-11-01

C, Frog Records, Animal Demographic Unit.

NO.	Family	Scientific name	Common name	Red list	Last recorded
				category	
1	Bufonidae	Poyntonophrynus fenoulheti	Northern Pygmy Toad	Least Concern	1981-12-16
2	Bufonidae	Schismaderma carens	Red Toad	Least Concern	2020-12-21
3	Bufonidae	Sclerophrys garmani	Olive Toad	Least Concern (IUCN, 2016)	2020-11-07
4	Bufonidae	Sclerophrys gutturalis	Guttural Toad	Least Concern (IUCN, 2016)	2017-10-07
5	Hyperoliidae	Kassina senegalensis	Bubbling Kassina	Least Concern	2016-11-12
6	Microhylidae	Phrynomantis bifasciatus	Banded Rubber Frog	Least Concern	2016-11-12
7	Phrynobatrachidae	Phrynobatrachus natalensis	Snoring Puddle Frog	Least Concern (IUCN, 2013)	2017-04-02
8	Pipidae	Xenopus laevis	Common Platanna	Least Concern	2000-01-18
9	Ptychadenidae	Ptychadena anchietae	Plain Grass Frog	Least Concern	2017-04-02
10	Pyxicephalidae	Amietia delalandii	Delalande's River Frog	Least Concern (2017)	2017-03-25
11	Pyxicephalidae	Cacosternum boettgeri	Common Caco	Least Concern (2013)	2016-11-12
12	Pyxicephalidae	Pyxicephalus adspersus	Giant Bull Frog	Near Threatened	2017-01-07
13	Pyxicephalidae	Pyxicephalus edulis	African Bull Frog	Least Concern	2016-12-16
14	Pyxicephalidae	Tomopterna sp.			2017-01-07
15	Pyxicephalidae	Tomopterna cryptotis	Tremelo Sand Frog	Least Concern	2017-10-27
16	Pyxicephalidae	Tomopterna natalensis	Natal Sand Frog	Least Concern	2016-11-12

D, Avifaunal Records. SABAP2, Animal Demographic Unit.

No.	Common group	Common species	Genus	Species
1	Common group	Bokmakierie	Telophorus	zeylonus
2		Brubru	Nilaus	afer
3		Hamerkop	Scopus	umbretta
4		Neddicky	Cisticola	fulvicapilla
5		Quailfinch	Ortygospiza	atricollis
6		Ruff	Calidris	pugnax
7		Shikra	Accipiter	badius
8	Apalis	Bar-throated	Apalis	thoracica
9	Babbler	Arrow-marked	Turdoides	jardineii
10	Babbler	Southern Pied	Turdoides	bicolor
11	Barbet	Acacia Pied	Tricholaema	leucomelas
12	Barbet	Black-collared	Lybius	
13	Barbet	Crested	Trachyphonus	torquatus vaillantii
14	Batis			molitor
		Chinspot	Batis	
15	Bee-eater	European	Merops	apiaster
16	Bee-eater	Little	Merops	pusillus
17	Bee-eater	White-fronted	Merops	bullockoides
18	Bishop	Southern Red	Euplectes	orix
19	Bishop	Yellow-crowned	Euplectes	afer
20	Boubou	Southern	Laniarius	ferrugineus
21	Bulbul	Dark-capped	Pycnonotus	tricolor
22	Bunting	Cape	Emberiza	capensis
23	Bunting	Cinnamon-breasted	Emberiza	tahapisi
24	Bunting	Golden-breasted	Emberiza	flaviventris
25	Bushshrike	Grey-headed	Malaconotus	blanchoti
26	Bushshrike	Orange-breasted	Chlorophoneus	sulfureopectus
27	Buzzard	Common	Buteo	buteo
28	Camaroptera	Grey-backed	Camaroptera	brevicaudata
29	Canary	Black-throated	Crithagra	atrogularis
30	Canary	Yellow	Crithagra	flaviventris
31	Canary	Yellow-fronted	Crithagra	mozambica
32	Chat	Familiar	Oenanthe	familiaris
33	Cisticola	Desert	Cisticola	aridulus
34	Cisticola	Levaillant's	Cisticola	tinniens
