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ABSTRACT

The paper contains a short outline of the Moon's spherical astronomy.
The problems of the mean and of the apparent selenocentric and lunar
topocentric spherical coordinates is treated deeply. The advantages and
disadvantages of the different spherical coordinate systems, such as seleno-
equatorial, geoequatorial, ecliptic, stellar, and Moon's horizontal, for
orientation in space from the Moon are discussed. The necessary formulas
are given to calculate the mean and the apparent positions of stars and other

•`	 celestial bodies in each of the coordinate systems, regarded equally as
selenocentric or lunar topocentric. The appendices contain short descrip-
tions of all the phenomena related to the discussed coordinate systems:
the Moon's precession and notation, lunar aberrations and lunar parallaxes;
the general aberrational and parallactic formulas are also given.

RESUME

Le momoire contient un court sche'ma de 1 1 astronomie spheri-

qua de la lune. Nous traitons a fond le probleme dos coordonnees

spheriques selenoeentrfques at topocentriques lunaires moyennes

at apperentes. En vue dune orientation dons 1'espace a partir de

Is lune, nous discutons des aventages at desavantages de differents

systemes de coordonnees spheriques, par example Is systeme sale-

.:	 noequatorial, Is systeme gs'oequatorial, is systeme de 1'eclipti-

qua, Is systeme stellaire, at Is systeme du plan horizontal de In

lune. Nous donnons lea formulas necessaires pour calcuatr lea

positions moyennes at apparentes des etoiles at autres corps ce-

lestas dons chocun des systemes do coordonnees, consideres a is

foie comma selenocentriques at topocentriques lunaires. Les

appendices contiennent de courtas descriptions de toes lea phe-

nom nos rattachis aux systemes do coordonnees discute's: 
Is 

pro-

cession at i nutation do In luny , lea aberrations at lea pa-

rallaxes luna

s

 ires; sous donnons ausai lea formulas gene rates d's-

berrations at do parallaxes.
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KOHCI W

b 3TOR CTaTbe npHBOAHTCA KpaTKHA Omepy c4.*pHKecxo# aCTpOHOMNH

J1!iHbl. IipotmeMbi CBA3aHHwe CO CpeAHRMH H xaMymHMHCA ceAeHOUeHTpNMOC-

KHMH M AyHKhWH TOnoueHTPMmecvmmH CA.epmmecyHMH KOOpAHHaTaMH AeTaAbHO

143N MaJOTCA. 06CVzAaVTC19 npOY.MyMeCTBa Y HeAOCTSTKK Apyrxx ctpepume-

CKHX KOOPAHHaT, TaKODWX KaM COAeH03K88TOPRaAbHMX, reo3KBaTOpHAAbHMX,

3KAHnTM%eCKHX, 3Be3AHWX H A,yHHMX ropH3OHTaAbHMX, AAA OpHeHTHpOHKH

B npOCTpaHCTBe OT JIVHw. IlpxeeAeHM Heo6aoAmmue ftpxyam AAA Bummaxe-

HHx CpeAhmx H Kazymmxcm nosoxemuk 38e3A H ApyrHX He6eCHWX TeA 8

KAxAO# CHcTeMe KOOpAmmaT, pacCNaTpHBaetdo# OAHHax08o xax CeAeHoueH-

TpMueCKoA MAX AYHHOA TOnOueHTPM4eCKOA. npNAoseH ys COAepxaT Kpa?rme

onucaHMP HCeX ABAeHHA CBA3aHHbrX C o6CYSA&OMdMH CHCTe34am y. xoopAHHaT:

AyHHoH liieueCNH x HyTauHH, AyHHbix a6epauxg H Ayxxbm napa aaKCoB;

npkBCAeHW TaKxe o6mme a6epaumOHHMe H napaAAaKTHUeCKme topM.yxw.

.

It

I
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SELENOCENTRIC AND LUNAR TOPOCENTRIC COORDINATES

OF DIFFERENT SPHERICAL SYSTEMS

B. Kolaczek

1. INTRODUCTION

The possibility in the .near future of man landing on the Moon focuses
our attention on the problem of orientation in space from places other than
the Earth, e. g. , artificial satellites, the Moon, and the planets.

The usefulness, advantages, and disadvantages of the coordinate
systems such as the geoequatorial, the ecliptic, and the selenoequatorial,
which make possible orientation in space, are different on the Moon than on

the Earth because the Moon's position in space and its motions are different
from the Earth's.

The selenoequatorial coordinate system (Section 2), in which the Moon's
axis of rotation is the basic direction and the lunar equator is the basic plane,
is affected by the motions of this axis and this plane, i. e. , the lunar preces-
sion and the lunar nutation (or physical libration) (Appendices A and B).
The selenoequatorial system on the Moon is analogous to the geoequatorial
system for terrestrial observers, but the selenoequatorial coordinates of
the stars change their values faster than do the geoequatorial coordinates
because the lunar precession is about 1360 times faster than the Earth's.

This work was supported in part by grant NGR 09-015-002 from the National
Aeronautics and Space Administration.
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The small inclination of the lunar equator to the ecliptic, which is

approximately equal to 1 °32', makes the ecliptic coordinate system (Section 3)

much more practical on the Moon than on the Earth. At the same time, the

geoequatorial coordinate system (Section 4) becomes, for the same reason,

very inconvenient for practical use on the Moon. However, the great number

of catalogs, maps, and almanacs giving the coordinates of the stars and other

celestial bodies in the geoequatorial system is its great advantage.

The stellar coordinate system, introduced in Section 5, is defined on

the basis of the kr•-wn heliocentric directions to the chosen stars. It does

not change its position in space so quickly as the other systems. The

coordinates o£ the ntars in this system change their values only because of

their pro"r motions, which are rather small. The comparison of star

obser vattons made in remote epochs is also an advantage of this system.

In this work we give all the formulas necessary to calculate the mean

and the apparent positions o: the stars and other celestial bodies in each

of the aforementioned coordinate systems — regarded either as seleno-

centric or as lunar topo4:entric.

The translation of any coordinate system from one point in space to

another, e. g. , from the Earth's center of mass to the center of mass of

the Moon or of the Sun, changes the values of the spherical coordinates of

fixed points on the celestial sphere. This change is caused ";,y two phenomena:

the parallax of the translation of the origin of a coordinate sy stem and the

aberration caused by the different motion of this newly translated coordinate

system (Appendices C and D).

Thus, the transformation of the mean geocentric or heliocentric coor-

inates, such as ecliptic, geoequatorial, or selenoequatorial, into mean

selenocentric coordinates, and conversely, requires consideration only of

the influence of the Moon's monthly or of the Moon's annual parallax

(Appendix E). The transformation of the apparent coordinates, however,

A
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requires consideration not only of the parallaxes of the translations but also
of the influence of the Moon's aberrations (Appendix F). The lunar daily
parallax and daily aberration must be added in the transformation of the
selenocentric coordinate systems into the lunar topocentric ones.

The lunar horizontal coordinate system (Section 6), defined similarly to
the Earth's, has the same meaning on the Moon as the Earth's horizontal
system has on the Earth. Hence, the apparent motion of the celestial sphere
on the Moon can be described by the same equations as those for the apparent
motion of the sphere on the Earth. We need only substitute in these equations
the selenoequatorial for the geoequatorial and geohoriaontal coordinates.

3/4



2. SELENOEQUATORIAL COORDINATE SYSTEM

2. 1 Definition; Transformation of Mean Geoequatorial into Mean
Selenoequatorial Coordinates

The selenocentric equatorial system (Jakowkin, Demenko, and Miz, 1964;
Gurevich, 1965, 1967), in which the Moon's axis of rotation is the basic axis,
has the same meaning on the Moon as the Earth's equatorial system has for
terrestrial observers. The selenoequatorial coordinates are:

as ..... Lunar right ascension measured on the lunar equator from its
ascending node on the ecliptic. The value of a  changes very
quickly because of the precession of the Moon's axis of rotation
(Appendix A); hence, it is sometimes more convenient to use
angle aT, which is the lunar right ascension measured first from
the vernal equinox on the ecliptic and then from the ascending
node on the lunar equator.

The relation between these two lunar right ascensions is given by

a	
'r

=ar-(12+tp') , a =a a +12+J^'
	

(1)

where q' = 0 + v, and 4, 1 , Q are the longitudes of the descending node
of the lunar equator and of the ascending node of the lunar orbit,
respectively; o denotes the physical libration in the node (Appendix B).

MHereafter, unless specially noted, we will omit the term selenocentric.
We neglect the parallax of the Earth-Moon distance, which is possible
in the case of stars, when the mean selenocentric coordinates of the geo-
equatorial, selenoequatorial, and ecliptic systems are the same as the
mean geocentric ones. This parallax will be described in Appendix D.
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d..... Lunar declination, which is the angular distance from the lunar equator
measured on a declination circle from 0 ° to 90' . It has a positive (+)
sign on the Northern Hemisphere and a negative (-) sign on the Southern.

The mean selenoequatorial coordinates of a star, am , dm, or am , dm,
are the selenocentric equatorial coordinates without the influence of the
Moon's monthly aberration and physical libration (Appendices B and F) and
can be obtained from the geoequatorial coordinates in two ways: 1. indirect
transformation, by the use of the ecliptic coordinates, and 2. direct
transformation.

1. First, the mean geoequatorial coordinates a, 6 are transformed into
the mean ecliptic coordinates X, ¢ by the well-known formulas

sin = cos E sin 6 - sin E cos 6 sin a

cos cos	 = cos 6 cos a

cos ¢ sin X = sin* sin 6 + cos a cos 6 sin a ,	 (2)

where E is the obliquity of the ecliptic.

Next, the transformation formulas of ecliptic coordinates into seleno-
equatorial coordinates can easily be obtained from the astronomical triangle
on the selenocentric celestial sphere (Figure 1):

sin dm = sin 0 coo I+ cos 0 sin I sin (X-f2),

cos dm sin rig - am } = sin 0 sin I - cos A cos I sin (X - U },

cos dm cos 12 - am}= coop cos(k - Q) 	 (3)	 '



S

where

I = inclination of the lunar equator to the ecliptic,

0 = ecliptic longitude of the ascending node of the lunar orbit
on the ecliptic. (v is neglected. If we want to consider
it, we have to replace 92 by Q + u. )

u^

Figure 1. Spherical triangle EP(S showing the relation of the ecliptic to
the selenoequatorial coordinates of a star. In the triangle
EP(S, E = ecliptic pole, P( = lunar pole, and S = a star.

The reverse transformation of the mean selenoequatorial into geoequatorial
coordinates is given by the formulas;

sin k=coo I sin dm + sinIcoodm sin(iE - aT)

cos sin (X - Q) = sin I sin dm - cos I cos dm sin (1Z - am

cos cos (A - 0) = cos dm cos (^ am	 ( )

7



and

sin S =cos t  sin a + sin E cos P sink ,

cos S sin a = _ sin E sin P + cos E cos P sin k ,

cos b cos a = cos A cos a .	 (5)

Equations ( 3) and (4) for the quantity am can be expressed as:

sin dm = sin a Cos l + Cos A sin I sin ( k -SI)

cos dm sin am = sin P sin I - cos A cos I sin (a - 12)

cos dm cos a _ - cos p cos (k - s2)	 (b;

and

sin A = cos I sin d ^ sin I cos d sin am	 m m

coo sin (x - 11) = sin l sin dm - Cos l cos dm sin a n ,

cos cos (a - Q) _ - cos dm cos m	 (7)

2. The second method is the transformation of the geoequatorial into the
selenoequatorial coordinates by the use of quantities, given in the almanacs,
characterizing the mutual positions of these two systems;

i = inclination of the mean equator of the Moon to the true equator
of the Earth.

1^ = arc of the mean equator of the Moon from its ascending node on
the equator of the Earth to its ascending node on the ecliptic of
date.

tt' = arc of the true equator of the Earth from the true =equinox of date
to the ascending node of the mean equator of the Moon.

According to the notation of triangle P F '05 (Figure 2), we can write

the transformation formulas of these two systems:



S

V

3

sin b = cos L sin d + sin i cos d sin (a + ©) ,

cos b sin (a - W) = - sin d sin L + cos L cos d sin (a +

cos b cos (a - Q') = cos d cos (an + d) ,	 (8)

and, conversely,

sin d = cos L sin S - sin i cos S sin (a - Q l ) ,

cos d sin (a^ + A) = sin L sin b + cos L cos b sin (a - S2')

cos d cos (a^ + A) = cos S cos (a - Q') .	 (9)

PO

Figure 2. Spherical triangle P( P0S showing the relation of the geoequa-
torial to the selenoequatorial coordinates of a star.
LP( P^S = 9o` + (a - In; LPaP(S = 9o° - (a + A);
V = node on the Earth's equator of the lunar equator.

9



2.2 Transformation of Geo-apparent Geoe uatorial into Seleno-apparent
Selenoequatorial Coordinates

The transformation of the apparent coordinates is also possible by use
of the formulas given above. However, it is necessary to take into account the
influence of the lunar monthly aberration and physical libration separately
(see Appendices B and F), by replacing I and Q in equations (4) to (7) by
their true values I + p and is + c, where p, Q are the physical librations
in the inclination and in the node, respectively. We have another method for
this transformation.

The transformation of apparent geoequatorial coordinates into apparent
selenocentric selenoequatorial ones can be made in four steps as follows;

1. The apparent geocentric geoequatorial coordinates

2	 3
a gapp = a 0 + V. A. a T + V.S. a ^ + III a 1T + (A + A') a

+(B+ BI) b+Cc+Dd+E+tµa + second-order term ,

2
	OTOYb gapp =5 0 +V.A. S +V.S. b T+III	 +(A+A')a'

+ (B + B') b' + Cc' + Dd' + tµs + second-order term ,	 (10)

are transformed into geo-apparent ecliptic coordinates by formulas (2).

The notation in (10) is the usual one, where V. A, is the annual variation;

V. S. is the secular variation; A, B, C, D, E are the Besseiian Day numbers;
µa, µ S are the proper motion for a star in a, b; T is the time in tropical
centuries; and t is the time in tropical years.

10



2. The influence of the lunar monthly aberration on the appar?nt

geocentriceocentric ecli tic coordinates	 , gaPp is calculated from formulas

(C-7) and (C-8) to give X sapp, 2 , p
sapp, 2' which are now selenoapparent

3. The % Sapp, 2 , P
sapp, 2 are transformed into pseudo-apparent

selenoequatorial coordinates a$app+ 2, , d Sapp, 2 , by formulas (6). These

coordinates can be expressed as

a, = a + influence of lunar precession + influence of lunar
Sapp, 2 ti m	 ----f monthly aberration,

-	 SZ
asapp, 1

d, = d + influence of lunar precession + influence of lunar
Sapp, 2	 m	 monthly aberration.%

dSapp, 1	 (1l)

4. The influence of the Moon's physical libration is calculated from

formulas (B-7) to (B-9)•

Hence, the apparent selenocentric selenoequatorial coordinates are

aB = S, + influence of the Moon's physical libration,
aPP	 app, 2

dsapp _ d
sapp, 2' + influence of the Moon's physical libration .	 {12}

Steps 3 and 4 can be reversed. In this case, it is not important what

corrections, aberrational or nutational, we consider first. Bence,

Sapp, 2 = Sapp, 1 + influence of the Moon's physical libration,,

dsapp, 2 = d
sapp, 1 + influence of the Moon's physical libration,

and

aapg Sapp, 2 + influence of lunar monthly aberration,

dsapp d
sapp, 2 + influence of lunar monthly aberration.

