Opua Marina

Baseline survey for non-indigenous marine species (Research Project ZBS 2000/04)

Biosecurity New Zealand Technical Paper No: 2005/14

Prepared for BNZ Post-clearance Directorate by Graeme Inglis, Nick Gust, Isla Fitridge, Oliver Floerl, Chris Woods, Barbara Hayden, Graham Fenwick

NIWA Taihoro Nukurangi

ISBN No: 0-478-07926-X ISSN No: 1176 838X

September 2005

Disclaimer

While every effort has been made to ensure the information in this publication is accurate, the Ministry of Agriculture and Forestry does not accept any responsibility or liability for error or fact omission, interpretation or opinion which may be present, nor for the consequences of any decisions based on this information.

Any view or opinions expressed do not necessarily represent the official view of the Ministry of Agriculture and Forestry.

The information in this report and any accompanying documentation is accurate to the best of the knowledge and belief of the National Institute of Water & Atmospheric Research Ltd (NIWA) acting on behalf of the Ministry of Agriculture and Forestry. While NIWA has exercised all reasonable skill and care in preparation of information in this report, neither NIWA nor the Ministry of Agriculture and Forestry accept any liability in contract, tort or otherwise for any loss, damage, injury, or expense, whether direct, indirect or consequential, arising out of the provision of information in this report.

Requests for further copies should be directed to:

Publication Adviser MAF Information Bureau P O Box 2526 WELLINGTON

Telephone: (04) 474 4100 Facsimile: (04) 474 4111

This publication is also available on the MAF website at www.maf.govt.nz/publications

© Crown Copyright - Ministry of Agriculture and Forestry

Contents

Executive Summary	1
Introduction	3
Biological baseline surveys for non-indigenous marine species	3
Description of the Opua Marina	5
Marina operation and shipping movements	5
Physical environment of Opua marina	6
Existing biological information	6
Survey methods	7
Survey method development	7
Diver observations and collections on wharf piles	8
Benthic infauna	8
Epibenthos	9
Sediment sampling for cyst-forming species	10
Mobile epibenthos	11
Sampling effort	12
Sorting and identifying specimens	13
Definitions of species categories	14
Survey results	15
Native species	15
Cryptogenic species	15
Non-indigenous species	17
Species indeterminata	28
Notifiable and unwanted species	28
Previously undescribed species in New Zealand	28
Cyst-forming species	29
Possible vectors for the introduction of non-indigenous species to the marina	29

Comparison w	vith other ports	29
Assessment o	f the risk of new introductions to the marina	32
Assessment o	f translocation risk for non-indigenous species found in the marina	32
Management	of existing non-indigenous species in the marina	32
Prevention of	f new introductions	33
Conclusions a	and recommendations	33
Acknowledge	ements	34
References		35
Appendix 1:	Specialists engaged to identify specimens obtained from the New Zealand P surveys.	ort
Appendix 2:	Generic descriptions of representative groups of the main marine phyla collected during sampling.	
Appendix 3:	Criteria for assigning non-indigenous status to species sampled from the Por Opua Marina.	t
Appendix 4.	Geographic locations of the sample sites in the Port of Opua Marina.	
Appendix 5a:	Results from the diver collections and pile scrapings.	
Appendix 5b:	Results from the benthic grab samples.	
Appendix 5c:	Results from the benthic sled samples.	
Appendix 5d:	Results from the dinoflagellate cyst core samples.	
Appendix 5e:	Results from the fish trap samples.	
Appendix 5f:	Results from the crab trap samples.	
Appendix 5g:	Results from the starfish trap samples.	
Appendix 5h:	Results from the shrimp trap samples.	

Executive Summary

This report describes the results of a November 2002 survey to provide a baseline inventory of native, non- indigenous and cryptogenic marine species within the Opua Marina.

- The survey is part of a nationwide investigation of native and non-native marine biodiversity in 13 international shipping ports and three marinas of first entry for yachts entering New Zealand from overseas.
- Sampling methods used in these surveys were based on protocols developed by the Australian Centre for Research on Introduced Marine Pests (CRIMP) for baseline surveys of non-indigenous species in ports. Modifications were made to the CRIMP protocols for use in New Zealand port conditions.
- A wide range of sampling techniques was used to collect marine organisms from habitats within the Opua Marina. Fouling assemblages were scraped from hard substrata by divers, benthic assemblages were sampled using a sled and benthic grabs, and a gravity corer was used to sample for dinoflagellate cysts. Mobile predators and scavengers were sampled using baited fish, crab, starfish and shrimp traps.
- The distribution of sampling effort in the Opua Marina was designed to maximise the chances of detecting non-indigenous species and concentrated on high-risk locations and habitats where non-indigenous species were most likely to be found.
- Organisms collected during the survey were sent to local and international taxonomic experts for identification.
- A total of 122 species or higher taxa was identified from the Opua Marina survey. They consisted of 76 native species, 12 non-indigenous species, 14 cryptogenic species (those whose geographic origins are uncertain) and 20 species indeterminata (taxa for which there is insufficient taxonomic or systematic information available to allow identification to species level).
- Five species of marine organisms collected from the Opua Marina, all of which are considered cryptogenic, have not previously been described from New Zealand waters. The five species included a species of mussel whose taxonomic affinities are uncertain (*Mytilus* sp.), an ascidian (*Pyura* sp.) and three species of sponge that do not match existing species descriptions and may be new to science.
- The 12 non-indigenous organisms described from the Opua Marina included representatives of six phyla. The non-indigenous species detected (ordered alphabetically by phylum, class, order, family, genus and species) were: (Annelida) *Polydora cornuta*, (Bryozoa) *Bugula flabellata*, *Bugula neritina*, *Watersipora subtorquata*, (Cnidaria) *Obelia longissima*, (Crustacea) *Apocorophium acutum*, (Mollusca) *Musculista senhousia*, *Crassostrea gigas*, *Limaria orientalis*, *Theora lubrica*, *Polycera hedgpethi*, (Phycophyta) *Polysiphonia sertularioides*.
- None of the species recorded from the Opua Marina are on the New Zealand register of unwanted marine organisms. Two species the Pacific oyster, *Crassostrea gigas*, and the cryptogenic toxin-producing dinoflagellate, *Gymnodinium catenatum* are on the ABWMAC list of unwanted marine pests in Australia.

- Most non-indigenous species located in the marina are likely to have been introduced to New Zealand accidentally by international shipping or through domestic translocation or spread from other locations in New Zealand.
- Approximately 58 % (seven of 12 species) of NIS in the Opua Marina are likely to have been introduced in hull fouling assemblages, 8.5 % via ballast water and 33.5 % could have been introduced by either ballast water or hull fouling vectors.
- The predominance of hull fouling species in the introduced biota of the Opua Marina (as opposed to ballast water introductions) is consistent with findings from similar port baseline studies overseas

Introduction

Introduced (non-indigenous) plants and animals are now recognised as one of the most serious threats to the natural ecology of biological systems worldwide (Wilcove *et al.* 1998, Mack *et al.* 2000). Growing international trade and trans-continental travel mean that humans now intentionally and unintentionally transport a wide range of species outside their natural biogeographic ranges to regions where they did not previously occur. A proportion of these species are capable of causing serious harm to native biodiversity, industries and human health. Recent studies suggest that coastal marine environments may be among the most heavily invaded ecosystems, as a consequence of the long history of transport of marine species by international shipping (Carlton and Geller 1993, Grosholz 2002). Ocean-going vessels transport marine species in ballast water, in sea chests and other recesses in the hull structure, and as fouling communities attached to submerged parts of their hulls (Carlton 1985, 1999, AMOG Consulting 2002, Coutts *et al.* 2003). These shipping transport mechanisms have enabled hundreds of marine species to spread worldwide and establish populations in shipping ports and coastal environments outside their natural range (Cohen and Carlton 1995, Hewitt *et al.* 1999, Eldredge and Carlton 2002, Leppäkoski *et al.* 2002).

Biosecurity¹ is important to all New Zealanders. New Zealand's geographic isolation makes it particularly vulnerable to marine introductions because more than 95% of its trade in commodities is transported by shipping, with several thousand international vessels arriving and departing from more than 13 ports and recreational boat marinas of first entry (Inglis 2001). The country's geographic remoteness also means that its marine biota and ecosystems have evolved in relative isolation from other coastal ecosystems. New Zealand's marine biota is as unique and distinctive as its terrestrial biota, with large numbers of native marine species occurring nowhere else in the world.

The numbers, identity, distribution and impacts of non-indigenous species in New Zealand's marine environments are poorly known. A recent review of existing records suggested that by 1998, at least 148 species had been deliberately or accidentally introduced to New Zealand's coastal waters, with around 90 % of these establishing permanent populations (Cranfield *et al.* 1998). To manage the risk from these and other non-indigenous species, better information is needed on the current diversity and distribution of species present within New Zealand.

BIOLOGICAL BASELINE SURVEYS FOR NON-INDIGENOUS MARINE SPECIES

In 1997, the International Maritime Organisation (IMO) released guidelines for ballast water management (Resolution A868-20) encouraging countries to undertake biological surveys of port environments for potentially harmful non-indigenous aquatic species. As part of its comprehensive five-year Biodiversity Strategy package on conservation, environment, fisheries, and biosecurity released in 2000, the New Zealand Government funded a national series of baseline surveys. These surveys aimed to determine the identity, prevalence and distribution of native, cryptogenic and non-indigenous species in New Zealand's major shipping ports and other high risk points of entry. The government department responsible for biosecurity in the marine environment at the time, the New Zealand Ministry of Fisheries (MFish), commissioned NIWA to undertake biological baseline surveys in 13 ports and three marinas that are first ports of entry for vessels entering New Zealand from overseas (Fig. 1). Marine biosecurity functions are now vested in Biosecurity New Zealand.

¹Biosecurity is the management of risks posed by introduced species to environmental, economic, social, and cultural values.

Figure 1: Commercial shipping ports in New Zealand where baseline nonindigenous species surveys have been conducted. Group 1 ports surveyed in the summer of 2001/2002 are indicated in bold and group 2 ports surveyed in the summer of 2002/2003 are indicated in plain font. Marinas were also surveyed for NIS in Auckland, Whangarei and Opua in 2002/2003.

The port surveys have two principal objectives:

- i. To provide a baseline assessment of native, non-indigenous and cryptogenic² species, and
- ii. To determine the distribution and relative abundance of a limited number of target species in shipping ports and other high risk points of entry for non-indigenous marine species.

The surveys will form a baseline for future monitoring of new incursions by non-indigenous marine species in port environments nationwide, and will assist international risk profiling of problem species through the sharing of information with other shipping nations.

This report summarises the results of the Opua Marina survey and provides an inventory of species detected in the Marina. It identifies and categorises native, introduced ("non-indigenous") and cryptogenic species. Organisms that could not be identified to species level are also listed as species indeterminata.

² "Cryptogenic:" species are species whose geographic origins are uncertain (Carlton 1996).

^{4 •} Opua Marina: baseline survey for non-indigenous marine species

DESCRIPTION OF THE OPUA MARINA

The Opua Marina (35°18'S, 174°07'E) on the east coast of the North Island is located on Waimangaroa Point in the southwest of the Bay of Islands (Fig. 2). The marina is linked to the main Bay of Islands via the Veronica Channel to the north-west. The Kawakawa River is to the immediate south and Waikare Inlet to the immediate east of the marina. The marina is 27 km from Cape Brett, the entrance to the Bay of Islands, and within close proximity to Russell and Paihia. The Opua Marina is a major hub for recreational vessels in the North Island (Inglis 2001). It is often the first port of entry for recreational vessels entering New Zealand.

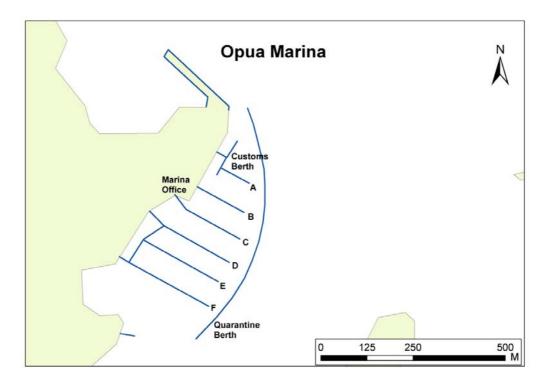


Figure 2: Opua Marina map.

MARINA OPERATION AND SHIPPING MOVEMENTS

Operational since 2000, the Opua Marina (parent company Far North Holdings Ltd) has 235 berths, ranging in size from 10.5 m to 27 m (Fig. 2), with floating concrete berths on H6 marine-grade pine pilings inside the marina and steel pilings on the breakwater. An additional 30 swing moorings plus several pile moorings are also available outside the marina breakwater (www.opuamarina.co.nz). Details of the berthing facilities available in the marina are provided in Table 1. There are numerous private swing moorings in the nearby bays, particularly in the Waikare Inlet, which can provide additional mooring for vessels waiting to enter the marina. Located adjacent to the marina southwards is a boatyard with slipway and floating berths which services and builds recreational vessels (www.ashbyboats.co.nz). A recent analyses of international shipping arrivals to Opua show that there was a total of 556 vessel visits during 2002/2003, with most of these (552 visits) being pleasure vessels. The other 4 visits were by larger commercial vessels to the Port of Opua (1 merchant, 3 passenger; Campbell 2004). The number of pleasure craft entering Opua Marina accounts for almost 70% of all international recreational craft visits to NZ, and is more than four times that of the next busiest location (Auckland: 132 pleasure vessels).

The original wharf at Opua (immediately to the northwest of the marina) was constructed in the early 1880's to load coal from Kawakawa, and continued this role until the late 1890's. In 1921 when the freezing works at Moerewa became operational, Opua developed into a significant meat export port although water depth restricted loading to the use of lighters. Dredging and wharf extension occurred in 1922, with further development in the 1950's. The last cargo vessel to use the wharf was in 1983, with passenger cruise ships using the wharf between 1983 and 1992. Customs and MAF were originally located at the wharf, but relocated to the new marina in 2000.

The Bay of Islands, in which the Opua Marina is situated, is a no-discharge area for vessels. Vessels are expected to comply with the Voluntary Controls on the Discharge of Ballast Water in New Zealand (<u>www.fish.govt.nz/sustainability/biosecurity/</u>); vessels are requested to exchange ballast water in mid-ocean (away from coastal influences) en route to New Zealand and discharge only the exchanged water while in port.

The quarantine and customs area within the Opua Marina is located on the northern half of the marina breakwater. During 2004, customs cleared approximately 480 vessels entering Opua Marina, with the majority arriving from the Pacific (Oliver Floerl, NIWA, *pers.comm.*)

In terms of future development, it is proposed to extend the marina southwards towards the Kawakawa River within the next 5 years, with extra berthing for 60-80 vessels up to 30 m in length (www.opuamarina.co.nz). Far North Holdings Ltd opened 162 m of marina-style facilities for smaller super yachts (10 berths up to 50 m) alongside the old Opua Wharf in 2004 and propose to further develop the old wharf, which is currently used by charter and fishing vessels, as a step towards the overall development of Opua as a servicing and support centre for visiting recreational boats. Indicators point to burgeoning recreational vessel traffic within the Bay of Islands.

PHYSICAL ENVIRONMENT OF OPUA MARINA

The marina is an artificial structure protected by a convex breakwater approximately 700 m in length with two entrances. This breakwater bounds the main Veronica Channel eastwards, which is only 350 m wide at its narrowest between Waimangaroa Point and Tapu Point. The smaller northern entrance of the marina is approximately 60 m wide, whilst the larger southwestern entrance is approximately 160 m wide. Minimum depth in the marina is 2 m at LWS. The marina seabed is composed mostly of sand. Tidal range varies between 1.6 and 2.0 m.

During its construction, the depth inside the marina was dredged down to a baseline of 2 m. No dredging inside the marina has been required since then, and the main channel adjacent to the marina is not dredged.

EXISTING BIOLOGICAL INFORMATION

There appears to be no published biological survey information available for Opua Marina and only limited information available on non-indigenous marine species in the Bay of Islands.

Morley and Hayward (1999) used benthic dredge sample to survey marine molluscs within the Bay of Islands. The area has the most diverse molluscan fauna of any area of similar size in New Zealand, with 551 species (389 gastropods, 139 bivalves, 20 chitons, two scaphopods and one shelled cephalopod) recorded from intertidal to 60 m depths, estuarine to exposed oceanic, rocky shores to muddy seafloor. The high diversity is a result of the wide range of habitats present and the area's location within the warm waters of the Aupourian Province (east coast of the northern North Island). Among the molluscs recorded were five nonindigenous species: the bivalves *Crassostrea gigas*, *Limaria orientalis*, *Musculista senhousia*, and *Theora lubrica*, and a gastropod, *Microtralia occidentalis*.

Occasional reports of the presence of new or rare subtropical species are characteristic of the Bay of Islands, and this region of New Zealand in general (Morley and Hayward 1999, Francis *et al.* 1999). Influxes of tropical and subtropical species occur mostly during warm summers and periods when the East Auckland Current is brought close to the coastline. Many of these species do not persist for longer than a single generation and are often the result of single recruitment events (Francis *et al.* 1999).

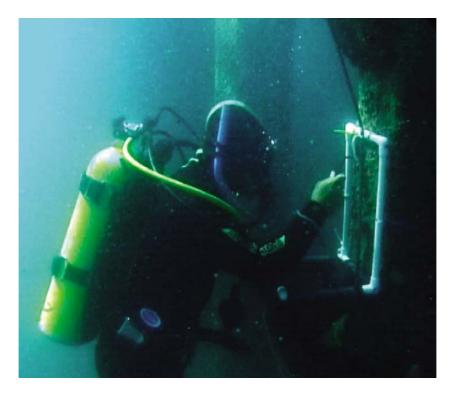
The Bay of Islands is an important area of commercial bivalve (oyster) aquaculture, with the main species under culture in the bay being the non-indigenous Pacific oyster, *Crassostrea gigas*. The farming method is predominantly rack-culture whereby oysters are seeded onto structures erected at the optimum growing level on the lower intertidal shore. Some growing areas in the Bay of Islands have had increasing problems with water quality as the surrounding human population and use of marine environments in the Bay of Islands have grown. In 1976, one of the major growing areas, Waikare Inlet, was listed as a slightly polluted estuary system (McLay, 1976). In 2001 an outbreak of Norwalk-like virus (a virus that causes gastro-enteritis and which is spread through contaminated food or water) shut down production in Waikare Inlet and forced some farmers to abandon their leases.

Sites within the Bay of Islands are regularly surveyed for harmful algae and biotoxins associated with Neurotoxic Shellfish Poisoning (NSP), Paralytic Shellfish Poisoning (PSP), Amnesic Shellfish Poisoning (ASP) and Diarrhetic Shellfish Poisoning (DSP) toxins at levels that present a risk to human health (Hay *et al.* 2000).

Following a bloom of the toxic dinoflagellate *Gymnodinium catenatum* in 2000 on the west coast of the North Island, Taylor and MacKenzie (2001) undertook a national delimitation survey to determine the distribution of *G. catenatum* that included a series of sediment samples from Orongo Bay in the Bay of Islands. No evidence was found of resting cysts of this species at the site.

Survey methods

SURVEY METHOD DEVELOPMENT

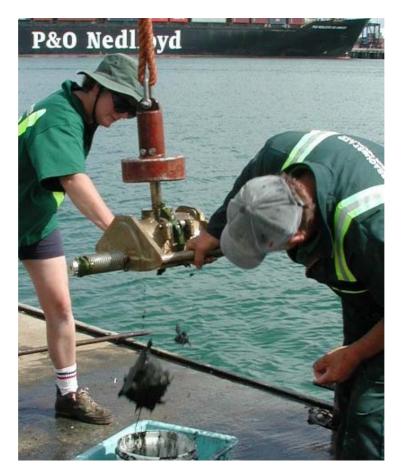

The sampling methods used in this survey were based on the CSIRO: Centre for Research on Introduced Marine Pests (CRIMP) protocols developed for baseline port surveys in Australia (Hewitt and Martin 1996, 2001). CRIMP protocols have been adopted as a standard by the International Maritime Organisation's Global Ballast Water Management Programme (GloBallast). Variations of these protocols are being applied to baseline port surveys in many other nations. A group of New Zealand marine scientists reviewed the CRIMP protocols and conducted a workshop in September 2001 to assess their feasibility for surveys in this country (Gust *et al.* 2001). A number of recommendations for modifications to the protocols ensued from the workshop and were implemented in surveys throughout New Zealand. The modifications were intended to ensure cost effective and efficient collection of baseline species data for New Zealand ports and marinas. The modifications made to the CRIMP protocols and reasons for the changes are summarised in Table 2. Further details are provided in Gust *et al.* (2001).

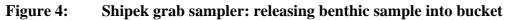
Baseline survey protocols are intended to sample a variety of habitats within ports, including epibenthic fouling communities on hard substrata, soft-sediment communities, mobile invertebrates and fishes, and dinoflagellates. Below, we describe the methods and sampling

effort used for the Opua Marina survey. The survey was undertaken between November 25th and 28th, 2002. Most sampling was concentrated on the recreational berths A-F. Additional sampling was also conducted around the marina breakwater. A summary of sampling effort within the marina is provided in Tables 3a,b.

