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Executive summary 

The work described in this report is part of Project 2.3 ‘Weed invasion, fire and ecosystem 

failure: catchment scale scenario modelling to improve planning and management’ of the 

Northern Australia Environmental Resources Hub of the Australian Government’s National 

Environmental Science Program. A core objective of this project was to work in consultation 

with the Department of Agriculture, Water and the Environment to develop, if possible, a 

remote sensing approach at a scale, reliability and cost suitable for mapping and monitoring 

gamba grass to meet the requirements of the Carbon Credits (Carbon Farming Initiative—

Savanna Fire Management—Emissions Avoidance) Methodology Determination 2018. 

This report explores a range of current remote sensing approaches to mapping and 

monitoring gamba grass presence and density for their suitability for monitoring in the 

Emissions Reduction Fund (ERF) methodologies. It begins with an evaluation of current 

remote sensing missions and identifies important developments with relevance to gamba 

grass and other high-biomass grass mapping for the ERF. After considering the scale, 

reliability and cost of the remote sensing methods, a multi-scaled remote sensing approach 

that integrates optical and RADAR sensing was suggested as being the most likely to 

achieve the mapping and monitoring required for the ERF. Although a large range of sensors 

and satellites exist, each with their own strengths and weaknesses, our recommendation is 

that research should focus on the fusion of Sentinel-1 (synthetic aperture radar) and 

Sentinel-2 (multi-spectral) data streams from the European Space Agency (ESA). Used in 

conjunction, these constellations provided imagery at high spatial (10–20 m) and temporal 

(6–10 days) resolutions, facilitating mapping of both structural and spectral vegetation 

properties through different seasons. Both data streams are freely available under the 

Copernicus Programme and are readily accessible through multiple distributed storage and 

cloud-based processing platforms. 

The suggested approach was tested by mapping the distribution of gamba grass in the 

Batchelor/Litchfield/Adelaide River region of the Northern Territory. A two-tiered strategy was 

adopted using a combination of i) commercial, high-resolution, 16-band, multi-spectral 

WorldView-3 imagery for model development at local scales (100–200 km2), and ii) the fusion 

of Sentinel-1/-2 time-series imagery for mapping at larger region scales (5,000 km2) with 

machine learning. The local-scale WorldView-3 model, trained with on-ground field data, 

produced excellent results and returned a balanced accuracy of 91% for gamba grass 

occurrence at the 0.3 m spatial resolution. These high-resolution outputs were aggregated to 

20 m spatial resolution and used as calibration/validation data to teach another machine-

learning model (gradient-boosted regression) based on Sentinel-1 and Sentinel-2 data. The 

regional model also performed well, returning a balanced accuracy of 82%. Validation of 

model outputs across the broader region, which encompasses multiple land uses, showed 

that gamba grass presence was underestimated when it occurred beneath the canopy of 

riparian trees, and was overestimated in some instances along the boundaries of wetlands, 

where confusion with native wetland grass occurred. The presence of isolated gamba grass 

plants (1 m2) was detectable from WorldView-3, but patches needed to be in the order of 10–

20 m2 before detection from Sentinel-1/-2 was possible. Future modelling efforts could refine 

these results by making greater use of temporal signatures, coupled with deep learning 

approaches that can better account for time-series trends (e.g. recurrent neural networks). In 

coming years, the launch of multiple spaceborne hyperspectral missions (NASA’s SBG, 

ESA’s CHIME and the German Aerospace Centre’s EnMAP) will facilitate greater delineation 

among similarly structured species. 

https://www.nespnorthern.edu.au/projects/nesp/fire-weeds-top-end/
https://www.nespnorthern.edu.au/projects/nesp/fire-weeds-top-end/
https://www.nespnorthern.edu.au/projects/nesp/fire-weeds-top-end/
https://www.nespnorthern.edu.au/projects/nesp/fire-weeds-top-end/
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1. Requirements for the mapping and monitoring of gamba 

grass in the Emissions Reduction Fund 

Regions across northern Australia are under increasing threat from a range of high-biomass 

invasive grasses (Setterfield et al. 2018). These species result in ecosystem degradation, 

habitat loss and species decline in the ecosystems they invade (Rossiter-Rachor et al. 2009, 

Brooks et al. 2010), primarily due to their impact on fire, and have been declared as a Key 

Threatening Process under the Environment Protection and Biodiversity Conservation Act 

1999 (Setterfield et al. 2018). Of these serious invasive weeds, gamba grass (Andropogon 

gayanus) is of particular concern. Gamba grass outcompetes native grass species, replacing 

the understorey with dense, tall monocultures up to 4 m high (Ens et al. 2015). The 

increased above-ground biomass (fuel loads) in invaded ecosystems result in fire intensities 

up to eight times greater than in native savannas (Rossiter et al. 2003, Setterfield et al. 

2010), leading to substantial tree decline in invaded savannas that are repeatedly burnt 

(Ferdinands et al. 2006). Gamba grass invasion and gamba grass-fuelled fires pose a 

significant risk to carbon stocks and fluxes (Setterfield et al. 2008), and carbon abatement 

projects across northern Australia (Adams and Setterfield 2013).  

The revised Carbon Farming Initiative—Savanna Fire Management—Emissions Avoidance 

Methodology Determination 2018 includes formal requirements for savanna emissions 

avoidance project areas to exclude areas that contain a relevant weed species (14.2(b) (i)), 

defined in the accompanying technical guidance document as a weed species which 

materially affects fire dynamics. The only species currently listed as a relevant weed species 

is Andropogon gayanus (gamba grass). 

The Department of Agriculture, Water and the Environment’s Savanna Technical Guidance 

Document describes the mapping and monitoring instructions for relevant weed species 

(Section 8.1). Of relevance for this project is that: 

• A project must submit a vegetation map, mapped at 250×250 m pixel scale. 

• The project area must not include an area of land that contains a relevant weed 

species. If a relevant weed species occurs in a project area, then the project is an 

ineligible offset project.  

• Projects must be monitored for the presence of relevant weed species as required by 

the savanna fire management determinations. 

A key consideration for developing a cost-effective remote sensing method for gamba-grass 

mapping is the size of the properties that require monitoring and the diversity of vegetation 

types that will be assessed for gamba grass presence. Current Emissions Reduction Fund 

(ERF) properties are spread across the Northern Territory, Queensland and Western 

Australia, and range in size from 300 to 30,000 km2, with the largest being Kakadu National 

Park and the West Arnhem Land Fire Abatement (WALFA) project (Figure 1). Accuracy of 

monitoring methods therefore needs to be assessed across a broad range of vegetation 

types. The complexity of distinguishing gamba grass (Figure 2) from other high-biomass 

grasses that may be structurally and spectrally similar, such as Megathyrsus maximus 

(guinea grass) and Cenchrus species, also needs to be considered.  
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Figure 1. Map of properties enrolled in the Emissions Reduction Fund in 2018. Individual projects range in size 

from 300 to 30,000 km2. 

 

 

Figure 2. Dense stand of gamba grass in the Batchelor region of the Northern Territory, Australia. Photo: Natalie 
Rossiter-Rachor. 
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2. Satellite remote sensing requirements for high-biomass 

grass mapping 

Savanna grasses are notoriously difficult to map from space, due to their small individual 

plant size, co-occurrence with trees and seasonally dynamic phenology (Skidmore et al. 

2010, Ali et al. 2016). These issues are exacerbated in Australia’s savannas by very high fire 

frequency, with fires occurring, on average, in two out of every three years (Beringer et al. 

2015). Objects without distinct structural or spectral properties are difficult to classify in 

remotely sensed imagery (Blaschke et al. 2014, Bradley 2014). However high-biomass 

invasive grasses such as gamba grass are so structurally large (Figure 2) in comparison to 

most smaller-statured native grasses (Rossiter-Rachor et al. 2008, Setterfield et al. 2010) 

that detection from space within ERF project areas is potentially feasible. Furthermore, the 

phenology of gamba grass differs from many of its native neighbours, with plants staying 

green (photosynthetically active) longer into the dry season and curing much later than native 

grasses (Rossiter-Rachor et al. 2009, Setterfield et al. 2013). As such, there is potential to 

leverage spectral properties to distinguish gamba grass from native grasses, provided that 

imagery of a suitable resolution can be acquired at regular intervals at key times of the year, 

such as the start and end of the dry season.  

We are fortunate to have a large range of satellite programs and sensors available for Earth 

observation research, and the number of sensors has increased exponentially in recent 

years (Belward and Skoien 2015, Gorelick et al. 2017, Lewis et al. 2017). Each program has 

different objectives, so sensor and satellite configurations differ in their core characteristics 

across a spectrum of spatial, temporal, spectral and radiometric domains. No one satellite 

can excel in all four of these dimensions, so trade-offs need to be made in selecting the 

sensor, or combination of sensors, most suitable to the mapping problem at hand. 

