

Milford Sound

First baseline survey for non-indigenous marine species (Research Project ZBS2005/19)

MAF Biosecurity New Zealand Technical Paper No: 2008/01

Prepared for MAFBNZ Post-border Directorate by Graeme Inglis, Nick Gust, Marie Kospartov, Lisa Peacock

ISBN No: 978-0-478-32114-2 (Print) ISBN No: 978-0-478-32115-9 (Online)

ISSN No: 1176-838X (Print) ISSN No: 1177-6412 (Online)

May 2008

Disclaimer

While every effort has been made to ensure the information in this publication is accurate, the Ministry of Agriculture and Forestry does not accept any responsibility or liability for error or fact omission, interpretation or opinion which may be present, nor for the consequences of any decisions based on this information.

Any view or opinions expressed do not necessarily represent the official view of the Ministry of Agriculture and Forestry.

The information in this report and any accompanying documentation is accurate to the best of the knowledge and belief of the National Institute of Water & Atmospheric Research Ltd (NIWA) acting on behalf of the Ministry of Agriculture and Forestry. While NIWA has exercised all reasonable skill and care in preparation of information in this report, neither NIWA nor the Ministry of Agriculture and Forestry accept any liability in contract, tort or otherwise for any loss, damage, injury, or expense, whether direct, indirect or consequential, arising out of the provision of information in this report.

Requests for further copies should be directed to:

Publication Adviser MAF Information Bureau P O Box 2526 WELLINGTON

Telephone: (04) 894 4100 Facsimile: (04) 894 4227

This publication is also available on the MAF website at http://www.biosecurity.govt.nz/about-us/our-publications/technical-papers

© Crown Copyright - Ministry of Agriculture and Forestry

Project Team:

Project Leader Project Manager Field Team	Dr Graeme Inglis Dr Barbara Hayden Dr Nick Gust (Field Team Leader), Dr Oliver Floerl, Isla Fitridge (Field Laboratory Manager), Crispin Middleton, Niki Davey, Dr Chris Woods, Dr Sheryl Miller, Anna Bradley
Sample & specimen management	Crispin Middleton, Isla Fitridge, Andrew Hosie
Data management & analysis	Inglis, Martin Unwin, Helen Roulston
Reporting Identification	Marie Kospartov, Dr Graeme Inglis, Lisa Peacock, Kimberley Seaward NIWA
	NIWA Dr Shane Ahyong (Amphipoda, Anthozoa, Decapoda, Mysida, Ophiuroidea, Pycnogonida) Owen Anderson (Echinoidea) Dr F. Hoe Chang (Myzozoa, Bacillariophyta) Niki Davey (Holothuroidea) Dr Dennis Gordon (Bryozoa, Entoprocta) Dr Sean Handley (Platyhelminthes) Andrew Hosie (Sessilia) Laith Jawad (Actinopterygii excluding galaxiids, Elasmobranchii) Dr Bob McDowall (Galaxiids) Dr Michelle Kelly (Porifera) Kate Neill (Asteroidea, Chlorophyta, Ochrophyta, Rhodophyta) Dr Wendy Nelson, Kate Neill, Roberta D'Archino (Chlorophyta, Ochrophyta, Rhodophyta, Magnoliophyta) Mike Page, Anna Bradley (Ascidiacea) Dr Geoff Read (Polychaeta, Sipuncula)
	Consultants Dr Bruce Marshall, Museum of NZ Te Papa Tongarewa (Mollusca) Dr Jan Watson, Hydrozoan Research Laboratory (Hydrozoa) Dr Graham Bird, self employed, Waikanae (Tanaidacea) Dr Niel Bruce, Museum of Tropical Queensland (Isopoda)

Contents

Executive summary	1
Introduction	4
Biological baseline surveys for non-indigenous marine species	4
Description of Milford Sound	6
Existing biological information	11
Baseline survey methods	12
Review of marine species records from Milford Sound	12
Port baseline survey of Milford Sound	12
Sampling effort	13
Sorting and identification of specimens	19
Definitions of biosecurity statuses	25
Public awareness programme	26
Results	27
Review of marine species records from Milford Sound	27
Milford Sound port survey	28
Comparison between desktop review of existing records and port baseline survey records	39
Assessment of the risk of new introductions to Milford Sound	
Assessment of translocation risk for NIS and C1 taxa found in the port	41
Management of existing NIS and C1 taxa in the port	
Prevention of new introductions	44
Conclusions and recommendations for monitoring and re-surveying	45
Acknowledgements	46
Glossary	47
References	49
Appendix 1: Sampling procedures for ZBS2005-19 surveys.	

Appendix 2: Geographic locations of the sample sites in the Milford Sound initial port baseline survey.

- Appendix 3: Sampling site/ method combinations specified by MAF Biosecurity New Zealand that were not conducted.
- Appendix 4: Media Release circulated as part of the Public Awareness Programme.
- Appendix 5: Generic descriptions of representative groups of the main marine phyla collected during sampling.
- Appendix 6: Species information sheets for the NIS and C1 taxa recorded from the Milford Sound port survey and desktop review of existing marine species records.
- Appendix 7: Species x site x sample results matrices for all taxa recorded from each method in the Milford Sound port survey.

Executive summary

This report describes the results of the first port baseline survey of Milford Sound, undertaken in June 2006. The survey provides an inventory of native, non indigenous and cryptogenic marine species within the fiord and surrounding coastal area and compares the biota with existing marine species records from the area.

- The survey is part of a nationwide investigation of native and non-native marine biodiversity in New Zealand's shipping ports and marinas of first entry for vessels entering New Zealand from overseas.
- Sampling methods used in these surveys were based on protocols developed by the Australian Centre for Research on Introduced Marine Pests (CRIMP) for baseline surveys of non-indigenous species in ports. Some variations to these protocols were necessary for use in the marine environments of Milford Sound.
- A wide range of sampling techniques were used to collect marine organisms from habitats within Milford Sound. Fouling assemblages were scraped from hard substrata by divers, benthic assemblages were sampled using an anchor box dredge, large hand corer and diver visual transects, and a gravity corer or small hand corer was used to sample for dinoflagellate cysts. Phytoplankton and zooplankton were sampled with fine-meshed plankton nets. Mobile predators and scavengers were sampled using baited crab and shrimp traps, and fish were sampled with poison stations and beach seine netting. Beach wrack was surveyed on visual walks along selected shorelines. Sediment samples were also collected to analyse organic content and particle size.
- Sampling effort was distributed in Milford Sound and surrounding coastal environments according to priorities identified by MAF Biosecurity New Zealand. In total, 22 sites were sampled during the survey.
- Organisms collected during the survey were sent to New Zealand and international taxonomic experts for identification.
- Prior to the port baseline survey, a desktop review was conducted to compile an inventory of non-indigenous marine species that have been recorded previously from Milford Sound and surrounding areas. One non-indigenous species (the alga *Polysiphonia brodiei*) had been reported from within Milford Sound and another five (all algae) from elsewhere in Fiordland. Ten cryptogenic category one taxa (C1: those whose identity as native or non-indigenous is ambiguous) were also reported from within Milford Sound or elsewhere in Fiordland.
- The initial port baseline survey of Milford Sound recorded a total of 390 species or higher taxa. No species known to be non-indigenous to New Zealand were recorded. The collection consisted of 278 native taxa, eight cryptogenic category one taxa, ten cryptogenic category two taxa (species that have recently been discovered but for which there is insufficient biogeographic or taxonomic information to determine the native provenance), and zooplankton (which were screened for target non-indigenous species but otherwise not identified), with the remaining 93 taxa being indeterminate (unable to be identified to species level).
- The eight cryptogenic category one taxa recorded from the initial baseline survey included three sponges (*Leucosolenia* cf. *discoveryi*, *Raspaila agminata* and *Tethya*

bergquistae), two ascidians (*Diplosoma velatum* and *Didemnum* sp.), one bryozoan (*Scruparia ambigua*), one hydroid (*Orthopyxis integra*) and one dinoflagellate (*Alexandrium tamarense*). All of these taxa are known to have established populations within New Zealand, but their occurrence in Milford Sound represents an extension of the known range in New Zealand for four of them (*Diplosoma velatum*, *Orthopyxis integra*, *Tethya bergquistae* and *Raspailia agminata*).

- The eight C1 taxa were recorded from a total of only 14 of the 288 samples identified during the Milford Sound survey, in water depths ranging from 2 m to 35 m. Seven of these occurred only in samples collected from exposed coastal sites just outside of Milford Sound, and were collected by the methods of visual dive transects or quadrat scrapings. Trends in depth stratification were not evident for these organisms due to their low abundances.
- Five species recorded from the initial port baseline survey of Milford Sound are new records from New Zealand waters, and may be new to science. These are the sponges "*Neofibularia* n. sp. 2 (MK)" and "*Tedania* n. sp. 1 (MK)", the amphipod *Liljeborgia* sp. 2, and the bryozoans *Celleporina* sp. and *Electra* sp. The sponges are considered native to New Zealand, as it is unlikely that they have been transported to the remote location of Milford Sound by human means. The bryozoans and the amphipod are considered to be cryptogenic category two (C2), as there is insufficient information to determine whether New Zealand lies within their native range.
- None of the species recorded during the Milford Sound survey or during the desktop review of existing species records are on the New Zealand register of unwanted organisms. However, three species are on the Australian CCIMPE Trigger List (one ascidian and one diatom recorded in the port survey, and one diatom previously recorded from Milford Sound). Another species, the algae *Polysiphonia brodiei* (previously recorded from Milford Sound but not found during the port survey), is listed as a medium-high priority pest on an Australian list of 53 Australian priority domestic pests.
- Three toxin-producing dinoflagellates were recorded during the Milford Sound port baseline survey the native species *Dinophysis acuminata* and *Lingulodinium polyedrium* and the C1 species *Alexandrium tamarense*. Another native diatom recorded during the port survey, *Chaetoceros convolutus*, is considered harmful to fish due to its barbed setae, but is not directly toxic. Four toxin-producing species have previously been recorded from Milford Sound or elsewhere in Fiordland the native dinoflagellates *Dinophysis acuminata* and *Dinophysis acuta*, the native diatom *Pseudo-nitzschia australis*, and the C1 dinoflagellate *Alexandrium ostenfeldii*.
- There was only limited overlap in species composition between the desktop review of existing marine species records and the records from the port baseline survey. These differences can be attributed to variation in sampling effort and technique between surveys and to the differences in time-frame over which the records were accumulated (i.e. single snap-shot survey versus accumulation of historical records).
- Most non-indigenous and C1 taxa recorded during the Milford Sound port survey or desktop review are likely to have been introduced to New Zealand accidentally by international shipping or spread from other locations in New Zealand (including translocation by shipping).

- Fifteen of the 19 species may have been introduced in hull fouling assemblages, one species probably arrived via ballast water, two species could have been introduced by either ballast water or hull fouling vectors, and two species could have arrived either by natural means or associated with shipping.
- Vessels operating in Milford Sound operate under relatively stringent guidelines to reduce the likelihood of introduction of new marine species to the area. These guidelines, whilst voluntary for vessels other than cruise ships, include "zero discharge" of ballast water, cleaning of hulls outside of the water, and inspections of vessels for non-indigenous species before arrival in Milford Sound for vessels planning on staying more than 24 hours in the fiord.

Introduction

Introduced (non-indigenous) plants and animals are now recognised as one of the most serious threats to the natural ecology of biological systems worldwide (Wilcove et al. 1998; Mack et al. 2000). Growing international trade and trans-continental travel mean that humans now intentionally and unintentionally transport a wide range of species outside their natural biogeographic ranges to regions where they did not previously occur. A proportion of these species are capable of causing serious harm to native biodiversity, industries and human health. Recent studies suggest that coastal marine environments may be among the most heavily invaded ecosystems, as a consequence of the long history of transport of marine species by international shipping (Carlton and Geller 1993; Grosholz 2002). Ocean-going vessels transport marine species in ballast water, in sea chests and other recesses in the hull structure, and as fouling communities attached to submerged parts of their hulls (Carlton 1985; Carlton 1999; AMOG Consulting 2002; Coutts et al. 2003). Transport by shipping has enabled hundreds of marine species to spread worldwide and establish populations in shipping ports and coastal environments outside their natural range (Cohen and Carlton 1995; Hewitt et al. 1999; Eldredge and Carlton 2002; Leppakoski et al. 2002).

Like many other coastal nations, New Zealand is just beginning to document the numbers, identity, distribution and impacts of non-indigenous species in its coastal waters. A review of existing records suggested that by 1998, at least 148 marine species had been recorded from New Zealand, with around 90 % of these establishing permanent populations (Cranfield et al. 1998). Since that review, at least another 41 non-indigenous species or suspected non-indigenous species (i.e. Cryptogenic category $1 - \sec$ "Baseline survey methods: Definitions of biosecurity statuses", below) have been recorded from New Zealand waters. To manage the risk from these and other non-indigenous species, better information is needed on the current diversity and distribution of species present within New Zealand.

BIOLOGICAL BASELINE SURVEYS FOR NON-INDIGENOUS MARINE SPECIES

In 1997, the International Maritime Organisation (IMO) released guidelines for ballast water management (Resolution A868-20) encouraging countries to undertake biological surveys of port environments for potentially harmful non-indigenous aquatic species. The purpose of these surveys is to:

- improve knowledge of potentially harmful species and of marine biodiversity in areas most at risk from harmful species,
- provide a baseline for monitoring the rate of new incursions by non-indigenous marine species in shipping ports, and
- assist international risk profiling of problem species through the sharing of information with other shipping nations (Hewitt and Martin 2001).

Worldwide, standardised port surveys have been completed in at least 37 Australian ports, at demonstration sites in China, Brasil, the Ukraine, Iran, South Africa, India, Kenya, and the Seychelles Islands, at six sites in the United Kingdom, and 10 sites throughout the Mediterranean (Raaymakers 2003).

As part of its comprehensive five-year *Biodiversity Strategy* package on conservation, environment, fisheries, and biosecurity released in 2000, the New Zealand Government funded a national series of port baseline surveys for non-indigenous marine species. These surveys aimed to determine the identity, prevalence and distribution of native, cryptogenic and non-indigenous species in New Zealand's major shipping ports and other high risk points of entry for vessels entering New Zealand from overseas.

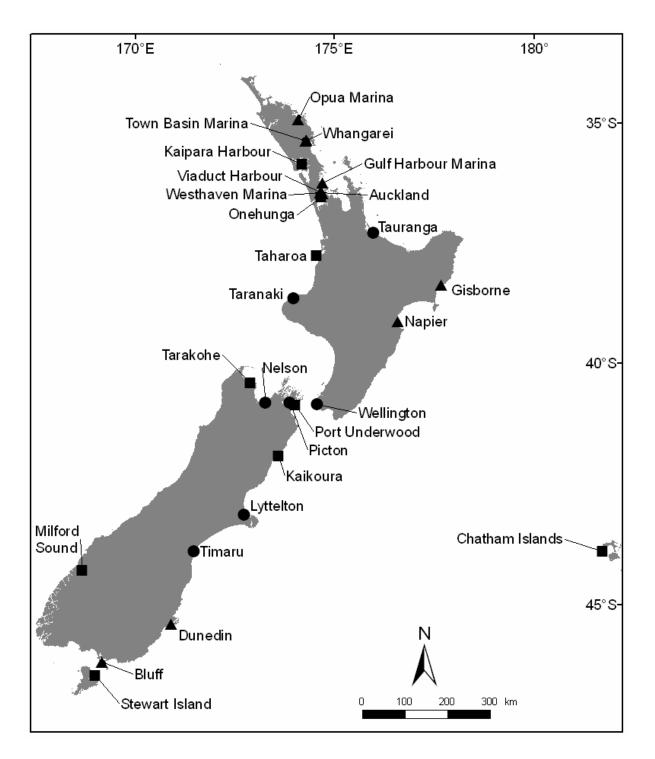


Figure 1: Commercial shipping ports in New Zealand where baseline nonindigenous species surveys have been conducted. Group 1 ports (circles) were surveyed in the summer of 2001/2002 and re-surveyed in the summer of 2004/2005, Group 2 ports (triangles) were surveyed in the summer of 2002/2003 and re-surveyed in the summer of 2005/2006 (except for Viaduct and Westhaven marinas, which were surveyed for the first time during the 2005/2006 summer), and Group 3 ports (squares) were surveyed between May 2006 and December 2007. Initial surveys were completed during the summers of 2001/2002 and 2002/2003 in 13 major shipping ports and three marinas of first entry for vessels entering New Zealand (Figure 1). The surveys recorded more than 1300 species; 124 of which were known or suspected to have been introduced to New Zealand. At least 18 of the non-indigenous species were recorded for the first time in New Zealand in the port baseline surveys. In addition, 106 species that are potentially new to science were discovered. These 16 locations were subsequently resurveyed in the summers of 2004/05 and 2005/06 to establish changes in the number and identity of non-indigenous species present.

In 2005, MAF Biosecurity New Zealand extended the national port baseline surveys to a range of secondary, domestic and international ports and marinas within New Zealand to increase our knowledge of the non-indigenous marine species present in regional nodes for shipping. Biological baseline surveys were contracted for the following locations:

- Taharoa Iron Sands Terminal
- Port of Onehunga (Manukau Harbour) & marinas
- Milford Sound
- Kaipara Harbour & marinas
- Golden Bay Marina (Takaka)
- Kaikoura / Port Underwood
- Stewart Island
- Chatham Islands

This report summarises the results of the first port baseline survey of Milford Sound and provides an inventory of species detected in the survey and in a review of existing biological records for the area. It identifies and categorises native, non-indigenous and cryptogenic species. Organisms that could not be identified to species level are also listed as indeterminate taxa (see "Baseline survey methods: Definitions of biosecurity statuses", below).

DESCRIPTION OF MILFORD SOUND

General features

Milford Sound is a glacially carved inlet on the south west coast of the South Island of New Zealand (Figure 1). It is approximately 16 km long. The valley walls drop steeply to water depths reaching 287 m in some parts of the Sound, particularly near Mitre Peak. Like other New Zealand fiords, the marine environments of Milford Sound are characterised by steep rock walls, deep basins, weak tidal currents and large freshwater run-off. The upper levels of the water column are often highly stratified (Gibbs et al. 2000), so that only species tolerant of brackish water are able to inhabit the upper few metres (Smith and Witman 1999). These conditions, combined with the unusual light regime caused by the stratification, and restricted larval dispersal throughout the fiords have allowed the development of unusual marine assemblages that are dominated by invertebrates and which are more characteristic of deep water habitats (Kregting and Gibbs 2006).

History of settlement and use

Maori arrived in the Milford area around 1,000 years ago. The first European to discover the sound was the sealer Captain John Grono, who discovered it in 1823 and named it Milford Haven. Milford's first settler, Donald Sutherland, arrived in 1877. He built several huts and opened the area up to tourism by discovering Sutherland Falls in 1880 and building a 12-room accommodation house (Cruising Milford Sound Ltd 2007). A century later, in the late 1980's, the Milford Development Authority was established, comprising the Queenstown Lakes District Council and several tourist companies (Scoop 2006). It was replaced in 1990 by the

private company Milford Sound Development Authority Ltd (MDA), which is owned 49 % by Tourism Holdings Ltd, 49 % by Fiordland Travel Ltd and 2 % by Southland District Council. The MDA manages the facilities in Freshwater Basin (see "Introduction: Port operation, development and maintenance activities", below).

Milford Sound is now one of New Zealand's leading tourist destinations, offering boat cruises, diving and walking tracks. It is the only fiord in Fiordland accessible by road, and therefore the most heavily visited. Milford Sound received around 470,000 visitors in the 2004 / 2005 season, up from around 247,000 in 1992 (Department of Conservation 2007). Most of these are day visitors who take tourists boat trips on the Sound (Butcher Partners Ltd 2006).

Milford Sound is part of the Fiordland National Park and the Te Wahipounamu / South Westland World Heritage Area. A marine reserve - Piopiotahi Marine Reserve - covers 690 hectares along the northern side of Milford Sound, from the head of the Sound to Dale Point.

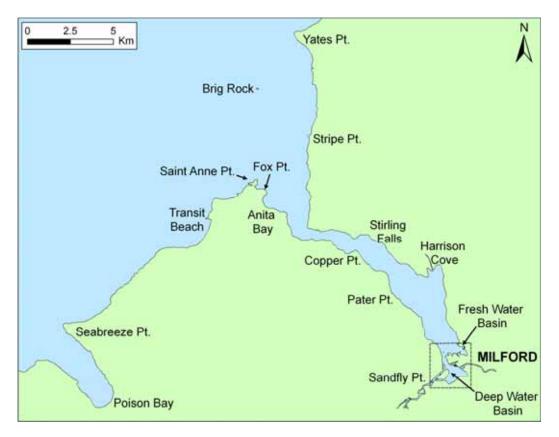


Figure 2: Milford Sound. Dotted square indicates area of inset shown in Figure 3.

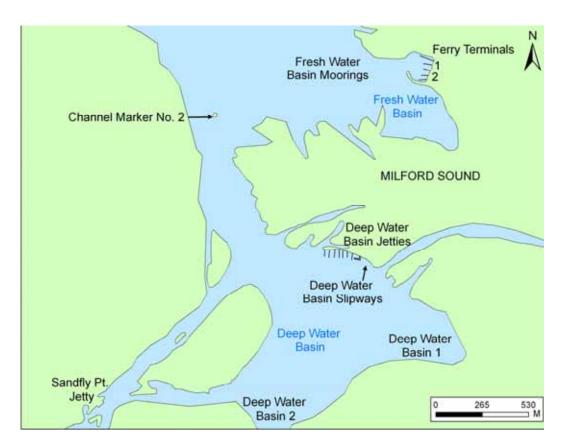


Figure 3: Map of the head of Milford Sound around Fresh Water and Deep Water Basins (area of inset shown in Figure 2).

Port operation, development and maintenance activities

Shipping and boating facilities in Milford Sound operate out of two main areas, both at the head of the Sound – Freshwater Basin and Deepwater Basin.

Freshwater Basin is managed by the Milford Sound Development Authority (MDA) and contains the main facilities for the commercial tourist operations in Milford Sound. These facilities are located on reclaimed land and include the visitor terminal wharf, berthage, harbour area, breakwater and numerous other facilities and services (Scoop 2006; Department of Conservation 2007). The visitor terminal wharf at Freshwater Basin (Figure 2) is located in water depths of approximately 3.9 m, although the approach is 13 m to 25 m deep. Freshwater Basin was dredged during initial construction, and maintenance dredging is conducted every ten years. The commercial tourist boat wharf has eleven berths, with construction of concrete platforms, steel pontoons and wooden piles with metal sheeting. The wharf undergoes regular, ongoing maintenance (Rodger Wilson, MDA Secretary, pers. comm.). The commercial tourist vessel companies also operate an underwater observatory and associated ferry wharf at Harrison Cove.

On the southern side of the Deepwater Basin delta are berthing facilities and infrastructure for the Fiordland crayfishing fleet, as well as for other vessels including jet boats, private vessels and sea kayaking ecotourism operators (Department of Conservation 2007, R. Wilson, MDA Secretary, pers. comm.). These facilities include a small slipway and finger berths.

Shipping movements and ballast discharge patterns

Milford Sound is a major tourist attraction and most of its vessel traffic comprises tourist vessels, although a small crayfishing fleet and some private vessels also use it as a base. Any

vessel over 1,000 GRT, which is not a cruise ship, must apply for resource consent to enter Milford Sound (Southland Regional Council 2004).

Approximately 15 commercial tourist day boats operate from the Freshwater Basin terminal. These vessels remain in Milford Sound except when maintenance is required (usually once every two years) when they sail around the southern coast to Bluff or Port Chalmers. Other vessels, such as barges, rarely come into the port, only entering if they have an emergency or require maintenance (Rodger Wilson, MDA Secretary, pers. comm.).

Between 9 to 12 crayfishing vessels use the facilities at Deepwater Basin but they usually do not remain in port for long periods (John Robson, Red Boat Cruises, pers. comm.). Some vessels, however, reportedly remained moored in the same place in Deepwater Basin for up to ten years, only leaving for maintenance (Rodger Wilson, MDA Secretary, pers. comm). These fishing vessels are based out of Milford Sound, from where they head out to their fishing grounds and then return to Milford Sound. Most are not slipped in Milford Sound, but sail to the Port of Bluff when maintenance and Survey are required (Alan Cosgrove, Fiordland Lobster Co. Ltd., pers. comm.). Two very small fishing boats do use the slipway at Deepwater Basin, where they are removed from the water, cleaned whilst on the slip, and antifouling paint re-applied. Some fishing vessels are able to sail the rough journey down the West Coast from Farewell Spit (John Robson, Red Boat Cruises, pers. comm.). During the tuna season boats occasionally come to Milford Sound from Nelson and Greymouth (Alan Cosgrove, Fiordland Lobster Co. Ltd., pers. comm.).

Private vessels also visit Milford Sound, although their numbers typically reach no more than 10 vessels annually. They are trailered into Milford Sound over the road and then use the slipway at Deepwater Basin to access the waters, as the area is too remote and the sea too rough to sail to (John Robson, Red Boat Cruises, pers. comm.).

Large international cruise ships frequently visit Milford Sound, entering as far as the deepwater area between Harrison Cove and the Arthur River. Forty-three cruise ship visits are due between 28th September 2007 and 21st April 2008 (Alan Cosgrove, Fiordland Lobster Co. Ltd., pers. comm.). Common itineraries for these cruise ships have them arriving from Hobart (Tasmania, Australia), Dunedin, or Auckland, and their next port of call after Milford Sound is often Hobart (Alan Cosgrove, Fiordland Lobster Co. Ltd., pers. comm.) or other domestic ports such as Dunedin and Picton (Hapag-Lloyd 2008). Navigational rules for cruise ships operating in Fiordland include:

- Compulsory pilotage for all ships over 100 GRT in the internal waters of Fiordland.
- No more than two cruise ships shall enter the same stretch of water within the Fiords in any one day.
- Cruise ships intending to anchor in Piopiotahi (Milford Sound) require a permit from the Department of Conservation
- The area of Freshwater Basin is a prohibited anchorage except in emergency.
- Anchoring in Harrison Cove, in water less than 60 metres in depth, is a prohibited activity.
- Cruise ships can land passengers so that they can take part in tours ashore at Milford. The use of ships tenders to run passengers ahore is controlled by the Harbour Controller in order to reduce congestion at Freshwater Basin. A maximum of 100 passengers may be landed at Milford on any one visit by a cruise ship (Southland Regional Council 2004).

Any ship being used as an accommodation base or facility in the fiords requires a resource consent under the Environment Southland Regional Coastal Plan. A condition of this resource consent is that the ship must have its hull cleaned and maintained before the vessel enters the internal waters of Fiordland. Logged inspections of vessels for the unwanted invasive alga *Undaria* are required (Ministry for the Environment 2004). Commercial fishing vessels, by contrast, do not require a coastal permit to operate in Fiordland (Ministry for the Environment 2004). Nonetheless, fishing vessels and all other vessels are requested to follow voluntary guidelines to reduce the risk of marine invasions in Fiordland. These include:

- there must be no cleaning hulls below the water line and running gear within the fiords
- cleaning on shore must occur above the high tide mark and ensure that no fouling material or contaminated water could re-enter the sea
- all vessels/structures intending to temporarily reside in the fiords for more than 24 hours must have their hulls inspected for *Undaria* and other unwanted organisms, and any detected unwanted organisms must be removed from the vessel/structure and disposed of on land
- all vessels/structures intending to permanently moor in the fiords must be cleaned and anti-fouled before being transported to the fiords (Ministry for the Environment 2004).

Many of these measures are also promoted in other regulatory and non-regulatory instruments including the *Environment Southland Proposed Regional Pest Management Strategy*, the *Code of Practice for Commercial Tourist Vessels Operating within Milford Sound Harbour Limits*, the *Southland Regional Coastal Plan*, the *Biosecurity Act 1993* and the draft *Marine Biosecurity Plan for Fiordland*.

These rules are further expanded upon for cruise ships in a Cruise Ship Deed of Agreement (Environment Southland 2001) and the Regional Coastal Plan for Southland, stating:

- All hull cleaning, painting, and hull scraping activities or any other hull maintenance is prohibited while the vessels are within Internal Waters. Furthermore, operators are advised that it is recommended that any cruise ship intending to temporarily reside in the fiords for more than 24 hours have their hulls inspected for *Undaria* and other unwanted organisms; and that any detected unwanted organisms to be removed from the vessel/structure and disposed of on land.
- All reasonable steps must be taken to operate a "zero discharge" regime while in the Southland Coastal Marine Area. The cruise ships will neither ballast nor deballast in Internal Waters.

Similar voluntary guidelines for "zero discharge" ballast water regimes are also promoted for other vessels (Guardians of Fiordlands's Fisheries & Marine Environment Inc. 2003; Ministry for the Environment 2004). Since June 2005, vessels in New Zealand have been required to comply with the Import Health Standard for Ships' Ballast Water from All Countries (Biosecurity New Zealand 2005). No ballast water is allowed to be discharged without the express permission of a Ministry of Agriculture and Forestry (MAF) inspector. To allow discharge, vessel Masters are responsible for providing the inspector with evidence of either: discharging ballast water at sea (200 nautical miles from the nearest land, and at least 200m depth); demonstrating ballast water is fresh (2.5 ppt sodium chloride); or having the ballast water treated by a MAF approved treatment system. Ballast water loaded in Tasmania and Port Philip Bay in Victoria (Australia) may not be discharged into New Zealand water under any circumstances, due to the presence of several high-risk non-indigenous species in those areas (Biosecurity New Zealand 2005).

Existing biological information

There are good historical records of marine assemblages in Fiordland. Some of the first marine biological collections from New Zealand were made in Fiordland by early European explorers (eg. the expeditions of Cpt James Cook & Cpt Tobias Furneaux in 1773). Since that time there have been repeated expeditions and studies directed at describing these unusual environments and their biota. These include, amongst others, ecosystem-level studies (eg. Batham 1965; Grange et al. 1981; Grange 1985b; Smith and Witman 1999) and studies of organisms including the endemic black coral *Antipathella fiordensis* (Grange 1985a; Miller 1997; Kregting and Gibbs 2006), the rock lobster *Jasus edwardsii* (Annala et al. 1980; Annala and Bycroft 1993), foraminifera (Eade 1967), wood-boring molluscan shipworms (McKoy 1980), marine macroalgae (Nelson et al. 2002), reef fishes (Roberts et al. 2005), the Fiordland crested penguin *Eudyptes pachyrhynchus* (McLean and Russ 1991) and cetaceans (eg. Brager and Schneider 1998; Lusseau and Slooten 2002; Slooten et al. 2002; Lusseau 2005).

A compilation of marine macroalgae species records from Fiordland (Nelson et al. 2002) includes three species of non-indigenous algae (Champia affinis, Polysiphonia brodiei and Sargassum verruculosum), although none of these have been reported from Milford Sound itself. Champia affinis, a native of Tasmania and South Australia, has been recorded in New Zealand from Port Pegasus (Stewart Island), Preservation Inlet and Otago Harbour. Polysiphonia brodiei, native to Ireland and northern Europe and introduced to eastern and western North America, Japan and Australia, has been recorded in New Zealand from Lyttelton, Wellington Timaru, Tarakohe, Stewart Island and Dusky Sound in Fiordland. Sargassum verruculosum, native to western and southern Australia, New South Wales and Tasmania, has been recorded in Fiordland from Bligh, Thompson, Doubtful, Breaksea and Dusky Sounds and Chalky/Preservation Inlet, and from elsewhere in New Zealand at Stewart Island, Akaroa Harbour and Kaikoura. These three species were all possibly introduced through early whaling and sealing operations in the late 18th and early 19th centuries, but none of them are considered to present a serious threat to native biodiversity (Nelson et al. 2002). The brown kelp Undaria pinnatifida, which could have a major impact on Fiordland's biodiversity, has been introduced to other parts of New Zealand but has not been recorded from Fiordland (Nelson et al. 2002; Environment Southland 2006).

Environment Southland, the government agency responsible for environmental matters in the region that encompasses Milford Sound, is proposing to designate nine marine organisms as pests under their *Regional Pest Management Strategy* (Environment Southland 2006). The species are the brown alga *Undaria pinnatifida*, the Asian clam *Potamocorbula amurensis*, the seaweed *Caulerpa taxifolia*, the Chinese mitten crab *Eriochier sinensis*, the European shore crab *Carcinus maenas*, the Mediterranean fanworm *Sabella spallanzanii*, the Northern pacific seastar *Asterias amurensis*, and the sea squirts *Didemnum vexillum* and *Styela clava*. *Undaria pinnatifida* has been recorded from Paterson's Inlet on Stewart Island and from Bluff Harbour (Environment Southland 2006). As noted earlier, it has not been recorded from Milford Sound or elsewhere in Fiordland (Nelson et al. 2002; Environment Southland 2006). The other eight of these species have not been recorded from Southland (Environment Southland 2006). *P. amurensis, C. taxifolia, E. sinensis, C. maenas, S. spallanzanii*, and *A. amurensis* are not known to be established in New Zealand.

The survey of coastal reef fish species conducted by Roberts et al. (2005) in Milford Sound in March-April 1998 recorded 52 marine fish species in 39 genera and 26 families at Milford Sound. None of the species were non-indigenous to New Zealand. The recorded species included two species probably new to science - orange rockfish *Acanthoclinus* ?n.sp. and pygmy sleeper *Thalasseleotris* n.sp.. Two other particularly rare species were recorded at Milford Sound, fiord brotula *Fiordichthys slartibartfasti* Paulin and eyespot clingfish

Modicus tangaroa Hardy. The study recognised the south side of Milford Sound as being particularly special, due to the recovery of rare and new fish species there.

Cranfield et al. (1998) reviewed the published literature and classified 159 species as being adventive in New Zealand. None of these were reported from Milford Sound, but the three non-indigenous macroalgae recorded from elsewhere in Fiordland and noted above from the Nelson et al. (2002) study were also reported by Cranfield et al. (1998). Several other species classed as adventive in New Zealad by Cranfield et al. (1998) were reported with less specific distributions that encompassed most parts of New Zealand and therefore it may be inferred that they could potentially be found in Milford Sound. These are the sponges *Clathrina coriacea, Cliona celata, Dendya poterium, Leucosolenia botryoides* and *Sycon ciliata*; the hydroids *Amphisbetia operculata, Obelia longissima* and *Plumularia setacea*; the bryozoan *Bugula flabellata*; and the ascidians *Asterocarpa cerea* and *Corella eumyota*).

Baseline survey methods

REVIEW OF MARINE SPECIES RECORDS FROM MILFORD SOUND

Prior to undertaking the Milford Sound port baseline survey, we conducted a desktop review of biological records (including historical) of marine species previously recorded from Milford Sound. We conducted this review by searching the Southwestern Pacific Regional OBIS Node (SW-PRON) database (NIWA 2008) and relevant published literature.

The SW_PRON database is a work in progress, comprising a growing number of datasets containing marine biodiversity data from the Southwestern Pacific region (NIWA 2008). At the time of our review (mid-2006) it contained two datasets – a "fish" dataset and a "bryozoan" dataset. The "fish" dataset contains mostly fish records as well as some invertebrate records that are derived from various trawl surveys conducted on behalf of New Zealand's Ministry of Fisheries in the Southwest Pacific Ocean between 14/03/1961 and 07/07/2005. The "bryozoan" dataset contains bryozoan species presence data derived from various trips in and around the New Zealand Exclusive Economic Zone between 14/07/1874 and 19/04/2002. These datasets are available for public access on the SW-PRON website (NIWA 2008).

During our desktop review, we compiled a list of all species records that we encountered from Milford Sound or from elsewhere in Fiordland, but focused particularly on obtaining a complete inventory of non-indigenous (NIS) and cryptogenic category 1 (C1) species. After compiling our initial species lists we sent the lists for each taxonomic group to relevant experts for them to review species names, reliability of the records and biosecurity statuses. We also asked the experts to add any NIS or C1 species records that we had missed, and to provide information on the New Zealand and global distribution for the NIS and C1 species. The distribution information was then mapped and species information sheets prepared for each NIS and C1 species.

PORT BASELINE SURVEY OF MILFORD SOUND

Baseline survey protocols are intended to sample a variety of habitats within ports, including epibenthic fouling communities on hard substrata, soft-sediment communities, mobile invertebrates and fishes, and dinoflagellates. We surveyed a variety of these habitat types at sites specified by MAF Biosecurity New Zealand within, and around Milford Sound, from June 7th to 14th, 2006.

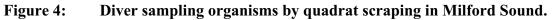
A variety of sampling techniques was used for the survey of Milford Sound. These sampling methods, specified by MAF Biosecurity New Zealand in the tender documents, are derived

from the CSIRO Centre for Research on Introduced Marine Pests (CRIMP) protocols developed for port baseline surveys in Australia (Hewitt and Martin 1996; Hewitt and Martin 2001). CRIMP protocols have been adopted as a standard by the International Maritime Organisation's Global Ballast Water Management Programme (GloBallast). The methods include small cores for dinoflagellate cysts, large cores and box dredge samples for benthic invertebrates, 20 µm and 100µm plankton nets, crab and shrimp traps, qualitative visual searches, quadrat scraping, photo stills and video, poison stations, beach seines and beach walks (Appendix 1). Due to the exposed nature of the coastline around Milford Sound and the presence of the Piopiotahi Marine Reserve within the Sound, some of the sampling methods and sites were varied in agreement with MAF Biosecurity New Zealand. The sites and methods employed during the survey of Milford Sound are detailed below.

SAMPLING EFFORT

Sampling sites and the methods to be employed at each site were specified by MAF Biosecurity New Zealand. A summary of the sampling completed during the first baseline survey of Milford Sound is provided in Table 1, and the spatial distribution for each of the sample methods is shown in Figure 11 to Figure 19. The exact geographic locations of sample sites are given in Appendix 2. Planned sampling that was not conducted, and the reasons for this, are given in Appendix 3.

Fouling communities


Fouling assemblages at piling and hard substrate sites were surveyed using photographic stills and video as well as qualitative visual surveys and/or scraping samples.

Divers recorded video transects continuously from the surface to 10 m depth (where possible). Following the video transects, quadrats (25 cm x 40 cm) were secured to the hard surfaces at depths of 0.5 m, 3.0 m and 7.0 m depth (where water depths allowed this), and still images were taken with a high-resolution digital camera. Four overlapping photographic stills were taken in each quadrat to cover the area. At sites where scraping was possible and permitted, once the first diver had obtained the photographic images, a second diver then removed fouling organisms by scraping the organisms inside each quadrat into a 1 mm mesh collection bag, attached to the base of the quadrat. Once scraping was completed, the sample bag was sealed and returned to the boat for processing. The divers also made a visual search of the area for known harmful invasive species and collected samples of large conspicuous organisms not represented in quadrats.

No scraping for samples was conducted at site 13 (Stirling Falls wall), which is within the Piopiotahi (Milford Sound) marine reserve. Because of its location in the marine reserve and the presence of black coral trees (a protected species) in the fouling assemblage, sampling of hard substrata at this site was completed with non-destructive video and diver observations, rather than with quadrat scrapes.

Qualitative visual samples and photo stills and video were not conducted at site 16 (Stripe Point) due to the extensive sandy benthos devoid of sessile fouling and fauna and strong surge affecting visibility.

Benthic infauna

Benthic infauna were collected by sieving sediment collected using a large hand corer or an anchor box dredge (Figure 5). The large hand corer is 150 mm in diameter and 400 mm long. It is inserted 200 mm into the sediment, resulting in a sediment sample 150 mm in diameter by 200 mm length. The large hand corer was used at all sites except site 22 (Poison Bay), where an equivalent sample was collected remotely using an anchor box dredge. The anchor box dredge consists of a solid metal box (38 cm x 35 cm x 20.5 cm) that attaches to a long chain. The dredge is dropped from a boat or wharf to the seafloor where it sinks down into the sediment. It is then hauled back onto the boat and the retrieved sediment sieved to capture benthic infauna. At each site, triplicate samples were taken 50 m out from the pile and hard structure site (where applicable).

Figure 5: Large hand corer (left) and anchor box dredge (right) for sampling benthic infauna

Dinoflagellate cyst-forming species

Triplicate samples were collected for dinoflagellate cysts at planned pile and hard substrate sites, with triplicate samples 50 m out from the pile and hard structure site (depth permitting). At sites with suitable benthos (sites 1, 2 and 22) samples for dinoflagellate cysts were taken with a TFO gravity corer, but sites with stoney/cobble benthos (sites 3, 6, 7, 8, 10, 11, 12, 16 and 21) required divers to manually take the samples using a small hand core (Figure 6). Sediment samples were kept on ice and refrigerated prior to dispatch to the specialist taxonomist.

The TFO gravity corer consists of a 1 m long x 1.5 cm diameter hollow stainless steel shaft with a detachable 0.5-m long head (total length = 1.5 m; Figure 7). Directional fins on the shaft ensure that the corer travels vertically through the water so that the point of the sampler makes first contact with the seafloor. The detachable tip of the corer is weighted and tapered to ensure rapid penetration of unconsolidated sediments to a depth of 20 to 30 cm. A thin (1.2 cm diameter) sediment core is retained in a perspex tube within the hollow spearhead. In muddy sediments, the corer effectively preserves the vertical structure of the sediments and fine flocculant material on the sediment surface. The TFO corer is deployed and retrieved from a small research vessel.

The small hand core used by divers is a 20 cm long tube with 2 cm internal diameter. Tubes are forced into the substrate then capped at each end with a rubber bung to provide an airtight seal.

Figure 6: Diver manually taking a small core sediment sample for dinoflagellate cyst-forming species at Seabreeze Point

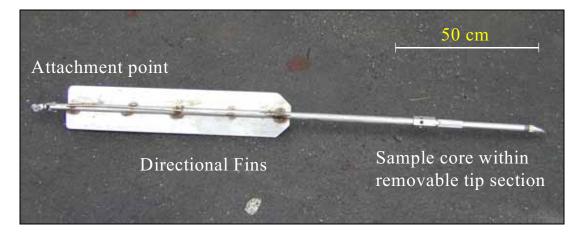


Figure 7: TFO gravity corer

Dinoflagellates, phytoplankton and zooplankton in the water column

A 100 μ m net with a diameter of 70 cm was used to sample zooplankton in the water column. The net dropped vertically to approximately 1 metre from the substrate. Following the vertical drop the net was retrieved and carefully sprayed down to collect all the sample which was then placed in containers and preserved. A 20 μ m net with a diameter of 25 cm was used to sample dinoflagellates and phytoplankton species. This net was towed just below the water surface behind the charter vessel at slow speed for 1 minute then retrieved, washed down, placed in sample containers and labelled for laboratory analysis.

Figure 8: Zooplankton net commencing its vertical drop.

Epibenthos

Larger benthic organisms were sampled using qualitative visual surveys, crab box traps and shrimp traps.

Qualitative visual surveys

Qualitative visual surveys were conducted instead of benthic sled tows at Milford Sound, due to the hard substrate and fragile black corals at many of the sites making sled tows unsuitable. At planned sites a qualitative visual survey dive was conducted over suitable substrata. Three replicate 10 m transects were recorded on video at each qualitative visual survey site. Representative fauna and flora were collected for subsequent identification. Large, conspicuous marcofauna and flora were identified from the video records.

Traps

Crab box traps (63 cm x 42 cm x 20 cm; Figure 9) with a 1.3 cm mesh netting were used to sample mobile crabs and other small epibenthic scavengers. A central mesh bait holder containing two dead pilchards was secured inside the trap. Organisms attracted to the bait enter the traps through slits in inward sloping panels at each end. Two trap lines, each containing three box traps, were set on the sea floor at each site and left to soak overnight before retrieval.

Shrimp traps (Figure 9) were used to sample small, mobile crustaceans. They consisted of a 15 cm plastic cylinder with a 5 cm diameter screw top lid in which a funnel is fitted. The funnel has a 5 cm entrance that tapers in diameter to 1 cm. The entrance is covered with 1 cm plastic mesh to prevent larger animals from entering and becoming trapped in the funnel entrance. Each trap was baited with a single dead pilchard. Two trap lines, each containing three shrimp traps, were set on the sea floor at each site and left to soak overnight before retrieval.

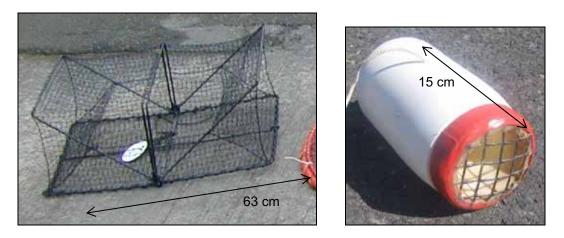


Figure 9: Crab box trap (left) and shrimp trap (right)

Fishes

Fishes were sampled using poison stations and beach seine netting.

Poison stations were sampled over hard substrata using clove oil at three sites (sites 3, 7 and 22). An area with suitable contours was selected and draped with a collection net. Clove oil was then applied to the area paying particular attention to potential hiding places for fish species. As the fish in the selected area became anesthetised they were collected using small aquarium dip nets and placed in a sealed bag. This was then returned to the charter boat for processing and labelling before being frozen.

Beach seine nets (Figure 10) were used to sample fish species at one river mouth (site 3) and one beach (site 22). The net is11 m wide, has a headline height of around 1 m and a 4 m cod end of 9 mm mesh. The net was dragged from a suitable starting position onto the beach where the catch was bagged, labelled and placed on ice for freezing at the first opportunity.

Figure 10: A beach seine net being dragged out before hauling in

Beach wrack

Qualitative visual surveys of beach wrack were conducted at specified sites to collect crab exuviae, target macroalgae or other target organisms. Beach wrack surveys are designed for surveyors to walk parallel to the water's edge 2 m from the shore, 5 m from the shore and 10 m from the shore. However, at Milford Sound the shore was only wide enough to allow surveys at 2 m from the water's edge. At site 22 (Poison Bay), two beach wrack walks - one on each side of the creek - were conducted at 2 m from the water's edge. Collected organisms were bagged and labelled.

Environmental data

Water temperature, salinity and sea state

Field measurements of water temperature and salinity were taken at each site. Turbidity measurements (measured as Secchi depth) were taken at each site using a 150 mm diameter Secchi disk. Observations were also made of daily sea state (Beaufort scale).

Sediment analysis

Sediment samples were taken for analysis of grain size and organic content from each site that was sampled for benthic infauna, where possible (some sites had stoney substrates with very little sediment, which prohibited the collection of one or both sediment samples). A ~100 g wet weight sample was collected from each of two replicate anchor box dredge or large hand core samples at each site, and frozen prior to analysis. A ~30 g sub-sample was removed for analysis of organic content, while the remainder was used to determine the particle size distribution of the sample using a laser grain size analyser.

The organic content of the sediments was estimated using the common method of loss on ignition (LOI). For each sample, the wet sample was well mixed and a representative subsample (approximately 30 g) placed into a pre-weighed crucible. The sample was put into a 104 °C oven until completely dry. It was then transferred to a desiccator to cool before being weighed to the nearest 0.001 g. The sample was then ashed in a muffle furnace at 500 °C for four hours. When cool enough it was transferred to a desiccator to cool further before being weighed to the nearest 0.001 g. The difference between nett dry and nett ash-free dry weights was then calculated. This difference or weight loss, expressed as a percentage (LOI %), is closely correlated with the organic content (combustible carbon) of the sediment sample (Heiri et al. 2001).

The distribution of particle sizes at each port was measured using the standard procedures and equipment of nested sieves to sort the larger particles (down to 0.5 mm) and a laser grain size analyser to sort particles below this size, as follows:

- 1. Samples were wet sieved using sieves of mesh sizes 8 mm, 5.6 mm, 4 mm, 2.8 mm, 2 mm, 1 mm and 0.5 mm.
- 2. Sediments retained on each sieve were dried and weighed.
- 3. The remaining fraction (< 0.5 mm) was prepared for laser analysis: the < 0.5 mm fraction was made up to 1 L in a cylinder fitted with an extraction tap. The sample was homogenised by continuous agitation with a plunger up and down in the cylinder for 20 seconds. With agitation continuing during extraction, approximately 100 ml was drawn off for drying and weighing and a second 100 ml was drawn off for laser particle analysis.
- 4. The first 100 ml was measured to obtain a percent of the whole sample, then dried, weighed and scaled up to 100 % to return the < 0.5 mm gross dry weight.
- 5. The laser analysis returns percent distributions of volume in any chosen size ranges. These percents are then applied to the < 0.5 mm gross dry weight.
- 6. Laser analysis was conducted using a Galai CIS-100 "time-of-transition" (TOT) stream-scanning laser particle sizer. Particles sized between 2 μm and 600 μm were measured by the laser particle sizer. Typically, 250,000 to 500,000 particles were counted per sample.
- 7. The proportion of particles in each of five size categories (ranging from clay to small pebbles) was then calculated as a percent of the total net dry weight.

SORTING AND IDENTIFICATION OF SPECIMENS

Each sample collected in the survey was allocated a unique code on waterproof labels and transported to a field laboratory onboard the research vessel, where it was sorted by a team into broad taxonomic groups (e.g. ascidians, barnacles, sponges etc.). These groups were then preserved and individually labelled. Details of the preservation techniques varied for many of the major taxonomic groups collected, and the protocols adopted and preservative solutions used are indicated in Table 2. Specimens were subsequently sent to approximately 20 taxonomic experts for identification to species or lowest taxonomic unit (LTU). We also sought information from each taxonomist on the known biogeography of each species within New Zealand and overseas. Species lists compiled for each port were compared with the marine species listed on the New Zealand Register of Unwanted Organisms under the Biosecurity Act 1993 (Table 3) and the Australian Trigger List produced by the Consultative Committee on Introduced Marine Pest Emergencies (Table 4).

Because of the difficulty of identifying all species from the zooplankton samples, an alternative approach was taken, in consultation with MAF Biosecurity New Zealand, whereby

the samples were only screened for target non-indigenous species. The species looked for were larvae that were or were suspected to be the Chinese mitten crab *Eriocheir sinensis* (or other members of this genus), the European green crab *Carcinus maenas*, the northern Pacific seastar *Asterias amurensis* and the ascidian *Styela clava*. Identifications were not made for organisms other than these species in the samples. Cumaceans, ostracods and nemerteans collected by any method were not identified due to NIWA being unable to secure the services of experts to examine these groups. These specimens were therefore classed as indeterminate taxa (see "Baseline survey methods: Definitions of biosecurity statuses", below).

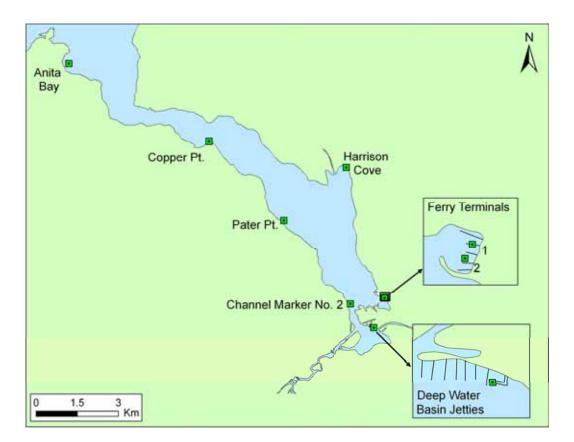


Figure 11: Quadrat scraping sites

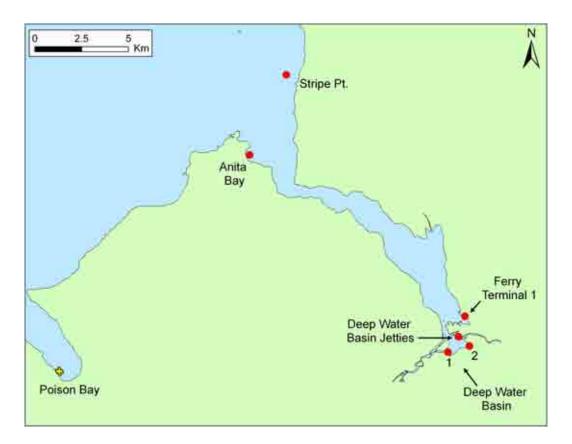


Figure 12: Anchor box dredge (yellow cross) and large benthic core (red circle) sampling sites

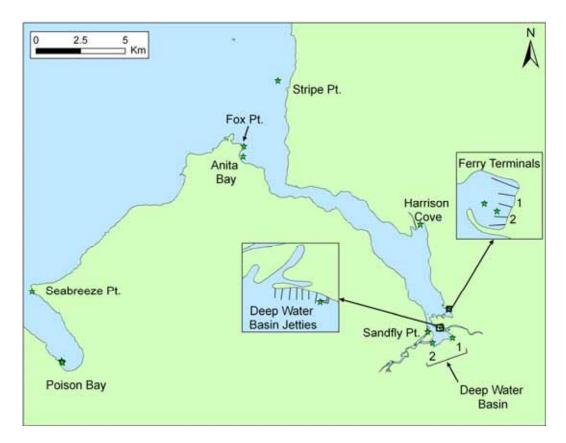


Figure 13: Cyst sampling sites

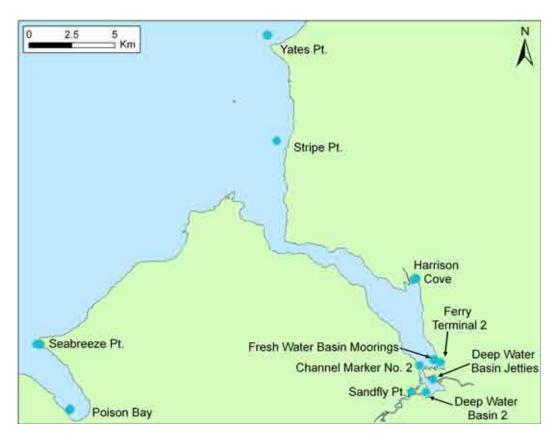
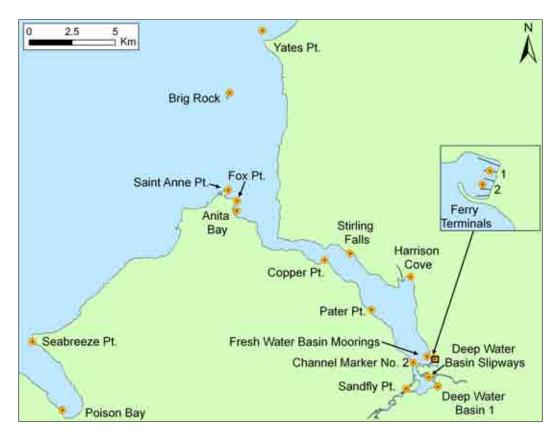



Figure 14: Water column sampling sites for zooplankton, phytoplankton and dinoflagellates

Figure 15: Diver visual transect sites

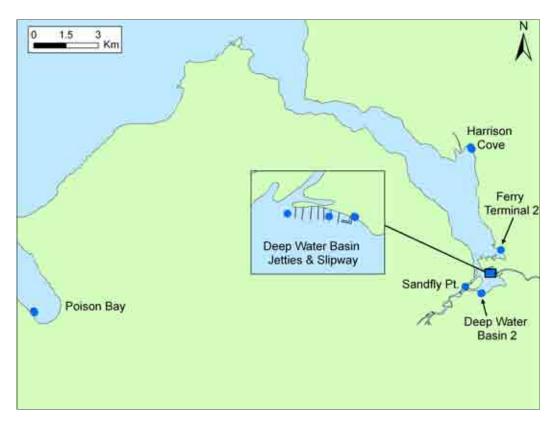


Figure 16: Crab and shrimp trapping sites

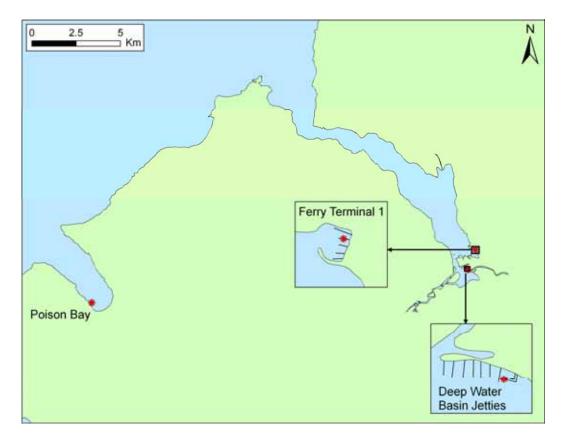


Figure 17: Poison stations sampling sites

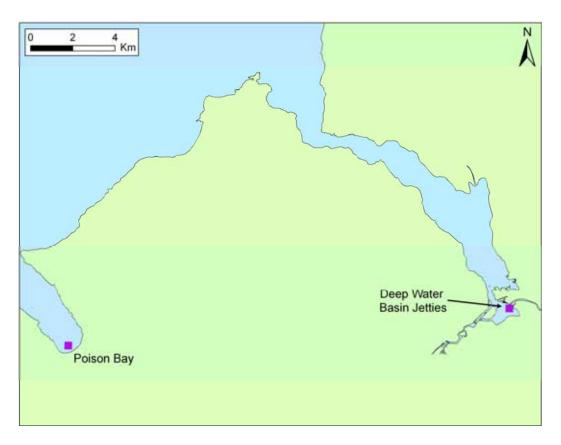


Figure 18: Beach seine sampling sites

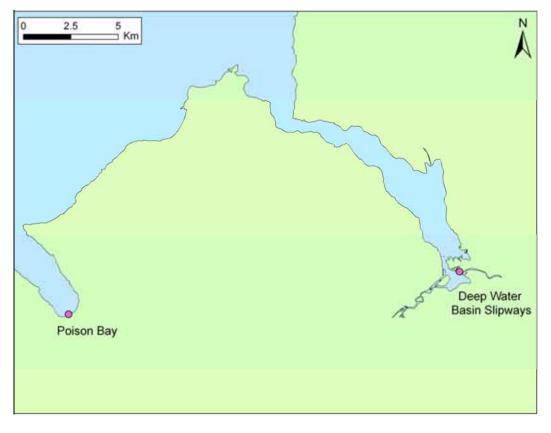


Figure 19: Beach wrack sampling sites

DEFINITIONS OF BIOSECURITY STATUSES

Each species recovered during the survey was classified into one of five categories ("biosecurity statuses") that reflected its known or suspected geographic origin. To do this we used the experience of taxonomic experts and reviewed published literature and unpublished reports to collate information on the species' biogeography. Patterns of species distribution and diversity in the oceans are complex and still poorly understood (Warwick 1996). Worldwide, many species still remain undescribed or undiscovered and their biogeography is incomplete. These gaps in global marine taxonomy and biogeography make it difficult to determine the true range and origin of many species reliably. The biosecurity statuses we used reflect this uncertainty.

Species that were not demonstrably native or non-indigenous were classified as "cryptogenic" (sensu Carlton 1996). Cryptogenesis can arise because the species was spread globally by humans before scientific descriptions of marine flora and fauna began in earnest (i.e. historical introductions). Alternatively the species may have been discovered relatively recently and there is insufficient biogeographic information to determine its native range. We have used two categories of cryptogenesis to distinguish these different sources of uncertainty. A fifth biosecurity status ("indeterminate taxa") was used for specimens that could not be identified to species-level. Formal definitions for each biosecurity status are given below, and a full glossary is provided at the end of the report.

Native species

Native species occurred within the New Zealand biogeographical region historically and have not been introduced to coastal waters by human mediated transport.

Non-indigenous species (NIS)

Non-indigenous species (NIS) are known or suspected to have been introduced to New Zealand as a result of human activities. They were determined using a series of questions posed as a guide by Chapman and Carlton (1991; 1994); as exemplified by Cranfield et al. (1998).

- 1. Has the species suddenly appeared locally where it has not been found before?
- 2. Has the species spread subsequently?
- 3. Is the species' distribution associated with human mechanisms of dispersal?
- 4. Is the species associated with, or dependent on, other non-indigenous species?
- 5. Is the species prevalent in, or restricted to, new or artificial environments?
- 6. Is the species' distribution restricted compared to natives?

The worldwide distribution of the species was tested by a further three criteria:

- 7. Does the species have a disjunctive worldwide distribution?
- 8. Are dispersal mechanisms of the species inadequate to reach New Zealand, and is passive dispersal in ocean currents unlikely to bridge ocean gaps to reach New Zealand?
- 9. Is the species isolated from the genetically and morphologically most similar species elsewhere in the world?

Cryptogenic category 1 taxa (C1)

Species previously recorded from New Zealand whose identity as either native or nonindigenous is ambiguous. In many cases this status may have resulted from their spread around the world in the era of sailing vessels prior to scientific survey (Chapman and Carlton 1991; Carlton 1992), such that it is no longer possible to determine their original native distribution. Also included in this category are newly described species that exhibited invasive behaviour in New Zealand (Criteria 1 and 2 above), but for which there are no known records outside the New Zealand region.

Cryptogenic category 2 taxa (C2)

Species that have recently been discovered but for which there is insufficient systematic or biogeographic information to determine whether New Zealand lies within their native range. This category includes previously undescribed species that are new to New Zealand and/or science.

Indeterminate taxa

Specimens that could not be reliably identified to species level. This group includes: (1) organisms that were damaged or juvenile and lacked morphological characteristics necessary for identification, and (2) taxa for which there is not sufficient taxonomic or systematic information available to allow identification to species level.

Public awareness programme

A well-targeted public awareness programme is an important component of this project. The attachment of local communities to their surrounding marine environment can act to the advantage of biosecurity if local vigilance can be harnessed for on-going surveillance for marine pests. Developing a strong public awareness programme is, therefore, critical to the success of the project and to on-going protection of New Zealand's marine environment from unwanted marine organisms.

Public awareness of the Milford Sound survey was developed in several ways. Prior to implementation of the survey, a resource consent was sought and obtained from Environment Southland for operation of a research vessel in Fiordland (required under section 16.2.2(2) of the Proposed Regional Coastal Plan for Southland, which came into force in July 2005). The conditions of the consent required notification of the following potentially affected stakeholders of the purpose of the survey and their written approval for the work to proceed:

- MAF Biosecurity New Zealand
- Guardians of Fiordland
- Fiordland Fishermen's Association
- Ministry of Fisheries
- Te Ao Marama Inc.
- Department of Conservation (approval for application and also on behalf of users of the Deepwater Basin wharf and berthage pen structure),
- Milford Sound Development Authority (approval for the application and also on behalf of the users of the Freshwater Basin facility).

In consultation with MAF Biosecurity New Zealand, representatives of each of the stakeholder groups were contacted directly by the NIWA project team. The purposes of the Milford survey, and of the national port baseline survey programme in general, were discussed with each representative. This discussion also covered the survey methods and their likely environmental effects within Milford Sound. It also requested assistance from the stakeholders in reporting any occurrences of unusual or suspect species. A brief background document on the proposed survey, which described the purpose and conduct of the surveys in more detail, was then sent to each stakeholder group along with a form seeking written consent for the activity. Formal

consent was received from all seven of the groups listed above and, as a result, resource consent was granted for the survey from Environment Southland (NIWA N066-001).

A research permit was also obtained from the Department of Conservation (DOC) to sample within the Piopiotahi Marine Reserve.

Shortly after the field survey was completed a joint media statement on the national port survey programme and the survey of Milford Soud was released by NIWA and MAF Biosecurity NZ. Release of the media statement after the survey was necessitated by the short interval between contracting and the required completion date of the surveys. The release outlined the activities undertaken during the survey and encouraged any public reports or observations on potentially introduced species. It included contact details for reporting suspicious species and for further information about the Milford survey and national port baseline survey programme (Appendix 4).

Media releases for the Milford Sound port survey were sent to the following organisations and stakeholders:

Media:

- NZPA
- Fiordland Focus
- West Coast Times
- Otago Daily Times
- Southland Times

Stakeholders:

- Environment Southland
- Department of Conservation
- Milford Sound Development Authority
- Fiordland Fisherman's Association
- Te Ao Marama Inc

Following media release, the following press coverage resulted:

• Southland Times: 'Milford survey results months away – NIWA', 2 September 2006, p.5.

No reports of suspect organisms were received from members of the public following the press coverage.

Results

REVIEW OF MARINE SPECIES RECORDS FROM MILFORD SOUND

Four hundred and fifty-eight taxa representing 17 phyla were recorded during the desktop review of existing marine species records from Milford Sound and surrounding areas. These include 343 native taxa (Table 5), six non-indigenous species (NIS; Table 6), ten cryptogenic category one (C1) taxa (Table 7), six cryptogenic category two (C2) taxa (Table 8), and 93 indeterminate taxa (Table 9). For general descriptions of the main groups of organisms recorded during this review, refer to Appendix 5. A list of Chapman and Carlton's (1994) criteria (see "Baseline survey methods: Definitions of biosecurity statuses", above) that were met by the NIS and C1 taxa is given in Table 10.

The 346 native taxa compiled in our review of existing marine species records from Milford Sound are comprised of 16 phyla but are dominated by bryozoans, foraminiferan protozoans and molluscs (Table 5). It should be noted that whilst our review was thorough, achieving an exhaustive list of native species was not possible within the resources available to the study.

The six non-indigenous species previously recorded from Milford Sound (Table 6) are all algae: the "brown" alga *Sargassum verruculosum* and the "red" algae *Champia affinis*, *Polysiphonia brodiei*, *P. constricta*, *P. sertularioides* and *P. subtilissima*. The ten C1 taxa previously recorded from Milford Sound (Table 7) include one bryozoan (*Scruparia ambigua*), one ascidian (*Diplosoma velatum*), one dinoflagellate (*Alexandrium ostenfeldii*), one silicoflagellate (*Heterosigma akashiwo*) and six sponge species (*Crella incrustans, Esperiopsis edwardii, Haliclona* cf. *clathrata, Leucosolenia* cf. *challengeri, Leucosolenia* cf. *discoveryi* and *Raspaila agminata*). Available information on the ecology of each of these NIS and C1 species, their global and New Zealand distributions, vectors and potential impacts are provided in Appendix 6.

The six C2 taxa compiled in our review of existing marine species records from Milford Sound include one polychaete, one bryozoan, two fish and two sponges (Table 8).

Four of the taxa recorded during the review are harmful algal species. These are the dinoflagellates *Dinophysis acuta, D. acuminata* and *Alexandrium ostenfeldii* and the diatom *Pseudo-nitzschia australis*. All are widely distributed worldwide, and all except *A. ostenfeldii* are considered native in New Zealand (Table 5). Evidence from toxin analyses suggest that *Alexandrium ostenfeldii* may also be native in New Zealand (MacKenzie et al. 1996), but as this has not been confirmed, it is classed here as C1 (Table 7). *Alexandrium ostenfeldii* is capable of producing Paralytic Shellfish Poisoning (PSP) toxins, although it is one of the least toxic of all the *Alexandrium* species tested for PSP toxins. Nonetheless, it may be hazardous for shellfish consumers in New Zealand (MacKenzie et al. 1996). *Dinophysis acuta* and *Dinophysis acuminata* form blooms that are associated with Diarrhetic Shellfish Poisoning (DSP), although it appears that not all *Dinophysis acuminata* blooms are toxic (Faust and Gulledge 2002). *Pseudo-nitzschia australis* can produce a domoic acid, which causes Amnesic Shellfish Poisoning (ASP, New Zealand Food Safety Authority 2003). However, not all isolates of *P. australis* in New Zealand have been confirmed to produce domoic acid (Hay et al. 2000).