DIVER OBSERVATIONS AND COLLECTIONS ON WHARF PILES

Fouling assemblages were sampled on four pilings at each site. Selected pilings were separated by 10 - 15 m and comprised four pilings on the outer face of the piers (Gust *et al.*) 2001). On each piling, four quadrats (40 cm x 25 cm) were fixed to the outer surface of the pile at water depths of approximately -0.5 m, -1.5 m, -3.0 m and -7 m. A diver descended slowly down the outer surface of each pile and filmed a vertical transect from approximately high water to the base of the pile, using a digital video camera in an underwater housing. On reaching the sea floor, the diver then ascended slowly and captured high-resolution still images of each quadrat using the photo capture mechanism on the video camera. Because of limited visibility, four overlapping still images, each covering approximately ¹/₄ of the area of the quadrat were taken for each quadrat. A second diver then removed fouling organisms from the piling by scraping the organisms inside each quadrat into a 1-mm mesh collection bag, attached to the base of the quadrat (Fig. 3). Once scraping was completed, the sample bag was sealed and returned to the laboratory for processing. The second diver also made a visual search of each piling for potential invasive species and collected samples of large conspicuous organisms not represented in quadrats. Opportunistic visual searches were also made of pontoons, breakwalls and rock facings within the commercial port area. Divers swam vertical profiles of the structures and collected specimens that could not be identified reliably in the field.




Figure 3: Diver sampling organisms on pier piles.

BENTHIC INFAUNA

Benthic infauna was sampled using a Shipek grab sampler deployed from a research vessel moored adjacent to the piers (Fig. 4), with samples collected from within 5 m of the pier edges. The Shipek grab removes a sediment sample of $\sim 3 l$ and covers an area of

approximately 0.04 m^2 on the seafloor to a depth of about 10 cm. It is designed to sample unconsolidated sediments ranging from fine muds and sands to hard-packed clays and small cobbles. Because of the strong torsion springs and single, rotating scoop action, the Shipek grab is generally more efficient at retaining samples intact than conventional VanVeen or Smith McIntyre grabs with double jaws (Fenwick *pers obs*). Three grab samples were taken at haphazard locations along each sampled pier. Sediment samples were washed through a 1mm mesh sieve and animals retained on the sieve were returned to the field laboratory for sorting and preservation.

EPIBENTHOS

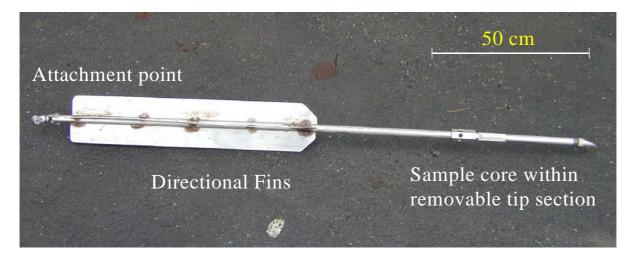

Larger benthic organisms were sampled using an Ocklemann sled (hereafter referred to as a "sled"). The sled is approximately one meter long with an entrance width of ~0.7 m x 0.2 m. A short yoke of heavy chain connects the sled to a tow line (Fig. 5). The mouth of the sled partially digs into the sediment and collects organisms in the surface layers to a depth of a few centimetres. Runners on each side of the sled prevent it from sinking completely into the sediment so that shallow burrowing organisms and small, epibenthic fauna pass into the exposed mouth. Sediment and other material that enters the sled is passed through a mesh basket that retains organisms larger than about two mm. Sleds were towed for a standard time of two minutes at approximately two knots. During this time, the sled typically traversed between 80 - 100 m of seafloor before being retrieved. Two to three sled tows were completed adjacent to each sampled pier within the marina, and the entire contents were sorted.

Figure 5: Benthic sled

SEDIMENT SAMPLING FOR CYST-FORMING SPECIES

A TFO gravity corer (hereafter referred to as a "javelin corer") was used to take small sediment cores for dinoflagellate cysts (Fig. 6). The corer consists of a 1 m long x 1 cm diameter hollow stainless steel shaft with a detachable $0.5 \text{ m} \log \text{head}$ (total length = 1.5 m). Directional fins on the shaft ensure that the javelin travels vertically through the water so that the point of the sampler makes first contact with the seafloor. The detachable tip of the javelin is weighted and tapered to ensure rapid penetration of unconsolidated sediments to a depth of 20 to 30 cm. A thin (1 cm diameter) sediment core is retained in a perspex tube within the hollow spearhead. In muddy sediments, the corer preserves the vertical structure of the sediments and fine flocculant material on the sediment surface more effectively than handheld coring devices (Matsuoka and Fukuyo 2000). The javelin corer is deployed and retrieved from a small research vessel. Cyst sample sites were not constrained to the mooring areas sampled by pile scraping and trapping techniques. Sampling focused on high sedimentation areas within the marina and avoided areas subject to strong tidal flow. On retrieval, the perspex tube was removed from the spearhead and the top 5 cm of sediment retained for analysis. Sediment samples were kept on ice and refrigerated prior to culturing. Culture procedures generally followed those described by Hewitt and Martin (2001).

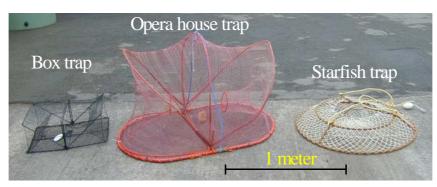
MOBILE EPIBENTHOS

Benthic scavengers and fishes were sampled using a variety of baited trap designs described below.

Opera house fish traps

Opera house fish traps (1.2 m long x 0.8 m wide x 0.6 m high) were used to sample fishes and other bentho-pelagic scavengers (Fig. 7). These traps were covered in 1 cm² mesh netting and had entrances on each end consisting of 0.25 m long tunnels that tapered in diameter from 40 to 14 cm. The trap was baited with two dead pilchards (*Sardinops neopilchardus*) held in plastic mesh suspended in the centre of the trap. Two trap lines, each containing two opera house traps were set for a period of one hour at each site before retrieval. Previous studies have shown opera house traps to be more effective than other types of fish trap and that consistent catches are achieved with soak times of 20 to 50 minutes (Ferrell *et al.* 1994; Thrush *et al.* 2002).

Box traps


Fukui- designed box traps (63 cm x 42 cm x 20 cm) with a 1-cm mesh netting were used to sample mobile crabs and other small epibenthic scavengers (Fig. 7). A central mesh bait holder containing two dead pilchards was secured inside the trap. Organisms attracted to the bait enter the traps through slits in inward sloping panels at each end. Two trap lines, each containing two box traps, were set on the sea floor at each site and left to soak overnight before retrieval.

Starfish traps

Starfish traps designed by Whayman-Holdsworth were used to catch asteroids and other large benthic scavengers (Fig. 7). These are circular hoop traps with a basal diameter of 100 cm and an opening on the top of 60 cm diameter. The sides and bottom of the trap are covered with 26- mm mesh and a plastic, screw-top bait holder is secured in the centre of the trap entrance (Andrews *et al.* 1996). Each trap was baited with two dead pilchards. Two trap lines, each with two starfish traps were set on the sea floor at each site and left to soak overnight before retrieval.

Shrimp traps

Shrimp traps were used to sample small, mobile crustaceans. They consisted of a 15 cm plastic cylinder with a 5-cm diameter screw top lid in which a funnel had been fitted. The funnel had a 20-cm entrance that tapered in diameter to 1 cm. The entrance was covered with 1-cm plastic mesh to prevent larger animals from entering and becoming trapped in the funnel entrance. Each trap was baited with a single dead pilchard. Two trap lines, each containing two scavenger traps, were set on the sea floor at each site and left to soak overnight before retrieval.

Figure 7: Trap types deployed in the marina.

SAMPLING EFFORT

A summary of sampling effort within the Opua Marina is provided in Tables 3 a,b. We particularly focused sampling effort on hard substrata, (such as pier piles), where invasive species are likely to be found (Hewitt and Martin 2001), and increased the number of quadrats sampled on each pile relative to the CRIMP protocols, as well as sampling both shaded and unshaded piles. The distribution of effort within the marina aimed to maximise spatial coverage and represent the diversity of active mooring sites within the area. Total sampling effort was constrained by the costs of processing and identifying specimens obtained during the survey.

The spatial distribution of sampling effort for each of the sample methods in the Opua Marina is indicated in the following figures: diver pile scrapings and javelin cyst coring (Fig. 8), benthic sledding and Shipek grab sampling (Fig. 9), box, starfish, shrimp and opera house fish trapping (Fig. 10). Sampling effort was varied between ports and marinas on the basis of risk assessments (Inglis 2001) to maximise the search efficiency for NIS nationwide. Sampling effort in each of the thirteen ports and three marinas surveyed over two summers is summarised in Table 3c.

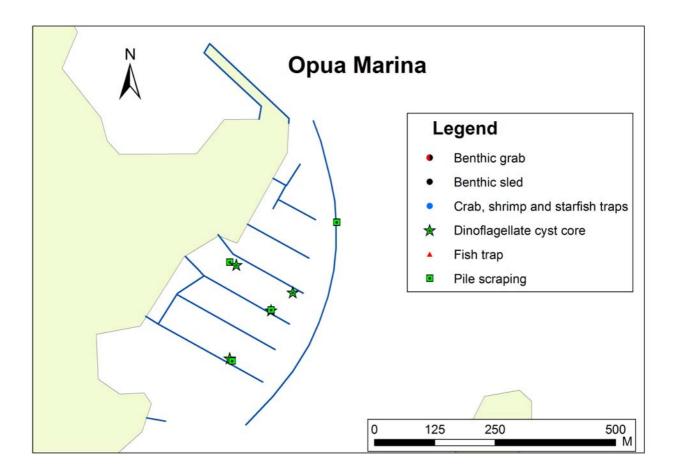


Figure 8: Diver pile scrape sites and dinoflagellate cyst coring sites

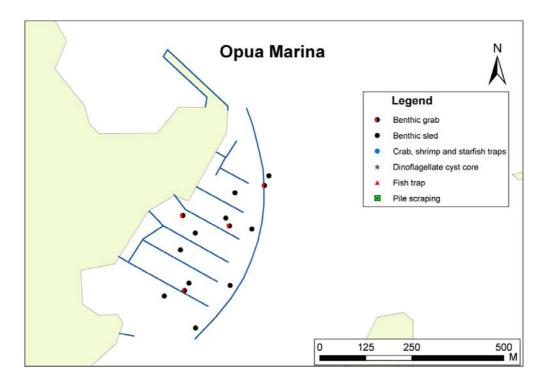
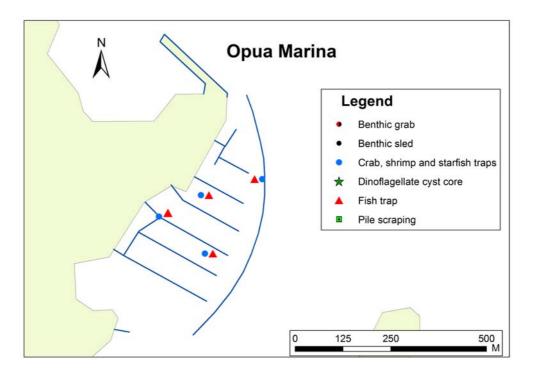
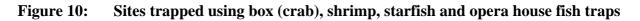




Figure 9: Benthic sled and Shipek benthic grab sites.

SORTING AND IDENTIFYING SPECIMENS

Each sample collected in the diver pile scrapings, benthic sleds, box, starfish and shrimp traps, opera house fish traps, Shipek grabs and javelin cores was allocated a unique code on waterproof labels and transported to a nearby field laboratory where it was sorted by a team into broad taxonomic groups (e.g. ascidians, barnacles, sponges etc.). These groups were then

preserved and individually labelled. Details of the preservation techniques varied for many of the major taxonomic groups collected, and the protocols adopted and preservative solutions used are indicated in Table 4. Specimens were subsequently sent to over 25 taxonomic experts (Appendix 1) for identification to species or lowest taxonomic unit (LTU). We also sought information from each taxonomist on the known biogeography of each species within New Zealand and overseas. Species lists compiled for each port were compared with the marine species listed on the New Zealand register of unwanted organisms under the Biosecurity Act 1993 (Table 5a) and the marine pest list produced by the Australian Ballast Water Management Advisory Council (Table 5b).

DEFINITIONS OF SPECIES CATEGORIES

Each species recovered during the survey was classified into one of four categories that reflected its known or suspected geographic origin. To do this we used the experience of taxonomic experts and reviewed published literature and unpublished reports to collate information on the species' biogeography.

Patterns of species distribution and diversity in the oceans are complex and still poorly understood (Warwick 1996). Worldwide, many species still remain undescribed or undiscovered and their biogeography is incomplete. These gaps in global marine taxonomy and biogeography make it difficult to reliably determine the true range and origin of many species. The four categories we used reflect this uncertainty. Species that were not demonstrably native or non-indigenous were classified as "cryptogenic" (sensu Carlton 1996). Cryptogenesis can arise because the species was spread globally by humans before scientific descriptions of marine flora and fauna began in earnest (i.e. historical introductions). Alternatively the species may have been discovered relatively recently and there is insufficient biogeographic information to determine its native range. We have used two categories of cryptogenesis to distinguish these different sources of uncertainty. In addition, a fifth category ("species indeterminata") was used for specimens that could not be identified to species-level. Formal definitions for each category are given below.

Native species

Native species are known to be endemic to the New Zealand biogeographical region and have not been introduced to coastal waters by human mediated transport.

Non-indigenous species (NIS)

Non-indigenous species (NIS) are known or suspected to have been introduced to New Zealand as a result of human activities. They were determined using a series of questions posed by Chapman and Carlton (1991, 1994), as exemplified by Cranfield *et al.* (1998).

- 1. Has the species suddenly appeared locally where it has not been found before?
- 2. Has the species spread subsequently?
- 3. Is the species' distribution associated with human mechanisms of dispersal?
- 4. Is the species associated with, or dependent on, other non-indigenous species?
- 5. Is the species prevalent in, or restricted to, new or artificial environments?
- 6. Is the species' distribution restricted compared to natives?

The worldwide distribution of the species was tested by a further three criteria:

- 7. Does the species have a disjunctive worldwide distribution?
- 8. Are dispersal mechanisms of the species inadequate to reach New Zealand, and is passive dispersal in ocean currents unlikely to bridge ocean gaps to reach New Zealand?

^{14 •} Opua Marina: baseline survey for non-indigenous marine species

9. Is the species isolated from the genetically and morphologically most similar species elsewhere in the world?

In this report we distinguish two categories of NIS. "NIS" refers to non-indigenous species previously recorded from New Zealand waters, and "NIS (new)" refers to non-indigenous species first discovered in New Zealand waters during this project.

Cryptogenic species Category 1

Species previously recorded from New Zealand whose identity as either native or nonindigenous is ambiguous. In many cases this status may have resulted from their spread around the world in the era of sailing vessels prior to scientific survey (Chapman and Carlton 1991, Carlton 1992), such that it is no longer possible to determine their original native distribution. Also included in this category are newly described species that exhibited invasive behaviour in New Zealand (Criteria 1 and 2 above), but for which there are no known records outside the New Zealand region.

Cryptogenic species Category 2

Species that have recently been discovered but for which there is insufficient systematic of biogeographic information to determine whether New Zealand lies within their native range. This category includes previously undescribed species that are new to New Zealand and/or science.

Species indeterminata

Specimens that could not be reliably identified to species level. This group includes: (1) organisms that were damaged or juvenile and lacked morphological characteristics necessary for identification, and (2) taxa for which there is not sufficient taxonomic or systematic information available to allow identification to species level.

Survey results

A total of 122 species or higher taxa was identified from the Opua Marina survey. This collection consisted of 76 native (Table 6), 14 cryptogenic (Table 7), 12 non-indigenous species (Table 8) and 20 species indeterminata (Table 9, Fig. 15). The biota included a diverse array of organisms from 11 Phyla (Fig. 16). Five species from the Opua Marina had not previously been described from New Zealand waters. For general descriptions of the main groups of organisms (Phyla) encountered during this study refer to Appendix 2.

NATIVE SPECIES

A diverse array of native organisms was sampled during this survey (Fig. 12, Table 6). A total of 76 native species was identified which represents 62.3 % of all organisms identified from the marina. Native communities included highly diverse assemblages of annelids (21 species), molluscs (19 species), crustaceans (14 species), and vertebrates (fish) (7 species). A number of other less diverse phyla were also present in native communities within the marina (Fig. 12).

CRYPTOGENIC SPECIES

Fourteen cryptogenic species were discovered in the Opua Marina. Cryptogenic species represent 11.5 % of all species or higher taxa identified from the marina. The cryptogenic organisms identified included nine Category 1 and five Category 2 species as defined in Section 2.9 above. These organisms included three cnidarians (*Bougainvillia muscus, Clytia hemisphaerica, Phialella quadrata*), two crustaceans (*Balanus trigonus, Pilumnopeus serratifrons*), one mollusc (*Mytilus* sp.), three porifera (*Halichondria* n. sp. 4, *Haliclona* n. sp.

3, *Haliclona* n. sp. 9), one pyrrophycophyta (*Gymnodinium catenatum*) and four ascidian species (*Asterocarpa cerea*, *Corella eumyota*, *Styela plicata*, *Pyura* sp.; Table 7). Some of the Category 1 cryptogenic species (such as the ascidians Astereocarpa cerea and *Corella eumyota*) have been present in New Zealand for more than 100 years but have distributions outside New Zealand that suggest non-native origins (Cranfield *et al.* 1998).

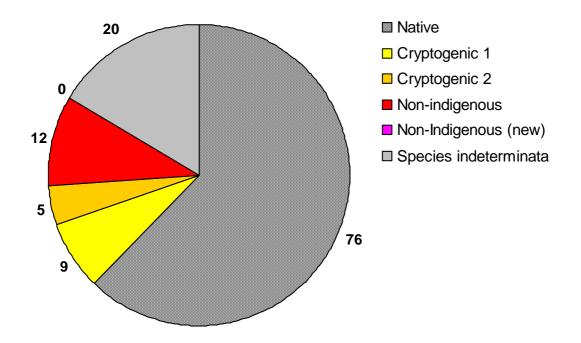


Figure 11: Diversity of marine species sampled in the Opua Marina. Values indicate the number of species in native, cryptogenic, non-indigenous and species indeterminata categories.

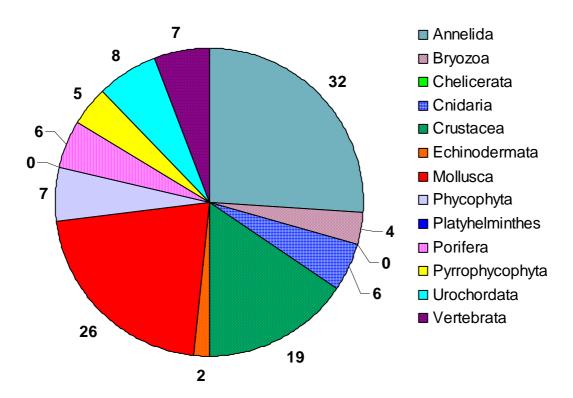
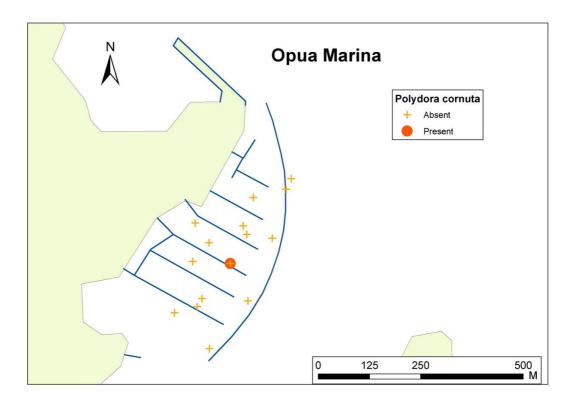


Figure 12: Marine Phyla sampled in the Opua Marina. Values indicate the number of species in each of the major taxonomic groups.

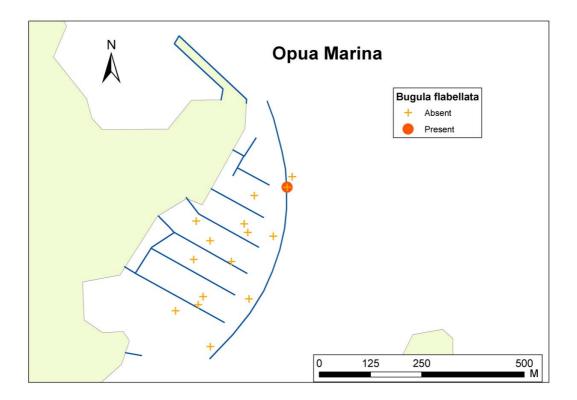

NON-INDIGENOUS SPECIES

Twelve non-indigenous marine species were recorded from the Opua Marina (Table 8). NIS represent 9.8 % of all identified species from this location. All were previously known from New Zealand waters. NIS included five molluscs, three bryozoans, and single representatives of the Annelida, Cnidaria, Crustacea and Phycophyta. A list of Chapman and Carlton's (1994) criteria (see Section 2.9.2) that were met by the non-indigenous species sampled in this survey is given in Appendix 3. Below we summarise available information on the biology of each of these species, providing images where available, and indicate what is known about their distribution, habitat preferences and impacts. This information was sourced from published literature, the taxonomists listed in Appendix 1 and from regional databases on nonindigenous marine species in Australia (National Introduced Marine Pest Information System; http://www.crimp.marine.csiro.au/nimpis) and the USA (National Exotic Marine and Estuarine Species Information System; http://invasions.si.edu/nemesis). Distribution maps for each NIS in the port are composites of multiple replicate samples. Where overlayed presence and absence symbols occur on the map, this indicates the NIS was found in at least one, but not all replicates at that GPS location. NIS are presented below by phyla in the same order as Table 8.