2.1 Spatial, temporal, spectral and radiometric considerations 

Spatial resolution refers to the pixel size of an image covering the Earth’s surface and is 

key to determining the size of the minimum mapping unit. Sensors offering higher spatial 

resolution have the advantage of being able to distinguish smaller features in landscapes, 

but often sacrifice temporal and radiometric resolution. Commercial satellites, such as 

WorldView-3 and Pleiades, offer spatial resolutions of <0.5 m, but imagery needs to be 

tasked and, in most cases, only 1–2 images will be collected for a particular location per 

year. 

Temporal resolution is also referred to as the revisit time and denotes the frequency of 

image collections – how often each location on Earth is imaged. Higher temporal frequencies 

are advantageous in cloudy environments (by increasing the probability of attaining a cloud-

free image) and are useful in phenological studies aimed at identifying trends in 

photosynthetic activity. MODIS is an example of a satellite with a high temporal resolution, 

collecting imagery twice per day for a given location. The trade-off is its coarse spatial 

resolution (500 m). 

Spectral resolution specifies the number of spectral bands and the range of wavelengths in 

which a sensor can collect reflected radiance.  
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Radiometric resolution refers to the sensitivity of a sensor to the magnitude of the 

electromagnetic energy received.  

Trade-offs between these factors cannot be avoided when sensors are engineered (Turner et 

al. 2003). Sensors need to have a small instantaneous field-of-view (IFOV) to record images 

with a high spatial resolution. However, as the pixel sizes become smaller and the area 

within the IFOV becomes smaller, the amount of energy that can be detected also 

decreases. Reduced energy means reduced radiometric resolution, and it becomes harder to 

detect small differences in reflectance. To increase the radiometric resolution without 

reducing the spatial resolution, it would be necessary to broaden the wavelength range for a 

particular channel/band, but this would have consequences for the spectral resolution. 

Coarser spatial resolution sensors allow for improved radiometric and spectral resolutions, 

and are often also associated with better temporal resolutions, as satellites with broader 

swathes can orbit the globe faster (Haldar 2013). 

2.2 Current satellite options for remote sensing of gamba grass in 

the ERF context 

A large range of current satellite options could potentially be used for mapping gamba grass 

in ERF properties (Table 1). However, preliminary investigations of available imagery and 

existing literature indicate that no single sensor can provide the necessary information 

because of the constraints described above. Despite its physically large structure relative to 

native grasses, the presence of gamba grass amidst native trees and other grasses will be 

challenging to detect. As such, it is necessary to leverage different types of sensors for the 

detection of subtle spectral and structural signals. 

Very high-resolution (VHR) sensors (<1 m) like WorldView-3 (Figure 3), Pleiades, and 

KOMPSAT-3 have the best chance of detection, but they are costly and better suited to 

specific site studies than broad-scale property mapping. As such, while VHR imagery can 

contribute information at specific sites, a more feasible option for the ERF property scale is 

the Sentinel program from the European Space Agency (ESA), which encompasses high- 

and medium-resolution optical imagers (Sentinel-2 and Sentinel-3) and a C-band RADAR 

system (Sentinel-1; Table 1). Incorporating synthetic aperture radar (Sentinel-1) is beneficial 

as it can penetrate the cloud layer that is prominent over northern Australia for most of the 

wet season, and its spatial resolution is closely matched to the 10 m optical sampling of 

Sentinel-2 (Figure 4). Furthermore, by analysing the full time-series from these satellites 

(images every 5–10 days) it is possible to map features that are not evident in single time 

steps (Main et al. 2016). 
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Table 1. Current satellite options with potential to provide information on vegetation structure and composition. 
* denotes missions that are not yet operational, ** denotes missions experiencing extended delays, – denotes no 
cost to user. 

 Agency Platform Type Bands or 
polarisations 

Spatial 
resolution 

(m) 

Revisit 
interval 
(days) 

Cost 

 NASA MODIS Multi-spectral 36  

(620–14,385 nm) 

250, 500, 
1,000 

1  – 

 NASA Landsat 8 Multi-spectral 11 

(435–12,510 nm) 

15, 30, 100 16  – 

 ESA Sentinel-1 RADAR C-band (dual 
HH+HV or VV+VH) 

5–100 5-10  – 

 ESA Sentinel-2 Multi-spectral 13 

(443–2,190 nm) 

10, 20, 60 5-10  – 

 ESA Sentinel-3 Multi-spectral 11 

(555–10,850 nm) 

500–1,000 1–2  – 

 ESA Proba-V Multi-spectral 4 

(415–176 nm) 

100 2  – 

 Planet RapidEye Multi-spectral 5 

(440–850 nm) 

5 1–5  $ 

 Planet PlanetScope Multi-spectral 4 

(440–850 nm) 

3.125 1 $ 

 DigitalGlobe WorldView-3 Multi-spectral 17 

(450–2,365 nm) 

0.31, 1.24, 

3.7 
task $$$ 

 JAXA ALOS-2 RADAR L-band (quad 

HH+HV+VH+VV) 
10–100 14 $$ 

 DLR TanDEM-X RADAR X-band (quad 
HH+HV+VH+VV) 

1–18 11  $$ 

 AirBus Pleiades Multi-spectral 5 

(470–940 nm) 

0.5, 2 task $$$ 

 KARI KOMPSAT-3 Multi-spectral 5 

(450–900 nm) 

0.7, 2.8 task $$ 

 SurreySpace NovaSAR RADAR S-band (tri HH, VV, 

HV or VH) 
6–30 1–4  $ 

* NASA GEDI LiDAR HOMER – 
1064 nm 

25  – – 

* CSA RADARSAT 
constellation 

RADAR C-band (quad 
HH+HV+VH+VV) 

1–100 4  $ 

* ESA BIOMASS RADAR P-band (quad 
HH+HV+VH+VV) 

50–200  30 – 

** DLR EnMAP Hyperspectral 230 

(420–2,450 nm) 

30 1–27 – 

ALOS = Advanced Land Observing Satellite; BIOMASS = Biomass Mission for Carbon Assessment; 

CSA = Canadian Space Agency; DLR = German Aerospace Centre; EnMAP = Environmental Monitoring and 

Analysis Program; ESA = European Space Agency; GEDI = Global Ecosystem Dynamics Investigation; 

HOMER = High Output Maximum Efficiency Resonator; JAXA = Japan Aerospace Exploration Agency; 

KARI = Korea Aerospace Research Institute; KOMPSAT = Korea Multi-Purpose Satellite; LiDAR = Light Detection 

And Ranging; MODIS = Moderate Resolution Imaging Spectroradiometer; NASA = National Aeronautical Science 

Administration; RADAR = Radio Detection And Ranging; SAR = synthetic aperture radar. 
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Figure 3. Examples of high spatial resolution imagery obtained from WorldView-3, showing (a) a true-colour 

composite and (b) a false-colour composite. Very high-resolution imagery such as this has the advantage of being 
able to delineate individual trees and create reliable endmembers for calibration data and spectral unmixing of 
coarser-resolution imagery. Gamba grass patches as small as 1 m2 are identifiable. 

Figure 4. Recent imagery collected over the Batchelor area, Northern Territory, Australia, from the European 

Space Agency Sentinel constellations – (a) false-colour composite from Sentinel-2, (b) Normalised Difference 
Vegetation Index (NDVI) derived from Sentinel-2, and (c) a RADAR backscatter composite from Sentinel-1. 
Gamba grass patches need to be 10–20 m2 for detection. 

The Sentinel-1 and Sentinel-2 constellations are powerful in their own right, but by fusing the 

two together it is possible to draw on their complementary strengths – cloud penetration, 

vertical structure sensitivity, spectral properties and reduced revisit time (Clerici et al. 2017, 

Schmidt et al. 2018). This concept could be taken a step further by introducing another 

independent sensor of similar spatial and spectral properties, such as NASA’s Landsat 8, 

thereby creating a virtual constellation with even higher temporal resolution (Li and Roy 

2017), for key months at least, to target periods when native grasses are curing but gamba 

grass remains photosynthetically active. Recent developments in the ESA’s Copernicus 

program have overcome some of temporal resolution trade-offs by moving in the direction of 

satellite constellations (Torres et al. 2012). A good example of this is the Sentinel-2 program, 

which currently comprises two satellites – Sentinel-2a and Sentinel-2b (Drusch et al. 2012). 

The two satellites travel the same track but are positioned opposite to each other in orbit. 

