

Complex Genetics and Disease Mechanisms in a Turkish Ataxia Cohort

Gülşah Şimşir MSc Thesis Defense August 2nd, 2021

SUNA VE İNAN KIRAÇ VAKFI

- Introduction
 - The Cerebellum
 - Ataxias
- Study Cohort
- Methods
- Results
- Discussion
- Conclusion

The Cerebellum

- Over 50% of the total number of neurons in the brain
- The cerebellum is involved in the following functions:
 - Maintenance of balance and posture
 - Coordination of voluntary movements
 - Motor learning
 - Cognitive functions
- Has 2 major parts:
 - Cerebellar deep nuclei: sole output structure of the cerebellum
 - Cerebellar cortex: has all the neurons in the cerebellum

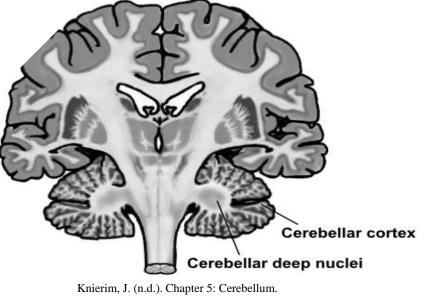


Figure 1. Major parts of the cerebellum

NDA

Introduction UNIVERSITY

4/25

NDAL

Ataxias: "a taxis"

KOC

- Heterogenous group of neurodegenerative diseases (NDD)
- Infectious and immune mediated to • degenerative
- Genetic •
- Overlapping with other NDD especially • hereditary spastic paraplegias

Blood parameters	Cerebellar disorder				
Reduced levels of ATM	Ataxia-telangiectasia				
Reduced levels of vitamin E	AVED				
Increased levels of cholestanol	CTX				
Increased levels of oxysterols	Niemmann-pick type C				
Increased levels of lactate	Mitochondrial ataxias				
Table 1. Blood studies in cerebellar ataxias					

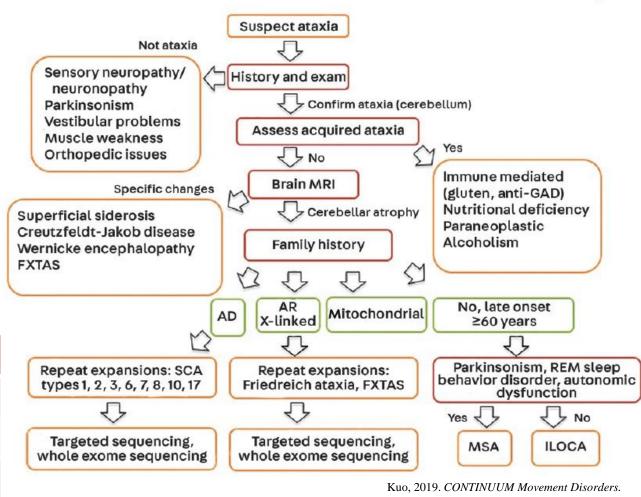


Figure 2. The diagnostic workflow for cerebellar ataxia

Introduction UNIVERSITY

Dominant Ataxias (Spinocerebellar Ataxia-SCA)

- Prevalence: 2-4/100.000 •
- 48 types to date •

KOC

- Repeat expansion vs non-repeat mutations ۲
- Repeat expansion mutations cause anticipation ۲
- Polyglutamine accumulation, RNA toxic gain of ۲ function and protein function alteration

