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Abstract

Copepods of the genus Calanus are predominant in the zooplankton biomass of the
North Atlantic and the Arctic where they play a key role in marine ecosystems both as
main primary consumers and as prey species for fish, birds and marine mammals. Over
the last 50 years, the four Calanus species co-occurring in the North Atlantic have
shown climate-driven changes in distribution, resulting in a decrease of abundance of
ecologically and commercially important fishes. Despite the plethora of studies
published on Calanus, there is still very limited knowledge at species, population and
genome levels, impeding our understanding of their ability to cope with changing
climate. Therefore, the main aim of this dissertation is to address crucial knowledge
gaps in Calanus species in the North Atlantic, specifically, unbiased identification of
Calanus species, transcriptome response to temperature component of climate
change, and genetic differentiation between populations of C. finmarchicus.

Challenges in Calanus species identification were clarified with the development of a
panel of 12 nuclear insertion/deletion markers based on both genome and
transcriptome sequences of C. finmarchicus and C. glacialis. All markers show species-
specific amplicon length, allowing easy and robust molecular identification of C.
finmarchicus, C. glacialis, and their hybrids, as well as co-occurring C. helgolandicus, C.
hyperboreus and C. marshallae. These markers were also used to validate a new
morphological criterion — redness — that can easily separate live females of C.
finmarchicus and C. glacialis by the red pigmentation of the antenna and somites.

Temperature-mediated changes in gene expression in response to realistic thermal
stresses (at +5 °C, +10 °C and +15 °C) for 4 hours and 6 days were investigated in C.
finmarchicus and C. glacialis using whole transcriptome profiling. C. finmarchicus
showed a strong response to low and high temperatures and long duration of stress,
initiating up-regulation of genes related to protein folding, transcription, translation,
and metabolism. In contrast, C. glacialis displayed only low-magnitude changes in gene
expression. Differences in the thermal responses between the two species, particularly
the weak molecular stress response in C. glacialis, are in line with laboratory and field

observations and suggest a vulnerability of C. glacialis to climate change in the Arctic.



Population genetic structure of C. finmarchicus was investigated using a novel
approach for large-scale genome-wide genotyping, pooled double digest restriction-
site-associated DNA sequencing (Pool-ddRAD-seq), as well as more traditional
approach, microsatellite markers. Pool-ddRAD-seq outperformed microsatellite-based
method and detected both between- and within basin differentiation in the North
Atlantic, additionally suggesting some degree of annual retention of C. finmarchicus
within a region.

Overall, these findings contribute to a better understanding of the ecology and
genetics of Calanus species and their potential to cope with climate change. This
knowledge can now be implemented for managing of Calanus as an important
biological resource, as well as for modeling ecological processes at individual,
community and ecosystem levels. This dissertation also illustrates how next generation
sequencing technologies can be used in non-model species to investigate a wide range

of questions.



1. Introduction

1.1. Calanus in the North Atlantic

Planktonic marine copepods of the genus Calanus (Crustacea: Copepoda: Calanoida:
Calanidae) are likely the most abundant animals in the world (Bucklin et al. 1996). Over
their distribution ranges, the 14 species that comprise Calanus genus contribute
significantly to the biomass (up to 70 %) and largely dominate in the ocean (Conover
1988; Head et al. 2003; Kwasniewski et al. 2003; Richardson et al. 2003; Uye 2000).
Furthermore, many ecologically and commercially important fishes depend on Calanus
species as a food source, including Atlantic and polar cod, sardine, anchovy and herring
(e.g., Gislason and Astthorsson 2002; Meng 2003; Sgreide et al. 2008; Uye 2000), as
well as planktivorous invertebrates, birds (e.g., little auk) and marine mammals
(Michaud and Taggart 2007; Skjoldal et al. 2004; Varpe et al. 2005; Weslawski et al.
1999). Thus, Calanus species are playing a key role in the energy transfer from the
primary production level to higher trophic levels, as well as in the carbon cycle in the
ocean (Beaugrand 2009; Falk-Petersen et al. 2007; Nuwer et al. 2008; Pasternak et al.
2002). The central position of Calanus in the ecosystem is reflected in over 25,000
publications (hits for a search in Google Scholar, accessed in May 2015), with almost
half devoted to C. finmarchicus. Moreover, C. finmarchicus has been the target species
of several basin-scale research programs, including investigations of migration
between oceanic and shelf seas off Northwest Europe (ICOS: e.g., Heath et al. 1999),
Trans Atlantic studies of Calanus finmarchicus (TASC: e.g., Tande and Miller 2000), the
Global Ocean Ecosystem Dynamics program (GLOBEC: e.g., Gifford et al. 2010), and the
European Basin-scale Analysis, Synthesis and Integration program (EURO-BASIN: e.g.,
Melle et al. 2014a,b).

Boreal Calanus finmarchicus (Gunnerus, 1770) has its core distribution in the North
Atlantic, where three other Calanus species co-occur: C. helgolandicus (Claus, 1863), a
temperate species in the coastal and continental shelf environment; two Arctic
species, C. glacialis Jaschnov, 1955 and C. hyperboreus (Krgyer, 1838), respectively
dominating on-shelf and off-shelf waters (Beaugrand et al. 2002; Bonnet et al. 2005;

Conover 1988; Fleminger and Hulsemann 1977; Kosobokova and Hirche 2001) (Fig. 1



and Fig. 2). The core distribution of each species appears to be shaped by their distinct
temperature niches: maximum abundances of C. hyperboreus and C. glacialis are at
temperatures below 5-6 °C, while for C. finmarchicus and C. helgolandicus peak
abundance is from 4 to 9 °C and from 13 to 17 °C, respectively (Bonnet et al. 2005;
Carstensen et al. 2012; Hirche 1997; Sundby 2000). All four species contribute
significantly to the biomass of their respective ecosystems, where they play the central
role in the food web dynamics (Bonnet et al. 2005; Falk-Petersen et al. 2007, 2009;
Hirche and Kosobokova 2007). However, they most likely support different food webs,
due to differences in phenology (timing of reproduction) and energy-rich lipid content

(Beaugrand et al. 2003; Conover 1988; Falk-Petersen et al. 2009).

C. hyperboreus

60°W

Figure 1. Calanus species distribution in the North Atlantic and the Arctic: (A) C. hyperboreus, (B) C.
glacialis, (C) C. finmarchicus, (D) C. helgolandicus. Species distributions are based on data from Bonnet
et al. (2005), Conover (1988), Falk-Pedersen et al. (2009), Fleminger and Hulsemann (1977), Sundby
(2000) and Yebra et al. (2005).



Calanus finmarchicus

Figure 2. Appearance and size difference among three Calanus species: C. hyperboreus (top), C.
glacialis and C. finmarchicus (bottom). Photo reprinted from Berge et al. (2011) with permission (License
number 3675340618222).

Calanus species are generally very similar in morphology (Fig. 2) and life cycle, which
includes eggs, six naupliar stages (NI-NVI) followed by five copepodite stages (CI-CV)
and then maturation to the adult stage (male or female, CVIm/f) (Fig. 3). The annual
life cycle of C. finmarchicus follows this pattern: eggs are laid by females either before
or during the spring bloom, the eggs hatch and develop through naupliar and
copepodite stages to pre-adult CV stage, when they descend to depth by early to late
summer for overwintering in a resting state (diapause). In early spring, CVs migrate to
the surface to moult to the adult stage and mate (reviewed by Head et al. 2013). The
duration of life cycle is variable among Calanus species, as well as within each species
living under different environmental conditions. Thus, C. helgolandicus typically has
multiple generations per year (Bonnet et al. 2005), while C. finmarchicus has an annual
life cycle throughout much of its range, but also can have multiple generations per
year or one generation can exceed one year (Conover 1988; Heath et al. 2008; Hirche
et al. 2001). Calanus glacialis has a life cycle of 1-3 years, while C. hyperboreus’ cycle is
1-6 years (reviewed by Falk-Petersen et al. 2009). Calanus hyperboreus primarily
spawns at depth, independent of food during winter and early spring (Hirche and
Niehoff 1996; Niehoff et al. 2002), while C. glacialis and C. finmarchicus spawn near

the surface around the time of the spring bloom (Madsen et al. 2001), due to their



dependence on food availability, especially the smaller and less lipid-rich C.

finmarchicus (Niehoff and Hirche 1996).

EVlo %oo‘f"
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Figure 3. Life cycle in Calanus species. Eggs hatch and develop through six naupliar (NI-NVI) and five
copepodite (CI-CV) stages and moult into male (CVIm) or female (CVIf). Copepodite stages V, IV, and llI
are usually the first stages that undergo diapause in C. finmarchicus, C. glacialis, and C. hyperboreus,
respectively.

Despite the high abundance of Calanus species, their ecological importance, and the
plethora of published studies, there is still limited knowledge and understanding at
species, population and genome levels. Among these knowledge gaps, unbiased
species identification, population genetic structure, tolerance and response to stressful
conditions on the molecular level could be seen as the most important ones,
particularly for prediction of climate change effects on Calanus species, and therefore,

on functioning of ecosystems in the North Atlantic and the Arctic.

1.2. Gaps in knowledge about Calanus

1.2.1. Species identification

Correct species identification is the basis for any study, particularly for zooplankton,
where cryptic species are common (Knowlton 1993, 2000). High morphological
similarity of Calanus species (Fig. 2) — with subtle variations in secondary sex
characteristics (Fleminger and Hulsemann 1977; Frost 1974) — present a persistent

challenge for the identification of individuals to species level, particularly during early



developmental stages (Bucklin et al. 1995b; Lindeque et al. 1999). Currently, species
identification is frequently based on individual body length and the geographical
location of collection (e.g., Hirche et al. 1994; Kwasniewski et al. 2003; Undstad and
Tande 1991). However the body length is temperature-dependent (Campbell et al.
2001; Wilson et al. 2015), and most likely leading to a greater overlap in body length
between the sibling species than previously thought (Kwasniewski et al. 2003; Parent
et al. 2011; Wilson et al. 2015). Thus, morphological species identification is not
sufficient and may lead to consistent misidentification, particularly in regions where
distributions of several Calanus spp. overlap, such as the North Atlantic, as has been
shown with genetic methods (Gabrielsen et al. 2012; Lindeque et al. 2006; Parent et al.
2012).