(13)

(14)

11



The reverse transformation of the coordinates sspp' dsapp into the
coordinates agapp, 5gapp is made in the following three steps:

1. The influence of the lunar monthly aberration is eliminated from
sspp' dsapp and the coordinates Sapp, 2 , dsapp, 2 are obtained from
equations (C-b).

2. The influence of the physical libration is eliminated from the
coordinates asapp, 2, dsapp 2 by equations (B-7) to (B-9).

3. The sapp, 1' d sapp, 1 are transformed into geo-apparent ecliptic
coordinates by formulas (7) and then into geo-apparent geoequatorial coordi-
nates by formulas (5). These coordinates are understood to be geocentric
for stars. Steps (1) and (2) can be reversed.

This reverse transformation can also be made by another method:

1. Transform the coordinates asapp, dsapp by formulas (7), in which
I and ft are replaced by I + p and 13 + a- (Appendix B).

2. Eliminate the influence of the lunar monthly aberration by (C-7) to
(C-8).

3. Transform the coordinates X 	 ,	 into a	 , S	 by
gaPP gaPP	 gaPP gaPP

formulas (5).

2. 3 Calculation of the Mean Selenoequatorial Coordinates

According to Cassini's laws, the Moon's celestial poles and the plane
of the lunar equator change their positions in space. They make one
revolution about the ecliptic pole axis in approximately 18. b years. Thus,
not only the apparent but also the mean selenoequatorial coordinates a n'
dm change their values quickly because of the Moon's precession, which
is about 1360 times faster than the Earth's. In this case, the linear
interpolation of the mean selenoequatorial coordinates for a period as long
as a year is inaccurate, and second-order terms = variatio secularis --
must be considered. In a manner similar to the way we calculate the Earth's
equatorial coordinates, we can write (see Appendix A):

12



=a0 +{MO +NO sin a0t tan d0)t

2	 2	 2
C+ , (NO) sin 2a + M0 N0 cos ad 	tan 	 d0 +( NO) sin 2 o tan g d0^ -F

+ µa 'ra ,

dm = d0 +N O cosa Q t - `N0 MO sin a0 + cN0)
2 sin e ao tan 	d0 1 72

+ µ d Ta ,	 (15)

where

, dm = mean selenoequatorial coordinates for a given moment of
time t expressed in the number of ephemeris days from
the beginning of the tropical year,

ao, d0 = mean selenoequatorial coordinates for the beginning of a year,

M0, N0 = daily precession in the lunar right ascension and

	

declination, respectively; MO = - PO cos 	I, NO = Pd sin 1,
where PO is the daily variation in the longitude of the
lunar orbital ascending node and PO = - 0.. 0529539222,

T 	 = part of a tropical year,

µa' µd	 ° proper motion in lunar right ascension and declination.

The linear interpolation of the mean coordinates is possible if they are
calculated by the rigorous theoretical formulas for a much shoe' er period
of time, for instance, 10 days.

1^
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The approximate formulas, given by Jakowkin et al. ( 1964), are

amsY*+(90`

sin dm =coo 8 sin d0 + sin 0 cos d0 sin (aa - je)	 (16)

0, X , Y are additional angles ( see Figure 3) calculated from the
formulas

s in 'f = sin I sin'

cot X*= cos I tan i ' - ,

cos d0 cos 0 - X*
tan Y

	

	 ^	 (17)
sin 8 sin d0 - cos 8 cos d0 sin a0 - X

where ip( = Pd (tm - t0).

Pt
w

Figure 3. The eon' s precession in selenoequatorial coordinates. E is the
ecliptic pole; Pxn and F(0 are the lunar celestial poles at moments
tm and t0, respectively.

14



2.4 Transformation of Mean into Seleno -apparent Selenoequ►torial
Coordinates

The equations for this transformation can be given in a form similar
to that used for the Earth ' s equatorial coordinates (Gurevich, 1465) c

sapp = m + A^ a^ + B^ b^ + Cd c^ + DQ d^ + Ta µa

dsapp = dm + A( a ,( + B(bl$ + C( c ,Q + D( d'( + T  µd .	 (18)

The meaning of these terms is the same as for the Earth ' s equatorial
coordinates.

According to equations (A-6) and (B-81the in`.u^nce of the lunar preces-
sion and lunar notation (physical libration) on the selenoequatorial coordinates
is expressed as

 Sapp, 3 m=A^a^ + B(b( = p tan dm con am

(Pd t+al(cooI _ sin I tan dm sin m)
f

d Sapp, 3 - dm =A( a'$ +B( b'( =-p sin an + (P0t+6)

X sin I cos am	 (19)

where aapp, 3 , dsapp, 3 denote the Sapp, 2 , dsapp, 2 [ equation (13)]. but

without the influence of the Moon ' s annual aberration. Thus, we have

A( = - (Pd t + s sin I	 B( = p

a( = +(cot I - sin m tan dm^	 b( _ + 15 (cos a" tan dm)

a,( = - cos am	bA = - sin a. n	 (20)
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where

PO = daily motion of the ascending node of the Moon ' s orbit on the
ecliptic,

t = number of ephemeris days from the epoch t 0 of the mean
coordinates a ri, dm .

I	 = inclination of the Moon ' s equator to the ecliptic,

p, a = physical librations in I and in ascending node A , respectively.

The appropriate formulas for the influence of the lunar annual aberration
on the selenoequatorial coordinates are as follows [ (C-14), (C-15)] :

Sapp sapp, 3 = C(c^ + D( d(_ - K sec dm [Cos(L p - Q + 180') sin a 

- sin{Lap - 12 + 180'} cos m cos I^ ,

dsapp - dsapp, 3 - C(e(+ Dtd't = _ K [Cos (LP Q + 180') cos a II sin dm

+ sin(Lap -12+1800)

xcos dm sin I + sin dm sin a acos I . (21)

Hence,

C{ =-K sin (Lap -11 + 180°) coo I,D{ _ -K coo (Lap-11+1g0°)

C( = 15 (co s am sec dm) d{ - 15 sin a	 sec dm 1 ,

C A = sin am sin dm + tan I cos dm , d'( = cos am sin dm	 (22}
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where

Lap =L0 - 90' + AA

1
K = k C 1 - —cos(LO - l( )

VU1JJJ

Vi sin (L© - f^)
tan AA =	 ,

V® - Vi cos (LQ

Va V. = velocity of the Earth ' s and the Moon's orbital motion,

respectively,

L0, IC Lap = longitude of the San, the Moon, and the Moon's apex
in the motion around the Sun, respectively,

k, K = constants of the Earth's and the lunar annual aberration,
respectively.

and

(23)
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3. ECLIP'T'IC COORDINATE SYSTEM

3. 1 Introduction

The ecliptic coordinate system was commonly used in astronomy in
previous centuries, but was replaced by the geoequatorial system as being
more practical on the Earth.

The ecliptic system, however, can be very useful for all astronomical
observations that will be made from the Moon's surface. The small inclina-
tion of the lunar equator to the ecliptic, which is about 1`. 5, makes this
system more convenient for observers on the Moon than it is for terrestrial
observers. The star coordinates in this system do not change so rapidly
as the selenoequatorial coordinates, and they can be used instead of the
latter for a rough orientation on the Moon's celestial sphere.

3. 2 Mean Ecliptic Coordinates

The influence of the parallax of the Moon—Earth distance is neglected
for the stars (Appendix D); hence, the mean geocentric ecliptic coordinates
are the same as the mean selenocentric ecliptic coordinates.

There is a difference, however, in the apparent coordinates caused by
the lunar monthly aberration, so we will distinguish between the seleno-
apparent ecliptic and the geo-apparent ecliptic coordinates.

The mean selenocentric ecliptic coordinates for some epoch T© can be
obtained by the transformation of the mean geoequatorial coordinates for
this epoch from the well-known equations:



sin o =Cost  sin 5 - sin a cos S sin a ,

cos P cos k = cos a cos S ,

coop sin k = sin a sin S + cos E cos b sin a .

Similarly, as in the case of geoequatorial coordinates, we can obtain the
mean ecliptic coordinates for another epoch T i by using Taylor ' s series:

2
tT l - To)

Am = kQ + (T 1 - T0) V. A. k + ----^--- Y. S.

(T 1 - TA I?

Am 
= P0 + (T 1 - T a) V. A. + --	 V. S.	 (24)

0	 200

where TD is the initial epoch, and V. A. k, V. S. ^, and V. A. A, V. S. 0 are
the annual and secular variations of k and 0, respectively.

The third-order terms in these equations can be omitted when T O and T1
are not very remote, which will apply in the case of first observations made
from the Moon. We can calculate the annual and secular variations in two
ways:

1. by transforming the known values of the annual and the secular
variations in right ascension and declination into the variations in longitude
and latitude;

2. by using the appropriate theoretical equations for the precessional
variations in longitude and latitude.

1. The first method seems to be easier, especially because the star's
proper motion, which is known for many stars only in the geoequatorial
coordinate system, must also be transformed.



S

The differential equations of the transformation are

cos $ d X = cos T1 cos` & 'da + sin n d b

dp= - sinilcosbda+cooTjdb
	 (25)

where

sin t1 = cook sec b sin a = cos a sec p sine ,

cos a	 cos a - sin b sincos = cos b cos ` tan d tan = 	 cos 6 cos

or

cos -1 = sin x sin a + cos a cos a cos a

cos Tl cos 5 = cos a cos - sin a sin A sin A

sin i1 cos S = sin a cook

Tj is the position angle of a star in the triangle made by the points S, E, and
P (see Figure 4).

P	
4C1• - R

E

Figure 4. The parallactic angle q of a star S in the spherical triangle SEP.
S = star, E = ecliptic pole, and P = Earth's celestial pole.
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In equation (25) we must replace dX, do and da, d6 by the annual or the
secular variations in the respective coordinates.

2. The annual variations in X, R for some epoch T O can be calculated
by the formulas

V.A.X-(dt) +µ^0

V. A. =q) + V 	(26)
0

where

dX _ t - n cos (X + N) tan ¢,dt dt

t = n sin ()L + N)	 (27)

and µ X, µA are the components of the proper motion in ecliptic coordinates.
According to Newcomb ( 1960),

n = 0!'471 1 - 0!'000 7 T ,

d.^.'t)-' = 50: 1256 4 + 0:'022 2 T, and

N = 180* - n = 180* - (173 ° 57.06 + 54. 77 T)	 (28)

where T is measured in tropical centuries from 1900. 0, A is the annual rate
of rotation of the ecliptic, n is the longitude of the ,ascending node of the
ecliptic of date on the fixed ecliptic of epoch measured . along the fixed
ecliptic from the fixed mean equinox of epoch, and 4 is the general preces-
sion in longitude.

The values of µ X, µ, have to be transformed from µa , W6 by for-
mulas (25). Neglecting the secular variation of the proper motion, we
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can obtain the secular variations of longitude V. S. X and of latitude
V. S. P 'hy differentiating equations (27):

2	 2	 ,

V. S. A = z =	 - dt cos (X + N) tan P + n sin (X + N) • tan dt • sin 1
dt	 dt

2

V. S. a =	 = dt sin (X + N) + n cos (a + N) d	 (29)
dt

where

2 dirdd = 01'022 2, 	dt = -0."000 7 , N = -54! 77	 (30)

The second-order terms of the precessional motion are small; so, in

practice, for short periods of time the following formulas are used

(Woolard and Clemence, 1966):

I'm = X0 + a l - b 1 cos (A0 + c l ) tan PO ,

Am = 0 0 + b1 sin (KO +c 1 ) ,	 (31)

where a l is the general precession in longitude, and b 1 is the rotation of the
ecliptic calculated from the rate of precession d4/dt and rotation of ecliptic
IT , which are taken for the mean point of the considered time interval,
(tm + t0)/2 , expressed in years. Hence,

d

	

al = dt	 (tm - t0)
m

bl = nm (tm - t0)
al

c 1 = 180 ' - (nM + --^ (32)
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These expressions are equivalent to the first- and second - order terms of
Taylor's series.

3. 3 Seleno-apparent Ecliptic Coordinates

To calculate the seleno- apparent selenocentric ecliptic coordinates from
the mean ones, we must consider the influence of the following phenomena on
the ecliptic coordinates: the precession and nutation of the ecliptic plane, the

Earth ' s annual aberration, the lunar monthly aberration, and the proper motion
of the star. We have the following formulas:

Xsapp - X0 = Li d /0  - ff 0 tan P O cos (k0 + NO) ] (t - t0)	 precession

+ Ok^

- k sec 00 cos (LO - ko)

+ µ X (t - to)

+ (X` - k0)

Psapp - 00 = 's0 (t - t0 ) sin (AO + N0)

- k sin PO sin (L0 - a0)

+ µp (t - to)

+ (P' - 00)

notation

Earth ' s annual
abe rration

proper motion

lunar monthly
aberration

(33)

precession

Earth's annual
aberration

proper motion

lunar monthly
aberration

(34)
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where

k0, PO and Xsapp, Psapp are the mean and the seleno-apparent ecliptic
coordinates, respectively;

d , n , N can be calculated for T = t 0 by formulas (28);

k = Z0:' 496 is the Earth's annual aberration;

L^ is the Sun's longitude;

(t - t0 ) is expressed in parts of the tropical year;

X  - k0 , 0, - (3 0 can be calculated by formulas (C-7) and (C-8).

The relation between the coordinates k sapp, A sapp (of stars) and the
geo-apparent ecliptic coordinates k gapp, pgapp is given by the formulas

r
ksapp = kgappk0)

n	 Psapp = Pgapp + (P - PO)

If we put

S = n0 (t - t0 ) sin NO ,	 s = tan PO sin k0 ,	 s r = cos AO = - z cot p0

Z = n0 (t - t0) cos NO ,	 z = - tan PO cos k0, z' = sin k0 = s cot P O It

CE = -k cos LC = C sec E , cE = cos k0 sec 00 , cE = - sin k0 sin 00,

nE = -k sin LO =D,	 dE= sin kO sec Pop dE= coo X sin PO	 (35)
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then

X sapp - A O = \ Mo (t - to) + Ss + Zs + CE CE + DEdE .+ A4,

+ ( XI - Xo) + µx (t - to) ,

A sapp - ao = Ss' + Zz' +CEcE +DEdE + (^I - A o ) + µp(t - to)	 (36)

According to (C-7) and (C -8), equations ( 36) can be written in the form

X s ILpp - X0 - (d*
N
 to (t - to ) + Ss + Zs + CEcE + DEdE + Pl pl + C21g1

+ at, + µ x(t - to ) ,

Psapp - 0 = Ss' + Zz, + CE cE + DEdE + Pl pi + Qlgl

+R 1 i  + µO(t - to) ,	 (37)

where

P1 = - km sin Aap cos Aap, R 1 = - km cos Xap c09 0 apt R 1 = km sin Pap,

pl = - sec 0 cos X , ql = sec sin X

pi	 sin A sin X ,	 qi = sin cos A , r, = cos	 (38)

kap, Pap = the coordinates of the apex of the Moon ' s motion around
the Earth given by (C-1),

km = the coefficient of the lunar monthly aberration given by (C-2),

and

{ j , to , b4 0 , no = 180 - No, and DE = D are given in the almanacs.

