NOLI N71-2952) # N71-29522 # N71-29522

Final Report

က က

MCR-71-62 (Vol IV) Copy No.

SPACE SHUTTLE PROPULSION SYSTEMS ON-BOARD CHECKOUT AND MONITORING SYSTEM DEVELOPMENT STUDY

VOLUME IV - APPENDICES

March 1971

35(THRU) Contract NAS8-25619 UUMBER) ACCESS 3 DRL No. 187 Rev. A ч Line Item No. 3 (CODE) 3 (CATEGORY) NIIMBERI CR OR TMX 'n Prepared for National Aeronautics' and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama Prepared by MARTIN MARIET DENVER DIVISION Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE U S Department of Commerce Springfield VA 22151

MCR-71-62

Final Report

Ł

SPACE SHUTTLE PROPULSION SYSTEMS ON-BOARD CHECKOUT AND MONITORING SYSTEMS DEVELOPMENT STUDY

VOLUME IV - APPENDICES

March 1971

Approved by

1 R. W. VandeKoppel

Program Manager

Contract NAS8-25619 DRL No. 187 Rev. A Line Item No. 3

Prepared for

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

> MARTIN MARIETTA CORPORATION Denver, Colorado 80201

FOREWORD

This report was_prepared by the Martin Marietta Corporation under Contract NAS8-25619 "Space Shuttle Propulsion Systems On-board Checkout and Monitoring System Development Study," for the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration. The report is comprised of four volumes:

Volume	I	-	Summary
Volume	II	•	Propulsion System Definition and Criteria
Volume	III	-	OCMS Criteria and Concept
Volume	IV	-	Appendices

CONTENTS

Fore	word	1 1
Conte	ents	iii.
Apper	ndix A - Nomenclature	A-1 thru
Аррет	ndix B - FMEA Data Sheets	A-4 B-1 thru B-210
Apper	ndix C - LRU Maintenance Procedures	C-1 thru C-126
Аррет	ndix D - Checkout and Monitoring Requirements Analysis	D-1 thru D-109
<u>Figu</u>	res	Page
C-1	Exploded View - Maın Engine Subsystem	C-21
C-2	RCS/OMS/Separation Engine Package Removal and Replacement	C-59
C-3	Booster Gas Generator/Heat Exchanger Package Removal and Replacement	C-73
C-4	Gas Generator Removal and Replacement	C-76
C-5	Turbine Removal and Replacement	C-83
C-6	Typical LH_2/LO_2 Pump Removal and Replacement .	C-70
C-7	Typical Orbiter LH ₂ , LO ₂ Heat Exchanger Removal and Replacement	C-95
C-8	Orbiter Power Train Unit Removal and Replacement	C-97
C-9	Engine Installation, Cruise Jets, Forward Wing, Booster	C-101

Page

NOMENCLATURE

I. Definitions

- <u>BIT</u>: A single binary digit. The smallest informational element of a digital system.
- BUILT-IN-TEST EQUIPMENT (BITE): An integral part of a functional unit which serves to test and/or provide status on that functional unit, but does not participate in performing the unit's principle function
- BYTE: A specified number of BITS.
- CHECKOUT: The process of determining whether or not specified physical quantities or operations meet their prescribed criteria. The process can include such functions as data acquisition, processing, storage, display, stimulus generation, etc.
- <u>CONTROL</u>: The act or process of initiating, regulating and/or terminating the operation and performance of a functional element in a prescribed manner.
- <u>CONTROLLER</u>: A device which governs the state or performance of a particular functional element in a prescribed manner, e.g. engine controller.
- DATA BUS: The transmission line(s) along which the system computer(s) communicate with the various Digital Interface Units, controllers, peripheral-equipment, and other computers.
- <u>DATA COMPRESSION</u>: The process of screening and selecting data such that only desired information is retained for further processing and/or storage.
- DESIGN REFERENCE MODEL: The baseline configuration.
- <u>DIAGNOSIS</u>: The determination of the state or condition of an element or parameter through evaluation of available data.
- DIGITAL INTERFACE UNIT: An intermediary unit between the computer(s) and another device which formats that device's output for communication to a computer, and accepts and translates a computer's transmissions to the device.
- FAULT ISOLATION: The processing of analyzing a malfunction or abnormality to the extent of determining which functional element is defective, where the functional element is ordinarily a Line Replaceable Unit.

- FUNCTIONAL ELEMENT: A unit which performs a characteristic action. Parts, components, assemblies, and subsystems are functional elements of increasing complexity.
- <u>GAS PATH ANALYSIS</u>: An assessment of engine performance that is made through evaluation of a set of measured values of pressures, temperatures and/or flow rates.
- <u>GROUND SUPPORT EQUIPMENT</u>: (for checkout and monitoring) That equipment, in addition to the onboard equipment, which is needed to accomplish the functions of checkout and monitoring.
- LINE REPLACEABLE UNIT: A component or group of components that can, as a unit, be removed and replaced in the normal vehicle maintenance area. Such criteria as allowable replacement time spans and degree of complexity of post-replacement calibration form a basis for Line Replaceable Unit selection.
- MAINTENANCE: Those functions and activities associated with restoring the vehicle to an operational condition between flights.
- <u>MEASUREMENT</u>: A physical quantity or event whosenmagnitude or time of occurence is of significance.
- MONITORING: Repetitive acquisition and evaluation of needed data.
- <u>POGO</u>: An oscillatory instability resulting from a dynamic coupling between the fluid and structural elements of the vehicle.
- <u>PROCESSING:</u> The manipulations and operations performed on data from the time and place it is acquired to the time and place it is used in its final form.
- <u>SELF CHECK</u>: The process by which a functional element assesses its own operational integrity and readiness.
- SENSOR: A functional element which responds to a physical quantity or event and converts that response to transmissible data which is proportional to the magnitude of the quantity or indicates occurence of the event.
- <u>SINGLE POINT FAILURE</u>: A functional element whose inability to operate within prescribed limits would cause loss of vehicle, crew, and/or mission objectives.
- STIMULUS: An excitation or forcing function which is applied from an external source at a prescribed place and time.

NOMENCLATURE (Continued)

<u>TIMELINE</u>: A representation of a sequential series of events which depicts the time of occurence and duration of each event.

TRANSDUCER: Same as sensor.

<u>TREND ANALYSIS</u>: The process of evaluating successive samples of the same data to forecast end of useful life and/or incipient failure as an aid to maintenance operations and to mission or vehicle configuration decisions.

II. Abbreviations and Acronyms

Note: Measurement nomenclature is defined in the measurement section.

A/B	Airbreather or airbreathing
APS	Auxiliary Propulsion System
APU	Auxiliary Power Unit
BITE	Built-In Test Equipment
CC	Combustion Chamber
CCC	Central Computer Complex
CCU	Channel Control Unit
Cf	Thrust Coefficient
C*	Characterístic Exhaust Velocity
DIU	Digital Interface Unit
DRM	Design Reference Model
Δv	Change ⁻ in ⁻ Velocity
EPL	Emergency Power Level
FMEA	Failure Modes and Effects Analysis
FPB	Fuel Preburner
FS1	Fire Switch #1 (Engine Start Signal)
FS ₂	Fire Switch #2 (Engine Shutdown Signal)
GHe	Gaseous Helium
GH2	Gaseous Hydrogen
GN ₂	Gaseous Nitrogen
GOX	Gaseous Oxygen
GSE	Ground Support Equipment
G & N	Guidance and Navigation
HPFTPA	High Pressure Fuel Turbopump Assembly

A-4

NOMENCLATURE (Continued)

HFOTPA High Pressure Oxidizer Turbopump Assembly

Ign Igniter or Ignition

KSC Kennedy Space Center

LH₂ Liquid Hydrogen

LO₂ Liquid Oxygen

- LOX Liquid Oxygen
- LPFTPA Low Pressure Fuel Turbopump Assembly

LPOTPA Low Pressure Oxidizer Turbopump Assembly

LRU Line Replaceable Unit

MPL Minimum Power Level

MR Mixture Ratio

MSFC Marshall Space Flight Center

NPL Normal Power Level

OCMS Onboard Checkout and Monitoring System

OMS Orbital Maneuvering System

OPB Oxidizer Preburner

P/L Payload

RCS Reaction Control System

TCA Thrust Chamber Assembly

TPF Terminal Phase Finalization

TPI Terminal Phase Initiation

TVC Thrust Vector Control

VAB Vertical Assembly Building

WTR Western Test Range

APPENDIX B - FMEA DATA SHEETS

The objectives of the failure modes and effects analysis (FMEA) were to determine the potential propulsion failure modes and resulting effects on the subsystem, system, crew and mission, and establish the criticality of the failure; and identify candidate failure detection methods for each failure mode to aid in establishing propulsion system measurement requirements. The groundrules and approach used in conducting this analysis are described in Volume II, Chapter III. This appendix contains the FMEA analysis sheets.

COMPONENT IDENTIFICATION			FAILURE MO	DE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	PROBABILITY OF MALFUNCTION OCCURRENCE
1.1.1.1 & 4.1.1.1 Low Pressure Fuel Turbopump *		Boost fuel pressure from engine interface to inlet of high pres- sure fuel T.P.A. supply coolant flow to extendible nozzle (orbiter only).	Low pressure/flow output during start or steady state, within control range.		Low
			Very low or complete loss of pressure/flow output during steady state.		Low
* Critical component					

FAILUR		E MODE AND EFFECTS ANALYSIS	SYSTEM 1 0 & 4.0 SUBSYSTEI 1.1 & 4 1	ASSEMBLY JJJ44JJ SHEET <u>1</u> of <u>1</u>	
	FAILURE EFFECT ON		RECOMMENDATIONS FOR		HISSION OPERATIONS COLLICALITY
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
Limits available range of adjustment for other performance demands	BOOSTER No effect (depends on control range analysis). ORBITER: No effect (depends on control range analysis).	No offact	Pump rpm, inlet and discharge pressure vibration.	Torque check using a controlled gas source at sched, maintenance cycle could add to bearing condition informa- tion	Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4)
Probable cavitation of H.P.F T.P A, premature engine cutoff, possbile burn-through of extendible nozzle (orbiter only).	BOOSTER Loss of redundancy. ORBITER Loss of one engine	No offect Possible mission loss.	Vibration, pump rpm, inlet and discharge pressura.		Booster A(4) B(2B) C(4) Orbitar A(4) B(2B) C(2A)
					- - - - - - - - - - - - - - - - - - -

NAME NUMBER COMPONENT PRIMARY REDUNDANT	PROBABILITY OF		FAILURE MODE		COMPONENT IDENTIFICATION	
1.1.1.2 & 4.1.1.2 High Pres- Increase rul pressure from Low pressure/flow output Low sure Fuel T.P A.* Drive fluid for L.P.F.T.P.A. Low pressure/flow output during steady state, but within control range. Low 3) High pressure fuel for con- bustion in preburners, and Very low or complete loss of pressure/flow output Low 4) High pressure fuel for colant, tank pressurization. Very low or complete loss of pressure/flow output Low State operation. Very low or complete loss of pressure/flow output Low Low Excessive leakage prior Medium Loss of coolant flow Low	ALFUNCTION OCCURRENCE	REDUNDANT	PRIMARY	FUNCTION OF COMPONENT	DRAWING NUMBER	NAME
4) High pressure fuel for nozzle/ combustion chamber coolant, tank pressurization. Very low or complete loss of pressure/flow output during start or steady state operation. Low Excessive leakage prior to start. Medium Loss of coolant flow Low			ing steady state, but	 Fuel T.P A.* L.P.F.T.P.A. discharge to provide: Drive fluid for L.P.F.T.P A, High pressure fuel to cool H.P.O.T.P.A. turbine bearings, High pressure fuel for combustion in preburners, and main TCA, High pressure fuel for nozzle/ Combustion chamber coolant, 	1.1 1.2 & 4.1.1.2 High Pres- sure Fuel T.P A.*	
to start.	W		pressure/flow output ing start or steady			
Loss of coolant flow output to H.F.O T.P.A.	:díum					
			s of coolant flow put to H.P.O T.P.A.			
* Critical component						

B-4

SYSTEM 1.0 & 4 0 SUBSYSTEM 11 & 4 1 ASSEMBLY 1116411

		NUDE AND EFFECTS ANALISIS	SUBSYSTEN 11&41		SHEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON SYSTEM	MISSION	RECOMMENDATIONS FOR Detection Method	OTHER RECOMMENDATIONS	MISSION OPERATIONS	CRITICALITY CATEGORY
BOOSTER No effect. ORBITER No effect	No effect	Vibration, inlet pressure, outlet pressure, pump rpm, preburner chamber pressure/temp		Bcoster Λ(4) B(4) C(4) Orbiter Λ(4) B(4) C(4)	
EOOSTER. Loss of redundancy. ORBITER Loss of one engine.	BOOSTER No effect. ORBITER Mission loss.	Vibration, inlet pressure, outlet pressure, pump rpm, proburner chamber pressure/temp		Becoster A(4) B(2B) C(4) Orbiter: A(4) B(2B) C(2A)	s.
Safety hazard.	Possible launch dolay.	Vohicle H ₂ sensors leak check at maint cycle	~	Bcoster A(4) b(3) C(3) Orbiter A(4) B(4) C(3)	
EOOSTER Loss of redundancy ORBITER Loss of one engine.	BOOSTER No effect ORBITER Probable mission loss	Valve position discrete		Bcoster 4(4) B(2B) C(4) Orbiter 4(4) B(4) C(2A)	
		1			
	SYSTEM BOOSTER No effect. ORBITER No effect BOOSTER. Loss of redundancy. ORBITER Loss of one engine. Safety hazard. BOOSTER Loss of redundancy	SYSTEM MISSION BOOSTER No effect. No effect ORBITER No effect BOOSTER No effect. DOSTER* Lows of redundancy. BOOSTER No effect. ORBITER Lows of one engine. ORBITER Mission loss. Safety hazard. Possible launch delay. BOOSTER Loss of redundancy BOOSTER No effect	SYSTEM MISSION RECOMMENDATIONS FOR DETECTION FERMO HOOSTER No effect. No effect Vibration, inlet pressure, outlet pressure/temp DOOSTER Lows of redundancy. DOOSTER No effect. Vibration, inlet pressure, outlet pressure/temp DOOSTER Lows of redundancy. DOOSTER No effect. Vibration, inlet pressure, outlet pressure/temp Safety hazard. DOOSTER Mission loss. Vibration, inlet pressure/temp Safety hazard. Possible launch delay. Vohicic He sensors leak check at maint cycle EOOSTER Logs of redundancy ORBITER Logs of one engine. BOOSTER No effect Valve position discrete	FAILURE EFFECT ON RECOMMENDATIONS FOR DECENTION NETHED OTHER RECOMMENDATIONS 20057ER No effect No effect Wiscitan, fulct pressure, outlet pressure, perpension OTHER RECOMMENDATIONS 20057ER No effect No effect DOOTER No effect. Vibratian, fulct pressure, outlet pressure, perpension OTHER RECOMMENDATIONS 20057ER Lows of redundancy. DOOTER No effect. Vibratian, fulct pressure, outlet pressure, pump rgs, probution OTHER RECOMMENDATIONS 20057ER Lows of one engine. DOOTER Mission loss. Vibratian, fulct pressure, outlet pressure, pump rgs, probutier OTHER RECOMMENDATIONS Safety hazard. Forstble launch delay. Value position discrete Value position discrete BOOSTER Loss of one engine. BOOSTER No effect Value position discrete Value position discrete	FAILURE EFFECT ON RECOMPENDITIONS FOR DEFICTION METROD DIMER RECOMPENDITIONS HISSING OFFER Recommendations 2003THE No effect No effect Vibration, thick pressure, outlet pressure/cambon pressure/comp DOMER RECOMPENDITIONS 2003THE No effect No effect Vibration, thick pressure, outlet pressure/cambon pressure/comp Booster A(A) BOOSTER 2003THE Loss of coal engine. 2003THE Mission loss. Vibration, failed pressure/comp Booster A(A) BOOSTER 326fety hazard. Possible launch dolay. Vibration (coal and coal and coa

,

COMPONENT IDENTIFICAT			FAILURE M	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1.1.1.3 Low Pressure Oxidizer Turbopump*		Provide pressure boost from engine interface to H.P.O.T.P.A. receives driving force from first stage discharge of H.P.O.T.P.A.	Low pressure/flow output during start or steady state, within control range.		Low
			Very low or no flow out- put at start or steady state.		Low
*Critical components.					