MILFORD SOUND PORT SURVEY

Port environment

Sampling was carried out at twenty-one different sites throughout Milford Sound. (Figure 11 to Figure 19, Table 11). Maximum recorded depths ranged from 200 m at Pater Point to around 4-5 m at Sandfly Point Jetty and the Ferry Terminals. Turbidity was greatest at Poison Bay and the Deep Water Basin Jetties (1 m and 1.75 m secchi depths, respectively), whilst it was lowest at the entrance to the fiord, particularly at Brig Rock (an open ocean site; 17 m secchi depth). Salinity was variable and generally less than that of sea water (average of around 24 ppt), influenced by the high degree of freshwater run-off in the fiord. Freshwater sites occurred at the head of the fiord (Deep Water Basin and Jetties), and all other sites varied between 14 and 35 ppt. Water temperature was also lowest at the head of the fiord (6-7 degrees Celsius). The average water temperature across all sites was 11.5 \pm 0.6 degrees Celsius. During sampling, sea states ranged from 0-5 on the Beaufort scale (i.e. approximately 0-21 knots wind speed and 0-2 m wind speed), with a general trend, as expected, of increasing

Beaufort scale with increasing distance from the head of the fiord. However, relatively low Beaufort scales were recorded at some of the more exposed, outer sites; this reflects the need to wait for calm weather before accessing these sampling sites rather than indicating the usual sea states at these sites.

The organic content of sediments in the Milford area was low, with a mean LOI (loss on ignition) value across the 8 analysed samples from 6 sites of 2.4 $\% \pm 0.6 \%$ (Figure 20). Organic content was less than 1 % at the coastal sites, whilst it ranged from 2 % to 5 % at the head of the fiord, where there is greater organic runoff from the Cleddau River and probably some influence from the human activity at the ferry terminals.

Sediments at the sampling sites at and around Milford Sound were dominated by sand-sized particles, with smaller proportions of silt-sized particles (Table 12). The three sites in the protected areas at the head of the fiord also had some clay-sized particles. Clay was not present at the outer sites, where water movement is probably too strong to allow clay to accumulate. Two of the protected sites, Deep Water Basin sites 1 and 2, also had some larger gravel- and small pebble-sized particles. This was particularly apparent at Deep Water Basin site 1. The gravel and pebble at this site have probably been washed down the Cleddau River, which empties into Milford Sound near Deep Water Basin site 1. The particle size distributions in Milford Sound are similar to those that have been measured in Doubtful Sound (Brewin 2003).

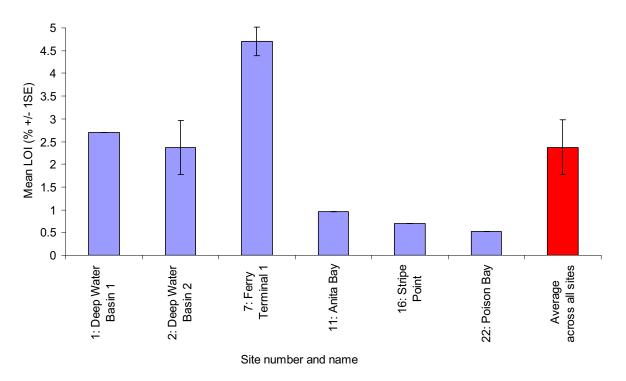


Figure 20: Organic content as determined by loss on ignition analyses of sediments from 6 sites at and around Milford Sound.

Species recorded

A total of 390 species or higher taxa were identified from the initial baseline survey of Milford Sound. This collection consisted of 278 native taxa (Table 13), eight cryptogenic category one taxa (Table 14), ten cryptogenic category two taxa (Table 16), and zooplankton (which were screened for target non-indigenous species but not otherwise identified), with the

remaining 93 taxa being indeterminate (Table 17, Figure 21). No species known to be non-indigenous to New Zealand were recorded.

The biota recorded included a diverse array of organisms from 17 phyla, as well as three specimens that couldn't be identified to phylum (Figure 22). For general descriptions of the main groups of organisms (Phyla) encountered during this study refer to Appendix 5, and for detailed species lists collected using each method refer to Appendix 7.

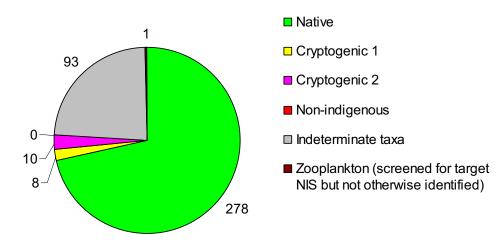
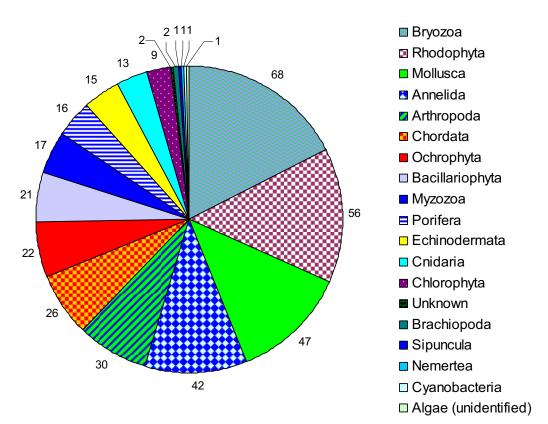
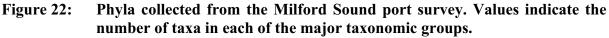




Figure 21: Biosecurity status of marine species collected from the Milford Sound port survey. Values indicate the number of taxa in each biosecurity category. Zooplankton are included separately because they were screened for target NIS but non-target species were not identified.

Native taxa

The 278 native species recorded during the Milford Sound port survey (Table 13) represented 71 % of all species identified from this location and included diverse assemblages of bryozoans (60 taxa), algae (rhodophytes, ochrophytes and chlorophytes; 53 taxa), molluscs (37 taxa), annelids (30 taxa) and crustaceans (23 taxa). A number of other groups were also recorded, including dinoflagellates, diatoms, ascidians, fishes, sponges, cnidarians and echinoderms (Table 13).

Non-indigenous taxa

No species known to be non-indigenous to New Zealand were recorded during the first port baseline survey of Milford Sound.

Cryptogenic category one taxa (C1)

There were eight cryptogenic category one (C1) taxa recorded from the Milford Sound port survey, representing 2.1 % of all species or higher taxa recorded. These organisms included three sponges, two ascidians, one bryozoan, one hydroid and one dinoflagellate (Table 14). A list of Chapman and Carlton's (1994) criteria (see "Baseline survey methods: Definitions of biosecurity statuses", above) that were met by the cryptogenic category one species recorded in this survey is given in Table 10.

One of the taxa included in the C1 category, *Didemnum* sp., encompasses a genus rather than an individual species, due to difficulties in identification of species within this genus. The genus *Didemnum* includes at least two species that have recently been reported from within New Zealand (*D. vexillum* and *D. incanum*) and two related, but distinct species from Europe (*D. lahillei*) and the north Atlantic (*D. vestum* sp. nov.) that have displayed invasive charactertistics (i.e. sudden appearance and rapid spread, Kott 2004b, 2004a). All can be dominant habitat modifiers. The taxonomy of the Didemnidae is complex and it is difficult to identify specimens to species level. The colonies do not display many distinguishing characters at either species or genus level and are comprised of very small, simplified zooids with few distinguishing characters (Kott 2004a). Six species have been described in New Zealand (Kott 2002) and 241 in Australia (Kott 2004a). Most are recent descriptions and, as a result, there are few experts who can distinguish the species reliably. All *Didemnum* specimens were therefore identified only to genus level. We have reported these species collectively, as a species group (*Didemnum* sp.; Table 14).

None of the C1 taxa are new species records for New Zealand, and all are known from elsewhere in New Zealand. However, the occurrence in Milford Sound represents an extension of the known range within New Zealand for four of these species - the ascidian *Diplosoma velatum*, the hydroid *Orthopyxis integra*, and the sponges *Tethya bergquistae* and *Raspailia agminata* (Table 14; see also "Range extensions", below). Possible means of introduction to New Zealand and their dates of introduction or description are provided in Table 14. Two of the species (the bryozoan *Scruparia ambigua* and the hydroid *Orthopyxis integra*) have been present in New Zealand for almost a century or more but have distributions outside New Zealand that suggest non-native origins, whilst some of the other species have only been recorded in New Zealand in much more recent times (Table 14).

The eight C1 taxa were recorded from a total of only 14 of the 288 samples identified during the Milford Sound survey (Table 15). Seven of the eight C1 taxa only occurred in samples collected from the exposed sites on the coast just outside of Milford Sound, and were collected by the methods of visual dive transects or quadrat scrapings. The other species, the dinoflagellate *Alexandrium tamarense*, was recorded from a cyst sample from the protected

sediments of Sandfly Point Jetty. Cysts are unlikely to accumulate in areas of high wave energy.

Available information on the ecology of each C1 species, its global and New Zealand distribution, vectors and potential impacts is provided in Appendix 6. The local distributions as recorded during the port survey are mapped below for each species. These maps are composites of multiple replicate samples. Where overlayed presence and absence symbols occur on the map, this indicates that the species was found in at least one but not all replicates at that precise location.

Scruparia ambigua (d'Orbigny, 1841) occurred in visual dive transects undertaken at Fox Point and Brig Rock (Figure 23).

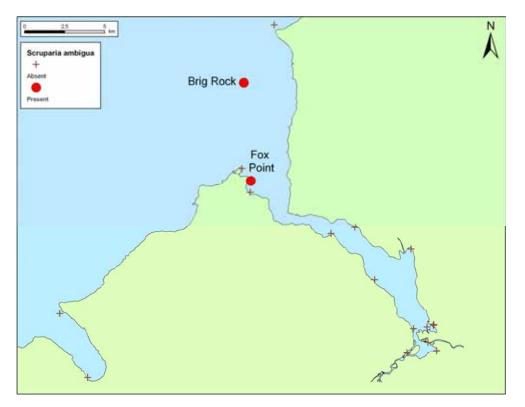
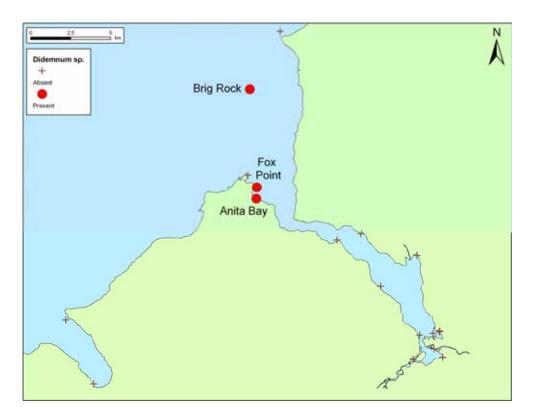
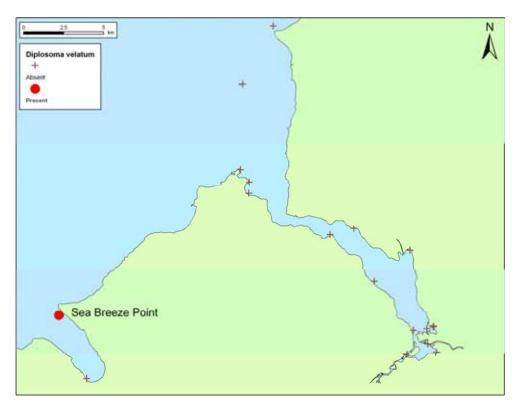
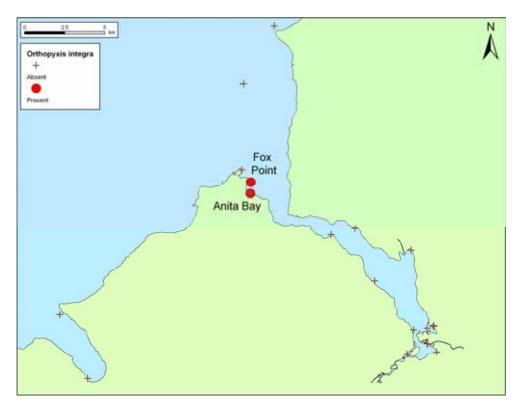


Figure 23: Scruparia ambigua distribution in the Milford Sound port survey

Didemnum sp. occurred in visual dive transects undertaken at Anita Bay, Fox Point and Brig Rock (Figure 24).


Figure 24: *Didemnum* sp. distribution in the Milford Sound port survey

Diplosoma velatum Kott, 2001 occurred in visual dive transects undertaken at Sea Breeze Point (Figure 25).

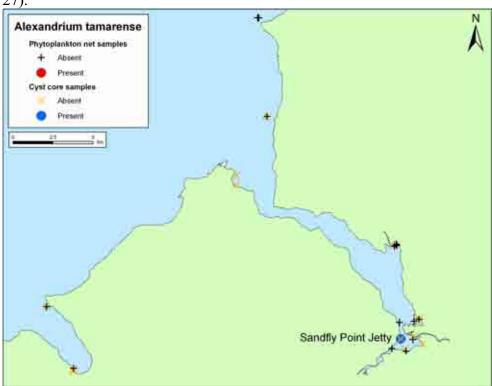
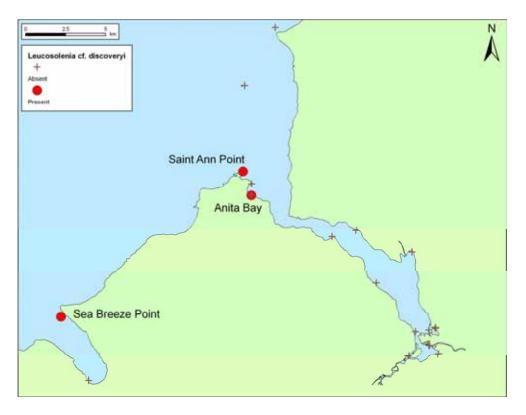


Figure 25: Diplosoma velatum distribution in the Milford Sound port survey

Orthopyxis integra (MacGillivray, 1842) occurred in pile scrape samples taken at Anita Bay and in visual dive transects undertaken at Fox Point (Figure 26).


Figure 26: Orthopyxis integra distribution in the Milford Sound port survey

Alexandrium tamarense occurred in a cyst core sample taken from Sandfly Point Jetty (Figure 27).

Figure 27: Alexandrium tamarense distribution in the Milford Sound port survey

Leucosolenia cf. *discoveryi* occurred in pile scrape samples taken at Anita Bay and in visual dive transects undertaken at Saint Ann Point and Seabreeze Point (Figure 28).

Figure 28: Leucosolenia cf. discoveryi distribution in the Milford Sound port survey

Raspailia agminata Hallman 1914 (sensu Bergquist 1970) occurred in visual dive transects undertaken at Saint Ann Point (Figure 29).



Figure 29: Raspailia agminata distribution in the Milford Sound port survey

Tethya bergquistae Hooper & Wiedenmayer, 1994 occurred in visual dive transects undertaken at Saint Ann Point (Figure 30).

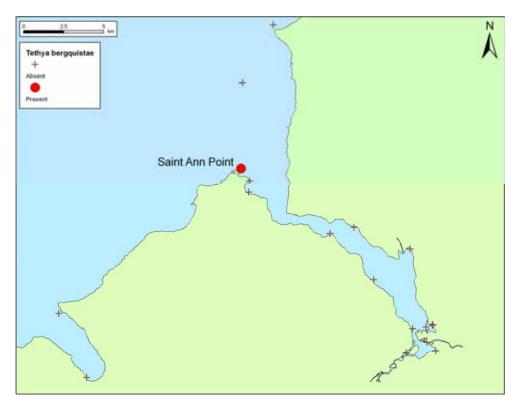


 Figure 30:
 Tethya bergquistae distribution in the Milford Sound port survey

Cryptogenic category two taxa (C2)

Ten cryptogenic category two (C2) taxa were recorded during the Milford Sound port survey (Table 16). These included five polychaetes, an amphipod, two bryozoans and two ascidians. These taxa are recently discovered new species, or might be new species, for which there is insufficient information to determine whether New Zealand lies within their native range. The Milford Sound port survey records represent the first records for some of these taxa (see "Species not previously recorded in New Zealand", below).

Indeterminate taxa

Ninety-three organisms from the Milford Sound port survey were classified as indeterminate taxa. This represents almost 24 % of all determinations made from this survey (Figure 21). Indeterminate taxa from the Milford Sound port survey were mostly algae, diatoms, and molluscs, with several other groups also represented (Table 17).

Zooplankton

No target organisms (the Chinese mitten crab *Eriocheir sinensis* or other members of this genus, the European green crab *Carcinus maenas*, the northern Pacific seastar *Asterias amurensis* and the ascidian *Styela clava*) were identified from any of the zooplankton samples from Milford Sound. Only juvenile calanoid copepods were found in these samples.

Notifiable and unwanted species

None of the species recorded from the Milford Sound port survey are currently listed on the New Zealand Register of Unwanted Organisms (Table 3). However, some species do occur on target species lists used in Australia, as described below.

The Australian Consultative Committee on Introduced Marine Pest Emergencies (CCIMPE) has recently endorsed a Trigger List (Table 4) of marine pest species (CCIMPE 2006). Three taxa on this list have been recorded from Milford Sound. Exotic invasive strains of the colonial ascidian *Didemnum* sp. are listed as trigger species still exotic to Australia. *Didemnum* sp. was recorded in the Milford Sound port survey (see "Results: Cryptogenic category one taxa (C1)", above). The other two species, both diatoms, are listed as "Holoplankton alert species", which means that their presence should be notified, but an eradication response within Australia is highly unlikely. These diatoms are *Pseudo-nitzschia seriata* (recorded from Milford Sound in 1964 (Wood 1964), now synonymised as *Pseudo-nitzschia australis*; see "Results: Review of marine species records from Milford Sound", above) and *Chaetoceros convolutus* (recorded from the Milford Sound port survey; see "Results: Cyst- and toxin-producing species", below). They are both considered native in New Zealand, due to their cosmopolitan oceanic distributions.

Australia has also recently prepared an expanded list of priority marine pests that includes 53 non-indigenous species that have already established in Australia and 37 potential pests that have not yet reached its shores (Hayes et al. 2005). A similar watch list for New Zealand is currently being prepared by MAF Biosecurity NZ. None of the 53 Australian priority domestic pests were recorded during the Milford Sound port survey. However, one of these species, the algae *Polysiphonia brodiei*, has previously been recorded from Milford Sound (Nelson et al. 2002, see also "Results: Review of marine species records from Milford Sound", above). It was attributed a "reasonably high" impact potential (in Australia) by Hayes et al. (2005). Three of the 37 priority international pests identified by Hayes et al. (2005) have also been recorded from Milford Sound. These are the same two diatoms as those discussed in the preceding paragraph, on the CCIMPE Trigger List "Holoplankton alert species" (CCIMPE 2006).

Species not previously recorded in New Zealand

Five species recorded from the first port baseline survey of Milford Sound are new records from New Zealand waters, and may be new to science. These are the sponges "*Neofibularia* n. sp. 2 (MK)" and "*Tedania* n. sp. 1 (MK)", the amphipod *Liljeborgia* sp. 2, and the bryozoans "*Celleporina* sp. MFN"¹ and *Electra* sp. Information given here was provided by the NIWA taxonomists who identified them: Michelle Kelly for the sponges, Graham Fenwick for the amphipods and Dennis Gordon for the bryozoans.

Both sponges are considered native to New Zealand (Table 13), as it is unlikely that they have been transported to the remote location of Milford Sound by human means. The first, "*Neofibularia* n. sp. 2 (MK)", is a tropical species so it is unusual that it has occurred here. It is possible that the specimen does not actually belong to the genus *Neofibularia*, and further work might determine that it is a new taxon. The second sponge, "*Tedania* n. sp. 1 (MK)", belongs to a genus whose species are virtually impossible to distinguish.

Both bryozoans and the amphipod are classed as cryptogenic category two (C2; Table 16), as there is insufficient information to determine whether New Zealand lies within their native range. "*Celleporina* sp. MFN" is probably a new, undescribed species, and *Electra* sp. is possibly a new species. Both require further work to resolve their identities. *Liljeborgia* sp. 2 belongs to a genus of extremely cryptic species, and is probably a new species.

 $^{^{1}}$ MFN = Milford Sound specimens. These specimens are distinguished from specimens with the same species name from other locations, because further taxonomic investigation is required to confirm its identity, including whether the specimens from Milford Sound are the same species as those found in other parts of the country (D. Gordon, NIWA, pers. comm.).

Range extensions

The occurrence of six species in Milford Sound port survey samples were highlighted by taxonomists to represent extensions to the known range of these species in New Zealand. These species are the ascidian *Diplosoma velatum* (C1, previously only known from Doubtful Sound), the hydroid *Orthopyxis integra* (C1; known from several locations from Auckland in the north to Woodpecker Bay on the west coast of the South Island), the sponges *Tethya bergquistae* (C1; previously known from Northland), *Raspailia agminata* (C1; previously known from Doubtful Sound) and *Leucetta* n. sp. 2 (MK) (Native; previously recorded from Kaikoura), and the polychaete *Branchiomma curtum* (Native; known from several locations including Gisborne, Napier, Lyttelton, Timaru and Dunedin).

Cyst- and toxin-producing species

Cysts of 11 dinoflagellate taxa (Phylum Myzozoa) were collected during this survey. Eight of these are considered native species (*Lingulodinium polyedrum, Scrippsiella trochoidea, Protoperidinium americanum, P. avellana, P. conicum, P. latissinum, P. punctulatum* and *P. subinerme*; Table 13), two are indeterminate (*Protoperidinium* sp. and "Peridiniales (?)"; Table 17), and one is a cryptogenic category one (C1) species (*Alexandrium tamarense*; Table 14). Two of them - the C1 species *Alexandrium tamarense* and the native species *Lingulodinium polyedrum* - are known to produce toxins, as described below. Of the organisms identified from the phytoplankton samples (29 different dinoflagellate, diatom and silicoflagellate taxa; Table 13 and Table 17), only one toxin-producing species was identified, the native species *Dinophysis acuminata* (Table 13), also described below. Another native diatom species recorded from the phytoplankton samples, *Chaetoceros convolutus*, is also worth noting. Although no direct toxic effects are known for *Chaetoceros convolutus*, its barbed setae can become lodged in fish gills, causing death (Kraberg and Montagnes 2007).

Alexandrium tamarense is a widely distributed coastal and estuarine planktonic marine dinoflagellate that is associated with toxic Paralytic Shellfish Poisoning blooms (Hay et al. 2000; Faust and Gulledge 2002; New Zealand Food Safety Authority 2003). This species produces very potent PSP neurotoxins which can affect humans, other mammals, fish and birds (Larsen and Moestrup 1989, in Faust and Gulledge 2002). This species is responsible for numerous human illnesses and several deaths after consumption of infected shellfish, including ten deaths in Venezuela in 1977, and one death in Thailand in 1984. Resting cysts of A. tamarense can also harbor PSP toxins and may be more than ten times as toxic as their motile stage counterparts. Not all strains of A. tamarense are toxic: both toxic and non-toxic strains have been reported in New England within the same red tide event. Strains in Australia, the Gulf of Thailand, and the River Tamar estuary in Britain (the type locality) are all non-toxic. Hay et al. (2000) reported on the specific toxicity of strains of several Alexandrium species found in New Zealand, but the toxicity of Alexandrium tamarense (from Tasman Bay) was reported as "unknown". The usual route of PSP toxin transmission is via contaminated shellfish; however, bloom events of A. tamarense have been linked to several massive fish kills. Kills of Atlantic herring in the Bay of Fundy, Canada, and rainbow trout and salmon in the Faroe Islands, Norway have been attributed to dinoflagellate toxins accumulated in the food chain (Faust and Gulledge 2002).

Lingulodinium polyedrum is a widely distributed species in warm temperate and subtropical coastal waters, and is considered native in New Zealand. It produces a yessotoxin (Armstrong and Kudela 2006; Morton et al. 2007) and can form blooms known as "red tides" which have been associated with fish and shellfish mortality events (Faust and Gulledge 2002). The presence of a paralytic shellfish poison (PSP) toxin, saxitoxin, has also been reported in water samples taken during a bloom of *L. polyedrum* (Bruno 1990, in Faust and Gulledge 2002). However, it is not listed as producing marine biotoxins by either of the recent reviews of the

non-commercial marine biotoxin monitoring programme in New Zealand (Hay et al. 2000; New Zealand Food Safety Authority 2003).

Dinophysis acuminata is a toxic bloom-forming marine planktonic dinoflagellate that is associated with Diarrhetic Shellfish Poisoning (DSP) events. The species is distributed widely in temperate waters and has been recorded from most parts of the New Zealand coast (Hay et al. 2000; Faust and Gulledge 2002 and references therein; New Zealand Food Safety Authority 2003). It is most abundant in the coastal northern Atlantic and Pacific, especially in eutrophic areas (Faust and Gulledge 2002 and references therein). Blooms have been reported from many parts of the world, including New Zealand (Faust and Gulledge 2002 and references therein). Blooms have been reported from many parts of the world, including New Zealand (Faust and Gulledge 2002 and references therein; New Zealand Food Safety Authority 2003). *D. acuminata* can cause shellfish toxicity at very low cell concentrations, but weak or no toxicity has also sometimes been reported in the presence of dense blooms of this species (Faust and Gulledge 2002; Moestrup 2004 and references therein).

Depth stratification trends of NIS and C1 taxa

No NIS taxa were recorded during the Milford Sound port survey. The eight C1 taxa recorded occurred in a total of 14 samples (Table 15). They were collected mostly on visual dive transects, as well as two quadrat scrapings and a cyst core. They were collected from depths between 2.3 m and 35 m, with occurrences spread quite evenly across depths (Table 15). With only 14 records of C1 taxa and no records of NIS from Milford Sound, no clear depth stratification trends in the distribution of C1 and NIS taxa are evident.

Possible vectors for the introduction of NIS and C1 taxa to the port

Almost all of the non-indigenous and cryptogenic category 1 species recorded from Milford Sound during the port survey and review of existing species records are thought to have arrived in New Zealand via international shipping. The exceptions are the planktonic alga *Heterosigma akashiwo*, which may have arrived on ocean currents as well as in ships' ballast water, and the bryozoan *Scruparia ambigua*, which may have arrived naturally by rafting as well as on ships' hulls. All of these NIS and C1 taxa may have reached Milford Sound directly from overseas or through domestic spread (natural and/or anthropogenic) from other New Zealand ports.

The possible vectors for the introduction to New Zealand are indicated in Table 6 and Table 7 for the NIS and C1 species, respectively, from the review of existing species records, and in Table 14 for the C1 species recorded during the port survey. Likely vectors of introduction are largely derived from Cranfield et al. (1998) and expert opinion. They suggest that only one of the 19 species probably arrived in New Zealand via ballast water, 15 species were most likely to be associated with hull fouling, 1 species could have arrived via either of these mechanisms, and two species could have arrived either by natural means or associated with shipping. Several of the NIS and C1 species present in Milford Sound, particularly the algae, were probably introduced to the area through the whaling and sealing operations in the late eighteenth and early nineteenth centuries (Nelson et al. 2002).

COMPARISON BETWEEN DESKTOP REVIEW OF EXISTING RECORDS AND PORT BASELINE SURVEY RECORDS

Of the 458 taxa recorded in the desktop review, only 71 were subsequently recorded during the initial port baseline survey of Milford Sound (66 native (Table 5), four C1 (Table 7) and one indeterminate (Table 9)). Similarly, 225 of the 296 species (76%) that were identified in the port survey were not recorded in the desktop review. The low overlap in the inventories compiled by these different methods is not unusual for surveys of this type (Ruiz and Hewitt 2002). Review of literature and museum records provides a broader spatial and temporal

coverage of species from a region than a single field survey can, as such records have been obtained over time from a variety of survey methods and variable search effort. Because of this they do not provide a standardised baseline for comparison to other regions or surveys. All survey methods have inherent biases in the efficiency with which they sample different species. While the CRIMP protocols have been devised to ensure that a standardised methodology is used for baseline port surveys, the methods used do not sample all species efficiently. Thus, the two approaches used provide complementary inventories of the marine biota in Milford Sound.

We did not record any NIS from our port survey samples, despite one non-indigenous alga having previously been recorded from Milford Sound and another five from elsewhere in Fiordland (Nelson 1999; Nelson et al. 2002). It is possible that these species are present in Milford Sound, but were not sufficiently abundant to be detected by the survey, or occurred in habitats within the sound that were not sampled. More detailed surveys targeting these particular organisms would be required to confirm their current abundance and distribution within Milford Sound.

Assessment of the risk of new introductions to Milford Sound

Many non-indigenous species introduced to New Zealand ports by shipping do not survive to establish self-sustaining local populations. Those that do, often come from coastlines that have similar marine environments to New Zealand. For example, approximately 80% of the marine NIS known to be present within New Zealand are native to temperate coastlines of Europe, the northwest Pacific, and southern Australia (Cranfield et al. 1998).

There is very little international shipping traffic to Milford Sound (see "Introduction: Port operation, development and maintenance activities", above). The risk of new introductions from overseas to Milford Sound is therefore very low; many of the NIS previously recorded from Milford Sound were probably introduced through historical whaling and sealing operations (see "Results: Review of marine species records from Milford Sound", above). Nonetheless, the consequences of a marine invasion in such a relatively valued marine environment could be severe. Therefore, rules for cruise ships and voluntary guidelines for other vessels have been introduced to try to reduce the likelihood of new introductions to Milford Sound (see "Introduction: Port operation, development and maintenance activities", above). These rules include the prohibition of ballasting and deballasting inside the fiords, and restrictions on hull cleaning procedures. Many of these measures are promoted in other regulatory and non-regulatory instruments including the Environment Southland Proposed Regional Pest Management Strategy, the Code of Practice for Commercial Tourist Vessels Operating within Milford Sound Harbour Limits, the Southland Regional Coastal Plan, the Biosecurity Act 1993, the Fiordland National Park Management Plan and the draft Marine Biosecurity Plan for Fiordland (see "Management of existing NIS and C1 taxa in the port", below).

Ships arriving in Milford Sound from international waters are almost entirely cruise ships that come predominantly from Hobart, in Tasmania, Australia (Alan Cosgrove, Fiordland Lobster Co. Ltd., pers. comm.). These ships probably present the greatest risk of introducing new non-indigenous species to Milford Sound, both because of the relatively short transit time between Hobart and Milford Sound (approximately two days for a cruise ship) and because of similarities in coastal environments between these locations. Six of the eight marine pests on the New Zealand Register of Unwanted Organisms are already present in southern Australia (*Carcinus maenas, Asterias amurensis, Undaria pinnatifida, Sabella spallanzanii, Caulerpa taxifolia*, and *Styela clava*). The native range of the other two species – *Eriocheir sinensis* and *Potamocorbula amurensis* – is the northwestern Pacific, including China and Japan. There

appears to be little, if any, shipping traffic between Asia and Milford Sound. Despite the apparent risk presented by the arrival of cruise ships to Milford Sound from Hobart, this risk is reduced by the fact that they are not permitted to deballast whilst in the fiords, and that if intending to reside for more than 24 hours in the fiords, they are advised to have their hulls inspected for *Undaria* and other unwanted organisms before arriving (see "Introduction: Shipping movements and ballast discharge patterns", above).

The introduction of fouling organisms is more likely to occur via slow-moving vessels, such as barges and fishing boats. Very few of these travel between Milford Sound and other ports. The few fishing boats that do operate from Milford Sound travel to other ports, such as Bluff or Dunedin, only once every year or few years for maintenance and survey. Although the ports of Bluff and Dunedin do contain numerous NIS and C1 taxa that have not been recorded in Milford Sound, including the unwanted alga *Undaria pinnatifida* (Inglis et al. 2006b, 2006a), the infrequent travel between these ports reduces the risk of introduction of NIS and C1 taxa to Milford Sound. Furthermore, since these fishing boats visit these other ports for maintenance which may include hull cleaning and the re-application of antifouling paint, these vessels might be presumed to usually be quite free of fouling organisms when they return to Milford Sound. Voluntary guidelines also advise that vessels intending to permanently moor in the fiords must be cleaned and anti-fouled before being transported to the fiords (Ministry for the Environment 2004).

Assessment of translocation risk for NIS and C1 taxa found in the port

Although many of the NIS and C1 taxa recorded in Milford Sound have been recorded in other locations throughout New Zealand (see species information sheets, Appendix 6), they were not detected in all of the other New Zealand ports that have so far been surveyed (Inglis et al. 2007). There is, therefore, a risk that species established in Milford Sound could be spread to other New Zealand locations. However, due to its remote and exposed location, there is very little shipping traffic between Milford Sound and other parts of New Zealand.

The cruise ships that travel between Milford Sound and other areas do not take on ballast water whilst in the fiords, and spend only short periods of time in Milford Sound, reducing the available time for organisms to foul ships' hulls whilst in Milford Sound. Because many of the NIS and C1 in Milford Sound are fouling organisms, the risk of translocating them is highest for slow-moving vessels, such as yachts and barges, and vessels that have long residence times in port. Commercial fishing vessels and some private vessels do spend longer periods in Milford Sound. During this time they could potentially become fouled with NIS or C1 taxa and may subsequently translocate them to other parts of New Zealand.

However, the densities of the NIS and C1 taxa in Milford Sound appear to be very low. As indicated in the "Results" section, none of the NIS previously recorded from Milford Sound were recorded during the port survey, despite sampling suitable habitats. Of the eight C1 taxa recorded during the port survey, none were recorded from more than three specimens, and seven out of eight of the C1 taxa (all except *Alexandrium tamarense*) were only collected from the exposed sites on the coast just outside of Milford Sound (Table 15), where vessels may transit but are unlikely to anchor.

One of the species previously recorded from Fiordland (Doubtful and Dusky Sounds, but not Milford Sound, Nelson et al. 2002), the alga *Polysiphonia brodiei*, is listed as a medium-high priority invasive species in Australia and was given an impact ranking of eighth out of 53 domestic marine priority pests in Australia (Hayes et al. 2005). *Polysiphonia brodiei* occurs as a nuisance fouling species and may also reduce the performance of fouled vessels. The

translocation of this species to other parts of New Zealand is therefore undesirable. However, this species has already been recorded from most other parts of the South Island, with the exception of the North West South Island (see *Polysiphonia brodiei* species information sheet, Appendix 6). Some commercial fishing vessels and cruise ships occasionally travel from Fiordland to the North West South Island (see "Introduction: Shipping movements and ballast discharge patterns", above), posing a potential risk of translocation of this species north from Fiordland.

The three taxa listed on the CCIMPE Trigger List (CCIMPE 2006) that have previously been recorded in Milford Sound – *Didemnum* sp., *Pseudo-nitzschia seriata* (= *P. australis*), and *Chaetoceros convolutus*, might also be considered particularly undesirable to translocate to other parts of New Zealand. The latter two species, both diatoms, are most likely to be transported by ballast water. The tight guidelines for no ballast water to be exchanged within the fiords (see "Introduction: Shipping movements and ballast discharge patterns", above) is likely to reduce the chance of translocation of these species. The ascidian, *Didemnum* sp., is likely to be transported on vessels' hulls. Whilst management guidelines encourage the inspection and cleaning of hulls before vessels arrive in the fiords, it may be prudent for them also to be inspected before departing, in order to reduce the risk of translocation of *Didemnum*, *Polysiphonia brodiei*, and other fouling species out of Milford Sound.

Several other NIS and C1 taxa recorded from Milford Sound or Fiordland have relatively restricted distributions nationwide (see species information sheets, Appendix 6) and could potentially, therefore, be spread from Fiordland to other locations. These include the dinoflagellate *Alexandrium tamarense*, the silicoflagellate *Heterosigma akashiwo*, the algae *Champia affinis, Sargassum verruculosum* and *Polysiphonia constricta*, the ascidian *Diplosoma velatum*, and the sponges *Esperiopsis edwardii*, *Leucosolenia* cf. *challengeri*, *Leucosolenia* cf. *discoveryi* and *Raspailia agminata*. Information on the ecology of these species is limited, but only the flagellates are known to have potential for significant impacts, as described in the next section.

Management of existing NIS and C1 taxa in the port

Milford Sound is of high ecological value and is part of a World Heritage Area. The prevention or reduction of impacts from non-indigenous species is therefore a high priority.

Biosecurity management in Fiordland is addressed in the strategic *Marine Biosecurity Plan for Fiordland*, which is currently in the final draft phase by MAFBNZ. An associated operational plan will also be developed. The *Marine Biosecurity Plan for Fiordland* ("the Plan") provides a framework to develop interagency operational activites in relation to marine biosecurity, outlines biosecurity measures to reduce the risk of invasive organisms affecting Fiordland's marine environment, and sets out steps to implement these measures. The Plan includes a number of components:

- coordination to support the cooperative approach to management in Fiordland;
- risk assessment to identify the organisms, pathways and vectors that pose the greatest risk to Fiordland;
- vector control to reduce the risk of human mediated vectors introducing invasive marine organisms to Fiordland;
- surveillance to detect and identify unwanted organisms and other invasive species at an early stage;
- public awareness to increase awareness of the Plan, the identity and risks of invasive organisms in Fiordland, and the actions to take to prevent introductions;

- performance monitoring to get an indication of the effectiveness of management measures;
- incursion response to respond effectively to incursions of invasive marine species; and
- pest management to manage pests within Fiordland.

The Plan outlines the proposed actions and legislative context relevant to each of these components. Legislation relevant to biosecurity in Fiordland and the *Marine Biosecurity Plan for Fiordland* include the Biosecurity Act 1993, the Resource Management Act 1991, the Fiordland Marine Management Act 2005 and the Local Government Act 1974 and 2002.

The *Marine Biosecurity Plan for Fiordland* lists eight target species that are of particular interest for surveillance activities in Fiordland, due to the high risk that they pose to the Fiordland marine environment and their listing on the register of Unwanted Species under the Biosecurity Act 1993. These are the Mediterranean fanworm *Sabella spallanzanii*, the northern Pacific seastar *Asterias amurensis*, the Asian clam *Potamocorbula amurensis*, the Japanese alga *Undaria pinnatifida*, the European shore crab *Carcinus maenas*, the Chinese mitten crab *Eriocheir sinensis*, the sea squirt *Styela clava* and the green aquarium seaweed *Caulerpa*. None of these eight species were detected during the Milford Sound port survey, nor have they previously been recorded from Fiordland.

The six NIS (all algae) that were recorded during our review of existing marine species records from Milford Sound and nearby areas (Table 6) are considered to present a lesser risk of ecological impact in New Zealand than the eight species listed in the *Marine Biosecurity Plan for Fiordland*. Five of these six species appear to have little ecological impact in New Zealand (see species information sheets in Appendix 6 for potential impacts of each species). The sixth, *Polysiphonia brodiei*, is likely to have a medium to high impact as a nuisance fouling species (see "Assessment of translocation risk for NIS and C1 taxa found in the port", above), and control of this species in Fiordland may be warranted. No records of this species exist from Milford Sound itself, but it was included in the review of biological records due to it having been recorded from elsewhere in Fiordland (Doubtful and Dusky Sounds, Nelson et al. 2002).

Of the thirteen C1 taxa recorded from the port survey or desktop review of existing records, three – the ascidian *Didemnum* sp., the dinoflagellate *Alexandrium tamarense* and the flagellate *Heterosigma akashiwo* – have high or potentially high impacts in New Zealand. The other taxa appear to have lesser or no impacts, or their impacts are unknown but appear to be low (see species information sheets in Appendix 6 for information about the ecology, distribution and potential impacts of each species).

Species in the genus *Didemnum* are common in ports, harbours and on vessel hulls. They are capable of rapid growth under ideal conditions, and are able to shed fragments and recolonize substrata, making them a high risk for smothering natural and man-made substrata. *Didemnum* ascidians have not previously been recorded from Milford Sound. However, removal or control of this species from the exposed sites where it was collected (Brig Rock, Fox Point and Anita Bay; Figure 24) might be extremely difficult due to the challenging weather and sea conditions that prevail in the area.

The dinoflagellate *Alexandrium tamarense* causes paralytic shellfish poisoning, making it a concern for human health. It was only recorded from one cyst sample, from Sandfly Point Jetty near the head of the sound. The flagellate *Heterosigma akashiwo* has been associated with massive fish kills in New Zealand, although none have been reported from Milford

Sound. It was isolated from a Milford Sound sample in 1984 (see Bowers et al. 2006). A variety of physical and chemical treatments have been trialled for killing flagellate cysts in ballast water, but it appears that none of these are suitable to use on sediments in the natural environment (McEnnulty et al. 2000). Eradication of cysts and plankton from the natural environment is likely to be logistically far more difficult and potentially damaging to native taxa.

Due to the logistical and/ or technical difficulties associated with eradication of the potentially high impact NIS and C1 taxa in and near Milford Sound, it is recommended that management activity be directed toward mitigating the spread of these organisms to locations where they do not presently occur. Such management will require more detailed delimitation surveys of their distribution within Milford Sound and Fiordland, and of the location and frequency of movements of potential vectors that might spread them to other domestic and international locations.

Prevention of new introductions

Interception of unwanted species transported by shipping is best achieved offshore, through control and treatment of ships destined for Milford Sound from high-risk locations elsewhere in New Zealand or overseas. Under the Biosecurity Act (1993), the New Zealand Government has developed an Import Health Standard for ballast water that requires large ships to exchange foreign coastal ballast water with oceanic water prior to entering New Zealand, unless exempted on safety grounds. This procedure ("ballast exchange") does not remove all risk, but does reduce the abundance and diversity of coastal species that may be discharged with ballast. Ballast exchange requirements do not currently apply to ballast water that is uptaken domestically. Globally, shipping nations are moving toward implementing the International Convention for the Control and Management of Ships Ballast Water & Sediments that was recently adopted by the International Maritime Organisation (IMO). By 2016 all merchant vessels will be required to meet discharge standards for ballast water that are stipulated within the agreement.

Options are currently lacking for effective in-situ treatment of biofouling and sea-chests. MAF Biosecurity New Zealand has recently embarked on a national survey of hull fouling on vessels entering New Zealand from overseas. The study will characterise risks from this pathway (including high risk source regions and vessel types) and identify predictors of risk that may be used to manage problem vessels. A companion project is investigating the risk from fouling assemblages carried on vessels that travel to Fiordland, the Chatham Islands and New Zealand sub-Antarctic Islands. Shipping companies and vessel owners can reduce the risk of transporting NIS in hull fouling or sea chests through regular maintenance and antifouling of their vessels. Slow moving barges or vessels that are laid up in ports for long periods before travelling to Milford Sound can carry large densities of non-indigenous marine organisms with them. Cleaning and maintenance of these vessels is suggested to be encouraged by port authorities and shipping companies prior to their departure for New Zealand waters.

Milford Sound is relatively well protected from new marine introductions, through its remote location, high freshwater stratification, relatively low levels of shipping traffic, and regulatory and non-regulatory instruments controlling ballast discharge and hull cleaning in the fiords. In addition to the ballast water and hull fouling controls described earlier in this section and addressed in the *Marine Biosecurity Plan for Fiordland*, Fiordland's protection against marine invasions is strengthened by a Cruise Ship Deed of Agreement and voluntary guidelines for other vessels. These promote "zero discharge" of ballast water within the fiords, advise against in-water hull-cleaning, and recommend that vessels entering the fiords

be inspected for fouling organisms (see "Introduction: Shipping movements and ballast discharge patterns" above).

Studies of historical patterns of invasion have suggested that changes in trade routes can herald an influx of new NIS from regions that have not traditionally had major shipping links with the country or port (Carlton 1987; Hayden et al. in review). The growing number of port baseline surveys internationally and an associated increase in published literature on marine NIS means that information is becoming available that will allow more robust risk assessments to be carried out for new shipping or cruising routes. We recommend that port companies consider undertaking such assessments for their ports when new import or export markets are forecast to develop, or when new cruise itineraries are suggested. The assessment would allow potential problem species to be identified and appropriate management and monitoring requirements to be put in place.

Conclusions and recommendations for monitoring and resurveying

The national biological baseline surveys have significantly increased our understanding of the identity, prevalence and distribution of introduced and native species in New Zealand's shipping ports. They represent a first step towards a comprehensive assessment of the risks posed to native coastal marine ecosystems from non-indigenous marine species. Although measures are being taken by the New Zealand government to reduce the rate of new incursions, foreign species are likely to continue to be introduced to New Zealand waters by shipping. There is a need for continued monitoring of non-indigenous marine species in port environments to allow for (1) early detection and control of harmful or potentially harmful non-indigenous species, (2) to provide on-going evaluation of the efficacy of management activities, and (3) to allow trading or cruising partners to be notified of species that may be potentially harmful.

The initial port baseline survey of Milford Sound recorded 390 species or higher taxa. Excluding the 93 indeterminate records and the one collective zooplankton taxon, 225 of these did not occur in our desktop review of existing marine species records from Milford Sound, and may be new records for the area. The initial port baseline survey has highlighted the diversity of the Milford Sound marine assemblage, with results indicating that it has few NIS and C1 taxa, and even fewer that are likely to be of significant impact to the native environment.

Despite the large number of species detected, the large area of habitat available for marine organisms and the logistic difficulties of sampling in fiord environments means that detection probabilities are likely to be comparatively low for species with low prevalence, even when species-specific survey methods are used (Inglis 2003; Inglis et al. 2003; Hayes et al. 2005; Gust et al. 2006; Inglis et al. 2006c). In generalised pest surveys, such as the port baseline surveys, this problem is compounded by the high cost of identifying all specimens (native and non-indigenous), which constrains the total number of samples that can be taken (Inglis 2003). A consequence is that a high proportion of comparatively rare species will remain undetected by any single survey. This problem is not limited to non-indigenous species; 46 % of native species recorded in the Milford Sound port survey occurred in just a single sample. Nor is it unique to marine assemblages. These results reflect the spatial and temporal variability that are features of marine biological assemblages (Morrisey et al. 1992a, 1992b) and the difficulties that are involved in characterising diversity within hyper-diverse assemblages (Gray 2000; Gotelli and Colwell 2001; Longino et al. 2002).

Nevertheless, the baseline surveys continue to reveal new records of non-indigenous species in New Zealand ports and, with repetition, the cumulative number of undetected species should decline over time. This type of sequential analysis of occupancy and detection probability requires a series of three (or more) surveys, which should allow more accurate estimates of the rate of new incursions and extinctions (MacKenzie et al. 2004). Hewitt and Martin (2001) recommend repeating the baseline surveys on a regular basis to ensure they remain current. It may also be prudent to repeat at least components of a survey over a shorter time frame to achieve better estimates of occupancy without the confounding effects of temporal variation and new incursions.

The baseline survey provides a starting point for further investigations of the distribution, abundance and ecology of the species described within Milford Sound and for monitoring the rate of new incursions by NIS over time. Non-indigenous marine species can have a range of adverse impacts through interactions with native organisms. These include competition with native species, predator-prey interactions, hybridisation, parasitism or toxicity and modification of the physical environment (Ruiz et al. 1999; Ricciardi 2001). Assessing the impact of a NIS or C1 organism discovered in a given location ideally requires information on a range of factors, including the mechanism of their impact and their local abundance and distribution (Parker et al. 1999). To predict or quantify their impacts over larger areas or longer time scales requires additional information on the species' seasonality, population size and mechanisms of dispersal (Mack et al. 2000).

Acknowledgements

We thank Environment Southland and the Department of Conservation for resource consents and concessions to conduct sampling in and around Milford Sound. The Milford Sound Development Authority and tourist operators at Milford Sound provided access to their facilities and assistance during the survey, and John Robson (Red Boat Cruises), Alan Cosgrove (Fiordland Lobster Co.) and Rodger Wilson (Milford Sound Development Authority) provided useful port information. We also thank Fiordland Expeditions for providing the vessel and crew to support our survey.

Glossary

Term	Definition	Terms with the
		same or similar meaning
Biosecurity	The Biosecurity Strategy for New Zealand defines	menning
5	Biosecurity as the exclusion, eradication or effective	
	management of risks posed by pests and diseases to	
	the economy, environment and human health.	
Biosecurity	A determination of the known or suspected	
status	geographic origin of a species or higher taxon.	
	Categories of biosecurity status used in this report are	
	native, non-indigenous, cryptogenic (category 1 or	
	category 2), and <i>indeterminate</i> .	
Chief Technical	A person appointed as a Chief Technical Officer	
$Officer^{\dagger}$	under section 101 of the Biosecurity Act 1993	
Cryptogenic	Species that are neither clearly indigenous nor non-	
species	indigenous.	
Endemic	An organism restricted to a specified region or locality.	
Environment [†]	(a) Ecosystems and their constituent parts, including	
	people and their communities; and	
	(b) All natural and physical resources; and	
	(c) Amenity values; and	
	(d) The aesthetic, cultural, economic, and social	
	conditions that affect or are affected by any matter	
	referred to in paragraphs (a) to (c) of this definition	
Established	A non-indigenous organism that has formed self-	Naturalised
	sustaining populations within the new area of	
	introduction, but is not necessarily an invasive	
	species.	
Generalised	A survey to identify and inventory the range of non-	Blitz survey
pest survey	indigenous species present in an area	
Introduction	Direct or indirect movement by a human agency of an	
	organism across a major geographical barrier to a	(usually applied
	region or locality that is beyond its natural	to secondary
	distribution potential.	movement of the
		organism within
T 1 . • .		a new region)
Indeterminate	Specimens that could not be identified to species	(referred to as
taxa	level reliably because they were damaged, incomplete	"Species
	or immature, or because there was insufficient	indeterminata"
	taxonomic or systematic information to allow	in previous NZ
	identification to species level.	port survey
Home for	Organisma considered houseful to the construction of	reports)
Harmful	Organisms considered harmful to the environment, where "environment" has the broad definition	Noxious, Pest
organism		
Investive encodes	described above.	
Invasive species	A <i>non-indigenous species</i> that has established in a new area and is expanding its range	
Indigenous	new area and is expanding its range An organism occurring within its natural past or	Native
murgenous	An organism occurring within its natural past of	

Term	Definition	Terms with the same or similar meaning
species	present range and dispersal potential (organisms whose dispersal potential is independent of human intervention).	
Non-indigenous species	Any organism (including its seeds, eggs, spores, or other biological material capable of propagating that species) occurring outside its natural past or present range and dispersal potential (organisms whose dispersal is caused by human action).	Adventive Alien, Allochthonous, Exotic, Introduced, Non- native
Pathway	Used interchangeably with <i>vector</i> , but can also include the purpose (the reason why a species is moved), and route (the geographic corridor) by which a species is moved from one point to another (Carlton 2001).	Vector
Pest [†]	 A non-indigenous organism that is considered harmful to the environment, where "<i>environment</i>" has the broad definition described above. An organism specified as a pest in a pest management strategy that has been approved under Part V of Biosecurity Act 1993. 	
Prevalence	The ratio of the number of recorded occurrences of a species relative to the total number of observations.	
Species richness	The number of species present in an area.	
Species composition	The types or identities of species present in a sample, site, or region.	
Species density	The number of species per unit area.	
Targeted pest survey	A survey to determine characteristics of a particular pest population	
Unwanted organism [†]	Any organism that a <i>Chief Technical Officer</i> believes is capable or potentially capable of causing unwanted harm to any natural resources	
Vector	The physical means by which a species is transported	Pathway

[†]Terms defined by the New Zealand *Biosecurity Act 1993*

Sources for definitions of commonly used biosecurity terms include: Biosecurity Council (2003), Carlton (2001), Cohen and Carlton (1998), Colautii and MacIsaac (2004), Falk-Petersen et al. (2006), Gotelli and Colwell (2001), Gray (2000) and Occhipinti-Ambrogi and Galil (2004).

References

- Alvarez, B.; Bergquist, P.; Battershill, C. (2002). Taxonomic revision of the genus Latrunculia Du Bocage (Porifera: Demospongiae: Latrunculiidae) in New Zealand. New Zealand Journal of Marine and Freshwater Research 36(1): 151-184.
- AMOG Consulting. (2002). Hull fouling as a vector for the translocation of marine organisms. Phase I: Hull fouling research. Ballast Water Research Series, Report No. 14. Department of Agriculture, Fisheries and Forestry Australia, Canberra, 142 p.
- Annala, J.H.; Bycroft, B.L. (1993). Movements of rock lobsters (*Jasus edwardsii*) tagged in Fiordland, New Zealand. New Zealand Journal of Marine and Freshwater Research 27: 183-190.
- Annala, J.H.; McKoy, J.L.; Booth, J.D.; Pike, R.B. (1980). Size at the onset of sexual maturity in female Jasus edwardsii (Decapoda: Palinuridae) in New Zealand. New Zealand Journal of Marine and Freshwater Research 14(3): 217-227.
- Armstrong, M.; Kudela, R. (2006). Evaluation of California isolates of *Lingulodinium* polyedrum for the production of yessotoxin. *African Journal of Marine Science* 28(2): 399-401.
- Batham, E.J. (1965). Rocky shore ecology of a southern New Zealand fiord. *Transactions of the Royal Society of New Zealand 6(21)*: 215-227.
- Bentley, N.; Breen, P.A.; Starr, P.J. (2004). An examination of the utility of settlement indices for stock assessments of New Zealand red rock lobsters. *No.* 58 p.
- Bergquist, P.R.; Fromont, P.J. (1988). The Marine fauna of New Zealand: Porifera, Demospongiae, Part 4 (Poecilosclerida). New Zealand Oceanographic Institute Memoir 96. 197 p.
- Biosecurity Council. (2003). Tiakina Aotearoa: Protect New Zealand. The Biosecurity Strategy for New Zealand. Available online at: <u>www.maf.govt.nz/biosecurity-strategy</u>. Biosecurity Council, Wellington. 67 p.
- Biosecurity New Zealand (2005). Import health standards for ships' ballast water from all countries. Issued pursuant to Section 22 of the Biosecurity Act 1993. Dated 13 June 2005. Available online .
- Bowers, H.A.; Tomas, C.; Tengs, T.; Kempton, J.W.; Lewitus, A.J.; Oldach, D.W. (2006). Raphidophyceae [Chadefaud ex Silva] systematics and rapid identification: sequence analysis and real-time PCR assays. *Journal of Phycology* 42: 1333-1348.
- Boyle, M.; Jillett, J.B.; Mladenov, P. (2001). Intertidal communities in Doubtful Sound, New Zealand: changes over time. *New Zealand Journal of Marine and Freshwater Research* 35(4): 663-673.
- Brager, S.; Schneider, K. (1998). Near-shore distribution and abundance of dolphins along the West Coast of the South Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 32: 105-112.
- Brewin, P. (2003). Local and fjord-wide patterns of benthic community structure in the deepbasins of Doubtful Sound, Fiordland, New Zealand. PhD. University of Otago, Dunedin. p.
- Butcher Partners Ltd (2006). Regional economic impacts of Fiordland National Park. Report prepared for the Department of Conservation. Available at <<u>http://www.doc.govt.nz/templates/MultiPageDocumentTOC.aspx?id=40123></u>.
- Carlton, J. (1985). Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water. *Oceanography and Marine Biology Annual Reviews 23*: 313-371.
- Carlton, J. (1987). Patterns of transoceanic marine biological invasions in the Pacific Ocean. Bulletin of Marine Science 41: 452-465.

Carlton, J. (1996). Biological invasions and cryptogenic species. Ecology 77: 1653-1655.

- Carlton, J.; Geller, J. (1993). Ecological roulette: The global transport of nonindigenous marine organisms. *Science 261(5117)*: 78-82.
- Carlton, J.T. (1992). Blue immigrants: the marine biology of maritime history. *The log of Mystic Seaport Museum* 44(2): 31-36.
- Carlton, J.T. (1999). The scale and ecological consequences of biological invasions in the world's oceans. *In*: Sandlund, T.; Schei, P.J.; Viken, A. (eds). Invasive species and biodiversity management, pp. 195-212. Kluwer academic, Dordrecht.
- Carlton, J.T. (2001). Introduced Species in U.S. Coastal Waters: Pew Oceans Commissions Report. Pew Oceans Commissions: Washington, DC.
- CCIMPE (2006). Consultative Committee on Introduced Marine Pest Emergencies (CCIMPE) Trigger List. Final agreed list 2006. CCIMPE, Canberra.
- Chapman, J.W.; Carlton, J.T. (1991). A test of criteria for introduced species: the global invasion by the isopod *Synidotea laevidorsalis* (Miers, 1881). *Journal of Crustacean Biology 11*: 386-400.
- Chapman, J.W.; Carlton, J.T. (1994). Predicted discoveries of the introduced isopod Synidotea laevidorsalis (Miers, 1881). Journal of Crustacean Biology 14: 700-714.
- Cohen, A.; Carlton, J. (1998). Accelerating invasion rate in a highly invaded estuary. *Science* 279: 555-558.
- Cohen, A.N.; Carlton, J.T. (1995). Nonindigenous aquatic species in a United States estuary: a case study of the biological invasions of the San Francisco Bay and delta. Report for the U. S. Fish and Wildlife Service, Washington DC.
- Colautti, R.I.; MacIsaac, H.J. (2004). A neutral terminology to define 'invasive' species. . *Diversity and Distributions 10*: 134-141.
- Coutts, A.; Moore, K.; Hewitt, C. (2003). Ships' sea chests: an overlooked transfer mechanism for non-indigenous marine species? *Marine Pollution Bulletin 46*: 1504-1515.
- Cranfield, H.; Gordon, D.; Willan, R.; Marshall, B.; Battershill, C.; Francis, M.; Nelson, W.; Glasby, C.; Read, G. (1998). Adventive marine species in New Zealand. NIWA technical report No. 34. Hamilton, NIWA.
- Cruising Milford Sound Ltd (2007). About Milford Sound. Website <<u>http://www.cruisingms.co.nz/milford-sound.htm></u>. Accessed 12/01/2007.
- Dell, R.K. (1964). A list of Mollusca and Brachiopoda collected by N.Z.O.I. from Milford Sound. In: Skerman, T.M. (ed.). Studies of a southern fiord, pp. 91-92. New Zealand Department of Scientific and Industrial Research Bulletin 157. Government Printer, Wellington.
- Department of Conservation (2007). Fiordland National Park Management Plan. 447pp. Available online

<<u>http://www.doc.govt.nz/templates/MultiPageDocumentTOC.aspx?id=44161></u>. Invercargill, Department of Conservation.

- Eade, J.V. (1967). New Zealand recent foraminifera of the families Islandiellidae and Cassidulinidae. *New Zealand Journal of Marine and Freshwater Research 1*: 421-454.
- Eldredge, L.; Carlton, J.T. (2002). Hawaiian marine bioinvasions: a preliminary assessment. *Pacific Science 56*: 211-212.
- Environment Southland (2001). Deed of Agreement between the New Zealand cruise ship industry and Environment Southland. Dated 26 September 2001. Available online <<u>http://www.es.govt.nz/Departments/Maritime%20Activities/Fiordland%20Passage%</u> <u>20Courses%20and%20Distances/Cruise%20Ship%20Agreement.pdf></u>. Accessed 28/01/2008.
- Environment Southland (2006). Proposed regional pest management strategy. Available online at

<<u>http://www.es.govt.nz/Departments/Biosecurity/DraftRPMSReview/documents.aspx</u> <u>></u>.

- Falk-Petersen, J.; Bohn, T.; Sandlund, O.T. (2006). On the numerous concepts in invasion biology. *Biological Invasions* 8(6): 1409-1424.
- Faust, M.A.; Gulledge, R.A. (2002). Identifying harmful marine dinoflagellates. *Smithsonian Contributions from the United States National Herbarium* 42: 1-144. Available online at <<u>http://www.nmnh.si.edu/botany/projects/dinoflag/index.htm</u>>.
- Fell, H.B. (1964). A list of Echinodermata collected by N.Z.O.I. from Milford Sound. In: Skerman, T.M. (ed.). Studies of a southern fiord, pp. 95. New Zealand Department of Scientific and Industrial Research Bulletin 157. Government Printer, Wellington.
- Gardner, J.P.A. (2004). A historical perspective of the genus *Mytilus* (Bivalvia: Mollusca) in New Zealand: multivariate morphometric analyses of fossil, midden and contemporary blue mussels. *Biological Journal of the Linnean Society* 82: 329-344.
- Gibbs, M.T.; Bowman, M.J.; Dietrich, D.E. (2000). Maintenance of near-surface stratification in Doubtful Sound, a New Zealand fjord. *Estuarine, Coastal and Shelf Science 51*: 683-704.
- Gotelli, N.J.; Colwell, R.K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. *Ecology Letters* 4: 379-391.
- Grange, K.; Singleton, R.; Richardson, J.; Hill, P.; Main, W. (1981). Shallow rock-wall biological associations of some southern fiords of New Zealand. *New Zealand Journal* of Zoology 8(2): 209-227.
- Grange, K.R. (1985a). Distribution, standing crop, population structure, and growth rates of black coral in the southern fiords of New Zealand. *New Zealand Journal of Marine and Freshwater Research.* 19: 467-475.
- Grange, K.R. (1985b). The intertidal ecology of the soft shores of Freshwater Basin, Milford Sound. Report prepared by the New Zealand Oceanographic Institute for the Department of Lands and Survey, Wellington. 12pp.
- Gray, J.S. (2000). The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. *Journal of Experimental Marine Biology and Ecology 250*: 23-49.
- Grosholz, E. (2002). Ecological and evolutionary consequences of coastal invasions. *Trends in Ecology & Evolution 17*: 22-27.
- Guardians of Fiordlands's Fisheries & Marine Environment Inc. (2003). Fiordland marine conservation strategy. Available online at <<u>http://www.mfe.govt.nz/publications/biodiversity/fiordland-marine-</u> strategy/index.html>. Guardians of Fiordlands's Fisheries & Marine Environment Inc.
- Gust, N.; Inglis, G.J.; Peacock, L.; Miller, S.; Floerl, O.; Hayden, B.J.; Fitridge, I.; Johnston, O.; Hurren, H. (2006). Rapid nationwide delimitation surveys for *Styela clava*. NIWA Client Report: CHC2006-24. Prepared for Biosecurity New Zealand Project ZBS2005-32. Christchurch, NIWA. 81 pp.
- Hapag-Lloyd. (2008). Hapag-Lloyd Cruises. Website <<u>http://www.hl-cruises.com/redwork/do.php?layoutid=100&node=161156&language=2></u>. Accessed 29/01/2008.
- Hay, B.; Grant, C.; McCoubrey, D. (2000). A review of the marine biotoxin monitoring programme for non-commercially harvested shellfish. Part 1: Technical Report. A report prepared for the NZ Ministry of Health by AquaBio Consultants Ltd. NZ Ministry of Health.
- Hayden, B.J.; Inglis, G.J.; Schiel, D.R. (in review). Marine invasions in New Zealand: a history of complex supply-side dynamics. *In*: Rilov, G.; Crooks, J. (eds). Marine Bioinvasions: Ecology, Conservation and Management Perspectives, pp. Springer, Heidelberg.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.

- Hayward, B.W.; Grenfell, H.R.; Scott, D.B. (1999). Tidal range of marsh foraminifera for determining former sea-level heights in New Zealand. *New Zealand journal of geology and geophysics* 42: 395-413.
- Heiri, O.; Lotter, A.F.; Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. *Journal of Paleolimnology 25*: 101-110.
- Hewitt, C.; Campbell, M.; Thresher, R.; Martin, R. (1999). Marine biological invasions of Port Phillip Bay, Victoria. CRIMP Technical Report NO. 20. Hobart, Centre for Research on Introduced Marine Species.
- Hewitt, C.; Martin, R. (1996). Port surveys for introduced marine species background considerations and sampling protocols. CRIMP technical report No 4. Hobart, CSIRO Division of Fisheries.
- Hewitt, C.; Martin, R. (2001). Revised protocols for baseline surveys for introduced marine species survey design, sampling protocols and specimen handling. CRIMP Technical Report No. 22. Hobart, Centre for Research on Introduced Marine Pests.
- Hurley, D.E. (1964). Benthic ecology of Milford Sound. *In*: Skerman, T.M. (ed.). Studies of a southern fiord, pp. 79-89. *New Zealand Department of Scientific and Industrial Research Bulletin 157*. Government Printer, Wellington.
- Inglis, G.; Kospartov, M.; Fitridge, I.; Gust, N.; Floerl, O.; Fenwick, G.; Hayden, B. (2007). Port baseline surveys for introduced marine species. Summary of results: Research Project ZBS2000/04. Biosecurity New Zealand Technical Paper. Prepared for Biosecurity New Zealand Post-clearance Directorate for Project ZBS2000-04. 97 pp. + Appendices + Supp.
- Inglis, G.J. (2003). Invasive aquatic species surveys and monitoring in New Zealand. In: Raaymakers, S. (ed.). 1st International Workshop on Guidelines and Standards for Invasive Aquatic Species Surveys and Monitoring, Arraial do Cabo, Brazil, 13-17 April 2003. Workshop Report. GloBallast Monograph Series, I.M.O. London., pp.
- Inglis, G.J.; Gust, N.; Fitridge, I.; Fenwick, G.D.; Floerl, O.; Hayden, B.J. (2003). Surveillance design for new exotic marine organisms in New Zealand's ports and other high risk entry points. Final Research Report for Ministry of Fisheries Research Projects ZBS2000/04 Objective 5. NIWA Client Report. Wellington. 47p, National Institute of Water and Atmospheric Research.
- Inglis, G.J.; Gust, N.; Fitridge, I.; Floerl, O.; Hayden, B.J.; Fenwick, G.D. (2006a). Dunedin Harbour (Port Otago and Port Chalmers): baseline survey for non-indenous marine species. Biosecurity New Zealand Technical Paper No: 2005/10. Prepared for Biosecurity New Zealand Post-clearance Directorate for Project ZBS2000-04. 67 pp. + Appendices.
- Inglis, G.J.; Gust, N.; Fitridge, I.; Floerl, O.; Hayden, B.J.; Fenwick, G.D. (2006b). Port of Bluff: baseline survey for non-indenous marine species. Biosecurity New Zealand Technical Paper No: 2005/09. Prepared for Biosecurity New Zealand Post-clearance Directorate for Project ZBS2000-04. 57 pp. + Appendices.
- Inglis, G.J.; Hurren, H.; Oldman, J.; Haskew, R. (2006c). Using habitat suitability index and particle dispersion models for early detection of marine invaders. *Ecological Applications 16*: 1377-1390.
- Knox, G.A. (1964). A list of Polychaeta collected by N.Z.O.I. from Milford Sound. In: Skerman, T.M. (ed.). Studies of a southern fiord, pp. 93-94. New Zealand Department of Scientific and Industrial Research Bulletin 157. Government Printer, Wellington.
- Kott, P. (2002). A complex didemnid ascidian from Whangamata, New Zealand. *Journal of Marine Biology Association of the United Kingdom 82*: 625-628.
- Kott, P. (2004a). New and little-known species of Didemnidae (Ascidiacea, Tunicata) from Australia (part 2). *Journal of Natural History 38*: 2455-2526.

