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ABSTRACT

The paper contains a short outline of the Moon's spherical astronomy.

. The problems of the mean and of the apparent selenocentric and lunar
topocentric spherical coordinates is treated deeply. The advantages and
disadvantages of the different spherical coordinate systems, such as seleno-
equatorial, gecequatorial, ecliptic, stellar, and Moon's horizontal, for
orientation in space from the Moon are discussed. The necessary {ormulas
are given to calculate the mean and the apparent positions of stars and other
celestial bodies in each of the coordinate systems, regarded equally as
selenocentric or lunar topocentric. The appendices contain short descrip-
tions of all the phenomena related to the discussed coordinate systems:
the Moon's precession and mutation, lunar aberrations and lunar parallaxes;
the general aberrational and parallactic formulas are also given.

RESUME

Le memoire contient un court schema de l'astronomie spheri-
que de la lune, Nous traitons s fond le problime des coordonnées
spheriques seélenocentriques et topocentriques lunaires moyennes
et apparentes. En vue d'une orientstion dans l'espace a pertir de
la lune, nous discutons des avantages st déeavantages de diffdrents
systemes de coordonndes spheriques, par exemple le 5gst5me sele-
noesquatorial, le systeme geofquatorial, le systeme de l'€clipti-
que, le systéma stellaire, =t le systéme du plan horizontal de la
lune. Nous donnons les formules ne’cessaires pour calculer les
positions moyennes et apparentes des €tpiles et autres corps c¢-
lestzs dans checun des systemes de coordonndes, consideérés a 1la
fois comme sdlenocentriques st topocentriques lunsires., Les
eppendices contiennent de courtes descriptions de tous les phe'-
noménes rattachéds sux systémes de coordonndes discutees: la pre-
céssion et ls nutetion de la lune, les sberrations et les pa-
rallaxes lunaires; nous donnons sussi les formules généralea d'a-

berrations et de parallaxes.

vii



KOHCIIEKT

B DTOK CcTaThe NPHBOAMTCHA KPATKHHA ouepx chepuueckolf acTpPOHOMKE
JivHel, llpobJeMp CBA3AHHLE CO CPEAHHMHM ¥ KaXYUHMHUCH cexeubuenmpnuec-
KMMH M JAYHHWNMK TONOUEHTPHUECKHMH CHEePDHUOCKHUMH KOODAMHATAMHK JeTANbHO
K3y uanTchA. O6CYXRAOTCF NpPeyMyMecTBd ¥ HEZOCTATKM JADYIHX chepuue-~
CKMX KOOLpAMHAT, TAKOBHX K&K CEeAeHOIKBATOPHANbHHX, Te03KBATOPHANBLHHX,
BKAMNTHYECKHX, 3BE3JAHbHX M JAYHHHX TOPH3OHTAABHNWX, JAM OPHEHTHPOBKH
B npocTpaHCcTBE OT JyHu. lipHBegeHn HeoOXOZuMpe MOPMYAb RAA BHUNCAe-
HUA CpelH¥X M KaxyOUXCs NOJAOXEHHH 3Be3n ¥ APYruX HeOecCHHX Tea B
Kaxioit cucTeMe KOODAMHAT, pPacCMATPHBAEMO# OIZHHAKOBO K&K CENEHOIEeH=-
TPHUECKOA HAX JAYHHOH TOMOUEHTpHUUECKOH, [lpniaoxerva conepxaT xpaTkHe
onMcaKKs BCeX ABACHHHA CBABAHHNX C OOCYREREMHME CHCTEMaMl¥ KOODJAVHAT!
JYHHOM ligelleCHR ¥ HyTauuM, JAYHHuX afepanufi ¥ XYHHHX Dapairnaxcos;
npr.eejert Taxkxke otmue abepanuoHHHe ¥ napasJaxTHueckue ¢OpMyab.



SELENOCENTRIC AND LUNAR TOPOCENTRIC COORDINATES
OF DIFFERENT SPHERICAL SYSTEMS

B. Kolaczek
1. INTRODUCTION

The possibility in the near future of man landing on the Moon focuses
our attention on the problem of orientation in space from places other than
the Earth, e. g., artificial satellites, the Moon, and the planets.

The usefulness, advantages, and disadvantages of the coordinate
systems such as the geocequatorial, the ecliptic, and the selenoequatorial,
which make possible orientation in space, are different on the Moon than on
the Earth because the Moon's position in space and its motions are different
from the Earth's.

The selenocequatorial coordinate system (Section 2), in which the Moon's
axis of rotation is the basic direction and the lunar equator is the basic plane,
is affected by the motions of this axis and this plane, i.e., the lunar preces-
sion and the lunar nutation {or physical libration) (Appendices A and B).

The selenoequatorial system on the Moon is analogous to the geoequatorial
system for terrestrial observers, but the selenoequatorial coordinates of
the stars change their values faster than do the geocequatorial coordinates
because the lunar precession is about 1360 times faster than the Earth's.

This work was supported in part by grant NGR 09-015-002 from the National
Aeronautics and Space Administration.



The srnall inclination of the lunar equator to the ecliptic, which is
approximately equal to 1°32', makes the ecliptic coordinate system (Section 3)
much more practical on the Moon than on the Earth, At the same time, the
geoequatorial coordinate system (Section 4) becomes, for the same reason,
very inconvenient for practical use on the Moon. However, the great number
of catalogs, maps, and almanacs giving the coordinates of the stars and other
celestial bodies in the geoequatorial system is its great advantage.

The stellar coordinate system, introduced in Section 5, is defined on
the basis of the krnwn heliocentric directions to the chosen stars. It does
not change its position in space so quickly as the other systems. The
coordinates of the stars in this system change their values only because of
their proper motions, which are rather small. The comparison of star
observations made in remote epochs is also an advantage of this system.

In this work we give all the formulas necessary to calculate the mean
and the apparent positious ol the stars and other celestial bodies in each
of the aforementioned coordinate systems — regarded either as seleno-
centric or as lunar topouentric.

The translation of any coordinate system from one point in space to
another, e.g., from the Earth's center of mass to the center of mass of
the Moon or of the Sun, changes the values of the spherical coordinates of
fixed points on the celestial sphere. This change is caused »y two phenomena:
the parallax of the translation of the origin of a coordinate system and the
aberration caused by the different motion of this newly translated coordinate
system (Appendices C and D).

Thus, the transfor:nation of the mean geocentric or heliocentric coor-
inates, such as ecliptic, geoequatorial, or selenoequatorial, into mean
selenocentric coordinates, and conversely, requires consideration only of
the influence of the Moon's monthly or of the Moon's annual parallax
(Appendix E). The transformation of the apparent coordinates, however,




requires consideration not only of the parallaxes of the translations but also
of the influence of the Moon's aberrations (Appendix F). The lunar daily
parallax and daily aberration must be added in the transformation of the
selenocentric coordinate systems into the lunar topocentric ones.

The lunar horizontal coordinate system (Section 6), defined similarly to
the Earth's, has the same meaning on the Moon as the Earth's horizontal
system has on the Earth. Hence, the apparent motion of the celestial sphere
on the Moon can be described by the same equations as those for the apparent
motion of the sphere on the Earth. We need only substitute in these equations
the selenocequatorial for the geoequatorial and geohorizontal coordinates.

3/4



2. SELENOEQUATORIAL COORDINATE SYSTEM

2.1 Definition; Transformation of Mean Geoequatorial intc Mean
Selenoequatorial Coordinates

The selenocentric equatorial system"~ (Jakowkin, Demenko, and Miz, 1964;
Gurevich, 1965, 1967), in which the Moon's axis of rotation is the basic axis,
has the same meaning on the Moon as the Earth's equatorial system has for

terrestrial observers. The selenoequatorial coordinates are:

a ..... Lunar right ascension measured on the lunar equator from its
ascending node on the ecliptic. The value of a.Q changes very
quickly because of the precession of the Moon's axis of rotation
(Appendix A); hence, it is sormetimes more convenient to use
angle aT, which is the lunar right ascension measured first from
the vernal equinox on the ecliptic and then from the ascendirg

node on the lunar equator.
The relation between these two lunar right ascensions is given by

T
an=aT—(12+¢') , a =ag +12+4¢" (1)

where ¢’ =Q + 0, and ¥/, 2 are the longitudes of the descending node
of the lunar equator and of the ascending node of the lunar orbit,

respectively; o denotes the physical libration in the node (Appendix B).

Ly

Hereafter, unless specially noted, we will omit the term selenocentric.
We neglect the parallax of the Earth-Moon distance, which is possible

in the case of stars, when the mean selenocentric coordinates of the geo-
equatorial, selenoequatorial, and ecliptic systems are the same as the
mean geocentric ones. This parallax will be described in Appendix D.




d..... Lunar declination, which is the angular distance from the lunar equator
measured on a declination circle from 0° to 90°. It has a positive (+)
sign on the Northern Hemisphere and a negative (-) sign on the Southern.

. . Q T
The mean selencequatorial coordinates of a star, a_ ,d ,ora_,d_,
m’ m m’ m
are the selenocentric equatorial coordinates without the influence of the

Moon's monthly aberration and physical libration (Appendices B and F) and

can be obtained from the geoequatorial coordinates in two ways: 1. indirect

transformation, by the use of the ecliptic coordinates, and 2. direct

transformation.

1. First, the mean geoequatorial coordinates a,§ are transformed into

the mean ecliptic coordinates \, B by the well-known formulas

sinf = cos e 8in 6 - sin¢ cos 6 sina ,

cosPp cos\ =cosd cosa ,

cosP sin \ sine 8in 6 + cos € cos 6 sina , (2)

where ¢ is the obliquity of the ecliptic.

Next, the transformation formulas of ecliptic coordinates into seleno-
equatorial coordinates can easily be obtained from the astronomical triangle

on the selenocentric celestial sphere (Figure 1):

sindm=si_nﬂcosl+cosﬁsinl sin (A - Q),
cos d sin(ﬂ-aT)=sinBsinI- cos PcoslIsin(A-Q),
m m

cos dm cos(ﬂ - a:n)= cosPcos(A-RQ) , (3)




where

I = inclination of the lunar equator to the ecliptic,

{1 = ecliptic longitude of the ascending node of the lunar orbit
on the ecliptic. (o is neglected. If we want to consider
it, we have to replace 2 by Q + 7.)

a

Figure 1. Spherical triangle EP(S showing the relation of the ecliptic to
the selenocequatorial coordinates of a star. In the triangle

EP(S, E = ecliptic pole, P( = lunar pole, and S = a star.

The reverse transformation of the mean selenoequatorial into geoequatorial
coordinates is given by the formulas:

o . . o T\
amﬁ-coslsmdm-i-smlcos dm sm(ﬁ-am) .

\ . . . T
cos B sin (A - 2) = gin Ismdm-coslcos dmsm(ﬂ-am) ,

(4)

- T
cos P cos (A - ) = cos dm cos(ﬂ - am) ,

~r:iiﬂm e

T



and

and

sin 6 = cos ¢ 8inP + sine¢ cos P sin X ,

cos 6 sina = - gin¢ sinP + cose cos P sin\

cos b cosa =cosPcos\ . (5)
Equations (3) and (4) for the quantity ag_l can be expressed as:

sin dm=sinﬂcosl+éosﬂsinlsin(k-ﬂ) .

.8 _ . . .
cosd_ sina_=sinPsinl-cosP coslsin(A-02) ,
Q _
cosd_ cosa_ =-cosPcos{h-9Q) , (6)

sin P=cosIsind_ 4 sinlcosd sinaD R
m m m
. . . .
cos P sin ().-Q)—smlsmdm-coslcosdmsmam .

Q
cos B cos (A - Q) =- cos dm cosa . (7

2. The second method is the transformation of the geoequatorial into the

selenoequatorial coordinates by the use of quantities, given in the almanacs,

characterizing the mutual positions of these two systems:

{

inclination of the mean equator of the Moon to the true equator
of the Earth.

A = arc of the mean equator of the Moon from its ascending node on
the equator of the Earth to its ascending node on the ecliptic of
date.

Q'

arc of the true equator of the Earth from the true equinox of date
to the ascending node of the mean equator of the Moon.

According to the notation of triangle P(Pes (Figure 2), we can write

the transformation formulas of these two systems:
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gin 6 = cos v sind + sin v coadsin(an+A) ,
cos 6 sin (@ - Q') =-sindsin + cos t cosdsin(an+ a)

»

cos & cos (o - ') = cos d cos (an + 4) , {8)

and, conversely,

sin d =cos t 8in 6§ - sin L cos § sin (a - Q') ,

cos d sin (ag+A)=sin 4 8in & 4+ cos L cos 6 sin {(a - Q') ,

cos d cos (an + A) = cos & cos (a -Q') . (9)

p®

Figure 2. Spherical triangle P(Pes showing the relation of the geoequa-
torial to the selenoequatorial coordinates of a star.
P8P = 900+ @ - 2); LP®F s =900 - (a7 + 4);
V = node on the Earth's equator of the lunar equator.




2.2 Transformation of Geo-apparent Geoequatorial into Seleno-apparent
— Selenoequatorial Coordinates ,

The transformation of the apparent coordinates is also possible by use
of the formulas given above. However, it is necessary to take into account the
influence of the lunar monthly aberration and physical libration separately
(see Appendices B and F), by replacing I and Q in equations (4) to (7) by
their true values I + p and Q + ¢, where p, o are the physical librations
in the inclination and in the node, respectively. We have another method for
this transformation.

The transformation of apparent geoequatorial coordinates into apparent
selenocentric selenoequatorial ones can be made in four steps as follows:

1. The apparent geocentric geocequatorial coordinates

2
- T T Y
Ggapp-ao+V.A.GT+V.S.um+IIIc (m) +{A+A))a

+(B+B’)b+Cc+Dd+E+tpa+second-order term ,
5 =6 +V.A. 4 V.5 I a1 (I ’ (A +ANa
gapp 0 T8 "985 200 16 100 2

+{B+ B)Yb +Cc’ +Dd’ ¢ tp.5 + second-order term , (10)

are transformed into geo-apparent ecliptic coordinates by formulas (2).
The notation in (10) is the usual one, where V. A, is the annual variation;
V.S, is the secular variation; A, B, C,D,E are the Besselian Day numbers;
pa, p & are the proper motion for a star ina, §; T is the time in tropical
centuries; and t is the time in tropical years.