8-6

FAILURE 1		E MODE AND EFFECTS ANALYSIS	SYSTEM 1 0 SUBSYSTEM 1 1	ASSEMBLY 111 SHEET <u>1</u> of <u>1</u>	
FAILURE EFFECT ON					MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Limits available range of adjustnent for other per- formance demands.	BOOSTER No effect (depends upon control range analysis) ORBITER Same	No effect,	Pump rpm, vibration, inlet and dis- charge pressure	Torque check using a controlled gas source at sched maint. cycle could add to bearing condition information	Booster A(4) B(3) C(4) Orbiter A(4) B(3) C(4)
Possible cavitation of H P O T.P.A, premature engine cutoff; loss of engine.	BOOSTER, ORBITER: Probable multiple engine loss.	Possible hazard to vehicle/crew	Pump rpm, vibration, inlat and dis- charge pressure.		Deoster A(4) B(2B) G(1) Orbiter A(4) B(4) C(1)
					° 8-7

COMPONENT IDENTIFICATION			FAILURE NO	PROBABILITY OF		
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE	
l l l - digh Pressure Olidizer Turbopump*		 Increase oxidizer pressure from discharge of LPOTPA to provide. 1) Intermediate pressure output for main comb chamber to drive LPOTPA turbine, to supply oxid to tank pressurization heat exchanger, 2) To supply high pressure oxi- 		<u></u>	Low	
		2) 10 Supply high pressure ovi- dizer for preburner combustion	Low pressure flow output		Low	
			Loss of output		Low	
			Reduced restriction to seal cavity purge flow		Low	
			Excessive leakage of fuel into hot gas manifold prior to launch.		Medium	
			-			
*Critical component						

SYSTEM 10&40 SUBSYSTEM 11&41 ASSEMBLY 1116411

		FAILORC	MODE AND EFFECTS AMALTSIS	SUBSYSTEM 11&41	SHEET <u>1</u> of <u>1</u>
SUBSYSTEM	FAILURE EFFECT ON SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	HISSION OPERATIONS CRITICALITY CATEGORY
Limits adaptability to other performance degradation	No effect, depanding upon control range analysis	No effect	Vibration, shaft displacement, pump RPM inlat pressure discharge pressure (first and second stage) preburner cham- ber pressure/temp seal cavity oxid vent thrust balance cavity pressure		Booster Λ(4) B(4) C(4) Orbiter Λ(4) B(4) C(4)
Premature engine shutdown due to low performance	Booster Loss of redundancy Orbiter Loss of one engine	Boostor No affect Orbiter Mission loss	Vibration, pump RFM inlet pressure, discharge pressure		Booster A(4) B(2A) C(4) Orbitor A(4) B(4) C(2A)
Loss of engine, possible fire	Engine loss	Loss of mission and possible loss of crew	Same as line 1 above.		Booster A(4) B(2B) C(1S) Orbiter A(4) B(4) C(1S)
No affect	Excess usage of GHe (secondary foilure)	Potential purging problem must be evaluated in design	Scal cavity pressuro		Booster A(4) B(3) C(3) Orbiter A(4) B(3) C(3) C(3)
Ercessive fuel leakage out of pozzle (requires double failure)	Possible safety hazard	Depends upon design and capability of inerting purgo May be a launch delay	Look chacks at sched, maint cycle		Boostar A(4) B(2B) C(4) Orbiter A(4) B(4) C(3)
t					ف

COMPONENT IDENTIFICAT	LION		FAILURE MOD	θE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF Component	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1.1.1.5 & 4.1.1.5 Fuel Pre- burner		Supply fuel rich hot gas to high pressure fuel turbopump assembly and main combustion chamber.	 Crack in lox channel with burning upstream of face Orifice plugging 		1) Low 2) Low
1 1.1.6 & 4.1.1 6 Oxidizer Preburner		Supply fuel rich hot gas to high pressure oxid. TPA and main com- bustion chamber.	Same as 1.1.1.5.		Low
1.1.1.7 & 4.1.1.7 Hot Gas Manifold		Support fuel and oxid. TPAs; support fuel and oxid. preburners, support oxid. heat exchanger; transport loads from all gimballed components to gimbal block. Gas plenum ducting fuel rich turbine and heat exchanger hot gas to main combustion chamber	Structural fatigue.		Lov7
			•		

÷

		FAILURE	NODE AND EFFECTS ANALYSIS	SYSTEN: 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1	ASSEMBLY: 1.1.1 & 4.1.1 SHEET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON				MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	RECOMIEL/DATIONS FOR DETECTION NETHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
 Loss of performance; loss of engine, premature shutdown No effect 	 Booster: Loss of redundancy Orbiter: Loss of one engine No effect 	 Booster: No effect Orbiter: Mission loss No effect 	 Preburner lox flow Preburner chamber pressure Preburner temperature No effect 		Booster: A (4) B(4) C(4) Orbiter: A (4) B(4) C(4)
Same as above.	Same as above.	Same as above.	Same as above.		Booster: A (4) B(A) C(4) Orbiter: A (4) B(4) C(4)
Premature engine cutoff and structural failures of other components, particularly inter- connecting lines which would in turn result in cross leakages of hot gas, fuel, and oxidizer; fire-explosion hazard.	Possible severe thermal or nechanical damage to neighboring engine and other systems.	Booster: Loss of vehicle and crew Orbiter Loss of vehicle and crew	Failure would be reflected principally in main combustion chamber pressure. The engine controller would command an emergency shutdown, but extensive damage would result before zero thrust condition. Recommend postflight inspection.		Booster: A (4) B(15) C(1) Orbiter: A (4) B(4) C(1)

COMPONENT IDENTIFICATION			FAILURE MODE		PROBABILITY OF MALFUNCTION OCCURRENCE
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1.1.1 8 & 4.1.1.8 Fuel Main Valve*		Provides on-off control of fuel flow from 3rd stage of high pres- sure fuel TPA to engine systems.	Fails to open at start.		Low
			Closes prematurely after engine reaches NPL		Low
			Failure to close at shutdown		Low
			Opens slowly.		Low
			Closes slowly.		Low
			Internal and external		
			leakage beyond spec. lımit.		
* Critical component					

SYSTEM 1.0 & 4 0 SUBSYSTEM 1.1 & 4 1 ASSEMBLY: 1,1 1 & 4 1,1

	FAILURE EFFECT ON	· · · · · · · · ·			MISSION OPERATIONS	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	UPERALIUNS	CRITICALITY CATEGORY
Engine fails to start	Booster Loss of redundancy Orbiter Loss of one engine	Booster No effect Orbiter Mission loss	Valve position discrete.	Interlock with other engine sequences.	Booster, A(4) B(2B) C(4)	
	,	· · · · · · · · · · · · · · · · · · ·			Orbiter A(4) B(4) C(2A)	
Engine cutoff with severe engine damage Fossible shrappel	Possible multiple engine damage	Possible vehicle/crew loss	Valvé position discrete	This requires a double failure, based on parts analysis Valve is designed to fail open	Booster A(4) B(2B) C(4)	
					Orbiter A(4) B(4) C(2A)	
No effect	No effect - prevalve redundancy	No effoct	Valve position discrete		Booster A(4) B(4) C(4)	
					Orbiter A(4) B(4) C(4)	
Delay in start, or possible sequence shutdown	Booster Possible loss of redundancy Orbiter Possible loss of one engine	Booster No effect Orbiter Possible mission loss	Valve position analog, valve position discrete	Redundancy recommended in drive motor windings	Booster A(4) B(3) C(4)	
					Orbiter A(4) B(4) C(2A)	
Fuel rich shutdown - no effect	No effect	No effect	Valve position analog	-	Booster A(4) B(4) C(4)	
					Orbiter A(4) B(4) C(4)	
See text	No effect	No effect			Booster A(4) B(4) C(4)	
					Orbiter A(4) B(4) C(4)	
						بن دن دن

SHEET 1 of 1

					8-114
COMPONENT IDENTIFICATION			FAILURE MOD	E	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY ,	REDUNDANT	MALFUNCTION OCCURRENCE
1.1.1.9 & 4.1.1.9 Oxidizer Main Valve*		Provides on-off control of oxid. flow from first stage output of H.P.O.T.P.A. to main injector and oxid. heat exchanger. Valve is powered on & off, no power for maintenance. Fails open on loss of power & vill close on	Failure to open at start.		Low
	ΔΡ.	Δ Υ •	Closes prematurely after engine reaches NPL.		Low
			Failure to close at shutdown.		Low
			Opens slowly.		Low
			Closes slowly.		Low
			Excessive leakage in closed position beyond spec. limits.		
* Critical component					

FAILURE HODE AND EFFECTS ANALYSIS		SYSTEM 10&40 SUBSYSTEN 11&4.1	ASSEMBLY 1.1.1 & 4.1.1 		
FAILURE EFFECT ON		RECOMMELIDATIONS FOR		MISSION OPERATIONS CRITICALITY	
SUBSYSTEM	SYSTEM	MISSION	DETECTION NETHOD	OTHER RECONTENDATIONS	CATEGORY
Engine fails to start.	Booster Loss of redundancy Orbiter Loss of one engine	Booster No affact. Orbiter Mission loss	Valve position discrete	Interlock with start sequence Redundant control circuits here? Why not interlock with shutdown sequence.	Booster: A(4) B(22) C(4) Orbiter A(4) B(4) C(2A)
Fremature engine cutoff. Engine damage due to shrapnel.	Possible multiple cagine loss.	Possible loss of vehicle/ercw.	Valve position discrote	Requires double failure hased on parts analysis. Valve is designed to fail open	Booster. A(4) B(2D) C(4) Orbiter: A(4) B(4) C(2A)
Engine shutdown is ox-rich, damage to main C. chamb. extended shutdown impulse	No offect.	Possible loss of vehicle/crew.	Valve position discrete	Engine postfive purge should be linked with ox valve closure Requires stage or prevalve to close Redundancy provided by this valve	B(4)
Delay in start, or possible sequence shutdown.	Booster Fossible loss of redundancy. Orbiter Possible loss of one engine.	Buoster No effect. Orbiter Possible loss of mission	Valve position discrate Valve position analog,	Redundancy recommended in drive motor Why?	Booster. A(4) B(3) C(4) Orbiter. A(4) B(4) C(2A)
Oxid. rich at shutdown - possible main C.C. damage Possible extended shutdown impulse.	No effect	Fossible loss of vehicle/erew	Valve position analog.	Use stage ox prevalve for redundancy	Bosster: A(4) B(4) C(1) Orbiter: A(4) B(4) C(1)
See text		,	System loak checks at scheduled maintenance cycls.		Boostur: A() B() C() Orbiter. A() B() C() C()

В
- 1
÷
S.

COMPONENT IDENTIFICATION			FAILURE MODE		PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1.1.1.10 & 4.1.1.10 Fuel Con- trol Valve, Oxidizer Preburner*		Initiates, controls, and terminates fuel flow to the oxidizer preburner. Provides mixture ratio and thrust control. Fails static on loss of power.	Failure to open at start.		Low
			Fremature closure.	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Low
			Failure to close at shutdown.		Low
			Slow response; Erratic action, no response to commands at steady state. Shift in position for given power demand.		Low
			Internal and external leakage beyond spec limits.	<u> </u>	Low
•					
* Critical component					

COMPONENT IDENTIFICA			FAILURE MODE		PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE	
1.1.1.11 & 4.1.1.11 Oxidizer Control Valve, Oxidizer Pre- burner*		Controls oxidizer flow to the oxid. preburner. One circuit controls flow to approx. MPL, the second controls above MPL. provides on-off as well as con- tinuous flow control. Fail close on loss of power.	Fails to open at start		Low	
	· · · · · · · · · · · · · · · · · · ·		Closes prematurely.		Low	
			Failure to close at shutdown.		Low	
			Slow response, erratic operation.		Low	
		· · · · · · · · · · · · · · · · · · ·	Internal and external leaks beyond spec. limits.			
* Critical component						

			FAILURE MODE AND EFFECTS ANALYSIS	SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1	ASSE/BLY- 1.1.1 & 4.1.1 SHEET <u>1</u> of 1
	FAILURE EFFECT ON				MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	RECONMELDATIONS FOR DETECTION METHOD	OTHER RECOMIENDATIONS	CRITICALITY CATEGORY
Engine fails to start.	Booster Loss of redundancy Orbiter Loss of one engine	Booster No effect Orbiter Mission loss	Valve position discrete	Redundant motor windings should be considered.	Booster A(4) B(2B) C(4) Orbiter: A(4) B(4) C(2A)
Premature engine shutdown. Possible preburner, TPA, injector damage due to high M R.	Booster: Loss of redundancy Orbiter: Loss of one engine	Booster No effect Orbiter. Mission loss	Valve position analog.	This valve is designed to fail static. Fromature closure requires a structural failure internally which would affect pressure balance, not now identified, plus a second failure in valve.	Booster. A(4) B(2B) C(4) Orbiter A(4) B(4) C(2A)
Continued fuel flow until fuel main valve closes	No effect	No effect.	Valve position analog.		Booster. A(4) B(4) C(4) Orbiter. A(4) B(4) C(4)
Failure to follow M.R./thrust commands. Possible premature shutdown due to out-of-spec. engine.	Booster. Loss of redundancy Orbiter Loss of one engine	Booster No effect Orbiter Mission loss	Valve position snalog preburner chamber prossure.	Same as above.	Booster. A(4) B(3A) C(4) Orbiter A(4) B(4) C(2A)
See text.			Same as above.		Booster A(4) B(4) C(4)
					Orbiter: A(4) B(4) C(4)

SYSTER 1.0 & 4.0

٣

SYSTEM 1.0 & 4.0 SUBSYSTEM 1 1 & 4.1

ASSEMBLY 1.1.1 & 4 1 1

				SUBSYSTEM 11&4.1	SHEET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON		RECOMMENDATIONS FOR		MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	DETECTION VETHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Engine fails to start	Booster Loss of redundancy. Orbiter Loss of one engine.	Booster No effect. Orbiter Mission loss.	Valve position discrete	Recommend considering redundant motor winding.	Booster A(4) D(2D) C(4)
					Orbitar A(4) B(4), C(2A)
Premature engine cutoff	Booster Loss of redundancy Orbiter Loss of one engine	Booster No effect. Orbiter Mission loss	Valve position analog.	Same as above	Booster A(4) B(2E) G(4)
					Orbiter A(4) B(4) C(2A)
Extended burn time - increased shutdown impulse, internal engine damage due to high M.R. in pre- burner.	No effect, thrust not ter- minated properly.	Booster. Possible vehicle separation difficulty. Orbiter No effect due to OMS and RCS operation.	Valve position analog	Same ая абоче	Booster A(4) B(4) C(1)
burner,					Orbiter A(4) B(4) C(4)
Engine fails to respond to M.R./ thrust commands - out of spec condition with premature shut-	Booster Fossible loss of redundancy Orbiter Fossible loss of one engine	Booster No effect. Orbiter Possible mission loss.	Valve position analog Proburner chamber pressure		Booster A(4) B(3) C(4)
down (possible).	engine				Orbiter A(4) B(4) C(3)
Sce text.					
					19

COMPONENT IDENTIFICAT			FAILURE MO	DE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1.1 1.12 & 4.1.1.12 Oxidizer Control Valve, Fuel Preburner	,	Controls flow of oxidizer to fuel preburner. Provides on-off as well as continuous control. One circuit provides for flow up to MPL, and a second provides control above MPL. Valve is powered open, powered for main stage and powered to close OR will close on	Fails to open at start.		Low
		powered to close OR will close on loss of power.	Closes prematurely.		Low
			Failure to close at shutdown.		Low
			Slow response, erratic operation, shift in position for a given power demand.		Low
			Leakage, internal and external, beyond spec lumits.		

в-20

SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1 ASSEMBLY 1.1.1 & 4.1.1

			- NOC AND CITEOIS AMALISIS	SUBSYSTEM 1.1 & 4.1	SHEET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON		RECOMMENDATIONS FOR		MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
Engine fails to start.	Booster No effect Orbiter Loss of one engine	Booster No effect Orbiter Mission loss	Valve position discrate, in start sequence.	Recommend redundant motor windings be considered.	Booster A(4) B(2B) C(4) Orbiter: A(4) B(4) C(2A)
Prematuro engino shutdown.	Booster. No effect Orbiter. Loss of one engine	Booster' No effect Orbiter Mission loss	Valve position discrete, valve position analog.		Booster A(4) B(2B) C(2A) Orbiter: A(4) B(4) C(2A)
Extended burn time - increased shutdown impulse, internal engine damage due to high M R. in preburner	Thrust not terminated properly,	Booster Possible vehicle separation difficulty Orbiter. No effect - OMS and RCS compensate	Valve position analog.		Booster: A(4) B(2B) C(1) Orbiter: A(4) B(4) C(4)
Engine fails to respond to M.R./ thrust commands. Out-of-spec condition with possible premature shutdown.	Booster Fossible loss of rodundancy Orbiter Possible loss of one engine	Booster No effect Orbiter Possible mission loss	Valve position snalog, Preburner chamber pressure, Preburner chamber temperature.	Recommend redundant motor windings be considered.	Booster: A(4) B(3) C(3) Orbiter. A(4) B(A) C(3)
See toyt.					
					B-21

COMPONENT IDENTIFICATION			FAILURE M	PROBABILITY OF		
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY REDUNDANT		MALFUNCTION OCCURRENCE	
1 1.1.14-1 & 4.1.1.14-1 Interconnect Articulating Lines. Low Pressure Fuel TFA Discharge Line		Duct fuel from LPFTPA to inlet of HPFTPA. Provide flexibility for gimballing and misalignment. Vac- uum jacketed to control fuel qual- ity, prevent formation of liquid air.	Loss of vacuum due to rupture may be a line or bellows jacket.		Low	
1.1.1.14-3 & 4.1 1.14-3 Low Pressure Fuel Turbopump Turbine Drive Lines		Duct fuel from HPFTPA 1st and 3rd stages to turbine drive inlets on LPFTPA. Vacuum jacketed to control fuel quality and prevent formation of liquid air.	Loss of vacuum due to rupture may be a line or bellows		Low	
1.1.1.14-2 & 4.1.1.14-2 Low Pressure OTFA Discharge Line		Duct oxidizer from L P. OTPA to in- let of H.P. OTPA. Provide flexi- bility for gimballing and misalign- ment. Bellows are vacuum jacketed to prevent ice formation in convo- lutions	Loss of vacuum jacket, ice formation, with potential line rupture at gimballing cycle	· · · · · · · · · · · · · · · · · · ·	Low	
1.1 1.14-4 & 4.1.1.14-4 Low Pressure OTPA Turbine Drive Line		Duct oxidizer from first stage dis- charge of H.P. OTPA to Turbine in- let of L.P OTPA Provide flexi- bility for gimballing and misalign- ment. Bellows are vacuum jacketed to prevent ice formation in convo- lutions	Same as above.		Low	