Polydora cornuta (Bosc, 1802)

No image available.

Polydora cornuta is a polychaete in the family Spionidae. It is native to the east-coast of the USA and has been introduced to California and Oregon, probably as a co-introduction with oyster aquaculture imports. *P. cornuta* lives in mud tubes attached to oysters and other bivalves, and is able to live in salinities as low as 5 ppt (Fuller and O'Connell 2005). It has been present in New Zealand since at least 1972 and has previously been recorded from Whangarei and Waitemata Harbours (Cranfield *et al.* 1998). In Opua Marina *P. cornuta* occurred in pile scrape samples taken from Berth D (Fig. 13).


Figure 13: Polydora cornuta distribution in Opua Marina

Bugula flabellata (Thompson in Gray, 1847)

Image and information: NIMPIS (2002a)

Bugula flabellata is an erect bryozoan with broad, flat branches. It is a colonial organism and consists of numerous 'zooids' connected to one another. It is pale pink and can grow to about 4 cm high and attaches to hard surfaces such as rocks, pilings and pontoons or the shells of other marine organisms. It is often found growing with other erect bryozoan species such as *B. neritina* (see below) or growing on encrusting bryozoans. Vertical, shaded, sub-littoral rock surfaces also form substrata for this species. It has been recorded down to 35 m. *Bugula flabellata* is native to the British Isles and North Sea and has been introduced to Chile, Florida and the Caribbean and the north-east and west coasts of the USA, as well as Australia and New Zealand. It is cryptogenic on the Atlantic coasts of Spain, Portugal and France. *Bugula flabellata* is a major fouling bryozoan in ports and harbours, particularly on vessel hulls, pilings and pontoons and has also been reported from offshore oil platforms. There have been no recorded impacts from *B. flabellata*. During the current baseline surveys it was recorded from Opua Marina, Whangarei, Auckland, Tauranga, Napier, Taranaki, Wellington, Picton, Nelson, Lyttelton, Timaru, Dunedin and Bluff. In Opua Marina *B. flabellata* was recorded in pile scrape samples taken from the Quarantine berth (Fig. 14).

Figure 14: Bugula flabellata distribution in Opua Marina

Bugula neritina Linnaeus, 1758

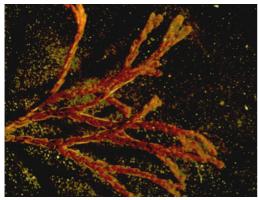
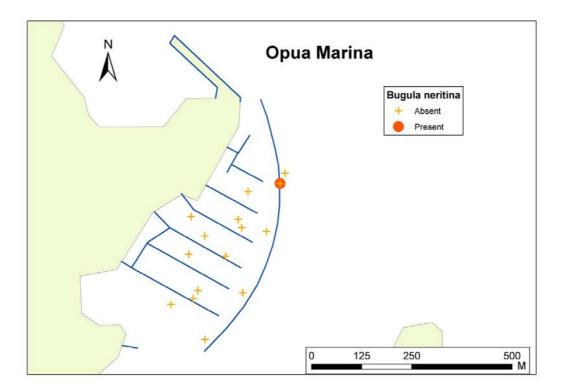



Image and information: NIMPIS (2002b)

Bugula neritina is an erect, bushy, red-purple-brown bryozoan. Branching is dichotomous (in series of two) and zooids alternate in two rows on the branches. Unlike all other species of *Bugula*, *B. neritina* has no avicularia (defensive structures) or spines, but there is a single pointed tip on the outer corner of zooids. Ovicells (reproductive structures) are large, globular and white in colour. They often appear in such high numbers that they resemble small snails or beads. *Bugula neritina* is native to the Mediterranean Sea. It has been introduced to most of North America, Hawaii, India, the Japan and China Seas, Australia and New Zealand. It is cryptogenic in the British Isles. *Bugula neritina* is one of the most abundant bryozoans in ports and harbours and an important member of the fouling community. The species colonises any available substratum and can form extensive monospecific growths. It grows well on pier piles, vessel hulls, buoys and similar submerged surfaces. It even grows heavily in ships' intake pipes and condenser chambers. In North America, *B. neritina* occurs on rocky reefs and seagrass leaves. In Australia, it occurs primarily on artificial substrata. *B. neritina* occurs in all New Zealand ports (Gordon and Matawari 1992). In Opua Marina it occurred in pile scrape samples taken from the Quarantine berth (Fig. 15).

Figure 15: Bugula neritina distribution in Opua Marina

Watersipora subtorquata (d'Orbigny, 1842)

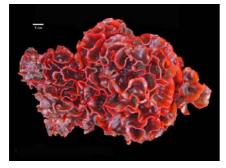
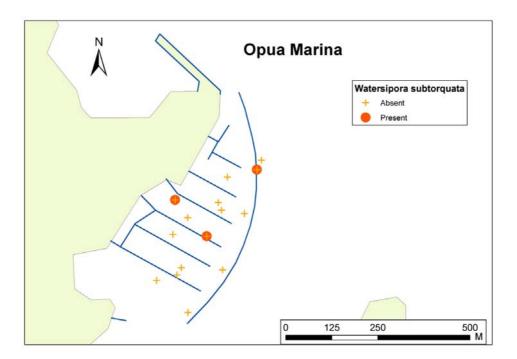



Image: California Academy of Sciences. Information: Gordon and Matawari (1992)

Watersipora subtorquata is a loosely encrusting bryozoan capable of forming single or multiple layer colonies. The colonies are usually dark red-brown, with a black centre and a thin, bright red margin. The operculum is dark, with a darker mushroom shaped area centrally. *Watersipora subtorquata* has no spines, avicularia or ovicells. The native range of the species is unknown, but is thought to include the wider Caribbean and south Atlantic. The type specimen was described from Rio de Janeiro, Brazil (Gordon and Matawari 1992). It also occurs in the north-west Pacific, Torres Strait and north-eastern and southern Australia.

W. subtorquata is an important marine fouling species in ports and harbours. It occurs on vessel hulls, pilings and pontoons. This species can also be found attached to rocks and seaweeds. They form substantial colonies on these surfaces, typically around the low water mark. *Watersipora subtorquata* is also an abundant fouling organism and is resistant to a range of antifouling toxins. It can therefore spread rapidly on vessel hulls and provide an area for other species to settle onto which can adversely impact on vessel maintenance and speed, as fouling assemblages can build up on the hull.

W. subtorquata has been present in New Zealand since at least 1982 and is now present in most ports from Opua to Bluff (Gordon and Matawari 1992). In Opua Marina it occurred in pile scrape samples taken from Berths C, D, and the Quarantine Berth (Fig. 16).

Figure 16: *Watersipora subtorquata* distribution in Opua Marina

Obelia longissima (Pallas, 1766)

No image available.

Obelia longissima is a long, flexible hydroid (family Campanulariidae) with a prominent main stem and branches. It usually reaches up to 20 cm in length but may reach 35 cm. The main stem is long, reddish brown and unforked but may become forked in older colonies. *Obelia longissima* is found growing on algae and hard substrata. It is normally subtidal but can occasionally be found growing in intertidal rockpools and at extreme low water of spring tides. Subtidal colonies that become detached may continue to grow if washed into rockpools and entangled with other species such as mussels. It is a suspension feeder that feeds upon small zooplankton, small crustaceans, oligochaetes, insect larvae and probably detritus. *O. longissima* exhibits a typical leptolid life cycle consisting of a sessile colonial, vegetative hydroid stage, a free-living sexual medusoid stage, and a planula larval stage.

Obelia longissima has a near-cosmopolitan distribution. It was thought to be a predominantly cold water species, present in the north-east and north-west Pacific, north-east and north-west Atlantic, the Artic circle and the Black Sea, and, in the southern hemisphere, in Argentina, Chile, and New Zealand (Stepanjants 1998). However, numerous Indo-Pacific records may also be this species (Cornelius 1995). In New Zealand, *O. longissima* has previously been recorded from Christchurch and Dunedin (Watson, Hydrozoan Research Laboratory *pers. comm.*). During the port baseline surveys, it occurred in the Port of Auckland and in Opua Marina. In Opua Marina it occurred in pile scrape samples taken from the Quarantine Berth (Fig. 17).

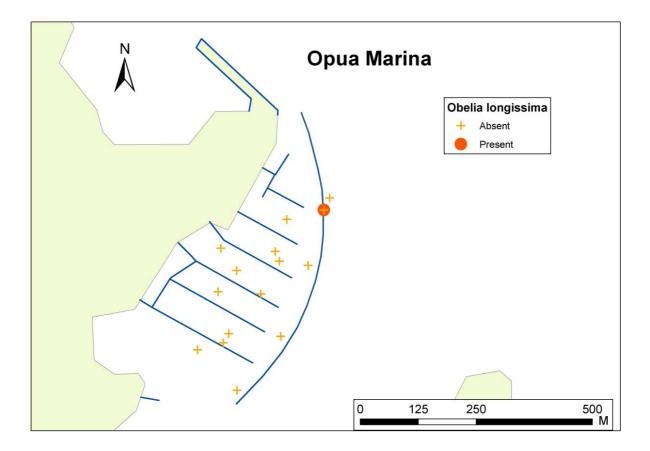


Figure 17: Obelia longissima distribution in Opua Marina

Apocorophium acutum (Chevreux, 1908)

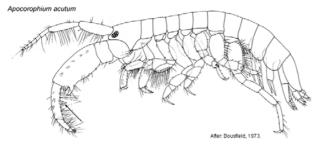


Image and information: Keys to the Northeast Atlantic and Mediterranean amphipods.

[http://www.amphipoda.com/acutum.html]

Apocorophium acutum is a corophiid amphipod, known from the Atlantic Ocean (England, France, North America, Brazil, South Africa), Pacific Ocean (New Zealand) and the Mediterranean Sea. The exact native range of this species is not known, although the type specimen of this species was described from the southern Mediterranean. *Apocorophium acutum* inhabits marine sediments in estuarine mudflats and brackish water and fouling assemblages where it builds muddy tubes. It has no documented impacts. During the port baseline surveys *A. acutum* was recorded from the ports of Lyttelton, Tauranga and Timaru, and from Gulf Harbour and Opua Marinas. In Opua Marina it occurred in pile scrape samples taken from Berth D and from shrimp trap samples taken at Berth C (Fig. 18).

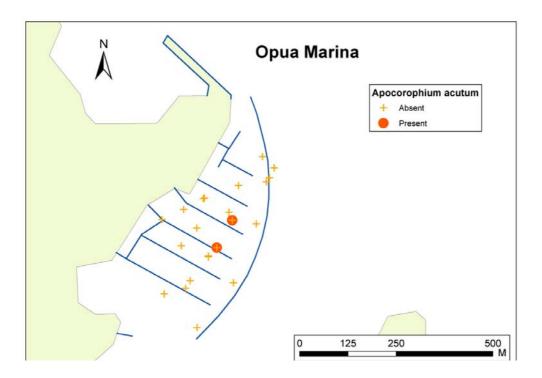


Figure 18: Apocorophium acutum distribution in Opua Marina

Musculista senhousia (Benson in Cantor, 1842)

Image and information: NIMPIS (2002d) *Musculista senhousia* is a small mussel with a maximum length of around 30 mm. It has a smooth, thin shell that is olive green to brown, with dark radial lines or zigzag markings. A well-developed byssus is used to construct a cocoon which protects the shell. This cocoon is made up of byssal threads and sediment. *Musculista senhousia* burrows vertically down into the sand/mud leaving only its posterior end protruding, allowing its siphons access to the water to enable feeding. *Musculista senhousia* has been found from the intertidal to a depth of 20 m and on soft or hard substrata. It prefers to settle in groups on soft substrata, but is capable of fouling wharf pilings and man-made structures. When settled on hard substrata the mussel will not form a protective cocoon. It is a highly adaptive species, and is able to tolerate low salinities. *Musculista senhousia* can dominate benthic communities and potentially exclude native species. It settles in aggregations and is therefore able to reach high densities. The byssal mats formed by the mussel restrict the growth of some species of seagrass, increases sediment deposition and retention, and can thereby alter the abundance and composition of infaunal assemblages.

Musculista senhousia is native to the Japan and north China Seas. It has been introduced to the west coast of the USA, the Mediterranean, Australia and New Zealand. It is cryptogenic in the Red Sea, the eastern Indian Ocean, South China Sea, Indonesia and Papua New Guinea. It has been present in New Zealand since at least 1978 and has spread to a range of estuaries in north-east New Zealand, from the East Cape to Parengarenga Harbour. In the Opua Marina it occurred in pile scrape samples taken from C and D Berths and in benthic grab samples taken near D Berth (Fig. 19).

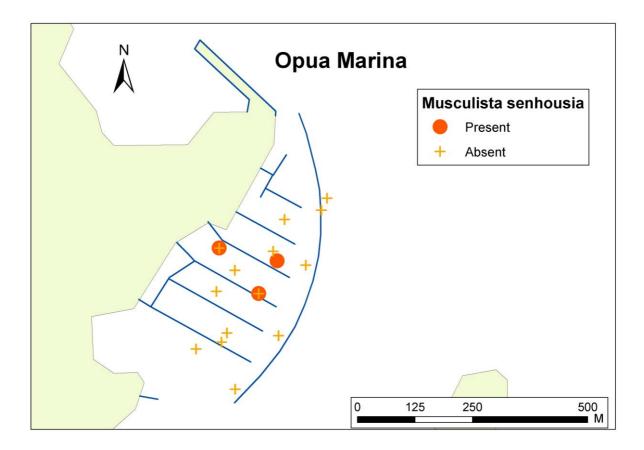


Figure 19: Musculista senhousia distribution in Opua Marina

Crassostrea gigas (Thunberg, 1793)



Image and information: NIMPIS (2002c)

The Pacific oyster, *Crassostrea gigas*, is an important aquaculture species throughout the world, including New Zealand. It has a white elongated shell, with an average size of up to 150-200 mm. The two valves are solid, but unequal in size and shape. The left valve is slightly convex and the right valve is quite deep and cup shaped. One valve is usually entirely cemented to the substratum. The shells are sculpted with large, irregular, rounded, radial folds.

Crassostrea gigas is native to the Japan and China Seas and the northwest Pacific. It has been introduced to the west coast of both North and South America, the West African coast, the northeast Atlantic, the Mediterranean, Australia, New Zealand, Polynesia and Micronesia. It is cryptogenic in Alaska. *Crassostrea gigas* will attach to almost any hard surface in sheltered waters. Whilst they usually attach to rocks, the oysters can also be found in muddy or sandy areas. Oysters will also settle on adult oysters of the same or other species. They prefer sheltered waters in estuaries where they are found in the intertidal and shallow subtidal zones, to a depth of about 3 m. *Crassostrea gigas* settles in dense aggregations in the intertidal zone, resulting in the limitation of food and space available for other intertidal species.

C. gigas has been present in New Zealand since the early 1960s (Cranfield *et al.* 1998). Little is known about the impacts of this species in New Zealand, but it is now a dominant structural component of fouling assemblages and intertidal shorelines in northern harbours of New Zealand and the upper South Island. *C. gigas* is now the basis of New Zealand's oyster aquaculture industry, having displaced the native rock oyster, *Saccostrea glomerata. C. gigas* was recorded from Opua Marina, Whangarei Harbour, Gulf Harbour Marina, Auckland, Taranaki, Nelson and Dunedin during the port baseline surveys (Table 10). In Opua Marina it occurred in pile scrape samples taken from the C, D, and Quarantine berths and in benthic sled samples taken near B berth (Fig. 20).

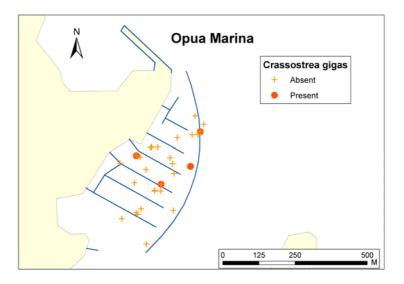


Figure 20: Crassostrea gigas distribution in Opua Marina

Limaria orientalis (Adams & Reeve, 1850)

Image: <u>www.femorale.com</u>.

Limaria orientalis (file shell) is a bivalve in the family Limidae. It is known from Australia and the tropical Indo-Pacific. It was first recorded in New Zealand in 1972 from the Hauraki Gulf and Waitemata Harbour. It has since been recorded from the Bay of Islands and Coromandel (Cranfield *et al.* 1998), and is common in the Marlborough Sounds (Don Morrisey, NIWA, *pers. comm.*). *L. orientalis* can be a dominant member of benthic assemblages in muddy shell gravels (Hayward 1997). Its impacts in its introduced range are unknown. In Opua Marina it occurred in pile scrape samples taken from Berth D (Fig. 21).

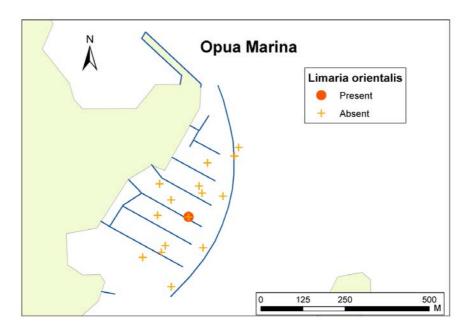


Figure 21: Limaria orientalis distribution in Opua Marina

Theora lubrica (Gould, 1861)

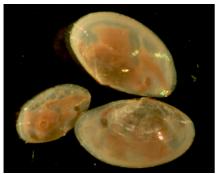


Image and information: NIMPIS (2002e)

Biosecurity New Zealand

Theora lubrica is a small bivalve with an almost transparent shell. The shell is very thin, elongated and has fine concentric ridges. *T. lubrica* grows to about 15 mm in size, and is characterised by a fine elongate rib extending obliquely across the internal surface of the shell. *Theora lubrica* is native to the Japan and China Seas. It has been introduced to the west coast of the USA, Australia and New Zealand. *Theora lubrica* typically lives in muddy sediments from the low tide mark to 50 m, however it has been found at 100 m. In many localities, *T. lubrica* is an indicator species for eutrophic and anoxic areas. *T. lubrica* has been present in New Zealand since at least 1971. It occurs in estuaries of the north-east coast of the North Island, including the Bay of Islands, Whangarei Harbour, Waitemata Harbour, Wellington and Pelorus Sound. During the port baseline surveys, it was recovered from Opua, Whangarei Port and Marina, Gulf Harbour Marina, Auckland, Gisborne, Napier, Taranaki, Wellington, Nelson, and Lyttelton. *T. lubrica* occurred throughout Opua Marina and was recorded in all 10 benthic sled samples taken within the marina, and in benthic grab samples taken near the C, D, and Quarantine berths (Fig. 22).

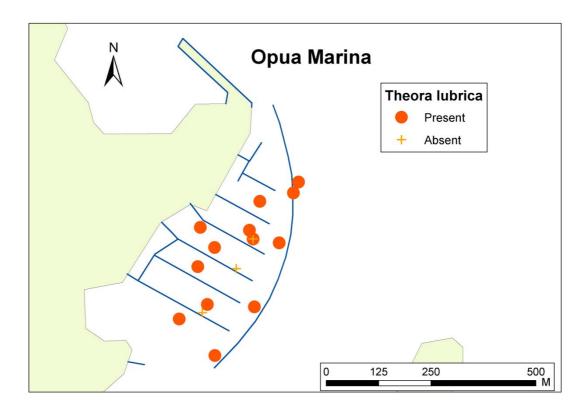


Figure 22: Theora lubrica distribution in Opua Marina

Polycera hedgpethi (Marcus, 1964)

Image and information: <u>http://www.seaslugforum.net;</u> <u>http://www.ciesm.org;</u> Miller (2001) *Polycera hedgpethi* is a small, polycerid nudibranch that commonly grows to 20 mm in length (max. 40 mm). It is distinguished by a small frontal veil bearing 4-6 white-tipped pointed processes, black or grey speckled body, with a rhinophore club with black and yellow banding. *P. hedgpethi* is native to the west coast of the USA and has been found in Australia, Japan, Mexico, the Mediterranean, New Zealand, South Africa, Spain, and West Africa. It has been known from New Zealand waters (east coast of North Island) since the 1970's (Cranfield *et al.* 1998). *Polycera hedgpethi* generally occurs on bryozoans, usually species of *Bugula*, which grow as fouling species on ropes, wharf pylons, fouling panels, pontoons and vessel hulls. They can also be found on natural substrata such as rocks, seagrasses and algae in the shallow subtidal to 10 m depth. Its association with major seaports, and common occurrence amongst ship hull biofouling, suggests a distribution from shipping rather than natural causes. It has no known impacts. In the Opua Marina, *P. hedgpethi* occurred in pile scrape samples taken from the Quarantine Berth (Fig. 23).