In order to use formulas ( 37), the quantities CE = C sec a, and P1,
0 1 2 Ri p S, Z must be given in the almanacs.
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3.4 Transformation of the ?'cliptic into the Selenoequatorial Coordinate
System

The small and nearly constant inclination of the lunar equator to the
ecliptic enables us to compute the tables required to transform the coordinates
of these two systems immediately. These tables would be obtained from
formulas (2) and (b) or from (5) and (7).

The differences between mean selenocentric equatorial and ecliptic
coordinates, a in - Am' "'m -

Pm' are the same for the same arguments
x  - Q and Pm, where U is the longitude of the Moon's orbital ascending
node on the ecliptic.

In the transformation of the apparent coordinates, it is necessary to take
into consideration the influence of the physical libration and the lunar monthly
aberration. The latter is calculated from formulas (C-b) to (C-8).

Omitting at first the physical libration, and taking as constant the
inclination of the lunar equator plane to the ecliptic plane, we can compute
the tables required to transform the coordinates from the one to the other
system.

The appropriate transformation formulas can be obtained by putting
0 = 0 into formula (3):

sin d0 =sinocosl+ coop sinIsink ,

r
cos d0 sin a0 =- sin I sin A + coo 0 coo I sin X,

cos d0 cos afl = cos A cos x	 (39)

The tables that give the values of a - X, d0 -	 calculated from formulas

(39), would allow immediate transformation of .these, coordinates for every
moment of time and corresponding value of t2, and for every value of 1 ►, A:
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( 0

d = 0 + {d0 - N - 12	 (40)

Inverse transformation would be poi^sible by use of formulas (4):

sin ¢ = cos I sin d0 - sin I cos d0 sin a©

cos p sink = sin 1 sin d0 4 cos I cos d0 sin ao

cos 0 cos a = cos d0 cos ao

and

=a^ +(a - a') ,	 0=d +{^-do) 7
a-11	 a-S2

Insufficient knowledge of the value of I can be overcome by the calculation
of these tables for two values of I and for an interpolation or extrapolation of
the proper values of the differencAs.

The values of a0 - k and d0 - P, for I = 1!32', are given in Tables 1
and 2. respectively.

(41)

(4Z)

Table 1. Value a of aQ

0° 30° bp'

0° 0! 40 -53' 11 -2' 39

15 -0.31 -51.82 -2	 35

30 -0.53 -46.89 -2	 21

45 -0. 62 -38.60 -1	 57

60 --0.47 -27.46 -1	 23

90 6 0 0
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PC E

A- 9o°

t

(b)

E	 p'u

(a)

12 -90°

l able ^ Values of d 0 - P

R
0 : 30 ° 00° 85`

0 ` 0. 00 -	 0	 71 -	 2: 13 -13. 78

15 +23.81 +23. 14 +21.79 +	 9.92

30 46.00 45.46 44.36 33.83

45 65.05 64.69 63.95 56.24

60 7 9.67 79.49 79.11 74.95

90 92.00 92.00 92.00 92.00

The physical libration in latitude can be regarded in the same way as vari-

ations in the value of I. The influence of the physical libration in the node can

be take,i into account in the argument X - Q of the tables. The physical libra--

tion in the Moon's longitude ought to be regarded as the Moon's time correction

The approximate transformation of these coordinates can be made by the

use of the so-called Woolf networks (Fig,ires :-)a, 5b) on the plane of ecliptic

meridians X = S2 t 90° . We can transform these two systems by placing

the network 5b on 5a, or conversely, so that the points P 	 P and E. E^

of one network coincide with these points on the second network.

Figure 5. a) Woolf's network in the ecliptic coordinate system for k = _- 90
bl Woolf's network in tl-_- selenoequatorial coorcinate system for
aT = t 90 °

i
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4. GEOEQUATORIAL COORDINATE SYSTEM

The geoequatorial coordinate system, although not so convenient for
describing the apparent motion of the Moon's celestial sphere, has the
advantage that there are many different catalogs of star coordinates and
maps or atlases in this system. Hence, it is worthwhile to consider the
possibility of using these catalogs or maps for astronomical observations
made from the Moon, especially as a first step in this kind of work.

The selenocentric mean geoequatorial coordinates of stars are the same
as the geocentric ones (parallax of the Earth-Moon distance is negligible).

The geocentric and selenocentric apparent geoequatorial coordinates are
different because of the lunar monthly aberration. This latter influence can
be calculated by formulas (C-6).

The parallax of the Moon's orbital radius should be taken into account
for all celestial bodies nearer than stars (see Appendix D). Other formulas,
such as those for the Earth's precession and nutation or aberration, can be
used without change.

31/32



r

5. STELLAR COORDINATE SYSTEM

S. 1 Introduction and Definition

The precession of the Earth's equator and of the ecliptic plane --the
basic planes of the commonly used coordinate systems such as the geo-
equatorial and the ecliptic -- causes constant variations in the coordinates
of the fixed point on the celestial sphere.

We sometimes try to avoid this problem by using the fixed equatorial
or ecliptic system of a chosen epoch. This system has an unchangeable
position in space, but it does not coincide with the real basic planes of date.

On the Moon, for instance, we can use the ecliptic coordinate system
for a chosen epoch because the precessional variations are smaller than in
the seienoequatorial coordinates. But in this case, the ecliptic at the given
epoch differs also from the one at a date. The introduction of the coordinate
system whose basic plane is fixed seems to be convenient.

We can therefore define the stellar coordinate system as a heliocentric
coordinate system in which the Z axis is directed to the chosen star S 1 and in

which the XY plane perpendicular to this direction passes through the center
of the Sun. The intersection of the XY plane with the great circle of the
heliocentric celestial sphere, which passes through star S 1 and a second
chosen star S2 , defines the zero point of the coordinate measured along the
great circle lying in the XY plane; this coordinate is called the stellar right

_	 ascension, X . The second coordinate is the stellar declination, P = 94' - K0,
and is the angular distance from the XY plane measured along the great
circle passing through S1.
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The choice of stars is completely free. For instance, an the Earth-we
can choose star S 1 in the vicinity of the north celestial pole and S 2 in the
vicinity of the vernal equinox of 1950. 0. In the case of the Moon, it would
be more convenient to choose the star S 1 in the vicinity of the north ecliptic
pole and S2 near the vernal equinox.

5. 2 Transformation of Stellar Coordinates into Other Coordinates, and
Conversely

The stellar coordinates X , P = 90` - KO can be obtained by a trans-
formation of the Earth's equatorial system, or of the ecliptic system. We
can find the required formulas immediately by applying the usual formulas
of spherical trigonometry to the triangles SQS 1 and S2QS 1 (Figure b),
neglecting the Earth's annual parallax.

The general transformation formulas are the following;

cos K = cos ^ cos 
;1 

+ sin t sin t1 cos ( v1 - v ) ,

sin K cos (X + 4) = cos ; sin ;1 - cos ;1 sin ; cos (v1 - v) ,

sin K sin (X + 6) = sin ;1 sin ( v 1 - v) ,	 (43)

where

cos KO = cos f'1 cos 2 + sin t1 sin 42 cos (vl - v2)

in KO cos E = cos ^2
 sin 	 sin t2 cos C1 cos (v l - v2)

in K0 sin g = sin (v l - v2 ) sin f,2 .	 (44)

Let us put the point Q at the Earth ' s celestial pole (or at the ecliptic pole or

the Moon ' s celestial pole) and in formulas (43) and (44) replace
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." T T
V, VI  v2 by	 a, a l , a 2 (or ^, ^l, )L2; or a', a l , a2)

4, t 1 , t2 by	 90 ° - 6, 90 ° - bl , 90 ° - 62 (or 90 ° - a, 90 °

90 	 0 2 ; or 90° - d, 90° - d l , 90 ° - d2 ) .

We can then obtain the transfoz ii Trion of the Earth ' s equatorial (or ecliptic,
or selenoequatorial) coordinates -3 stellar coordinates. The formulas for
the inverse transformation can easily be found on the basis of Figure b.

S.

S2

Figure b. Spherical triangles SZQS1 and SQSI showing the relation of the
stellar coordinates K, X to the coordinates of other systems
v, C . S = a star, S i t S2 = chosen stars, and Q = pole (Earth's
celestial or ecliptic, or Moon ' s celestial).



For the transformation of the heliocentric stellar coordinates of stars
into selenocentric coordinates, we must take into account the influence of the
aberrations of the Moon's motions and the parallax of this translation. The
advantage of this system is the constancy of the coordinates of a fixed point
on the celestial sphere. There will be some changes caused by the proper
motion of the chosen stars, but, of course, these changes are very small.
If the catalogs of stellar coordinates of stars are computed from the known
equatorial coordinates of the stars, they could then be used without change
for many years.
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b. MOON'S HORIZONTAL COORDINATE SYSTEM

b. 1 Basic Formulas

The Earth's horizontal coordinates, altitude h, azimuth A, together with

the hour angle 8, al? aw us to describe the apparent motion of the celestial

sphere on the Earth.

The Moon's horizontal system, hL, AL, and hour angle 8L, defined in

the same way as the Earth's, describe the apparent motion of the Moon's

celestial sphere.

The relations of the Moon's horizontal coordinates, altitude h  = 9o ° - z 
and azimuth AL, to the selenoequatorial coordinates and the lunar hour
angle 9L are also the same as in the case of the Earth:

cos zL = sin ^ sin d + cos d cos ^ cos 8L

sin zL sin AL = cos d sin 8L

sin 	 L = - sin d cos +L + cos d sin 4L cos 8 Ln z cos A  (45)

where 8L = Or - a - (f3 + 12h), and QT is the hour angle of vernal equinox
or local lunar sidereal time (see Figure 7).

For the inverse transformation we have

sin d = sin L	 Lcos z - cos 40 L	 L	 Lsin z cos A	 ,

cos d sin 8L = sin zL sin AL

cos d cos 9L = cos + cos zL + sin ^ sin zL cos AI'
	

(46)
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Figure 7. The Moon ' s astronomical triangle.

It is necessary to rem •^mber that, defined in the same way as on the
Earth, the lunar hour angle 9L of a star changes its value 27. 3 times more
slowly than on the Earth because of the Moon ' s slower revolution about its
axis. So, although the differential formulas of the Moon's horizontal coor-
dinates have the same form as in the case of the Earth,

dzL _ cos 0L cos d sin 8I' cos 00 L sin AL
d8L	sin zL^

d L = cos d z	 = sin +L' + cos + L' cat zi' cos AL'
d8	

(47)
sin z

the time changes of these coordinates are also 27. 3 times slower than on the
Earth. Table 3 gives the maximum values of dzL in one Earth sidereal second
for different latitudes of the Earth and of the Moon.
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Table 3. Values of (dzL)max in one Earth sidereal second

Earth Moon

4 = 00 15" 0:16

4^=45° 11 0.4

ep = 90 ° 0 0.0

All other equations relating horizontal to equatorial coordinates,
especially for such phenomena as rising and setting, culmination, etc. ,
are the same on the Moon as on the Earth. It is necessary only to change
the Earth ' s coordinates a, 5 and h, A into lunar coordinates a , d andLLh , A , respectively.

b. 2 Transformation of Ecliptic into Lunar Horizontal Coordinates

The use of the ecliptic coordinate system, as more convenient for astro-
nomical observations from the Moon, will require the transformation of these
coordinates into lunar horizontal coordinates.

We obtain these formulas by considering the triangles P( EZ( and SE Z(
on the Moon ' s celestial sphere ( Figure 8).

From the triangle Z( P(E, the zenith distance zE, the azimuth
AE = 180 °- Q ZQ, and the parallactic angle QE of the ecliptic pole can be
calculated:

cos zE = sin ^ cos I + cos + sin I cos Q
F

sin zE sin Q $ = sin I sin Q ( ,
Z(

sinzL cos Q Q = cos I cos 4 L - sin i sin +L cos Q C and
Z(

sin zE sin QE = cos +L sin Q	 .
F

(48)
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L 

S

D Q
	

..

Y

Figure 8. Spherical triangles P^EZ^ and SEZ showing the relation of the
ecliptic to the lun-r horizontal coordinates. Here Q	 =Z-Z^PQE

= AT +90' -t2, Q7Q = LEZ^P^, Q E = LZ^EP^, O ZQ PZSZ^E, and

OE = Z- Z°R ES = 90  - [QE +	 S2)1
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The quantities z L Q^Q, QE are functions of I (nearly constant), +L, and
angle Q pQ	 Hence, for given ^L , the values of these quantities can be
calculated for every value of Qp( between 0 ° and 360 ° . The angle QP(
changes its value from 0 ° to 360 ` during the month and can be calculated
for every moment from known Q and 0 L, .

The values of zE and QZ( calculated, for example, for latitude *L = 456
Lare given in Table 4 for different values of Q pQ = 
	
# 90 ° -11 .

Table 4. Lunar horizontal coordinates of the north ecliptic pole: zE,
QZ =1$0 ` -AE for 0L

=45°

Qp( zE
L

QZ{ Qp(

00 43 ° 27! 1 00 00! 0* 360 4

30 43 40.6 1 06.5 330

45 43 55.5 1 33.9 315

60 44 13.9 1 53.2 300

90 45 01.2 2 10.2 270

120 45 47.0 1 50.2 240

135 46 05.7 1 30.4 225

150 46 19.3 1 03.6 210

180 46 32.1 0 00.0 1$0

*114. hese values are plus for column 1 and minus for column 4.

The changes of azimuth QZ( 0 1 1 be greater for higher latitudes and
smaller for lower latitudes.. The ecliptic pole behaves in the same manner
for observers on the Moon as Polaris does for observers on th;: Earth.

Knowing the values of zE, QZ( , and QE,we can transformecliptic coor-

dinates a, A into Moon's horizontal coordinates Z L, AL. Applying basic

spherical trigonometric formulas to the triangle Z( ES, we can write
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cos z  = coszE sin A + sin zE cos 0 cos OE

sin Z  cos OZ^ = sin ¢ sin zE -	 cos P cos zE cos 	OE

sin zI' sin O	 = cos 0 sin OE ,	 (49)
Z

where

180 ° - AL = QZ( +0
Z(

and

Trar_sformation of the ecliptic into the horizontal coordinates can also
be made by the formulas of spherical polygonometry introduced by
Banachiewicz (1929).

