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Abstract Plants adapted to special soil types are ideal for investigating evolutionary
processes, including maintenance of intraspecific variation, adaptation, reproductive isola-
tion, ecotypic differentiation, and the tempo and mode of speciation. Common garden and
reciprocal transplant approaches show that both local adaptation and phenotypic plasticity
contribute to edaphic (soil-related) specialization. Edaphic specialists evolve rapidly and
repeatedly in some lineages, offering opportunities to investigate parallel evolution, a
process less commonly documented in plants than in animals. Adaptations to soil features
are often under the control of major genes and they frequently have direct or indirect effects
on genes that contribute to reproductive isolation. Both reduced competitiveness and greater
susceptibility to herbivory have been documented among some edaphic specialists when
grown in ‘normal’ soils, suggesting that a high physiological cost of tolerance may result in
strong divergent selection across soil boundaries. Interactionswithmicrobes, herbivores, and
pollinators influence soil specialization either by directly enhancing tolerance to extremes in
soil conditions or by reducing gene flow between divergent populations. Climate change
may further restrict the distribution of edaphic specialists due to increased competition from
other taxa or, expand their ranges, if preadaptations to drought or other abiotic stressors
render them more competitive under a novel climate.

Keywords Ecological Speciation . Edaphic Endemism . Harsh Environments . Cost of
Tolerance . Serpentine .Metal Tolerance . Parallel Speciation . Geobotany . Plant-Soil
Relations . Local Adaptation

BThe red-rock forest may seem hellish to us, but it is a refuge to its flora...it is the
obdurate physical (and chemical) adversity of things such as peridotite bedrock
which often drives life to its most surprising transformations^ (Wallace, 1983)

Introduction

Over a century and a half after Darwin’s On the Origin of Species, there is little doubt
that ecological adaptation plays a crucial role in the diversification of species (Nosil,
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2012). The study of ecological speciation marks a central theme in evolutionary
biology, with a major focus on understanding the role of adaptation in reproductive
isolation (Baack et al., 2015) and species divergence (Schemske, 2010).

Plants found on ‘extreme’ soils, those characterized by unusual chemical (pH, ionic
strength, nutrients, or heavy metals) or physical conditions (soil moisture, temperature,
texture, structure, or depth), provide model systems to examine the role of edaphic (soil-
related) adaptation in ecological speciation (Rajakaruna, 2004; Kay et al., 2011) and
adaptive radiation (Ellis & Weis, 2005; Paun et al., 2016; Shimizu-Inatsugi et al., 2016).
The landmark papers BEvolution in closely adjacent plant populations^ (Antonovics,
2006 and references therein) focused on the evolution of metal tolerance in the grasses
Anthoxanthum odoratum and Agrostis tenuis on mine tailings in Europe. These classic
papers, along with early studies of ecotypes on western North American serpentine soils
(Anacker, 2014 and references therein), illustrated how strong selection can maintain
distinct sub-populations in the face of gene flow, highlighting three key lessons from
edaphic specialization pertinent to evolution: first, edaphic transitions often have direct or
indirect effects on reproductive isolation between ecologically-divergent populations
(Christie & Macnair, 1987; Wright et al., 2013), suggesting a link between adaptation
and speciation; second, some populations can evolve (or lose) tolerance to edaphic
conditions rapidly and with relative ease, suggesting that major gene loci (i.e., loci with
large phenotypic effects) could be driving adaptive evolution (Macnair, 1983; Bratteler
et al., 2006, 2006; Lowry et al., 2012); and third, populations within some species can
independently evolve tolerance to edaphic conditions (i.e., tolerance evolves multiple
times within a species), suggesting a tendency towards parallel evolution (Rajakaruna &
Whitton, 2004; Ostevik et al., 2012; Roda et al., 2013). Edaphic specialists, especially
plants growing in ultramafic (Harrison & Rajakaruna, 2011; Anacker, 2014), gypsum
(Moore et al., 2014; Escudero et al., 2015; Bolukbasi et al., 2016), mine tailing (Ernst,
2006), seleniferous (Schiavon & Pilon-Smits, 2017), and saline (Saslis-Lagoudakis et al.,
2014; Cheeseman, 2015) habitats, are now at the forefront of plant evolutionary research,
providing model systems for exploring factors and mechanisms driving evolutionary
processes from the species to community level (Cheplick, 2015).

In this review, I highlight studies of edaphic specialists from serpentine outcrops,
saline soils, gypsum and other carbonate deposits, and heavy metal-rich mine tailings,
and explore such questions as:

& How do edaphic endemics evolve (i.e., what are the major pathways to edaphic
specialization)?

& Are edaphic endemics new or old species?
& How does adaptation contribute to reproductive isolation?
& Is the transition to edaphic endemism directional, and are edaphic endemics

evolutionary dead-ends?
& Does parallel evolution of traits conferring adaptations and reproductive isolation

occur frequently in edaphic specialists?
& How does tolerance to edaphic extremes influence competitiveness in ‘normal’

soils, i.e., what is the cost of tolerance?
& Do interactions with herbivores or microbes drive the evolution of edaphic

specialization?
& Are edaphic specialists more or less sensitive to climate change?
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& What is the genetic basis of edaphic specialization and speciation? Is there evidence
for horizontal gene flow conferring edaphic adaptation or for genetic similarity
among the mechanisms used by different species under any given edaphic stress?

Finally, I outline directions for future research on the use of edaphic specialists as
model systems to study evolutionary processes across cellular, organismic, population,
and community levels.

How do Edaphic Endemics Evolve?

Colonization of new environments, including edaphic islands, can be achieved by
ecotypic differentiation via local adaptation or by phenotypic plasticity (Hereford,
2009; Palacio-López et al., 2015). Early studies in Sweden (Turesson, 1922) and
California (Clausen et al., 1940) demonstrated that local adaptation is common in
species distributed across altitudinal and climatic gradients. Similarly, elegant transplant
experiments conducted by the British Ecological Society from the 1920s to the 1930s
highlighted edaphic factors as potent agents of selection (Marsden-Jones & Turrill,
1938). The long-term Park Grass Experiment in Rothamsted, UK (Silvertown et al.,
2006), in which the grass Anthoxanthum odoratum was subjected to different fertilizer
and lime treatments across multiple plots, showed local adaptation to soil types over a
relatively short period. These studies exemplified how experimental methods such as
common garden and reciprocal transplant experimentation can be used to examine how
phenotypic plasticity and local adaptation contribute to habitat specialization (Wright &
Stanton, 2011).

Species living in harsh environments, including on edaphic islands, have genotypes
either broadly tolerant to wide-ranging environmental conditions (Bradshaw, 2006) or
locally adapted to specific ecological factors characteristic of the ‘home’ environment,
i.e., ecotypes (Lowry, 2012). Ecotypes are a critical stage in the speciation process, and
the recognition of such populations is vital for evolutionary studies (Via, 2009). The
existence of sharp habitat boundaries between ecotypes is a compelling phenomenon
that has provided some of the best experimental evidence of natural selection in the
wild (Rajakaruna & Whitton, 2004). Although there is much support for ecotypic
differentiation and species-level endemism among flowering plants found on edaphic
islands (O’Dell & Rajakaruna, 2011), such edaphic specialization is not as well-
documented among ferns, gymnosperms, mycorrhizal fungi, lichens, or bryophytes
(Rajakaruna et al., 2014).

It is important to examine factors and mechanisms driving rapid evolution in
response to environmental pressures, such as those influencing plants on edaphic
islands. Still, it is equally critical to pay attention to ‘genostasis,’ in which the lack of
sufficient genetic variation may result in evolutionary failure (Bradshaw, 1991). Early
work on mine tailings (Antonovics, 2006 and references therein) provides an example:
at edges of mine tailings, some species maintain heavy metal-tolerant and -intolerant
genotypes located only a few centimeters apart. In many other adjacent species, such
edaphic differentiation is not found. Most species found off of mine tailings are unable
to colonize metal-contaminated soil because they do not have the necessary alleles for
adaptive variation (Antonovics, 1976). Additionally, a meta-analysis of studies of local
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adaptation showed that only 45% of population pairs (out of 1,032 compared) had
better performance of the ‘home’ population relative to the ‘away’ population at both
sites (Leimu & Fischer, 2008). This suggests that habitat-mediated selection may not be
as common in plants as generally assumed. Lack of local adaptation may result from
reasons other than the lack of necessary genetic variance (Bell, 2012; Cheplick, 2015),
including insufficient time for adaptive evolution, a high degree of phenotypic plastic-
ity, extensive gene flow, and random genetic drift due to founder events. Further, lack
of local adaptation may be a statistical/methodological artifact of choosing study
habitats that are too similar in their major selection pressures (Cheplick, 2015).

