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Abstract 25 

Objective. Compensatory hypertrophy has been classically described in patients with 26 

monorchidism. However, it remains unclear whether there is a functional compensatory activity of 27 

the different cell populations. Our aim was to assess the functional capacity of the solitary testis in 28 

monorchid males from infancy through puberty in order to determine whether the remaining gonad 29 

is capable of compensating the functional activity of Sertoli and Leydig cells of the absent gonad. 30 

Design. In a retrospective, cross-sectional, analytical study performed at a tertiary paediatric public 31 

hospital, we included 89 boys with monorchidism and 358 healthy controls, aged 6 moths to 18 32 

years. Testicular volume and circulating levels of reproductive hormones were compared between 33 

patients with monorchidism and normal boys. Serum AMH and FSH were used as biomarkers of 34 

the functional mass of prepubertal Sertoli cells, whereas serum testosterone and LH were used as 35 

biomarkers of Leydig cells. 36 

Results. In the vast majority of the cases, the volume of the testis of monorchid boys was smaller 37 

than the sum of the volume of both testes of healthy controls. Serum AMH was lower and FSH was 38 

higher in patients with monorchidism than in controls aged <3 years and >13 years. Serum 39 

testosterone and LH did not differ significantly between patients and controls. 40 

Conclusions. In boys and adolescents with monorchidism, there is a dissociated capacity of the 41 

remaining testis to compensate for the absence of the other gonad: while Leydig cell function is 42 

largely compensated, Sertoli cell proliferation and function is lower than in controls. 43 

 44 

45 
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Introduction 46 

Compensatory hypertrophy of a paired organ is a frequent observation when one of the organs is 47 

hypotrophic or absent. Compensatory testicular hypertrophy was first described by Laron and Zilka 48 

in patients with unilateral cryptorchidism 1, and is typically described in males with monorchidism. 49 

Size enlargement of the scrotal gonad has even been proposed to be predictive of the absence of the 50 

contralateral testis 2-4. Yet, hypertrophy of the persistent organ does not guarantee full compensation 51 

of paired organ function. Monorchidism can be congenital 5, or acquired as a consequence of 52 

different insults such as infection, testicular torsion and orchiectomy due to testicular tumours or 53 

testicular atrophy after orchiopexy. Its prevalence rate is 0.02% in newborn boys 6 and 1.7% to 4% 54 

in cryptorchid boys 6, 7. The mechanism by which the compensatory hypertrophy occurs is not 55 

known. Some studies suggest that compensatory hypertrophy depends on factors such as age of 56 

onset of anorchidism and functional state of the present testes 2.  57 

The male gonad has two distinctive functional compartments, which evolve differently through 58 

postnatal development: the seminiferous tubules, containing Sertoli and germ cells, and the 59 

interstitial tissue, where lie the Leydig cells 8. Sertoli cells represent the major proportion of 60 

testicular volume before puberty 9. During the active period of the pituitary-gonadal axis taking 61 

place in the first 3-6 months of postnatal life 10-12, FSH provokes Sertoli cell proliferation and boosts 62 

the secretion of anti-Müllerian hormone (AMH) 13 and of inhibin B 14, whereas LH induces Leydig 63 

cell androgen production. Afterwards, pituitary gonadotropin levels decline and persist low during 64 

childhood. Leydig cells dedifferentiate and androgen production drops to undetectable amounts, and 65 

germ cell activity is arrested at the pre-meiotic stage. Although there is a waning in Sertoli cell 66 

proliferation, they remain functionally active, as reflected by their production of AMH 9 and inhibin 67 

B 15. At the age of pubertal onset, the increase in gonadotropins induce testosterone production, 68 

which results in the maturation of the seminiferous tubule populations: Sertoli cell AMH secretion 69 

declines at the time germ cells undergo the full spermatogenic process leading to the overt increase 70 

in testicular volume and to sperm production. 71 

The reproductive aptitude of monorchid males has been reported in adults 16, 17, but the functional 72 

capacity of the solitary testis has received little attention in the paediatric population, with its 73 

assessment having relied mainly on the measurement of indirect markers of testicular function, like 74 

serum gonadotropins 7, 18, which lacks adequate sensitivity 19. Therefore, it remains unclear whether 75 

scrotal testis hypertrophy can functionally compensate the activity of the different cell populations 76 

of the missing gonad [6;7]. The aim of this study was to assess the functional capacity of the 77 

solitary testis in monorchid males from infancy through puberty in order to determine whether the 78 
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remaining gonad is capable of compensating the functional activity of Sertoli and Leydig cells of 79 

the absent gonad. Secondarily, we analysed whether AMH levels are associated with the degree of 80 

compensatory hypertrophy in prepubertal boys with monorchidism. We studied a large cohort of 89 81 

patients with monorchidism and compared them with 358 healthy controls in terms of circulating 82 

levels of reproductive hormones. Serum AMH and testosterone were used as direct biomarkers of 83 