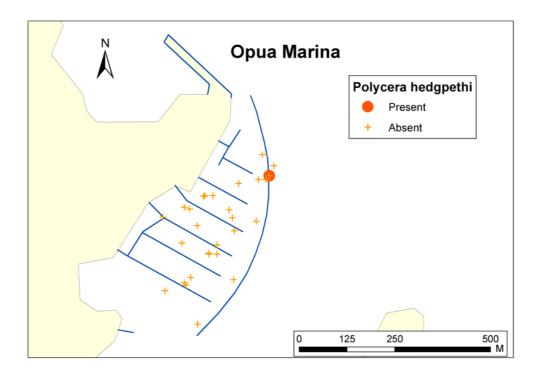


Figure 23: Polycera hedgpethi distribution in Opua Marina

Polysiphonia sertularioides (Grateloup) J.Agardh

Image: http://www.com.univ-mrs.fr/ Information: Adams (1994)

Polysiphonia sertularioides is a small filamentous red alga. Plants are delicate and tufted and grow up to 4 cm high. They have very slender stems and a holdfast of creeping stems. They are of a reddish brown colour and soft and flaccid texture. The type specimen for *P. sertularioides* was described from France, but although it is found throughout the

Mediterranean its native range is largely unknown. *P. sertularoides* has been recorded from the Caribbean, the Indian Ocean, French Polynesia and southern Australia (Guiry *et al.* 2005). It usually occurs on pebbles and twigs, and is epiphytic on various other seaweeds. It can be found in sheltered bays and tidal pools. The impacts of *P. sertularioides* are unknown. During the baseline port surveys, *P. sertularoides* was recorded from the port of Taranaki and Opua Marina. In Opua Marina it occurred in pile scrape samples taken from Berth C (Fig. 24).

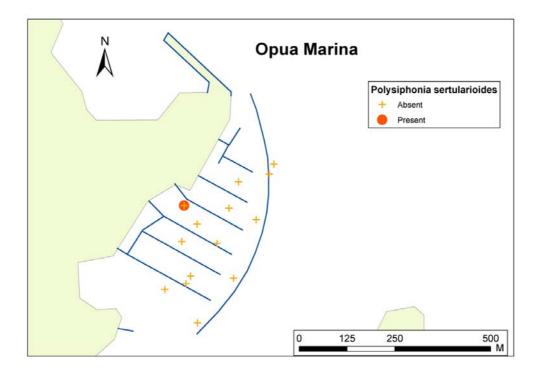


Figure 24: Polysiphonia sertularoides distribution in Opua Marina

SPECIES INDETERMINATA

Twenty organisms from the Opua Marina were classified as species indeterminata (Table 9). If each of these organisms is considered a species of unresolved identity, then together they represent 16.4 % of all species collected from this survey (Fig. 11). Species indeterminata from Opua Marina included 10 annelids, two cnidarians, two crustaceans, one mollusc and five phycophyta.

NOTIFIABLE AND UNWANTED SPECIES

Of the non-indigenous species identified from the Opua Marina, none are currently listed as unwanted species on the New Zealand register of unwanted organisms (Table 5a). Two non-indigenous species (the bivalves *Musculista senhousia* and *Crassostrea gigas*) and one cryptogenic species (the cryptogenic dinoflagellate *Gymnodinium catenatum*) are listed on the ABWMAC Australian list of pest species (Table 5b).

PREVIOUSLY UNDESCRIBED SPECIES IN NEW ZEALAND

Five species from the Opua Marina had not previously been recorded from New Zealand waters. These species are classified as Category 2 cryptogenic species in Table 7. The previously undescribed cryptogenic species included three porifera (*Halichondria* n. sp. 4, *Haliclona* n. sp. 3, *Haliclona* n. sp. 9), one bivalve mollusc (*Mytilus* sp.) and one ascidian (*Pyura* sp.). The sponges and the ascidian do not match existing species descriptions from New Zealand or overseas and may be new to science.

The mytilid bivalve is outside the known range of *Mytilus galloprovincialis* in New Zealand and has a slightly different morphology, showing more resemblance to *M. edulis* (B. Marshall, Museum of NZ Te Papa, *pers. comm.*). However, hybridization among members of the *M. edulis* complex makes the taxonomy of this group confused. Gardner (2004) has recently completed a morphometric analysis of *Mytilus* from throughout New Zealand that included both extant populations and shells taken from fossils and middens. He found that mussels from the Bay of Islands had more affinity with *M. edulis* than *M. galloprovincialis*, but fossil and midden mussels more closely aligned with *M. galloprovincialis*. More detailed genetic analysis of the mussels from the Bay of Islands is warranted to determine their true identity.

CYST-FORMING SPECIES

Four species of native dinoflagellate cysts were collected during this survey; they are indicated as members of the Pyrrophycophyta in Table 6. One cryptogenic dinoflagellate species (*Gymnodinium catenatum*) was also collected from the marina (Table 7), and is listed on the ABWMAC Australian list of pest species. Toxins produced by the motile form of *G. catenatum* can cause Paralytic Shellfish Poisoning (PSP) and are a significant public health problem. Blooms of *G. catenatum* can cause problems for aquaculture and recreational harvesting of shellfish.

POSSIBLE VECTORS FOR THE INTRODUCTION OF NON-INDIGENOUS SPECIES TO THE MARINA

The non-indigenous species located in the marina are thought to have arrived in New Zealand via international shipping. Table 8 indicates the possible vectors for the introduction of each NIS into the marina. Likely vectors of introduction are largely derived from Cranfield *et al.* (1998) and indicate that approximately 8 % (one of the 12 NIS) probably arrived via ballast water, 59 % probably were introduced to New Zealand waters via hull fouling, and 33 % could have arrived via either of these mechanisms.

COMPARISON WITH OTHER PORTS

Sixteen locations (13 ports and three marinas) were surveyed during the summers of 2001/2002 and 2002/2003 (Fig. 1). The total number of species identified in these surveys varied from 336 in the Port of Wellington to 56 in Whangarei Town Basin Marina (Fig. 25a). The number of species recorded in each location reflects sampling effort (Table 3c) and local patterns of marine biodiversity within the ports and marinas. Sampling effort alone (expressed as the total number of registered samples in each port), accounted for significant proportions of variation in the numbers of native (linear regression; $F_{1,14} = 33.14$, P < 0.001, $R^2 = 0.703$), Cryptogenic 1 ($F_{1,14} = 5.94$, P = 0.029, $R^2 = 0.298$) and Cryptogenic 2 ($F_{1,14} = 7.37$, P =0.017, $R^2 = 0.345$) species recorded in each location. However differences in sampling effort did not explain differences in the numbers of NIS in each port or marina ($F_{1,14} = 0.77$, P =0.394, $R^2 = 0.052$). After adjusting for sampling effort, Opua Marina had a slightly smaller than average number of NIS, relative to the other ports and marinas surveyed, and an average diversity of native, Cryptogenic 1 and Cryptogenic 2 species (Fig 26). Largest numbers of NIS were reported from the ports of Lyttelton and Whangarei, but significantly more Cryptogenic 1 species were recorded in Whangarei Port than in other surveyed locations (Fig 26c, Studentised residual = 3.87).

Native organisms represented over 60 % of the species diversity sampled in each surveyed location, with a minimum contribution of 61.0 % in the Port of Lyttelton and a maximum of 68.5 % in Picton (Fig. 25b). Species indeterminata organisms represented between 10.6 % and 25.6 % of the sampled diversity in each location. Non-indigenous and category 1 and 2 cryptogenic species were present in each port and marina, although their relative contributions

differed between locations (Fig. 25b). Non-indigenous species represented between 3.6 % (Bluff) and 16.1 % (Whangarei Marina) of all species identified. NIS comprised 9.8 % of the total sampled diversity in the Opua Marina (Fig. 25b), ranking it 3rd highest in percentage composition of NIS from the sixteen locations surveyed.

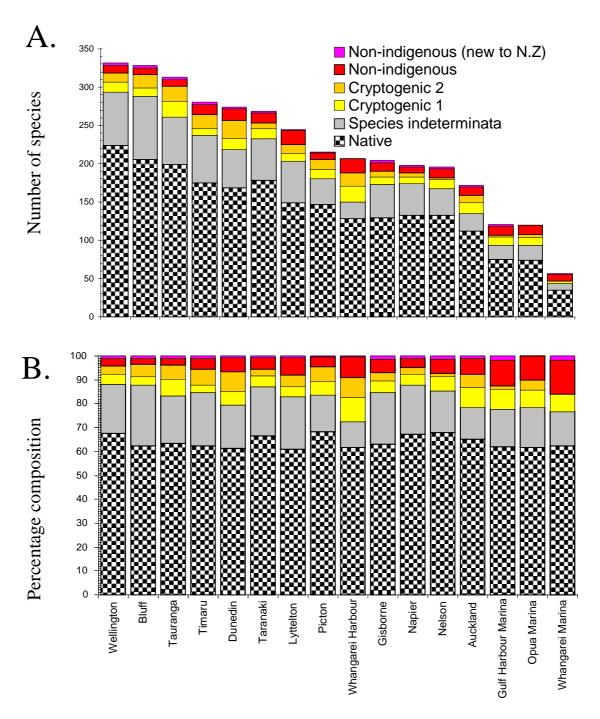


Figure 25: Differences in (a) the number of species, and (b) the relative proportions of non-indigenous, cryptogenic, species indeterminata and native categories among the sixteen locations sampled over the summers of 2001 – 2002, and 2002-2003. Locations are presented in order of decreasing species diversity sampled.

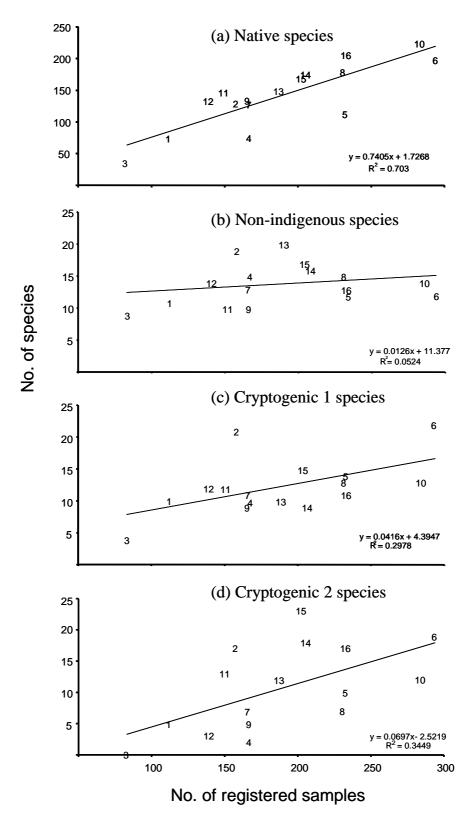


Figure 26: Linear regression equations relating numbers of species detected to sample effort at the 16 locations surveyed nation-wide. Location codes are as follows; 1 = Opua Marina, 2 = Whangarei Port, 3 = Whangarei Marina, 4 = Gulf Harbour Marina, 5 = Auckland Port, 6 = Tauranga Port, 7 = Gisborne Port, 8 = Taranaki Port, 9 = Napier Port, 10 = Wellington Port, 11 = Picton Port, 12 = Nelson Port, 13 = Lyttelton Port, 14 = Timaru Port, 15 = Dunedin Port, 16 = Bluff Port

Assessment of the risk of new introductions to the marina

Many NIS introduced to New Zealand ports, through hull fouling, ships' sea chests, or ballast water discharge, do not survive to establish self-sustaining local populations. Those that do, often come from coastlines that have similar marine environments to New Zealand. For example, approximately 80% of the marine NIS known to be present within New Zealand are native to temperate coastlines of Europe, the north -west Pacific, and southern Australia (Cranfield *et al.* 1998).

Commercial shipping arrivals in Opua Marina are uncommon when compared to other ports around New Zealand, and in 2004 these visits were limited to three cruise liners and one merchant ship (Campbell, 2004). The Bay of Islands has a 'no discharge' policy in place, so the risk of new introductions through ballast is minimal.

Pleasure boating is a very popular activity in New Zealand, and there are more than 30 marinas nationwide that offer mooring facilities to sailing yachts and cabin cruisers of up to 50m in length. New Zealand is also a popular destination for international yachts. These yachts arrive throughout the year, but predominantly (>90 % of all annual arrivals) between October and December. The Opua Marina is known for its high traffic of recreational pleasure craft. The marina has mooring space for 319 vessels and, on average, 70 % of this space is occupied at all times (Floerl, unpublished data). Each year, approximately 70 % of all international yacht arrivals enter New Zealand through Opua Marina (New Zealand Customs Service, personal communication). In 1998 – 2003, Opua received between 272 and 559 international yacht arrivals each year. Pleasure craft visiting the marina from overseas predominantly arrive from Fiji (35 %), Tonga (33 %), New Caledonia (16 %) and Australia (8 %) (NIWA, unpublished data). Recreational vessels from these regions, in particular from temperate or sub-tropical locations, present an on-going risk of introduction of new NIS to Opua Marina.

Assessment of translocation risk for non-indigenous species found in the marina

In addition to international arrivals, approximately 500 New Zealand boats visit Opua each year. Vessels departing from the Opua Marina travel to a wide range of locations around both of New Zealand's main islands. For example, a sample of 207 international yachts that had arrived in Opua from overseas in 2003 subsequently visited more than 70 locations around New Zealand's coastline (NIWA, unpublished data). Movements of yachts between Opua and other locations have the potential to spread introduced fouling organisms.

Generally, vessels departing from Opua Marina after having spent time at berth are likely to pose a risk of spreading established NIS to other marinas and ports within New Zealand where they do not currently occur. The risk of translocation of fouling species is highest for slow-moving vessels and vessels that have long residence times in port. In Opua Marina, recreational craft that are laid up for significant periods of time pose a particular risk for the spread of these species.

Management of existing non-indigenous species in the marina

Seven of the 12 NIS detected in this survey, were recorded from only a single sample location within the marina. Since the baseline surveys are not intended to provide a detailed description of the distribution and abundance of each species in the ports and marinas, it is unclear how widespread each of these species is in Opua Marina. All of the NIS recorded from Opua have been present in New Zealand for more than 20 years and most have been recorded previously from this region. It is likely, therefore, that their distribution in the Bay of

Islands is not limited to the marina environment. Further surveys, targeting these species, are necessary to determine the true extent of their population in the marina and in other ports around New Zealand.

For most marine NIS eradication by physical removal or chemical treatment is not yet a costeffective option. Many of the species recorded in Opua Marina (particularly *Theora lubrica*) are widespread and local population controls are unlikely to be effective. Management should be directed toward preventing spread of species established in Opua Marina to locations where they do not presently occur. This may be particularly relevant to potentially harmful species that currently have restricted geographic distributions within New Zealand (e.g. *Musculista senhousia, Gymnodinium catenatum*). Such management will require better understanding of the frequency of movements by vessels from Opua Marina to other domestic and international locations and improved procedures for hull maintenance by vessels leaving this marina.

Prevention of new introductions

Interception of unwanted species transported by shipping is best achieved offshore, through control and treatment of ships destined for Opua Marina from high-risk locations elsewhere in New Zealand or overseas. Under the Biosecurity Act 1993, the New Zealand Government has developed an Import Health Standard for ballast water that requires large ships to exchange foreign coastal ballast water with oceanic water prior to entering New Zealand, unless exempted on safety grounds. This procedure ("ballast exchange") does not remove all risk, but does reduce the abundance and diversity of coastal species that may be discharged with ballast. Ballast exchange requirements do not currently apply to ballast water that is taken up domestically. Globally, shipping nations are moving toward implementing the International Convention for the Control and Management of Ships Ballast Water & Sediments that was recently adopted by the International Maritime Organisation (IMO). By 2016 all merchant vessels will be required to meet discharge standards for ballast water that are stipulated within the agreement.

Options are currently lacking, however, for effective in-situ treatment of biofouling on vessel hulls and sea-chests. Biosecurity New Zealand has recently embarked on a national survey of hull fouling on vessels entering New Zealand from overseas (including private yachts and launches). The study will characterise risks from this pathway (including high risk source regions and vessel types) and identify predictors of risk that may be used to manage problem vessels. Vessel owners can reduce the risk of transporting NIS in hull fouling or internal piping through regular maintenance and antifouling of their vessels.

Overseas studies have suggested that changes in trade routes can herald an influx of new NIS from regions that have not traditionally had major shipping links with the country or port (Carlton 1987). The growing number of baseline port surveys internationally and an associated increase in published literature on marine NIS means that information is becoming available that will allow more robust risk assessments to be carried out for new shipping routes. Similar assessments could be conducted on the principal sources of international yachts entering marinas of first entry from overseas. The assessment would allow potential problem species to be identified and appropriate management and monitoring requirements to be put in place.

Conclusions and recommendations

The national biological baseline surveys have significantly increased our understanding of the identity, prevalence and distribution of introduced species in New Zealand's shipping ports.

They represent a first step towards a comprehensive assessment of the risks posed to native coastal marine ecosystems from non-indigenous marine species. Although measures are being taken by the New Zealand government to reduce the rate of new incursions, foreign species are likely to continue being introduced to New Zealand waters by shipping, especially considering the lack of management options for hull fouling introductions. There is a need for continued monitoring of marine NIS in port environments to allow for (1) early detection and control of harmful or potentially harmful non-indigenous species, (2) to provide on-going evaluation of the efficacy of management activities, and (3) to allow trading partners to be notified of species that may be potentially harmful. Baseline inventories, like this one, facilitate the second and third of these two purposes. They become outdated when new introductions occur and, therefore, should be repeated on a regular basis to ensure they remain current. Hewitt and Martin (2001) recommend an interval of three to five years between repeat surveys.

The predominance of hull fouling as a likely introduction vector for NIS encountered in the Opua Marina (probably responsible for over 90% of the NIS introductions) is consistent with previous findings from a range of overseas locations. For instance, Hewitt *et al.* (1999) attributed the introduction of 77 % of the 99 NIS encountered in Port Phillip Bay (Australia) to hull fouling, and only 20 % to ballast water. Similarly, 61 % of the 348 marine and brackish water NIS established in the Hawaiian Islands are thought to have arrived on ships' hulls, but only 5 % in ballast water (Eldredge and Carlton 2002). However, ballast water is thought to be responsible for the introduction of 30 % of the 212 marine NIS established in San Francisco Bay (USA), compared to 34 % for hull fouling (Cohen and Carlton 1995). The high percentages of NIS thought to have been introduced by hull fouling in Australasia may reflect the fact that hull fouling has a far longer history (~200 years) as an introduction vector than ballast water (~40 years) (Hewitt *et al.* 1999). However, the fact that some of New Zealand and Australia's most recent marine NIS introductions (e.g. *Undaria pinnatifida, Codium fragile sp. tomentosoides*) have been facilitated by hull fouling suggests that it has remained an important transport mechanism (Cranfield *et al.* 1998; Hewitt *et al.* 1999).

Non-indigenous marine species can have a range of adverse impacts through interactions with native organisms. For instance, NIS can cause ecological impacts through competition, predator-prey interactions, hybridisation, parasitism or toxicity and can modify the physical environment through altering habitat structure (Ruiz *et al* 1999; Ricciardi 2001). Assessing the impact of a NIS in a given location ideally requires information on a range of factors, including the mechanism of their impact and their local abundance and distribution (Parker *et al.* 1999). To predict or quantify NIS impacts over larger areas or longer time scales requires additional information on the species' seasonality, population size and mechanisms of dispersal (Mack *et al* 2000). Further studies may be warranted to establish the abundance and potential impacts of the non-indigenous species encountered in this marina to determine if management actions are necessary or possible.

Acknowledgements

We thank the staff at the Opua Marina for access to facilities and assistance during the survey. We also thank the following people for field assistance with the diving, boat, trapping and sorting of organisms during this survey program: Aleki Taumoepeau, Anna Bradley, Anthony Dugdale, Corina Kemp, Crispin Middleton, Evan Skipworth, Gavin Newmarch, Geoff Holland, Graeme MacKay, Ian Maze, Jeff Forman, John Hunt, Kate Neill, Marty Flanagan, Matt Smith, Mike Page, Neil Blair, Niki Davey, Peter Marriott, Phil James, Rob Stewart, Rob Tasker, Scott Stephens, Sean Handley, Stephen Brown, Todd Williston, Tony Dugdale and Walter Hillman. Many thanks to Don Morrisey for reviewing drafts of this report and constructive criticism.

We also extend our thanks to the numerous taxonomists involved in this programme, including: Bruce Marshall, Clive Roberts, Colin McLay, David Staples, Dennis Gordon, Don McKnight, Fukuuoka Kouki, Geoff Read, Hoe Chang, Jan Watson, Lesley Newman, Michelle Kelly, Mike Page, Niel Bruce, Niki Davey, Patricia Kott, Sean Handley and Wendy Nelson.