The principal formulas of polygonometry are

{I } _ {I) p(a l } r (A") p(a2 ) r(AZ)	 ... p(ak ) r(A')	 (50)

where (I ) , p(n), r(n) are the following cracovians:

1 0 0

0 0 1

_ (1	 0	 - 0	 }	 ,

p(n) ^ 0 cos n sin n (	 ,	 (5Z)
0 sin n cos n

Cracovians are the matrices for which a different manner of the , multiplication
is defined: Columns are multiplied by columns instead of rows by columns.

(
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- ( cos n -sin n 0
r(n) ) sin n cos n 0

0	 0	 1

The sides of a polygon are denoted by a l , a2, ... ,ak, and the angles by
Ai = 180 ° - Al , AZ = 180 ° - A2 , ... , Ak = 180 ° - Ak Isee Figure 9).

Figure 9. Spherical polygon.

Applying formulas (50) to the quadrangle SZYE (Figure 8), we can
write

{I } r (180' - O	 LS) • p(z} r(AL • p(90 ° - $1') - r(90' + S - 8T )

• p(1) • r(90 ° + a - t2) • p(90' - p) = (I)	 (54)

(53)
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A comparison of the third columns of the cracovians of both sides of
equation ( 55) gives us the required transformation

T

4 
sin zL sin AL 	 0

sin z cos A	 - t -sin	 r(Q - X - 90°) • p(- I)

I'[(/cos z	 cos (i

r(e - SZ - 90'j ' P(4L - 90-)	 (56)

Formulas ( 54), written in the form

{I } P(zL) • r(AL} • 0(" - +L • r{90 ° + 12 - 6T j • P(I)

. r(90 ° + a - 0) - p(90 ° - 0)

• r (180° - OS) = {I }	 (57)

give us the inverse transformation

r(180° - OS) • p(P - 90 6 ) • r(R - X - 90°)	 i

= P(- zL) • r(AL) • P{90° - ^L) - r(90 ° + 0 - ej } • PM - 	 (58)
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6. 3 Apparent Motion of the Moon's Celestial Sphere

The apparent motion of the Moon's celestial sphere is about 27. 3 times
slower than the Earth's, but during one long revolution there occur all
phenomena that are observed on the Earth's celestial sphere during 1 day,
such as setting and rising, culminations, elongations, and transits of the
prime vertical. These phenomena can be described on the Moon by the Moon's
horizontal coordinates AL , hL and lunar hour angle 8L.

All the formulas for the Moon's horizontal coordinates and the lunar
hour angle of a star in the above -mentioned phenomena have the same form
as the appropriate formulas for the Earth's horizontal coordinates. They are
given in Table 5.

The description of the motion of the Moon's celestial sphere in ecliptic
coordinates is more difficult. It is easy to -.,rite the formulas given in
Table 5 as a function of the horizontal coordinates of the ecliptic pole, zE
0 Z and the angle OE. We can do that by replacing

90' - $L by zE

	

180 ° - AL by OZ(	 and

()L
	

by OE

The quantities zE, 0 Z OE are time dependent; hence we must use the

method of successive approximation: first, with some approximate values
of zE, OZQ, OE we calculate the hour angle of a star, and Caen we repeat

the calculation with the time determined in the first step.

Table 6 gives the selenoequatorial, the ecliptic, the Moon's horizontal,
and the geoequatorial coordinates of the special points on the Moon's celestial
sphere.
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_:

In Table 6 the numbers in square brackets denote the following:

[1] Ascending node of the lunar crbit or descending node of the lunar
equator (neglecting physical libration).

[2] Descending node of the lunar orbit or ascending node of the lunar
equator (neglecting physical libration).

[3] Formulas (6) with known X G# 
P P9 ,

sin d ® = cost cos I+ sine sin I cos it
P

cos dP® sin aP
® = cos a sin I - sin a cos I cos Q

cos 
dP® 

cos P9 _ - sine sin 0 .

Similar formulas can be written for point P`.

[4] Formulas (6) with known A®, 00 ,

-sin d(D = sin Ag cos I + cos PQ sin I sin (a( - st) ,

cos d® sin ao _ - sin PQ sin I + cos ^^ cos I sin ()LQ

cos d cos a®g 	 = cos ^$ cos (^Q - S2 )

[5] Formulas (D-10).

[6] Formulas (45) with known alues of a d of points T and ^-
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[7] Formulas (45) with known values of a , d of point 11,

tan AL = tan 9n cosec 4)

cos An tan zr; = tan L

I	 Similar formulas can be written for point ^g .
I

[8] Formulas (48) and (49) with known )-	 ^P^

[9] Formulas (48) and (49) with known k fa, ¢O , or from the triangle OP( Z^
( see Figure 10),

cos z% = sin 4L oil,. be+ cos ^I^ cos b., cos (X Ir - t® )

sin z@ coo AI. _ - #sir. 'a0 cos ^L + cos b6 sin ^L cos (XL - 10)

sin z4D sin AG = cos b® sin M - 10)

and l(D, b0are given by equation (D-23).

[10] Formulas (8)with known sc g.,:noe laatorial coordinates of Z or formulas
(D-10) and (5).

[11] Formulas (5) with known X , P

sin b
P( 

= cos a COST + sine sin I cos Q ,

cos f sin a	 = - sine cos I + cos a sin I cos Q
P(	 P(

cos SPA cos CL	 = - sin I sin 9

Similar formulas can be written for the point P'(.
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Figure 10. The Moon's astronomical triangle OP( zg .
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7. SELLNO-RECTANGULAR COORDINATE SYSTEMS

In many astronomical problems, three-dimensional rectangular coor-
dinates are more convenient than spherical one,i, and sometimes they are
r-cessary to determine exact positions in space—for example, of planets
and of artificial satellites.

The rectangular or polar coordinate system can be associated with any
spherical system: selenoequatorial, geoequatorial, ecliptic, or horizontal.
In the case of the Moon, the origin of these coordinate systems will be in
the center of its mass (selenocentric coordinate systems) or in a point on
its surface (lunar topocentric coordinate systems).

The rectangular coordinates x, y, z of a point P are related to its polar
coordinates p, u, v (Figure 11) by the following expressions:

x = pp cos u cos v ,

y=pP sin u coo v ,

Z = pz, sin v .PP

The factors of pp in (59) are the direction cosines and can be ̂ sed it

place of u and v to represent the direction of the point.

When we consider the selenoequatorial rectangular coordinates, the
geoequatorial rectangular coordinates, or the ecliptic coordinates, we replace
u, v in (59) by aQ , d; a, 5; or X, 0, respectively.

(59)
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'The transformation of one rectangular coordinate system into another

without a translation of the origin of the system requires only the rotation

of the system. For example, the transformation of the ecliptic coordinate

into the selenoequatorial system requires two rotations. The firs* is the

rotation about the ecliptic pole axis (z axis) through S2 + 180° . The coor-

dinates of the point P in this new system will be x', y' , z'; here

X, - 
xecl cos S2 - y sin S2	 ,

Y, =	 xeCl sin Q - y costs

z -	 zecl

Figure 11. The relation of the rectangular coordinates of the point P(x, y, z)
to its polar coordinates (p p , u, v).
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The second rotation is that about the line of the lunar orbital nodes through
I; and the selenoequatorial coordinates of the point P are

xeel - x

Y sel - Y' cos I + z' sin I ,

zsel " -y' sin I + z' cos I

Using the rotational cracovians ( 52) and ( 531 we can write the above
transformation in the form

xeel	 xecl

Y sel	 -	 Yecl	 r(i2 + 180') • p (I)	 ;60)

zeel	 zecl

and the reverse transformation in the form

1	 i

xecl _ ^ x$el
- 

Y el

:el

p (- I) • r [ - {180' + S2 }]	 (61)Yecl
z 	 zecl 

With the use of the same symbols, the transformation of the geoequatorial
into the ecliptic system is

x  cl	 xge o

Yecl	 Ygeo	 p

zecl	 zgeo
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xsel - xgeo

Y sel	 Ygeo

Zsel	 z 
geo

p( - E ) • r (SI + 180 °) • p (I)
	

(b2)

and

(63)p(- I) ' r (180 ° - SZ) • p'F )

xgeo ^xsel

Ygeo Ysel

z B eo zsel

the transformation of the geoequatorial int e, tho selenoequatorial, and the
reverse transformation, are

Expressions ( 62) and ( 63) can be written for ar , d in the following form:

xsel	 xgeo

_ i(- e ) r P+ 180 • )	 (I) • r(180' - nY se l _ Y	 p
{L1}

geo

asel
z
 e^ g o^

xgeo	 xsel

Ygeo	 - Ysel	 r(- 180 * + n) • p(- I) • r(- 180' - fl) • p(E) . (65)

Zgeo	 Zsel,
1

In the cracovian

L I I L21 L31
{L1 } - L

12 L22 L32
	 (66)

L13 L23 L33
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which is used in lunar research; L.. are the direction cosines of the axes
of the geoequatorial coordinate system 11;q, Y®, Z (D and the selenoequatorial
one X( , Y( , Z  as shown by

Xg Y4 Z®

X^ L
11 L21 L31

Y^ L12 L22 L32

Z^ L
13 L23 L33

The tables for L.. were published by Banachiewich (1929) for I = 1036'06"
i^

(Hayn ' s value) and E = 23 `27'08"26.

The transformation of selenoequatorial coordinates into the Moon's
horizontal coordinates can be made by the formulas:

xshor	 PP sin zL cos AL	 Xsel
L

Yshor - Pp sin z sin A	 = Ysel	 r 
Lr8
	

q(90' ♦ ) . (67)
`	 L

zshor 1	 Pp cos z	 zsel	
eq

where

Xsel	 PP cos d cos a

Ysel - Pp cos d sin a 3 ,

zsel	 pp sin d•	 ^ 
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cos (90' - 40L 	0 sin (90' - +L
Lq(90 - 4 ) = '	 0	 1	 0

-sin (90° - 41	 0	 cos (90' - 41

and pp is the distance of the body from the origin of the c3ordinate system.

The inverse transformation is

Xsel - Xshor t

	

ysel - yshor	 q(41- 90') r(-9O 1	 (69)	 -

	

`	 \

	

Zsel 1	 zshor	
eq

Formulas (67) and (60) give us the transformation of the ecliptic coordinates
into lunar horizontal coordinates:

Xshor - Xecl
4	 ^	 ^	 ^-	 L\ - q(90°-+

	

yshor	 yecl	 rp + 180 ) p(I) r(9a )	 L)
q

	

zshor	 Zecl	 70

The inverse transformation is obtained from (69) and (61):

Xecl - ^ Xshor	 \	 -

yecl	 yshor	 q(+L - CO °) ' r( 8Q j . p (I) 	 r [ (n + 180° )] . (71)

	

eq/	_

zecl	 zshor .

Similarly, formulas ( 67) and (62) give us the transformation of the lunar
horizontal coordinates into the geoequatorial coordinates. The inverse
transformation is obtained from (69) and (63).

s
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8. CONCLUSIONS

Insufficient knowledge of the Moon's physical libration and the inclination

of the lunar equatorial plane to the Qcliptic limits the accuracy of calculated

selenoequatorial coordinates of stars and of other celestial bodies. At present,

we can expect the accuracy of these coordinates to be of the order of I to 2

arcmin.

Thus, the ecliptic coordinate system appears to be most convenient for

space orientation on the Moon. The accuracy of the determined coordinates

in this system is high; the precessional motion is smaller than in other

coordinate systems (except the stellar); and the small inclination of the

ecliptic coordinate system to the selenoequatorial coordinate system permits

the use of ecliptic coordinates instead of selenoequatorial ones for a rough

orientation.

The practical use of the ecliptic coordinate system requires the prepara-

tion of catalogs of ecliptic coordinates of stars, tables for the transformation

of ecliptic into selenoequatorial coordinates and vice versa, as well as a

special lunar almanac (Gurevich, 1967) giving the current values of different

quantities such as the coordinates of the apexes of the Moon's motions, the

Moon's orbital nodes, the Moon's physical libration, the apparent-

selenocentric ecliptic coordinates of the Sun, of the Earth, and of the planets,

and the parallaxes of these bodies as seen from the Moon.
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APPENDIX A

PRECESSION OF THE MOON

According to Cassini's laws;

1 . The Moon rotates eastward, about a fixed axis, with uniform angular
velocity and a period equal to the sidereal period of the Moon's revolution
around the Earth.

2. The inclination I of the Moon's equator to the ecliptic is constant
and is approximately 1 °32' 1 .

3 . The ascending node of the lunar orbit on the ecliptic coincides with
the descending node of the lunar equator on the ecliptic; therefore, the poles
of the Moon's equator, of the ecliptic, and of the Moon's orbit lie, in that
order, on one great circle.

The Moon's axis of rotation and the plane of the Moon's equator make
one revolution about the axis of the ecliptic poles in approximately 18. 6 years.
The angle of the precession cone of the Moon's polar axis is equal to the
inclination of the lunar equator to the ecliptic. Hence, the Moon's precession
is approximately 1360 times faster than that of the Earth.

The longitude of the mean ascending node of the lunar orbit on the
ecliptic measured from the mean equinox of date is expressed by

Q = 259°1059"79 - 5 r134°08'31'23 T + 7:`48 T 2 + 0: 1 008 T3

= 259° 183 275 - 0° 052 953 922 2 d + 0 0 002 078 T 2 + 00. 000 002 T 3 , (A-1)

where T is measured in Julian centuries from 1900 January 0. 5, i. e., from
J. D. 2 415 020. 0, and d is the number of ephemeris days from epoch.
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By differentiating equation (A-1), we can calculate the daily variation
in this longitude:

dQ _ - 0° 052 953 922 2 + 00 004 156 T	 (A-2)

Thus, the daily precession of the ascending node of the lunar orbit is

Pd _ -0° 052 953 922 2 	 (A- 3)

The daily precessional motions in the lunar right ascension and declination
aa, d measured from the ascending node of the lunar equator on the ecliptic
are

Md 	 Pd cos I	 N  = + Pd sin I	 (A-4)

where I = 1° 32"1

The precessional variations of the selenoequatorial coordinates can
easily be obtained by differentiation of equation (6). Thus,

f2	 d3
dam- = tan d cos a 	 d^ _ - cos I + sin I tan d sin a

dd - _ sin adI -	 ^ = sin I cos a	 (A- 5)

Replacing dI and &2 by their precessional variations,

dI = 0	 and	 dQ = Pdt

and taking into account formulas (A-4), we obtain the influence of the preces-
sion in selenoequatorial coordinates:
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a -	 = CMS + Nfl tan d0	
1-1

sin	 t ,

d' - d0 = N0 t cos ao	 (A-6)

where t is a number of ephemeris days from the epoch t 0 of the mean
coordinates 0' d0 .
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APPENDIX B

PHYSICAL LIBRATION OF THE MOON

The Moon's rotation about the center of its axis is described approximately

by Cassini's three empirical laws. The different values of the principal mo-

ments of inertia cause some oscillation about the Moon ' s mean position as

described by Cassini'. laws.