Sertoli 15 and Leydig cell function, respectively, whereas FSH and LH were used as indirect 84 

biomarkers. Hitherto, there is no effective method to certify the existence or the absence of a non-85 

palpable gonads. Both ultrasound and MRI have low sensitivity in the identification of abdominal 86 

testes 20-22. Laparoscopy, the most commonly used procedure, may also have false negative results 87 
23. In the quest for a non-invasive test that could circumvent surgery, we also analysed whether 88 

AMH levels could be useful to certify the absence of the non-palpable testis. 89 

 90 

91 
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Subjects and methods 92 

Study design 93 

This study followed a retrospective, cross-sectional, analytical design, and was performed at the 94 

Division of Endocrinology of the Ricardo Gutiérrez Children’s Hospital, a tertiary paediatric public 95 

hospital in Buenos Aires, Argentina.  96 

A careful review of history charts was performed by the same paediatric endocrinologist. Surgical 97 

and clinical characteristics, including testicular volume measured by comparison with Prader’s 98 

orchidometer 24, pubic hair and genital development according to Marshall and Tanner 25, and 99 

hormonal values were extracted from the history chart. 100 

 101 

Patients 102 

Patients with monorchidism. All clinical charts of subjects evaluated at the Division of 103 

Endocrinology of the Ricardo Gutiérrez Children’s Hospital between 1997 and 2012, and encoded 104 

in our database with the diagnosis of monorchidism, were reviewed. Monorchidism was defined by 105 

the absence of one testis, as verified by surgical exploration. Patients whose history chart was 106 

incomplete, and those with disorders of sex development, hypogonadotropic hypogonadism or 107 

genetic syndromes that can affect testicular function were excluded. 108 

Healthy controls. Between January 2007 and December 2009, 358 apparently normal males with 109 

no history of endocrine or urologic disorders, aged 2 days to 18 years, attending the Central 110 

Laboratory of the Ricardo Gutiérrez Children’s Hospital were recruited to establish reference values 111 

for serum LH, FSH, testosterone and AMH, as previously described 26. 112 

 113 

Outcome measures and definitions 114 

Circulating levels of reproductive hormones were compared between patients with monorchidism 115 

and normal boys. Serum AMH and FSH were respectively used as direct and indirect biomarkers of 116 

the functional mass of prepubertal Sertoli cells 15, whereas serum testosterone and LH were 117 

respectively used as direct and indirect biomarkers of Leydig cells. 118 

In prepubertal patients, to determine whether AMH levels reflect the degree of compensatory 119 

hypertrophy in boys with monorchidism, we evaluated the correlation between serum AMH and 120 

testicular volume. This analysis was limited to boys <9 years-old, because after the onset of puberty 121 

testicular volume is inversely correlated with the levels of AMH due to the inhibitory effect of 122 
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androgens on Sertoli cell 13, 27. Only the first AMH measurement available for each patient was 123 

included in the cross-sectional analysis. To evaluate if AMH levels are useful to certify the absence 124 

of the non-palpable testis in prepubertal boys, we performed a ROC curve analysis considering boys 125 

with monorchidism as cases and healthy boys as controls. 126 

Pubertal onset was assumed only when testicular volume increase was accompanied by secondary 127 

sexual characteristics, rather than by the sole occurrence of testicular volume ≥4 ml, since 128 

compensatory hypertrophy in prepubertal children may result in testicular volume beyond 4 ml. For 129 

the primary analysis, patients with monorchidism and controls were grouped by age intervals. A 130 

secondary analysis was performed according to Tanner stage.  131 

To determine if the existence of compensatory hypertrophy depend on the age at which the 132 

monorchidism was established, we compared the existence and degree of compensatory 133 

hypertrophy between children with congenital and those with acquired monorchidism. 134 