References

- Adams N (1994) Seaweeds of New Zealand: an illustrated guide. Canterbury University Press, Christchurch, p 360
- AMOG Consulting (2002). Hull fouling as a vector for the translocation of marine organisms. Phase I: Hull fouling research. Ballast Water Research Series, Report No. 14., Department of Agriculture, Fisheries and Forestry Australia, Canberra.
- Andrews, D.; Whayman, G; Edgar, G. (1996). Assessment of optimal trapping techniques to control densities of the northern Pacific seastars on marine farm leases. Report No. FRDC 95/066
- Campbell M (2004) Analysis of vessel entries into New Zealand between 1998 and 2003. Unpublished report, Ministry of Fisheries, Wellington.
- Carlton, J.T. (1985). Transoceanic and inter-oceanic dispersal of coastal marine organisms: the biology of ballast water. *Oceanography and Marine Biology Annual Reviews 23*: 313-371.
- Carlton J (1987) Patterns of transoceanic marine biological invasions in the Pacific Ocean. Bulletin of Marine Science 41:452-465
- Carlton, J.T. (1992). Blue immigrants: the marine biology of maritime history. *The Log of Mystic Seaport Museum* 44: 31-36.
- Carlton, J.T (1996). Biological invasions and cryptogenic species. *Ecology* 77:1653-1655.
- Carlton, J.T. (1999). The scale and ecological consequences of biological invasions in the world's oceans. Pp. 195-212. *In*: Invasive species and biodiversity management. Sandlund, T.; Schei, P.J.; Viken, A. (Eds.). Kluwer Academic, Dordrecht.
- Carlton, J.T.; Geller, J. (1993). Ecological roulette: The global transport of non-indigenous marine organisms. *Science 261*: 78-82.
- Chapman, J.W.; Carlton, J.T. (1991). A test of criteria for introduced species: the global invasion by the isopod *Synidotea laevidorsalis* (Miers, 1881). *Journal of Crustacean Biology 11*: 386-400.
- Chapman, J.W.; Carlton, J.T. (1994). Predicted discoveries of the introduced isopod *Synidotea laevidorsalis* (Miers, 1881). *Journal of Crustacean Biology* 14: 700-714.
- Cohen, A.N.; Carlton, J.T. (1995). Non-indigenous Aquatic Species in a United States Estuary: A Case Study of the Biological Invasions of the San Francisco Bay and Delta.
- Cornelius, P.F.S. (1995). North-west European thecate hydroids and their medusae. Part 2. Sertulariidae to Campanulariidae. In, Barnes, R.S.K.; Crothers, J.H. (ed.s), Synopses of the British Fauna (New Series), The Linnean Society of London. Shrewsbury: Field Studies Council. [Synopses of the British Fauna no. 50].
- Coutts, A.; Moore, K.; Hewitt, C. (2003). Ships' sea chests: an overlooked transfer mechanisms for non-indigenous marine species? *Marine Pollution Bulletin* 46: 1504-1515.
- Cranfield, H.; Gordon, D.; Willan, R.; Marshall, B.; Battershill, C.; Francis, M.; Glasby, G.; Read, G. (1998). Adventive marine species in New Zealand. *NIWA Wellington Technical Report No. 34*.
- Eldredge, L.; Carlton, J.T. (2002). Hawaiian marine bioinvasions: a preliminary assessment. *Pacific Science* 56: 211-212.
- Ferrell, D.; Avery, R.; Blount, C.; Hayes, L.; Pratt, R. (1994). The utility of small, baited traps for surveys of snapper (*Pagrus auratus*) and other demersal fishes. NSW Fisheries Research Institute Report. NSW Fisheries Research Institute, Cronulla, NSW, Australia.

- Francis, M.P.; Worthington, C. J.; Saul, P. J.; Clements, K. D. (1999). New and rare tropical and subtropical fishes from northern New Zealand. *New Zealand Journal of Marine and Freshwater Research* 33: 571-586.
- Fuller P, O'Connell D (2005) *Polydora cornuta*. USGS Nonindigenous Aquatic Species Database, Gainesville, FL.

<http://nas.er.usgs.gov/queries/FactSheet.asp?speciesID=1183>.

- Gardner, J.P.A. (2004). A historical perspective of the genus *Mytilus* (Bivalvia: Mollusca) in New Zealand: multivariate morphometric analyses of fossil, midden and contemporary blue mussels. *Biological Journal of the Linnean Society* 82: 329-344.
- Gordon, D.; Matawari, S. (1992). Atlas of marine fouling bryozoa of New Zealand marinas and Harbours. Miscellaneous Publications of the New Zealand Oceanographic Institute. New Zealand Oceanographic Institute. 52 p.
- Grosholz, E. (2002). Ecological and evolutionary consequences of coastal invasions. *Trends in Ecology and Evolution 17*:22-27.
- Guiry, M.D.; Nic Dhonncha, E.; Rindi, F. (2005). AlgaeBase version 3.0. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 22 July 2005.
- Gust, N.; Inglis, G.; Hayden, B. (2001). Design of baseline surveys for exotic marine organisms. Final research report for MFISH project ZBS2000/04. National Institute of Water and Atmospheric Research, Christchurch.
- Hay, B.E.; Grant, C.M.; McCoubrey, D.-J. (2000). A review of the marine biotoxin monitoring programme for non-commercially harvested shellfish: Part 1 – Technical Report. A report prepared for the Ministry of Health. AquaBio Consultants, Auckland. 241 pp.
- Hayward, B. (1997). Introduced marine organisms in New Zealand and their impact in the Waitemata Harbour, Auckland. T*ane* 36: 197-223.
- Hewitt, C.; Campbell, M.; Thresher, R.; Martin, R. (1999). Marine biological invasions of marina Phillip Bay, Victoria. Report No. 20, Centre for Research on Introduced Marine Pests, Hobart.
- Hewitt C, Martin R (1996) Port surveys for introduced marine species background considerations and sampling protocols. CRIMP technical report no 4. CSIRO Division of Fisheries, Hobart.
- Hewitt, C.; Martin, R. (2001). Revised protocols for baseline surveys for introduced marine species- survey design, sampling protocols and specimen handling. Report No. 22, Centre for Research on Introduced Marine Pests, Hobart.
- Inglis, G. (2001). Criteria for selecting New Zealand ports and other points of entry that have a high risk of invasion by new exotic marine organisms. Final research report for Ministry of Fisheries research project ZBS2000/01A, objectives 1 & 2. NIWA, Wellington. 27 p.
- Leppäkoski, E.; Gollasch, S.; Gruszka, P.; Ojaveer, H.; Olenin, S.; Panov, V. (2002). The Baltic a sea of invaders. *Canadian Journal of Fisheries and Aquatic Sciences 59*: 1175-1188.
- Mack, R.; Simberloff, D.; Lonsdale, W.; Evans, H.; Clout, M.; Bazzaz, F. (2000). Biotic invasions: causes, epidemiology, global consequences and control. *Ecological Applications 10*: 689-710.
- Matsuoka K, Fukuyo Y (2000) Technical guide for modern dinoflagellate cyst study. Report prepared for the WESTPAC-HAB Project. WESTPAC-HAB/WESTPAC/IOC http://dinos.anesc.u-tokyo.ac.jp/technical_guide/main.pdf 77p.
- McLay, C.L. (1976). An inventory of the status and origin of New Zealand estuarine systems. *Proceedings of the New Zealand Ecological Society 23*: 8-26.
- Miller, M.C. (2001). Descriptions of the Dorid nudibranchs *Polycera hedpethi* Marcus, 1964 and *P. fujitai* Baba, 1937 in New Zealand (Gastropoda: Opisthobranchia). *Journal of Molluscan Studies* 67: 491-499.

^{36 •} Opua Marina: baseline survey for non-indigenous marine species

- Morley, M.S.; Hayward, B.W. (1999). Inner shelf mollusca of the Bay of Islands, New Zealand, and their depth distribution. *Records of the Auckland Museum* 36: 119-138
- NIMPIS (2002a). Bugula flabellata species summary. National Introduced Marine Pest Information System. Hewitt, C.L.; Martin, R.B.; Sliwa, C.; McEnnulty, F.R.; Murphy, N.E.; Jones, T.; Cooper, S. (Eds.:). Web publication <u>http://crimp.marine.csiro.au/nimpis</u>, Date of access: 3/24/2004
- NIMPIS (2002b). Bugula neritina species summary. National Introduced Marine Pest Information System. Hewitt, C.L.; Martin, R.B.; Sliwa, C.; McEnnulty, F.R.; Murphy, N.E.; Jones, T.; Cooper, S. (Eds.:). Web publication <u>http://crimp.marine.csiro.au/nimpis</u>, Date of access: 3/24/2004
- NIMPIS (2002c) Crassostrea gigas species summary. National Introduced Marine Pest Information System (Eds: Hewitt CL, Martin RB, Sliwa C, McEnnulty FR, Murphy NE, Jones T & Cooper S). Web publication <u>http://crimp.marine.csiro.au/nimpis</u>, Date of access: 3/24/2004
- NIMPIS (2002d) *Musculista senhousia* species summary. National Introduced Marine Pest Information System (Eds: Hewitt CL, Martin RB, Sliwa C, McEnnulty FR, Murphy NE, Jones T & Cooper S). Web publication <u>http://crimp.marine.csiro.au/nimpis</u>, Date of access: 3/24/2004.
- NIMPIS (2002e). *Theora lubrica* species summary. National Introduced Marine Pest Information System. Hewitt, C.L.; Martin, R.B.; Sliwa, C.; McEnnulty, F.R.; Murphy, N.E.; Jones, T.; Cooper, S. (Eds:.). Web publication <u>http://crimp.marine.csiro.au/nimpis</u>, Date of access: 3/24/2004
- Parker, I.; Simberloff, D.; Lonsdale, W.; Goodell, K.; Wonham, M.; Kareiva, P.; Williamson, M.; Holle, B.V.; Moyle, P.; Byers, J.; Goldwasser, L. (1999). Impact: Toward a Framework for Understanding the Ecological Effects of Invaders. *Biological Invasions 1*: 3-19.
- Ricciardi, A (2001). Facilitative interactions among aquatic invaders: is an "invasional meltdown" occurring in the Great Lakes? *Canadian Journal of Fisheries and Aquatic Sciences* 58: 2513-2525.
- Ruiz, G.; Fofonoff, P. Hines, A.; Grosholz, E. (1999). Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. *Limnology and Oceanography* 44: 950-972.
- Stepanjants, S.D. (1998). Obelia (Cnidaria, Medusozoa, Hydrozoa): phenomenon, aspects of investigations, perspectives for utilization. Oceanography and Marine Biology: an Annual Review 36: 179-215.
- Taylor M, MacKenzie L (2001) Delimitation survey of the toxic dinoflagellate *Gymnodinium catenatum* in New Zealand. Cawthron Report 661, 12pp. Prepared for Ministry of Fisheries.
- Thrush, S.F.; Schultz, D.; Hewitt, J.E.; Talley, D. (2002). Habitat structure in soft sediment environments and abundance of juvenile snapper *Pagrus auratus*. *Marine Ecology Progress Series* 245: 273-280.
- Warwick RM (1996) Marine biodiversity: a selection of papers presented at the conference "Marine Biodiversity: causes and consequences", York, U.K. 30 August - 2 September 1994. Journal of Experimental Marine Biology and Ecology 202:IX-X
- Wilcove, D.; Rothstein, D.; Dubow, J.; Phillips, A.; Losos, E. (1998). Quantifying threats to imperiled species in the United States. *Bioscience* 48: 607-615.
- <<u>www.ashbyboats.co.nz</u>>: Website of S.J. Ashby Boatbuilder Ltd
- <<u>www.opuamarine.co.nz</u>>: Opua Marina (Far North Holdings Limited) website
- <<u>www.fish.govt.nz/sustainability/biosecurity</u>>: Ministry of Fisheries website, accessed 7/6/05.

Tables

Berth	Purpose	Construction	Length of Berth (m)	Depth (m below chart datum)
А	Recreational	Concrete berths/wood pilings	125	2.0
В	Recreational	Concrete berths/wood pilings	150	2.0
С	Recreational	Concrete berths/wood pilings	200	2.0
D	Recreational	Concrete berths/wood pilings	200	2.0
E	Recreational	Concrete berths/wood pilings	240	2.0
F	Recreational	Concrete berths/wood pilings	250	2.0

Table 1:Berthage facilities in the Opua Marina.

Table 2:Comparison of survey methods used in this study with the CRIMP
protocols (Hewitt and Martin 2001), indicating modifications made to the
protocols following recommendations from a workshop of New Zealand
scientists. Full details of the workshop recommendations can be found in
Gust *et al.* (2001).

	CRIM	/IP Protocol	NIW	A Method	
Taxa sampled	Survey method	Sample procedure	Survey method	Sample procedure	Notes
Dinoflagellate cysts	Small hand core	Cores taken by divers from locations where sediment deposition occurs	TFO Gravity core ("javelin" core)	Cores taken from locations where sediment deposition occurs	Use of the javelin core eliminated the need to expose divers to unnecessary hazards (poor visibility, snags, boat movements, repetitive dives > 10 m). It is a method recommended by the WESTPAC/IOC Harmful Algal Bloom project for dinoflagellate cyst collection (Matsuoka and Fukuyo 2000)
Benthic infauna	Large core	3 cores close to (0 m) and 3 cores away (50 m) from each berth	Shipek benthic grab		Use of the benthic grab eliminated need to expose divers to unnecessary hazards (poor visibility, snags, boat movements, repetitive dives > 10 m).
Dinoflagellates	20um plankton net	Horizontal and vertical net tows	Not sampled	Not sampled	Plankton assemblages spatially and temporally variable, time- consuming and difficult to identify to species. Workshop recommended using resources to sample other taxa more comprehensively
Zooplankton and/ phytoplankton	100 um plankton net	Vertical net tow	Not sampled	Not sampled	Plankton assemblages spatially and temporally variable, time- consuming and difficult to identify to species. Workshop recommended using resources to sample other taxa more comprehensively
Crab/shrimp	Baited traps	3 traps of each kind left overnight at each site	Baited traps	4 traps (2 line x 2 traps) of each kind left overnight at each site	
Macrobiota	Qualitative visual survey	Visual searches of wharves & breakwaters for target species	Qualitative visual survey	Visual searches of wharves & breakwaters for target species	
Sedentary / encrusting biota	Quadrat scraping	0.10 m2 quadrats sampled at -0.5 m, -3.0 m and - 7.0 m on 3 outer piles per berth	Quadrat scraping	sampled at -0.5 m,	Workshop recommended extra quadrat in high diversity algal zone (-1.5 m) and to sample inner pilings for shade tolerant species

	CRII	MP Protocol	NIW	A Method	
Taxa sampled	Survey method	Sample procedure	Survey method	Sample procedure	Notes
Sedentary / encrusting biota	Video / photo transect	Video transect of pile/rockwall facing. Still images taken of the three 0.10 m2 quadrats	^F Video / photo transect	Video transect of pile/rockwall facing. Still images taken of the four 0.10 m2 quadrats	
Mobile epifauna	Beam trawl or benthic sled	1 x 100 m or timed trawl at each site	Benthic sled	2 x 100 m (or 2 min.) tows at each site	
Fish	Poison station	Divers & snorkelers collect fish from poison stations	Opera house fish traps	4 traps (2 lines x 2 traps) left for min. 1 hr at each site	Poor capture rates anticipated from poison stations because of low visibility in NZ ports. Some poisons also an OS&H risk to personnel and may require resource consent.
Fish/mobile epifauna	Beach seine	25 m seine haul on sand or mud flat sites	fish traps / Whayman Holdsworth	4 traps (2 lines x 2 traps) of left at each site (Whayman Holdworth starfish traps left overnight)	Few NZ ports have suitable intertidal areas to beach seine.

Sample method	Number of shipping berths sampled	Number of replicate samples taken
Benthic Sled Tows	(NB ¹)	10
Benthic Grab (Shipek)	4	12
Box traps	4	12
Diver quadrat scraping	4	46
Opera house fish traps	4	8
Starfish traps	4	8
Shrimp traps	4	8
Javelin cores	N/A	8

Table 3a:Summary of the Opua marina sampling effort.

(NB¹) Sled tows taken between jetties.

Table 3b: Pile scraping sampling effort in the Port of Opua. Number of replicatequadrats scraped on Outer (unshaded) and Inner (shaded) pier piles at fourdepths. Pile materials scraped are indicated.

Sample Depth (M)	Outer Piles	Inner Piles
0.5	4 steel, 12 wood	0 (NB ²)
1.5	4 steel, 12 wood	0
3.5	4 steel, 8 wood	0
7	2 steel	0

(NB²) All piles unshaded in this marina due to construction layout.

Table 3c:Summary of sampling effort in Ports and Marinas surveyed during the
austral summers of 2001-2002 (shown in bold type), and 2002-2003 (shown
in plain type). The number of shipping berths sampled is indicated, along
with the total numbers of samples taken (in brackets).

Survey Location	Benthic sled tows	Benthic grab	Box traps	Diver quadrat scraping	Opera house traps	Starfish traps	Shrimp traps	Javelin cores
Port of Lyttelton	5 (10)	5 (15)	6 (20)	5 (77)	5 (20)	6 (20)	6 (19)	(8)
Port of Nelson	4 (8)	1 (2) *	4 (16)	4 (55)	4 (16)	4 (16)	4 (16)	(8)
Port of Picton	3 (6)	*	3 (18)	3 (53)	3 (16)	3 (24)	3 (24)	(6)
Port of Taranaki	6 (12)	6 (21)	7 (25)	4 (66)	6 (24)	6 (24)	6 (24)	(14)
Port of Tauranga	6 (18)	6 (28)	8 (32)	6 (107)	6 (25)	7 (28)	7 (28)	(8)
Port of Timaru	6 (12)	4 (14)	5 (20)	4 (58)	5 (20)	5 (20)	5 (20)	(8)
Port of Wellington	7 (13)	6 (18)	7 (28)	6 (98)	7 (34)	7 (28)	7 (28)	(6)
Port of Auckland	6 (12)	6 (18)	6 (24)	6 (101)	6 (24)	6 (24)	5 (20)	(10)
Port of Bluff	6 (21)	7 (21)	7 (29)	5 (75)	6 (24)	7 (28)	7 (24)	(12)
Dunedin Harbour	5 (10)	5 (15)	5 (20)	5 (75)	5 (20)	5 (20)	5 (18)	(9)
Port of Gisborne	5 (10)	6 (18)	5 (20)	4 (50)	5 (20)	5 (20)	5 (20)	(8)
Gulf Harbour Marina	(17)	4 (12)	4 (16)	4 (66)	4 (16)	4 (16)	4 (16)	(8)
Port of Napier	5 (10)	5 (15)	5 (18)	4 (59)	5 (20)	5 (18)	5 (18)	(8)
Opua Marina	(10)	4 (12)	4 (12)	4 (46)	4 (8)	4 (8)	4 (8)	(8)
Whangarei Marina	3 (6)	2 (6)	2 (8)	4 (33)	2 (8)	2 (8)	2 (8)	(6)
Whangarei Harbour	4 (9)	4 (12)	4 (16)	4 (65)	4 (16)	4 (16)	4 (16)	(7)

*Shipek grab malfunctioned in the Ports of Nelson and Picton

Table 4:Preservatives used for the major taxonomic groups of organisms collected
during the port survey. 1 indicates photographs were taken before
preservation, and 2 indicates they were relaxed in magnesium chloride or
menthol prior to preservation.

5 % Formalin solution	10 % Formalin solution	70 % Ethanol solution	Air dried
Phycophyta	Asteroidea	Alcyonacea ²	Bryozoa
	Brachiopoda	Ascidiacea ^{1, 2}	
	Crustacea (large)	Crustacea (small)	
	Ctenophora ¹	Holothuria ^{1, 2}	
	Echinoidea	Mollusca (with shell)	
	Hydrozoa	Mollusca ^{1, 2} (without shell)	
	Nudibranchia ¹	Platyhelminthes ¹	
	Ophiuroidea	Porifera ¹	
	Polychaeta	Zoantharia ^{1, 2}	
	Scleractinia		
	Scyphozoa ^{1, 2}		
	Vertebrata ¹ (pisces)		

Table 5a:Marine pest species listed on the New Zealand register of unwanted
organisms under the Biosecurity Act 1993.

Phylum	Class/Order	Genus and Species
Annelida	Polychaeta	Sabella spallanzanii
Arthropoda	Decapoda	Carcinus maenas
Arthropoda	Decapoda	Eriocheir sinensis
Echinodermata	Asteroidea	Asterias amurensis
Mollusca	Bivalvia	Potamocorbula amurensis
Phycophyta	Chlorophyta	Caulerpa taxifolia
Phycophyta	Phaeophyceae	Undaria pinnatifida

Table 5b:Marine pest species listed on the Australian Ballast Water Management
Advisory Council's (ABWMAC) schedule of non-indigenous pest species.