Landmark papers on factors and mechanisms driving habitat specialization
(Mason, 1946a, b; Raven, 1964) provided an early framework for understanding
the role played by soil-based selection in the origin of new species. These ideas
offered a context to envision a set of stages that may lead to the establishment of an
edaphically endemic species, from the initial tolerance of an edaphic condition by
preadapted genotypes to clear-cut species formation (Kruckeberg, 1986). While this
sequence represents a relatively precise picture of the evolutionary pathways to
endemism, it does not indicate why some genotypes evolve through all the steps
and others do not. It is possible that there is a relatively higher cost of broad
tolerance in edaphic endemic species relative to the cost of tolerance found in
widespread taxa with broad edaphic tolerance (Kazakou et al., 2008; Maestri
et al., 2010). Thus, only lineages experiencing a high cost of broad tolerance will
be subjected to strong divergent selection across an edaphic boundary, leading to
evolution of ecotypes and edaphic endemic species. The decisive step
distinguishing an ecotype from an endemic species is likely the acquisition of
complete reproductive isolation between the ancestral population and the ecotype,
allowing an independent gene pool to evolve (Macnair & Gardner, 1998; Lowry,
2012). How this occurs, especially when populations are not geographically isolat-
ed, is a fundamental question in speciation research (Kay et al., 2011; O’Dell &
Rajakaruna, 2011).

Populations that become geographically isolated can gradually acquire genetic dif-
ferences through selection and drift, and eventually become reproductively isolated
through the process of allopatric speciation. Past climate fluctuations and other dramatic
environmental changes may have led to the extinction of widespread populations due to
massive vegetation shifts such as those that occurred during postglacial reforestation
(Slovák et al., 2012). Those surviving relict populations, especially those isolated on
edaphic islands, may have become differentiated by means of allopatric speciation.
Further, chance dispersal into novel edaphic habitats, particularly during strong climatic
oscillations of the Quaternary, would have also provided conditions of relaxed compe-
tition, facilitating the evolution of edaphic specialization (Dillenberger & Kadereit,
2013). Thus, allopatric speciation may be a particularly important pathway for the origin
of edaphically restricted paleoendemic species (Table 1). Abrupt and sharply delineated
edaphic habitats often provide opportunities for the divergence of edaphic specialist
species along contact zones through the process of parapatric speciation (Table 1). There
are major challenges, however, in demonstrating a parapatric origin for a species, as
speciation must occur without a geographic barrier to gene flow. First, it is possible that
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Table 1 Proposed modes of speciation and substrate type for some taxa having presumably diversified under
edaphic selection

Species Mode of Speciation Type of Substrate Reference

Adiantum viridimontanum Hybrid, Polyploid Serpentine Paris & Windham, 1988;
Paris, 1991

Arabidopsis spp. Hybrid Serpentine Arnold et al., 2016

Arctostaphylos spp. Hybrid Serpentine Gottlieb, 1968

Armeria spp. Hybrid Serpentine Feliner et al., 1996

Caulanthus amplexicaulis
var. barbarae

Allopatric Serpentine Pepper & Norwood, 2001

Galium spp. Hybrid Serpentine Krahulcová & Štěpánková,
1998

Geonoma macrostachys Sympatric Terra firme and moist
flood plain

Borchsenius et al., 2016

Harmonia spp. Allopatric Serpentine Baldwin, 1999

Helianthus spp. Hybrid, Polyploid,
Peripatric

Desert, Sand Dune,
Salt Marshes

Lai et al., 2005; Yakimowski
& Rieseberg, 2014 and
references therein

Hesperolinon spp. Peripatric Serpentine Schneider et al., 2016

Howea spp. Sympatric Volcanic and carbonate Savolainen et al., 2006

Iris spp. Hybrid Flooded soils Martin et al., 2006

Knautia arvensis Allopatric Serpentine Kaplan, 1998

Knautia spp. Hybrid/Polyploid Serpentine Kolář et al., 2014

Lasthenia californica
complex

Allopatric Ionically-harsh soils
such as saline,
serpentine, etc.

Rajakaruna, 2003;
Kay et al., 2011

Layia discodea Parapatric,
Peripatric

Serpentine Baldwin, 2005

Leptosiphon parviflorus Parapatric Serpentine Kay et al., 2011

Mentzelia monoensis Peripatric Silica-rich rhyolite tephra Brokaw et al., 2015

Metal-tolerant grasses Peripatric Metal mines Antonovics, 2006

Mimulus spp. Peripatric Saline, Serpentine,
Dry/Wet

Grossenbacher et al., 2014;
Selby et al., 2014; Sobel,
2014

Minuartia laricifolia
subsp. ophiolitica

Allopatric Serpentine Moore et al., 2013

Potentilla spp. Hybrid Serpentine Paule et al., 2015

Protium spp. Parapatric White-Sand Fine et al., 2013 and
references therein

Quercus spp. Hybrid Serpentine Forde & Faris, 1962

Silene dioica Allopatric Serpentine Westerbergh & Saura, 1992

Streptanthus glandulosus
complex

Allopatric Serpentine Mayer & Soltis, 1994, 1999
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the initial evolution of traits driving reproductive isolation may have occurred under
allopatric conditions (Pettengill & Moeller, 2012); a new species that evolved under
allopatry may subsequently come into contact along an edaphic boundary and appear
identical to parapatric species in being relatively young, ecologically divergent, and
reproductively isolated. Further, reinforcement of reproductive isolation (Pfennig &
Pfennig, 2009), a process by which selection can minimize maladaptive hybridization,
may take place upon contact with those populations that initially diverged under
allopatry, thereby completing the speciation process. Genetic analyses can help distin-
guish whether divergence first occurred in allopatry and speciation was completed by
reinforcement (Widmer et al., 2009), although extensive introgression and hybridization
following secondary contact may make such determinations difficult (Barraclough &
Vogler, 2000; Ortiz-Barrientos et al., 2009; Strasburg et al., 2012). How speciation can
proceed in the face of gene flow between potentially interbreeding populations, includ-
ing among parents and newly formed hybrid species (Andrew et al., 2012; Renaut et al.,
2013), is especially revealing of the challenges associated with habitat specialization
under parapatry. Gene flow can dilute the adaptive differences that selection generates
between divergent populations; this may be especially problematic when one population
is significantly larger than the other, as in the case of a newly divergent population found
adjacent to an ancestral population, or in the presence of asymmetric gene flow
(Ellstrand, 2014). However, if the edaphic condition confers strong selection pressures
on one side of the edaphic barrier and there is strong selection against the tolerance genes
on the other side of the edaphic boundary (i.e., low ‘Haldanian’ fitness), then one could
expect evolution to occur even in the presence of gene flow.

Similarly, case studies of sympatric speciation (i.e., evolution from a single ancestral
species in the same location) must demonstrate species co-existence, sister relation-
ships, reproductive isolation, and that a former allopatric phase is highly unlikely. In
two palm species of Howea, endemic to the remote Lord Howe Island, Australia,
divergence in blooming periods is strongly correlated with soil type; only a few genetic
loci are more divergent between the two species than expected under neutrality, a
finding consistent with sympatric speciation involving disruptive or divergent selection
(Savolainen et al., 2006; Fig. 1a). Morphotypes of the palm Geonoma macrostachys in
Peruvian lowland forests provide another example of sympatric speciation likely
occurring between ecologically divergent (via soil and light) and reproductively isolat-
ed (via phenology and pollinators) populations (Borchsenius et al., 2016).

Budding or peripatric speciation is a diversification process through which new
species form at the periphery of an ancestral population. In this case, a few preadapted
genotypes encounter and colonize an edaphic island resulting in edaphic specialization.
Budding speciation appears to be especially common in plants (Crawford, 2010), as
high rates of selfing (Antonovics, 1968) and polyploidization (Soltis et al., 2004) result
in abrupt reproductive isolation between the ancestral and derivative populations. As
the initial peripheral populations are small, they can often quickly acquire reproductive
isolation via catastrophic selection, i.e., differential survival during an episode of mass
extinction (Gottlieb, 2004), or strong divergent selection (Grossenbacher et al., 2014).
At the time of speciation, sister taxa will exhibit highly asymmetrical and completely or
partially overlapping distributions, yet occupy distinct microhabitats (Gottlieb, 2004),
such as edaphically contrasting microsites. Eighty percent of the sister species of
Mimulus show patterns consistent with budding speciation: pairs are broadly sympatric,
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have highly asymmetric distributions, and occupy distinct habitats (Grossenbacher
et al., 2014), suggesting that ecologically divergent taxa in this genus (Lowry et al.,
2008) may have arisen from budding or peripatric speciation (see Table 1 for additional
case studies).

Fig. 1 Examples of edaphic influence on speciation and reproductive isolation. A Howea foresteriana is
largely restricted to limestone, while H. belmoreana is largely restricted to basalt (Savolainen et al., 2006;
Hipperson et al., 2016). Their geographic separation is accompanied by reproductive isolation via a difference
in flowering time: peak flowering in H. foresteriana (H. f.) occurs around two months before H. belmoreana
(H. b.). B Helianthus annuus (H. a.) and H. petiolaris are salt-intolerant species (glycophytes), but
H. paradoxus (H. pa.), which originated as a hybrid between the former two species, is a halophyte (Lexer
et al., 2003; 2004). Genetic studies suggest that this may be due to changes in the expression of genes for ion
transporters, with increased calcium uptake limiting sodium uptake in the halophyte (Edelist et al., 2009). C
Mimulus guttatus has both copper-tolerant and -intolerant populations in California. The alleles for copper
tolerance (Tol1) and hybrid lethality (Nec1) are at closely linked genetic loci; as selection for copper tolerance
occurred, both alleles rose to high frequency in the population on copper-contaminated soil (Wright et al.,
2013). D Collinsia sparsiflora has serpentine and nonserpentine ecotypes. Progeny of within-ecotype crosses
have high fertility; between-ecotype hybrids do occur, but the genetic distance between the ecotypes is
maintained because these hybrids have reduced fertility (ca. 26% reduction in seed viability in F1; Moyle
et al., 2012). Image Credit: Ian D. Medeiros
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A meta-analysis of phylogenies available for plants in the California Floristic
Province (CFP) showed that of 71 sister pairs from 12 families, 57 pairs (80%) were
broadly sympatric (Anacker & Strauss, 2014). Range sizes of sisters differed by a mean
of 10-fold and range overlap and range asymmetry were greatest in younger sisters,
suggesting that in the CFP, budding speciation has been an important pathway for the
origin of neoendemic species. Interestingly, of the 71 sister pairs they examined, 29
(41%) showed complete edaphic shifts whereas 20 (28%) showed partial edaphic shifts,
strongly implying that budding speciation via edaphic specialization is commonplace in
the edaphically-heterogeneous landscape of the CFP. Similarly, in the Cape Floristic
Region (CFR) of South Africa, 87% of sister species show partial or complete
ecological shifts; however, complete edaphic shifts were found in only 17% of CFR
pairs (van der Niet & Johnson, 2009) versus in 41% of the CFP pairs. This difference
may be attributable to lower levels of edaphic and topographic heterogeneity in the
CFR compared to the CFP, likely making edaphic transitions less significant in
speciation (Anacker & Strauss, 2014).