Sentinel-2a revisits a given location every 10 days – as does Sentinel-2b – but since they sit 

opposite each other in orbit, that given location is imaged every 5–6 days. As such, the 

constellation approach allows for an increase in temporal resolution without sacrificing 

spatial, spectral or radiometric resolution. In time, Sentinel-2c and Sentinel-2d will strengthen 

the program, adding redundancy and ensuring longevity. 
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2.2.1 Legacy satellite missions  

The lifespan of satellite programs is difficult to predict, but recent missions have been very 

successful and there is a large degree of redundancy built into current global Earth-

monitoring programs. A number of older sensors could still add value to the gamba-grass 

mapping challenge, but their longevity is questionable. NASA’s MODIS, for example, has 

been a cornerstone of Earth observation since its launch in 2000 (Pettorelli et al. 2005). It 

has greatly exceeded its design life of six years and continues to provide imagery twice daily 

across the globe. Although MODIS is still widely used by the fire community in Australia for 

its burnt-area products (Hill et al. 2006, Maier 2010), we would not recommend developing 

new mapping initiatives based upon its lifespan. If very high temporal (daily) and greater 

spectral resolution is required over large areas, then emphasis should shift to Sentinel-3 and 

VIIRS which will largely fill this niche in the years ahead (Donlon et al. 2012, Wooster et al. 

2012, Xiong et al. 2014). 

For exploration of historical land cover and land cover change, the Landsat program is 

unparalleled (Wulder et al. 2018). Landsat imagery dating back to 1972 provides valuable 

insight into how ecosystem structure has changed over time, and is widely used across the 

globe for forest and water resource monitoring (Pflugmacher et al. 2012, Wulder et al. 2012, 

Hansen et al. 2013). In the context of high-biomass grass mapping in northern Australia, 

imagery from Landsat 5, 7 and 8 provide monthly time-series of land surface reflectance at 

30 m spatial resolution. Although this archive provides useful background information on 

historic trends in land cover, from roughly the period when gamba grass was trialled as 

pasture grass in the Northern Territory, we did not consider analysis of longer-term historical 

dynamics to be essential for the current mapping challenge. 

2.3 A multi-scaled approach for large-area mapping of gamba 

grass 

Mapping high-biomass grasses in ERF properties requires the classification of gamba grass 

presence at the satellite pixel level based on spectral and structural features. These pixel 

presence/absence estimates can then be aggregated to the 250 m scale required for 

reporting of cover/density. The vast majority of land cover classification approaches from 

remotely sensed imagery are supervised procedures and require calibration (training) data 

composed of reference data of known status (Wulder et al. 2018). Machine learning – the 

use of statistical computer algorithms that improve automatically through experience and 

exposure to data (Jordan and Mitchell 2015) – holds much potential for improving 

classification accuracies of remotely sensed imagery. However, the limiting factor in 

leveraging artificial intelligence is typically the availability of sufficient training data for model 

calibration and validation. 

To overcome this constraint, we adopted a multi-scaled approach whereby we first 

developed a high-resolution gamba grass cover map at a relatively small spatial scale 

(200 km2), using machine learning to train a model based on high spatial and spectral 

resolution commercial imagery (WorldView-3) from field data. We then used the resulting 

cover map as training data for input into a second-order machine-learning model, which used 

open-access Sentinel-1 and Sentinel-2 imagery as input variables, to generate predications 

at much large spatial scales (5,000 km2). 
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3. Leveraging commercial satellite imagery and gradient 

boosting for fine-scale gamba-grass mapping 

The core results from the section below have been published as follows: 

Shendryk, Y., Rossiter-Rachor, N. A., Setterfield, S. A., and Levick, S. R. (2020). Leveraging 

high-resolution satellite imagery and gradient boosting for invasive weed mapping. IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4443–

4450. https://doi.org/10.1109/JSTARS.2020.3013663 

While both airborne hyperspectral and VHR satellite multi-spectral sensors can generate 

imagery with similarly high spatial resolutions (≤0.5 m), the latter are limited by spectral 

resolution, with current sensors usually providing 4-band imagery in red, green, blue (RGB) 

and near-infrared (NIR) wavelengths. At present, the most advanced, publicly available VHR 

satellite sensor is WorldView-3, which has 17 bands (including the panchromatic [PAN] 

band) in visible/near-infrared (VNIR) and short-wave infrared (SWIR) wavelengths (450–

2,365 nm) (Table 1). The benefit of these additional spectral bands of VHR satellite multi-

spectral sensors for mapping invasive weeds has not been well established, but it has been 

previously reported that imagery with additional spectral bands beyond RGB+NIR 

wavelengths did not improve the discrimination of invasive weeds (Marshall et al. 2012, 

Robinson et al. 2016). While textural features extracted from VHR satellite imagery have 

been previously found to capture the components of vegetation structure (Wood et al. 2012), 

there has been limited research into the benefits of textural features for classifying invasive 

weeds. The aim of this component of our study was to test the suitability of VHR 

WorldView-3 imagery for mapping the presence of gamba grass at high resolution at local 

property scales (100 km2). 

3.1 High-resolution mapping approach 

To evaluate the sensitivity of WorldView-3 imagery in discriminating gamba grass, we tested 

the utility of the following input data: i) spectral bands, ii) textural features, iii) normalised 

difference spectral indices (NDSIs) and iv) all predictors in combination. We also investigated 

whether the additional 12 spectral bands that WorldView-3 offers beyond standard RGB+NIR 

wavelengths improves the discrimination of gamba grass. We employed an extreme gradient 

boosting (XGBoost) classification algorithm (Chen and Guestrin 2016) to take advantage of 

the high data dimensionality. To date, the most popular classification algorithms for mapping 

invasive weeds are random forest (Lawrence et al. 2006), maximum likelihood (Yang and 

Everitt 2010) and spectral angle mapper (Lass et al. 2005). However, decision tree boosting 

algorithms have shown good potential in multiple classification benchmarks (Briem et al. 

2002, Olsony et al. 2018). The main advantages of XGBoost include: i) high computational 

speed due to parallel processing of data; ii) generally better performance in comparison to 

other decision tree-based models (if hyperparameters are tuned properly); iii) non-reliance on 

missing value imputation, scaling and normalisation of the input data; and iv) in-built 

regularisation terms that can be used to control the complexity of the model and avoid 

overfitting. 

https://doi.org/10.1109/JSTARS.2020.3013663
https://doi.org/10.1109/JSTARS.2020.3013663
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3.1.1 Study area 

The 200 km2 area of interest was located near the township of Batchelor, approximately 

100 km south of Darwin, in the Northern Territory. The study area is largely under private 

ownership for pastoral lease or semirural development, with other significant areas owned by 

local communities or under government ownership. The area experiences a tropical climate 

with distinct wet and dry seasons. The annual rainfall is 1,535 mm, with the heaviest falls 

occurring during November to April (BOM 2020). The major vegetation type is savanna 

woodland dominated by Eucalyptus miniata and E. tetrodonta, with a herbaceous 

understorey dominated by native annual grass species, such as Sorghum spp., and 

perennial species such as Heteropogon contortus and Alloteropsis semialata, in addition to 

invasive perennial species including Andropogon gayanus (gamba grass). While gamba 

grass can be structurally similar to some Sorghum spp., gamba grass has a different 

phenological cycle to the native savanna grasses (Setterfield et al. 2013) and remains tall (up 

to 4 m) and photosynthetically active into the dry season (April–May); by this time, the native 

grasses have senesced (usually March–April) and ‘collapsed’ to form a low (∼0.5–1 m) grass 

layer. Consequently, the early dry season is the best seasonal time to accurately detect 

gamba grass, when it is distinct and clearly visible in the landscape. 

3.1.2 Field measurements for model training and validation 

Field calibration/validation measurements were collected in multiple surveys conducted in 

March/April and July/August/September 2019. A Leica GS16 GNSS smart antenna and 

CS20 controller were used in conjunction with Leica’s precise point positioning (PPP) service 

to enable centimetre accuracy of field capture. In the first survey, circular plots (radius = 3 m) 

were mapped with a homogeneous representation of: (1) live (green) gamba grass, (2) burnt 

gamba grass, (3) herbicide-sprayed gamba grass, (4) senesced Sorghum spp., (5) burnt 

Sorghum spp., and (6) other live and senescing native grass species. In the second survey, 

circular plots were only classed as gamba or non-gamba due to phenological changes that 

occur as the dry season progresses. Additional classes were defined after the fieldwork by 

delineating homogeneous circular plots (r = 3 m) of (7) trees and (8) waterbodies in 

WorldView-3 imagery. For the purpose of this study, samples were grouped into gamba-

grass classes (i.e. 1, 2 and 3) and non-gamba-grass classes (i.e. 4, 5, 6, 7 and 8), resulting 

in an imbalanced (~1:2) training dataset of 187 and 355 samples respectively. 

3.1.3 WorldView-3 imagery acquisition and processing  

The WorldView-3 satellite was tasked to acquire imagery in April 2019 and two scenes were 

collected within 42 seconds of each other on 11 April under cloud-free conditions. April is the 

transition between wet and dry seasons, and was selected to task the satellite imagery 

acquisition because at that time Sorghum spp. and other native grasses have commenced 

senescence and browning in colour, while gamba grass remains photosynthetically active 

and green, and as such, is recognisable from the air (Petty et al. 2012). Each scene 

consisted of PAN, VNIR and SWIR bands in a wavelength range of 400–2,365 nm. The 

satellite imagery was provided as an Ortho Ready 2A product, which was radiometrically 

corrected to ground reflectance, and projected to a plane using UTM 52S projection. 