Genetic methods for identification of Calanus species have followed the evolution of
molecular technologies starting from allozymes (Sywula et al. 1993) and Sanger
sequencing (Bucklin et al. 1995a; Hill et al. 2001) to microsatellites (Provan et al. 2012)
and metabolomics (Hansen et al. 2013b). Nevertheless, all developed methods have
potential drawbacks. For example, revolutionary in its time, species identification
based on sequences of mitochondrial genes could result in unambiguously
discrimination of most of Calanus species, including four species from the North
Atlantic (Bucklin et al. 1992, 1995; Hill et al. 2001; Lindeque et al. 1999). However, the
method may also lead to an erroneous identification of cross-species hybrids, due to
the maternal inheritance of mitochondria (Parent et al. 2012). In contrast to
mitochondrion-based methods, an application of 10 nuclear microsatellite loci allowed
delimitation of C. finmarchicus, C. glacialis and their hybrids (Parent et al. 2012).
However, the microsatellites markers were developed from C. finmarchicus, and cross-
amplification of such microsatellites in C. glacialis may result in size homoplasy (when
different alleles are identical in size but not identical by descent) and lead to biased
conclusions about species identification (e.g., Curtu et al. 2004). Advances in
metabolomics resulted in identification of several species-specific metabolites in C.
finmarchicus, C. glacialis, and C. hyperboreus (Hansen et al. 2013b); however, the

technique requires rather advanced equipment and is impossible to combine with



other applications, such as genetics. Thus, a reliable and routine method for Calanus
species identification is still lacking, but is essential for resolving of the potential
hybridization between Calanus species and further species-specific studies of
physiology and genetics, distribution and reproductive ranges, responses to

environmental factors and, consequently, potential impacts of climate change.

1.2.2. Response to climate change

Numerous species, communities and ecosystems worldwide are affected by recent
global climate change (Beaugrand 2004; Edwards et al. 2013; Hickling et al. 2006;
Parmesan 2006; Parmesan and Yohe 2003; Southward et al. 1995; Thackeray et al.
2008). Climate-induced changes are especially pronounced in polar and marine
ecosystems (Gilg et al. 2012; Goberville et al. 2014; Hansen et al. 2006; Harris et al.
2014; Hoegh-Gulberg 2010; Perry et al. 2005) and are displayed as shifts in species
distribution and phenology, which are consequently leading to changes in
trophodynamics and ecosystem shifts (Beaugrand 2014; Beaugrand et al. 2002, 2003,
2015; Doney et al. 2012; Edwards and Richardson, 2004; Parmesan 2006; Richardson
2008). One of the most striking examples of such climate-driven changes is the
northward shift of zooplankton assemblages in the North East Atlantic between 1960
and 1999, with the estimated speed of 260 km per decade (Beaugrand et al. 2002).

Calanus finmarchicus and C. helgolandicus are a part of this large-scale re-
distribution of zooplankton in the North East Atlantic (Fig. 4A and 4B) (Beaugrand et al.
2002). For instance, in the North Sea C. helgolandicus substituted C. finmarchicus
within 40 years, with an increase in abundance from 20 % to 80 % (Reid et al. 2003)
and currently extends into the southern area of the Norwegian Sea (Ellertsen and
Melle 2011). Such replacement of species with different lipid richness and seasonal
cycles (Bonnet et al. 2005) has already had dramatic consequences for the recruitment
of commercially important fish stocks such as cod (Gadus morhua) and salmon (Salmo
salar) (Beaugrand and Reid 2003; Beaugrand et al. 2003; Olsen et al. 2011), as well as

for the biological carbon pump (Beaugrand et al. 2010).
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Figure 4. Distributional shifts in Calanus helgolandicus (A) and Calanus finmarchicus (B and C).
Predicted distributions (C) based on moderate scenario B2 of future climate using nonparametric
probabilistic ecological niche modelling (Reygondeau and Beaugrand 2011). Panels A and B were
modified from Bonnet et al. (2005) with permission (License number 3675341020054); panel C was
modified from Reygondeau and Beaugrand (2011) with permission (License number 3675341416082).

On the scale of North Atlantic, distributional changes have been detected since 1960
for all four Calanus species, with C. finmarchicus having a consistent poleward shift, C.
helgolandicus expanding in all directions, and Calanus glacialis and C. hyperboreus
showing a slight southward shift in the Scotian and Newfoundland shelf regions (Chust
et al. 2013). This surprising southward shift of the Arctic species could be explained by
the outflow of cold water from the Arctic (Chust et al. 2013); however, additional
studies are needed to assess the species response throughout their main distributional
centres in the Arctic (Fig. 1A and 1B). Thus, for example, in the Barents Sea, abundance
of C. glacialis and C. hyperboreus declined after 2004 (Dalpadado et al. 2012). With
continuing climate change, the distribution of C. finmarchicus is predicted to shift
further into the Arctic, with a reduction in abundance (Fig. 4C) (Beaugrand et al. 2013;
Helaouét et al. 2011; Reygondeau and Beaugrand 2011; Wassmann et al. 2011), while
C. glacialis may be forced out of suitable habitat on continental shelves and only be
able to maintain viable populations in cold Arctic fjords (Slagstad et al. 2011). Due to

such re-distribution and expectations that — in terms of physiological tolerances —



Arctic warming will likely benefit C. finmarchicus more than C. glacialis (Kjellerup et al.
2012), significant changes in food-web dynamics and secondary production are
expected, particularly regarding the current indigenous natural predators such as fish
and/or plankton eating seals, whales and birds (Falk-Petersen et al. 2007; Whitfield
2008).

Water temperature appears to be the major driver of distributional shifts in Calanus
species (Chust et al. 2014; Helaouét and Beaugrand 2009; Helaouét et al. 2011;
Reygondeau and Beaugrand 2011), but the molecular basis of physiological responses
to temperature range remains largely unknown. Organismal thermal tolerance
windows have evolved to match surrounding temperature ranges, while minimizing
physiological costs (Hofmann and Todgham 2010; Portner and Farrell 2008). When
environmental temperatures shift closer to one edge of an organism’s thermal
window, the individual’s physiological performance (e.g., growth, reproduction) will be
negatively impacted (Portner and Farrell 2008; Somero 2012). Since a thermal window
may be species- or even population-specific, the strength of an impact may vary, but
usually organisms with narrow thermal windows or living close to their physiological
limits will be most affected (Tomanek 2010).

Molecular responses to temperature are modulated by phenotypic plasticity
(phenotypic/physiological acclimatization to changing conditions) and genetic
adaptation (genetic evolution through natural selection to new environmental
conditions) and may play important roles in persistence of the species and may change
predicted distributional changes. Acclimatization via physiological plasticity could be
reached rapidly — within one generation — for instance via differential regulation of
gene expression (Ferea et al. 1999), particularly of heat shock proteins (HSPs), which
act as molecular chaperones and support functioning of the organism under stress
conditions (Feder and Hofmann 1999; Hofmann and Todgham 2010). Nevertheless,
physiological plasticity (good performance in all environments) is limited by
physiological/energetic costs and evolution (Sgrensen et al. 2003).

For the long-term persistence of populations, evolutionary adaptation becomes

essential. Evolutionary rates in marine plankton can be rapid (Dawson and Hamner
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2005), but it is unclear whether the rate of adaptation will match the rate of climate
change (Jump and Pefiuelas 2005). In zooplankton, rapid evolutionary changes might
be promoted by large population size, which can facilitate the appearance of beneficial
mutations, short generation span, and high genetic diversity (Peijnenburg and Goetze
2013; Reusch 2013). In addition, patterns of gene flow may favour evolution: high
dispersal can distribute genetic variants across the species distribution and expose
them to different selection pressures (Norris 2000), or spatially-isolated populations
may adapt to local conditions. In the latter case, species population are likely to
respond differentially to global climate change (Goetze et al. 2011; Peijnenburg and
Goetze 2013; Reusch and Wood 2007). Thus, studies of population structure and
transcriptome-wide responses to temperature are required to increase our
understanding of species performance and distribution in changing climate, and
therefore, to predict “winning” and “losing” populations and/or species, and
consequently, climate-related changes in the ecosystem diversity and structure,

functioning and provision of services to society.

1.2.3. Population structure

Genetic differentiation in marine holoplankton is usually expected to be low due to
large population sizes, wide geographic ranges and high potential for dispersal and,
thus, for gene flow. However, in the last two decades, substantial genetic structure has
been detected in many oceanic zooplankton species and other pelagic marine
organisms across their geographic range (Andrews et al. 2014; Goetze 2003, 2005,
2011; Hauser and Carvalho 2008; Jorde et al. 2015; Peijnenburg et al. 2004, 2005).
These findings highlight the influence of factors such as isolation by distance, oceanic
currents, behavioural limits to dispersal, selection, or recent population history, which
can promote population differentiation (Palumbi 1994). In addition the strength of
genetic isolation may vary among very closely related species (Aarbakke et al. 2014;
Chen and Hare 2011; Goetze 2005), and is likely linked to the ecological requirements
of the species (Peijnenburg and Goetze 2013). In Calanus, for example, strong

population differentiation was detected in C. helgolandicus (Papadopoulos et al. 2005;
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Yebra et al. 2011) and C. pacificus (Nuwer et al. 2008) but no differentiation was found
between populations of C. sinicus (Huang et al. 2014) (Table 1). However, population
genetic structure studies in Calanus have mainly utilized sequence variation of one
mitochondrial gene (Table 1). Since one or few markers may have insufficient power to
resolve subtle population genetic structure, lack of differentiation between
populations may be an artefact and should be reviewed with more markers.