10



2. The influence of the lunar monthly aberration on the apparznt
geocentric ecliptic coordinates \ N is calculated from formulas

gapp gapp
(C-7) and (C-8) to give which are now selenoapparent

sapp, 2’ psapp, 2’

3. The xsapp,Z’ ﬁsapp,z
selenoequatorial coordinates a

are transformed into pseudo-apparent

sapp, 2’ "’ dsapp, 5+ by formulas (6). These

coordinates can be expressed as

S:a o = 2. + influence of lunar precessmn + influence of lunar
PP, L ~— ——/ monthly aberration,
aQ
sapp, 1
d app. 2/ d + influence of lunar precession + influence of lunar
sapp, L e e monthly aberration.
dsapp, 1 (11)

4. The influence of the Moon's physical libration is calculated from
formulas (B-7) to (B-9).

Hence, the apparent selenocentric selenoequatorial coordinates are

Q _.Q

a =a , + influence of the Moon's physical libration,
sapp sapp, 2

d =d , + influence of the Moon's physical libration . (12)
sapp  sapp, 2

Steps 3 and 4 can be reversed. In this case, it is not important what

corrections, aberrational or nutational, we consider first, Hence,

Y] Q

= H 1 N
gapp, 2 LI pp, 1 + influence of the Moon's physical libration,
= 3 N
dsapp, 2 ° dlapp, 1 + influence of the Moon's physical libration, (13)
and
a _.a
8.app = aupp, 2 + influence of lunar monthly aberration,
d =d + influence of lunar monthly aberration, ' (14)
sapp  sapp,2 b '

11
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The reverse transformation of the coordinates an , d into the
sapp’ sapp

coordinates o is made in the following three steps:

’ S
gapp gapp
1. The influence of the lunar monthly aberration is eliminated from

0 d and the coordinates ‘0 are obtained from

a s , d
sapp’ sapp sapp,2’ "sapp,2
equations (C-6).

2. The influence of the physical libration is eliminated from the

coordinates aﬂ by equations (B-7) to (B-9).

sapp, 2’ dsapp, 2

3. Thea , d
sapp,l’ "sapp,l
coordinates by formulas (7) and then into geo-apparent geoequatorial coordi-

are transformed into geo-apparent ecliptic

nates by formulas (5). These coordinates are understood to be geocentric
for stars. Steps (1) and (2) can be reversed.

This reverse transformation can also be made by another method:

. Q . .
1. Transform the coordinates asapp‘ dsapp by formulas (7), in which
Iand 2 are replacedby I+ p andl + o (Appendix B).

2. Eliminate the influence of the lunar monthly aberration by (C-7) to
(C-8).

3. Transform the coordinates \ p by

formulas (5).

. intoa , 8
gapp gapp gapp gapp

2.3 Calculation of the Mean Selenoequatorial Coordinates

According to Cassini's laws, the Moon's celestial poles and the plane
of the lunar eqyuator change their positions in space. They make one
revolution about the ecliptic pole axis in approximately 18. 6 years. Thus,
not only the apparent but also the mean selenoequatorial coordinates "?n'
dm change their values quickly because of the Moon's precession, which
is about 1360 times faster than the Earth's. In this case, the linear
interpolation of the mean selenoequatorial coordinates for a period as long
as a year is inaccurate, and second-order terms — variatio secularis —
must be considered. In a manner similar to the way we calculate the Earth's
equatorial coordinates, we can write {see Appendix A):

12



Q _ .0 d d . Q
a ., =3 + (MO + NO sin a, tan do>t
+ : (Nd)2 sin 2 0 + Md N"i cos an tan d -I-(Nd)2 in Zan tanz d tz
Z\No/ B 48 T MgNg 0 0"\ Mo/ * 0 o]
tHy, Ty
d__ @ dyd . 0,042 . 2.0 ¢
dm = do + N0 cos ag t - [NOMO sin a, +(No) sin a, tan do] >
+ P-d Ta s (1 5)
where
a‘:n‘ dm = mean selenoequatorial coordinates for a given moment of
time t expressed in the number of ephemeris days from
the beginning of the tropical year,
ag, do = mean selenoequatorial coordinates for the beginning of a year,
Md Nd = daily precession in the lunar right ascension and |

0* 0 d d a_.d
declination, respectively; MO = - P0 cos I, NO = I-’0 sin I,

where Pg is the daily variation in the longitude of the
lunar orbital ascending node and P§ = - 070529539222,

T

a part of a tropical year,

Hao By = proper motion in lunar right ascension and declination.

The linear interpolation of the mean coordinates is possible if they are
calculated by the rigorous theoretical formulas for a much shor er period
of time, for instance, 10 days. '




The approximate formulas, given by Jakowkin et al, (1964), are

=¥ 4900 - X

L ]

sin dm = cos O sin do + 8in 0 cos d0 sin (ag -X) (16)

0, X*, Y* are additional angles (see Figure 3) calculated from the
formulas

L
sin-§-= sinlsing

4
cot X*= cos I tan -"é— ,

" cos dO cos (a‘; - Xt)
tan Y'= re—\ (17
sinOsindo-cosecosd sinfa. - X )

0(0

where «p( = Pg (tm -t

o

Figure 3. The ijgn’s precession in selenoequatorial coordinates. E is the
ecliptic pole; P(m and Pg are the lunar celestial poles at moments
t.,and tys respectively. :
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o S




2.4 Transformation of Mean into Seleno-apparent Selencequatorial
oordinates

The equations for this transformation can be given in a form similar
to that used for the Earth's equatorial coordinates (Gurevich, 1965);

a Y (. q Lo ¢ {( (K
‘sapp'am'.'A‘ + B'b* + C*¢c" + D*d +‘|“|.La

Gyapp = 4 * AN+ BB L cleCaplaCyn (18)

The meaning of these terms is the same as for the Earth's equatorial
coordinates.

According to equations (A-6) and (B-8), the in“iucnce of the lunar preces-
sion and lunar nutation (physical libration) on the selencequatorial coordinates
is expressed as

& 8 _ (. L O G 0
‘sapp,S"m'A‘ + B'b -ptandmcosam

d . N Y
-(Pot-l-a\ (cosl- sin I tan dm smam) ,

z

/

= a{, .4 _ I Y d
dsapp,?o'dm A*a”™ + B'b" =.-p sina + P0t+0'
X sin I cos a , (19)
m

where an d denote the aa d [ equation (13)], but

‘sapp, 3’ “sapp, 3 sapp,2’ sapp,? q '
without the influence of the Moon's annual aberration. Thus, we have
A(=-(Pgt+o')sinl , l=p ,

a( =+%5(cot I - sin ‘?n tan dm) . b( =+-115-(coa a?n tan dm) .

Q. A _ .8
a’ -cosa_ b™ = . sin a, (20)
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where

Pg = daily motion of the ascending node of the Moon's orbit on the
ecliptic,
t = number of ephemeris deys from the epoch t, of the mean
. Q
coordinates a_, d_ .,
1 = inclination of the Moon's equator to the ecliptic,
p, o = physical librations in I and in ascending node @, respectively.

The appropriate formulas for the influence of the lunar annual aberration
on the selenoequatorial coordinates are as follows [ (C-14), (C-15)}:

Y] Q

_ - RGO o . 8
asapp asapp’3 C*c¢*+ D*'d* = - K sec dm cos(Lap-Q«HBO )smam

-4 Q
-sin(l,. -2+ hd i
{ 180®°) cos a__cos I} ,

= C(c'(+ D(d’( = . Kjlcos{i. -2 +180°) cos an sind
ap m

d -d
sapp sapp, 3 m

+sin(L,_ - +180°)
ap

x (cosd sinl +sin d__ sin an cos I)] -(21)
m m m

Hence,

Oﬁ
"

. o ( o
-Ksm(Lap-ﬂ*}lBO)cosI,Di -Kcos(Lap-n+180),

« __1 Q « _1/. @

c = -—ls(cos L sec dm) R d = 1s\eina,, secC dm .

c'( = gin a‘2 sind +tanlIcosd |, d'( = cos aa sin d . (22)
m m m m m

16



where

L =L -90.+AA’

ap (0]
v
K = k[ - —g cos (Lo - 4]
\'
v sin(L_ - 1)
tan AA = 1°7 0" ¢ , (23)
Ve-v(lcos (LO-I()

and

Ve, V(1 = velocity of the Earth's and the Moon's orbital motion,

respectively,

LG’ 1 C Lap = longitude of the Sun, the Moon, and the Moon's apex

in the motion around the Sun, respectively,

k, K = constants of the Earth's and the lunar annual aberration,

respectively. .
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3. ECLIPTIC COORDINATE SYSTEM

3.1 Introduction

The ecliptic coordinate system was commonly used in astronomy in
previous centuries, but was replaced by the geoequatorial system as being

more practical on the Earth.

The ecliptic system, however, can be very useful for all astronomical
observations that will be made from the Moon's surface. The small inclina-
tion of the lunar equator to the ecliptic, which is about 1°5, makes this
system more convenient for observers on the Moon than it is for terrestrial
observers. The star coordinates in this system do not change so rapidly
as the selenocequatorial coordinates, and they can be used instead of the

latter for a rough orientation on the Moon's celestial sphere.

3.2 Mean Ecliptic Coordinates

The influence of the parallax of the Moon—Earth distance is neglected
for the stars (Appendix D); hence, the mean geocentric ecliptic coordinates

are the same as the mean selenocentric ecliptic coordinates.

There is a difference, however, in the apparent coordinates caused by
the lunar monthly aberration, so we will distinguish between the seleno-

apparent ecliptic and the geo-apparent ecliptic coordinates.
The mean selenccentric ecliptic coordinates for some epoch To can be

obtained by the transformation of the mean geoequatorial coordinates for

this epoch from the well-known equations:

1 9



sin P =cose¢ sin 6 - 8in ¢ cos b sina ,

cos Bcos\=cosacos b,

sin ¢ 8in 6 + cos ¢ cos § sina

cos § sin \

Similarly, as in the case of geoequatorial coordinates, we can obtain the

mean ecliptic cpordinates for another epoch ‘I'1 by using Taylor's series:
2

Xm=xo+(T1-To)VA.k+—ma-— V-S.)\ »

2

B =Bo t(T) - Tg) V-A g+ ——— V. 5.5,

, and V. A, 8’ V.S. B are

(24)

where To is the initial epoch, and V. A, \’ V.S. X
the annual and secular variations of A and B, respectively.

The third-order terms in these equations can be omitted when 'I'0 and Tl

are not very remote, which will apply in the case of first observations made
from the Moon. We can calculate the annual and secular variations in two

ways:
1. by transforming the known values of the annual and the secular

variations in right ascension and declination into the variations in longitude

and latitude;
2. by using the appropriate theoretical equations for the precessional

variations in longitude and latitude.

The first method seems to be easier, especially because the star's

1.
proper motioﬁ, which is known for many stars only in the geoequatorial

coordinate system, must also be transformed.



The differential equations of the transformation are

cos P d\ = cos  cos 8da + ain ndd ,

dP = - sinncos 6da + cos ndé , (25)
where
sinn = cos A\ sec § sine = cos a sec § sine¢ ,
cos n = —C08 € -tan&tanﬁ=c°s‘ - 8in d sin B
N =Cos 6cos P cos b cos P
or

cos 1 = gin A sina + cos A cosa cose ,
cos 1 cos b =cos¢ cosP - sine sinP sin\ ,

sinncos § = sine cos \ ;

7 is the position angle of a star in the triangle made by the points §, E, and
P (see Figure 4).

90°- 3

€

Figure 4. The parallactic angle n of a star S in the spherical triangle SEP,
S - star, E = ecliptic pole, and P = Earth's celestial pole.
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In equation (25) we must replace d\, df and da, dé by the annual or the

secular variations in the respective coordinates.

2. The annual variations in \, f for some epoch To can be calculated

by the formulas

_{ 4\
V-A.k'(dto'fpx ’

d
VA, =(—Edt )0 tug (26)
where

a_dy
F-F - " cos (\ + N) tan B,

%tezﬂsin(k+N) ) | @7

and Ky pp are the components of the proper motion in ecliptic coordinates.
According to Newcomb (1960),

m=0'4711 - 00007 T ,

%%i! = 501256 4 + 0!'022 2 T, and
N =180° - = 180° - (173°57.06 + 54. 77 T) , (28)

where T is measured in tropical centuries from 1900.0, w is the annual rate
of rotation of the ecliptic, Nl is the longitude of the ascending node of the
ecliptic of date on the fixed ecliptic of epoch measured along the fixed
ecliptic from the fixed mean equinox of epoch, and ¢ is the general preces-

sion in longitude.

The values of p,, pg have to be transformed from 'pa, kg by for-
mulas (25). Neglecting the secular variation of the proper motion, we

22



can obtain the secular variations of longitude V.S. N and of latitude

V. S.p hy differentiating equations (27):

2 2
_d° _d°% anm . . dN .

V'S'x':f' -a-t-cos(k+N)tanﬁ+1r sin (A + N) tanb——dt sinl ,

t dt

2

d dr . dN
v.s.ﬂ-:tz@-=a-t-sxn(x+N)+«cos(x+N)a-t- , (29)
where

—-z-dz"‘ =ovo222, - _ouo007 , - _ 54177 (30)

" ' V@ ! C 3 ! .

The second-order terms of the precessional motion are small; so, in
practice, for short periods of time the following formulas are used
(Woolard and Clemence, 1966):

)‘m = )‘0 +al - b1 cos (xo + Cl) tan ﬁO .

g =§0+bl sin()\0+c1) ) (31)

m
where a, is the general precession in longitude, and l:u1 is the rotation of the
ecliptic calculated from the rate of precession dy/dt and rotation of ecliptic
L which are taken for the mean point of the considered time interval,

(tm + to)IZ , expressed in years. Hence,

-(%;E) tm - )

al =
m
= - Y .
b1 “m (tm to, ;
3
c, =180° - (n *‘2‘) (32)
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These expressions are equivalent to the first- and second-order terms of -

Taylor's series.

3.3 Seleno-apparent Ecliptic Coordinates

To calculate the seleno-apparent selenocentric ecliptic coordinates from
the mean ones, we must consider the influence of the following phenomena on
the ecliptic coordinates; the precession and nutation of the ecliptic plane, the

Earth's annual aberration, the lunar monthly aberration, and the proper motion
of the star. We have the following formulas:

- = ﬂ - - Y 3
)‘sapp xo [(dt 0 LA tan 50 cos ()\0 + No) {t to) precession
+ Ay nutation
- k sec bo cos (LO - Xo) Earth's annual
aberration
+uy(t - tg) proper motion
+ (\ - Xo) N : lunar monthly
aberration
(33)
psapp - ﬂo =", (t - to) sin (xo + NO) precession
- ksin B, sin (L5~ \.) Earth's annual
0 0" %o .
aberration
+ ) (t - to) proper motion
+(B -8 , lunar‘mon’_t}hly
aberration
‘ (34)



where

)‘O‘ ﬂo and )‘sapp' ﬂsapp are the mean and the seleno-apparent ecliptic
coordinates, respectively;

git , M, N can be calculated for T = to by formulas {28);

k = 20''496 is the Earth's annual aberration;

Lo is the Sun's longitude;

(t - to) is expressed in parts of the tropical year;

M- 8 - B, can be calculated by formulas (C-7) and (C-8).

