

#### **Molecular Orbital Theory**

Reading: DeKock and Gray, Chap 4 (but not 4-8) Chap 5 (through 5-8)

Miessler and Tarr, Chap 5



### **Linear Combination of Atomic Orbitals (LCAO)**



$$\psi_k = c_1 \varphi_1 + c_2 \varphi_2 + \dots + c_n \varphi_n$$

- 1. n atomic orbitals  $\rightarrow$  n molecular orbitals.
- 2. Like atomic orbitals, MOs are ortho-normal

$$\int \psi_i \psi_j dv = 1...(i = j)$$

$$\int \psi_i \psi_j dv = 0...(i \neq j)$$





#### **Gerade and Ungerade MO symmetry**



$$\psi^{+} = \frac{1s_a + 1s_b}{\sqrt{2(1 + S_{ab})}} \Rightarrow \frac{1s_b + 1s_a}{\sqrt{2(1 + S_{ab})}} = \psi^{+}$$

a, b, exchange position, MO does not change, inversion Even parity, Gerade: German word for "even".

$$\psi^{-} = \frac{1s_a - 1s_b}{\sqrt{2(1 - S_{ab})}} \Rightarrow \frac{1s_b - 1s_a}{\sqrt{2(1 - S_{ab})}} = -\psi^{-}$$

a, b, exchange position, MO does change, no inversion odd parity, ungerade: German word for "odd".



## The energy of these two orbitals are obtained by applying Schrodinger Equation

#### **Orbital Interaction Diagram**

- 1. Always draw axis
- 2. Fill in electron using Aufbau principle









PES instruments consist of an X-ray or UV source, an energy analyzer for the photoelectrons, and an electron detector.









#### Koopman's Theorem

$$IE(n) = -E_n$$

The ionization energy of electron n is equal to the negative of its Orbital energy.



We can obtain orbital energies via PES!



























# Sab <0, antibonding interaction, E destabilized $\sigma^*$ $\pi^*$ $\delta^*$ Sab =0, nonbonding, no orbital interaction.

|                   | M                                           | O Theory: Bonding Types |                                                                                                                                                                                                      |
|-------------------|---------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | AO's                                        | Combinations            | Symmetry Label                                                                                                                                                                                       |
| o<br><b>bonds</b> | s and s                                     | ( + ( = ( )             | $\sigma_{\rm s}$ or $\sigma_{\rm g}$                                                                                                                                                                 |
|                   | s and p <sub>z</sub> $p_z \text{ and } p_z$ | + =                     | $\sigma_{\mathbf{s}^*}$ or $\sigma_{\mathbf{u}^*}$ $\sigma_{\mathbf{sp}}$ $\sigma_{\mathbf{sp}}^*$ $\sigma_{\mathbf{p}}$ or $\sigma_{\mathbf{g}}$ $\sigma_{\mathbf{p}^*}$ or $\sigma_{\mathbf{u}^*}$ |
| non-<br>bondir    |                                             |                         | overlap                                                                                                                                                                                              |
| $^\pi$ bonds      | $p_x$ and $p_x$                             | + \times = \times       | $\pi_{p}$ or $\pi_{u}$                                                                                                                                                                               |
|                   |                                             | 8 + 8 = 9 8             | $π_p^*$ or $π_g^*$                                                                                                                                                                                   |