Among Calanus species, the population structure of C. finmarchicus has been the
most intensively investigated; however, the results of the different studies are rather
conflicting (Table 1). An analysis with six microsatellites and cytochrome b sequence
variation revealed no significant genetic differentiation (Provan et al. 2008), while
studies with 16S rRNA sequence variation or several SNPs showed evidences for basin-
scale differentiation between North East and North West Atlantic populations, which
may reflect entrainment in ocean gyres (Bucklin and Kocher 1996; Bucklin et al. 1996;
Unal and Bucklin 2010). Thus, it is still unclear if the significant variation in life history
traits observed over the geographic distribution of C. finmarchicus (e.g., numbers of
generations per year, timing of reproduction, seasonal patterns of abundance; Heath
et al. 2000, 2004; Melle et al. 2014a,b; Planque et al 1997) is determined by genetic
differentiation, but it is becoming a crucial question in the light of climate change
(Wilson et al. 2015). For instance, locally adapted populations of one species will most
probably have different responses to shared physical or climatic forcing (Goetze et al.
2011). Overall, development of genetic resources and markers throughout the genome
is needed to resolve conflicting results in case of C. finmarchicus and obtain more

detailed resolution of genetic structure in other Calanus species.
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1.2.4. Genomic resources

Although copepods are among the most numerous and important species in aquatic
ecosystems, their genomic resources are still limited, particularly when compared to
insects (Bron et al. 2011). There is still no publically available nuclear genome for any
copepod, and the most closely related species with a reference genome is the highly-
derived cladoceran, Daphnia pulex (Colbourne et al. 2011). The major obstacle to
genome sequencing in copepods, including Calanus spp., is their very large genome
size, with a range of C- values (i.e., amount of DNA contained within a haploid nucleus)
from 6.48 pg (= 6.34 Gb) for C. finmarchicus to 12.46 pg (=12.19 Gb) for C. hyperboreus
(McLaren et al. 1988). Even mitochondrial genomes of Calanus spp. are difficult for
traditional Sanger sequencing with long PCR amplification, as the published
mitochondrial genomes of C. sinicus (Wang et al. 2011) and C. hyperboreus (Kim et al.
2013) show multiple long non-coding regions and large-scale gene rearrangements, in
contrast to the usually conserved gene order among vertebrates (Bron et al. 2011).

Sequencing of the transcribed part of genome is often the easiest solution to reduce
the complexity of the genome. Calanus finmarchicus is one of the leading species
among copepods for the amount of available transcriptome data, together with the
parasitic copepods of salmon Lepeophtheirus salmonis and Caligus rogercresseyi, and a
model species in evolutionary genetics and ecotoxicology Tigriopus californicus (Bron
et al. 2011). A large number of Expressed Sequence Tags (ESTs) was sequenced in C.
finmarchicus to investigate diapause changes (Tarrant et al. 2008), physiological
responses to environmental variations (Lenz et al. 2012) and a mixture of
environmental stressors (Hansen et al. 2007), resulting in 11,859 ESTs (= 7.55 Mb)
(http://www.ncbi.nlm.nih.gov/gquery/?term=Calanus, accessed on May 5 2015). The
advances in next generation sequencing have brought new opportunities with
sequencing of transcriptomes of C. finmarchicus (Lenz et al. 2014; Tarrant et al. 2014),
C. sinicus (Ning et al. 2013; Yang et al. 2014) and C. glacialis (Ramos et al. 2015)
resulting in 60,000 - 100,000 unique transcripts for each species.

For other Calanus species, genomic resources are even scarcer, being limited to a

handful of mitochondrial (16S rRNA, COI, Cytb) and nuclear genes (citrate synthase,
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28S rRNA, ITS-1) (Bucklin etal 1995; Hill et al. 2001; Kozol et al. 2012; Papadopoulos et
al. 2005; Schizas et al. 2014; Unal et al. 2006; Yabra et al. 2011). Access to more
complete genome and transcriptome resources for Calanus spp. would facilitate
research in ecological and applied, genetic and evolutionary fields, consequently

leading to better understanding of Calanus potential to cope with climate change.

1.3. Next generation sequencing tools in molecular ecology

Over the past decade, sequencing technologies have undergone significant changes
toward high-throughput parallel sequencing, and research has shifted away from an
application of automated Sanger sequencing (considered as “first-generation”
technology) to newer methods, next-generation sequencing (NGS) technologies
(Metzker 2010). Different NGS platforms have appeared in the marketplace since
2005: 454 pyrosequencing (Roche), Genome Analyzer (lllumina), SOLID (Applied
Biosystems), nanopore (NanoPore), ion semiconductor (Applied Biosystems) and some
others. Most of these differ in the method of template preparation and sequencing,
read-length, run time, and data throughput, but all lead to inexpensive production of
large volumes of sequence data (Metzker 2010). Since the first application of NGS for a
species without previous genomic data, the wasp Polistes metricus, (Toth et al. 2007),
NGS technologies have been revolutionizing the fields of ecology, genetics, evolution,
and conservation (Ekblom and Galindo 2011; Rokas and Abbot 2009).

Continuous development of NGS technologies is leading to increases in throughput
and length of sequenced reads, and decreases in error rate and sequencing prices. The
flip-side is that the amount of data produced has increased dramatically (e.g., one run
on HiSeq 2500 instrument generates up to 1 TB of data), requiring massive data
storage facility and new bioinformatics solutions to effectively analyze the sequence
data. Bioinformatics rather than actual sequencing is now the bottleneck (Funari and
Canosa 2014; Stillman and Armstrong 2015), demanding time and qualified molecular
ecologists to make biological sense of the genomics data (Ekblom and Galindo 2011;
Rossetto and Henry 2014; Tautz et al. 2010). The complexity and amount of data are

challenging, particularly when development of bioinformatic tools is lagging behind
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application of new NGS technologies and methods. Nevertheless, with some time lag,
new bioinformatics algorithms tailored to various NGS applications are being
developed (e.g., open source software tools for bioinformatics available at
http://www.bioconductor.org (Huber et al. 2015) or updated list of software at
http://seqanswers.com/wiki/Software).

A multitude of new NGS approaches and tools makes it possible to investigate
genome, transcriptome and gene expression, as well as to develop new markers and
assess population diversity and differentiation in non-model species (Fig. 5). Thus,
guestions in phylogeny and phylogeography (McCormack et al. 2013), population and
ecological genomics (De Wit et al. 2012; Stapley et al. 2010), adaptation and selection
(Narum et al. 2013; Schoville et al. 2012), and, consequently, climate change responses

can be addressed directly in ecologically important species.

DNA/RNA extraction
o) z
3 Library preparation
Next Generation Sequencing
(short reads)
Quality filtering & trimming
o (high-quality reads)
3 .
= De novo assembly :
ol @000 [ Ak I ..
e (contigs/transcripts) AR
A= . - H - .
) e
= Read mapping
o (Reads aligned to assembly)
= . §
Marker development ,,,,, Read quantification
_(e.g. SNP, InDel, microsatellite) ~ (counts per transcript)
Application
Genome scan Population genomics | | Differential expression

Taxonomy & Systematics | | Ecological genomics A

Phylogeny & Phylogeography Quantitative Trait Loci mapping

Genome-Wide Association Studies

Figure 5. Flow chart of a typical NGS experiment in non-model species (without reference
genome/transcriptome) and possible NGS applications.
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1.3.1 Genome and transcriptome sequencing

Progress in NGS and development of bioinformatic software to assemble short NGS
reads have resulted in the genome or transcriptome of many species. Thus, after
launching in 2008 “The 1000 Genomes Project” (http://www.1000genomes.org),
devoted to sequencing and characterising genetic variation in 1000 humans, similar
projects have been started and included sequencing of 1000 transcriptomes of plants
(“1KP”, https://sites.google.com/a/ualberta.ca/onekp/), more than 10,000 genomes of
vertebrates (“Genome 10K”, http://genomel0k.soe.ucsc.edu) and 5,000 genomes of
arthropods  (“i5k”,  http://www.arthropodgenomes.org/wiki/i5K).  Nevertheless,
complete genome/transcriptome sequencing and assembly still requires costs,
expertise and infrastructure that are beyond reach for most molecular ecology
research groups. Thus, most of the NGS applications in non-model species rely on
partial de novo assemblies that are performed from sequencing reads prior to
downstream applications, such as marker development (e.g., Cook et al. 2011, Karam
et al. 2014), comparative genomics (e.g., Kinstner et al. 2010), population
differentiation (e.g., Chu et al. 2014) and local adaptation (De Wit and Palumbi 2013)
(Fig. 5).

In the case of species with a large genome, the transcriptome could be more
accessible, since it is generally much smaller than the corresponding genome (Riesgo
et al. 2012). Nevertheless, the analysis leading to de novo assembly of genomes and
transcriptomes requires similar steps (Fig. 5), once mRNA is reversely transcribed into
complementary DNA (cDNA) during library preparation. First, the short reads produced
by NGS platforms should be quality controlled: trimming of any adapter sequences and
bases that are below a quality threshold, and filtering reads if read length is too small.
High-quality short reads are then assembled by overlap of similar regions into longer
sequences (contigs), which represent transcripts or parts of a genome.