The relation between the coordinates xsapp, ﬁsapp (of stars) and the
geo-apparent ecliptic coordinates xgapp, pgapp is given by the formulas

’
A =\ + (N -\
sapp  gapp ( o

4

B B ® - By

= +
sapp gapp

If we put

4

S=1r0(t-to) sin N s=tanBo sinko, 8 cos )\0=-z cotBO

03

’

[

Z=1r0(t-to)cosN z=-tanﬁ0cos)\0, z = sin \ =scotﬁo,

0’ 0

= -kcos L

C =Csece¢ , cp=cos), sec B, c'E=-sinX0 sinbol,

E 0]

. % mi - . ai ' , ‘ 35
DE ksmLO D, dE smko uccﬁo, dE cosko smBo s (35)




then

- - dl - -
Neapp * M0 ( A )0 (t - ty)+Ss + Zs + Cpep + Dpdp + A4
1
+ (k - kO) +px(t - to) »
- ’ 7 ? ’ ? -
ﬂupp - 50 =Ss’'+ 2z + CEcE + DEdE +(8 - po)+ p.p(t to) . (36)

According to (C-7) and (C-8), equations (36) can be written in the form

_fd
Y )‘0 = (-d-‘tk)o (t - to) +Ss +Z2z + CECE + DEdE + Plp1 + qul

sapp
+ A\'J + P'x(t - to) »

- ' ’ ? ’ ’ ’
By = S8 + 22’ + Cpep + Dpdp + Pyp + Q)

p E E°E

sapp
ot
+RF 4 p.p(t - tg) (37)
where

_ m _, - m -
P, =-k nnxapcos ﬂap, Ql"k coshapcosf}ap. Rl k smpa

pl

sec P sin \,

P, = .- gec P cos \, 9,

sin f sin \ , q'l sinbcosx,r'l=cosﬂ: (38)

o
[
n

A__, P__ = the coordinates of the apex of the Moon's motion around
8P 3P  the Earth given by (C-1),

K™ = the coefficient of the lunar monthly aberration given by (C-2),

and

%ﬂ) ' T o Ay, l'l0 = 180 - NO' and DE = D are given in the almanacs.

In order to use formulas (37), the quantities C'E = C sec ¢, and Pl‘

Ql' Rl‘ S, Z must be given in the almanacs.
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3.4 Transformation of the Mcliptic into the Selenoequatorial Coordinate

- System

The small and nearly constant inclination of the lunar equator to the
ecliptic enables us to compute the tables required to transform the coordinates
of these two systems immediately. These tables would be obtained from
formulas (2) and (6) or from (5) and (7).

The differences between mean selenocentric equatorial and ecliptic

4
coordinates, a_ -\ _, u_ -P_, are the same for the same arguments

m m’ m Bm
)‘m -2 and ﬁm’ where 2 is the longitude of the Moon's orbital ascending

node on the ecliptic.

In the transformation of the apparent coordinates, it is necessary to take
into consideration the influence of the physical libration and the lunar monthly
aberration. The latter is calculated from formulas (C-6) to (C-8).

Omitting at first the physisal libration, and taking as constant the
inclination of the lunar equator plane to the ecliptic plane, we can compute
the tables required to transform the coordinates from the one to the other

system,

The appropriate transformation formulas can be obtained by putting
2 = 0 into formula (3):

sind_ =sinPcosI+cosPsinlsin\ ,

0
T
cos do siuao=- sin I sin P + cos P cos I sin )\,
cos d; cos a.; =cosPcos\ . (39)

The tables that give the values of az -\, do

(39), would allow immediate traasformation of these coordinates for every

- P, calculated from formulas

moment of time and corresponding value of Q . and fér every value of A, B:
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T T
2 =’”‘(“0' )x-n '

d =P+(dy-Ph .

Inverse transformation would be po.sible by use of formulas (4):

8in § = cos I sin do

cos P sin \ =

cos Pcos A\ = cos do cos aT

and

* T
A=a +(x-a0)

Insufficient knowledge of the value of I can be overcome by the calculation
of these tables for two values of I and for an interpolation or extrapolation of
the proper values of the differencas.

T
The values of ag - \ and d0 - P, forI1=1"32", are given in Tables 1

and 2, respectively.

0

"r ’
a =11

B=d+(B-dyy

- sin 1l cos do sin aT

0

sin Isind_ 4 cosl cos do sin aT

Valuex of aT - A

Table 1. 0
0° 30° 60° 85°
0’ 0' 00 -53'11 -2°39'22 -17°0C! 36
15 -0.31 -51. 82 -2 35.98 -17 45.33
30 -0.53 -46. 89 -2 21.74 -17 22.57
45 -0. 62 -38. 60 -1 57.09 -15 26,54
60 -0. 47 -27.46 -1 23.56 -11 46.05%
90 ¢ 0 0 0
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Table 2. Values of d0 - B

g
A 0° 30 ° 60° 85°
0° 000 - BT - 2'13 -13.78
15 +23. 81 +23. 14 +21.79 + 9.92
30 46.00 45. 46 44.36 33.83
45 65.05 64. 69 63.95 56.24
60 79. 67 79. 49 79.11 74.95
90 92. 00 92. 00 92.09 92. 00

The physical libration in latitude can be regarded in the same way as vari-
ations in the value of I. The influence of the physical libration in the node can
be taken into account in the argument \ - 2 of the tables. The physical libra-

tion in the Moon's longitude ought to be regarded as the Moon's time correction.

The approximate transformation of these coordinates can be made by the
use of the so-called Woolf networks (Figures 5a, 5b) on the plane of ecliptic
meridians A\ =2 + 90°. We can transform these two systems by placing
the network 5b on 5a, or conversely, so that the points P(, P'( and E, E,

of one network coincide with these points on the second network.

pC <
\E p._E
60° 7 60°
30° 30°
Q-90°| -e0°l-30°f N |+309+60° |Q+90° Q-90°| -60°-30°f] N |304+60° |Q+90°
17" WE
[30° [30°
760° Z60°
E I\P.« E(' P'«
(a) (b)

Figure 5. a) Woolf's network in the ecliptic coordinate system for A\ = £ 90°;
b) Woolf's network in th~ selenoequatorial coorcinate system for
aT=190°.
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4. GEOEQUATORIAL COORDINATE SYSTEM

The geoequatorial coordinate system, although not so convenient for
describing the apparent motion of the Moon's celestial sphere, has the
advantage that there are many different catalogs of star coordinates and
maps or atlases in this system. Hence, it is worthwhile to consider the
possibility of using these catalogs or maps for astronomical observations

made from the Moon, especially as a first step in this kind of work.

The selenocentric mean geoequatorial coordinates of stars are the same

as the geocentric ones (parallax of the Earth-Moon distance is negligible).

The geocentric and selenocentric apparent geoequatorial coordinates are
different because of the lunar monthly aberration. This latter influence can
be calculated by formulas (C-6).

The parallax of the Moon's orbital radius should be taken into account
for all celestial bodies nearer than stars (see Appendix D). Other formulas,
such as those for the Earth's precession and nutation or aberration, can be

used without change.
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5. STELLAR COORDINATE SYSTEM

5.1 Introduction and Definition

The precession of the Earth's equator and of the ecliptic plane - the
basic planes of the commonly used coordinate systems such as the geo-
equatorial and the ecliptic — causes constant variations in the coordinates

of the fixed point on the celestial sphere.

We sometimes try to avoid this problem by using the fixed equatorial
or ecliptic system of a chosen epoch. This system has an unchangeable

position in space, but it does not coincide with the real basic planes of date.

On the Muon, for instance, we can use the ecliptic coordinate system
for a chosen epoch because the precessional variations are smaller than in
the selenoequatorial coordinates. But in this case, the ecliptic at the given
epoch differs also from the one at a date. The introduction of the coordinate

system whose basic plane is fixed seems to be convenient.

We can therefore define the stellar cwordinate system as a heliocentric
coordinate system in which the Z axis is directed to the chosen star S1 and in
which the XY plane perpendicular to this direction passes through the center
of the Sun. The intersection of the XY plane with the great circle of the
heliocentric celestial sphere, which passes through star S, and a second
chosen star Y defines the zero point of the coordinate measured along the
great circle lying in the XY plane; this coordinate is called the stellar right
ascension, X . The second coordinate is the stellar declination, P = 90°- KO"
and is the angular distance from the XY plane measured along the great
circle passing through S1 .
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The choice of stars is completely free. For instance, on the Earth-we
can choose star Sl in the vicinity of the north celestial pole and S, in the
vicinity of the vernal equinox of 1950.0. In the case of the Moon, it would
be more convenient to choose the star S1 in the vicinity of the north ecliptic

pole and S2 near the vernal equinox.

5.2 Transformation of Stellar Coordinates into Other Coordinates, and

Converaelz

The stellar coordinates X , P = 90°- K3 can be obtained by a trans-
formation of the Earth's equatorial system, or of the ecliptic system. We
can find the required formulas immediately by applying the usual formulas
of spherical trigonometry to the triangles SQS1 and SzQs1 (Figux.-e 6),

neglecting the Earth's annual parallax.
The general transformation formulas are the following:

cos K =cos [ cos t”l + sin gsingl cos(vl- v) ,

gsin K cos (X + §) = cos { sin L, - cos ;l sin L cos (vl -v),

sin K sin (x + £) = sin glsin (vl-v) , (43)
where

cos KO = cos ;l cos §,2+ sin Ll sin gz cos (v1 - vz) R

sin K cos € = cos L, sin !’l - sin L, cos Ll cos (wl - vz) ,

sin Ky 8in £ = sin (v1 - vz) sin gz . (44)

Let us put the point Q at the Earth's celestial pole (or at the ecliptic pole or
the Moon's celestial pole) and in formulas (43) and (44) replace



T
2)

& 8,8 by 90°-5,90°-6,, 90°-8, (or90°-B, 90° -p,,

T T
v, vl, vy by a, al, 02 (or A\, Xl, )\2, or a , al. a

90 ° - B, or 90° -d, 90° -d,, 90°-d

1’ 2)
We can then obtain the transforn :rion of the Farth's equatorial (or ecliptic,
or selenoequatorial) coordinates ... > stellar coordinates. The formulas for

the inverse transformation can easily be found on the basis of Figure 6.

Sz

Figure 6. Spherical triangles SQS; and SQS) showing the relation of the
stellar coordinates K, X to the coordinates of other systems
v, {. 8 =a star, Sy» 52 = chosen stars, and Q = pole (Earth's
celestial or ecliptic, or Moon's celestial),
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For the transformation of the heliocentric stellar coordinates of stars
into selenocentric coordinates, we must take into account the influence of the
aberrations of the Moon's motions and the parallax of this translation. The
advantage of this system is the constancy of the coordinates of a fixed point
on the celestial sphere. There will be some changes caused by the proper
motion of the chosen stars, but, of course, these changes are very small.
1f the catalogs of stellar coordinates of stars are computed from the known
equatorial coordinates of the stars, they could then be used without change

for many years.
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6. MOON'S HNRIZONTAL COORDINATE SYSTEM

6.1 Basic Formulas

The Earth's horizonte! coordinates, altitude h, azimuth A, together with

the hour angle 6, all.w us to describe the apparent motion of the celestial
sphere on the Earth.

The Moon's horizontal system, hL, AL, and hour angle GL, defined in

the same way as the Earth's, describe the apparent motion of the Moon's
celestial sphere.

L
The relations of the Moon's horizontal coordinates, altitude h L

=90°- z
and azimuth AL, to the selenocequatorial coordinates and the lunar hour

angle OL‘are also the same as in the case of the Earth:

cos zL = gin qSL sind + cos d cos ¢L cos GL ,

sin zL sin AL = cos d sin BL

>

sin z~ cos AL = - gin d cos 4>L + cos d sin ¢L cos OL . (45)

where BL = Oi‘ - ::10 - € + IZh), and 0,{." is the hour angle of vernal equinox

or local lunar sidereal time (see Figure 7).

For the inverse transformation we have

. L
sin d = sin ¢L cos zL - cos ¢L sin zL cos A
cos d sin GL = sin,zL sin AL

k4

cos d cos BL = cos ¢L cos zL + sin ¢L sin zL cos AL

(46)
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Figure 7. The Moon's astronomical triangle.

It is necessary to rem.mber that, defined in the same way as on the
Earth, the lunar hour angle GL of a star changes its value 27. 3 times more
slowly than on the Earth because of the Moon's slower revolution about its
axis. So, although the differential formulas of the Moon's horizontal coor-

dinates have the same form as in the case of the Earth,

L L . ol
dzL o8¢ "cosdsin 8" _ ¢L sin AT ,
de sin z
dA cos d cos qL L L L L
T = T =gind +cos ¢ cotz cos AT , 47)

do sin 2

the time changes of these coordinates are also 27. 3 times slower than on the

Earth. Table 3 gives the maximumn values of dzL in one Earth sidereal second
for different latitudes of the Earth and of the Moon.
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Table 3. Values of (dzL)max in one Earth sidereal second

Earth Moon
$=0° 15! 0!'6
b = 45° 11 0.4
¢ =90° 0 0.0

All other equations relating horizontal to equatorial coordinates,
especially for such phenomena as rising and setting, culmination, etc.,
are the same on the Moon as on the Earth. It is necessary only to change

the Earth's coordinates a, 6§ and h, A into lunar coordinates an, d and

hL, AL, respectively.

6.2 Transformation of Ecliptic into Lunar Horizontal Coordinates

The use of the ecliptic coordinate system, as more convenient for astro-
nomical observations from the Moon, will require the transformation o these

coordinates into lunar horizontal coordinates.

We obtain these formulas by considering the triangles P(EZ( and SEZ(

on the Moon's celestial sphere (Figure 8).

From the triangle Z( P(E, the zenith distance zé‘, the azimuth
A]Iz';d = 180 o_QZ(, and the parallactic angle QE of the ecliptic pole can he
calculated:
cos z:IE"=sin¢L cos 1 + cos ¢L sin I cos Q s
¢
L P
sin zg sin Q (=sinlsinQ( ,
Z

P
sin zé‘cosQ(=cosIcos¢L-sinlsin¢LcosQ , and
Z p(
sin zé sin Qp = cos ¢L sin Q . (48)
p(
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Figure 8. Spherical triangles P(EZ(( and SEZ( showing the relation of the
ecliptic to the lun=r horizontal coordinates. Here Q C =2 zCp(E

- o4 90° " = 72wl P i
= 6y'+90°-2,Q ¢ =LE2{P(, qp = £Z°EP, O ( = £5Z(E, and
OE=/_Z‘ES=9O°-[QE+()\-Q)]
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The quantities zé. QZ(, QE are functions of 1 (nearly constant), ¢L, and

angle Qp( . Hence, for given ¢L , the values of these quantities can be

calculated for every value of Q ¢ between 0° and 360°. The angle Q

changes its value from 0° to 360° during the month and can be calculated
L

for every moment from known & and O.r .