- Kott, P. (2004b). A new species of *Didemnum* (Ascidiacea, Tunicata) from the Atlantic coast of North America. *Zootaxa* 732: 1-10.
- Kraberg, A.; Montagnes, D. (2007). The Harmful Phytoplankton Project: The user-friendly guide to harmful phytoplankton in EU waters. Website <<u>http://www.liv.ac.uk/hab/></u>. Last updated 12/07/2007; accessed 18/11/2007.
- Kregting, L.T.; Gibbs, M.T. (2006). Salinity controls the upper depth limit of black corals in Doubtful Sound, New Zealand. New Zealand Journal of Marine and Freshwater Research 40: 43-52.
- Kustanowich, S. (1964). Foraminifera of Milford Sound. *In*: Skerman, T.M. (ed.). Studies of a southern fiord, pp. 49-63. *New Zealand Department of Scientific and Industrial Research Bulletin 157*. Government Printer, Wellington.
- Leppakoski, E.; Gollasch, S.; Gruszka, P.; Ojaveer, H.; Olenin, S.; Panov, V. (2002). The Baltic a sea of invaders. *Canadian Journal of Fisheries and Aquatic Sciences 59*: 1175-1188.
- Longino, J.T.; Coddington, J.; Colwell, R.K. (2002). The ant fauna of a tropical rain forest: estimating species richness three different ways. *Ecology* 83: 689-702.
- Lusseau, D. (2005). Residency pattern of bottlenose dolphins *Tursiops* spp. in Milford Sound, New Zealand, is related to boat traffic. *Marine Ecology Progress Series 295*: 265-272.
- Lusseau, D.; Slooten, E. (2002). Cetacean sightings off the Fiordland coastline: Analysis of commercial marine mammal viewing data 1996–99. Science for conservation 187: 1-42.
- Mack, R.; Simberloff, D.; Lonsdale, W.; Evans, H.; Clout, M.; Bazzaz, F. (2000). Biotic invasions: causes, epidemiology, global consequences and control. *Ecological Applications* 10(3): 689-710.
- MacKenzie, A.L.; White, D.; Oshima, Y.; Kapa, J. (1996). The resting cyst and toxicity of *Alexandrium ostenfeldii* (Dinophyceae) in New Zealand. *Phycologia* 35(2): 148-155.
- MacKenzie, D.I.; Royle, J.A.; Brown, J.A.; Nichols, J.D. (2004). Occupancy estimation and modelling for rare and elusive populations. *In*: Thompson, W.R. (ed.). Sampling rare or elusive species: concepts, designs, and techniques for estimating population parameters, pp. 149-171. Island Press, Washington.
- McEnnulty, F.R.; Bax, N.; Schaffelke, B.; Campbell, M.L. (2000). A review of rapid response options for the control of ABWMAC listed introduced marine pest species and related taxa in Australian waters. *Technical Report No.* 101pp p.
- McKnight, D.G. (1968). Features of the benthic ecology of Chalky and Preservation Inlets. *New Zealand Journal of Marine and Freshwater Research 2((4))*: 716-720.
- McKoy, J.L. (1980). Distribution of shipworms (Bivalvia: Teredinidae) in the New Zealand region. *New Zealand Journal of Marine and Freshwater Research 14(3)*: 263-275.
- McLean, I.; Russ, R. (1991). The Fiordland Crested Penguin survey, stage I: Doubtful to Milford Sounds. *Notornis* 38(3): 183-190.
- Miller, A., W; Mundy, C.N.; Chadderton, W.L. (2004). Ecological and genetic evidence of the vulnerability of shallow-water populations of the stylasterid hydrocoral *Errina* novaezelandiae in New Zealand's fiords. Aquatic Conservation: Marine and Freshwater Ecosystems 14: 75-94.
- Miller, K.; Alvarez, B.; Battershill, C.; Northcote, P.; Parthasarathy, H. (2001). Genetic, morphological, and chemical divergence in the sponge genus Latrunculia (Porifera: Demospongiae) from New Zealand. *Marine biology*. *139(2)*: 235-250.
- Miller, K.J. (1997). Genetic structure of black coral populations in New Zealand's fiords. *Marine Ecology Progress Series 161*: 123-132.
- Ministry for the Environment (2004). Implementing the Fiordland Marine Conservation Strategy: Report of the Fiordland Marine Conservation Strategy Investigative Group.

Available online <<u>http://www.mfe.govt.nz/></u>. Wellington, Ministry for the Environment.

- Mladenov, P.V. (2001). New Zealand fiords: researching, managing, and conserving a unique ecosystem. *New Zealand Journal of Marine and Freshwater Research 35*.
- Moestrup, Ø. (ed.) (2004). IOC Taxonomic Reference List of Toxic Algae. Intergovernmental Oceanographic Commission of UNESCO. Available online at <ioc.unesco.org/hab/data.htm>.
- Morrisey, D.J.; Howitt, L.; Underwood, A.J.; Stark, J.S. (1992a). Spatial variation in softsediment benthos. *Marine Ecology Progress Series 81*: 197-204.
- Morrisey, D.J.; Howitt, L.; Underwood, A.J.; Stark, J.S. (1992b). Temporal variation in softsediment benthos. *Journal of Experimental Marine Biology and Ecology 164*: 233-245.
- Morton, S.; Vershinin, A.; Leighfield, T.; Smith, L.; Quilliam, M. (2007). Identification of yessotoxin in mussels from the Caucasian Black Sea Coast of the Russian Federation. *Toxicon 50*: 581-584.
- Nelson, W.A. (1999). A revised checklist of marine algae naturalised in New Zealand. *New Zealand Journal of Botany 37*: 355-359.
- Nelson, W.A.; Villouta, E.; Neill, K.F.; Williams, G.C.; Adams, N.M.; Slivsgaard, R. (2002). Marine macroalgae of Fiordland, New Zealand. *Tuhinga 13*: 117-152.
- New Zealand Food Safety Authority (2003). Non-Commercial Marine Biotoxin Monitoring in New Zealand Risk-Based Programme Enhancement - Final Report May 2003.
- NIWA (2008). South Western Pacific Regional OBIS node. Website <<u>http://obis.niwa.co.nz/index.do</u>> Accessed 18/07/2006.
- Occhipinti-Ambrogi, A.; Galil, B.S. (2004). A uniform terminology on bioinvasions: a chimera or an operational tool? *Marine Pollution Bulletin 49*: 688-694.
- Parker, I.; Simberloff, D.; Lonsdale, W.; Goodell, K.; Wonham, M.; Kareiva, P.; Williamson, M.; Holle, B.V.; Moyle, P.; Byers, J.; Goldwasser, L. (1999). Impact: Toward a Framework for Understanding the Ecological Effects of Invaders. *Biological Invasions* 1: 3-19.
- Paul, L.J. (2005). Indices for groper, *Polyprion* spp., when targeted and as a bycatch in four New Zealand fisheries, 1990-2003. New Zealand fisheries assessment report ; 2005/51. Wellington, Ministry of Fisheries.
- Raaymakers, S. (2003). AIS survey network spreads. Ballast Water News 15: 5-7.
- Ricciardi, A. (2001). Facilitative interactions among aquatic invaders: is an "invasional meltdown" occurring in the Great Lakes? *Canadian Journal of Fisheries and Aquatic Sciences* 58: 2513-2525.
- Roberts, C.; Stewart, A.; Paulin, C.; Neale, D. (2005). Regional diversity and biogeography of coastal fishes on the West Coast South Island of New Zealand. *Science for conservation 250*: 1-70.
- Ruiz, G.; Fofonoff, P.; Hines, A.; Grosholz, E. (1999). Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. *Limnology Oceanography* 44: 950-972.
- Ruiz, G.M.; Hewitt, C.L. (2002). Toward understanding patterns of coastal marine invasions: a prospectus. *In*: Leppäkoski, E.; Gollasch, S.; Olenin, S. (eds). Invasive aquatic species of Europe: distribution, impacts and management, pp. 529-547. Kluwer, Dordrecht.
- Scoop (2006). Leading destination's multi-millino dollar upgrade. News article published 24 February 2006 by Scoop independent news . Available online at <<u>http://www.scoop.co.nz/stories/BU0602/S00342.htm</u>>.
- Slooten, E.; Dawson, S.; Rayment, W. (2002). Quantifying abundance of Hector's dolphins between Farewell Spit and Milford Sound. *DOC Science Internal Series 35 No.* 18 p.

- Smith, F.; Witman, J.D. (1999). Species diversity in subtidal landscapes: maintenance by physical processes and larval recruitment. *Ecology* 80: 51-69.
- Southland Regional Council (2004). Fiordland Passage Courses and Distances. Website <<u>http://www.es.govt.nz/Departments/Maritime%20Activities/Fiordland%20Passage%</u>20Courses%20and%20Distances/default.html>. Date last updated unknown. Accessed 28/01/2008. .
- Trueswich, B.; Sim, B.; Busby, P.; Hughes, C. (1996). Management of marine biotoxins in New Zealand. In: Yasumoto, T.; Oshima, Y.; Fukuyo, Y. (eds). Harmful and toxic algal blooms. Proceedings of the seventh international conference on toxic phytoplankton. Sendai, Japan, 12-16 July 1995, pp. 27-30. Intergovernmental Oceanographic Commission of UNESCO, Paris.
- Warwick, R.M. (1996). Marine biodiversity: a selection of papers presented at the conference "Marine Biodiversity: causes and consequences", York, U.K. 30 August - 2 September 1994. Journal of Experimental Marine Biology and Ecology 202: IX-X.
- Wilcove, D.; Rothstein, D.; Dubow, J.; Phillips, A.; Losos, E. (1998). Quantifying threats to imperiled species in the United States. *Bioscience* 48(8): 607-615.
- Wood, E.J.F. (1964). A note on diatoms occurring in Milford Sound. In: Skerman, T.M. (ed.). Studies of a southern fiord, pp. 97. New Zealand Department of Scientific and Industrial Research Bulletin 157. Government Printer, Wellington.

Tables

Number of replicate samples taken for each sampling method at each site in the baseline survey of Milford Sound. Exact geographic locations of survey sites are provided in Appendix 2. Table 1:

			Photo													
Site		Quadrat	stills &	Large hand	Anchor Box	Sediment	Cyst	Zoo- plankton	Phyto- plankton	Visual dive	Crab	Shrimp	Poison	Beach seine	Beach wrack	
#	Site name	scraping	video			sample		net *	net *	transect		trap	station	net	walk	Total*
٦	Deep Water Basin 1		3	3		1	3	3 (3)	3 (3)	1	6	6				26
7	Deep Water Basin 2		ю	e		2	e			. 						0
c	Deep Water Basin	, L	c	c			ç				ç	J	r.	c		Ċ
s			0	5			D	(c) c	(1) c		D	D	_	°		40
4	Deep Water Basin Slipways	_	ю							-	9	9			~	14
5	Channel Marker No 2	2	ю					3 (0)	3 (3)	<u>_</u>						6
9	Sandfly Point Jetty		3				6	3 (3)	3 (1)	1	6	6				25
7	Ferry Terminal 1	6	3	6		2	6			1			1			22
8	Ferry Terminal 2	9	3				3	3 (3)	3 (1)	Ļ	6	6				28
σ	Freshwater Basin Mooring	L	ť				<u> </u>	3 (3)	(6) 8							7
10	Harrison Cove	6	о с				3	<u>3 (3)</u>	<u>3 (3)</u>	- .	9					25
11	Anita Bay	6	ю	с С		~	4			۲-						18
12	Fox Point		ю				e			۲-						4
13	Stirling Falls Wall		3							Ļ						-
14	Pater Point	6	3							Ļ						10
15	Copper Point	6	3							1						10
16	Stripe Point			3		1	3	3 (3)	3 (2)							13
17	Yates Point		3					3 (3)	3 (3)	1						7
18	Brig Rock		3							1						1
19	Saint Ann Point		3							1						1
21	Sea Breeze Point		3				3	3 (3)	3 (1)	1						10
22	Poison Bay		З		3	.	з	3 (3)	3 (1)	-	9	6	.	3	2	32
Total		56	60	24	3	8	46	33 (30)	33 (21)	19	42	36	3	6	3	312 (288)
		}					2			{	!		·			

* Numbers in parentheses indicate the number of samples actually examined by specialists for phytoplankton and zooplankton. Some phytoplankton and zooplankton samples from the Milford Sound survey were lost after despatch from the field survey site, and therefore were not identified by specialists.

Preservatives used for the major taxonomic groups of organisms collected Table 2: during the port survey.

5 % Formalin solution	10 % Formalin solution	70 % Ethanol solution	80 % Ethanol solution	100 % Ethanol solution	Press instead of preserving
Algae (except <i>Codium</i> and <i>Ulva</i>)	Ascidiacea (colonial) ^{1, 2}	Alcyonacea ²	Ascidiacea (solitary) ¹	Bryozoa	Ulva ⁴
	Asteroidea	Crustacea (small)			
	Echinoidea	Holothuria ^{1, 2}			
	Ophiuroidea	Zoantharia ^{1, 2}			
	Brachiopoda	Porifera ¹			
	Crustacea (large)	Mollusca (with shell)			
	Ctenophora ¹	Mollusca ^{1, 2} (without shell)			
	Scyphozoa ^{1, 2}	Platyhelminthes ^{1, 3}			
	Hydrozoa	Codium ⁴			
	Actiniaria & Corallimorpharia ^{1, 2}				
	Scleractinia				
	Nudibranchia ¹				
	Polychaeta				
	Actinopterygii & Elasmobranchii ¹				

¹ photographs were taken before preservation
 ² relaxed in menthol prior to preservation
 ³ a formalin fix was carried out before final preservation took place
 ⁴ a sub-sample was retained in silica gel beads for DNA analysis

Table 3:Marine pest species listed on the New Zealand register of Unwanted
Organisms under the Biosecurity Act 1993.

Phylum	Class	Order	Genus and Species
Annelida	Polychaeta	Sabellida	Sabella spallanzanii
Arthropoda	Malacostraca	Decapoda	Carcinus maenas
Arthropoda	Malacostraca	Decapoda	Eriocheir sinensis
Echinodermata	Asteroidea	Forcipulatida	Asterias amurensis
Mollusca	Bivalvia	Myoida	Potamocorbula amurensis
Chlorophyta	Ulvophyceae	Caulerpales	Caulerpa taxifolia
Ochrophyta	Phaeophyceae	Laminariales	Undaria pinnatifida
Chordata	Ascidiacea	Pleurogona	Styela clava

Table 4:Consultative Committee on Introduced Marine Pest Emergencies
(CCIMPE) Trigger List (Endorsed by the National Introduced Marine
Pest Coordinating Group, 2006).

	Scientific Name/s	Common Name/s
Spec	ies Still Exotic to Australia	
1*	Eriocheir spp.	Chinese Mitten Crab
2	Hemigrapsus sanguineus	Japanese/Asian Shore Crab
3	Crepidula fornicata	American Slipper Limpet
4 *	Mytilopsis sallei	Black Striped Mussel
5	Perna viridis	Asian Green Mussel
6	Perna perna	Brown Mussel
7*	Corbula (Potamocorbula) amurensis	Asian Clam, Brackish-Water Corbula
8 *	Rapana venosa (syn Rapana thomasiana)	Rapa Whelk
9 *	Mnemiopsis leidyi	Comb Jelly
10 *	Caulerpa taxifolia (exotic strains only)	Green Macroalga
11	<i>Didemnum</i> spp. (exotic invasive strains only)	Colonial Sea Squirt
12 *	Sargassum muticum	Asian Seaweed
13	Neogobiusmelanostomus(marine/estuarine incursions only)	Round Goby
14	<i>Marenzelleria</i> spp. (invasive species and marine/estuarine incursions only)	Red Gilled Mudworm
15	Balanus improvisus	Barnacle
16	Siganus rivulatus	Marbled Spinefoot, Rabbit Fish
17	Mya arenaria	Soft Shell Clam
18	Ensis directus	Jack-Knife Clam
19	Hemigrapsus takanoi/penicillatus	Pacific Crab
20	Charybdis japonica	Lady Crab
Spec	ies Established in Australia, but not	Widespread
21 *	Asterias amurensis	Northern Pacific Seastar
22	Carcinus maenas	European Green Crab
23	Varicorbula gibba	European Clam
24 *	Musculista senhousia	Asian Bag Mussel, Asian Date Mussel
25	Sabella spallanzanii	European Fan Worm
26 *	Undaria pinnatifida	Japanese Seaweed
27 *	Codium fragile spp. tomentosoides	Green Macroalga
28	Grateloupia turuturu	Red Macroalga
29	Maoricolpus roseus	New Zealand Screwshell
Holo	plankton Alert Species * For notification CCIMPE is hig	
30 *	Pfiesteria piscicida	Toxic Dinoflagellate
31	Pseudo-nitzschia seriata	Pennate Diatom
32	Dinophysis norvegica	Toxic Dinoflagellate
33	Alexandrium monilatum	Toxic Dinoflagellate
34	Chaetoceros concavicornis	Centric Diatom
35	Chaetoceros convolutus	Centric Diatom

* species on Interim CCIMPE Trigger List

WATCHING BRIEF SPECIES

3. V	Vatching List	
	Species Name	Common Name
1	Styela clava	Clubbed Tunicate
2	Euchone limnicola	Sabellid Polychaete Worm
3	Theora lubrica	Asian Semelid Bivalve
4	Polydora websteri	Mudworm
5	Polydora cornuta	Spionid Polychaete
6	Boccardia proboscidea	Spionid Polychaete
7	Alitta succinea	Pile Worm
8	Petrolisthes elongatus	New Zealand Half Shell Crab
9	Ciona intestinalis.	Sea Vase

4. Notification/More Information List (more information required before it could be on CCIMPE Trigger List but CCIMPE may still need to know about it if it arrives and may respond after consideration)

resp	Scientific Name/s	Common Name/s
1	Womersleyella setacea	Red Macroalga
2	Bonnemaisonia hamifera	Red Macroalga
3	Balanus eburneus	Ivory Barnacle
4	Hydroides dianthus	Limy Tubeworm
5	Tortanus dextrilobatus	Asian Copepod
6	Tridentiger barbatus	Shokihazi Goby
7	Siganus luridus	Dusky Spinefoot
8	Pseudodiaptomus marinus	Asian Copepod
9	Acartia tonsa	Asian Copepod
10	Rhithropanopeus harrisii	Harris Mud Crab
11	Callinectes sapidus	Blue Crab
12	Beroe ovata	Ctenophore
13	Blackfordia virginica	Ctenophore
	Caulerpa racemosa**	Green Macroalga

** *Caulerpa racemosa* was nominated due to concern about an 'invasive strain' in the Mediterranean – question marks exist over whether this strain originates from Australia. Recent evidence suggests that the 'invasive strain' occurs naturally in Australia therefore it is likely that this species will be removed from all lists during the annual review.

Native taxa recorded during the desktop review of existing marine species records from Milford Sound and nearby areas. Also indicated is whether the taxon was subsequently recorded from the Milford Sound port baseline survey (this report). Table 5:

Phylum & Class	Order	Family	Taxon name	Name as given in literature record ¹	Reference	Locations recorded if not l from Milford i Sound itself	Recorded in port survey?
<u>Annelida</u>							
Polychaeta	Amphinomida	Amphinomidae	Chloeia inermis		Knox (1964), Hurley (1964)		
Polychaeta	Eunicida	Dorvilleidae	Schistomeringos loveni	Dorvillea loveni	Knox (1964), Hurley (1964)		
Polychaeta	Eunicida	Eunicidae	Eunice australis		Knox (1964), Hurley (1964)		Yes
Polychaeta	Eunicida	Onuphidae	Hyalinoecia longibranchiata	Hyalinecia tubicola	Knox (1964), Hurley (1964)		
Polychaeta	Phyllodocida	Aphroditidae	Aphrodita talpa		Knox (1964), Hurley (1964)		
Polychaeta	Phyllodocida	Glyceridae	Glycera lamelliformis	Glycera lamellipoda	Knox (1964), Hurley (1964)		Yes
Polychaeta	Phyllodocida	Goniadidae	Goniada maorica		Knox (1964), Hurley (1964)		
Polychaeta	Phyllodocida	Hesionidae	Ophiodromus angustifrons	Podarke augustifrons	Knox (1964), Hurley (1964)		Yes
Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus verrilli		Knox (1964), Hurley (1964)		
Polychaeta	Phyllodocida	Nereididae	Nicon aestuariensis		Grange (1985b)		Yes
Polychaeta	Phyllodocida	Polynoidae	Harmothoe macrolepidota		Knox (1964), Hurley (1964)		
Polychaeta	Phyllodocida	Sigalionidae	Labiosthenolepis laevis	Leanira laevis	Knox (1964), Hurley (1964)		
Polychaeta	Scolecida	Orbiniidae	Haploscoloplos kerguelensis		Knox (1964), Hurley (1964)		
Polychaeta	Scolecida	Opheliidae	Armandia maculata		Knox (1964), Hurley (1964)	-	Yes
Polychaeta	Scolecida	Orbiniidae	Orbinia papillosa		Knox (1964), Hurley (1964)		
Polychaeta	Scolecida	Scalibregmatidae	Scalibregma inflatum		Knox (1964), Hurley (1964)		
Polychaeta	Terebellida	Trichobranchidae	Terebellides narribri	Terebellides stroemi	Knox (1964), Hurley (1964)		
Arthropoda							
Malacostraca	Brachyura	Grapsidae	Austrohelice crassa	Helice crassa	Grange (1985)		
Malacostraca	Decapoda	Palinuridae	Jasus edwardsi		Annala & Bycroft (1993 Bentley (2004)		
Bacillariophyta							
Bacillariophyceae	Bacillariales	Bacillariaceae	Pseudo-nitzschia australis	Nitzschia seriata	Wood (1964)		
Bacillariophyceae	Naviculales	Diploneidaceae	Diploneis crabro		Wood (1964)		
Coscinodiscophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros danicus		Wood (1964)		
Coscinodiscophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros teres		Wood (1964)		
Coscinodiscophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros vanheurckii	Chaetoceros vanheurcki	Wood (1964)		
Coscinodiscophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus marginatus		Wood (1964)		
Coscinodiscophyceae	Hemiaulales	Bellerocheaceae	Helicotheca tamesis	Streptotheca thamesis	Wood (1964)		

Phylum & Class	Order	Family	Taxon name	Name as given in literature record ¹	Reference	Locations recorded if not from Milford Sound itself	Recorded in port survey?
Coscinodiscophyceae	Leptocylindrales	Leptocylindraceae	Leptocylindrus danicus		Wood (1964)		
Coscinodiscophyceae	Thalassiosirales	Skeletonemaceae	Detonula pumila	Schroederella delicatula	Wood (1964)		
Fragilariophyceae	Fragilariales	Fragilariaceae	Asterionellopsis glacialis	Asterionella japonica	Wood (1964)		
Fragilariophyceae	Striatellales	Striatellaceae	Striatella interrupta		Wood (1964)		
Fragilariophyceae	Thalassionemales	Thalassionemataceae	Thalassiothrix nitzschioides		Wood (1964)		
<u>Brachiopoda</u>							
Articulata	Rhynchonellida	Hemithyrididae	Tegulorhynchia nigricans		Dell (1964)		
Bryozoa							
Gymnolaemata	Cheilostomata	Calloporidae	Retevirgula acuta		NIWA (2008)		
Gymnolaemata	Cheilostomata	Beaniidae	Beania discodermiae		NIWA (2008)		
Gymnolaemata	Cheilostomata	Bugulidae	Dimetopia barbata		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Bugulidae	Dimetopia cornuta		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Calloporidae	Amphiblestrum blandum		NIWA (2008)		
Gymnolaemata	Cheilostomata	Calloporidae	Corbulella corbula		NIWA (2008)		
Gymnolaemata	Cheilostomata	Calloporidae	Crassimarginatella fossa		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Calloporidae	Ellisina sericea		NIWA (2008)		
Gymnolaemata	Cheilostomata	Bitectiporidae	Schizosmittina conjuncta		NIWA (2008)		
Gymnolaemata	Cheilostomata	Calloporidae	Odontionella cyclops		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Bitectiporidae	Schizomavella aotearoa		NIWA (2008)		
Gymnolaemata	Cheilostomata	Calloporidae	Valdemunitella fraudatrix		NIWA (2008)		
Gymnolaemata	Cheilostomata	Candidae	Menipea vectifera		NIWA (2008)		
Gymnolaemata	Cheilostomata	Catenicellidae	Catenicella elegans		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Catenicellidae	Cornuticella taurina		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Catenicellidae	Costaticella bicuspis		NIWA (2008)		
Gymnolaemata	Cheilostomata	Catenicellidae	Orthoscuticella innominata		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Catenicellidae	Pterocella scutella		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Calloporidae	Leptinatella gordoni		NIWA (2008)		
Gymnolaemata	Cheilostomata	Beaniidae	Beania magellanica		NIWA (2008)		
Gymnolaemata	Cheilostomata	Aeteidae	Aetea australis		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Buffonellodidae	Buffonellodes rhomboidalis	Xenogma rhomboidalis	NIWA (2008)		
Gymnolaemata	Cheilostomata	Arachnopusiidae	Arachnopusia unicornis		NIWA (2008)		
Gymnolaemata	Cheilostomata	Beaniidae	Beania plurispinosa		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Beaniidae	Beania quadricornuta		NIWA (2008)		

Biosecurity New Zealand

				Nomo oo ciinoo in		Locations	
Phvlum & Class	Order	Family	Taxon name	Name as given m literature record ¹	Reference	from Milford Sound itself	in port survev?
Gymnolaemata	Cheilostomata	Beaniidae	Beania stonycha		NIWA (2008)		
Gymnolaemata	Cheilostomata	Bitectiporidae	Bitectipora mucronifera		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Bitectiporidae	Bitectipora rostrata		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Bitectiporidae	Parkermavella incurvata		NIWA (2008)		
Gymnolaemata	Cheilostomata	Bitectiporidae	Parkermavella punctigera		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Aeteidae	Aetea truncata		NIWA (2008)		
Gymnolaemata	Cheilostomata	Microporellidae	Microporella discors		NIWA (2008)		
Gymnolaemata	Cheilostomata	Celleporidae	Celleporina costazii		NIWA (2008)		
Gymnolaemata	Cheilostomata	Microporellidae	Fenestrulina thyreophora		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Microporellidae	Microporella speculum		NIWA (2008)		
Gymnolaemata	Cheilostomata	Microporidae	Micropora elegans		NIWA (2008)		
Gymnolaemata	Cheilostomata	Microporidae	Micropora mortenseni		NIWA (2008)		
Gymnolaemata	Cheilostomata	Microporidae	Opaeophora lepida		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Microporidae	Opaeophora monopia		NIWA (2008)		
Gymnolaemata	Cheilostomata	Smittinidae	Smittina rosacea		NIWA (2008)		
Gymnolaemata	Cheilostomata	Smittinidae	Smittoidea maunganuiensis		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Petraliellidae	Mucropetraliella ligulata		NIWA (2008)		
Gymnolaemata	Cheilostomata	Escharinidae	Chiastosella umbonata		NIWA (2008)		
Gymnolaemata	Cheilostomata	Candidae	Caberea boryi		NIWA (2008)		
Gymnolaemata	Cheilostomata	Candidae	Caberea darwinii		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Candidae	Caberea helicina		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Candidae	Caberea rostrata		NIWA (2008)		
Gymnolaemata	Cheilostomata	Candidae	Caberea solida		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Candidae	Canda filifera		NIWA (2008)		
Gymnolaemata	Cheilostomata	Candidae	Emma triangula		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Candidae	Scrupocellaria ornithorhyncus		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Phidoloporidae	Stephanollona scintillans	Stephanollona Iongispinata	NIWA (2008)		
Gymnolaemata	Cheilostomata	Romancheinidae	Exochella conjuncta		NIWA (2008)		
Gymnolaemata	Cheilostomata	Celleporidae	Celleporina sinuata		NIWA (2008)		
Gymnolaemata	Cheilostomata	Celleporidae	Galeopsis polyporus		NIWA (2008)		
Gymnolaemata	Cheilostomata	Chaperiidae	Chaperiopsis cervicornis		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Chaperiidae	Chaperiopsis lanceola		NIWA (2008)		
Gymnolaemata	Cheilostomata	Chorizoporidae	Chorizopora brongniartii		NIWA (2008)		

				Name as given in literature		not ilford	Recorded in port
Phylum & Class	Order	Family	Taxon name	record ¹		əlf	survey?
Gymnolaemata	Cheilostomata	Crepidacanthidae	Crepidacantha crinispina		NIWA (2008)		
Gymnolaemata	Cheilostomata	Crepidacanthidae	Crepidacantha kirkpatricki		NIWA (2008)		
Gymnolaemata	Cheilostomata	Cribrilinidae	Figularia huttoni		NIWA (2008)		
Gymnolaemata	Cheilostomata	Escharellidae	Escharella spinosissima		NIWA (2008)		
Gymnolaemata	Cheilostomata	Microporellidae	Microporella agonistes		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Exochellidae	Escharoides aff. excavata		NIWA (2008)		
Gymnolaemata	Cheilostomata	Microporellidae	Fenestrulina specca		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Exochellidae	Exochella jullieni		NIWA (2008)		
Gymnolaemata	Cheilostomata	Flustridae	Gregarinidra serrata		NIWA (2008)		
Gymnolaemata	Cheilostomata	Hippopodinidae	Cosciniopsis vallata		NIWA (2008)		
Gymnolaemata	Cheilostomata	Hippopodinidae	Hippomenella vellicata		NIWA (2008)		
Gymnolaemata	Cheilostomata	Hippothoidae	Celleporella bathamae		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Hippothoidae	Celleporella delta		NIWA (2008)		
Gymnolaemata	Cheilostomata	Hippothoidae	Hippothoa flagellum		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Lacernidae	Phonicosia circinata		NIWA (2008)		
Gymnolaemata	Cheilostomata	Eurystomellidae	Eurystomella biperforata	Eurystomella biperforata n. sp.	NIWA (2008)		
Gymnolaemata	Cheilostomata	Candidae	Tricellaria aculeata		NIWA (2008)		Yes
Gymnolaemata	Cheilostomata	Celleporidae	Celleporina hemiperistomata		NIWA (2008)		
Gymnolaemata	Cheilostomata	Steginoporellidae	Steginoporella magnifica		NIWA (2008)		Yes
Gymnolaemata	Ctenostomata	Penetrantiidae	Penetrantia irregularis		NIWA (2008)		
Stenolaemata	Cyclostomata	Diastoporidae	Plagioecia sarniensis		NIWA (2008)		Yes
Stenolaemata	Cyclostomata	Phidoloporidae	Phidolopora avicularis		NIWA (2008)		Yes
Stenolaemata	Cyclostomata	Margarettidae	Margaretta barbata		NIWA (2008)		Yes
Stenolaemata	Cyclostomata	Theonoidae	Telopora lobata		NIWA (2008)		Yes
Stenolaemata	Cyclostomata	Crisiidae	Bicrisia edwardsiana		NIWA (2008)		Yes
Stenolaemata	Cyclostomata	Lichenoporidae	Disporella novaehollandiae		NIWA (2008)		
Stenolaemata	Cyclostomata	Lichenoporidae	Disporella pristis		NIWA (2008)		Yes
Chlorophyta							
Ulvophyceae	Bryopsidales	Codiaceae	Codium gracile		Nelson et al. (2002)		Yes
Ulvophyceae	Caulerpales	Caulerpaceae	Caulerpa brownii		Nelson et al. (2002)		Yes
Ulvophyceae	Cladophorales	Witrockiellaceae	Wittrockiella Iyallii		Nelson et al. (2002)		
<u>Chordata</u>							
Actinopterygii	Anguilliformes	Congridae	Conger verreauxi		Roberts et al. (2005)		

							-
		:		Name as given in literature		from Milford	kecorded in port
Phylum & Class	Order	Family	Taxon name	record	Reference	Sound itself	survey?
Actinopterygii	Beryciformes	Trachichthyidae	Paratrachichthys trailli		Roberts et al. (2005)		
Actinopterygii	Gadiformes	Moridae	Lotella rhacina		Roberts et al. (2005)		Yes
Actinopterygii	Gadiformes	Moridae	Pseudophycis barbata		Roberts et al. (2005)		
Actinopterygii	Gadiformes	Phycidae	Gaidropsarus novaezelandiae		Roberts et al. (2005)		
Actinopterygii	Gobiesociformes	Gobiesocidae	Modicus minimus		Roberts et al. (2005)		
Actinopterygii	Gobiesociformes	Gobiesocidae	Modicus tangaroa		Roberts et al. (2005)		
Actinopterygii	Mugiliformes	Mugilidae	Parapercis colias		McKnight (1968)	Preservation Inlet	
Actinopterygii	Ophidiiformes	Bythitidae	Fiordichthys slartibartfasti		Roberts et al. (2005)		
Actinopterygii	Perciformes	Aplodactylidae	Aplodactylus arctidens		Roberts et al. (2005)		
Actinopterygii	Perciformes	Bovichthyidae	Bovichtus variegatus		Roberts et al. (2005)		
Actinopterygii	Perciformes	Cheilodactylidae	Nemadactylus macropterus		NIWA (2008), Roberts et al. (2005)		
Actinopterygii	Perciformes	Cheilodactylidae	Nemadactylus macropterus	Cheilodactylus macropterus	Mladenov (2001)		
Actinopterygii	Perciformes	Gempylidae	Thyrsites atun		Roberts et al. (2005)		
Actinopterygii	Perciformes	Gobiidae	Gobiopsis atrata		Roberts et al. (2005)		
Actinopterygii	Perciformes	Kyphosidae	Scorpis lineolata		Roberts et al. (2005)		
Actinontervaii	Darriformas	abridae 1	Notolabrus calidotus	Pseudolabrus	Grande (1085)		Vac
Actinoptervali	Perciformes	Labridae	Notolabrus cinctus	00000	Roberts et al. (2005)		8
Actinopterygii	Perciformes	Labridae	Notolabrus fucicola		Roberts et al. (2005)		
Actinopterygii	Perciformes	Labridae	Pseudolabrus miles		Roberts et al. (2005)		
Actinopterygii	Perciformes	Latrididae	Latridopsis ciliaris		Roberts et al. (2005)		
Actinopterygii	Perciformes	Latrididae	Latris lineata		Roberts et al. (2005)		
Actinopterygii	Perciformes	Latrididae	Mendosoma lineatum		Roberts et al. (2005)		
Actinopterygii	Perciformes	Mugilidae	Aldrichetta forsteri		Roberts et al. (2005)		
Actinopterygii	Perciformes	Pinguipedidae	Parapercis colias		Roberts et al. (2005)		
Actinopterygii	Perciformes	Plesiopidae	Acanthoclinus fuscus		Roberts et al. (2005)		
Actinopterygii	Perciformes	Plesiopidae	Acanthoclinus littoreus		Roberts et al. (2005)		
Actinopterygii	Perciformes	Plesiopidae	Acanthoclinus marilynae		Roberts et al. (2005)		Yes
Actinopterygii	Perciformes	Plesiopidae	Acanthoclinus matti		Roberts et al. (2005)		
Actinopterygii	Perciformes	Plesiopidae	Acanthoclinus rua		Roberts et al. (2005)		
Actinopterygii	Perciformes	Polyprionidae	Polyprion oxygeneios		Roberts et al. (2005)		
Actinopterygii	Perciformes	Serranidae	Caesioperca lepidoptera		Roberts et al. (2005)		
Actinopterygii	Perciformes	Serranidae	Hypoplectrodes huntii		Roberts et al. (2005)		

				Name as diven in		Locations recorded if not	Recorded
<u>Phylum</u> & Class	Order	Family	Taxon name	literature record ¹	Reference	elf Mi	in port survey?
Actinopterygii	Perciformes	Tripterygiidae	Bellapiscis lesleyae		Roberts et al. (2005)		
Actinopterygii	Perciformes	Tripterygiidae	Bellapiscis medius		Roberts et al. (2005)		
Actinopterygii	Perciformes	Tripterygiidae	Cryptichthys jojettae		Roberts et al. (2005)		
Actinopterygii	Perciformes	Tripterygiidae	Forsterygion flavonigrum		Roberts et al. (2005)		
Actinopterygii	Perciformes	Tripterygiidae	Forsterygion lapillum		Roberts et al. (2005)		Yes
Actinopterygii	Perciformes	Tripterygiidae	Forsterygion malcolmi		Roberts et al. (2005)		Yes
Actinopterygii	Perciformes	Tripterygiidae	Forsterygion varium		Roberts et al. (2005)		Yes
Actinopterygii	Perciformes	Tripterygiidae	Grahamina capito	Tripterygion capito	Grange (1985)		Yes
Actinopterygii	Perciformes	Tripterygiidae	Karalepis stewarti		Roberts et al. (2005)		
Actinopterygii	Perciformes	Tripterygiidae	Notoclinops caerulepunctus		Roberts et al. (2005)		
Actinopterygii	Perciformes	Tripterygiidae	Notoclinops segmentatus		Roberts et al. (2005)		
Actinopterygii	Perciformes	Tripterygiidae	Notoclinus fenestratus		Roberts et al. (2005)		
Actinopterygii	Perciformes	Tripterygiidae	Obliquichthys maryannae		Roberts et al. (2005)		
Actinopterygii	Perciformes	Tripterygiidae	Ruanoho whero		Roberts et al. (2005)		Yes
Actinopterygii	Pleuronectiformes	Pleuronectidae	Rhombosolea plebeia		Grange (1985)		
Actinopterygii	Scorpaeniformes	Scorpaenidae	Helicolenus percoides		Roberts et al. (2005)		Yes
Actinopterygii	Scorpaeniformes	Scorpaenidae	Scorpaena papillosa		Roberts et al. (2005)		Yes
Actinopterygii	Syngnathiformes	Syngnathidae	Lissocampus filum		Roberts et al. (2005)		
Elasmobranchii	Squaliformes	Squalidae	Squalus acanthias		Roberts et al. (2005)		
Myxini	Myxiniformes	Myxinidae	Eptatretus cirrahtus		Roberts et al. (2005)		
Cnidaria							
Anthozoa	Antipatharia	Myriopathidae	Antipathella fiordensis	Antipathes fiordensis	Grange (1985)		
Anthozoa	Antipatharia	Myriopathidae	Antipathella fiordensis	Antipathes aperta	Miller (1997)		
						Te Awaatu Marine Beserve	
Hydrozoa	Filifera	Stylasteridae	Errina novaezelandiae		Miller et al. (2004)	<u> </u>	
Hydrozoa	Hydroida	Sertulariidae	Sertularia marginata		Grange (1985)	Doubtful Sound	
Echinodermata							
Asteroidea	Paxillosida	Astropectinidae	Psilaster acuminatus		McKnight (1968)	Preservation & Chalky Inlets	
Echinoidea	Echinoida	Echinometridae	Evechinus chloroticus		Fell (1964)		Yes
Echinoidea	Spatangoida	Loveniidae	Echinocardium cordatum		Fell (1964)		
	Spatangoida	Brissidae	Brissopsis oldhami		McKnight (1968)	Preservation & Chalky Inlets	
Ophiuroidea	Ophiurida	Amphiuridae	Amphiura norae		Fell (1964)		

				Name as given in		Locations recorded if not I	Recorded
<u>Phylum</u> & Class	Order	Family	Taxon name	literature record ¹	Reference	Milford	in port survey?
Ophiuroidea	Ophiurida	Ophiacanthidae	imago		McKnight (1968)	Preservation & Chalky Inlets	
Ophiuroidea	Ophiurida	Ophiuridae	Ophiuroglypha irrorata		McKnight (1968)	Preservation & Chalky Inlets	
<u>Magnoliophyta</u>							
Liliopsida	Cyperales	Cyperaceae	Isolepis cernua	Scirpus cornuus	Grange (1985)		
Magnoliopsida	Campanulales	Goodeniaceae	Selliera radicans		Grange (1985)		
<u>Mollusca</u>							
Bivalvia	Arcoida	Arcidae	Barbatia novaezelandiae		Dell (1964), Hurley (1964)		
Bivalvia	Arcoida	Arcidae	Bathyarca cybaea		Dell (1964), Hurley (1964)		
Bivalvia	Arcoida	Philobryidae	Cosa costata		Dell (1964), Hurley (1964)		
Bivalvia	Myoida	Teredinidae	Bankia neztalia		McKoy (1980)		
Bivalvia	Mytiloida	Mytilidae	Aulacomya maoriana		Dell (1964), Hurley (1964)	-	Yes
Bivalvia	Mytiloida	Mytilidae	Modiolus aerolatus		Dell (1964), Hurley (1964)		
Bivalvia	Nuculoida	Malletiidae	Neilo australis		Dell (1964), Hurley (1964)		
Bivalvia	Nuculoida	Nuculanidae	Saccella maxwelli	Nuculana bellula	Dell (1964), Hurley (1964)		
Bivalvia	Nuculoida	Nuculanidae	Poroleda lanceolata		Dell (1964), Hurley (1964)		
Bivalvia	Nuculoida	Nuculidae	Linucula gallinacea		Dell (1964), Hurley (1964)		
Bivalvia	Nuculoida	Nuculidae	Nucula hartvigiana		Dell (1964), Hurley (1964)		
Bivalvia	Nuculoida	Nuculidae	Nucula (Ennucula) strangei		Dell (1964), Hurley (1964)		
Bivalvia	Pholadomyoida	Thraciidae	Parvithracia suteri		Dell (1964), Hurley (1964)		
Bivalvia	Pholadomyoida	Myochamidae	Myadora antipoda		Dell (1964), Hurley (1964)		
Bivalvia	Pholadomyoida	Verticordiidae	Haliris (Setaliris) setosa		Dell (1964), Hurley (1964)		
Bivalvia	Pholadomvoida	Cuspidariidae	Pseudoneaera wellmani	Austroneaera wellmani	Dell (1964). Hurlev (1964)		
Bivalvia	Pholadomyoida	Cuspidariidae	Cuspidaria fairchildi		Dell (1964), Hurley (1964)		
Bivalvia	Pterioida	Limidae	Escalima regularis		Dell (1964), Hurley (1964)		
Bivalvia	Pterioida	Limidae	Limatula maoria		Dell (1964), Hurley (1964)		
Bivalvia	Pterioida	Pectinidae	Talochlamys zelandiae	Chlamys suprasilis crepusculi	Dell (1964), Hurley (1964)		
Bivalvia	Solemyoida	Solemyidae	Solemya parkinsoni		Dell (1964), Hurley (1964)		
Bivalvia	Veneroida	Sportellidae	Anisodonta (Tahunanuia) alata alata	Tahunauia alata	Dell (1964), Hurley (1964)		
Bivalvia	Veneroida	Cardiidae	Pratulum pulchellum	Nemocardium pulchellum	Dell (1964), Hurley (1964)		
Bivalvia	Veneroida	Carditidae	Cardita aoteana		Dell (1964), Hurley (1964)		

						Locations	
				Name as given in literature		recorded if not from Milford	Recorded in port
Phylum & Class	Order	Family	Taxon name	record ¹	Reference	d itse	survey?
Bivalvia	Veneroida	Lasaeidae	Borniola reniformis	Rochefortula reniformis	Dell (1964). Hurlev (1964)		Yes
Bivalvia	Veneroida	Lucinidae	Divaricella huttoniana		Dell (1964), Hurley (1964)		
Bivalvia	Veneroida	Mesodesmatidae	Paphies australis		Dell (1964), Hurley (1964)		Yes
Bivalvia	Veneroida	Tellinidae	Serratina charlottae	Tellinella charlottae	Dell (1964), Hurley (1964)		
Bivalvia	Veneroida	Tellinidae	Moerella huttoni	Moerella huttoni huttoni	Dell (1964), Hurley (1964)		
Bivalvia	Veneroida	Thyasiridae	Maorithyas marama		Dell (1964), Hurley (1964)		
Bivalvia	Veneroida	Thyasiridae	Thyasira peregrina	Thyasira peroniana peregrina	Dell (1964), Hurley (1964)		
Bivalvia	Veneroida	Veneridae	Austrovenus stutchburyi	Chione stutchburyi	Grange (1985)		Yes
Bivalvia	Veneroida	Semelidae	Leptomya retiaria		Dell (1964), Hurley (1964)		
Bivalvia	Veneroida	Lucinidae	Lucinoma galathea		Dell (1964), Hurley (1964)		
Gastropoda	Basommatophora	Siphonariidae	Siphonaria australis	Siphonaria zelandica	Dell (1964), Hurley (1964)		Yes
Gastropoda	Caenogastropoda	Turritellidae	Zeacolpus (Stiracolpus) delli		Dell (1964), Hurley (1964)		
Gastropoda	Cocculiniformia	Lepetellidae	Tecticrater cervae		Dell (1964), Hurley (1964)		
Gastropoda	Docoglossa	Lottiidae	Notoacmea parviconoidea		Dell (1964), Hurley (1964)		
Gastropoda	Docoglossa	Lepetidae	Maoricrater explorata		Dell (1964), Hurley (1964)		
Gastropoda	Littorinimorpha	Calyptraeidae	Sigapatella novaezealandiae		Dell (1964), Hurley (1964)		
Gastropoda	Neogastropoda	Buccinulidae	Cominella (Eucominia) mirabilis powelli	Fax mirabilis powelli	Dell (1964), Hurley (1964)		
Gastropoda	Neogastropoda	Volutomitridae	Microvoluta marginata	Microvoluta biconica	Dell (1964), Hurley (1964)		
Gastropoda	Neotaenioglossa	Calyptraeidae	Sigapatella tenuis	Zegalurus tenuis	Dell (1964), Hurley (1964)		
Gastropoda	Neotaenioglossa	Hydrobiidae	Potamopyrgus estuarinus		Grange (1985)		
Gastropoda	Neotaenioglossa	Naticidae	Uberella denticulifera		Dell (1964), Hurley (1964)		
Gastropoda	Neotaenioglossa	Naticidae	Uberella vitrea		Dell (1964), Hurley (1964)		
Gastropoda	Neotaenioglossa	Naticidae	Pisinna sp.	Estea sp.	Grange (1985)		
Gastropoda	Pulmonata	Amphibolidae	Amphibola crenata		Grange (1985)		
Gastropoda	Vetigastropoda	Trochidae	Micrelenchus artizona	Micrelenchus micans	Dell (1964), Hurley (1964)		
Gastropoda	Vetigastropoda	Fissurellidae	Emarginula striatula		Dell (1964), Hurley (1964)		
Scaphopoda	Dentaliida	Dentaliidae	Antalis nana	Dentalium nanum	Dell (1964), Hurley (1964)		
Scaphopoda	Dentaliida	Dentaliidae	Antalis suteri	Dentalium suteri	Dell (1964), Hurley (1964)		
Scaphopoda	Dentaliida	Dentaliidae	Fissidentalium zelandicum		Dell (1964), Hurley (1964)		
Scaphopoda	Gadilida	Gadilidae	Cadulus delicatulus		Dell (1964), Hurley (1964)		

						ocations	
				Name as given in literature		recorded if not from Milford	Recorded in port
Phylum & Class	Order	Family	Taxon name	record ¹	Reference	d itse	~
Myzozoa							
Dinophyceae	Dinophysiales	Dinophysiaceae	Dinophysis acuta		F.H. Chang, NIWA, pers. comm.		
Dinophyceae	Dinophysiales	Dinophysiaceae	Dinophysis acuminata		Trueswich (1996), F. H. Chang, NIWA, pers. comm.		Yes
Dinophyceae	Dinophysiales	Dinophysiaceae	Dinophysis fortii	Dinophysis forti	Wood (1964)		
Dinophyceae	Peridiniales	Peridiniaceae	Peridinium divergens		Wood (1964)		
Dinophyceae	Peridiniales	Ceratiaceae	Ceratium buceros		Wood (1964)		
Dinophyceae	Peridiniales	Ceratiaceae	Ceratium lineatum		Wood (1964)		
Dinophyceae	Peridiniales	Gonyaulacaceae	Lingulodinium polyedrum	Goniaulax polyedra	Wood (1964)		Yes
Dinophyceae	Peridiniales	Gonyaulacaceae	Gonyaulax polygramma	Goniaulax polygramma	Wood (1964)		
<u>Ochrophyta</u>							
Phaeophyceae	Ectocarpales	Scytothamnaceae	Scytothamnus australis		Nelson et al. (2002)		
Phaeophyceae	Ectocarpales	Acinetosporaceae	Pilayella littoralis		Nelson et al. (2002) Grange (1985)		
Phaeophyceae	Fucales	Sargassaceae	Carpophyllum flexuosum		Nelson et al. (2002)		Yes
Phaeophyceae	Fucales	Seirococcaceae	Marginariella urvilliana		Nelson et al. (2002)		
Phaeophyceae	Fucales	Sargassaceae	Carpophyllum maschalocarpum		Nelson et al. (2002)		
Phaeophyceae	Fucales	Cystoseiraceae	Cystophora distenta		Nelson et al. (2002)		
Phaeophyceae	Fucales	Cystoseiraceae	Cystophora retroflexa		Nelson et al. (2002)	Dusky Sound and Chalky/ Preservation Inlet	
Phaeophyceae	Fucales	Cystoseiraceae	Cystophora scalaris		Nelson et al. (2002)	Dusky Sound and Chalky/ Preservation Inlet	
Phaeophyceae	Fucales	Hormosiraceae	Hormosira banksii		Nelson et al. (2002)		
Phaeophyceae	Laminariales	Alariaceae	Ecklonia brevipes		Nelson et al. (2002)	Bligh Sound south to Preservation Inlet	
Phaeophyceae	Laminariales	Alariaceae	Ecklonia radiata		Nelson et al. (2002)		Yes
Phaeophyceae	Laminariales	Lessoniaceae	Macrocystis pyrifera		Nelson et al. (2002)	Caswell Sound, Doubtful Sound, Dusky Sound, Chalky Inlet and Preservation Inlet	

<u>Phylum</u> & Class	Order	Family	Taxon name	Name as given in literature record ¹	Reference	Locations recorded if not from Milford Sound itself	Recorded in port survey?
Phaeophyceae	Scytothamnales	Scytothamnaceae	Scytothamnus fasciculatus		Nelson et al. (2002)		
Porifera							
Demospongiae	Dictyoceratida	Thorectidae	Thorecta reticulata		M. Kelly NIWA (Unpublished record)	Doubtful Sound	Yes
Demospongiae	Poecilosclerida	Chondropsidae	Strongylacidon conulosa		Bergquist & Fromont (1988)		Yes
Demospongiae	Poecilosclerida	Latrunculiidae	Latrunculia fiordensis		Alvarez et al. (2002)		Yes
Demospongiae	Poecilosclerida	Latruncullidae	Latrunculia millerae		Alvarez et al. (2002)		
Protozoa							
Granuloreticulosea	Foraminiferida	Elphidiidae	Elphidium charlottense		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Cassidulinidae	Cassidulina carinata		Eade (1967)		
Granuloreticulosea	Foraminiferida	Cassidulinidae	Cassidulina islandica		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Cassidulinidae	Evolvocassidulina orientalis		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Fursenkoinidae	Fursenkoina rotundata	Virgulina rotundata	Kustanowich (1964), Eade (1967)		
Granuloreticulosea	Foraminiferida	Fursenkoinidae	Fursenkoina spinosa	Fursenkoina spinosa	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Cibicididae	Cibicides dispars	Cibicides marlboroughensis	Kustanowich (1964), Hayward et al. (1999)		
Granuloreticulosea	Foraminiferida	Elphidiidae	Elphidium novozealandicum	Elphidium novo- zealandicum	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Elphidiidae	Haynesina depressula		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Elphidiidae	Notorotalia inornata		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Elphidiidae	Notorotalia zelandica		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Epistominidae	Hoglundina elegans		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Eponididae	Eponides umbonatus		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Chilostomellidae	Chilostomella ovoidea		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Buliminidae	Globobulimina turgida		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Buliminidae	Bulimina marginata		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Globigerinidae	Globigerina bulloides		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Ellipsolagenidae	Oolina emaciata	Dentalina emaciata	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Globigerinidae	Globigerina inflata		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Globigerinidae	Globigerina pachyderma		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Ellipsolagenidae	Fissurina marginata		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Bolivinidae	Brizalina malovensis	Bolivina malovensis	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Heterolepidae	Anomalinoides sphericus	Anomalinoides spherica	Kustanowich (1964)		

Biosecurity New Zealand

				Name as given in		tions ded	ŏ
<u>Phylum</u> & Class	Order	Family	Taxon name	literature record ¹	Reference	from Milford Sound itself	in port survey?
Granuloreticulosea	Foraminiferida	Bolivinidae	Bolivina cacozela		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Bolivinidae	Bolivina pseudoplicata	Bolivina pseudo- plicata	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Bolivinidae	Brizalina pygmaea	Bolivina pygmaea	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Bolivinidae	Bolivina seminuda		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Buliminidae	Bulimina denudata		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Globigerinidae	Globigerina quinqueloba		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Globigerinidae	Globigerinella aequilateralis		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Globigerinidae	Globigerinoides ruber		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Globigerinidae	Orbulina universa		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Hormosinidae	Reophax scorpiurus		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Textulariidae	Textularia ensis		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Nonionidae	Nonion subturgidum		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Nonionidae	Nonionoides turgida		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Nonionidae	Pullenia bulloides		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Nonionidae	Pullenia quinqueloba		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Spiroloculinidae	Spiroloculina elevata		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Placentulinidae	Patellinella inconspicua		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Sphaeroidinidae	Sphaeroidina bulloides		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Spirillinidae	Patellina corrugata		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Globorotaliidae	Globorotalia truncatulinoides		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Textulariidae	Textularia conica		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Lagena striata		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Textulariidae	Spiroplectinella proxispira	Textularia proxispira	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Trochamminidae	Trochammina squamata		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Uvigerinidae	Trifarina angulosa		Kustanowich (1964), Hayward et al. (1999)		
Granuloreticulosea	Foraminiferida	Loxostomatidae	Loxostomum karrerianum		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Textulariidae	Siphotextularia fretensis		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Lenticulina rotulatus	Robulus cf. rotulatus	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Hormosinidae	Reophax subfusiformis		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Miliolidae	Miliolinella vigilax		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Miliolidae	Quinqueloculina delicatula		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Miliolidae	Quinqueloculina kapitiensis		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Miliolidae	Quinqueloculina lamarckiana		Kustanowich (1964)		

Biosecurity New Zealand

				Name as given in		tions ded if not	Recorded
Phylum & Class	Order	Family	Taxon name	literature record ¹	Reference	from Milford Sound itself	in port survey?
Granuloreticulosea	Foraminiferida	Miliolidae	Quinqueloculina suborbicularis		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Miliolidae	Quinquinella hornibrooki		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Nodosariidae	Laevidentalina subsoluta	Dentalina subsoluta	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Lenticulina gibba		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Nonionidae	Nonionellina flemingi		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Marginulina glabra		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Nonionidae	Astrononion novozealandicum	Astrononion novo- zealandicum	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Lenticulina limbosa	Lenticulina limbosus	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Lenticulina orbicularis	Lenticulina orbicularis	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Lenticulina suborbicularis	Lenticulina suborbicularis	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Saracenaria latifrons		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Vaginulinopsis reniformis	Astacolus reniformis	Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Vaginulinopsis tasmanica		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Lagena costata		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Lagena laevis		Kustanowich (1964)		
Granuloreticulosea	Foraminiferida	Vaginulinidae	Neolenticulina peregrina	Lenticulina peregrina	Kustanowich (1964)		
<u>Rhodophyta</u>							
Florideophyceae	Gelidiales	Gelidiaceae	Pterocladiella capillacea		Nelson et al. (2002)		
Florideophyceae	Gracilariales	Gracilariceae	Gracilaria chilensis		Nelson et al. (2002)		Yes
Florideophyceae	Gracilariales	Gracilariaceae	Gracilaria secundata		Grange (1985)		
Florideophyceae	Hildenbrandiales	Hildenbrandiaceae	Apophlaea Iyallii		Nelson et al. (2002)		Yes
Florideophyceae	Plocamiales	Plocamiaceae	Plocamium cirrhosum		Nelson et al. (2002)		Yes

¹ If the taxon name given in the cited literature record has since been synonymised, this column contains the name as it was given in the literature record. The column to the left ("Taxon name") contains the current valid name.

areas. Also indicated are the probable means of introduction to New Zealand (H = Hull fouling, B = Ballast water transport), the date of introduction or detection (d) in New Zealand, and whether the taxon was subsequently recorded in the Milford Sound port baseline survey Non-indigenous species recorded during the desktop review of existing marine species records from Milford Sound and nearby (this report). Table 6:

<u>Phylum</u> & Class	Order	Family	Taxon name	Reference	Locations recorded if not from Milford Sound itself	Probable means of introduction to New Zealand	Date of introduction, or detection (d)	Recorded in port survey?
<u>Ochrophyta</u>								
Phaeophyceae	Fucales	Sargassaceae	Sargassum verruculosum	Nelson et al. (2002)	Doubtful, Thompson, Dusky, Bligh & Breaksea Sounds. Preservation and Chalky Inlets	т	1900's	
Rhodophyta								
Florideophyceae	Ceramiales	Rhodomelaceae	Polysiphonia brodiei	Nelson et al. (2002)	Dusky Sound	п	Pre-1940	
Florideophyceae	Ceramiales	Rhodomelaceae	Polysiphonia constricta	Nelson (1999)	Doubtful Sound	н	? Pre-1999	
Florideophyceae	Ceramiales	Rhodomelaceae	Polysiphonia sertularioides	Nelson et al. (2002)	Doubtful Sound	н	Pre-1938	
Florideophyceae	Ceramiales	Rhodomelaceae	Polysiphonia aff. subtilissima	Nelson et al. (2002)	Breaksea Sound	н	Pre-1974	
Florideophyceae	Rhodymeniales	Champiaceae	Champia affinis	Nelson et al. (2002)	Preservation Inlet	Т	Pre-1855	

Cryptogenic category one (C1) taxa recorded during the desktop review of existing marine species records from Milford Sound and nearby areas. Also indicated are the probable means of introduction to New Zealand (H = Hull fouling, B = Ballast water transport), the date of introduction or detection (d) in New Zealand, and whether the taxon was subsequently recorded in the Milford Sound port baseline survey (this report). Table 7:

<u>Phylum</u> & Class	Order	Family	Taxon name	Name as given in literature record ¹	Reference	Locations recorded if not from Milford Sound itself	Probable means of introduction to NZ	Date of introduction, or detection (d)	Recorded in port survey?
Bryozoa									
Gymnolaemata	Cheilostomata	Scrupariidae	Scruparia ambigua		NIWA (2008)		H or by rafting	1911 d *	
<u>Chordata</u>									
Ascidiacea	Enterogona	Didemnidae	Diplosoma velatum		M. Page, NIWA, Unpublished record	Doubtful Sound	т	2006 d	Yes
Myzozoa									
Dinophyceae	Peridiniales	Gonyaulacaceae	Alexandrium ostenfeldii		MacKenzie et. al (1996)	Doubtful Sound & Jackson Bay	B or on ocean currents	1992 d	
<u>Ochrophyta</u>									
Raphidophyceae	Chattonellales	Chattonellaceae	Heterosigma akashiwo		Bowers et al. (2006)		B or on ocean currents	1989 d	
Porifera									
Demospongiae	Poecilosclerida	Esperiopsidae	Esperiopsis edwardii	Amphilectus edwardii	M. Kelly, NIWA, Doubtful Sound Unpublished record	Doubtful Sound	т	1924 d	Yes
Demospongiae	Poecilosclerida	Raspailiidae	Raspailia agminata		M. Kelly, NIWA, Doubfful Sound Unpublished record	Doubtful Sound	т	1961 d *	Yes
Demospongiae	Poecilosclerida	Crellidae	Crella incrustans		M. Kelly, NIWA, Doubtful Sound Unpublished record	Doubtful Sound	т	1924 d *	
Demospongiae	Haplosclerida	Chalinidae	Haliclona cf. clathrata		M. Kelly, NIWA, Doubfful Sound Unpublished record	Doubtful Sound	т	1923 d*	
Calcarea	Leucosolenida	Leucosoleniidae	Leucosolenia cf. challengeri		M. Kelly, NIWA, Doubtful Sound Unpublished record	Doubtful Sound	H or B	2006 d *	
Calcarea	Leucosolenida	Leucosoleniidae	Leucosolenia cf. discoveryi ^		M. Kelly, NIWA, Unpublished record	NIWA, Doubtful Sound rd	т	Feb 2003 d *	Yes
Notes:									

Notes:

¹ If the taxon name given in the cited literature record has since been synonymised, this column contains the name as it was given in the literature record. The column to the left ("Taxon name") contains the current valid name.

* This is the first published record for the species in New Zealand. The actual date of collection of the specimen was probably 5-10 years prior to publication.

^A The biosecurity status of *Leucosolenia* cf. *discoveryi* was reported as NIS in earlier New Zealand port survey reports. It has since been revised to C1, following expert advice on uncertainty in the identity of the species: "After extensive search, this is the closest species to our southern New Zealand species. There are some minor differences that indicate it might rather be a New Zealand endemic that is very similar to *L. discoveryi*. There is only minor overlap with Antarctica species in the southern NZ fauna (Dunedin, Bluff, Milford)" (M. Kelly, Kelly, Dunedin, Bluff, Milford).

Table 8:Cryptogenic category two (C2) taxa recorded during the desktop review of existing marine species records from Milford Soundand nearby areas. Also indicated is whether the taxon was subsequently recorded in the Milford Sound port baseline survey (this report).

<u>Phylum</u> & Class	Order	Family	Taxon name	Reference	Locations recorded if not from Milford Sound itself	Recorded in port survey?
Annelida						
Polychaeta	Phyllodocida	Pilargidae	Ancistrosyllis sp.	Knox (1964), Hurley (1964)		
Bryozoa						
Gymnolaemata	Cheilostomata	Cellariidae	Euginoma gracillima n. sp.	NIWA (2008)		
Chordata						
Actinopterygii	Perciformes	Clinidae	Acanthoclinus ?n.sp.	Roberts et al. (2005)		
Actinopterygii	Perciformes	Eleotridae	Thalasseleotris n.sp.	Roberts et al. (2005)		
Porifera						
Demospongiae	Halichondrida	Halichondriidae	Halichondria cf. rugosa	(M. Kelly, NIWA, Unpublished record)	NIWA, Doubtful Sound	
Demospongiae	Hadromerida	Polymastiidae	Polymastia cf. massalis		NIWA, Doubtful Sound	

AnnelidaEunicidaOnuphidaePolychaetaEunicidaOnuphidaePolychaetaEunicidaLumbrineriPolychaetaEunicidaNereididaePolychaetaPhyllodocidaPhyllodocidaPolychaetaPhyllodocidaNereididaePolychaetaPhyllodocidaNereididaePolychaetaPhyllodocidaNereididaePolychaetaPhyllodocidaNereididaePolychaetaPhyllodocidaCayceridaePolychaetaPhyllodocidaCovenidaePolychaetaPhyllodocidaCovenidaePolychaetaScolecidaMaldanidaPolychaetaScolecidaMaldanidaPolychaetaScolecidaMaldanidaPolychaetaScolecidaMaldanida	da e ga e	Onuphis sp. Lumbrineris sp. Ninoe sp. Phyllodocid sp. Platynereis sp.				. (
Eunicida Eunicida Eunicida Eunicida Eunicida Phyllodocida Phyllodocida Phyllodocida Phyllodocida Phyllodocida Scolecida Scolecida Scolecida Scolecida		Onuphis sp. Lumbrineris sp. Ninoe sp. Phyllodocid sp. Platynereis sp.				
Eunicida Eunicida Eunicida Eunicida Phyllodocida Phyllodocida Phyllodocida Phyllodocida Phyllodocida Scolecida Scolecida Scolecida Scolecida		Lumbrineris sp. Ninoe sp. Phyllodocid sp. Platynereis sp.		Hurley (1964), Knox (1964)		
Eunicida Eunicida Phyllodocida 1 Phyllodocida 1 Phyllodocida 1 Phyllodocida 1 Phyllodocida 1 Phyllodocida 1 Scolecida 1 Scolecida 1 Scolecida 1		Ninoe sp. Phyllodocid sp. Platynereis sp.		Hurley (1964), Knox (1964)		
Phyllodocida Phyllodocida Phyllodocida Phyllodocida Phyllodocida Phyllodocida Sabellida Scolecida Scolecida Scolecida		Phyllodocid sp. Platynereis sp.		Hurley (1964), Knox (1964)		
Phyllodocida Phyllodocida Phyllodocida Phyllodocida Phyllodocida Sabellida Scolecida Scolecida Scolecida		Platynereis sp.		Hurley (1964), Knox (1964)		
Phyllodocida Phyllodocida Phyllodocida Phyllodocida Sabellida Scolecida Scolecida Scolecida				Hurley (1964), Knox (1964)		
Phyllodocida Phyllodocida Phyllodocida Sabellida Scolecida Scolecida Scolecida		Perinereis sp.		Grange (1985b)		
Phyllodocida Phyllodocida Sabellida Scolecida Scolecida Scolecida		Aglaophamus sp.	Aglaophamus maoriana	Hurley (1964), Knox (1964)		
Phyllodocida Sabellida Scolecida Scolecida Scolecida		<i>Glycera</i> sp.	Glycera americana	Hurley (1964), Knox (1964)		
Sabellida Scolecida Scolecida Scolecida		Eupanthalis sp.		Hurley (1964), Knox (1964)		
Scolecida Scolecida Scolecida	eniidae	<i>Myriochele</i> sp.		Hurley (1964), Knox (1964)		
Scolecida Scolecida	Maldanidae	Maldanid sp.		Hurley (1964), Knox (1964)		
Scolecida	Maldanidae	Euclymene sp.		Hurley (1964), Knox (1964)		
	Capitellidae	Notomastus sp.		Hurley (1964), Knox (1964)		
Polychaeta Spionida Spionidae		Pygospio sp.		Hurley (1964), Knox (1964)		
Polychaeta Spionida Spionidae		Prionospio sp.	Prionospio malmgreni	Hurley (1964), Knox (1964)		
Polychaeta Spionida Spionidae	onidae	Spionid sp.		Hurley (1964), Knox (1964)		
Polychaeta Spionida Spionidae		Polydora sp.		Hurley (1964), Knox (1964)		
Polychaeta Terebellida Amphai	Ampharetidae	<i>Melinna</i> sp.		Hurley (1964), Knox (1964)		
Polychaeta Terebellida Cirratul	Cirratulidae	<i>Cirratulus</i> sp.		Hurley (1964), Knox (1964)		
Polychaeta Terebellida Terebel	Terebellidae	<i>Nicolea</i> sp.		Hurley (1964), Knox (1964)		
Polychaeta Terebellida Terebel	Terebellidae	Lysilla sp.		Hurley (1964), Knox (1964)		
Polychaeta Terebellida Pectina	Pectinariidae	Pectinaria sp.		Hurley (1964), Knox (1964)		
Polychaeta Terebellida Terebel	Terebellidae	Terebellid		Hurley (1964), Knox (1964)		
Polychaeta Terebellida Flabelli	Flabelligeridae	<i>Brada</i> sp.		Hurley (1964), Knox (1964)		
Arthropoda						
Malacostraca Amphipoda		Amphipods		Boyle et al. (2001)	Doubtful Sound	
Malacostraca Amphipoda		Unidentified sp. 1		Grange (1985)		
Malacostraca Brachyura Hymen	Hymenosomatidae	Halicarcinus sp.		Grange (1985)		

Table 9:Indeterminate taxa recorded during the desktop review of existing marine species records from Milford Sound and nearbyareas. Also indicated is whether the taxon was subsequently recorded in the Milford Sound port baseline survey (this report).