A f-11 description of the actual rotation of the Moon is given by the angles

= 180 V + (I + T) - q ',	 0= I+ P,	 +	 (B-1)

whe re

= angular distance of the positive part of the Moon's first

radius directed toward the Earth from the descending

node of the lunar equator,

k'	 = longitude of the descending node of the lunar equator,

0	 = inclination of the lunar equator to the ecliptic,

I^	 = mean longitude of the Moon,

I	 = mean inclination of the lunar equator to the ecliptic, and

T, p,0- = physical libration in longitude IV in inclination I, and in

node 0, respectively.

The quantities T,p,G- can be written in the form (Koziel, 1962)

N	 free= A sin (a" + 3t 0. 985 3 M Yphysical librationp y
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-	 12."9 sin g

-	 0'.' 3 sin 2g

-	 65.'2 sin (-g')

+	 9: 1 7 sin (2w)

-	 1:'4 sin (-Zg' - 2w' )

+	 2."5 sin (-g' + w	 - w')

-0:'6 sing' +2w-2w')

-	 7"3 sin (-2g' + 2w - 2w')

-	 3.'0 sin (g-2g' +2w_ 2w')
-	 0: 1 4 sin (2g - 2g' + 2 w - 2 w')

+	 7"6 sin 0

forced
physical
	

(B-2)
libration

J

- B cos (b n - 146."6t)
0.

+ 0. 662C * cos (c + 50'.'8t - g - w )

+ 1. 662C cos (c + 50'.'8t + g -+ w )

- 106" cos g

+ 35" cos (g +Zw )

- 11" cos (2g +2w)

- 3" cos (2g' + 2w')

- 2" cos (g - 2g' + 2w - 2w')

IT + B^ sin (C - 146!'6t)
.4	 J.

- 0.662 C , sin (cm + 50'.'8t - g - w)

+ 1.662 C sin (c + 50"8t + g + w )

- 108" sin g

+ 35" sin (g + 2 w )

- 11" sin (2g + 2w)

- 3" sin (2g' + 2w')

- 2" sing - 2g' +2w - 2w'}

P =

I0- =

free
physical
libration

(B-3)

forced
physical
libration

free
physical
libration

(B-4)

forced
physical
libration
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Here,

A , a B , b C , c = the constants of the free libration in longitude,
inclination, and node, respectively;

g, g' = mean anomaly of the Moon and Sun, respectively;
w,w' = angular distance of the Moon's and the Sun's perigee from the

ascending node of the Moon's orbit, respectively;
t = time expressed in mean days;
M' = 3M, where M is the Earth's mass;
y = one of the three quantities (a, (i, y) connected with the Moon's principal

noments of inertia (A, B, C) by the formulas

a = C A B ,	 p= C B 
A,	 y= B C A	 (B-5)

In the last formulas, A is the moment about the axis directed earthward
and C is the moment about the Moon's rotational axis. The coefficients of
(B-2) to (B-4) are given for a value of the mechanical ellipticity of the Moon,

f = p- A (̂ C—A -0.73	 (B-6)

The quantity f charactes97,es the ratio of the Moon's principal momente of

inertia as well as the Moon's nutation.

The influence of the physical libration in selenoequatorial coordinates
a, d can be calculated by the formulas (Gurevich, 1 965) 

a'^-a =Ian +II^^	 d' - d=Id +IId	(B-7)

The first-order terms Ida , Id can be obtained by differentiation of equation
(6) (see A-5) and replacement of dQ and dI by the physical libration in the
node Q and in the inclination p , respectively:

65



Id = - p sin asapp^ 1 + 0* cos asapp^ 1 sin I

In = p tan d	 cos aa	- v (cos I - sin 1 tan dxin a	 ) .a	 sapp, 1	 sapp, 1	 sapp, 1	 sapp, 1

(B-8)

The physical libration in the Moon's longitude 'r ought to be taken into
account as the correction of the Moon's time.

The second-order terms are the Fabritius terms

III = tan d
PP,sa	 1 Ia Id

IId = - 0. 5 sin d sa	 1 cos d sa	 1 Id	 (B- 9)

	

PPS	 PP•

The influence of the physical libration in selenoequs.torial coordinates
can be taken into consideration also if we replace in the transformation
formulas (3), (4) or (6), (7) the values of I and ft by I + p and 12 + r. The
physical libration in the Moon's longitude r can also be treated as the
correction to the Moon's time.

But now, while the physical libration is not known accurately, it is
better to regard this influence separately from the transformation formulas
(3), (4) or (6), (7) by the use of formulas (B-7) to (B-9).
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APPENDIX C

ABERRATION OF THE MOON'S MOTIONS

The Moon is involved simultaneously in several motions: rotation about
its axis, revolution around the Earth, revolution with the Earth around the
Sun, and motion with the Sun in space.

All these motions cause the phenomenon of aberration, which changes
the positions of the celestial bodies on the celestial sphere. The lunar daily
aberration is caused by the Moon's rotation about its axis; the limar monthly
aberration, by its revolution around the Earth; and the lunar annual aberration,

its motion around the Sun.

C. 1 Lunar Daiiy Aberration

The small size of the Moon (T( = 1738 km) and the slow rotation around
its axis are the reasons for the small linear velocity of the points on the
Moon's surface. The maximum velocity on the lunar equator is ^ = 4.6 m sec-1,

The coefficient of the lunar daily aberration,

k  = 0 206265 < 0.'001

is so small that its influence can be neglected.

C. 2 Lunar Monthly Aberration

The average velocity of the Moon ' s orbital motion around the Earth is
1. 023 km sec 1 . The coordinates of the apex of the Moon ' s orbital motion,
given by Gurevich ( 1965), with the simplifying assumption that angles l(,
M, V, 0 are constant after projection onto the plane of the Moon's orbit,
are

t
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kap = f^ + 90 _ - X,	 Rap = i sin (aap - 0) ,

and

e sin Mtan X = 1 + e cos M	 (C-1)

where

e, M	 = eccentricity of the lunar orbit (e max= 0. 07) and the Moon's
anomaly, respectively,

(Pap ) 
max = t i = t 5 ° ; i is the inclination of the Moon 's orbit to the

ecliptic; and

S2	 = the longitude of the ascending node of the Moon's orbit
on the ecliptic.

Coefficients of the lunar monthly aberration can be calculated (Gurevich, 1965)
by the formulas

km = km 1 + 2e cos M + e2	 (C-2)av	 1 _ e

The mean value of km = 2G6 265 (V1)av/c = W70, with c = 299 792. 5 km sec- 1.
The coefficient km changes its value within the limits 0.65 < km < 0: 75
because of changes of the Moon ' s orbital velocity,

0.94 km sec -1 < Vi < 1. 09 km sec-1

On the basis of the known ecliptic coordinates of the apex of the Moon's
orbital motion, its selenoequatorial and geoequatorial coordinates can be
determined.
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The geoequatorial coordinates can be obtained by the transformation of
the known ecliptic coordinates le ap , pap from formulas (5):

sin bap = cos a sin Pap + sin a cos Pap sin Xap ,

cos b ap sin CL ap = - sin a sin Aap + cos a cos Pap sin Xap

cos bap cos aap = cos Pap cos Xap	 (C-3)

or ap:-troximately, if we put P = 0ap

sin S =
ap	 apsin a sin e

tan S = tan a cosec a

	

ap	 ap

tan aap = tan Xap cos e	 (C-4)

The selenoequatorial coordinates of this apex can be expressed in ecliptic
coordinates by the formulas that are obtained from the triangles C 0 or K and
K0 orL (see Figure C-1):

sin P
sin CO =	 apor	 sin i

sin 	 =sinCE2	 sin (i+I)= sin k	 sin(i+1

	

ap	 or	 ap sin i

d	 ;R	 sin (i+1) =1.3Pap	 ap sin i	 ap

sin (a ap - 12 - 12 h) = tan dap cot (i + I)	 (C-5)
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ON'S ORBIT

ECLIPTIC

MOON'S EQUATOR

Prt

Figure C-1. The ecliptic and selenoegt atorial coordinates of the apex C
of the Moon's orbital motion. S, S' are the true and the
apparent positions of a star, respectively; PQ, E are the
poles of the Moon's equator and of the ecliptic, respectively.

The influence of the lunar monthly aberration in spherical coordinates
is different in the different systems.

We can compute this influence in each of the spherical coordinate
systems by using the general formulas for the influence of an aberration in
spherical coordinates u, v (Appendix F),

u - u' = k cos vap sin (u - uap) sec v ,

v - V = k cos vap sin v cos (u - uap) - sin vap cos v ,	 (C-6)
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where uap, vap are the proper spherical coordinates of an apex and k is a
coefficient of an aberration. The approximate substitutions are given in
Table C-1.

Table C-1. The coordinates of the apex of the Moon's orbital motion and the
notation of the true and apparent (at this motion) spherical coor-
dinates in the different coordinate systems

Name of the
c000dinate system

True
coordinates
of a body

Apparent
coordinates
of a body

Coordinates
of the apex of the

X1oon's orbital
motion

u	 v u'	 v u	 vap	 ap

Selenoequatorial a 	 d a' Q	 d' a `	 dap	 ap

Ecliptic X  Papap

Geoequatorial a	 b at	 S a	 Sap	 ap

-1
1.

 

Givenby the formulas (C-1) and (C-3) to (C-5).

Gurevich (1965) gives the formulas for the influence of the lunar monthly
aberration in ecliptic coordinates as:

X, -X=P 1 p,  + Q l g l ,

Pf 
-P=P p f  + Q l q' + R 1 ri	 (C-7)

with the followi=:g notation:

P 1 = - km sin Aap cos Pap, Q 1 = - km cos Aap cos Pap, R 1 = km sin Pap

p1 = - sec (i cos X, q 1 = sec (3 sink,

pl = sin P sin X, qi = sin P cos A, ri = cos P	 (C-8)
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C. 3 Lunar Annual Aberration

We can assume that the Moon's apex in its motion around the Sun lies
on the ecliptic plane. The latitude of this apex can be calculated by the
following formula (see Figure C-2):

VQ
tan Bap = ® sin [i sin (X ap - ufl	 (C-9)

V

where

V® Vi = velocity of the Earth's and of the Moon's orbital motions,
respectively; V ®= 29.75 km sec -1 , VC = 1. 023 km sec.-1,

i	 = inclination of the Moon's orbit to the ecliptic, i = 5° 15.

Xap	 :* IT + 90', longitude of the apex of the Moon's orbital motion.

V,	 f
Bap

v®

i sin (X ,p -a)

Figure C-2. The projection of the velocities of the Moon's and of the Earth's
orbital motions on the plane perpendicular to the ecliptic.
V< is the velocity of the Moon's motion around the Sun.

2
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Because the angles B and i are small and V^ /V® = 0. 03, we can writea
p

Bap = 0. 03 i sin (Aap - 0 ) < 0.°15 .	 (C-10)

The angle Bap is so small that it can be neglected. Hence, the ecliptic
coordinates of the apex of the Moon ' s motion around the Sun, Lap and Bap, as
well as the velocity of this motion, V2 (Jakowkin et al. , 1964), are the
following (Figure C-3):

Lap =LO -  90°+&A ,

Bap = 0 ,

2	 2
V2 = (V^) + (Vi) - 2 Vi V® cos (L^ - I Q 1	 (C-11)

where

V, sin(L0 - I^)
tan DA =

	

	 ,
V - Vl cos (L0 - IQ)

and L.,I^ are the longitudes of the Sun and of the Moon, respectively. If we
assume V®/V( to be so small that we can neglect the second and higher
order terms, then we can write

V^
&A = V® sin (L^ - I Q ) = 1° 9 sin (L^ - IQ)

V2 = V( 1 - Vf cos (L0 - IQ)CV
Lap = L0 - 90 ° + aA	 (C-12)

The limits of V2 are:

28.7 km sec- 1 <V2<30.8kmsec - 1
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A

0

Y

Figure C-3. The projection of the velocities of the Earth's and of the
Moon's orbital motion on the Moon's orbital plane.

Assuming the above-mentioned approximation, we can calculate the
coefficient of the lunar annual aberration K = 206265 V2 /c from

VQ
K = k 11 -	 cos (L C - fQ jL V

where k denotes the coefficient of the Earth's annual aberration, and

k = 20:'496 .

The limits of the variation of K are

19."7 <K<21 11 2 .

(C-13)
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The influence of the lunar annual aberration has to be taken into account
only in the case of the transformation of mean selenoequatorial coordinates
into the apparent times. Whenever we transform the geo-apparent geoequatorial
coordinates or the ecliptic ones into seleno-apparent selenoequatorial coordi-
nates, it is necessary to take into consideration the lunar monthly aberration
only.

The formulas for the influence of the lunar annual aberration in seleno-
equatorial coordinates are (Jakowkin et al. , 1964)

an - a`a = K sec d cos (Lap - Q + 180 - ) sin a - sin (L ap - A + 180') cos a cos I]

d - d' = K
C
cos (Lap - 0 + 180') cos a sin d + sin (Lap - n + 1800)

X (cos d sin I + sin d sin a cos I) J	 (C-14)

where a , d and a'^, d' denote the mean and the apparent coordinates,
respectively. We obtain approximate formulas by putting 4A = 0, Lap = LO - 900

Vi /V a) =  0, and I = 0. Hence, we have

a- a'" = - k sec d cos (L D - a - 0) ,

d - d' _ - k sin d sin (Lp - a - St)	 (C-15)

It is easy to write the formulas for the influence of the lunar annual
aberration in ecliptic and geoequatorial coordinates if we assume the same
approximation as before, namely, Bap = 0. The formulas for ecliptic
coordinates can be obtained from those for the influence of the Earth's
annual aberration if we change the longitude of the apex from L D - 90 ° to

Lap, 	 if we change the coefficients of the aberrations from k to K. Hence,
we have

K sec (isin (Lap

K sin cos (L - ^)	 (C-16)ap
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To calculate the influencc of the lunar annual aberration in geoequatorial
coordinates, it is necessary first to find the g eoequatorial coordinates of the
apex, Aap, Dap, of the Moon's motion around the Sun. If we assume
Bap = 0 and Lap = L 0 - 90 + AA, the geoequatorial coordinates of the apex are

tan Aap = cos a tan Lap

tan Dap = tan e sin Aap	 (C-17)

Next, from Figure C-4, we can write 6 - 6' = SS' cos S' SS 

(a - a') cos 6 = SS' sin S' SS	 SS' = K sin SA
0'	 1	 P

P

Figure C-4. The lunar annual aberration of a star.

Hence,

sin SA cos S' SS = - sin D cos 6 + cos D sin 6 cos (a - A
P	

O	 ap	 ap	 ap)

sin SA sin S' SS = cos D	 in (a - Ap	 O	 ap	 ap)
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and

(a -a')=K 1 cos Da 
P 

sin(a - Aa P ) sec 6 ,

(b - &) = K 1 [ cos Dap sin b cos (a - Aap) - sin Dap cos 61 ,	 ( C-18)

where a, S and a', b' denote the mean and the apparent coordinates, respectively.