Hybridization, with or without polyploidy, can play a critical role in the origin and
establishment of edaphic specialists (Abbott et al., 2013; De Storme & Mason, 2014),
especially under parapatric, sympatric, and peripatric modes of speciation. Studies of
the relative importance of hybridization and polyploidization on the origin of edaphic
endemics show that introgression between close relatives and subsequent adaptation of
hybrid offspring to novel edaphic conditions, when directly or indirectly resulting in
reproductive isolation with parental taxa, can result in the origin and establishment of
hybrid species (Table 1). Edaphic divergence of the hybrid species from its parental
taxa appears to be central to the successful origin of several hybrid species, occurring
even in the absence of post-zygotic isolation caused by chromosomal and other genetic
incompatibilities (Abbott et al., 2010). There is strong evidence, via reciprocal trans-
plant and common garden approaches, for greater fitness of a hybrid in a novel edaphic
habitat relative to that of parental taxa for the sand dune specialist Helianthus anomalus
and the salt marsh specialist H. paradoxus (Fig. 1b), although such conclusive evidence
is lacking for another hybrid species, H. deserticola (Edelist et al., 2009; Donovan
et al., 2010). Similarly, a Salix hybrid complex from the European Alps has greater
tolerance to cold temperatures and nutrient-poor/low pH soils than either parent
(Gramlich et al., 2016). The hybrids appear to have originated after glaciers retreated
and established persistent populations within a few decades. A major factor contribut-
ing to hybrid establishment under sympatric settings is the ability to occupy more
extreme edaphic niches relative to either parent species (Abbott et al., 2010; Gramlich
et al., 2016).

Are Edaphic Endemics New or Old Species?

Edaphic specialists, formed through the multiple modes described above, have often
been used to compare the relative importance of rapid versus gradual speciation in the
origin of endemic species (Pepper & Norwood, 2001; Anacker, 2014). Edaphic special-
ists can arise under both of these scenarios (i.e., rapid versus gradual). Recently evolved
neoendemics can evolve from nearby, non-specialized relatives via rapid and local
speciation, including via parapatric, sympatric, and peripatric modes (Anacker &
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Strauss, 2014; Ferris et al., 2014; Schneider et al., 2016). In contrast, ancient
paleoendemics may have evolved via gradual speciation through biotype depletion,
including via allopatric (vicariant) speciation, as has been shown for the Streptanthus
glandulosus complex (Mayer & Soltis, 1994), Caulanthus amplexicaulis var. barbarae
(Pepper & Norwood, 2001), and for Minuartia spp. (Moore et al., 2013; Moore &
Kadereit, 2013; Table 1). There is ample evidence from studies of edaphic specialists
that large-scale geographic isolation is not always critical for diversification; total
reproductive isolation can be achieved even in the face of gene flow (Antonovics,
2006). In fact, recent phylogenetic investigations suggest that neoendemism may be
the norm in cases of edaphic specialization, not the exception (Baldwin, 2014).
Peripatric or budding speciation is an especially common mode of speciation among
neoendemic edaphic specialists, with high rates of selfing and polyploidization causing
immediate reproductive isolation between adjacent yet edaphically distinct populations
(Gottlieb, 2004). Strong directional and disruptive selection that often occurs across
edaphic boundaries, combined with parallel changes contributing to reproductive isola-
tion between divergent populations, can lead to rapid and local speciation (Levin, 1993;
Crawford, 2010). In peripatric speciation, the progenitor species is initially paraphyletic;
however, lineage sorting and extinction will eventually result in monophyly (Crawford,
2010). Case studies of edaphic differentiation in which there are phylogenetic or
population genetic data to support relatedness between edaphically divergent taxa are
listed in Table 2 along with additional evidence for edaphic divergence via ecological,
physiological, reproductive, or genetic studies (when available).

How Does Adaptation Contribute to Reproductive Isolation?

Establishing a direct or indirect link between traits that confer edaphic adaptation and
traits that contribute to reproductive isolation is strong evidence for the role of edaphic
factors in the divergence of species (Hopkins, 2013; Wright et al., 2013). Classic
studies of plants on mine tailings in Europe (Antonovics, 2006 and references
therein) clearly demonstrated that rapid and repeated evolution of metal tolerance is
often associated with the evolution of prezygotic isolating mechanisms, including the
evolution of both self-compatibility (Mousset et al., 2016 and references therein) and
earlier flowering in metal-tolerant populations (Antonovics, 2006 and references
therein). Both of these traits significantly limit gene flow between divergent popula-
tions, aiding in the evolution of independent gene pools under strong edaphic selection.
Flowering time shifts in Anthoxanthum odoratum in the Park Grass Experiment, at the
boundaries between plots vastly varying in soil pH, have resulted in reduced gene flow
(Silvertown et al., 2005). Adjacent populations that had a common origin at the start of
the experiment in 1856 have now diverged at neutral marker loci, suggesting that
reinforcement (i.e., selection against maladaptive hybridization) has been key to com-
pleting speciation. Establishing a direct link between pH tolerance and flowering time
is necessary to confirm the role of such reinforcement in speciation. Interestingly, there
was no indication of reinforcement at the boundaries of plots with smaller pH differ-
entials, suggesting a link between pH preference and flowering time. Earlier flowering
times have often been documented for serpentine-associated taxa, including those in the
Lasthenia californica complex (Yost et al., 2012), Helianthus exilis (Sambatti & Rice,

Lessons on evolution from the study of edaphic specialization



2007), Mimulus spp. (Macnair & Gardner, 1998; Selby et al., 2014), Gilia capitata
(Kruckeberg, 1951), and Leptosiphon spp. (Kay et al., 2011). Near complete reproduc-
tive isolation between coastal and inland populations of Mimulus guttatus has been
achieved by selection against immigrants and flowering time differences (Lowry et al.,
2008). The annual, inland populations exposed to more summer drought flower early
compared to the perennial populations along the coast on more moist soils.
Diversification within the stone plant genus Argyroderma of the Western Cape
Province in South Africa also appears to have occurred through allopatric adaptive
speciation, under strong edaphic-mediated divergent selection along with reproductive
isolation achieved through divergence in flowering times (Ellis et al., 2006). In the well
documented case of sympatric speciation in Howea, the shift in flowering phenology
between species on volcanic and calcareous soils dramatically reduced interspecific
gene flow (Hipperson et al., 2016; Fig. 1a). There also appears to be a pleiotropy
between flowering time and adaptation to drought, salinity, and pH, driving speciation
(Dunning et al., 2016). Temporal isolation is a key factor in facilitating plant speciation;
however, flowering time differences between close relatives can arise as a flexible
response to divergent edaphic conditions (Levin, 2009) or through direct or pleiotropic
genetic effects of edaphic adaptations (Hunter & Bomblies, 2010; Selby et al., 2014).

Soil constituents, such as heavy metals, are directly implicated in causing reproduc-
tive isolation between close relatives. Copper tolerance in Mimulus guttatus is
expressed in the sporophyte as well as in the pistil (Searcy & MacNair, 1993).
Copper in the pistils acts as a selective agent since seed production is reduced when
pollen donors are maladapted to copper-rich soils (Searcy & Mulcahy, 1985; Searcy &
MacNair, 1990). Metal accumulation in reproductive organs generates a strong
prezygotic isolating mechanism by decreasing reproductive output in crosses between
edaphically divergent parents. Therefore, edaphic factors directly act as reproductive
barriers, favoring reproduction between plants growing under similar edaphic condi-
tions and minimizing gene flow between edaphically divergent taxa.

Serpentine tolerant Brassicaceae endemics can limit nickel uptake into the shoot,
particularly into reproductive organs, while non-endemics accumulate significantly
more nickel into reproductive organs relative to shoots (Meindl et al., 2014). In the
selenium hyperaccumulating Stanleya pinnata, selenium is preferentially allocated to
flowers, while the non-accumulating relative Brassica juncea has higher selenium
concentrations in leaves relative to flowers (Quinn et al., 2011a). Selenium had no
effect on pollen germination in the hyperaccumulator, but it impaired pollen germina-
tion in the relative, showing a possible evolutionary cost for selenium accumulation
through decreased pollen germination in the non-accumulating taxon.