Phylum & Class	Order	Family	Taxon name	Name as given in literature record ¹	in Reference	Locations recorded if not from Milford Sound itself	Recorded in port survey?
Bacillariophyta							
Bacillariophyceae	Naviculales	Naviculaceae	Navicula sp.		Wood (1964)		
Bacillariophyceae	Thalassiophysales	Catenulaceae	Amphora sp. prob. javanica		Wood (1964)		
Bryozoa							
Gymnolaemata	Cheilostomata	Phidoloporidae	Rhynchozoon sp.	Rhynchozoon larreyi	NIWA (2008)		
Gymnolaemata	Cheilostomata	Candidae	Caberea sp.		NIWA (2008)		
Gymnolaemata	Ctenostomata	Alcyonidiidae	Alcyonidium cf. mytili		NIWA (2008)		
Stenolaemata	Cyclostomata	Tubuliporidae	Idmidronea sp.		NIWA (2008)		
Stenolaemata	Cyclostomata	Tubuliporidae	Idmidronea sp. 2 [gracile]		NIWA (2008)		
Chlorophyta							
Bryopsidophyceae	Bryopsidales	Codiaceae	Codium convolutum		Nelson et al. (2002)		
Bryopsidophyceae	Bryopsidales	Codiaceae	Codium dichotomum		Nelson et al. (2002)	Chalky Inlet, Dusky Sound	
Bryopsidophyceae	Bryopsidales	Codiaceae	Codium dimorphum		Nelson et al. (2002)		
Bryopsidophyceae	Bryopsidales	Codiaceae	Codium fragile		Nelson et al. (2002)	Dusky Sound,	
						Chalky/ Preservation	
Ulvophyceae	Ulvales	Ulvaceae	Enteromorpha sp.		Grange (1985), Nelson et	IIIIel.	
					al. (2002)		
Ulvophyceae	Ulvales	Ulvaceae	Ulva sp.		Grange (1985), Nelson et al. (2002)		Yes
<u>Chordata</u>							
Actinopterygii	Perciformes	Nototheniidae	<i>Notothenia</i> sp (?)		Roberts et al. (2005)		
Actinopterygii	Perciformes	Serranidae	Poyprion spp.		Paul (2005)		
Actinopterygii	Scorpaeniformes	Sebastidae	Helicolenus spp.		NIWA (2008)		
<u>Cnidaria</u>							
Anthozoa	Antipatharia	Antipathidae	Antipathidae				
<u>Echinodermata</u>							
Echinoidea	Temnopleuroida	Temnopleuridae	Pseudechinus sp.		Fell (1964)		
<u>Mollusca</u>							
Bivalvia	Pterioida	Pectinidae	<i>Chlamys</i> sp.		Dell (1964), Hurley (1964)		
Nemertea							
5			Unidentified sp. 1		Grange (1985)		

Hadromerida Latrunculidas Latrunculidas Latrunculidas Latrunculidas Latrunculidas Miller et al. (2001) Foraminiferida Globigerinidas Globigerinidas Globigerinidas Mustanowich (1964) Foraminiferida Globigerinidas Globigerinidas Globigerinidas Mustanowich (1964) Foraminiferida Globigerinidas Globigerinidas Globigerinidas Mustanowich (1964) Foraminiferida Globigerinidas Globigerinidas Buthanowich (1964) Mustanowich (1964) Foraminiferida Elpholidae Diobigerinidas c. clathrata Kustanowich (1964) (1964) Foraminiferida Elpholidae Cribostonolos sp. Kustanowich (1964) (1964) Foraminiferida Elpholidae Cribostonolos sp. Kustanowich (1964) (1964) Foraminiferida Rustanowich (1964) Cribostonolos sc. Kustanowich (1964) (1964) Foraminiferida Butimidae Solidoprinagmius Kustanowich (1964) (1964) Foraminiferida Butimidae Cribostonolos sc. Globigerine sc. Kustanowich (1964)	<u>Phylum</u> & Class	Order	Family	Taxon name	Name as given in literature record	in Reference	Locations recorded if not from Milford Sound itself	Recorded in port survey?
Heatometida Latunoulidae Latunoulida sp., Muller et al. (2001) Foraminferida Gobigerina sp., Kustanowich (1964) Foraminferida Gobigerina sp., Kustanowich (1964) Foraminferida Gobigerina sp., Kustanowich (1964) Foraminferida Barysiphonidae Grobigerina sp., Kustanowich (1964) Foraminferida Barysiphonidae Grobigerina sp., Kustanowich (1964) Foraminferida Elphididae Elphidium aff. advenum Kustanowich (1964) Foraminferida Elphididae Elphidium aff. advenum Kustanowich (1964) Foraminferida Elphidium aff. advenum Kustanowich (1964) 1964) Foraminferida Elphidium aff. advenum Kustanowich (1964) 1964) Foraminferida Haytophragmolidae Cribrostonoidee cf. arassimargo Kustanowich (1964) Foraminferida Bulimina azuleata Cribrostonoidee cf. arassimargo Kustanowich (1964) Foraminferida Bulimina azuleata Kustanowich (1964) 1964) Foraminferida Bulimina azuleata Kustanowich (1964) 1964)	Porifera							
ForaminiferidaGlobigerindaeGlobigerindaeGlobigerindaeKustanowich (1964)ForaminiferidaGavelinnelidaeGyoridina sp.Kustanowich (1964)ForaminiferidaGavelinnelidaeGyoridina sp.Kustanowich (1964)ForaminiferidaGlobigerindae p.Kustanowich (1964)ForaminiferidaGlobigerindae p.Kustanowich (1964)ForaminiferidaElphididaeGlobigerinda sp.Kustanowich (1964)ForaminiferidaElphididaeElphididaeKustanowich (1964)ForaminiferidaElphididaeElphididaeKustanowich (1964)ForaminiferidaElphididaeCribrostonori cr shKustanowich (1964)ForaminiferidaElphididaeCribrostonori cr shKustanowich (1964)ForaminiferidaHaplophragmolidaeCribrostonori cr shKustanowich (1964)ForaminiferidaBulimina marginat f. acuelataAlveolophragmiumCriForaminiferidaBulimina marginat f. acuelataBulimina aculaataKustanowich (1964)ForaminiferidaMilolidaeCribrostonorides cf. <i>Jeffreysi</i> Cribristonorides (1964)ForaminiferidaBuliminidaeBulimina marginat f. acuelataKustanowich (1964)ForaminiferidaBuliminidaeCribrostonorides cf. <i>Jeffreysi</i> Kustanowich (1964)ForaminiferidaBuliminidaeCribrostonorides cf. <i>Jeffreysi</i> Kustanowich (1964)ForaminiferidaBuliminidaeCrominiferidaKustanowich (1964)ForaminiferidaBuliminidaeCrominiferidaKustanowich (1964) <tr< td=""><td>Demospongiae</td><td>Hadromerida</td><td>Latrunculiidae</td><td>Latrunculia spp.</td><td></td><td>Miller et al. (2001)</td><td>Doubtful Sound</td><td></td></tr<>	Demospongiae	Hadromerida	Latrunculiidae	Latrunculia spp.		Miller et al. (2001)	Doubtful Sound	
Foraminiferida Globigerinidae Globigerinia sp. A. Kustanowich (1964) Foraminiferida Gaviliniae Gaviliniae Kustanowich (1964) Foraminiferida Galobigerinia sp. B. Kustanowich (1964) Foraminiferida Globigerinia sp. B. Kustanowich (1964) Foraminiferida Globigerinia sp. B. Kustanowich (1964) Foraminiferida Globigerinia sp. B. Kustanowich (1964) Foraminiferida Elphididae Kustanowich (1964) Foraminiferida Elphididae Kustanowich (1964) Foraminiferida Robinidae Kustanowich (1964) Foraminiferida Robinidae Kustanowich (1964) Foraminiferida Robinidae Cribrostonorios c. crassimargo Kustanowich (1964) Foraminiferida Bulimina aft advenum Kustanowich (1964) Foraminiferida Foraminiferida Bulimina aft advenum Kustanowich (1964) Foraminiferida Foraminiferida Bulimina aft advenum Kustanowich (1964) Foraminiferida Kustanowich (1964) Foraminiferida Bulimini araculeata Bulimina aculeata	Protozoa							
Foraminiferida Gavellinellidae Gyroidina sp. Kustanowich (1964) Foraminiferida Bathysiphonidae Rhabdammina sp. Kustanowich (1964) Foraminiferida Bologerinases Nactordatiae Kustanowich (1964) Foraminiferida Elphididae Kustanowich (1964) Kustanowich (1964) Foraminiferida Elphididae Elphididae Kustanowich (1964) Foraminiferida Elphididae Elphididae Kustanowich (1964) Foraminiferida Elphididae Elphididae Kustanowich (1964) Foraminiferida Elphididae Elphidionolos sp. Kustanowich (1964) Foraminiferida Haplophragmolidae Cribrostomoles cf. assimargo Kustanowich (1964) Foraminiferida Haplophragmolidae Cribrostomoles cf. assimargo Kustanowich (1964) Foraminiferida Haplophragmolidae Cribrostomoles cf. assimargo Kustanowich (1964) Foraminiferida Bulimina azuleata Kustanowich (1964) Foraminiferida Kustanowich (1964) Foraminiferida Globiogerinidae Cribrostomoles cf. arubeata Kustanowich (1964)	Granuloreticulosea	Foraminiferida	Globigerinidae	Globigerina sp. A.		Kustanowich (1964)		
ForaminferidaBarthysiphonidaeRhabdammina sp.Kustanowich (1964)ForaminferidaGlobgenidaeGlobgenidaeKustanowich (1964)ForaminferidaElphididae <i>Elphidiana</i> sp. B.Kustanowich (1964)ForaminferidaElphididae <i>Elphidiana</i> sp. B.Kustanowich (1964)ForaminferidaElphidiae <i>Elphidianoniona</i> Kustanowich (1964)ForaminferidaElphidiae <i>EnphidiaeKustanowich</i> (1964)ForaminferidaElphidiae <i>Cribrostonoides ci. crassimargo</i> AlveolophingmiumKustanowich (1964)ForaminferidaHaplophragmolidae <i>Cribrostonoides ci. jeffreysii</i> Kustanowich (1964)ForaminferidaBulimindae <i>Cribrostonoides ci. jeffreysii</i> Kustanowich (1964)ForaminferidaBulimindae <i>Kustanowich</i> (1964)(1964)ForaminferidaBulimindae <i>Cribrostonoides ci. jeffreysii</i> Kustanowich (1964)ForaminferidaBulimindae <i>Kustanowich</i> (1964)(1964)ForaminferidaGlobgerina ci. subcretaceaKustanowich (1964)ForaminferidaCologerina ci. subcretaceaKustanowich (19	Granuloreticulosea	Foraminiferida	Gavellinellidae	Gyroidina sp.		Kustanowich (1964)		
Foraminferida Giobigerinidae Giobigerinidae Giobigerinidae Kustanowich (1964) Foraminferida Elphididae <i>Elphidiononion sp.</i> Kustanowich (1964) Foraminferida Elphididae <i>Elphidiononion sp.</i> Kustanowich (1964) Foraminferida Elphididae <i>Elphidiononion sp.</i> Kustanowich (1964) Foraminferida Elphididae <i>Cubrostonolos sc. Cassimargo</i> Kustanowich (1964) Foraminferida Haplophnagmoididae <i>Cnbrostonolos sc. Crassimargo</i> Kustanowich (1964) Foraminferida Haplophnagmoididae <i>Cnbrostonolos sc. Crassimargo</i> Kustanowich (1964) Foraminferida Bulimina marginate t. aculeata Bulimina aculeata Kustanowich (1964) Foraminferida Globigerinidae <i>Cribrostonolos sc. Kustanowich</i> (1964) Foraminferida	Granuloreticulosea	Foraminiferida	Bathysiphonidae	Rhabdammina sp.		Kustanowich (1964)		
Foraminferida Elphidiae Notoctala ct. clathrata Kustanowich (1964) Foraminferida Elphidiae Elphidionorion sp. Kustanowich (1964) Foraminferida Elphidiae Elphidionorion sp. Kustanowich (1964) Foraminferida Elphidiae Elphidiae Kustanowich (1964) Foraminferida Rosalina sp. Rosalina sp. Kustanowich (1964) Foraminferida Haplophragmolidae Cribrostomoldes ct. rassimargo Alveolophragmium Foraminferida Bulimina aculeata Bulimina aculeata Bulimina aculeata Kustanowich (1964) Foraminferida Miloldae Cribrostomoldes ct. jeffreysii Cristiomoldes ct. jeffreysel Kustanowich (1964) Foraminferida Bulimina aculeata Bulimina aculeata Bulimina aculeata Kustanowich (1964) Foraminferida Cyclamminiae sp. Cristiomoles ct. jeffreysel Kustanowich (1964) Foraminferida Gobigerina et. subcretacea Bulimina aculeata Kustanowich (1964) Foraminferida Cyclamminiae sp. Cristionovich (1964) Foraminferida Bulimina aculeata Foraminferid	Granuloreticulosea	Foraminiferida	Globigerinidae	Globigerina sp. B.		Kustanowich (1964)		
Foraminiferida Elphidiononion sp. Kustanowich (1964) Foraminiferida Elphidium aff. advenum Kustanowich (1964) Foraminiferida Elphidium aff. advenum Kustanowich (1964) Foraminiferida Rosalina sp. Rustanowich (1964) Foraminiferida Haplophragmoldidae Cribrostomoldes cf. jeffreysii Kustanowich (1964) Foraminiferida Buliminaee Rustanowich (1964) Rustanowich (1964) Foraminiferida Buliminaee Cribrostomoldes cf. jeffreysii Kustanowich (1964) Foraminiferida Bulimina aculeata Rustanowich (1964) Rustanowich (1964) Foraminiferida Ruinidae Cribrostomolaes cf. jeffreysii Kustanowich (1964) Foraminiferida Ruinidae Rustanowich (1964) Rustanowich (1964) Foraminiferida Cyclammina sp. Rustanowich (1964) Rustanowich (1964) Foraminiferida Cyclammina sp. Kustanowich (1964) Rustanowich (1964) Foraminiferida Cyclammina sp. Kustanowich (1964) Rustanowich (1964) Foraminiferida Rustanowich (1964) Rustanowich (1964) Rustano	Granuloreticulosea	Foraminiferida	Elphidiidae	Notorotalia cf. clathrata		Kustanowich (1964)		
Foraminiferida Elphidium aff. advenum Kustanowich (1964) Foraminiferida Rosalina sp. Kustanowich (1964) Foraminiferida Rosalina sp. Rosalina sp. Foraminiferida Rosalina sp. Rosalina sp. Foraminiferida Haplophragmoididae Cribrostomoides cf. crassimargo Alveolophragmum Foraminiferida Haplophragmoididae Cribrostomoides cf. jeffreysii Kustanowich (1964) Foraminiferida Bulimina araginate f. aculeata Bulimina aculeata Kustanowich (1964) Foraminiferida Bulimina araginate f. aculeata Bulimina aculeata Kustanowich (1964) Foraminiferida Globigerinidae Sabrokia cf. earlandi Kustanowich (1964) Foraminiferida Globigerinidae Sabrokia cf. earlandi Kustanowich (1964) Foraminiferida Globigerinidae Sabrokia cf. earlandi Kustanowich (1964) Foraminiferida Glanulinidae Sabrokia cf. earlandi Kustanowich (1964) Foraminiferida Coprimidae Sacaminiferida Kustanowich (1964) Foraminiferida Cophotina cf. fanoti Kustanowich (1964) </td <td>Granuloreticulosea</td> <td>Foraminiferida</td> <td>Elphidiidae</td> <td>Elphidiononion sp.</td> <td></td> <td>Kustanowich (1964)</td> <td></td> <td></td>	Granuloreticulosea	Foraminiferida	Elphidiidae	Elphidiononion sp.		Kustanowich (1964)		
ForaminiferidaRosalindaeRosalina sp.KustanowichForaminiferidaHaplophragmoididaeCribrostonnoides cf. crassimargoAlveolophragmiumLigstForaminiferidaHaplophragmoididaeCribrostonnoides cf. crassimargoAlveolophragmiumCribrostonnoices (f. 1964)ForaminiferidaHaplophragmoididaeCribrostonnoides cf. jeffreysiiCribrostonnoides cf. jeffreyseiKustanowich (1964)ForaminiferidaBulimini amarginata f. aculeataBulimina aculeataKustanowich (1964)ForaminiferidaGlobigerinidaeGlobigerina cf. subcretaceaBulimina aculeataKustanowich (1964)ForaminiferidaGlobigerinidaeColina sp.Seabrookia cf. earlandiKustanowich (1964)ForaminiferidaEllipsolagenidaeColina sp.Seabrookia cf. earlandiKustanowich (1964)ForaminiferidaColona sp.Seabrookia cf. earlandiHauerinelia aff. inconstansKustanowich (1964)ForaminiferidaColina sp.Conculua aff. inconstansKustanowich (1964)ForaminiferidaRobertinidaeConculua aff. inconstansKustanowich (1964)ForaminiferidaSprillina aff. uberculataProteonina cf. diffugiformisKustanowich (1964)ForaminiferidaSprillina aff. inconstansKustanowich (1964)ForaminiferidaSprillina aff. inconstansKustanowich (1964)ForaminiferidaSprillina aff. uberculataProteonina cf. diffugiformisForaminiferidaSprillina aff. uberculataProteonina cf. diffugiformisForaminiferidaSprillina aff. ubercu	Granuloreticulosea	Foraminiferida	Elphidiidae	Elphidium aff. advenum		Kustanowich (1964)		
ForaminiferidaHaplophragmoididaeCribrostomoides cf. crassimargoAlveolophragmiumcf.ForaminiferidaHaplophragmoididaeCribrostomoides cf. jeffreyseicrassimargocrassimargoForaminiferidaBulimina marginata f. aculeataBulimina aculeatacribrostomoides cf. jeffreyseiForaminiferidaBulimina marginata f. aculeataBulimina aculeataForaminiferidaMiloidaePyrgo aff. ezocribrostomoides cf. jeffreyseiForaminiferidaGlobigerinidaeAlveolophragmium sp. BBulimina aculeataForaminiferidaGlobigerinidaeGlobigerina cf. subcretaceaBulimina aculeataForaminiferidaGlobigerinidaeGlobigerina cf. subcretaceaAlveolophragmium sp. BForaminiferidaGlobigerinidaeColina sp.Alveolophragmium sp. BForaminiferidaCalaminidaeColina sp.Alveolophragmium sp.ForaminiferidaColina sp.Colina sp.AlveolophragmiumForaminiferidaRosalinidaeCorruloculina aff. inconstansHauerinella aff. inconstansForaminiferidaSolina eff. bumiumForaminiferidaSpirilina aff. inconstansForaminiferidaSpirilina aff. inconstansProteonina cf. difflugiformisForaminiferidaSpirilina aff. inconstansProteonina cf. difflugiformisForaminiferidaSpirilina aff. inconstansProteonina cf. difflugiformisForaminiferidaSpirilina aff. inconstansProteonina cf. difflugiformisForaminiferidaSpirilina aff. inconstansProteonina cf. difflugiformis <td< td=""><td>Granuloreticulosea</td><td>Foraminiferida</td><td>Rosalinidae</td><td>Rosalina sp.</td><td></td><td>Kustanowich (1964), Hayward et al. (1999)</td><td></td><td></td></td<>	Granuloreticulosea	Foraminiferida	Rosalinidae	Rosalina sp.		Kustanowich (1964), Hayward et al. (1999)		
ForaminiferidaHaplophragmolidaeCribrostomoides cf. jeffreyseiForaminiferidaBulimina marginata f. aculeataBulimina aculeataForaminiferidaMiliolidaePyrgo aff. ezoBulimina aculeataForaminiferidaMiliolidaePyrgo aff. ezoBulimina aculeataForaminiferidaMiliolidaeAlveolophragmun sp. BBulimina aculeataForaminiferidaGlobigerinidaeGlobigerina cf. subcretaceaPyrgo aff. ezoForaminiferidaGlobigerinidaeGlobigerina cf. subcretaceaPyrgo aff. ezoForaminiferidaGlandulinidaeSeabrookia cf. earlandiPyrgo aff. ezoForaminiferidaBulimina aculeataNoolophragmun sp. BPyrgo aff. ezoForaminiferidaCyclammina sp.PoraminiferidaPyrgolagenidaeForaminiferidaCyclammina sp.PoraminiferidaPyrgonina sf.ForaminiferidaRosalina df. inconstansHauerinella aff. inconstansForaminiferidaSphthalmididaeCornuloculina aff. tuberculataProteonina cf. diffugiformisForaminiferidaSpirillina aff. tuberculataProteonina cf. diffugiformisForaminiferida <t< td=""><td>Granuloreticulosea</td><td>Foraminiferida</td><td>Haplophragmoididae</td><td>Cribrostomoides cf. crassimargo</td><td></td><td>Kustanowich (1964)</td><td></td><td></td></t<>	Granuloreticulosea	Foraminiferida	Haplophragmoididae	Cribrostomoides cf. crassimargo		Kustanowich (1964)		
ForaminiferidaBuliminateBulimina aculeataForaminiferidaMiliolidaePyrgo aff. ezoBulimina aculeataForaminiferidaMiliolidaePyrgo aff. ezoBulimina aculeataForaminiferidaCyclamminidaeAlveolophragmium sp. BEoraminiferidaForaminiferidaGlobigerina cf. subcretaceaAlveolophragmium sp. BForaminiferidaGlobigerina cf. subcretaceaEoraminiferidaForaminiferidaGlobigerina cf. subcretaceaEoraminiferidaForaminiferidaEllipsolagenidaeOolina sp.ForaminiferidaEllipsolagenidaeCyclammina sp.ForaminiferidaRosalinidaeCyclammina sp.ForaminiferidaRosalinidaeCyclammina sp.ForaminiferidaRobertinidaeCornuloculina aff. inconstansForaminiferidaSprillina aff. inconstansHauerinella aff. inconstansForaminiferidaSprillina aff. uberculataProteonina cf. difflugiformisForaminiferidaSprillina aff. uberculataProteonina cf. difflugiformisForaminiferidaSprillina aff. LaevigataInconstansForaminiferidaSprillina aff. laevigataEoraminiferidaForaminiferidaCassidulinidaeSprillina aff. laevigataForaminiferidaCassidulinidaeSprillina aff. laevigataForaminiferidaTextularia aff. laevigataForaminiferidaForaminiferidaSprillina aff. laevigataInconstansForaminiferidaTextularia cf. tenuissimaForaminiferidaForaminiferidaSprillina cf. tenuissina	Granuloreticulosea	Foraminiferida	Haplophragmoididae	Cribrostomoides cf. jeffreysii	Cribrstomoides cf. jeffreysei	Kustanowich (1964)		
ForaminiferidaMilolidaePyrgo aff. ezoForaminiferidaCyclamminidaePyrgo aff. ezoForaminiferidaCyclamminidaeAlveolophragmium sp. BForaminiferidaGlobigerina cf. subcretaceaAlveolophragmium sp. BForaminiferidaGlobigerina cf. subcretaceaAlveolophragmium sp. BForaminiferidaGlandulinidaeSeabrookia cf. earlandiForaminiferidaEllipsolagenidaeOolina sp.ForaminiferidaCyclammina aff. subcretaceaHauerinella aff. inconstansForaminiferidaOphthalmidiaeCyclammina aff. inconstansForaminiferidaRobertiniodes cf. bradyiHauerinella aff. inconstansForaminiferidaRobertiniodes cf. brandyiProteonina cf. difflugiformisForaminiferidaSocamminidaeLagenammina cf. difflugiformisForaminiferidaSprillina aff. uberculataProteonina cf. difflugiformisForaminiferidaSprillina aff. tuberculataProteonina cf. difflugiformisForaminiferidaTextulariidaeSprinlina aff. aberculataForaminiferidaTextulariidaeSprinlina aff. aberculataForaminiferidaTextulariidaeSprinlina aff. aberculataForaminiferidaTextulariidaeSprinlina aff. aberculataForaminiferidaTextulariidaeSprinlina aff. aberculataForaminiferidaTextularii aff. mestayeraeForaminiferidaForaminiferidaTextulariidaeSiphotextularia aff. mestayeraeForaminiferidaTextulariidaeTextularia aff. tenuissimaForaminiferida	Granuloreticulosea	Foraminiferida	Buliminidae	Bulimina marginata f. aculeata	Bulimina aculeata	Kustanowich (1964)		
ForaminiferidaCyclamminidaeAlveolophragmium sp. BForaminiferidaGlobigerinidaeGlobigerina cf. subcretaceaImage: Seabrookia cf. earlandiForaminiferidaGlandulinidaeSeabrookia cf. earlandiImage: Seabrookia cf. earlandiForaminiferidaBlipsolagenidaeColina sp.Image: Seabrookia cf. earlandiForaminiferidaEllipsolagenidaeColina sp.Image: Seabrookia cf. earlandiForaminiferidaEllipsolagenidaeColina sp.Image: Seabrookia cf. earlandiForaminiferidaCyclammina fr. inconstansImage: Almenina aff. inconstansForaminiferidaOphthalmididaeCornuloculina aff. inconstansImage: Almenina aff. inconstansForaminiferidaSoraminidaeCornuloculina aff. inconstansImage: Almenina aff. inconstansForaminiferidaSprillina aff. tuberculataProteonina cf. difflugiformisForaminiferidaSprillina aff. tuberculataProteonina cf. difflugiformisForaminiferidaSprillina aff. tuberculataImage: Almenina aff. inconstansForaminiferidaSprillina aff. tuberculataImage: Almenina aff. inconstansForaminiferidaSprillina aff. tuberculataImage: Almenina aff. inconstansForaminiferidaTextularia aff. aff. aff.Image: Almenina aff. inconstansForaminiferidaSprillina aff. tuberculataImage: Almenina aff. inconstansForaminiferidaSprillina aff. tuberculataImage: Almenina aff. inconstansForaminiferidaTextularia aff. aff.Image: Almenina aff. inconstansForaminiferidaTe	Granuloreticulosea	Foraminiferida	Miliolidae	<i>Pyrgo</i> aff. ezo		Kustanowich (1964)		
ForaminiferidaGlobigerina cf. subcretaceaImage: SubcretaceaImage: SubcretaceaForaminiferidaGlandulinidaeSeabrookia cf. earlandiImage: Seabrookia cf. earlandiImage: Seabrookia cf. earlandiForaminiferidaBlipsolagenidaeSeabrookia cf. earlandiImage: Seabrookia cf. earlandiImage: Seabrookia cf. earlandiForaminiferidaCyclammina sp.Cyclammina sp.Image: Seabrookia cf. badyiImage: Seabrookia cf. earlandiForaminiferidaCyclammina sp.Cyclammina aff. inconstansImage: RobertinoidaeImage: Seabrookia cf. bumilumForaminiferidaOphthalmididaeCornuloculina aff. inconstansImage: RobertinoidaeImage: RobertinoidaeForaminiferidaSportlinidaeLagenammina cf. difflugiformisProteonina cf. difflugiformisForaminiferidaSpirillina aff. tuberculataProteonina cf. difflugiformisForaminiferidaTextulariidaeSpirillina aff. tuberculataForaminiferidaTextularia aff. tuberculataImage: Robi comminitariaForaminiferidaTextularia aff. tuberculataImage: Robi comminitariaForaminiferidaTextularia aff. tuberculata	Granuloreticulosea	Foraminiferida	Cyclamminidae	Alveolophragmium sp. B		Kustanowich (1964)		
ForaminiferidaGlandulinidaeSeabrookia cf. earlandiImage: ComminiferidaCandiniferidaCandiniferidaCandiniferidaColina sp.ForaminiferidaEllipsolagenidaeOolina sp.Covlammina sp.EllipsolagenidaeCovlammina sp.ForaminiferidaCyclammindaeCyclammina sp.EllipsolagenidaeCoraminiferidaEllipsolagenidaeForaminiferidaCyclammina sf.Cyclammina sf.Image: Corrulo stansHauerinella aff. inconstansForaminiferidaRobertinidaeCornuloculina aff. inconstansHauerinella aff. inconstansForaminiferidaRobertinidaeLagenammina cf. difflugiformisProteonina cf. difflugiformisForaminiferidaSpirillinadeSpirillina aff. uberculataProteonina cf. difflugiformisForaminiferidaSpirillinadeSpirillina aff. uberculataProteonina cf. difflugiformisForaminiferidaSpirillinadeSpirillina aff. uberculataProteonina cf. difflugiformisForaminiferidaTextulariidaeSpirillina aff. uberculataEroteonina cf. difflugiformisForaminiferidaTextulariidaeSpirillina aff. uberculataEroteonina cf. difflugiformisForaminiferidaTextulariidaeSpirillina aff. uberculataEroteonina cf. difflugiformisForaminiferidaTextulariidaeSpirillina aff. uberculataEroteonina cf. difflugiformisForaminiferidaTextulariidaeSpirillina aff. laevigataEroteonina cf. difflugiformisForaminiferidaTextulariidaeTextularia aff. laevigataEroteonina cf. difflugiformis	Granuloreticulosea	Foraminiferida	Globigerinidae	Globigerina cf. subcretacea		Kustanowich (1964)		
ForaminiferidaEllipsolagenidaeOolina sp.ForaminiferidaCyclamminaeCyclammina sp.ForaminiferidaCyclamminaeCyclammina sp.ForaminiferidaRosalindaeCyclammina sp.ForaminiferidaRosalindaeCyclammina sf. bradyiForaminiferidaOphthalmididaeCornuloculina aff. inconstansForaminiferidaRobertinidaeCornuloculina aff. inconstansForaminiferidaRobertinidaeCornuloculina aff. inconstansForaminiferidaRobertinidaeRobertinidaeForaminiferidaSaccammindaeLagenammina cf. difflugiformisForaminiferidaSpirillina aff. uberculataProteonina cf. difflugiformisForaminiferidaSpirillina ef. viviparaProteonina cf. difflugiformisForaminiferidaSpirillina ef. viviparaProteonina cf. difflugiformisForaminiferidaCassidulina aff. uberculataProteonina cf. difflugiformisForaminiferidaSpirillina ef. viviparaProteonina cf. difflugiformisForaminiferidaSpirillina ef. viviparaProteonina cf. difflugiformisForaminiferidaSpirillina ef. viviparaProteonina cf. difflugiformisForaminiferidaTextulariidaeSiphotextularia aff. uberculataForaminiferidaTextulariidaeCassidulina aff. laevigataForaminiferidaTextulariidaeTextularia sp.ForaminiferidaTextularia sp.Proteonina cf. tenuissimaForaminiferidaTextularia sp.Proteonina cf. tenuissimaForaminiferidaTextularia sp.Pro	Granuloreticulosea	Foraminiferida	Glandulinidae	Seabrookia cf. earlandi		Kustanowich (1964)		
ForaminiferidaCyclammindaeCyclammina sp.ForaminiferidaRosalina deRosalina cf. bradyiHauerinella aff. inconstansForaminiferidaOphthalmididaeRosalina cf. bradyiHauerinella aff. inconstansForaminiferidaOphthalmididaeCornuloculina aff. inconstansHauerinella aff. inconstansForaminiferidaRobertinidaeRobertinidaes cf. pumilumProteonina cf. difflugiformisForaminiferidaSaccamminidaeLagenammina cf. difflugiformisProteonina cf. difflugiformisForaminiferidaSpirillina aff. uberculataProteonina cf. difflugiformisForaminiferidaTextulariidaeSiphotextularia aff. mestayeraeForaminiferidaTextulariidaeTextularia aff. aevigataForaminiferidaTextulariidaeTextularia sp.ForaminiferidaTextulariidaeTextularia sp.	Granuloreticulosea	Foraminiferida	Ellipsolagenidae	Oolina sp.		Kustanowich (1964)		
ForaminiferidaRosalinidaeRosalina cf. bradyiForaminiferidaOphthalmididaeCorruloculina aff. inconstansHauerinella aff. inconstansForaminiferidaRobertinidaeCorruloculina aff. inconstansHauerinella aff. inconstansForaminiferidaRobertinidaeRobertinoides cf. pumilumProteonina cf. difflugiformisForaminiferidaSpirillina aff. tuberculataProteonina cf. difflugiformisForaminiferidaTextulariidaeSpirillina aff. tuberculataForaminiferidaTextulariidaeSpirillina aff. tuberculataForaminiferidaTextulariidaeSpirillina aff. tuberculataForaminiferidaTextulariidaeSpirillina aff. tuberculataForaminiferidaTextulariidaeTextularia aff. tuberculataForaminiferidaTextulariidaeTextularia aff. tuberculataForaminiferidaTextulariidaeTextularia aff. tuberculataForaminiferidaTextulariidaeForaminiferidaForaminiferidaTextulariidaeTextularia spi.ForaminiferidaTextulariidaeTextularia spi.ForaminiferidaTextularia spi.Textularia spi. <td>Granuloreticulosea</td> <td>Foraminiferida</td> <td>Cyclamminidae</td> <td>Cyclammina sp.</td> <td></td> <td>Kustanowich (1964)</td> <td></td> <td></td>	Granuloreticulosea	Foraminiferida	Cyclamminidae	Cyclammina sp.		Kustanowich (1964)		
ForaminiferidaOphthalmididaeCornuloculina aff. inconstansHauerinella aff. inconstansForaminiferidaRobertinidaeRobertinoides cf. pumilumHauerinella aff. inconstansForaminiferidaSaccamminidaeLagenammina cf. difflugiformisProteonina cf. difflugiformisForaminiferidaSpirillinidaeSpirillina aff. tuberculataProteonina cf. difflugiformisForaminiferidaSpirillinidaeSpirillina aff. tuberculataProteonina cf. difflugiformisForaminiferidaSpirillina cf. viviparaSpirillina cf. viviparaImate cf. viviparaForaminiferidaTextulariidaeSiphotextularia aff. mestayeraeImate cf. sindataForaminiferidaTextulariidaeCassidulina aff. laevigataImate cf. tenuissimaForaminiferidaTextulariidaeTextularia cf. tenuissimaImate cf. tenuissimaForaminiferidaTextulariidaeTextularia sp.Imate cf. tenuissimaForaminiferidaTextulariidaeTextularia sp.<	Granuloreticulosea	Foraminiferida	Rosalinidae	Rosalina cf. bradyi		Kustanowich (1964)		
ForaminiferidaRobertinidaeRobertinoides cf. pumilumForaminiferidaSaccamminidaeLagenammina cf. difflugiformisProteonina cf. difflugiformisForaminiferidaSpirillinadeSpirillina aff. tuberculataProteonina cf. difflugiformisForaminiferidaSpirillinadeSpirillina eff. viviparaProteonina cf. difflugiformisForaminiferidaSpirillinadeSpirillina eff. viviparaProteonina cf. difflugiformisForaminiferidaTextulariidaeSpirillina eff. viviparaProteonina eff.ForaminiferidaTextulariidaeSiphotextularia aff. mestayeraeProteoninaForaminiferidaTextulariidaeTextularia aff. laevigataProteoninaForaminiferidaTextulariidaeTextularia eff. tenuissimaProteoninaForaminiferidaTextulariidaeTextularia sp.Proteonina	Granuloreticulosea	Foraminiferida	Ophthalmidiidae	Cornuloculina aff. inconstans	Hauerinella aff. inconstans	Kustanowich (1964)		
ForaminiferidaSaccamminidaeLagenammina cf. difflugiformisProteonina cf. difflugiformisForaminiferidaSpirillinidaeSpirillina aff. tuberculataProteonina cf. difflugiformisForaminiferidaSpirillinidaeSpirillina aff. tuberculataImage: Spirillina cf. viviparaForaminiferidaTextulariidaeSpirillina cf. viviparaImage: Spirillina cf. viviparaForaminiferidaTextulariidaeSiphotextularia aff. mestayeraeImage: Spirillina cf. viviparaForaminiferidaCassidulinidaeCassidulina aff. laevigataImage: Spirillina cf. tenuissimaForaminiferidaTextulariidaeTextularia cf. tenuissimaImage: Spirillina cf. tenuissimaForaminiferidaTextulariidaeTextularia sp.Image: Spirillina cf. tenuissima	Granuloreticulosea	Foraminiferida	Robertinidae	Robertinoides cf. pumilum		Kustanowich (1964)		
ForaminiferidaSpirillina aff. tuberculataForaminiferidaSpirillina cf. viviparaForaminiferidaSpirillina cf. viviparaForaminiferidaTextulariidaeForaminiferidaCassidulinidaeForaminiferidaTextulariidae<	Granuloreticulosea	Foraminiferida	Saccamminidae	Lagenammina cf. difflugiformis	Proteonina cf. difflugiformis	Kustanowich (1964)		
ForaminiferidaSpirillina cf. viviparaForaminiferidaTextulariidaeSiphotextularia aff. mestayeraeForaminiferidaCassidulinidaeCassidulina aff. laevigataForaminiferidaTextulariidaeTextularia cf. tenuissimaForaminiferidaTextulariidaeTextularia sp.	Granuloreticulosea	Foraminiferida	Spirillinidae	Spirillina aff. tuberculata		Kustanowich (1964)		
ForaminiferidaTextulariidaeSiphotextularia aff. mestayeraeForaminiferidaCassidulinidaeCassidulina aff. laevigataForaminiferidaTextulariidaeTextularia cf. tenuissimaForaminiferidaTextulariidaeTextularia sp.	Granuloreticulosea	Foraminiferida	Spirillinidae	Spirillina cf. vivipara		Kustanowich (1964)		
ForaminiferidaCassidulinidaeCassidulina aff. laevigataForaminiferidaTextulariidaeTextularia cf. tenuissimaForaminiferidaTextulariidaeTextularia sp.	Granuloreticulosea	Foraminiferida	Textulariidae	Siphotextularia aff. mestayerae		Kustanowich (1964)		
ForaminiferidaTextulariaTextulariaForaminiferidaTextularia sp.	Granuloreticulosea	Foraminiferida	Cassidulinidae	Cassidulina aff. laevigata		Kustanowich (1964)		
Foraminiferida Textulariidae <i>Textularia</i> sp.	Granuloreticulosea	Foraminiferida	Textulariidae	Textularia cf. tenuissima		Kustanowich (1964)		
	Granuloreticulosea	Foraminiferida	Textulariidae	<i>Textularia</i> sp.		Kustanowich (1964)		
Foraminiferida Trochamminidae <i>Trochammin</i> a cf. a <i>strifica</i>	Granuloreticulosea	Foraminiferida	Trochamminidae	Trochammina cf. astrifica		Kustanowich (1964)		

Recorded in port survey?																		
Locations recorded if not from Milford Sound itself																		
in Reference	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	cf. Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)	Kustanowich (1964)
Name as given in literature record								Discopulvinulina cf bertheloti										
Taxon name	<i>Trochammina</i> sp.	Uvigerina cf. peregrina	Cibicides large sp.	Pateoris cf. hauerinoides	Pileolina cf. radiata	Gavelinopsis aff. lobatulus	Discorbis (=Gavelinopsis) spp.	Discorbinella cf. bertheloti	Cornuspira cf. involvens	Dyocibicides sp. B	Siphonaperta sp. A	Siphonaperta sp. B	Dyocibicides sp. A	Frondicularia cf. californica	Cassidulina sp.	Ehrenbergina sp.	Ceratobulimina sp.	Cibicides sp. aff. marlboroughensis
Family	Trochamminidae	Uvigerinidae	Cibicididae	Miliolidae	Glabratellidae	Discorbidae	Discorbidae	Discorbidae	Cornuspiridae	Cibicididae	Miliolidae	Miliolidae	Cibicididae	Nodosariidae	Cassidulinidae	Cassidulinidae	Ceratobuliminidae	Cibicididae
Order	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida	Foraminiferida
<u>Phylum</u> & Class	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea	Granuloreticulosea

¹ If the taxon name given in the cited literature record has since been synonymised, this column contains the name as it was given in the literature record. The column to the left ("Taxon name") contains the current valid name.

The Chapman and Carlton (1994) criteria (C1 – C9) that each NIS and C1 taxon from the Milford Sound desktop review and port survey meets. Criteria were assigned following expert advice or are based on those give by Cranfield et al. (1998). Table 10:

										C8: Are dispersal	
										mechanisms of the species inadequate to reach	
						4 4				and, ive	ú
			CI: nas une species suddenly appeared locally where	C3: Has the	C3: Is the species' distribution	C4: Is une species associated with, or	C5: Is the species prevalent in, or	C6: Is the species' distribution	C7: Does the species	dispersal in ocean currents unlikely to bridre	isolated irom the genetically and morphologically most similar
Species	Biosecurity	Source	it has not been found	species spread	with human mechanisms	on, other introduced		restricted	nct Jwide	ocean gaps to reach	here
Champia affinis (Alga)	oratus NIS	Desktop review		, fillianhasons		species		Yes	Yes	Yes	Yes
Polysiphonia brodiei (Alga)	NIS	Desktop review	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
Polysiphonia constricta (Alga)	NIS	Desktop review			Yes			Yes		Yes	
Polysiphonia sertularioides (Alga)	NIS	Desktop review	Yes	Yes				Yes	Yes	Yes	Yes
Polysiphonia subtilissima (Alga)	NIS	Desktop review	Yes	Yes			Yes	Yes	Yes	Yes	Yes
Sargassum verruculosum (Alga)	SIN	Desktop review			Yes			Yes	Yes	Yes	
<i>Didemnum</i> sp. (Ascidian)	C1	Port survey	Unable to assess	Unable to assess criteria for the genus as a whole	nus as a whole.						
<i>Diplosoma velatum</i> (Ascidian)	C1	Port survey								Yes	Yes

Milford Sound: first baseline survey for non-indigenous marine species • 83

Don't know	Don't think so.			Yes	Probably; don't know enough about interocean genetics	Probably; don't know enough about interocean genetics
				Yes	Unlikely (short-lived viviparous larvae)	Unlikely (oviparous, creeping larvae, and buds)
Yes					Yes	Yes
				Yes		
				Yes		
Don't know	Sometimes, not entirely.					
Probably	Not necessesarily. Can attach to seaweeds. Nothing to preclude drifting throughout southern oceans.			Yes		? Likely
	Unsure; inadequate records to know about absences, let alone presences.				? Early collections in these locations were not at all comprehensive and the species could have been	? Early collections in these locations were not at all comprehensive and the species could have been overlooked.
		Yes	Yes	Yes	? Early collections in these locations were not at all comprehensive and the species could have been overlooked.	? Early collections in these locations were not at all comprehensive and the species could have been overlooked.
Port survey	Desktop review & port survey	Port survey	Desktop review	Desktop review & port survey	Desktop review	Port survey
C1	5	C1	C1	C1	5	5
<i>Orthopyxis integra</i> (Hydroid)	Scruparia ambigua (Bryozoan)	Alexandrium tamarense (Dinoflagellate)	Heterosigma akashiwo (Raphidophyte alga)	Leucosolenia cf. <i>discoveryi</i> (Sponge)	Leucosolenia cf. <i>challengeri</i> (Sponge)	Tethya bergquistae (Sponge)

Biosecurity New Zealand

Probably; don't know enough about interocean genetics	Probably; don't know enough about interocean genetics	Probably; don't know enough about interocean genetics	Probably; don't know enough about interocean genetics
Proba know about geneti	Proba know geneti	Proba know about geneti	Probal know about geneti
Unlikely (oviparous, creeping larvae)	Unlikely (short-lived viviparous larvae)	Unlikely (short-lived viviparous larvae)	Unlikely (short-lived viviparous larvae)
Yes	Yes	Yes	Yes
	? Likely		? Likely
? Early collections in these locations were not at all comprehensive and the species could have been overtooked.	? Early collections in these locations were not at all comprehensive and the species could have been overlooked.	? Early collections in these locations were not at all comprehensive and the species could have been overfooked.	? Early collections in these locations were not at all comprehensive and the species could have been overfooked.
? Early collections in these locations were not at all comprehensive and the species could have been overlooked.	Possibly. A very common species, but early collections were not comprehensive and this species could have been overlooked. Species was recorded for the first time only recently (Yes990s).	? Early collections in these locations were not at all comprehensive and the species could have been overlooked.	
Desktop review & port survey	Desktop review	Desktop review	Desktop review
5	5	5	3
		_w	<u>5</u>
Raspailia agminata (Sponge)	Crella incrustans (Sponge)	Esperiopsis edwardsii (Sponge)	Haliclona clathrata (Sponge)

Site number	Site name	Maximum recorded depth (m)	Secchi depth (m)	Salinity (ppt)	Water temperature (degC)	Sea state (Beaufort scale)
1	Deep Water Basin 1	30	5.2	0	6	1
2	Deep Water Basin 2	13	5.2	2	7.1	1
3	Deep Water Basin Jetties	22	1.75	0	7.1	0
4	Deep Water Basin Slipways	13	N/R	N/R	N/R	N/R
5	Channel Marker No 2	8	5.0	18	8.7	1
6	Sandfly Point Jetty	4.2	N/R	N/R	N/R	N/R
7	Ferry Terminal 1	5	5.0	30	12.5	1
8	Ferry Terminal 2	5	5.0	30	12.5	1
9	Freshwater Basin Mooring	23	6.0	30	12.4	1
10	Harrison Cove	65	4.3	10	9.1	1
11	Anita Bay	16	9.8	35	13.4	2
12	Fox Point	16	9.9	34.5	13.4	2
13	Stirling Falls Wall	N/R	4.2	35	13.7	2
14	Pater Point	200	5.0	20	9.7	4
15	Copper Point	N/R	4.6	32	13.7	2
16	Stripe Point	20	9.2	35	13.7	2
17	Yates Point	15	7.0	33	13.6	4
18	Brig Rock	23	17.0	33	13.6	4
19	Saint Anne Point	35	10.0	32	13.7	2
21	Sea Breeze Point	45	11.0	35	14.3	5
22	Poison Bay	40	1.0	14	10.6	2
Average	across all sites	31.5	6.64	24.1	11.5	2.0
SE of av	erage across all sites	10.0	0.9	2.9	0.6	0.3

Table 11:Physical characteristics of the sites sampled during the first port baseline
survey of Milford Sound.

N/R: Measurements were not recorded from these sites

Table 12:Sediment particle sizes at six sites sampled during the first port baseline
survey of Milford Sound. Data are percent net dry weight in each size
class.

Site number	Site name	Clay <3.9um, >2um	Silt <62.5um, >3.9um	Sand >62.5um, <2mm	Gravel >2mm, <4mm	Small pebbles >4mm, <8mm
1	Deep Water Basin 1	0.02	3.49	92.46	1.53	2.51
2	Deep Water Basin 2	0.02	4.80	66.58	7.94	20.66
7	Ferry Terminal 1	0.03	13.19	86.78	0.00	0.00
11	Anita Bay	0.00	3.03	96.96	0.00	0.00
16	Stripe Point	0.00	1.26	96.74	2.01	0.00
22	Poison Bay	0.00	4.01	95.99	0.00	0.00

Table 13:Native taxa recorded from Milford Sound in the first port baseline survey.
Also indicated is whether the taxon represents a new record for New
Zealand and if it was recorded from the desktop review of existing marine
species records from Milford Sound and nearby locations.

Phylum & Class	Order	Family	Taxon name	New record for NZ?	Recorded in desktop review?
<u>Annelida</u>					
Polychaeta	Eunicida	Dorvilleidae	Dorvillea australiensis		
Polychaeta	Eunicida	Eunicidae	Eunice australis		Yes
Polychaeta	Eunicida	Lumbrineridae	Lumbrineris sphaerocephala		
Polychaeta	Phyllodocida	Glyceridae	Glycera benhami		
Polychaeta	Phyllodocida	Glyceridae	Glycera lamelliformis		Yes
Polychaeta	Phyllodocida	Hesionidae	Ophiodromus angustifrons		Yes
Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus macroura		
Polychaeta	Phyllodocida	Nereididae	Nicon aestuariensis		Yes
Polychaeta	Phyllodocida	Nereididae	Perinereis camiguinoides		
Polychaeta	Phyllodocida	Nereididae	Platynereis australis group		
Polychaeta	Phyllodocida	Phyllodocidae	Nereiphylla cf. castanea		
Polychaeta	Phyllodocida	Polynoidae	Lepidonotus jacksoni		
Polychaeta	Phyllodocida	Polynoidae	Lepidonotus polychromus		
Polychaeta	Phyllodocida	Sigalionidae	Sigalion oviger		
Polychaeta	Sabellida	Oweniidae	Owenia petersenae		
Polychaeta	Sabellida	Sabellidae	Branchiomma curtum [^]		
Polychaeta	Sabellida	Sabellidae	Megalomma suspiciens		
Polychaeta	Sabellida	Sabellidae	Pseudopotamilla laciniosa		
Polychaeta	Sabellida	Serpulidae	Galeolaria hystrix		
Polychaeta	Sabellida	Serpulidae	Spirobranchus cariniferus		
Polychaeta	Scolecida	Arenicolidae	Abarenicola devia		
Polychaeta	Scolecida	Opheliidae	Armandia maculata		Yes
Polychaeta	Scolecida	Orbiniidae	Scoloplos simplex		
Polychaeta	Spionida	Spionidae	Boccardia chilensis		
Polychaeta	Spionida	Spionidae	Boccardia knoxi		
Polychaeta	Spionida	Spionidae	Prionospio australiensis		
Polychaeta	Terebellida	Cirratulidae	Timarete anchylochaetus		
Polychaeta	Terebellida	Pectinariidae	Pectinaria australis		
Polychaeta	Terebellida	Terebellidae	Nicolea maxima		
Polychaeta	Terebellida	Terebellidae	Streblosoma toddae		
Arthropoda					
Malacostraca	Amphipoda	Dexaminidae	Paradexamine houtete		
Malacostraca	Amphipoda	Melitidae	Mallacoota subcarinata		
Malacostraca	Amphipoda	Phoxocephalidae	Torridoharpinia hurleyi		
Malacostraca	Amphipoda	Phoxocephalidae	Waitangi rakiura		
Malacostraca	Amphipoda	Podoceridae	Podocerus karu		
Malacostraca	Decapoda	Crangonidae	Philocheras australis		
Malacostraca	Decapoda	Hippolytidae	Hippolyte bifidirostris		
Malacostraca	Decapoda	Hymenosomatidae	Elamena producta		
Malacostraca	Decapoda	Hymenosomatidae	Halicarcinus cookii		
Malacostraca	Decapoda	Hymenosomatidae	Halicarcinus innominatus		
Malacostraca	Decapoda	Hymenosomatidae	Halicarcinus varius		
Malacostraca	Decapoda	Majidae	Eurynolambrus australis		
Malacostraca	Decapoda	Majidae	Leptomithrax mortenseni		
Malacostraca	Decapoda	Majidae	Notomithrax ursus		
Malacostraca	Decapoda	Ocypodidae	Macrophthalmus hirtipes		
Malacostraca	Decapoda	Paguridae	Lophopagurus (A.) cooki		
Malacostraca	Decapoda	Paguridae	Lophopagurus pumilus		

Phylum & Class	Order	Family	Taxon name	New record for NZ?	Recorded in desktop review?
Malacostraca	Decapoda	Paguridae	Pagurus albidianthus		
Malacostraca	Decapoda	Pinnotheridae	Pinnotheres novaezelandiae		
Malacostraca	Decapoda	Porcellanidae	Petrolisthes novaezelandiae		
Malacostraca	Isopoda	Cirolanidae	Natatolana rossi		
Maxillopoda	Sessilia	Archaeobalanidae	Austrominius modestus		
Maxillopoda	Sessilia	Balanidae	Notomegabalanus campbelli		
Bacillariophyta					
Coscinodiscophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros affinis		
Coscinodiscophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros convolutus		
Coscinodiscophyceae	Corethrales	Corethraceae	Corethron criophilum		
Coscinodiscophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus wailesii		
Coscinodiscophyceae	Melosirales	Melosiraceae	Melosira moniliformis		
Coscinodiscophyceae	Melosirales	Stephanopyxidaceae	Stephanopyxis orbicularis		
Coscinodiscophyceae	Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia alata		
	Rhizosoleniales	Rhizosoleniaceae			
Coscinodiscophyceae			Rhizosolenia imbricata		
Coscinodiscophyceae	Thalassiosirales	Lauderiaceae	Lauderia annulata		
Coscinodiscophyceae	Triceratiales	Triceratiaceae	Odontella sinensis		
Fragilariophyceae	Thalassionemales	Thalassionemataceae	Thalassionema nitzschioides		
Brachiopoda					
Rhynchonellata	Rhynchonellida	Notosariidae	Notosaria nigricans		
Rhynchonellata	Terebratulida	Terebratulidae	Calloria inconspicua		
<u>Bryozoa</u>					
Gymnolaemata	Cheilostomata	Aeteidae	Aetea australis		Yes
Gymnolaemata	Cheilostomata	Beaniidae	Beania bilaminata		
Gymnolaemata	Cheilostomata	Beaniidae	Beania intermedia		
Gymnolaemata	Cheilostomata	Beaniidae	Beania plurispinosa		Yes
Gymnolaemata	Cheilostomata	Bitectiporidae	Bitectipora mucronifera		Yes
Gymnolaemata	Cheilostomata	Bitectiporidae	Bitectipora rostrata		Yes
Gymnolaemata	Cheilostomata	Bitectiporidae	Parkermavella punctigera		Yes
Gymnolaemata	Cheilostomata	Bitectiporidae	Schizosmittina cinctipora		
Gymnolaemata	Cheilostomata	Bugulidae	Dimetopia barbata		Yes
Gymnolaemata	Cheilostomata	Bugulidae	Dimetopia cornuta		Yes
Gymnolaemata	Cheilostomata	Calloporidae	Crassimarginatella fossa		Yes
Gymnolaemata	Cheilostomata	Calloporidae	Odontionella cyclops		Yes
Gymnolaemata	Cheilostomata	Calwelliidae	Calwellia gracilis		
Gymnolaemata	Cheilostomata	Candidae	Caberea darwinii		Yes
Gymnolaemata	Cheilostomata	Candidae	Caberea helicina		Yes
Gymnolaemata	Cheilostomata	Candidae	Caberea solida		Yes
Gymnolaemata	Cheilostomata	Candidae	Caberea zelandica		163
Gymnolaemata	Cheilostomata	Candidae	Emma crystallina		
			,		
Gymnolaemata	Cheilostomata	Candidae	Emma rotunda		Vac
Gymnolaemata	Cheilostomata	Candidae	Emma triangula		Yes
Gymnolaemata	Cheilostomata	Candidae	Scrupocellaria ornithorhyncus		Max
Gymnolaemata	Cheilostomata	Candidae	Tricellaria aculeata		Yes
Gymnolaemata	Cheilostomata	Catenicellidae	Catenicella elegans		Yes
Gymnolaemata	Cheilostomata	Catenicellidae	Cornuticella taurina		
Gymnolaemata	Cheilostomata	Catenicellidae	Cribricellina cribraria		
Gymnolaemata	Cheilostomata	Catenicellidae	Orthoscuticella innominata		Yes
Gymnolaemata	Cheilostomata	Catenicellidae	Orthoscuticella margaritacea		
Gymnolaemata	Cheilostomata	Catenicellidae	Pterocella scutella		Yes
Gymnolaemata	Cheilostomata	Catenicellidae	Scalicella crystallina		
Gymnolaemata	Cheilostomata	Cellariidae	Cellaria pilosa		
Gymnolaemata	Cheilostomata	Cellariidae	Cellaria tenuirostris		
Gymnolaemata	Cheilostomata	Chaperiidae	Chaperia granulosa		

<u>Phylum</u> & Class	Order	Family	Taxon name	New record for NZ?	Recorded in desktop review?
Gymnolaemata	Cheilostomata	Chaperiidae	Chaperiopsis cervicornis		Yes
Gymnolaemata	Cheilostomata	Cribilinidae	Figularia spinea		
Gymnolaemata	Cheilostomata	Hippothoidae	Celleporella aporosa		
Gymnolaemata	Cheilostomata	Hippothoidae	Celleporella bathamae		Yes
Gymnolaemata	Cheilostomata	Hippothoidae	Hippothoa flagellum		Yes
Gymnolaemata	Cheilostomata	Lepraliellidae	Celleporaria agglutinans		
Gymnolaemata	Cheilostomata	Membraniporidae	Membranipora membranacea		
Gymnolaemata	Cheilostomata	Membraniporidae	Membranipora pura		
Gymnolaemata	Cheilostomata	Microporellidae	Calloporina angustipora		
Gymnolaemata	Cheilostomata	Microporellidae	Fenestrulina disjuncta		
Gymnolaemata	Cheilostomata	Microporellidae	Fenestrulina multicava		
Gymnolaemata	Cheilostomata	Microporellidae	Fenestrulina specca		Yes
Gymnolaemata	Cheilostomata	Microporellidae	Fenestrulina thyreophora		Yes
Gymnolaemata	Cheilostomata	Microporellidae	Microporella agonistes		Yes
Gymnolaemata	Cheilostomata	Microporidae	Opaeophora lepida		Yes
Gymnolaemata	Cheilostomata	Romancheinidae	Escharoides excavata		
Gymnolaemata	Cheilostomata	Smittinidae	Smittoidea maunganuiensis		Yes
Gymnolaemata	Cheilostomata	Steginoporellidae	Steginoporella magnifica		Yes
Stenolaemata	Cyclostomata	Crisiidae	Bicrisia biciliata		
Stenolaemata	Cyclostomata	Crisiidae	Bicrisia edwardsiana		Yes
Stenolaemata	Cyclostomata	Crisiidae	Crisia acropora		
Stenolaemata	Cyclostomata	Crisiidae	Crisia margaritacea		
Stenolaemata	Cyclostomata	Crisiidae	Crisia setosa		
Stenolaemata	Cyclostomata	Crisiidae	Crisia tenuis		
Stenolaemata	Cyclostomata	Diastoporidae	Plagioecia sarniensis		Yes
Stenolaemata	Cyclostomata	Lichenoporidae	Disporella pristis		Yes
Stenolaemata	Cyclostomata	Margarettidae	Margaretta barbata		Yes
Stenolaemata	Cyclostomata	Phidoloporidae	Phidolopora avicularis		Yes
<u>Chlorophyta</u>					
Ulvophyceae	Bryopsidales	Codiaceae	Codium convolutum		
Ulvophyceae	Bryopsidales	Codiaceae	Codium dichotomum f.		
Ulvophyceae	Bryopsidales	Codiaceae	novozelandicum Codium fragile ssp. novae-		
Olvopilyceae	Bryopsidales	Coulaceae	zelandiae		
Ulvophyceae	Bryopsidales	Codiaceae	Codium gracile		Yes
Ulvophyceae	Caulerpales	Caulerpaceae	Caulerpa brownii		
Chordata	·	•			
Actinopterygii	Atheriniformes	Atherinidae	Atherinomorus lacunosa		
Actinopterygii	Gadiformes	Moridae	Lotella rhacinus		Yes
Actinopterygii	Perciformes	Labridae	Notolabrus celidotus		Yes
Actinopterygii	Perciformes	Plesiopidae	Acanthoclinus marilynae		Yes
Actinopterygii	Perciformes	Scorpidinae	Helicolenus percoides		Yes
Actinopterygii	Perciformes	Tripterygiidae	Forsterygion lapillum		Yes
Actinopterygii	Perciformes	Tripterygiidae	Forsterygion malcolmi		Yes
Actinopterygii	Perciformes	Tripterygiidae	Forsterygion varium		Yes
Actinopterygii	Perciformes	Tripterygiidae	Grahamina capito		Yes
Actinopterygii	Perciformes	Tripterygiidae	Ruanoho decemdigitatus		
Actinopterygii	Perciformes	Tripterygiidae	Ruanoho whero		Yes
Actinopterygii	Pleuronectiformes	Pleuronectidae	Rhombosolea plebia		
Actinopterygii	Salmoniformes	Retropinnidae	Retropinna retropinna		
Actinopterygii	Scorpaeniformes	Scorpaenidae	Scorpaena papillosa		Yes
Ascidiacea	Enterogona	Polyclinidae	Aplidium adamsi		
Ascidiacea	Enterogona	Polyclinidae	Pseudodistoma cereum		
Ascidiacea	Pleurogona	Pyuridae	Pyura cancellata		
	Pleurogona	Pyuridae	Pyura pulla		

<u>Phylum</u> & Class	Order	Family	Taxon name	New record for NZ?	Recorded in desktop review?
Ascidiacea	Pleurogona	Styelidae	Cnemidocarpa bicornuta		
Ascidiacea	Pleurogona	Styelidae	Cnemidocarpa nisiotus		
<u>Cnidaria</u>					
Anthozoa	Scleractinia	Flabellidae	Flabellum rubrum		
Anthozoa	Scleractinia	Rhizangiidae	Culicia rubeola		
Hydrozoa	Hydroida	Sertulariidae	Crateritheca novaezelandiae		
Hydrozoa	Hydroida	Sertulariidae	Sertularella robusta		
Hydrozoa	Hydroida	Sertulariidae	Stereotheca elongata		
Hydrozoa	Hydroida	Sertulariidae	Symplectoscyphus subarticulatus		
Hydrozoa	Hydroida	Syntheciidae	Synthecium tottoni		
Echinodermata					
Asteroidea	Forcipulatida	Asteriidae	Coscinasterias muricata		
Asteroidea	Forcipulatida	Asteriidae	Stichaster australis		
Asteroidea	Valvatida	Asterinidae	Patiriella mortenseni		
Asteroidea	Valvatida	Asterinidae	Patiriella regularis		
Asteroidea	Valvatida	Goniasteridae	Pentagonaster pulchellus		
Asteroidea	Valvatida	Odontasteridae	Diplodontias dilatatus		
Echinoidea	Echinoida	Echinometridae	Evechinus chloroticus		Yes
			Pseudechinus		100
Echinoidea	Temnopleurida	Temnopleuridae	novaezealandiae		
Holothuroidea	Aspidochirotida	Stichopodidae	Stichopus mollis		
Ophiuroidea	Ophiurida	Amphiuridae	Amphiura eugenie		
Ophiuroidea	Ophiurida	Ophiodermatidae	Ophiopsammus maculata		
Mollusca					
Bivalvia	Mytiloida	Mytilidae	Aulacomya maoriana		Yes
Bivalvia	Mytiloida	Mytilidae	Mytilus galloprovincialis [#]		
Bivalvia	Pholadomyoida	Myochamidae	Myadora striata		
Bivalvia	Solemyoida	Solemyidae	Solemya parkinsonii		
Bivalvia	Veneroida	Lasaeidae	Borniola reniformis		Yes
Bivalvia	Veneroida	Mactridae	Scalpomactra scalpellum		
Bivalvia	Veneroida	Mesodesmatidae	Paphies australis		Yes
Bivalvia	Veneroida	Psammobiidae	Soletellina nitida		Yes
Bivalvia	Veneroida	Tellinidae	Macomona liliana		
Bivalvia	Veneroida	Thyasiridae	Genaxinus cookianus		
Bivalvia	Veneroida	Veneridae	Austrovenus stutchburyi		Yes
Bivalvia	Veneroida	Veneridae	Irus reflexus		100
Bivalvia	Veneroida	Veneridae	Notocallista multistriata		
Gastropoda	Basommatophora	Siphonariidae	Siphonaria australis		Yes
•		· ·			Tes
Gastropoda	Docoglossa	Lottiidae	Notoacmea helmsi		
Gastropoda	Docoglossa	Lottiidae	Patelloida corticata		
Gastropoda	Docoglossa	Nacellidae	Cellana stellifera		
Gastropoda	Neogastropoda	Buccinidae	Austrofusus glans		
Gastropoda	Neogastropoda	Muricidae	Xymene ambiguus		
Gastropoda	Neogastropoda	Muricidae	Xymene traversi		
Gastropoda	Neogastropoda	Olividae	Amalda australis		
Gastropoda	Neogastropoda	Olividae	Amalda novaezelandiae		
Gastropoda	Neogastropoda	Terebridae	Pervicacia tristis		
Gastropoda	Neotaenioglossa	Batillariidae	Zeacumantus subcarinatus		
Gastropoda	Neotaenioglossa	Ranellidae	Argobuccinum pustulosum ssp. tumidum		
Gastropoda	Neotaenioglossa	Ranellidae	Ranella australasia		
Gastropoda	Neotaenioglossa	Turritellidae	Maoricolpus roseus		
Gastropoda	Vetigastropoda	Calliostomatidae	Calliostoma granti		
Gastropoda	Vetigastropoda	Haliotidae	Haliotis australis		
Gastropoda	Vetigastropoda	Trochidae	Antisolarium egenum		

Phylum & Class	Order	Family	Taxon name	New record for NZ?	Recorded in desktop review?
Gastropoda	Vetigastropoda	Trochidae	Cantharidella tesselata		
Gastropoda	Vetigastropoda	Trochidae	Melagraphia aethiops		
Gastropoda	Vetigastropoda	Trochidae	Micrelenchus huttonii		
Gastropoda	Vetigastropoda	Trochidae	Trochus viridus		
Gastropoda	Vetigastropoda	Turbinidae	Cookia sulcata		
Gastropoda	Vetigastropoda	Turbinidae	Modelia granosa		
Gastropoda	Vetigastropoda	Turbinidae	Turbo smaragdus		
Myzozoa					
Dinophyceae	Dinophysiales	Dinophysiaceae	Dinophysis acuminata		Yes
Dinophyceae	Peridiniales	Ceratiaceae	Ceratium arietinum		
Dinophyceae	Peridiniales	Ceratiaceae	Ceratium fusus		
Dinophyceae	Peridiniales	Ceratiaceae	Ceratium tripos		
Dinophyceae	Peridiniales	Gonyaulacaceae	Lingulodinium polyedrum		Yes
Dinophyceae	Peridiniales	Peridiniaceae	Scrippsiella trochoidea		
Dinophyceae	Peridiniales	Podolampadaceae	Podolampas palmipes		
Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium americanum		
Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium avellana		
Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium conicum		
Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium latissinum		
Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium punctulatum		
Dinophyceae	Peridiniales	Protoperidiniaceae			
		· ·	Protoperidinium subinerme		
Dinophyceae	Prorocentrales	Prorocentraceae	Prorocentrum micans		
<u>Ochrophyta</u>	Distusshalas	Distursheese	Distant survey and surlives		
Dictyochophyceae	Dictyochales	Dictyochaceae	Distephanus speculum		
Phaeophyceae	Dictyotales	Dictyotaceae	Zonaria turneriana		
Phaeophyceae	Ectocarpales	Adenocystaceae	Adenocystis utricularis		
Phaeophyceae	Ectocarpales	Scytosiphonaceae	Colpomenia peregrina		
Phaeophyceae	Ectocarpales	Scytosiphonaceae	Scytosiphon lomentaria		
Phaeophyceae	Fucales	Cystoseiraceae	Landsburgia quercifolia		
Phaeophyceae	Fucales	Fucaceae	Xiphophora gladiata		
Phaeophyceae	Fucales	Fucaceae	Xiphophora radiata		
Phaeophyceae	Fucales	Sargassaceae	Carpophyllum flexuosum		Yes
Phaeophyceae	Fucales	Sargassaceae	Sargassum sinclairii		
Phaeophyceae	Laminariales	Alariaceae	Ecklonia radiata		
Phaeophyceae	Sphacelariales	Stypocaulaceae	Halopteris funicularis		
Phaeophyceae	Sphacelariales	Stypocaulaceae	Ptilopogon botryocladus		
Phaeophyceae	Sporochnales	Sporochnaceae	Carpomitra costata		
<u>Porifera</u>					
Calcarea	Clathrinida	Leucaltidae	Leucettusa cf. tubulosa		
Calcarea	Clathrinida	Leucettidae	Leucetta n.sp.2 (MK)		
Demospongiae	Dictyoceratida	Irciniidae	Ircinia akaroa		
Demospongiae	Dictyoceratida	Thorectidae	Thorecta reticulata		Yes
Demospongiae	Halichondrida	Axinellidae	Cymbastella n.sp.1 (MK)		
Demospongiae	Poecilosclerida	Chondropsidae	Strongylacidon conulosa		Yes
Demospongiae	Poecilosclerida	Desmacellidae	Neofibularia n.sp.2 (MK)	New	
Demospongiae	Poecilosclerida	Latrunculiidae	Latrunculia fiordensis		Yes
Demospongiae	Poecilosclerida	Mycalidae	Mycale (Carmia) hentscheli		
Demospongiae	Poecilosclerida	Tedaniidae	<i>Tedania</i> n.sp.1 (MK)	New	
Rhodophyta					
Florideophyceae	Balliales	Balliaceae	Ballia callitricha		
Florideophyceae	Bonnemaisonales	Bonnemaisonaceae	Asparagopsis armata		
Florideophyceae	Ceramiales	Ceramiaceae	Anotrichium crinitum		
Florideophyceae	Ceramiales	Ceramiaceae	Antithamnion pectinatum		
	Ceramiales		Ceramium vestitum		

Phylum & Class	Order	Family	Taxon name	New record for NZ?	Recorded in desktop review?
Florideophyceae	Ceramiales	Ceramiaceae	Euptilota formosissima		
Florideophyceae	Ceramiales	Ceramiaceae	Perithamnion ceramioides		
Florideophyceae	Ceramiales	Dasyaceae	Heterosiphonia squarrosa		
Florideophyceae	Ceramiales	Delesseriaceae	Abroteia suborbiculare		
Florideophyceae	Ceramiales	Delesseriaceae	Apoglossum oppositifolium		
Florideophyceae Florideophyceae	Ceramiales Ceramiales	Delesseriaceae Delesseriaceae	Caloglossa viellardii Hymenena aff. variolosa (MFN)*		
Florideophyceae	Ceramiales	Delesseriaceae	Hymenena variolosa		
Florideophyceae	Ceramiales	Delesseriaceae	Nancythalia humilis		
Florideophyceae	Ceramiales	Rhodomelaceae	Aphanocladia delicatula		
Florideophyceae	Ceramiales	Rhodomelaceae	Bostrychia harveyi		
Florideophyceae	Ceramiales	Rhodomelaceae	Chondria macrocarpa		
Florideophyceae	Ceramiales	Rhodomelaceae	Dipterosiphonia heteroclada		
Florideophyceae	Ceramiales	Rhodomelaceae	Echinothamnion Iyallii		
Florideophyceae	Ceramiales	Rhodomelaceae	Lophurella hookeriana		
Florideophyceae	Ceramiales	Rhodomelaceae	Polysiphonia muelleriana		
Florideophyceae	Ceramiales	Rhodomelaceae	Pterosiphonia pennata		
Florideophyceae	Ceramiales	Rhodomelaceae	Stictosiphonia vaga		
Florideophyceae	Corallinales	Corallinaceae	Arthrocardia corymbosa		
Florideophyceae	Corallinales	Corallinaceae	Corallina officinalis		
Florideophyceae	Gigartinales	Cystocloniaceae	Rhodophyllis membranacea		
Florideophyceae	Gigartinales	Gigartinaceae	Chondracanthus chapmanii		
Florideophyceae	Gigartinales	Gigartinaceae	Gigartina ancistroclada		
Florideophyceae	Gigartinales	Gigartinaceae	Sarcothalia livida		
Florideophyceae	Gracilariales	Gracilariceae	Gracilaria chilensis		Yes
Florideophyceae	Hildenbrandiales	Hildenbrandiaceae	Apophlaea Iyallii		Yes
Florideophyceae	Plocamiales	Plocamiaceae	Plocamium angustum		
Florideophyceae	Plocamiales	Plocamiaceae	Plocamium cirrhosum		Yes
Florideophyceae	Plocamiales	Plocamiaceae	Plocamium microcladioides		

Notes:

The biosecurity status of *Branchiomma curtum* was reported as C1 in earlier New Zealand port survey reports. It has since been revised to Native, following expert advice: "The disjunct distribution reported in literature was likely due to misidentifications of similar or cryptic species. I now am unconvinced the disjunct Caribbean records are the same species, although quite similar" (G. Read, NIWA, pers. comm.).

