## Deciphering Evolutionary Ancestry in African Tree Frogs: Genus Leptopelis

Kyle E. Jaynes ${ }^{1,2}$ and Rayna C. Bell ${ }^{1}$
${ }^{1}$ Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution
${ }^{2}$ Department of Biology and Environmental Sciences, Adrian College


## Introduction

The genus Leptopelis is a group of African Tree Frogs that have poorly understood taxonomic history, with 53 currently accepted species (Frost 2017). These species are closely related and difficult to distinguish by morphological features alone, often times being misidentified in the field. Leptopelis palmatus is an endemic specie to Príncipe Island, one of four islands in the Gulf of Guinea archipelago (Jones 1994). Reconstructing its colonization history and this archipelago.
L. macrotis, L. millsoni, and $L$. rufus form a species complex that occurs across West and Central Africa, as well as on Bioko Island, a continental land-bridge system. These species have been large size and proximity to Principe (Schiotz 1999). In addition, their distribution across continental Africa and Bioko Island make them an ideal study system for investigating speciation across a range of environments. In this project, we investigate questions of phylogeography and ancestral history in order to learn more about the evolutionary relationships amongst the organisms in this island system.

Variation in Leptopelis Species Complex


Methods
We collected 16 s mitochondrial gene sequences for 33 species of Leptopelis and 146 individuals for our four target species. To determine whether $L$. palmatus is closely related to the $L$. rufus/ $L$.
millsoni $/ L$. macrotis complex we generated a phylogeny using BEAST v 1.8.4 including one representative sequence for each species, with Astylosternus as an out-group. We assessed species, with Astylosternus as an out-group. We assessed
phylogeographic structure across the $L$. rufus/ $L$ millsoni/ phylogeographic structure across the $L$. rufus/ $L$. millsoni $/ L$. macroti
complex with more than 100 specimens from 19 localities amongst the three species. We took 14 standard morphological measurements on more than 30 specimens to evaluate field identifications and search for more reliable morphological characters for species identification.


## Results

In figure 1 (a), Leptopelis palmatus is clearly separated from the $L$. macrotis/L. millsoni/ $L$. rufus complex with strong support ( $>95 \% \mathrm{CI}$ ). There is not strong support for anything beyond the divergence of these groups, although it appears that there is a closer relationship with species of the Guinean-Congolian distribution.

In figure 2 (a), we see clear phylogeographic structure across the species complex with support for distinct lineages of $L$ macrotis in West Africa and L. millsoni in Central Africa, distinct lineages of L. millsoni on Bioko island, and pronounced phylogeographic structure in $L$. rufus across Cameroon.



West and Central African Leptopelis species (L. rufus, L. macrotis, and $L$. millsoni) were previously thought to be the closest ancestors of . pail According to or most recent data along with more istensive ampling from our collaboratoss, we find that $L$ palmatus is not losely related to any of the species mentioned above Our results indicate that $L$ palmatus is within a group of Central African species hat are smaller in body size, suggesting that there may be a convergence in gigantism within this genus.
Moving forward, we are going to (1) increase our species and genetic sampling to determine which species of Leptopelis $L$. palmatus is closely related to, and (2) collect ddRADseq data for the L. macrotis/L. millsoni/ L. rufus complex and look at more specimens to assess the morphological variation in these populations. These data will provide greater insight into the biogeography of land bridge and oceanic islands in the Gulf of Guinea archipelago and diversification in the Guineo-Congolian forests. In addition, we hope oo find additional morphological characteristics to improve field identifications in this challenging species complex

## Acknowledgments




## References