De novo assembly is still a difficult and computationally demanding task, particularly
in case of large amounts of short reads, such as are produced by NGS. The most
memory efficient solution is an algorithm that finds the Eulerian path through a de

Bruijn graph (Pevzner et al. 2001). It breaks reads in pieces of defined length (k-mers),
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merges and counts identical overlaps of k-mers, while different k-mers result in a
graph branching or bubbles that represent genetic variation or a sequencing error. At
the end, the path through the graph outlines a draft assembly (Schliesky et al 2012).
The genome graph can be resolved using the degree of coverage for each k-mer, since
the coverage should be the same across genome. However, a broad range of transcript
abundance in a cell results in highly uneven coverage across the transcriptome
assembly graph, and thus, requires an application of transcriptome-specific assemblers
(Schliesky et al. 2012). Nevertheless, some reads may be incorrectly discarded as
mistakes or repeats, or joined up in the wrong places or orientations, while sequences
of similar paralogues may be collapsed together (Baker 2012; Konczal et al. 2014).

Obtained de novo genome/transcriptome assembly should reflect the real
genome/transcriptome, however, since the true reference is unavailable, the
evaluation of assembly by comparison is impossible. Nevertheless, accuracy and
completeness of de novo assemblies should be assessed, with metrics such as: number
of assembled contigs, proportion of reads that were assembled, length of contigs,
length of the N50 contig (smallest contig above which 50% of an assembly would be
represented), and average percentage of protein sequences discovered (Baker 2012;
Schliesky et al. 2012). Since a high-quality and complete assembly is a prerequisite for
non-biased downstream analysis (e.g., Singhal 2013), the effectiveness of de novo
assemblers for genome and transcriptome has been widely compared and discussed
(e.g., Gurevich et al. 2013; Singhal 2013; Zhang et al. 2011).

To fully benefit from the assembled reference genome/transcriptome,
reconstructed contigs should be functionally annotated (i.e., assigned to known
protein function). Annotation can be performed by comparing contig sequences to
known sequences in protein databases at NCBI (http://www.ncbi.nlm.nih.gov/) using a
Basic Local Alignment Search Tool search (BLAST). Annotation success varies between
different species and can be low, particularly for non-model species, due to unknown
genes or large sequence divergence (Angeloni et al. 2012). Nevertheless, the

procedure provides important knowledge about genes in non-model species, resulting,
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for instance, in finding candidate genes for selection (Hohenlohe et al. 2010) or

molecular pathways involved in response to stress (e.g., Schoville et al. 2012).

1.3.2 RNA-seq

In the NGS era, gene expression studies are not anymore limited to small-scale
guantitative PCR analyses of candidate genes or defined design of microarrays (Wolf
2013). Instead, whole-transcriptome shotgun sequencing (RNA-seq) or high-
throughput sequencing-based expression profiling of RNA (cDNA), can characterize the
transcriptome, the sequences and abundances of transcripts from any sample. This
approach can be used to characterise a species’ transcriptome and develop markers
(Simon et al. 2009), as well as to profile differential gene expression between life
stages (e.g., Lenz et al. 2014, Pérez-Porro et al. 2013), populations (Ji et al. 2013;
Schoville et al. 2012), species (e.g., Gao et al. 2011; Wolf et al. 2010), or in response to
stress (Liu et al. 2014). RNA-seq technologies, bioinformatics, analytical and statistical
tools are still developing and require careful consideration. Nevertheless, RNA-seq
validation with qPCR and microarray has confirmed the suitability of the approach
(e.g., Kristiansson et al. 2009; Liu et al. 2014) and leads to encouragement of RNA-seq
studies in non-model organisms (e.g., De Wit et al. 2012; Singhal 2013; Wolf 2013).

The rationale behind RNA-seq is that the number of reads mapped to a transcript is
proportional to the transcript abundance in the original sample (t Hoen et al. 2008),
thus providing a digital measure of transcript abundance. For species without a
reference genome/transcriptome, reads can be mapped to the de novo assembled
transcriptome (Fig. 5), or to the reference genome/transcriptome of a closely related
species. Correct mapping of short reads can be a complicated problem due to
sequencing errors and polymorphism, but it is important for accurate gene expression
assessment (Wolf 2013). Although the number of mapped reads per transcript is used
as a digital measure of transcript abundance, such correlation will be confounded by
transcripts with different lengths (longer transcripts will have more reads than an
equally expressed shorter one), by different sequencing effort between samples (more

sequencing will result in more reads and higher transcript expression), and by a carry-
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over effect of gene expression from a few genes to others (very high expression of one
or few genes leads to reduction of available reads to others genes, resulting in
artificially lower digital expression) (Wolf 2013). Normalization should be applied to
correct for these issues, and currently different normalization techniques are
implemented in the bioinformatics packages for differential expression analysis (e.g.,
in DESeq2 (Love et al. 2014); edgeR (Robinson et al. 2010)). An alternative is to use
standardized spike-in RNA controls that are synthetic RNAs of known concentration,
defined length and GC content, and can help to assure comparability across samples,
protocols and platforms (Jiang et al. 2011).

Differential gene expression analysis, the statistical comparison of expression levels
between transcripts and samples across treatment groups, is based on a statistical
distribution (overdispersed Poisson or a negative binomial distribution) that captures
the essential information about RNA-seq read count data (Young et al. 2012). Most
software packages rely on such distributions and perform differential expression
analysis with different levels of sophistication (for review see Rapaport et al. 2013;
Soneson and Delorenzi 2013). Usually, differential expression analyses result in a set of
candidate genes that differ between treatments or populations. However, for
biologically meaningful interpretation, differentially expressed genes should be
investigated for their individual function or for over-representation in some metabolic
pathways using, for example, enrichment analysis or mapping the genes of interest
directly to candidate metabolic pathways (e.g. KEGG (Ogata et al. 1999), Gene
Ontology (GO) (Ashburner et al. 2000)).

1.3.3 Genetic marker development

Over the last three decades, genetic research has showed continuous development
and a high turnover of molecular markers, from partial DNA sequencing, restriction
fragment length polymorphism (RFLP), random amplified polymorphism detection
(RAPD) and amplified fragment length polymorphism (AFLP) to microsatellites,
insertion-deletion polymorphism (InDel) and single nucleotide polymorphism (SNP)

(Schlotterer 2004). Historically, development of markers was difficult and expensive
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for non-model organisms. However, the advent of NGS has revolutionized this by
allowing the genome-wide markers in any organism and for low costs (Ekblom and
Galindo 2011). Marker development is the most popular application of NGS. Thus,
large number of genome-wide markers can be generated rapidly and cost-effective
using whole genome shotgun sequencing, RNA-seq, or sequencing of reduced
representation libraries (Davey et al. 2011). Markers dispersed throughout genomes
enable more accurate estimations in population genetic studies, detection of
adaptation and selection, genome-wide association studies (GWAS), QTL and linkage
disequilibrium (LD) mapping projects, kinship and introgression assignments
(Jakobsson et al. 2008; Novembre et al. 2008; Santure et al. 2010; Slate et al. 2009).
Currently, these applications utilize microsatellites, InDels, and SNPs as markers of
choice.

The type of marker and its final purpose will influence the standard workflow for
NGS marker development (Fig. 5). For example, studies of selection and adaptive
differentiation in natural populations require markers being located in genic regions of
the genome. Thus, data mining from transcriptome sequencing will be the most
rational (Imelfort et al. 2009). Depending on the purpose of study, sequencing could be
performed for one or few individuals of same or different species (e.g., microsatellite
or InDel discovery), in other cases, such as SNP discovery, many individuals from
different populations of one species are required. Nevertheless, one sequencing
project may result in parallel development of several types of markers (e.g., Choi et al.
2013).

The success of marker mining from a new sequencing project or archived data
largely depends on advances in development of bioinformatics tools (Ruperao and
Edwards 2014). Thus, software packages for detection of microsatellites from NGS
data, such as msatcommander (Faircloth 2008) and MSatFinder (Thurston and Field
2005), allow for rapid screening of all contigs and typically result in discovery of several
thousand microsatellite loci in a single individual (e.g., Hunter and Hart 2013). SNPs
and InDels are usually detected simultaneously as single nucleotide variants (SNVs)

using many individuals sequenced at sufficient depth. The most difficult problem in
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detecting true SNPs is that sequencing and alignment errors will show a signal very
similar to low-frequency SNP alleles (Ekblom and Galindo 2011). To reduce false
positive SNPs, each step of the workflow (Fig. 5) should have a strict quality control,
and appropriate SNP calling software should be selected (Singhal 2013). Tools for SNP
calling are continuously evolving toward error-free SNP calling and genotyping, but
special care should be taken in case of extreme read depth and pooled samples
(Schlotterer et al. 2014).

Large-scale studies with genotyping of many individuals for the same loci, such as
population differentiation, parental assignment or selection, may benefit from
development of a marker panel. For example, thousands of SNPs that were developed
from large-scale DNA or RNA sequencing could be arranged on a SNP-chip and
routinely and quickly used for screening of hundreds of individuals (Davey et al. 2011).
One of the caveats with this approach is that if markers were discovered on the basis
of small population samples, genotyping of new populations will be biased towards
alleles present in the original survey, and will result in ascertainment bias to high
frequency variants (Helyar et al. 2011). Thus, ascertainment bias may significantly bias
downstream genetic analyses, particularly of any statistical measure that relies on
allele frequency (Albrechtsen et al. 2010). Ascertainment panel bias can be minimized
by careful design of the marker panel, using data from multiple individuals from
populations across the distributional range (Helyar et al. 2011). Alternatively, the bias
can be avoided by application of genotyping-by-sequencing that allows simultaneous

discovery of markers and genotyping (Davey et al. 2011).