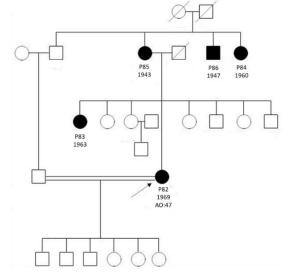


Figure 3. A sample dominant pedigree

Disease	Gene	Average AO	Clinical phenotype				
		(decade)					
Polygluta	mine expansio	าร					
SCA1	ATXN1	3-4	Spasticity, ophthalmoplegia, bulbar and sensory symptoms				
SCA2	ATXN2	3 – 4	Slow saccades and sensory symptoms				
SCA3	ATXN3	4	Spasticity, basal ganglia symptoms, sensory symptoms, amyotrophy including facial atrophy, and fasciculations				
SCA6	CACNA1A	5-6	Pure cerebellar ataxia and downbeat nystagmus				
SCA7	ATXN7	3 – 4	Visual loss, ophthalmoplegia, and spasticity				
SCA17	TBP	4	Spasticity, basal ganglia symptoms, psychiatric disord and dementia				
DRPLA	ATN1	4	chorea, seizures, dementia, myoclonus; often confused				
			with Huntington disease				
Non-codir	ng expansions						
SCA8	ATXN8	4	Spasticity, sensory symptoms, cognitive and mood changes				
SCA10	ATXN10	4	Epilepsy				
SCA12	PPP2R2B	4	Tremor				
SCA31	BEAN1	5-6	Pure cerebellar ataxia				
SCA36	NOP56	5	Amyotrophy and hearing loss				
Conventio	onal SCAs						
SCA5	SPTBN2	3-4	Pure cerebellar ataxia				
SCA11	TTBK2	3	Mild, remain ambulatory				
SCA13	KCNC3	Childhood or adulthood	Intellectual disability				
SCA14	PRKCG	3-4	Myoclonus				
SCA15/16	ITPR1	4	Pure cerebellar ataxia				
SCA19/22	KCND3	4	Slowly progressive, rare cognitive impairment, myoclonus, hyperreflexia				
SCA27	FGF14	2	Early-onset tremor; dyskinesia, cognitive deficits				
SCA28	AFG3L2	2	Spasticity, ophthalmoplegia, and ptosis				
SCA35	TGM6	4	Hyperreflexia, Babinski responses, spasmodic torticollis				

Table 2. Autosomal Dominant Cerebellar Ataxias.