Compensatory hypertrophy was defined by the existence of testicular volume >2 ml in prepubertal 135 

boys or >25 ml in pubertal boys 4. 136 

The sample size was calculated for the main outcome measure, i.e. the comparison between AMH 137 

levels in patients with monorchidism and healthy control boys <9 years-old. The estimated study 138 

size required to incorporate 55 boys in each group in order to detect a difference of at least 30% in 139 

serum AMH levels between monorchid and control boys, with a power of 80% and an α error of 140 

5%. 141 

 142 

Hormone assay methods 143 

AMH: AMH was determined using an enzyme-linked immunoassay specific for human AMH (EIA 144 

AMH/MIS®, Beckman-Coulter Co., Marseilles, France), as previously validated by our group 19, 26. 145 

Intra- and interassay coefficients of variation were, respectively, 10.5% and 9.4% for a serum AMH 146 

concentration of 700 pmol/L, and 11.1% and 12.8% for a serum AMH concentration of 7 pmol/L. 147 

Gonadotropins: LH and FSH were determined using electrochemiluminescent immunoassays 148 

(ECLIA, Roche Diagnostics GmbH, Mannheim, Germany) as described 19. Intra- and inter-assay 149 

coefficients of variation were 1.1% and 1.8% for LH, respectively, for a mean LH concentration of 150 

2.8 IU/L and 1.4% and 1.5% for a mean LH concentration of 16.9 IU/L. Intra- and inter-assay 151 

coefficients of variation were 1.0% and 4.2% for FSH, respectively, for a mean FSH concentration 152 

of 14.8 IU/L and 1.1% and 4.1% for a mean FSH concentration of 23.4 IU/L. When serum LH or 153 
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FSH levels were undetectable, the value of the limit of quantification (functional sensitivity) was 154 

attributed. 155 

Testosterone: Testosterone was determined in serum using an electrochemiluminiscent 156 

immunoassay (ECLIA, Roche Diagnostics GmbH, Mannheim, Germany) as described 19. Intra- and 157 

inter-assay coefficients of variation were 2.4% and 2.6%, respectively, for a mean testosterone 158 

concentration of 176 ng/dl (6.10 nmol/L) and 1.2% and 2.3% for a mean testosterone concentration 159 

of 455 ng/dl (15.78 nmol/L). 160 

 161 

Statistical analyses 162 

Data distribution was assessed for normality using the Shapiro–Wilk test. Results are expressed as 163 

median and interquartile range. Because non-Gaussian distribution was found in most cases, 164 

nonparametric tests were used for comparisons. Mann–Whitney test was used to compare serum 165 

hormone levels between two independent groups. Fisher's exact test was used to compare 166 

categorical variables. The correlation coefficient between testicular volume and serum AMH in 167 

patients with monorchidism was calculated using the nonparametric Spearman’s test. The level of 168 

significance was set at P <0.05. All statistical analyses were performed using Graphpad Prism 169 

version 5.01 for Windows (GraphPad Software, San Diego, CA, USA). 170 

 171 

Ethical issues 172 

The study protocol was approved by the Institutional Review Board and Ethics Committee of the 173 

Ricardo Gutiérrez Children’s Hospital. Because the study of patients with monorchidism was based 174 

on a retrospective clinical chart review with descriptive purposes and no anticipated effect on 175 

prognosis or therapeutic management of the patients whose charts were included, the need for a 176 

written informed consent was waived. For the control group, written informed consent was given by 177 

the participant’s parents, and assent was given by the participants over 7 years of age. 178 

179 
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Results 180 

Characteristics of the study population 181 

Out of 119 eligible cases (Figure 1), 89 patients with monorchidism aged 1.1 to 18.7 years were 182 

included in the analysis. Median age at first visit was 5.1 years (range 0.3-14.5 years). A total of 183 

168 serum samples were assessed, since follow-up was available in 83 of the 89 patients, with a 184 

median follow-up of 7.3 years (range 0.4 to 17.3 years). The prevalence of left monorchidism, i.e. 185 

absence of the right testis, was 48 cases (54%) in our series. The occurrence of acquired 186 

monorchidism was ascertained in 44 patients (49%): orchiectomy due to testicular tumour in 7 cases 187 

and to atrophic testis with testicular-epididymal dissociation in 4, atrophy following orchiopexy in 188 

