TECHNICAL MEMORANDUM

RECENT DEVELOPMENTS IN SEMICONDUCTOR CIRCUITS
by John C. Sturman
I twis Research Center
Cleveland, Ohio

TECHNICAL PREPRINT prepared for
Conference on Industrial Applications of New Technology by the Atomic Energy Comraission and the National Aeronautics and Space Administration sponsored by the Southern Interstate Nuclear Board and Georgia Institute of Technology
Atlanta, Georgia, April 2-3, 1964

blank
 PAGE

RBCENT DEVELOPMENTS IN SEMICONDUCTCR CIRCUITS

by John C. Sturman

Lewis Research Center

INTRODUCTION

The work reviewed herein consists of a number of devilopments in the fieid of electronics that may have application for general industrial use. Most of this work was undertaken primarily to fulfill es need for very low power logic circuits for space-vehicle applications. This part of the program has involved the study of basic circuits and limitations imposed on their operation by the semiconductor devices used and the construction and testing of the more promising circuits. The other circuits to be discussed come from a number of sources and were made available through the NASA Lewis Patent and Technology Utilization Offices. Most of the circuits to be discussed are new developments, but a few are derived from older concepts that have not been widely applied.

First, a general class of digital logic circuits that has been designed for the lowest possible power consumptionatarelatively low operating speed is discussed. Their performance is remarkably weil suited to these operating conditions but is in no way limited to them. Operation at high power levels and high speed is equally leasible, and the circuits to be discussed possess many desirabie features, such as nearly ideal waveforms, and efficiency independent of the power level for which they are designed. An attempt will therefore be made to describe not only the Jewis work in low power circuitry but also the basic operation of these circuits and the features that recomena them for industrial and computer-type applications.

BiNIC CIRCUIT OPERATION

Most conventional transistor logi? circuits cen be derived from the basic inverter circuit shown in figure i. When a positive voltage is applied to the input, current flows through resistor R_{B} into the transistor base and furns it on. In the "on" or saturated state, the traneistor acts nuch as a switch or relay contact, as showa in the equivalent circuit at the right. In the on state the output is clamped to ground, no voltage is supplied to the load, and the power output is zero. Power is being dissipated, however, in the collector load resistor R_{C}. In order to minimize this waste of power, it is desirable to make R_{C} large.

If the input is now connected to ground, no current flows into t!? transistor base and it turns off, just as the equivalent circuit reiay opens when no voltage is applied to its coil. In this state, the voltage at the output is determined by the retio of the resistors R_{C} and K_{L}. For 9 large output voltage R_{C} must be small. This is in direct oppost, ion to
the criterion for minimum power in the on state. If one assumes a 50-percent duty cycle, this circuit can be optimized for power transfer by making R_{C} equal to $0.707 R_{\mathrm{I}_{\mathrm{L}}}$. Using these values results in a maximum theoretical power transfer -fficiency of 17.6 percent.

From the preceding discussion it is obvious that the difficulty in this situation is the collector load resistor R_{C} and that any successful means of increasing efficiency is dependent on ineeting two contradictory requirements simultaneously. These requirements have been met by replacing R_{C} with a second transistor that acts like an open circuit when the first transistor is turnea on and like a very low resistance when it is turned off. The simplest embodiment of this circuit is shown in figure 2.

The upper transistor is a PNP transistor, which is turned on by a negative signal, as opposed to the lower NPN transistor, which is turned on by a posirive signal. When a positive signal is applied to the input, the lower transistor is saturated and pulls the output to ground, while the same input cuts off the upper transistor. Binc, the upper transistor now looks like an open circuit, no poser is draw from the power supply. For a negative or zero input the states are reversed, that is, the upper transistor is saturated and delivers nearly full supply voltage to the load. No power is lost in the lower one. Computing the theoretica", power transfer efficiency of this circuit by the same methode used for ti: rnnventional inverter results in a figure of 100 perceni. in practice, values above 90 percent are not difficialt to obtain.