B-22

SYSTEM 10&40

ASSEMBLY 1 1 1 & 4.1.1

				SUBSYSTEM 11&41		SHEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON				MISSION OPERATIONS		
SUBSYSTEM	SYSTEM	MISSION	RECONNENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OF EIGHT TONS	CRITICALITY CATEGORY
possible effect on mold cables, hydraulic lines Urbiter Liquid air formation- safety hazard, possible effect on molded cables, hydraulic lines Beyond some altitude, problem no longer exists		Depends upon analysis of safaty aspects Possible launch delay	Surface temperature measurement on each vacuum section, or direct vacuum areas (Latter preferred due to desirability to know conditions prior to loading)	Test vacuum at scheduled maintenance cycle Compartment purge may be adequate Launch delay may be necessary	Booster A(4) D(2B) C(4) Orbiter A(4) D(2B) C(4)	
Same as above	Same as above	Same as above	Same as above	Same as above	Booster A(4) B(2B) C(4) Orbiter A(4) B(2B) C(4)	
Premature shutdown (Small leak A large rupture could result in major damage) Pre-valve closure would prevent further loss	Booster Loss of redundancy Orbiter Loss of one engine	Booster No effect Orbiter Possible mission loss	Surface temp meas or direct vacuum meas (latter proferred)	Check vacuum at sched maint cycle and after delivery to pad. Launch delay may be necessary Compartment purge may preclude ice formation Frost would have no effect	Booster A(4) B(2B) C(4) Orbiter A(4) B(4) C(2A)	
Same as above	Same as above	Same as above	Samo as above	Same as above	Booster A(4) B(2B) C(4) Orbiter A(4)	
					B(4) C(2A)	B-23

COMPONENT IDENTIFICATION			FAILURE MODE		PROBABILITY OF	
N AME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY REDUNDANT		MALFUNCTION OCCURRENCE	
1 1 1 15-24 & 4.1.1.15-28 Fuel Suction Line		Duct tuel from eng./veh. inter- face to LPF TPA. Protect fuel quality via a vacuum jacket. Prevent form. of liq. air.	Loss of vacuum.		Low	
1.1.1.15. 411 Other Lines as 1.1.2.0. Identified in 1.1.3.2. Component Listing 1.1.0.4. 1.1.7.2. 1.2.4.4. 7.1.1.1.5 7.1.2.0 7.1.3.2 7.1.0.7 7.1.7.2. 7.1.8.4 1.8.4		As described in component histings.	Structural fatigue failure only.		Low	

8-24

		FAILUR	NE MODE AND EFFECTS ANALYSIS	SYSTEM 1.0 & 4.0 Subsystem 1.1 & 4.1	ASSEMBLY 1.1.1 & 4.1.1 SHEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON				MISSION	
SUBSYSTEM	SYSTEM	MISSION	RECOMMELDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Booster engine may fail to start	Loss of redundancy.	None.	Vacuum chocks at scheduled maintenance cycle, Fuel suction temporature at start		Booster: A (4) B(3) C (6)
					Orbiter A(4) B(3) C(4)
	**				
					5

COMPONENT IDENTIFICATION			FAILURE MODE		PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE	
1.1 1.16 & 4 1.1.16 Oxidizer Recirculation Select Valve		Provide recirculation prior to engine start, and flow oxid. from first stage H.P.O.TPA to LPO TPA turbine. Must be in turbine position prior to start. Fails to turbine position on power failure.	Failure to shuttle to recirc. position prior to loading.		Low	
			Failure to shuttle to turbine position at start.		Low	

B-26

FAILURE MODE AND EFFECTS			WODE AND EFFECTS ANALYSIS	SYSTEM: 1.0 & 4.0 SUBSYSTEM: 1.1 & 4.1	ASSE#BLY: 1_1_1 & 4_1_1 ShEET <u>1</u> of <u>1</u>	
FAILURE EFFECT ON					HISSION OPERATIONS	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY	
Propellant loading hold.		Probable mission launch delay.	Valve position discrete.		Booster: A(4) B(3) C(4) Orbiter: A(4) B(3) C(4)	
Engine fails to start	Flow disruption in oxid. feedline.	Mission termination.	Valve position discrete.	Interlock with start sequence.	Booster: A(4) B(2B) C(4) B(2B) C(2A) C(2A)	

COMPONENT IDENTIFIC			FAILURE M	ODE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
l.l.l.17 & 4.l.l.17 Fuel Re- circ. Select Valve	4.1.1.17Fuel Re- recirc. line to tank or to L.P.F. TPA for start-assist Flows from third stage of H P.F. TPA must be in turbane position prior to start.Failure to shuttle to recirc. position prior to loading.			Low	
			Failure to shuttle to turbine position at start.		Low

			FAILURE MODE AND EFFECTS ANALYSIS	SYSTEH 1.0 & 4.0 SUBSYSTEH 1.1 & 4.1	ASSEBLY: 1,1,1 & 4,1,1 SHEET 1 of 1
FAILURE EFFECT ON		RECOMMENDATIONS FOR		HISSION OPERATIONS	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
Propellant loading hold.		Probable launch delay	Valve position discrete.	Interlock with loading- ready sequence.	Booster: A(4) B(3) C(4) Orbiter: A(4)
		1 '			Orbiter: A(4) B(3) C(2A)
Fails to start.	Disruption of fuel flow in the fuel feed line.	Mission termination.	Valve position discrete.	Interlock with start sequence.	
					0- 29 29

`

COMPONENT IDENTIFICATION			FAILURE MOD	DE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	PROBABILITY OF MALFUNCTION OCCURRENCE
1.1.1.18 & 4.1.1.18 Fuel Re- circ. Control Valve	rc. Control Valve of fuel to L.P. TPA turbine to rec:	Fails to open for recirculation and start-up.		Low	
		operation.	Fails to close to minimum flow position after start.		Low
	,				

		FAILURE	E MODE AND EFFECTS ANALYSIS	SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1	ASSEMBLY 1.1.1 & 4.1.1 SNEET <u>1</u> of <u>1</u>
SUBSYSTEM	FAILURE EFFECT ON System	MISSION	RECOMMELIDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	MISSIDA OPERATIONS CRITICALITY CATEGORY
Possible inadequate bleed-in, failure to start.	Booster Loss of redundancy Orbiter. Possible loss of one engine	Booster: No effect Orbiter: Possible mission loss	Valve position discrete.	Interlock with propellant loading sequence, and start sequence.	Booster: A(4) B(2B) C(4) Orbiter: A(4) B(2B) C(4)
Possible L.P F TPA overspin, cavitation, with premature engine shutdown (depends upon bootstrap system design and regulator performance). Pressure regulation redundancy lost.	Booster - Loss of redundancy Orbiter - Loss of one engine	Booster No effect Orbiter Possible mission loss	Valve position discrete.		Booster: A(4) B(2B) C(4) Orbiter: A(4) B(4) C(2A)
					D-31

COMPONENT IDENTIFICATION			FAILURE MODE	<u></u>	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	PROBABILITY OF MALFUNCTION OCCURRENCE
1.1.19 & 4.1.1.19 Fuel Re- irc. Regulator		Limit the pressure in the recirc. line ahead of the bellows, select valve, and turbine drive/tank press. system. (See 1.1.1.19 Recirc. Control Valve.) Provides redundant pressure regulation.	Fails to regulate pressure.		Low
					Low
			Fails to open during recirculation.		Low
		,			

		FAILURE	E MODE AND EFFECTS ANALYSIS	SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1	ASSEMBLY 1.1.1 & 4.1.1 ShEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON					MISSION OPERATIONS
SUBSYSTEM	SYSTEM	HISSION	RECOMMELDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
No effect - redundancy provided by recirc, control valve.	No effect	No effect	Pressure, regulator output.		Booster A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)
If double failure occurs, the L P.F TRA would overspin, and potentially the bellows section would fail. Engine loss Possible fire. (Depends upon design of bellows - if it can withstand full pressure, the only effect is premature engine shutdown.)	Both Engine loss,	Both Possible hazardous condition. Mission termination.	Pressure, regulator output.	Low pressure portion should be designed to take full pressure. L P.F. TFA overspin trip should be utilized.	Ecoster: Δ(4) B(2B) C(1) Crbiter: Δ(4) B(4) C(1)
Improper chill down - failuro to start is possible.	Booster Loss of redundancy Orbiter Loss of one engine	Booster. No affect Orbiter Fossible mission less	Bleed point comperature, possibly in recirculation line.		Booster: Δ(4) B(4) C(4) Crbiter Δ(4) B(4) C(2Λ) C(2Λ)

¢

COMPONENT IDENTIFIC	ATION		FAILURE MOD	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1.1.2.1 & 4.1.2.1 Main Injector		Uniformly distribute TPA exhaust gases flowing from gas distribution plate and oxygen discharged from H.P.O.T.P.A. first stage, into combustion chamber.	 Crack in low channel with burning upstream of face Oxid. torus crack or rupture Orifice plugging (secondary failure) 		Low Low Low
1.1.2.2 & 4.1.2.2 Main Combustion Chamber		Contain internal pressures and transmits thermal loads from combustion gases to fuel regener- ative coolant. Contains side loads. Transmits loads from nozzle to main injector, and provides forward support of nozzle extension drive mechanism.	cooling efficiency)		Low Low
1.1.2.3 Booster Nozzle	1	Remove heat from combustion gas by regen. cooling. Transmit thrust, side, and thermal loads to com- bustion chamber. Condition coolant for fuel tank pressurization.	Same as above.		Low
4.1.2.4 Orbiter Nozzle	-	Same as 1 1.2.3. Transmit forces from extendible nozzle to combustion chamber.	Same as above.		Low
1.1.2.5 & 4.1.2.5 Gas Distribution Plate		Uniformly distribute high pressure TPA turbine exhaust gases flowing from the hot gas manifold to the main injector.	Cracking or deformation with nonuniform flow distribution to injector.	, ,	Low

		FAILURE	MODE AND EFFECTS ANALYSIS	SYSTEM 1.0 & 4.0 SÚBSYSTEM 1.1 & 4.1	ASSEMBLY 1.1.2 & 4.1.2 SHEET of
SUBSYSTEM	FAILURE EFFECT ON	MISSION	RECOMMELIDATIONS FOR Detection Method	OTHER RECOMMENDATIONS	MISSION OPERATIONS CRITICALLIY CATEGORY
 Loss of engine-premature shutdown Abrupt engine loss Fremature shutdown 	 Booster. Loss of redundancy. Orbiter: Loss of one engine. Multiple engine loss Booster: No effect Orbiter: Loss of one engine 	 Booster. No effect Orbiter: Mission loss Possible loss of vehicle/crew Booster No effect Orbiter: Loss of mission 	 Oxid flow, C*; I_{sp}, M.R 3) M.R, chamber pressure 	Inspection and leak checks at scheduled maint cycle	Booster: A(4) B(2B) C(1) Orbiter. A(4) B(4) C(1)
Loss of performance with premature shutdown	Booster. Loss of redundancy Orbiter' Loss of one engine	Booster No effect Orbiter Mission loss	Mixturo ratio, C*	Same as above	Booster A(4) B(2B) C(4) Orbiter: A(4) B(4) C(2A)
Same as above	Same as above	Same as above	Same as above	Same as above.	Booster: A(4) B(2B) C(4) Orbiter A(4) B(4) C(2A)
Same as above.	Same as above.	Same as above.	Same as above	Same es above.	Booster: A(4) B(2B) C(4) Orbiter A(4) B(4) C(2A)
loss of performance - may be sufficient to cause out of spec performance short of total structural collapse.	Booster Loss of redundancy Orbiter Possible loss of one engine	Booster: No effect Orbiter: Fossible mission loss	Chamber pressure, C*, I _{sp}	Visual inspection not very practical. Run-to-run performance comparisons by trend analysis is recommended	Booster A(4) B(2B) C(4) Orbiter: A(4) B(4) C(2A)

COMPONENT IDENTIFIC			FAILURE	MODE	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	PROBABILITY OF MALFUNCTION OCCURRENCE
1.1.3.1 & 4.1.3.1 Igniter, Main Combustion Chamber*		Provides ignition source for main combustion chamber	Fails to ignite		Low
			Continues to burn.		Low
			Hard start.		Low
		, 			
		,			
* Critical components					

·	· · · · · · · · · · · · · · · · · · ·			SUBSYSTEM 11&41		SHEET <u>1</u> of <u>1</u>
·	FAILURE EFFECT ON				MISSION OPERATIONS	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS	CRITICALITY CATEGORY
Engine fails to start	Booster Loss of redundancy Orbiter Loss of one engine	Booster No effect Orbiter Mission loss	Valve position discrete, ignition de- tector, igniter current main combustion chamber pressure		Booster A(4) B(2B) C(4)	
Mart - 704 Provide - 4					Orbiter A(4) B(4) C(2A)	
Main TCA Burnout, loss of per- formance, premature shutdown	Booster Loss of redundancy Orbiter Loss of one engine	Booster No effect Orbiter Mission loss	Same as above, plus leak checks at maintenance cycle	Recommend redundant valves be considered	Booster A(4) B(2B) C(4)	······
······					Orbiter Λ(4) Β(4) C(2Λ)	
Capable of withstanding hard start	No effect	No effect	Leak check at maintenance cycle, main C C pressure		Booster A(4) B(4) C(4)	
					Orbiter A(4) B(4) C(4)	
						0

FAILURE MODE AND EFFECTS ANALYSIS

SYSTEM 10&40

ASSEMBLY 113&41.3

COMPONENT IDENTIFIC			FAILURE MOD	DE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
l 1 3.2 & 4.1.3.2 Fuel Preburner Igniter*	1.3.2 Fuel hiter* Provide ignition source for fuel preburner at start. Operates from oxidizer and fuel propel- lant inlet, valve command, and 28 vdc. Fails to ignite or pre- mature loss of ignition.			Low	
,			Continues to burn.		Low
			Hard start due to leakage in oxidizer valve beyond spec. limit.		Low
* Critical component					

		FAILURE	MODE AND EFFECTS ANALYSIS	SYSTEM 10&40 SUBSYSTEM 11&41	ASSEMBLY 113&413 ShEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON					MISSION
SUBSYSTEM	SYSTEM	MISSION	RECOMMELDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Engine fails to start, possible high M.R and incernal orgine damage	Booster Loss of redundancy. Orbiter Loss of one engine.	Booster No effort. Orbiter Mission loss.	Oxid value position discrete pre- burner chamber pressure ignition detector	Redundant oxidizer valve should be considered	Booster A(4) B(2B) C(4) Orbiter A(4) B(4) C(2A)
Premature shut down of engine due to loss of power.	Booster Loss of redundancy. Orbiter Loss of one engine	Booster No effect, Orbiter Mission loss	Oxidizer valve position discrete.		Booster A(4) B(2B) C(4) Orbiter A(4) B(4) C(2A)
Engine capable of withstanding limited hard start	Booster No effect Orbiter. No effect	Booster No effect Orbiter No effect	Leak checks at maintenance cycle, preburner chamber pressure		Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4)

COMPONENT IDENTIFICATION			FAILURE MOD	θE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY REDUNDANT		PROBABILITY OF MALFUNCTION OCCURRENCE	
1.1 3 3 & 4.1.3.3 Oxidizer Preburner Igniter		Provides ignition source for oxidizer preburner at start. Operates from oxidizer and fuel propellant inlet, valve command and 28 vdc.	Fails to ignite or pre- mature loss of ignition.		Low	
			Continues to burn.		Low	
			Hard start due to leakage in oxidizer valve beyond spec limit.		Low	

		FAILURE	MODE AND EFFECTS ANALYSIS	SYSTEM 10&40 SUBSYSTEM 11&41	ASSEMBLY 13 4.1 3 SHEET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON				MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	RECOMMELATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Engine fails to start.	Booster Loss of redundancy Orbiter Loss of one engine.	Booster No effect Orbiter Mission loss	Oxidizer valve position discrete, preburner chamber pressure ignition detector	Redundent ovidizer valve should be considered.	Booster A(4) B(2B) C(4) Orbiter A(4) B(4) C(2A)
Premature shutdown of engine due to loss of power.	Booster Loss of redundancy Orbiter Loss of one engine	Booster No effect Orbiter Mission loss,	Oxidizer valve position discrete		Booster A(4) B(2B) C(4) Orbiter. A(4) B(4) C(2A)
Engine capable of withstanding limited hard start	Booster No offect Orbiter No offect.	Booster No effect Orbiter No effect,	Leak checks at maintenance cycle. Preburner chamber pressure		Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4) C(4)

.

.