20, testicular torsion in 11, mumps orchitis in 1 and trauma in 1. In the remaining 45 patients, only 189 

one testis was palpable at birth, and an acquired aetiology for monorchidism could not be 190 

evidenced, hence congenital monorchidism was suspected. 191 

 192 

Monorchidism in boys <9 years-old 193 

In prepubertal age (<9 years-old), 59.5% of boys with monorchidism presented moderate 194 

hypertrophy of the remaining gonad. The volume of the solitary testis of monorchid children was 195 

not significantly different from that of the largest testis of healthy controls aged 6 months to 2.9 196 

years, but it was bigger in monorchid boys than in controls aged 3 to 8.9 years. However, the 197 

volume of the testis of monorchid boys was smaller than the bi-testicular volume of controls in both 198 

subgroups (Table 1), indicating that testicular hypertrophy did not fully compensate the tissue mass 199 

of two gonads. 200 

In concordance, median serum AMH was significantly lower in patients with monorchidism than in 201 

age-matched controls (Table 1). Testicular volume correlated significantly with AMH in boys <9 202 

years (Figure 2), showing that AMH levels reflect the degree of hypertrophy in prepubertal patients 203 

with monorchidism. AMH levels were below the normal range in 4 out of 6 cases in the monorchid 204 

boys aged <3 years and in 13 out of 39 cases in the 3-8.9 year-old subgroup (Figure 3). To test 205 

whether the absence of one testis during the postnatal activation period of the hypothalamic-206 

pituitary-gonadal axis could elicit a greater compensatory response, we analysed separately patients 207 

with congenital monorchidism. In the 6 months-2.9 years group, boys with congenital 208 

monorchidism (median age: 1.5 yr, IQR: 1.2-2.0 yr) had a lower serum AMH (median 324 pmol/L, 209 

IQR: 204-939 pmol/L) than healthy controls (median age: 1.9 yr, IQR: 1.0-2.4) in whom AMH was 210 

1067 (IQR: 807-1460) pmol/L (two-tailed Mann-Whitney U 17.0, P=0.008). Similarly, in the 3.0-211 

Page 8 of 24



9 

21703451_File000008_485835145.doc 

8.9 years group, boys with congenital monorchidism (median age: 5.9 yr, IQR: 4.2-7.4 yr) had a 212 

lower AMH: 465 (IQR: 180-641) pmol/L than controls (median age: 5.4 yr, IQR: 4.3-7.0 yr) 596 213 

(IQR: 420-873) pmol/L (two-tailed Mann-Whitney U 693.5, P=0.024). 214 

To rule out the possibility that AMH was lower in patients with monorchidism because the 215 

remaining testis was not normal, we analysed a subset of 13 monorchid patients with no history 216 

compatible with damage of the remaining testis, i.e. monorchidism due to surgical removal of one 217 

testis following testicular torsion, traumatism or tumour (Figure 3). Although the sample size was 218 

limited, serum AMH was low in 9 of them (69.2%), suggesting that one testis with no overt history 219 

of defect is unable to fully compensate Sertoli cell function. 220 

In order to evaluate if AMH level was useful in prepubertal boys to certify the existence of only one 221 

gonad, we performed a ROC curve analysis, comparing monorchid boys as cases and healthy boys 222 

as controls. Area under the ROC curve was 0.772 (95% confidence interval 0.687 to 0.856), and the 223 

best cut-off value (AMH 400 pmol/L) had very low sensitivity (52.4%; 95% CI 36.4 to 68.0%) and 224 

insufficient specificity (89.8%; 95% CI: 83.7 to 94.2%) to diagnose monorchidism.  225 

Median serum FSH was moderately increased in boys with monorchidism below the age of 3 years, 226 

i.e. just after the postnatal activation of the pituitary-gonadal axis, but not during the rest of 227 

childhood. Testosterone and LH were within the normal range in patients with monorchidism <9 228 

years-old (Table 1 and Figure 3). 229 

 230 

Monorchidism in boys older than 9 years-old 231 

In patients with monorchidism aged 9 years or older, the volume of the present testis was >25ml in 232 

20% of the cases. From the age of 13 years onwards, i.e. when patients were in the most advanced 233 

stages of pubertal development, the size of the solitary testis of monorchid boys was significantly 234 

bigger than the largest testis of healthy controls, but it did not reach the normal bi-testicular volume 235 