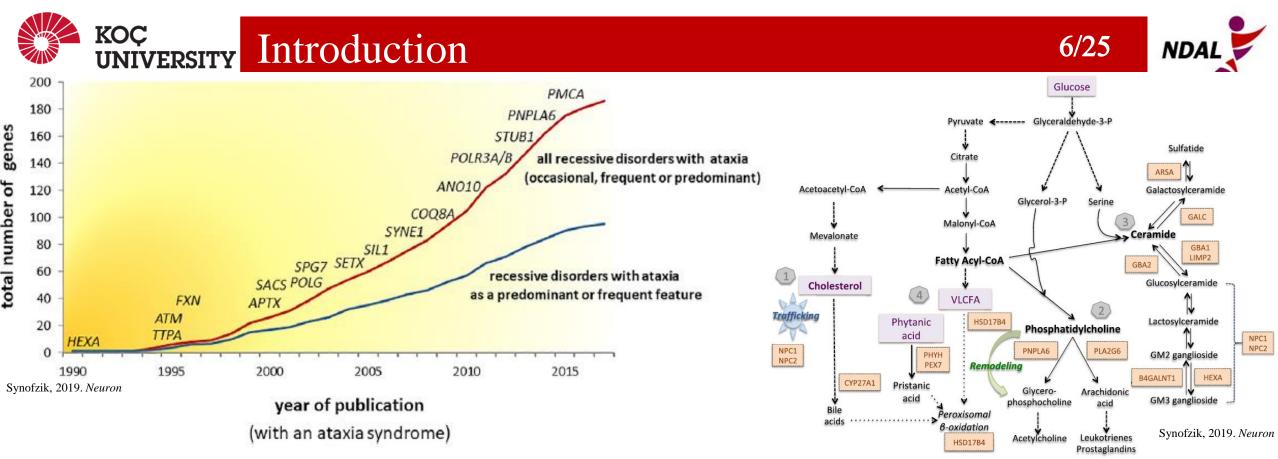


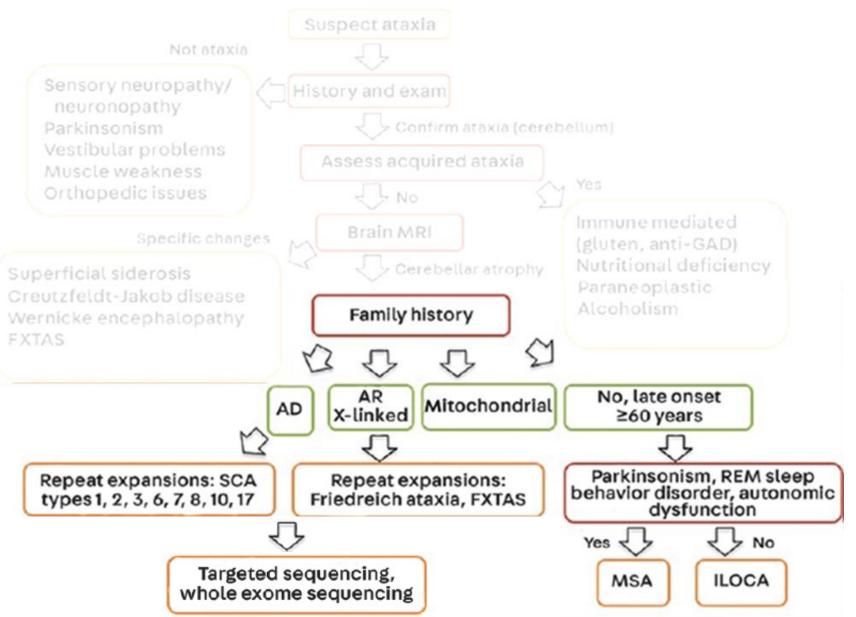
Figure 4. Rapidly increasing numbers of ARCA genes

Figure 5. ARCA genes involved in complex lipid metabolism

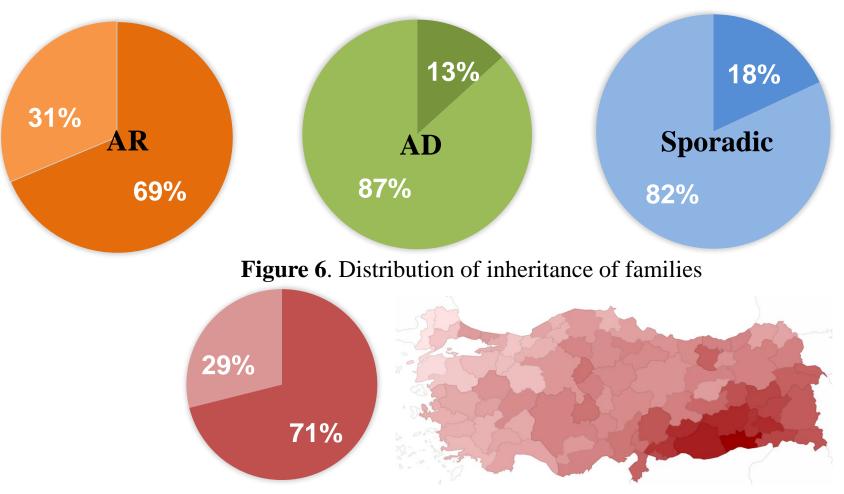
Some SCAR genes take role in certain pathways or cell clusters. For example:

- 1. DNA Damage Repair: ATM, SETX, APTX, PNKP
- 2. Mitochondrial Homeostasis (including mtDNA replication and repair): Frataxin, POLG, TWNK/C10ORF2, SPG7
- 3. Phospholipid Metabolism: PNPLA6, PLA2G6, ABHD12, DDHD1, DDHD2, CYP2U1
- 4. Sphingolipid Metabolism: FA2H, GBA2, GALC, HEXA, ASA, PSAP, GLB1
- 5. Autophagy-Lysosomal Activity: Niemann–Pick disease types C1 and C2, ATP13A2, SPG15, SPG11
- 6. Cilial Disorders: Joubert syndrome and related conditions

Investigating the complex genetic structure of an ataxia cohort by using


- whole exome sequencing
- bioinformatic analysis and tools

Methodology UNIVERSITY


KOÇ

Kuo, 2019. CONTINUUM Movement Disorders.