The biosecurity status of *Mytilus galloprovincialis* was reported as C1 in earlier New Zealand port survey reports. It has since been revised to Native, because recent morphometric analysis of fossil, midden and contemporary *Mytilus* in New Zealand indicate that contemporary mussels, with one possible regional exception (Bay of Islands), are best regarded as *M. galloprovincialis* (Gardner 2004). Therefore, the current evidence suggests it is native in New Zealand.

* MFN = Milford Sound specimens. Further taxonomic investigation is required to confirm whether the specimens of *Hymenena* aff. *variolosa* from Milford Sound are the same species as those found in other parts of the country.

the Milford Sound port survey collection represents a new record for New Zealand or an extension to the known range of the species in New Zealand, the probable means of introduction to New Zealand (H = Hull fouling, B = Ballast water transport), the date of introduction or detection (d) in New Zealand, and whether the taxon was recorded from the desktop review of existing Cryptogenic category one (C1) taxa recorded from Milford Sound in the first port baseline survey. Also indicated are whether marine species records from Milford Sound and nearby locations. Table 14:

<u>Phylum</u> &	Order	Family	Tavon nove	New record N72	Range extension 2	Probable means of	Date of introduction, or	Recorded in desktop
Bryozoa	550	, ma						
	-			2		H. Could occur in NZ naturally by rafting but has almost certainly		
പ്പ്രസ്ഥരില്ലേരു Chordata	Chellostomata	scrupariidae	scruparia ambigua	ON	NO	also arrived on snips	31/08/1911 a	Yes
							Unable to answer for the genus as a	
Ascidiacea	Enterogona	Didemnidae	Didemnum sp.#	No	No	Н	group	
Ascidiacea	Enterogona	Didemnidae	Diplosoma velatum	No	Yes	Н	2006 d	Yes
<u>Cnidaria</u>								
Hydrozoa	Hydroida	Campanulariidae	Orthopyxis integra	No	Yes	Н	1875 d	
Myzozoa								
Dinophyceae	Peridiniales	Gonyaulacaceae	Alexandrium tamarense	No	Possible	В	April 1997 d	
<u>Porifera</u>								
Calcarea	Leucosolenida	Leucosoleniidae	Leucosolenia cf. discoveryi^	No	No	Н	Feb 2003 d	Yes
Demospongiae	Poecilosclerida	Raspailiidae	Raspailia agminata	No	Yes	Н	1961 d*	Yes
Demospongiae	Hadromerida	Tethyidae	Tethya bergquistae	No	Yes	т	1961 d*	

Notes: # Because of the complex taxonomy of this genus, *Didemnum* specimens could not be identified to species level, and are reported here collectively as a species group "*Didemnum*

^A The biosecurity status of *Leucosolenia* cf. *discoveryi* was reported as NIS in earlier New Zealand port survey reports. It has since been revised to C1, following expert advice explaining uncertainty in the identity of the species: "After extensive search, this is the closest species to our southern New Zealand species. There are some minor differences that indicate it might rather be a New Zealand endemic that is very similar to L. discoveryi. There is only minor overlap with Antarctica species in the southern NZ fauna (Dunedin, Bluff, Milford)" (M. Kelly, NIWA, pers. comm.).

* This is the first published record for the species in New Zealand. The actual date of collection of the specimen was probably 5-10 years prior to publication.

Table 15:Collection methods and depths for the cryptogenic category one taxa
recorded from the Milford Sound port survey. No NIS taxa were recorded
during the port survey.

Taxon name	Method of collection	0 – 10 m	>10 – 20 m	>20 – 30 m	>30 – 40 m	Total
Alexandrium tamarense	Cyst sediment sample	1				1
Didemnum sp.	Visual dive transect		2	1		3
Diplosoma velatum	Visual dive transect			1		1
Leucosolenia cf. discovervi	Quadrat scraping	1				1
	Visual dive transect			1	1	2
Orthopyxis integra	Quadrat scraping	1				1
	Visual dive transect		1			1
Raspailia agminata	Visual dive transect				1	1
Scruparia ambigua	Visual dive transect		1	1		2
Tethya bergquistae	Visual dive transect				1	1
Total		3	4	4	3	14

Table 16:Cryptogenic category two (C2) taxa recorded from Milford Sound in the
first port baseline survey. Also indicated is whether the taxon represents a
new record for New Zealand and if it was recorded from the desktop
review of existing marine species records from Milford Sound and nearby
locations.

<u>Phylum</u> & Class	Order	Family	Taxon name	New record for NZ?	Recorded in desktop review?
<u>Annelida</u>					
Polychaeta	Phyllodocida	Nereididae	Neanthes Neanthes-A		
Polychaeta	Phyllodocida	Phyllodocidae	Eulalia Eulalia-NIWA-2		
Polychaeta	Sabellida	Serpulidae	Spirobranchus S. polytrema		
Polychaeta	Spionida	Chaetopteridae	Phyllochaetopterus Phyllochaetopterus-A		
Polychaeta	Terebellida	Terebellidae	Terebella Terebella-B		
<u>Arthropoda</u>					
Malacostraca	Amphipoda	Liljeborgiidae	<i>Liljeborgia</i> sp. 2	Yes	
<u>Bryozoa</u>					
Gymnolaemata	Cheilostomata	Celleporidae	Celleporina sp. MFN*	Yes?*	
Gymnolaemata	Cheilostomata	Electridae	Electra sp.	Yes	
Chordata					
Ascidiacea	Enterogona	Polyclinidae	Aplidiopsis sp.		
Ascidiacea	Enterogona	Polyclinidae	Aplidium sp. 19		

Notes:

[^] The biosecurity status of *Spirobranchus S. polytrema* complex was reported as NIS in earlier New Zealand port survey reports. We have since been advised that C2 is a more appropriate designation due to this taxon being a species complex (G. Read, NIWA, pers. comm.).

* MFN = Milford Sound specimens. This is probably a new, undescribed species, but further taxonomic investigation is required to confirm its identity, including whether the specimens of *Celleporina* sp. from Milford Sound are the same species as those found in other parts of the country (D. Gordon, NIWA, pers. comm.).

Table 17:Indeterminate taxa recorded from Milford Sound in the first port survey.Also indicated is whether the taxon was recorded from the review of
existing marine species records from Milford Sound and nearby locations.

Phylum & Class	Order	Family	Taxon name	Recorded desktop review?
	Order	railiiy		review?
<u>Unknown</u> ?			Unidentifichle	
•			Unidentifiable	
Algae (unidentified)			Unidentified algae	
Annelida				
Polychaeta			Polychaeta	
Polychaeta	Phyllodocida	Phyllodocidae	Phyllodocidae Indet	
Polychaeta	Phyllodocida	Syllidae	Syllidae Indet	
Polychaeta	Sabellida	Sabellidae	Fabricia	
Polychaeta	Sabellida	Sabellidae	Sabellidae Indet	
Polychaeta	Sabellida	Serpulidae	Serpula Indet	
Polychaeta	Terebellida	Terebellidae	Terebellidae Indet	
<u>Arthropoda</u>				
Malacostraca	Amphipoda		Amphipoda	
Malacostraca	Amphipoda	Lysianassidae	Lysianassidae sp.	
Malacostraca	Amphipoda	Melitidae	Maera	
Malacostraca	Isopoda		Isopoda sp.	
Malacostraca	Isopoda	Sphaeromatidae	<i>Cilicaea</i> sp.	
Ostracoda			Ostracoda	
Bacillariophyta				
Bacillariophyceae	Naviculales	Naviculaceae	Navicula	
Bacillariophyceae	Naviculales	Pleurosigmataceae	Gyrosigma	
Bacillariophyceae	Naviculales	Pleurosigmataceae	Pleurosigma	
Coscinodiscophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros	
Coscinodiscophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus	
Coscinodiscophyceae	Melosirales	Melosiraceae	Melosira	
Coscinodiscophyceae	Thalassiosirales	Thalassiosiraceae	Thalassiosira	
Fragilariophyceae	Fragilariales	Fragilariaceae	Fragilaria	
Fragilariophyceae	Licmophorales	Licmophoraceae	Licmophora	
Fragilariophyceae	Thalassionemales	Thalassionemataceae	Thalassionema	
Bryozoa	Thalassionemales	Thalassionemataceae	Thalassionema	
Gymnolaemata	Cheilostomata	Bugulidae	Dimetopia	
Gymnolaemata	Cheilostomata	Catenicellidae	Orthoscuticella	
Gymnolaemata	Cheilostomata	Flustridae	Gregarinidra	
Stenolaemata	Cyclostomata	Lichenoporidae	Disporella	
Stenolaemata	Cyclostomata	Tubuliporidae	<i>Tubulipora</i> sp.	
<u>Chlorophyta</u>				
Ulvophyceae	Cladophorales	Cladophoraceae	Chaetomorpha	
Ulvophyceae	Cladophorales	Cladophoraceae	Cladophora sp.	
Ulvophyceae	Codiolales	Monostromataceae	Monostroma sp.	
Ulvophyceae	Ulvales	Ulvaceae	<i>Ulva</i> sp.	Yes
<u>Chordata</u>				
Ascidiacea	Enterogona	Ascidiidae	Ascidiidae	
Ascidiacea	Enterogona	Didemnidae	Didemnidae	
<u>Cnidaria</u>				
Anthozoa	Epizoanthidea	Epizoanthdae	Epizoanthus	
Hydrozoa			Hydrozoa	
Hydrozoa	Hydroida	Campanulariidae	<i>Obelia</i> sp.	
Hydrozoa	Hydroida	Sertulariidae	Sertulariidae	
Hydrozoa	Hydroida	Sertulariidae	Symplectoscyphus	

Phylum & Class	Order	Family	Taxon name	Recorded i desktop review?
Cyanobacteria				
?			Cyanobacteria	
Echinodermata				
Asteroidea	Forcipulatida	Asteriidae	Allostichaster	
Asteroidea	Valvatida	Asterinidae	Patiriella sp.	
Asteroidea	Valvatida	Goniasteridae	Pentagonaster	
Holothuroidea?			Holothuroidea?	
Mollusca				
?			Mollusca	
Bivalvia			Bivalvia	
Bivalvia	Mytiloida	Mytilidae	Aulacomya	
Bivalvia	Mytiloida	Mytilidae	Modiolarca	
Bivalvia	Mytiloida	Mytilidae	<i>Mytilus</i> sp.	
Bivalvia	Mytiloida	Mytilidae	Xenostrobus	
Bivalvia	Veneroida	Neoleptonidae	Neolepton	
Bivalvia	Veneroida	Tellinidae	Macomona	
Gastropoda	Heterostropha	Pyramidellidae	Odostomia	
Gastropoda	Neogastropoda	Buccinidae	Cominella sp.	
Myzozoa				
Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium sp.	
Dinophyceae	Peridiniales (?)		Peridiniales (?)	
Nemertea				
?			Nemertea	
<u>Ochrophyta</u>				
Dictyochophyceae	Dictyochales	Dictyochaceae	Dictyota sp.	
Phaeophyceae	Dictyotales		Dictyotales sp.	
Phaeophyceae	Ectocarpales	Ectocarpaceae	Ectocarpus sp.	
Phaeophyceae	Ectocarpales	Ectocarpaceae	Hincksia sp.	
Phaeophyceae	Ectocarpales	Scytosiphonaceae	Colpomenia sp.	
Phaeophyceae	Fucales	Cystoseiraceae	Cystophora sp.	
Phaeophyceae	Sphacelariales	Sphacelariaceae	Sphacelaria sp.	
Phaeophyceae	Sphacelariales	Stypocaulaceae	Halopteris sp.	
Porifera	•			
?			Porifera	
Demospongiae	Dendroceratida	Darwinellidae	Darwinellidae	
Demospongiae	Haplosclerida	Chalinidae	Haliclona	
Rhodophyta	•			
Florideophyceae	Acrochaetiales	Acrochaetiaceae	Audouinella sp.	
Florideophyceae	Ceramiales	Ceramiaceae	Acrothamnion sp.	
Florideophyceae	Ceramiales	Ceramiaceae	Callithamnion sp.	
Florideophyceae	Ceramiales	Ceramiaceae	Ceramium sp.	
Florideophyceae	Ceramiales	Ceramiaceae	Griffithsia sp.	
Florideophyceae	Ceramiales	Delesseriaceae	Delesseriaceae	
Florideophyceae	Ceramiales	Delesseriaceae	Hymenena sp.	
Florideophyceae	Ceramiales	Rhodomelaceae	Chondria sp.	
Florideophyceae	Ceramiales	Rhodomelaceae	Lophurella sp.	
Florideophyceae	Ceramiales	Rhodomelaceae	Polysiphonia sp.	
Florideophyceae	Ceramiales	Rhodomelaceae	Stictosiphonia sp.	
Florideophyceae	Corallinales	Corallinaceae	Haliptilon	
Florideophyceae	Corallinales	Corallinaceae	Jania sp.	
Florideophyceae	Corallinales	Corallinaceae	Non-geniculate coralline	
Florideophyceae	Gigartinales	Gigartinaceae	Gigartina sp.	
Florideophyceae	Gigartinales	Gigartinaceae	Gigartina? MFN*	
Florideophyceae	Gigartinales	Kallymeniaceae	Iridaea	

<u>Phylum</u> & Class	Order	Family	Taxon name	Recorded in desktop review?
Florideophyceae	Gigartinales	Peyssonneliaceae	Peyssonnelia	
Florideophyceae	Plocamiales	Plocamiaceae	Plocamium sp.	
Florideophyceae	Rhodymeniales	Lomentariaceae	Lomentaria sp.	
Florideophyceae	Rhodymeniales	Rhodomeniaceae	Rhodymenia sp.	
Rhodophyceae	Ceramiales	Ceramiaceae	Microcladia	
<u>Sipuncula</u>				
?			Sipuncula	

* MFN = Milford Sound specimens. Further taxonomic investigation is required to confirm whether the specimens of *Gigartina?* from Milford Sound are the same species as those found in other parts of the country.

Appendices

APPENDIX 1: SAMPLING PROCEDURES FOR ZBS2005-19 SURVEYS.

These sampling procedures were specified by MAF Biosecurity New Zealand in the tender documents for Project ZBS2005-19. Modifications to the procedures necessitated by local conditions in the Milford Sound survey are described in the "Methods" section of this current report and were agreed to by MAF Biosecurity New Zealand prior to the survey.

Appendix A: Sampling Procedures

(Derived and modified from Hewitt and Martin 1996, 2001(Appendix C))

All samples collected are to be labeled with data that will allow the determination of: the date samples were collected; where the sampling occurred (regional); the site of collection (wharf, breakwater etc); the sample method (pile, core, qualitative); and the depth. The Hewitt and Martin protocols provide an easy and informative site code and sample labeling method; however other methods may be considered and will need to be negotiated with Biosecurity New Zealand to ensure that specimen linkage with sample information can be maintained. Special care should be given to quality assurance, quality control including chain-of-custody.

1.0 Dinoflagellates

1.1. Sediment sampling for cyst-forming species (small cores)

Sediment cores are taken from locations where the deposition and undisturbed accumulation of dinoflagellate cysts are likely to occur. Selection of sites will be based on depth, local biogeography and sediment characteristics of the area. As a general guide, sites where there is an accumulation of uncompacted fine sediment to a depth of 20-30 cm are suitable sites for constructing the sedimentary history of the port environment however, recent work has shown that sandy substrates should not be overlooked (C. Bolch pers.comm.). These samples are taken using cores. The cores will provide information on the formation of dinoflagellate blooms. Coarse-grained habitats may provide gross level information (presence/absence) for a port environment. At each site, sediment cores are to be taken by divers using 20 cm long tubes with 2.5 cm internal diameter. Tubes are forced into the substrate then capped at each end with a rubber bung to provide an airtight seal. Cores are labeled and are stored upright in the dark at 4°C prior to size fractionation and examination for dinoflagellate cysts.

1.2. Sediment preparation and cyst identification

The top 6 cm of sediment core is to be carefully extruded from the coring tube and stored at 4°C in a sealed container until further examination. Subsamples (approx. 1-2 cm³) of each core sample are mixed with filtered seawater to obtain a watery slurry. Subsamples (5-10 mL) are sonicated for 2 min (Braun Labsonic homogenizer, intermediate probe, 100 watts) to dislodge detritus particles. The sample is screened through a 90 μ m sieve and the remaining fraction is panned to remove denser sand grains and large detrital particles. Subsamples (1 mL) are examined and counted on wet-mount slides, using a compound light microscope. Where possible, a total of at least 100 cysts are counted in each sample. Identification of species follows Bolch and Hallegraeff (1990). Cysts of suspected toxic species are photographed with a light microscope using bright field or differential interference contrast illumination.

1.3. Cyst germination

Following sonication and size-fractionation of sediments, cysts of suspected toxic species are located and isolated by micropipette under a light microscope and then washed twice in filtered seawater. Individual cysts are placed into tissue culture wells containing 2mL of 75% filtered seawater with nutrients added according to medium GPM of Loeblich (1975). Additional incubations are to be carried out using size-fractionated sediments. Subsamples of the 20-90 μ m size fraction are added to 20mL of growth medium in sterile polystyrene petridishes, and sealed with parafilm. All incubations are be carried out at 20°C at a light intensity of 80 μ Em⁻²s⁻¹ (12h light:12h dark) and examined regularly for germination. Active swimming dinoflagellate cells from incubations should be isolated by micropipette, washed in sterile growth medium and their identity determined where possible.

1.4. Plankton sampling and culture

Plankton samples are to be collected by vertical and horizontal tows of a hand-deployed plankton net (25cm diam. Opening, 20 μ m Nytal mesh, Swiss Screens, Melbourne Vic.). The samples should be sealed in plankton jars and labeled using waterproof labels, placed in a cooled container and returned to the laboratory, net samples diluted 1:1 with growth medium. Germanium dioxide (10mg.l⁻¹) is added to inhibit overgrowth by diatom species and these enrichment cultures incubated as described above. Incubations are examined regularly by light microscopy, and single cells of suspected toxic species isolated by micropipette for further culture and toxicity determination.

1.5. Toxicity testing

Suspected toxic species are grown in laboratory culture, under the conditions described previously, and tested for toxin (saxitoxin) production by High Performance Liquid Chromatography (HPLC) (Oshima et al. 1989).

2.0 Crabs, Macroalgae, Seastars

2.1. Trapping

Crab species are sampled using light-weight plastic-coated wire-framed traps (60cm long, 45cm wide and 20cm high) covered 1.27cm square mesh netting. Entry to the trap is through slits at the apex of inwardly-directed V-shaped panels at each end of the trap. The internal bait bag should be baited with fish heads or carcasses. Traps weighted with chain or lead weights and deployed with surface buoys. Whenever possible, traps should be deployed in the late afternoon and recovered early the next morning. Each collected sample is labeled using waterproof labels. Crab traps are also effective for targeting the known introduced species *Charybdis japonica* and *Carcinus maenas*.

2.2. Visual searches – wharves and marinas

Visual searches for crab, target species (e.g., *Charybdis japonica, Undaria pinnatifida, Asterias amurensis*) and unusual/rare species (species not seen before in the region) should also be made at selected wharves in the port and marina areas. Divers are to swim the length of the wharf at two depths (5m and bottom) to provide a completed visual survey of the outer wharf between about 5m depth and the bottom (10-14m). Surveys of beach wrack are to be made of suitable beaches to collect crab exuviae. Each collected sample is labeled using waterproof labels.

2.3 Visual searches – other regions

Visual searches for crab, macroalgae and target species will be carried out by divers in rocky reef, rocky rip-rap, shipwrecks, kelp and seagrass meadows, over soft bottoms and beach searches. Divers will either be free swimming or towed using a manta board (snorkel). When using the manta board, (skin) divers will be towed along 100m transects at a speed of less than 2 knots. Beach wrack surveys along beach and estuaries will search the beach using parallel transects to the waters edge at distances of 2, 5 and 10 m (and further if required) up the shoreline. Each collected sample is labelled using waterproof labels.

3.0 Zooplankton

Zooplankton is sampled with a standard $100\mu m$ mesh, 70cm diameter free-fall drop net. The net is weighted so as to achieve a fall rate of approximately 1m per second and the depth reached is monitored using a Tekna maximum indicating (divers) depth gauge (or similar) attached to the frame of the net. Each drop is timed with a stopwatch and the net is allowed to fall from the surface to a depth 0.5-1 m from the substrate. Timing commences when the cod end of the net sinks below the surface. One drop is conducted at each site. On recovery the net is washed down on the outside only to avoid contamination of the sample. Each individual sample is labelled using waterproof labels. Retained plankton is preserved in 5% formalin and returned to the laboratory for sorting and identification. Replicate plankton tows are made at each sample site.

4.0 Hard Substrate Invertebrates and Plants

4.1 Wharf pile communities

Piles or projecting steel facings are to be selected from wharves having different types of shipping activity. Three piles or facings are to be selected in series from near one end of each wharf, starting about 10 m from the end to reduce "edge" effects, with 10 to 20 m distance separating each pile or facing. Three outer and three inner piles may be sampled from wharves with inner piles, which are likely to have much reduced water movement or ambient light levels. Thus the minimum number of piles sampled is three outer and the maximum is six (three outer and three inner). Data suggests that sampling inner piles increases biodiversity information but it does not significantly increase detection of introduced species compared to sampling outer piles only.

The selected piles or facings are to be marked (spray paint) and their positions recorded (GPS) and photographed. For each pile divers then take:

- a) Video film of the outer surface of each pile/facing from approximately high-water level down to the deepest exposed part of the pile/facing using digital video cameras (or similar). The video camera is to be fitted with lights to ensure colour correctness of the footage. A distance-measuring rod with a scale and digital depth meter is also attached to the camera to ensure that the camera remains a constant distance (approx. 50 cm) from the pile or substrate. The scale and depth meter are positioned so they fall within the field of view of the camera and provide real-time depth information on the video footage.
- b) Still photographs using an underwater film camera (e.g., Nikonos V) or a digital camera (of adequate resolution) are taken using a 35 mm lens and overlens to provide a 1:6 frame image (which is suitable for taxonomic work). A strobe is used to ensure that colour correctness is maintained. The use of the framer and strobe both ensure that higher-resolution records of the fouling communities and selected species are taken and can be compared between and amongst quadrats images. Each quadrat is photographed. The 1:6 framer ensures that four

photographs will cover the $0.1m^2$ quadrat. Thus, to photograph three piles, with three quadrats each will use 36 images. Divers will record the order of photographs by using a label within the images or noting pile and photo order on a dive slate that is then recorded on the boat data sheet.

c) Quantitative 0.1 m² (33.33 v 33.33 cm) quadrat samples of the fouling communities present at three depths (0.5, 3.0 and 7.0 m) are collected by scraping the attached flora and fauna as carefully as possible into plastic bags. These samples are labeled (using pre-labeled waterproof labels) and sealed under water. The samples are then rough sorted within 12 hours of collection and narcotised where needed (e.g., anemones, chitons, flatworms) and preserved in the suitable fixative (5% formalin or 70% ethanol) for subsequent fine sorting and identification in the laboratory.

4.2. Breakwaters

Using equipment detailed in section 4.1 above, divers will take video and still photographs and collect representative samples of the attached plant and animal communities within a distance of 0.5 m from a weighted transect line. Each sample is labeled using waterproof labels to indicate that it is a qualitative sample. The transect line is 50 m in distance and therefore an area of 50 m² is covered. Transects run parallel to the breakwater. Typically, breakwaters are sampled on the inside and outside of the structure.

5.0 Soft Substrate Invertebrates and Plants

5.1. Epibenthos

Visual searches by divers to locate and collect representative samples of soft-bottom epibenthic species are to be carried out at selected sites as described in sections 2.2 and 2.3. Each individual sample for a location is labeled as qualitative sample using waterproof labels.

At each wharf to be sampled, divers will video a 50 m transect between one of the piles and the outer series of infaunal cores (see section 5.2), along a weighted transect line marked at 1m intervals. Video and 35 mm still photographs will also be taken at offshore dredge disposal sites and within kelp forests and seagrass meadows. Qualitative samples may also be taken during this sampling activity. Samples taken are labeled using waterproof labels.

5.2. Benthic Infauna

Divers will take infaunal samples using a tubular $0.025m^2$ (17.9cm internal diameter) hand corer. The corer is 40 cm in length and marked (grooves) at 20 cm and 25 cm from the bottom to indicate the depth to which a core is taken. The upper end of the corer is closed except for a mesh-covered 8 cm diameter hole, which is sealed with a rubber bung to aid retention of the infaunal sample when the corer is withdrawn from the sediment.

When sampling around wharves, channel markers and facings, a core is taken from the bottom of each outer pile or facing sampled. A second set of three replicated cores are then taken 50 m directly out from the wharf/facing. Thus, for each wharf area sampled this provides a total of six core samples (three at the base of the piles/facings and three 50 m out from the piles/facings).

Each core sampled is transferred to a 1-mm mesh bag with a drawstring mouth and then sieved underwater, either in situ or after the divers returns to the surface. Each individual sample is labeled using waterproof labels. The retained sieved material is then washed into a plastic bag and preserved in 5% buffered formalin for subsequent sorting and identification in the laboratory.

To avoid the use of divers, core samples may also be taken using vessel deployed grab samplers (see Hewitt and Martin 2001). If using vessel deployed grab samples caution must be taken to ensure that the cores taken at the base of the piles/facings occurs within 1m out from the base of the pile/facing.

6.0 Fish

6.1. Poison Stations

Rotenone, clove oil or a similar poison is to be used to sample fish associated with shipwrecks, hulks, breakwaters and around the base of piles and facings. The poison is mixed according to instructions immediately before use and dispensed using squeeze bottles. Poisoned fish are collected by divers and snorklers using hand nets and either frozen or preserved in buffered 5% formalin for identification and photographing upon return to the laboratory. The use of poisons may require permits or may not be allowed within a region. In such cases an alternative method to poison sampling the fish must be negotiated with Biosecurity New Zealand.

6.2. Nets

Seine nets are to be used to collect fish on ocean beaches and in estuaries. All species of fish and invertebrate taken with the seine nets are to be recorded and a representative sample collected and preserved (frozen or buffered 5% formalin) for identification upon return to the laboratory. Each species collected must be photographed. The use of nets may require permits or may not be allowed within a region. In such cases an alternative method to net sampling the fish must be negotiated with Biosecurity New Zealand.

7.0 Environmental Data

7.1. Temperature, salinity and dissolved oxygen

A submersible data logger (SDL) equipped with pressure, conductivity and temperature sensors will be used to record data on salinity and water temperature at 0.5 m intervals from the surface to near bottom. Light levels will be estimated from Secchi disk readings. The researchers undertaking this work should also endeavour to collect existing salinity, water temperature and dissolved oxygen information from the region to provide a seasonal and temporal overview of the salinity and water temperature. It is expected that collected and existing data will be analysed and reported upon within the survey report. Field data is recorded on boat data sheets.

7.2. Sediment Analysis

7.2.1 Sediment Collection

Sediment samples (minimum 100 g wet weight) are to be taken for analysis of grain size and organic content, to characterise the habitats of any introduced epibenthic and infaunal species found. Samples are taken with each set of infaunal cores and at other selected sites. Thus as a minimum 2 sediment samples are collected (one at the base of the pile/facing and one 50 m out from the base of the pile/facing) when core samples are collected. The sediment is collected by divers using sealable plastic containers, which are then labeled and frozen to stabilise the organic content levels and returned to the laboratory for analysis.

7.2.2 Particle Size Analysis

After samples are thawed in the laboratory a sub-sample, approximately 25 g (dry weight), of sediment is taken for organic content analysis. The remaining sediment is wetsieved through a 2mm mesh sieve and separated into <2 mm and >2 mm fractions. Both fractions and the organic content sub-sampled are then oven dried at 80°C (2-4 days). The two fractions are analysed as follows:

- > 2 mm fraction. The total fraction is dry-sieved through a nest of sieves and the fraction retained on each sieve (2, 2.8, 4, 5.6, and 8 mm meshes: 0.5 Phi intervals) is weighed. Sediment retained on the largest sieve includes all particles with size larger than 8 mm. The individual sieved weights are then added to the dry weight of the > 2 mm fraction to give a total dry weight for the entire sediment sample. The proportion of each component in the > 2 mm fraction is then calculated as a percentage of the total dry sample.
- < 2 mm fraction. The dry weight of the total < 2 mm fraction is measured to 0.01 g and the sediment or, depending on the amount available, a sub-sample (taken by "coning and quartering") is analysed using a Malvern Laser Particle Size Analyser. Particle size data from this analysis is then combined with data analysis of the > 2 mm fraction.

7.2.3 Organic Content

Approximately 25 g of dry, unsieved sediment is weighed in a crucible to 0.00001 g then ashed in a muffle furnace at 480°C for 4 hrs. The crucible is allowed to cool before being reweighed. The difference between the net dry and net ash-free weights is then calculated. This difference, or weight loss, is expressed as a percentage of the initial dry weight and represents the organic content of the sediment sample.

8.0 References

- Bolch, C. J. and Hallegraeff, G. M. 1990. Dinoflagellate cysts in recent marine sediments from Tasmania, Australia. Botanica Marina 33: 173-192.
- Hewitt, C. L. and Martin, R. B. 1996. Port Surveys for Introduced Marine Species Background Considerations and Sampling Protocols. CRIMP Technical Report 4. CSIRO Division of fisheries, Hobart.
- Hewitt, C. L. and Martin, R. B. 2001. Revised Protocols for Port baseline Surveys for Introduced Marine Species – Survey Design, Sampling Protocols and Specimen Handling. CRIMP Technical Report 22. CSIRO Marine Research, Hobart.
- Loeblich, A. R. 1975. A seawater medium for dinoflagellates and the nutrition of *Cachinina niei*. Journal of Phycology 11: 80-86.
- Oshima, Y., Sugino, K., Yasumoto, T. 1989. Latest advances in HPLC analysis of paralytic shellfish toxins. pp 319-326. In: Natori, S., Hashimoto, K., Ueno, Y. (eds.). Mycotoxins and Phycotoxins '88. Elsevier Science Publishing Co., New York.

APPENDIX 2. GEOGRAPHIC LOCATIONS (NZGD49) OF SAMPLE SITES IN THE MILFORD SOUND INITIAL PORT BASELINE SURVEY

Site number	Site name	Easting	Northing	Survey method*	Number of sample units
1	Deep Water Basin 1	2106982	5601286	BCOR	3
1	Deep Water Basin 1	2107020	5601158	CRBTP	3
1	Deep Water Basin 1	2107039	5601161	CRBTP	3
1	Deep Water Basin 1	2107014	5601326	CYST	3
1	Deep Water Basin 1	2107095	5601177	PHYT	3
1	Deep Water Basin 1	2106982	5601286	SEDIMENT	1
1	Deep Water Basin 1	2107020	5601158	SHRTP	3
1	Deep Water Basin 1	2107039	5601161	SHRTP	3
1	Deep Water Basin 1	2108130	5601601	VISD	1
1	Deep Water Basin 1	2107055	5601159	ZOOP	3
2	Deep Water Basin 2	2108136	5601613	BCOR	3
2	Deep Water Basin 2	2108137	5601597	CYST	3
2	Deep Water Basin 2	2108136	5601613	SEDIMENT	2
2	Deep Water Basin 2	2108130	5601595	VISD	1
3	Deep Water Basin Jetties	2107539	5602114	BCOR	6
3	Deep Water Basin Jetties	2107338	5602144	CRBTP	3
3	Deep Water Basin Jetties	2107489	5602134	CRBTP	3
3	Deep Water Basin Jetties	2107539	5602114	CYST	6
3	Deep Water Basin Jetties	2107515	5601903	PHYT	3
3	Deep Water Basin Jetties	2107535	5602116	POIS	1
3	Deep Water Basin Jetties	2107535	5602116	PSC	6
3	Deep Water Basin Jetties	2107685	5601865	SEINE	3
3	Deep Water Basin Jetties	2107338	5602144	SHRTP	3
3	Deep Water Basin Jetties	2107660	5602134	SHRTP	3
3	Deep Water Basin Jetties	2107479	5601896	ZOOP	3
4	Deep Water Basin Slipways	2107581	5602133	CRBTP	3
4	Deep Water Basin Slipways	2107584	5602131	CRBTP	3
4	Deep Water Basin Slipways	2107581	5602133	SHRTP	3
4	Deep Water Basin Slipways	2107584	5602133	SHRTP	3
4	Deep Water Basin Slipways	2107581	5602133	VISD	1
4	Deep Water Basin Slipways	2107581	5602133	WRACK	1
5	Channel Marker No 2	2107561	5602978	PHYT	3
5	Channel Marker No 2	2106683	5602978	PSC	2
5	Channel Marker No 2	2106683	5602978	VISD	1
5	Channel Marker No 2	2106003		ZOOP	3
6			5602960		6
	Sandfly Point Jetty	2106277	5601470	CRBTP	
6 6	Sandfly Point Jetty Sandfly Point Jetty	2106747	5601948	CYST	6 3
		2106216	5601341	PHYT	
6	Sandfly Point Jetty	2106277	5601470	SHRTP	6
6	Sandfly Point Jetty	2106277	5601470	VISD	1
6	Sandfly Point Jetty	2106608	5601709	ZOOP	3
7	Ferry Terminal 1	2107889	5603208	BCOR	6
7	Ferry Terminal 1	2107889	5603208	CYST	6
7	Ferry Terminal 1	2107954	5603236	POIS	1
7	Ferry Terminal 1	2107954	5603236	PSC	6
7	Ferry Terminal 1	2107889	5603208	SEDIMENT	2
7	Ferry Terminal 1	2107954	5603236	VISD	1
8	Ferry Terminal 2	2107930	5603187	CRBTP	6
8	Ferry Terminal 2	2107927	5603185	CYST	3

		1			1
8	Ferry Terminal 2	2107900	5603172	PHYT	3
8	Ferry Terminal 2	2107927	5603185	PSC	6
8	Ferry Terminal 2	2107930	5603187	SHRTP	6
8	Ferry Terminal 2	2107927	5603185	VISD	1
8	Ferry Terminal 2	2107930	5603187	ZOOP	3
9	Freshwater Basin Mooring	2107527	5603080	PHYT	1
9	Freshwater Basin Mooring	2107595	5603046	PHYT	2
9	Freshwater Basin Mooring	2107527	5603080	VISD	1
9	Freshwater Basin Mooring	2107595	5603046	ZOOP	3
10	Harrison Cove	2106529	5607981	CRBTP	3
10	Harrison Cove	2106583	5607882	CRBTP	3
10	Harrison Cove	2106372	5607731	CYST	3
10	Harrison Cove	2106372	5607731	PHYT	1
10	Harrison Cove	2106485	5607846	PHYT	1
10	Harrison Cove	2106522	5607783	PHYT	1
10	Harrison Cove	2106529	5607981	PSC	9
10	Harrison Cove	2106529	5607981	VISD	1
10	Harrison Cove	2106497	5607934	ZOOP	3
11	Anita Bay	2096448	5611536	BCOR	3
11	Anita Bay	2096448	5611536	CYST	4
11	Anita Bay	2096448	5611536	PSC	9
11	Anita Bay	2096448	5611536	SEDIMENT	1
11	Anita Bay	2096448	5611536	VISD	1
12	Fox Point	2096482	5612121	CYST	3
12	Fox Point	2096482	5612252	VISD	1
13	Stirling Falls Wall	2103018	5609332	VISD	1
13	Pater Point	2103010	5606043	PSC	9
14	Pater Point	2104254	5606043	VISD	1
15	Copper Point	2104234	5608944	PSC	9
15	Copper Point	2101529	5608944	VISD	1
16	Stripe Point	2098399	5615822	BCOR	3
16	Stripe Point	2098399	5615822	CYST	3
16	Stripe Point	2098399	5615822	PHYT	3
16					1
	Stripe Point	2098399	5615822	SEDIMENT	3
16	Stripe Point	2098601	5615809	ZOOP	
17	Yates Point	2097821 2097891	5621993	PHYT	2
17	Yates Point		5621988	PHYT	
17	Yates Point	2097946	5622025	VISD	1
17	Yates Point	2097897	5621998	ZOOP	1
17	Yates Point	2097946	5622025	ZOOP	1
17	Yates Point	2097950	5622048	ZOOP	1
18	Brig Rock	2096046	5618407	VISD	1
19	Saint Ann Point	2095930	5613029	VISD	1
21	Sea Breeze Point	2084626	5603947	CYST	3
21	Sea Breeze Point	2084389	5603976	PHYT	1
21	Sea Breeze Point	2084545	5603943	PHYT	1
21	Sea Breeze Point	2084626	5603947	PHYT	1
21	Sea Breeze Point	2084576	5603932	VISD	1
21	Sea Breeze Point	2084576	5603932	ZOOP	1
21	Sea Breeze Point	2084616	5603929	ZOOP	1
21	Sea Breeze Point	2084618	5603905	ZOOP	1
22	Poison Bay	2086277	5600044	ANCH	1
22	Poison Bay	2086309	5600001	ANCH	1

22	Poison Bay	2086335	5599942	ANCH	1
22	Poison Bay	2086250	5600060	CRBTP	3
22	Poison Bay	2086276	5600004	CRBTP	3
22	Poison Bay	2086277	5600044	CYST	1
22	Poison Bay	2086309	5600001	CYST	1
22	Poison Bay	2086335	5599942	CYST	1
22	Poison Bay	2086305	5600107	PHYT	1
22	Poison Bay	2086313	5600100	PHYT	1
22	Poison Bay	2086339	5600198	PHYT	1
22	Poison Bay	2086321	5599967	POIS	1
22	Poison Bay	2086382	5599945	SEDIMENT	1
22	Poison Bay	2086833	5599829	SEINE	3
22	Poison Bay	2086250	5600060	SHRTP	3
22	Poison Bay	2086276	5600004	SHRTP	3
22	Poison Bay	2086321	5599967	VISD	1
22	Poison Bay	2086937	5599881	WRACK	2
22	Poison Bay	2086339	5600092	ZOOP	1
22	Poison Bay	2086342	5600078	ZOOP	1
22	Poison Bay	2086356	5600058	ZOOP	1

*Survey methods: ANCH = anchor box dredge; BCOR = large benthic hand corer; CRBTP = crab trap; CYST = dinoflagellate cyst core; PHYT = phytoplankton net; POIS = fish poison station; PSC = pile scrape quadrats and diver observations on wharf pilings and hard substrata; SEDIMENT = sediment samples; SEINE = beach seine net; SHRTP = shrimp trap; VISD = visual diver transects; WRACK = beach wrack walks; ZOOP = zooplankton net.

Site number	Site name	Sampling method	Replicates	Reason for not sampling
4	Deep Water Basin Slipways	Beach wrack	5m & 10m	Shore not wide enough for searches at 5m or 10m up from shoreline
			from water edge	
5	Channel Marker No 2	Cyst core	1-3	No sample obtainable - stoney/cobble benthos
9	Sandfly Point Jetty	Large hand core or anchor box dredge	1-6	No sample obtainable - stoney/cobble benthos
8	Ferry Terminal 2	Poison station	t	Ferry Terrminal too busy - tour boat skippers unable to deviate from timetables and were therefore unable to guarantee divers safety for duration of poison station sampling
6	Freshwater Basin Mooring	Cyst core	1-3	No sample obtainable - stoney/cobble benthos
10	Harrison Cove	Large hand core or anchor box dredge	1-3	No sample obtainable - unsuitable substrate
10	Harrison Cove	Shrimp trap	1-6	Shrimp trap sampling accidentally ommitted
12	Fox Point	Large hand core or anchor box dredge	1-3	Substrate too hard
16	Stripe Point	Diver visual survey	1	No qualitative visual survey or photo stills/video due to extensive sandy benthos devoid of sessile fouling and fauna, and strong surge affecting visibility
17	Yates Point	Large hand core or anchor box dredge	1-3	No sample obtainable - rocky benthos
17	Yates Point	Cyst core	1-3	No sample obtainable - rocky benthos
20	Transit Beach	Beach seine net	1-3	Not possible to reach site due to heavy surf
20	Transit Beach	Beach wrack	2m, 5m & 10m from water edge	Not possible to reach site due to heavy surf
21	Sea Breeze Point	Large hand core or anchor box dredge	1-3	No sample obtainable - stoney/cobble benthos
22	Poison Bay	Beach wrack	5m & 10m from water edge	Shore not wide enough for searches at 5m or 10m up from shoreline

APPENDIX 4. MEDIA RELEASE CIRCULATED AS PART OF THE PUBLIC AWARENESS PROGRAMME

Media Release

31 August 2006

Ports surveyed for marine pests

Researchers from the National Institute of Water & Atmospheric Research (NIWA) have recently surveyed ports at Milford Sound (Fiordland) and Taharoa Ironsands Terminal (Waikato) for foreign marine organisms.

The surveys were carried out in May and June as part of a nationwide port surveillance programme set up by Biosecurity New Zealand in 2001.

The surveys are designed to determine which non-native marine species have already become established and to develop a baseline for early detection of new pests. Additional surveillance surveys are targeted at eight problem species, two of which have been recorded in New Zealand.

A team of divers carried out a thorough search of all port and marina structures, seabed habitats, and beaches, collecting samples of plants, plankton, invertebrates, fish, and seafloor sediments. They also laid baited traps to collect crabs and shrimps. Video and still images were captured of seabed communities and fouling organisms to identify species growing on underwater structures such as wharf pilings.

The 1645 samples (1130 from Taharoa and 515 from Milford) are being distributed to experts in New Zealand and overseas for identification through Biosecurity New Zealand's Marine Invasives Taxonomic Service, managed by NIWA. This process will take several months.

Once identified, NIWA will report on each species' status (whether native, non-native, or of unknown status), its location at the surveyed ports, and its known distribution within New Zealand and globally. Biosecurity New Zealand will use this information to assess any management actions required. Their conclusions will be made publicly available.

'Port users and operators, including fishers and boat-owners, can play an active role in marine biosecurity by reporting the presence of new or unusual organisms to Biosecurity New Zealand', says NIWA survey project leader Dr Graeme Inglis.

To report suspicious finds, please phone the free Biosecurity New Zealand hotline: **0800 80 99 66.**

For further information, please contact:

Dr Graeme Inglis NIWA Science Tel: 03-343 8036 g.inglis@niwa.co.nz

Mr Brendan Gould Senior Marine Advisor Biosecurity New Zealand Tel: 04-894 0548 brendan.gould@maf.govt.nz

Additional Information:

- 1. The Milford Sound survey was carried out from 7 to 14 June, covering the area from Deepwater Basin to Poison Bay.
- 2. The Taharoa Ironsands Terminal survey was carried out over 8 days from 23 May to 1 July. The survey area extended from Waioioi Reef to Waiohipa Stream.
- 3. The eight problem species targeted by additional surveillance are:
 - Asterias amurensis (North Pacific seastar)
 - Carcinus maenas (European shore crab),
 - Caulerpa taxifolia (aquarium weed)
 - *Eriochier sinensis* (Chinese mitten crab)
 - *Potamocorbula amurensis* (Asian clam)
 - Sabella spallanzanii (Mediterranean fanworm) Styela clava (clubbed tunicate a seasquirt)*
 - Undaria pinnatifida (undaria a type of seaweed)*

* These species are known to be in New Zealand. The rest have not been recorded in New Zealand.

APPENDIX 5: GENERIC DESCRIPTIONS OF REPRESENTATIVE GROUPS OF THE MAIN MARINE PHYLA COLLECTED DURING SAMPLING

Phylum Annelida

Polychaetes: The polychaetes are the largest group of marine worms and are closely related to the earthworms and leeches found on land. Polychaetes are widely distributed in the marine environment and are commonly found under stones and rocks, buried in the sediment or attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. All polychaete worms have visible legs or bristles attached to each of their body segments as well as external gills. The anterior segments bear the tentacles used as sensory organs, tasting palps and eyespots, however, some are blind. Many species live in tubes secreted by the body or assembled from debris and sediments, while others are free-living. Depending on species, polychaetes feed by filtering small food particles from the water or by preying upon smaller creatures.

Phylum Arthropoda

The Arthropoda are a very large group of organisms, with well-known members including crustaceans, insects and spiders.

Crustaceans: The crustaceans (including Classes Malacostra, Cirripedia and other smaller classes) represent one of the sea's most diverse groups of organisms, including shrimps, crabs, lobsters, amphipods, tanaids and several other groups. Most crustaceans are motile (capable of movement) although there are also a variety of sessile species (e.g. barnacles). All crustaceans are protected by an external carapace, and most can be recognised by having two pairs of antennae.

Pycnogonids: The pycnogonids, or sea spiders, are closely related to land spiders. They are commonly encountered living among sponges, hydroids and bryozoans on the seafloor. They range in size from a few millimetres to many centimetres and superficially resemble spiders found on land.

Phylum Bacillariophyta

Diatoms: Diatoms are abundant unicellular organisms that are capable of inhabiting marine and freshwater environments. Their cell walls are made of silica which form radial or bilaterally symmetrical patterns. They reproduce asexually and produce energy via photosynthesis.

Phylum Brachiopoda

Brachiopods have a shell consisting of two valves that enclose the animal. Most living brachiopods are fixed to the substrate with a leathery holdfast called a pedicle. They feed via a lophophore; a cartilage based fan with flexible filaments. They are specialists in nutrient poor environments, have low metabolic rates and very small body to lophophore ratios.

Phylum Bryozoa

Bryozoans: This group of organisms is also referred to as 'moss animals' or 'lace corals'. Bryozoans are sessile and live attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. They are all colonial, with individual colonies consisting of hundreds of individual 'zooids'. Bryozoans can have encrusting growth forms that are sheet-like and approximately 1 mm thick, or can form erect or branching structures several centimetres high. Bryozoans feed by filtering small food particles from the water column, and colonies grow by producing additional zooids.

Phyla Chlorophyta, Rhodophyta and Ochrophyta

Macroalgae: Marine macroalgae are highly diverse and are grouped under several phyla. The green algae are in phylum Chlorophyta; red algae are in phylum Rhodophyta, and the brown algae are in phylum Ochrophyta. Whilst the green and red algae fall under Kingdom Plantae, the brown algae (Phylum Ochrophyta) are grouped in the Kingdom Chromista. Despite their disparate systematics, most red, green and brown algae perform many similar ecological functions. Large macroalgae were sampled that live attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species.

Phylum Chordata

Ascidiacea: Ascidians are sometimes referred to as 'sea squirts' or 'tunicates'. Adult ascidians are sessile (permanently attached to the substrate) organisms that live on submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. Ascidians can occur as individuals (solitary ascidians) or merged together into colonies (colonial ascidians). They are soft-bodied and have a rubbery or jelly-like outer coating (test). They feed by pumping water into the body through an inhalant siphon. Inside the body, food particles are filtered out of the water, which is then expelled through an exhalant siphon. Ascidians reproduce via swimming larvae (ascidian tadpoles) that retain a notochord, which explains why these animals are included in the Phylum Chordata along with vertebrates.

Actinopterygii: The class Actinopterygii refers to the ray-finned fishes. This is an extremely diverse group. Approximately 200 families of fish are represented in New Zealand waters ranging from tropical and subtropical groups in the north to sub Antarctic groups in the south. They can be classified ecologically according to depth habitat preferences; for example, fish that live on or near the sea floor are considered demersal while those living in the upper water column are termed pelagics.

Elasmobranchii: The class Elasmobranchii are one of two classes of cartilaginous fishes, including sharks, skates and rays.

Phylum Cyanobacteria

Cyanobacteria or blue-green algae are photosynthetic prokaryotes. They form a pigment during photosynthesis that leads to their blue-green colour and some species are also capable of fixing nitrogen under certain circumstances. They lack cilia and perform locomotion by gliding across surfaces. They also possess thick cell walls to protect them from desiccation. They show considerable morphological diversity and are found in a wide variety of terrestrial and aquatic habitats.

Phylum Cnidaria

Anthozoa: The class Anthozoa includes the true corals, sea anemones and sea pens.

Hydrozoa: The class Hydrozoa includes hydroids, fire corals and many medusae. Of these, only hydroids were recorded in the port surveys. Hydroids can easily be mistaken for erect and branching bryozoans. They are also sessile organisms that live attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. All hydroids are colonial, with individual colonies consisting of hundreds of individual 'polyps'. Like bryozoans, they feed by filtering small food particles from the water column.

Scyphozoa: Scyphozoans are the true jellyfish.

Phylum Echinodermata

Echinoderms: The phylum echinodermata is made up of five classes. They are: Crinoidea (sea lilies), Asteroidea (sea stars), Holothuroidea (sea cucumbers), Ophiuroidea (brittle stars), and Echinoidea (sea urchins). This phylum is an exclusively marine phylum that lack eyes or

brains but have radially symmetrical body plans. Their most notable features are their external calcareous plates and spines from which they get their name (Echinoderm means 'spiny-skinned'). Internally they are unique as well with a hydraulic water vascular system that controls their movement and is monitored by the madreporite which controls their intake of water. They occupy a wide range of habitats including subtidal and intertidal zones.

Phylum Entoprocta

Superficially this phylum is very similar to the Bryozoans and both are referred to as moss animals. There are about 60 known species worldwide and all of them are small with no individual exceeding 1.5mm in length. They live in moss-like colonies containing thousands of individuals, forming mats of considerable size. Each animal is crowned with a circlet of ciliated tentacles, within which lies the mouth. The defining characteristic between entoprocts and bryozoans is the location of the anal opening. In entoprocts it is within the crown circlet, in bryozoans the anus is located outside the tentacles.

Phylum Haptophyta

Most species from this phylum are single-celled flagellates, also having amoeboid, coccoid, palmelloid or filamentous stages. The cells are golden or yellow-brown due to the presence of accessory pigments. It usually has two flagella of equal or sub equal length both of which are smooth and an appendage between them called a haptonema which may be used for capturing food. The surface of the cell is covered in granules and calcified scales may potentially be visible under a light microscope.

Phylum Magnoliophyta

Seagrasses: The Magnoliophyta are the flowering plants, or angiosperms. Most of these are terrestrial, but the Magnoliophyta also include marine representatives – the seagrasses.

Phylum Mollusca

Molluscs: There are 4 main classes of Mollusca which include Polyplacophora (Chitons), Gastropoda (marine snails, sea hares, nudibranchs and limpets), Bivalvia (mussels, clams, oysters), and Cephalopoda (squid, cuttlefish and octopus). They are a highly diverse group of marine animals characterised by the presence of an external or internal shell. There are two structures in this phylum that are found no where else in the animal kingdom; they are the mantle and the radula. The mantle is a fold in the body wall that secretes the calcareous shell which is typical of the phylum. The radula is a toothed, tongue or ribbon like organ variously modified for special feeding techniques.

Phylum Myzozoa

Dinoflagellates: Dinoflagellates are a large group of unicellular algae that live in the water column or within the sediments. About half of all dinoflagellates are capable of photosynthesis and some are symbionts, living inside organisms such as jellyfish and corals. Some dinoflagellates are phosphorescent and can be responsible for the phosphorescence visible at night in the sea. The phenomenon known as red tide occurs when the rapid reproduction of certain dinoflagellate species results in large brownish red algal blooms. Some dinoflagellates are highly toxic and can kill fish and shellfish, or poison humans that eat these infected organisms.

Phylum Nemertea

Ribbon worms: The ribbon worms are cylindrical to somewhat flattened, highly contractile, soft-bodied, unsegmented worms. Generally they are small but a few species can reach up to 6m in length. They are usually very slender, brightly coloured, and have an unusual anterior proboscis equipped with a sharp spine to capture prey. They live by either burrowing in sand,

living in algal clumps or mats or in oyster shells. They reproduce sexually as well as asexually by fragmentation.

Phylum Platyhelminthes

Flatworms: The flatworms are unsegmented, flattened, and very soft-bodied. The mouth is located ventrally near the midpoint of the animal or at the anterior end. There are three Classes of flatworm; Turbellaria, Trematoda, and the Cestoda. Many are very small but some can reach considerable sizes and they range in colour from very drab, transparent animals to ones with bright colours.

Phylum Porifera

Sponges: Sponges are very simple colonial organisms that live attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. They are a taxonomically difficult group of marine invertebrates. Most sponges possess skeletal support from need-like spicules and they vary greatly in colour and shape, and include sheet-like encrusting forms, branching forms and tubular forms. Sponge surfaces have thousands of small pores to through which water is drawn into the colony, where small food particles are filtered out before the water is again expelled through one or several other holes.

Phylum Sipuncula

Sipunculids: The phylum Sipuncula (peanut worms) is a group of unsegmented, marine coelomates that are closely related to annelids and molluscs. They have two body regions: a trunk and a more slender proboscis or introvert. This introvert lies enrolled in the body cavity of the animal giving it an oval or peanut shape and only when it is feeding does the introvert fold out. They have a variety of epidermal structures, such as papillae, hooks and shields. They live in a variety of habitats including burrows in silt and sand, under rock crevices and some species bore into coral or soft rock. They have also been known to inhabit the empty shells and tubes of other species.

APPENDIX 6: SPECIES INFORMATION SHEETS FOR EACH NON-INDIGENOUS AND CRYPTOGENIC CATEGORY 1 SPECIES RECORDED FROM THE MILFORD SOUND PORT SURVEY OR DESKTOP REVIEW OF EXISTING MARINE SPECIES RECORDS.

The species information sheets are designed to summarise basic information on the biology, ecology, distribution (international and national), and potential impacts of each of the nonindigenous and cryptogenic category one (C1) taxa that was recorded during the port baseline survey. They are modeled on similar fact sheets that have been developed for on-line databases on non-indigenous marine species elsewhere in the world (e.g NIMPIS, NISbase, NASbase, Global Invasive Species Database, NEMESIS, Baltic Sea Alien Species, etc). Information on each species was compiled from available literature, on-line databases on alien marine species, searchable databases with taxonomic and/or biogeographic data (e.g. ITIS, OBIS, Australian Faunal Directory, Algaebase, Fishbase, etc) and from background material provided by the specialist taxonomists who identified the specimens. Key published sources of information for each species are listed on the bottom of each sheet. Whilst the sources of all photographs and diagrams are acknowledged, we have not sought specific permission to use them.

Pathways for introduction and dispersal

Likely pathways for the introduction and spread of each species are classified according to the 22 vector categories used by Hayes et al. (2005) in recent risk profiling of priority Australian marine pests (Table 1). Three additional categories - N1, N2, N3 - have been added to describe different pathways for natural spread of the species within New Zealand. For each species, the likely pathways of introduction to New Zealand are largely derived from Cranfield et al. (1998), published information, or expert opinion. The categories met by any given species are indicated in its species information sheet.

Code	Description
B1	Biocontrol: deliberate translocation as a biocontrol agent
B2	Biocontrol: accidental translocation with deliberate biocontrol release
С	Canals: natural range expansion through man-made canals
D	Debris: transport of species on human generated debris
F1	Fisheries: deliberate translocations of fish or shellfish to establish or support
	fishery
F2	Fisheries: accidental with deliberate translocations of fish or shellfish
F3	Fisheries: accidental with fishery products, packing or substrate
F4	Fisheries: accidental as bait
IR1	Individual release: deliberate release by individuals
IR2	Individual release: accidental release by individuals (e.g. aquarium discards)
NB	Navigation buoys and marina floats: accidental as attached or free-living fouling
	organisms
P1	Plant introductions: deliberate translocation of plant species (e.g. for erosion control)
P2	Plant introductions: accidental with deliberate plant translocations
RE	Recreational equipment: accidental with recreational equipment
S1	Ships: accidental as attached or free-living fouling organisms
S2	Ships: accidental with solid ballast (e.g. rocks, sand, etc)
S3	Ships: accidental with ballast water, sea water systems, live wells or other deck

Table 1:Potential pathways for the introduction and spread of non-indigenous
species within New Zealand (after Hayes et al. 2005).

	basins
S4	Ships: accidental associated with cargo
S5	Ships: accidental associated with dredge spoil
SP	Seaplanes: accidental as attached or free-living fouling organisms
SR1	Scientific research: deliberate release with research activities
SR2	Scientific research: accidental release with research activities
U	Unknown
N1	Natural: planktonic dispersal
N2	Natural: rafting of adults on biogenic substrata
N3	Natural: long-distance movement of adults

Potential impacts

The impacts on New Zealand ecosystems have not been documented for most species. Where detailed information is available on known impacts of the species here or overseas, this is included. "Potential impacts" were identified on the basis of the species' life habits or those of similar functional species. We classified "potential" impacts into the 15 categories used by Hayes et al. (2005) to evaluate the impacts of priority Australian marine pests (Table 2). The categories met by any given species are indicated in its species information sheet. Some species met none of the potential impact categories and therefore none of these categories are listed for those species.

Impact category	Code	Description	
Human health	H1	Human health	
Economic	M1	Aquatic transport	
Economic	M2	Water abstraction/nuisance fouling	
Economic	M3	Loss of aquaculture/commercial/recreational harvest	
Economic	M4	Loss of public/tourist amenity	
Economic	M5	Damage to marine structures/archaeology	
Environmental	E1	Detrimental habitat modification	
Environmental	E2	Alters trophic interactions and food-webs	
Environmental	E3	Dominates/out competes and limits resources of native	
		species.	
Environmental	E4	Predation of native species	
Environmental	E5	Introduces/facilitates new pathogens, parasites or other NIS	
Environmental	E6	Alters bio-geochemical cycles	
Environmental	E7	Induces novel behavioral or eco-physiological responses	
Environmental	E8	Genetic impacts: hybridisation and introgression	
Environmental	E9	Herbivory	

Table 2:Categories used to identify potential impacts of each species (after Hayes
et al. 2005).

Distribution maps

We followed the approach used by the Australian National Introduced Marine Pest Information System (NIMPIS) to present information on the global distribution of each species. NIMPIS uses a bioregional classification of the world's oceans developed by The World Conservation Union (IUCN) to define areas for conservation purposes (Kelleher et al. 1995). A conservative approach has been adopted whereby a species is considered present in all areas of a bioregion if it has been recorded from any location within that bioregion's boundaries². Since bioregions represent environmentally similar geographic areas, if a species is present in one portion of a bioregion, there is a strong likelihood that it could spread via natural processes to other areas in that bioregion. Nonetheless, the species does not necessarily occur throughout the entire bioregion. In preparing the maps, published distribution information was not always precise, so if a location record indicated a whole country or large area of coastline and provided no further information, all regions encompassing that country or coastline were shaded on our maps. Also note that the species could occur in other (unshaded) regions, but we have not seen records for these regions. The same conditions apply to the New Zealand distribution maps, which divides New Zealand and its offshore islands into 16 regions (after Francis 1996).

We have made our best attempt to identify the provenance of each species. In each case we have attempted to identify: (1) the natural biogeographic range of the species ("native range"), (2) bioregions in which it has been introduced by humans (deliberately or inadvertently; "non-native" range), and (3) regions in which the species' provenance is uncertain ("cryptogenic" range). In many instances, the provenance for particular bioregions is not clear from existing distribution records. In some cases this is because we have not been able to access primary monographs or publications that might resolve this, but in most cases it is simply because the biogeographic information and/or systematics do not permit clear identification of provenance. In these instances, we have had to make our own interpretations of the information available to us.

References

Cranfield, H.; Gordon, D.; Willan, R.; Marshall, B.; Battershill, C.; Francis, M.; Nelson, W.; Glasby, C.; Read, G. (1998). Adventive marine species in New Zealand. NIWA technical report No. 34. Hamilton, NIWA.

Francis, M.P. (1996). Geographic distribution of marine reef fishes in the New Zealand region. *New Zealand Journal of Marine and Freshwater Research* 30: 35-55.

Kelleher, G., Bleakley, C. and Wells, S. (1995), A Global Representative System of Marine Protected Areas, The World Bank, Washington, USA

Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia. 102 p

² The geographic locations of each sample in which the species was found during the New Zealand port baseline surveys are available within the BIODS database associated with this project.

Scientific name: *Champia affinis* (J.D. Hooker & Harvey) Harvey **Common name:** None

Image: Adams (1994)

Species information sheet prepared by:	NIWA Marine Biosecurity Group
Biosecurity status:	NIS
Species recorded during New Zealand port baseline surveys:	Yes
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Rhodophyta
Class:	Florideophyceae
Order:	Rhodymeniales
Family:	Champiaceae

General species description:

Champia affinis is a red alga up to 18 cm in height, pinnately much-branched from a main stem. The holdfast is a basal disc. It is pink in colour and has a soft and flaccid texture (Adams 1994).

Distribution:

The native range of *C. affinis* is thought to be southern Australia. Extralimital records have been reported from Sri Lanka and New Zealand (Guiry 2006) (Figure 1).

In New Zealand *C. affinis* has been reported from Otago Harbour, Preservation Inlet in Fiordland and Port Pegasus, Stewart Island (Adams 1994; Nelson et al. 2002) (Figure 2).

During the New Zealand port baseline surveys, *C. affinis* was recorded from Port Chalmers in Otago Harbour, Dunedin (Figure 2).

Ecology (habitat & known interactions):

C. affinis occurs on a range of hard substrata and as detached plants. It is found predominantly subtidally in sheltered harbours and inlets and is unable to persist on open coast environments (Adams 1994; Nelson et al. 2002).

Potential pathways for introduction to, and spread within, New Zealand:

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
N1	Natural: planktonic dispersal		Yes (broadcast spores)
N3	Natural: long-distance movement of adults		Yes (as detached plants)
S1	Ships: accidental as attached or free-living fouling organisms	Yes	Yes

Potential impacts in New Zealand:

The impacts of this species in its introduced range are currently unknown, although it is not considered to be a threat to native flora and fauna (Nelson et al. 2002).

Impact category	Code	Description (after Hayes et al. 2005)
Economic	M2	Water abstraction/nuisance fouling

Global and New Zealand distribution maps:

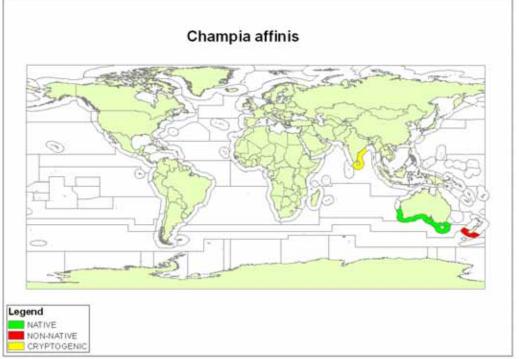


Figure 1: Global distribution of *Champia affinis*

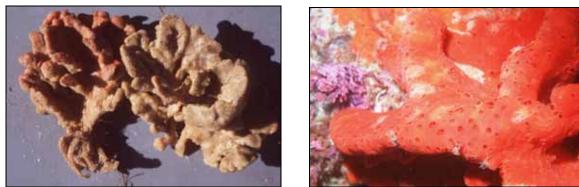


Figure 2: Distribution of *Champia affinis* in New Zealand

References:

- Adams, N. (1994). Seaweeds of New Zealand: an illustrated guide. Canterbury University Press, Christchurch. 360 p.
- Guiry, M. (2006). AlgaeBase version 4.1. Web publication, National University of Ireland, Galway. <u>http://www.algaebase.org</u>. Accessed 21/11/2007.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests.Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- Nelson, W.A.; Villouta, E.; Neill, K.F.; Williams, G.C.; Adams, N.M.; Slivsgaard, R. (2002). Marine macroalgae of Fiordland, New Zealand. *Tuhinga 13*: 117-152.