Pollinators can distinguish between ‘clean’ nectar and that contaminated with
metals, and avoid nectar enriched with metal because of toxicity (Meindl & Ashman,
2013). Pollinator preference of nectar, therefore, can potentially limit gene flow
between close relatives found on distinct substrates. Additional trait differences be-
tween edaphically divergent taxa can also act as reproductive barriers, including flower
size differences leading to differential pollinator preferences (Gardner & Macnair,
2000) and pollen-stigma incompatibilities leading to reduced potential for fertilization
(Rajakaruna & Whitton, 2004).

Edaphic specialists also provide opportunities for examining how post-zygotic
isolating mechanisms contribute to edaphic divergence. In the Mimulus guttatus
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complex, there is evidence for inviability in hybrids between metal-tolerant and -
intolerant parents (Gardner & MacNair, 2000), although such post-zygotic isolation is
not a factor between coastal and inland ecotypes of the same taxon (Lowry et al., 2008).
Work on copper tolerance in M. guttatus (Macnair & Christie, 1983; Wright et al.,
2013) has revealed a genetic association between edaphic tolerance and hybrid invia-
bility (Fig. 1c). In Collinsia sparsiflora, ecotypic adaptation to serpentine is associated
with the expression of hybrid sterility between serpentine and nonserpentine ecotypes,
over spatial scales of less than 1 km (Wright & Stanton, 2007; Moyle et al., 2012;
Fig. 1d). Further, allozyme (Wright & Stanton, 2011) and microsatellite data (Moyle
et al., 2012) suggest there is little genetic differentiation between ecotypes, indicating
that hybrid sterility may have recently evolved.

A potentially fascinating example of the relationship between adaptation and repro-
ductive isolation yet to be studied lies in the progenitor-derivative species pair of Layia
glandulosa subsp. lutea and L. discoidea (Baldwin, 2005). Unlike Mimulus, in which
hybrid lethality has been documented between copper-tolerant and -intolerant taxa
(Wright et al., 2013), there is complete fertility between artificial crosses of the
serpentine-intolerant and serpentine-endemic Layia species; however, spontaneous
hybrids are not found in nature, suggesting that partially or completely reduced hybrid
fitness in one or both parental habitats may be responsible for the diversification.
Additionally, it is unknown whether the flower shape (discoid- vs. ray-flowered) plays
a role in pollinator preferences or whether potential differences in flowering time,
especially when populations occur along contact zones, contribute to pre-zygotic
isolation. Similarly, factors contributing to reproductive isolation between the guano-
endemic Lasthenia maritima and its close relative, the coastal bluff-specialist L. minor,
are little-known (Rajakaruna, 2004). There is evidence for greater self-compatibility
within the guano-endemic (Crawford et al., 1985), resembling the trends shown for
some metal-tolerant species (Mousset et al., 2016 and references therein); however, it is
unclear whether other isolation barriers, such as differences in pollinators or flowering
times, or hybrid lethality and reduced fitness of hybrids in parental habitats, also
contribute to preserving isolation. Further, the physiological bases for guano adaptation
are also unknown. Whether the high nutrient content (nitrogen, phosphorus), low pH
(due to uric and other acids), or some other chemical or physical factor of guano drives
selection on these substrates needs further investigation. For both Layia and Lasthenia
case studies, QTL-based comparative genome mapping and transcript profiling ap-
proaches (Sun & Schliekelman, 2011) can be used to determine whether any traits
conferring adaptation to substrate have effects on traits contributing to reproductive
isolation between the divergent taxa.

Are Edaphic Endemics Evolutionary Dead-Ends?

The growing availability of molecular phylogenies has provided us with means to
investigate the evolutionary dynamics of habitat specialization (Vamosi et al., 2014),
including directionality of evolution of edaphic endemism (Anacker et al., 2011).
Population genetic and phylogenetic analyses of serpentine-tolerant plants (Mengoni
et al., 2003a, b; Nyberg Berglund et al., 2004; Anacker, 2011), metallophytes (Mengoni
et al., 2001; Pauwels et al., 2005), halophytes (Bennett et al., 2013), calciphiles (Klein
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& Kadereit, 2015), and gypsophiles (Bresowar & McGlaughlin, 2015) have demon-
strated that tolerance to edaphic conditions has been gained numerous times within
various groups of angiosperms and has even been lost in some groups, suggesting that
traits conferring edaphic tolerance are evolutionarily labile. Further, differences in the
evolutionary dynamics (i.e., gains vs. losses) of edaphic tolerance documented among
different lineages may result from association of edaphic tolerance traits with other
ecophysiological traits related to tolerance of environmental stresses, with edaphic
tolerance being more easily gained in preadapted lineages (Saslis-Lagoudakis et al.,
2014; Selby et al., 2014). The direction of serpentine endemism among genera with
serpentine-tolerant species in California is mostly from non-tolerant and -tolerant
species to endemic species, with a few reversals from the tolerant or endemic state to
the non-tolerant state (Anacker et al., 2011). This suggests that the evolution of edaphic
endemism may represent an evolutionary dead-end. This may not always be the case,
however, as endemics are often able to influence adjacent populations by repeated
episodes of introgression and polyploidization. In the diploid-tetraploid complex of
Knautia arvensis, recurrent polyploidization within serpentine populations followed by
hybridization with the neighboring non-serpentine tetraploid populations, has allowed
serpentine tetraploids to escape from their serpentine refuge and spread further into
non-serpentine habitats (Kolář et al., 2012). Similarly, endemic Streptanthus clades are
often quite diverse, with endemism having evolved numerous times and having been
lost at least once (Cacho et al., 2014). In Arabidopsis, there is also evidence for
serpentine-tolerant loci being introgressed from one serpentine-endemic to another
(Arnold et al., 2016) and for hybridization between two sympatric and diploid lime-
stone endemics, giving rise to a tetraploid siliceous soil endemic (Schmickl & Koch,
2011). These findings suggest that edaphic endemism does not always represent an
evolutionary dead-end and that endemics have the potential to further diversify within
(Cacho et al., 2014) or across substrates (Schmickl & Koch, 2011).

How Does Tolerance to Edaphic Extremes Influence Competitiveness
in ‘Normal’ Soils?

Edaphic islands have long been considered a refuge from competition (Kruckeberg,
1954), suggesting that tolerance to edaphic extremes has a cost. However, the idea of a
trade-off of competitive ability for tolerance (i.e., trade-off hypothesis) needs close
scrutiny via experimentation (Harper et al., 1997a). Edaphic specialists, compared to
non-specialists, often appear to be less competitive (Milla et al., 2011; Moore et al.,
2013; Anacker, 2014; Bastida et al., 2014) and more susceptible to herbivory when
found on ‘normal’ soils (Dechamps et al., 2008; Kay et al., 2011; Strauss & Boyd,
2011). However, plants that specialize in a particular edaphic setting (e.g., a metal
mine) may have adapted not only to the increased metal concentrations but also to other
stressors such as drought, low nutrients, high light, and poor soil structure character-
izing the mine site. Therefore, it is unclear if a reduction in fitness or competitive ability
results from the direct cost associated with metal tolerance per se (i.e., trade-off
hypothesis) or with other correlated traits conferring adaptation to the mine site. To
demonstrate that a negative correlation between traits is the result of pleiotropy (and not
via gene/s in linkage disequilibrium with metal tolerance gene/s) it is essential to
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experimentally demonstrate that the traits are genetically correlated (Partridge & Sibly,
1991). Experimental studies on copper tolerance in Mimulus guttatus (Harper et al.,
1997a), however, provide no clear evidence in support of a trade-off hypothesis.
Additionally, low fitness of metal tolerant plants in ‘normal’ environments can also
result from an increased metabolic requirement for the metal (i.e., metal requirement
hypothesis). Studies conducted on M. guttatus, however, show no such increased
requirement for copper (Harper et al., 1997b, 1998), suggesting that neither the trade-
off hypothesis nor the metal requirement hypothesis can fully explain the cost of copper
tolerance inM. guttatus. Additional experimentation will likely reveal that it is not one
trait but a suite of adaptive traits (i.e., genes, their modifiers, and the interactions
between them; see Smith & Macnair, 1998) that has a cost in a ‘normal’ habitat.
Similarly, there is little evidence of a cost for tolerance to either low soil calcium to
magnesium ratios or high concentrations of heavy metals, two key selective pressures
experienced by plants growing on serpentine soils (Brady et al., 2005; Kay et al., 2011).
Serpentine endemics, however, are typically slow-growing and stress-tolerant, rather
than fast-growing and what is typically considered as competitively superior (Anacker
& Harrison, 2012; Fernandez-Going et al., 2012), consistent with the notion of a trade-
off between competitive ability and tolerance to serpentine. Indigenous resistant plants
on serpentine soil have less competition from invasive species when growing on
serpentine soil (Harrison, 1999; Gram et al., 2004; Going et al., 2009), but are poor
competitors on high-nutrient soils (Rice, 1989; Jurjavcic et al., 2002; Vallano et al.,
2012). Regardless, the evidence that competition is reduced on serpentine soils (Moore
& Elmendorf, 2011) and that edaphic endemics are competitively inferior is not
substantial (Powell & Knight, 2009; Fernandez-Going & Harrison, 2013).
Furthermore, these hypotheses of a cost of tolerance have not been tested in numerous
lineages, nor have they been examined across distinct substrate types.

