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Periodic Waveforms
Only periodic functions of time will be considered in this subject.  Non-periodic
functions include noise in a system as well as modulated waveforms.  A periodic
sawtooth waveform is illustrated below, showing the period of the waveform.  When
calculations, such as the average value of the waveform, are made later, it may be
advantageous to redefine a new zero for the time axis.

If the period is T seconds, then the frequency of the waveform is given by the
number of times that this period occurs in a second, i.e.

A waveform which has only a constant value if a special case where the period is
infinity and the frequency is 0 Hz.
All periodic waveforms, e.g. voltage, current or power waveforms, may be analyzed
in terms of their Fourier series,

The fundamental frequency, where n = 1, has a period of T seconds, this being the
period of the composite waveform.

An example of a square wave

What is a square wave?  If the waveform represents the voltage as a function of time,
then there will be two distinct voltage levels with equal time intervals at each
voltage level.  This is sometimes referred to as a waveform with a mark-space ratio
of unity.

One complete period of the square wave is shown on the right in gray.  The
fundamental sine wave frequency which is the closest approximation to this square
wave is shown in red.  Now, taking the difference between the original square wave
and the fundamental sine wave component leaves a result which is best
approximated by a third harmonic component, shown in blue.  Thus the sum of the
fundamental and third harmonic components, shown in green is a closer
approximation to the original square wave. Adding further odd harmonic
components will improve the agreement with the original square wave.
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Any periodic waveform may be described in terms of a harmonic series.

The Average Valve of a Waveform
All periodic functions have an average (or mean) value, even if it is zero.  In electrical
terms, this average value is also known as the d.c. level of the waveform. 
So, what is the average value of a waveform?  Consider the situation where equal loads
of gravel have been placed at equal intervals along the bottom of a trench.  A section of
this situation is illuatrated below.

On this diagram, the following points may be observed, either in terms of the gravel as
a function of position or as a voltage waveform as a function of time: 

    •   the period of the waveform; 

3

    •   the average height of the gravel after it is smoothed out over the length of the
trench; 

    •   or the average voltage after it is smoothed out over time; 

When presented mathematically, it is seen that the area under the periodic function
must equal the area under the average value over the same time.  This will be used
shortly.

The Sine Wave

The average value of this waveform is zero. 
If this waveform represents, say, the current waveform being applied to a battery, then
there would be no net charge into the battery.

The Half-Wave Rectified Waveform (using diodes)

This waveform has an average value which is non-zero.  In order to calculate the
average value, it is noted that the area under the periodic function over a complete
period must equal the area under the averaged curve.  Thus

For the half-wave rectified waveform

Change the variable of integration
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Note that between pi and 2pi the contribution from the complete waveform to the
average value is zero, i.e. the sine function is only integrated over the time where it is
present.  Thus

The Full-Wave Rectified Waveform

By inspection, the average value has doubled, giving

This may be found either as

or, noting that the period of the waveform is now pi,
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Example

Calculate the average value for the following waveform:

The period of this waveform is 10 seconds, e.g. from 8 to 18 seconds.  In that range,
8 le t le 18,

Therefore

Note that life may be easier if a new time scale is defined, where t' = 0 at t = 8 seconds,
leading to

Checking the Result

It is always wise, where possible, to check the result.  Generally an approximate
answer may be obtained for an average value by inspection of the waveform.  Here, it
is seen that

The R.M.S. Value of a Waveform
The r.m.s. value for a voltage or current waveform is its effective value from the
point of view of power dissipation in a resistive circuit.  The letters R, M, S standing

6

for root mean square describe the way in which the effective value of the waveform
is derived.  Consider the following situation:

The circuit connects two voltage sources, one at a time, to a kettle which has a
reistance of R ohms.  We wish to derive an equivalence between the sine wave and
constant voltage sources for equal power transfers to the kettle.

Why can an a.c. voltage or current deliver power?

It is not the average current (which is zero for a sine wave source) which determines
its power delivering capability.  Consider the detail of the waveform which is
illustrated below.

At A, the instantaneous power  and is non-zero.

At B, the instantaneous power  and is also positive.

Since , the instantaneous power
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An Example of Average and R.M.S. Calculations
Calculate the average and r.m.s. values for the following waveform: Calculate the
average and r.m.s. values for the following waveform:

The Average Value

Therefore
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This is illustrated on the figure above.

The Effective or R.M.S. Value

Exponentially Decaying Waveforms
The exponential waveform is common in transient analysis, i.e. during switching
operations, for systems which include an energy storage element such as a capacitor
or inductor. 
For a stable system, the exponential term must decay with time, having a time
constant, , as illustrated in the figure below.

For the observation of transient waveforms on an oscilloscope,

•
it is typical to use the fact that, after a time equal to five time constants, the response
is 0.7% of its initial value, i.e. essentially zero.
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•
the initial point from which the decay time constant is evaluated may be taken
anywhere on the exponential curve.  It is often desirable to avoid the region close to
the step change where second order effects may, in practice, cause a rounding of the
curve.  For example, at the transition the interturn capacitance of an inductor may
interfere with the R-L transient decay curve for a short time.

•
it may be seen that the derivative of the curve with respect to time is proportional to
1/  and that this will pass through the final value one time constant later.  This fact
is useful in sketching good representations of an exponential curve.

•
Caution:  Do not use the fact that the function is approximately zero after five time
constants to estimate, or worse calculate, the value of the time constant!

An exponential change to a higher level 

In a first order transient response, exponentially decaying waveforms change rapidly
from the initial state and approach the final value as an asymtotic limit.  The figure
below illustrates a waveform where the initial value is less than the final value. 
Here, as always for a first order transient response, the waveform completes 63.2%,
i.e. (1–0.368)×100%, of the change towards the final value in one time constant.

Incorrect curves for first-order transient circuits: 

Curves which are expressed mathematically by an exponentially increasing
function, in either the positive or negative direction, are wrong and do not occur in a
typical first order transient response.  Curves of this nature may occur in unstable
systems.
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If the time scale is all wrong: 

For the observation of a first order transient response on an oscilloscope, it is
desirable to set the time base such that there are about 5 time constants between
successive transitions.  Consider the waveform which is illustrated below:

A typical waveform for the current flow in a capacitor is shown in (a), with about
five time constants between each transition.  Now, if the time between transitions is
increased to 50 time constants and the time base on the oscilloscope is slowed down
by a factor of ten, the response is as shown in (b).  The third cuve, (c), shows what
happens if the time between transitions is decreased to 0.5 time constants and the
time base on the oscilloscope is increased by a factor of ten.  Thus it is important
that the correct time between transitions is chosen for the observation of transient
waveforms on an oscilloscope.