- 83 index patients with complex ataxia phenotype
- 59 out of 83 patients have consanguinity in family

NDAL

Figure 7. Distribution of consanguinity rate in the cohort and in Turkey

Whole Exome Sequencing (WES)

- Sequencing the protein-coding regions of the genome.
- 180.000 exons
- Covers 95% of the exons
- More than 150 genes were discovered by WES
- Cannot identify large structural variations and repeats
- Validated by Sanger seq and restriction enzyme digestion

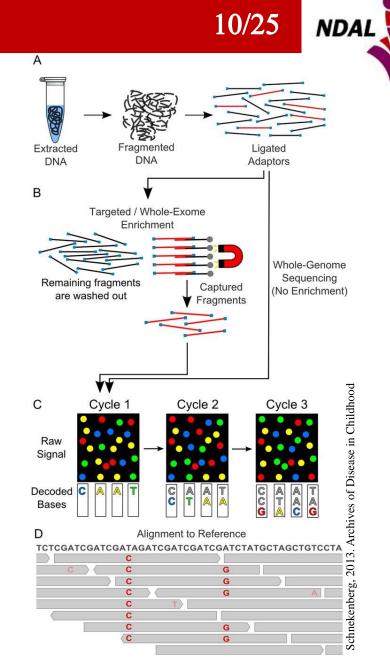
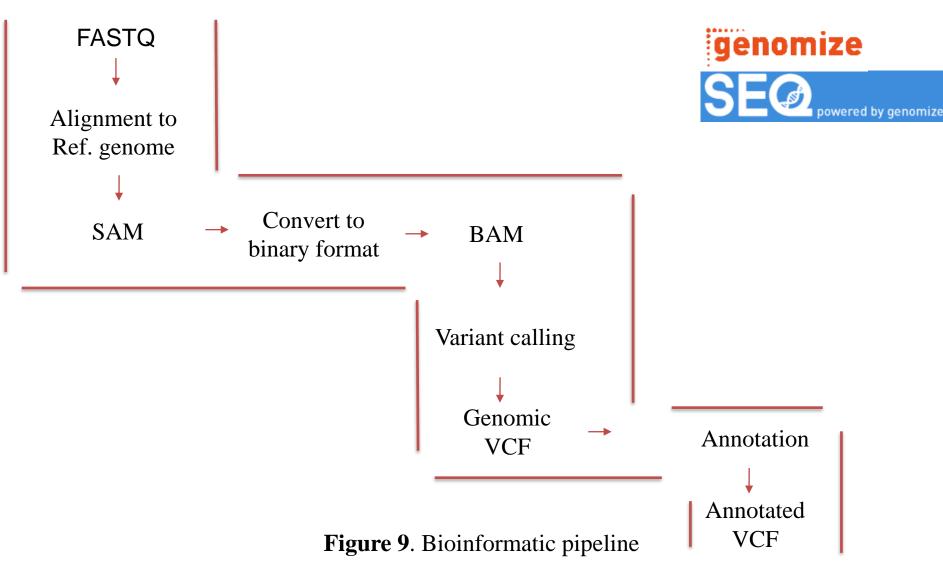



Figure 8. Workflow of WES

Bioinformatic Pipeline I

11/25

NDAL

Bioinformatic Pipeline II

- Variant Prioritization
 - Mode of Inheritance
 - Variant Filtration: MAF< 1%
- MAF: 1000 Genomes, ExAc, gnomAD
 - In-house control
- Variant Classification: Pathogenicity tools
 - DANN, GERP, SIFT, MutationTaster, REVEL, MetalR, CADD
- Clinical Information: OMIM, ClinVar
- Pathogenic > Likely Pathogenic > Variant of Uncertain Significance (VUS) > Likely Benign > Benign