1.3.4 Genotyping-by-sequencing

Although simultaneous discovery and genotyping of genome-wide variation has
become feasible for tens of individuals with small genome sizes (< 500 Mb), the
individual sequencing of hundreds of individuals with large genomes remains
prohibitively expensive (Narum et al. 2013). In addition, sequencing of the complete
genome for all individuals is often unnecessary and inflates the bioinformatics

demands (Narum et al. 2013). Therefore, for many studies including population
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genomics, it is more efficient to sequence a limited number of targeted loci, thus,
increasing their coverage and chance to detect true polymorphism (Ekblom and
Galindo 2011). A revolutionizing solution to address this situation was the
development of genotyping-by-sequencing (GBS) approaches that allow sequencing
with next-generation technology of a targeted fraction of the genome via various
reduced-representation protocols. These approaches result in discovery and
simultaneous genotyping of thousands of SNPs even in species with large genomes and
little or no previous genomic information.

GBS relies on various reduced-representation protocols to target a genome fraction
but four protocols are currently the most popular: RNA-seq, Ampli-seq, Cap-seq and
RAD-seq (reviewed by Davey et al. 2011). Each method has its strengths and
weaknesses compared to others (Table 2) (Godden et al. 2012; McCormack et al. 2013;
Schlotterer et al. 2014), and the best approach will depend on the research goal, the
number and quality of samples to be assayed, and the available funding.

RNA-seq (section 1.3.2) can be viewed not only as differential expression method
but also as method of genomic complexity reduction for GBS where only transcribed
(coding) fraction of genome will be sequenced (Fig. 6A). Since mRNA isolation and
sequencing does not require species-specific reagents, GBS with RNA-seq can be a
cost-effective option for species with large genome and lacking a reference. However,
in case of RNA-seq, uncertainty about population allele frequency estimation may arise
from unequal levels of allele-specific gene expression, leading to mis-calling a
heterozygous genotype as homologous (Schlotterer et al. 2014).

Amplicon sequencing (Ampli-seq, also known as parallel tagged sequencing) entails
sequencing of selected PCR tags (Fig. 6B). Multiple loci of an individual are amplified
and barcoded, pooled with tags of other individuals and high-throughput sequenced
(Meyer et al. 2008). Ampli-seq may be the most cost-effective method for small- to
medium-sized projects with few loci to amplify across individuals, such as phylogenetic
analysis (Chan et al. 2010), environmental sampling and metagenomics (Fierer et al.
2008). However, it is less effective for investigation of genome-wide variation in

hundreds of individuals, which is necessary for population structure studies.
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Reduction of genome representation by Cap-seq (capture sequencing, also known as
targeted resequencing or target enrichment), involves selective capture of defined
genomic regions prior to NGS (Mamanova et al. 2009). The Cap-seq protocol (Fig. 6C)
includes fragmentation of DNA and its hybridization with DNA or RNA probes (baits)
either on an array or in solution and following sequencing of targeted DNA using NGS
(reviewed by McCormack et al. 2013). Depending on the goals, target regions can be
coding or non-coding, but the sequences of the target regions must be known a priori
to design capture baits. Thus, Cap-seq methods can be applied in a medium-scale
genomics studies with semi-model species, and can benefit from already fragmented
DNA (e.g., formalin-fixed samples) and sample multiplexing prior to enrichment (Kenny
et al. 2011).

RAD-seq (restriction-site associated DNA sequencing) uses restriction enzymes
(endonucleases) to randomly sample the genome at locations adjacent to restriction
enzyme recognition sites. In the original RAD-seq protocol (Baird et al. 2008), total
DNA is digested with one restriction enzyme that cleaves DNA within its recognition
sequences and then adaptors with the sequence primers are ligated to the restriction
ends. Next, DNA is randomly fragmented, and only the fragments containing the
adaptors are sequenced, resulting in selected sequencing of the short flanking regions
of restriction sites (Fig. 6D). The number of restriction sites, and, therefore, flanking
regions depends on the choice of restriction enzyme and species genome, allowing for
flexibility to target different number of loci (Baird et al. 2008; McCormack et al. 2013).
Further development of the method resulted in several modifications and
improvements: 2bRAD (Wang et al. 2012), which uses a special enzyme cleaving DNA
upstream and downstream of the restriction site; ezRAD (Toonen et al. 2013), which is
similar to the original RAD protocol, but includes size-selection of fragments instead of
fragmentation; and ddRAD (Peterson et al. 2012), which relies on digestion with two
enzymes and consequent size-selection of the fragments. The latter is of particular
interest, since it allows for flexible control over the number of sequenced fragments
via selection of only those fragments that are flanked by both restriction enzymes and

of a specific size range (Fig. 6E) (Peterson et al. 2012). Such strict control over fragment
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number is beneficial for species with large genomes, where the number of recognition
sites for even rare-cutting restriction enzymes could be too large to allow for effective
coverage for NGS. Despite the great potential of RAD-seq protocols for GBS (Table 2)
(Narum et al. 2013), it harbours a major drawback — possible SNP polymorphism within
the recognition site — that may result in the loss of a fragment and consequent allele
dropout from the genetic analysis and biased estimation of population parameters
(Arnold et al. 2013; Gautier et al. 2013b).

Despite the advances in GBS and new opportunities for research, GBS, similar to any
emerging method, remains challenging. Nevertheless, application of GBS is leading to a
wide range of studies covering population genomics, association and QTL mapping,

and development of genomic and SNP resources.

Table 2. Comparison between reduced-representation protocols for genotyping-by-sequencing.

Method Method-specific bias Involved Advantage Weakness
costs
RNA-seq Allele-specific gene Moderate No species- RNA degradation
expression to high specific reagents

(Result: biased allele
frequency estimation)

Ampli-seq  Primer specificity Low to High on-target PCR for each individual

moderate efficiency at each locus
(Results: loss of loci,

chimeric sequence)

Cap-seq Sequence divergence High Even coverage Need in genomic
between probe and target across contigs; resources;
genome

Fragmented DNA  Custom design for each

(Result: loss of locus) could be used species

RAD-seq Polymorphisms in Low Flexibility in Unknown number of
recognition site (Result: null number of fragments if genome is
alleles) fragments unknown

Table is based on reviews by Davey et al. (2011), Harvey et al. (2013) and McCormack et al. (2013).
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Figure 6. Reduced-representation strategies for genotyping-by-sequencing: A, RNA-seq (whole-
transcriptome shotgun sequencing); B, Ampli-seq (amplicon sequencing); C, Cap-seq (capture
sequencing); D, RAD-seq (restriction-site associated DNA sequencing); E, ddRAD-seq (double digest RAD-
seq). For more details see text 1.3.4.

1.3.5 Pool-seq

Although sequencing costs are decreasing, many NGS applications require
multiplexing of many individuals in one sequencing run, and therefore, increasing costs
for preparation of multiple libraries. Alternatively, to reduce involved costs and time,
multiplexing could be performed before library preparation. Such sequencing of
pooled DNA/RNA samples from several individuals without unique barcodes that
belong to a homogeneous group (population or treatment), is called Pool-seq (Fig. 7)
(Futschik and Schlotterer 2010; Schlotterer et al. 2014).

The main limitation of Pool-seq is inability to assign reads from the pool to
individuals. Thus, unequal DNA/RNA pooling or uneven amplification of DNA during
library preparation can result in uncertain numbers of individuals or gene copies being
represented among the sequencing reads for any location in the genome (Anderson et
al. 2014; Ferretti et al. 2013; Gautier et al. 2013a). This uncertainty may influence

estimation of population parameters and depends on the number of individuals
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merged in the sequenced pool, the sequencing coverage of the pool, and the
possibility of unequal contributions of each individual DNA to the final set of sequence
reads (Gautier et al. 2013a). Several authors have developed a statistical foundation
for the analysis of pooled samples and have provided recommendations for pool size,
read depth, and bioinformatics tools to yield reliable estimation of population
parameters and allele frequencies (Futschik and Schlétterer 2010; Gautier et al. 2013a;
Schlotterer et al. 2014).

Although Pool-seq might not be optimal for studies that require genotype calling for
individuals or data on linkage disequilibrium (e.g., Konczal et al. 2014), the approach is
very powerful and cost- and resources-effective for transcriptome profiling (e.g.,
Kendziorski et al. 2005), marker development (e.g., Karam et al. 2014), and a broad
range of genome-wide analyses. These include, for instance, an investigation of
genome-wide patterns of differentiation and local adaptation in natural populations
(e.g., Campana et al. 2015; Fabian et al. 2012; Karlsen et al. 2013) and experimental
evolution (Tobler et al. 2014), discovery of candidate genes for tolerance (Turner et al.

2010), and detection of selective sweeps (Clément et al. 2013; Nolte et al. 2013).
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Figure 7. Individual-based and pooled-based sequencing.
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Altogether, advances in NGS and bioinformatics open up new possibilities to answer
guestions that were impossible to address only a few years ago and to move from
genetically model species toward studies of natural populations of ecologically
important species or whole communities (Ekblom and Galindo 2011; Narum et al.
2013). Such development of ecologically key species into models for genomics would
result in greatly enhanced ability to investigate patterns and processes at the
molecular level that are relevant to the ecosystem functioning, particularly under

climate change.

29



2. Objectives

The main aim of this dissertation is to address crucial knowledge gaps in Calanus
species in the North Atlantic at species, population and genome levels using next
generation sequencing tools, and thus, contribute to development of Calanus
finmarchicus as model species for ecological and evolutionary genomics.

To address this aim, the project highlighted three objectives:

1. To establish robust and easy Calanus species identification in the North Atlantic
(Papers | and II*)

2. To assess the transcriptomic response to thermal stress in closely related species,
Calanus finmarchicus and C. glacialis, with different thermal preferences (Paper lll).