35	Cisticola	Rattling	Cisticola	chiniana
36	Cisticola	Wing-snapping	Cisticola	ayresii
37	Cisticola	Zitting	Cisticola	juncidis
38	Coot	Red-knobbed	Fulica	cristata
39	Cormorant	Reed	Microcarbo	africanus
40	Cormorant	White-breasted	Phalacrocorax	lucidus
41	Coucal	Burchell's	Centropus	burchellii
42	Courser	Temminck's	Cursorius	temminckii
43	Crake	African	Crecopsis	egregia
44	Crake	Black	Zapornia	flavirostra
45	Crombec	Long-billed	Sylvietta	rufescens
46	Crow	Pied	Corvus	albus
47	Cuckoo	African	Cuculus	gularis
48	Cuckoo	Black	Cuculus	clamosus
49	Cuckoo	Diederik	Chrysococcyx	caprius
50	Cuckoo	Great Spotted	Clamator	glandarius
51	Cuckoo	Jacobin	Clamator	jacobinus
52	Cuckoo	Klaas's	Chrysococcyx	klaas
53	Cuckoo	Levaillant's	Clamator	levaillantii
54	Cuckoo	Red-chested	Cuculus	solitarius
	Cachoo	1 tod offootod	Cuculus	Jonanao

55	Cuckooshrike	Black	Campephaga	flava
56	Darter	African	Anhinga	rufa
57	Dove	Cape Turtle	Streptopelia	capicola
58	Dove	Emerald-spotted Wood	Turtur	chalcospilos
59	Dove	Laughing	Spilopelia	senegalensis
60	Dove	Namaqua	Oena	capensis
61	Dove	Red-eyed	Streptopelia	semitorquata
62	Dove	Rock	Columba	livia
63	Drongo	Fork-tailed	Dicrurus	adsimilis
64	Duck	African Black	Anas	sparsa
65	Duck	Fulvous Whistling	Dendrocygna	bicolor
66	Duck	White-backed	Thalassornis	leuconotus
67	Duck	White-faced Whistling	Dendrocygna	viduata
68	Duck	Yellow-billed	Anas	undulata
69	Eagle	African Fish	Haliaeetus	vocifer
70	Eagle	Black-chested Snake	Circaetus	pectoralis
71	Eagle	Brown Snake	Circaetus	cinereus
72	Eagle	Wahlberg's	Hieraaetus	wahlbergi
73	Eagle-Owl	Spotted	Bubo	africanus
74	Egret	Great	Ardea	alba
75	Egret	Intermediate	Ardea	intermedia
76	Egret	Little	Egretta	garzetta
77	Egret	Western Cattle	Bubulcus	ibis
78	Eremomela	Burnt-necked	Eremomela	usticollis
79	Eremomela	Yellow-bellied	Eremomela	icteropygialis
80	Falcon	Amur	Falco	amurensis
81	Finch	Cut-throat	Amadina	fasciata
82	Finch	Red-headed	Amadina	erythrocephala
83	Finfoot	African	Podica	senegalensis
84	Firefinch	African	Lagonosticta	rubricata
85	Firefinch	Jameson's	Lagonosticta	rhodopareia
86	Firefinch	Red-billed	Lagonosticta	senegala
87	Fiscal	Southern	Lagonosticia	collaris
88	Flufftail	Red-chested	Sarothrura	rufa
89	Flycatcher	African Paradise	Terpsiphone	viridis
90	Flycatcher	Fairy	Stenostira	scita
91	Flycatcher	Fiscal	Melaenornis	silens
	-			
92	Flycatcher	Marico Pale	Melaenornis	mariquensis pallidus
	Flycatcher	Southern Black	Melaenornis	panindus
94	Flycatcher		Melaenornis	striata
	Flycatcher	Spotted	Muscicapa	
96	Francolin	Coqui	Peliperdix	coqui
97	Francolin	Crested	Dendroperdix Crinifor	sephaena
98	Go-away-bird	Grey	Crinifer	concolor
99	Goose	Egyptian	Alopochen	aegyptiaca
100	Goose	Spur-winged	Plectropterus	gambensis
101	Goshawk	Gabar	Micronisus	gabar
102	Goshawk	Pale Chanting	Melierax	canorus
103	Grassbird	Cape	Sphenoeacus	afer