The basic concept illustrated can be extended to provide a wide variety of logic circuits with both the complementary (PNP and NFNN) transistor circuit and circuits with only one type of transistor. The reset-sit flip-flop shown in figure 3 is an example of one of the more complex circuits buflt by combining two of the basic complementary inverters. Its operation can be compared with that of a latching relay since either the left or the right half can be turned on by application of a pulse to the corresponding input Figure 4 is a similar flip-flop except that steering diodes have been inc porated in such a manner that it bercmes a tuggle or "divide-by-two" circ This circuit changes its conucting side each time a pulse is applied to ts single input. Performance characteristics of these elements are plotted ir figure 5. Note that in the low kilocycle region where they were designed to operate, they consume considerably less than 100 microwatts each. Some idea of the output capabilities of these circuits is shown in table I. At 2000 pulses per second these circuits are capable of delivering approximately 30 times their unloaded power drain to a useful load. At higher frequencies this value falls somewhat, but the toggle flip-flop is still 83 percent efficiencies at 200 kilocycles pad an input power of 3 milliwatts. These elements are thus ideal as power árivers and matching elements between lowand righ-power systems.

A second important group of circuits has been develoned around the basic circuit shown in figure 6. It usiss two transistor 2 of the same type
to provide many of the same advantages as the complementary circuits. When the lower transistor is turned on, its collector voltage drops to near ground potential. This drop is coupled through diode D_{l} to the upper transistor base, which turns it off. Simultaneously, a conduction path is proviaed to ground through backwara diode D_{2} and the lower transistor to clamp the output to ground. When no input is applied and the lower tiansistor turns off, current flows through R_{1} into the upper transistor base. This current turns the transistor on, and it supplies power to the load. A two-input NOR gate based on this concept is shown in figure 7. A signal present at either of the two inputs will cause the output to drop to zero.

Yet another modification of this circuit produces the monostable multivibrator shown in figure 8. This multivibrator is, basicslly, a timing circuit that, provides a pulse of fixed width after being triggered. The width of this puise can be varied from a few microseconds to many milliseconds by proper choice of the timing sapacitor C_{T}.

Circuits of these two types have been built at Lewis that operate at power levels from a quarter of a microwatt to many milliwatts and cover the frequency range of a few kilocycles to a megacycle or more.

It is jnteresting to speculate on what car " accomplished with suan elements. If the very realirtic figure of 100 . crowatts per element is assumed, it would be possible to build a compuier containing 15,000 such elements that would consume no more power than an ordinary three-cell flashlight. At present, the cost of such a system would be prohibitive for industrial applications; however, if the power consumption is increased by at least 10, useful elements can be built with low-cost components that retain essentially all the advantages of this type of circuitry.

Comparing these circuits intelligently with those more commonly used in digital applications necessitates a review of all their various advantages and disadvantages.

The most prominent of the we advantages is, of course, the large reduction in power consumption achieved. It is this reduction in power that is either directly or indirectly responsible for a number of the othex advantages of this type of circuitry.

This saving of power is attributable to two separate effects, both the result of driving the load from a transistor instead of a conventional coilector load resistor. Elimination of the collector resistor, without making any other changes in the circuit, would save considerable power for the case of no output voltage because the lower trensistor now sees a high impedance when it is turned on. It therefore draws only a very small current. A further saving in power is realized by lowering the supply voltage. This saving is passible since the output is now clamped to the supply by the added transistor, which eliminates the voltage drop formerly appearing across
the collector resistor, and allows the supply voltage to be made equal to the required output voltage. The higr power output and efficiency also allow one cirsuit to drive many more outputs than conventir al circuits.

Another direct result of the low internal power dissipation and high efficiency is a negligible rise in temperature. Increased packing density is thus allowed and the need for any auxiliary cooling means is eliminated. Since it is generelly accepted that a decrease in operating temperature of 10 Centigrade degrees will halve the fisilure rate of components, the large reduction in temperature rise should increase reliability and lengthen operating life. Low power requirements also simplify the requirements for standby power in systems that mrit be protected from primary power line failure.

The reliability of this class of circuit is further enhanced by the excellent tolerance to relaiively large variations in supply voltage and component parameters, Thus, greater tolerance and therefore lower-coat components can be used without fear of early failure due to parameter degradation. As an example, the two rilip-flop circuits discussed previously were constructed with ordinary 10 percent carbori resistors. They operate perfectly over a temperature range of -20° to $80^{\circ} \mathrm{C}$ within supply voltage limits of 3.5 to more than 6 volits.

The fact that the output of these circuits is clamped to either supply voltage or ground leads to a number of other advantages. The first is that the outpiut levels are very well defined and differ by no more than a few tenths of a volt from the clamping lrirel even under maximum load. Clamped outputs also provide a low outpit impedance which, in turn, ini ibits unwanted response from line transients and other noise sources. It also allows the cutput to drive loads returned to either supply voltage or ground and thereby doubles the potential number of output loads that the circuit can drive.