The values of zé‘ and QZ( calculated, for example, for latitude ¢L = 45°

are given in Table 4 for different values of Qp( = 9.%.‘ +90°-Q,

Table 4. Lunar horizontal coordinates of the north ecliptic pole: zi:".
Qg = 180° - AL for 4 = 45°

Qp( zg Qz( Qp(

0° 43°27!1 0° 00! 0% 360°
30 43 40.6 1 06.5 330
45 43 55.5 1 33.9 315
60 44 13.9 1 53.2 300
90 45 01.2 2 10.2 270
120 45 47.0 1 50.2 240
135 46 05.7 1 30.4 225
150 46 13.3 1 03.6 210
180 46 32.1 0 00.0 180

*rhese values are plus for column ! and minus for column 4.

The changes of azimuth QZ( vili be greater for higher latitudes and
smaller for lower latitudes. The ecliptic pole behaves in the same manner

for observers on the Moon as Polaris does for observers on th= Earth.

Knowing the values of zé", Qz( , and Qz,we can transform ecliptic coor-
dinates \, P into Moon's horizontal coordinates ZL, AL. Applying basic

spherical trigonometric formulas to the triangle Z( ES, we can write
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cos zL=coalea‘sinp+sinsz"cosﬁcoaOE .

. L _ L L

sin z” cos OZ( = gin B sin zp - cos f cos zp cos OE .

. L _ .

sin z© 8in O = cos § 8in O , (49)

z¢ E

where

180° - A= _+0 _ ,

AT A

and

Trarsformation of the ecliptic into the horizontal coordinates can also
be made by the formulas of spherical polygonometry introduced by
Banachiewicz (1929).

The principal formulas of polygonometry are

{1} = {1} pa)) r(A]) p(a,) r(A}) ... play) r(A}) (50)

*
where {1}, p(n), r(n) are the following cracovians:

1 0 0O
{1}:89 oi , ' (51)
0

\ 1 0 0 1
pin) =<0 cosn -s8inn % , (52)
) 0 sinn cosn |

*
Cracovians are the matrices for which a different manner of the multiplication
is defined: Columns are multiplied by columns instead of rows by columns.
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’cosn -gsinn 0 (
r{n) = ?sin n cosn O (53)

0 o 1\

The sides of a polygon are denoted by a,, L PYIRRI and the angles by
r - ° r o e - ° :
Al =180° - Al‘ AZ = 180 - Az, .., A, =18C" - Ak {gsee Figure 9).

=~

Figure 9. Spherical polygon.

Applying formulas (50) to the quadrangle SZ(P(E (Figure 8), we can

write

L

{1} - £ (180° - Og) - piz™) - r(a™) . p(90° - ¢™) . x(90° +2 - 6}

“p(D - r(90°+x-Q)- p(90” -py={1} , (54)
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and
. L L, _ . .
r(Og - 180°) * p(z7)* r(AT)=p(90° - B)* r(@-1-90°): p(-1)

. r(e.{:‘ ~-R-90°%. p(¢L -90% . (55)

A comparison of the third columns of the cracovians of both sides of

equation (55) gives us the required transformation

sinstinAL' 0
L0

< sin chosA s = < -smﬂ : r(ﬂ-r)\-90°)‘ p(-I)
l cos zL , cosﬂ
Cr(ey -2 -90%) - ple™ - 907 . (56)

Formulas (54), written in the form

{1} - pz") - r(a™) - o(90° - ¢% - r(90° +2 - 6l') - p(1)

. r(90°+ X - Q) - p(90° -B)
* r (180° - ) = {1} , (57)
give us the inverse {ransformation
r(180° - Og) * p(f - 90%) - r(@ - A - 90°)

=p-z5) - r(aM) - p90° - o%) - r90c+a-el) . pm . (s8)



6.3 Apparent Motion of the Moon's Celestial Sphere

The apparent motion of the Moon's celestial sphere is about 27. 3 times
slower than the Earth's, but during one long revolution there occur all
phenomena that are observed on the Earth's celestial sphere during 1 day,
such as setting and rising, culminations, elongations, and transits of the
prime vertical. These phenomena can be described on the Moon by the Moon's

horizontal coordinates AL, hL and lunar hour angle GL.

All the formulas for the Moon's horizontal coordinates and the lunar
hour angle of a star in the above-mentioned phenomena have the same form
as the appropriate formulas for the Earth's horizontal coordinates. They are

given in Table 5.

The description of the motion of the Moon's celestial sphere in ecliptic
coordinates is more difficult. It is easy to write the formulas given in
Table 5 as a function of the horizontal coordinates of the ecliptic pole, Zp

o and the angle OE' We can do that by replacing

zC
. L L

90 "¢ by ZE »

180° - A¥ by ©

oo by O

and

zC

E

The quantities zg, OZ(’ OE are time dependent; hence we must use the

method of successive approximation: first, with some approximate values
of zg, OZ(, OE we calculate the hour angle of a star, and then we repeat

the calculation with the time determined in the first step.
Table 6 gives the selenoequatorial, the ecliptic, the Moon's horizontal,

and the geoequatorial coordinates of the special points on the Moon's celestial

sphere.
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In Table 6 the numbers in square brackets denote the following:

[1] Ascending node of the lunar crbit or descending node of the lunar

equator (neglecting physical libration).

(2] Descending node of the lunar orbit or ascending node of the lunar

equator (neglecting physical libration).

[3] Formulas (6) with known \ o B ®
P P

sin d ® =cosecosl+sine sinlcosQ

P
cos d sin a = cosesin] - sinecoslcosQ ,
@ @
P P
cos d cos a = - gine sin Q2
p® pe

®
Similar formulas can be written for point P’ .

[4] Formulas (6) with known XQ, By

-sin dg = sin B( cos I+ éos B( sin I sin (A, - Q)

C

cos dg sin a‘& = - sin ﬂ( sin I + cos (5( cos I sin (k( -Q) ,

]

cos dgcos a% cos (3( cos ()\( - )

[5] Formulas (D-10).

Q
[6] Formulas (45) with known ,alues of a , d of points T and =
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{71 Formulas (45) with known values of an, d of point Q,

tan AKI; = tan B‘I; cosec ¢L ,
cos .Ag; tan z:;' = tan ¢L

Similar formulas can be written for point ¢.

[8] Formulas (48) and (4Y) with known XPQ. BPQ .

[9] Formulas (48) and (49) with known Ay, Bg, or from the triangle opr{ z{
(see Figure 10),

4 . L
cos zlé' = sin ¢L sin b0+ cos ¢I cos by, cos " - lo) ,

sin zé‘ cos Aj;; = » Bin ‘o@ cos ¢L + cos by sin ¢L cos ()\L -lg)

. L . L
sin z g sin A(-D

cos b9 sin (RL - lﬂ-)) s

and le. b_are given by equation (D-22).

-]
[10] Formulas (8)with known s<lunoenuatorial coordinates of Z(, or formulas
(D-10) and (5).

[11] Formulas (5) with known

)\P(,P(,

sinﬁp(=cosecosI+sinssinIcosQ ..

cosG(sina -singcos I +cosesinlcos ,
P =

cosS( cos a ¢ =.-.ginl gin
P P

Similar formulas can be written for the point P’(.
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Figure 10. The Moon's astronomical triangle GP( Z( .
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7. SELENO-RECTANGULAR COORDINATE SYSTEMS

In many astronomical problems, three-dimensional rectangular coor-
dinates are more convenient than spherical onei, and sometimes they are
r~cessary to determine exact positions in space—{for example, of planets
and of artificial satellites.

The rectangular or polar coordinate system can be associated with any
spherical system: selenoequatorial, geoequatorial, ecliptic, or horizontal.
In the case of the Moon, the origin of these coordinate systems will be in
the center of its mass (selenocentric coordinate systems) or in a point on
its surface (lunar topocentric coordinate systems).

The rectangular coordinates x, y, z of a poinc P are related to its polar
coordinates p, u, v (Figure 11) by the following expressions:

x=chosucosv ,
y:pPsinucosv ,
z=p, 8inv . | (59)

-~

The factors of py, in (59) are the direction cosines and can be "sed in

place of u and v to represent the direction of the point.
When we consider the selenoequatorial rectangular coordinates, the

geoequatorial rectangular coordinates, or the ecliptic coordinates, we replace

u, vin (59) by a°, d; a, 6; or \, B, respectively.
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Fhe transformation of one rectangular coordinate system into another
without a translation of the origin of the system requires only the rotation
of the system. For example, the transformation of the ecliptic coordinate
into the selenoequatorial system requires two rotations. The first is the
rotation about the ecliptic pole axis (z axis) throughQ + 180°. The coor-

dinates of the pcint P in this new system will be x’, y', 2'; here

o= - [ in 2
X Xaocl cos y sin ~
= in Q - Q
y X ot sin y cos
! =
& Zecl

Figure 11. The relation of the rectangular coordinates of the point P(x,y, z)

to its polar coordinates (pp, u, v).
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The second rotation is that about the line of the lunar orbital nodes through
I; and the selenoequatorial coordinates of the point P are

14
x =x
sel ’

y'e1=y'cosl+z’ sin I ,

- : ’
zul—-y' sinl+z cosl

Using the rotational cracovians (52) and (53), we can write the above

transformation in the form

X

sel ecl
Yool ! = 4 Yooy ¢ T®+180°) " p(D) (60)
Zgel ] Zecl )

and the reverse transformation in the form

sxecl I s *sel

)Yecl » = ysel l\ . p(-I) . r[ - (180°* +9’] . (61)
. Zecl S lzsel s

With the use of the same symbols, the transformation of the geoequatorial

Y

into the ecliptic system is

x ‘X

ecl geo
Yect f “ \Ygeo [ P(-¢)
Zecl zgeo
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the transformation of the geoequatorial into ths selenoequatorial, and the

reverse transformation, are

x | x
sel geo [

Yeel = { Ygeo [ P(-¢€)  r(@+180°  p() , (62)
Zgel zgecos
and
sxgeo \xsel
Vgeo { = \Vser [ P17 r(180°-@) - pr) (63)
lz 'z
geo | ' “sel |

Expressions (62) and (63) can be written for aT, d in the following form:

‘xsel l sxgeo )
A Ysel L= ygeol . Lp(" Q) r(ﬂ + 180.;%(1) . r(leo. - Q)_‘ . (64)
L
o - 1
sel | \  geo

F4

‘ xgeo sel
ygeo = {Yge1/ r(-180°+Q) p(-1) ¢ r(-180°-9R) " plc) . (65)
\zgeo sel

In the cracovian

Ly Ly Ly

- 66

L} Lz Ly Ly, , (66)
L3 Log Ly,



which is used in lunar research; Lij are the direction cosines of the axes
of the geoequatorial coordinate system Xy Ygo. Zg and the selenoequatorial

one X(, Y(, Z(, as shown by

The tables for Lij were published by Banachiewich (1929) for I = 1°36'06"
(Hayn's value) and ¢ = 23°27'08"'26.

The transformation of selenoequatorial coordinates into the Moon's

horizontal coordinates can be made by the formulas:

( V' sin zL AL A x
s xshor ' s pP cos l sel
_ L L . ( L
- rio

yYshor [ - \Pp SR Z sim AT =Y g
Joo v "
3 Zshor ' APP cos z z

where

L

)- q(90° - &), (67)

sel

cos d cos aQ

Xsel PP

_ . (1)
Vel = Pp cos d sin a g s
Z o1 | Pp sin d

e
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\ cos {90° - ¢L) 0 sin (90° - ¢L) (
(68)

(930° - ¢ ) = 0 1 0 ,
l-sin(‘)ﬂ' - 0 cos(90° - o1y \
and Pp is the distance of the body from the origin of the coordinate system.

The inverse transformation is

sel' s (

Ysel shm. > " q(é - 90°) - ( ) . (69)
K "

shor

:"t"

sel

Formulas (67) and (60) give us the transformation of the ecliptic coordinates

into lunar horizontal coordinates:

shorl \ ecl(
L
Yshor ‘ ecls T Tl +180%) - p(D) - l.(e'neq) * q(90° -¢L) .
‘l Zshor \ ' Zecl {(70)

The inverse transformation is obtained from (69) and (61):

x
s ecl \ shor
L L °
= . - 60° - rf- - p(I): r{ -6 +180°)]. (71
Yool | Yopor b - ale” - c0°) r( eneq) p) - x[ - @ 1. (1)
Zecl Zshor !
Similarly, formulas (67) and (62) give us the transformation of the lunar

horizontal coordinates into the geoequatorial coordinates. The inverse

transformation is obtained from (69) and (63). =
/..
-

56

AL A A RS A s




8. CONCLUSIONS

Insufficient knowledge of the Moon's physical libration and the inclination
of the lunar equatorial plane to the =cliptic limits the accuracy of calculated
selenoequatorial coordinates of stars and of other celestial bodies. At present,
we can expect the accuracy of these coordinates to be of the order of ! to 2

arcmin.

Thus, the ecliptic coordinate system appears to be most convenient for
space orientation on the Moon. The accuracy of the determined coordinates
in this system is high; the precessional motion is smaller than in other
coordinate systems (except the stellar); and the small inclination of the
ecliptic coordinate system to the selenoequatorial coordinate system permits
the use of ecliptic coordinates instead of selenoequatorial ones for a rough

orientation.

The practical use of the ecliptic coordinate system requires the prepara-
tion of catalogs of ecliptic coordinates of stars, tables for the transformation
of ecliptic into selenoequatorial coordinates and vice versa, as well as a
special lunar almanac (Gurevich, 1967) giving the current values of different
quantities such as the coordinates of the apexes of the Moon's motions, the
Moon's orbital nodes, the Moon's physical libration, the apparent-
selenocentric ecliptic coordinates of the Sun, of the Earth, and of the planets,

and the parallaxes of these bodies as seen from the Moon.
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APPENDIX A

PRECESSION OF THE MOON

According to Cassini's laws:

1. The Moon rotates eastward, about a fixed axis, with uniform angular
velocity and a period equal to the sidereal period of the Moon's revolution

around the Earth.

2. The inclination I of the Moon's equator to the ecliptic is constant

and is approximately 1°32.1.

3. The ascending node of the lunar orbit on the ecliptic coincides with
the descending node of the lunar equator on the ecliptic; therefore, the poles
of the Moon's equator, of the ecliptic, and of the Moon's orbit lie, in that

order, on one great circle.

The Moon's axis of rotation and the plane of the Moon's equator make
one revolution about the axis of the ecliptic poles in approximately 18. 6 years.
The angle of the precession cone of the Moon's polar axis is equal to the
inclination of the lunar equator to the ecliptic. Hence, the Moon's precession

is approximately 1360 times faster than that of the Earth.