104	Grebe	Little	Tachybaptus	ruficollis
105	Greenshank	Common	Tringa	nebularia
106	Guineafowl	Helmeted	Numida	meleagris
107	Gull	Grey-headed	Chroicocephalus	cirrocephalus
108	Hawk-eagle	African	Aquila	spilogaster
109	Helmetshrike	White-crested	Prionops	plumatus
110	Heron	Black-crowned Night	Nycticorax	nycticorax
111	Heron	Black-headed	Ardea	melanocephala
112	Heron	Goliath	Ardea	goliath
113	Heron	Grey	Ardea	cinerea

114	Heron	Purple	Ardea	nurnuroa
115	Heron		Ardeola	purpurea ralloides
		Squacco Striated	-	
116	Heron		Butorides	striata
117	Honey-buzzard	European	Pernis	apivorus
118	Honeybird	Brown-backed	Prodotiscus	regulus
119	Honeyguide	Greater	Indicator	indicator
120	Honeyguide	Lesser	Indicator	minor
121	Ноорое	African	<i>Upupa</i>	africana
122	Hornbill	African Grey	Lophoceros	nasutus
123	Hornbill	Southern Red-billed	Tockus	rufirostris
124	Hornbill	Southern Yellow-billed	Tockus	leucomelas
125	Ibis	African Sacred	Threskiornis	aethiopicus
126	Ibis	Glossy	Plegadis	falcinellus
127	Ibis	Hadada	Bostrychia	hagedash
128	Indigobird	Purple	Vidua	purpurascens
129	Indigobird	Village	Vidua	chalybeata
130	Jacana	African	Actophilornis	africanus
131	Kestrel	Lesser	Falco	naumanni
132	Kingfisher	African Pygmy	Ispidina	picta
133	Kingfisher	Brown-hooded	Halcyon	albiventris
134	Kingfisher	Giant	Megaceryle	maxima
135	Kingfisher	Half-collared	Alcedo	semitorquata
136	Kingfisher	Malachite	Corythornis	cristatus
137	Kingfisher	Pied	Ceryle	rudis
138	Kingfisher	Striped	Halcyon	chelicuti
139	Kingfisher	Woodland	Halcyon	senegalensis
140	Kite	Black-winged	Elanus	caeruleus
141	Kite	Yellow-billed	Milvus	
141				aegyptius
	Korhaan	Northern Black	Afrotis	afraoides
143	Korhaan	Red-crested	Lophotis	ruficrista
144	Lapwing	African Wattled	Vanellus	senegallus
145	Lapwing	Blacksmith	Vanellus	armatus
146	Lapwing	Crowned	Vanellus	coronatus
147	Lark	Dusky	Pinarocorys	nigricans
148	Lark	Flappet	Mirafra	rufocinnamomea
149	Lark	Rufous-naped	Mirafra	africana
150	Lark	Sabota	Calendulauda	sabota
151	Mannikin	Bronze	Spermestes	cucullata
152	Martin	Brown-throated	Riparia	paludicola
153	Masked-weaver	Lesser	Ploceus	intermedius
154	Moorhen	Common	Gallinula	chloropus
155	Mousebird	Red-faced	Urocolius	indicus
156	Mousebird	Speckled	Colius	striatus
157	Myna	Common	Acridotheres	tristis
158	Nightjar	Fiery-necked	Caprimulgus	pectoralis
159	Nightjar	Rufous-cheeked	Caprimulgus	rufigena
160	Oriole	Black-headed	Oriolus	larvatus
161	Ostrich	Common	Struthio	camelus
162	Owl	Marsh	Asio	capensis
163	Owl	Southern White-faced Scops	Ptilopsis	granti
164	Owl	Western Barn	Tyto	alba
165	Owlet	Pearl-spotted	Glaucidium	perlatum
166	Oxpecker	Red-billed	Buphagus	erythrorynchus
167	Painted-snipe	Greater	Rostratula	benghalensis
168	Pigeon	African Green	Treron	calvus
169	Pigeon	Speckled	Columba	guinea
170	Pipit	African	Anthus	
				cinnamomeus
171	Pipit	Buffy	Anthus	vaalensis
172	Pipit	Bushveld	Anthus	caffer

