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Climate change



As ectotherms, they are strongly influenced by climatic conditions…

- activity patterns (daily, seasonal, annual)
- foraging & breeding
- metabolism, growth rate
- embryonic development

But they are poorly studied in the context of climate change

Reptiles are suitable indicators

climate sensitive 
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- series of adaptations to cold climates
- viviparity (rare)
- changes in reproductive cycles (e.g., biennial)(rare)

- embryonic development is very sensitive to climate
-e.g. temperature-dependent sex determination (TSD)

Why study Tasmanian lizards?



Climate change
Climatic envelope

Distribution



Climate change
Climatic envelope

Distribution

What will happen if 
they can track their 

envelope?
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Mean difference 

current-2050
Mean difference

current-2085

• Used Climate Futures for Tasmania predictions of climate

• very fine scale predictions (14km grid cells) – unique!

• Tasmania will warm up but not uniformly.

Distribution modelling
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specialist species: adapted to very cold/extreme conditions 
Niveoscincus microlepidotus

Niveoscincus greeni

Niveoscincus orocryptus

generalist species: live in milder climates
Niveoscincus ocellatus

Niveoscincus metallicus

Distribution modelling



2050 2085current

Distribution modelling

N. orocryptus

N. greeni

N.microlepidotus

Specialist species 
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1995 2050 2085

N. ocellatus

N. metallicus

Generalist species 

Distribution modelling
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Our predictions are in concordance with predictions for reptiles

Sinervo et al. 2010

Distribution modelling
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Climate change
Climatic envelope

Distribution

BUT...



• Spotted skink, Niveoscincus ocellatus

• viviparous:

• embryonic development is very sensitive to climate

• widespread in Tasmania

How did it colonize new area?
How did it adjust/adapt?
Could this allow adjusting to CC

Our model system



long-term 
ecological study

(10+ year field data)
cold

alpine sites
warm

coastal 
sites

experimental 
approaches

theoretical 
approaches

climate variation

Our work

Presenter
Presentation Notes




●
●

Long-term field dataset
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warm coastal site
(50 year average)

Cold alpine site
(50 year average)

- Each year we collect ~ 100 females/site
- caught at end of pregnancy
- offspring measured, sexed
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warm years = early births 
Embryonic developmental speed is a temperature-dependent process
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warm years = larger offspring
Nutrient transfer/metabolism are temperature-dependent processes
>>> Females produce good quality offspring at both sites - How?

Long-term field study
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beginning of 
gestation

Adjusting/adapting

cold site

warm site

cold treatment: 4h basking
warm treatment: 10h basking



Females do behaviourally compensate: bask more/ maintain higher temp in cold.

This behavioural response has lead to local adaptation in maternal behaviour

warm population cold population

Adjusting/adapting



Maternal basking behaviour is not the only adaptation...

In reptiles there are two types of sex determination mechanism:

• Genotypic sex determination (GSD): 
• sex chromosomes 
• 1:1 sex ratio

•Temperature sex determination (TSD): 
• plastic response to temperature

Sex determination
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Warm coastal site
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• warm site: link between temperature and sex (TSD)
• cold site: no link between temperature and sex – balanced sex ratio (GSD)

>>> What triggered the evolution of alternate sex determining mechanisms?
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Low variability 
in climate
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More daughters early 
in the season

More males late in 
the season

sex ratio is linked to birth date at the warm site...

Mean annual birth dates
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Why did TSD evolve?
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Why did TSD evolve?

early born offspring become larger adults
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Reproductive output is strongly size-dependent in females…
…but not in males

Female size (mm)
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Concluding remarks
• Some reptiles are predicted to go extinct as their climatic envelopes 
disappear.

• But the spotted skink shows potential for adaptations to new climatic 
conditions:  basking behaviour and sex determination mechanisms

• There is an evolutionary potential... but at what speed did evolution 
occur? Will evolution be quick enough with this rapid change in 
climate?

• If not then we will observe changes:
• in phenology (e.g. dob)
• in physiology (e.g. offspring mass, sex ratio) 
• in distribution (extinction?)



30

Thank you



Uller et al. Evolution, in review

Why GSD in the mountain populations?
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Why GSD in the mountain populations?



Annual climate

1995
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TSD
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TSD

TSD-GSD



0.0

0.5

1.0

1.5

2.0

2.5

-2
-1

0
1

2

-2-101

W

Bi
rth

 da
te

Body mass

Lowland 2000

0.0

0.5

1.0

1.5

2.0

2.5

-2
-1

0
1

2
3

-4-3-2-1012

W

Bi
rth

 da
te

Body mass

Lowland 2001

0.0

0.5

1.0

1.5

2.0

2.5

-2
-1

0
1

2

-2-1012

W

Bi
rth

 da
te

Body mass

Lowland 2007

0.0

0.5

1.0

1.5

2.0

2.5

-2
-1

0
1

2

-4-3-2-1012

W

Bi
rth

 d
at

e

Body mass

Highland 2000

0.0

0.5

1.0

1.5

2.0

2.5

-2
-1

0
1

2

-5-4-3-2-1012

W

Bi
rth

 d
at

e

Body mass

Highland 2001

0.0

0.5

1.0

1.5

2.0

2.5

-2
-1

0
1

2
3
4

-5-4-3-2-1012

W

Bi
rth

 d
at

e

Body mass

Highland 2007


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