COMPONENT IDENTIFICA			FAILURE MO	DE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY REDUNDANT		MALFUNCTION OCCURRENCE	
1.1.4 1 & 4 1 4 1 Gimbal Block		Transfer loads from all gimballed components to vehicle.	Bearing failure,		Low	
1.1 4.2 & 4 1 4 2 Gimbal Actuator and Power Pack *	<u>,, **</u> .	Positions the rocket engine for thrust vector control	Actuator goes hardover and remains there.		Low	
			No response of actuator to command (remains at null).		Low	
			Unstable actuator position (oscillation)		Low	
			Unmodulated actuator posi- tion (full extend or full retract positions only),		Low	
			Slow response		Medium	
				-		
* Critical components						

B-42 [

FAILURE MODE AND EFFECTS ANALYSIS

SYSTEM 10&40 SUBSYSTEM 11&41 ASSEMBLY 114&414

				SUBSYSTEM 11&41		SKEET 1 of	2
	FAILURE EFFECT ON				MISSION OPERATIO	NIC	
SUBSYSTEM	SYSTEM	MISSION	RECOMMERDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	UPENALIO	CRITICALE CATEGORY	TY
Requires excessive torque to move engine	Possible sluggish engine position response	None	Actuator position as compared to com- mand (rate)	Install ΔP transducer across actuator piston, utilize in ground testing with ramp current measurement	Booster	∧(4) B(4) C(4)	
	, v				Orbiter	A(4) B(4) G(4)	
Possible Structural Damage	Booster Loss of TVC on one engine Orbiter Unable to control vchi- cle Engine shutdown	Booster No affect (compensated by flight control sys- tem) Orbiter Mission loss, fail safe,	Actuator position measurement compared to command		Booster	A(4) B(3) C(4)	
	required	increased burn time of remaining engine			Orbiter	A(4) B(3) C(2A)	
	Loss of TVC on one engine	No effect (compensated by flight control system)	Same as above		Booster	Λ(4) B(3) G(4)	
						A(4) B(3) C(4)	
	Oscillation of engine thrust vector	Oscillatory excitation of vehicle (until actuator can be locked in null, then no effect)	Actuator position measurement analyzed for oscillation	Lock actuator in null position when this failure mode is detected -		A(4) B(3) C(4)	
					Orbiter	A(4) B(3) C(4)	
Possible Structural Damage	Unstable thrust vector in one plane	Possiblo vehicle flight instabil- ity (until actuator can be locked in null, then no effect)	Actuator position measurement compared to command	Lock actuator in null position when this failure mode is detected		A(4) B(3) C(4)	
					Orbiter	A(4) B(3) C(4)	
	Poor TVC	No effect (assume compensation by flight control system)	Same as above			A(4) B(4) C(4)	
						A(4) B(4) C(4)	
							B-43

COMPONENT IDENTIF			FAILURÊ MOD	FAILURÊ MODE		
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	PROBABILITY OF MALFUNCTION OCCURRENCE	
			Excessive null shift.		Medium	
	×		Loss of position accuracy (hysteresis).		Low	
			Actuator fails to lock at null when engine is shut down.		Low	
			Actuator fails to lock at null when commanded (to correct for mission effects of other failure modes)		Low	

,

.

	·····		SUBSYSTEM 11&41		ShEET <u>2</u> of <u>2</u>
FAILURE EFFECT ON				MISSION	
SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS	CRITICALITY CATEGORY
Poor TVC	No effect	Same as above		Booster A(4) B(4) C(4)	
				Orbiter A(4) B(4) C(4)	
Poor TVC	Loss of flight control stability margin (until actuator can be locked in null, then no effect)	Same as above	Lock actuator in null position when this failure mode is detected	Booster A(4) B(3) C(4)	
		Actuator null position switch		Booster A(4) B(3) C(4)	
				B(3) C(4)	
	correct for vehicle oscillation Booster No effect				
	remaining engine			Orbiter A(4) B(3) G(2A)	
					5- - - - - - - - - - - - - - - -
	SYSTEM	SYSTEM MISSION Poor TVC No effect Poor TVC Loss of flight control stability margin (until actuator can be locked in null, then no effect) Concerning shutdown necessary to correct for vehicle oscillation Booster No effect Orbitor Mission loss, foil safe, increased burn time of	SYSTEM MISSION RECONMELDATIONS FOR DETECTION METHOD Poor TVC No effect Same as above Poor TVC Loss of flight control stability margin (until actuator can be locked in null, then no effect) Same as above Actuator null position switch One engine shutdown necessary to correct for vehicle oscillation Booster No effect Actuator null position switch	FAILURE EFFECT ON SYSTEM MISSION RECOMMENDATIONS FOR DETECTION METHOD OTHER RECOMMENDATIONS Poor TVC No effect Same as above Lock actuator in null position when this failure mode is detected Poor TVC Loss of flight control stability margin (until actuator can be locked in null, then no effect) Same as above Lock actuator in null position when this failure mode is detected Actuator null position switch Actuator null position switch	FAILURE EFFECT ON MISSION MISSION MISSION Poor TVC No effect Same as above OTHER RECOMMENDATIONS Booster A(4) B(4) C(4) Poor TVC No effect Same as above Lock sctuator in null position when this failure mode is detected Booster A(4) Booster A(4) Booster A(4) C(4) Poor TVC Loss of flight control stability margin (unil actuator can be locked in null, then no effect) Same as above Lock actuator in null position when this failure mode is detected Booster A(4) Booster A(4) C(4)

.

FAILURE NODE AND EFFECTS ANALYSIS

SYSTEM 10&40 SUBSYSTEM 11&41

-

ASSEMBLY 114&414

•

COMPONENT IDENTIFIC			FAILURE MO	DE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1.1.5.1 & 4.1 5 1 Engine Controller	·	Provides power distribution, management of data from vehicle and engine, and data processing. Provides interface to enable engine to respond to vehicle commands and for receipt and distribution of electrical power. Performs start and stop sequencing of engine. Provides thrust, mix- ture ratio, and TVG in response to vehicle commands. Aids in POGO suppression. Provides	 First failure in any module results in: a) Loss of one data input channel redundancy, b) Loss of one 16 channel module; c) Loss of one total channel; d) Loss of channel switching 		Medium
		checkouts necessary to respond to vehicle with engine-ready signal. Automatic nulling and locking the engine on shutdown. Initates shutdown based on checks and monitoring.	Second failure of like- module (excludes C.C.U only one module).		Low
					•
		•			

	FAILURE M		MODE AND EFFECTS ANALYSIS	SYSTEM: 1.0 & 4.0 SUBSYSTEM: 1.1 & 4.1	ASSERBLY: 1.1.5 & 4.1.5 SHEET 1_ of
FAILURE EFFECT ON				HISSION	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Loss of redundancy.	No effect.	Booster/Orbiter: Fossible Laumch delay.	Internal checks reveal status of modules.		Booster: A(4) B(2B) C(4) Orbitel: A(4) B(2B) C(2A)
Premature engine shutdown.	Booster: Loss of redundancy Orbiter: Loss of one engine.	Boonter: No effect Orbiter: Rossible mission loss.	Same as above.		, Booster: A(4) B(2B) C(4) Orbiter: A(4) B(2B) C(2A)
	-				
					B-47

,

COMPONENT IDENTIFIC		FUNCTION OF	FAILURE MO	PROBABILITY OF		
NAME	DRAWING NUMBER	COMPONENT	PRIMARY REDUNDANT		MALFUNCTION OCCURRENCE	
1.1.5.2-1 & 4.1.5.2-1 Ignition Control Harness (Excluding Ignition Valve Control) Fuel Preburner Oxid Preburner, Main Combustion Chamber		Conduct 28 vdc from engine con- troller to spark exciter on com- mand.	Loss of continuity, or high resistance in primary har- ness, or loss of conduction due to short.		Low	
			Loss of redundant harness		Low	
1.1.5.2-2 & 4.1.5.2-2 Valve Control Harness (All Electric Valves)	,	Conduct dc and ac power from con- troller to valves	See individual valves - Failure mechanisms of har- ness result in loss of power conduction, which is a fail-to-operate or pre- mature closure mode in- cluded under each electric valve.		Low	
,						
* Critical components						

•		FA	ALLURE MODE AND EFFECTS ANALYSIS	SYSTEM: 10&40 SUBSYSTEM 1,1&4.1	ASSERBLY: 1.1.5 & 4.1.5 ShEET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON				MISSION
SUBSYSTEM	SYSTEM	MISSION	RECOMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	UPERALIONS CRITICALITY CATEGORY
Loss of redundancy in ignition system	None	None.	Igniter current		Eooster: A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)
Engine fails to reach NPL	Booster' Loss of redundancy Orbiter Loss of one engine	Baoster No effect Orbiter: Mission loss	Igniter current		Booster: A(4) B(2B) C(4) Orbiter: A(4) B(4) C(2A)
					8-49

•

COMPONENT IDENTIFICATION			FAILURE MODE		문제 PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
.1.5.3 & Harness (Control .1 5.3 Instrumentation)		Provide electrical connection between transducers and engine controller inputs (primary signal path).	Open circuit. Short circuit.		Low
			Loss of insulation resistance		Medium
		Secondary signal path,	Same as above.		Low

		FAILURE	HODE AND EFFECTS ANALYSIS	SYSTEM 10&40 SUBSYSTEM 1,1&41	ASSEMBLY 1.1.5 & 4 1.5 SHEET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON				NISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	RECOMMELDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Loss of redundancy	No offect	If detected prior to angine start - possible launch delay.	Shunt calibrations, plus comparison of redundant channels		Booster A(4) B(3) C(4) Orbiter A(4) B(4) C(4)
Loss of redundancy	No offect	If detected prior to engine start - possible launch delay	Shunt calibrations, plus comparison of redundant channels		Booster: A(4) B(2B) C(4) Orbiter A(4) B(4) C(2A)
Premature engine shutdovn	Booster Loss of redundancy Orbiter Loss of one engine	Booster No effect Orbiter Possible mission loss		· ·	Boastor - A(4) B(2B) C(4) Orbiter A(4) B(4) C(2A)

COMPONENT IDENTIFICATION		FAILURE MOD	PROBABILITY OF	
DRAWING NUMBER	COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
	Provide pressure data for control loops (primary).	Change of output sensi- tivity with pressure.		Medium
	Provide pressure data for control loops (primary). (Backup)	Loss of signal; reduction of sensitivity; zero off- set (appears as a change in sensitivity during operation); change of out- put sensitivity with pressure.		Low
	Provide temperature data for mixture ratio control loop (primary).	Sensitivity change.		Low
		Open circuit.	•	Low
	Provide temperature data for mixture ratio control loop (primary). (Backup)	Sensitivity change; open circuit.	-	Low
	DRAWING	DRAWING NUMBER FUNCTION OF COMPONENT Provide pressure data for control loops (primary). Provide pressure data for control loops (primary). Provide temperature data for mixture ratio control loop (primary). Provide temperature data for mixture ratio control loop Provide temperature data for mixture ratio control loop '	DRAWING NUMBER FUNCTION OF COMPONENT PRIMARY Provide pressure data for control loops (primary). Change of output sensi- tivity with pressure. Provide pressure data for control loops (primary). Coss of signal; reduction of sensitivity; zero off- set (appears as a change in sensitivity with pressure. Provide temperature data for mixture ratio control loop (primary). Sensitivity change. Provide temperature data for mixture ratio control loop Sensitivity change; open circuit.	DRAWING NUMBER FUNCTION OF COMPONENT PRIMARY REDUNDANT Provide pressure data for control loops (primary). Change of output sensi- tivity with pressure. Change of output sensi- tivity with pressure. Provide pressure data for control loops (primary). Loss of signal; reduction of sensitivity; zero off- set (appears as a change in sensitivity during operation); change of out- put sensitivity with pressure. Provide temperature data for mixture ratio control loop (primary). Sensitivity change. Open circuit. Open circuit.

•

FAILURE MODE AND EFFECTS ANALYSIS

SYSTEM 10&40

ASSEMBLY 1 1.5 & 4.1 5

		FAILURE	MODE AND EFFECTS ANALYSIS	SUBSYSTEM 11&41	ASSEMBLY* 1 1.5 & 4.1 5 SHEET <u>2</u> of <u>2</u>
FAILURE EFFECT ON				MISSION OPERATIONS	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
Loss of redundancy - minor in- crease in error band of mixture ratio control	No effect	No effect	Comparison of redundant data.		Ecoster: A(4) E(4) C(4)
					Orbiter A(4) B(4) C(4)
Loss of control, premature shutdown.	Booster Loss of redundancy Orbiter Loss of one engine	Booster No effect Orbiter Possible mission loss	Requires comparison within controller of at least a third parameter		Booster A(4) B(2B) C(4)
					Orbiter: A(4) B(4) C(2A)
Loss of redundancy - minor in- crease in error band of mixture ratio control	No offect.	If detected prior to engine start, launch delay possible	Comparison of redundant data	۴.	Booster A(4) B(4) C(4)
					Orbiter. A(4) B(4) C(4)
Same as above.	Sama as above	Same as above	Same as above		Booster. A(4) B(4) C(4)
					Orbiter. A(4) B(4) C(4)
Loss of control Fremature shutdown.	Booster Loss of redundancy Orbiter. Loss of one engine	Booster No effect. Orbiter. Possible mission loss	Requires comparison with at least a third parameter		Boaster A(4) B(2B) C(4)
					Orbitor. A(4) B(4) C(2A)
					9 5 5

.

COMPONENT IDENTIFICATION		FAILURE MOD	PROBĄBILITY OF	
DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
	Provide volumeric flow data for mixture ratio control loop.	Loss of signal, one coil.		Low
		Erratic output signal, loss of signal (in both coils simultaneously); or loss of output from second coil after loss from first coil.		Low
	Provide pressure data for control loops (primary).	Loss of signal.		Low
		Zero offset.		Međium
		Reduction of sensitivity.		Low
		Improper output from shunt steps.		Medium
	ATION DRAWING NUMBER	DRAWING NUMBER FUNCTION OF COMPONENT Provide volumeric flow data for mixture ratio control loop. Provide pressure data for control	DRAWING NUMBER FUNCTION OF COMPONENT PRIMARY Provide volumeric flow data for mixture ratio control loop. Loss of signal, one coil. Erratic output signal, loss of signal (in both coils simultaneously); or loss of output from second coil after loss from first coil. Provide pressure data for control loops (primary). Loss of signal. Zero offset. . Reduction of sensitivity. .	DRAWING NUMBER FUNCTION OF COMPONENT PRIMARY REDUNDANT Provide volumeric flow data for mixture ratio control loop. Loss of signal, one coil. Ioss of signal, in both coils soft in both coils soft in the coil after loss from first coil. Provide pressure data for control loops (primary). Loss of signal. Zero offset. Reduction of sensitivity. Improper output from shunt

1

FAILURE MODE AND EFFECTS ANALYSIS		MODE AND EFFECTS ANALYSIS	SYSTEM 1 0 & 4.0 SUBSYSTEM 1.1 & 4 1	ASSEMBLY 1.1 5 & 4 1.5 SHEET <u>1</u> of <u>2</u>	
FAILURE EFFECT ON				MISSION OPERATIONS	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
Loss of redundancy - minor in- crease in error band of mixture ratio control	No effect.	If detected prior to engine start - launch delay possible	Continuity check Comparison with redundant coil output		Booster A(4) B(3) C(4) Orbiter: A(4) B(4) C(4)
Loss of redundant flow meas. Use of backup system results in an increased error band in M R. control	Booster No effect. Orbiter No effect.	Dooster. No effect Orbiter No effect.	Comparison of both coils		Booster: A(4) B(2B) C(4) Orbiter. A(4) B(4) C(4)
Loss of redundancy, minor in- crease in error band of mixture ratio control.	No offect	If detected prior to engine start, launch delay possible	Comparison of redundant data channels, shunt calib check may be used on ground tests.		Booster. A(4) B(2B) C(4) Orbiter: A(4) B(4) C(4)
Same aa above	Same as above	Same as above	Same as above		Booster A(4) B(2B) C(4) Orbiter A(4) B(4) C(4)
Same as abova	Same as above.	Same as above	Same as above		Booster: A(4) B(2E) C(4) Orbiter A(4) B(4) C(4)
Same as above	Same as above	Same as above	Same аз абоve		Booster A(4) B(2B) C(4) Orbiter A(4) B(4) C(4)
					ធ ភូ ភូ

۲

COMPONENT IDENTIFICATION			FAILURE MODE		PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY REDUNDANT		MALFUNCTION OCCURRENCE	
1.1.6 1 Fuel Tank Pressurant Check Valve		Prevent backflow of tank GH ₂ into engine.	Failure to open.		Low	
			Failure to close at shutdown.		Medium	
1 1 6.2 Oxidizer Tank Pres- surant Check Valve.		Prevent backflow of tank gox into engine	Failure to open.		Low	
			Failure to close		Međium	
1.1.6 3 Oxidizer Heat Evchanger		Heat oxidizer to desired thermo- dynamic conditions for main oxid tank pressurization	No primary failure mode other than gross struc- tural		Low	
<pre>1 1 6 4 Interconnect Lines Hot Gas Inlet Hot Gas Outlet Oxid Inlet Oxid Tank Pressure Fuel Tank Pressure</pre>		Conduct fuel rich gas to and from 1 1.6.3. Conduct oxid to 1 1 6.3. Conduct oxid from 1 1.6 3 to in- terface. Conduct GH ₂ from check valve to interface.	All: No primary failure mode other than gross structural		Low	

		FAILURE	MUDE AND EFFECTS ANALYSIS	SUBSYSTEM 1.1 & 4.1		SHEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON				MISSION OPERATIONS		
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPENATIONS	CRITICALITY CATEGORY
1% flow now goes through engine Slight change in M R	Assuming one engine can supply sufficient gas for tank No effect	No effect	Valve position discrete,	Need check valves with built-in prox- imity sensors	Booster A(4) B(4) C(4)	
				•	Orbiter: A(4) B(4) C(2B)	
GH2 in manifold volume would ex- haust out of malfunctioning check valve No adverse effect	Tank exhaust through nozzle On reentry propellant tank would probably collapse Inability to fill at adequate rate	Possible reentry hozard, mission termination	Valve position discrete, leak check at sched maint cycle	Redundant shutoff required	Booster A(4) B(4) C(1S)	
•					Orbiter A(4) B(4) C(1S)	
Same as above	Same as above	Same as above	Same as above		Booster A(4) B(4) C(4)	
					Orbiter A(4) B(4) C(4)	
Same as above except that manifold volume would be evacuated only when oxid valves are opened	Same as above	Same as above	Same as above	Sama as above	Booster Λ(4) B(4) C(1S)	<u></u>
					Orbiter A(4) B(4) C(1S)	
			System leak checks at sched maint cycle	Design and test for adequate safety margin	Boostor A(4) B(4) C(4)	
					Orbiter A(4) B(4) C(4)	
			Same as above	v.	Booster A(4) B(4) C(4)	
					Orbiter A(4) B(4) C(4)	
						B-57