Radiometric correction was accomplished using the atmospheric compensation (AComp) 

algorithm developed by DigitalGlobe for their WorldView sensor series imagery. 
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As a first pre-processing step, both VNIR and SWIR bands were pan-sharpened to 0.3 m 

resolution based on the PAN band and using Zhang’s (2002) algorithm implemented in PCI 

Geomatica software. Then, pan-sharpened VNIR and SWIR bands, as well as the PAN 

band, were orthorectified using rational polynomial coefficients and a 30 m resolution SRTM-

derived digital elevation model using PCI Geomatica OrthoEngine. Finally, PAN, VNIR and 

SWIR spectral bands were stacked and merged into a single mosaic with 0.3 m spatial 

resolution (Figure 5). From the PAN band, 12 textural features were derived using a filter 

window of 3×3 pixels (Baraldi and Parmiggiani 1995). Previous research suggests that using 

a filter window of 3×3 pixels results in the highest accuracy of vegetation parameter 

estimation in VHR satellite imagery (Zhou et al. 2017). Similarly, from VNIR and SWIR 

bands, 120 NDSIs were derived in succession from Coastal Blue to SWIR-8 spectral bands 

as follows: 

𝑁𝐷𝑆𝐼(𝑖,𝑗) = (𝑅𝑖 − 𝑅𝑗)/(𝑅𝑖 +𝑅𝑗) 

where R is the spectral reflectance, and i and j are numbers indicating the wavelengths (nm). 

Each NDSI is denoted as a combination of three-letter acronyms, for example, 

NDSI(COA,SW8) is denoted as COASW8. Finally, we calculated predictor variables from 

WorldView3-derived spectral bands, textural features and NDSIs. For this, we extracted 

statistics in 17×17 pixel windows (~26 m2) to match the areas of field measurements (3 m 

radius) for each field sampling plot, resulting in a total of 1,036 predictor variables. 

3.1.4 Extreme gradient boosting 

We used an XGBoost algorithm to try and differentiate gamba grass from other vegetated 

and non-vegetated areas. XGBoost is an ensemble learning method that combines the 

predictive power of multiple linear models or decision trees using a boosting algorithm (Chen 

and Guestrin 2016). In boosting, a decision tree or linear regression that improves the model 

most is added to an ensemble at each iteration until the set number of estimators 

(i.e. n_estimators) has been achieved. In contrast to bagging techniques such as random 

forest, in which trees are grown to their maximum extent, boosting makes use of shallow 

trees with fewer splits. The training data were shuffled and split into ‘train’ (75% of the data) 

and ‘test’ (25% of the data) sets. Then, the XGBoost classifier with a binary logistic loss 

function and a tree booster was used to predict the presence of gamba grass in two stages. 

First, a randomised search on hyperparameters was performed using the ‘train’ dataset with 

a stratified five-fold cross-validation (cv) (training:testing ratio of 75:25). Six hyperparameters 

were optimised: max_depth in a range from 1 to 11, with an increment of 1; learning_rate of 

0.001, 0.01, 0.1, 0.5, 1 and 2; subsample in a range from 0.2 to 1.0, with an increment of 0.1; 

min_child_weight in a range from 1 to 21, with an increment of 1; gamma of 0, 0.25, 0.5 and 

1; and n_estimators of 100, 500 and 1,000. We used expert knowledge to specify reasonable 

ranges and increments of the hyperparameters. The best model according to a cv score was 

used to extract the importance of predictor variables in terms of gain, which is the relative 

contribution of the corresponding predictor to the model (Bergstra et al. 2012). Second, using 

predictors ranked according to their importance, another XGBoost classification using step-

forward predictor selection (SFPS) was performed (Miller 2002). In each iteration, the 

predictor that previously best improved the model performance was added until addition of 

new predictors did not improve the performance in terms of a cv score. Eight XGBoost 

models were trained and optimised using predictor variables extracted from: (1) four spectral 

bands (bands 2, 3, 5 and 7); (2) eight spectral bands (bands 1 to 8); (3) 16 spectral bands 
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(bands 1 to 16); (4) textural features derived from the PAN band; (5) six NDSIs derived from 

four spectral bands (bands 2, 3, 5 and 7); (6) 28 NDSIs derived from eight spectral bands 

(bands 1 to 8); (7) 120 NDSIs derived from 16 spectral bands (bands 1 to 16); and (8) all 

predictor variables in combination. 

 

Figure 5. High-resolution imagery tasked for the projects from the WorldView-3 satellite. (a) True-colour 
composite showing the boundary between the Batchelor rural area and Litchfield National Park. Zoomed-in views 
show (b) true-colour (5,3,1) and (c) false-colour (8,4,1) composite examples with field validation points overlaid. 
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Multiple recent studies of VHR satellite imagery used object-based image analysis (OBIA) 

prior to classification for the detection of invasive weeds (Bradley 2014, Alvarez-Taboada et 

al. 2017). While OBIA has previously been shown to improve accuracies of classification 

compared with per-pixel classification (Levick and Rogers 2011, Whiteside et al. 2011), it 

usually relies on segmentation algorithms that are difficult to validate and correct. In this 

study, to use the power of OBIA approaches without relying on segmentation algorithms, we 

trained XGBoost models using predictor variables calculated within field-measured areas 

(~28.3 m2) and applied it to predictor variables calculated within a 17×17 pixel 

neighbourhood area (~26 m2). To optimise and evaluate our models during cross-validation 

and test stages, we used the balanced accuracy (BA) metric, which avoids inflated 

performance estimates on imbalanced datasets. It is the macro average of recall scores per 

class or, equivalently, raw accuracy where each sample is weighted according to the inverse 

prevalence of its true class, and is defined as: 

𝐵𝐴 = (

𝑇𝑃
𝑃 +

𝑇𝑁
𝑁

2
) 

where TP is a true positive (correctly classified as positive), TN is a true negative (correctly 

classified as negative), P is a positive and N is a negative. 

3.2 High-resolution mapping of gamba grass presence 

The 30 most important predictors for the model trained using all predictor variables in 

combination is shown in Figure 6. Here, importance is expressed in terms of a relative gain, 

which is the relative contribution of the corresponding predictor to the model. The spectral 

bands identified by predictor importance as offering the greatest capacity for discrimination of 

gamba grass were those covering 510–745 nm and 2,185–2,365 nm wavelength ranges. 

The SFPS procedure generally resulted in an improved performance of the XGBoost 

classifier, with a BA increase on a ‘test’ set of up to 4.3% (Model 8 in Figure 6b), which is in 

line with previous findings (Robinson et al. 2016). The SFPS also reduced the number of 

necessary predictors for best performance by between 57% (Model 1) and 96% (Model 6). 

Although the combined use of all predictors (Model 8) in the SFPS procedure led to a BA 

increase from 86.9% to 91.2%, it was still no better than that of the NDSIs-derived model 

(Model 7). In contrast to previous studies, additional spectral bands did improve classification 

accuracy by 4.8% when going from a 4-band (Model 1) to a 16-band setup (Model 3). The 

improved performance became even more pronounced in an NDSIs scenario with a BA 

improvement between Model 5 and Model 7 of 11.9%. While the model trained using textural 

features only (Model 4) showed the worst performance with a BA of 76.6%, it was still 

comparable to that of Model 1 utilising RGB+NIR bands (BA of 77.9%). For Model 8, only 

three predictors (p50_GREREE, min_REDSW7 and max_GRE) were necessary to generate 

gamba grass presence classification with BA = 85%. Cross-validated BA stopped improving 

after using the top 78 predictors (Figure 6c). Nonetheless, the BA improvement between 

models trained using between 10 and 83 predictor variables could be considered marginal. 

The final map of gamba grass presence at 0.3 m spatial resolution generated using a model 

with hyperparameters from Model 8, trained using all training data (i.e. ‘train’ and ‘test’ sets 

combined) and the top 78 predictor variables, is shown in Figure 7.  
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Figure 6. (a) Ranked importance of 30 predictor variables for the model trained using all predictor variables in 
combination (from highest to lowest): (b) Balanced accuracy of gamba grass presence classification using all 
predictors and predictors selected using step-forward predictor selection (SFPS); (c) SFPS for Model 8 using all 
predictor variables in combination.  

Our results demonstrate that VHR WorldView-3 imagery can be used to differentiate gamba 

grass from other vegetated and non-vegetated areas, with accuracies of up to 91.3%. This 

methodology is technically scalable to larger areas as it relies exclusively on readily 

accessible VHR satellite imagery. This study is a significant advancement for stakeholders, 

as the accuracy of gamba-grass mapping is sufficient to inform landscape management in 

northern Australia. WorldView-3-derived NDSIs provided more separability than individual 

spectral bands or textural features when classifying gamba grass. Additional WorldView-3 

VNIR bands (i.e. Coastal, Yellow, Red Edge and NIR-2) provided a 6.2% increase in 

classification accuracy, while the addition of SWIR bands improved classification accuracy by 

another 5.7%. However, given the spectral and structural differences of different vegetation 

types, this result might not be applicable when mapping other weed species (Marshall et al. 