(Table 2), indicating that testicular hypertrophy did not fully compensate the tissue mass of two 236 

gonads. 237 

AMH levels were significantly lower, and FSH were significantly higher in patients with 238 

monorchidism (Table 2 and Figure 3), indicating that the seminiferous tubule compartment of the 239 

solitary testis was unable to fully compensate the function of the absent gonad. Conversely, LH and 240 

testosterone showed no significant differences between patients with monorchidism and healthy 241 

controls, showing that the interstitial tissue of the solitary testis was capable of compensating the 242 

androgenic function. 243 
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 244 

Discussion 245 

The results of this survey, which included 89 patients with monorchidism spanning infancy, 246 

childhood and puberty, indicate that there is a dissociated capacity of the remaining testis to fully 247 

compensate for the absence of the other gonad: while Leydig cell function is largely compensated, 248 

Sertoli cell proliferation and function is insufficient. Indeed, testosterone and LH levels were 249 

normal during pubertal development in the vast majority of patients with monorchidism, in line 250 

with previous results in a small series of 11 patients 28. Conversely, lower AMH and higher FSH in 251 

monorchid boys indicate that the remaining testis does not fully compensate the function of the 252 

absent one. Furthermore, the volume of the testis is primarily dependent on the mass of Sertoli cells 253 

in prepuberty; after puberty, testicular volume is determined by germ cell numbers, which is limited 254 

by the peak number of Sertoli cells reached at during infancy and childhood 29. In both prepubertal 255 

and pubertal patients with monorchidism of this study, although the volume of the testis was larger 256 

than the mean volume of the two gonads of healthy controls, it did not reach the double of a normal 257 

testis, thus indicating that the number of Sertoli cells of the remaining gonad was insufficient to 258 

fully compensate the absence of the second testis. This is in concordance with low inhibin B levels 259 

observed in a small series of boys 28 and with oligospermia reported in adult males 16 with 260 

monorchidism. For ethical reasons, semen analysis was not performed in our patients; therefore, we 261 

cannot guarantee that insufficient testicular volume compensation resulted in oligospermia or 262 

impaired fertility outcome. 263 

In patients with unilateral cryptorchidism or monorchidism, testis hypertrophy and functional 264 

compensation by the scrotal gonad is believed to be dependent on three factors: the magnitude of 265 

functional reduction of the testicular parenchyma of the affected gonad, the age at injury and the 266 

status of the descended testis. Congenital monorchidism and acquired monorchidism may occur in 267 

patients in whom a primary testicular disorder affecting both testes could be suspected, for instance 268 

in the testicular regression syndrome 6, 7 and in patients with a history of unilateral or bilateral 269 

cryptorchidism 1, 17. In these cases, the remaining testis may be dysfunctional and, thus, inept for 270 

functional compensatory hypertrophy. The lower AMH levels observed in our patients with 271 

monorchidism are most probably not due to a primary defect of the present testis, at least in the 272 

subset of cases in whom a history compatible with primary gonadal dysfunction could be ruled out. 273 

The precise mechanism underlying the enlargement of the remaining testis in monorchid patients is 274 

not fully understood. The effect of increased FSH levels is suspected to be at least partially 275 

responsible for Sertoli cell hyperplasia. Compensatory hypertrophy would then be more likely in 276 
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patients with congenital monorchidism, in whom the early postnatal activation of the hypothalamic-277 

gonadotrope axis would be exaggerated 19. In the present study, we could not demonstrate any 278 

compensatory function in patients with congenital monorchidism. 279 

The major strength of this work is that we analysed a large series of patients with certified 280 

monorchidism during childhood by assessing serum AMH, a validated marker of testicular function 281 

with no need for stimulation tests. Indeed, while the gonadotrophs and Leydig cells are functionally 282 

quiescent in boys between infancy and puberty, Sertoli cells remain active and secrete huge 283 

amounts of AMH. Therefore, serum AMH is a widely accepted biomarker of testicular activity 284 

during childhood 30-36. Furthermore, serum AMH has been postulated as a surrogate marker for the 285 

mass of functional Sertoli cells in patients with gonadal dysgenesis 37, hypogonadotrophic 286 

hypogonadism 14, 38 and Sertoli cell hyperplasia 39, 40. In the present work, the significant correlation 287 

between testicular volume and AMH suggested that AMH levels reflect the degree of compensatory 288 