Comparing pairs of sister taxa could help reveal the evolutionary costs of habitat
specialization relative to broad tolerance and address why some species become
edaphic specialists whereas others maintain general-purpose genotypes (sensu Baker,
1965) that can tolerate wide-ranging habitat conditions. Awidely-distributed Aquilegia
subspecies has greater adaptive phenotypic plasticity and higher competitive ability
than a related taxon that is a narrow endemic (Bastida et al., 2014). This suggests that
adaptive plasticity, competitive ability, and lineage history all contribute to phenotypic
divergence, edaphic niche specialization, and range distribution.

The hypothesis of a greater cost of tolerance and resulting trade-offs in competitive
ability is, however, gaining recognition as a potentially important driving force in the
evolution of edaphic endemism. The integration of molecular phylogenies with de-
scriptive and experimental ecological data reveals that occupation of bare habitats is a
precursor for serpentine specialization in Streptanthus and close allies (Cacho &
Strauss, 2014) and may be central to soil specialization. When comparing ancestor-
derivative species pairs, it was evident that shifts onto serpentine soils were not from
soils with a low calcium to magnesium ratio or high nickel content (like those
characteristic of serpentine soils) but from bare microhabitats. Preadaptations to fea-
tures characterizing bare habitats, including water stress, combined with inherently
lower competitive ability, perhaps due to increased investment for defense (Strauss &
Cacho, 2013), may have enabled the colonization of serpentine (also, see von Wettberg
et al., 2014), leading to multiple origins of serpentine adaptation among Streptanthus
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and allies (Armbruster, 2014). Whether such preadaptation to bare habitats is a
precursor for adaptation to other rock outcrop plant communities can be tested via
similar approaches, using a combination of molecular phylogenetic and ecological data
(Cacho & Strauss, 2014).

Does Parallel Evolution Occur Frequently in Edaphic Specialists?

Parallel (or repeated) evolution provides strong evidence for the role of ecology in
driving divergence (Nosil, 2012). Parallel edaphic adaptation may be achieved via the
evolution of novel alleles contributing to specialization or via parallel increases in the
frequency of alleles (Faria et al., 2014). Repeated evolution of traits may not be unusual
in clades that have undergone ecological radiation, particularly in those taxa adapted to
environments imposing strong divergent selection such as harsh edaphic environments
(Levin, 2001; Mengoni et al., 2003a, b). When changes in edaphic tolerance are
associated with changes in reproductive compatibility, a case for parallel ecological
speciation can be made (Rajakaruna & Whitton, 2004). Contrary to these findings,
there are only a limited number of studies showing the repeated evolution of traits
conferring adaptation and reproductive isolation in plants, i.e., parallel ecological
speciation (Ostevik et al., 2012). Interestingly, of the 23 potential cases for parallel
ecological speciation cited by Ostevik et al. (2012), 10 are from plants adapted to harsh
edaphic conditions (see Table 1 in Ostevik et al., 2012). The prevalence of cases of
edaphic adaptation among the limited number of studies of parallel ecological specia-
tion suggests that parallel evolution appears to occur more often in, or is better known
from, edaphic specialists relative to other species. Genomic methods can play an
important role in determining whether parallel (via independent evolution of the
same or different genes; Nichols & McNeilly, 1982; Levin, 2001; Rajakaruna et al.,
2003c) or horizontal gene flow of clustered genes (via introgression; Arnold et al.,
2016) are responsible for the parallel evolution of edaphic tolerance.

Do Interactions with Herbivores or Microbes Drive the Evolution
of Edaphic Specialization?

Plant interactions with other organisms, including those that are mutualistic and
antagonistic, appear to have a role in edaphic specialization (Strauss & Boyd, 2011;
Van Nuland, 2016). Harsh soils, which are often nutrient-poor, water-stressed, trace-
element rich, and found in barren and open landscapes, may increase physiological
costs associated with herbivore damage as well as make plants more conspicuous to
herbivores (Strauss & Boyd, 2011). Edaphic specialists may be more susceptible to
herbivory than their non-specialist relatives and plant-herbivore interactions can some-
times be central to edaphic specialization (Fine et al., 2004; Van Zandt, 2007; Lau et al.,
2008). Increased herbivore pressure due to increased noticeability on rock outcrops can
drive increased investment in defense strategies among edaphic specialists (Strauss &
Cacho, 2013). The high costs of defense can result in trade-offs in plant competitive-
ness (Fine et al., 2006) and restrict plant distributions on harsh soils, contributing to
high rates of edaphic endemism. Similarly, the pathogen refuge hypothesis
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(Kruckeberg, 1992; Springer, 2007) suggests that plants will experience lower disease
pressure on serpentine and other edaphically harsh environments, either through
reduced disease transmission rates in sparsely populated serpentine plant communities
(Thrall et al., 2007) or through lowered disease-associated damage, as has been shown
for serpentine-adapted Hesperolinon (Springer, 2009). Serpentine specialists within
Hesperolinon are less susceptible to fungal infection, perhaps due to their ability to
selectively uptake calcium, which is required to initiate an effective immune response.
Less specialized species appear to be more susceptible to fungal disease on serpentine
soil (Springer, 2007, 2009). Such a pathogen-refuge effect might also reinforce edaphic
associations among plants and promote greater edaphic specialization. In parapatric
coastal populations of Senecio lautus, herbivores have a central role in preventing gene
flow in the field via differential seedling predation of both migrants and hybrids,
whereas soil elemental content contributes to divergent selection on populations both
locally and on a geographic scale (Melo et al., 2014).

Specialization in plant host-symbiont-soil interactions may also facilitate plant
adaptation to edaphic stress and subsequent specialization (see Table 2 in Van
Nuland, 2016). Arbuscular mycorrhizal fungi (AMF) are common root symbionts that
can increase a plant hosts' establishment and growth in edaphically-stressful environ-
ments (Palacio et al., 2012; Schechter & Branco, 2014; Southworth et al., 2014). There
are plant and microbial symbionts that enhance plant adaptation to edaphic stress
(Thrall et al., 2007), showing that co-adapted interactions may play a role in edaphic
specialization. For example, arsenic-tolerant AMF suppress high-affinity arsenate/
phosphate transport in the roots and decreases arsenic uptake by the arsenic-tolerant
grass, Holcus lanatus, showing that arsenic-tolerant AMF may contribute to enhanced
arsenic-tolerance in the metal-tolerant populations of the grass (Gonzalez-Chavez et al.,
2002). However, salt-tolerant Acacia species from a high-salinity environment are less
dependent on Rhizobium bacteria than salt-sensitive hosts from less stressful environ-
ments, suggesting plant–rhizobial mutualisms may be less important in plant adaptation
to salinity (Thrall et al., 2008). Arbuscular mycorrhizal fungal assemblages associated
with serpentine and non-serpentine ecotypes of Collinsia sparsiflora showed that plant
ecotypes are associated with distinct AMF assemblages (Schechter & Bruns, 2008);
however, a common garden test of host-symbiont specificity provided no evidence of
adapted host ecotype-AMF specificity, suggesting that soil type, not microbial speci-
ficity, is key to determining AMF assemblage structure in C. sparsiflora (Schechter &
Bruns, 2013). Findings on plant host-microbial symbiont specificity and the role of
AMF on edaphic stress tolerance in higher plants are variable (Thrall et al., 2008;
Glassmand & Casper, 2012); some AMF, however, have the capacity to confer metal
tolerance in some plant host species either via sequestration or by contributing to
growth enhancement via increased nutrient acquisition (Schechter & Branco, 2014).
Such mutualistic interactions are clearly beneficial for some plant species, allowing
them to colonize harsh soils and thus setting the stage for potential divergence.

The ecological and evolutionary significance of metal hyperaccumulation has re-
ceived much attention (Boyd, 2014). The selective pressure for resistance to pathogens
and herbivores may also result in fixation of metal hyperaccumulating trait(s) in plant
populations (Boyd, 2007; Hörger et al., 2013). Metal (and metalloid)
hyperaccumulation has a profound effect on cross-kingdom interactions (El Mehdawi
& Pilon-Smits, 2012; Boyd, 2014) as metal-hyperaccumulating plants offer a

Lessons on evolution from the study of edaphic specialization



specialized niche for metal-tolerant herbivores, pollinators, microbes, and neighboring
plants. For example, high levels of metal in plant tissues reduce herbivory (Quinn et al.,
2010) and pathogen infection (Fones et al., 2010) and result in increased litter decom-
position by specialized microbes (Quinn et al., 2011b), causing an elemental allelo-
pathic effect on metal-intolerant neighbors (El Mehdawi et al., 2011); all these effects
can influence the fitness of plants accumulating the metal, thereby contributing to
edaphic specialization. Plant-microbe interactions may also influence gene flow be-
tween divergent populations due to microbe-assisted edaphic differentiation. A study of
an Artemisia hybrid zone in central Utah showed that the microbial community
influenced the performance of parental and hybrid plants in native and nonnative soils,
segregating the distinct populations and likely contributing to their edaphic divergence
(Miglia, 2007).