2012, Robinson et al. 2016). Interestingly, textural features extracted from the PAN band 

provided a satisfactory classification result with BA of 76.6%, which is relevant when 

considering the use of single-band sensors (e.g. WorldView-1) for mapping invasive weeds. 

An occasional misclassification of gamba grass presence occurred in areas shaded by tree 

crowns. These were characterised by change in the spectral shape, and were occasionally 

similar in terms of spectral and NDSI signal to unshaded gamba grass. This problem could 

be alleviated by collecting additional training samples in shaded areas to aid further 

discrimination. 

While we expect VHR satellite imagery to be more accurate than medium-resolution satellite 

imagery in mapping invasive weeds (Matongera et al. 2017), numerous studies have also 

achieved accuracies of up to 90% when using medium-resolution satellite imagery for 

invasive weed mapping (Evangelista et al. 2009, Gavier-Pizarro et al. 2012). While being 

able to cover large areas and usually available for free, medium-resolution satellite imagery 

requires extensive field surveys at multiple time steps to achieve the above-mentioned 

accuracies. As such, we decided to use the mapping outputs from the VHR WorldView-3 

analysis to inform medium-resolution satellite imagery to upscale the extent of gamba-grass 

mapping in time and space. 
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Figure 7. Spatial outputs from the final XGBoost model showing predictions of gamba grass occurrence at 

0.3 m resolution for (a) the full study area and (b-c) zoomed-in examples. 
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4. Fusing open-access multi-spectral and synthetic 

aperture radar remote sensing for large-area gamba-

grass mapping 

The previous section illustrated how WorldView-3 imagery can be leveraged for mapping 

gamba grass presence at fine spatial resolutions with high accuracy. This outcome is an 

important step forward for intermediate-scale mapping, but the cost and logistics of 

WorldView-3 tasking and processing is prohibitive at regional scales. As such, in the second 

stage of our two-tiered approach, we used the high-resolution outputs from WorldView-3 to 

test the potential of open-access Sentinel-1 and Sentinel-2 imagery for cost-effective large-

area mapping. 

Initial investigations into the suitability of Sentinel-2 for this task showed that the reflectance 

data corresponded closely to patterns observed in the WorldView-3 data, albeit at a coarser 

resolution (Figure 8, Figure 9). 

 

Figure 8. Comparison of (a) WorldView-3 and (b) Sentinel-2 imagery collected in April 2019. The Sentinel-2 scene 
was collected nine days later than the WorldView-3 image, but key patterns are well represented. 
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Figure 9. Spectral response curve of gamba grass, sorghum and native wetland grasses as recorded from 
(a) WorldView-3 and (b) Sentinel-2 satellites in April 2019. Open-access Sentinel-2 data captures key reflectance 
patterns very well despite having lower spatial and spectral resolution than WorldView-3. 
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4.1 Open-access imaging of vegetation structure and reflectance  

Sentinel-1 and Sentinel-2 are the synthetic aperture radar (SAR) and multi-spectral (13-

band) sister missions of the ESA’s Copernicus program, providing repeat coverage over 

northern Australia every 6–10 days at 10–20 m resolution through their constellation orbit 

arrangement. 

We used Open Data Cube infrastructure (CSIRO’s EASI Hub and Digital Earth Australia’s 

implementations) to query the Sentinel-1 and Sentinel-2 imagery intersecting a 5,000 km2 

area of interest that encompassed the WorldView-3 results from the previous section. We 

restricted the available image search to a 6-week period from 1 April to 15 May, to capture 

the peak in the phenological cycle for gamba grass, in 2019, 2020 and 2021. A maximum 

cloud cover threshold of 5% (per scene) was imposed on the Sentinel-2 search (surface 

reflectance product), but not on the Sentinel-1 search (ground-range detected product) since 

radar imagery is less impacted by cloud cover. A total of 21 suitable Sentinel-1 scenes and 

57 Sentinel-2 scenes were extracted for analysis and stacked into a data-cube structure for 

model development and analytics. 

We tested a suite of gradient-boosting regression trees using the scikit-learn machine-

learning package in Python (Pedregosa et al. 2011). The full image series from the peak 

phenological season for 2019, 2020 and 2021 were included. Input variables consisted of the 

median raw reflectance data from Sentinel-2 (bands 1–12), spectral indices from Sentinel-2 

(Normalised Difference Vegetation Index [NDVI], Enhanced Vegetation Index [EVI], 

Normalised Burn Ratio [NBR]), median backscatter intensities from Sentinel-1 (VV and VH 

polarisations), and terrain variables derived from SRTM imagery (elevation, slope). Sentinel-

2 provides 10 m resolution in the VNIR region, but SWIR bands are at 20 m spatial resolution 

and we considered this more appropriate for large-area mapping. As such, the high-

resolution gamba grass probability mapping from Section 3 (Figure 7) was resampled to 20 

m spatial scale to provide input training data for the larger-area model (Figure 10). A total of 

5,000 points were randomly distributed across the training dataset and the gamba grass 

probability was extracted for each point. These probabilities were reclassified into 25% 

increments from 0 to 100%, to provide the categorical inputs for the model. The gradient-

boosted tree regression model was built with 500 trees, with a shrinkage parameter of 0.005. 

A sampling rate of 0.7 was specified, together with a maximum node allowance of 8. The 

Huber loss function was selected as it is less sensitive to outliers than squared error loss 

estimates.  
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Figure 10. Training data generated from the WorldView-3 analysis (April 2019 data), aggregated to 20 m scale to 

match Sentinel-1/-2 inputs. 

The red and SWIR1 wavelengths from Sentinel-2 and the VV backscatter polarisation from 

Sentinel-1 were the top three ranked variables. The resulting classification returned a BA of 

82% for the gamba vs non-gamba split, and 68% for the separation into the four density 

categories. It is clear from the confusion matrix (Figure 11) that the reduction in overall 

accuracy when increasing the number of categories is a result of confusion between 

neighbouring classes: the high-density class showed some commission to the medium-

density class, and the no-density class showed some commission to the low-density class.  

Spatial outputs were well correlated with the locations of known gamba grass infestations but 

also identified some additional locations that require further investigation in the field. For 

example, the detection of infestations in north-east Litchfield National Park (Figure 12a,b) 

and southern Litchfield along the Reynold’s River (Figure 12c,d) were in line with 

expectations, but the spatial extent of predictions in the Adelaide River hills (Figure 12e,f) 

needs further on-ground truthing. 

While the native probability predictions from Sentinel-1/-2 are at 20 m resolution, they can be 

upscaled to any spatial unit of interest, such as 100 m (common ecological monitoring scale 

of 1 ha) and 250 m resolutions (reporting grid size under the ERF).  
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Figure 11. Confusion matrix for the classification of gamba grass occurrence into different density classes at the 

20 m scale. 
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Figure 12. Predictions of gamba grass occurrence from Sentinel-1 and Sentinel-2 outside of the training area. Left 

column panels (a,c,e) are RGB composites from VHR satellite imagery with gamba grass visible in homogeneous 
green. Right column panels (b,d,f) show modelled results with gamba grass depicted in yellow and non-gamba in 
purple. a,b: north-east Litchfield National Park. c,d: Reynolds River. e,f: Adelaide River hills. 
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5. Accessibility, cost and processing requirements 

A key factor in establishing a feasible remote sensing method for mapping and monitoring 

gamba grass on ERF properties is the accessibility and cost of the required data and 

processing requirements.  

5.1 Accessibility and cost 

The vast majority of current Earth observation programs from national agencies support free 

use and open access of imagery for research purposes. This trend was first established by 

the United States Geological Survey (USGS), who changed policy in 2008 to provide all 

Landsat data for free over the internet (Wulder et al. 2012). This policy shift was pivotal, and 

opening up the archive has had substantial downstream effects by growing the user base 

and leading to more efficient processing tools and analysis algorithms (Turner et al. 2015). 

Landsat 8 data remains freely available (Table 1).  

The ESA’s Copernicus program has adopted a similar model in making all Sentinel products 

accessible to the public (Table 1). This is a significant factor in prioritising their use in gamba 

grass monitoring for the ERF.  