FAILURE MODE AND EFFECTS ANALYSIS

SYSTER 1064.0 SUBSYSTER 11641

ASSEMBLY- 1166416

COMPONENT IDENTIFICATION			FAILURE MO)DE		
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	PROBABILITY OF MALFUNCTION OCCURRENCE	
1.1.7.1-1a Preburner Oxidizer Purge Solenoid Valve	Purge Solenoid	Provides helium to preburners. Oxidizer circuit downstream of shutoff. For purging prior to FS1 and after FS2, purge is on prior to launch on both stages, and orbiter purge remains on during boost phase.	Fails to open at start, or premature closure at start.		Low	
			Fails to close at start of engine.		Low	
			Fails to open at shutdown, or premature closure.		Low	
			Fails to close after shutdown.		Low	
			Operates slowly.		Low	

		FAILURE	MODE AND EFFECTS ANALYSIS	SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1	ASSEMBLY 1.1.7 & 4.1.7 SHEET <u>1</u> of <u>3</u>
SUBSYSTEM	FAILURE EFFECT ON System	MISSION	RECOMMELIDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	MISSION OPERATIONS CRITICALITY CATEGORY
Possible failure to come to NPL due to icing in platelets Engine cutoff. Possible hard start.	Booster Loss of redundancy Orbiter Loss of one engine	Booster. No effect Orbiter: Possible mission loss	Valve position discrete.	Interlock with launch sequence Consider parallel redundant valves	Booster: A(4) B(2B) C(4) Orbiter A(4) B(4) C(2A)
No effect at start. Check valve prevents back-flow of lox No effect at shutdown. Shutoff redundancy lost. (See check valve analysis.)	No effect.	No effect.	Valva position discrete		Booster: A(4) B(4) C(4) Orbiter. A(4) B(4) C(4)
Preburner face burning. Possible turbine damage	No effect	No effect.	Valva position discrete.	Would require inspection at next maintenance cycle.	Booster: A(4) B(4) C(4) Orbiter A(4) B(4) C(4)
No offect	None. System valve must be shut off.	No effect.	Valve position discrete.	Stage shutoff redundancy.	Booster: A (4) B(4) C(4) Orbiter A (4) B(4) C(4)
Possibly same effect as failure to open at shutdown.	No effect	No effect.	Valve position analog.	Examination of valve trace would reveal time sensitive wear changes.	Booster. A(4) B(4) C(4) Orbiter. A(4) B(4) C(4) C(4)
					р. - 55 56

-

COMPONENT IDENTIFICATION		CUNCTION OF	FAILURE MOD	PROBABILITY OF		
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY REDUNDANT		MALFUNCTION OCCURRENCE	
1.1.7.1-1b & 4.1.7.1-1b Main TCA Fuel Purge Solenoid Valve		Provides helium purge to entire engine system fuel circuits downstream of main fuel valve. Required prior to FS1 for air/ moisture evacuation; Post-FS2 to control shut down mixture ratio. Operates on 28 vdc command, fails closed on loss of power.	Fails to open prior to start, or premature closure at start.		Low	
			Fails to close at start.		Low	
			Opens slowly at start.	. <u></u>	Low	
	ς		Fails to open at shutdown, or premature closure at shutdown.		Low	
			Fails to close after purge complete.		Low	

B~60

		FAIL	URE MODE AND EFFECTS ANALYSIS	SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1	ASSEMBLY 1.1.7 & 4.1.7 ShEET <u>2</u> of <u>3</u>
FAILURE EFFECT ON					MISSION
SUBSYSTEM	SYSTEM	' HISSION	RECOMMENDATIONS FOR DETECTION NETHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Booster Frobable liquid air in fuel system at start, probable detonation Orbiter No effect	Booster Possible failure to start due to ice in system Orbiter. No effect (altitude start)	Booster Probable loss of redundancy Orbiter No effect	Valve position discrete	Interlock with start sequence	Booster A(4) B(2B) C(4) Orbiter. A(4) B(4) C(4)
Check valve provides shutoff redundancy. Slight change in start characteristic due to excess helium.	No effect	No effect.	Valve position discrete		Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4)
No effect.	No effect.	No effect.	Valve position discrete, with functional check at maintenance cycle.		Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4)
Possible M R. problem resulting in main injector damage.	No offect.	No effect.	Valve position discrete	Main injector inspection at maintenance cycle.	Booster Λ(4) B(4) C(4) Orbiter. Λ(4) B(4) C(4)
No cffect.	Excessive helium usage	No affact.	Valve position discrete.		Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4) C(4)
					- 8-61

,

COMPONENT IDENTIFICATION			FAILURE MOD	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1.1.7 1-1c & 4.1.7.1-1c Main TCA Oxidizer Purge Solenoid Valve		Provide on-off control of helium purge to main combustion chamber oxidizer passages, to prevent ice formation and H ₂ entry prior to start, and to control mixture ratio at shutdown.	Fails to open prior to start.		Low
			Fails to close prior to start.		Low
			Fails to open at shutdown or'opens slowly at shutdown, or premature closure.		Low
			Fails to close after shutdown.		Low
			Opens slowly at start.		Low

8-62

ShEET _3_ of _3_ FAILURE EFFECT ON MISSION **OPERATIONS** RECOMMENDATIONS FOR CRITICALITY SUBSYSTEM SYSTEM MISSION DETECTION METHOD OTHER RECOMMENDATIONS CATEGORY Possible loss of chamber Booster Loss of redundancy No effect Valve position discrete. Interlock with start sequence, Booster: A(4) performance. Orbiter No effect B(2B) (altitude start) C(4) A(4) • Burnout with premature shutdown. Orbiter B(4) C(4) Check valve provides shutoff No effect. No effect. Valve position discrete. --Booster A(4) redundancy, slight change in B(4) start characteristic. C(4) Orbiter* A(4) B(4) C(4) Probable injector damage. Λ(4) Β(4) C(4) Λ(4) No effect. No effect. Valve position discrete Injector inspection at maintenance cycle, possible malfunctioning engine Booster on next flight Orbiter: B(4) C(4) No effect. Excessive use of GHe No effect. A(4) B(4) C(4) Valve position discrete --Booster Orbiter: A(4) B(4) C(4) No effect. No effect. No effect. Valve position discrete Probably will open slowly at shutdown. Booster. A(4) B(4) C(4) A(4) Functional at maintenance cycle Orbiter. B(4) C(4) 1 B-63

FAILURE MODE AND EFFECTS ANALYSIS

SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1 ASSEMBLY 1.1.7 & 4.1.7

1

COMPONENT IDENTIFICAT	ION		FAILURE MODE		PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE	
1 1 7 1-1d High Pressure OTFA Cavity Seal Purge Valve, Solenoid.		Provide on-off control of helium purge to the cavity seal between the oxidizer and fuel effluent from the high pressure OTPA pump and turbine, for overboard dump. To be on prior to loading propel- lants and during engine burn, booster and orbiter. This valve is is designed to fail open. (Un- energized open.)	Failure to open prior to loading propellants and engine start.		Low	
l 1 7 1-le Engine System Purge Control Solenoid Valve.		Provide on-off control of purge gases to main fuel and oxidizer suction lines prior to propellant loading. Selects: 1) Fuel Line, 2) Oxid line, 3) Both on, 4) All off. 28 vdc valve, multiple inputs, fails to all-off position	Fails to actuate to oxid position. (Or "both")		Low	
		on power loss Valve must be in "both-on" position prior to pro- pellant loading, and must be in off position at the start of load- ing.	Fails to actuate to fuel position (or "both")		Low	
``	,,. <u></u>		Fails to return to off position at loading		Low	
l 1.7.1-lf Two-Way GN ₂ /GHe Select Solenoid Valve.		Provide selection of GN_2 or GHe as purge gas, prior to propellant loading, and during flight Fails in GHe position with loss of power Must be in GHe position prior to fuel purging, and prior to prop. loading.	Fails to shuttle to GN2 position, or to return to GHe position.		Low	

-

,

SYSTEM 10&40 SUBSYSTEM 11&41 ASSEMBLY 1.17 & 4.17

		FAILUR	E MODE AND EFFECTS ANALYSIS	SUBSYSTEM 11&41	ASSEMBLY 1.17 & 4.17 ShEET <u>1</u> of
	FAILURE EFFECT ON				MISSION
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR Detection Method	• OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Possible detonation at start (See recommendations)		Launch delay	Valve position discrete	Interlock with loading sequence ready system Loading should not proceed un- loss this valve indicates open	Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4)
Possible moisture in system En- gine fails to come to full power, possible TPA damage due to plugged passages Premature shutdown	Booster Launch dalay Orbiter Launch delay	Booster No effect Orbiter No effect	Valve position discretes	Interlock with loading ready signal; establish procedures	Booster A(4) B(3) C(4) Orbiter A(4) B(3) C(4)
Same as above	Same as abova	Same as above	Same as above	Same as абоче	Booster A(4) B(3) C(4) Orbiter A(4) B(3) C(4)
Helium would enter fuel, oxid, or both suction lines during loading No effect		Possible launch delay	Valve position discrete	Interlock "off" position with londing ready signal	Booster A(4) B(3) C(4)
No effect Interlock system and procedure requires GHo position for preload purge Excessive use of GHe on ground if valve failed to shuttle to GN ₂ position			Valve position discrate		Orbiter: A(4) B(3) G(4) Booster A(4) B(C) G(4) Orbiter: A(4) B(C) G(4)

COMPONENT IDENTIFIC			FAILURE MOD	E	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1.1.7.1-2a & 4.1.7.1-2a Oxidizer Preburner Oxidizer Inlet Purge Check Valve		Prevent backflow of oxid from reaching purge shutoff valve, and from reaching fuel preburner check valve Must flow through during purging.	Fails to open during pre- start purge.		Low
		1 	Fails to close after pre- start purge.		Low
			Fails to open at postfire purge.		Low
			Fails to close after post- fire purge.		Low
1.1.7.1-2b & 4.1.7.1-2b Fuel Preburner Oxidizer Inlet Purge Check Valve		Prevent backflow of oxidizer from reaching purge solenoid valve. Must flow-through during purge	Failure to open at start of purge before FS-1		Low
			Failure to close at end of prestart purge.		Medium
			Failure to open at shut- down purge after FS-2.		Low
			Failure to close at shut- down purge.		Low

∨ B-66

		FAILUR	E MODE AND EFFECTS ANALYSIS	SYSTEM 10&40 SUBSYSTEM 11&41	ASSEMOLY 117&41.7 Sheet <u>1</u> of <u>2</u>
	FAILURE EFFECT ON	· · · · · · · · · · · · · · · · · · ·	RECOMMELIDATIONS FOR		MISSION OPERATIONS CRITICALITY
SUBSYSTEM	SYSTEM	MISSION	DETECTION METHOD	OTHER RECOMMENDATIONS	CATEGORY
Possible formation of ice in in- jector, low performance, engine may fail to start	Booster Possible loss of redundancy Orbiter No effect	No offect	Valva position discrete, functional checks at maint cyclo with N ₂	No known check valves made with posi- tion indicators	Booster A(4) B(3) C(4) Orbiter A(4) B(4) C(4)
Possible cross flow of oxidizer to fuel proburner circuit, with mix- ture ratio control problems Loss of shutoff redundancy	No offact	No offect	Leak check at mint cycle	Cross-flow depends upon opening △P in check valve design	Booster A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)
Possible injector face burning and turbine damago	No effect	No affect	Valve position discrete preburner chamber pressure	Effect is on subsequent flight (potentially).	Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4)
No effect	No offect	No effect			Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4)
Possible failure to start due to ice formation, engine faile to come to NPL Engine cutoff possi- ble hard start	Booster Loss of redundency Orbiter Loss of one engine	Booster No effect Orbiter Possible mission loss	Valve position discrete	Intorlock with start sequence	Booster- A(4) B(2B) C(4) Orbiter A(4) B(4) C(4)
No effect Lox/gox trapped in line to solenoid valve until shut- down Loss of shutoff redundancy in backflow mode.	No effect	No effect			Booster A(4) B(4) C(4) Orbiter A(4) B(4) G(4)
Possible preburner or turbine damage	No effect	No effect	Valve position discrete functional sys- tem at maint cycle	Affocts noxt flight, potentially.	Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4) ,
No affect	No effect	No effect			Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4)

COMPONENT IDENTIFICATION			FAILURE MOD	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1.1 7.1 2c & 4.1.7.1-2c Main TCA Fuel Inlet Furge Check Valve		Prevent backflow of H ₂ from reach- ing solenoid valve. Must flow- through during purge. Redundant backflow shutoff.	Fails to open at pre-FS ₁ purge.		Low
			Fails to close at end of pre-FS _l purge		Medium
			Fails to open at shutdown purge (FS ₂)		Low
			Fails to close at end of post FS ₂ purge		Low
	٦				

SYSTEM 10 & 40

ASSEMBLY 1 1.7 & 4 1.7

,,,,,,,				SUBSYSTEM I 1 & 4 1		ShEET _2_ of _2_
	FAILURE EFFECT ON				MISSION	
SUBSYSTEM	SYSTEM	MISSION	RECOMIELDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPENATIONS	CRITICALITY CATEGORY
Booster	Booster Loss of redundancy	Booster No effect	Vulve position discrete	Intorlock with start sequence	Booster A(4) B(2B) C(4) Orbiter A(4) B(4) C(4)	
LH2 reaches shutoff solenoid valve Loss of shutoff redundancy	No effact	No effect	Valve position discreto, leak check at maint cycle	- 4	Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4)	
Possible M R problem resulting in injector damage	No effect	No effect	Valve position discrete, functional chock at maint cycle		Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4)	
No offect	No effect	No offect	Leak check at maint cycle	Could affect next flight, if shutoff valve failed to close tight (Secondary failure)	Booster: A(4) B(4) C(4) Orbiter A(4) B(4) C(4)	
						B-69

COMPONENT IDENTIFIC			FAILURE MOD	E	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1.1.7 12d & 4.1.7.1-2d Main TCA Oxidizer Purge Check Valve		Prevent liquid oxidizer from reaching solenoid valve. Must flow through during purge.	Fails to open at pre-FS1 purge.		Low
-			Fails to close at end of pre-FS1 purge.		Medium
			Fails to open at shutdown purge (FS2).		Low
			Fails to close after FS ₂ purge.		Medium
		· · · · · · · · · · · · · · · · · · ·		NA - 644 - 14900 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1	

			FAILURE MODE AND EFFECTS ANALYSIS	SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1	ASSEMBLY 1.1.7 & 4.1.7 SHEET <u>1</u> of <u>3</u>
	FAILURE EFFECT ON		RECOMMELIDATIONS FOR		MISSION OPERATIONS CRITICALITY
SUBSYSTEN	SYSTEM	MISSION	DETECTION NETHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Possible loss of chamber performance, Burnout with premature shutdown,	Booster Loss of redundancy Orbiter No effect (altitude start)	Booster* No effect Orbitar* No effect	Valve position discrete.	Interlock with start sequence	Boostar: A(4) B(2B) C(4) Orbiter: A(4) B(4) C(4)
Loss of shutoff redundancy - lox reaches shutoff solenoid valve.	No effect.	Bo effect.	Valve position discrete; leak check at maintenance cycle.		Booster: A (4) B (4) C (4) Orbiter: A (4) B (4) C (4)
Probable injector damage.	No effect.	No effect.	Valve position discrete	Damage affects next flight - inspect injector.	Booster* A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)
No effect.	No effect,	No effect.	Leak check at maintenance cycle	Could affect next flight if solenoid valve had excessive leakage in reverse direction.	Booster: A (4) B(A) C(4) Orbiter: A (4) B(A) C(4)
					B-71

•

COMPONENT IDENTIFIC			FAILURE N	10DE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF Component	PRIMARY	REDUNDANT	PROBABILITY OF MALFUNCTION OCCURRENCE
1.1.7.12e & 4.1 7.1-2e High Pressure O.T.P.A. Seal Cavity Purge Check Valve		Provide redundant backflow shutoff to prevent oxidizer or fuel from reaching purge distribution system. (See purge solenoid valve 1.1.7.1-1d.) Must flow through during purge (preloading through engine	Fails to open prior to loading of propellants.		Low
		(preloading through engine shutdown). Note: Not redundant in truest sense, since solenoid valve is fail-open.	Failure to close at shutdown of purge.		Medium
1					

FAILURE			E MODE AND EFFECTS ANALYSIS	SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1	ASSE/BLY 1,1.7 & 4,1.7 SHEET _2_ of		
	FAILURE EFFECT ON				MISSION OPERATIONS		
SUBSYSTEM	SYSTEM	MISSION	RECOMMERDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS	CRITICALITY CATEGORY	
Fossible detonation at start, see recommendations.		Possible launch delay.	Valve position discrete, seal cavity pressure.	Interlock measurement with loading roady sequence, purge system checks at maintenance cycle should catch malfunctioning check valve.	Booster: A(4) B(2B) C(4) Orbiter: A(4) B(2B) C(4)		
Any residual propellants may reach shut-off valve. Would be very low in pressure, and probably would not reach the purge system in event of solenoid valve failure (open).	No effect.	No effect.	***		Booster: A(4) B(4) C(4) Orbiter: A(4) B(4) C(4) C(4)		
		-					
						B-73	
						-/3	