Scientific name: Crella incrustans (Carter, 1885) sensu Bergquist & Fromont (1988) Common name: None

Images by Coral Reef Research Foundation, Micronesia

Species information sheet prepared by:	Dr Michelle Kelly (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	C1
Species recorded during New Zealand port baseline surveys:	Yes
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Porifera
Class:	Demospongiae
Order:	Poecilosclerida
Family:	Crellidae

General species description:

Crella incrustans (Carter, 1885) *sensu* Bergquist & Fromont (1988) may be either encrusting or lamellate, with palm-like branches extending from a basal mass. The colour in life is typically bright red to orange yellow. The texture is compressible and elastic but tough and fibrous. The surface is distinctly fibrous with channels in the surface. The sponges vary in size but are typically c. 100 mm long, 50 mm wide, 0.1 cm thick.

Distribution:

This sponge was originally described as *Anchinoe novaezelandiae* Dendy, 1924, from North Cape, 26-55 m. Hallman (1914) transferred this to the "cosmopolitan species" *Crella incrustans* (Carter, 1885), first described from Atlantic coasts by Carter in the 1800s, and later by Hallman and Lendenfeld and others from south-east Australian coasts. Although Bergquist & Fromont (1988) concurred with this transfer, it should be treated with caution as Dendy was a highly reputable taxonomist and would have had access to literature and type specimens from the British Museum of Natural History for comparison with the New Zealand material. Even though the species is widespread throughout New Zealand and is common subtidally as well as intertidally (and might therefore be thought to be native to New Zealand), without examination of type material in conjunction with New Zealand material, its status in New Zealand can only be considered cryptogenic at best.

During the New Zealand baseline port surveys, *Crella incrustans* was found at Napier, Dunedin, Wellington, Whangarei, Timaru and Picton (Figure 1). There are also records for the Three Kings Islands, Stewart Island, the Auckland and Campbell Islands, Doubtful Sound and Kaikoura (M. Kelly, NIWA, Unpublished records).

Ecology (habitat & known interactions):

This species is extremely common in New Zealand waters, in the intertidal and subtidal regions, and has been recorded to a depth of greater than 60 m (Bergquist and Fromont 1988).

Potential pathways for introduction to, and spread within, New Zealand:

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes

Potential impacts in New Zealand:

Crella incrustans (Carter, 1885) has no known ecological impacts on New Zealand intertidal and subtidal communities, despite it being relatively common.

Impact category	Code	Description (after Hayes et al. 2005)
Economic	M2	Water abstraction/nuisance fouling

Global and New Zealand distribution maps:

A map of the global distribution of *Crella incrustans* is not provided, as the global distribution of this species is disparate and does not make sense biogeographically. This is most likely due to there being insufficient diagnostic characters available in the older literature (when specimens were never described in the fresh state) to distinguish from contemporary specimens at today. Moreover, 'cosmopolitanism' of certain species was a widely held phenomenon in the biology community and the sponge community also concurred with this notion. Today we are certain that this notion is not valid except in a few select cases. Thus, further taxonomic work might indicate that the New Zealand specimens are actually different species to those with the same name elsewhere in the world (see also "Distribution" section above).

The map which illustrates the New Zealand regions from which *Crella incrustans* has been recorded is shown below (Figure 1).

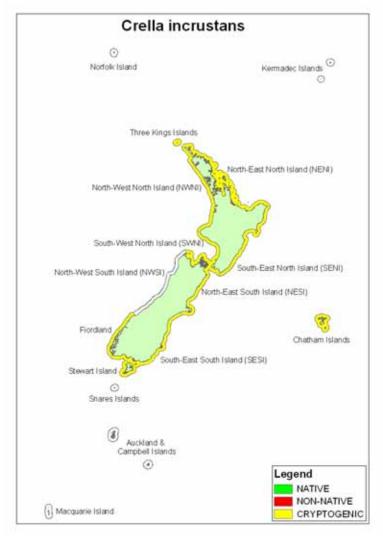


Figure 1: Distribution of Crella incrustans in New Zealand

References:

- Bergquist, P.R.; Fromont, P.J. (1988). The Marine fauna of New Zealand: Porifera, Demospongiae, Part 4 (Poecilosclerida). New Zealand Oceanographic Institute Memoir 96. 197 p.
- Hallman, E. (1914). A revision of the monaxonid species described as new in Lendenfeld's "Catalogue of the sponges in the Australian Museum". Part I. Proceedings of the Linnean Society of New South Wales 39: 263-315.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.

Scientific name: *Didemnum* sp. Common name: None

Image by Mike Page, NIWA

Species information sheet prepared by:	Mike Page (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	C1
Species recorded during New Zealand port baseline surveys:	Yes
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Tunicata
Class:	Ascidiacea
Order:	Enterogona
Family:	Didemnidae

General species description:

This genus includes at least two species that have recently been reported from within New Zealand (*D. vexillum* and *D. incanum*) and two related, but distinct species from Europe (*D. lahillei*) and the north Atlantic (*D. vestum* sp. nov.) that have displayed invasive charactertistics (i.e. sudden appearance and rapid spread, Kott 2004a; Kott 2004b). All can be dominant habitat modifiers. The taxonomy of the Didemnidae is complex and it is difficult to identify specimens to species level. The colonies do not display many distinguishing characters at either species or genus level and are comprised of very small, simplified zooids with few distinguishing characters (Kott 2004a). Six species have been described in New Zealand (Kott 2002) and 241 in Australia (Kott 2004a). Most are recent descriptions and, as a result, there are few experts who can distinguish the species reliably.

Distribution:

Didemnum is a diverse and cosmopolitan genus, occurring around all continents, including polar regions. The geographic range of many species is extensive, from the western tropical Pacific to tropical Australia. Temperate species are less diverse (Kott 2001). Indigenous species in Australian waters abound. *Didemnum* is the most difficult of ascidian genera to identify. (Millar 1982) casts doubt on the identity of many early descriptions of New Zealand didemnids (Croxall 1972). This genus is cryptogenic, and requires further detailed collection and revision to identify true diversity and biogeography in New Zealand. Kott et al. (2002)

recognized seven species of *Didemnum* in New Zealand, and further emphasized the need for systematic collection and taxonomy to understand this group for the use and management of marine resources. Because of difficulty distinguishing between species, most *Didemnum* species collected for port surveys were grouped together.

During the New Zealand baseline port surveys, *Didemnum* sp. has been found at the ports of Gisborne, Auckland, Bluff, Dunedin (Otago), Timaru, Tauranga, Wellington, New Plymouth, Picton, Nelson, Lyttelton and Milford Sound.

Ecology (habitat & known interactions):

Didemnum species occupy a wide range of habitats from artificial structures in ports and estuarine environments to deep subtidal reefs. None have been identified in abyssal depths. Exponential growth of colonies by budding of zooids enables this genus to cover substrata and overgrow other benthic species at an alarming rate.

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
D	Debris: transport of species on human generated debris		Yes
F2	Fisheries: accidental with deliberate translocations of fish or shellfish		Yes
Navigation buoys and marina floats: NB accidental as attached or free-living fouling organisms			Yes
RE	Recreational equipment: accidental with recreational equipment		Yes
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes
N1	Natural: planktonic dispersal		Yes
N2	Natural: rafting of adults on biogenic substrata		Yes

Potential pathways for introduction to and spread within New Zealand:

Potential impacts in New Zealand:

Didemnum species are common in ports, harbours and on vessel hulls. Because of rapid growth in ideal conditions, and the ability shed fragments and recolonize substrata, the species of this cryptogenic genus are considered high-risk.

Impact category	Code	Description (after Hayes et al. 2005)	
Economic	M1	Aquatic transport	
Economic	M2	Water abstraction/nuisance fouling	
Economic	M3	Loss of aquaculture/commercial/recreational harvest	
Economic	M4	Loss of public/tourist amenity	
Environmental	E2	Alters trophic interactions and food-webs	
Environmental	E3	Dominates/ outcompetes and limits resources of native species	

Global and New Zealand distribution maps:

Distribution maps were not prepared for *Didemnum* sp. because different species within the genus have different distributions, and due to the taxonomic difficulties in identifying the species it is uncertain which species of *Didemnum* occur in Milford Sound.

NIWA Species Information Sheet: Didemnum sp.

References:

- Croxall, J.P. (1972). A check-list of New Zealand ascidians, with preliminary notes on their distribution. *Tane 18*: 177-185.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- Kott, P. (2001). The Australian ascidiacea Pt. 4, Didemnidae. *Memoirs of the Queensland Museum 47(1)*: 1-410.
- Kott, P. (2002). A complex didemnid ascidian from Whangamata, New Zealand. *Journal of Marine Biology Association of the United Kingdom 82*: 625-628.
- Kott, P. (2004a). New and little-known species of Didemnidae (Ascidiacea, Tunicata) from Australia (part 2). *Journal of Natural History 38*: 2455-2526.
- Kott, P. (2004b). A new species of *Didemnum* (Ascidiacea, Tunicata) from the Atlantic coast of North America. *Zootaxa* 732: 1-10.
- Kott, P.; Bradford-Greive, J.; Esnal, G.; Murdoch, R. (2002). Phylum Tunicata: Sea squirts, salps and appendicularians. *In*: Gordon, D.P. (ed.). Species 2000 : New Zealand - the challenge of biodiversity assessment, with special reference to the marine environment, pp. 75. New Zealand National Institute of Water and Atmospheric Research, Wellington.
- Millar, R. (1982). The marine fauna of New Zealand: Ascidiacea. New Zealand Oceanographic Memoir 85.

Scientific names:Alexandrium affine (Inoue et Fukuyo) Balech 1984
Alexandrium minutum Halim 1960
Alexandrium ostenfeldii (Paulsen) Balech & Tangen
Alexandrium tamarense (Lebour, 1925) Balech, 1985
Alexandrium catenella (Whedon and Kofoid) Balech 1985
Gymnodinium catenatum Graham 1943

Common name: Dinoflagellates

Image: *Gymnodinium catenatum* (courtesy of F.H. Chang, NIWA).

Species information sheet prepared by:	Dr F. Hoe Chang (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	C1 for all species listed above
Species recorded during New Zealand port baseline surveys:	Alexandrium affine Alexandrium ostenfeldii Alexandrium catenella Alexandrium tamarense Gymnodinium catenatum
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Alexandrium minutum Alexandrium ostenfeldii Gymnodinium catenatum

Taxonomy:

I whomomy.	
Phylum:	Myzozoa
Class:	Dinophyceae
Order:	Gonyaulacales (for genus Alexandrium)
	Gymnodiniales (for genus Gymnodinium)
Family:	Goniodomataceae (for genus <i>Alexandrium</i>)
-	Gymnodiniaceae (for genus Gymnodinium)

General description:

Dinoflagellates are single-celled, eukaryotic organisms with a large nucleus with clearly visible chromosomes. Approximately 50 % of the species are photosynthetic. They have two flagella, one protruding from the horizontal girdle groove and the other from the vertical sulcus groove. "Unarmoured" species are bounded by a membranous covering only while "armoured" species have a covering of cellulose plates (Hallegraeff 1991).

Alexandrium affine is an armoured chain-forming (2 - 8 cells long) species of medium sized cells that are slightly longer (26.4 – 44 μ m) than wide (24.5-44 μ m) and dorso-ventrally flattened (Faust and Gulledge 2002).

Alexandrium minutum is a small armoured species. The cells are nearly spherical to ellipsoidal (16-25 μ m), somewhat dorsoventrally flattened, occasionally longer than wide, and occur as single cells or rarely in pairs (Chang et al. 1997; Faust and Gulledge 2002).

Alexandrium ostenfeldii is an armoured species with large, nearly spherical cells. Cells are single, ranging in size between 40-56 μ m in length and 40-50 μ m in transdiameter width, but are often found in two-celled chains. A. ostenfeldii is a photosynthetic species with radiating chloroplasts. The nucleus is U-shaped and equatorial (Faust and Gulledge 2002).

Alexandrium tamarense is an armoured species with small to medium sized cells, nearly spherical, slightly longer than wide, and occurs either as single cells or in pairs. The size and shape of this species is highly variable: cells range in size between 22-38 μ m in length and 17-44 μ m in transdiameter width. It is a photosynthetic species with a number of orange-brown chloroplasts. A lunar-shaped nucleus is situated ventrally just inside the cingulum (Faust and Gulledge 2002).

Alexandrium catenella is an armoured planktonic species. It most often occurs in short chains of 2, 4 or 8 cells long, which swim together in a snake-like fashion. The cells are often anterio-posteriorly compressed, 20-48 μ m long and 18-32 μ m wide (Hallegraeff 1991; Faust and Gulledge 2002). A. catenella is a photosynthetic species with numerous yellow-green to orange-brown chloroplasts. The nucleus is large and U-shaped (Faust and Gulledge 2002).

Gymnodinium catenatum is an unarmoured species. It is typically seen in chain formation with up to 64 cells (see figure, above), but may also occur as single cells. Single cells are generally elongate-ovoid with slight dorso-ventral compression. Chain formers, in general, are squarish-ovoid with anterior-posterior compression. Single cells range in size from 27-43 μ m in width to 34-65 μ m in length. Chain-forming cells are slightly smaller with sizes ranging from 27-43 μ m in width to 23-60 μ m in length; terminal cells are slightly larger, similar to single cells. It is a photosynthetic species with numerous yellow-brown chloroplasts (Faust and Gulledge 2002; Kraberg and Montagnes 2007).

Distribution:

Being planktonic, most dinoflagellates, including those considered here, are widely distributed throughout the world's oceans. Distribution records for these species tend to be scattered and they often reflect sampling effort; the lack of a record from a particular location is more likely to represent the lack of sampling in that location than the true absence of the species.

Alexandrium affine is a coastal species which has been recorded from Japan, the Gulf of Thailand, the Philippines, Malaysia, Vietnam, Korea, France, Spain, Mexico, Gulf of California (USA), Australia, and from the north-east of the North and South Islands of New Zealand (Guiry 2006; Kraberg and Montagnes 2007) (Figure 1). During the New Zealand port baseline surveys *A. affine* was recorded from New Plymouth (Chang et al. in press) and Taharoa. The New Plymouth record occurred in a sample from the second baseline survey of New Plymouth, but was not identified until much later, because cysts were required to hatch before the taxonomist was able to make a positive identification. It was therefore not reported in the New Plymouth second baseline port survey report.

Alexandrium minutum is a cosmopolitan species and is mainly found in coastal areas of many parts of the world. The type locality is Alexandria, Egypt. It has also been recorded from Denmark, England, Ireland, France, Italy, northern Adriatic waters (Mediterranean Sea), Turkey, Spain, Portugal, France, the east coast of the United States, Taiwan, Peninsular Malaysia, Vietnam, Thailand, India, South Australia and New Zealand (Chang et al. 1999; Faust and Gulledge 2002; Lin et al. 2007). In New Zealand it has been reported in the Bay of Plenty, north-east coast of North Island, Cape Egmont, the Marlborough Sounds, Dunedin and Bluff (Smith et al. 1993; Chang et al. 1999). During the New Zealand port baseline surveys, cysts of *A. minutum* were collected from the second baseline surveys of Lyttelton, Tauranga and Auckland (Chang et al. in press) (Figure 2). Cysts were required to be hatched before positive identifications could be made, and this inevitable delay resulted in the Lyttelton and Tauranga specimens not being identified until after the reports had been published for these two ports. The report for the second baseline port survey of Auckland is in preparation.

Alexandrium ostenfeldii is generally a cold-water coastal / estuarine planktonic species found in Denmark, Belgium Norway, Spain and Iceland. Recently, it has been discovered in Alexandria Harbor, Egypt, and also off Washington State, U.S.A. Populations have also been observed from British Columbia and the Kamchatka Peninsula in the north Pacific Ocean. In the northwest Atlantic Ocean, cells have been reported in Canada from the Gulf of St. Lawrence and southeastern Nova Scotia (Faust and Gulledge 2002). In the southwest Pacific this species has also been found in Australia and New Zealand. In New Zealand, it has been recorded from all coasts of the North and South Islands, except the north-west South Island (despite sampling having been conducted for it in Westport and Nelson, MacKenzie et al. 1996). During the New Zealand port baseline surveys, *A. ostenfeldii* was not recorded from any of the major ports, but was recorded from Taharoa (Figure 3). Analyses of toxin composition in the various New Zealand populations of *A. ostenfeldii* suggest that this species may be part of New Zealand's indigenous marine dinoflagellate flora, rather than a nonindigenous species (MacKenzie et al. 1996). As this has not been confirmed, it is treated as a cryptogenic category one (C1) species here.

Alexandrium tamarense is widely distributed in coastal and estuarine environments, mainly in cold to cold-temperate waters. Records include Nova Scotia and Quebec in north-east North America, England and Ireland in Europe, South Africa in Africa, and the Peoples Republic of China, Korea and Japan in Asia. It has also been reported from warmer waters around the world, including Australia, New Zealand, Venezuela, Malaysia and the Gulf of Thailand (Faust and Gulledge 2002; MacKenzie et al. 2004). During the New Zealand port baseline surveys, *A. tamarense* was recorded from Tauranga, Taharoa and Milford Sound (Figure 4).

Alexandrium catenella is widely distributed in cold temperate coastal waters. Populations have been recorded from the west coast of North America (from California to Alaska), Chile, Argentina, western South Africa, Japan, Australia (Port Phillip Bay and Tasmania), and the Bay of Plenty in New Zealand (Hallegraeff 1991; Hay et al. 2000; Chang 2002; Faust and Gulledge 2002; MacKenzie et al. 2004). During the New Zealand port baseline surveys, *A. catenella* was recorded from Taharoa, and cysts identified as *Alexandrium* cf. *catenella* were recorded from the ports of Bluff and Whangarei (Figure 5).

Gymnodinium catenatum is planktonic and mainly found in warm, temperate coastal waters. Its native range is unknown. Populations of this species have been recorded from the Pacific coast of Mexico and the USA, Argentina, Uruguay, Venezuela, Morocco, Spain, Portugal, Singapore, Malaysia, the Philippines, the Gulf of Thailand, Korea, Japan, Hong Kong, Australia and New Zealand. Whilst definitive proof is impossible, the available evidence indicates that it was introduced to Australasia during the past 100 years, most probably via

ballast water from bulk-cargo shipping from Japan and/ or south-east Asia (Bolch and de Salas 2007). *Gymnodinium catenatum* was first recorded in New Zealand in the year 2000, from Ninety Mile Beach in the far north-west of the North Island (Taylor and MacKenzie 2001). It has since been recorded from a variety of locations throughout the North Island of New Zealand, and in Port Underwood in the north of the South Island (Taylor and MacKenzie 2001). During the New Zealand port baseline surveys, *G. catenatum* was recorded from the ports of Opua, Whangarei, Auckland, Gisborne, Napier, Taharoa, New Plymouth and Wellington (Figure 6).

Ecology (life history, habitat & known interactions):

A study by Band-Schmidt et al. (2003) has shown *Alexandrium affine* to be homothallic (not of different sexes; able to fertilise itself) and isogamous (having haploid gametes similar in size, structure and motility), and to form cysts in nutrient-deficient mediums. In this study, the rate of cyst germination increased with increasing temperature, and was not significantly affected by light. The optimal temperature for vegetative cells was 20-30 °C. No vegetative growth was observed below 15 °C or above 35 °C.

Alexandrium minutum produces dense (reddish-brown) red tides (Hallegraeff 1991). It reproduces asexually by binary fission and also has a sexual cycle that produces a characteristic resting cyst. This species produces a clear resting mucilage-covered cyst as part of its life cycle. Cysts vary from hemispherical to circular in shape: cyst circular in apical view (24-29 μ m in diameter) and kidney-shaped in lateral view (15-19 μ m long) (Faust and Gulledge 2002). Studies of the *A. minutum* blooms in the Bay of Plenty showed that the appearance of this species coincided with enhanced rainfall and freshwater runoff and with stabilization of the water column. Cyst beds and low salinities are probably necessary to initiate a bloom (Chang et al. 1996).

Alexandrium ostenfeldii produces temporary resting cysts. Cysts are large and spherical, ranging in size from 35 to 40 μ m in diameter. Cysts are pale in color with a reddish-brown granule. The smooth and clear cell wall is covered with mucilage (MacKenzie et al. 1996). *A. ostenfeldii* reproduces asexually by binary fission. This species also has a sexual cycle with isogamous mating types; a planozygote is formed (Faust and Gulledge 2002). *Alexandrium ostenfeldii* is a member of the "hidden flora" assemblage easily overlooked in field surveys until its modest blooms occur. It often co-occurs with *Alexandrium tamarense*, with which it can be confused taxonomically.

Alexandrium tamarense produces an ellipsoidal resting cyst that cannot be distinguished from the cyst produced by its conspecific A. catenella. This cyst has rounded ends with a thick cell wall, and is covered in mucilage. Cysts often contain colorless granules and distinct reddish lipid bodies. Size ranges from 36-56 μ m in length and 23-32 μ m in width. A. tamarense reproduces asexually by binary fission; the plane of fission is oblique. This species also has a sexual cycle with anisogamous mating types (ie. the gametes differ morphologically from each other). The gametes join laterally for sexual fusion, produce a planozygote which then encysts into a characteristic resting cyst (Faust and Gulledge 2002). A. tamarense blooms in Japan have been demonstrated to initiate from in-situ cyst populations (Shimada et al. 1996). High concentrations of A. tamarense have also been linked to freshwater plumes generated by a highly stratified water column which favours proliferation and retention of this species in the upper water column (Anderson 1998).

Alexandrium catenella reproduces asexually by binary fission. This species also has a sexual cycle with opposite mating types (heterothallism). After gamete fusion, a planozygote forms which then encysts into a characteristic resting cyst (Faust and Gulledge 2002). A. catenella

produces a colourless mucoid resting cyst as part of its life cycle, which cannot be distinguished from the cyst produced by *A. tamarense*. The cyst is of roughy ellipsoidal shape with rounded ends (35-56 μ m long) as part of its lifecycle (Hallegraeff 1991; Faust and Gulledge 2002).

Gymnodinium catenatum reproduces asexually by binary fission. This species also has a sexual cycle with opposite mating types (heterothallism). After gamete fusion, a planozygote forms, and after two weeks, this form encysts into a characteristic resting cyst. Nutrient deficiency induces the sexual phase. *G. catenatum* produces a characteristic resting cyst. Cysts are 42-52 μ m in diameter, spherical and brown. They have a very distinct morphology: the surface is covered with microreticulate ornamentations. These cysts can germinate after just two weeks of dormancy and initiate new populations. Cysts are not only a reseeding tool, but also assist in dispersal; for example, *G. catenatum* was introduced to Australian waters via ships' ballast water (Faust and Gulledge 2002). Blooms of *G. catenatum* in Tasmania tend to occur mainly in the period from December to June (spring and autumn), when the water temperatures range from 12 to 18 °C and salinities range from 28 to 34 ppt. These blooms also tend to be confined to the humus-laden Huon and Derwent Rivers and appear to require a rainfall as a trigger. However, blooms of *G. catenatum* in Spain were commonly reported inside the rias at the end of summer, when the upwelling favourable winds relax, or when they reverse in their direction and become southerlies (Hallegraeff and Fraga 1998).

Potential pathways for introduction to, and spread within, New Zealand:

Table 1:Potential pathways for introduction to, and spread within, New Zealand, for the
dinoflagellates covered in this species information sheet.

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
F2	Fisheries: accidental with deliberate translocations of fish or shellfish	Yes	Yes
S3	Ships: accidental with ballast water, sea water systems, live wells, etc.	Yes	Yes
N1	Natural: planktonic dispersal	Yes	Yes

Potential impacts in New Zealand:

The potential impacts of these dinoflagellates are summarized in Table 2 and further detail is provided below for each species.

Table 2:Potential impacts in New Zealand of the dinoflagellates covered in this species
information sheet.

Impact category	Code	Description (after Hayes et al. 2005)	
Human health	H1	Human health	
Economic	M2	Water abstraction/nuisance fouling	
Economic	M3	Loss of aquaculture/commercial/recreational harvest	
Economic	M4	Loss of public/tourist amenity	
Environmental	E2	Alters trophic interactions and food-webs	

Alexandrium affine is generally considered non-toxic (Band-Schmidt et al. 2003). Although low toxicity (PSP) has been confirmed to occur occasionally in some cultured strains of *A. affine*, toxicity is only a fraction of that produced by *A. tamarense*.

Alexandrium minutum is a strong producer of paralytic shellfish poison (PSP) gonyautoxins (GTXs) and neosaxitoxin (neoSTX) (Chang et al. 1997). A. minutum was the first species to

be associated with PSP outbreaks in New Zealand (Chang et al. 1995). These toxins can affect humans, other mammals, birds and possibly fish (Hallegraeff 1991). This species is also responsible for PSP events in Taiwan, South Australia, and France.

Alexandrium ostenfeldii is capable of producing PSP toxins, although it is one of the least toxic of all the *Alexandrium* species tested for PSP toxins. This species has been associated with shellfish poisoning in Scandinavia, and there has been one report of mussel toxicity (as *Pyrodinium phoneus*) from Belgium. Recently, western Atlantic strains of *A. ostenfeldii* have been found to produce spirolides, fast-acting neurotoxins, in aquaculture shellfish from Nova Scotia, Canada (Faust and Gulledge 2002). Resting cysts have been discovered in abundance at some locations around New Zealand, suggesting that substantial *A. ostenfeldii* blooms may have occurred around New Zealand in the recent past, and the species may present a hazard to shellfish consumers in New Zealand (MacKenzie et al. 1996).

Alexandrium tamarense is a widely distributed coastal and estuarine planktonic marine dinoflagellate that is associated with toxic Paralytic Shellfish Poisoning blooms (Hay et al. 2000; Faust and Gulledge 2002; New Zealand Food Safety Authority 2003). This species produces very potent PSP neurotoxins which can affect humans, other mammals, fish and birds (Larsen and Moestrup 1989, in Faust and Gulledge 2002). This species is responsible for numerous human illnesses and several deaths after consumption of infected shellfish, including ten deaths in Venezuela in 1977, and one death in Thailand in 1984. Resting cysts of A. tamarense can also harbor PSP toxins and may be more than ten times as toxic as their motile stage counterparts. Not all strains of A. tamarense are toxic: both toxic and non-toxic strains have been reported in New England within the same red tide event. Strains in Australia, the Gulf of Thailand, and the River Tamar estuary in Britain (the type locality) are all non-toxic. Hay et al. (2000) reported on the specific toxicity of strains of several Alexandrium species found in New Zealand, but the toxicity of Alexandrium tamarense (from Tasman Bay) was reported as "unknown". The usual route of PSP toxin transmission is via contaminated shellfish; however, bloom events of A. tamarense have been linked to several massive fish kills. Kills of Atlantic herring in the Bay of Fundy, Canada, and rainbow trout and salmon in the Faroe Islands, Norway have been attributed to dinoflagellate toxins accumulated in the food chain (Faust and Gulledge 2002).

Alexandrium catenella produces strong PSP, c1-c4 toxins, saxitoxins (SXT) and gonyautoxins (GTX). These toxins can poison shellfish and, via shellfish consumption, affect humans, other mammals, fish and birds. Numerous human illnesses and several deaths have occurred after consumption of shellfish infected with *Alexandrium catenella*. Ichthyotoxins (toxins that poison fish) have also been reported in cultured media of *A. catenella*. Red tides of this species have also been observed. Toxic blooms and PSP in shellfish have been reported in Chile, Japan, California and most of the Pacific coast of the U.S.A. (Faust and Gulledge 2002). Highest toxicity along the Pacific coast of the USA occurs in July and August during outbreaks that occur when coastal upwelling decreases in intensity (Bigelow Laboratory 2008). In New Zealand *A. catenella* has been associated with toxic blooms in the Bay of Plenty (Chang 2002).

Gymnodinium catenatum is the only gymnodinioid that is capable of producing PSP. Toxin profiles of different populations of *G. catenatum* show quite different toxin components. The Spanish strains tend to produce a high proportion of the low potency sulfocarbamoyl toxins, while strains in warmer waters from Singapore tend to produce highly potent carbamate gonyautoxin as dominant (GTX1 and 4), with lesser amount of GTX2, GTX3, neosaxitoxin (neoSTX) and saxitoxin (STX).

Global and New Zealand distribution maps:

Being planktonic, most dinoflagellates, including those considered here, are widely distributed throughout the world's oceans. Distribution records for these species tend to be scattered and they often reflect sampling effort; the lack of a record from a particular location is more likely to represent the lack of sampling in that location than the true absence of the species. Global distribution maps are therefore not provided here as mapping the known records would suggest disjunct coastal distributions, whereas the true distributions are cosmopolitan, and both oceanic as well as coastal.

Maps illustrating the New Zealand region from which each species has been recorded are shown below.

Figure 1: Distribution of *Alexandrium affine* in New Zealand

Figure 2: Distribution of *Alexandrium minutum* in New Zealand

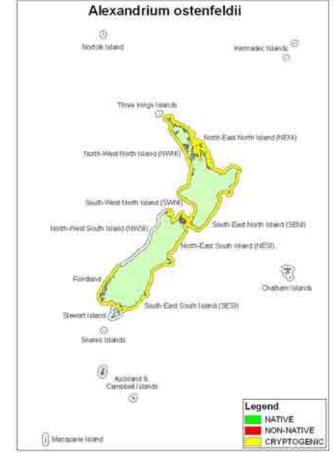


Figure 3: Distribution of Alexandrium ostenfeldii in New Zealand

Figure 4: Distribution of *Alexandrium tamarense* in New Zealand. This species was also "tentatively identified" from Port Gore in the Marlborough Sounds (MacKenzie et al. 2004) but due to the uncertainty of this identification it is not shown on the map.

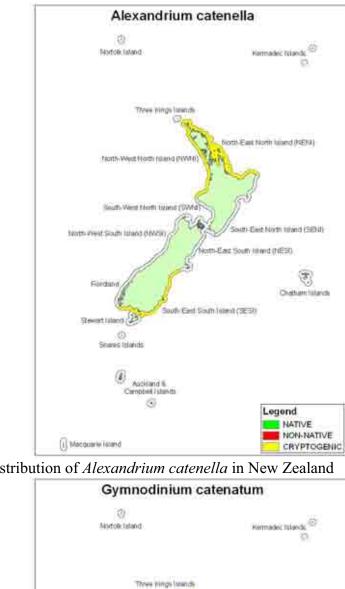


Figure 5: Distribution of Alexandrium catenella in New Zealand

Figure 6: Distribution of Gymnodinium catenatum in New Zealand

- Anderson, D.M. (1998). Physiology and bloom dynamics of toxic *Alexandrium* species, with emphasis on life cycle transitions. *In*: Anderson, D.M.; Cembella, D.; Hallegraeff, G. (eds). Physiological ecology of harmful algal blooms, pp. 29-48. *NATO ASI Series*. Springer-Verlag Berlin Heidelberg New York.
- Band-Schmidt, D.; Lechuga-Deveze, C.; Kulis, D.; Anderson, D. (2003). Culture studies of *Alexandrium affine* (Dinophyceae) a non-toxic cyst forming dinoflagellate from Bahia Concepcion, Gulf of California. *Botanica Marina* 46: 44-54.
- Bigelow Laboratory (2008). Toxic & Harmful Algal Blooms. Website <<u>http://www.bigelow.org/hab/cause.html></u>. Date last updated unknown. Accessed 17/01/08.
- Bolch, C.; de Salas, M. (2007). A review of the molecular evidence for ballast water introduction of the toxic dinoflagellates *Gymnodinium catenatum* and the *Alexandrium* "*tamarensis* complex" to Australasia. *Harmful Algae 6*: 465-485.
- Chang, F.H. (2002). Phytoplankton Species Associated with Either Toxic (T) or Nuisance (N) Blooms/Events in New Zealand. Website <<u>http://www.niwa.cri.nz/___data/assets/pdf_file/0020/43526/phytoplankton.pdf</u>>. Date last updated unknown. Last accessed 17/01/08.
- Chang, F.H.; Anderson, D.M.; Kulis, D.M.; Till, D.G. (1997). Toxin production of *Alexandrium minutum* (Dinophyceae) from the Bay of Plenty, New Zealand. *Toxicon* 35: 393-409.
- Chang, F.H.; Garthwaite, I.; Anderson, D.M.; Towers, N.; Stewart, R.; MacKenzie, L. (1999). Immunofluorescent detection of a PSP-producing dinoflagellate, *Alexandrium minutum*, from Bay of Plenty, New Zealand. New Zealand Journal of Marine and *Freshwater Research 33*: 533-543.
- Chang, F.H.; MacKenzie, L.; Till, D.; Hannah, D.; Rhodes, L. (1995). The first toxic shellfish outbreaks and associated phytoplankton blooms in early 1993, in New Zealand. *In*: Lassus, P.; Arzul, G.; Erad, E.; Gentien, P.; Marcallou, C. (eds). Harmful marine algal blooms, pp. 145-150. Lavosier Intercept, Paris.
- Chang, F.H.; Sharples, J.; Grieve, J.M. (1996). Temporal and spatial distribution of toxic dinoflagellates in Bay of Plenty, New Zealand, during the early 1993 toxic shellfish outbreaks. *In*: Yasumoto, T.; Oshima, Y.; Fukuyo, Y. (eds). Harmful and toxic algal blooms, pp. 235-238. Intergovernmental Oceanographic Commission of UNESCO, Tokyo.
- Chang, F.H.; Stewart, R.; Inglis, G.; Fitridge, I. (in press). Dinoflagellate cysts from New Zealand ports and harbours wih emphasis on the distribution of harmful species. In: Proceedings of 12th International Conference on Harmful Algae, Copenhagen, Denmark, 4-8 September 2006.
- Faust, M.A.; Gulledge, R.A. (2002). Identifying harmful marine dinoflagellates. *Smithsonian Contributions from the United States National Herbarium 42*: 1-144. Available online at <<u>http://www.nmnh.si.edu/botany/projects/dinoflag/index.htm</u>>.
- Guiry, M. (2006). AlgaeBase version 4.1. Web publication, National University of Ireland, Galway. <u>http://www.algaebase.org</u>. Accessed 21/11/2007.
- Hallegraeff, G. (1991). Aquaculturists' guide to harmful Australian microalgae. CSIRO Division of Fisheries, Hobart. 112 p.
- Hallegraeff, G.; Fraga, S. (1998). Bloom dynamics of the toxic dinoflagellate *Gymnodinium catenatum*, with emphasis on Tasmanian and Spanish Coastal waters. *In*: Anderson, D.M.; Cembella, D.; Hallegraeff, G. (eds). Physiological ecology of harmful algal blooms, pp. 59-80. *NATO ASI Series*. Springer-Verlag Berlin Heidelberg New York.
- Hay, B.; Grant, C.; McCoubrey, D. (2000). A review of the marine biotoxin monitoring programme for non-commercially harvested shellfish. Part 1: Technical Report. A

report prepared for the NZ Ministry of Health by AquaBio Consultants Ltd. NZ Ministry of Health.

- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- Kraberg, A.; Montagnes, D. (2007). The Harmful Phytoplankton Project: The user-friendly guide to harmful phytoplankton in EU waters. Website <<u>http://www.liv.ac.uk/hab/></u>. Last updated 12/07/2007; accessed 18/11/2007.
- Lin, P.-T.; Leaw, C.-P.; Ogata, T. (2007). Morphological variation of two *Alexandrium* species responsible for paralytic shellfish poisoning in Southeast Asia. *Botanica Marina 50*: 14-21.
- MacKenzie, A.L.; White, D.; Oshima, Y.; Kapa, J. (1996). The resting cyst and toxicity of *Alexandrium ostenfeldii* (Dinophyceae) in New Zealand. *Phycologia* 35(2): 148-155.
- MacKenzie, L.; de Salas, M.; Adamson, J.; Beuzenberg, V. (2004). The dinoflagellate genus *Alexandrium* (Halim) in New Zealand coastal waters: comparative morphology, toxicity and molecular genetics. *Harmful Algae 3*: 71-92.
- New Zealand Food Safety Authority (2003). Non-Commercial Marine Biotoxin Monitoring in New Zealand Risk-Based Programme Enhancement Final Report May 2003.
- Shimada, H.; Hayashi, T.; Mizushima, T. (1996). Spatial distribution of *Alexandrium* tamarense in Funka Bay, Southwestern Hokkaido. *In*: Yasumoto, T.; Oshima, Y.; Fukuyo, Y. (eds). Harmful and toxic algal blooms, pp. 219-221. Intergovernmental Oceanographic Commission of UNESCO, Tokyo.
- Smith, P.; Chang, F.H.; MacKenzie, L. (1993). Toxic phytoplankton and algal blooms, summer 1992/93. *In*: Jasperse, J. (ed.). Marine toxins and New Zealand shellfish.
 Proceedings of a workshop on research issues, 10-11 June 1993, pp. 11-17. The Royal Society of New Zealand, Miscellaneous series 24.
- Taylor, M.; MacKenzie, L. (2001). Delimitation survey of the toxic dinoflagellate Gymnodinium catenatum in New Zealand. Cawthron Report 661, 12pp. Prepared for Ministry of Fisheries.

Scientific name: *Diplosoma velatum* Kott, 2001 Common name: None

Image by Mike Page, NIWA.

Species information sheet prepared by:	Mike Page (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	C1
Species recorded during New Zealand port baseline surveys:	Yes
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

•		
Phylum:	Tunicata	
Class:	Ascidiacea	
Order:	Enterogona	
Family:	Didemnidae	

General species description:

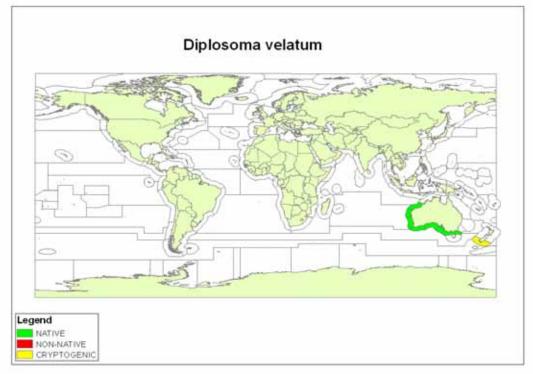
Diplosoma velatum is a colonial ascidian made-up of many small individuals in a common gelatinous body. It is soft, jelly-like; smooth to touch and falls apart easily when handled. It has several large openings interspersed with many small apertures. Colonies can grow as lobate sheets 10cm in diameter and 2-3cm deep. Colour ranges from orange to cream depending on exposure to light. For a detailed taxonomic description see Kott (2001).

Distribution:

Diplosoma velatum is native to western and southern Australia (Kott 2001) (Figure 1). It was first recorded in New Zealand from Doubtful Sound in 2006 (M. Page, NIWA, Unpublished record), and subsequently in the Milford Sound baseline port survey (Figure 2). This species is widely distributed throughout Doubtful Sound, occurring for example, near the head of Crooked Arm. Given this distribution pattern, and limited dispersal distances of aplousobranch larvae, it can be assumed that these populations reflect either a Gondwana relict fauna or a very early introduction from Australia. Furthermore, unpublished data from ascidian collections carried as part of the Terra Marine NIWA biotechnology programme in Fiordland have identified several other colonial species with trans-Tasman affinities.

Ecology (habitat & known interactions):

Diplosoma velatum is found encrusting fiord rock walls from 5-20m depth. It ranges from reasonably high abundance in mid fiord environments, to one of the only colonial ascidians inhabiting rock walls in inner fiords. There is no published information on seasonal growth or reproduction for this species. It is an encrusting species; unlike some didemnid species it has not been observed overgrowing or smothering other sessile invertebrates.


Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
F3	Fisheries: accidental with fishery products, packing or substrate		Yes
NB	Navigation buoys and marina floats: accidental as attached or free-living fouling organisms		Yes
N2	Natural: rafting of adults on biogenic substrata		Yes
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes

Potential pathways for introduction to and spread within New Zealand:

Potential impacts in New Zealand:

Even if introduced, this species would probably have little impact in New Zealand.

Global and New Zealand distribution maps:

Figure 1: Global distribution of *Diplosoma velatum*

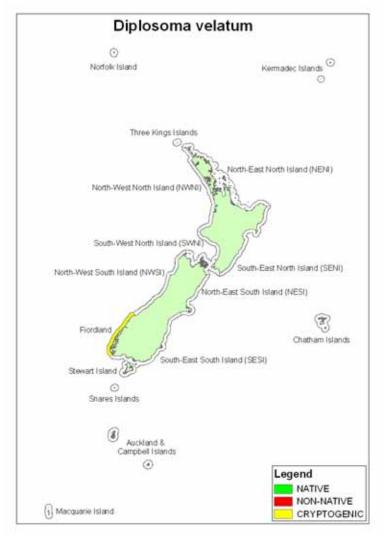


Figure 2: Distribution of *Diplosoma velatum* in New Zealand

Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests.
 Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.

Kott, P. (2001). The Australian ascidiacea Pt. 4, Didemnidae. *Memoirs of the Queensland Museum 47(1)*: 1-410. Scientific name: *Esperiopsis edwardii* (Bowerbank, 1866) *sensu* Dendy (1924) Common name: None

Images by Mike Page (NIWA).

Species information sheet prepared by:	Dr Michelle Kelly (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	C1
Species recorded during New Zealand port baseline surveys:	No
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Porifera
Class:	Demospongiae
Order:	Poecilosclerida
Family:	Esperiopsidae

General species description:

Esperiopsis edwardii (Bowerbank, 1866) *sensu* Dendy (1924) forms a fist-sized soft cushion with large oscules on the apex of softly rounded mounds. The surface is slightly pock-marked and granular. The colour in life is brownish orange.

Distribution:

The type specimen was originally described from Plymouth, Britian, by Bowerbank (1866). (Burton 1932) lumped several species including *edwardii* in the species *fucorum*, but noted that the southern hemisphere specimens invariably had larger styles and chelae than did the northern hemisphere specimens. Bergquist & Fromont (1988) noted that there was nothing to support the lumping of these two species together but failed to relegate the New Zealand specimens to a new species. Due to the taxonomic uncertainty this species is treated here as cryptogenic.

In New Zealand, *Esperiopsis edwardii* has been recorded from Doubtful Sound (M. Kelly, NIWA, Unpublished record) and the Three Kings Islands (Dendy 1924) (Figure 1). However, the specimens from these two locations bear little physical resemblance to each other, although the speculation is very similar (M. Kelly, NIWA, pers. comm.). *Esperiopsis edwardii* was not recorded during the New Zealand port baseline surveys.

Ecology (habitat & known interactions):

The ecology of *Esperiopsis edwardii* is not well known. At the Three Kings Islands it was collected from a depth of 30 m (Dendy 1924).

Potential pathways for introduction to, and spread within, New Zealand:

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes

Potential impacts in New Zealand:

Esperiopsis edwardii (Bowerbank, 1866) is uncommon and has no known impacts on the New Zealand intertidal and subtidal communities.

Impact category	Code	Description (after Hayes et al. 2005)
Economic	M2	Water abstraction/nuisance fouling

Global and New Zealand distribution maps:

A map of the global distribution of *Esperiopsis edwardii* is not provided, as the global distribution of this species is disparate and does not make sense biogeographically. This is most likely due to there being insufficient diagnostic characters available in the older literature (when specimens were never described in the fresh state) to distinguish from contemporary specimens at today. Moreover, 'cosmopolitanism' of certain species was a widely held phenomenon in the biology community and the sponge community also concurred with this notion. Today we are certain that this notion is not valid except in a few select cases. Thus, further taxonomic work might indicate that the New Zealand specimens are actually different species to those with the same name elsewhere in the world (see also "Distribution" section above).

The map which illustrates the New Zealand regions from which *Esperiopsis edwardii* has been recorded is shown below (Figure 1).

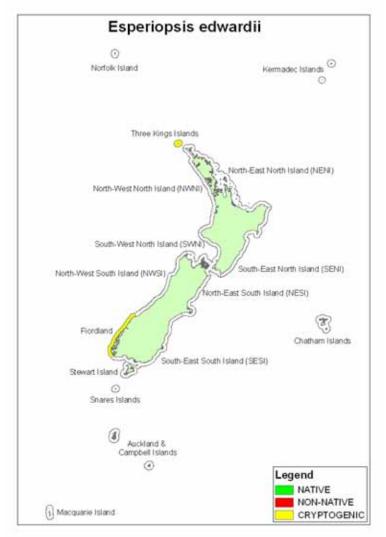


Figure 1: Distribution of *Esperiopsis edwardii* in New Zealand

Bergquist, P.R.; Fromont, P.J. (1988). The Marine fauna of New Zealand: Porifera, Demospongiae, Part 4 (Poecilosclerida). New Zealand Oceanographic Institute Memoir 96. 197 p.

Burton, M. (1932). Sponges. "Discovery" Reports 6: 237-392.

- Dendy, A.O. (1924). Porifera. Part I. Non-Antarctic Sponges. *Natural History Report. British Antarctic ("Terra Nova") Expedition, 1910, Zoology 6(3):* 269-392, pls 261-215.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.

Scientific name: *Haliclona* cf. *clathrata* (Dendy, 1895) *sensu* Bergquist & Warne (1980) Common name: None

No image available

Species information sheet prepared by:	Dr Michelle Kelly (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	C1
Species recorded during New Zealand port baseline surveys:	No
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Porifera	
Class:	Demospongiae	
Order:	Haplosclerida	
Family:	Chalinidae	

General species description:

Haliclona cf. *clathrata* (Dendy, 1895) *sensu* Bergquist & Warne (1980) forms a thick encrustation up to 6 cm long, 4 cm wide, and about 3 cm thick, with large conical elevated oscules on the smooth reticulate surface. The colour in life is yellow-brown to mauve, the texture soft and friable.

Distribution:

Haliclona clathrata (Dendy, 1895) was first described from the 'south coast of Australia' by Dendy (1895), and from Campbell Island, Malaya (Hentschel 1912), and the Great Barrier Reef (Burton 1934). The New Zealand material was described from the Chatham Islands, Hauraki Gulf, Kaikoura and Portobello in Otago Harbour (Figure 1). The likelihood that these are the same species is extremely low as Chalinidae are extremely difficult to differentiate reliably at the species level without fresh and diverse material. Colouration in life takes on significance in this genus as the morphology can be plastic and highly responsive to wave action, etc. *Haliclona* cf. *clathrata* has subsequently been recorded at Doubtful Sound (M. Kelly, NIWA, Unpublished record).

Haliclona cf. clathrata was not recorded during the New Zealand port baseline surveys.

Ecology (habitat & known interactions):

Haliclona cf. *clathrata* is an encrusting species, found on hard ground in relatively shallow water (6-20 m).

Potential pathways for introduction to, and spread within, New Zealand:

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes

Potential impacts in New Zealand:

Haliclona cf. *clathrata* (Dendy, 1895) has no known ecological impacts on New Zealand intertidal and subtidal communities.

Impact category	Code	Description (after Hayes et al. 2005)
Economic	M2	Water abstraction/nuisance fouling

Global and New Zealand distribution maps:

A map of the global distribution of *Haliclona* cf. *clathrata* is not provided, as the global distribution of this species is disparate and does not make sense biogeographically. This is most likely due to there being insufficient diagnostic characters available in the older literature (when specimens were never described in the fresh state) to distinguish from contemporary specimens at today. Moreover, 'cosmopolitanism' of certain species was a widely held phenomenon in the biology community and the sponge community also concurred with this notion. Today we are certain that this notion is not valid except in a few select cases. Thus, further taxonomic work might indicate that the New Zealand specimens are actually different species to those with the same name elsewhere in the world (see also "Distribution" section above).

The map which illustrates the New Zealand regions from which *Haliclona* cf. *clathrata* has been recorded is shown below (Figure 1).

Figure 1: Distribution of *Haliclona* cf. *clathrata* in New Zealand

- Bergquist, P.; Warne, K. (1980). The marine fauna of New Zealand: Porifera, Demospongiae, Part 3 (Haplosclerida and Nepheliospongida). New Zealand Oceanographic Institute Memoir 87. 77 p.
- Burton, M. (1934). Sponges. Scientific Reports of the Great Barrier Reef Expedition, 1928-29 4(14): 513-621.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- Hentschel, E. (1912). Tetraxonida. 2. Tiel. In Michaelsen, W.; Hart-meyer, R. (eds), Die Fauna sudwest-Australiens, 3:279-393.

Scientific names: *Heterosigma akashiwo* (Y. Hada) Y. Hada ex Y. Hara & M. Chihara 1967 Common name: None known

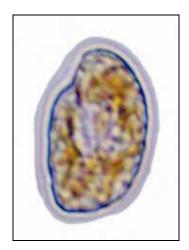


Image: *Heterosigma akashiwo* (courtesy of F. H. Chang, NIWA)

Species information sheet prepared by:	Dr F. Hoe Chang (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	C1
Species recorded during New Zealand port baseline surveys:	No
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Ochrophyta
Class:	Raphidophyceae
Order:	Chattonellales
Family:	Chattonellaceae

General description:

Heterosigma akashiwo is a bi-flagellated, single celled, golden brown alga. It has variableshaped cells ranging from spheroidal to oblong, and is $11-25 \mu m \log 8-13 \mu m$ wide, $8-11 \mu m$ thick. The cells rotate during swimming (Hallegraeff 1991). Cells contain many yellow green chloroplasts which are distributed around the periphery of the cell.

Distribution:

Being planktonic, this species is widely distributed throughout the world's oceans. Distribution records tend to be scattered and they often reflect sampling effort; the lack of a record from a particular location is more likely to represent the lack of sampling in that location than the true absence of the species.

Heterosigma akashiwo was first recorded from Japan. However, its native range is uncertain and this species is therefore treated as cryptogenic throughout its range. It has also been found in China, Korea, Singapore, Norway, Ireland; the Canadian west coast from Barkley Sound; the US west coast from California and Washington; the US east coast in Rhode Island, Delaware, New Jersey, New York, North Carolina, South Carolina; Chile; Port Phillip Bay and West Lake in Australia, and New Zealand (Bowers et al. 2006; Cawthron Institute 2007). In New Zealand *Heterosigma akashiwo* was first reported in 1989, causing massive cagereared salmon kills in Big Glory Bay, Stewart Island (Chang et al. 1990). Subsequently this species was found in the Marlborough Sounds, Leigh, Ruakaka, Hauraki Gulf, Nelson Harbour, Port Underwood, Milford Sound and Wellington Harbour (Ayers et al. 2005; Bowers et al. 2006; Guiry 2006; O'Halloran et al. 2006; Cawthron Institute 2007) (Figure 1).

Heterosigma akashiwo has not been recorded during the New Zealand port baseline surveys.

Ecology (life history, habitat & known interactions):

The vegetative cells of *Heterosigma akashiwo* have been reported to migrate in a circadian manner within the water column - they photosynthesize in the photic zone during the day and then move in the deeper waters at night to glean macronutrients such as nitrate. They use one flagellum to swim in a spiraling pattern. *H. akashiwo* cells can enter a benthic resting phase, consisting of agglutinated masses of non-motile brown cells of variable shape and size in response to specific environmental conditions. When in this state, cells become immobile but do not lose their flagella (Hallegraeff 1991).

Heterosigma akashiwo blooms appear to be most strongly related to temperature (warmer season waters >15 °C) and moderate salinity (approximately 15 ppt) in the coastal zone (Li and Smayda 2000). Blooms have been observed to persist as long as stable water stratification persists in the warmer conditions. In the case of Big Glory Bay, New Zealand, it appears that nitrogen is most important limiting nutrient (Chang et al. 1993).

Potential pathways for introduction to, and spread within, New Zealand:

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
F2	Fisheries: accidental with deliberate translocations of fish or shellfish	Yes	Yes
S3	Ships: accidental with ballast water, sea water systems, live wells, etc.	Yes	Yes
N1	Natural: planktonic dispersal	Yes	Yes

Potential impacts in New Zealand:

H. akashiwo is a toxic flagellate which blooms in coastal regions worldwide. In the field, it forms massive brown tides that can kill finfish, copepods and oysters, and affect fish and sea urchin egg development (Cattolico 2007). The killing mechanism of *Heterosigma* blooms is not fully understood, but the production of reactive oxygen species such as superoxide, hydroxide and hydrogen peroxide radicals along with the production of hemolytic substances presumably cause gill damage leading to fish mortality (Bowers et al. 2006). An unidentified ichtyotoxin (fish killing toxin) has been speculated as the causative agent in the net pen fish kills.

This species has been circumstantially linked to deaths of caged fish in Japan, Canada, Chile, New Zealand and possibly Singapore. In January 1989 a bloom event in Big Glory Bay, Stewart Island killed NZD\$17 million worth of cage-reared Chinook salmon (Chang et al. 1990). In early July 2006, a massive *H. akashiwo* bloom formed in and moved through waters of northern Puget Sound, Washington USA and the Strait of Juan de Fuca. High densities of *H. akashiwo* in the waters around the San Juan Islands resulted in the death of thousands of penned Atlantic salmon (Anderson 2006).

Impact category	Code	Description (after Hayes et al. 2005)
Human health	H1	Human health
Economic	M2	Water abstraction/nuisance fouling
Economic	M3	Loss of aquaculture/commercial/recreational harvest
Economic	M4	Loss of public/tourist amenity
Environmental	E2	Alters trophic interactions and food-webs

Global and New Zealand distribution maps:

It is not possible to map the global distribution of *Heterosigma akashiwo* because it is a cosmopolitan oceanic species. Most published information only refers to the locations of blooms, which are described in the "Distribution" section above.

The map which illustrates the New Zealand regions from which this species has been recorded is shown below (Figure 1).

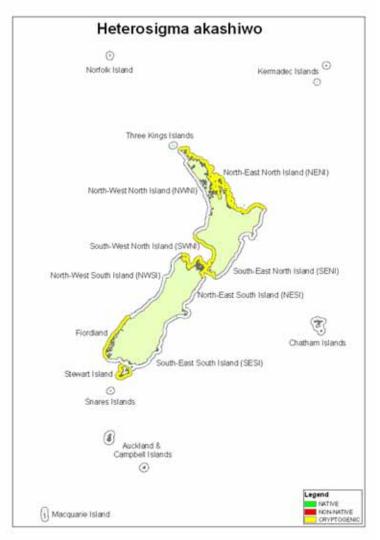


Figure 1: Distribution of *Heterosigma akashiwo* in New Zealand

- Anderson, R. (2006). Deadly plankton invasion takes toll on fish. *The Seattle Times*, July 11, 2006.
- Ayers, K.; Rhodes, L.; Tyrrell, J.; Gladstone, M. (2005). International accreditation of sandwich hybridisation assay format DNA probes for micro-algae. *New Zealand Journal of Marine and Freshwater Research* 39: 1225-1231.
- Bowers, H.A.; Tomas, C.; Tengs, T.; Kempton, J.W.; Lewitus, A.J.; Oldach, D.W. (2006). Raphidophyceae [Chadefaud ex Silva] systematics and rapid identification: sequence analysis and real-time PCR assays. *Journal of Phycology* 42: 1333-1348.
- Cattolico, R. (2007). Research Interests University of Washington Marine Molecular Biology. Website <<u>http://faculty.washington.edu/racat/research.php</u>>. Accessed 21/11/2007.
- Cawthron Institute (2007). Cawthron Institute culture collection of micro-algae (CICCM) Catalogue of strains: June 2007 Website edition. Accessible online at <<u>http://www.cawthron.org.nz/seafood-safety-biotechnology/downloads/cat-web-july-2007.pdf></u>. Accessed 10/07/2007. Nelson, Cawthron Institute.
- Chang, F.H.; Anderson, C.; Boustead, N.C. (1990). First record of a *Heterosigma* (Raphidophyceae) bloom with associated mortality of cage-reared salmon in Big Glory Bay, New Zealand. *New Zealand Journal of Marine and Freshwater Research* 24: 461-469.
- Chang, F.H.; Pridmore, R.; Boustead. (1993). Occurrence and distribution of Heterosigma cf. akashiwo (Raphidophyceae) in a 1989 bloom in Big Glory bay, New Zealand. *In*: Smayda, T.J.; Shimizu, Y. (eds). Toxic Phytoplankton Blooms in the Sea, pp. 675-680. Elsevier Science Publishers B. V.
- Guiry, M. (2006). AlgaeBase version 4.1. Web publication, National University of Ireland, Galway. <u>http://www.algaebase.org</u>. Accessed 21/11/2007.
- Hallegraeff, G. (1991). Aquaculturists' guide to harmful Australian microalgae. CSIRO Division of Fisheries, Hobart. 112 p.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- Li, Y.; Smayda, T. (2000). *Heterosigma akashiwo* (Raphidophyceae): On prediction of the week of bloom initiation and maximum during the initial pulse of its bimodal bloom cycle in Narragansett Bay. *Plankton Biology and Ecology* 47: 80-84
- O'Halloran, C.; Silver, M.; Holman, T.; Scholin, C. (2006). *Heterosigma akashiwo* in central California waters. *Harmful Algae 5*: 124-132.

Scientific name: *Leucosolenia* cf. *challengeri* Polejaeff, 1883 Common name: Perforated vase sponge

No image available.

Species information sheet prepared by:	Dr Michelle Kelly (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	C1
Species recorded during New Zealand port baseline surveys:	No
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Porifera
Class:	Calcarea
Order:	Leucosolenida
Family:	Leucosoleniidae

General species description:

Leucosolenia cf. *challengeri* Polejaeff, 1883 is a globular hollow mass up to 5 cm diameter with a stalk-like base. The apex of the sponge is depressed and thrown into folds, especially when non-inflated (when out of water). The apex contains an oscular cavity. The surface is perforated and smooth. The colour in life is creamy lemon, the surface scratchy, the texture non-elastic but flexible.

Distribution:

This species was first described from Cape York, Australia by Polejaeff (1883). Dendy and Row (1913) and Kirk (1895) subsequently used this name for similar looking species from Wellington and Cook Strait. Although the sponges look quite similar morphologically, the known distribution is disparate and it is possible that the New Zealand specimens represent an endemic species. Due to the taxonomic uncertainty this species is considered here to be cryptogenic in New Zealand. In addition the Wellington/ Cook Strait records, *Leucosolenia* cf. *challengeri* has been recorded from Doubtful Sound (M. Kelly, NIWA, Unpublished record) (Figure 1).

Leucosolenia cf. challengeri was not recorded during the New Zealand port baseline surveys.

Ecology (habitat & known interactions):

Leucosolenia cf. challengeri occurs attached to hard substrate.

Potential pathways for introduction to, and spread within, New Zealand:

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes

Potential impacts in New Zealand:

Leucosolenia cf. *challengeri* Polejaeff, 1883 has no known ecological impacts on New Zealand intertidal and subtidal communities. Only a few specimens are known.

Impact category	Code	Description (after Hayes et al. 2005)
Economic	M2	Water abstraction/nuisance fouling

Global and New Zealand distribution maps:

A map of the global distribution of *Leucosolenia* cf. *challengeri* is not provided, as the global distribution of this species is disparate and does not make sense biogeographically. This is most likely due to there being insufficient diagnostic characters available in the older literature (when specimens were never described in the fresh state) to distinguish from contemporary specimens at today. Moreover, 'cosmopolitanism' of certain species was a widely held phenomenon in the biology community and the sponge community also concurred with this notion. Today we are certain that this notion is not valid except in a few select cases. Thus, further taxonomic work might indicate that the New Zealand specimens are actually different species to those with the same name elsewhere in the world (see also "Distribution" section above).

The New Zealand regions from which *Leucosolenia* cf. *challengeri* has been recorded is shown below (Figure 1).

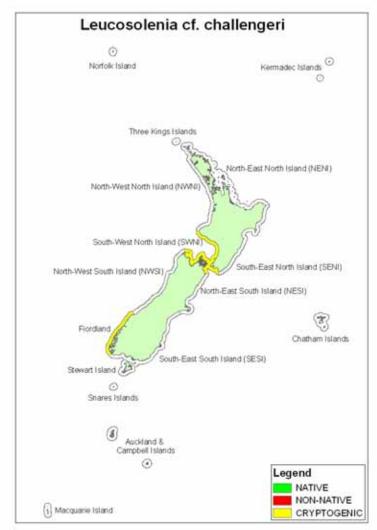


Figure 1: Distribution of *Leucosolenia* cf. *challengeri* in New Zealand

- Dendy, A.; Row, R.W.H. (1913). The classification and phylogeny of the Calcareous Sponges. *Proceedings of the Zoological Society of London*: 704-813.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- Kirk, H.B. (1895). New Zealand sponges. Third Paper. *Transactions of the New Zealand Institute 28*: 205-210.
- Polejaeff, N. (1883). Report on the Calcarea dredged by the HMS Challenger during the years 1873–1876. *Report on the Scientific Results of the Voyage Challenger (Zoology) 8*: 1-73.

Scientific name: Leucosolenia cf. discoveryi Jenkin, 1908 Common name: None

No image available.

Species information sheet prepared by:	NIWA Marine Biosecurity Group
Biosecurity status:	C1
Species recorded during New Zealand port baseline surveys:	Yes
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Porifera
Class:	Calcarea
Order:	Leucosolenida
Family:	Leucosoleniidae

After an extensive search, the specimens recorded in New Zealand are closest to the Antarctic species *Leucosolenia discoveryi* Jenkin, 1908. There are some minor differences that indicate that these specimens, recorded as *Leucosolenia* cf. *discoveryi*, might rather be a New Zealand endemic that is very similar to *L. discoveryi*. There is only minor overlap with Antarctic species in the southern New Zealand fauna (M. Kelly, NIWA, pers. comm.).

General species description:

Leucosolenia discoveryi is a calcareous sponge. Members of the *Leucosolenia* genus are typically small creeping tubular sponges (Borojevic et al. 2000).

Distribution:

Leucosolenia discoveryi was first described from Discovery Bay in the Antarctic and is common in Antarctica and the Australian sub-Antarctic islands (Australian Faunal Directory 2005) (Figure 1).

During the New Zealand baseline port surveys, *Leucosolenia* cf. *discoveryi* was found in Bluff, Dunedin (Port Otago) and Milford Sound (Figure 2). It has also previously been recorded from Doubtful Sound (M. Kelly, NIWA, Unpublished record).

Ecology (habitat & known interactions):

Leucosolenia cf. *discoveryi* is a filter feeder. Members of the Calcarea are viviparous and their larvae are blastulae (hollow).

Potential pathways for introduction to, and spread within, New Zealand:

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
S1 Ships: accidental as attached or free-living fouling organisms		Yes	Yes
N1	Natural: planktonic dispersal		Yes

Potential Impacts:

The impacts of Leucosolenia cf. discoveryi have not been documented.

Impact category	Code	Description (after Hayes et al. 2005)
Economic	M2	Water abstraction/nuisance fouling

Global and New Zealand distribution maps:

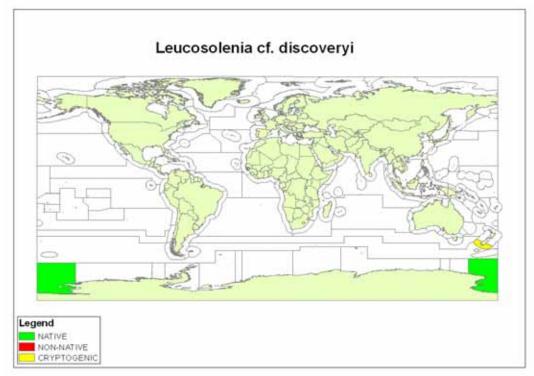


Figure 1: Global distribution of *Leucosolenia* cf. *discoveryi*



Figure 2: Distribution of *Leucosolenia* cf. *discoveryi* in New Zealand

- Australian Faunal Directory (2005). Australian Biological Resources Study Web publication <<u>http://www.deh.gov.au/biodiversity/abrs/online-resources/fauna/afd/index.html></u>, Accessed 22/07/2005.
- Borojevic, R.; Boury-Esnault, N.; Vacelet, J. (2000). A revision of the supraspecific classification of the subclass Calcaronea (Porifera, class Calcarea). *Zoosystema 22(2)*: 203-263.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.

Scientific name: *Orthopyxis integra* (MacGillivray, 1842) Common name: None

No image available.

Species information sheet prepared by:	Dr Jan Watson (Hydrozoan Research Laboratory) & NIWA Marine Biosecurity Group
Biosecurity status:	C1
Species recorded during New Zealand port baseline surveys:	Yes
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	No

Taxonomy:

The taxonomy	of the hydroids is currently under review
Phylum:	Cnidaria
Class:	Leptolida, but currently under review
Subclass:	Leptothecata, but currently under review
Order:	Hydroida, but currently under review
Family:	Campanulariidae, but currently under review

General species description:

Orthopyxis integra is a thecate hydroid, meaning that during the sessile phase it has a chitinous cup, called the hydrotheca, supporting the individual polyps, called hydranths (Watson 1982). Like all hydroids in the family Campanulariidae, the hydrothecae are deeper than they are wide, and may or may not have marginal teeth (Watson 1982). *Orthopyxis integra* produces a eumedusoid (a primitive type of medusa).

Orthopyxis integra colonies consist of hydrothecae on pedicles (stalks) up to 8 mm long arising from thick, smooth, branching stolonal tubes. The pedicles are indistinctly ringed with short smooth parts and a globular internode with thick walls directly below the hydrotheca. The hydrotheca are cup- to- bell-shaped with a thin smooth rim, straight walls of varying thickness and 20-30 tentacles (Vervoort and Watson 2003). The gonotheca are short, broad, roughly parallel sided, taper toward the base and have thick walls (Cornelius 1982). The medusae are short lived and lack feeding organs. They have an umbrella height of 1 mm and width of 0.6 5mm with a broad velum and four narrow radial canals and no tentacles.

Distribution:

Orthopyxis integra has a near cosmopolitan distribution and is one of the most widely distributed of all hydroids. It occurs in all oceans from the intertidal to a little below continental shelf depths (at least in cold seas); and from the tropics to as far north as Greenland (Cornelius 1982; Brinckmann-Voss 1996; Vervoort and Watson 2003; MarBEF 2004; Galea 2007; GBIF 2007). There are a few gaps in this wide distribution; for example, there are no records from the Baltic Sea or from Puget Sound. Records from the Irish Sea and western coast of Scotland are few but this species is small and may have been overlooked (Cornelius 1982). It has not been recorded from brackish waters (Vervoort and Watson 2003).

Orthopyxis integra was first recorded in New Zealand from Wellington Harbour in 1875. It has also been recorded from Lyttelton Harbour, New Brighton (Christchurch), Ananwhata beach (west coast of Auckland), Dunedin, Paraparaumu Beach and Woodpecker Bay on the west coast of the South Island (Figure 1). The free medusa has not yet been recorded from New Zealand waters (Vervoort and Watson 2003).

During the New Zealand port baseline surveys, *Orthopyxis integra* was not recorded from any of the main ports, but was recorded from Milford Sound (Figure 1).

Ecology (habitat & known interactions):

Orthopyxis integra is usually found growing intertidally to depths of 300 m (exceptionally to 470 m). The deepest records are from cold waters. It has been found growing on a wide variety of substrata such as algae, hydroids and other animals as well as inorganic substrates and there appears to be no regular association. *O. integra* can only tolerate a narrow range of salinities and has not been recorded from brackish waters, which may explain the absence of this species from the Baltic Sea (Cornelius 1982; Vervoort and Watson 2003).

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
D	Debris: transport of species on human generated debris		Yes
F2	Fisheries: accidental with deliberate translocations of fish or shellfish		Yes
F3	Fisheries: accidental with fishery products, packing or substrate		Yes
NB	Navigation buoys and marina floats: accidental as attached or free-living fouling organisms		Yes
N2	Natural: rafting of adults on biogenic substrata	Yes	Yes
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes
S3	Ships: accidental with ballast water, sea water systems, live wells, etc.	Yes	Yes

Potential pathways for introduction to, and spread within, New Zealand:

Potential impacts in New Zealand:

The impacts of *Orthopyxis integra* have not been documented, but as a fouling organism it could compete with other organisms for space and food. It could also potentially have impacts on port structures and vessel hulls, although its diminutive size might reduce these impacts.