Phylum	Class/Order	Genus and Species
Annelida	Polychaeta	Sabella spallanzanii
Arthropoda	Decapoda	Carcinus maenas
Echinodermata	Asteroidea	Asterias amurensis
Mollusca	Bivalvia	Corbula gibba
Mollusca	Bivalvia	Crassostrea gigas
Mollusca	Bivalvia	Musculista senhousia
Phycophyta	Dinophyceae	Alexandrium catenella
Phycophyta	Dinophyceae	Alexandrium minutum
Phycophyta	Dinophyceae	Alexandrium tamarense
Phycophyta	Dinophyceae	Gymnodinium catenatum

Phylum, Class	Order	Family	Genus and species
Annelida			
Polychaeta	Eunicida	Dorvilleidae	Dorvillea australiensis
Polychaeta	Eunicida	Lumbrineridae	Abyssoninoe galatheae
Polychaeta	Eunicida	Lumbrineridae	Lumbrineris sphaerocephala
Polychaeta	Eunicida	Onuphidae	Onuphis aucklandensis
Polychaeta	Phyllodocida	Glyceridae	Glycera lamelliformis
Polychaeta	Phyllodocida	Hesionidae	Ophiodromus angustifrons
Polychaeta	Phyllodocida	Nereididae	Neanthes kerguelensis
Polychaeta	Phyllodocida	Nereididae	Perinereis vallata
Polychaeta	Phyllodocida	Polynoidae	Harmothoe macrolepidota
Polychaeta	Phyllodocida	Polynoidae	Lepidonotus polychromus
Polychaeta	Phyllodocida	Sigalionidae	Labiosthenolepis laevis
Polychaeta	Sabellida	Sabellidae	Megalomma suspiciens
Polychaeta	Scolecida	Opheliidae	Armandia maculata
Polychaeta	Scolecida	Orbiniidae	Phylo novazealandiae
Polychaeta	Terebellida	Cirratulidae	Protocirrineris nuchalis
Polychaeta	Terebellida	Flabelligeridae	Flabelligera affinis
Polychaeta	Terebellida	Pectinariidae	Pectinaria australis
Polychaeta	Terebellida	Terebellidae	Amaeana antipoda
Polychaeta	Terebellida	Terebellidae	Nicolea armilla
Polychaeta	Terebellida	Terebellidae	Pseudopista rostrata
Polychaeta	Terebellida	Terebellidae	Streblosoma toddae
Bryozoa			
Gymnolaemata	Cheilostomata	Candidae	Caberea rostrata
Crustacea			
Cirripedia	Thoracica	Balanidae	Austrominius modestus
Malacostraca	Amphipoda	Melitidae	Melita awa
Malacostraca	Amphipoda	Phoxocephalidae	Torridoharpinia hurleyi
Malacostraca	Anomura	Porcellanidae	Petrolisthes novaezelandiae
Malacostraca	Brachyura	Hymenosomatidae	Halicarcinus "muddy"
Malacostraca	Brachyura	Hymenosomatidae	Halicarcinus cookii
Malacostraca	Brachyura	Hymenosomatidae	Halicarcinus varius
Malacostraca	Brachyura	Hymenosomatidae	Neohymenicus pubescens
Malacostraca	Brachyura	Majidae	Notomithrax minor
Malacostraca	Brachyura	Ocypodidae	Macrophthalmus hirtipes
Malacostraca	Brachyura	Pinnotheridae	Pinnotheres atrinocola
Malacostraca	Caridea	Crangonidae	Pontophilus australis
Malacostraca	Caridea	Palemonidae	Periclimenes yaldwyni
Malacostraca	Isopoda	Cirolanidae	Natatolana narica
Echinodermata			
Asteroidea	Valvatida	Asterinidae	Patiriella regularis
Echinoidea	Spatangoida	Loveniidae	Echinocardium cordatum

Table 6:Native species recorded from the Opua Marina survey.

Mollusca

Phylum, Class	Order	Family	Genus and species
Bivalvia	Myoida	Hiatellidae	Hiatella arctica
Bivalvia	Mytiloida	Mytilidae	Modiolarca impacta
Bivalvia	Mytiloida	Mytilidae	Perna canaliculus
Bivalvia	Mytiloida	Mytilidae	Xenostrobus pulex
Bivalvia	Mytiloida	Mytilidae	Xenostrobus securis
Bivalvia	Ostreoida	Anomiidae	Pododesmus zelandicus
Bivalvia	Ostreoida	Ostreidae	Ostrea chilensis
Bivalvia	Pterioida	Anomiidae	Anomia trigonopsis
Bivalvia	Pterioida	Pectinidae	Talochlamys zelandiae
Bivalvia	Veneroida	Mactridae	Zenatia acinaces
Bivalvia	Veneroida	Veneridae	Dosinia lambata
Bivalvia	Veneroida	Veneridae	Irus reflexus
Gastropoda	Cephalaspidea	Philinidae	Philine auriformis
Gastropoda	Littorinimorpha	Calyptraeidae	Maoricrypta costata
Gastropoda	Littorinimorpha	Calyptraeidae	Sigapatella tenuis
Gastropoda	Littorinimorpha	Struthiolariidae	Struthiolaria papulosa
Gastropoda	Neogastropoda	Buccinidae	Cominella adspersa
Gastropoda	Neogastropoda	Buccinidae	Cominella glandiformis
Gastropoda	Notaspidea	Pleurobranchidae	Pleurobranchaea maculata
Cabliopoda	Heldeplada	1 lourobranomado	
Phycophyta			
Cladophorophyce	aeCladophorales	Cladophoraceae	Rhizoclonium implexum
Porifera			
Demospongiae	Haplosclerida	Chalinidae	Adocia cf. parietalioides
Demospongiae	Haplosclerida	Chalinidae	Adocia cf. venustina
Domostoria		Chalinidae	
Demospongiae	Haplosclerida	Chaimidae	Haliclona cf. punctata
		Chaimidae	Haliclona cf. punctata
Pyrrophycophyta	3		
Pyrrophycophyta Dinophyceae	a Peridiniales	Gonyaulacaceae	Gonyaulax spinifera
Pyrrophycophyta Dinophyceae Dinophyceae	a Peridiniales Peridiniales	Gonyaulacaceae Peridiniaceae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae	a Peridiniales Peridiniales Peridiniales	Gonyaulacaceae Peridiniaceae Peridiniaceae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp.
Pyrrophycophyta Dinophyceae Dinophyceae	a Peridiniales Peridiniales	Gonyaulacaceae Peridiniaceae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae Dinophyceae	a Peridiniales Peridiniales Peridiniales	Gonyaulacaceae Peridiniaceae Peridiniaceae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp.
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae	Peridiniales Peridiniales Peridiniales Peridiniales	Gonyaulacaceae Peridiniaceae Peridiniaceae Peridiniaceae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp. Scrippsiella trochoidea
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae Dinophyceae Urochordata Ascidiacea	Peridiniales Peridiniales Peridiniales Peridiniales Aplousobranchia	Gonyaulacaceae Peridiniaceae Peridiniaceae Peridiniaceae Polyclinidae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp. Scrippsiella trochoidea Aplidium adamsi
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae Dinophyceae Urochordata Ascidiacea Ascidiacea	Peridiniales Peridiniales Peridiniales Peridiniales Peridiniales Aplousobranchia Stolidobranchia	Gonyaulacaceae Peridiniaceae Peridiniaceae Peridiniaceae Polyclinidae Pyuridae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp. Scrippsiella trochoidea Aplidium adamsi Microcosmus australis
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae Dinophyceae Urochordata Ascidiacea Ascidiacea Ascidiacea	Peridiniales Peridiniales Peridiniales Peridiniales Peridiniales Aplousobranchia Stolidobranchia	Gonyaulacaceae Peridiniaceae Peridiniaceae Peridiniaceae Polyclinidae Pyuridae Pyuridae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp. Scrippsiella trochoidea Aplidium adamsi Microcosmus australis Pyura subuculata
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae Dinophyceae Urochordata Ascidiacea Ascidiacea	Peridiniales Peridiniales Peridiniales Peridiniales Peridiniales Aplousobranchia Stolidobranchia	Gonyaulacaceae Peridiniaceae Peridiniaceae Peridiniaceae Polyclinidae Pyuridae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp. Scrippsiella trochoidea Aplidium adamsi Microcosmus australis
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae Dinophyceae Urochordata Ascidiacea Ascidiacea Ascidiacea	Peridiniales Peridiniales Peridiniales Peridiniales Peridiniales Aplousobranchia Stolidobranchia	Gonyaulacaceae Peridiniaceae Peridiniaceae Peridiniaceae Polyclinidae Pyuridae Pyuridae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp. Scrippsiella trochoidea Aplidium adamsi Microcosmus australis Pyura subuculata
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae Dinophyceae Urochordata Ascidiacea Ascidiacea Ascidiacea Ascidiacea	Peridiniales Peridiniales Peridiniales Peridiniales Peridiniales Aplousobranchia Stolidobranchia	Gonyaulacaceae Peridiniaceae Peridiniaceae Peridiniaceae Polyclinidae Pyuridae Pyuridae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp. Scrippsiella trochoidea Aplidium adamsi Microcosmus australis Pyura subuculata
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae Dinophyceae Urochordata Ascidiacea Ascidiacea Ascidiacea Ascidiacea Vertebrata	Peridiniales Peridiniales Peridiniales Peridiniales Peridiniales Aplousobranchia Stolidobranchia Stolidobranchia	Gonyaulacaceae Peridiniaceae Peridiniaceae Peridiniaceae Polyclinidae Pyuridae Pyuridae Styelidae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp. Scrippsiella trochoidea Aplidium adamsi Microcosmus australis Pyura subuculata Cnemidocarpa otagoensis
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae Dinophyceae Urochordata Ascidiacea Ascidiacea Ascidiacea Ascidiacea Vertebrata Actinopterygii	A Peridiniales Peridiniales Peridiniales Peridiniales Aplousobranchia Stolidobranchia Stolidobranchia Stolidobranchia Stolidobranchia	Gonyaulacaceae Peridiniaceae Peridiniaceae Peridiniaceae Polyclinidae Pyuridae Pyuridae Styelidae Congridae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp. Scrippsiella trochoidea Aplidium adamsi Microcosmus australis Pyura subuculata Cnemidocarpa otagoensis
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae Dinophyceae Urochordata Ascidiacea Ascidiacea Ascidiacea Ascidiacea Vertebrata Actinopterygii Actinopterygii	Aplousobranchia Stolidobranchia Stolidobranchia Stolidobranchia	Gonyaulacaceae Peridiniaceae Peridiniaceae Peridiniaceae Polyclinidae Pyuridae Pyuridae Styelidae Congridae Mugilidae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp. Scrippsiella trochoidea Aplidium adamsi Microcosmus australis Pyura subuculata Cnemidocarpa otagoensis Conger wilsoni Aldrichetta forsteri
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae Dinophyceae Urochordata Ascidiacea Ascidiacea Ascidiacea Ascidiacea Ascidiacea Ascidiacea Ascidiacea Ascidiacea Ascidiacea	a Peridiniales Peridiniales Peridiniales Peridiniales Aplousobranchia Stolidobranchia Stolidobranchia Stolidobranchia Mugiliformes Mugiliformes	Gonyaulacaceae Peridiniaceae Peridiniaceae Peridiniaceae Polyclinidae Pyuridae Pyuridae Styelidae Congridae Mugilidae Arripidae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp. Scrippsiella trochoidea Aplidium adamsi Microcosmus australis Pyura subuculata Cnemidocarpa otagoensis Conger wilsoni Aldrichetta forsteri Arripis trutta
Pyrrophycophyta Dinophyceae Dinophyceae Dinophyceae Dinophyceae Dinophyceae Urochordata Ascidiacea Ascidiacea Ascidiacea Ascidiacea Vertebrata Actinopterygii Actinopterygii Actinopterygii	Aplousobranchia Stolidobranchia Stolidobranchia Stolidobranchia Stolidobranchia Peridiniales	Gonyaulacaceae Peridiniaceae Peridiniaceae Peridiniaceae Polyclinidae Pyuridae Pyuridae Styelidae Congridae Mugilidae Arripidae Gobiidae	Gonyaulax spinifera Protoperidinium conicum cf. conicoides Protoperidinium sp. Scrippsiella trochoidea Aplidium adamsi Microcosmus australis Pyura subuculata Cnemidocarpa otagoensis Conger wilsoni Aldrichetta forsteri Arripis trutta Favonigobius lentigenosus

Phylum, Class	Order	Family	Genus and species	
Cnidaria				
Hydrozoa	Hydroida	Bougainvilliidae	Bougainvillia muscus	C1
Hydrozoa	Hydroida	Campanulariidae	Clytia hemisphaerica	C1
Hydrozoa	Hydroida	Campanulinidae	Phialella quadrata	C1
Crustacea				
Cirripedia	Thoracica	Balanidae	Balanus trigonus	C1
Malacostraca	Brachyura	Xanthidae	Pilumnopeus serratifrons	C1
Mollusca				
Bivalvia	Mytiloida	Mytilidae	Mytilus sp.	C2
Porifera				
Demospongiae	Halichondrida	Halichondriidae	Halichondria n. sp. 4	C2
Demospongiae	Haplosclerida	Chalinidae	Haliclona n. sp. 3	C2
Demospongiae	Haplosclerida	Chalinidae	Haliclona n. sp. 9	C2
Pyrrophycophyta				
Dinophyceae	Gymnodiniales	Gymnodiniacea	Gymnodinium catenatum	C1
Urochordata				
Ascidiacea	Phlebobranchia	Rhodosomatidae	Corella eumyota	C1
Ascidiacea	Stolidobranchia	Pyuridae	Pyura sp.	C2
Ascidiacea	Stolidobranchia	Styelidae	Asterocarpa cerea	C1
Ascidiacea	Stolidobranchia	Styelidae	Styela plicata	C1

Table 7:Cryptogenic marine species recorded from the Opua Marina survey.
Category 1 cryptogenic species (C1); Category 2 cryptogenic species (C2).
Refer to section 2.9 for definitions.

Table 8:Non-indigenous marine species recorded from the Opua Marina survey.
Likely vectors of introduction are largely derived from Cranfield *et al.*
(1998), where H = Hull fouling and B = Ballast water transport. Novel NIS
not listed in Cranfield *et al.* (1998) or previously encountered by taxonomic
experts in New Zealand waters are marked as New Records (NR). For these
species and others for which information is scarce, we provide dates of first
detection rather than probable dates of introduction.

Phylum, Class	Order	Family	Genus and species	Probable means of introduction	Date of introduction or detection (d)
Annelida					
Polychaeta	Spionida	Spionidae	Polydora cornuta	H or B	Pre-1972
Bryozoa					
Gymnolaemata	Cheilostomata	Bugulidae	Bugula flabellata	н	Pre-1948
Gymnolaemata	Cheilostomata	Bugulidae	Bugula neritina	н	1949
Gymnolaemata	Cheilostomata	Watersiporidae	Watersipora subtorquata	H or B	Pre-1982
Cnidaria					
Hydrozoa	Hydroida	Campanulariidae	Obelia longissima	Н	Pre-1928
Crustacea					
Malacostraca	Amphipoda	Corophiidae	Apocorophium acutum	Н	Pre-1921
Mollusca					
Bivalvia	Mytiloida	Mytilidae	Musculista senhousia	H or B	1978
Bivalvia	Ostreoida	Ostreidae	Crassostrea gigas	н	1961
Bivalvia	Pterioida	Limidae	Limaria orientalis	H or B	Pre-1972
Bivalvia	Veneroida	Semelidae	Theora lubrica	В	1971
Gastropoda	Nudibranchia	Polyceridae	Polycera hedgpethi	Н	1970s
Phycophyta					
Rhodophyceae	Ceramiales	Rhodomelaceae	Polysiphonia sertularioides	н	Pre-1938

Table 9:Species indeterminata recorded from the Opua Marina survey. This group
includes: (1) organisms that were damaged or juvenile and lacked cruical
morphological characteristics, and (2) taxa for which there is not sufficient
taxonomic or systematic information available to allow positive
identification to species level.

Phylum, Class	Order	Family	Genus and species
Annelida			
Polychaeta	Phyllodocida	Glyceridae	Glycera Indet
Polychaeta	Phyllodocida	Nereididae	Platynereis Platynereis_australis_group
Polychaeta	Phyllodocida	Phyllodocidae	Mystides Mystides-B
Polychaeta	Phyllodocida	Phyllodocidae	Phyllodocidae-unknown Phyllodocidae-01
Polychaeta	Sabellida	Sabellidae	Branchiomma Branchiomma-A
Polychaeta	Scolecida	Maldanidae	Asychis Asychis-B
Polychaeta	Scolecida	Orbiniidae	Orbiniidae Indet
Polychaeta	Spionida	Spionidae	Paraprionospio Paraprionospio-A [pinnata]
Polychaeta	Terebellida	Terebellidae	Terebellidae Indet
Polychaeta	Terebellida	Trichobranchidae	Terebellides Indet
Cnidaria			
Hydrozoa	Hydroida	Tubulariidae	Ectopleura? sp.
Scyphozoa			Scyphozoa sp.
Crustacea			
Malacostraca	Brachyura	Majidae	Notomithrax sp.
Malacostraca	Isopoda	Cirolanidae	Natatolana sp.
Mollusca			
Gastropoda			Gastropoda sp.
Phycophyta			
Cladophorophyceae	Cladophorales	Cladophoraceae	Chaetomorpha sp.
Phaeophyceae	Sphacelariales	Sphacelariaceae	Sphacelaria sp.
Rhodophyceae	Ceramiales	Rhodomelaceae	Polysiphonia sp.
Rhodophyceae	Plocamiales	Plocamiaceae	Plocamium sp.
Ulvophyceae	Ulvales	Ulvaceae	Enteromorpha sp.

Table 10:Non-indigenous marine organisms recorded from the Opua Marina
survey and the techniques used to capture each species. Species
distributions are indicated throughout the marina and in other locations
surveyed in this project around New Zealand.

Non-indigenous species	Capture technique in Opua Marina	Locations detected in Opua Marina	Detected in other locations surveyed in ZBS2000_04
Polydora cornuta	Pile scrape	Berth D See Fig 13	Whangarei Marina
Bugula flabellata	Pile scrape	Quarantine Berth See Fig 14	Auckland, Bluff, Dunedin, Lyttleton, Napier, Nelson, Picton, Taranaki, Tauranga, Timaru, Whangarei Harbour, Wellington
Bugula neritina	Pile scrape	Quarantine Berth See Fig 15	Auckland, Dunedin, Gisborne, Gulf Harbour Marina, Lyttleton, Napier, Taranaki, Tauranga, Timaru, Whangarei Harbour, Whangarei Marina
Watersipora subtorquata	Pile scrape	Berth C; Berth D; Quarantine Berth See Fig 16	Bluff, Dunedin, Gisborne, Gulf Harbour Marina, Lyttleton, Napier, Nelson, Picton, Taranaki, Tauranga, Timaru, Whangarei Harbour, Wellington
Obelia longissima	Pile scrape	Quarantine Berth See Fig 17	Auckland, Whangarei Harbour
Apocorophium acutum	Pile scrape, Shrimp trap	Berth C; Berth D See Fig 18	Dunedin, Gulf Harbour Marina, Lyttleton, Tauranga, Timaru
Musculista senhousia	Pile scrape, Benthic grab	Berth C; Berth D See Fig 19	Whangarei Marina
Crassostrea gigas	Pile scrape, Benthic sled	Berth C; Berth D; Quarantine Berth See Fig 20	Auckland, Dunedin, Gulf Harbour Marina, Nelson, Taranaki, Whangarei Harbour
Limaria orientalis	Pile scrape	Berth D See Fig 21	Gulf Harbour Marina
Theora lubrica	Benthic sled, Benthic grab	Berths A-F; Quarantine Berth See Fig 22	Auckland, Gisborne, Gulf Harbour Marina, Lyttleton, Napier, Nelson, Taranaki, Whangarei Harbour, Whangarei Marina, Wellington
Polycera hedgpethi	Pile scrape	Quarantine Berth See Fig 23	Gisborne
Polysiphonia sertularioides	Pile scrape	Berth C	Taranaki
		See Fig 24	

Appendices

Phylum	Class	Specialist	Institution
Annelida	Polychaeta	Geoff Read, Jeff Forman	NIWA Greta Point
Bryozoa	Gymnolaemata	Dennis Gordon	NIWA Greta Point
Chelicerata	Pycnogonida	David Staples	Melbourne Museum, Victoria, Australia
Cnidaria	Anthozoa	Adorian Ardelean	West University of Timisoara, Timisoara, 1900, Romania
Cnidaria	Hydrozoa	Jan Watson	Hydrozoan Research Laboratory, Clifton Springs, Victoria, Australia
Crustacea	Amphipoda	Graham Fenwick	NIWA Christchurch
Crustacea	Cirripedia	Graham Fenwick, Isla Fitridge John Buckeridge ¹	NIWA Christchurch and ¹ Auckland University of Technology
Crustacea	Decapoda	Colin McLay ¹ Graham Fenwick, Nick Gust	¹ University of Canterbury and NIWA Christchurch
Crustacea	Isopoda	Niel Bruce	NIWA Greta Point
Crustacea	Mysidacea	Fukuoka Kouki	National Science Museum, Tokyo
Echinodermata	Asteroidea	Don McKnight	NIWA Greta Point
Echinodermata	Echinoidea	Don McKnight	NIWA Greta Point
Echinodermata	Holothuroidea	Niki Davey	NIWA Nelson
Echinodermata	Ophiuroidea	Don McKnight, Helen Rottman	NIWA Greta Point
Echiura	Echiuroidea	Geoff Read	NIWA Greta Point
Mollusca	Bivalvia. Cephalopoda, Gastropoda, Polyplacophora	Bruce Marshall	Museum of NZ Te Papa Tongarewa
Nemertea	Anopla, Enopla	Geoff Read	NIWA Greta Point
Phycophyta	Phaeophyceae, Rhodophyceae, Ulvophyceae	Wendy Nelson, Kate Neill	NIWA Greta Point
Platyhelminthes	Turbellaria	Sean Handley	NIWA Nelson
Porifera	Demospongiae, Calcarea	Michelle Kelly-Shanks	NIWA Auckland
Priapula	Priapulidae	Geoff Read	NIWA Greta Point
Pyrrophycophyta	Dinophyceae	Hoe Chang, Rob Stewart	NIWA Greta Point
Urochordata	Ascidiacea	Mike Page, Anna Bradley Patricia Kott ¹	NIWA Nelson and ¹ Queensland Museum
Vertebrata	Osteichthyes	Clive Roberts, Andrew Stewart	Museum of NZ Te Papa Tongarewa

Appendix 1: Specialists engaged to identify specimens obtained from the New Zealand Port surveys.