COMPONENT IDENTIFICA			FAILURE MO	DDE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
l 1.7.1-2f & 4.1.7.1-2f Fuel Suction Line Purge Check Valve		Provide redundant shutoff to prevent back flow of fuel into purge system, and possibly into oxidizer system. (Depends upon design of 1.1.7.1-1e.) Must flow through during purge.	Fails to open during purge prior to propellant loading.		Low
			Fails to close at end of purge prior to propellant loading.		Low
1.1.7.1-2g & 4.1.7.1-2g Oxidizer Suction Line Purge Check Valve		Provide redundant shutoff to prevent back flow of oxidizer into purge system, and possibly into fuel system (depends upon design of 1.1.7.1-1e).	Fails to open during purge prior to propellant loading.		Low
			Fails to close at end of purge prior to propellant loading.		Low

		FAILUR	E MODE AND EFFECTS ANALYSIS	SUBSYSTEM 1.1 & 4.1	ASSEMBLY	SHEET 3 of 3
FAILURE EFFECT ON					MISSION OPERATIONS	
SUBSYSTEM	SYSTEM	MISSION	RECONMENDATIONS FOR DETECTION NETHOD	OTHER RECOMMENDATIONS	OPERATIONS	CRITICALITY CATEGORY
Loss of purge - probable formation of ice in fuel system, engine fails to start (see recommendatione).		Possible launch delay	Valve position discrete, purge check at maintenance cycle.	Interlock with propellant loading ready signal. Depending upon design of engine purge select valve, this check valve may not be necessary. For backflow to occur, purge pressure would have to drop below either line pressure.	Booster. A(4) B(2B) C(4) Orbiter A(4) B(2B) C(4)	
Loss of backflow shutoff redundancy.	No effect.	No offect	Valve position discrete, leak checks at maintenance cycle.		Booster A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)	
Loss of purge - probable formation of ice in oxidizer system. Possible engine failure come to NFL. Possible turbopump damage due to plugged passage (see recommendations).		Fossible launch delay	Valve position discrete, purge check at maintenance cycle.	Interlock with propellant loading ready signal Depending upon design of engine purge select valve, this check valve may not be necessary. For backflow to occur, purge pressure would have to drop below either line pressure.	Booster A(4) B(2B) C(4) Orbiter A(4) B(2B) C(4)	
Loss of backflow shutoff redundancy	No cffact.	No affect.	Valve position discrete, leak checks at maintenance cycle		Booster A(4) B(4) C(4) Drbiter A(4) B(4) C(4)	
						-B-75

SYSTEM

ASSEMBLY 1.1.7 & 4.1.7

8

COMPONENT IDENTIFICATION			FAILURE MO	DDE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF Component	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
4.1.8 1 Extendible Nozzle (orbiter only)	۲	Remove heat from combustion gas and discharge by radiation. Contain internal thrust, side loads, transmit loads to orbiter nozzle. Provide seal and lock at orbiter nozzle interface.	Crack, or other struc- tural failure, leading to loss of a section or all of nozzle.		Low
4.1.8.2 Extendible Nozzle Coolant Valve (orbiter only)		Provide on-off control of fuel flow from low pressure TPA dis- charge to orbiter nozzle mani-	Failure to open.		Low
fold, to provide film cooling of	Opens slowly.		Low		
		Clo	Closes prematurely		Low
			Failure to close at shutdown.		Low
			Excessive seat leakage.		Low

SYSTEM 4 0

ASSEMBLY 4 1 8

		10160	RE MODE AND EFFECTS ANALISIS	SUBSYSTEM 4.1	SHEET Of
	FAILURE EFFECT ON	<u> </u>			MISSION
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Loss of performance with pre- mature shatdown	Loss of one engine, probable thrust-vector control problem	Possible mission loss	Guidance package detection of loss of ΔV and/or thrust vector problem.		Orbiter A(4) B(4) G(2A)
Engine shutdown.	Loss of one engine.	Mission losa	Valve position discrete Proximity type switch		Orbiter. A(4) B(4) C(2A)
No effect, or, if long enough, same as failure to open	Same as above	Same as above	Same as above		Orbiter A(4) B(4) C(2A)
Engine shutdown	Same as above	Same as above	Same as above		Orbiter A(4) B(4) C(2A)
Very small increase in shutdown impulse	No effect Frevalve shutoff provides redundancy Minor corrective maneuver may be required	No effect	Same as above		Orbiter A(4) B(4) C(4)
Possible fire hazard at launch	Possible fire hazard at launch	Possíble launch abort	Vehicle compartment GH2 sensors Leak check as part of scheduled maintenance cycle		Orbiter A(4) B(2B) C(2A)

COMPONENT IDENTIFICATION			FAILURE MO	DE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
4.1.8 3 Extendible Nozzle Deployment Kit (Orbiter Only)*		sponse to power commands Exten- te sion required. Prior to shutdown st in booster, and after orbiter.shut- po	Primary system fails to ex- tend or retract nozzle or stopping at intermediate position		Low
		down. Double redundancy drive mechanism, lock/seal drive mecha- nism	Secondary system fails to extend nozzle or stopping at intermediate position, slow extension,		Low
	Dis tur	Distortion of guide struc- ture on landing		Low	
		drin Fai drin Seco drin drin	Failure of primary lock drive mechanism at locking.		Medium
			Failure of secondary lock drive mechanism at locking.		Low
			Secondary nozzle extension drive mechanism or lock drive mech, fails at re- traction		Low
				,	
				1	
			, *	·	
* Critical components					

		ı	FAILURE MODE AND EFFECTS ANALYSIS	SYSTEM 4 0 SUBSYSTEM 4 1	ASSEMBLY	418 SHEET <u>2</u> of
	FAILURE EFFECT ON				MISSION	
S.BSYSTEN	SYSTEM	NISSION	RECOMMELADATIONS FOR DETECTION HETHOD	OTHER RECOMMENDATIONS	OPERATIONS	CRITICALITY CATEGORY
Loss or drive redundancy	No effect	No offect	Nozzle position discrete (fully ex- tended, fully retracted) Motor current		Orbitor A(4) B(2B) C(4)	
Low performance, hot gas leak, possible engine damage	loss of one engine	Mission loss	Nozzle extension discrete (fully ex- tended, fully retracted) Notor current	Test both primary and redundant drive mechanisms at maintenance cycle	Orbiter A(4) B(2B) C(2A)	·
\o effect	No effect	No effect	Functional test at maint cycle	Effect could be inability to extend nozzle on nert flight	Orbiter A(4) B(4) C(4)	
Loss of redundancy	None	None	Lock position discrete motor current		Orbiter A(4) B(4) C(4)	
Reduced film coolant flow inside nozzle, possible nozzle damage, possible engine loss	Possible loss of one engine	Possible mission loss	Lock position discrete motor current		Orbiter A(4) B(4) C(2A)	
loss of nozzle on reentry	Loss of nozzle	Reentry hazard	Lock position discrete nozzle position discrete Motor current		Orbiter A(4) B(4) C(1S)	
						B~79

Å
ģ
0

COMPONENT IDENTIFICATION			FAILURE MOD	DE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF Component	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1.2 1 1 Oxidizer Feed Line - (Vacuum Jacketed)	L-1A L-6A L-4B L-2A L-7A L-5B L-3A L-1B L-6B L-4A L-2B	Supplies LO2 to AJ-400 main engines.	1) Minor leakage		Low
4 2 1 1 Oxidizer Feed Lines (Vacuum Jacketed)	L-5A L-3B L-4A L-4B L-13A L-13B		2) Major leakage		Low
			3) Loss of vacuum in line		Medium
1 2 1 2 Oxidizer Prevalve	V-77A V-82A V-80E V-78A V-83A V-81B V-79A V-77B V-82B	Safety valve - isolates engine from oxidizer source	1) Fail open.		Low
4.2 1 2 Oxidizer Isolation	V-80A V-78B V-83B V-81A V-79B ation V-1A V-1B	в ;	2) Fail closed		Low
Valve	V-2A V-2B		3) Fail to relieve at specified back pressure		Low
			 Valve leaks past seat. 		Medium

SYSTEM 10 and 40

ASSEMBLY 121 and 421

			FALLORE	WOOF AND FLECUS ANALISIS	SUBSYSTEM 1 2 and 4 2	SHEET 1 of 1
Γ		FAILURE EFFECT ON		RECOMMENDATIONS FOR		MISSION OPERATIONS
	SUBSYSTEM	SYSTEM	MISSION	DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
1)	Negligible - create oxidizer rich atmosphere in vicinity of leak Subsystem volume capable of absorbing minor leskage	1) Nong	1) None	1) Hazardous gas détector	 Engine compartment relief and purge 	1) A(4) B(3) C(4)
2)	Degraded performance associ- ated main engine excessive oxidizer loss	 Total performance grossly reduced 	2) Probable mission termination	2) Engine inlet pressure measurement	2) Same as above	2) A(4) B(2B) C(1)
3>	Loss of ability to maintain engine inlet conditions	3) Loss of engine	 No effect on mission if only one booster engine is shutdown 	 Engine inlet temperature measurement 	 Burst disc should be installed to prevent implosion of the pressure corrier in the event of a high pressure condition in the annulus 	3) A(4) B(2B) C(2A)
1)	No direct effect due to required normally open condi- tion for operational mode	 No direct effect Secondary engine shut off copebility impaired 	 No effect on mission performance 	1) Valve position indicator	1) Nanc	1) A(4) B(4) C(4)
2)	Shutdown of affected engine	 No performance degradation Remaining engines sequenced to emergency power level 	 No degradation to mission 	2) Valve position indicator	2) None	2) A(4) B(2B) C(3)
3)	No effect - valve opened by command or loss of power	 No effect - redundart rolief function 	3) No effect	 Pressure measurement downstream of valve 	3) None	3) A(4) B(3) C(4)
4)	No effect - engine valve used as shutoff mechanism	 No effect - secondary shutoff system capability 	4) No effect	 Pressure measurement downstream of valve 	4) None	4) A(4) B(4) C(4)
						B- 82

FUNCTION OF	FAILURE M	IODE	PROBABILITY OF
COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
ency LO2 isolation at main (normally open).	 Failed open. Failed closed. Fails to relieve at specified backpressure. Leakage past valve seat Major flange leakage 	 Failed open. Failed closed. Fails to relieve at specified back- pressure Leakage past valve seat. Major flange leakage 	Low Low Low Medium Low

NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
122.2 Oxidizer Isolation Valve	V-1A V-1B V-2A V-2B	Emergency LO ₂ isolation at main tank (normally open).	 Failed open, Failed closed. Fails to relieve at specified backpressure. Leakage past valve seat Major flange leakage 	 Failed open, Failed closed. Fails to relieve at specified back- pressure Leakage pest valve seat. Major flange leakage 	Low Low Low Medium Low

COMPONENT IDENTIFICATION

œ

FAILURE			MODE AND EFFECTS ANALYSIS	SYSTEM 1 0 SUBSYSTEM 1 2	ASSEMBLY 1 2.2 	
	FAILURE EFFECT ON				MISSION OPERATIONS	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY	
No effect - required to be open for operation Terminates approximately one half of the main LO2 flow. No effect - valve is opened electrically No effect Loss of transferrable propellant	Postfiring tank isolation not possible System partially operative main engines starved of oxidizer No effect - redundant relief mode for system No functional effect emergency isolation of main tank propellant is compromised. System partially operative main engines starved of oxidizer	No effect Probable mission termination None None Probable mission termination	Valve position indicator Valve position indicator. Pressure messurement downstream of valve Pressure measurement downstream of valve Downstream pressure measurements	Delete component requirement for this valve A higher design safety factor for the distribution line would eliminate the need for this component Same as above	 1) A(4) B(4) C(4) D(3,2B) C(2A) 3) A(4) B(4) C(4) A(4) B(6) C(4) 5) A(4) B(5) C(2A) 	
					р - 2 3	

COMPONENT IDENTIFICATION			FAILURE	HODE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
1 2 4.2 Oxidizer Fill Valve 1 2 9.3 Fuel Fill Valve (Booster) 4.2.3.2 Oxidizer Fill Valve (Orbiter)	V-7A V-7B V-19A V-19B V-7	Provides positive shutoff for propellant full and drain Valve incorporates internal relief feature. Precluding overpressure condition between valve and fill coupling	 Fails open, minor internal leakage, major internal leakage. Fails closed Major external leakage (upstream flange). Major external leakage (downstream flange). Fails to relieve at designed back pressure. 		Low - medium Low Medium Low Low
1.2 4.3 Oxidizer Fill Coupling 1 2.8.2 Fuel Fill Coupling (Booster) 4 2.3.3 Oxidizer Fill Coupling (Orbiter)	C-1A C-1B C-5A C-5B C-1	Provides coupling for GSE fill line. Provides low level propellant loss capability during disconnection	 Fails closed or minor internal leakage, Major leakage, internal or external, fails open 		Low - medium Low
1,2 3,2 Oxidizer Vent Valve 1 2 8,3 Fuel Vent Valve (Booster)	V-3A V-16A V-5B V-4A V-17A V-6B V-5A V-18A V-15A V-6A V-3B V-16A V-15A V-4B V-17A V-18A	Provide safety/prepressure control and automatic venting capability for the main propellant tank.	 Fails open or internal leakage. 	Fails open, internal leakage, or major leakage upstream of	Low Very low
4 2.2.2 Oxidizer Vent Valve 4 2 7 3 Fuel Vent Valve (Orbiter)	V3, V4, V5, V6 V10, V11, V12, V13		2) Fails closed	valve package	Low
				Fails closed	Very low
1.2.8.2 Fuel Tank Vent Coupling (Booster) 4 2.7 2 Fuel Tank Vent Coupling (Orbiter		Provides rapid connection and disconnection between stage and ground vent system.	Structural failure only.		Low

SYSTEM: 10440 SUBSYSTEM 1244.2 ASSEMBLY 1.2.3, 1 2.4, 1 2.8, 1.2.9 4 2.3, 4.2.4, 4.2.8, 4.2.9

				SUBSYSTEM 1 2 & 4.2	SHEET 1_ of 1
	FAILURE EFFECT ON				MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
 No effect - checking mechanism of fill coupling maintains leak integrity No effect - valve is normally closed during flight No effect - upstream line inactive during flight Subsystem operation impoired No effect - coupling relief mechanism opens under overpressure 	redundancy of coupling check/	 No effect No effect No effect Mission flight termination No effect 	 Valve position indicator Valve position indicator Valve position indicator Pressure measurement downstream of valve Pressure measurement downstream of valve 	 Nonc Nonc, Nonc Nonc Coupling design requires safety relief 	1) A(4) B(4) C(4) 2) A(4) B(3) C(4) 3) A(4) B(3) C(4) 4) A(4) B(3) C(4) 4) A(4) B(3) C(4) 5) A(4) B(3) C(4) B(4) C
	1) No effect 2) No effect	 No effect No effect - relatively small quantity of propellants leak external to spacecraft 	 Position indicator Position indicator for positive disconnect verification and coupling status 	1) None 2) None	1) A(4) B(3) C(4) 2) A(4) B(3) C(4)
No effect due to series redundancy	No effect	No effect.	Position indicator	None	1) A(4) B(3) C(4)
Loss of tank pressure	System operation impaired System unable to maintain required propellant pressure Main engine becomes inoperative	Mission termination	Position indicator, propellant tank pressure measurement.	None	Λ(3) B(2B) C(1)
No effect due to parallel valve redundancy	No effect,	No effect	Position indicator	Νους	2) A(4) B(3) C(4)
Hipimum operational effect	Possible hazard to propellant tanks	Possible mission termination	Tank pressure measurement	None.	Λ(4) B(2B) C(2A)
No effect	No effect	No effect	Position indicator for uncoupling verification	None	A(4) B(3) G(4)
					8 - 85

SHEET _1 __ of 1

COMPONENT IDENTIFIC			FAILURE MODE PRIMARY REDUNDANT		PROBABILITY OF MALFUNCTION OCCURRENCE
NAME	DRAWING NUMBER	FUNCTION OF Component			MALFUNCTION OCCURRENCE
 1.2 5 1 Main Booster Oxidizer Tank 1 2 10 1 Main Booster Fuel Tank 4.2.4.1 Main Orbiter Oxidizer Tank 4 2 9 1 Main Orbiter Fuel Tank 	T-1A T-1B T-2A T-2B T1 and T2 T3	Contain and store propellant for main engine utilization. Also the booster oxidizer tank contains residual gas for the APS usage.	 Minor external leakage. Major external leakage 		Low-medıum Low

		FAILUR	WODE AND EFFECTS ANALYSIS	SYSTEM:1.0 and 4 0 SUBSYSTEM 1.2 and 4.2	1 2.5 and 4.2.4 ASSEMBLY: 1 2.7 and 4 2.6 1,2.10 and 4 2.9 SHEET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON				MISSION
SUBSYSTEM	SYSTEM	MISSION	RECOMMELDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
None - subsystem volume capable of absorbing minor leakage Subsystem operation impaired	No effect, leakage too slight to cause fire hazard Fire hazard potential high Occur- rence could drastically affect system operation Contingency supply of APS O2 gas is depicted	No effect Immediate mission flight termina- tion Razard monitoring system required to operate	Hazardous gas analyzer in tank compartment Hazardous gas analyzer in tank compartment and tank pressure and quantity measurements	None Nulti-gas analyzers	Δ(4) B(4) C(4) A(4) B(1) C(1)
	4				
					B-87