Metal-hyperaccumulator plants found on serpentine and other metal-rich environ-
ments are hosts to insects that appear to have co-evolved with them (Boyd, 2014).
Some of these insects do accumulate heavy metals to toxic levels (Boyd, 2007) and
may use them as defense against natural enemies (i.e. elemental defense hypothesis;
Boyd, 2007). Although only one study supports this hypothesis (Boyd & Wall, 2001),
little research regarding this hypothesis has been conducted to date. There is also no
overwhelming evidence for a cost of hyperaccumulation in terms of reproductive
functions or pollinator visitation. For example, pollinators of Stanleya pinnata, a Se-
hyperaccumulator, showed no visitation preference between high- and low-Se plants,
suggesting greater tolerance to the metalloid (Quinn et al., 2011a). Whether the
presence of aluminum and nickel in nectar of Impatiens capensis alters foraging
behavior by bumblebees has also been investigated (Meindl & Ashman, 2013). The
presence of aluminum in nectar did not influence foraging patterns; however, flowers
containing nickel-laden nectar solutions had shorter visits relative to controls, and even
resulted in reduced visitation of nearby nickel-contaminated flowers. Reduced visita-
tion by native pollinators has also been documented for Streptanthus polygaloides
(Meindl & Ashman, 2014) which accumulates nickel in pollinator rewards such as
nectar and anthers. Although heavy metal effects on plant-pollinator interactions are
clearly context-dependent, edaphic features, such as heavy metal concentrations, have
the capacity to influence gene flow and reproductive isolation between close relatives
through pollinator selection.

Are Edaphic Specialists More or Less Sensitive to Climate Change?

Species can respond to climate-associated stressors via both phenotypic plasticity and
local adaptation (Valladares et al., 2014). Edaphic specialists, many of which display
largely disjunct but widespread distributions, are ideal models for exploring how
climate interacts with edaphic factors to influence plant distribution (Damschen et al.,
2010; Sánchez et al., 2017). It is easy to envision how an altered climate regime can
have differential effects on populations of an ecologically widespread taxon. For
example, serpentine populations are generally better-adapted to low moisture condi-
tions typical of their mostly exposed, rocky, and shallow soils (Wu et al., 2010) and
may be able to withstand increased aridity and high temperatures. Therefore, under a
drying climate, as is predicted for some parts of the world, nonserpentine populations
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may be extirpated, whereas serpentine populations, already preadapted to aridity, could
survive and become endemic due to the extinction of the more widespread
nonserpentine populations (Moore et al., 2013; but see Anacker, 2014). Pronounced
climatic oscillations of the Quaternary period appear to have forced populations of
Sempervivum, Jovibarba, and Adenostyles to respond via latitudinal or altitudinal shifts
into edaphically unsuitable but relatively competition-free habitats (Klein & Kadereit,
2015). This set the stage for the divergence of edaphically specialized species via
allopatric speciation. A similar scenario is presented for the evolution of the edaphically
specialized Lilium pyrophilum (Douglas et al., 2011).

There is increasing evidence that climatic and edaphic factors interact to control
local adaptation and substrate endemism (Fernandez-Going, 2014). Serpentine ende-
mism peaks in wet regions both in California and some other parts of the world
(Anacker, 2011; Fernandez-Going, 2014), likely due to increased competition on
‘normal’ substrates under more productive climates. At the community level, there is
also more species, functional, and phylogenetic turnover across edaphic boundaries in
mesic relative to arid regions of California (Anacker & Harrison, 2012). Furthermore,
serpentine endemics in California generally occupy wetter regions than even their
closest relatives (Fernandez-Going, 2014), but this is only true in the case of
neoendemics arising from serpentine-intolerant ancestors; more productive climates
may have been more suitable for the persistence of small neoendemic taxa with novel
adaptations during and after speciation. Paleoendemics, on the other hand, occupy
similar climates to those of their closest relatives, suggesting that range contractions
leading to biotype depletion may have been similar in arid and mesic regions (Anacker,
2014). It is as of yet unclear whether climate can alter soil-specific competitiveness in
edaphic endemics (see Fernandez-Going & Harrison, 2013) and whether
paleoendemics and neoendemics differ in their sensitivities to competition.

Climate change will clearly have differential effects on the ranges of edaphic
specialists. In California, future climate conditions may extend the potential range of
many endemics (Loarie et al., 2008); however, whether edaphic endemics can naturally
disperse to suitable habitat is questionable (Damschen et al., 2012; Spasojevic et al.,
2014). Preadaptations to dry conditions may allow edaphic specialists to expand their
current range (Fernandez-Going et al., 2012; Fernandez-Going, 2014) and even be
more competitive with non-specialists off of their special edaphic niche (Moore et al.,
2013). Tolerance of edaphic stress appears to go hand-in-hand with tolerance of
climatic stress for plants growing on serpentine soils, linking soil infertility to a
stress-tolerant functional trait syndrome that confers unusually high resistance to
climate change upon plant species and communities (Harrison et al., 2015).
Therefore, in the absence of nutrient deposition, stress-tolerant invasive species, and
habitat loss, edaphic specialists may perform better under future warmer/drier climates
relative to plants adapted to more fertile soils. With possible range expansions onto
‘new’ habitat, however, they will no longer be restricted to their special edaphic niche,
thereby losing their edaphic endemic status (Anacker, 2014). Habitat patchiness may
also contribute to invasiveness, with competitive and dispersal abilities evolving more
rapidly on island-like habitats (Williams et al., 2016), suggesting that fragmentation can
select for more rapid invasion velocity. How these findings are influenced by different
climatic regimes, or by habitat patches with different levels of edaphic stress, are also
important avenues for research. Naturally fragmented edaphic islands, such as
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serpentine outcrops, are model habitats for exploring such questions and for testing the
roles of patch size, shape, type (soil), and isolation in ecological and evolutionary
processes (Gil-López et al., 2014).

What is the Genetic Basis of Edaphic Specialization and Speciation?

In the era of genomics, there are many tools (e.g., Bratteler et al., 2006a, b; von
Wettberg &Wright, 2011; Selby et al., 2014) at our disposal to explore the genetic basis
of adaptation to harsh environments, including the nature of adaptation to dissimilar
habitats with similar abiotic stressors (e.g., arid and saline habitats contributing to water
stress, saline and serpentine soils contributing to ionic stress, or serpentine and carbon-
ate soils contributing to high pH). Phylogenetic analyses show that there is a significant
association between halophytes and metal hyperaccumulators, although within each
group there is low phylogenetic clustering (Moray et al., 2016), suggesting that salinity
and metal tolerance can vary among close relatives. In Asteraceae, Amaranthaceae,
Fabaceae, and Poaceae, halophytes and hyperaccumulators are more closely related
than would be expected if the two traits had evolved independently, suggesting a strong
genetic association between the abilities to tolerate salt and heavy metals. Studies of
evolutionary ecology now routinely use high-throughput sequencing and other geno-
mic approaches to examine the genetic basis of speciation (Tiffin & Ross-Ibarra, 2014)
and these methods have clearly promoted the study of edaphic adaptation (Turner et al.,
2010; Porter et al., 2017).

Genomic polymorphisms that are differentiated between edaphically contrasting
populations can reveal candidate loci for edaphic adaptation. Gene pool sequencing
of serpentine and granitic populations of Arabidopsis lyrata from the USA shows
that the polymorphisms that are most strongly associated with soil type are loci for
heavy-metal detoxification and calcium and magnesium transport, providing several
candidate loci for serpentine adaptation (Turner et al., 2010), including CAX7,
which appears to be responsible for adaptation to low calcium to magnesium ratios
characteristic of serpentine soils (Turner et al., 2008). Moreover, the same associ-
ations between individual loci and serpentine tolerance were observed in the
European subspecies of A. lyrata, further implicating edaphic selection. The se-
quencing of three candidate loci in the European subspecies indicated parallel
differentiation of the same polymorphism at one locus, confirming edaphic special-
ization, and different polymorphisms at two other loci, suggesting convergent
evolution. Whether these loci also contribute to reproductive isolation between
progenitor-derivative taxon pairs is unknown.

Adaptation to low soil calcium to magnesium ratios has often been suggested as key
to serpentine tolerance (Palm & Van Volkenburgh, 2014). In serpentine-intolerant
Arabidopsis thaliana, an induced loss of function mutation in the Ca2+-H+ antiporter,
CAX1, enhances survival on soils with a low calcium to magnesium ratio (Bradshaw,
2005). CAX1 is a high-capacity Ca2+-H+ antiporter that maintains cytoplasmic ion
homeostasis by pumping excess calcium from the cytoplasm into the vacuole (Cheng
et al., 2003). Mutation of CAX1 effectively acts as a magnesium exclusion strategy,
enabling the plant to maintain adequate cytoplasmic calcium concentrations under the
low calcium to magnesium ratios encountered on serpentine soils.
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Additional candidate genes have recently been identified for serpentine adaptation in
autotetraploid Arabidopsis arenosa, providing evidence that some selected alleles were
introgressed from the diploid serpentine-endemic A. lyrata, whereas others were
independently involved in separate adaptation events in the two species (Arnold
et al., 2016). The research by Arnold et al. (2016) shows strong evidence for selection
on genes that control specific ion homeostasis-related traits, as well as drought adap-
tation. Although several alleles under selection appear to have been introgressed from
A. lyrata, others have been independently selected following serpentine colonization in
both species. The significant overlap between selected genes in serpentine-endemic
A. arenosa and A. lyrata suggests that adaptations to serpentine are not qualitatively
different between diploid and tetraploid species. The work described above on
Arabidopsis (Turner et al., 2008, 2010; Arnold et al., 2016) advances our understanding
of the polygenic basis of multi-trait adaptation to serpentine soils and its repeatability
across species. Further, the work suggests that edaphic divergence can occur even in the
presence of high levels of inter- and intraspecific gene flow. Serpentine-tolerant
Arabidopsis taxa, along with their close relatives, can provide a useful system for
investigating the genetics of speciation under the serpentine influence.