Appendix 2: Generic descriptions of representative groups of the main marine phyla collected during sampling.

Phylum Annelida

Polychaetes: The polychaetes are the largest group of marine worms and are closely related to the earthworms and leeches found on land. Polychaetes are widely distributed in the marine environment and are commonly found under stones and rocks, buried in the sediment or attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. All polychaete worms have visible legs or bristles. Many species live in tubes secreted by the body or assembled from debris and sediments, while others are free-living. Depending on species, polychaetes feed by filtering small food particles from the water or by preying upon smaller creatures.

Phylum Bryozoa

Bryozoans: This group of organisms is also referred to as 'moss animals' or 'lace corals'. Bryozoans are sessile and live attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. They are all colonial, with individual colonies consisting of hundreds of individual 'zooids'. Bryozoans can have encrusting growth forms that are sheet-like and approximately 1 mm thick, or can form erect or branching structures several centimetres high. Bryozoans feed by filtering small food particles from the water column, and colonies grow by producing additional zooids.

Phylum Chelicerata

Pycnogonids: The pycnogonids, or sea spiders, are a group within the Arthropoda, and closely related to land spiders. They are commonly encountered living among sponges, hydroids and bryozoans on the seafloor. They range in size from a few mm to many cm and superficially resemble spiders found on land.

Phylum Cnidaria

Hydroids: Hydroids can easily be mistaken for erect and branching bryozoans. They are also sessile organisms that live attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. All hydroids are colonial, with individual colonies consisting of hundreds of individual 'polyps'. Like bryozoans, they feed by filtering small food particles from the water column.

Phylum Crustacea

Crustaceans: The crustaceans represent one of the sea's most diverse groups of organisms, well known examples include shrimps, crabs and lobsters. Most crustaceans are motile (capable of movement) although there are also a variety of sessile species (e.g. barnacles). All crustaceans are protected by an external carapace, and most can be recognised by having two pairs of antennae.

Phylum Echinodermata

Echinoderms: This phylum contains a range of predominantly motile organisms – sea stars, brittle stars, sea urchins, sea cucumbers, sand dollars, feather stars and sea lilies. Echinoderms feed by filtering small food particles from the water column or by extracting food particles from sediment grains or rock surfaces.

Phylum Mollusca

Molluscs: The molluscs are a highly diverse group of marine animals characterised by the presence of an external or internal shell. This phyla includes the bivalves (organisms with hinged shells e.g. mussels, oysters, etc), gastropods (marine snails, e.g. winkles, limpets,

topshells), chitons, sea slugs and sea hares, as well as the cephalopods (squid, cuttlefish and octopus).

Phylum Phycophyta

Algae: These are the marine plants. Several types were encountered during our survey. Large *macroalgae* were sampled that live attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. These include the green algae (Ulvophyceae), red algae (Rhodophyceae) and brown algae (Phaecophyceae). We also encountered microscopic algal species called *dinoflagellates* (phylum Pyrrophycophyta), single-celled algae that live in the water column or within the sediments.

Phylum Porifera

Sponges: Sponges are very simple colonial organisms that live attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. They vary greatly in colour and shape, and include sheet-like encrusting forms, branching forms and tubular forms. Sponge surfaces have thousands of small pores to through which water is drawn into the colony, where small food particles are filtered out before the water is again expelled through one or several other holes.

Phylum Pyrrophycophyta

Dinoflagellates: Dinoflagellates are a large group of unicellular algae common in marine plankton. About half of all dinoflagellates are capable of photosynthesis and some are symbionts, living inside organisms such as jellyfish and corals. Some dinoflagellates are phosphorescent and can be responsible for the phosphorescence visible at night in the sea. The phenomenon known as red tide occurs when the rapid reproduction of certain dinoflagellate species results in large brownish red algal blooms. Some dinoflagellates are highly toxic and can kill fish and shellfish, or poison humans that eat these infected organisms.

Phylum Urochordata

Ascidians: This group of organisms is sometimes referred to as 'sea squirts'. Adult ascidians are sessile (permanently attached to the substrate) organisms that live on submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. Ascidians can occur as individuals (solitary ascidians) or merged together into colonies (colonial ascidians). They are soft-bodied and have a rubbery or jelly-like outer coating (test). They feed by pumping water into the body through an inhalant siphon. Inside the body, food particles are filtered out of the water, which is then expelled through an exhalant siphon. Ascidians reproduce via swimming larvae (ascidian tadpoles) that retain a notochord, which explains why these animals are included in the phylum Chordata along with vertebrates.

Phylum Vertebrata

Fishes: Fishes are an extremely diverse group of the verterbrates familiar to most people. Approximately 200 families of fish are represented in New Zealand waters ranging from tropical and subtropical groups in the north to subantarctic groups in the south. Fishes can be classified according to their depth preferences. Fish that live on or near the sea floor are considered demersal while those living in the upper water column are termed pelagics.

Appendix 3: List of Chapman and Carlton's (1994) nine criteria (C1 – C9) for assigning non-indigenous species status that were met by the non-indigenous species sampled in the Opua Marina.

Criteria that apply to each species are indicated by (+). Cranfield *et al*'s (1998) analysis was used for species previously known from New Zealand waters. For non-indigenous species that were first detected during the present study, criteria were assigned using advice from the taxonomists that identified them. Refer to footnote for a full description of C1 – C9.

Phylum and species	C1	C2	C3	C4	C5	C6	C7	C8	C9
Annelida									
Polydora cornuta	+	+	+		+	+		+	
Bryozoa									
Bugula flabellata	+	+	+		+	+	+	+	+
Bugula neritina	+				+	+	+	+	+
Watersipora subtorquata	+	+	+		+	+	+	+	+
Cnidaria									
Obelia longissima	+	+	+						+
Crustacea									
Apocorophium acutum			+			+		+	+
Mollusca									
Musculista senhousia	+	+	+			+	+	+	+
Crassostrea gigas	+	+	+			+	+	+	+
Limaria orientalis	+	+	+			+	+	+	+
Theora lubrica	+	+			+	+	+	+	+
Polycera hedgpethi	+	+	+	+		+			
Phycophyta									
Polysiphonia sertularioides	+	+				+	+	+	+

Criterion 1: Has the species suddenly appeared locally where it has not been found before?

Criterion 2: Has the species spread subsequently?

Criterion 3: Is the species' distribution associated with human mechanisms of dispersal?

Criterion 4: Is the species associated with, or dependent on, other introduced species?

Criterion 5: Is the species prevalent in, or restricted to, new or artificial environments?

Criterion 6: Is the species' distribution restricted compared to natives?

Criterion 7: Does the species have a disjunct worldwide distribution?

Criterion 8: Are dispersal mechanisms of the species inadequate to reach New Zealand, and is passive dispersal in ocean currents unlikely to bridge ocean gaps to reach New Zealand?

Criterion 9: Is the species isolated from the genetically and morphologically most similar species elsewhere in the world?

Site	Eastings	Northings	NZ Latitude	NZ Longitude	Survey Method	No. of sample units
BETWEEN B – C	2612791	6653320	-35.31682	174.12156	BSLD	1
BETWEEN C – D	2612708	6653279	-35.31720	174.12065	BSLD	1
BETWEEN CUSTOMS – B	2612816	6653389	-35.31619	174.12182	BSLD	1
BETWEEN D – E	2612668	6653233	-35.31762	174.12022	BSLD	1
BETWEEN E – F	2612691	6653143	-35.31842	174.12049	BSLD	1
C3	2612674	6653327	-35.31677	174.12027	BGRB	3
C3	2612729	6653358	-35.31648	174.12087	CRBTP	3
C3	2612688	6653322	-35.31681	174.12043	CYST	2
C3	2612749	6653358	-35.31648	174.12109	FSHTP	2
C3	2612674	6653327	-35.31677	174.12027	PSC	12
C3	2612726	6653356	-35.31650	174.12083	SHRTP	2
C3	2612726	6653356	-35.31650	174.12083	STFTP	2
C37	2612805	6653265	-35.31731	174.12172	CYST	2
CUSTOMS END OF QUARANTINE	2612908	6653435	-35.31576	174.12283	BSLD	1
D44	2612801	6653299	-35.31700	174.12167	BGRB	3
D44	2612619	6653302	-35.31700	174.11967	CRBTP	3
D44	2612760	6653228	-35.31765	174.12123	CYST	2
D44	261781	6653299	-32.61376	150.40893	FSHTP	2
D44	2612760	6653228	-35.31765	174.12123	PSC	12
D44	2612801	6653299	-35.31700	174.12167	SHRTP	2
D44	2612801	6653299	-35.31700	174.12167	STFTP	2
END OF B – C	2612862	6653290	-35.31708	174.12234	BSLD	1
END OF D – F	2612803	6653137	-35.31846	174.12172	BSLD	1
F END OF QUARANTINE	2612709	6653021	-35.31952	174.12070	BSLD	1
F20	2612679	6653123	-35.31861	174.12036	BGRB	3
F20	2612739	6653204	-35.31787	174.12100	CRBTP	3
F20	2612674	6653129	-35.31855	174.12030	CYST	2
F20	2612759	6653204	-35.31786	174.12122	FSHTP	2
F20	2612679	6653123	-35.31861	174.12036	PSC	8
F20	2612739	6653208	-35.31783	174.12100	SHRTP	2
F20	2612739	6653208	-35.31783	174.12100	STFTP	2
OUTSIDE OF F	2612624	6653108	-35.31875	174.11975	BSLD	1
QUARANTINE	2612896	6653409	-35.31600	174.12270	BGRB	3
QUARANTINE	2612888	6653400	-35.31608	174.12262	CRBTP	3
QUARANTINE	2612868	6653400	-35.31609	174.12239	FSHTP	2
QUARANTINE	2612896	6653409	-35.31600	174.12270	PSC	14
QUARANTINE	2612879	6653465	-35.31550	174.12250	SHRTP	2
QUARANTINE	2612879	6653465	-35.31550	174.12250	STFTP	2

Appendix 4. Geographic locations of the sample sites in Opua Marina

*Survey methods: PSC = pile scrape, BSLD = benthic sled, BGRB = benthic grab, CYST = dinoflagellate cyst core, CRBTP = crab trap, FSHTP = fish trap, STFTP = starfish trap, SHRTP = shrimp trap.

		- 11				C3 1 2		ŝ	4	D44 1		2	ŝ	4	F20 1	7		ŝ	4	
LIASS	Urders	Family	Genus	Species	Status	c	, ,	Ċ	, ,		Ċ			Ċ		Ċ	Ċ		•	
classes	orders	ramily	genus	species	status	2 C	5 0 1 0	V C	- c		N C			V C		V C	V C		- (
Anthozoa	Actiniaria	Diadumenidae	Diadumene	neozeianaica	zī			-			0 0			0		0			-	
AIIUIUZUA			Aconualia	sp.	ō 0						> <			-		-				
Anunozoa	Actiniaria Anlousobronchio	Dolyaliaidaa	Actiniara	sp. adamai	ō z															
Ascidiacea	Dhlahohranchia	Phodocomatidae	Coralla	auanisi Aumvota	25															
Ascidiacea	Stolidohranchia	Purridae	Duira	camp or a	50															
Ascidiacea	Stolidohranchia	Puiridae	Microcosmus	australis	N C															
Ascidiacea	Stolidohranchia	Pviiridae	Puira	subuculata	z			o c											o c	
Ascidiacea	Stolidobranchia	Stvelidae	Asterocarpa	cerea	: 5	0		0			0			0		0	0		0	
Ascidiacea	Stolidobranchia	Styelidae	Styela	plicata	C1	0 0	0 0	0	0 0		0			0		0	0		0	
Ascidiacea	Stolidobranchia	Styelidae	Cremidocarpa	otagoensis	z	0 0	0 0	0	0 0		0			0		0	0		0	
Bivalvia	Myoida	Hiatellidae	Hiatella	arctica	z	0 0	0 0	0	0 0		0			0		0	0		0	
Bivalvia	Mytiloida	Mytilidae	Perna	canaliculus	z	0 0	0 0	0	0 0		0			0		0	0		0	
Bivalvia	Mytiloida	Mytilidae	Mytilus	sp.	C2	0	0	0	0		0			0		-	0		0	
Bivalvia	Mytiloida	My tilidae	Xenostrobus	pulex	zz				- 0	00	0,00			- 0	- 0		c		00	
Bivalvia	Mytiloida	My tilidae My tilidae	Musculista Musculista	iiiipacta senhousia	2 4															
Divoluio			Variation	30111104314	(2			0			0			0		0	0		0	
BIVAIVIA Bivalvia	Myulolaa Ostraoida	My ulluae Anomiidae	Pododesmus	secul IS zelandicus	zz															
Bivalvia	Ostreoida	Ostreidae	Crassostrea	didas	. A	0		0								0	0		0	
Bivalvia	Ostrenida	Ostreidae	Octrea	chilensis	z			c			c			c		c	c		c	
Bivalvia	Pterioida	Anomiidae	Anomia	triaononsis	zz															
Bivalvia	Pterioida	Limidae	Limaria	orientalis	×	0	0	0	0		0			0		0	0		0	
Bivalvia	Pterioida	Pectinidae	Talochlamvs	zelandiae	z	0	0	0	0		0			0		0	0		0	
Bivalvia	Veneroida	Veneridae	Irus	reflexus	z			0	000		0			-, -		0	0		0	
Cladophorophyceae	Cladophorales	Cladophoraceae	Rhizoclonium	implexum	z	0 0	0 0	0	0 0		0			-		0	0		0	
Cladophorophyceae	Cladophorales	Cladophoraceae	Chae tomorpha	sp.	SI	0	0 0	0	0 0		0			0		0	0		0	
Crustacea	Anomura	Porcellanidae	Petrolisthes	novaezelandiae	z	0 0	0 0	0	0 0		0			0		0	0		0	
Crustacea	Brachyura	Hymenosomatidae	Halicarcinus	varius	z	0	0 0	0	0		0			0		0	0		0	
Crustacea	Brachyura	Hymenosomatidae	Halicarcinus	cookii	z	0	0	0	0		0			0		0	0		0	
Crustacea	Brachyura	Hymenosomatidae	Neohymenicus	pubescens	z		00	0	00		0			0		0	0		0	
Crustacea	Brachyura	Majidae	Notomithrax	minor	z			0			0 0			0		0	0		0	
Crustacea	Brachyura	Von+bidoe	Plinotneres	atrinocola	zί			> <									-		> <	
Crustacea	Dracnyura Coridoo	Delemonidee	Priuminopeus	Serraurrous	ע ב															
Crustacea	Thoracica	Balanidae	Austrominius	modestus	zz	C			C					C		C	C			
Crustacea	Thoracica	Balanidae	Balanus	triaonus	:5	0	0	0	0		-, -			· -		0	0		0	
Demospongiae	Haplosclerida	Chalinidae	Haliclona	cf. punctata	z	0 0	0 0	0	0 0		0			0		0	0		0	
Demospongiae	Haplosclerida	Chalinidae	Adocia	cf. parietalioides	z	0 0	0 0	0	0 0		0			0		0	0		0	
Demospongiae	Haplosclerida	Chalinidae	Adocia	cf. venustina	z	0 0	0 0	0	0 0		0			0		0	0		0	
Gastropoda	Littorinimorpha	Calyptraeidae	Maoricrypta	costata	z	0 0	0 0	0	0 0		0			0		0	0		0	
Gastropoda	Littorinimorpha	Calyptraeidae	Sigapatella	tenuis	z	0 0	0 0	0	0 0		0			0		0	0		0	
Gastropoda	Notaspidea	Pleurobranchidae	Pleurobranchaea	maculata	z	0	0	0	0		0			0		0	0		0	
Gastropoda	Nudibranchia	Polyceridae	Polycera	hedgpathi	A	0	0	0	0		0			0		0	0		0	
Gymnolaemata	Cheilostomata	Bugulidae	Bugula	neritina	۷.			0 0			0 0			0		0	0 0		0 0	
Gymnolaemata	Cheilostomata	Bugulidae	Bugula	riabellata	A 1			0			0			0		0	-		0	
Gymnolaemata	Chailastomata	Vandidae	Caberea	rostrata	z <			- C			-			- C		- C	-		- C	1
Gyrnnolaernata		watersiporidae	Watersipora	suprorduara	4 Ç			- <			- C			- C		- C	- C			
Hydrozoa Hydrozoa	Hydroida	Companylinidae	Bougainvillia Chain	Inuscus hemienhaerica	55															
Hydrozoa	Hydroida	Campanulariidae	Cij ua Obelia	Innrispitacina	0															_
Hvdrozoa	Hydroida	Campanulinidae	Dhialalla	anadrata	ς Ξ															
Hvdrozoa	Hvdroida	Tubulariidae	Ectopleura?	quadi ata SD.	2 20			0 0			0			0 0		0 0	0 0		0 0	
Malacostraca	Amphipoda	Corophiidae	Apocorophium	acutum	Ψ	0	0		000			000		0 - 0		0	0	0	0	
						>	>	>	>		>			•		>	>		>	

*Status: A = non-indigenous (highlighted by shading), C1 = cryptogenic category 1, C2 = cryptogenic category 2, N = native, SI = species indeterminata. See text for details.

					Site code C3	~		D44			F20	0	
					Pile replicate	1 2	3 4	-	2	ŝ	4	1 2 3	4
Class	Orders	Family	Genus	Species	*Status								
Phaeophyceae	Sphacelariales	Sphacelariaceae	Sphacelaria	sp		000	0 0 0 0	0	0 0	0 0	0	0000	0
Polychaeta	Eunicida	Dorvilleidae	Dorvillea	australiensis		000	0 0 0 0	0	0 0	0 0	0	0 0 0 0	0
Polychaeta	Eunicida	Lumbrineridae	Lumbrineris	sphaerocephala		000	0000	0	0 0	0 0	0	0000	0
Polychaeta	Phyllodocida	Hesionidae	Ophiodromus	angustifrons		000	0 0 0 0	0	0 0	0 0	0	0000	0
Polychaeta	Phyllodocida	Nereididae	Neanthes	kerguelensis		000	0 0 1 0	0	1	0	-	0000	0
Polychaeta	Phyllodocida	Nereididae	Perinereis	vallata		000	0 0 0 0	0	0 0	0 0	0	0000	0
Polychaeta	Phyllodocida	Nereididae	Platynereis	Platynereis_australis_group	SI	00100	0 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	000	0 0 0 0 0 0	000
Polychaeta	Phyllodocida	Phyllodocidae	Mystides	Mystides-B		000	0000	0	1	0 0	0	0000	0
Polychaeta	Phyllodocida	Phyllodocidae	Phyllodocidae-unknown	Phyllodocidae-01		000	0 0 0 0	0	0 0	0 0	0	0000	0
Polychaeta	Phyllodocida	Polynoidae	Harmothoe	macrolepidota		010	0 0 0 0	0	0	0 0	-	0000	0
Polychaeta	Phyllodocida	Polynoidae	Lepidonotus	polychromus		000	0000	0	0 0	0 0	0	0000	0
Polychaeta	Sabellida	Sabellidae	Branchiomma	Branchiomma-A		000	0 0 0 0	0	0 0	0 0	0	0000	0
Polychaeta	Sabellida	Sabellidae	Megalomma	suspiciens		000	0000	0	0 0	0 0	0	0000	0
Polychaeta	Scolecida	Opheliidae	Armandia	maculata		000	0 0 0 0	0	0 0	0 0	-	0000	0
Polychaeta	Scolecida	Orbiniidae	Orbiniidae	Indet		000	0000	0	0 0	0 0	-	0000	0
Polychaeta	Spionida	Spionidae	Polydora	cornuta		0 0 0	0 0 0 0	0	0 0	0	0	0000	0
Polychaeta	Terebellida	Cirratulidae	Protocirrineris	nuchalis		000	0000	0	0 0	0 0	0	0000	0
Polychaeta	Terebellida	Flabelligeridae	Flabelligera	affinis		000	0 0 0 0	0	0 0	0 0	0	0000	0
Polychaeta	Terebellida	Terebellidae	Pseudopista	rostrata		000	0000	0	1	0 0	0	0000	0
Polychaeta	Terebellida	Terebellidae	Streblosoma	toddae		000	0 0 0 0	1	0 0	0 0	0	0000	0
Polychaeta	Terebellida	Terebellidae	Nicolea	armilla		000	0000	0	0 0	0 0	0	0000	0
Polychaeta	Terebellida	Terebellidae	Terebellidae	Indet		000	0000	0	0 0	0 0	0	0000	0
Rhodophyceae	Ceramiales	Rhodomelaceae	Polysiphonia	sertularioides		0 1 0	0 0 0 0	0	0	0	0	0 0 0 0	0
Rhodophyceae	Ceramiales	Rhodomelaceae	Polysiphonia	sp.		000	0 0 0 0	0	0 0	0 0	0	0000	0
Rhodophyceae	Plocamiales	Plocamiaceae	Plocamium	sp.		000	0000	0	0 0	0 0	-	0000	0
Ulvophyceae	Ulvales	Ulvaceae	Enteromorpha	sp.		0 0 0	0010	0	0 0	0 0	0	0000	-