The longitude of the mean ascending node of the lunar orbit on the
ecliptic measured from the mean equinox of date is expressed by

3

2
Q = 259°10'59''79 - 57134°08'31''23 T + 748 T + 0/'008 T

2 e
2597183 275 - 09052 953 922 2 d + 02002 078 T + 07 000 002 T3, (A-1)

where T 1s measured in Julian centuries from 1900 January 0.5, i.e., from

J.D. 2 415 020.0, and d is the number of ephemeris days from epoch.
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By diiferentiating equation (A-1), we can calculate the daily variation

in this longitude:

=_.0°052 9539222 +0°004 156 T . (A-2)

38

Thus, the daily precession of the ascending node of the lunar orbit is

PS = .0°052 953 922 2 . (A-3)

[« -

The daily precessional motions in the lunar right ascension and declination
a ,d measured from the ascending node of the lunar equator on the ecliptic

are

d _ d d _ d .
MO——PocosI s N0—+PosmI ) (A-4)

where I = 1°32""1 .

The precessional variations of the selenoequatorial coordinates can

easily be obtained by differentiation of equation (6). Thus,

9 £
%:tandcosaﬂ s da = -cosl+ sinItandsinaﬂ R
%ll = - sin aQ , % = sin I cos an . (A-5)

Replacing dI and d? by their precessional variations,

di = 0 and cK2=Pgt ,

and taking into account formulas (A-4), we obtain the influence of the preces-

sion in selenoequatorial coordinates:
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,8 a d d . &
a -ao-(M0+N0tandosma0)t ,
_oad 0
d'-dO-NOt:cosao , (A-6)

where t is a number of ephemeris days from the epoch tg of the mean

. 0
y d -
coolrdmates ao 0
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APPENDIX B

PHYSICAL LIBRATION OF THE MOON

The Moon's rotation about the center of its axis is described approximately
by Cassini's three empirical laws. The different values of the principal mo-
ments of inertia cause some oscillation about the Moon's mean position as

described by Cassini's laws.

A {11 description of the actual rotation of the Moon is given by the angles

$=180" + (f +7)- ', B=I+p, ¢’ =940 , (B-1)
where
b = angular distance of the positive part of the Moon's first
radius directed toward the Earth from the descending
node of the lunar equator,
g = longitude of the descending node of the lunar equator,
g
e = inclination of the lunar equator to the ecliptic,
!Q = mean longitude of the Moon,
I = mean inclination of the lunar equator to the ecliptic, and
T,p,0 = physical libration in longitude £_, in inclination I, and in

(

node 2, respectively.

The quantities T,p,0 can be written in the form (Koziel, 1962)

= A sin(a +3t"0.9853 MY) , free physical libration
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Io

2'9 sing
18]
0v3 sin 2g

- 6512 sin (-g’)

9!'7 sin (2w)

14 sin (-2g’ - 2w’)

2\'5 sin (-g' +w - W)

06 sin (g’ + 2w - 2w')

713 sin (-2g + 2w - 2w')
3!'"0 sin (g - 2g’ + 2w - 2W’)
0''4 sin (2g - 2g’ + 2w - 2W)
7.'6 sin Q

B cos (b's - 146!'6t)

+0.662C" cos (c + 508t - g - w)
+1.662C cos (c + 508t + g +w)

106" cos g

35" cos (g + 2w)

11" cos (2g + 2w)

3" cos (2g' + 2w')

2" cos (g - 2g +2w - 2w)

IT+ B sin(b - 1466t)

+

0.662 C sin (c + 508t - g - w)
* £
1.662 C sin(c + 508t + g+ w)

108" sin g
35" sin (g + 2w)
11" sin (2g + 2w)

- 3" sin (2g" + 2’)

2" sin (g - 2g" + 2w - 2w')
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Here,

ota st

A*, a*; B*, b*; C"‘, ¢ = the constants of the free libration in longitude,
inclination, and node, respectively:

g, g = mean anomaly of the Moon and Sun, respectively;

w' = angular distance of the Moon's and the Sun's perigee from the

ascending node of the Moon's crbit, respectively;

)

t = time expressed in mean days;
M’ = 3M, where M is the Earth's mass;
Y = one of the three quantities (a,p, y) connected with the Moon's principal

mnoments of inertia (A, B, C) by the formulas

C-B 4_C-4A y=B-A (B-5)

In the last formulas, A is the momert about the axis directed earthward

and C is the moment about the Moon's rotational axis., The coefficients of

(B-2) to (B-4) are given for a value of the mechanical ellipticity of the Moon,

(€-B) .9.73 . (B-6)

- B
(C- A)

e
1]
>

The quantity f characte:izes the ratio of the Moon's principal momente of

inertia as well as the Moon's nutation.

The influence of the physical libration in selenoequatorial ccordinates

a“ »d can be calculated by the formulas (Gurevich, 1965)
£ 0 _aQ ’ -
a’™ . a -1a+u‘: , ¢ -d=I 410, . (B-7)

The first-order terms I‘: , Id can be obtained by differentiation of equation
(6) (see A-5) and replacement of d2 and dI by the physical libration in the

node o and in the inclination p , respectively:
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Q
+ 0 cos a

Id = . p sin asapp,l sapp, | sin] ,

a _ Y . a

Ia = p tan dsapp, | cos asapp' 1 - o(cos I - sinl tan d“pp'l gin asapp,
(B-8)

The physical libratior in the Moon's longitude T ought to be taken into

account as the correction of the Moon's time.

The second-order terms are the Fabritius terms

_ Q
II‘: = tan dsapp,l Ia Id ’
II. =-0.5s8ind cos d I2 {B-9)
d ) sapp, 1 sapp,1 'd °

The influence of the physical libration in selenoequatorial coordinates
can be taken into consideration also if we replace in the transformation
formulas (3), (4) or (6), (7) the values of IandQ2 by 1+ p andQ + o. The
physical libration in the Moon's longitude T can also be treated as the

correction to the Moon's time.

But now, while the physical libration is not known accurately, it is
better to regard this influence separately from the transformation formulas
(3), (4) or (6), (7) by the use of formulas (B-7) to (B-9).
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APPENDIX C

ABERRATION OF THE MOON'S MOTIONS

The Moon is involved simultaneously in several motions: rotation about
its axis, revolution around the Earth, revolution with the Earth around the

Sun, and motion with the Sun in space.

All these motions cause the phenomenon of aberration, which changes
the positions of the celestial bodies on the celestial sphere. The lunar daily
aberration is caused by the Moon's rotation about its axis; the lunar monthly
aberration, by its revolution around the Earih; and the lunar annual aberration,

uy its moticn around the Sun.

C.1 Lunar Daiiy Aberration

The small size of the Moon ('r( = 1738 km) and the slow rotation around
its axis are the reasons for the small linear velocity of the points on the

Moon's surface. The maximum velocity on the lunar equator is V(O =4.6m sec'l.

The coefficient of the lunar daily aberration,

e

k% = -2 206265 < 0'001 ,

is so small that its influence can be neglected.

C.2 Lunar Monthly Aberration

The average velocity of the Moon's orbital motion around the Earth is
1.023 km sec-l. The coordinates of the apex of the Moon's orbital motion,
given by Gurevich (1965), with the simplifying assumption that angles l(,
M, T'’/, Q are constant after projection onto the plane of the Moon's orbit,

are
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¢ ap
and
e sin M
ten X S T ecos M (c-h
waere
e, M = eccentricity of the lunar orbit (emax = 0.07) and the Moon's
anomaly, respectively,
wap) max = +i=1+5°;iis the inclination of the Moon 's orbit to the
ecliptic; and
Q = the longitude of the ascending node of the Moon's orbit

on the ecliptic.

Coefficients of the lunar monthly aberration can be calculated (Gurevich, 1965)

by the formulas

m ml+2ecosM+e2

1 -e

{C-2)

The mean value of ko, = 206 265 (V{)_ /c = Q! 70, with c = 299 792.5 km sec” .
The coefficient k' changes its value within the limits 0765 < K <075

because of changes of the Moon's orbital velocity,

0.94 km sec-l < V‘E < 1.09 km sec:"l .

On the basis of the know:a ecliptic coordinates of the apex of the Moon's
orbital motion, its selenoequatorial and geoequatorial coordinates can be

determined.
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The geoequatorial coordinates can be obtained by the transformation of

the known ecliptic coordinates Xa . pap from formulas (5):

i = i i sin \ .
sin aap = cos € sin ﬁap + sine cos pap ap

]

cos § sina_ _=.sinesinP + cose cos sin )\
ap ap ap pa

P ap

5 = ;

cos & cos cap cos ﬁap cos Xa ; (C-3)
or aporoximately, if we put ﬂap =0:
sin § =sin\__ sine ,
ap ap

tan & = tane¢ coseca

ap
tan ®ap = tan kap cose . (C-4)

The selenoequatorial coordinates of this apex can be expressed in ecliptic

coordinates by the formulas that are obtained from the triangles C OorK and
KﬂorL (see Figure C-1):

sin ﬁa
sin CQ = —
or sin i

sind =sinCQ sin(i+I)=sinp nG*+I
ap or ap sini

4 =P sin i+1),~_l3'Es

ap 'ap sini ‘" Tap

. 0 _ .
sin (aap -Q - th) = tan dap cot (i +1I) . (C-5)
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MOON'S ORBIT
ECLIPTIC

Figure C-1. The ecliptic and selenoequa:orial coordinates of the apex C
of the Moon's orbital motion. S, S’ are the true and the
apparent positions of a star, respectively; P{, E are the
poles of the Moon's equator and of the ecliptic, respectively.

The influence of the lunar monthly aberration in spherical coordinates

is different in the different systems.
We can compute this influence in each of the spherical coordinate
systems by using the general formulas for the influence of an aberration in

spherical coordinates u, v (Appendix F),

u-uv =kcosv _sin{u-u_ )secv ,
ap a

v-v mkcosv _sinvcos{u-u )-sinv__cosv , (C-6)
ap ap a
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where u__, Vap are the proper spherical coordinates of an apex and kis a
coefficient of an aberration. The approximate substitutions are given in

Tahle C-1.

Table C-1. The coordinates of the apex of the Moon's orbital motion and the
notation of the true and apparent (at this motion) spherical coor-
dinates in the different coordinate systems

Coordinates
True Apparent of the apex of the
Name of the coordinates coordinates Moon's orbital
cooodinate system of a body of a body motion
u v u’ v u v
ap ap
< Q
Selenoequatorial aq d a’ 2 d a d
ap ap
Ecliptic ! ’ :
clipti B o8 ap Pap
Geoequatorial a ) a’ & a &
ap ap

*Given by the formulas (C-1) and (C-3) to (C-5).

Gurevich (1965) gives the formulas for the influence of the lunar monthly

aberration in ecliptic coordinates as:
’ - =
A=A Plp1 + qul ,

’ - ? ’ ’
g’ -pB= Plpl + qul + erl , (C-7)

with the following notation:

-k sinA cosB ., Q, =-kT cos\ _cosp R, = k™ sin B ,
ap ap 1 ap a ap

p’ Tl

0
"

P = - sec B cos A\, q1=secﬁsinx,

4 sin B sin \, q’l = sin B cos \, r’1 =cosfP . (C-8)

ge)
=)
1l
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C.3 Lunar Annual Aberration

We can assume that the Moon's apex in its motion around the Sun lies
on the ecliptic plane. The latitude of this apex can be calculated by the

following formula (see Figure C-2):

Ve

tan Bap =;%G— sin [i sin ()\ap -2)] ., (C-9)

where

@
v, V% = velocity of the Earth's and of the Moon's orbital motions,
respectively; V®= 29.75 km sec‘l, vl =1.023 km sec._l,

] =
i = inclination of the Moon's ortit to the ecliptic, i = 57 15.
)‘ap = 1« + 90°, longitude of the apex of the Moon's orbital motion.

Figure C-2. The projection of the velocities of the Moon's and of the Earth's
orbital motions on the plane perpendicular to the ecliptic.
v(is the velocity of the Moon's motion around the Sun.
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Because the angles Bap and i are small and V(%/V = 0.03, we can write

B =0.03isin(M -2)<0’15 . (C-10)
ap ap

The angle Bap ie so small that it can be neglected. Hence, the ecliptic
coordinates of the apex of the Mcoon's motion around the Sun, La and Ba.p' as
well as the velocity of this motion, Vg (Jakowkin et al., 1964), are the

following (Figure C-3):

ap O]
B =0 |,
ap
® 2 2 ®
vé A t (v -2 V] vOeos Ly -2 (C-11)
where
V( sin{(L__ - £ )
1 0] ¢

tan AA =
(<) ¢ ’
Vo - V1 cos (Lo—l()

and LOJ( are the longitudes of the Sun and of the Moon, respectively. If we
assume V /V(§ to be so small that we can neglect the second and higher

order terms, then we can write

y
AA = Fésin (LO—I({): 179 sin (Lo-l() ,
¢« o, ¥
v, = V®[1 - ;r—g cos (L - 1()] )
Lp=Lg-90"+aa . (C-12)

The limits of Vg are:

28.7 km sec.1 < Vg < 30.8 km sec'1
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A
L v$
o Q —— —
ol v"‘ 180°-(Lo-£4,) VO .
¢ ;
¢ V: Aa

T
Figure C-3. The projection of the velocities of the Earth's and of the

Moon's orbital motion on the Moon's orbital plane.

Assuming the above-mentioned approximation, we can calculate the

coefficient of the lunar annual aberration K = 206265 Vg /c from

V<
K = k[l - —g cos (Lo - 1()] , (C-13)
v

where k denotes the coefficient of the Earth's annual aberration, and

k = 201496 .

The limits of the variation of K are

197 <« K< 212 ,
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The influence of the lunar annual aberration has to be taken into account
only in the case of the transformation of mean selenoequatorial coordinates
into the apparent ones. Whenever we transform the geo-apparent geoequatorial

coordinates or the ecliptic ones into seleno-apparent selenoequatorial coordi-

nates, it is necessary to take into consideration the lunar monthly aberration
only.

The formulas for the influence of the lunar annual aberration in seleno-

equatorial coordinates are (Jakowkin et al., 1964)
atﬂ - a"0 = K sec d [cos (Lap - Q2+ 1807°) sin a0 - sin (Lap - +180°) cos aﬂcos I] .
d -4 =K[cos (L. -+ 180°) cos ansind+sin(L - +180°)

ap ap

X {(cos d sin I + sin d sin an cos I)] , (C-14)

£
where a ,d and a’g, d’ denote the mean and the apparent coordinates,

respectively., We obtain approximate formulas by putting AA = 0, Lap = LO - 90°,
V(E/VG;: 0, and I = 0. Hence, we have

ao-a'0=-ksecdcos (Lo-aﬂ-Q) R
. . Y]
d -4d& =-k81ndsm(LO-a -Q) . (C-15)

It is easy to write the formulas for the influence of the lunar annual
aberration in ecliptic and geoequatorial coordinates if we assume the same
approximation as before, namely, Bap = 0. The formulas for ecliptic
coordinates can be obtained from those for the influence of the Earth's
annual aberration if we change the longitude of the apex from LO- 90°to
Lap and if we change the coefficients of the aberrations from k to K. Hence,

we have

' : -
X -\ -Ksecﬁsm(Lap 1§ NN

B-Pp =Ksinf cos (La -A) . (C-16)

p
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To calculate the influencc of the lunar annual aberration in geoequatorial

coordinates, it is necessary first to find the geoequatorial coordinates of the

apex, Aap' Dap, of the Moon's motion around the Sun.