3. To investigate population connectivity and genetic structure of Calanus

finmarchicus, a key zooplankton species in the North Atlantic (Paper V).

' Paper Il is an additional contribution to the three required papers for this dissertation, due to the
fact that the paper has already been used as a chapter for PhD thesis by one of the co-authors.
Nevertheless, work performed by the mentioned co-author and the author of this dissertation was
independent, not overlapping, and of sufficient contribution. In addition, the paper is tightly connected
to the dissertation and contributes to more complete presentation of the achieved results during PhD
period of the author.
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3. General discussion

3.1. Main findings

Since it is difficult and challenging to study an entire ecosystem with many elements

and interactions among them, researchers often focus on the keystone species

(Drinkwater et al. 2010). In this dissertation, | focus on the planktonic copepod Calanus

finmarchicus, a key species for North Atlantic/Arctic marine ecosystems (reviewed in

section 1), and address several knowledge gaps about the species (reviewed in section

1.2) using state-of-the-art next generation sequencing methods. The main findings of

the research are:

Calanus species identification: A panel of 12 nuclear insertion/deletion
(InDel) markers was developed based on both genomic and transcriptomic
sequences of C. finmarchicus and C. glacialis (Paper |). These new markers
allow easy, fast and robust identification of all Calanus species present in the
North Atlantic/Arctic Oceans. Their discriminatory power was much stronger
than the microsatellites, allowing accurate detection of hybrids (Paper | and
II). The markers were also used to validate a new morphological criterion —

redness — to identify live females of C. finmarchicus and C. glacialis (Paper ).

Transcriptomic responses to thermal stress in C. finmarchicus and C.
glacialis: Transcriptome-wide responses to realistic thermal stresses (up to
15 °C) for shorter (4 hours) and longer (6 days) exposures were investigated
using RNA-seq and gPCR. Responses differed significantly between the two
species, with marked up-regulation of genes in the boreal species (C.
finmarchicus), in contrast to low-magnitude changes in gene expression in
the Arctic species (C. glacialis) (Paper Ill). Together with other evidence,
these results indicate that the Arctic species is likely to be more vulnerable to

climate change in the Arctic ecosystem.
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* Population genetic structure of C. finmarchicus: A novel approach for large-
scale genome-wide genotyping of copepods, ddRAD-Pool-seq, was applied
and evaluated for investigation of population genetic structure in C.
finmarchicus. This approach was challenging due to the large genome of C.
finmarchicus, nonetheless this method outperformed traditional
microsatellite markers in providing evidence of both within- and between-

basin differentiation in the North Atlantic (Paper IV).

* All together, the work in this dissertation has generated substantial genomic
resources for several ecologically important species of Calanus (Paper |, lll,
IV), particularly unique genome sequences for C. finmarchicus and C.

glacialis.

This dissertation thus contributes to filling several knowledge gaps, including species
identification of Calanus in the North Atlantic Ocean, and transcriptomic responses to
thermal stress. However some questions were only partially answered, thus,
population genetic structure of C. finmarchicus still requires more investigation on
finer spatial and temporal scales. In addition, new questions have been raised,
including the existence and frequency of hybrids; basis of the weak transcriptomic
stress response in the Arctic C. glacialis and the consequences for the species under
climate change. Overall, all these findings contribute to a new view of C. finmarchicus
as a model species for ecological and evolutionary genetics, thus fulfilling overall
primary aim of the dissertation. In addition, the research performed within the
dissertation may serve as a guide for similar studies in other copepod taxa, and
contribute to studies on effects of climate change on species of Calanus and their

corresponding ecosystems.
3.2. Calanus finmarchicus as a model for ecological genetics

Ecosystem properties and function results from interactions between species and

their critical ecological traits. Thus, phenotypic variation in such traits may lead to a
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cascade of effects, from change within a single species, to alterations of ecological
interactions and community composition, and consequently to ecosystem changes
(Miner et al. 2012). Since trait expression is the combination of environment and
individual genotype, identification and investigation of key genes and pathways
underlying ecologically important traits is an important task in ecological genetics,
particularly in light of global climate change (Reusch and Wood 2007). Earlier,
connection between phenotypes and underlying genotypes was possible only for
model species, which are often limited to artificial laboratory habitats and represent a
restricted range of life histories, metabolic diversity and habitat types. Thus, they
typically lack predictive power when applied to real ecosystems (e.g., Reusch and
Wood 2007). Fortunately, recent technological and analytical advances in NGS are
helping bridge the gap between extensive ecological knowledge about key species and
the genetic base of variation in their phenotypic traits (e.g., Ekblom and Galindo 2011).
Development in this direction will ultimately lead to an integrative view of genetics,
physiology, performance, and fitness, as recommended to marine zooplanktologists by
Arnold (1983) more than 30 years ago. Therefore, in this dissertation we initiate the
development of Calanus finmarchicus, an extensively studied, ecologically important
copepod, as an integrative model for ecological and evolutionary studies.

Most of the ecologically important traits of Calanus, such as fitness, survival,
reproduction, and distribution, are largely dependent on sea temperature (Kjellerup et
al. 2012; Helaouét and Beaugrand 2007; Hirche 1987, 1997). While the real
temperature optimum, where abundance peaks, is between 4°C and 7°C (Paper llI;
Sundby 2000; Wilson et al. 2015), the range -1.8 °C — 15 °C is seen as the realised niche
(Helaouét et al. 2011), where growth, development and egg production increase with
temperature (Campbell et al. 2001; Kjellerup et al. 2012; Preziosi and Runge 2014).
However, at higher temperatures (up to 23 °C), fitness and reproduction drop, and
survival is threatened (Hirche 1987). Interestingly, transcriptome-wide responses of C.
finmarchicus to temperature range not only matches the optimum temperature of the
species (Paper lll), but also showed that minor deviations from optimal temperature

for a long time can initiate changes in gene expression, before any physiological
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changes would be detected (Paper Ill). The sensitivity of transcriptomic analysis can be
utilized to investigate the influence of other environmental factors, including toxicants,
natural (e.g., toxic diatom bloom; Lauritano et al. 2011)) and industrial pollution (e.g.,
oil and diesels; Hjorth and Nielsen 2011; Hansen et al. 2013a).

Precise identification of the closely related species, C. finmarchicus and C. glacialis,
based on new morphological and molecular methods (Paper | and Il), allowed species-
level comparative study of transcriptomic responses. The observed contrasting
responses between the two species (Paper Ill) is likely to influence the fundamental
niches of the species and their species-specific adaptations, and raise new questions
regarding molecular pathways or regulatory mechanisms that may be involved in
thermal stress responses of the Arctic C. glacialis.

Phenotypic plasticity together with genetic adaptation and underlying genetic
variation influence the ability of individuals and populations to cope with changing and
stressful environmental conditions, and thereby, determine fitness (Bijlsma and
Loeschcke 2012). Investigation of transcriptome-wide responses to stress (Paper lll)
could be seen as the foundation for future research aimed at detection of adaptation
and plasticity, and comparing expression of target genes responding to the same
stressors in different populations over the distributional range of a species. A first such
attempt was to compare transcriptomic thermal stress responses between Arctic
(Disko Bay) (Paper Ill) and mid-Atlantic populations of C. finmarchicus (Smolina et al.
unpublished), which showed that more genes were responding to stress in the Arctic
population. Similar population specificity in the expression of stress-associated genes
between southern and northern populations was observed in copepod Tigriopus
californicus (Schoville et al. 2012), killifish Fundulus heteroclitus (Whitehead and
Crawford 2006), and sea grass Zostera marina (Bergmann et al. 2010; Franssen et al.
2011). As in many other cases (e.g., Bergmann et al. 2010; Schoville et al. 2012), at this
stage is its difficult to separate local adaptation and phenotypic plasticity in C.
finmarchicus, since evidences exist that favour either mechanism. For instance,
evidence of genetic differentiation between populations of C. finmarchicus has been

detected both within and between basins of the North Atlantic (Paper Ill; Unal and
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Bucklin 2010), which could be a result of selection or lead to locally adapted
populations. In addition, locally adapted populations have been documented for
Tigriopus californicus (Schoville et al. 2012; Willet 2010), Acartia hudsonica (Colin and
Dam 2002), and Calanus helgolandicus (Lauritano et al. 2012). Nevertheless, evidence
from a 50-year time series in the North Sea suggests lack of thermal adaptation in C.
finmarchicus, leading to dramatic distributional changes (Helaouét and Beaugrand
2007; Hinder et al. 2014).

On the other hand, phenological plasticity may play a substantial role in thermal
stress responses. For instance, increase in acclimation temperature could expand the
thermal tolerance of several copepods, including the congeneric Calanus sinicus (Jiang
et al. 2008). This could explain the weaker gene expression response in the mid-
Atlantic population of C. finmarchicus with in situ temperature of 10 °C compared to
the Arctic population with in situ temperature of 0 °C (Paper Ill; Smolina et al.
unpublished). Moreover, Halcrow (1963) showed that C. finmarchicus do not acclimate
to temperatures outside their seasonal temperature range, but can compensate for
temperature changes close to the in situ water temperatures at the collection location.
However more detailed studies, including experimental ones, similar to those
performed for Daphnia magna, a freshwater crustacean with a wide temperature
range of habitat (Yampolsky et al. 2014), are needed to investigate contributions of
both genetic adaptation and phenotypic plasticity to thermal tolerance of C.
finmarchicus. In addition, both phenotypic plasticity and genetic adaptation will be
important in adaptive responses to ongoing climate change (e.g., Munday et al. 2013),
and the potential for both must be estimated to understand evolutionary potential of
C. finmarchicus and other Calanus species.