Impact category	Code	Description (after Hayes et al. 2005)
Economic	M2	Water abstraction/nuisance fouling

Global and New Zealand distribution maps:

The global distribution of *Orthopyxis integra* has not been mapped because this species has a near cosmopolitan distribution (in coastal waters of Atlantic, Pacific and Indian Oceans) and specific location records in the literature are scarce and very difficult to find.

The map which illustrates the New Zealand regions from which *Orthopyxis integra* has been recorded is shown below (Figure 1).

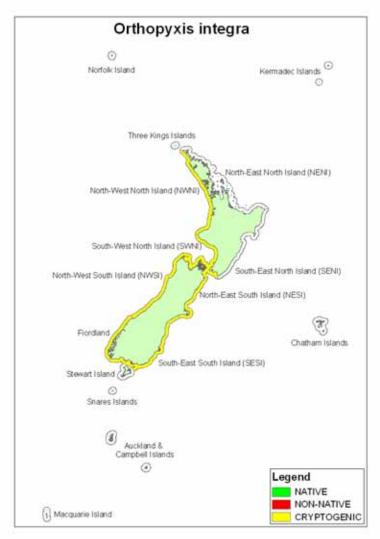


Figure 1: Distribution of Orthopyxis integra in New Zealand

- Brinckmann-Voss, A. (1996). Seasonality of hydroids (Hydrozoa, Cnidaria) from an intertidal pool and adjacent subtidal habitat at Race Rocks, off Vancouver Island, Canada. *Scientia Marina 60(1)*: 89-97.
- Cornelius, P. (1982). Hydroids and medusae of the family Campanulariidae recorded from the eastern North Atlantic, with a world synopsis of genera. *Bulletin of the British Museum (Natural History), Zoology series 42(2)*: 37-148.
- Galea, H. (2007). Hydrozoa, La Ciotat and nearby areas, Mediterranean coast of France. *Check List 3(3)*: 193-199.
- GBIF (2007). Global Biodiversity Information Facility GBIF Data Portal. Website <u>www.gbif.org</u>. Accessed 07/12/2007.

Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.

MarBEF (2004). European Marine Biodiversity Datasets. Available online at <u>http://www.marbef.org/data/dataset.php</u>. Accessed 27/08/2007.

Vervoort, W.; Watson, J. (2003). The marine fauna of New Zealand: Leptothecata (Cnidaria: Hydrozoa) (Thecate Hydroids). NIWA Biodiversity Memoir 119. Wellington, NIWA.

Watson, J. (1982). Hydroids (Class Hydrozoa). *In*: Shepherd, S.; Thomas, I. (eds). Marine Invertebrates of Southern Australia: Part I. Handbook of the Flora and Fauna of South Australia, pp. 77-115. Government Printer of South Australia, Adelaide. Scientific name: *Polysiphonia brodiei* (Dillwyn) Sprengel, 1827 Common name: None

Image: Guiry (2006)

Species information sheet prepared by:	NIWA Marine Biosecurity Group
Biosecurity status:	NIS
Species recorded during New Zealand port baseline surveys:	Yes
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Rhodophyta
Class:	Florideophyceae
Order:	Ceramiales
Family:	Rhodomelaceae

General species description:

Polysiphonia brodiei is a dark reddish brown to crimson red alga, typically up to 15 cm high, but occasionally growing to 40 cm. It has many soft branches arising from one or several main stems that grow from a truncate disc holdfast (Adams 1994; NIMPIS 2002).

Distribution:

Polysiphonia brodiei is native to the Mediterranean and northeastern Atlantic down to the equatorial coast of west Africa and the Madeira & Salvage Islands. It has been introduced to New Zealand, southern Australia and the northeast and northwest coasts of North America. Records also exist from Japan, Korea, India, Scandinavia, Kuwait, Qatar and Saudi Arabia (NIMPIS 2002; Guiry 2006; ISSG 2007) where it is considered cryptogenic (Figure 1).

Within New Zealand, *P. brodiei* is known from Wellington, Golden Bay, Nelson, Lyttelton, Timaru, Fiordland (Dusky, Doubtful, Milford and George Sounds) and Stewart Island (Adams 1994; Cranfield et al. 1998, W. Nelson, pers. comm.; Nelson et al. 2002).

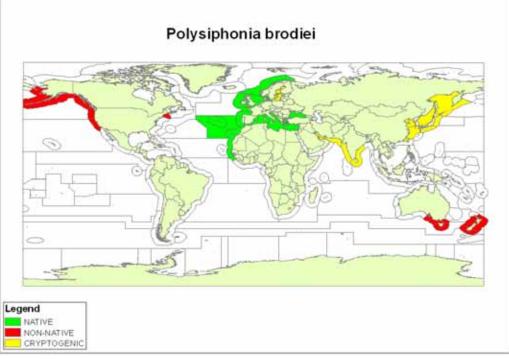
During the New Zealand port baseline surveys it was recorded from Lyttelton, Dunedin, Bluff and Taharoa terminal (Figure 2).

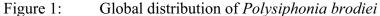
Ecology (habitat & known interactions):

Polysiphonia brodiei is found in the subtidal zone just below low tide level where it colonises wooden structures, floating structures including ropes, buoys and vessels, and other fouling species, such as mussels (Adams 1994; NIMPIS 2002). *Polysiphonia brodiei* seems to prefer

moderately exposed localities. In Australia, New Zealand and California, specimens have been collected mostly from port environments where the species is frequently found fouling the hulls of slow moving vessels, such as barges (NIMPIS 2002).

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
F3	Fisheries: accidental with fishery products, packing or substrate		Yes
NB	Navigation buoys and marina floats: accidental as attached or free-living fouling organisms		Yes
N1	Natural: planktonic dispersal		Yes (broadcast spores)
N2	Natural: rafting of adults on biogenic substrata		Yes
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes


Potential pathways for introduction to, and spread within, New Zealand:


Potential impacts in New Zealand:

Polysiphonia brodiei may impact upon vessel performance on fouled vessels and occurs as a nuisance fouling species on ropes, buoys and other harbour structures such as pylons and boat ramps. *Polysiphonia brodiei* is listed as a medium-high priority invasive species and as having the eighth highest impact ranking of 53 domestic marine priority pests in Australia by Hayes et al. (2005).

Impact category	Code	Description (after Hayes et al. 2005)	
Economic	M1	Aquatic transport	
Economic	M2	Water abstraction/nuisance fouling	

Global and New Zealand distribution maps:

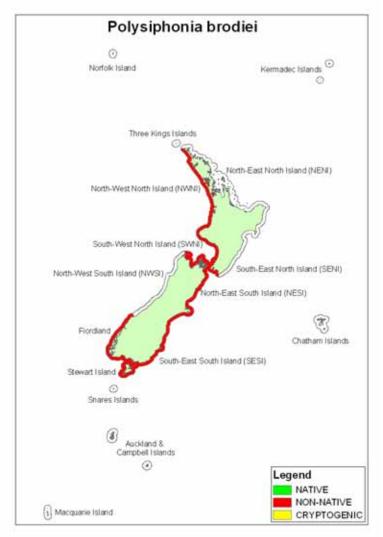


Figure 2: Distribution of *Polysiphonia brodiei* in New Zealand

- Adams, N. (1994). Seaweeds of New Zealand: an illustrated guide. Canterbury University Press, Christchurch. 360 p.
- Cranfield, H.; Gordon, D.; Willan, R.; Marshall, B.; Battershill, C.; Francis, M.; Nelson, W.; Glasby, C.; Read, G. (1998). Adventive marine species in New Zealand. NIWA technical report No. 34. Hamilton, NIWA.
- Guiry, M. (2006). AlgaeBase version 4.1. Web publication, National University of Ireland, Galway. <u>http://www.algaebase.org</u>. Accessed 21/11/2007.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- ISSG (2007). ISSG Global Invasive Species Database. Web Publication. <u>http://www.issg.org/database</u>, Date of access: 10/07/2007.
- Nelson, W.A.; Villouta, E.; Neill, K.F.; Williams, G.C.; Adams, N.M.; Slivsgaard, R. (2002). Marine macroalgae of Fiordland, New Zealand. *Tuhinga 13*: 117-152.
- NIMPIS (2002). *Polysiphonia brodiei* species summary. National Introduced Marine Pest Information System (Eds: Hewitt CL, Martin RB, Sliwa C, McEnnulty FR, Murphy NE, Jones T & Cooper S). Web publication <<u>http://crimp.marine.csiro.au/nimpis></u>, Date of access: 3/24/2004.

NIWA Species Information Sheet: Polysiphonia brodiei

Scientific name: *Polysiphonia constricta* Womersley 1979 Common name: None

No image available

Species information sheet prepared by:	Dr Wendy Nelson (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	NIS
Species recorded during New Zealand port baseline surveys:	No
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Rhodophyta
Class:	Florideophyceae
Order:	Ceramiales
Family:	Rhodomelaceae

General species description:

Plants are rich chestnut to brick red in colour, delicate, tufted, and grow up to 5 - 12 cm high, branched sub-dichotomously to alternately, with 7 pericentral cells and ecorticate throughout. Lateral branches constricted where they join the main axis. Trichoblasts long and delicate, leaving conspicuous scar cells on every third segment when shed. Tetrasporangia are in linear series, sexual reproduction unknown.

Distribution:

The native range of *Polysiphonia constricta* is from Coffin Bay, South Australia to Westernport Bay Victoria (Womersley 2003), and along the NSW coast (Millar and Kraft 1993) (Figure 1).

In New Zealand *Polysiphonia constricta* is known from Otago Harbour (Adams 1991; Nelson 1999) and from one collection from Doubtful Sound, Fiordland (Nelson et al. 2002) (Figure 2). *Polysiphonia constricta* was not found during the New Zealand port baseline surveys.

Ecology (habitat & known interactions):

Polysiphonia constricta is found in the upper subtidal, epilithic and epiphytic, including on other *Polysiphonia* species. Its distribution is restricted to sheltered bays and inlets.

Potential pathways for introduction to, and spread within, New Zealand:

Polysiphonia constricta is presumed to be spread by vessels.

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
N1	Natural: planktonic dispersal		Yes (broadcast spores)
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes
S3	Ships: accidental with ballast water, sea water systems, live wells, etc.		Possible

NIWA Species Information Sheet: Polysiphonia constricta

Milford Sound: first baseline survey for non-indigenous marine species 176

Potential impacts in New Zealand:

The impacts of *Polysiphonia constricta* appear to be minimal at present and the long-term impacts are unknown.

Global and New Zealand distribution maps:

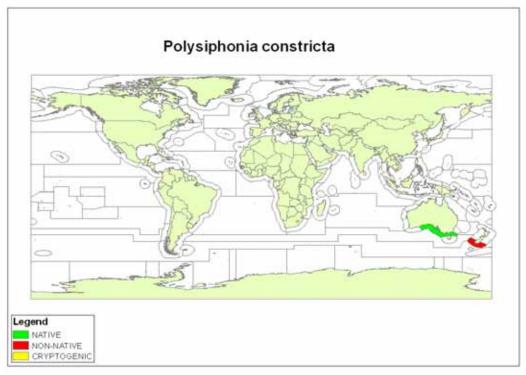


Figure 1: Global distribution of *Polysiphonia constricta*

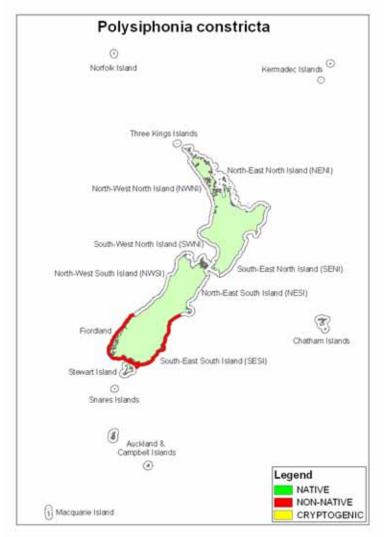


Figure 2: Distribution of *Polysiphonia constricta* in New Zealand

- Adams, N.M. (1991). The New Zealand species of *Polysiphonia* Greville (Rhodophyta). *New Zealand Journal of Botany 29*: 411-427.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- Millar, A.J.K.; Kraft, G.T. (1993). Catalogue of the marine and freshwater red algae (Rhodophyta) of New South Wales, including Lord Howe Island, South-western Pacific. *Australian Systematic Botany 6*: 1-90.
- Nelson, W.A. (1999). A revised checklist of marine algae naturalised in New Zealand. *New Zealand Journal of Botany 37*: 355-359.
- Nelson, W.A.; Villouta, E.; Neill, K.F.; Williams, G.C.; Adams, N.M.; Slivsgaard, R. (2002). Marine macroalgae of Fiordland, New Zealand. *Tuhinga 13*: 117-152.
- Womersley, H.B.S. (2003). The marine benthic flora of southern Australia. Rhodophyta. Part IIID, Ceramiales – Delesseriaceae, Sarcomenicaeae, Rhodomelaceae. Australian Biological Resources, Study, Canberra, & State Herbarium Adelaide. 533 pp.

Scientific name: *Polysiphonia sertularioides* (Grateloup) J. Agardh Common name: None

Image: University of French Polynesia (no date)

Species information sheet prepared by:	NIWA Marine Biosecurity Group
Biosecurity status:	NIS
Species recorded during New Zealand port baseline surveys:	Yes
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Rhodophyta
Florideophyceae
Ceramiales
Rhodomelaceae

This is a complex species in terms of taxonomy. It has been synonymised with taxa from the west coast of the USA (*P. flaccidissima*); Womersley (2003) notes there are no satisfactory differences between *sertularioides* and *flaccidissima* from the Pacific coast of North America and the tropical Pacific. There are also questions about the relationship of *sertularioides* to *P. havanensis*, a Caribbean, Atlantic species Schneider & Searles (1991) and Silva et al. (1996).

General species description:

Polysiphonia sertularioides is a small filamentous red alga. Plants are delicate and tufted and grow up to 4 cm high. They have very slender stems and a holdfast of creeping stems. They are of a reddish brown colour and soft and flaccid texture (Adams 1994).

Distribution:

The type specimen for *Polysiphonia sertularioides* was described from the French Mediterranean, but although it is found throughout the European and African coasts of the Mediterranean its native range is largely unknown. *P. sertularioides* has also been recorded from the Canary Islands, Madeira and Salvage Island, Cuba, Venezuela, the Indian Ocean (Maldives, India and Levant States), the Pacific Ocean (French Polynesia and Micronesia), and eastern and western Australia and Tasmania (see Guiry 2006 and references therein).

In New Zealand *P. sertularioides* has been recorded from the North Island, South Island, Stewart Island and the Chatham Islands (Adams 1994; Nelson et al. 2002).

During the port baseline surveys *P. sertularioides* was recorded from the port of New Plymouth and Opua marina. Specimens were also collected from Taharoa, and identified as *P. aff. sertularioides* THH, indicating that these probably belong to *P. sertularioides* but further taxonomic work is required to confirm this (W. Nelson, NIWA, pers. comm.) (Figure 1).

Ecology (habitat & known interactions):

Polysiphonia sertularioides usually occurs on pebbles and twigs, and is epiphytic on various other seaweeds and *Zostera*. It can be found in sheltered bays and tidal pools (Adams 1994).

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
F3	Fisheries: accidental with fishery products, packing or substrate		Yes
NB	Navigation buoys and marina floats: accidental as attached or free-living fouling organisms		Yes
N1	Natural: planktonic dispersal		Yes (broadcast spores)
N2	Natural: rafting of adults on biogenic substrata		Yes
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes

Potential pathways for introduction to, and spread within, New Zealand:

Potential impacts in New Zealand:

The impacts of *P. sertularoides* are not known, but like *Polysiphonia brodiei*, it may impact upon the performance of fouled vessels and occur as a nuisance fouling species on ropes, buoys and other harbour structures such as pylons and boat ramps.

Impact category	Code	Description (after Hayes et al. 2005)
Economic	M2	Water abstraction/nuisance fouling

Global and New Zealand distribution maps:

In light of the taxonomic issues described above, it is currently not possible to reliably map the global distribution of *Polysiphonia sertularioides* (W. Nelson, NIWA, pers. comm.).

The map which illustrates the New Zealand regions from which *Polysiphonia sertularioides* has been recorded is shown below (Figure 1).



Figure 1: Distribution of *Polysiphonia sertularioides* in New Zealand

- Adams, N. (1994). Seaweeds of New Zealand: an illustrated guide. Canterbury University Press, Christchurch. 360 p.
- Guiry, M. (2006). AlgaeBase version 4.1. Web publication, National University of Ireland, Galway. <u>http://www.algaebase.org</u>. Accessed 21/11/2007.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- Nelson, W.A.; Villouta, E.; Neill, K.F.; Williams, G.C.; Adams, N.M.; Slivsgaard, R. (2002). Marine macroalgae of Fiordland, New Zealand. *Tuhinga 13*: 117-152.
- Schneider, C.; Searles, R. (1991). Seaweeds of the Southeastern United States, Cape Hatteras to Cape Canaveral. Duke University Press, Durham, NC.
- Silva, P.; Basson, P.; Moe, R. (1996). Catalogue of the benthic marine algae of the Indian Ocean. *Univ. Calif. Publ. Bot.* 79: 1-1259.
- University of French Polynesia (no date). Plantes marines: Algues et vegetaux superieurs. Web publication <<u>http://biodiv.upf.pf/base/</u>> Accessed 16/08/2006.
- Womersley, H.B.S. (2003). The marine benthic flora of southern Australia. Rhodophyta. Part IIID, Ceramiales – Delesseriaceae, Sarcomenicaeae, Rhodomelaceae. Australian Biological Resources, Study, Canberra, & State Herbarium Adelaide. 533 pp.

NIWA Species Information Sheet: Polysiphonia sertularioides

Scientific name: *Polysiphonia subtilissima* Montagne Common name: None

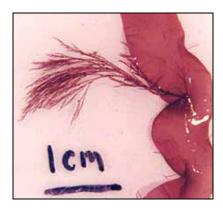


Image: The filamentous red alga *Polysiphonia subtilissima*, growing on another (larger) red alga (University of Rhode Island 2001)

Species information sheet prepared by:	NIWA Marine Biosecurity Group
Biosecurity status:	NIS
Species recorded during New Zealand port baseline surveys:	Yes
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Rhodophyta
Class:	Florideophyceae
Order:	Ceramiales
Family:	Rhodomelaceae

General species description:

Polysiphonia subtilissima is a red alga with delicate, tufted structures up to 4 cm high with slender and much-divided stems and a holdfast of prostrate branches. It is pink to pale crimson and has a soft and flaccid texture (Adams 1994).

Distribution:

Polysiphonia subtilissima has a broad geographic distribution. The type specimen for this species was recorded from Cayenne, French Guiana (Guiry 2006). It is considered non-indigenous in New Zealand but the biosecurity status elsewhere is unclear (W. Nelson, NIWA, pers. comm.). It is present throughout the tropical and subtropical western and eastern Atlantic, including Spain, Ireland, the Adriatic Sea, Greece and Italy, eastern and southern USA (Florida, Georgia, Louisiana, Mississippi, North Carolina, Texas, Virginia), the Caribbean (Bahamas, Barbados, Cayman Islands, Cuba, Jamaica, Lesser Antilles, Trinidad, Virgin Islands), South America (Brazil, Chile, Guyana, Uruguay, Venezuela), the Atlantic Islands (Ascension, Bermuda, Cape Verde Islands, and St. Helena), and western Africa (Angola, Cameroon, Côte d'Ivoire, Equatorial Guinea, Gambia, Ghana, Kenya, Liberia, Mauritius, Senegal, Sierra Leone, South Africa), Hawaiian Islands, the Indian Ocean (India, Aldabra Islands, Seychelles), south-east Asia (Philippines, Vietnam), the Federated States of Micronesia, parts of Australia (from the Swan River estuary in Western Australia through to Botany Bay in New South Wales, and Tasmania) and New Zealand (Adams 1994; Guiry 2006) (Figure 1).

P. subtilissima has been present in New Zealand since at least 1974 (Cranfield et al. 1998). It has been recorded from the North Island, northern South Island to Lyttelton, and the Chatham Islands (Adams 1994; Nelson 1999). There is a record of *Polysiphonia* aff. *subtilissima* from Breaksea Sound in Fiordland (Nelson et al. 2002).

During the port baseline surveys *P. subtilissima* was recorded from Lyttelton, Timaru, Dunedin (Port Chalmers) and Taharoa terminal (Figure 2).

Ecology (habitat & known interactions):

Polysiphonia subtilissima usually occurs as a subtidal epiphyte in sheltered, warm and muddy bays (Adams 1994).

Potential pathways for introduction to, and spread within, New Zealand:

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
F3	Fisheries: accidental with fishery products, packing or substrate		Yes
NB	Navigation buoys and marina floats: accidental as attached or free-living fouling organisms		Yes
N1	Natural: planktonic dispersal		Yes (broadcast spores)
N2	Natural: rafting of adults on biogenic substrata		Yes
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes

Potential Impacts:

The impacts of *P. subtilissima* are not known, but could include nuisance fouling of other macroalage.

Impact category	Code	Description (after Hayes et al. 2005)
Economic	M2	Water abstraction/nuisance fouling

Global and New Zealand distribution maps:

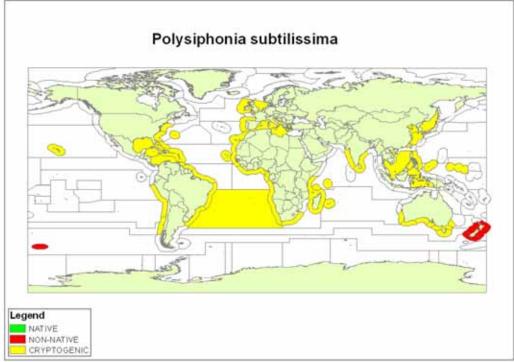


Figure 1: Global distribution of *Polysiphonia subtilissima*

Figure 2: Distribution of *Polysiphonia subtilissima* in New Zealand

- Adams, N. (1994). Seaweeds of New Zealand: an illustrated guide. Canterbury University Press, Christchurch. 360 p.
- Cranfield, H.; Gordon, D.; Willan, R.; Marshall, B.; Battershill, C.; Francis, M.; Nelson, W.; Glasby, C.; Read, G. (1998). Adventive marine species in New Zealand. NIWA technical report No. 34. Hamilton, NIWA.
- Guiry, M. (2006). AlgaeBase version 4.1. Web publication, National University of Ireland, Galway. <u>http://www.algaebase.org</u>. Accessed 21/11/2007.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- Nelson, W.A. (1999). A revised checklist of marine algae naturalised in New Zealand. *New Zealand Journal of Botany* 37: 355-359.
- Nelson, W.A.; Villouta, E.; Neill, K.F.; Williams, G.C.; Adams, N.M.; Slivsgaard, R. (2002). Marine macroalgae of Fiordland, New Zealand. *Tuhinga 13*: 117-152.
- University of Rhode Island (2001). Narragansett Bay biota gallery. Office of Marine Programs web publication <<u>http://omp.gso.uri.edu/doee/biota/biota4.htm</u>> Accessed 16/08/06.

Scientific name: *Raspailia agminata* Hallman 1914 *sensu* Bergquist (1970) Common name: None

No image available.

Species information sheet prepared by:	Dr Michelle Kelly (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	C1
Species recorded during New Zealand port baseline surveys:	Yes
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Porifera
Class:	Demospongiae
Order:	Poecilosclerida
Family:	Raspailiidae

General species description:

Raspailia agminata Hallman, 1914 *sensu* Bergquist (1970) forms a hemispherical mass with sharp apical projections, or a thick rough encrustation. The colour in life is brown with a purplish grey tinge; the texture is firm but compressible. Maximum height c. 60 mm, width, c. 40 mm. The morphology of this species within the genus *Raspailia* is atypical and thus the species is reasonably easy to recognize.

Distribution:

Raspailia agminata is native to south-eastern Australia, and has also been recorded in New Zealand (Figure 1). The New Zealand records could very well be conspecific with specimens from the type locality in Port Jackson (Australia), but examination of the type material is critical before a definitive assessment can be made. This species is therefore treated here as cryptogenic in New Zealand.

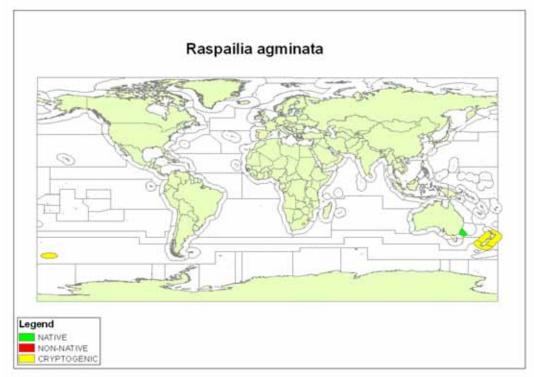
There are few New Zealand records for this species. The original Bergquist (1970) records are quite disparate: from the Chatham Rise at about 400 m, and in the shallow subtidal of the Hauraki Gulf. More recently it has been recorded from Doubtful Sound (M. Kelly, NIWA, Unpublished record) (Figure 2).

During the New Zealand baseline port surveys, *Raspailia agminata* was only found at Milford Sound.

Ecology (habitat & known interactions):

The ecology of *Raspailia agminata* is not well known. It is a filter feeder and encrusts rocky surfaces alongside other invertebrates.

Potential pathways for introduction to, and spread within, New Zealand:


Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes

Potential impacts in New Zealand:

Raspailia agminata Hallman 1914 has no known impacts on the intertidal and subtidal communities around New Zealand as it is quite rare.

Impact category	Code	Description (after Hayes et al. 2005)
Economic	M2	Water abstraction/nuisance fouling

Global and New Zealand distribution maps:

Figure 1: Global distribution of *Raspailia agminata*

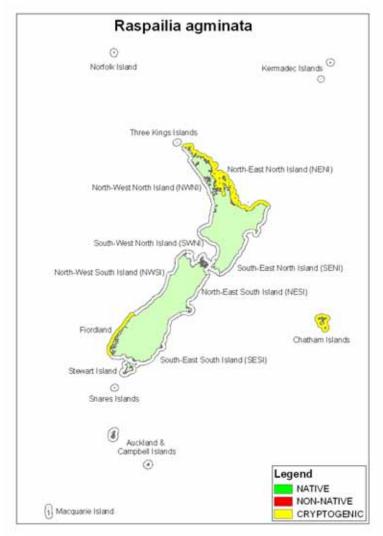


Figure 2: Distribution of *Raspailia agminata* in New Zealand

- Bergquist, P.R. (1970). The Marine Fauna of New Zealand: Porifera, Demospongiae, Part 2 (Axinellida and Halichondrida). *New Zealand Oceanographic Institute Memoir No.* 61: 85.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.

Scientific name: Sargassum verruculosum C. Agardh 1820 Common name: None

No image available

Species information sheet prepared by:	Dr Wendy Nelson (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	NIS
Species recorded during New Zealand port baseline surveys:	No
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Ochrophyta
Class:	Phaeophyceae
Order:	Fucales
Family:	Sargassaceae

General species description:

Thalli brown, up to a metre or more in height, with a short main stem, and elongated basal leaves, pinnately lobed. The upper stems are long, slender and zig-zag with dichotomously divided leaves with a faint mid-rib and often prominent cryptostomata. Holdfasts are conical and bladders are round usually with a foliar apiculus (Adams 1994).

Distribution:

Sargassum verruculosum is native to Australia and is found from southern Western Australia to NSW and also around Tasmania (Womersley 1987) (Figure 1).

It was first found in New Zealand at Akaroa in 1845 (described as *S. raoulii* Hook f. et Harv.). The current known distribution is Kaikoura, Akaroa, Fiordland (Doubtful, Thompson, Dusky, Bligh, Breaksea Sounds, Preservation and Chalky Inlets), Otago Harbour, Bluff and Stewart Island (Adams 1983, W. Nelson, NIWA, pers. comm.; Nelson 1999) (Figure 2).

Sargassum verruculosum was not found during the New Zealand port baseline surveys.

Ecology (habitat & known interactions):

Sargassum verruculosum grows on rock in sheltered bays and harbours from low intertidal channels and pools to ca. 16m depth.

Potential pathways for introduction to, and spread within, New Zealand:

As all collections have been from places frequented by nineteenth century whalers and sealers, this species has been regarded as an introduction by early sailing vessels (Adams 1983).

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
NB	Navigation buoys and marina floats: accidental as attached or free-living fouling organisms	Yes	Yes
N1	Natural: planktonic dispersal		Yes (broadcast spores)
N2	Natural: rafting of adults on biogenic substrata		Yes
N3	Natural: long-distance movement of adults		Yes (as detached plants)
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes

Potential Impacts:

Sargassum verruculosum has been present in New Zealand for more than 150 years. During this time it has undergone very little expansion of range and appears to be having minimal impact at present.

Impact category	Code	Description (after Hayes et al. 2005)
Environmental	E5	Introduces/facilitates new pathogens, parasites or other NIS

Global and New Zealand distribution maps:

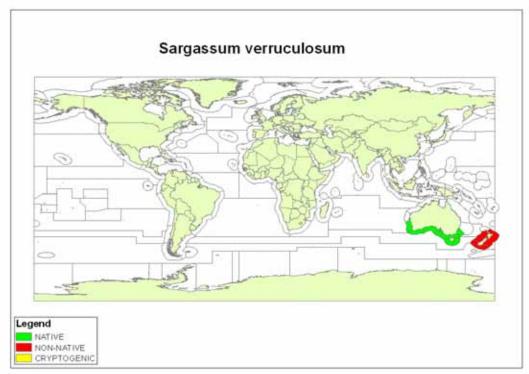


Figure 1: Global distribution of *Sargassum verruculosum*

Figure 2: Distribution of Sargassum verruculosum in New Zealand

- Adams, N. (1994). Seaweeds of New Zealand: an illustrated guide. Canterbury University Press, Christchurch. 360 p.
- Adams, N.M. (1983). Checklist of marine algae possibly naturalised in New Zealand. *New Zealand Journal of Botany 21*: 1-2.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- Nelson, W.A. (1999). A revised checklist of marine algae naturalised in New Zealand. *New Zealand Journal of Botany 37*: 355-359.
- Womersley, H.B.S. (1987). The marine benthic flora of southern Australia. Part II. South Australian Government Printing Division, Adelaide. 484 p.

NIWA Species Information Sheet: Sargassum verruculosum

Scientific name: Scruparia ambigua (d'Orbigny, 1841) Common name: None

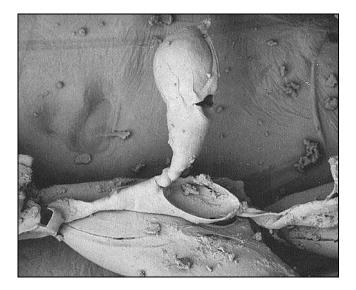


Image: Zooid and ovicell of *Scruparia ambigua*, overgrowing zooids of *Catenicella* sp (Bock 2007).

Species information sheet prepared by:	Dr Dennis Gordon (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	C1
Species recorded during New Zealand port baseline surveys:	Yes
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

Phylum:	Bryozoa
Class:	Gymnolaemata
Order:	Cheilostomata
Family:	Scrupariidae

General species description:

Scruparia ambigua is a diminutive bryozoan comprising uniserial chains of clavate zooids, from the front of which arise uniserial chains of similar zooids. These are lightly calcified and transparent and have an area of frontal membrane in the expanded distal half. Average zooid length is approximately 0.4 mm. Some bear ovoid ovicells that have a frontal keel (Gordon 1986).

Distribution:

Scruparia ambigua is a cosmopolitan species, widely distributed around the world except in polar waters (Gordon and Mawatari 1992). It was first described from the Falkland Islands in southern South America, but its native provenance is uncertain. Worldwide records include Europe (the Adriatic and North Seas, Sweden, Norway, Ireland, Great Britian, France), California, the Galapagos Islands, Patagonia, the Falkland Islands, Cape Horn, the Amsterdam Islands in the southern Indian Ocean, Japan, Australia, Tasmania and New Zealand (Figure 1).

The first record of *Scruparia ambigua* in New Zealand waters was from the Terra Nova expedition, collected on 31 August 1911 from Spirits Bay "near North Cape" at a depth of 20-37 m. Other records from New Zealand include Paterson Inlet on Stewart Island, Fiordland, Cape Saunders (Otago Peninsula), Portobello (Otago Harbour), Kaikoura, Tarakohe, Castlepoint, Napier, Mt Maunganui, Manukau Harbour, Waitemata Harbour, Marsden Point, North Cape and the Cavalli Islands (Figure 2).

During the New Zealand baseline port surveys, *Scruparia ambigua* was recorded from the ports of Whangarei, New Plymouth, Tauranga, Gisborne, Napier, Wellington, Picton, Nelson, Lyttelton, Timaru, Dunedin, Bluff, Taharoa Terminal and Milford Sound (Figure 2).

Ecology (habitat & known interactions):

As an opportunistic epizooite or epiphyte, *Scruparia ambigua* can be found growing on a variety of organisms. In New Zealand, it is often found attached to non-indigenous species of *Bugula (B. flabellata, B. neritina)*. In the Woods Hole region of the north-eastern United States, *Scruparia ambigua* has also been found growing on *Bugula turrita* and eleven algal species, and also in close association with hydroids and an encrusting bryozoan (Rogick and Croasdale 1949). In San Francisco it has been found growing on the bryozoan *Scrupocellaria diegensis* (California Academy of Sciences 2002).

Scruparia ambigua occurs in marine and brackish waters, and has been recorded from locations with salinities as low as 18 ‰ (Winston 1977). It has been recorded in New Zealand from 0 m to 84 m depth (D. Gordon, NIWA, pers. comm.).

Potential pathways for introduction to, and spread within, New Zealand:

As a short-lived opportunistic species that can settle on naturally drifting substrate as well as artificial materials, *Scruparia ambigua* could spread by rafting on other organisms as well as by fouling ships' hulls and man-made materials.

Code	Pathway (after Hayes et al. 2005)	1 = Potential pathway for introduction to NZ	1 = Potential pathway for spread within NZ
D	Debris: transport of species on human generated debris	Yes	Yes
NB	Navigation buoys and marina floats: accidental as attached or free-living fouling organisms		Yes
N2	Natural: rafting of adults on biogenic substrata		Yes
P2	Plant introductions: accidental with deliberate plant translocations	Yes	Yes
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes

Potential impacts in New Zealand:

Owing to its diminutive size, *Scruparia ambigua* is unlikely to have any negative impact. Certainly none is known.

Global and New Zealand distribution maps:

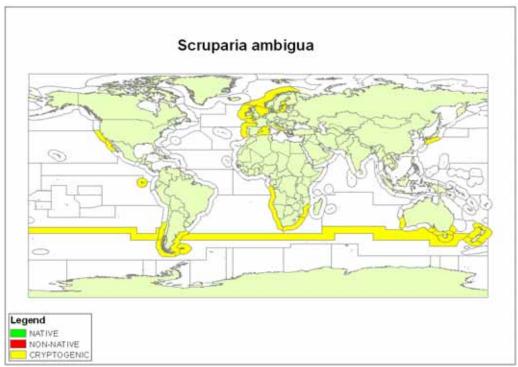


Figure 1: Global distribution of *Scruparia ambigua*. NB: the large shaded region spanning the Southern Ocean is shaded due to *Scruparia ambigua* having been recorded from the Amsterdam Islands in the southern Indian Ocean.

Figure 2: Distribution of *Scruparia ambigua* in New Zealand

- Bock, P. (2007). The Bryozoa Home Page. Website <<u>http://bryozoa.net/index.html</u>>. Last updated 04/06/2007. Accessed 04/12/2007.
- California Academy of Sciences (2002). Animal Images. Web publication <<u>http://www.calacademy.org/research/izg/SFBay2K/animalthumbnailimages.htm</u>>. Accessed 12/07/2006.
- Gordon, D.; Mawatari, S. (1992). Atlas of marine fouling bryozoa of New Zealand Ports and Harbours. Miscellaneous Publications of the New Zealand Oceanographic Institute Vol 107. New Zealand Oceanographic Institute.
- Gordon, D.P. (1986). The marine fauna of New Zealand: Bryozoa: Gymnolaemata (Ctenostomata and Cheilostomata Anasca) from the western South Island continental shelf and slope. *New Zealand Oceanographic Institute Memoir 95*: 1-121.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- Rogick, M.D.; Croasdale, H. (1949). Studies on marine bryozoa, III. Woods Hole region bryozoa associated with algae. *Biological Bulletin 96(1)*: 32-69.
- Winston, J. (1977). Distribution and ecology of estuarine ecotoprocts: a critical review. *Chesapeake Science 18(1)*: 34-57.

Scientific name: *Tethya bergquistae* Hooper & Wiedenmayer, 1994 Common name: Pink golfball sponge

No image available.

Species information sheet prepared by:	Dr Michelle Kelly (NIWA) & NIWA Marine Biosecurity Group
Biosecurity status:	C1
Species recorded during New Zealand port baseline surveys:	Yes
Species recorded during review of historical marine species records from Kaipara Harbour, Taharoa, Milford Sound, Port Underwood, Kaikoura & nearby locations:	Yes

Taxonomy:

•	
Phylum:	Porifera
Class:	Demospongiae
Order:	Hadromerida
Family:	Tethyidae

In the southwest Pacific, species of *Tethya* are well known and have been thoroughly revised by Bergquist & Kelly-Borges (1991) and Sara & Sara (2004). Bergquist & Kelly-Borges (1991) renamed this common sponge (known until 1991 as *Tethya ingalli* Sollas, 1888), *Tethya australis* Bergquist & Kelly-Borges, 1991, as it was very similar to specimens described from South Australia as well. These authors stated that, "The general skeletal structure, spiculation, colouration and body morphology of specimens described as *Tethya ingalli* by Wiedenmayer (1989) from Bass Strait, South Australia, by Bergquist (1968) from New Zealand, and by Sollas (1988), Hentschel (1909) and (Hallman 1914) from South Australia, are in general agreement with each other and fall within the species described here as *Tethya australis*". Hooper (1994) discovered that the new name '*australis*' was a junior secondary homonym of *Donatia lyncurium australis* Kirk 1911, and changed this species name to *T. bergquistae*, the name by which it is presently known.

General species description:

Tethya bergquistae is a spherical sponge with a mammilate surface from which arises spherical buds on filaments. The colour in life is deep rose or candy pink with a dull yellow interior, the texture is tough. It ranges in size from 1-5 cm diameter.

Distribution:

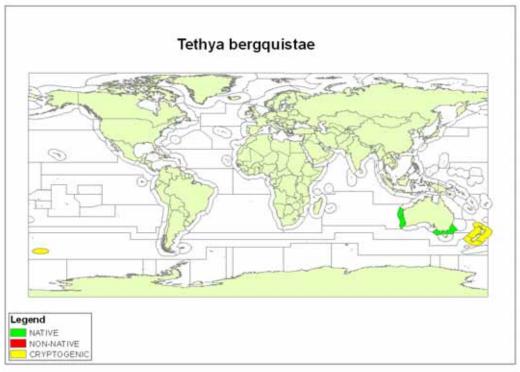
Tethya bergquistae is native to Australia with records from Western Australia, Bass Strait and the New South Wales coast (Figure 1). It has also been recorded in New Zealand. It should be noted that we cannot be sure about which way the introduction went, i.e. from New Zealand to Australia or vice versa. It should also be noted that unless a direct comparison of all material described in the older literature is conducted, conspecificity cannot be certain. This species is therefore considered cryptogenic in New Zealand.

Tethya bergquistae Hooper & Wiedenmayer, 1994 is a relatively common sponge in Northland coastal waters, on both the west and east coasts. Records also exist from Chatham and Stewart Islands, and most parts of mainland New Zealand (Figure 2).

During the New Zealand baseline port surveys, *Tethya bergquistae* was only found at Milford Sound (Figure 2).

Ecology (habitat & known interactions):

The sponge is solitary and found most commonly in the upper subtidal fringe amongst algae, and in deeper water (down to 26 m) the sponge is found on open rock faces. *Tethya bergquistae* is a filter feeder.


Potential pathways for introduction to, and spread within, New Zealand:

Code	Pathway (after Hayes et al. 2005)	Potential pathway for introduction to NZ	Potential pathway for spread within NZ
S1	Ships: accidental as attached or free- living fouling organisms	Yes	Yes

Potential impacts in New Zealand:

Tethya bergquistae Hooper & Wiedenmayer, 1994 has no known ecological impacts on New Zealand interdidal and subtidal communities.

Global and New Zealand distribution maps:

Figure 1: Global distribution of *Tethya bergquistae*

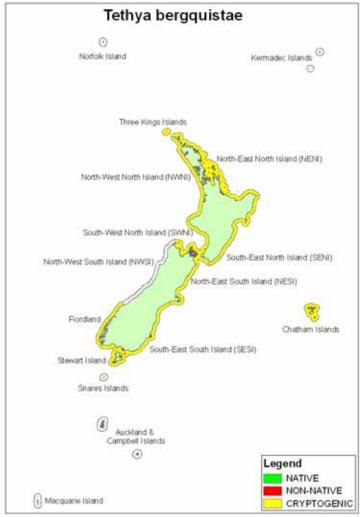


Figure 2: Distribution of *Tethya bergquistae* in New Zealand

- Bergquist, P. (1968). The marine fauna of New Zealand: Porifera, Demospongiae, Part 1 (Tetractinomorpha and Lithistida). New Zealand Oceanographic Institute Memoir 37. 106 p.
- Bergquist, P.R.; Kelly-Borges, M. (1991). An evaluation of the genus *Tethya* (Porifera: Demospongiae: Hadromerida) with descriptions of new species from the Southwest Pacific. *The Beagle, Records of the Northern Territory Museum of Arts and Sciences* 8(1): 37-72.
- Hallman, E. (1914). A revision of the monaxonid species described as new in Lendenfeld's "Catalogue of the sponges in the Australian Museum". Part I. Proceedings of the Linnean Society of New South Wales 39: 263-315.
- Hayes, K.; Sliwa, C.; Migus, S.; McEnnulty, F.; Dunstan, P. (2005). National priority pests. Part II, Ranking of Australian marine pests. Report undertaken for the Department of Environment and Heritage by CSIRO Marine Research. Commonwealth of Australia.
- Hentschel, E. (1909). Tetraxonida. *In*: Michaelsen, W.; Hartmeyer, R. (eds). Die Fauna Südwest-Australiens, pp. 347-402. G. Fischer, Jena, Germany.
- Hooper, J. (1994). Coral reef sponges of the Sahul shelf a case for habitat preservation. *Memoirs of the Queensland Museum 36(1)*: 93-106.
- Sarà, M.; Sarà, A. (2004). A revision of Australian and New Zealand Tethya (Porifera : Demospongiae) with a preliminary analysis of species-groupings. *Invertebrate Systematics 18*: 117-156.

NIWA Species Information Sheet: Tethya bergquistae

- Sollas, W.J. (1988). Report on the Tetractinellida collected by H. M. S. Challenger, during the years 1873-1876. *Reports on the Scientific Results of the Voyage of the H. M. S. Challenger, Zoology 25(63)*: 1-458.
- Wiedenmayer, F. (1989). Demospongiae (Porifera) from northern Bass Strait, Southern Australia. *Memoirs of the Museum of Victoria* 50(1): 1-242.

APPENDIX 7. SPECIES X SAMPLE X SITE RESULTS FOR ALL TAXA RECORDED BY EACH METHOD FROM THE MILFORD SOUND PORT SURVEY.

Milford Sound: first baseline survey for non-indigenous marine species 201

Appendix 7a. Results from the anchor box dredge samples

	3 Total		ო	1	1	7	1	1	1	-	ო	1	1	1	1	1	1	1	1	1	1	1	1	1	1	28
	н П		-	-	0	-	1	0	0	-	1	0	1	-	-	0	+	0	0	-	1	1	0	1	0	#
Poison Bay	2		-	0	0	-	0	0	-	0	-	-	0	0	0	0	0	-	-	0	0	0	1	0	-	б
	╞╤		-	0	1	0	0	-	0	0	1	0	0	0	0	-	0	0	0	0	0	0	0	0	0	5
Site name ->	Replicate ->	Biosec. status	Native	Native	Native	Native	Native	C2	Indeterminate	Native	Indeterminate	Indeterminate	Indeterminate	Indeterminate	Native	Native	Indeterminate	Native	Native	Native	Native	Native	Native	Native	Indeterminate	Total
		species epithet	macroura	petersenae	simplex	australiensis	anchylochaetus	sp. 2	sp.	rakiura		sp.			striata	scalpellum		multistriata	glans	australis	novaezelandiae	tristis	subcarinatus	egenum	sp.	
		Genus	Aglaophamus	Owenia	Scolopios	Pricnospio	Timarete	Liljeborgia	dae	Waitangi		Ulva			Myadora	Scalpomactra	Neolepton	Notocallista	Austrofusus	Amalda	Amalda	Pervicacia	Zeacumantus	Antisolarium	Plocamium	
		Family	Nephtyidae	Oweniidae	Orbiniidae	Spionidae	Cirratulidae	Liljeborgiidae	Lysianassidae	Phoxocephalidae		Ulvaceae			Myochamidae	Mactridae	Neoleptonidae	Veneridae	Buccinidae	Olividae	Olividae	Terebridae	Batillariidae	Trochidae	Plocamiaceae	
		Order	Phyllodocida	Sabellida	Scolecida	Spionida	Terebellida	Amphipoda	Amphipoda	Amphipoda		Ulvales			Pholadomyoida	Veneroida	Veneroida	Veneroida	Neogastropoda	Neogastropoda	Neogastropoda	Neogastropoda	Neotaenioglossa	Vetigastropoda	Plocamiales	
		Class	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Malacostraca	Malacostraca	Malacostraca	Ostracoda	Ulvophyceae	Hydrozoa	Holothuroidea?	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Florideophyceae	
		Phylum	Annelida	Annelida	Annelida	Annelida	Annelida	Arthropoda	Arthropoda	Arthropoda	Arthropoda	Chlorophyta	Cnidaria	Echinodermata	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Rhodophyta	

	<u> </u>	_	6	.	-		-	-		.	-		4	-	L-	-	-		-	-	-	F	-	-	-	-	-	N	G
	3 Total		ľ	ľ			ľ	ľ	[``	ľ	ľ			ľ	ľ	ľ					ľ	ľ	ľ		ľ	ľ	ľ		36
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	-
Stripe Point	12		00	0	0	0	0	0	0	0	0	10	0	0	0	10	0 0	00	0 0	0 0	1	7	0	10	1 0	10	10	-	75
	9		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	45		00	00	0	0	0	0	0	0	0	00	0	0	0	00	0 0	10	0 0	0 0	0	0	0	0	0 0	0	0 0	0	1 0
Ferry Terminal	3		6	0	0	0	0	0	6	0	0	0	6	0	6	0	0	۰ ۲	0	0	0	6	0	0	0	0	0	0	-
	2	1	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	6 1	1	0 0	0	00	0	0	0	0	0	0	0 0	0	0	-	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0 0	0	0 1
	5		-	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Deep Water Basin Jetties	4		·	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~
	2 3	1	0	0	0	0	0	0	0	0	0	00	0	0	0	00	0 0	0 0	0 0	0 0	00	0	0	00	0 0	0	0 0	0 0	0
	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ŝ		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Deep Water Basin 2	12		6	0 0	0 0	10	0	0	-	0	0	0 0	0 0	0	00	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0	0 0	0 0	0 0		2 2
-	e	1	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	2
r ni≳s8 n∋tew qeeD	2		00	00	00	0	00	0	0	00	00	00	7	00	0	00	0 0	00	0 0	0 0	00	00	0	00	00	00	0 0	0	1 1
	3 1		0	-	0	0	0	F	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3 1
ysa stinA	2	1	0	0	0	0	0	0	0	0	0	-	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	2
	-	┡	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	2
Site name ->	Replicate ->	Biosec. status	Native	Native	Native	Native	Irdeterminate	Native	Native	Native	Indeterminate	Native	Irdeterminate	Native	Native	Native	Native	Native	Native	Native	Native	Native	Indeterminate	Irdeterminate	Native	Indeterminate	Native	Irdeterminate	Total
		species epithet	aestuariensis	aviger	devia	australis	sp.	hurleyi	hirtipes	albidianthus		brownii	sp.	subarticulatus	parkinsonii	scalpellum	nitida	liliana	stutchburyi	reflexus	helmsi	tesselata		sp.	macrocarpa		officinalis		
		Genus	Nicon	Sigalion	Abarenicola	Pectinaria	Lysiarassidae	Torridoharpinia	Macrophthalmus	Pagurus		Caulerpa	Ulva	Symplectoscyphus	Solemya	Scalpomactra	Soletellina	Macomona	Austrovenus	Irus	Notoacmea	Cantharidella		Halppteris	Chondria		Corallina	Haliptilon	
		Family	Nereididae	Sigalionidae	Arenicolidae	Pectinariidae	Lysianassidae	Phoxocephalidae	Ocypodidae			Caulerpaceae	Ulvaceae	Sertulariidae	Solemyidae	Mactridae	Psammobiidae	Tellinidae	Veneridae	Veneridae	Lottiidae	Trochidae		Stypocaulaceae	Rhodomelaceae	Corallinaceae	Corallinaceae	Corallinaceae	
		Order	Phylodocida	Phylodocida	Scolecida	Terebellida	Amphipoda	Amphipoda	Decapoda	Decapoda		Caulerpales	Ulvales	Hydroida	Solemyoida	Veneroida	Veneroida	Veneroida	Veneroida	Veneroida	Docoglossa	Vetigastropoda		Sphacelariales	Ceramiales	Corallinales	Corallinales	Corallinales	
		Class	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Malacostraca	Malacostraca	Malacostraca	Malacostraca	Cstracoda	Chlorophyta Ulvophyceae	Chlorophyta Ulvophyceae	Hydrozoa	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Gastropoda	Gastropoda		Phaeophyceae	Rhodophyta Florideophyceae Ceramiales	Rhodophyta Florideophyceae Corallinales	Rhodophyta Florideophyceae Corallinales	Rhodophyta Florideophyceae Corallinales	
		Phylum	Annelida	Annelida	Annelida	Annelida	Arthropoda	Arthropoda	Arthropoda	Arthropoda	Arthropoda	Chlorophyta	Chlorophyta	Cnidaria	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Nemertea	Ochrophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	

	ŝ		0	0	0	0	-	0	-	2
Poison Bay	4		0	0	0	0	0	Υ.	0	~
	3		0 0	0	0	0	- -	1	00	2 2
	2		6	6	0	6	0	0	0	0
	5		6	6	0	6	0	0	0	0
	5		6	6	0	6	0	0	0	0
	4		6	6	0	6	0	0	0	0
Harrison Cove	~		5	5	0	5	0	0	0	-
	~		5	0	0	0	0	0	0	0
	÷.		0	0	0	-	0	0	0	-
	9		0	F	0	0	0	0	0	-
	5		0	F	0	0	0	0	0	-
	4	1	0	-	0	0	0	0	0	-
Ferry Terminal 2	33	1	6	0	0	0	0	0	0	0
	2	1	0	0	0	0	0	0	0	0
	-	1	0	0	0	0	0	0	0	0
	ø	1	0	0	0	0	0	0	0	0
	ŝ	1	0	-	0	0	0	0	0	-
fruduo ujera jornu doog	4	1	0	-	0	0	0	0	0	-
Deep Water Basin Slipways	e	1	0	-	0	0	0	0	0	-
	~	1	0	0	0	0	0	0	0	0
	-	1	0	-	0	0	0	0	0	-
	9		0	0	0	0	0	0	0	0
	5	1	0	0	0	0	0	0	0	0
eemec weeg work doog	4	1	0	0	0	0	0	0	0	0
Deep Water Basin Jetties	3	1	0	-	0	0	0	0	0	-
	2	1	0	-	0	0	0	0	0	-
	-	1	0	-	0	0	0	0	0	-
	9	1	-	-	0	0	0	0	0	2
	5	1	0	-	0	0	0	0	0	-
wong wong doog	e	1	0	-	0	0	0	0	0	-
Deep Water Basin	e	1	0	-	0	0	0	0	0	-
	2	1	0	-	0	0	0	0	0	~
	-		0	-	0	0	0	0	0	-
Site name >	Replicate ->	t Biosec. st	Native	Native	Native	Native	Native	Native	Indeterminate	Total
		species epithet Biosec. status	rhacinum	celidotus	percoides	papillosus	regularis	glans	sp.	
		Genus	Lotella	Notolabrus	Helicolenus	Scorpaena	Patiriella	Austrofusus	Cominella	
		Family	Moridae	Labridae	Scorpidinae	paenidae	Asterinidae	Buccinidae	Buccinidae	
		Order				Actinopterygii Scorpaeniformes Scor	Valvatida	Neogastropoda	Neogastropoda	
		Class	Actinopterygii Gadiformes	Actinopterygi Perciformes	Actinopterygii Perciformes	Actinopterygi		Gastropoda	Castropoda	
		Phytum	Chordata	Chordata	Chordata	Chordata	Echinodermata Asteroidea	Mollusca	Mollusca	

vttal. trio9 vithr

	-		-	4	-	100	0	'n	-	~	8	~	~	21
	Total				-						1			
	3		0	0	0	0	0	0	0	0	-	0	0	-
Stripe Point	2		00	00	00	0	10	00	00	0	0	0	0	-
	5		6	0	0	F	0	0	0	6	Ê	0	0	2
Sea Breeze Point	2		6	-	6	-	0	0	0	6	0	0	0	2
	F	1	0	0	0	0	0	-	0	0	-	0	0	2
	9	1	0	0	0	0	0	0	0	0	0	0	0	0
	ŝ		-	0	-	0	0	-	0	-	0	0	0	4
Sandfly Jetty Point	4		00	00	0	0	10	-	00	00	0	0	0	7
	23		R	÷	0	6	0	00	0	6	6	6	6	1
	-		6		-	6	-	0	0	6	6	5	0	~
			6	0	-	-	0	0	0	6	-	0	0	m
Polson Bay	~	t	0	0	-	0	0	0	0	0	0	0	0	-
	╞	1	0	0	0	0	0	0	0	0	-	0	0	-
	С	1	0	0	-	0	-	0	0	0	-	0	-	4
Harrisons Cove	2		0	0	0	0	0	0	0	0	-	0	0	-
	-		0	0	0	0	-	0	0	0	0	0	0	
	3		0	0	0	-	-	0	0	0	0	0	0	2
Fox Point	2		00	0	0	-	0	00	0 0	00	0	10	0	-
	-		6	0	0	÷	0	0	0	6	-	5	0	23
	23		6	0	6	0	0	0	÷	6	0	Ě	6	2
Ferry Terminal 2	H		5	0	5	5	0	0	0	5	÷	0	0	
	9		6	0	0	6	0	0	0	6	-	0	0	-
	5	1	0	0	-	0	-	0	0	0	0	0	-	e
191111111111111111111111111111111111111	4	1	0	0	-	0	0	0	0	0	0	0	0	-
Ferry Terminal	С		0	0	-	0	0	-	0	-	-	0	0	4
	2		0	0	0	0	0	0	0	0	-	0	0	-
	-		0	0	-	0	0	-	0	0	-	0	0	(1)
	9		0	0	0	0	0	0	0	0	-	0	0	-
	5		0	0	00	0	0	0	00	0	6	0	0	-
Deep Water Basin Jetties	34		6	0	0	6	0	0	0	6	2	0	0	-
	2		5	0	0	0	0	0	0	0	-	0	0	-
	F		0	0	0	0	0	0	0	0	-	0	0	-
	-		0	-	0	0	0	0	0	0	-	0	0	2
	5	t	0	-	0	0	0	0	0	0	-	0	0	2
Deep water Basin 2	4	1	0	0	0	0	0	0	0	0	-	0	0	-
	e	1	0	0	0	0	0	0	0	0	-	0	0	-
Deep Water Basin 1	2		0	0	0	0	0	0	0	0	-	0	0	-
	-		0	0	0	-	0	0	0	0	0	0	0	-
	m		0	0	0	0	-	0	0	0	0	0	0	-
Anita Bay	12		00	0 0	0	00	1	0 0	0 0	00	10	00	00	2
Site name ->	Replicate ->	Biosec. status	C1	Native	Indeterminate	Native	Indeterminate	Total						
		species epithet	tamarense	polyedrum	trochoidea	americanum	evelana	conicum	latissinum	punctulatum	sp.	subinerme		
		Genus	Alexandrium	Lingulodinium	Scrippsiella	Frotoperidinium	Frotoperidinium	Frotoperidinium	Protoperidinium	Frotoperidinium	Frotoperidinium	Frotoperidinium		
		Family	Gonyauacaceae		Peridiniaceae	Protoperidiniaceae Prof	Protoperidiniaceae Pro							
		Order								Γ	Γ		Peridiniales (?)	
		Class	Myzozoa Dinophyceas Peridiniales	Myzozoa Dinophyceas Peridiniales	Myzozoa Dinophyceae Peridiniales	Myzozoa Dinophyceas Peridiniales								
		Phylum	Myzozoa											

	3 Tctal		2	-	S	4	4	2	2	4	9	n	တ	ŋ	-	2	-	12	σ	4	2	4	S	-	-	-	С	-	-	13	-	113
Yates Point	2 3 1		00	0	-	-	-	-	0	0	0	0	0	0	0	0	0	-	1	0	0 1	-	0	0	0	0	0	1	0		0	93
X	-		0 0	00	00	0	0	0	-	0	0	0	0	00	00	00	00	0 1	0	0 0	0 0	0	00	0	0	0	0	0 0	0	0	00	8 2
Stripe Point	2 3		ο	ο	0	0	0	0	0	0	Þ	Þ	o	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	o	
	-		0	0	-	-	-	0	-	٣	0	0	0	-	0	-	0	0	0	0	0	-	0	0	0	-	-	0	0	-	0	0 0 11 0
Sea Breeze Point	2 3		00	0	0	0	0	0	0	0	0	0	0	0 0	00	0 0	00	0 0	0 0	0 0	0 0	00	0	00	0	0	0 0	0 0	0	0	0	0
	3 1		0 0	0 0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0 0	0 0	0 0	0	0	0	0	0	00	0 0	0	0	00	0 2
Sandfly Point Jetty	2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	31		00	00	00	00	00	00	00	0	0	-	-	00	00	00	00	0 0	0 0	0 0	0 0	00	00	00	0	0	0 0	0 0	0	0	00	0 2
Poison Bay	2		0	0	-	0	-	0	0	0	-	0	0	0	0	0	0	-	-	0	0	0	-	0	0	0	0	0	0	-	0	~
	31		0	0	-	0	0	0	0	0	-	0	-	0	0	-	0	-	0	0	0	0	0	0	0	0	0	0	0	-	-	70
9voD nosimsH	2		0 0	0 1	1	0	0	0	0	0	-	0	-	10	0	00	0	1	0 0	1 0	0 0	0	0	00	0	0	00	00	0	-	00	56
	3		1	0	0	0	0	0	0	0	-	┢	, ,	0	0	0	0	0	0	0	0	0	-	0	Þ	Þ	0	0	0	0	0	5
Freshwater Basin Mooring	1 2		0 1	0	0	0	0	0	0	0	7	0	7	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	7	0	05
	۳		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	-	0	0	0	0	0	0	0	0	÷	0	0 3
Ferry Terminal 2	12		00	00	00	00	0	0	00	0	0	0	0	00	0	00	0	00	0 0	0 0	0 0	00	0	0	0	0	00	0 0	0	0	00	0
	23		0	0	0	0	0	0	0	0	0	Þ	o	0	0	0	0	0	0	0	0	0	0	0	Þ	Þ	0	0	0	0	0	0
Deep Water Basin Jetties	-		00	0	0	0	0	0	0	0	-	0	0	1	0	0	0	0	1	0	0 0	0	0	0	0	0	0	0	0	0	0	0 4
	3		0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0	0	-	0	0	0	0	0	0	-	0	ŝ
Deep Water Basin	312		00	00	00	0	0	0	0	0		0	7	00	0	0	0	7	7	1 0	0 0	0	10	00	0	0	00	00	0	10	0	77
			0	0	0	0	0	0	0	7	0	-	0	0	0	0	0	0	-	10	0	0	0	1	0	0	0	0	0	0	0	8
Channel Marker No 2	1 2		0	0	0	0	0	0	0	0	-	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3 8
Ste name ∻	Replicate ->	Biosec. status	Indeterminate	Indelerminate	Indeterminate	Indeterminate	Native	Native	Native	Indeterminate	Native	Indeterminate	Native	Native	Native	Native	Native	Indeterminate	Native	Indeterminate	Indelerminate	Indeterminate	Native	Native	Native	Native	Native	Native	Indeterminate	Native	Native	Total
		species epithet					affinis	convolutus	criophilum		wailesii		moniliformis	orbicularis	alata	imbricata	annulata		sinensis				nitzschioides	acuminata	arietinum	fusus	tripos	palmipes	sp.	micans	speculum	
		Genus	Navicula	Gyrosigma	Pleurosigma	Chaetoce os	Chaetoceros	Chaetoce:os	Corethron	Coscinodiscus	Coscinodiscus	Melosira	Melosira	Stephanopyxis	Rhizosolenia	Rhizosolenia	Lauderia	Thalassiosira	Odontella	Fragilaria	Licmophora	Thalassionema	Thalassionema	Dinophysis	Ceratium	Ceratium	Ceratium	Podolampas	Protoperidinium	Prorocentrum	Distepharus	
		Family	Naviculaceae	Pleurosigmataceae	Pleurosigmataceae	Chaetocerotaceae	Chaetocerotacese	Chaetocerotaceae	Corethraceae	Coscinodiscaceae	Coscinodiscaceae	Melosiraceae	Melosiraceae	Stephanopyxidaceae	Rhzosoleniaceae	Rhzosoleniaceae	Lauderiaceae	Thalassiosiraceae	Triceratiaceae	Fregilariaceae	Licmophoraceae	Thalassionemateceae	Thalassionemataceae	Dirophysiaceae	Ceratiaceae	Ceratiaceae	Ceratiaceae	Podolampadaceae	Protoperidiniaceae	Prorocentraceae	Dictyochaceae	
		Order	Naviculales	Naviculales	Naviculales	Chaetocerotales	Chaetocerotales	Chaetocerotales	Corethrales	Coscinodiscales	Coscinodiscales	Melosirales	Melosirales	Melosirales	Rhizosoleniales	Rhizosoleniales	Thalassicsirales	Thalassicsirales	Triceratiales	Fragilariales	Licmophorales	Thalassicnemales	Thalassicnemales	Dinophysiales	Peridiniales	Peridiniales	Peridiniales	Peridiniales	Peridiniales	Prorocentrales	Dictycchales	
		Class	Bacillariophyceae	Bacillariophyceae	Bacillariophyceae	Bacillariophyta Coscinodiscophyceae	Bacillariophyta Coscinodiscophyceae	Coscinodiscophyceae	Coscinodiscophyceae		Bacillariophyta Coscinodiscophyceae	Bacillariophyta Coscinodiscophyceae	Coscinodiscophyceae	Bacillariophyta Fragilariophyceae	Bacillariophyta Fragilariophyceae	Fragilariophyceae	Bacillariophyta Fragilariophyceae	Dinophyceae	Dinophyceae	Dinophyceae	Dinophyceae	Dinophyceae	Dinophyceae	Dinophyceae	Dictyochophyceae							
		Phylum	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta		Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Bacillariophyta	Myzozoa	Myzozoa	Myzozoa	Myzozoa	Myzozoa	Myzozoa	Myzozoa	Ochrophyta	

		_			_		_	_		
Total		-	~	-	-	-	-	-	1	ര
Poison Bay		-	-	-	-	0	-	-	1	2
Ferry Terminal		0	0	0	0	0	0	0	0	0
Deep Water Basin Jetties		0	-	0	0	1	0	0	0	2
Site name ->	species epithet Biosec. status	Native	Native	Native	Native	Native	Native	Native	Native	Total
	species epithet	marilynae	lapillum	malcolmi	varium	capito	decemdigitatus	whero	papillosus	
	Genus	Acanthoclinus marilynae	Forsterygion	Forsterygion	Forsterygion	Grahamina	Ruanoho	Ruanoho	Scorpaena	
	Family	Plesiopidae	Tripterygiidae Forsterygion	Tripterygiidae	Tripterygiidae Forsterygion	Tripterygiidae Grahamina	Tripterygiidae Ruanoho	Tripterygiidae	Scorpaenidae Scorpaena	
	Order	Perciformes	terygii Perciformes	Perciformes	Perciformes	Perciformes	Perciformes	oterygii Perciformes	terygii Scorpaeniformes	
	Class	Chordata Actinopterygii Perciformes	Actinopterygii	Chordata Actinopterygii Perciformes	Chordata Actinopterygii Perciformes	Chordata Actinopterygii Perciformes	Chordata Actinopterygii Perciformes	Actinopterygii	Actinopterygii	
	Phylum	Chordata	Chordata Actinop	Chordata	Chordata	Chordata	Chordata	Chordata Actinop	Chordata Actinop	