hypertrophy in prepubertal patients with monorchidism. 289 

Due to its retrospective design, our study has some limitations: testis volume values obtained from 290 

the history charts had been measured by the patient’s paediatric endocrinologist and not by only one 291 

observer, which may have resulted in less precise results owing to greater coefficients of variations 292 

than those obtained in a prospective study with only one or two observers. Also, testicular volume 293 

was obtained by comparison with Prader’s orchidometer rather than by ultrasound measurements, 294 

which gives more accurate results. Yet, even if less accurate, measurements by the Prader’s 295 

orchidometer show a strong correlation with ultrasound measurements 41. Another limitation of this 296 

study is that comparisons of reproductive hormone levels between patients and controls >9 years-297 

old were made according to age and not Tanner stage. The reason is that testicular volume is one of 298 

the most important features considered to distinguish between Tanner stages G2 and G3 25, and 299 

testicular hypertrophy expected to occur in patients with monorchidism precluded the use of 300 

gonadal volume to assess pubertal maturation. Pubertal development stages are extremely variable 301 

between individuals, mainly in boys aged 11 to 13 years. The large interindividual variations could 302 

explain the lack of significant differences in serum AMH between monorchid patients and healthy 303 

controls only in this age group. 304 

It should be noted that the differences observed in the median levels of the markers of Sertoli cell 305 

functional mass, i.e. AMH and FSH, could be explained by the existence of a subset of patients with 306 

clearly abnormal values, while the remaining cases have normal levels. This suggests that two 307 

populations of patients with monorchidism may exist, including one with normal hormone levels 308 
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who subsequently may prove to have normal fertility and the other with elevated FSH levels who 309 

may attain a subfertile state later in life.  310 

Because the normal range of serum AMH is relatively large, it did not prove useful in our study to 311 

certify the lack of a second gonad, e.g. in abdominal position, in our study population. We are 312 

aware that a limitation of our study is that in the ROC curve analysis, we compared serum AMH of 313 

monorchid patients with that of healthy controls, rather than with unilateral cryptorchid patients. 314 

However, the fact that serum AMH was unable to distinguish patients with monorchidism from 315 

healthy boys indicates that it would be less efficient to distinguish between patients with 316 

monorchidism and those with unilateral cryptorchidism. 317 

In summary, patients with monorchidism show a dissociated capacity of compensation of testicular 318 

function: the interstitial compartment is capable to respond to LH increase with adequate 319 

testosterone production, thus avoiding hypoandrogenism, whereas Sertoli cells seem unable to fully 320 

compensate for the absence of the other gonad, probably resulting in lower total cell numbers when 321 

compared to that of two testes, and leading to a lower total testicular mass, a decreased AMH 322 

production, and high circulating FSH. Whether this may predict infertility needs to be addressed by 323 

studying patients with a sufficiently long follow-up, until adulthood. 324 
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 470 

Figure legends 471 

 472 

Figure 1. Flow diagram of enrolment of patients with monorchidism. 473 

 474 

Figure 2. Correlation between serum antimüllerian hormone (AMH) levels and testicular volume in 475 

prepubertal boys with monorchidism.  476 

 477 

Figure 3. Serum reproductive hormone levels in boys with monorchidism and in healthy controls. 478 

 479 
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Table 1. Testicular volume and reproductive axis hormone levels in 45 boys with monorchidism 1 

and in 147 healthy controls aged <9 years. Results are expressed as medians (interquartile range) 2 

and were compared using the Mann–Whitney test. 3 

 4 

 
6 mo-2.9 years-old 3-8.9 years-old 

 
Monorchidism Control P Monorchidism Control P 

Age 
1.3 

(1.1-1.7) 

1.9 

(1.0-2.4)  

6.6 

(4.4-7.7) 

5.4 

(4.3-7.0)  

Testicular 

Volume (mL)* 
2 (0.5-3) 

L: 2 (1-2) 

B: 4 (2-4) 

0.735 

0.004 
3 (0.5-5) 

L: 2 (1-3) 

B: 4 (2-6) 

<0.001 

<0.001 

AMH (pmol/L) 324 (221-820) 1067 (807-1460) 0.0009 403 (203-637) 596 (420-873) 0.001 