Open access to national space agency imagery is commendable, but these agencies cannot 

cover all bases and niche markets exist for commercial providers to meet specialist 

requirements. The primary commercial satellite used in this study is Digital Globe’s 

WorldView-3. The tasking of this satellite currently costs approximately A$4,000 for a 

minimum order size of 100 km2. Similar specification (multi-spectral, 0.5 m spatial resolution) 

options can also be acquired from KOMPSAT-3 and Pleiades for A$2,000–A$3,000 per 

100 km2 depending on the timeliness of the dataset (Table 1). These VHR commercial 

satellites have the additional advantage of flexible tasking times to align with particular 

periods of the year that are of phenological interest. Given the property-scale size of 300–

30,000 km2, these satellites are cost prohibitive for large-area monitoring, but the accuracy 

they provide is critical for building large calibration and validation libraries. 

5.2 Data cubes and cloud-based distributed processing  

A further consideration for mapping and monitoring of gamba grass for the ERF methodology 

is the data storage and processing requirements. Local storage and processing of imagery is 

inefficient and unfeasible for mapping tasks of large spatial extent and with rich time-series 

data (Lewis et al. 2017). Given the huge volumes of satellite data collected daily, and the 

large spatial area of properties in northern Australia, a mapping campaign aimed at 

characterising high-biomass grasses will need to use high-performance storage and 

computing clusters. Fortunately, computing power and access to servers is no longer a 

restriction or a major limiting expense (Wulder et al. 2018). Cloud-based distributed storage 

and processing platforms like the Open Data Cube and Google Earth Engine have made 

access and processing of image archives accessible, transparent and standardised (Mueller 

et al. 2016, Dhu et al. 2017)Gorelick et al. 2017). Within the Australian context, the 

development of Digital Earth Australia and the CSIRO’s EASI Hub is facilitating the analysis 

of continental-scale time-series of satellite data through an implementation of the Open Data 
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Cube, and implements geometric and spectral corrections for comparability of measurements 

across the time-series (Lewis et al. 2017). These data storage and computer infrastructures 

make complex time-series analysis accessible and feasible over large areas, and could be 

used more heavily in future efforts to increase the precision of gamba-grass mapping, and in 

particular, to begin tracking changes over time (Figure 13).  

 

Figure 13. The high temporal resolution of Sentinel-2 enables in-depth assessment of vegetation phenology over 

time (Litchfield–Batchelor boundary). Image extracts based on Jupyter Notebooks developed by Digital Earth 
Australia (Krause 2021). 

5.3 Future developments in Earth observation 

Earth observation from space is a rapidly expanding frontier, and multiple space agencies 

around the globe have new satellites in development for launch in the coming years. There 

are numerous missions on the horizon that could be of benefit to gamba-grass mapping, and 

these should be kept in mind when developing the gamba-grass mapping and monitoring 

strategy for ERF purposes.  

Notable among the upcoming missions from an invasive species monitoring perspective is 

the planned launch of three major spaceborne hyperspectral missions within the next decade 

– EnMAP from the German Aerospace Centre (DLR), CHIME from the ESA, and SBG from 

NASA. These missions will operate globally at the 30 m scale, providing rich spectral detail 

across the VNIR and SWIR portions of the electromagnetic spectrum.  
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Insights into how these systems might perform can already be gained through the 

assessment of experimental imagery captured by the DLR’s DESIS, a VNIR hyperspectral 

imager onboard the International Space Station. A number of DESIS scenes have been 

collected over northern Australia already, and an example is shown in Figure 14. As opposed 

to sampling a handful of wavelengths, DESIS captures 232 bands within the VNIR portion of 

the spectrum and provides richer detail on pigment differences in leaf material. Despite the 

image shown in Figure 14 being collected in the middle of the dry season, clear distinction 

between gamba grass and native riparian grasses is evident in the signatures both above 

and below the 700 nm inflection point. 

 

Figure 14. Spectral reflectance curve derived from the experimental DESIS hyperspectral mission. High spectral 
resolution measurements from space will enable finer delineation between species based on pigment and leaf 
structure attributes. 

From a structural perspective, the launch of NISAR in 2023 will provide high temporal 

frequency L-band coverage at 10 m resolution. NISAR is a joint NASA/ISRO mission, and 

the longer wavelength of the L-band sensor (as opposed to the C-band of Sentinel-1) will be 

well-suited to biomass mapping applications and could help inform the mapping of dense 

gamba grass stands.  

The next decade will therefore continue to be very exciting from an Earth observation 

perspective. However, irrespective of the developments that take place in terms of sensor 

and satellite technologies, reliable mapping and quantification of accuracies and confidence 

limits will ultimately hinge on robust calibration and validation data from the field and/or from 

proximal remote sensing. As such, the reference endmembers and classification results 

produced in the next few years will hold great value for calibration of future space missions. 
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6. Guidelines for gamba-grass mapping with remote 

sensing in the ERF context 

The combination of Sentinel-1 and Sentinel-2 data streams presents a compelling avenue for 

large-area mapping at ecologically useful spatial (10–20 m) and temporal resolutions (6–10 

days) across northern Australia. The fusion of optical reflectance and radar backscatter data 

provides a rich data cube of structural and spectral properties that is freely available and 

readily accessible from cloud-based distributed computing platforms. A large training dataset 

(5,000 points) was essential for building machine-learning models to map gamba grass 

presence at large spatial scales (5,000 km2). Obtaining the required volume of training data 

is not possible from fieldwork alone, but the two-tiered approach developed here illustrates 

how very-high resolution imagery (e.g. WorldView-3/KOMPSAT-3/Pleiades/Planet/unmanned 

aerial vehicle [UAV]) can be leveraged for this purpose. Gradient-boosted tree regression 

performed well on both the high-resolution mapping with WorldView-3 imagery and on the 

large-area composite images produced from Sentinel-1/-2. More complex machine-learning 

approaches that account for temporal context within the time-series more explicitly (e.g. 

recurrent neural networks) could help refine results and improve precision, but will add to the 

computational complexity. The core elements from this workflow could be implemented on 

properties of interest in multiple ways, either using open-access imagery only or leveraging 

VHR satellite/UAV imagery if available (Figure 15).  

 

Figure 15. Suggested workflow for mapping gamba grass on Emissions Reduction Fund properties. Solid lines 
represent the fully open-access workflow which would be widely usable/applicable. The dashed lines indicate 
additional steps required for the hierarchical approach used in this study, leveraging commercial satellite imagery 
(and/or imaging from unmanned aerial vehicles). The machine-learning (ML) model can vary in complexity from 
standard statistical relationships to more complex deep learning models depending on the user skillset and 
available processing resources. 
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6.1.1 Guideline considerations 

Ecological 

• Phenological timing is critical for the success of gamba-grass mapping activities with 

remotely sensed imagery. 

• Optimal phenological windows for image acquisition will vary across northern 

Australia and need to be adjusted regionally. 

• Optimal phenological windows can only be broadly predicted by date; rainfall in the 

preceding months is very influential. 

Technical – remote sensing 

• VHR satellite imagery and/or aerial/UAV imagery can provide an important 

steppingstone in the scaling chain. 

• Field-collected samples will often be insufficient for the training of models running at 

large regional scales from satellite imagery. 

• Local-scale mapping results from VHR imagery should be nested within medium-

resolution satellite imagery to provide a scaling mechanism from field data to large-

area satellite data. 

Technical – machine learning 

• Robust training and validation libraries are critical for the development of reliable 

models. 

• Machine-learning models require very large datasets for training and validation 

purposes. 

• In addition to gamba and non-gamba classes, it is important to include the presence 

of similar native species (particularly high-biomass wetland grasses) in the training 

and validation libraries. 



 

 Remote sensing of gamba grass in northern Australia: An assessment of methods and guidelines for use | 27  

References 

Adams, V. M., and S. A. Setterfield. 2013. Estimating the financial risks of Andropogon 
gayanus to greenhouse gas abatement projects in northern Australia. Environmental 
Research Letters 8. 

Ali, I., F. Cawkwell, E. Dwyer, B. Barrett, and S. Green. 2016. Satellite remote sensing of 
grasslands: from observation to management. Journal of Plant Ecology 9:649-671. 

Alvarez-Taboada, F., C. Paredes, and J. Julián-Pelaz. 2017. Mapping of the invasive species 
Hakea sericea using unmanned aerial vehicle (UAV) and WorldView-2 imagery and 
an object-oriented approach. Remote Sensing 9:913. 

Baraldi, A., and F. Parmiggiani. 1995. An Investigation of the Textural Characteristics 
Associated with Gray-Level Cooccurrence Matrix Statistical Parameters. IEEE 
Transactions on Geoscience and Remote Sensing 33:293-304. 

Belward, A. S., and J. O. Skoien. 2015. Who launched what, when and why; trends in global 
land-cover observation capacity from civilian earth observation satellites. Isprs 
Journal of Photogrammetry and Remote Sensing 103:115-128. 

Bergstra, J., N. Pinto, and D. Cox. 2012. Machine learning for predictive auto-tuning with 
boosted regression trees. Pages 1-9 in 2012 Innovative Parallel Computing (InPar). 
IEEE. 