B _=0andL__=1L
ap ap

If we assume
o 90 + AA, the geoequatorial coordinates of the apex are

tan A = cos € tan L.
ap a

tanD =tane sin A (C-17)
ap a

Next, from Figure C-4, we can write § - 8’ = SS’ cos & SSO;

(@ - a’) cos & =SS’ sin & SSO; S§' = K, sin SA

a -AAp

ECLIPTIC
Y

EQUATOR

Figure C-4. The lunar annual aberration of a star.

Hence,

sin SA_cos §' SS -sinD_ cosb+cosD sinbcos(a-A )
P 0 ap a

ap

sin SA sin §'SS,. =cos D sin(a - A )
P 0 ap

ap '’
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and

(@ -a’")=K, cos D sin(a-A_ )secd |,
ap ap

1

(5 -8)= Kl[cos Dap sin § cos (a - Aap) - sin Dap cos 8] , (C-18)

where a, 6 anda’, 8’ denote the mean and the apparent coordinates, respectively.
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APPENDIX D

PARALLAX OF THE RADIUS OF THE MOON, THE RADIUS
OF ITS ORBIT, AND THE MOON-SUN DISTANCE

D.1 Introduction

The changes of the directions of the radius vector of a celestial body
(or artificial satellite) caused by the translation of the origin of the coordinate

system from the center of the Moon's mass to a point on its surface is called
the lunar daily parallax.

Taking itito account the Moon's orbital motion and its motion around the
Sun (jointly with the ¥arth), we can ronsider the lunar monthly parallax —
the parallax of the Moon—FEarth distance —and the lunar annual parallax—

the parallax of the Moon—~Sun distance.

The mean diameter of the Moon's globe as well as the radius of the lunar
orbit are small in comparison with the distances of stars, so we can neglect

the lunar daily and monthly parallaxes of stars.
The monthly parallax of a star is defined as

¢ .__Ro
Pm = sin 1" °*

(D-1)
P

where p( is a selenocentric star distance, and R0 = 384,400 km is the mean
Moon—Earth distance. This parallax for the nearest 15 stars, for which
1.3 parsec < Pe < 3.5 parsec, is of the order of 0:'0l to 0.'02. For all other

stars, this parallax is < 0!'0] and generally of the order of several thousandths
cf a second, or smaller.
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D.2 The Lunar Daily Parallax

The lunar daily parallax, or the parallax of the Moon's radius for the
nearer celestial bodies such as the Sun and the planets aad for the Moon's
artificial satellites, is quite large. In the same way that we define the Farth's

horizontal equatorial parallax, we define the mean lunar horizontal parallax as

r
sin pg - (D-2)
Pe
or
C._ ¢
pd -~ P( sin 1" » (D‘3)

where T is the mean equatorial radius of the Mocn and P is the selenocentric
distance of the considered body. Putting for Te the value 1738 km, we can
calculate the mean lunar horizontal parallax for different distances of lunar
artificial satellites (Table D-1) and for the extreme distances of the planets
(Table D-2). The parallax for small distances of the order of several times
the Moon's radius, which are the distances of the lunar artificial satellites,

is calculated by equation (D-2), in which p( =r_+ H, and H is a height above

¢

the Mocon's surface.

Table D-1. The lunar daily parallaxes of the distances of the lunar
artificial satellites

¢ H=pc-1¢ ¢
(in units of r() (in units of r() Pg
1 0 90°
1.5 0.5 42°
5 4 11°
6 5 10°
10 9 6°
20 19 3°
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Table D-2.

The lunar daily parallaxes of the Sun and the planets

x
a

Extreme values

(in units of of p¢ ¢

Name 10(J km) {in units of 106 km) Pd
Moon 0.4 ! 0.364 400 to 0.406 730 881.4 to 983.'8
Earth 149.5 149.1 to 149.9 2'.'392 to 2'.'405
Mercury 57.9 72 to 220 15 to 5!'0
Venus 108.3 42 to 257 1'5 to 8!'5
Mars 228.1 57 to 398 170 to 6U'5
Jupiter 778. 6 629 to 928 ~0!'5
Saturn 1 430.1 128 0to 158 0 ~0.'25
Uranus 2 876.5 302 7to 272 7 ~Q!']
Neptune 4 506.6 465 6 to 435 6 ~0.'1
Pluto 5914.8 606 5 to 576 4 ~0:')5

*

a is the semimajor axis of the Moon's orbit around the Farth.

a is the semimajor axis of the orbit of the planet around the Sun.

The distances of points on the Moon's surface from its center of mass

vary from one point to another, so the lunar horizontal parallax also

changes its value.

selenocentric distance is r is

. _r
Slnﬂ’g——-— , or

Pt

m

C
d

P

- sin 1"

The lunar horizontal parallax for the point whose

(D-4)




The parallax wﬁ can be expressed by the mean lunar horizontal parallax p;(i,
r
sin wg = _(_r = sin p( r_, (D-5)
Pe ¢ d r

where r is a radius vector of a point on the Moon's surface expressed in
units of the mean Moon's radius Ter

The shape of the Moon is not well known. However, it is very close to
a sphere and we can expect that the differences in the mean radius of the
different parts of the Moon are not greater than several kilom.ters. The
heights of the Moon's mountains are of the same order. Hence, these small
differences of the selenocentric distances of the point on the Moon's surface
have to be taken into account in the parallax calculation only for such near

bodies as the Earth, Sun, Mercury, Venus, and Mars.

Differentiating formula (D-5), we obtain

cos ""% d ‘ﬂ’S = sin PS drr s
and putting
dl‘r = 110713? =6 - 10“3, cos ﬂg =1, sin p(g: pf{ ,
we have
anl - 6x 107755 . (D-6)
d d

Taking into consideration the parallaxes given in Tables D-1 and D-2, we

can easily see that for all bodies more distant than Mars the influence of
drr = 10km is < 0!'01 and for other planets is < 0!'003,
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Changing the place of observations from the center of the Moon's mass
to its surface, or vice versa, causes the translation of the coordinate system;

we can obtain the proper transformation by using the rectangular coordinate

system
x' X
* 0
yr=<qyy + Y0 . {D-7)
z z' Zo
where
X,¥,2 = selenocentric rectangular coordinates,
x,y,z = lunar topocentric coordinates,
XO’YO' ZO = selenocentric coordinates of the origin of the lunar

topocentric coordinates, which are expressed by the

selenographic latitude and longitude of the Moon.

These rectangular cocrdinates, expressed by the polar coordirates pp, u, v
[ see (E-2) and (E-3)], are

x ‘pp COos u cos v’ x p'p cos u’ cos vV
yp = zpp sin u sin v , Y'p = <pp sinu cos v/ , (D-8)
z Pp sin v z’ Pp sin v/
X0 po cos u, cos v
Y0 = {Pg sin u, cos v, . (D-9)
Z0 Py Sin vy

Substitutions for selenocentric coordinates (pP, u, v), topocentric coordinates
(p’P,u’,v’),and selenocentric coordinates of the origin of the topocentric

coordinate system (po, s vo) are given for different spherical systems in

u
0
Table D-3. If we neglect the difference between selenodetic and selenocentric
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=

latitudes (d:ife1 - ¢L), which in the case of the Moon is small, we obtain

= r, u, is undefined, o =90°, X =0, Y0= 0, and Z0 = r.

Po 0 0
Table D-3. The selenocentric coordinates of a point on the Moon's surface
and the notation of the selenocentric and lunar topocentric

coordinates in the different coordinate systems

Selenocentric
Selenocentric Topocentric coordinates of
Coordinate coordinates coordinates topocentric origin
i !
system Ppl u v S u v/ Pol Yo Yo
L L
Selenoequatorial Pp att d p'p art? d’ r 9“ ¢
eq
. L . L , L « L L 0 L L
Lunar-horizontal Pp AT 190° -2z Pp A 90° - z r |\ 90° - ¢Se1 ¢
A VA
3 3 / ’ 14
Ecliptic Pp |2 B Ppb A $ r |L
Geoequatorial a & 'L a o’ r uz( 62(
eoequatori Pp b
. ARSI A z¢ z¢
The coordinates L™ , B~ anda™ , & are, respectively, the ecliptic

and the geoequatorial coordinates of the zenith of the observer. The ecliptic

) C
coordinates L™ , Bz can be determined from the triangle Z(P(E

(Figure 8, Section 6.2):

sin BZ( = cos I sin ¢L + cos d:L sin I sin 9:; s
e
cos BZ( sin (LZ( - Q)= gin ¢L sinI - cos ¢L('1 cos I sin 9‘1; s
cos BZ( cos (LZ( -Q)= - cos ¢L cos G‘I; . - (D-10)
eq
(¢ ¢

The geoequatorial coordinates az s 62 can be obtained from the ecliptic

coordinates by transformation (5) (Section 2.1).
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Hence, for example, in the selenoequatorial coordinate system the

formulas are

Q
x pPp coOs £ cos d x' p'P cos a’" cos d
/ - H 0 ’ - ’ $ IS2 d) D 11
yp = (ppsin a cos d , y = Pp sina cos » {D-11)
z) pp sin d 2’ p’p sin d
X r cos GL cos ¢L
0 Q
€eq
_ . L L
Y0 = r sin 9n cos & , (D-12)
eq
. L
Z0 r sin ¢

where G‘I; denotes the hour angle of the ascending node of the lunar equator

€q
on the ecliptic, and Po is equal to the Moon's radius r.

In the system of the coordinates in which the x axis is directed to the
Earth (first radius), the y axis is directed 90° to the west (Moon's) of the
x axis, and the z axis is the Moon's axis of rotation, the coordinates XO'

Y., Z, are the following:

0 70
XO r cos )\L cos ¢L
Y0 = r sin )\L cos ¢L . (D-13)
Z0 r sin ¢L

where )\L is the selenographic longitude measured along the lunar equator
from the meridian of the first radius to the Moon's west direction, from
0° to 360°.
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The coordinates x,y, z and ¥/, y/, 2’ in this system are

L,o_ Q@ T L, 0 Ady
x Pp co8 (eneq- a )cosd x PL. 8 (Bﬂeq -a" )cosd
y = Pp sin (9‘_];‘0- aﬂ) cosd) ,/ ¥y = p’p sin (Oé"’o a'ﬂ)cos dy ,
eq eq
- !’ ! »
z pPp sin d z Pp sin d

(D-14)

where GSI;’ 0 denotes the lunar hour angle of the ascending node of the lunar
e
equator mgasured from the lunar meridian of the first radius.

The hour angles G‘I; s GL’ 0 change their values continuously. They can be

eq ik
expressed by other known value?s such as the hour angle of the vernal equinox
(the Moon's sidereal time), the longitude of the ascending node of the Moon's

orbit, and the Moon's longitude.

Generally, we can write

L L o
6, =6, -(-180°) ,
eq
L _ L Q@ _,L _T
0, =65 -3a, =0 -a, . (D-15)

For example, for the situation shown in Figure D-1, we can write

L,o_ ,L,0 oy _ oL,P L o
Oy =07 - (2-180°)= 6" +\7 - (@-180°) ,
eq

L,P_ L,P &__LP T

9* —-9“ -a*-e,r -a,

eq
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PRIME MERIDIAN
- @

0q
Lg = 180°+ ¢,

@ *

The relation between lunar hour angles of different points on

Figure D-1,
the Moon's celestial sphere.

The formulas for the influence of the selenccentric parallax in different

snherical coordinates can be written on the basis of the general parallactic
formulas (E-6) to (E-11):

m, sin {u -uo)

1
v -0 )= -
tan (u u ) 1 - rr‘1 cos (u - uo)

»

n, sin (v - v )
tan (v - vV ) = - 3 P , (D-16)
I-n cos (v -~ v )
P
where
cos v sin v
B s N (D-17)
1 »p cos v 1 pp sin y_

P




cos [0.5 (v - u)] .
0 cosIuo -0.5(u+u)]

tan Yp =tanv (D-18)

and in this case,

u, v = selenocentric spherical coordinates;

W, v = topoceniric spherical coordinates;

Ugr Vo = selenocentric coordinates of the vbservation site;

r = selenocentric distance of the observation site (radius
of the Moon); '

pp = selenocentric distance of a considered body.

The proper substitutions for the spherical coordinates u, v; u’, V';

Uy 5 Vg in the different coordinate systems are given in Table D-3,

G R

In the selenoequatorial coordinate system, these formulas are expressed

as
: o) o, m% sin SL o
tan (3" - a ) = '
1- m(- cos OL
d
tan (d’ - d) = n% sin (d - Y%)
‘ l-n%cos(d-yg)
where
(_rrsinpg cos¢L <(._r'rsinpg sincbL
R cos d ’ g = C :

sin v4

cos [0.5(a’“ - aﬂ)]
cos [9512' - 0.5 (aﬂ + a’ﬂ)]
eq

tan Yé( = tan ¢L

(D-19)
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In the case of lunar horizontal coordinates, if we put (¢§e1 - ¢L) =0, we

obtain AL = A'L and z'lL - z’L = - 'n'g sin z

D.3 Lunar Monthly Parallax

The lunar menthly parallax can be treated a3 the greater lunar diurnal
parallax. Instead of the translation of the origin of a coordinate system
from the center of the Moon to its surface, there is the translation of the
coordinate system from the center of the Moon's mass to the center of the

Farth's mass.

We define the mean lunar monthly parallax by the formula

¢ _Ro
sin P =5 (D-20)
(C

where Pe is the selenocentric distance of a body. Expressing the Earth—

Moon distance A in the unit of the mean distance R, = 384, 000 km,

&( 0
fa
T 0
we can define the lunar monthly parallax vfn by the mean parallax,
A, R
sin ¢ = S o . R sin p( . (D-21)
m RO p( r m

The mean lunar monthiy parallax for stars is small, of the order of several

thousandths of a second or smaller,
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The values of P(En for the Sun and the planets are RO/r( =221.174 times
greater than the lunar daily parallaxes given in Table D-2. The approximate

values of p(r(n for the Sun and the planets, excluding the Farth, are given in
Table D-4.

Table D-4. The approximate values of the lunar monthly
parallaxes of the Sun and of the planets

Name p:'n
Sun ~ 9!
Mercury 6' to 17!
Venus 5' to 32!
Mars 3' to 23!
Jupiter 115 to 2!
Saturn ~ 1
Uranus ~ Q!5
Neptune < 0.5
Pluto < 0!5

Hence, the general formulas for the translation of the rectangular
coordinate system can be written in the same form as in the case of the

lunar diurnal parallax [ see transformation (D-7)] ;

W
= 4 =22
IYS yo o+ {Y e (D-22)
z 2" 200
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where

X,V, 7 = gclcnocentric coordinates,
x",y", 2" = geocentric coordinates,
X Y 7. .= selenocentric coordinates of the Earth's center
06 0@ 09
of mass,

Generally, these rectangular coordinates of a point can be expressed by the
different polar coordinates [ sec (D-8) and (D-9)]; but the topocentric coor-
dinates (p’, u’, v) will be replaced by the geocentric coordinates (p”, v, V'),

and the selenocentric coordinates of the point on the Moon's surface will be

replaced by the selenocentric coordinates of the Earth (AG?(' Ugys ve).