APPENDIX D

PARALLAX OF THE RADIUS OF THE NOON, THE RADIUS

OF ITS ORBIT, AND THE MOON—SUN DISTANCE

D. I Introduction

The changes of the directions of the radius vector of a celestial body

(or artificial satellite) caused by the translation of the origin of the coordinate

system from the center of the Moon's mass to a point on its surface is called
the lunar daily parallax.

Taking i'ito account the Moon's orbital motion and its motion around the

Sun (jointly with the i:arth), we can consider the lunar monthly parallax—

the parallax of the Moon—Earth distance — and the lunar annual parallax—

the parallax of the Moon — Sun distance.

The mean diameter of the Moon's globe as well as the radius of the lunar

orbit are small in comparison with the distances of stars, so we can neglect

the lunar daily and monthly parallaxes of stars.

The monthly parallax of a star is defined as

Q	
R0

PM pQ sin I"
(D-1)

where pQ is a selenocentric star distance, and R O = 384,400 km is the mean

Moon—Earth distance. This parallax for the nearest 15 stars, for which

1. 3 parsec < pQ < 3. 5 parsec, is of the order of 0:'01 to 0"02. For all other

stars, this parallax is < 0"01 and generally of the order of several thousandths

c,f a second, or smaller.

3
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D.2 The Lunar Daily Parallax

The lunar daily parallax, or the parallax of the Moon ' s radius for the
nearer celestial bodies such as the Sun and the planets aad for the Moon's
artificial satellites, is quite large. In the same way that we define the Earth's
horizontal equatorial parallax, we define the mean lunar horizontal parallax as

r
sin pd = P	

(D-2)
Q

or

p^	

r(	

(D-3)Pd P( sin l"

where r4 is the mean equatorial radius of the Moon and p, is the selenocentric
distance of the considered body. Putting for r( the value 1738 km, we can
calculate the mean lunar horizontal parallax for different distances of lunar
artificial satellites (Table D - 1) and for the extreme distances of the planets
(Table D-2). The parallax for small distances of the order of several times
the Moon ' s radius, which are the distances of the lunar artificial satellites,
is calculated by equation (D-2), in which pQ = rQ + H, and H is a height above
the Moon ' s surface.

Table D-1. The lunar daily parallaxes of the distances of the lunar
artificial satellites

P(
(in units of rQ )

H = pQ - rQ
(in units of r^)

Q
pd

1 0 90°

1.5 0. 5 42

5 4 11°

6 5 10°

10 9 6°

20 19 3°
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Table D-2. The lunar daily parallaxes of the Sun and the planets

Name

a
(in units of

10 6 km)

Extreme values
of PC

(in units of 106 Pdd

tMoon 0.4 0. 364 400 to 0. 406 730 881:'4 to 983."8

Earth 149.5 149.1 to 149.9 2'392 to 2."405

Mercury 57.9 72 to 220 1:15 to 5."0

Venus 108.3 42 to 257 1!'5 to 8.'5

Mars 228.1 57 to 398 1:10 to 6."5

Jupiter 778.6 629 to 928 ^-0:15

Saturn 1 430.1 128 0 to 158 0 —0.'25

Uranus 2 876. 5 302 7 to 272 7 —0:11

Neptune 4 506.6 465 6 to 435 6 —0:11

Pluto 5 914.8 606 5 to 576 4 —0!'35

a is the semimajor axis of the orbit of the planet around the Sun.

to is the semimajor axis of the Moon's orbit around the Earth.

The distances of points on the Moon's surface from its center of mass
vary from one point to another, so the lunar horizontal parallax also
changes its value. The lunar horizontal parallax for the point whose
selenocentric distance is r is

rsin ira = r	or	 'rd - PQ sin 1"PQ (D-4)
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The parallax d can be expressed by the mean lunar horizontal parallax pd,

r
sin ^d = r = sin Pd rr (D- 5)

where rr is a radius vector of a point on the Moon's surface expressed in
units of the mean Moon's radius r Q .

The shape of the Moon is not well known. However, it is very close to
a sphere and we can expect that the differences in the mean radius of the
different parts of the Moon are not greater than several kilom.,ters. The
heights of the Moon ' s mountains are of the same order. Hence, these small
differences of the selenocentric distances of the point on the Moon's surface
have to be taken into account in the parallax calculation only for such near
bodies as the Earth, Sun, Mercury, Venus, and Mars.

Differentiating formula (D-5), we obtain

cos d d nd = sin pa drr

and putting

dr = 1 07 $ =6 . 10'3, coma	 p=l,s in ar	 =pd,

we have

d n d = 6 X 10 3 pa	 (D-6)

Taking into consideration the parallaxes given in Tables D-1 and D-2, we
can easily see that for all bodies more distant than Mars the influence of
drr = 10 km is < 0!'01 and for other planets is < 0:'003.
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Changing the place of observations from the center of the Moon's mass
to its surface, or vice versa, causes the translation of the coordinate system;
we can obtain the proper transformation by using the rectangular coordinate
system

	x	 x`	 X 
y = y' + YO

	z 	 z'	 ZO

whe re

X, y, z	 _ selenocentric rectangular coordinates,

	

Y. z'	 = lunar topocentric coordinates,

(D-7)

XO , Y O , Z O = selenocentric coordinates of the origin of the lunar
topocentric coordinates, which are expressed by the
selenographic latitude and longitude of the Moon.

These rectangular coordinates, expressed by the polar coordinates p p, u, v
[ see (E-2) and (E-3)] , are

x p P cos u cos v	 x pr cos u' cos v'

y	

-

pp s in u sin v	 y'

-

-	 pP sin u' cos V	 (D-8)

z	 ^Pp sin v	 z` pp sin v'

X PO cos u0 cos v0

Y O - p0 sin uO cos v0 (D- 9)

z PO sin v0

Substitutions for selenocentric coordinates (pp, u, v), topocentric coordinates
(p'P,u', v'), and selenocentric coordinates of the origin of the topocentric
coordinate system (pO , uO , vO) are given for different spherical systems in
Table D-3. If we neglect the difference between selenodetic and selenocentric
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latitudes (^L - X 11 ), which in the case of the Moon is small, we obtain
sel

p 0 = r, u0 is undefined, v0 = 90°, X 0 = 0, Y O = 0, and Z 0 = r.

Table D-3. The selenocentric coordinates of a point on the Moon's surface
and the notation of the selenocentric and lunar topocentric
coordinates in the different coordinate systems

Coordinate
system

Selenocentric
coordinates

Topocentric
coordinates

Selenocentric
coordinates of

topocentric origin
pP u v p'P u' v' p0 u0 v0

Selenoequatorial p P a^ d pP a'^ d' r 0L

Lunar-horizontal p P AL' 90' - z i' pP A! 90 *90 ° - z'I' r
eq

XL 900 - ^Sel-^L

ZQ Z(Ecliptic PP x R p x' (3' r L B

Z( ZQGeoequatorial PP a 6 pP a' b' r a S

Z Z(	 Z( Z(The coordinates L , B	 and a , 6	 are, respectively, the ecliptic
and the geoequatorial coordinates of the zenith of the observer. The ecliptic
coordinates L Z(

, BZ( can be determined from the triangle Z(P(E
(Figure 8, Section 6. 2);

Q
sin B 	 = cos I sin 4L + cos (^L sin I sin 0 L

Q

	

 
Z 
Q	

eq

cos BZ sin (L - 0) = sin ^L sin I - cos ^L cos I sin 0.
Q	 (	

eq

cos BZ cos (LZ - 0) _ - cos 40L cos 0^	 (D-10)
eq

ZQ ZQThe geoequatorial coordinates a , 6 	 can be obtained from the ecliptic
coordinates by transformation ( 5) (Section 2. 1).
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Hence, for example, in the selenoequatorial coordinate system the
formulas are

x	 PP cos a cos d	 x` pP cos 	a'Q cos d'

y	 =	 PP sin a cos 	d	 y'	 = p? sinsin a' Q	cos d'	 ( D-11)

z^	 PP sin d	 z' pP sin d'

XO	r cos 8^ cos ^L
eq

Y	 =	 r sin a cos ^LO	 6
eq

z	 r sin 4L

(D-12)

where 8) denotes the hour angle of the ascending node of the lunar equator
eq

on the ecliptic, and p 0 is equal to the Moon's radius r.

In the system of the coordinates in which the x axis is directed to the
Earth (first radius), the y axis is directed 90' to the west (Moon's) of the
x axis, and the z axis is the Moon ' s axis of rotation, the coordinates X0.
Y 0 , Z 0 are the following:

X0	 r cos XL cos ( L

!	 Y0	 =	 r sin XL cos 0L	 (D-13)

Z0	r sin ^L

where XL is the selenographic longitude measured along the lunar equator
from the meridian of the first radius to the Moon's west direction, from
0 ° to 360 ° .
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The coordinates x, y, z and x', y', z' in th iLs system are

x	 P cos (0L' 0- a ) cos d	 x'
eq

y	 =	 PP sin (0ri'0 - a } cos d , y'
eq

z	 PP sin d	 z'

'P,	 )s (0L ' 0 _ a'") cos d'
eq

pP sin (0^ ' 0 a'0 ) cos d'
eq

pP sin d

(D-14)

where 0L' 0 denotes the lunar hour angle of the ascending node of the lunar
e

equator measured from the lunar meridian of the first radius.

The hour angles()L 	0L' 0 change their values continuously. They can be
expressed by other known values such as the hour angle of the vernal equinox
(the Moon's sidereal time), the longitude of the ascending node of the Moon's
orbit, and the Moon's longitude.

Generally, we can write

OdL^	 =E) -(Q-180°)	 ,
eq

0L 	= 0L 	- add = 0L - a T
*	 T	 '

eq

For example, for the situation shown in Figure D-1, we can write

0 = 0,1L, 0 - (n - 180 °) = 0LAP + XLL _ (Q - 180 °) ,0^' 
eq

L, P L, P to L, P	 T0	 =0^ 	 - a=OT,	 -a
eq
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IME MERIDIAN

W-

m	 a	 ^

Figure D-1. The relation between Bomar hour angles of different points on
the Moon's celestial sphere.

The formulas for the influence of the selenocentric parallax in different
s pherical coordinates can be written on the basis of the general parallactic
formulas (E-6) to (E-11):

M sin (u -u )
_	 1	 0tan(u - u')= 1 - ml cos (u - u0)

n sin (v - y )

	

tan (v - d) _ - ; In cos (v - y )	
(D-16j

	

- 1	 p

where



tan yp = tan v	 cos 0. 5 u' - u)]	 (D-18 )0 cos u0 - 0. 5 (u + u') 

and in this case,

U, v	 = selenocentric spherical coordinates;

U', V = topocentric spherical coordinates;

u0, v0 = selenocentric coordinates of the observation site;

r	 = selenocentric distance of the observation site ( radius
of the Moon);

pp	 = selenocentric distance of a considered body.

The proper substitutions for the spherical coordinates u, v; u', v';
u0 , v0 in the different coordinate systems are given in Table D-3.

In the selenoequatorial coordinate system, these formulas are expressed
as

VF-

and sin 0L
tan (a' - a ) =

1 - ma cos 8L'

na sin (d - Y d)tan (d' - d) _
1 - n  cos (d - Yd )

where
mQ r r sin id cos ^ L	 Q r r sin pd sin 

d	 cos d	 nd	 Q	 'sin Yd

tan y = tan 40L	 cos [0.5 a'a - a	 ]
d

cos [ 8g - 0. 5 (an + a' ) ]
eq

(D-19)
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R
sin pm = P0 ,

Q

(D-20)

W_

In the case of lunar horizontal coordinates, if we put (^L - ^L) ° 0, we
obtain A L = A' L and z L - z'L 	nd sin z L' .

D. 3 Lunar Monthly Parallax

The lunar monthly parallax can be treated a3 the greater lunar diurnal
parallax. Instead of the translation of the origin of a coordinate system
from the center of the Moon to its surface, there is the translation of the
coordinate system from the center of the Moon's mass to the center of the
Earth ' s mass.

We define the mean lunar monthly parallax by the formula

where pQ is the selenocentric distance of a body. Expressing the Earth—
Moon distance A., in the unit of the mean distance R  = 384, 000 km,

Rr RO

we can define the lunar monthly parallax Trm by the mean parallax,

0 R
sin Trm= R- G- 0 = R r sin pm (D-21)

The mean lunar monthly parallax for stars is small, of the order of several
thousandths of a second or smaller.

89



VF-

The values of pm for the Sun and the planets are R 0 /r = 221. 174 times
greater than the lunar daily parallaxes given in Table D-2. The approximate
values of pm for the Sun and the planets, excluding the Earth, are given in
Table D-4.

Table D-4. The approximate values of the lunar monthly
parallaxes of the Sun and of the planets

Nan iv pm

Sun — 91

Mercury 6' to 17'
Venus 5' to 32'
Mars 3' to 231
Jupite r 11 5 to 2'
Saturn 11

Uranus 0.15
Neptune < 0! 5
Pluto < 0:5

Hence, the general formulas for the translation of the rectangular
coordinate system can be written in the same form as in the case of the
lunar diurnal parallax [ see transformation (D-7)]

	

( x	 } _ x»
	

XO®

	

l 
y	 Y"	

+	
Y 00

	

z	 e	
Z0®

(D-L2)
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where

x, y, z	 = selenocentric coordinates,

x", y", z"	 = geocentric coordinates,

X 00 Y00 
Z 00 = selenocentric coordinates of the Earth's center

of mass.

Generally, these rectangular coordinates of a point can be expressed by the
different polar coordinates [ see (D-8) and (D-9)] ; but the topocentric coor-
dinates (p', u', xr) will be replaced by the geocentric coordinates (p", t ,, V1,
and the selenocentric coordinates of the point on the Moon's surface will be
replaced by the selenocentric coordinates of the Earth (A 9^, u(D, v9).

The appropriate substitutions for the spherical coordinates u, v; u", v";
and u® , v® are given in Table D-5 for different coordinate systems.

Table D-5. The selenocentric coordinates of the Earth and the notation of
the selenocentric and geocentric coordinates in different systems

Coordinate
system

Selenocentric
coordinates

Geocentric
coordinates

Selenocentric
coordinates of

the Earth

u v u„ W' ue) v®

8L' 0 d 0,. L, 0- a,̂ Ca d" f
®

b^
Selenoequatorial

t3eq
4

S2eq

atb d a"" d" 8L ' 0 - I
®

b 
9ca

eq

Ecliptic ;\ ( ^" {3" 180' + k^ - (3Q

Geoequatorial a b all 180 ° + a^ - a Q
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Her.., b® , 1 m are the selenocentric selenographic latitude and longitude

of the center of the Earth (or the sub-Earth point on the Moon's surface),
which are given in the almanacs and are calculated by the known formulas
of the geocentric Moon's optical libration (Arthur, 1960);

cos (Q + f® - S2) cos b® = cos ( 1 ,, - S2 - N) cos

sin (Q + I - S2 ) cos b® = sin (P(' - S? - N) cosR
Q,
 cos I - sin R^ sin I

sin b® = - sin (Q - Q - N) cos (3 sin I - sin R co y I	 (D-23)

where IV P^ are the Moon's true geocentric coordinates, Q is the longitude
of the mean ascending node of the lunar orbit on the ecliptic, I is the
inclination of the Moon's equator to the ecliptic, N is the nutation in the
longitude, and k̂  is the mean geocentric longitude of the Moon.