Beringer, J., L. B. Hutley, D. Abramson, S. K. Arndt, P. Briggs, M. Bristow, J. G. Canadell, L. 
A. Cernusak, D. Eamus, A. C. Edwards, B. J. Evans, B. Fest, K. Goergen, S. P. 
Grover, J. Hacker, V. Haverd, K. Kanniah, S. J. Livesley, A. Lynch, S. Maier, C. 
Moore, M. Raupach, J. Russell-Smith, S. Scheiter, N. J. Tapper, and P. Uotila. 2015. 
Fire in Australian savannas: from leaf to landscape. Global Change Biology 21:62-81. 

Blaschke, T., G. J. Hay, M. Kelly, S. Lang, P. Hofmann, E. Addink, R. Q. Feitosa, F. van der 
Meer, H. van der Werff, F. van Coillie, and D. Tiede. 2014. Geographic Object-Based 
Image Analysis - Towards a new paradigm. Isprs Journal of Photogrammetry and 
Remote Sensing 87:180-191. 

BOM. 2020. Climate Statistics for Australian Locations. 

Bradley, B. A. 2014. Remote detection of invasive plants: a review of spectral, textural and 
phenological approaches. Biological Invasions 16:1411-1425. 

Briem, G. J., J. A. Benediktsson, and J. R. Sveinsson. 2002. Multiple classifiers applied to 
multisource remote sensing data. IEEE Transactions on Geoscience and Remote 
Sensing 40:2291-2299. 

Brooks, K. J., S. A. Setterfield, and M. M. Douglas. 2010. Exotic Grass Invasions: Applying a 
Conceptual Framework to the Dynamics of Degradation and Restoration in Australia's 
Tropical Savannas. Restoration Ecology 18:188-197. 

Chen, T. Q., and C. Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. Kdd'16: 
Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge 
Discovery and Data Mining:785-794. 

Clerici, N., C. A. V. Calderon, and J. M. Posada. 2017. Fusion of Sentinel-1A and Sentinel-
2A data for land cover mapping: a case study in the lower Magdalena region, 
Colombia. Journal of Maps 13:718-726. 



 

 Remote sensing of gamba grass in northern Australia: An assessment of methods and guidelines for use | 28  

Dhu, T., B. Dunn, B. Lewis, L. Lymburner, N. Mueller, E. Telfer, A. Lewis, A. McIntyre, S. 
Minchin, and C. Phillips. 2017. Digital earth Australia – unlocking new value from 
earth observation data. Big Earth Data 1:64-74. 

Donlon, C., B. Berruti, A. Buongiorno, M. H. Ferreira, P. Femenias, J. Frerick, P. Goryl, U. 
Klein, H. Laur, C. Mavrocordatos, J. Nieke, H. Rebhan, B. Seitz, J. Stroede, and R. 
Sciarra. 2012. The Global Monitoring for Environment and Security (GMES) Sentinel-
3 mission. Remote Sensing of Environment 120:37-57. 

Drusch, M., U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, C. Isola, 
P. Laberinti, P. Martimort, A. Meygret, F. Spoto, O. Sy, F. Marchese, and P. 
Bargellini. 2012. Sentinel-2: ESA's Optical High-Resolution Mission for GMES 
Operational Services. Remote Sensing of Environment 120:25-36. 

Ens, E., L. B. Hutley, N. A. Rossiter-Rachor, M. M. Douglas, and S. A. Setterfield. 2015. 
Resource-use efficiency explains grassy weed invasion in a low-resource savanna in 
north Australia. Frontiers in Plant Science 6. 

Evangelista, P. H., T. J. Stohlgren, J. T. Morisette, and S. Kumar. 2009. Mapping Invasive 
Tamarisk (Tamarix): A Comparison of Single-Scene and Time-Series Analyses of 
Remotely Sensed Data. Remote Sensing 1:519-533. 

Ferdinands, K. B., M. M. Douglas, S. A. Setterfield, and J. L. Barratt. 2006. Africanising the 
tropical woodlands: Canopy loss and tree death following gamba grass Andropogon 
gayanus invasion. Pages 296-296 in 15th Australian Weeds Conference: Managing 
Weeds in a Changing Climate. Weed Management Society of South Australia. 

Gavier-Pizarro, G. I., T. Kuemmerle, L. E. Hoyos, S. I. Stewart, C. D. Huebner, N. S. Keuler, 
and V. C. Radeloff. 2012. Monitoring the invasion of an exotic tree (Ligustrum 
lucidum) from 1983 to 2006 with Landsat TM/ETM plus satellite data and Support 
Vector Machines in Cordoba, Argentina. Remote Sensing of Environment 122:134-
145. 

Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore. 2017. Google 
Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of 
Environment 202:18-27. 

Haldar, S. K. 2013. Mineral Exploration: Principles and Applications. Mineral Exploration: 
Principles and Applications:1-334. 

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. 
Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. 
Chini, C. O. Justice, and J. R. G. Townshend. 2013. High-Resolution Global Maps of 
21st-Century Forest Cover Change. Science 342:850-853. 

Hill, M. J., U. Senarath, A. Lee, M. Zeppel, J. M. Nightingale, R. D. J. Williams, and T. R. 
McVicar. 2006. Assessment of the MODIS LAI product for Australian ecosystems. 
Remote Sensing of Environment 101:495-518. 

Jordan, M. I., and T. M. Mitchell. 2015. Machine learning: Trends, perspectives, and 
prospects. Science 349:255-260. 

Krause, C., Dunn, B., Bishop-Taylor, R., Adams, C., Burton, C., Alger, M., Chua, S., Phillips, 
C., Newey, V., Kouzoubov, K., Leith, A., Ayers, D., Hicks, A., DEA Notebooks 
contributors 2021. 2021. Digital Earth Australia notebooks and tools repository. 
Geoscience Australia, Canberra. 

Lass, L. W., T. S. Prather, N. F. Glenn, K. T. Weber, J. T. Mundt, and J. Pettingill. 2005. A 
review of remote sensing of invasive weeds and example of the early detection of 



 

 Remote sensing of gamba grass in northern Australia: An assessment of methods and guidelines for use | 29  

spotted knapweed (Centaurea maculosa) and babysbreath (Gypsophila paniculata) 
with a hyperspectral sensor. Weed Science 53:242-251. 

Lawrence, R. L., S. D. Wood, and R. L. Sheley. 2006. Mapping invasive plants using 
hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote 
Sensing of Environment 100:356-362. 

Levick, S. R., and K. H. Rogers. 2011. Context-dependent vegetation dynamics in an African 
savanna. Landscape Ecology 26:515-528. 

Lewis, A., S. Oliver, L. Lymburner, B. Evans, L. Wyborn, N. Mueller, G. Raevksi, J. Hooke, R. 
Woodcock, J. Sixsmith, W. J. Wu, P. Tan, F. Q. Li, B. Killough, S. Minchin, D. 
Roberts, D. Ayers, B. Bala, J. Dwyer, A. Dekker, T. Dhu, A. Hicks, A. Ip, M. Purss, C. 
Richards, S. Sagar, C. Trenham, P. Wang, and L. W. Wang. 2017. The Australian 
Geoscience Data Cube - Foundations and lessons learned. Remote Sensing of 
Environment 202:276-292. 

Li, J., and D. P. Roy. 2017. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 
Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sensing 9. 

Maier, S. W. 2010. Changes in surface reflectance from wildfires on the Australian continent 
measured by MODIS. International Journal of Remote Sensing 31:3161-3176. 

Main, R., R. Mathieu, W. Kleynhans, K. Wessels, L. Naidoo, and G. P. Asner. 2016. Hyper-
Temporal C-Band SAR for Baseline Woody Structural Assessments in Deciduous 
Savannas. Remote Sensing 8. 

Marshall, V., M. Lewis, and B. Ostendorf. 2012. Do Additional Bands (Coastal, Nir-2, Red-
Edge and Yellow) in Worldview-2 Multispectral Imagery Improve Discrimination of an 
Invasive Tussock, Buffel Grass (Cenchrus Ciliaris)? Xxii Isprs Congress, Technical 
Commission Viii 39-B8:277-281. 

Matongera, T. N., O. Mutanga, T. Dube, and M. Sibanda. 2017. Detection and mapping the 
spatial distribution of bracken fern weeds using the Landsat 8 OLI new generation 
sensor. International Journal of Applied Earth Observation and Geoinformation 57:93-
103. 

Miller, A. 2002. Subset selection in regression. CRC Press. 

Mueller, N., A. Lewis, D. Roberts, S. Ring, R. Melrose, J. Sixsmith, L. Lymburner, A. 
McIntyre, P. Tan, S. Curnow, and A. Ip. 2016. Water observations from space: 
mapping surface water from 25 years of Landsat imagery across Australia. Remote 
Sensing of Environment 174:341–352. 

Olsony, R. S., W. La Cava, Z. Mustahsan, A. Varik, and J. H. Moore. 2018. Data-driven 
advice for applying machine learning to bioinformatics problems. Pacific Symposium 
on Biocomputing 2018 (Psb):192-203. 