Finally, the fact that the output is actively driven by a transistor for both positive- and negative-going outputs eliminates the limits normally imposed by RC (resistance-capacitance) time constants to give nearly ideal waveforms with fast rise and fall times. As an example, the reset-set filpflop produces 50 nariosecond rise and fall times when operated at a power drain of 50 microwatts.

Of the disadvantages, the most obvious is the larger number of somponents necessary in this type circuit. In the limiting case nearly doubling the parts couqt for given logic circuit is possible. The larger uumber of parts inmediately suggests higher cost and increasec size. No factuel study has been made to determine whether the advantages will economically juetily these circuits for industrial or computer uses however, it is believed that in many instances they will prove adventegeou..

PACKAGING OF ELEMENIS

Abstract

All the elements discussed so far have been intended for space applications. High packaging density and design flexibility were desired. The solution was to use welded corivood modules as shown in figure 9. The largest module is an eight-scage ring counter and the one below it is a gate module. At the upper risht is the reset-set flip-flop, which has already b-'n liscussed in some de ${ }^{2}$ il. The small module below it is the tcggle flip-flop. It is of more recent construction and although it has approxinately as many components as the reset-set unit, it is only 56 percent as large. It represents the highest component density that Jewis has achieved to date, namely, 130 components per cubic inch. Figure 10 is a fide view of two of these modules, and figure 11 is a side view of the toghle flip-flop. The comparatively large metal cans at the top and the botFom are two of the four transistors, the cylindrical components are re"\$istors and ceramic capacitors, and the small disks are microdiodes.

With this method of construction, the 15,000-element computer previously mentioned could be built into a suitcase with sufficient room left for its power supply. Scon, when it becomes practical to buila such circuits in integrated form, this computer might be contained in a woman's bandbag - a large one.

APPLICATIONS TO INDUSTRTAL SYSITEMS

Two circuits with the active load concept were built with low-cost components to deterruine whether the predicted performance could actually be achieved. One n'as a toggle flipoflop nearly identical in circuitry to the one shown in figure 4. It was built with germanium diodes and transistors. Tts performance is tabulated in table II. Note that the overall perfiprmance is very similar to the low-power circuit with the exception that all power levels have been increased by approximately an order of magnitule. This standoy power level of $1 / 2$ miliiwatt is still far lower than any of the comercially available logic circuits.

A more striking comparison of the various flip-flop aesigns is shown in figure 12. The lower twn curves repeat the data of figure 5 , the midile curve is for the "industrializod" version of cur low-power complementary circuit, and the upper curve is for a conventional flip-flop, which has collector load resistors, designed to operate at minimum power and speed comparable with the other circuits. Note that although it is impossible to achieve oporating powers below several hunared microwatts with the lowcost induseralized clreuit, the power consumption is still improved by a factor of 10 over the sonventional circuit.

The conventional circuit provided a maximm power output to its load of 0.8 milliwatts with 13- to 15 -percent efficiancy compared with more than 8 milliwatts for the industrialized circuit at 90 - to 96 -percent efficiency.

Furthermore, the conventionai filp-fiop exmibited a very poor waveform, as shown in the sigure, compared wita ita industriized counterpart, which maintainea a practically ideal output waveform.

Approximately the same comments appiy to the performanca of the threeinput similar transistor NUR gate shown in table 31. The main difierence is that all devices except the backward dicde were siifcon to provide increased reliability and high-tenoerature operation. The backward alode was replaced with a conventional gernaniwn diode for a considerable cost saving. Efficiency of this circuit is somewat poorer than the complementary circuit as is to be expected, although it is still well above that of conventional circuits of comparable performance.

These two circuits were not optimize: for cost or performance and are incindea merely as an indicaticn of some of the advantages io be gained: from the use of these circuit concepts. Other circuits can easily be imagined. The availability of nigi-quality, jow-price silicon IIPN transistors, for example, suggestis that they might be used in conjunction with, germanfum PNP transistors in complementary arcuits. A hybrid logic oystem With complementary miltivibretors and similar tiansistor gates vould probably approach the ideal for high fan-out industrial systems and would probably be competitive with conventionai sircuits if all fet wors were considered.

The materiul presented to this prest is representatave of new deveryp= ments made within our own group at lestag In adiluion, there are nimer

 made in the nommil course of work by xuta 4 sh and industry. it is hopro that the exchange of such informstactioth be promoted imrough the racury?
 circuits. fillow.