2 3	1 2 3		0 0 1 0 0 0									0 0 1 0 0 0	0 1 1 0 1 0	0 1 1 0 0 1 0 1 1 0								000000000000	0 1 0 0 0 0 0 0 0 0 0 1	10001010	0 0 0 0 0 0 0				100000000	1 1 0 1 0 0 0 1 1 0 0 0 1	0 0 0 0 0 0 0	1 0 0 0 0 0 1 0				0 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0	0001000	0 0 0 0 0 0 0 0		0,0			01110110011		0 0 0 0 1 0 0 0 0 0 0	000000000000			
Site code QUARANTINE Pile replicate * Aratus	status 1	Z	SI	SI :	z (z 2	z [5.5		: Z	Z	C2 0	z	2 <		z z		: c	2 Z		0 Z	0 Z	Z	: SI	zz	zz	zz	Z	0 Z	. C1	2 Z Z	z	- C	: Z	Z					<. <	< 2		. 0		٩	. C	- 0	
Speries	species	neozelandica	sp.	sp.	adamsi	eumyota	sp.	ausu ans aubuculoto	subuculata	cerca nlicata	otadoensis	arctica	canaliculus	sp.	, pulex	impacta	serinusia	secul is zalandicus	zciariaicus aidas	chilensis	triaonopsis	orientalis	zelandiae	reflexus	implexum	sp.	novaezelandiae	Varius conkii	pubescens	minor	atrinocola	serratifrons	yaldwyni	modestus trianue	cf. punctata	cf. parietalioides	cf. venustina	costata	tenuis	maculata	hedgpathi	nertcina	nabellata rostrata	subtorguata	miscus	hemisphaerica	longissima	quadrata	sp. acutum	
STILLES	genus	Diadumene	Acontiaira	Actiniaira	Aplidium	Corella	Pyura	MICTOCOSITIUS	ryura Actarocarpa	Asterucarpa Stvala	Cnemidocarpa	Hiatella	Perna	Mytilus	Xenostrobus	Modiolarca	Musculista	Pododeemus	Crassostrea	Ostrea	Anomia	Limaria	Talochlamys	Irus	Rhizoclonium	Chaetomorpha	Petrolisthes	Halicarcinus Halicarcinus	Neohymenicus	Notomithrax	Pinnotheres	Pilumopeus	Periclimenes	Austrominus Releaves	Haliclona	Adocia	Adocia	Maoricrypta	Sigapatella	Pleurobranchaea	Polycera	Bugula	Buguia Caherea	Watersinora	Bougainvillia	Clytia	Obelia	Phialella	Ectopleura? Apocorophium	
Family	family	Diadumenidae			Polyclinidae	Khodosomatidae	Pyuridae	Pyundae	Pyunuae Stvalidae	Stvelidae	Stvelidae	Hiatellidae	Mytilidae	Mytilidae	Mytilidae	My tilidae		Anomiidae	Ostreidae	Ostreidae	Anomiidae	Limidae	Pectinidae	Veneridae	Cladophoraceae	Cladophoraceae	Porcellanidae	Hymenosomatidae	Hymenosomatidae	Majidae	Pinnotheridae	Xanthidae	Palemonidae	Balanidae Balanidae	Chalinidae	Chalinidae	Chalinidae	Calyptraeidae	Calyptraeidae	Pleurobranchidae	Polyceridae	Bugulidae	Buguildae Candidae	Watersinoridae	Bougainvilliidae	Campanulariidae	Campanulariidae	Campanulinidae	l ubulariidae Corophiidae	
Orders	orders	Actiniaria	Actiniaria	Actiniaria	Aplousobranchia	Phiebobranchia Ctaliaterentia	Stolidobranchia Ctolidobranchia	Stolidobranchia Ctolidobranchia	Stolidobranchia Stolidobranchia	Stolidohranchia	Stolidobranchia	Myoida	Mytiloida	Mytiloida	Mytiloida	Mytiloida	My uloida	Myuloida Octranida	Ostrenida	Ostrenida	Pterioida	Pterioida	Pterioida	Veneroida	Cladophorales	Cladophorales	Anomura	Brachvura Brachvura	Brachvura	Brachyura	Brachyura	Brachyura	Caridea	Thoracica	Haplosclerida	Haplosclerida	Haplosclerida	Littorinimorpha	Littorinimorpha	Notaspidea	Nudibranchia	Chailostomata	Cheilostomata	Cheilostomata	Hvdroida	Hydroida	Hydroida	Hydroida	Hydroida Amphipoda	
sseD	classes	Anthozoa	Anthozoa	Anthozoa	Ascidiacea	Ascidiacea	Ascidiacea	Ascializeea	Asciulacea	Ascidiacea	Ascidiacea	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia Birahiia	Divelvie	Bivalvia Bivalvia	Bivalvia	Rivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Cladophorophyceae	Cladophorophyceae	Crustacea	Crustacea	Crustacea	Crustacea	Crustacea	Crustacea	Crustacea	Crustacea	Demosponaiae	Demospongiae	Demospongiae	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gymnolaemata	Gymnolaemata	Gymnolaemata	Hvdrozoa	Hydrozoa	Hydrozoa	Hydrozoa	Hydrozoa Malacostraca	

1 2 3		0 0 0 0 0 0	0 0 0 0 1 0 0 0 0	0 0 1 0 0 0 0 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 1 1 1 1 1 1	100000000000	0 0 0 0 0 0 0 0 0 0 0 0	0000000000000000	001000000000	100001111010	0 0 0 0 0 0 0 0 0 0 0 0 0	000000010000	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 1 0 0 0 1 0 0 0 1	0 0 0 0 1 1	0 0 0 1 1 1 0 1 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0
Site code QUARANTINE Pile replicate	*Status	SI	z	z	z	z	z			SI	z	z	SI	z	z	SI	A	z	z	z	z	z	SI	A	SI	SI	SI
	Species	sp	australiensis	sphaerocephala	angustifrons	kerguelensis	vallata	Platynereis_australis_group	Mystides-B	Phyllodocidae-01	macrolepidota	polychromus	Branchiomma-A	suspiciens	maculata	Indet	cornuta	nuchalis	affinis	rostrata	toddae	armilla	Indet	sertularioides	sp.	sp.	sp.
	Genus	Sphacelaria	Dorvillea	Lumbrineris	Ophiodromus	Neanthes	Perinereis	Platynereis	Mystides	Phyllodocidae-unknown	Harmothoe	Lepidonotus	Branchiomma	Megalomma	Armandia	Orbiniidae	Polydora	Protocirrineris	Flabelligera	Pseudopista	Streblosoma	Nicolea	Terebellidae	Polysiphonia	Polysiphonia	Plocamium	Enteromorpha
	Family	Sphacelariaceae	Dorvilleidae	Lumbrineridae	Hesionidae	Nereididae	Nereididae	Nereididae	Phyllodocidae	Phyllodocidae	Polynoidae	Polynoidae	Sabellidae	Sabellidae	Opheliidae	Orbiniidae	Spionidae	Cirratulidae	Flabelligeridae	Terebellidae	Terebellidae	Terebellidae	Terebellidae	Rhodomelaceae	Rhodomelaceae	Plocamiaceae	Ulvaceae
	Orders	Sphacelariales	Eunicida	Eunicida	Phyllodocida	Phyllodocida	Phyllodocida	Phyllodocida	Phyllodocida	Phyllodocida	Phyllodocida	Phyllodocida	Sabellida	Sabellida	Scolecida	Scolecida	Spionida	Terebellida	Terebellida	Terebellida	Terebellida	Terebellida	Terebellida	Ceramiales	Ceramiales	Plocamiales	Ulvales
	Class	Phaeophyceae	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Rhodophyceae	Rhodophyceae	Rhodophyceae	Ulvophyceae

Appendix 5b. Results from the benthic grab samples.

	123	000	0 0 0	000	000	1 1 1	1 1 0	000	1 0 0	0 1 0	000	000	1 0 0	000	000	000	000	000
QUARANTINE																		
F20	123	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 1 0	0 0 0	0 1 1	0 0 1	0 0 0	0 0 0	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
044 F	123	000	1 0 0	100	000	0 1 1	000	1 1 0	0 0 1	1 0 0	000	0 0 1	1 1 0	111	000	1 0 0	000	0 1 0
	123	0 0 0	0 0 0	0 0 0	1 0 0	111	111	0 0 0	0 1 1	0 0 1	0 1 0	0 0 0	111	0 1 0	0 0 1	0 1 0	0 0 1	1 1 0
Berth code C3	*Status	C1	A	C2	z	A	z	z	z	z	SI	z	z	z	SI	SI	z	z
	Species	cerea	senhousia	sp.	acinaces	lubrica	auriformis	narica	galatheae	aucklandensis	Indet	lamelliformis	laevis	novazealandiae	Indet	Paraprionospio-A [pinnata]	nuchalis	antipoda
	Genus	Asterocarpa	Musculista	Mytilus	Zenatia	Theora	Philine	Natatolana	Abyssoninoe	Onuphis	Glycera	Glycera	Labiosthenolepis	Phylo	Orbiniidae	Paraprionospio	Protocirrineris	Amaeana
	Family	Styelidae	Mytilidae	Mytilidae	Mactridae	Semelidae	Philinidae	Cirolanidae	Lumbrineridae	Onuphidae	Glyceridae	Glyceridae	Sigalionidae	Orbiniidae	Orbiniidae	Spionidae	Cirratulidae	Terebellidae
	Order	Stolidobranchia	Mytiloida	Mytiloida	Veneroida	Veneroida	Cephalaspidea	Isopoda	Eunicida	Eunicida	Phyllodocida	Phyllodocida	Phyllodocida	Scolecida	Scolecida	Spionida	Terebellida	Terebellida
	Class	Ascidiacea	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Gastropoda	Malacostraca	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta

samples.
sled
benthic
the
from
Results
5c.
Appendix

	-	0	0	0	0	0	-	0	-	0	0	0	0	-	0	0	0	-	0	-	-	0	0	0	0	0	0
BETWEEN D - E	-	0	1	0	0	0	-	0	0	0	1	0	1	-	0	-	0	-	0	0	-	0	0	0	0	0	0
BETWEEN CUSTOMS - B																											
BETWEEN C - D	1	0 0	0 0	0 0	0 0	0 0	1	0	0 0	0 0	0	0 0	0 0	1	0 0	0 0	0	1 0	0 0	0 0	1	0	0 0	1 0	0 0	1 0	0
Site code BETWEEN B - C	*Status	z	z	z	A	z	A	z	z	z	z	z	z	z	z	z	z	z	z	z	z	SI	z	SI	z	z	S
	*																							a]			
	Species	lentigenosus	latus	canaliculus	gigas	acinaces	lubrica	lambata	cookii	hirtipes	australis	yaldwyni	cordatum	auriformis	papulosa	hurleyi	narica	galatheae	aucklandensis	lamelliformis	laevis	Asychis-B	novazealandiae	Paraprionospio-A [pinnata	australis	antipoda	Indet
	S	Favonigobius lentigenosus				-	_	Dosinia lambata	0				-			1	_	0,	.0	-	-	1	-	4	.0	(0	Terebellides Indet
	Genus S	Favonigobius	Peltorhamphus	Perna	Crassostrea	Zenatia	Theora	_	Halicarcinus	Macrophthalmus	Pontophilus	Periclimenes	Echinocardium	Philine	Struthiolaria	Torridoharpinia h	Natatolana	Abyssoninoe	Onuphis	Glycera	Labiosthenolepis I	Asychis	Phylo r	Paraprionospio F	Pectinaria	Amaeana a	Terebellides
	Family Genus S	Gobiidae Favonigobius	ormes Pleuronectidae Peltorhamphus	Mytilidae Perna	Ostreidae Crassostrea	Mactridae Zenatia	Semelidae Theora	Dosinia	Hymenosomatidae Halicarcinus o	Ocypodidae Macrophthalmus	Crangonidae Pontophilus	Palemonidae Periclimenes	Loveniidae Echinocardium	Philinidae Philine	Struthiolariidae Struthiolaria	Phoxocephalidae Torridoharpinia h	Cirolanidae Natatolana	Lumbrineridae Abyssoninoe g	Onuphidae Onuphis	Glyceridae Glycera I	Sigalionidae Labiosthenolepis I	Maldanidae Asychis	Orbiniidae Phylo r	Spionidae Paraprionospio F	Pectinariidae Pectinaria	Terebellidae Amaeana a	Trichobranchidae Terebellides

samples.
sled
benthic
the
from
Results
5c.
Appendix

	-	0	0	0	0	0	-	0	0	0	0	0	0	-	0	0	0	0	0	0	-	0	-	0	0	-	0
END OF D - F	-	0	-	-	1	0	1	-	0	0	0	0	-	-	-	0	0	-	-	0	-	0	0	0	0	0	0
END OF B - C								-																			-
		U		U	U	U		0	U	U		U	U		U	U		U	U			U	U	U	U	U	0
CUSTOMS END OF QUARANTINE	-	0	-	0	0	0	1	0	0	0	-	1	0	-	0	0	0	1	0	0	1	0	0	0	0	0	-
EN E - F																											
Site code BETWEEN E - F	*Status	Z	Z	z	A	z	A	z	z	Z	Z	Z	z	Z	z	Z	Z	Z	Z	z	Z	SI	Z	SI	Z	Z	N
	Species	lentigenosus	latus	canaliculus	gigas	acinaces		-	cookii			yaldwyni				hurleyi		-,	aucklandensis	lamelliformis	laevis	Asychis-B	novazealandiae	Paraprionospio-A [pinnata]	australis	antipoda	Indet
	Genus	Favonigobius	Peltorhamphus	Perna	Crassostrea	Zenatia	Theora	Dosinia	Halicarcinus	Macrophthalmus	Pontophilus	Periclimenes	Echinocardium	Philine	Struthiolaria	Torridoharpinia	Natatolana	Abyssoninoe	Onuphis	Glycera	Labiosthenolepis	Asychis	Phylo	Paraprionospio	Pectinaria	Amaeana	Terebellides
	Family	Gobiidae	Pleuronectidae	Mytilidae	Ostreidae	Mactridae	Semelidae	Veneridae	Hymenosomatidae	Ocypodidae	Crangonidae	Palemonidae	Loveniidae	Philinidae	Struthiolariidae	Phoxocephalidae	Cirolanidae	Lumbrineridae	Onuphidae	Glyceridae	Sigalionidae	Maldanidae	Orbiniidae	Spionidae	Pectinariidae	Terebellidae	Trichobranchidae
	Order	Perciformes	Pleuronectiformes	Mytiloida	Ostreoida	Veneroida	Veneroida	Veneroida	Brachyura	Brachyura	Caridea	Caridea	Spatangoida	Cephalaspidea	Littorinimorpha	Amphipoda	Isopoda	Eunicida	Eunicida	Phyllodocida	Phyllodocida	Scolecida	Scolecida	Spionida	Terebellida	Terebellida	Terebellida
	Class	Actinopterygii	Actinopterygii	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Crustacea	Crustacea	Crustacea	Crustacea	Echinoidea	Gastropoda	Gastropoda	Malacostraca	Malacostraca	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta

Appendix 5c. Results from the benthic sled samples.

	-	0	0	0	0	-	-	0	0	0	-	0	0	-	0	0	-	0	0	0	-	-	0	0	0	0	0
OUT SIDE OF F	1	-	0	0	0	0	-	0	0	-	-	0	0	-	0	0	0	0	0	0	-	-	0	0	-	0	0
Site code F END OF QUARANTINE	*Status	Z	Z	Z	A	Z	A	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	SI	Z	SI	Z	Z	SI
	Species	lentigenosus	latus	canaliculus	gigas	acinaces	lubrica	lambata	cookii	hirtipes	australis	yaldwyni	cordatum	auriformis	papulosa	hurleyi	narica	galatheae	aucklandensis	lamelliformis	laevis	Asychis-B	novazealandiae	Paraprionospio-A [pinnata]	australis	antipoda	Indet
	Genus	Favonigobius	Peltorhamphus	Perna	Crassostrea	Zenatia	Theora	Dosinia	Halicarcinus	Macrophthalmus	Pontophilus	Periclimenes	Echinocardium	Philine	Struthiolaria	Torridoharpinia	Natatolana	Abyssoninoe	Onuphis	Glycera	Labiosthenolepis	Asychis	Phylo	Paraprionospio	Pectinaria	Amaeana	Terebellides
	Family	Gobiidae	Pleuronectidae	Mytilidae	Ostreidae	Mactridae	Semelidae	Veneridae	Hymenosomatidae	Ocypodidae	Crangonidae	Palemonidae	Loveniidae	Philinidae	Struthiolariidae	Phoxocephalidae	Cirolanidae	Lumbrineridae	Onuphidae	Glyceridae	Sigalionidae	Maldanidae	Orbiniidae	Spionidae	Pectinariidae	Terebellidae	Trichobranchidae
	Order	Perciformes	Pleuronectiformes	Mytiloida	Ostreoida	Veneroida	Veneroida	Veneroida	Brachyura	Brachyura	Caridea	Caridea	Spatangoida	Cephalaspidea	Littorinimorpha	Amphipoda	Isopoda	Eunicida	Eunicida	Phyllodocida	Phyllodocida	Scolecida	Scolecida	Spionida	Terebellida	Terebellida	Terebellida
	Class	Actinopterygii	Actinopterygii	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Crustacea	Crustacea	Crustacea	Crustacea	Echinoidea	Gastropoda	Gastropoda	Malacostraca	Malacostraca	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta

Appendix 5d. Results from the dinoflagellate cyst core samples.

20	1 2	1	0 0	0	0	1 0
44 F2	1 2	0	000	1 0	000	0
7 D2	12 12 12 12 12	0	000	0	1 0	000
C	12	1 0	0 1	0 1	0 1	1 0
Berth code C3	*Status	C1	z	z	z	z
	Species	catenatum	spinifera	sp.	cf. conicoides	trochoidea
	Genus	Gymnodinium	Gonyaulax	Protoperidinium	Protoperidinium conicum	Scrippsiella
	Family	Gymnodiniacea	Gonyaulacaceae	Peridiniaceae	Peridiniaceae	Peridiniaceae
	Order	Gymnodiniales	Peridiniales	Peridiniales	Peridiniales	Peridiniales
	Class	Dinophyceae	Dinophyceae	Dinophyceae	Dinophyceae	Dinophyceae

Appendix 5e. Results from the fish trap samples.

		12	0 0	0 0	11	0 1
QUARANTINE						
		\sim	, -	0	, -	-
=20		-	-	0	0	-
044 F;		1 2	1 0	1 0	1 0	0 0
D						
	_	1	[000	0	0
S	•			0	Ŭ	Ŭ
Berth code	Line No.	*Status	z	z	z	z
		Species	forsteri	trutta	celidotus	auratus
		Genus	Aldrichetta	Arripis	Notolabrus	Pagrus
		Family	Mugilidae	Arripidae	Labridae	Sparidae
		Order	Mugiliformes	Perciformes	Perciformes	Perciformes
		Class	Actinopterygii	Actinopterygii	Actinopterygii	Actinopterygii

Appendix 5f. Results from the crab trap samples.

	123	0 0 0	100	0 0 0	0 0 0	0 0 0
QUARANTINE						
	m	-	-	0	0	-
	\sim	0	0	1 0 0	0	-
0	-	000	0	,	0	0
ï		~	_	~	_	
	0	0	0	0	0	2
-	-	0	0	0	0	0 1 1
D44						
	m	0	-	0	-	-
	\sim	0	-	0	-	-
ر ۲	-	0	0	0	0	0
Berth code C Line no.	*Status	z	z	z	z	SI
	Species	wilsoni	celidotus	minor	adspersa	sp.
	Genus	Conger	Notolabrus	Notomithrax	Cominella	Scyphozoa
	Family	Congridae	Labridae	Majidae	Buccinidae	
	Order	Anguilliformes	Perciformes	Brachyura	Neogastropoda	
	Class	Actinopterygii	Actinopterygii	Crustacea	Gastropoda	Scyphozoa

Appendix 5g. Results from the starfish trap samples.

		1 2	0 0	1 0	0 0	0 0
QUARANTINE						
=20		1 2	0	0	0	000
044 F		1 2	0	0	0	000
_ 	-	1 2	0	000	0	0 1
Site code (Line No.	*Status	z	SI	z	z
		Species	regularis	sp.	adspersa	glandiformis
		Genus	Patiriella	Notomithrax	Cominella	Cominella
		Family	Asterinidae	Majidae	Buccinidae	Buccinidae
		Order	Valvatida	Brachyura	Neogastropoda	Neogastropoda
		Class	Asteroidea	Crustacea	Gastropoda	Gastropoda

Appendix 5h. Results from the shrimp trap samples.

QUARANTINE		1 2	0 0	0 0	0 0	11	0 0
0		~	0	0	0	0	0
F20		-	0	0	0 1 0 0 0	0	0
		2	0	0	0	0	0
044		-	-	-	-	0	-
		2	0	0	0 0	-	0
	-	-	0	0	0	-	0
serth code C3	Line No.	*Status	z	A	z	SI	z
ш		Species	maculata	acutum	awa	sp.	narica
		Genus	Pleurobranchaea	Apocorophium	Melita	Natatolana	Natatolana
		Family	Pleurobranchidae	Corophiidae	Melitidae	Cirolanidae	Cirolanidae
		Order	Notaspidea	Amphipoda	Amphipoda	Isopoda	Isopoda
		Class	Gastropoda	Malacostraca	Malacostraca	Malacostraca	Malacostraca

Addendum

After completing these reports we were advised of changes in the identification of one species. The ascidian *Cnemidocarpa sp.* refered to in this report as a new introduction to New Zealand has been revised to *Cnemidocarpa nisiotus* (status: native).