173	Pipit	Plain-backed	Anthus	leucophrys
173	Plover	Three-banded	Charadrius	tricollaris
175	Pochard	Southern	Netta	erythrophthalma
176	Pratincole	Black-winged	Glareola	nordmanni
177	Prinia	Black-chested	Prinia	flavicans
178	Prinia	Tawny-flanked	Prinia	subflava
178	Puffback	Black-backed	Dryoscopus	cubla
180	Pytilia		Pytilia Pytilia	melba
	Quelea	Green-winged	Quelea	
181	Robin-Chat	Red-billed		quelea caffra
182	Robin-Chat	Cape	Cossypha	
183		White-throated	Cossypha	humeralis
184	Roller	European	Coracias	garrulus
185	Roller	Lilac-breasted	Coracias	caudatus ·
186	Roller	Purple	Coracias	naevius
187	Sandpiper	Common	Actitis	hypoleucos
188	Sandpiper	Marsh	Tringa	stagnatilis
189	Sandpiper	Wood	Tringa	glareola
190	Scimitarbill	Common	Rhinopomastus	cyanomelas
191	Scrub Robin	Kalahari	Cercotrichas	paena
192	Scrub Robin	White-browed	Cercotrichas	leucophrys
193	Shoveler	Cape	Spatula	smithii
194	Shrike	Crimson-breasted	Laniarius	atrococcineus
195	Shrike	Lesser Grey	Lanius	minor
196	Shrike	Magpie	Urolestes	melanoleucus
197	Shrike	Red-backed	Lanius	collurio
198	Shrike	Southern White-crowned	Eurocephalus	anguitimens
199	Sparrow	Cape	Passer	melanurus
200	Sparrow	House	Passer	domesticus
201	Sparrow	Southern Grey-headed	Passer	diffusus
202	Sparrow-Weaver	White-browed	Plocepasser	mahali
203	Sparrowhawk	Little	Accipiter	minullus
204	Sparrowhawk	Ovambo	Accipiter	ovampensis
205	Spoonbill	African	Platalea	alba
206	Spurfowl	Natal	Pternistis	natalensis
207	Spurfowl	Swainson's	Pternistis	swainsonii
208	Starling	Burchell's	Lamprotornis	australis
209	Starling	Cape	Lamprotornis	nitens
210		Pied	Lamprotornis	bicolor
211	Starling	Red-winged	Onychognathus	morio
212		Violet-backed	Cinnyricinclus	leucogaster
213	Starling	Wattled	Creatophora	cinerea
214	Stilt	Black-winged	Himantopus	himantopus
215	Stint	Little	Calidris	minuta
216	Stonechat	African	Saxicola	1
	Stork			torquatus
217		Abdim's	Ciconia	abdimii
218	Stork	Black	Ciconia	nigra
219	Stork	Marabou	Leptoptilos	crumenifer
220	Stork	White	Ciconia	ciconia
221	Stork	Yellow-billed	Mycteria	ibis
222	Sunbird	Amethyst	Chalcomitra	amethystina
223	Sunbird	Greater Double-collared	Cinnyris	afer
224	Sunbird	Malachite	Nectarinia	famosa .
225	Sunbird	Marico	Cinnyris	mariquensis
226	Sunbird	White-bellied	Cinnyris	talatala
227	Swallow	Barn	Hirundo	rustica
228	Swallow	Greater Striped	Cecropis	cucullata