œ	
ĩ	
¢	
∞	

COMPONENT IDENTIFICATION				FAILURE	10DE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT		PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE	
1.2 6.2 Helium Coupling	C2	plied helium. The helium is circu- lated into the main oxidizer dis-		Fails open.	τ.	Low	
		tribution line to initiate lox recirculation and geyser suppres- sion,			Fails open.	Low	
			2)	Fails closed		Low	
4 2.5.2 Helium coupling 4.2.5 3 Helium coupling	C-2 C-8	Provide coupling for ground supplied helium line The helium is ingested into the main oxidizer	supplied helium line The helium is ingested into the main oxidizer			Low	
•		distribution line to initiate LO_2 recirculation and geysering r suppression			Fails open or major internal leakage	Very low	
			2)	Fails closed		Low	
			3)	Internal leakage (major or minor)		Medium	
					Internal leakage minor,	Low	
					v		

SYSTEM 10 and 40 SUBSYSTEM 12 and 42 ASSEMBLY: 1.2.6 and 4 2.5

		FAILURE	MODE AND EFFECTS ANALYSIS	SUBSYSTEM 12 and 42	SHEET 1 of
	FAILURE EFFECT ON		RECOMMENDATIONS FOR		HISSION OPERATIONS CRITICALITY
SUBSYSTEM	SYSTEM	MISSION	DETECTION METHOD	OTHER RECOMMENDATIONS	CATEGORY
No effect - secondary check valve maintains subsystem integrity	No offect	No effect	Pressure measurement between CV for ground test	None	A(4) B(4) C(4)
	System inoperable due to loss of LO_2	Mission termination	Line pressure measurement and temperature measurement downstream of coupling	None	A(3) B(3) C(2A)
No effect - normally closed during flight	No effect	No effect	Same as above	None	Λ(4) B(4) C(4)
No effect - secondary check valve maintains subsystem integrity	No effect	No effect	Fressure transducer between check values for ground test	None	Δ(4) B(4) C(4)
Rapid loss of propellant through coupling with possible stage fire	System degradation due to propellant loss	Mission termination	Position indicator for both valve poppets	Nona	Δ(3) B(3) C(2A)
No effect - normally closed during flight	No effect	No effect	Same as above	None	Δ(4) B(4) C(4)
No effect - scries redundant checking feature	No offect	No effect	Pressure measurement between poppets for ground checkout	Nona	Δ(4) B(4) C(4)
No effect - subsystem volume capable of absorbing minor leakage but possible stage fire could exist if leakage was not stopped	No effect	No effect Minor leakage evternal to spacecraft	Same as above	None	A(4) B(3) C(4)

COMPONENT IDENTIFICATION			FAILURE MOL	FAILURE MODE		
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	PROBABILITY OF MALFUNCTION OCCURRENCE	
1.2.7.1 Fuel Feedline - (Booster)	L-13A L-18A L-16B L-14A L-19A L-17B L-15A L-13B L-18B	Supplies fuel to main engine.	1) Minor leakage.		Medium	
4 2.6 1 Fuel Feedline (Orbiter	L-16A L-14B L-19B L-17A L-15B		2) Major leakage.		Low	
4 2.6 1 Fuel Feedline (Orbiter) 1 2 7.2 Fuel Isolation Valve) L-8 and L-9 V-8A V-13A V-11B	Fuel safety valve - isolates	1) Fails open		Low	
(Booster)	V-9A V-14A V-12B V-10A V-8B V-13B	propellant from main engine.	Ly Falls open		20	
	V-11A V-9B V-14B V-12A V-10B		2) Fails closed.		Low	
4.2.6.2 Fuel Isolation Valve (Orbiter)	V-8 and V-9		 Fails to relieve at specified backpressure. 		Low	
			 Valve internal leakage past seat. 		Medium	

FAILURE	MODE	AND	EFFECTS	ANALYSIS
---------	------	-----	---------	----------

SYSTEM 10 and 40

ASSEMBLY 1 2.7 & 4 2 7

				FAILURE	MODE	E AND EFFECTS ANALYSIS	SUBSYSTEM 1 2 and 4 2		SHEET <u>1</u> of <u>1</u>
			FAILURE EFFECT ON			RECOMMENDATIONS FOR		MISSION OPERATIONS	CRITICALITY
SUBSYST	M		SYSTEM	MISSION	DETECTION NETHOD		OTHER RECOMMENDATIONS		CATEGORY
 No effect - subs of absorbing min 	ystem capable or leakage	1)	None - system protected by inert atmosphere in engine compartment	1) No effect	1)	Mazardous gas detector	Provide engine compartment relief and purge	Λ(4) B(3) C(4)	
 Impaired subsyst Fuel starvation main ergine 	em performance to adjacent	2)	Degraded system performance due to excessive loss of fuel	2) Probable mission termination	2)	Pressure measurement and compartment hazardous gas detector	2) Same as above	Λ(4) B(2B) C(1)	
 No direct effect required open co operational mode 	ndition for	3)	No direct effect Secondary engine shutoff capability impaired	3) No effect	3)	Valve position indicator	3) None	Δ(4) B(3) C(4)	
 Engine controlle loss, initiating shutdown 		4)	No performance degradation Remaining engines sequenced to emergency power level	4) No mission impact	4)	Valve position indicator	4) None	A(4) B(2B) C(4)	
 No effect during operation 	subsystem	5)	No affect during system operation After thrust termination, the isolation valve is opened on command to relieve overpressure lockup	5) No effect	5)	Pressure measurement downstream of valve	5) None	A(4) B(4) C(4)	
 No effect - engl as secondary shu 	ne valve acts stoff	6)	No effect Primary shutoff capability is afforded by main engine valve	6) No effect (6)	Pressure measurement downstream of valve	6) None	A(4) B(4) C(4)	
									8~91

COMPONENT IDENTIFIC			FAILURE MODE		PROBABILITY OF
NAME	DRAWING NUMBER	· FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
 1 3.1 3 Oxidizer Pressure Control Valve (Booster) 4 3.1.2 Oxidizer Pressure Control Valve (Orbiter) 1.3.1 7 Fuel Pressure Control Valve (Booster) 4.3.1.6 Fuel Pressure Control Valve (Orbiter) 	V-20A V-20B V-21A V-21B V-20 V-20 V-22A V-22B V-23A V-23B V-21 V-22	Provides a step regulation of autogenous hydrogen and owygen gas for tank pressurization	 Fails open. Fails closed Leaks internally 	1) Fails open 2) Leaks past seat	Low Low Low Low Low
 1.3.1 4 Oxidizer Pressurant Filter (Booster) 4.3.1.4 Oxidizer Pressurant Filter (Orbiter) 1.3 1.8 Fuel Pressurant Filter (Booster) 4.3.18 Fuel Pressurant Filter (Orbiter) 	F-1A F-1B F-2 F-2A F-2B F-3	Provides filtering of autogenous pressurant gas to preclude contamination of downstream control orifice	 Filter clogs. Filter ruptures. External leakage. (minor) 		Low Low Low
<pre>1 3.2.2 Helium Coupling - Oxidizer (Booster) 4 3.2.2 Helium Coupling - Oxidizer '(Orbiter) 1 3 2.4 Helium Coupling - Fuel (Booster) 4.3 2 4 Helium Coupling - Fuel (Orbiter)</pre>	C-6A C-6B C-6 C-4A C-4B C-4	Connects GSE Helium supply for tankage pre-pressurization.	 Fails closed Fails open or major internal leakage 	 Fails open or major internal leakage (check valves). 	Low Low Very low

SYSTEM 10 and 40 SUBSYSTEN 1 3 and 4 3 1 3 1 and 1 3.2 ASSEMBLY 4 3 1 and 4 3.2

SHEET 1 of 1

	FAILURE EFFECT ON		RECOMMENDATIONS FOR		MISSION OPERATIONS	
SUBSYSTEM	SYSTEM	MISSION	DETECTION METHOD	OTHER RECOMMENDATIONS	CRIT	GORY
No effect - series rodundant valves Subsystem pressure operates at low end of pressure supply limits (This condition occurs at end of powered flight). Subsystem operates at upper end of pressurization band	tank pressure band Propellant tank is at upper end of pressure operating limit Vent valve operation to relieve tank if	No affect No effect, No effect No effect No effect	Valve position indicator Valve position indicator and tank ullaga pressure	None None None None Kone	1) $A(4)$ B(4) C(4) 2) $A(4)$ B(4) C(4) 3) $A(4)$ B(4) C(4) C(4)	
Decrease in tank pressure Contamination of downstream components No effect	limits Tank pressure loss	Probable loss of mission Probable termination of mission If leakage is high enough - mission could be aborted	AP transducer across filter AP transducer across filter Gas detector in area or bay containing filter	Filter should be designed to blow out under high ΔF ⁻ conditions None	1) A(4) B(4) C(2A) 2) A(4) E(4) C(2A) 3) A(4) B(4) C(1)	
 No flight effect but unable to load holium if ground failure occurs No effect due to series redundant check valve 		No effect No effect	Position indicator Position indicator	Provide ground pressure measurement between check valve acctions Provide ground pressure measurement between check valve sections	1) A(4) B(3) C(4) 2) A(4) B(3) C(4)	
Excessive loss of pressurent gas	System failure due to tank pressure loss	Probable termination of mission	Pressure transducer in autogenous line , downstream	None	A(4) B(4) C(2A)	
		•				
						B-93

COMPONENT	COMPONENT IDENTIFICATION		FAILURE N	10DE	PROBABILITY OF
NAME	, DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
4.4.1.1 Oxidizer Distri Line	bution L-17 L-18	Ducting for transmittal of liquid oxygen.	Structural (fatigue causıng leakage)		Low
4 4 1 2 Oxidizer Isolat Valve	:ion V-23	Controls liquid oxygen fill and drain for the on-orbit LO ₂ tank.	 Fail open. Fail closed. Fail to relieve at specific back pressure Internal leakage External leakage 		Low Low Medlum Low Low

SYSTEM 40 Subsystem 44 ASSEMBLY 441

				SUBSYSTEM 4 4	SHEET _1_ of _1	
FAILURE EFFECT ON					MISSION	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY	
L-17 no effect after loading L-18 loss of tank pressure	L-17 no effect L-18 decrease in pressure and flowrate supplied to propellant conditioning system	Decrease in performance of APS system	Monitor line pressure	None	A(1) B(2B) G(1)	
 No effect - propellant stopped at main engine valve No effect No effect - pressure can be relieved through main LO₂ tank isolation valve No effect - propellant stopped at main engine valve Say Loss of tank pressure Possible fire hazard if fuel is present in compartment 	 No effect Automatic shutdown of main engine if on-orbit tank is being used as supply No effect No effect Decrease in pressure and flowrate supplied to propellant conditioning system No effect - Compartment purge capable of handling limited leakage 	 No effect Mission would be terminated No effect No effect Decrease in APS performance No effect 	 Monitor valve position Monitor valve position Pressure measurement downstream of valve None None transformed to the pressure Monitor on-orbit tank pressure Hazardous gas detector in closed compartment 	1) None 2) None 3) None 5a) None 5b) None	1) A(4) B(3) C(4) 2) A(1) B(2B) C(1) 3) A(4) B(3) C(4) 4) A(4) B(3) C(4) 4) A(4) B(3) C(4) C(1) 50 A(1) B(2B) C(1) 51 A(4) B(3) C(3) C(3)	
		t		Effect on	external subsystems,	

COMPONENT IDENTIFICATION			FAILURE MODE		8
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	PROBABILITY OF MALFUNCTION OCCURRENCE
4,422 Oxidizer Vent Heat Exchanger	8-1	Provide cooling of tank suction line during vent to compensate for heat leak into tank	 Major external leakage. Restricts flow of gas during vent. 		Low Low
4,42,1 Oxidızer Tank Vent Valve*	V-24 V-25	Permit overboard vent of propel- lant tank ullage gas. Isolate airborne system from ground system.	 Valve fails closed. Valve fails open or leaks internally 	2R) Valve fails open or leaks internally	1) Medium 2) Low
*Critical component.					

SYSTEM 40 SUBSYSTEM 44 ASSEMBLY 4.4 2

		TAILORE	INDE AND EFFECTS ANALISIS	SUBSYSTEM 4 4	4.4 2 SHEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON			RECOMMELEDATIONS FOR		MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
 Contamination of subsystem compartment with GO₂ Vent rate capability reduced 	 No effect Propellant tank pressure relief rate reduced 	 No effect on crew safety or primary mission objective No effect on crew safety or primary mission objective 	 Measure subsystem compartment pressure Monitor tank vent rate or measure pressure loss across heat exchanger 	1) None 2) None	1) A(3) B(4) C(3) 2) A(3) B(4) C(3)
 Vent assembly rendered useless for propellant tank pressure relief No effect Overboard loss of pressuriza- tion gas subsystem cannot be isolated. 	tion of on-orbit propellant tank exists 2) No effect	primary mission objective	2) Valve position switch 2R) Valve position switch	 Redasign valve system to parallel- series configuration 2), 2R) Provide pressure measurement between series redundant valves for single point failure detection 	1) A(2A,1 7) B(3) C(2A,1) 2) A(3) B(4) C(3) 2R) A(2A) B(3) C(2A)
					
1					B-97

.

					۳ پر میں	
COMPONENT IDENTIFICATION			FAILURE MODE		PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	PROBABILITY OF MALFUNCTION OCCURRENCE	
4.4 3 1 Oxıdizer Tank 4.4.6 1 Fuel Tank	T-4 T-5 T-6	 Contain and store propellants for main engine contingency supply Contain and store propellants for APS on-orbit usage and A/B-S reentry landing engines. 	Minor external leakage. Major external leakage (oxidizer tank).		Low-medium Very low.	
			Major external leakage (fuel tank).		Vęry low	
·						

FAI		FAILURE	MODE AND EFFECTS ANALYSIS	SYSTEM. 4 0 SUBSYSTEM 4.4	ASSEMBLY: 4.4.3 and 4.4.6 SHEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON					MISSION OPERATIONS CONTICOUTIN
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
None - Subsystem volume capable of absorbing minor leakage	Fire hazard possible	No effect	Hazardous gas analyzer in tank compartment	Provide compartment purge for all closed compartments	Δ(4) B(4) C(4)
Subsystem operation impaired, fire hazard potential high	Occurrence could drastically offect system operation Resupply for ACPS on accumulators is terminated	Immodiate mission termination	Hazardous gas analyzor in tank compartment requires propellant tank pressure and quantity measurements.	Same as above	Λ(2Λ) B(2B) C(1,2Λ)
Same as above	Same as above Resupply for ACPS H ₂ accumulators terminated LH ₂ supply for ABS engines is not available	Immediata mission termination.	Same as above	Same as above	Λ(2Λ) B(2B) C(1,2Λ)
					8-99
					Effect on external subsystem

					B- 100
COMPONENT IDENTIFICATION			FAILURE M	IODE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
4442 Fuel Isolation Valve*	V-26 V-27	Isolate contingency fuel supply from main engines	 Valve fails open during main engine operation Fail to relieve at specific back pressure Internal leakage. External leakage. Fails closed Valve fails open after main engine burn. 		1) Very low 2) Low 3) Medium 4) Low 5) Low 6) Low
* = Critical component.					

		FAILURE	E MODE AND EFFECTS ANALYSIS	INTERFACE SYSTEM 4 0 NITH Subsystem Subsystem 4 4	ASSEMBLY: 4.4.4 SHEET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON				MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	RECOMMERIDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	GPERATIONS CRITICALITY CATEGORY
 Propellant would be exhausted No sffeet Possible loss of contingency fuel supply Loss of fuel supply capability Some loss of fuel 	 A/B propellant would be de- ploted if main engine burn is continued. No effect - pressure would be 	 Mission is terminated No effect Possible loss of mission objectives Decrease in APS performance None unless oxidizer leakage present Compartment is purged Primary mission objectives jeopardized Possible reduction of mission objectives 	 Valve position indicator Line pressure measurement On-orbit tank pressure measurement and line temperature downstream of valve Monitor on-orbit tank pressure llazardous gas detector Position indicator Temperature sensor in line down- stream of valve 	1) Redesign system such that on-orbit tanks are isolated from main tankage Alternative - Place on-orbit tanks in series with main fuel tank 2) None 3) None 4) Provide purge capability for all closed compartments 5) None 6) None	LITEGRY 1) A(3) B(23) C(2A) 2) A(4) B(4) C(4) C(4) 3) A(3) B(3) C(3) C(3) 5) A(4) B(3) C(3) C(3) 6) A(4) B(3) C(3) C(3) C(3) C(3) C(3) C(3) C(3) C
					B-101

COMPONENT IDENTIFI			FAILURE	MODE	PROBABILITY OF
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
4.4.5.2 Fuel Tank Vent Valve*	V-28 V-29 V-30 V-31	Provides controlled venting and automatic overpressure relief for the on orbit main propellant fuel tank.	Fails open.		Low
				Fails open.	Very low.
			Fails closed.		Low
				Fails closed	Very low.
4.4.5.4 Fuel Vent Line Coupling	3 C-11	Provides ground coupling capabil- ity for fuel tank vent.	Leaks externally.		Low
*Critical component.					

.