FSH (IU/L) 1.10 (0.72-6.72) 0.63 (0.26-1.37) 0.017 0.99 (0.27-3.30) 0.79 (0.20-3.21) 0.106 

Testosterone 

(ng/dL) 
10 (10-21) 10 (10-10) NA 10 (10-66) 10 (10-10) NA 

LH (IU/L) 0.07 (0.10-0.63) 0.10 (0.10-0.43) 0.580 0.10 (0.05-0.28) 0.10 (0.10-0.19) 0.519 

 5 

* Testicular volume reflects that of the only testis in boys with monorchidism, and in healthy 6 

controls that of the largest testis (L) or that of the sum of both testes (B). 7 

NA: statistical analysis was not applicable since testosterone levels were below the lower limit of 8 

detection of the assay in the vast majority of boys with monorchidism and in healthy controls. 9 

 10 
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Table 2. Testicular volume and reproductive axis hormone levels in 73 boys with monorchidism and in 155 healthy controls aged >9yr. Results are 

expressed as medians (interquartile range) and were compared using the Mann–Whitney test. 

 

 
9-10.9 yr 11-12.9 yr 13-14.9 yr ≥15 yr 

 

Monorchid- 

ism 
Control P 

Monorchid-

ism 
Control P 

Monorchid-

ism 
Control P 

Monorchid-

ism 
Control P 

Age 
9.9 

 (9.4-10.4) 

10.0 

 (9.4-10.6) 
 

11.5 

 (11.3-12.2) 

12.3 

 (11.8-12.6) 
 

13.7 

 (13.4-14.1) 

13.8 

 (13.4-14.3) 
 

16.2 

 (15.8-16.9) 

16.0 

 (15.3-16.7) 
 

Tanner stage 

G1: 14 

G2: 4 

G3: 2 

G4: 0 

G5: 0 

G1: 29 

G2: 4 

G3: 2 

G4: 0 

G5: 0 

 

G1: 10 

G2: 13 

G3: 7 

G4: 6 

G5: 4 

G1: 5 

G2: 21 

G3: 15 

G4: 3 

G5: 3 

 

G1: 2 

G2: 5 

G3: 10 

G4: 10 

G5: 10 

G1: 0 

G2: 8 

G3: 24 

G4: 16 

G5: 23 

 

G1: 0 

G2: 0 

G3: 1 

G4: 2 

G5: 20 

G1: 0 

G2: 1 

G3: 1 

G4: 22 

G5: 34 

 

Testicular 

Volume (mL)* 
4 (1-25) 

L:2 (2-8) 

B: 4 (4-14) 
0.027 

0.068 
6 (2-25) 

L: 8 (2-20) 

B: 16 (4-40) 

0.598 

<0.001 
20 (5->25) 

L: 15 (4-25) 

B 30 (9-50) 
0.001 

<0.001 
25 (6->25) 

L: 20 (10-25) 

B: 40 (20-50) 
0.004 

<0.001 

AMH (pmol/L) 
330 

(196-446) 

685 

(402-905) 
<0.001 

165 

(62-281) 

257 

(71-536) 
0.134 

48 

(30-67) 

72 

(51-120) 
<0.001 

37 

(20-44) 

73 

(51-113) 
<0.001 

FSH (IU/L) 
2.20 

(0.68-21) 

1.59 

(0.41-2.92) 
0.168 

2.78 

(0.34-32.20) 

2.79 

(1.08-8.08) 
0.821 

4.30 

(1.99-45.90) 

2.72 

(0.85-7.27) 
<0.001 

5.81 

(1.90-63.90 

3.21 

(1.23-9.27) 
<0.001 

Testosterone 

(ng/dL) 

10 

(10-110) 

10 

(10-146) 
0.058 

26 

(10-622) 

111 

(10-550) 
0.028 

253 

(20-667) 

280 

(10-661) 
0.429 

424 

(223-902) 

467 

(17-814) 
0.426 

LH (IU/L) 
0.30 

(0.10-1.80) 

0.10 

(0.10-3.04) 
0.473 

0.72 

(0.05-7.40) 

1.73 

(0.10-3.57) 
0.002 

2.69 

(0.43-17.40) 

2.26 

(0.42-8.99) 
0.213 

5.60 

(1.40-24.40) 

3.17 

(1.12-7.52) 
0.007 

 

* Testicular volume reflects that of the only testis in boys with monorchidism, and in healthy controls that of the largest testis (L) or that of the sum 

of both testes (B). 
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