Temperature is also suggested to control duration of another key life history trait of
copepods in the genus Calanus: diapause (Pierson et al. 2013). And while both, control
of the onset of diapause and its duration, is an active area of research, particularly on
molecular level (Aruda et al. 2011; Tarrant et al. 2008, 2014), investigation of different
populations and under different temperature conditions is missing. Linking diapause to

genetic variation and adaptation could clarify whether diapause is altered by natural
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selection, as has been shown for some zooplankton (Avery 2005; Marcus 1984), and
how it will change with changes in climate.

The effects of temperature, as a single factor, upon organisms could be modified by
simultaneous action of several environmental factors (e.g., salinity, acidification,
hypoxia). The interaction of factors could have neutral, synergistic or antagonistic
characteristics (e.g., Duman et al. 2014; Madeira et al. 2014; Torstensson et al. 2013).
Thus, for better understanding of population persistence, more studies are needed to
investigate influences of natural environmental variability (e.g., Unal et al. 2013) and
mixtures of environmental stressors (e.g., Hansen et al. 2007). Studying these
environmental interactions will present logistical and conceptual challenges to the
study of evolutionary adaptation of zooplankton to global change (Dam 2013). In
addition, the impact of a factors may vary among developmental stages, as was
detected in C. finmarchicus for temperature (Kvile et al. 2014), carbon dioxide
concentration (Cripps et al. 2014), and the breadth of the ecological niche
(Reygondeau and Beaugrand 2010). Thus, investigated transcriptomic responses to
thermal stress (Paper Ill) is female-biased and additional stage-specific investigations
are needed to understand population dynamics and persistence.

Knowledge about the whole set of optimum environmental conditions for different
Calanus species could be obtained by investigations of their distributional ranges and
vertical migration. However, traditional morphological methods of Calanus
identification can be biased (e.g., Gabrielsen et al. 2012; Parent et al. 2011, 2012), due
to co-occurrence of Calanus species (Conover 1988; Kwasniewski et al. 2003; Wilson et
al. 2015) and their similar morphology and overlapping sizes (Frost 1974; Kwasniewski
et al. 2003; Wilson et al. 2015). A new InDel panel of genetic markers could solve the
problem in a simple, reliable, and high-throughput way for many individuals of any
development stage (Paper 1). The approach could also provide an alternative to the
usual pooling of early developmental stages into one Calanus spp. category, due to the
impossibility of correct species identification (eg., Blachowiak-Samolyk et al. 2006;
Hirche and Kwasniewski 1997), and thus, yield important ecological information about

larval and juvenile stages. In addition, many monitoring cruises collect zooplankton
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samples in formalin, which makes samples unsuitable for some types of genetic
identification methods. Since DNA extraction from formalin samples results in short
DNA fragments, amplification of long mitochondrial (Bucklin et al. 1995b; Hill et al.
2001; Lindeque et al. 1999) or microsatellite (Parent et al. 2012; Provan et al. 2007)
amplicons will be impeded. On the other hand, the InDel markers have rather short
amplicon sizes and have already yielded positive results with DNA from formalin
samples (Smolina et al. unpublished), while these markers lack drawbacks of other
existing markers (reviewed in 1.2.1). The new genetic markers open a door for
investigation of samples from current and historical cruises. Overall, the association of
particular species with specific environmental conditions will allow further
investigation of the effects of environmental change on zooplankton species with

different physiological and biological properties (Lindeque et al. 1999).

3.3. Calanus as a model for evolutionary genetics

Species of the copepod genus Calanus show potential as model species for studies
of evolutionary genetics of marine copepods, including speciation, hybridization and
interspecific genetic differentiation. Speciation in Calanus has likely occurred with a
recent radiation (possibly during the late Pleistocene) that kept morphology similar
(Fleminger and Hulsemann 1977). Moreover, 14 Calanus species (Bucklin et al. 1995b)
appear to be adapted to different marine environments with large differences in
temperature preference — occupying waters from equator to both poles (Conover
1988; Jaschnov 1970; Kosobokova and Hirche 2001; Pakhomov and McQuaid 1996;
Uye 2000). Therefore, adaptation to environmental habitat, particularly to
temperature, may be integral to the mechanisms of speciation (Keller and Seehausen
2012), which are likely to be associated with palaeoceanographic events and resulted
in geographic isolation, genetic divergence, and reproductive isolation (Frost 1974;
Fleminger and Hulsemann 1977). Calanus shows large variation in genome size (from =
6.34 to = 12.19 Gb) (McLaren et al. 1988), considerable genetic sequence divergence in
the mitochondrial region of 16S rRNA (Bucklin et al. 1995a) and across genomes (e.g.,

Paper 1), and species-specific metabolites (Hansen et al. 2013b). Investigation of the
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transcriptomes of two closely related species, C. finmarchicus and C. glacialis revealed
that they are relatively conserved between these species (Paper |, lll), while regulation
of gene expression in response to stress can be very different (Paper Ill; Hansen et al.
2011, 2013). Since altered gene regulation is often involved into rapid evolution
(Doebley and Lukens 1998; Ferea et al. 1999; Van Laere et al. 2003), it can be
hypothesized that this may play a role in evolution between closely related Calanus
species. It would be interesting to test this hypothesis by analysing transcriptome-wide
responses to stress in Calanus species. Sister species pairs that are adapted to different
environments could be of particular interest, although pairs living in similar conditions,
but in isolation, e.g., in polar (C. hyperboreus and C. propinquus) and temperate
regions (C. finmarchicus and C. sinicus or C. pacificus), may serve as interesting
examples of possible parallel adaptation. Some clues about parallel evolution in
Calanus could also be obtained by investigating the patterns of mutation rate variation
and selection intensity (dy / ds ratio) at orthologous genes across genomes of Calanus
species, as was performed for 10 avian species (Kunstner et al. 2010).

Lack of complete reproductive isolation between species could lead to hybridization,
which is common in the marine environment (Gardner 1997; Roques et al. 2001;
Uthicke et al. 2005), but less so in marine planktonic taxa. Nevertheless, hybrids
between C. finmarchicus and C. glacialis may serve as an example (Parent et al. 2012).
Hybrids of the two Calanus species were not significantly different from those of their
maternal ancestor for prosome length, red pigmentation level, and the egg production
rate (Parent et al. 2015). Although the hybrids appear to be fertile and were abundant
at some stations in Canadian Arctic (Parent et al. 2012), both parental species still
dominated the hybrid zone (Parent et al. 2012, 2015). Thus, the fitness of hybrids is
probably lower than that of the parental species over their entire life cycle, and
further, the effect of hybridization on species population dynamics is rather minor
(Parent et al. 2015). Nevertheless, discrimination of pure species and hybrids is
essential for ecological or evolutionary research. Surprisingly, among individuals used
for this dissertation and several side projects (in total over 1300 individuals of C.

finmarchicus and C. glacialis) no hybrids were detected using nuclear InDel markers
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(Paper 1), while a few could be classified as hybrids using microsatellites loci (according
to Paper Il). One possible explanation could be that hybrids are artefacts of the cross-
species application of C. finmarchicus microsatellites (e.g., Curtu et al. 2004). This is
supported by the fact that most of the hybrid traits were similar to their maternal
species, including metabolism and the egg membrane (Parent et al. 2015). It is also
possible that our samples contained only pure species, however sampling for this
dissertation was performed across the distributional range of C. finmarchicus,
including areas of possible hybridization with C. glacialis, where the time difference
between the reproductive periods of the species is short (e.g., Disko Bay, western
Greenland; Madsen et al. 2001). Nevertheless, experimental crosses and investigation
of larger sub-sections of the genome using NGS technologies will allow address the
guestion via genome-wide hybridization and introgression studies in Calanus species,
despite limited genome sequence data (e.g., Twyford and Ennos 2012). In addition to
possible hybridization between C. finmarchicus and C. glacialis, possible hybridization
between C. glacialis and C. marshallae should be investigated, since these sister
species have very similar sequences for some marker genes (Bucklin et al. 1995a,b;
Paper 1) and have more similar genome size (McLaren et al. 1988).

At the within-species level, most of studies suggest genetic differentiation between
populations of C. finmarchicus both within and between ocean basins (Paper IV;
reviewed in section 1.2.3.). These findings are supported by significant variation in life
history traits, such as numbers of generations per year, timing of reproduction and
diapause, and seasonal patterns of abundance (Heath et al. 2000, 2004; Hirche 1996;
Melle et al. 2014a,b; Planque et al 1997; Tande 1991). The evolutionary mechanisms
driving such differentiation remain largely unexplored, but two non-exclusive
explanations are emerging: (1) entrainment into currents/gyres or (2) different
selection pressures acting in the different regions. In the marine environment, ocean
currents, while providing a means for connectivity, also produce eddies, fronts and
gyres that act as retention mechanisms for pelagic eggs, larvae and zooplankton
(Banks et al. 2007; Knutsen et al. 2007; Mackas et al. 2005). In addition, modelling

studies have shown that ocean current velocity and seasonal changes in current
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structure can affect dispersal in meroplankton between sites (White et al. 2010), and
two adjacent sites may rarely exchange migrants if they are located on different sides
of an oceanographic front (Gilg and Hilbish 2003). Thus, ocean currents may act as
efficient barriers to gene flow, similar to continental landmasses (e.g., Peijnenburg et
al. 2004; Goetze 2005, 2011; Papadopoulos et al. 2005; Yebra et al. 2011). Several
copepod species display genetically distinct populations between gyres within ocean
basins, indicating that physical retention may be an important process promoting
genetic structure (Andrews et al. 2014; Goetze 2005, 2011; Norton and Goetze 2013).
In the North Atlantic, modelling studies have shown a high degree of connectivity
between the gyres over a time-scale of six years, resulting in transport of C.
finmarchicus populations between the two main gyre systems (i.e., Labrador/Irminger
Sea and Norwegian Sea; Speirs et al. 2006). However, this model assumed that
transport is purely passive (Speirs et al. 2006), thus overlooking active behaviours such
as diel and ontogenetic vertical migration of C. finmarchicus (Dale and Kaartvedt 2000;
Unstad and Tande 1991) that may result in retention of copepods within a gyre
system.