12/25

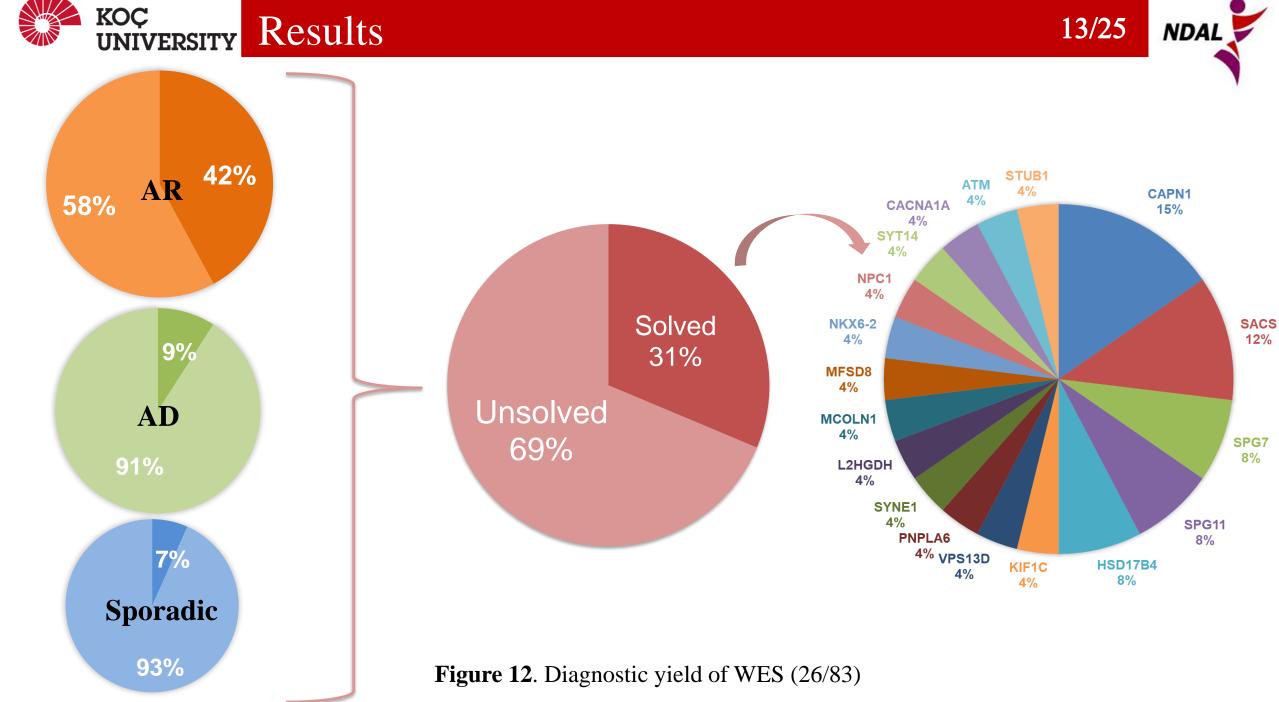


Table 3. Online prediction tool scores and frequencies of the variants.

Chr.	Gene	Variant	ACMG	CADD	DANN	GERP	Mutation	REVEL	MetalR	SIFT	gnom	Fam.
Location			(Varsome)			++	Taster				AD	Seg.
6:152 771784	SYNE1	p.Asp1124Gly	VUS: PM2, PP3	25.1	0.99	5.78	Disease causing		D	D	-	+
19:76 05926	PNPLA6	p.Arg314Trp	LP: PM1, PM2, PP5, PP2, PP3	29.1	0.99	5.38	Disease causing		Т	D	-	+
5:118 813112	HSD17B4	p.Asp142Gly	LP: PP3, PM1, PM2	32	0.99	6.02	Disease causing	Pat	D	D	-	+
4:128 863274	MFSD8	p.Thr160Asn	LP: PM2, PM5, PP2, PP3	24.6	0.99	4.86	Disease causing		Т	D	-	+
18:21 136368	NPC1	p.Arg389Cys	LP: PM2, PP5, PP2, PP3	30	0.99	5.97	Disease causing		D	D	0.000 003981	n.a

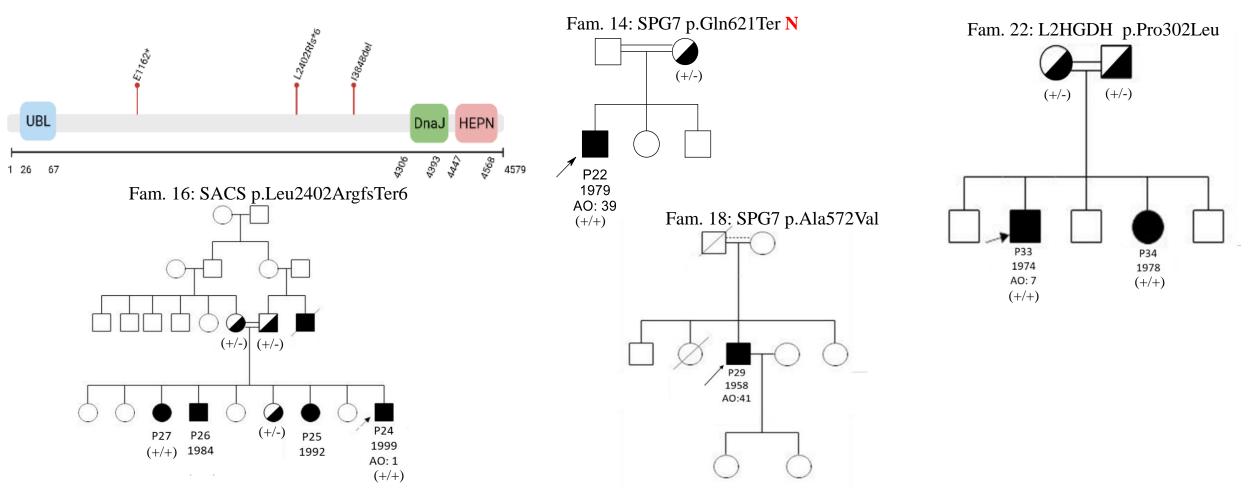
Pat: Pathogenic, LP: Likely pathogenic, VUS: Variant of uncertain significance, D: Damaging, T: Tolerated, B: Benign, n.a: not available