STHGEMELSE ASAGTOR

 magnetic trigger circuitf reduce contact bonce probiont corosiderpbly but ave rather limited flexibility for providiug pulses of fast rise blum and widely variable pulse width.

Both these problems can be solued b the rataer ampe circh ohown

trolled recilfier as the attive element. It makes use of the characteristic that once the device is in the conducting state, the supply voltage must be remnved in order for the ciovice to return to the nunconducting state.

With the input switch or relay in the position shown, the controlied rectifier will not conduct because there is no current source to the gate input. Current will flow through R_{1} and the switch contact charging the capacitor.

When the switch is closed to the gate inpuu, sufficient current flows through R_{1} to cause conduction. Capacitor C_{1} discharges through R_{2} and produces the output puise with a peak auplitude equal to E and a width equal to $R_{2} G_{I}$. Once the capacitor is discharged, the controlled rectifier stcps conducting. The switch used must be of a nonbridging type so that when it is returned to its original position, the gate current is removed before return of the anoue supply voltage.

If pulses of the opposite polarity ure desired, it is necessary or $\perp y$ to move the load resistor R_{2} to the ancide circuit as shown by the darhed resistor in the figure. Alternatively, a pulse transformer can be used in conjunction with the load resistor to provide an output of eithar polerity ws well as a floating or multiple output. The transformer time constant must be selected to be within the range of pulse widths required. and the transformer must be teminated to preserve waveshape.

MULTTPLE WHYT TRIGGER CIRCUIT

Whenever $i t$ bocomes necessary to detect when direct-current veltage exceeds a given leve?, some form of trigger or comparetor circuit is required. The usual procedure is to have separate trigger for each input even if it is necessary only to detect when any one of them nas exceedec its particular set point. The efrcuit of figure la eliminates duplication. of trigger circuits and sssociated logic by providing a mans of coupling a number of inputs to one trigger while control of each individual set point is maintained.

The triget etrcuit used 13 comioniy known as a "Schitet trigger." Each of the three irput. $(A, B$, and $B)$ is electricaily positive and con. nected throut ! $\therefore \mathrm{m}^{+} \mathrm{intla}$. er to negative voltege. The variabie contact on the potentiomete: is conpected through a low-leakage diode to the ingut of tro Schuntt trigger. Each petentioneter is set such thet when the input level reaches the desired cris point, the volrage appearing at its variabie contact will fust sturt to becons positive. This positive volisge will ause concont to fluw through the diode and will trip the triggar cire cuit, whicr. Will cause it to change $1 t s$ output voltap.

The voltage at shich each input witl cause the circuit to be triggerat is adjustaile by the setting of its irput potentiometer. Furtkermpre, tict.
is no cougling between inputs; each will therefore trigger the circuit independently at its particular threshold regardless of the signal applied to the other inputs, provided, of course, that the circuit has not yet been triggered. This circuit shoull provide consiuerable savings in alarm circuits in which a number of parameters, such as pressure, temperature, neutros flux, etc., reed to be monitored simultaneously.

DUAL VOLTAGE FOWER SUPPLY

It is quite common to use several different supply voltares in any given piece of electronic equipment. These voltages may be obtained from separate power supplies or by the use of voltage-regulating devices off one main supply. If these devices are not required for purpose of regulation, their use is expensive, bcth on the basis of power wasted and circuit complexity and, there ${ }^{\circ}$ ose, cost.

A simple rcmedy is provided by the circuit of figure 15. The lower portion of it, comprising diodes D_{1} and D_{2}, choke I, and capacitor C_{1} comprise a conventional choke input power supply. Choke input supplies have the hasic characteristic of providing an output voltage somewhat lower than the root mean square voltage of one-half the transformer secondary voltage $V_{\text {riss. }}$.

Consider now the voltage at point A. It is a full wave rectified voltace with a peak amplitude of $1.4 \mathrm{~V}_{\text {rms }}$ less the diode ficward drop. Addition of diode D_{3} allows passage of this voltage to capecitor C_{2}, which will charge to the peak input voltage less the drop across two diodes. For semiconductor diodes, the drop is quite small and the high voitage is very nearly $1.4 V_{\text {rms. }}$. The output is full wave rectified even though orily one additional diode and capacitor are used.

The advantages of this circuit are its simplicity, the fact that it does not use a special transfurmer, and the fact that its efficiency is high since no power is lost in voltage droppirig elements. The high voltage output can approach 1.5 times the low voltage output and the ratio may be modified by proper choice of components. This circuit should find use in many industrial instruments as well as radio end television applications.