On the other hand, even if connectivity is sufficient to transport C. finmarchicus
throughout the whole North Atlantic, different selection pressures could lead to
isolation by adaptation (Nosil et al. 2009). For instance, the western, central and
eastern North Atlantic are characterised by different seasonally and geographically
varying ranges of temperature, salinity and light conditions, which provide a variety of
habitats for its biota (Melle et al. 2014b). Thus, habitat-specific selection may be a
mechanism driving differentiation, particularly as selection is proposed to be
widespread in marine zooplankton and likely to be a dominant driver of evolution
(Peijnenburg and Goetze 2013). For example, adaptation to a specific salinity and/or
temperature regime has been suggested to be a driver of genetic diversification in
copepods (Chen and Hare 2008, 2011; Yebra et al. 2011), shrimps (Jorde et al. 2015),
and chaetognaths (Peijnenburg et al. 2004). Although our tests for selection using >
300 SNPs were negative among six populations of C. finmarchicus (Paper IV), there is

evidence suggesting that selection may drive differentiation of locally adapted
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northern and southern populations (section 3.2.). Moreover, if selection is an
important driver of genetic differentiation, its strength and the effects will differ
between unlinked genetic markers, leading to large differences in the degree of
population structure detected by different loci (Peijnenburg and Goetze 2013;
Piganeau et al. 2011). This could account for the discrepancy between differentiation
based on microsatellite and SNP markers in C. finmarchicus (Paper IV; Provan et al.
2008; Unal and Bucklin 2010). To some extent, similar cases of discrepancy in the
observed strength of differentiation have been reported for the planktonic
chaetognath Sagitta setosa (Peijnenburg et al. 2006), copepod Haloptilus longicornis
(Andrews et al. 2014; Norton and Goetze 2013), and the Patagonian toothfish
Dissostichus eleginoides (Shaw et al. 2004), although based on comparisons between
nuclear microsatellite markers and mitochondrial DNA. Other evidence that suggests
selection could underlay large differences between census and effective population
sizes (Peijnenburg and Goetze 2013). The effective population size in C. finmarchicus
was suggested to be 10’ to 10 times smaller than the census size (Bucklin and Wiebe
1998). Application of genome-wide SNP-based NGS approaches (genome scan) could
help identify genomic regions that are likely to be under selective pressure, and
therefore address questions of adaptive differentiation between populations (Lexer et
al. 2013). This may help to recognise the action of environmental agent(s), as well as
predict impacts of climate change (Stillman and Armstrong 2015) using, for instance,

time-series samples from Continuous Plankton Recorder surveys.

3.4. Implications for management

Calanus finmarchicus is considered to be a potentially huge biological resource, with
annual biomass production of about 300 million tonnes in the Nordic Seas (Skjoldal
2004), but currently there is no commercial harvest of this resource. The wax ester-
rich oil of C. finmarchicus can be used as an effective supplement to fish diets (e.g.,
Olsen et al. 2004), leading to better growth and nutrient utilization efficiency
(Colombo-Hixson et al. 2013). In the near future, the oil extracted from C. finmarchicus

may also be utilized in the health care industry as health- and nutrition products.
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Indeed, preclinical tests using rodent models have demonstrated that C. finmarchicus
oil has the ability to reduce body weight, inflammation, atherosclerotic plaque
formation and visceral fat deposition (Hoper et al. 2011; Pedersen et al. 2014). In
addition, the effects of Calanus oil were shown to be not only preventive, but also
therapeutic (Hoper et al. 2013). The prospect of large-scale commercial harvesting is
thus growing (Tacon and Metian 2015) and caution should be applied, since C.
finmarchicus is crucial for the ecosystems, including important fish stocks (Beaugrand
and Reid 2003; Beaugrand et al. 2003; Gislason and Astthorsson 2002; Sgreide et al.
2008;). Thus, if C. finmarchicus in fact comprises several semi-isolated populations
(Paper IV; Unal and Bucklin 2010), fisheries management regulations should be applied
or commercial culturing should be considered. Moreover, in light of climate change, it
might be necessary to consider climate-driving shifts of C. finmarchicus distribution
northward (Beaugrand et al. 2002; Chust et al. 2013), and therefore reduce pressure
on more southerly populations, which are likely to be more vulnerable (Hinder et al.

2014).
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4. Conclusion

With ecosystems facing more and more anthropogenic and climate-related
challenges, in depth understanding of keystone species is crucial to predict ecosystem
responses. The present research fills several knowledge gaps and contributes to a
better understanding of the ecology and genetics of Calanus species and their
potential to cope with climate change. Calanus species identification, thermal stress
response, and population genetic structure, have been long-standing subjects of
scientific research and in the present dissertation | have addressed these questions
using state-of-the-art next generation sequencing technologies. The main outcomes
are: the development of robust genetic markers for Calanus species identification,
identification and comparison of transcriptome—wide responses to thermal stress in
two closely related C. finmarchicus and C. glacialis, and detection of genetically
differentiated populations of C. finmarchicus. Altogether, these findings lead to better
understanding of ecological and genetic features of Calanus species, and consequently,
of its past (e.g., speciation and evolution), present (e.g., adaptation and hybridization),

and future (e.g., response to climate change).
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5. Future perspectives — need for a genome

The research presented in this dissertation uses advances of NGS to obtain and
compare homologous genomic and transcriptomic sequences (Paper 1), to observe
dynamic changes of expression levels of transcripts (Paper lll), and to detect SNP
variation at many genomic loci (Paper IV). These applications were possible due to
partial de novo assembly of obtained sequencing reads. However, the data analysis
was challenging and resulted in reduced amounts of information from the sequencing,
due to the unavailability of at least draft of Calanus genome. Indeed, a reference
genome for RNA-seq would allow detection of more transcripts, better discrimination
between expression of paralogous genes, and result in clearer answers regarding
genomic changes that are occurring during population responses to stressful
environment (Stillman and Armstrong 2015). For population genetic structure, a
reference genome would be a great advantage as well. For instance, a reference
genome can result in precise prediction of ddRAD fragments (e.g., Lepais and Weir
2014) leading to a greater number of loci that could be explored for variation, a
primary drawback for Paper IV. Moreover, knowledge of the genome could be used to
target specific genomic regions via Cap-seq (section 1.3.4), which has also potential to
succeed with historical samples collected in formalin. On the other hand, comparing
genomic variation between populations of C. finmarchicus exhibiting different
numbers of generations per year, timing of reproduction and diapause over its
geographic distribution (Hirche 1996a,b; Melle et al. 2014; Planque et al 1997; Tande
1991) may also result in detection of candidate genes that regulate life history traits
(Fabian et al. 2012).

A Calanus reference genome could greatly assist in inferring gene homology within a
species (paralogy: gene duplication leading to multiple gene copies) and across species
(orthology: genes descended from the same ancestral sequence), which is difficult
when dealing with de novo assemblies of genome or transcriptome. Both C
finmarchicus and C. glacialis appear to have diversified gene families (Paper lll; Lenz et
al. 2014). Among them, families of different hsp genes seem to be one of the most

complex and important for survival under stress conditions (Hofmann and Todgham
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2010). For example, an increase in copy numbers of hsp genes and differential
regulation may play an important role in thermoresistance of Diptera species (Garbuz
et al. 2011). Overall, gene duplication and differential expression of paralogs can be
important for flexible phenotypic responses to ecological challenges (Colbourne et al.
2011). Therefore, identification of the whole hsp repertoire in Calanus species and
assessment of its regulation under native and stressful conditions will be important for
understanding intra- and interspecies tolerance and adaptation.

The contrasting thermal stress responses between C. finmarchicus and C. glacialis
shown by differences in gene expression (Paper Ill) lead to questions about putative
mechanisms of stress response regulation. Epigenetics, for example, can also influence
variation in the stress response (Boyko and Kovalchuk 2008; Crews et al. 2012).
Epigenetic variation reflects changes at the molecular level, which do not change
underlying DNA sequence, but regulate gene expression via DNA methylation, histone
modifications, chromatin remodeling, and expression of small non-coding RNAs such
as microRNA (miRNA) (Bossdorf et al. 2008). Thus, epigenetic mechanisms can affect
ecologically important traits even in the absence of genetic variation, and play a crucial
role for an organism’s immediate and evolutionary response to its environment
(Kilvitis et al. 2014). For instance, genetically identical lines of Arabidopsis thaliana that
differed in DNA methylation showed heritable phenotypic variation and plasticity in
ecologically relevant traits (Zhang et al. 2013). Such epigenetic variation could be
considered as non-genetic “plasticity loci” (Schlichting and Pigliucci 1993), and play a
particularly important role in rapid adaptation to changing environments. Moreover,
epigenetic marks can be passed on to the subsequent generations, and may be able to
produce genetic change (e.g., through the regulation of transposable elements or an
effect on recombination), thus, contributing to long-term evolution via adaptation and
ecological speciation (reviewed in Smith and Ritchie 2013). Long restricted to model
species, investigation of epigenetic mechanisms is starting on ecologically important
species. This endeavour has led to a new field, ecological epigenetics, which attempts
to understand the role and significance of epigenetic processes in the context of

ecology and evolution (Bossdorf et al. 2008; Richards et al. 2012; Smith and Ritchie
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2013). Calanus could be an interesting system for investigation of ecological
epigenetics, due to its broad environmental habitats, variation in life history traits and
rapid, possibly ecological, speciation; however, a reference genome is an imperative

requirement for such studies.
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