NDAL

Table 4. Disease mechanisms of certain genes

Mechanism	Gene		
	SACS		
Mitochondrial Metabolism	SPG7		
	L2HGDH		
DNA Repair Pathway	ATM		
Autophagy and Lysosomal Activity	SPG11		
	HSD17B4		
Lipid Metabolism	PNPLA6		
	NPC1		
Proteolysis of substrates involved in cytoskeletal	CAPN1		
remodeling and signal transduction			
Autophagy and Mitochondrial Clearance	VPS13D		
Membrane trafficking in synaptic transmission	SYT14		

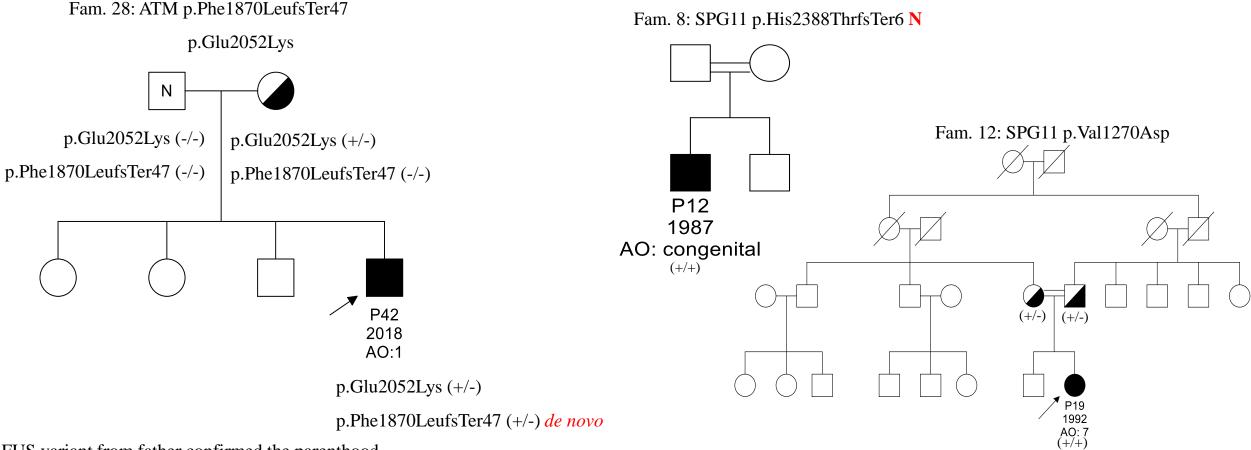
Genes in Mitochondrial Metabolism:


• SACS: intermediate filament regulator

• SPG7: mitochondrial protein control

• L2HGDH: energy production

16/25


NDAL

Genes in DNA Repair Pathway:

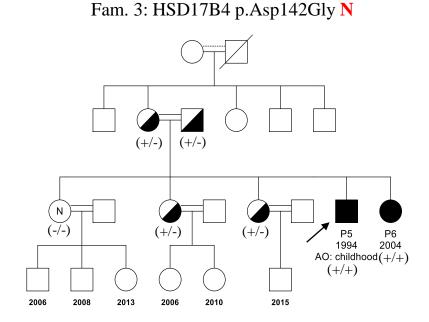
• ATM: double-strand break repair mechanism