The genetic tools at our disposal (Sun & Schliekelman, 2011; von Wettberg &
Wright, 2011; Tiffin & Ross-Ibarra, 2014) can reveal the genetic architecture of
adaptive traits that confer reproductive isolation (i.e., speciation genes; Nosil &
Schluter, 2011) and whether the same alleles or different alleles contribute to parallel
evolution (Ostevik et al., 2012), revealing new insights into the mechanisms by which
natural selection can bring about adaptation, reproductive isolation, and speciation.
Mechanisms resulting in reproductive isolation may be incidental byproducts of natural
selection on linked loci or on loci with pleiotropic effects. For example, plant popula-
tions on serpentine and other harsh edaphic settings often flower early (O’Dell &
Rajakaruna, 2011). Such phenological isolation could be a byproduct of adaptation to
harsh soils or a result of an independent set of genetic changes that were favored by
natural selection (Baack et al., 2015). A detailed genetic analysis of the alleles
responsible for reproductive barriers can separate these hypotheses, particularly when
traits are correlated and contribute to reproductive isolation. In Mimulus, differences in
flowering time are often associated with differences in soil water availability (Wu et al.,
2010; Friedman & Willis, 2013). In wet coastal and dry inland populations ofMimulus
guttatus (Lowry et al., 2008), an inversion polymorphism appears to be a major
quantitative trait locus (QTL) for flowering time and growth-related traits, explaining
20–30% of the variation observed between populations (Lowry & Willis, 2010).
Reciprocal transplant experiments have demonstrated strong local adaptation in traits
that map to the inversion and differ between the coastal and inland ecotypes (Lowry
et al., 2008; Hall et al., 2010).

In Mimulus guttatus, the locus that contributes to copper tolerance also leads to
hybrid lethality in crosses between copper-tolerant and -intolerant populations (Macnair
& Christie, 1983). High-resolution genome mapping show that copper tolerance and
hybrid lethality are not caused by the same gene, but are separately controlled by two
tightly linked loci (Wright et al., 2013; Fig. 1c). Selection on the copper tolerance locus
indirectly causes the hybrid incompatibility allele to increase in frequency in the mine
population via hitchhiking. Therefore, hybrid incompatibilities can evolve as a by-
product of an adaptation to a novel edaphic environment. Whether there are similar
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bases for hybrid lethality between edaphically divergent ecotypes of serpentine tolerant
species such as Collinsia sparsiflora (Moyle et al., 2012; Fig. 1d) remains to be seen.

Current model systems are not representative of all life history strategies and are
mostly restricted to herbs, and we need to continue to add new model systems to allow
comparative approaches for exploring the intricacies of adaptive evolution (Selby et al.,
2014; von Wettberg et al., 2014). In this regard, the extensive work on the genetics of
metal tolerance (Verbruggen et al., 2009) in metal-accumulating and -
hyperaccumulating plants used in phytoremediation (Rascio & Navari-Izzo, 2011),
and work on the genetics of abiotic stress tolerance and phenology in crops (Roy
et al., 2011), are important for examining the genetic bases for edaphic adaptation and
species divergence.

Conclusions and Future Directions

Edaphic specialists are key players in the study of local adaptation and ecological
speciation (Crawford et al., 2014). Ecological, physiological, phylogenetic, and popu-
lation genomic studies of plants growing on serpentine, saline, and metal-contaminated
soils continue to shed light on factors and mechanisms driving ecological speciation
(Table 2). Studies such as those on Mimulus on copper-enriched soil (Macnair &
Christie, 1983; Macnair et al., 1993; Wright et al., 2013; Fig. 1c], Collinsia and
Arabidopsis on serpentine soil (Moyle et al., 2012; Turner et al., 2010; Fig. 1d),
Helianthus on saline soils (Edelist et al., 2009; Fig. 1b], and Senecio on sand dunes
and rocky headland soils (Melo et al., 2014), are key to establishing a direct link
between adaptation, reproductive isolation, and subsequent speciation. Ongoing re-
search on Mimulus, Helianthus, and Arabidopsis (and others; Tables 1 and 2) will
continue to unravel how edaphic conditions can directly or indirectly contribute to
species divergence.

Lessons on Evolution

There are several key lessons on evolutionary processes from the study of edaphic
specialization:

a. Both adaptive phenotypic plasticity and local adaptation contribute to edaphic
divergence. Edaphic specialization is key to diversification in some groups; how-
ever, in others, there appears to be lack of variation for adaptation to harsh soils.
Although edaphic specialization is important in the diversification of flowering
plants and ferns, there is little evidence for its significance in other plant groups such
as gymnosperms and bryophytes or in lichens, soil algae, and cyanoprokaryotes.

b. Although edaphic specialists can evolve under allopatric, parapatric, and sympatric
modes of speciation, there is strong evidence pointing to budding or peripatric
speciation being central to the origin of neoendemic species (Anacker & Strauss,
2014). Additionally, an increasing body of work shows that speciation is possible
in the face of gene flow, especially in lineages where there is considerable
ecological (including edaphic) divergence. Further, introgression between close
relatives can also lead to the acquisition of edaphic tolerance (Arnold et al., 2016).
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c. Edaphic adaptations have direct or indirect effects on reproductive isolation;
adaptive and reproductively isolating traits can evolve rapidly and repeatedly in
some lineages, making edaphic specialists key to studying parallel speciation.

d. There is mixed evidence for a physiological cost of edaphic tolerance driving
habitat specialization, although both reduced competitive ability and greater sus-
ceptibility to herbivory have been documented among some edaphic specialists
when grown in ‘normal’ soils.

e. Mutualistic and antagonistic interactions with other organisms can mediate edaphic
specialization either by directly enhancing tolerance to edaphic extremes via the
action of microbes or by reducing gene flow between divergent populations via the
action of pollinators, herbivores, and pathogens.

f. Climate and soils can interact to influence edaphic specialization. Future climates
may further restrict the distribution of edaphic specialists due to increased compe-
tition from invasive species. However, edaphic specialists could also expand their
ranges, even outside their edaphic niche, if their preadaptations to drought make
them more competitive than non-specialists under a drying climate.

g. QTL mapping studies, population genomic approaches, and high-throughput phe-
notyping assays, when combined with reciprocal transplant studies using hybrid
mapping populations (including, F2, backcross, near isogenic lines, and recombi-
nant inbred lines), can identify major loci contributing to edaphic adaptation to
serpentine, saline, and heavy metal-rich soils (Selby et al., 2014). These loci often
have direct or indirect effects on loci that contribute to reproductive isolation
(Table 2).

Information Gaps and Future Directions

There are several information gaps that need to be addressed to better develop current
model systems as well as to incorporate additional taxa for the study of edaphic
specialization. The following are key areas for future research:

a. The identification of specific soil factors that are central to edaphic specialization
is important for demonstrating the role of adaptation in speciation. Although most
studies state only the general soil type (e.g., serpentine versus non-serpentine,
saline versus non-saline, gypsum versus non-gypsum, etc.) being investigated, a
handful of studies have attempted to examine the exact soil chemical or physical
factor contributing to the specialization and/or divergence (Rajakaruna et al.,
2003a, b; Bradshaw, 2005; Bratteler et al., 2006, b; Palacio et al., 2007; Edelist
et al., 2009; Selby et al., 2014). Identifying the key soil variable or variables is
more effective when comparing sister populations found across substrates that
differ in a distinct way (e.g., with or without a heavy metal as in the case of copper
tolerance in Mimulus). Plant ionomic approaches can also be used to investigate
ecological functions of ionomic alleles in the adaptation to distinct soils (Lowry
et al., 2012; Huang & Salt, 2016).

b. Better characterization of functional traits (e.g., morphological, physiological, and
reproductive traits) between sister species that differ in their edaphic niche is also
critical for determining which traits may be contributing to the divergence. Whether
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traits characteristic of the edaphic habitat are plastic responses or are genetically
based should also be confirmed. Once those traits targeted by edaphic selection are
identified, the physiological/genetic basis of those traits should be determined.
Much of what we know about edaphic specialization comes from studies on plants
found on metal mines, serpentine soils, or saline environments of temperate or
Mediterranean climes, and it is essential that we expand our studies to identify and
characterize systems found on other types of substrates and in other climatic regions
of the world. Such a broad survey can reveal similarities and differences in trends
associated with speciation resulting from edaphic specialization.

c. Because multiple reproductive barriers can contribute to reduced gene flow
between divergent taxa (Baack et al., 2015; Ostevik et al., 2016), it is important
to identify and characterize the relative contribution of all pre- and post-zygotic
reproductive isolating mechanisms to the total reproductive isolation between
edaphically divergent pairs. The order in which barriers originate and their genetic
bases and associations with traits characterizing edaphic adaptations may shed
light on the relative importance of each barrier to different stages of a divergence
event and at different levels of habitat specialization.