The appropriate formulas in the selenoequatorial coordinate system
are

x	 pt cos a 3 cos d'	 x"	 p'® cos a" 0 cos Cr,

y	 pl, sin a^ cos d	 y"	 p'® sin a	 cos d"

a	 p sin d	 2'	 p" sin d"

X0® G cos (66eq - @^) cos b®

Y00	
= G^ sin (1^4elq _ f^ cos b(

Z0®
or

sin b®

(D-24)
1
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1 `,

or

x pQ cos(@^eq - aLI ) cos d x"	 p® cos (," L, 0 .• a" r2) cos d"

y	 = pQ sin( 9 jeg0 - an) cos d y"	 =	 p® sin(86L, 0 - a" Q	 cos d"

z pQ sin z	 Pe sin d"

XO® 0EK cos I®cos b®

YO(D 0O^ sin f ® cos b® (D-25)

ZOG G D, sin b®

Similarly, as in the case of the selenocentric parallax, the influence of
the lunar monthly parallax in spherical coordinates can be expressed by the
general formulas for the parallax (D-16) to (D-18) with the substitutions given
in Table D-5.

The influence of the lunar monthly parallax in selenoequatorial coordinates
as , d is expressed by

m^ sin (0L' 0 - Q®- a0)m
tan (a"^ - a^) =

	

	 e q 
L 0	 6b	 '1 - mm cos (8a ' - I(D - a )
eq

n^ sin (d - y^ )
tan (d" - d) = m	 m	 (D-26)

1 - nm cos (d - y m)
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where

mQ - sin Trm	
n

cos b®	 Q sin nm sin b®
M	 cos d	 m	 '

sin Y
m

tan	 = tan b	 cos 0. 5 (a" - a^
m	 ® cos8^e 0 - f® - 0. 5 (a + a"^ )

q

sin TrC = ®(
m PQ

(D-27)

Knowledge of the lunar monthly parallax in geoequatorial and ecliptic
coordinates can be very useful in practice because the coordinates of the Sun
and of the planets are given in these systems in astronomical almanacs. So
we will be interested in the corrections that allow us to calculate the seleno-
centric coordinates of the Sun, the planets, etc. , from the geocentric
coordinates.

In this case, we can treat the lunar monthly parallax as the larger Earth's
geocentric parallax and introduce into the formulas for the Earth's geocentric
parallax the proper substitutions that are shown in Table D-6.

Table D-6. Transformation of the formulas for the Earth's geo-
centric parallax into the formulas for the lunar
monthly parallax

1.

Earth's geocentric parallax Lunar monthly parallax

Radius vector of the Earth's Radius vector of the Moon's
surface point mass center, 0®Q

Earth's topocentric distance Selenocentric distance, pQ

Earth's topocentric coordinates: Selenocentric coordinates:
R'; a',	 6f a , 6

Coordinates of the zenith: Geocentric coordinates of the
h = S - a, o'; xzenith	 , Rzenith Moon: aQ , 6	 1	 aQQ ;
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Bence, the influence of the lunar monthly parallax in ecliptic coordinates
is expressed by

-me sin (1Q - Xg
	geo	

eo)tan (Xsel -a)	 1 - m' cos (I - A	 )e	 Q	 geo

-ne sin (N' - Rgeo)tan (Rsel - Rgeo ) 1 - ne cos (Ye	 - Rgeo)	
(D-28)

where

A® cos R	 _ d®Q sin R
MP

	

e - Pgeo cos geo	 ne Pgeo sin ye

tan (3Q cos[0. 5 (Xsel -geo)
tan Ye cos lQ - 0. 5 (k sel + X geo)	

(D 29)

and in geoequatorial coordinates by

m' sin (aQ - CL 
geo)tan ( sel - a geo)	1 - m cos (aQ - ageo)

n' sin (Y' - S
tan (S	

)

	

_ _	
(D-30

geo	 )

	

sel - Sgeo)	1 - n cos (Yg - geo 
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where

cos S	 O^Q sin SQ
m' Pge^Cos geo	

n' 
Pgc o sin g

tan b cos [0. 5 (asel -a 
eo)]tan yg = cos aQ - 0. 5 (asel + ageo

In these formulas, X geo' Pgeo ; ageo' bgeo denote the geocentric coordinates,
and X, P; a, b the selenocentric coordinates.

D. 4 Lunar Annual Parallax

Earth astronomical almanacs very often give not only the geocentric
coordinates of planets but also the heliocentric ones, mainly the ecliptic.
It would be useful to be able to calculate the selenocentric coordinates
directly from the heliocentric coordinates without calculating the geocentric
ones.

The translation of the celestial body's heliocentric rectangular
coordinates (X 0 , Y 0, Z 0) of any system into the selenocentric ones (x, Y. z)
can be written in the form

X 0 x	 X00

Y 0	=	 y	 +	 YQ	 (D-31)

Z 0	z	 Z0

where X 0 Y 0̂ Z 0̂ are the heliocentric rectangular coordinates of the Moon,
which are not given in the almanacs. The almanacs give the geocentric
rectangular coordinates of the Sun (X 01 Y O, Z 0), which can be easily
changed into heliocentric rectangular coordinates of the Earth:

X9 - X D,	 Y®_ - Y D,	 Z,D = - Z 
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If we know the geocentric r^ctangular coordinates of the Moon ( XQ , Y Q , ?^),

which will be usef ul to have in the Moon ' s almanac, we can calculate the
X0,Y 0 ZQ:

	

^
XQ)	 X®+XQ

	

Orr
	 0

z 	 + Z

Hence, the heliocentric distance of the Moon can also be calculated:

2	 2	 2 112

p,D = (X0 + YQ + z )	 (D- 33)
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APPENDIX E

GENERAL PARALLACTIC FORMULAS IN
RECTANGULAR AND SPHERICAL COORDINATES

T he general formulas for a parallax caused by a translation of the origin
of any coordinate system can be written if we know the length and direction
of the translation.

The general relations between the rectangular coordinates of a body in
the two systems, initially X, Y, Z and translated X', Y', Z', are the following:

`x
	 x')
	

^X0

	

y	 -	 y	 +	 YO	 (E-1)

	

^z	 ^z,
	 Z0,

Introducing the polar coordinate system p, u, v, we can write the rectangular
coordinates in the form

x	 ^Pp Cos ucosv x pP cosu' cos v`

y	 =	 pp sin u cos v y'	 - PP sin u	 cos v' 	 (E-2)

z	 pP sin u	 4 z' i ^p'	 sin u'

X 0 `A cos u0 cos v0

Y O l=	 D sin u0 cos v0 (E-3)

Z A sin u00

The notation used above is illustrated in Figure E-1.
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0

Y^

71

X

Figure F-1. Translation of the rectangular coordinate system.

Introducing equations (E-2) and (E-3) into (E-1) gives us

pP cos u' cos v' = pp cos u cos v - A cos u0 cos v 0

p^ sin u' cos v' = p p sin u cos v - A sin u0 cos v 0

p p sin u' = p p sin u - A sin u0 ,	 (E-4)

which can easily be transformed into

pPccsv'sin(u'- u)=Asin(u- u0) cos v0

p  cos V' cos (u' - u) = p p cos v - A cos (u - u0) cos v0

pP sin v' = pp sin v - A sin v0	(E-5)
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The first two equations of (E-5) yield

m 
1 

sin (u - u0)

	

tan (u' - u) = i	
0

	

- m 
1 cos (u - u	

(E-6)

where

cos v0
(E 7)rnl

	

P P cos v	
-

Multiplying the first equation of (E-5) by sin [ 0. 5 (u' - u)] and the second

by cos [ 0. 5 (u' - u)] and add.ind them, we obtain

PI

P 
cos v' _ PP cos v - 0 cot Y P sin v0	(E-8)

where

	

tan= tan v	 cos [0. 5 u' ug	 _	 (E-9)
Yp	 0 cos—[u0 - 0. 5 u + u

Equation (E-8), together with the third equation of (E-5), yields

n l sin (v - Y )
(	 )	 P	 (E-10)tan v' - v = 1 -n 1 cos (v - y

P

where

0 sin v0

	

nl T p sin Y	
(E-11)

P	 P

The formulas (E-6), (E-7), and (E-9) to (E-11) are the general formulas for

the influence of a parallax in spherical coordinates u, v.
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APPENDIX F

GENERAL FORMULAS FOR THE INFLUENCE OF
AN ABERRATION IN SPHERICAL COORDINATES

The basis for our calculations is given in Figure F-1.

P

Figure F-1 . Aberrational displacement of a star.

Ap (uap , vap% = apex of the considered motion of the coordinate
system,

S (u, v), S' (u', v') = true and apparent positions of a star, respectively,

P	 = pole of the coordinate system,

OS 	 = equator of the system ,

0	 _ zero point of the first spherical coordinate u.
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According to Figure F-1, we have

SS' = k0 sin SA ,
P

(u - u') cos v = SS' sin LAPSSI

v - V = SS' cos LA PSS I . (F-1)

In these formulas, the coefficient of an aberration k 0 is

_ V
k0 c sin 1 "

where V is the velocity of the considered motion of the coordinate system,
and c is the velocity of light, 299, 792 km sec -1 . On the basis of the triangle
A PPS,

u - u' = k0 cos vap sin (u - uap) sec v ,

v- v' = k 0 cos vap sin v cos (u - uap) - sin vap cos v ,	 (F-2)

which are the general formulas for the influence of an aberration in spherical
coordinates.
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APPENDIX G

TABLE OF CONSTANTS

G. 1 The IAU System of .astronomical Constants

G. 1. 1 Defining constants

1. Number of ephemeris seconds in s = 31 556 925. 974 7
one tropical year (1900)

2. Gaussian gravitational constant,	 k = 0. 017 202 098 95
defining A. U.

I

G. 1.2 Primary constants

1. Measure of 1 A. U. in meters
2. Velocity of light in meters

per second
3. Equatorial radius for Earth

in meters
4. Dynamical form-factor for

Earth
S. Geocentric gravitational

constant (units: m 3 sec 2)

6. Ratio of the masses of the
Moon and Earth

7. Sidereal mean motion of Moon
in radians per second (1900)

8. General precession in longitude
per tropical century (1900)

9. Obliquity of the ecliptic (1900)
10. Cons±ant of nutation (1900)

A = 149 600 x 106
c=299792.5x. 103

a = 6 378 160e

Y2 = 0.001 082 7

GE = 398 603 x 109

µ = 1 j81. 30

nQ = 2. 661 699 489 x 10-6

p = 5 025"64

E = 23'27'08!'26
N = 9;'210
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G. 1. 3 Auxiliary constants and factors

1. k/86400, for use when the unit of k' = 1. 990 983 675 x 10-7
time is 1 sec

2. Number of seconds of arc in	 206 264.806
1 radian

3. Factor for constant of 	 F1 = 1. 000 142
aberration

4. Factor for mean, distance	 F2 = 0. 999 093 142
of Moon

5. Factor for parallactic inequality 	 F 3 = 49 853:'2

G. 1.4 Derived constants

1. Solar parallax arcs in (ae /A) = Tr0 = 8:'794 05 (8:'794)
2. Light-time for unit distance A/c = 

TA = 
4995012 = i s /0. 002 003 96

3. Constant of aberration FIWTA = K = 20."495 8 (20'496)
4. Flattening factor for Earth f = 0.003 352 9 = 1/298. 25 
5. Heliocentric gravitational A3k' 2 = GS = 132 718 x 1015

constant (units: m 3 sec -2)
6. Ratio .f masses of Sun and Eart: (GS)/(GE) = S/E = 332 958
7. Ratio of masses of Sun and S/E(I + µ) = 328 912

Earth + Moon 1/3
8. Perturbed mean distance of F2

*2[GE U + 0 /nQ
3

= ac 384 400x 10
Moon in meters

9. Constant of sine parallax for 3 /a, = sin irQ = 3422.1451e
Moon -

10. Constant of lunar inequality — A = L = 6'439 87 (6:'440)l	
µ

11. Constant of parallactic inequality
a

F3 i - µ A = PQ 	 = 124:1986
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G. 1. 5 System of plar-tary masses

Reciprocal mass	 Reciprocal mass

Mercury 6 000 000 Jupiter 1 047.355

Venus 408 000 Saturn 3 501. 6

Earth + Moon 329 390 Uranus 22 869

Mars 3 093 500 Neptune 19 314

Pluto 360 000

G. 1. 6 The true values of the primary constants are believed to lie between
the following limits'

A = 149 597 to 149 601 r 10 6 m

1

C = 299 792 to 299 793	 10 3 m sec-

a = 6 378 080 to 6 378 240 m
c

72 = 0.001 082 4 to 0.001 082 9

GE= 398 600 to 398 606 ? 10 9 m3 sec-2

µ -1 =81.29 to 81. 31

n^ = correct to number of places given

p = 5 026:'40 to 5 026:190

C	 = 23'27'08:'16 to 23027108!136

N = 9:'2 00 to 9:'210

G. 1. 7 Correspondingly, the limits for the derived constants are

Tr 0	= 8.1 793 88 to 8: 1 794 34

TA	= 499. 001 to 499.016

K	 = 20:'495 4 to 20:'496 0

GS	 = 132 710to 132 721> 10 i 5 m3 sec 2

S/E	 = 332 935 to 332 968

S/E(I+µ) = 328 890 to 328 922

f 	 298. 33 to 298. 20

aQ	= 384 399 to 384 401	 10 3  
m

sin TrQ = 3 422 :'397 to 3 422:1502

L	 = 6."439 0 to 6."440 8

PQ	= 124."984 to 124."989

Given by the Working Group in Joint Discussion of XII General Assembly
of the IAU, 1964.
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G.2 The Moon's Constants

G.2. 1 Size, mass, density, gravitational constant, principal moments of
inertia, physical libration

Name

Mean radius

Mean surface

Mean volume

Absolute mass (for
G = 6. 668 t 0. 05 10-8
cm 3 g-1 sec-2)

Mean density

Mass ratio

Moon's gravitational
constant

Gravitational
acceleration

Velocity of
escare

Angular velocity
of rotation

Value

rQ = 1 738 km

SQ = 37. 96 x 106 km2

VQ = 2. 199 x 102 5 cm 

mQ =7.353x 10 25 9

P C = 3. 34 g cm- 3

m® /mQ = 81. 3031

Gm( = 4 902. 66 t 0. 16$

GmQ /r2 = 162 cm sec-2

C2Gm( /r()1J2 = 2.3f '_m sec-1

2. 57 x 10 6 rad sec 1

Ratio: Moon's value
Earth's value

J.
0.27 ae

0.17

0.02

0.012

0.60

0.012

less than 1/6

0.21

0.037

a  = 6 378.155 km; it is calculated with the value GM ® = 398 601 t 1 km sec 2,
determined by JPL on the basis of Rangers 6 to 8 and with adopted
c = 299 792. 5 km sec-1.