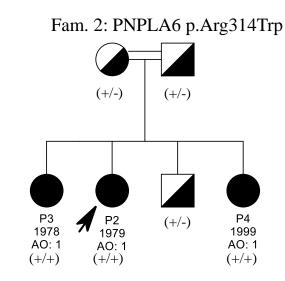
17/25

Genes in Autophagy and Lysosomal Activity

SPG11: autophagic lysosome reformation

NDAL

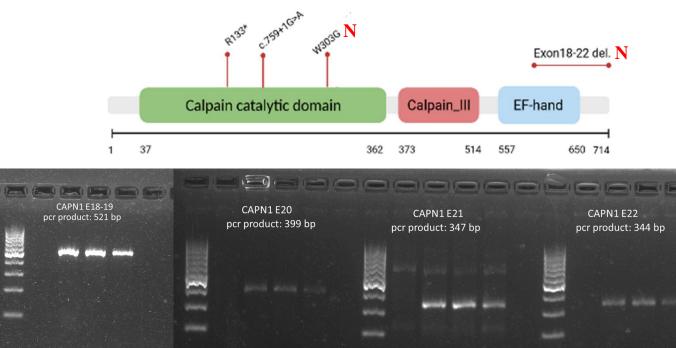

FUS variant from father confirmed the parenthood



Genes in Lipid Metabolism:

- HSD17B4: β-oxidation of VLCFA
- PNPLA6: de-esterification of phosphatidylcholine

• NPC1: trafficking of intracellular cholesterol


Fam. 6: NPC1 p.Arg389Cys P9 2003 AO: 9 (+/+)

Genes with Different Mechanisms:

• CAPN1: proteolysis of substrates involved in cytoskeletal remodeling and signal transduction

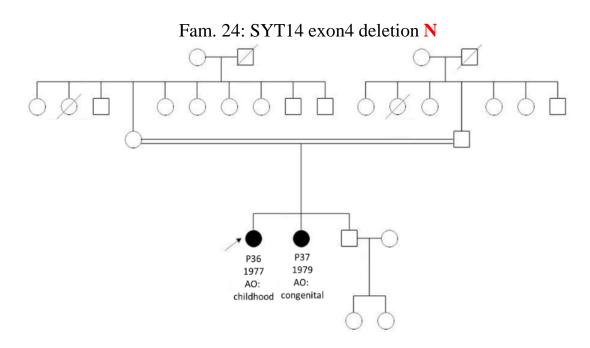
• VPS13D: autophagy and mitochondrial clearance

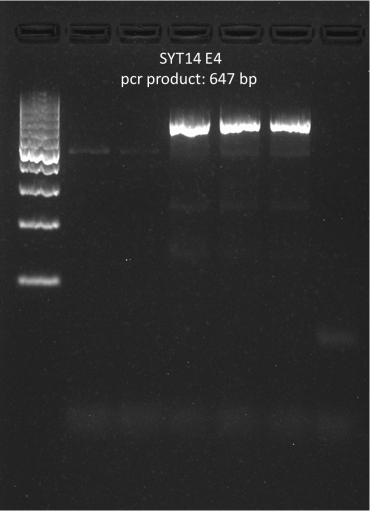
Fam. 7: VPS13D p.Ala4210Val

P10 1962

AO: 49 (+/+)

P11 1958

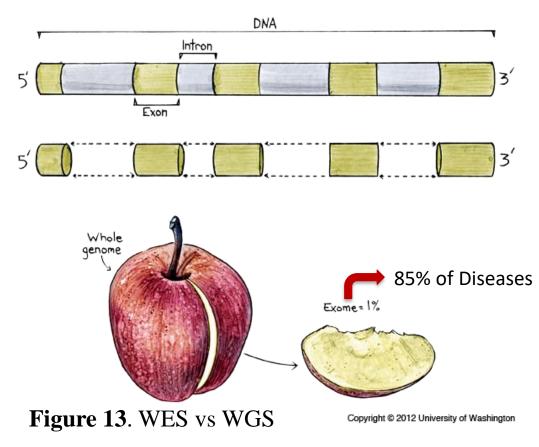

AO: 57


19/25

NDAL

• SYT14: mediating membrane trafficking in synaptic transmission

20/25


NDAL

21/25 NDA

WES: Advantages

- Identifies variants across a wide range of applications
- Comprehensive coverage of coding regions
- Cost-effective alternative to whole-genome sequencing
- Less data, faster analysis

• WES: Shortcomings why 69% unsolved?