The appropriate substitutions for the spherical coordinates u,v; u”,v";

and Ugys Vg are given in Table D-5 for differcent coordinate systems,

Table D-5. The sclenocentric ¢oordinates of the Earth and the notation of
the selenocentric and geocentric coordinates in different systems

Selenocentric
Selenocentric Geocentric coordinates of
Coordinate coordinates coordinates the Earth
system
u v o’ v Ug Vo
. . L, 0 £ v L,0 _w€d] .
s 600 -a d esze -a d l@ b0
Selenocquatorial } 1 q
) 4 Y] " L,o_
eq
Ecliptic A g A" p” | 180°+ f( —{3(
Geocquatorial a ) a” 6" | 180°+ u( -u(
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Here, are the selenocentric selenographic latitude and longitude

bo' o
of the center of tne Earth (or the sub-Earth point on the Moon's surface),
which are given in the almanacs and are calculated by the known formulas

of the geocentric Moon's optical libration (Arthur, 196¢0):

cos (¢ +l®-$2) cos b®= cos UC -2 - N) cos [5({ ,

sin ({ + 19 -2) cos be= sin ”Q - - N) cos B( cos I - sin [3{ sinl ,

sinbg=-sin({_-Q- N)cosP_sinl-sinf cosl , (D-23)
¢ € €

where l(, 5( are the Moon's true geocentric coordinates, {I is the longitude

of the mean ascending node of the lunar orbit on the ecliptic, Iis the
inclination of the Moon's equator to the ecliptic, N is the nutation in the

longitude, and ¢ is the mean geocentric longitude of the Moon.

The appropriate formulas in the selenocequatorial coordinate system

are
X 5% cos a> cos d° x" Py cos 2% cos &
y = <p, sin a(z cos d , Yy’ = p'é; sin " cos d” ,
z (\p(, sin d z’ p’é sin 4"
X()G) AQ(( cos (99 - ISB) cos b@
L,0
= i ey D-24
YO@ A@({ sin (eﬂeq @) cos b® s ( ) '
20@, A@K sin b@
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or

x p, cos L,0 & cos d x" P COS gl 0 a"Q cos d”
C eq ® Qeq

y = 9P¢ sin (6(%‘(;;) - aﬂ> cos d , vy’ = Po sin(eg”)i‘c’lo - 0) cos d”

z Pe sin d z" ) Pg Sin a”

XO@ A(-B({ cos lgcos bQ)

Yoo/ A@( sin {gcos bg . (D-25)

Similarly, as in the case of the selenocentric parallax, the influence of
the lunar monthly parallax in spherical coordinates can be expressed by the
general formulas for the parallax (D-16) to (D-18) with the substitutions given
in Table D-5.

The influence of the lunar monthly parallax in selenoequatorial coordinates

aﬂ , d is expressed by

q L,0 £
Q m_ sin (Gaeq - le- a )
tan (a” - a )= s
l-m( cos OL’O-!-a‘3
0 @
eq
nfn sin (d - vgl)
tan (d” - d) = 7 7 , (D-26)
l1-n> cos(d-vy>)
m m
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where

o ( O .
O sin m  cos b@ ¢ sin n'm sin b@
= n
m cos d ’ . C ’
sin y
m
Y S+
tan y( =tan b cosf0.5 (@ -a )] .,
m cos [BL’ O ¢ -o0.5 (aﬂ + a"ﬂ)
fleq ©
A
sin 1 = 2 (D-27)
m Pe

Knowledge of the lunar monthly parallax in geoequatorial and ecliptic
coordinates can be very useful in practice because the coordinates of the Sun
and of the planets are given in these systems in astronomical almanacs. So
we will be interested in the corrections that allow us to calculate the seleno-
centric coordinates of the Sun, the planets, etc., from the geocentric

coordinates.

In this case, we can treat the lunar monthly parallax as the larger Earth's
geocentric parallax and introduce iato the formulas for the Earth's geocentric

parallax the proper substitutions that are shown in Table D-6.

Table D-6., Transformation of the formulas for the Earth's geo-
centric parallax into the formulas for the lunar
monthly parallax

Earth's geocentric parallax Lunar monthly parallax
Radius vector of the Earth's Radius vector of the Moon's
surface point mass center, Ag(

kY Earth's topocentric distance Selenocentric distance, p(
Earth's topocentric coordinates: Selenocentric coordinates:
X,I p,; a” 6’ X’ B ; 0') 6
Coordinates of the zenith: Geocentric coordinates of the
h=S-a, ¢; ) zenith , Bzemth Moon: a(, 5(; [(, p(

.
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Hence, the influence of the lunar monthly parallax in ecliptic coordinates

is expressed by

-m’ sin(f -\ e0)
tan (A .-\ ) = < —E .
sel “geo l1-m' cos (L -\ )
e q geo
-n’ sin(y’ -8 )
e e geo
- = ; , D-28
tan (psel Bgeo) 1 - n’ cOS (Yre_ pgeo) ( )
where
A .
L A@g cos ' o & 51?5 ’
e pgeo cos?geo e pgeo sin ye’
an v = tan [3( cos[0.5 (Agey - 2 eo)] . D-29)
e cosn( - 0. 5()\Sel + )‘geo)
and in geoequatorial coordinates by
m’ sin (a, - a )
tanf(a 1 - © )=-1 _%ﬂ gaeo y ¢
se geo -mcos (e, -a .,
n’ sin(y’ -6 eo)
tan(b_ . - 6geo) Rl cos(y’g—%v- geo) , (D-30)
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where

A A i
. o[ €°° 6( o _g( sin 6(
pgeo cos B_geo Pgeo 510 Yg,

tan 6 cos[0.5 (a

-a )]
’ _ [ sel eo
tan Yg ~ Cos ﬁ-( -0.5(, )]

a
geo

In these formulas, \ g 6 denote the geocentric coordinates,

geo’ geo; ugeo’ geo
and \, B; a,8 the selenocentric coordinates.

D.4 Lunar Annual Parallax

Earth astronomical almanacs very often give not only the geocentric
coordinates of planets but also the heliocentric cnes, mainly the ecliptic.
It would be useful to be able to calculate the selenocentric coordinates

directly from the heliocentric coordinates without calculating the geocentric

ones.

The translation of the celestial body's heliocentric rectangular

coordinates (XO, YO, ZO) of any system into the selenocentric ones (x,y, z)

can be written in the form

sXO Sx 2
YO = J{y + 2 s (D-31)
?\ZOV z" Z((()

where X((o, Y(O, Z(O are the heliocentric rectangular coordinates of the Moon,

which are not given in the almanacs. The almanacs give the geocentric
rectangular coordinates of the Sun (XO, YO’ Zo), which can be easily
changed into heliocentric rectangular coordinates of the Earth:
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If we know the geocentric roctangular coordinates of the Moon (X,,Y , 7..((),

"«
which will be useful to have in the Moon's aimanac, we can calculate the
00 _0
X , Y :
¢ 4
w0 0
\ X(( \ o' x(’
0 0
\ Y = + D-32
) (‘ Yo Y(\ ( )
0 0
zZ + Z
L ¢ @ ¢

Hence, the heliocentric distance of the Moon can also be calculated:

2 2
) 0 o
Ao * (x( £, + 2 ) . (D-33)




APPENDIX E

GENERAL PARALLACTIC FORMULAS IN
RECTANGULAR AND SPHERICAL COORDINATES

The general formulas for a parallax caused by a translation of the origin
of any coordinate system can be written if we know the length and direction

of the translation.

The general relations between the rectangular coordinates of a body in

the two systems, initially X, Y, Z and translated X', Y/, 2/, are the following:

X ) ‘x') sXO
o= Jy! + Y0 . (E-1)
s Zo)

Introducing the polar coordinate system p, u, v, we can write the rectangular
coordinates in the form

\x pPp COS u cos v s ' cos u cos Vv

N
y > = 'pPSinlICOSV‘ , Yy o= »p’Psinu’ cos Vv , (E=2)
I F |
\

’

Pp sin u

z | (pp sin u

X, sA cos u, cos v,
Y0 = ?A sin uo cos v0 . (E-3)
ZO; A sin v,

The notation used above is illustrated in Figure E-1.
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Figure E-1. Translation of the rectangular coordinate system,

Introducing =quations (E-2) and (E-3) into (E-1) gives us

’ ’
Pp cos u cos v chosucosv-Acosuocosvo ,

p'P gin U cos Vv Pp sin ucos v - Asin ujcos vy ,

°p sin u = pp sin u - A sin u, (E-4)

which can easily be transformed into

' : ' - .
Pp cCs v/ sin (W' - u) = A sin (u - uo) cos vy,

p'P cos v cos(u - u) = Pp CO8 V - A cos (u - uo) cos vy ,

p’P sin v = Pp sin v - A sin vo - (E-5)
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The first two equations of (E-5) yield

m, sin{u - uo) 6
. 4 - -
uan (u - u) 1 -ml COS (u - uo‘y ? (E )
where
Cos v
1‘1‘11 = —A—. — 0 B (E‘7)
Pp COS V

Multiplying the first equation of (E-5) by sin [ 0.5 (u’ - u)] and the second
by cos [ 0.5 (0’ - u)] and adding them, we obtain

' = - i E.
Pp cos v Pp cos v - A cot yp sinvy (E-8)
where
_ cosf0.5 (v - u)] )
tan Yp = tan ) cosTuO 0.5 )] (E-9)

Equation (E-8), together with the third equation of (E-5), yields

n, sin (v - yp)

-y = -1
tan (v - v) = 3 el (E-10)
where
sin v
n = —A—;in 0 (E-11)
Pp S ¥Yp

The formulas (E-6), (E-7), and (E-9) to (E-11) are the general formulas for

the influence of a parallax in spherical coordinates u, v.
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APPENDIX F

GENERAL FORMULAS FOR THE INFLUENCE OF
AN ABERRATION IN SPHERICAL COORDINATES

The basis for our calculations is given in Figure F-1.

Figure F-1. Aberrational displaczment of a star.

Ap (ua PV, )} = apex of the considered motion of the cocrdinate
P P system,

S(u,v), $(W,v')= true and apparent positions of a star, respectively,
P = pole of the coordinate system,
oS = equator of the system,

2

0 = zero point of the {irst spherical coordinate u.




According to Figure F-1, we have
SS’ = k0 sin SA
p
{u-u) cos v =58 sin AAPSS1 ,

v-v =S8 cos ZAPSS (F-1)

1

In these formulas, the coefficient of an aberration ko is

- Vv
k0 “csinl" O’

where V is the velocity of the considered motion of the coordinate system,
and c is the velocity of light, 299,792 km sec-l. On the basis of the triangle
A PS,
p
0

u-u=k, cosv sin{u-u )secv |,
ap ap

o= . ) L ain v ‘ F-2
v-v kocos v, Sin v cos (u uap) smvapcosv { )

which are the general formulas for the influence of an aberration in spherical

coordinates.
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G.

APPENDIX G

TABLE OF CONSTANTS

] The IAU System of .A\stronomical Constants

G.

G.

1.1 Defining constants

Number of cphemervis seconds in
one tropical year (1900)
Gaussian gravitational constant,
defining A. U.

1.2 Primary constants

Measure of 1 A.U. in meters
Velocity of light in meters
per second

Equatorial radius for Earth
in meters

Dynamical form-factor for
Earth

Geocentric gravitational
constant (units: m3 sec-z)
Ratio of the masses of the
Moon and Earth

Sidereal mean motion of Moon
in radians per second (1900)
General precession in longitude
per tropical century (1900)
Obliquity of the ecliptic (1900)

Constant of nutation (1900)

105

s = 31 556 925,974 7

k=0.017 202 098 95

2 = 149 600 x 106

c=299792.5 x 10°

a_= 6378 160

7, = 0.001 082 7
GE = 398 603 x 10°
W= 1/81.30

ng = 2.661 699 489 x 107°

p =5 02564

€= 23°27'08!'26
N = 9:210




G.1.3 Auxiliary constants and factors

1. k/86400, for use when the unit of

time is 1 sec

2. Number of seconds of arc in
1 radian

3. Factor for constant of
aberration

4. Factor for mean distance
of Moon

5. Factor for parallactic inequality

G.1.4 Derived constants

Solar parallax
Light-time for unit distance
Constant of aberration

Flattening factor for Earth

(% O P R S

Heliocentric gravitational

constant (units: m3sec—2)

Ratio .f masses of Sun and Earth

Ratio lof masses of Sun and
Earth + Moon

8. Perturbed mean distance of
Moon in meters

9. Constant of sine parallax for
Moon

10. Constant of lunar inequality

11. Constant of parallactic inequality

106

k’ = 1.990 983 675 X 10'7

206 264. 806

]:7'1 = 1. 000 142

F, = 0.999 093 142

F3 = 49 853.2

arcsin (ae/A) =Ty = 8!'794 05 (8:'794)
Alc=1, = 499%012 = 1°/0. 002 003 96
F KT, = k= 201495 8 (201'496)
f=0.003 352 9 = 1/298.25

3 Z=GS=132718>< 101

ATK >

(GS)/(GE) = S/E = 332 958
S/E(I + p) = 328 912

x21/3 3
F [GE(I+p)/n ] = a, =384 400x 10
2 q (¢
ae/a( = gin v(= 3422451
B a( ’
— = = 1" LA
T A = L= 61439 87(61440)
1-u
- — = = I
Fy s 3= P = 124! 986




G.1.5 System of plar=tary masses

Reciprocal mass Reciprocal mass
Mercury 6 000 000 Jupiter 1 047,355
Venus 408 000 Saturn 3501.6
Farth + Moon 329 390 Uranus 22 869
Mars 3 093 500 Neptune 19 314
Pluto 360 000

G.1.6 The true values of the primary constants are believed to lie between
the following limits™

A =149 597 to 149 601 x 106m p-l= 81.29 to 81. 31

¢ =299792 to 299 793 » 103 m sec—l n( = correct to number of places given
a_ = 6 378 080 to 6 378 240 m p = 502640 to 5 026:'90

7o = 0. 001 082 4 to 0.001 082 9 € =23°27'08!'16t0 23°27'08.'36

GE = 398 600 to 398 606> 10  m> sec™> N = 9200 to 9210

G. 1.7 Correspondingly, the limits for the derived constants are

T = 81'793 88 to 8!'794 34 £=l =298.33 to 298. 20
' T = 4997001 to 4997016 a, =384 399 to 384 401 - 10> m
K = 201495 4 to 20.'496 0 sin m = 3 4221397 to 3 422!'502
GS =132 710to 132 721> 1015m3 sec-2 L = 6!'439 0 to 6.'440 8
. S/E = 332 935 to 332 968 P, =1241984 to 124989

S/E(I+p) =328 890 to 328 922

:';Given by the Working Group in Joint Discussion of XII General Assembly
of the IAU, 1964.