d. Why edaphic tolerance only sometimes leads to speciation is still unknown. It is
possible that speciation is more likely when an adaptation or a suite of adaptations
comes with a large fitness trade-off between edaphic habitats, contributing to
stronger divergent selection across edaphic boundaries. A greater cost of tolerance
may lead to adaptations that have a direct or indirect effect on reproductive
isolation, leading to the evolution of endemic species. This fundamental gap in
our understanding of edaphic specialization can be answered by using multiple,
progenitor-derivative taxon pairs that have adaptively diverged along the same
edaphic axis but which vary in their accommodation to the substrate (i.e., tolerator
versus endemic). Field surveys to characterize the habitat differences (i.e., are
endemics found on harsher soils than tolerator species?), reciprocal transplant
studies to estimate the fitness trade-offs (i.e., is there a greater cost of tolerance in
species pairs with endemics relative to those with tolerators?), and greenhouse
studies to assess the extent of reproductive isolation between pairs (i.e., is there
greater reproductive isolation in species pairs with endemics relative to those with
tolerators) can reveal answers to this critical question.

e. Edaphic specialists offer opportunities, via methods of comparative genomic and
population genetic analyses, to examine the relationships among genetic loci that
are responsible for adaptations and the degree to which they influence reproduc-
tive isolation (Crawford et al., 2014). In addition to the elegant work done on
model plants such as Helianthus (Andrew & Rieseberg, 2013), Mimulus (Selby
et al., 2014), and Arabidopsis (Turner et al., 2008, 2010; Arnold et al., 2016), the
genetic architecture of traits conferring adaptation and reproductive isolation
should be explored in other species with good ecological and biological data
supporting edaphic differentiation. Serpentine-tolerant plants such as Silene
(Bratteler et al., 2006, b), Lasthenia (Rajakaruna, 2003), Layia (Baldwin, 2005),
Leptosiphon (Kay et al., 2011), Streptanthus (Pope et al., 2014), and Collinsia
(Moyle et al., 2012); metal-tolerant plants including Alyssum, Caulanthus, and
Thalspi (Noccaea) (Mengoni et al., 2003a, b; Burrell et al., 2012; Gill et al.,
2012); selenium-tolerant plants such as Stanleya and Astragalus (Schiavon &
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Pilon-Smits, 2017); and gypsophiles such as Mentzelia, Nama, and
Helianthemum (Moore et al., 2014 and references therein) are ideal for testing
how findings from the model plants may be applicable across a wider range of
wild plants experiencing a broader array of edaphic pressures. Taxa within these
genera show a range of divergence stages and degrees of edaphic endemism and,
in many cases, their natural history and ecology are well documented via both
descriptive and experimental methods. For some of these taxa (or their close
relatives), there are extensive genetic tools already in place. Genome scans, when
combined with candidate gene approaches, comparative transcriptomics, QTL
mapping, functional analysis, and experimental manipulation, can reveal loci with
high levels of differentiation between edaphically divergent populations, enabling
the discovery of genes driving adaptation and reproductive isolation (Selby et al.,
2014; Faria et al., 2014; Hoban et al., 2016). In species for which there is evidence
for parallel evolution of traits, it will be critical to test whether the same or
different alleles are responsible for the parallel speciation events (Ostevik et al.,
2012; Roda et al., 2013).

f. Edaphic specialists can help determine how prezygotic and postzygotic reproduc-
tive isolating mechanisms limit gene flow between close relatives at various
geographical scales. The often widely disjunct and patchy distribution patterns
of edaphic specialists provide settings in which to test whether pre-zygotic
isolating mechanisms are stronger in populations in parapatry/sympatry relative
to those in allopatry. Enhanced reproductive isolation between edaphically diver-
gent taxa found under parapatry/sympatry, relative to those in allopatry, may
reflect the action of reinforcement, i.e., selection for reduced gene flow to avoid
maladaptive hybridization (Widmer et al., 2009). There are only a few well-
documented cases of reinforcement in plants (Baack et al., 2015) and edaphic
specialists may provide good model systems for testing the importance of this
process in plant speciation (see Silvertown et al., 2005).

g. Comparative genomic and population genetic analyses can reveal how habitat
specialization is achieved and maintained in the face of gene flow (Papadopulos
et al., 2011). Hybridization and polyploidization are ubiquitous forces in the
diversification of plants, and edaphic endemic species can help reveal how these
two forces influence divergence (Kane, 2009).

h. Chromosomal rearrangements can contribute to reproductive isolation through
their effects on hybrid fertility, as well as by reducing interspecific recombination
and gene flow (Baack et al., 2015). In Mimulus, a chromosomal inversion
polymorphism contributes to differences in flowering time and other traits, as
well as multiple reproductive barriers between annual and perennial ecotypes of
M. guttatus (Lowry & Willis, 2010). Whether karyological anomalies drive
isolation between edaphically divergent individuals must be tested on species
pairs showing post-mating and post-zygotic isolation.

i. If soil elements, like heavy metals, have a direct impact on reproductive isolation
of edaphically divergent taxa, it is easy to demonstrate that adaptation to a specific
soil factor can directly contribute to isolation and subsequent divergence. The
work exploring how heavy metal accumulation in reproductive tissue can influ-
ence reproductive success (Searcy & MacNair, 1993; Quinn et al., 2011a), includ-
ing pollinator-mediated isolation (Meindl & Ashman, 2013, 2014, 2015), is
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important for further exploration, especially in sister taxa in which one taxon is a
metal hyperaccumulator.

j. Metal hyperaccumulators have received much attention as candidates for
green technologies such as phytoremediation and phytomining (Rascio &
Navari-Izzo, 2011). However, they also provide opportunities for exploring
the cost of edaphic tolerance hypothesis on habitat specialization. In genera
with metal-tolerant, metal-hyperaccumulating, and metal-intolerant species
(such as in Alyssum, Thlaspi/Noccaea, Streptanthus, and Silene), sister taxa
can be used to test whether there is a trade-off in terms of competitive
ability between metal-intolerant versus metal-tolerant and metal-intolerant
versus metal hyperaccumulator sisters (prediction: greater trade-off in the
metal-intolerant versus metal-hyperaccumulator pair). Further, to explore if
the cost of tolerance to edaphic specialization drives speciation, one could
test whether there is a greater trade-off between metal-intolerant versus
edaphic endemic metal hyperaccumulator pairs or metal-intolerant versus
nonendemic metal hyperaccumulator pairs (prediction: greater trade-off in
competitive ability in the metal intolerant versus edaphic endemic metal
hyperaccumulator pair).

k. Plants found in stressful environments tend to share a suite of traits (i.e.,
stress resistance syndrome or SRS traits) that provides cross-tolerance to a
range of low productivity habitats (Brady et al., 2005; von Wettberg et al.,
2014 and references therein). It is unclear if the same SRS loci or different
loci are responsible for edaphic shifts seen across distinct substrates (e.g.,
between serpentine and limestone, serpentine and saline, serpentine and mine
tailing, limestone and dolomite/gypsum, etc.) characterized by overlapping
selection pressures (e.g., drought, pH, ionic strength, ions, etc.). If SRS traits
are shared (with or without a similar genetic basis), one can envision how an
adaptation to one ‘harsh’ soil type can preadapt a lineage to another ‘harsh’
soil type. In Mimulus, Arabidopsis, Helianthus, and others such as Lasthenia
(Rajakaruna, 2003), Silene (Mengoni et al., 2001), and Minuartia (Moore &
Kadereit, 2013) there are multiple species showing adaptation to numerous
soil types, including those characterized by similar selection pressures: ions,
pH, drought, etc. Ecological, phylogenomic, and population genomic studies
of plants showing such cross-tolerance to distinct soil types can provide
insights on common physiological traits and trends associated with edaphic
specialization.

l. Climate change is clearly a major stressor influencing plant diversity. How
edaphic specialists will respond to climate change may depend on whether they
are preadapted to future climate conditions, cross-tolerant to edaphic-climatic
stressors (e.g., salt-drought), can compete under novel climates, or can rapidly
evolve climate tolerance, as well as how quickly, how far, and how effectively
they can disperse into suitable edaphic niches under a changing climate
(Fernandez-Going, 2014). Further, how cross kingdom interactions (both mutual-
istic and antagonistic) might play into these possible outcomes is unknown.
Studies of the interaction between climate and edaphic factors in determining
the distribution of edaphic specialists should incorporate species from multiple
lineages, growth forms, substrate types, and varying climates to gain a better

N. Rajakaruna



understanding of how climate-associated threats will impact edaphically special-
ized plants.

The study of edaphic specialization continues to provide unique perspectives on the
processes of evolution and will continue to lead the way in understanding the important
role ecology plays in the origin of species and assembly of special plant communities.
The fast-growing field of molecular ecology will undoubtedly play a key role in this
regard, especially by aiding in the discovery of genes responsible for adaptation and
reproductive isolation under edaphic influences. Edaphically specialized plants will
also provide model systems for exploring little-studied phenomena in plant evolution
such as the importance of reinforcement of reproductive isolation in speciation and the
nature of parallel speciation. Lastly, research on edaphic specialization, particularly the
study of adaptation to edaphic factors such as nutrient levels, salt, heavy metals, and
drought, will help counter growing challenges faced in fields such as agriculture
(Rozema & Schat, 2013) and habitat restoration (O’Dell, 2014), and contribute to
advancing green technologies, including phytoremediation and phytomining (Chaney
et al., 2014).
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