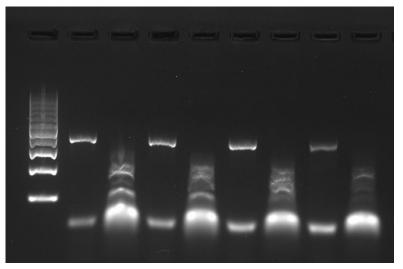
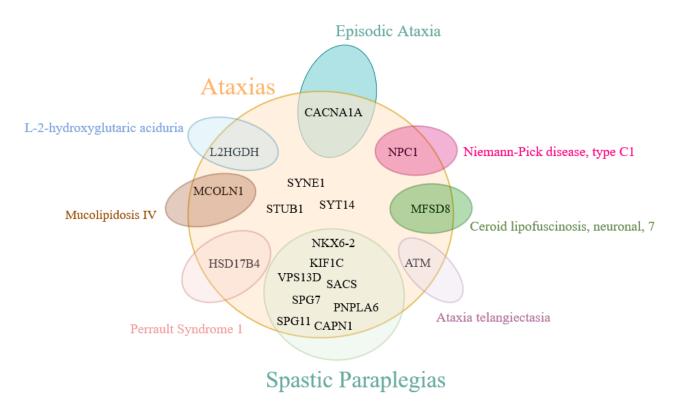



Figure 15. Restriction enzyme digestion gel image

- How to solve remaining patients?
 - Variants of Uncertain Significance (VUS)
 - More detailed clinical info
 - Oligogenic inheritance
 - Epigenetics
 - Environmental factors
 - Novel genes

- Molecular basis of ataxias in Turkey
- Precise Diagnosis
- Novel genotype-phenotype associations
- Different mechanisms
- Possible treatments

NDAL

Figure 14. The genes identified in the cohort

- Causative variants were found in 26/83 probands, corresponding to a diagnostic yield of 31%
- High heterogeneity and complexity
- Genetic overlap among different NDD

RESEARCH ARTICLE

The Complex Genetic Landscape of Hereditary Ataxias in Turkey and Implications in Clinical Practice

Atay Vural, MD, PhD,¹ Gülşah Şimşir, BSc,² Şeyma Tekgül, BSc,² Cemile Koçoğlu, MSc,³ Fulya Akçimen, MSc,³ Ese Kortol, DhD,³ Nariji E, Son, MSc,³ Sung, Johurt, DhD,³ Örgör, MSc,³ Naron, Songr, DhD,³ Tužon, Cöl, MSc,²

Neurological Sciences https://doi.org/10.1007/s10072-020-04869-6

BRIEF COMMUNICATION

Check for updates

A novel PNPLA6 mutation in a Turkish family with intractable Holmes tremor and spastic ataxia

Ahmed S. Emekli¹ · Bedia Samanci¹ · Gülşah Şimşir² · Hasmet A. Hanagasi¹ · Hakan Gürvit¹ · Başar Bilgiç¹ · A. Nazlı Başak²

Molecular Complexity of Spastic Ataxias and Hereditary Spastic Paraplegias in Turkey

G. Şimşir¹, Ş. Tekgül¹, H. Apaydın², S. Ertan³, A. N. Başak¹

¹Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, Koç University School of Medicine-KUTTAM, Istanbul, Turkey ²Department of Neurology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey ³Department of Neurology, Koç University School of Medicine, Istanbul, Turkey

ESHG	ESHG 2020.2 - LIVE IN YOUR LIVING ROOM. Virtual Conference June 6 - 9, 2020	

neurogenetics https://doi.org/10.1007/s10048-019-00595-0

ORIGINAL ARTICLE

Cerebellar cognitive-affective syndrome preceding ataxia associated with complex extrapyramidal features in a Turkish SCA48 family

R. Palvadeau¹ • Z. E. Kaya-Güleç² • G. Şimşir¹ • A. Vural³ • Ö. Öztop-Çakmak³ • G. Genç⁴ • M. S. Aygün⁵ • O. Falay⁶ • A. Nazlı Başak¹ • S. Ertan³

Thank You!