CONCLUUSIUN

The intent of this presentation is to convey some idea of the type of electronics development being actively pursued by the Lewis Research Center. The specific circijts chosen for inclusion were selected as representative of the general work at Lewis as well as potentially useful to industry.

Of more importance than the speciilic ideas presented is the fact that NASA, as well as other government agencies, has similar developments available on request. These advances, irought about by the space effort, could have great value for industry. Those discussed herein should find application in the computer industry as well as for consumer products such as radio, television, high-fidelity systems, and remote controls. One of the largest fields of potential application is equipment for automated manufacturing lines, including measuring and process control instrumentation.

Ail these fields and others can benefit from the advanced technology being developed by the space program. These developments are not usually in a form directly applicsble to industria needs, as has been shown. Obviously, further engineering will be necessary to adapt these new developments to specific requirements.

The Technology Utilization Office was organized to provide ready access to these developments and will provide information and discuss potential applications with anyone requesting its services.

TABLE I. - FLIP-FIOP PERFCRMAICE CHARACTERISTICS

(a) Reset-set
(b) Toggle
[Supply voltage, 4.5 v .]

Input power, mW	Pulse rate, pps	Load resistor, ohms	Power effi- ciency, percent
0.058	0	0	--
.06	2,000	0	--
1.8	20,00	$10 K+10 K$	96
1.9	2,000	$10 K+10 K$	94
.1	25,000	0	$-\cdots$

[Supply voltage, 4.0 v.]

Input power, mw	Pulse rate, pps	Load resistor, ohms	Power effi- ciency, percent
0.015	0	0	--
.022	2,000	0	--
.96	2,000	$15 \mathrm{~K}+15 \mathrm{~K}$	98
.5	200,000	0	--
3	200,000	3.3 K	83

TABLE II. - "INDUSIRIALIZED" CIRCUTTS PERFORMANCE CHARACTERISTICS
(a) Toggle
(b) Similar transistor NOR gate
[Total component cost per unit in quantities of $1000, \$ 3.00$; supply voltage, 6.0 v.$]$

Input power, mw	Pulse rate, pps	Losd resistor, ohms	Power effi- ciency, percent
0.5	100	0	-
12.5	100	$1.5 \mathrm{~K}+1.5 \mathrm{~K}$	96
.87	67,000	0	--
11.7	67,00	$1.5 \mathrm{~K}+1.5 \mathrm{~K}$	91
10.9	200,000	$1.5 \mathrm{~K}+1.5 \mathrm{~K}$	89

Input power, mw	Puise rate, pps (a)	Load resistor, ohms	Pover effi- ciency, percent
0.755	500	0	----
4.63	500	3.3 K	82.5
.766	10,000	0	$-\ldots-$
8.48	10,000	1.5 K	87.2
1.27	200,000	0	-7.
6.65	200,000	3.3 K	71.5

${ }^{{ }^{\text {WWith }}} 50$ percent duty cycle.

LOGICAL INVERTER CIRCUIT

Figure 1

BASIC COMPLEMENTARY INVERTER CIRCUIT

COMPLEMENTARY TOGGLE FLIP-FLOP

$$
\begin{gathered}
\text { POWER DRAIN FOR RESET-SET AND } \\
\text { TOGGLE FLIP-FLOPS } \\
\text { SUPPLY VOLTAGE, } 45 \text { VOLTS }
\end{gathered}
$$

BASIC S:MILAR TRANSISTOR INVERTER

Figury 6

TRANSISTOR INPUT NOR

Figure 7

SIMILAR TRANSISTOR MONOSTABLE MULTIVIBRATOR

WELDED CORDWOOD LOGIC MODULES TOP VIEW

Figure

GATE AND FLIP-FLOP MODULES SIDE VIEW

$$
\begin{aligned}
& \text { TOGGLE FLIP-FLOP } \\
& \text { SIDE VIEW }
\end{aligned}
$$

Pigure 11

INPUT POWER AGAINST FREQUENCY FOR VARIOUS FLIP-FLOPS

SINGLE-PULSE GENERATOR INVENTOR, FOBERT L. MILLER

Pigure la

MULTIFLE-INPUT TRIGGER CIRCUT
inventors, r. W. WELSH AND D. P. ORANGE

DUAL-VOLTAGE POWER SUPPLY PATENT NUMBER $3,053.991$

Figure 15