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. 
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. 
Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in 
Python. Journal of Machine Learning Research 12:2825-2830. 

Pettorelli, N., J. O. Vik, A. Mysterud, J. M. Gaillard, C. J. Tucker, and N. C. Stenseth. 2005. 
Using the satellite-derived NDVI to assess ecological responses to environmental 
change. Trends in Ecology & Evolution 20:503-510. 

Petty, A. M., S. A. Setterfield, K. B. Ferdinands, and P. Barrow. 2012. Inferring habitat 
suitability and spread patterns from large-scale distributions of an exotic invasive 
pasture grass in north Australia. Journal of Applied Ecology 49:742-752. 



 

 Remote sensing of gamba grass in northern Australia: An assessment of methods and guidelines for use | 30  

Pflugmacher, D., W. B. Cohen, and R. E. Kennedy. 2012. Using Landsat-derived disturbance 
history (1972-2010) to predict current forest structure. Remote Sensing of 
Environment 122:146-165. 

Robinson, T. P., G. W. Wardell-Johnson, G. Pracilio, C. Brown, R. Corner, and R. D. van 
Klinken. 2016. Testing the discrimination and detection limits of WorldView-2 imagery 
on a challenging invasive plant target. International Journal of Applied Earth 
Observation and Geoinformation 44:23-30. 

Rossiter-Rachor, N. A., S. A. Setterfield, M. M. Douglas, L. B. Hutley, and G. D. Cook. 2008. 
Andropogon gayanus (Gamba grass) invasion increases fire-mediated nitrogen 
losses in the tropical savannas of northern Australia. Ecosystems 11:77-88. 

Rossiter-Rachor, N. A., S. A. Setterfield, M. M. Douglas, L. B. Hutley, G. D. Cook, and S. 
Schmidt. 2009. Invasive Andropogon gayanus (gamba grass) is an ecosystem 
transformer of nitrogen relations in Australian savanna. Ecological Applications 
19:1546-1560. 

Rossiter, N. A., S. A. Setterfield, M. M. Douglas, and L. B. Hutley. 2003. Testing the grass-
fire cycle: alien grass invasion in the tropical savannas of northern Australia. Diversity 
and Distributions 9:169-176. 

Schmidt, J., F. E. Fassnacht, M. Forster, and S. Schmidtlein. 2018. Synergetic use of 
Sentinel-1 and Sentinel-2 for assessments of heathland conservation status. Remote 
Sensing in Ecology and Conservation 4:225-239. 

Setterfield, S., M. Douglas, L. Hutley, K. Ferdinands, E. Ens, K. Brooks, and N. Rossiter. 
2008. Ecosystem impacts of an exotic grass in northern Australia: effects on structure 
and carbon stocks. Page 198 in Sixteenth Australian Weeds Conference. 
Queensland Weeds Society, Brisbane. 

Setterfield, S. A., N. A. Rossiter-Rachor, and V. M. Adams. 2018. Navigating the fiery 
debate: the role of scientific evidence in eliciting policy and management responses 
for contentious plants in northern Australia. Pacific Conservation Biology 24:318-328. 

Setterfield, S. A., N. A. Rossiter-Rachor, M. M. Douglas, L. Wainger, A. M. Petty, P. Barrow, 
I. J. Shepherd, and K. B. Ferdinands. 2013. Adding Fuel to the Fire: The Impacts of 
Non-Native Grass Invasion on Fire Management at a Regional Scale. Plos One 8. 

Setterfield, S. A., N. A. Rossiter-Rachor, L. B. Hutley, M. M. Douglas, and R. J. Williams. 
2010. Turning up the heat: the impacts of Andropogon gayanus (gamba grass) 
invasion on fire behaviour in northern Australian savannas. Diversity and Distributions 
16:854-861. 

Skidmore, A. K., J. G. Ferwerda, O. Mutanga, S. E. Van Wieren, M. Peel, R. C. Grant, H. H. 
T. Prins, F. B. Balcik, and V. Venus. 2010. Forage quality of savannas - 
Simultaneously mapping foliar protein and polyphenols for trees and grass using 
hyperspectral imagery. Remote Sensing of Environment 114:64-72. 

Torres, R., P. Snoeij, D. Geudtner, D. Bibby, M. Davidson, E. Attema, P. Potin, B. Rommen, 
N. Floury, M. Brown, I. N. Traver, P. Deghaye, B. Duesmann, B. Rosich, N. Miranda, 
C. Bruno, M. L'Abbate, R. Croci, A. Pietropaolo, M. Huchler, and F. Rostan. 2012. 
GMES Sentinel-1 mission. Remote Sensing of Environment 120:9-24. 

Turner, W., C. Rondinini, N. Pettorelli, B. Mora, A. K. Leidner, Z. Szantoi, G. Buchanan, S. 
Dech, J. Dwyer, M. Herold, L. P. Koh, P. Leimgruber, H. Taubenboeck, M. Wegmann, 
M. Wikelski, and C. Woodcock. 2015. Free and open-access satellite data are key to 
biodiversity conservation. Biological Conservation 182:173-176. 



 

 Remote sensing of gamba grass in northern Australia: An assessment of methods and guidelines for use | 31  

Turner, W., S. Spector, N. Gardiner, M. Fladeland, E. Sterling, and M. Steininger. 2003. 
Remote sensing for biodiversity science and conservation. Trends in Ecology & 
Evolution 18:306-314. 

Whiteside, T. G., G. S. Boggs, and S. W. Maier. 2011. Comparing object-based and pixel-
based classifications for mapping savannas. International Journal of Applied Earth 
Observation and Geoinformation 13:884-893. 

Wood, E. M., A. M. Pidgeon, V. C. Radeloff, and N. S. Keuler. 2012. Image texture as a 
remotely sensed measure of vegetation structure. Remote Sensing of Environment 
121:516-526. 

Wooster, M. J., W. Xu, and T. Nightingale. 2012. Sentinel-3 SLSTR active fire detection and 
FRP product: Pre-launch algorithm development and performance evaluation using 
MODIS and ASTER datasets. Remote Sensing of Environment 120:236-254. 

Wulder, M. A., N. C. Coops, D. P. Roy, J. C. White, and T. Hermosilla. 2018. Land cover 2.0. 
International Journal of Remote Sensing 39:4254-4284. 

Wulder, M. A., J. G. Masek, W. B. Cohen, T. R. Loveland, and C. E. Woodcock. 2012. 
Opening the archive: How free data has enabled the science and monitoring promise 
of Landsat. Remote Sensing of Environment 122:2-10. 

Xiong, X., J. Butler, K. Chiang, B. Efremova, J. Fulbright, N. Lei, J. McIntire, H. Oudrari, J. 
Sun, Z. Wang, and A. Wu. 2014. VIIRS on-orbit calibration methodology and 
performance. Journal of Geophysical Research: Atmospheres 119:5065-5078. 

Yang, C. H., and J. H. Everitt. 2010. Mapping three invasive weeds using airborne 
hyperspectral imagery. Ecological Informatics 5:429-439. 

Zhang, Y. 2002. Problems in the fusion of commercial high-resolution satelitte as well as 
Landsat 7 images and initial solutions. International Archives of Photogrammetry 
Remote Sensing and Spatial Information Sciences 34:587-592. 

Zhou, J. J., R. Y. Guo, M. T. Sun, T. J. G. L. T. Di, S. Wang, J. Y. Zhai, and Z. Zhao. 2017. 
The Effects of GLCM parameters on LAI estimation using texture values from 
Quickbird Satellite Imagery. Scientific Reports 7. 

  

 


	Acronyms
	Executive summary
	1. Requirements for the mapping and monitoring of gamba grass in the Emissions Reduction Fund
	2. Satellite remote sensing requirements for high-biomass grass mapping
	2.1 Spatial, temporal, spectral and radiometric considerations
	2.2 Current satellite options for remote sensing of gamba grass in the ERF context
	2.2.1 Legacy satellite missions

	2.3 A multi-scaled approach for large-area mapping of gamba grass

	3. Leveraging commercial satellite imagery and gradient boosting for fine-scale gamba-grass mapping
	3.1 High-resolution mapping approach
	3.1.1 Study area
	3.1.2 Field measurements for model training and validation
	3.1.3 WorldView-3 imagery acquisition and processing
	3.1.4 Extreme gradient boosting

	3.2 High-resolution mapping of gamba grass presence

	4. Fusing open-access multi-spectral and synthetic aperture radar remote sensing for large-area gamba-grass mapping
	4.1 Open-access imaging of vegetation structure and reflectance

	5. Accessibility, cost and processing requirements
	5.1 Accessibility and cost
	5.2 Data cubes and cloud-based distributed processing
	5.3 Future developments in Earth observation

	6. Guidelines for gamba-grass mapping with remote sensing in the ERF context
	6.1.1 Guideline considerations

	References



