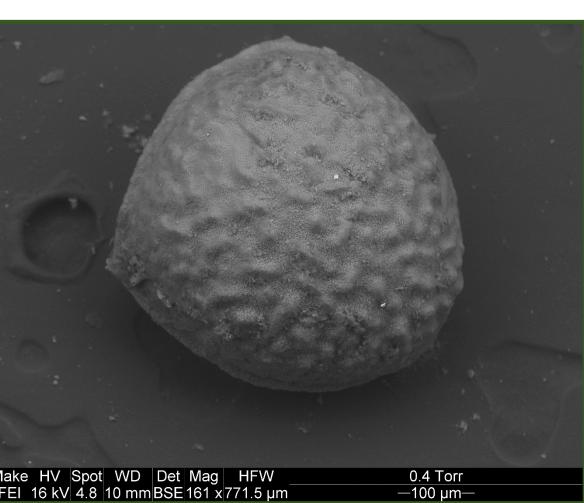

Allopolyploidy, or interspecific hybridization combined with chromosome doubling, is a common method of speciation among plants. In *Isoetes* (quillworts), around 50% of North American species are polyploids. Combined with the large number of putative hybrids, these suggest that for *Isoetes*, allopolyploidy is a significant speciation process.<sup>1</sup>



identification and taxonomic study is often difficult. Morphologically, the megaspore is the richest source of phylogenetically useful variation,<sup>2</sup> but DNA analysis provides a precise way to determine species identification and hybrid origins.<sup>1</sup> This study makes use of both to characterize a specimen of *Isoetes* graniticus, a recently described allotetraploid found on granite outcrops in Alabama.


1. Samples of the following species were collected across the Southeastern United States:

- I. graniticus



and compared with the spores of other sampled species described in the literature.

IBR3, LFY, pgiC) markers using standard PCR protocol. The products were treated with ExoSAP-IT and Sanger sequenced. All sequences were edited and analyzed in Geneious 9.1 (http://www.geneious.com, Kearse et al., 2012).<sup>3</sup>



| 260                  | 270   |
|----------------------|-------|
|                      |       |
| 251                  | 261   |
| AACCACCACC           | TCAGT |
| AACCACC              |       |
| AACCACC              |       |
| <b>TAACCACCCACCT</b> | TCAGT |
| ACCACC               |       |
| TAACCACC             |       |
| TAACCACCCACCT        |       |
| ACCACC               | TCAGT |

| oA-trnH  | psbK     | pgiC                                                                        | IBR3                                                                     |
|----------|----------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|
| ansition | 1 indel  | N/A                                                                         | 1 transition<br>9 transversions<br>2 indels                              |
| N/A      | 2 indels | 1 transitions<br>2 indels                                                   | 6 transitions<br>5 transversions<br>2 indels                             |
| ansition | N/A      | 4 transitions<br>2 indels                                                   | <ul><li>12 transitions</li><li>7 transversions</li><li>1 indel</li></ul> |
| N/A      | 1 indel  | <ul><li>27 transitions</li><li>31 transversions</li><li>15 indels</li></ul> | 51 transitions<br>110 transversions<br>49 indels                         |

DNA analysis suggests that *I. melanopoda* and *I. silvatica* are prime candidates for *I. graniticus* parentage, while *I. piedmontana* and *I. butleri*, though they inhabit the same region of the US, are unlikely to have any direct relation to *I. graniticus*. Work is underway to confirm this by sequencing the highly variable LFY region. This will be combined with next-gen chloroplast sequencing to determine the chloroplast donor species.

<sup>1</sup>Hoot, Sarah B., Nancy S. Napier, and W. Carl Taylor. (2004). "Revealing unknown or extinct lineages within Isoëtes (Isoëtaceae) using DNA sequences from hybrids." American Journal of Botany 91(6), 899-904.

<sup>2</sup>Hickey, R. James. (1986). "Isoëtes Megaspore Surface Morphology: Nomenclature, Variation, and Systematic Importance." American Fern *Journal* 76(1), 1-16.

<sup>3</sup>Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentijes, P., & Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649.

<sup>4</sup>Brunton, Daniel F. (2015). "Key to the Quillworts (Isoëtes: Isoëtaceae) of the Southeastern United States." American Fern Journal 105(2), 86-100.

Special thanks to: Virginia Power, Gene Hunt, and Liz Cottrell for organizing the NHRE program, Scott Whittaker for his assistance with the SEM, and the Smithsonian NMNH Laboratory of Analytical Biology.

## Discussion

Hybrids and allopolyploids often have an intermediate spore morphology when compared to their parent species.<sup>1</sup> Comparison of megaspore morphology of *graniticus* to that of sampled species of the Southeastern United States suggests descent from *I. butleri* is unlikely because of the lack of granularity.<sup>4</sup> Future work in this area will involve measuring sample megaspores as a test for polyploidy, since polyploids tend to have larger megaspores. This will be confirmed with a root tip squash.

# References & Acknowledgements

<sup>A</sup>Smithsonian National Museum of Natural History, Department of Botany. <sup>B</sup>Mount St. Mary's University <sup>c</sup>Old Dominion University