The value determined by JPL on the basis of Rangers 6 to 8. The value
adopted by IAU is 81. 30.

$ Mean value of results determined by JPL on the basis of Rangers 6 to 9 and
Mariner 4.
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Axes of the Moon's ellipsoid (Potter, 1967)

a = 1 739. 23 t 0. 11 km (toward the Earth)

b = 1 735. 44 t 0.27 km

c = 1 736. 04 t 0.29 km (Polar)

The flattening of the visible disk fQ = 1/920.

Functions of the Moon's principal moments of inertia

a = 398.4 x 10-b

R = 629.4 x 10-6

y= 231.0X 10 6

f = = 0. 633

Moisting A coordinates

X _ - 5 0 9'50" t 4:'5

P = - 3 ° 10'47 	 t 4:'4

h = 932."28 t 0. 009

Several recent determinations of the value of the mechanical ellipticity f
and inclination of lunar equator I t are given on the next page.

J.

rGiven by Koziel (1967) for I = 1 °32'04".

t Given in transactions of the IAU XII A, 1964.
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Coefficients of the development of the forced physical libration in longitude
T, in node T, and in inclination p calculated for the most probable value. of
P = 0. 000 63, for 0. 000 14 < y < 0. 000 28 and 1 = 1 '32'50" (Eckhardt, 1968):

Coefficients for y = 0. 000 14 to y = 0. 000 28

•

Delaunay
argument
1 l' F D 0.000 14 0.000 18 0.000 20 0. Ono 22 0.000 24 0.000 28

t 0 0 0 2 -0.30 -0.38 -6.43 -0.47 -0.51 -0.60
sine terms 0 0	 2-2 0.98 1.28 1.43 1.58 t. 73 2. 04

0	 1 -2	 2 0.22 0.29 0. 33 0. 36 0.40 0.47
0	 1	 0 0 52.91 69.60 78.23 87.07 96.12 114.89
0 2 0 0 - - 0.20 0.22 0.24 0.29
1 -1	 0-1 -1.49 -1.43 -1.38 -1. 37 -1, 37 -1. 33
1 -1	 0	 0 - - - - - -0.20
1	 0-2	 0 -0.61 -0.53 -0.49 -0.44 -0.40 -0. 32
1	 0	 0-2 2.55 3.26 3.62 3.98 4.33 -5.05

1	 0	 0-1 -1.98 -2.63 -2.97 -3.31 -3.67 -4.43

1	 0	 0	 0 -10.96 -13.60 -14.91 -16.23 -11.55 -20.19
1	 1	 0-2 - - 0.20 0.22 0.24 0.28

2-2	 0-2 0.84 0.56 0. 50 0.46 0.43 0.40
2-1	 0-2 -0.52 0.71 0.80 0191 1. 02 1.25
2 0-2 0 -0.33 -4.04 -14.80 32.72 10.80 6.13

2 0 0-2 S.99 7.76 8.6S 9.54 10.45 12.28

2 0 0 0 -0.27 -0.35 -0.39 -0.43 -0.47 -0.54

I 0 0 0 2 -0.25 -0.26 -0.26 -0.26 -0.26 -0.26

sine terms 0 0 2-2 -3,14 -3.09 -3.05 -3.02 -2.99 -2.93

0 0 2 0 -10.26 -10.44 -10.53 -10.61 -10.69 -10.83
1	 0-2	 0 -40.73 -33.37 -29.69 -26.03 -22.35 -15.02

1	 0	 0-2 2.77 Z. 64 2. 57 2. SO 2.43 2. 30
1	 0	 0	 0 -112.67 -107.65 -105.15 -102.63 -100.14 -95.13
1	 0	 2-2 0.71 0.61 0.56 0.50 0.45 0, 34

1	 0	 2	 0 -0.87 -0.85 -0.84 -0.84 -0.83 -0.81
2 0-2 O 0.42 - - - -0.21 -0,45

2 0 0 0 - 1.10 -1.01 -0.96 -0.91 -0.87 .0.74

P 0 0 2-2 -3.22 -3. 15 -3.12 -3.04 -3.05 -2.99

cosine terms 0 0 2 0 -10.63 -10.73 -10.77 -10.81 -10.85 -10.93

0	 1	 0 0 0.39 0.32 0.28 0.24 0.20 -

1	 0-2	 0 40.82 33.45 29.77 26. 11 22.42 15.09
1	 0	 0-2 -2.28 -2.12 -2.05 -1.97 -1.89 -1.74
1	 0 0 0 -110.55 -105.45 -102.90 -100.26 -97.82 92.73
1	 O	 2-2 0.75 0.64 0.58 0. S3 0.48 0. 37
1	 0 2	 0 -0.77 -0.76 -0.75 -0.74 -0.73 -0.71
2	 0-2 0 -0.81 -0.47 -0.33 - 0.34
2 0 0 0 -0.49 -0.44 -0.41 -0.39 -0.36 -0.32

1 5562.7 5560.6 S5S1.5 5558.5 5557.5 5555.4

constant term
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The coeffici r As calculated for the most probable value of y=0.000  22, for
0. 000 60 < (3 < 0. 000 66 and for I = 1°32'50" (Eckhardt, 1968):

Coefficients for p = 0. 000 60 to P = 0. 000 66

Delaunay
argument

I P F D p = 0. 000 60 p = 0. 000 63 p = 0. 000 66

* 0 0 0 2 -0.47 -0.47 -0.47
sine terms 0 0 2-2 1.59 1.58 1. 57

0	 1 -2	 2 0.36 0.36 0.36

0	 1	 0 0 87.08 87.07 87.06

0 2 0 0 0.22 0.22 0.22

1-1	 0-1 -1.37 -1.37 -1.36

1	 0-2	 0 -0.37 -0.44 -0. 53

1	 0	 0-2 3.97 3.98 3. 98

1	 0	 0-1 -3.32 -3.31 -3.32

1	 0 0 0 -16.06 -16.23 -16.42

1	 1	 0-2 0.22 0.22 0.22

2-2	 0-2 OAS 0.46 0.45

2-1	 0-2 0.91 0.91 0.91

2 0 -2 0 32.98 32.72 31. 10

2 0 0-2 9.55 13.54 9. 54

2 0 0 0 -0.43 -0.43 -0.43

l 0 0 0 2 -0.25 -0.26 -0.27v
sine term 0 0 2-2 -2.87 -3.02 -3.17

0 0 2 0 -10.01 -10.61 -11.22

1	 0-2	 0 -22.05 -26.03 -30.22

1	 0	 0-2 2.32 2.50 2. 69

1	 0	 0 0 -95.69 -102. 63 -109. 68

1	 0	 Z-2 0.44 0.50 0. 56

1	 0	 2	 0 -0.78 -0.84 -0.89

2 0 0 0 -0.85 -0.91 -0.98

P 0 0 2-2 -2.93 -3.09 -3.24

cosine term 0 0 2 0 -10.18 -10.81 -11.46

0	 1	 0 0 0.22 0.24 0.26

1	 0 -2	 0 22. 13 26.11 30.30

1	 0 0-2 -1.81 -1.97 -2.13

1	 0 0 0 -93.53 -100.26 -107.28

1	 0	 2 =2 0.47 0. 53 0.59

1	 0	 2	 0 -0.69 -0.74 -0.79

1 2 0 0 0 -0.36 -0.39 -0.42

constant term 5220. 5 5558.5 5906. 1

The new values of coefficients given in this table are given by Eckhardt in
manuscript form.
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G. 2.2 Orbit

Mean Earth-Moon distance

Extreme values of the Earth-Moon
distance

Mean eccentricity of the lunar orbit

Extreme values of the eccentricity

Mean inclination of the orbit

Extreme values of the inclination

0 = 384 402 t I krn

364 400 km - 406 730 km

e = 0. 054 900 489

0. 043 2 - 0. 066 6

i= 5° 15 =  5' 8'43"

5 0 00 - 5 0 30

The longitude of the mean ascending node of the lunar orbit on the ecliptic
measured from the mean equinox of date:

0 = 259° 10'59.'79 - 5 r134° 08'31:'23 T + 7.48 T 2 + 0. 008 T3

= 259 0 183 275 - 0 0 052 953 922 2 d + 0 0 002 078 T2 + 0 2 000 002 T3

The mean long i tude of the lunar perigee measured in the ecliptic from the
mean equinox of date to the rnean ascending node of the lunar orbit, and
then along the orbit:

r' = 334° 19 1 46."40 + 11 r 109° 02'02:'52 - 37;'17 T 2 - 0.045 T3

= 334.°329 556 + 0.°111 404 080 3 d - 0 0. 010 325 T 2 - 0'.000 012 T3

The mean longitude of the Moon measured on the ecliptic from the mean
equinox of date to the mean ascending code of the lunar orbit and then along
the orbit:

Q = 270°26 1 02. 1 99 + 1 336 r 307'52'59:'31 T - 4:'08 T ` + 0:'006 8 T3

= 270.°434 164 + 13.0 176 396 526 8 d - 0.°001 133 T 2 + 0.°000 001 9 T3
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The mean elongation of the Moon from the Sun:

D = 350 0 4 .4 1 14: 1 95 + 1 236 r 307° 06'51."18 T - 5:'17 T 2 + 0: 1 0068 T3

350.°737 486 + 12.°190 749 191 4 d - 0.° 001 436 T 2 + 0. 0 000 001 9 T3,

where T is measured in Julian centuries from 1900 January 0. 5 E. T. =
J. D. 2 415 020. 0 and d is the number of ephemeris days from the epoch.

The lengths of the months for the epoch 1900 are

Synodic 29.530 589 29d12h44n'02.9
Tropical 27.321 582 27 07 43 04.7
Sidereal 27.321 661 27 07 43 11. 5
Anomalistic 27. 554 551 27	 13	 18 33.2
Draconitic 27.212 220 27 05 05 35.8

G. 3 The Earth's Constants

G. 3. 1 Size, mass, density, and gravitational constant

Equatorial radius	 ae = 6 378.155 km

Flattening	 fe = 1 /298. 2 5

Polar radius	 all - f®) = 6 356.769 7 km

Radius vector	 p = 0. 998 327 07 + 0. 001 676 44 cos 2
-0. 000 003 52 cos 40

Reduction from geodetic latitude ^ to geocentric latitude fig:

0
9 

- 0'
9
 = 692.74 sin 2 0

9 
- 1." 16 sin 4 

09

Determined by JPL based on Rangers 6 to 8.
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Mean volume:

1. 083 x 1027 cm 

Al•,solute mass for G = ( 6. 668 t 0. 005) 10 -8 cm  g 1 sec 2.

5. 978 x 1027 g

Mean density:

5. 54 g cm - 3

Mass ratio:

mO = 332 958m®

Normal gravity:

g = 978. 049 (1 + 0. 005 302 4 sin 
2 

^g - 0. 000 005 9 sin 
2 

2 ^ )cm sec -2

Velocity of escape:

11.2 km sec-1

G. 3.2 Orbit

Astronomical unit	 149 600 000 km

Inclination of the ecliptic for 1900 	 E = 23°27108."26

Mean obliquity of the ecliptic:

E = 23°27 1 08:'26 - 46; 1 845 T - 0: 1 005 9 T 2 + 0: 1 001 81 T3

= 23.°452 294 - 0.°013 012 5 T - 0°000 001 64 T 2 + 0.°000 000 503 T3
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Eccentricity:

e0 = 0. 016 751 04 - 0. 000 041 80 T - 0. 000 000 126 T2

Geometric mean longitude of the Sun, referred to the mean equinox of date:

L  = 279 041 1 48 1. 1 04 + 129 602 768 11 13 T + 1."089 T2

= 279°696 68 + 0.°985 647 335 4 d + 0.'000 303 T2

Mean longitude of perigee of the Sun, referred to the mean equinox of date:

r  = 281 ` 13 1 15! 1 0 + 6 189: 1 03 T + 1! 163 T 2 + 0:'012 T3

= 281.= 220 83 + 0.°000 047 068 4 d + 0.°000 453 T2 + 0.°000 003 T3

Mean anomaly of the Sun:

go = 358 °28 1 33. 1 0 + 129 596 579 11 10 T - 0!'54 T2 - 0 1 '012 ; 3

= 358.0 475 83 + 0°985 600 267 0 d - 0.°000 150 T 2 - 0.0 000 003 T3

In the above, T denotes the time measured in Julian centuries of 36 525
ephemeris days from the epoch, and d the time in ephemeris days from epoch
1900 January 0. 5 E. T. = J. D. 2 415 020. 0.

Length of the years:

366242 198 79 - 0d000 006 14 T
Tropical	

365d05h48m500 - 0$530 T

365256 360 42 + 0?000 000 11 T
Sidereal	

365d06h09m09s 5 + 0$01 T

365259 641 34 + 01000 003 04 T
Anomalistic	

365d06h13m53. 0 + 0.26 T

346620 031 + 0?000 032 T
Eclipse	

346d14h52m5087 + 2a8 T
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G.4 Constants of Precession

G.4.1 Earth's precession (Newcomb, 1960; International Astronomical
Union, 1964)

General precession

Planetary precession

Lunisolar precession

Precession in right ascension

Precession in declination

4 = 50:'256 4 + 0: 1 022 2 T

V = 0!'1247-0!'0188T

41 1 = 50 1. 1 370 8 + 0! 1 005 0 T

M = 3.072 34 + 0'001 86 T

n = 20 1. 1046 8 - 0: 1 008 5 T

Mean obliquity of the ecliptics

# = 23°27'08!26 - 46!'845 T - O.'005 9 T 2 + 0:'001 81 T3

= 23.°452 294 - 0.°013 O12 5 T - 0.°000 001 64 T 2 + 0.°000 000 503 T3

Annual rate of rotation of the ecliptic

T = 0!'471 1 - 0!'000 7 T

Longitude of a cis of rotation

h = 173"57:06 + 54!77 T

The position of the ecliptic in terms of its inclination w  and node n 1 on to

fixed ecliptic of the epoch is repr¢sented by

tr 1 sin Il l = + 4!'964 T + 0!'193 9 T 2 - 0!'000 19 T3

tr 1 cos 11 1 = - 46!'$45 T + 0! 1 054 5 T2 + O!'OOO 35 T3
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£_	 G.4.2 Moon's precession
E

Daily motion of the ascending node

of the lunar orbit on the ecliptic

Precession in seleno-right ascension

Precession in seleno- declination

P©_ - 0° 052 953 922 2

Md = + 0 0 052 035 235

N  = - 0° 001 394 420

nid 	 Pd cos 	I and Nd = Pd	sinI 	 are calculated for I = I ' 32!1.
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