229	Swallow	Lesser Striped	Cecropis	abyssinica
230	Swallow	Pearl-breasted	Hirundo	dimidiata
231	Swallow	Red-breasted	Cecropis	semirufa

232	Swallow	South African Cliff	Petrochelidon	spilodera
233	Swallow	White-throated	Hirundo	albigularis
234	Swamphen	African	Porphyrio	madagascariensis
235	Swift	African Black	Apus	barbatus
236	Swift	African Palm	Cypsiurus	parvus
237	Swift	Little	Apus	affinis
238	Swift	White-rumped	Apus	caffer
239	Tchagra	Black-crowned	Tchagra	senegalus
240	Tchagra	Brown-crowned	Tchagra	australis
241	Teal	Red-billed	Anas	erythrorhyncha
242	Tern	White-winged	Chlidonias	leucopterus
243	Thick-knee	Spotted	Burhinus	capensis
244	Thrush	Groundscraper	Turdus	litsitsirupa
245	Thrush	Karoo	Turdus	smithi
246	Thrush	Kurrichane	Turdus	libonyana
247	Tinkerbird	Yellow-fronted	Pogoniulus	chrysoconus
248	Tit	Cape Penduline	Anthoscopus	minutus
249	Tit	Southern Black	Melaniparus	niger
250	Tit-Flycatcher	Grey	Myioparus	plumbeus
251	Wagtail	Cape	Motacilla	capensis
251	Warbler	Chestnut-vented	Curruca	subcoerulea
252	Warbler	Great Reed	Acrocephalus	arundinaceus
253	Warbler		Acrocephalus	
255	Warbler	Lesser Swamp Little Rush		gracilirostris baboecala
256	Warbler	Marsh	Bradypterus	palustris
257	Warbler		Acrocephalus	•
258	Warbler	Sedge Willow	Acrocephalus	schoenobaenus trochilus
259	Waxbill	Black-faced	Phylloscopus Brunhilda	
260	Waxbill	Blue		erythronotos
261	Waxbill	Common	Uraeginthus Estrilda	angolensis astrild
262	Waxbill	Violet-eared	Granatina	
263	Weaver	Cape	Ploceus	granatina
264	Weaver	Red-billed Buffalo	Bubalornis	capensis niger
265	Weaver	Red-headed	Anaplectes	rubriceps
266	Weaver	Scaly-feathered	Sporopipes	sguamifrons
267	Weaver	Southern Masked	Ploceus	velatus
268		Thick-billed	Amblyospiza	albifrons
			Ploceus	
269 270	Weaver Wheatear	Village Capped	Oenanthe	cucullatus pileata
271				1
272	White-eye Whydah	Cape Long-tailed Paradise	Zosterops Vidua	virens paradisaea
273	Whydah	Pin-tailed	Vidua	
274	Widowbird	Red-collared	Euplectes	macroura ardens
275	Widowbird	1	Euplectes	
276	Wood Hoopoe	White-winged	Phoeniculus	albonotatus
277	Woodpecker	Green Bearded	Chloropicus	purpureus
278	Woodpecker	Cardinal	Dendropicos	namaquus
				fuscescens
279	Woodpecker Wron Warbler	Golden-tailed Barrod	Campethera	abingoni Fassiolatus
280	Wren-Warbler	Barred	Calamonastes	Fasciolatus