G.2 The Moon's Constants

G.2.1 Size, mass, density, gravitational constant, principal moments of
inertia, physical libration

t
Name Value Moon's value

Ratio: Earth's value
Mean radius r( =1 738 km 0.27 a:
2
Mean surface S( = 37.96 x lO6 km 0.17
Mean volume V= 2199 10%% cm? 0.02
25

Absolute mass (for me = 7.353 x 107" g 0.012

G=6.668 +0,0510-8

cm3 g-1 sec-?)

. ¢ -3

Mean density p =3.34gcm 0. 60
Mass ratio mq_)/m( = 81. 303T -
Moon's gravitational Gm( =4 902.66 + 0. 16I 0.012

constant

L 2 -2
Gravitational Gm(/r( = 162 cm sec less than 1/6
acceleration
. 1/2 . -1

Velocity of (ZGm(/r() = 2.3¢ "‘m sec 0.21
escape ‘
Angular velocity 2.67 % 10°% rad sec”] 0.037

of rotation

*ae = 6 378.155 km; it is calculated with the value GM@ =398 601 £ 1 km sec-2

determined by JPL on the basis of Rangers 6 to 8 and with adopted
c =299 792.5 km sec-1.

The value determined by JPL on the basis of Rangers 6 to 8. The value
adopted by IAU is 81. 30.

Mean value of results determined by JPL on the basis of Rangers 6 to 9 and
Mariner 4.




Axes of the Moon's ellipsoid (Potter, 1967)

a=1739.23+0.11 km (toward the Earth)
b=1735.44 + 0.27 km
c=1736.04 +0.29 kmm (Polar)

The flattening of the visible disk f( = 1/920.

s
Functions of the Moon's principal moments of inertia

a=398.4> 107°
B = 629.4 x 10'6
vy =231.0 x 10'6
a
f===0.633
g

Moisting A coordinates
A= -5°%°9'50" + 4!'5
B=-3°10'47" t 44

h = 93228 + 0.009

Several recent determinations of the value of the mechanical ellipticity f

and inclination of lunar equator I1r are given on the next page.

“Given by Koziel (1967) for I = 1°32'04".

- TGiven in transactions of the IAU XII A, 1964.
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Coefficients of the development of the forced physical libration in longitude
T, in node ¢, and in inclination p calculated for the most probable value of
B =0.00063, for 0.000 14 <y < 0.000 28 and I = 1 °32'50" (Eckhardt, 1968):

Coefficients for y = 0.000 14 to y= 0. 000 28

Delaunay

argument
{1"FD D 00O 14 0.000 18 0.000 20 0. 000 22 0. 000 24 0. 000 28
T 0002 -0.30 -0.38 -0.43 -0.47 0. 51 -0.60
sine terms 0 0 2-2 0.98 1.28 1.43 1.58 1.73 2.04
0 1-22 0.22 0.29 0.133 0.36 0.40 0.47
. 6100 52.91 69. 60 78.23 87.07 96. 12 114.89
0200 - - 0.20 0.22 0.24 0.29
-1 0.1 -1.49 -1.43 -1.38 -1.37 -1. 37 -1.33
. 1-1 00 - - - - - -0.20
1 0.2 0 -0. 61 -0. 53 -0.49 -0. 44 -0.40 -0, 32
1 0 0-2 2.55 3.26 3.62 3.98 4.33 -5.05
10 0.1 -1.98 -2.63 -2.97 -3.31 -3.67 -4.43
1 000 -10.96 -13.60 -14.91 -16.23 -11.55 -20.19
11 0.2 - - 0.20 0.22 0.24 0.28
- 2-2 0-2 0. 84 0.56 0.50 0.46 0.43 0.40
2-1 0.2 -0.52 0.71 .80 0. 91 1.02 1.25
2o0-20 -0.33 -4.04 -14.80 32.72 10.80 6.13
20 0-2 5.99 7.76 8.65 9.54 10.45 12.28
20060 -0.27 -0.35 -0. 39 -0.43 -0.47 -0.54
. I, 0002 -0.25 -0.26 -0.26 -6.26 -0. 26 -0.26
5 sine terms 0 0 2-2 -3.14 -3.08 -3.05 -3.02 -2.99 -2.93
: 60620 -10.26 -10.44 -10.53 -10. 61 -10.69 -10.83
1 0-2 0 -40.73 -33.37 -29.69 -26.03 -22.35 -15. 02
Ses 10 0-2 2.77 2. 64 2.57 2.50 2.43 2.30
;\:-: i 000 -112.67 -107. 65 -105.15% -102. 63 -100. 14 -95 13
10 2.2 0.71 0. 6! 0. 56 .50 0,45 0, 34
1620 -0.87 -0.85 -0.84 -0.84 -0.83 -0.81
2 0-2 0 0.42 - - - -0.21 -1, 45
2000 -i.10 -1.01 -0.96 -0.91 -0.87 -0.749
P 00 2-2 -3.22 -3.15 -3.12 -3.00 -3.05 -2.99
5 . cosine terms 0 0 2 0  -10.63 -10.73 -10.77 -10. 81 -10.85 -10.93

* 0100 0.39 0.32 0.28 0.24 0,20 -
i 0-20 40. 82 33.45 29.77 26.11 22.42 15.09
i 00-2 -2.28 -2.12 -2.05 -1.97 -1.89 -1.74
° 1 000 -110.55 -105.45 -102.90  -100.26 -97,82 92.73
s 10 2-2 0.75 0. 64 0.58 0.53 0.48 0.37
1020 -0.77 -0. 76 -0.75 -0.74 -0.73 -0, 71
20-20 -0.81 -0. 47 -0.33 - - 0.34
z2o0o 0 -0.49 -0. 44 -0.41 -0.39 -0.36 -0.32
1 5562. 7 5560, 6 5551, 5 5558. 5 5557. 5 5555. 4
constant term
111




The coefficir .ts calculated for the most probable value of y=0.000 22, for
0.000 60 <P < 0.000 66 and for I = 1°32'50" {(Eckhardt, 1968)*:

coefficients for = 0. 000 60 to B = 0. 000 66

Delaunay
argument
t FD £ = 0.000 60 B = 0.000 63 # = 0.000 66

T 0002 -0.47 -0.47 -0.47
sine term.e 00 2-2 1.59 1.58 1.57
01-22 0.36 0.36 0. 36
0100 87.08 87.07 87. 06
0200 0.22 0.22 0.22
1-1 0-1 -1.37 -1.37 -1.36
1 0-20 -0.37 -0.44 -9.53
100-2 3.97 3.98 3.98
1 00-1 -3.32 -3.31 -3.32
10600 ~16,06 -16.23 -16.42
11 0-2 0.22 0.22 0.22
2.2 0-2 0.45 0.46 0.45
2-1 0-2 0.91 0.91 0. 91
20-20 32.98 32.72 31.10
200-2 9.55 5.54 9. 54
2000 -0.43 -0.43 -0.43
I 0002 -0.25 -0.26 -0.27
sine term 00 2.2 -2.87 -3.02 -3.17
0020 -10.01 -10. 61 -11.22
1 0-20 -22.05 -26.03 -30.22
1 00-2 2.32 2.50 2.69
1000 -95.69 -102. 63 -109. 68
10 2.2 0. 44 0.50 0. 56
: 1020 -0.78 -0.84 -0.89
E 2000 -0.85 -0.91 -0.98
P 00 2-2 -2.93 -3.09 -3.24
cosine term 0020 -.10.18 -10.81 -11.46
0100 0.22 0.24 0.26
1 0-20 22.13 26.11 30. 30
10o0-2 -1.81 -1.97 -2.13
10600 -93.53 -100.26 -107. 28
10222 0.47 0.53 0.59
1020 -0.69 -0.74 -0.79
: 2000 -0.36 -0.39 -0. 42
constant term 5220.5 5558.5 5906. 1

b .
The new values of coefficients given in this table are given by Eckhardt in
manuscript form.
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G.2.2 Orbit

Mean Earth-Moon distance R,= 384 402 + ' km

Extreme values of the Farth-Moon 364 400 km - 406 730 km
distance

Mcan eccentricity of the Junar orbit e = 0.054 900 489

Extreme values of the eccentricity 0.043 2 - 0.0606 6

Mean inclination of the orbit i=5h°15=5°8"'43"

Extreme values of the inclination 5200 - 5230

The longitude of the mean ascending node of the lunar orbit on the ecliptic

measured from the mean equinox of date:

Q 3

259°10'59''79 - 57134°08'31/'23 T + 7.48 T2 +0.008T

2597183 275 - 02052 953 922 2 d + 07002 078 T2 + 07000 002 '1'3

The mean long tude of the lunar perigee measured in the ecliptic from the
mean equinox of date to the rmean ascending node of the lunar orbit, and
then along the orbit:

334°19'461'40 + 117109°02'02!'52 - 37117 T2 - 0.'045 'I‘3

334°329 556 + 0111 404 080 3d - 03010 325 T2 - 02000012 T3

l-\l

The mean longitude of the Moon measured on the ecliptic from the mean
equinox of date to the mean ascerding uode of the lunar orbit and then along

the orbit:

270°26'021'99 + 1 336" 307°52'59:'31 T - 4!'08 T2 + 0.'006 8 T3

~
i

3

1]

2707434 164 +13°176 396 526 8d - 0°001 133 T2 + 0°000 001 9 T



440 it all TiUHeativil Ul 14T vivoil 11011 LHC oudd,

2 3

D = 350°44'14!'95 + 1 236" 307°06'51!'18 T ~ 5!'17 T + 0!'0068 T

= 350°737 486 + 12°190 749 191 4d - 0.°0C01 436 TZ + 0.°000 001 9 T3,

where T is measured in Julian centuries from 1900 January 0.5 E.T. =

J.D. 2 415 020.0 and d is the number of ephemeris days from the epoch.

The lengths of the months for the epoch 1900 are

Synodic 299530 589 29912144™025
T ropical 27.321 582 27 07 43 04.7
Sidereal 27.321 661 27 07 43 11.5
Anomalistic 27.554 551 27 13 18 33,2
Draconitic 27.212 220 27 05 05 35.8

G.3 The Earth's Constants

G.3.1 Size, mass, density, and gravitational constant

Equatorial radius a = 6 378.155 km’;<

Flattening fg = 1/298.25

Polar radius a(l - fg) = 6 356.769 7 km™

Radius vector p= 0.998 327 07 + 0.001 676 44 cos 2®

-0.000 003 52 cos 4®

Reduction from geodetic latitude ¢g to geocentric latitude tb'g:

¢g - ¢’g = 692,74 sin 2¢g - 1!'16 sin 4¢g

“Determined by JPL based on Rangers 6 to 8.
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Mean volume:

1.083 x 1027 cm3

Alsolute mass for G = (6.668 + 0.005) 10-8 3.1

cm” g
5.978 » 102" g

Mean density:

5.54 g cm™3

Mass ratio:

m
-r-m—O = 332 958
@

Normal gravity:

2 ) -
g = 978.049 (1 + 0.005 302 4 sin ¢g - 0.000 005 9 sin? 2 cbg)cm sec

Velocity of escape:

11.2 km sec"1

G.3.2 Orbit

Astronomical unit 149 600 000 km

Inclination of the ecliptic for 1900 €=23°27'08!'26

Mean obliquity of the ecliptic:

€ = 23°27'08!'26 - 46!'845 T - 0!'005 9 T2 + 0:'001 81 T3

237452 294 - 0°013 012 5T - 0°000 001 64 TZ + 0000 000 503 T3
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Eccentricity:

eq = 0.016 751 04 - 0.000 041 80 T - 0.000 000 126 Tz

Geometric mean longitude of the Sun, referred to the mean equinox of date:

LO =279°41'48.04 + 129 602 768.'13 T + 1.'089 Tz

= 2792696 68 + 0°985 647 335 4 d + 0000 303 T>

Mean longitude of perigee of the Sun, referred to the mean equinox of date:

. =281°13'1570 + 6 189103 T + 1163 T2 + 01012 T°

0]
= 281.:°220 83 + 0.°000 047 068 4 d + 07000 453 TZ + 0,000 003 T3
Mean anomaly of the Sun:

= 358°28'33!'0 + 129 596 579110 T - 054 T> - 0012 >

= 358°475 83 + 07985 600 267 0 d - 0°000 150 'I'2 - 0°000 003 'I‘3

L1o)

In the above, T denotes the time measured in Julian centuries of 36 525
ephemeris days from the epoch, and d the time in ephemeris days from epoch
1900 January 0.5 E.T. = J.D. 2 415 020.0.

Length of the years:

3659242 198 79 - 09000 006 14 T

Tropical |
365%05"48™56%0 - 08530 T

3659256 360 42 + 09000 000 11 T

Sidereal

3659%6%09™09%5 + 0801 T

d d

3659259 641 34 + 09000 003 04 T
Anomalistic

365906P13™53%0 + 0%26 T

3469620 031 + 0%00 032 T
Eclipse

346914152™50%7 4 2%8 T

116



G.4 Constants of Precession

G.4.1 Earth's precession (Newcomb, 1960; International Astronomical
Union, 1964)

General precession

€
n

50!'256 4 + 0.'022 2 T

Planetary precession N o= 0!'1247-0/'0188°T
Lunisolar precession ¥, = 501'370 8 + 0!1'0050 T
Precession in right ascension m = 3707234+ 0%00186T
Precession in declination n =20!'646 8 - 01008 5T
Mean obliquity of the ecliptic:
€ = 23°27'08!'26 -~ 46!'845 T - 0.'005 9 Tz + 0!'001 81 T3

237452 294 - 0°013 012 5 T - 0°000 001 64 T2 + 0000 000 503 'I'3

Annual rate of rotation of the ecliptic
= 04711 - 00007 T

Longitude of & ¢is of rotation
N=173°57.06 + 5477 T

The position of the ecliptic in terms of its inclination ™ and node 1'!1 on “'e

fixed ecliptic of the epoch is represented by
m o osinll =+ 40964 T +0U193 9 TZ - 02000 19 T
™, cos ﬁl = - 46!'845 T + 0!'054 5 TZ + 01000 35 T3
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G.4.2 Moon's precession

ot

Daily motion of the ascending node P, = - 00052 953 922 2

oo

of the lunar orbit on the ecliptic

= + 0°052 035 235

. . . d
Precession in seleno-right ascension MO

#
Precession in seleno-declination Ng = . 0°001 394 420

¥ d d d d . 1% an1
MO = . PO cogs I arnd N0 = PG sin I are calculated for I = 1°32!].
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earth satellite on October 4, 1957. Contributions come from the Staff
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nary results of data analyses prior to formal publication in the appro-
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