Hamison Cove Pater Point	1 2 3 1 2 3 1 2 3 1					0 0 0 1 0 0 0 0 0 0 0 0 0	0 0 0 1 0 1 0 0 0 0 0 0 0 0				0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 1 1 1 1 0 0 0 0 0 1 0					0 0 0 1 0 0 0 0 0 0 0 0 0 0			0 0 0 0 1 1 0 0 0 0 0 0 0 0			0 0 0 1 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								0 0 0 0 0 0 0 0 0 0 0 0 0					0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0				
S IsniməT YnəT	2 1 2					0000000000	0000000000			000000000	0000000000							0 0 0 1 0 0 0 0				000000000			00000000000													0000000000	0 0 0 1 1 0 0			0 0 0 0 0 0 0 0 0 0				
Deep Water Basin Jettie: Ferry Terminal	3 1 2 3 1 2 3 1					00000000	000000000			0 0 0 0 0 0 0 0	00000000000			000000				000000000			0000000	00000000			0 0 0 0 0 0 0 0			0000000			0 0 0 0 0 0 0 0			00000000				000000000	000000000			00000				
znio4 ragood	3 1 2					0 0 0 0 1	0 0 0 1				0 0 0 0 0 1			0 0 0 0				0 0 0 0 0 0				0 0 0 0 0 0			0 0 0 0 0 0									0 0 0 0 0 0					0 0 0 0 0 0 0 0			00000				
Anita Bay Channel marker No. 2	1 2 3 1 1 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1					0 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0			0 0 0 0 0 0 0	0 0 0 1 0 0 0			0 0 0 0 0 0 0 0				0 0 0 0 0 0 0 0	0 0 0 1 0 0			0 0 0 0 0 0 0			0 0 0 0 0 0 0 0						0 0 1 1 0 0 0 0			0 0 0 0 0 1 0 0	0 1 1 0 0 0 0 0			0 0 0 0 0	0 0 0 0 0 0 1			000000				
Site name -	Pile number -> 1	Biosec. status	Indeterminate 0		Native 1			Native 1	C2 0	Native	Native	-2 C2 0			minate	Native 0	Native 0	rminate	+	Native 0	C2		C2 Metics	Native 0		+	Indeterminate 0	Native 0	-	Indeterminate 0	H	T	Native 0			Native 0 Mativa		rminate		Native 0		Native 0	minate		Native 0 Native 0	
		species epithet			australis		Π		us angustifions Nearthes-A	camiguinoides	australis group	Eulalia-NIWA-2	5.0	П		na curtum	a suspiciens	Π	-+	Indet us carin ferus	+	-		maxima	Π	Τ	linder	ine houtete		ae sp.	subcarinata	inia hurleyi	karu	bilidirostris		Τ	us pumius		Π	nigricans	intermedia		T	barbata	cornuta inatel fossa	darwinii
		Family Genus			Eunicidae Eunice	ridae			Nereididae Opniodromus Nereididae Neenthes			Phyllodocidae Eulala Phyllodocidae Nereinhylla	2	ae		Sabellidae Branchiomma Cabolidae Eabricia	Sabellidae Megalomma			Serpulidae Serpula Sernulidae Soimhranchus			ridae	Terebellidae Nicolaa		Τ		Dexaminidas Paradexamine		Lysianassidae Lysianassidae Melitidae Maema		Phoxocephalidae Torridoharpinia	Podocerdae Podocerus			Hymenosomatidi Halicarcinus	Paguridae Lophopagurus	atidae	nida	Notosaridae Notosaria Torobratididae Calloria		dae			ulidae Ulmetopia cornu opordae Crassimarginatel fossa	Τ
		Order			Eunicida Eunio	-	-		Phyllodocida Hesic			Phyllodocida Phyll Phyllodocida Phyll	_			Sabellida Sabe	Τ	Π		Sabellida Serp			T	Terebellida Terel			Amphinoda	Amphipoda		Malaccstraca Amphipoda Lysia Malaccstraca Amphipoda Meliti	П		Amphipoda	Decapoda	Decapoda	Decapoda	Decapoda			Rhynchonellal Rhynchonellid Noto	Cheilostomata	Cheilostomata	Cheilostomata	Cheilostomata	Gymnclaemai Cheilostomala Buguildae Gymnclaemai Cheilostomala Callopor dae	Gymclaemat Cheilostomata Candidae
		n Class		_	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Polychaeta	Malacretraca	Malaccstraca	Malaccstraca	Malaccstraca	Malaccstrace	Malaccstract	Malaccstraca	Malaccstraca	Malaccstraca	Malaccetraca	Malaccstraca	Malaccstraca Isopoda	Maxillopoda					Gynnclaemat	Gynnclaemat	Gvnnclaems
		Phylum	Unidentifiable	Algae (unidentified)	Annelida	nnelida	Annelida	Annelida	Annelida	Annelida	Annelida	Annelida	nnelida	Annelida	Annelida	Annelida	Annelida	Annelida	Annelida	Annelida	nnelida	Annelida	Annelida	Annelida	Annelida	Annelida	Arthronoda	Arthropoda	Arthropoda	Arthropoda	Arthropoda	Arthropoda	Arthropoda	Arthropoda	Arthropoda	Arthropo da	Arthropoda	Arthropoda	Arthropoda	Brachiopoda	Bryozoa	Nozoa	yozoa	Bryozoa	Bryozoa	Bruzoa

Milford Sound: first baseline survey for non-indigenous marine species 208

	Total			-	. 64	-	54	en c	7	- 64	-	~ *	- 0	1	-	~	6		- 0	~	4 63	-	20	-		-	- 6	0	1	-		-	2	8	1	-	-	-	9	-	-	en I	- 7	4	-	-	-	2
	3 3		0	-		0	0		0	0	0	0	0	0	0	0			-		-	0	0	-	50	0	0	50	0	0	-		0	0	-	┉	0	0	-	-	0	0	-10	- 0		0		0
Pater Point	2 3 1		0		0	0	0			0	0	0		000	0	• •		>	0	0		0	0	0	0	0	0		0	0	0		0	0			0	0			0	0	• •	- 0				0
	3					0	0 0				0	00		0	0			>				0	0 -			0	0		0	0 0		0	0 0	00			0	0			0	0 0		- 0	0	0	0	_
	3 1 2		0	-	i o	0	0		-	0	0	0	0	0	0	0	00	2	0	0		0	0	0		0	0		0	0	00	100	0	0			0	0	0			0	0 7	- 0	0		0	- 0
1	~ ~	11	0		0	0	0	0		0	0	0		0	0	•	-		•	-	0	0	0	•		0	0	-	0	0	-	0	0	•		•	0	0			0	0	-	╞	•	0	0	0
evoD nosimsH '	2 3 1		0	-	0	0	0		-	0	0	0	-	0	0	0		, · ·	-	-	-	0	0	-	-	0	0	5	0	0	-	0000	0	- 0	-	0	0	0	- 0	-	0	0	0	-	0		0	•
	-	11	-	-	-	6	-	00	-	-	0	-	5	0	0	-	-	,	-	-	╞	- 0	0	-	-	0	0	-	, 0	-	-		-	-	=	-	0	-	-	-	0	-	-	-		0	0	00
	1 2		00		0	00	0	00			0	00		00	0			>				0	1			00	00		0	0	0	0	0	00			00	0			0	0	00		0	0 0	0	
(2 123	11	0		0	0	0		-	0	0				0	•		> ·	0		- 1	0	-			0	0	-	0	0	• •	00	0	0		0	0	0			0	-	0		000	0	0	
-Ferry Terminal 2	23					0	0				0	00		0	0			>	0			0				0	0			0			0	00			0	0			0	0	0	_			0	
	2 3 1	11	0	50	10	0	0		50	0	0	000	50	0	0	0		· ·	0			0	-	00	50	0	0	50	0	히	00	000	0	0	5	10	0	0	0	50	0		00		0	0	000	0
Ferry Terminal	31	11	0	2	0	0	0		20	0	0	0	-	0	0	0		2	0	0	0	0	-		-	0	0	20	0	0	0	0	0	0	-	0	0	0	0	-	0	-	0		0	0	0	
	12	11	0	50	o o	0	0			0	0	0		0	0	0	o c	>	0	00		0	-	0	0	0	0	20	0	0	• •	- 0	0	0	-	o c	0	0			0	0	00		0	0		0
	123	11		-	0	0	0		-	0	0		-	000	0	0			0		0	0	0		-	0	0	-	0	0	0	0000	0	0	-	10	0	0	-	-	0	0	0			0	0	
- Deep Water Basin Jettie:	2 3		-	-	0	0	0	00	-	0	0	-	-	0	0	-		>	• •		> -	0	-	-	-	0	0	-	0	-		0	-	-		-	0	0	-	-	0	-		-	0	0		•
	31	11	• •		· –	0	0	- 0		0	0	0		0	0	•	-		-10	-	10	0	0	•	- 0	0	0	-	0	0	-	00	0	0	-	10	0	0	-	-	0	0	•	-	0	0	0	ণ
	1 2	11	-	5	0	0	0		5	0	0	0,	- 0	0	0	0	0 0		0	00		0	0	0		0	0	5 0	-	0	0		0	0	-		0	0	- <		0	0	0	0	0	0	0	0
Cooper Point	2 3	ιı						- 0				- 0																								_					0						0 0	_
	3	JL						- 0						0								0										- 0									0					0		
	-		~ ^		5	-	-			2	2	~ ^		-	^			•	~ ^			0	2	~ ^		-	~ '		10	2		0	-	- '		1	0	-			0	2	<u>-</u> -		0	2	0	~ '
Channel marker No. 2		11	-	-	, -	-	-	- 0		0	0	-	-	0	0	-	-		0			0	-	-	-	0	0	-	0	-	0	0	0	0			0	0	0	- 1	0	-					0	
	3 3	11	00	-	•	0	0	00	-	0	0	•	-		0	• •	0 0		•		-	0	0	00	-	0	0	-	0	-	-	0	-	•	-	-	0	0	-		0	0		-	0	0	0	0
-	3	11	0		0	0	0			0	0	0		0	0	0	-	> -	0	00		0	0			0	0		0	0	0		0	0	-		0	0	0		0	0	0		0	0	0	0
γs8 stinA ,	12	J L												-																																	0	
-	2 3	. L	_		_	_	_		_	_	_	_	_	10			_										0																	_	_		0	_
	-		0		0	0	0	00		0	0	0		0	0		-		0	-	+	+	\vdash	+		0	0		+	H	0	0	0	0			0	0	+	+	+	0			0	0	0	1
Site name ->	Pile number -: Replicate ->	Biosec. status	Native	Native	Native		Native	Indeterminate Mativa	tive	Native	Native	Native	Native	Native	Native	Native	Native Incleterminate		Native	Mative	Indeterminate	Indeterminate	Indeterminate	Indeterminate		Native	Native	Native	tive	Indeterminate	C1 Indeterminate	Indeterminate	Native	Native	Mativa	Native	Native	Native	Indeterminate	Indeterminate	Indeterminate	Native	Indeterminate	Indeterminate Native	Native	Native	Native	tive
	E B	П	Na Na		Na 1	S	Na			Na	Na		EN R	Na	Na	N N	Na Na		Na Na	N N			밀	20	38	Na	Ra Na	Na Na	Na	P	10 10 10		Na	Na.				Ra Na				Na			Na I	Na	Ra	Ra Na
		species epithet			s		s				ra	uiensis		ana				J mr	dicum														.=				novaezealandiae					ncialis						
		specie	crystallina	crustallina	tenui'ostris		cervicornis	hethemag	Datnamae	disjuncta	thyreophora	maunganuiensis	biciliata	edwardsiana	acropora	tenuis	pristis	dichctomum f.	novozelandicum	gracie	sn voi				19	cancellata	pulla	DICOLIUITA DISIOIIS	rubeola		integ'a		mortenseni	regularis	Sp.	chloroticus	vaezea	mollis				galloprovincialis		reniformis	cookianus	reflexus	australis	helmsi
	+	H			<u>te (</u>	Π	Π	4			Π	+		ed	ac	t de	5.9	2 in the second s	2	<u>10</u>	5 8	Τ	Π		d S	5 8				gs	2		Π	ž i		+		Ĕ	+	+	+	ga	ds	Τ	2 8	ref	a	2 2
		Genus	B	Ormoscurcena Scalicella	ja j	Celleporina	Chapericpsis	Gregarinidra Cellenoralla	Membraninora	Fenestrulina	Fenestrulina	Smittbidea	Bicrisia	ia		-	Uisporella Tubulinora		ε	ε	Cladophora	Monostrometace Monostroma		a no io	Aplidum		:	Cnemidocarpa	a		Orthopyxis	Allostichaster	ella	ella	Pantadonactar	ninis	Pseudechinus	sndo		Aulacomua	Modiolarca	ŝ	IS	Aerrostrcous Borniola	Genexinus		Siphonaria	Notoacmea
			Emma	Scalicella	Cellaria	Celle	Chap					Smitt	Bicrisia	Bicrisia	Crisia		— ``	2	Codium	Codium		e Mono	Ulva	A alia	Aplidum	Pyura	Pyura	Crea	Culica			Allost	Patiriella	Patiriella	Patricella		e Pseu	Stichopus	\downarrow	Aular	Modi	Mytilus	Mytilus Vancet	Romola	Gena	Irus	Sipho	Noto
		ily	6	llidae	e	dae	dae	e	ninorids	ellidae	ellidae	ae	Crisiidae			100	Lichenopondae Tubulinoridae	2	e	ae a	Cladophoraceae	matao		9	ae				idae	Campanulariidae	Campanulariidae		ae	ae	ae	Echinometridae	Termopleuridae	didae						4	ae	e	iidae	
		Family	Candidae	atenice	ellariida	ellepor	Chaperiidae	Flustridae	emhrai	icropor	icropor	Smittinidae	Crisiidae	Crisiidae	Crisiidae	Cristidae	Tubulinoridae		Codiaceae	Codiaceae	Cladophorace	onostre	Ulvaceae	Ascidiidae	Polyclinidae	Pyuridae	Pyuridae	Stvelidae	Rhizangiidae	ampan	ampan	Astenidae	Asterinidae	Asterinidae	Astennidae	chinom	Idouma	Stichopodidae		Mutilidae	Mytilidae	Mytilidae	Mytilidae Mytilidae	I asaeidae	Thyasiridae	Veneridae	Sphonariidae	Lottiidae
	+		mata	Cheilostomala Catenicellidae	Cheilostomata Cellariidae	Cheilostomata Cellepordae	mata C.	mata F.	Cheilostomala hippotholdae Cheilostomala Membranincrida	Cheilostomata Microporellidae	Cheilostomata Microporellidae	mataS	mata C	nata C	nata C	mata C	mata Li				1 4		П							Π	Τ			Τ	Τ	Τ	urid: Te	rotid S	+	Τ		Π	Τ	T	Γ		동	
		Order	Cheilostomata	ellosto	eilosto	eilosto	Cheilostomata	Cheilostomata Cheilostomata	ellosto	eilosto	eilosto	Cheilostomata	Cvclostomata	clostor	clostor	clostor	Stenolaemata Cyclostomata Li Stenolaemata Cyclostomata T	101000	Bryopsidales	Bryopsidales	Cladonhorales	Ccdiolales	Ulvales	Enterogona	Enterogona	Pleurogona	Pleurogona	Pleurogona	Scieractinia	Hydroida	Hydroida	Forcipulatida	Valvatida	Valvatida	Valvatida	Fchinoida	Temnopleurid	Hoothuroidea Aspidoch rotid		Mutiloida	Mytiloida	Mytiloida	Mytiloida Mytiloida	Veneroida	Veneroida	Veneroida	Basommatoph	Dccoglossa
	+				matCh	matCh	matCh	matCh	mai Cl	matCh	matCh		ataCv	ata Cy	ata Cy	ataCy	ata Cy	2												Π	Î					Т		dea As	+	ž	ž	ź	źź	(N)	5 S			_
		Class	Gynnclaemat	Gynnolaemat	nnclae	nnclae	nnclae	Gymoclaemat C	nnclae	nnclae	Gynnclaemat	Gynnclaemat	Stenolaemata	nolaen	nolaen	nolaen	nolaen		Ulvophyceae	Ulvophyceae	Ulvophyceae	Ulvophyceae	Ulvophyceae	Ascidiacea	Ascidiacea	Ascidiacea	Ascidiacea	Ascidiacea	Anthozoa	Hydrozoa	Hydrozoa	Asteroidea	Asteroidea	Asteroidea	Asteroides	Fchinoidea	Echinoidea	othuroi	a la companya de	alvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Gastropoda	strapoc
	+	H	00	<u>ð</u>	5 ð	ð	ð	00	38	66	ð	00	200	Ste	Ste	t all	Ste	5	<u></u>	<u> </u>	53	515	ŝ	Asc	Asc	Asc	Ast	Asc	Ant	Ĥ	Ŷ	Ast	Ast	Ast	Act		ц Ш	£	ä		ŝ	Biv	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		i iii	Biv	G	8
		ш																	g	g ,	7 9		g								aria	nata	mata	mata	mata	mata	mata	mata										
		Phylum	Bryozoa	Bruzoa	Bryozoa	Bryozoa	Bryozoa	Bryozoa	BOZO	0Z0a	Bryozoa	Bryozoa	Bruzoa	Bryozoa	DZOB	DZOA	Brynzoa	8040	Chlorophyta	Chlorophyta	or ophyl	Chlorophyta	orophy	Chordsta	Chordeta	Chordata	Chordsta	Chordsta	Cnidaria	Cnidaria	Cridaria	Echinodermata	Echinodemata	Echinodermata	Echinodermata	inorder	Echinodemata	inoden	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca
1		1.1	011	D1 6	10																																											

Milford Sound: first baseline survey for non-indigenous marine species 209

		Total	-	9	-	51	64	m (00	-	-	0	- c	7 4		-	4	64	0	80	9	n	2	-	-	-		CN *	- 6	2 F	- 47	0	2	4	4 0	4 60	2	ŝ	10	-	-	1		21		27	æ	64	- 0	20 v		-	e
	3	123	0	0		0	0	0		0	0	0	0	5	0	10	0	6	6	0	0	0	0	0	0	-	-	-	5	-	10		0	-	-	_	0	0	0	-		-		, 0	0		0	0	-		0	0	0
Pater Point	2	2 3	0	0	0		-	-		0	0	0	-	5	0	0	0	0	0	0	0	0	0	0	0	-	0	-	5	50	0	0	0	0	-	70	0	0	0	-	-	5	5	10	0	0	0	0	0	2		0	-
	l-i	123	0 0	1	00	0	0			0	00	0					0	0	0	0	00	-	0	0	0							0	0				0	0	0	0						0	0	0		- 0		0	0
		3	0	0	0 1 0	0	0	0		0	0	0	0			0	0	0	0	0	0	0	0	0	0	<u>ا</u>	0	9			10	0	0	0		10	0	0	0	0	9			- 1	0		0	0	9			0	0
8400 10811181		3 1	-	0	0	0	0	0		0	0	0	-	-	-	0	0	0	0	0	0	0	0	0	0	-	-	-	5	0	0	0	0	0	-	10	0	0	0	0	-						0	0	-	-	-	-	0
evo ConsimeH	2	3 1	6	0	0		-	-		0	0	-	-	-	-	10	0	-	6	0	0	-	-	-	0	=	-	-	-	-	-	0	-	-	-	-	0	0	-	-	-			, -			0 0 0	-		-		0	0
		312	0	0	0	100	-	-		0	0	-	-	5 -				0	0	0	0	0	0	0	0	-	0	-	5	50	- I	000	0	0	-	50	0	0	0	0	-	5	5	0	0	-	000	0		50		0	0
Ferry Terminal 2	2	3 1 2	0 0	0		0	0			0	0	0					0	0	-	0	0	0	0	0	0								0			이이	-	0	0					0	0	0	0	0					0
	-	312	00	0		0	0			0	00	0					0	0	0	0	0 0	0	0	0	0								0				0	0	-	0						0	0	_		- 0		0	0
Ferry Terminal	7	12	00	0	0	0	0			0	0	0					0	0	0	0	0 0	0	0	0	0						, - , -	0	0			2 7 7	0	0	-	0				, o		0	0	0				0	0
	-	1 2 3	00	0	00	0	0			0	00	0	া				0	0	0	0	00	0	0	0	0							0	00	-		70	0	0	-			2				1	0	0	া	5 0		0	0
	~		00	0	0	0	0	0		0	0	0						0	0	0	0	0 0	0	0	0						, 0	0	0	0			0		0	0	0	-		0	0		0	0				0	0
Deep Water Basin Jetties	I-I	123	0	0	0 0 0	0	0	0		0		0				0	0	0	0	0	0	0	0	0		-	0	-	5				0	0	-		0	0	-	0		-	-	0	0	0	0	000	-	-		0	
	~		0	0	00	0	•	-		0	0	•		5	Þ	0	0		0	0	-	0	0	0	0	=	-	-	5	-	0	0	0	9	-	1 0	0	0	0		-	-		-	0	1	-	-	-		Þ	0	
	Π	2 3 1	0	0	0	0	•	•		0	٥	٩	0			0	0	°	٩	0	0	٩	٥	•	0	P	0	• •	- <		0	0	•	- 1		10	0	-	•	0	ণ			^	0	-	0	0	•			0	٥
Cooper Point		3 1	0	0	0 0	-	0	•		0	0	0	0			0	0	0	0	0	0	0	0	0	0	•	•	•			0	0	0	•	-		-	0	0	0	•	-			. 0	-			•	-		0	0
		7		^	^	0	-	~ '		-	2	~	-		<u>`</u>	5		-	2	^	0	2	^	^	~ '	-			1		1	-	^	- '			-	2	^	-	-			[`]	· _	-	2	-			1	-	~
Channel marker No. 2	-	1 2	-	0	0 0	0		•		0	0	0	•	-	, -	0	0	0	0	0	0	0	0	0	0	-	•	-			, 0		-		-		0		0	0	•	-		, 0		0		0	•	-		0	0
		123	0	0	0 0 0	0		0		0	0	0	-	-	-	0	-	-		-	0	0	0	0	0	-	-	-	-	-	0	0 0 0	0	•		-	0	0	0	•	-	-			0	0 0 1		0			-	0 0 0	0
AsinA عربه	~	2 3	0	0	0		0	0	0 F	0	0	0	0	- c		0	-	-	0	-	0	0	0	0	0	-	-	-	•	-	0	0	0	-	-	-	0	0	0	0	-	-	-	- 1	0	-	-	0	0	- c		0	0
	H	2 3 1	0	0	0		0	0		0	0	0	0	-		0	0	0	0	0	0	0	0	0	0	-	0	-	•	0	0	_	0	0	-	-	0	0	0	0	•	-			0	-		0	_	_	_	0	0
	^ ^	-	0	-				-			0	0				0			0	-	0	0	0	0	0	•	•				0	0		-			0	0		0	•			•	0		0	0				0	0
Site name ->	Pile number	Replicate ->	Indeterminate	Native	Native	Native	Native	Native	Native Native	Native	Indeterminate	Indeterminate	Native	Mativa	Indeterminate	Native	Native	Native	Indeterminate	Native	Indeterminate	Native	Native	Indeterminate	C1	Indeterminate	Indeterminate	Indeterminate	Value	Native	Indeterminate	Indeterminate	Native	Indeterminate	Native	Native	Indeterminate	Native	Native	Native	Indeterminate	Indeterminate	Mativa	Indeterminate	Native	Native	Indeterminate	Indeterminate	Native	Native	Incleterminate	Indeterminate	Native
						_																																											T				
		totion on that		si	s	ata	sdo	m	iana	laris			rina	taria		mus		e		Ilaris		botrypcladus	æ		cl. discoveryi			- Ho	1	dimata			m		oppositifolium	aff. variolosa MFN		tula	y.	heteroclada					corvmbosa	alis			membranacea	cnapmani			
		6	2	traversi	rcseus	tesselata	aethiops	sulcata	turneriana	utricularis	sp.	sp.	peregrina	sp. Inmantaria	5	flexuosum	sinclairi	rediata	sp.	funicularis	sp.	botryc	costata		cf. dis	\downarrow	_	Sp.	Callin	nectina	Sp	sp.	vestitum	4	oppositi	aff. va	sp.	delicatula	-	-	sp.	sb.	op.	2022	COLVER	officinalis		sp.			and an	+	livida
		Sense	omia	e	Maorcolpus	Cantharidella	Melagraphia		a	cystis	arpus	sia	Colpomenia	Southerinhon	hora	Carpophyllum	Ssum	lia	elaria	ers	teris	nogo	mira		solenia		na	iinella	anneie	Asparagopsis Antitharmion	Callitramnicn	nium	nium		Apoglossum	Dena	nena	Aphanocladia	chia	Rhodomelaceae Dipterosiphonia	rela	phonia	Stictosiphonia		Arthrocardia	na	lon		Rhodophyllis	Cionariacantinus	e i	Gigartina? MFN	thalia
			Odostomia	Xymene	Maono	Canth	Melag	Cookia	Zonaria	e Adeno	Ectocarpus	Hincksia	ed Colpoi	ea Corpo	Custonhora			-	ae Sphacelaria	e Halopteris	e Halopteris	e Ptilopogon	e Carpomitra		e Leuco	:	Halicona	Audouinella			Callity	Ceramium	Ceramium		Apoge	Hvmenena		e Aphan	e Bostrychia	e Dipter	e Lophurela	e Polysi	e Stictos	2000	Arthro	Corallina	Haliptilon	Jania		Ginartine	Ginartina	Gigant	Sarcothalia
		Eamily	idellidae	lae	llidae	dae	dae	dae	areas	Adenocystaceae Adenocystis	Ectocarpaceae	Ectocarpaceae	Scytosiphonacea	Scytosiphonacea Colpornenia Scytosiphonacea Scytosiphon	Custoseirareae	Sardassaceae	Sargassaceae	eae	Sphacelariaceae	Stypocaulaceae	aulacea	aulacea	chraceae		soleniida	ellidae	dae	aetiacea	eae miscos	Ceramiaceae	iaceae	iaceae	iaceae	Delesseriaceae	Delessenaceae	Delesseriaceae	Delesseriaceae	Rhodomelaceae	Rhodomelaceae	melacea	Rhodomelaceae	Phodomelaceae Polysiphonia	Rhodomelaceae Stictosiphonia Phodomelaceae Stictosiphonia	nacese	lacese	Corallinacese	Corallinacese	Corallinaceae	Cystocloniaceae	Gigarinaceae	Ginartinaceae	Gigartinaceae	Gigartinaceae
		4	Heterostropha Pyramidellidae	d Municidae	s Turritellidae	Vetigastropod Trochidae	Vetigastropod Trochidae	Vetigastropod Turbinidae	Dictvotaceae			Ectoca	Scytos	Scytos		Sardas	Sargas		Sphace	Stypoc	Stypoc	Sphacelariales Stypocaulaceae	Sporoc		Leucosolenida Leucosoleniidae Leucosolenia	Demospongia Dendroceratid Darwinellidae	Demospongia Haplosclerida Chalinidae	Florideophyce/Acrochaetialet Acrochaetiaceae			Ceramiaceae	Ceramiaceae	Ceramiaceae	Deless	Deless	Deless	Deless	Rhodo	Rhodo.	Rhodo	Rhodo	0000H	opour d	Corallinacese	Corallinacese	Coralli	Coralli	Coralli	Cystoc	Gigarti	Ginarti	Gigarti	-
		Order	rostrophi	Neogastropod	Neotaenioglos	astropod	astropod	astropo	Dictvotales	Ectocarpales	Ectocarpales	Ectocarpales	Ectocarpales	Ectocarpaies	lac parca	les	es	Laminariales	Sphacelarialet	Sphacelariale	celariale	celariale	ochnales		osolenid	Irocerati	osclerida	chaetiale	altes Amaie an	Ceramiales	Ceramiales	Ceramiales	miales	miales	males	miales	Ceramiales	Ceramiales	Ceramiales	Ceramiales	Ceramiales	males	miales	linales	Corallinales	Corallinales	Corallinales	Corallinales	Gigartinales	Gigarinales	tinales	tinales	tinales
		-	+-			-		Vetig	eal Dicty	earEctor	ea Ector	ealEctor	ealEcto		an Finales	ear Fucales	earFucales	PalLami	eal Spha	eal Spha	eal Spha	ea Spha	ea Spor		Leuc	Jia Den	Jia Hapl	rce Acrocha	Ce Dalli		ce Cera	ce Cera	ce Cera	ce Cera	ce Cera	ce Cera	ce Cera				ce Cera	ce Cera	Ce Cera	ce Cora	ce Coral	ce Cora	ce Cora.	ce Cora	ce Giga	ce Giga	Ce Ginal	ce Gigal	ce Gigai
		eeo O	Gastropoda	stropoda	Gastropoda	stropoda	Gastropoda	Gastropoda	Phaeophyceal Dictyotales	Phaeophycea	Phaeophycea	Phaeophycea	Phaeophycea	Phaeophycea	Phaeonhyce	Phaeophycea	Phaeophycea	Phaeophycea	Phaeophycea	Phaeophycea	Phaeophycea	Phaeophycea	Phaeophycea		Cacarea	nospon	nospon	rideophy	Florideophyce	Florideophyce	Florideophyce	Florideophyce	Florideophyce Ceramiales	Florideophyce Ceramiales	Florideophyce Ceramiales	Florideophyce Ceramiales	Florideophyce	Florideophyce	Florideophyce	Florideophyce	Florideophyce	Florideophyce Ceramiales	Florideopriyce Ceramiales	Florideophyce Corallinales	Florideophyce	Florideophyce	Florideophyce	Florideophyce	Florideophyce	Florideophyce Gigartinales	Floridennhvoe Gioartinales	Florideophyce Gigartinales	Florideophyce Gigartinales
		+	ß	Ga	Ga	Ga	Ga	8 G	26	Ĩ	Ph	£	5	5 6	đ	Å.	ď	Å.	R.	P.	Ъ.	Æ	£		Ca	ا گ	ði					e e	Flo	i i			L.	ЪЪ	e L	일	Ë					9 L	ы Ц	일	Ê				E C
		Dhidum	a						nyta tyte	hyta	hyta	hyta	hyta	n yta	a futa	hvta	hvta	hvta	hyta	hyta	hyta	hyta	hyta					hyta	Puto Puto	hvta	hvta	hyta	hyta	hyta	hyta	hvta	hyta	hyta	hyta	hyta	hyta	nyta huto	huta	hvta	hvta	hyta	hyta	hyta	hyta	hvta	huta	hvta	hyta
			Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Ochronhyta Ochronhyta	Ochrophyta	O chrophyta	Ochrophyta	Ochrophyta	Ochronhyta	Ochronhyta	Ochrophyta	Ochrochyta	Ochrophyta	Ochrophyta	Ochrophyta	Ochrophyta	Ochrophyta	Ochrophyta	Porifera	Porifera	Pontera	Ponfera	Rhodophyta Bhodophyta	Phodophyla	Rhodonhyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodonhyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodonhyta	Rhodophyta	Rhodophyta
							.10		d S			1	~				1.											1.											-	10													

		Total		24	2	9	2	2	2	σ	482
		2 3		0	0	0	0	0	0	-	4 11
		3 1		-	0	0	0	0	0	0	513
Pater Point	~	1 2		0	0	0	0	0	0	0	5 5
		2 3		00	0	0	0	0	0	0	36
	-	3 1 2		00	00	0 0	0 0	0 0	0 0	10	3 5 3
	5	2		0	0	0	0	0	0	0	12 1:
	\vdash	3 1		0	0	0	0	0	0	0	910
evoD nosimeH	2	1 2		0	0	0	0	0	0	0	6 14
	H	3		00	0		00	0 0	10	0	7 3 6
	-	1 2		•	0	0 1 1	0	0	0	0	80
	2	2 3		0	0	0	0	0	0	0	68
Ferry Terminal 2	\vdash	3 1		0 0	0	0 0	0	0 0	0 0	0	7 4
	-	1 2		00	00	00	00	00	0	0	4 2
	2	2 3		00	00	0	0	0	00	0	6 3
leniməT Ynəf	\vdash	3 1		0	0	0	0	0	0	0	5 G
	-	1 2		00	0	00	0	00	00	0	4 2
	2	2 3		00	0	0	0	0	00	0	2
Deep Water Basin Jetties	Ĺ	3 1		0	0	0	0	0	0	0	6 3
	-	123		00	0	00	00	00	0 0	0	2
	\vdash	31		0	0	0	0	0	-	-	20 4
	e	1 2		0	0	0	1	0	0	1	8 20
	H	ę		0	0	0	0	0	0	0	16
Cooper Point	~	2		0	0	0	0	0	0	1	13
	\vdash	3		0	0	0	0	0	0	0	8 20
	-	1 2		<u> </u>	<u>_</u>	0	с 0	с 0	0	<u>_</u>	8
	\vdash	2		-	0	0	0	0	0	0	14 10
Channel marker No. 2	-	-		•	-	0	0	0	0	0	10
	~	2 3		0	0 0	0 0	0 0	0 0	0 0	0	7 5
	\vdash	3 1		10	0	00	0	10	0	0	17 6
Anita Bay	~	1 2		0	0	0	0	1	0	0	17
	\vdash	3		0	0	0	-	0	0	0	5 24
	-	1 2		0	0	0	0	0	0	1	3 27
	^		s	-	F		-				13
Site name ->	Pile number ->	Replicate ->	Biosec. status	Indeterminate					Indeterminate	Indeterminate	
ite z	ilen	teplic	liose	ndetei	Native	Native	Native	Native	ndetei	ndetei	Total
<u>م</u>	Ť	-				<	2	2	-	-	-
			epith					ides			
			species epithet		sis		t	cladio			
			spe		chilensis	lyallii	angustum	microcladioides	sp.		
					ŕ						
			Genus	unel	Iria	laea	mir	mir	menia		
			Ó	Florideophyce Gigartinales Peyssonneliaced Peyssonnelia	Gracilaria	Florideophyce Hilderbrandia Hildenbrandiace Apophlaea	Plocamium	Plocemium	Florideophyce Rhodymeniale Rhodomeniacea Rhodymenia		
	\vdash			Icea F		ace: A			cea F		
			Family	nnelia	riceae	randa	iacea	iacea	nenia		
			Fa	9VSS0	acila	Ident	ocam	ocam	hodor		
	\vdash	\vdash	\vdash	s Pe	Florideophyce Gracilariales Gracilariceae	dia Hi	Florideophyce Plocamia es Plocamiaceae	Florideophyce Plocamia es Plocamiaceae	aleR	\vdash	\vdash
			Order	inales	ariale	brane	miae	miae	meni		
			ō	Sigart	Gracil	Hilden	plocar	Plocar	Shody		
	H			lyce	lyce	1yce F	TyceF	TyceF	TyceF		
			Class	deopt	deopt	deopt	deopt	deopt	deopt		
			5	Floric	Floric	Floric	Floric	Floric	Floric		
			Phylum	vta	vta	vta	vta	vta	vta		
			Ph	Shodophyta	Shodophyta	Rhodophyta	thodophyta	Rhodophyta	Shodophyta	Sipuncula	
				Sho I	Rho	Rho	Rho	Rho	Rho	Sipu	

	_	_	_	_	_
	6 Total		5	1	9
	ŕ				
	9		0	0	0
	5		0	0	0
(4		0	0	0
Sandfly Point Jetty	3		0	0	0
	3		0	0	0
			0		0
	-			0	
	ŝ		2	0	2
Poison Bay	2		2	0	2
	-		Υ.	Υ.	2
	3		0	0	0
			0	0	0
Ferry Terminal 2	7		_	_	
	7		0	0	0
	9		0	0	0
	2		0	0	0
	4		0	0	0
Deep Water Basin Slipways			0	0	0
	3				
	2		0	0	0
	-		0	0	0
	3		0	0	0
Deep Water Basin Jetties	2		0	0	0
	_		0	0	0
			0	0	
	e		_	_	0
Deep Water Basin	3		0	0	0
	-		0	0	0
Site Name ~	Replicate ->	Biosec. status	Indeterminate	ive	al
Site	Rep	Bio	Inde	Native	Total
		species epithet	sp.	rossi	
		Genus	Isopoda	Natatolana	
		Family		Cirolanidae	
		Order	Isopoda	Isopoda	
		Class	Arthropoda Malacostraca	Arthropoda Malacostraca	
		Phylum	Arthropoda	Arthropoda	

Num Class Order Fanily Genus species aptitiet Normiterie Eunocida Dorvileicie Dorvileicie Species aptitiet Normiterie Evincida Eunocida Evincida Eunocida Species aptitiet Polychaeta Ennocida Evincida Eunocida Neerolidae Neolicrea Neerolidae N								Anita Bay	Brig Rock Channel Marker No 2	Copper Point	Deep Water Basin 3	Deep Water Basin Slipways	Ferry Terminal 1	Ferry Terminal 2	Fos Point	Freshwater Basin Mooring Harrison Cove	Pater Point	Poison Bay	Saint Ann Point	Sandfly Point Jetty	Stirling Falls Wall Stirling Falls Wall	Yates Point	Total
Interferes Interfe	Phylum	Class	Order	Family	Genus	species epithet	Biosec. status	L	L	- 1	- L	- 1	- 1	- L	- L	L	ļ	ł	ł	- 1	l	L	ļ
Polychates Euncides Dervination Euncides Dervination Euncides	Inidentifiable						Indeterminate											00	0				
Procreatest Entrolication Entrolicat		Polychaeta	Funicida	Dorvilleidae	Dorvillea	australiensis	Native	⊥								+		, c	plo	, c			
Projectatedia Prime 0 1 0		Polychaeta	Eunicida	Eunicidae	Eunice	australis	Native	⊥								0	, 0	0	0	0			
Privates Privates Sprensia		Polychaeta	Eunicida	Lumbrineridae	Lumbrineris	sphaerccephala	Native	⊢	⊢					0	-	6	0	0	-	0			
Providentation Frequenciation Reammestation Manumestation Pairy classifie Pyinological Reammestation Reamm		Polychaeta	Phyllodocida	Glyceridae	Glycera	benhami	Native								-	6	0	0	0	0	-		
Providanta Phylococida Perivation Phylococida	Annelida	Polychaeta	Phyllodocida	Nereididae	Neanthes		C2	-							0		0	0	0	0			
Proychasta Phydrocida Fuldia Edata-NUM-2 C3 0 <th0< th=""> 0 0</th0<>		Polychaeta	Phyllodocida	Nereididae	Platynereis		Native							0	-		0	0	0	0			
Proychastas Phylococida		Polychaeta	Phyllodocida	Phyllodocidae	Eulalia	Eulalia-NIWA-2	C2								0	۳ 0	0	0	0	0			
Polycheates Polynocide Polyno		Polychaeta	Phyllodocida	Phyllodocidae	Phyllodocidae	Indet	Indeterminate	$ \rightarrow $						0	-	\rightarrow	0	0	0	-			
Polychated Phynoldes Septilida <		Polychaeta	Phyllodocida	Polynoidae	Lepidonotus	jackson	Native								-		0	0	-	0			
Polychadad Sabelidas Regulational Regulational Subscients Native 0 <th0< th=""> 0 0</th0<>		Polychaeta	Phyllodocida		Lepidonotus		Native	_									_	0	0	-			
Dev/orbated Samelida Sepulciae <		Polychaeta	Sabellida		Megalomma		Native	_	_						-	$ \perp$		-	-	-		$ \rightarrow $	
Image: constraint of the		Polychaeta	Sabellida	Sabellidae	Т	laciniosa	Native	$ \rightarrow $										0	0	-			
Image: Description of the production of the productin the productin of the production of the production of the prod		Polychaeta	Sabellida		la	hystrix	Native	_						•	-		2	-	-	-			
		Polychaeta	Sabellida		Serpula	Indet	Indeterminate	_						0	-		_	0	0	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Polychaeta	Sabellida	Serpulidae	Spirobranchus	cariniferus	Native	$ \rightarrow $						-	-	-	2	0	0	-			
U Polychadeta Spicial Spicial Spicial Spicial Spicial Spicial </td <td></td> <td>Polychaeta</td> <td>Sabellida</td> <td></td> <td>Spirobranchus</td> <td>S. polytrema complex</td> <td>C2</td> <td>\rightarrow</td> <td></td> <td></td> <td>\rightarrow</td> <td></td> <td></td> <td></td> <td>-</td> <td>\perp</td> <td>_</td> <td>0</td> <td>0</td> <td>-</td> <td></td> <td></td> <td></td>		Polychaeta	Sabellida		Spirobranchus	S. polytrema complex	C2	$ \rightarrow $			$ \rightarrow $				-	$ \perp$	_	0	0	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Polychaeta	Spicnida		Boccardia	chilensis	Native	_	\perp							\perp	-	•	-	-		\perp	
Indestructional Frequenticate Freducticate Frequenticate Frequen		Polychaeta	Terebelida	I erebellidae	Streblosoma	toddae	Native	_			\perp		\perp			\perp		- '	-	-	\perp	\perp	
da Malacostraza Pendodan Ukanostraza Pendokaminata Pendokaminata Malve ju ovo j		Polychaeta	lerebelida		erebellidae		Indeterminate	_							-	_		0	-	-			
dat Melacostracta Lecapoda HippoNidae Frmisorerists Native 1 0 <th0< td=""><td></td><td>Malacostraca</td><td>Amphipoda</td><td></td><td>Paradexamine</td><td></td><td>Native</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>- -</td><td>-</td><td></td><td></td><td></td></th0<>		Malacostraca	Amphipoda		Paradexamine		Native	_										-	- -	-			
dat Mialacostracta Unproprise Deceptoda Hippolyte Definitional Native 1 0		Malacostraca	Decapoda	Crangonidae	Philocheras	australis	Native	_	_		\rightarrow					_			-	-		\perp	
data Malacosstracta Unceptoda Hymnenossmatadae Elamenta data Malacosstracta Unceptoda Hymnenossmatadae Elamenta data Malacosstracta Unceptoda Hymnenossmatadae Elamenta data Malacosstracta Decapoda Hymnenossmatadae Halimatrins producta Narive 0		Malacostraca	Decapoda	+	Hippolyte	bifidirostris	Native	\perp			$ \rightarrow $				-	\rightarrow			0	-		\square	
dataMalacostractaDeceptodaHymenosomatidaeHalacostractadatMalacostractaDeceptodaHymenosomatidaeHalacarcinuscookinNarve1000 <td></td> <td>Malacostraca</td> <td>Lecapoda</td> <td></td> <td></td> <td>producta</td> <td>Native</td> <td>_</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>		Malacostraca	Lecapoda			producta	Native	_											-	-			
datMialacostracta MialacostractaDeceptoda TeceptodaMymeriosomatodae MialacostractaMariacostracta LecopodaDeceptoda MialacostractaMymeriosomatodae LepromithantMariacostracta MariacostractaDeceptoda ToMymeriosomatodae ToMariacostractadaMialacostractaDeceptodaMajideeLepromithant MariacostractaNariveDDD		Malacostraca	Lecapoda	╈		COOKI	Native	_										2	- 0	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	through	Malacostraca	Lecapoda	In ymenosomaudae	Τ	Varius	Native	_			_				-	_			-	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Melacostrace	Deception	Majidae		ausualis	Nauve	_									2	2	┙	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Melacostraci	Deceptua	Maildac				5 0							-	⊥		2	- 0	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Malacostraca	Decepoda	Majidae	1 1 1	ursus	Native	_			\perp				-	+		7	-	-			
data Metacostracta Formonenticae Novezelanciae Narve U <thu< td=""><td></td><td>Malacustraca</td><td>Lecapoda</td><td>r aguruae</td><td>(.Y.)</td><td>COOK</td><td>INGINE</td><td>_</td><td></td><td></td><td>\perp</td><td></td><td>\perp</td><td></td><td>-</td><td>_</td><td>2</td><td>- 0</td><td></td><td>-</td><td></td><td>\perp</td><td></td></thu<>		Malacustraca	Lecapoda	r aguruae	(.Y.)	COOK	INGINE	_			\perp		\perp		-	_	2	- 0		-		\perp	
da Melacostraca Decepoda Porcellandae Pertolisthes noveezelendiee Narive 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Malacostraca	Lecapoda	Pinnomeridae	FINNOTHERS	novaezelandiae	Native	_			$ \rightarrow $			2	-	4		2	5	-			
data Maxilipoda Sessilia Arustroential Maxive D T D T D T D <thd< th=""> <thd< th=""> D</thd<></thd<>		Malacostraca	Decapoda		Petrolisthes	novaezelandiae	Native	_						•				-		-			
data Maxillopoda Sessitis Balanidae Notomegabatarus campbelli Native 0		Maxillopoda	Sessilia		Austrominius		Native	_	-	0			-	-	-	_	0	0	0	-			
Ocda Rhynchonellata Fhynchonellata Notosaridae		Maxillopoda	Sessilia	Balanidae	Notomegabalanus		Native								-				0	0			
Odda Rhynchonellata Terebratulida Terebratulida <td></td> <td>Rhynchonellata</td> <td>Rhynchonellida</td> <td></td> <td>Notosaria</td> <td>nigricans</td> <td>Native</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>-</td> <td></td> <td></td>		Rhynchonellata	Rhynchonellida		Notosaria	nigricans	Native								-		0	0	0	-	-		
Gymnolaemata Chelostomata Aeteca australis Native 1 1 0 0 0 1 0 0 0 1 Gymnolaemata Chelostomata Beanidae Beanida		Rhynchonellata	Terebratulida	lidae	Calloria		Native	=	-	-				•				0	-	-	-		
Gymmolaarmata Chelostomata Bearnia bilaminata Native 1 0 <td></td> <td>Gymnolaemata</td> <td>Chelostomata</td> <td></td> <td>Aetea</td> <td></td> <td>Native</td> <td>=</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>\perp</td> <td>2</td> <td>0</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>		Gymnolaemata	Chelostomata		Aetea		Native	=	-						-	$ \perp$	2	0	-	-			
Gymnolarmata Chelostomata Beanidae Beanidae Intermedia Native 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Gymnolaemata	Chelostomata	Beaniidae	Beania	bilaminata	Native	_			$ \rightarrow $			0	-	_		0	0	-			
Gymnolaamata Chelostomata Beanlaae Beanlaa purispinosa Native U U U U U U U U U U U U U U U U U U U		Gymnolaemata	Chelostomata		Beania	intermedia	Native	_							-				-	-			
Commanata Christiamata Bittectoria Bittectoria muconfera Native 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Gymnolaemata	Chelostomata		Beania	plurispinosa	Native	_	\perp										-	-			
Commanda Disamana Disaman Disamana Disamana		Gymnolaemata	Chelostomata		Bitectipora		Native												5	-			

		-1	-	**	~ 1	101	-	<u></u>	-	-	<u></u>	-	-	<u></u>	-	<u></u>	-	~	-	-	-			<u>.</u>	_ I.		<u>.</u>	1		-	-	-	~	<u>.</u>	-	-	-	-	<u></u>	-		
Total		-	-	4	~	ŝ	-	۳	-	-		-	-	"		~	-	ິ	-	-						- (ſ	5	-	-	-	^e	~	-	-	-	-	~			-[
Yates Point	L		0	-	-		0			\rightarrow	0										$ \rightarrow $									0	0	0	5	0								
Stirling Falls Wall	L			0	0		<u>_</u>				-																			0	0	0	-	0	0	0	0					00
Sea Breeze Point	L	0	0	0	0	0		0	-			0				_	_	0	-										6	0	6	0	6	6	0	0	-	0				
Saint Ann Point Sandfly Point Jetty	l		0	-	-	0	0	-		-			0	-		0	0		0		0	- 0			50	2 4	- 0		0	0	0	0	0	0	0	0	-	0	-			
Poison Bay	L			0	0					$ \rightarrow $		-			$ \rightarrow $	0			0		_	_			\perp		\perp	0	0	0	0	0	0		0							
Pater Point	ļ	-	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-	, 0	0	0	0	0	0	0	0	0	0	-	0	-	-		-
Harrison Cove	L		0	0	0	0	-	-	0	0	-	-	0	-	-	0	-	0	0	-	+	-	-	=	-	5	<u>,</u>	6	0	0	0	0	6	0	0	0	0	0	0	-	-	-
Freshwater Basin Mooring		0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6	0	0	0	0	0	0	0	0	-	-	-	-	-	-
Fox Point		0	0	0	0		-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	╡	-	-	-	-	0	0	0	0	-	-		0	-	-	-	-	-	
Ferry Terminal 2		0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	-	-	-		-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
۲emiməT ۲eminal ۲		0	0	0	0	0	히	-	1	•	1	-	•	•	-	0	히	0	0	-	히	-	-	-	5	-	10	Þ	0	0	0	0	0	0	0	0	0	0	히	-	-	-
Deep Water Basin Slipways		0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ا م	-	-	-	-	10	10	0	0	0	0	0	0	0	0	-	0	-	-	-	-
Deep Water Basin 2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	이	9	0	0	0	9	9					0	0	0	0	0	0	0	0	0	0	0	-	0	9	-
Deep Water Basin 1	Ì	0	0	0	0	0	이	0	0	0	9	0	0	-	0	0	이	-	-		이	9	9					P	0	0	0	0	P	0	0	0	0	0	이		9	-
Copper Point	I	0	0	-	0		0	-	0	0	0	0	0		0	-	0	٥	0	0	9	0	0					0	0	0	0	0	0	0	0	0	0	0	0			
Channel Marker No 2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					P	0	-	-	0	0	0	0	0	0	-	0	0		
Brig Rock	[0	0	-	0		0	0		0		0			_	_	0					_		<u>۱</u>					0	0	0	0	0	0	0		0					00
ysa stinA		0	-	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			7	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- ⁻
÷ am	Biosec. status	ninate	ninate								ninate	ninate			ninate	ninate																				ninate	ninate	ninate	ninate			
Site name ->	Biosec.	Indeterminate	Indeterminate	Native	Native	Native	Native	Native	Native	Native	Indeterminate	Indeterminate	Native	Native	Indeterminate	Indeterminate	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Indeterminate	Indeterminate	Indeterminate	Indeterminate	Native	Native	Native
	species epithet	sp.		pulchellus	dilatatus	chloroticus	novaezealandiae	mollis	eugenie	maculata			maoriana	galloprovincialis	sp.		striata	australis	stutchburyi	reflexus	australis	stellitera	glans	ampiguus	traversi	pustulosuri ssp. turrilduri	roseus	aranti	australis	aethiops	huttonii	viridis	sulcata	granose	smaragdus	sp.		sp.	sp.	quercifolia	gladiata	radiata flevi insiim
	Genus	Patiriela	Pentagonaster	Pentagonaster	Diplodontias	Evechinus	Pseudechinus	Stichopus	Amphiura	Ophiopsammus		Aulacomya	Aulacomya	Mytilus	Mytilus	Xenostrobus	Myadora	Paphies	Austrovenus	lrus	Siphonaria	Cellana	Austrofusus	Xymene	Aymene	Penella	Macricolous	Calliostoma	Haliotis	Melagraphia	Micrelenchus	Trochus	Cockia	Modelia	Turbo	Dictyota		Ectocarpus	Hincksia	Landsburgia	Xiphophora	Xiphophora
	Family	Asterinidae	Goniasteridae	Goniasteridae	Odontastericae	Echinometridae	Temnopleuridae	Stichopodidae	Amphiuridae	Ophiodernaidae		Mytilidae	Mytilidae	Mytilidae	Mytilidae	Mytilidae	Myochamidae	Mesodesmatidae	Veneridae	Veneridae	Siphonariidae	Nacellidae	Buccinidae	Muncidae	Nuncidae	Depellides	Turritellidae	Calliostomatidae	Haliotidae	Trochidae	Trochidae	Trochidae	Turbinidae	Turbinidae	Turbinidae	Dictyochaceae		Ectocarpaceae	Ectocarpaceae	Cystoseiraceae	Fucaceae	Fucaceae
	Order	Valvatida	Valvatida	Valvatida	Valvatida	Echinoida	Temnopleurida	Aspidochirotida	Ophiurida	Ophiurida		Mytioida	Mytioida	Mytioida	Mytioida	Mytioida	Pholadomyoida	Veneroida	Veneroida	Veneroida	Easommatophora	Docoglossa	Neogastropoda	Neogastropoda	Neogastropoda	Neolaerioglossa	Neotaenioglossa	Vetigastropoda	Vetigastropoda	Vetigastropoda	Vetigastropoda	Vetigastropoda	Vetigastropoda	Vetigastropoda	Vetigastropoda	Dictyochales	Dictyotales	Ectccarpales	Ectccarpales	Fucales	Fucales	Fucales
	Class	Asteroidea	Asteroidea	Asteroidea	Asteroidea	Echinoidea	Echinoidea	ea		Ophiuroida		Bivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Castropoda	Gastropoua	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gastropoda	ae	Phaeophyceae	Phaeophyceae	Phaeophyceae	Phaeophyceae	Phaeophyceae	Phaeophyceae
	Phylum	Echinodermata	Echinodermata	Echinodermata	Echinodermata	Echinodermata	Echinodermata	Echinodermata	Echinodermata	Echinodermata	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	MOILUSCA	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Mollusca	Ochrophyta	Ochrophyta	Ochrophyta	Ochrophyta	Ochrophyta	Ochrophyta	Ochrophyta

	-	n	2	2	4	-	4	2	(m	2	F	F	-	2	Э	F	-	~	F	-	F	-	F
Total	Ĺ				4	Ì	4		ľ		Ĺ	Ĺ	Ĺ			Ì	Ĺ)``	Ĺ	Ì	Í		Ĺ
Yates Point	0		0	0	5	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	F
Stirling Falls Wall	0		0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0			0
Sea Breeze Point	Ľ	°	0	0	0	0	-	-	-	-	0	-	0	0	°	-	0	0	0	0		0	0
Sandfly Point Jetty	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
Saint Ann Point	Ľ	0	0	-	0	0	0	-	-	-	-	0	-	0	-	0	-	0	-	0	0	-	0
Poison Bay	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pater Point	0	0	o	0	C	C	o	0	0	0	0	0	0	C	0	0	0	0	0	С	o	0	0
Harrison Cove	0	0	0	-	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Freshwater Basin Mooring	P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fox Point		-	0	0	0	0	-	0	0	0	0	0	0	-	-	0	0	-	0	0	0	0	0
Ferry Terminal 2	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F lisnimeT YneA	Þ	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Deep Water Basin Slipways		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Deep Water Basin 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Deep Water Basin 1	Þ	Þ	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	Þ
Copper Point	Þ	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Channel Marker No 2	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Brig Rock	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Anita Bay	0	-	0	0	-	0	-	0	0	0	0	0	0	-	-	0	0	-	0	-	0	0	0
	,	\vdash	\vdash	\vdash	Η	\vdash		\vdash	\vdash		\vdash	H	\vdash	\vdash	Η		\vdash	\vdash	\vdash	\vdash	Н		\vdash
깃륲			late		late																late	late	
Site name -> Biosec. status		_	Indeterminate		ndeterminate										[_		_				Indeterminate	Indeterminate	
te n ose	Native	Native	dete	Native	dete	Native	Native	Vative	Native	L	Native	Native	L	Native	Native	Native	Native	Native	L	Native	dete	dete	Native
<u></u>	ΪŽ	ž	⊆	ž	드	ž	ž	ž	ž	ū	ž	ž	ΰ	ž	ž	ž	ž	ž	ü	ž	드	<u>_</u>	ž
et																							
species enither																							
ese																							
eci				s		snpi		Sa	¥	/ery			ae	Ŷ		Ŷ	5			Ŷ			
5 5	i i i i i i i i i i i i i i i i i i i	ta		ular		ocla	ata	pnq	2 (S	SCO	g	llata	quist	1 (N	losa	2 (N	ensi	Sche	nata	1			١ş
	sinclairi	radiata	sp.	funicularis	sp.	botryocladus	costata	cf. tubulosa	n.sp.2 (MK)	cf. discovery	akaroa	reticulata	bergquistae	n.sp.1 (MK)	conulosa	n.sp.2 (MK)	fiordensis	hentscheli	agminata	n.sp.1 (MK)	ġ	sp.	crinitum
	f	-		-		-	-	Ŭ	-	Ē			-	-	Ĕ	-	4-	-		-		0,	f
															Ę			<u>(a</u>)					
Genus	٦		<u>a</u>				æ			nia				a	cido	ja		arm			æ	nion	E
Gel	ssur	ja	selar	teris	teris	ogo	mitr	ttus	tta	sole		da	e.	aste	Jylac	oular	Culi	e (C	ilia	ja	line	ami	chiu
	Sargassum	Eckonia	Sphacelaria	Halopteris	Halopteris	Ptilopogon	Carpomitra	eucettusa	Leucetta	Leucosolenia	ciria	Thorecta	Tethya	Cymbastella	Strcngylacidon	Necfibularia	Latrunculia	Mycale (Carmia)	Raspailia	Tedania	Audouinella	Acrothamnion	Anotrichium
	S	Ш	ŝ	Ť	Ϋ́	đ	ő	Le	Le	Le	E	È	Ĕ	ΰ	st	ž	La	ź	ų,	Ť	ΑL	Αc	A
			e	a	a	a	0														e		
2	ee.		3068	ceat	ceat	ceat	Ceae			liida		6			dae	dae	ae		0		acea	ae	ae
Family	Sace	388	laris	aua	aua	aua	hna	idae	idae	olen	e	lidae	ae	dae	opsi	Celli	ulid	ae	lica	dae	aetiá	ace;	ace
-	Sardassaceae	riaceae	lace	boc	boc	poc	Droc	Leucaltidae	Leucettidae	ICOS	niida	rect	hyid	nelli	andr	sma	Lun C	calio	spail	lanii	ů,	ami	ami
	Sar	Alar	Sphacelariaceae	Sty	Sty	Sty	Sp	Lei	Le	Le	<u>5</u>	Thorectidae	Tet	Axi	Ğ	De	Lat	Ň	Ra	Tec	Acrochaetiaceae	Ge	G
		ŝ	ales	ales	ales	ales	es			lida	ida	ida	ā	da	rida	rida	rida	rida	rida	rida	ales		
Order		Laminariales	Sphacelariales	Sphacelariales	Sphacelariales	Sphacelariales	Sporochnales	ida	ida	Leucosolenida	Dictyoceratida	Dictyoceratida	Had omerida	Halichondrida	Poecilosclerida	Poecilosclerida	Poecilosclerida	Poecilosclerida	Poecilosclerida	Poecilosclerida	Acrochaetiales	Ceramiales	Ceramiales
	Fucales	nina	1aC6	1aC6	lace	1aC6	DIOC	Clathririda	Clathririda	ICOS	tyoo	tvoc	lon	icho	scilo	ecilo	scilo	Scilo	scilo	ecilo	0Ch	rami	ami
	Fu	Lar	Spl	Spi	g	Spl	Šp	Cla	Ga	Let	<u>Di</u>	Dic	Ť	La	Ъо́Ч	Ъ	ų,	Å,	Å.	Ъо	Acr	ē	ē
																					<u>_</u>	m	0
	Sae	eae	eae	eae	eae	sae	sae				aet	ae	ae	ae	ae	ae	ae	gae	ae	ae	Florideophyceae	Florideophyceae	Florideophyceae
Class	Phaeophyceae	Phaeophyceae	Phaeophyceae	Phaeophyceae	Phaeophyceae	Phaeophyceae	Phaeophyceae	æ	e	æ	Demospongiae	Demospongae	Demospongae	Demospongae	Demospongae	Demospongae	Demospongae	Demospongae	Demospongae	Demospongae	1 E	phy	1 h
ľ	eee	eop	eop	eop	eop	eop	eop	Calcarea	Calcarea	Calcarea	nos	loc	loou	nos	loou	nos	locu	loc	nos	nosp	idec	idec	ide
	Pha	Pha	Pha	Pha	Pha	Pha	Pha	Calc	Cal	Cal	Den	Den	Den	Den	Den	Den	Den	Den	Den	Den	Flor	Flor	Plon
	Γ	ſ						Ĺ	Ĺ								ſ						Γ
	ų.	'ta	ta	rta	'ta	rta	rta														Уtа	yta	vta
16	Ochrophyta	Ochrophyta	Ochrophyta	Ochrophyta	Ochrophyta	Ochrophyta	Ochrophyta	Porifera	Porifera	Porifera	Porifera	Porifera	Porifera	Porifera	Porifera	Porifera	Porifera	Porifera	Porifera	Porifera	Rhocophyta	Rhocophyta	Rhodophyta
	12	15	١Ë	١Ë	lΕ	E	E	I≚ I	1Ĕ	l₩	l≝	I≝I	1	1	I≝I	i≓	I¥	I≝I	I≚ I	1	18	8	lğ
	F	형	ㅎ	0	5	2	힘	ē	Į Į	þ	5	히	힝	5	히	5	Į Į	Į Į	ē	0	<u>Ē</u>	5	12

			1.6	_	10.1	_			_			-	_				_		_				_,	- '				-	_	1.0	_	1-2	Ic	Let.	_			_		-	_
Total		2	5	-	9	-	-	-	-	2	-	e	-	-	2	2	-	-	-	-	-	~	-	o	9	~		- °	٦Ľ	- m	ľ	٠l٣	9	4	-	~	-	-	-	9	11 111
Yates Point		-	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0		2	- 0	P	0	P	-	-	-	0	0	0	٥	0	
Stirling Falls Wall		0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	2		P	0	0	0	0	-	0	0	0	0	0	-	2
Sea Breeze Point		-	0	0	0	-	이	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	이	히	-	ন	-14	₅	-1-	10	10	10	-	0	0	0	0	0	이	-	5
Sandfly Point Jetty		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	7	r	Þ	0	h	0	0	0	0	0	0	0	0	6
Saint Ann Point		0	0	0	0	0	-	0	-	-	0	0	0	-	-	0	0	-	0	-	0	0	0	-	-	-	5	5	<u>,</u>	0	0	h	-	0	0	0	0	0	-	-	ά
Poison Bay		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	5	5	5	-		0	0	0	0	-	-	-	0	0	ę
Pater Point		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0		5	-	, lo	0	0	0	0	0	0	0	0	0	0	0	α
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	-	- 0	5	5		0	0	0	6	0	0	0	0	0	0	0	L
Harrison Cove			_		_							_					0				_			_	\rightarrow	_	_	_	+	┶	⊢	⊢	⊢								00
Freshwater Basin Mooring		0	-	0	<u>-</u>	0	0	0	0	0	0	-		0	0	0	2	0	0	0	0	-	0	0	0	0	2		⊥	⊥	⊢	⊢	0	°	0	0	0	0	0	0	Ŧ
Fox Point		-	-	0	~	ິ	°	°	0	-	~	0	0	0	0	0	-	°	-	0	0	°	-	-	-	0	2	2	6		°		°	-	0	0	0	0	°	-	ŝ
Ferry Terminal 2		0	-	0	-	익	ိ	9	0	٥	0	-	0	0	0	0	٥	٩	0	٥	0	٩	0	0	익	9	이	이	٩	<u>ار</u>	P	ľ	P	P	0	0	0	٥	ိ	0	\$
۲ IsnimeT ۲ ا		0	-	0	0	0	0	0	0	0	0	-	0	0	0	-	0	0	0	0	0	0	ি	-	0	ন	- 1	7	P	P	P	10	0	0	0	-	0	0	0	0	Ş
Deep Water Basin Slipways		0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	=	-	10	, -	10	10	0	0	0	0	0	0	-	0	ŀ
Deep Water Basin 2		0	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	-	0	0	0	0	0	-		Þ	-	0	0	0	0	0	0	0	0	0	0	ł
Deep Water Basin 1		0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	5	5	<u>,</u>	0	0	-	0	0	0	0	0	0	0	0	1
Copper Point		0	0	0	0	-	0	-	0	0	0	0	0	0	0	0	0	0	0	-	0	0	-	-	-	-	5,		╞	-	0	-	-	6	0	0	0	0	0	0	1
		0	0	-	0	0	0	0	0	0	0	0	Ļ	0	0	0	0	0	0	0	0	-	0					5			-	0	6	0	0	0	0	0	0	0	1
Channel Marker No 2			0	0		0					0	0	0			0				_		0	0										-	Ē	0	0	0	0	0	-	ŀ
Brig Rock					7			2																	$ \rightarrow $		_		⊥	⊥	⊢	⊥	⊢	ſ						~	2
ysa stinA		0	-	0	-	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	- 6	2			0	° °		Γ	0	0	0	0	0	0	-	ų
Site name ->	Biosec. status	Native	Indeterminate	Indeterminate	Native	Native	Indeterminate	Native	Native	Indeterminate	Native	Native	Native	Native	Native	Native	Native	Indeterminate	Native	Native	Native	Indeterminate	Native	Indeterminate	Native	Native	Indeterminate	Notice	Native	Native	Indeterminate	Native	Native	Native	Native	Indeterminate	Indeterminate	Indeterminate	Indeterminate	Indeterminate	Totol
	species epithet	pectinatum	sp.	sp.	vestitum	formosissima	sp.	ceramioides	squarrosa		subcrbiculare	aff. variolosa MFN	variclosa	humilis	delicatula	harveyi	macrocarpa	sp.	Iyallii	hookeriana	muelleriana	sp.	pennata		corymbosa	officinals	1	sp.	ancistroclada	livida	line line and the second	chilensis	angustum	cirrhosum	microcladicides	sp.	sp.	sp.			
	Genus	Antithamnion	Callithamnion	Ceramium	Ceramium	Euptilota	Griffithsia	Perithamnion	Heterosiphonia		Abroteia	Hymenena	Hymenena	Nancythalia	Aphanocladia	Bostrychia	Chcndria	Chendria	Echinothamnion	Lophurella	Polysiphonia	Polysiphonia	Pterosiphonia	-	Arthrocardia	Corallina	Haliptilon	Dhodonhullio	Ginartina	Sarcothalia	lidaea	Gracilaria	Plocamium	Plocamium	Plocamium	Plocamium	Lomentaria	Rhcdymenia	Microcladia		
	Family	Ceramiaceae	Dasyaceae	Delesseriaceae	Delesseriaceae	Delesseriaceae	Delesseriaceae	Delesseriaceae	Rhodomelaceae	Corallinaceae	Corallinaceae	Corallinaceae	Coralinaceae	Cordininaceae	Ginartinaceae	Gioartinaceae	Kallymenaceae	Gracilariceae	Plocamiacese	Plocamiacese	Plocamiacese	Plocamiacese	Lomentariaceae	Rhodomeniaceae	Ceramiaceae																
	Order	Ceramiales	Ceramiales	Ceramiales	Ceramiales	Ceramiales	Ceramiales	Ceramiales	Ceramiales	Ceramiales	Ceramiales	Ceramiales	Ceramiales	Corallinales	Corallinales	Corallinales	Coralinales	Ciccutinales	Ginartinales	Gigartinales	Gigartinales	Gracilariales	Plocamiales	Plocamiales	Flocamiales	Flocamiales	Fhodymeniales	Rhodymeniales	Ceramiales												
	Class	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	rionaeopnyceae	Floridoorhyseae	Florideorchyceae	Florideochyceae	Florideochyceae	Florideochyceae	Florideochyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Florideophyceae	Rhodophyceae												
	Phylum	Rhocophyta	Rhocophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhocophyta	Rhodophyta	Rhocophyta	Rhocophyta	Rhocophyta	Rhocophyta	Rhodophyta	Rhocophyta	Rhocophyta	Rhocophyta	Rhocophyta	Rhocophyta	Knocopnyta	Phodophyta Phodophyta	Rhorionhuta	Rhodophyta	Rhocophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhodophyta	Rhocophyta	Rhocophyta	Rhocophyta	Rhodophyta	Sipuncula									

				_	_
	Ĕ				
	ŝ		-	0	-
Tates Point	7		-	0	-
	-		-	0	-
auto i oduno	3		-	0	-
Stripe Point	7		-	0	-
	-		-	6	-
	3		-	6	-
Sea Breeze Point	2		È	0	, ,
	ч 1		, _	0	,
Sandfly Point Jetty	2		-	0	·
vttel triog vithues	-		, T	0	-
	3		-	0	-
Yoison Bay	2		-	0	-
Yea gooioa	Ë		-	0	-
	3		-	0	-
Aarrison Cove	2		-	0	-
Avo D nosimeH	Ë		-	6	-
	~		-	0	-
Freshwater Basin Mooring	2 3		=	5	-
orizooM niseB totewd2013	Ë		-	0	-
			F	6	F
Ferry Terminal 2	23		-	6	-
CleaningT ving3	Ë		-	6	-
	-		F	6	-
seme marer pasin Jerries	5		-	0	-
Deep Water Basin Jetties	Ë		-	0	-
	3		÷.	6	-
Deep Water Basin	2		F	0	-
	F		-	-	~
	Ė	s	\vdash	F	F
Site name ->	Replicate ->	Biosec. statu	(see note)	Indeterminate	Total
		species epithet Biosec. status			
		Genus		Macomona	
		Family		Tellinidae	
		i 1			
		Order		Veneroida	
		Class Order	o target species (see note)	Bivalvia Veneroida	

Note: Zooplankton samples were screened for target non-indigenous organisms (*Eriocheir, Carcinus*, echinoderm and ascidian lawae), but identifications were not made for organisms other than these species in the zooplankton samples. None of these organisms were identified from any of the zooplankton samples from Milford Sound; rather, only juvenile calanoid copepods were found.

Poison Bay, left side of cree	2		
Poison Bay, right side of cre	7		
Deep Water Basin Slipways	2		
Site name ->	Distance below high tide line (m)	Biosec. status	
		species epithet Biosec. status	
		Genus	
		Family	
		Order	
		Class	
		Phylum	No toract ancies recorded

www.biosecurity.govt.nz