B-102

ι

FAILURE	MODE	and	EFFECTS	ANALYSIS
---------	------	-----	---------	----------

SYSTEM 4 0

ASSEKBLY- 4.4.5

			.	SUBSYSTEM 4.4	SHEET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON				MISSION
SUBSYSTEM	SYSTEM	MISSION	RECOMMELDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
No effect due to series redun- dancy.	No offect	No offect	Position indicator	None	A(4) B(2B) C(4)
Loss of tank pressurization capa-	Degraded system operation	Mission termination	Valve position indicators propellant	None	A(2A)
bility.	Resupply for ACPS H2 accumulators hampered. LH2 supply to ABS en- gines is terminated.		tank pressure and quantity measure- ments		B(2B) C(2A, 1S)
No effect due to parallel redun- dancy	No effect	No effect	Position indicator	None	A (4) B(3) G(4)
Normal tank venting capacity im- paired	Automatic relief of propellant tank is lost Backup method of reliaving tank pressure could be employed by opening propellant isolation valves and venting thru main tank	Iumediate termingtion of flight	Position indicator and tank pressure measurement	None	A(2A) B(2B) G(2A)
No effect-coupling does not have a poppet Coupling is normally open in flight	No effect	No effect.	Position indicator for proper decoupling verification	None	A(4) B(3) C(4)
	-				
					B-103
<u> </u>					Effect On External Subsystem

NAME DRAWING NUMBER FUNCTION OF COMPONENT PRIMARY REDUNDANT MALFUNCTION OCCURR MALFUNCTION OCCURR Oxidizer Tank Pressuriza- tion Line Filter F-4 Remove particles and/or contami- nants before gas reaches the regu- lator package. Filter becomes clogged, re- sulting in filter rupture. Very low. Oxidizer Tank Pressuri- stion Regulator R-5 thru R-8 Reduces supply pressure to regu- lated tank pressure. Fails open or fails to regulate. Medium Very Low. Intel filter R-9 thru R-12 R-9 thru R-12 Low Intel filter Oxidizer Tank Pressuri- tion Regulator V-32 Provides positive isolation of high Pressure gas from low-pressure sub- system. Fails open or leaks in- ternally. Low	R	NUMBER	[- R-5 t	1- F-4 1- R-5 thru	NUMBER F-4 R-5 thru R-8	R	Remove parti nants before lator packag Reduces supp	COMPONEN Leles and ges rea ge.	d/or contami-	Filter becomes clogged, r	e-	MALFUNCTION OCCURRENC
zation Line Filter nants before gas reaches the regulator sulting in filter rupture. sulting in filter rupture. Sulting in filter rupture. sulting in filter rupture. sulting in filter rupture. Sulting in filter rupture. sulting in filter rupture. sulting in filter rupture. Sulting in filter rupture. sulting in filter rupture. sulting in filter rupture. Sulting Regulator* R-5 thru R-8 Reduces supply pressure to regulate. Fails open or fails to regulate. Fuel Tank Pressurization Regulator* R-9 thru R-12 Fails open or fails to regulate. Low Sulting regulator* R-9 thru R-12 Fails closed. Low Sulting regulator* Fails closed. Low Sulting regulator* Fails closed. Low Sulting regulator* V-32 Provides positive isolation of high pressure sub- system. Fails open or leaks in- ternally. Sulting regulate V-34 V-35 System. Low regulate.		i thru R-8	[- R-5 t	1- R-5 thru	R-5 thru R-8		nants before lator packag	e gas rea ge. oly pres	d/or contami- aches the regu-	Filter becomes clogged, r sulting in filter rupture	e-	Very low.
Okielization Regulator** Paile for the formation of the forma							Reduces supp lated tank p	ply press	nants before gas reaches the regu-			
Oxidizer Tank Pressuri- zation Valve V-32 V-33 Fuel Tank Pressuriza- V-34 V-35 Provides positive isolation of high pressure gas from low-pressure sub- system. Fails open or fails to regulate. Low					ReQ thru Re12	>		pressure	sure to regu-			Medium
Oxidizer Tank Pressuri- zation Valve V-32 Provides positive isolation of high pressure gas from low-pressure sub- system. Fails open or leaks in- ternally. Low to medium.					<u>K-9 Child K-12</u>	<u></u>					Fails open or fails to regulate.	Low
Oxidizer Tank Pressuri- zation ValveV-32Provides positive isolation of high pressure gas from low-pressure sub- system.Fails open or leaks in- ternally.Low to medium.U-32V-33pressure gas from low-pressure sub- system.Fails open or leaks in- ternally.Low to medium.										Fails closed.		Low
zation Valve V-33 pressure gas from low-pressure sub- tion Valve V-35 ystem. tion Valve V-35											Fails closed.	Low
		33 34	V-33 V-34	V-33 V-34	V-33 V-34		pressure gas	sitive i s from 1	solation of high ow-pressure sub-			Low to medium.
		55	V-35	V-35	V-35					Fails closed.		Low
Fails closed. Very Low										· · · · · · · · · · · · · · · · · · ·	Fails closed.	Very Low
				-				,				
											· ·	

*Critical component.

SYSTEM 4.0 Subsystem 4.5 ASSEMBLY 4.5.1 & 4.5 2

				SUBSYSTEM 4-5	SHEET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON				HISSIO (
SUBSYSTEM	SYSTEM	MISSION	RECOMMELIDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
Fossible reduction in pressurant flowrate and contamination of downstream regulators.	Possible reduction of on-orbit tank pressure.	Could cause mission termination	Downstream pressure measurement	Design features should include filter blowout provisions into one bank of controlling regulators.	A(2A) B(4) C(2A)
No effect due to regulator series redundancy	No effect	No effect.	Operating pressure bank selected for detection	None	A(4) B(3) C(4)
Overpressure condition downstream of regulators.	Tanks pressure at upper limits - tank vent relieves.	Flight termination	Downstream pressure measurement	None	A(2A) B(2B) C(1 , 2A)
No effect due to parallel redun- dancy	No effect	No effect.	Operating pressure band selection	Коле	A(4) B(3) C(4)
Pressurization to on-orbit propel- lant tank, terminated	System ability to supply propel- lant to APS and A/B impaired.	Immediate flight termination	Tank pressure measurement.		A(1,2A) B(2B) C(1,2A)
Pressure regulators operate to maintain required pressure.	No effect.	No effect	Valve position indicators.	None	A(4) B(3) C(4)
No effect due to valve (parallel) redundancy	No effect.	No effect	Valve position indicator	None	A (4) B (2B) C (4)
Pressurization to on-orbit propel- lant tank ~ terminated.	System ability to supply propel- lants to APS and A/B impaired	Immodiate flight termination	Propellant tank pressure measurement.	Rone	A(1,2A) B(2B) C(1,2A)
	Effect On	 External Subsystem 			B- 105

.

SHEET _1_ of _1

COMPONENT IDENTI			FAILURE MODE PRIMARY REDUNDANT		PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT			MALFUNCTION OCCURRENCE	
Propellant Inlet Manifold	None.	Distribute fuel and oxidizer to the coaxial injector.	Cracking due to thermal fatigue or vibration.		Low	
Coaxial Injector	None .	Inject fuel and oxidizer into the thrust chamber in such a manner as to achieve complete mixing for combustion.	Cracking due to thermal fatigue or vibration.	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Low	
•			Clogging of injectors due to propellant contaminants.		Low	
Thrust Chamber	TC-1 TC-20 TC-2 TC-21 TC-3 TC-22 TC-4 TC-23 TC-5 TC-24 TC-6 TC-25 TC-7 TC-26 TC-10 TC-29 TC-11 TC-30 TC-12 TC-31 TC-13 TC-32 TC-14 TC-33 TC-15 TC-34 TC-16 TC-35 TC-17 TC-36 TC-19 TC-38	Contain combustion gas and accelerate the gas through a converging-diverging nozzle to produce thrust.	Cracking due to thermal fatigue or vibration.		Low	

B-106

		FAILURE	MODE AND EFFECTS ANALYSIS	SYSTEM 2.0, 5.0 Subsystem 2.1, 2.5, 5.1, 5.	ASSEMBLY 2.1.1, 2.5.1, ASSEMBLY 5.1.1, 5.4.1 4 SHEET <u>1</u> of
FAILURE EFFECT ON				,	MISSION OPERATIONS
SUBSYSTEM	SYSTEM	HISSION	RECOMMELDATIONS FOR Detection Nethod	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Possible pre-mixing of propellants with resulting fire or explosion hazard. Failed thruster must be isolated. Possible loss of one level of redundancy	No effect.	Possible effect on crew safety or primary mission objective.	Measure igniter chamber pressure, visual inspection.	Ferform scheduled visual inspection during maintenance.	Booster A(4) B(4) C(3) Orbiter A(4) B(4) C(3)
Improper mixing of propellants with resulting combustion instability or thrust chamber burnthrough. Falled thruster must be isolated Possible loss of one level of redundancy.	No effect	No effect on crew safety or primary mission objective.	Measure ignitar chamber pressure, visual inspection.	Perform scheduled visual inspection during maintenance.	Booster: A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)
Improper mixing of propallants with resulting combustion instability or thrust chamber burnthrough. Failed thruster must be isolated Possible loss of one level of redundancy.	No effect	No effect on crew safety or primary mission objective	Measure igniter chamber pressure, visual inspection.	Perform scheduled visual inspection during maintenance.	Bcoster: A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)
Possible hot gas external leak and/or burnthrough Possible loss of performanco Failed thruster must be isolated. Possible loss of one level of redundancy	No effect	No effect on crew safety or primary mission objective	Measure igniter chamber pressure, visual inspection	Perform scheduled visual inspection during maintenance.	Booster: A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)
					8-10/

1	

B-108

٦

COMPONENT IDENTIFICATION			FAILURE MO	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
Igniter Fuel Valve	None	Provide fuel to igniter chamber in response to 28 vdc command. Fail closed on loss of power.	Valve fails to open or close prematurely.		Low
			Valve opens slowly.		Low
					- -
			Valve fails to close or closes slowly.		Low
Igniter Oxidizer Valve	None	Provide oxidizer to igniter chamber in response to 28 vdc	Valve fails to open or closes prematurely	, <u></u>	Low
		command. Fail closed on loss of power.	closes prematurely		
			Valve opens slowly.		Low
			Valve fails to close or closes slowly.		Low
··-					
Spark Plug	None	Provide controlled spark gap for high voltage discharge to ignite propellants.	Short to ground or wear causing excessive gap.		Medlum

Т

Т

\sim		
⊕		

-

SYSTEM 2.0, 5 0 SUBSYSTEM 2.1, 2.5, 5.1, 5.4 ASSEMBLY 2.1.2, 2.5.2, 5.1.2, 5.4.2 ShEET <u>1</u> of <u>2</u>

,

•

	FAILURE EFFECT ON				MISSION OPERATIONS		
SUBSYSTEM	SYSTEM	MISSION	RECOMMELIDATIONS FOR DETECTION METHOD	OTHER RECOMIENDATIONS	OFENATIONS CRITICALITY CATEGORY		
Failure to achieve thrust with selected thruster. Failed thruster must be isolated Possible loss of one level of redundancy.	No effect	No effect on craw safety or primary mission objective.	Measure igniter chamber pressure	None	Booster A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)		
Failure to achieve thrust with selected thrustor. Possible ignition chamber burnout. Failed thruster must be isolated Possible loss of one level of redundancy.	No effect	No effect on crew safety or primary mission objective.	Measure igniter chamber pressure,	None .	Booster A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)		
Overboard loss of propellant. Failed thruster must be isolated. Possible loss of one level of redundancy.	No effect.	No effect on crew safety or primary mission objective.	Measure igniter chamber pressure.	None	Booster. A(4) B(4) C(4) Orbiter A(4) B(4) C(4)		
Failure to achieve thrust with selected thruster Failed thruster must be isolated. Possible loss of one level of redundancy.	No effect.	No effect on crew safety or primary mission objective	Measure igniter chamber pressure	None.	Booster: A(4) E(4) C(4) Orbitor A(4) E(4) C(4)		
Failure to achieve thrust with selected thruster Failed thruster must be isolated. Possible loss of one level of redundancy	No effect.	No effect on crew safety or primary mission objective.	Messure igniter chamber pressure.	Rone	Booster A(4) B(4) C(4) Orbiter: A(4) B(4) C(4) C(4)		
Possible ignition chamber burnout and/or overboard loss of propollant. Failed thruster must be isolated. Fossible loss of one level of redundancy	No effect.	No effect on crev safety or primary objective.	Measure igniter chamber pressure	None .,	Booster A(4) B(4) C(4) Orbiter. A(4) B(4) C(4)		
Failure to achieve thrust with selected thruster. Possible overbaard loss of propellants. Failed thruster must be isolated. Possible loss of one level of redundancy.	No offect.	No effect on crev safety or primary objective	Masure igniter chamber pressure	None	Booster: A (4)		
					- 8 - 01 - 8		

-

COMPONENT ID			FAILURE M	10DE	PROBABILITY OF MALFUNCTION OCCURRENCE	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY REDUNDANT		MALFUNCTION OCCURRENCE	
Spark Cable	None	Conduct high voltage pulses from exciter to spark plug.	Short to open circuit.		Low	
Exciter	None	Convert 28 vdc input to 30,000 volts at 250 pps output for spark ignition.	Fails to produce pulses or produces low level pulses only.		Low	

B--110

	FAILURE MODE AND EFFECTS ANALYSIS		SYSTEM 2.0, 5.0 SUBSYSTEM 2.1, 2.5, 5.1, :	ASSEMBLY: 2.1.2, 2.5.2, 5.4 5.1.2, 5.4.2 STET <u>2</u> of <u>2</u>	
	FAILURE EFFECT ON				MISSION OPERATIONS
SUBSYSTEN	SYSTEM	MISSION	RECONNERDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Failure to achieve thrust with selected thruster Possible overboard loss of propellants Failed thruster must be isolated Possible loss ot one level of redundancy	N> effect.	No effect on crew safety or primary mission objective,	Acasure igniter chamber pressure.	None	Booster: A(6) B(6) C(6) Orbiter: A(6) B(6) C(4) C(4)
Failure to achieve thrust with selected thruster. Possible overboard loss of propellants Failed thruster must be isolated. Possible loss of one level of redundancy.	No effect	No effect on crew safety or primary mission objective.	Measure igniter chamber pressure.	Nonc	Booster: A(4) B(4) C(4) Drbiter: A(4) B(4) C(4) C(4) ,
					P- 111

COMPONENT IDENTIFICATION		- FUNCTION OF	FAILURE MOD	PROBABILITY OF	
NAME	DRAWING NUMBER		PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
Bi-Propellant Main Thrust Chamber Valve	FV-2 OV-2 and FV-3 OV-3 res	Provide on-off control of oxid and fuel to thrust chamber in response to 28 vdc input command. Fail closed on loss of power.	Fails to open.		Low
	FV-7 OV-7 FV-8 OV-8 FV-9 OV-9 FV-10 OV-10 FV-11 OV-11 FV-12 OV-12 FV-13 OV-13		Opens too slowly.		Low
	FV-14 OV-14 FV-15 OV-15 FV-16 OV-16 FV-17 OV-17 FV-18 OV-18 FV-19 OV-19 FV-20 OV-20 FV-21 OV-21		Fails to close or closes too slowly.		Low
	FV-21 OV-21 FV-22 OV-22 FV-23 OV-23 FV-24 OV-24 FV-25 OV-25 FV-26 OV-26 FV-27 OV-27 FV-28 OV-28		Closes prematurely,		Low
	FV-29 OV-29 FV-30 OV-30 FV-31 OV-31 FV-32 OV-32 FV-33 OV-33 FV-34 OV-34 FV-35 OV-35		Oxid or fuel valve fails to open (linkage failure).	-	Low
	FV-36 0V-36 FV-37 0V-37 FV-38 0V-38		Oxid valve fails to close on shutdown.		Low
			Fuel valve fails to close on shutdown.		Low

		FAILURE	MODE AND EFFECTS ANALYSIS	SYSTEM 2.0, 5.0 SUBSYSTEM 2.1, 2.5, 5.1, 5	ASSE/8LY: 2.1.3, 2.5.3, 5.1.3, 5.4.3 SEET <u>1</u> of <u>2</u>
	FAILURE EFFECT ON	FAILURE EFFECT ON HIS		HISSION OPERATIONS	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
Failure to achieve thrust with selected thruster. Failed thruster must be isolated Possible loss of one level of redundancy	No effect.	No effect on crew safety or primary mission objective.	Measure igniter chamber pressure.	None.	Booster: A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)
Depending upon delay, subsystem may isolate selected thruster Possible loss of one level of rodundancy	No effect.	No effect on crew safety or primary mission objective.	Messure igniter chamber pressure.	Nyne.	Ecoster: A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)
Extended burn possible. Loss of shutoff redundancy. Failed thruster must be isolated.	Possible corrective command from guidance and navigation.	No effect on crew safety or primary mission objective	Mossure igniter chember pressure	None.	Booster: A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)
Promature loss of thrust. Failed thruster must be isolated	Possible corrective command from guidance and navigation.	No effect on crew safety or primary mission objective.	Measure igniter chamber pressure.	None.	Booster: A(4) B(4) C(4) Orbiter: A(4) B(4) C(4)
Fails to achieve throst with selected thruster. Failed thruster must be isolated with possible loss of one level of redundancy.	No effact.	No effect on crew safety or primary mission objective.	Heasure igniter chamber pressure.	None ,	Booster: A(4) B(4) C(4) Drbiter: A(4) B(4) C(4) C(4)
Slightly extended burn time. Possible injector burnout. Failed thruster must be isolated with possible loss of one level of redundancy	No effect.	No effect on erew safety or primary mission objective.	Hossure igniter chamber pressure	Rone.	Booster: A (4) 3 (4) C (4) Orbiter: A (4) 3 (4) C (4)
Slightly extended burn time. Failed thruster must be isolated with possible loss of one level of redundancy.	No effect.	No offect on crew safety or primary mission objective.	Moasure igniter chamber pressure.	None.	Booster: A (4) B(4) C(4) Orbiter: A(4) B(4) C(4)

		FAILURE MO	PROBABILITY OF		
NG R	FUNCTION OF COMPONENT	PRIMARY REDUNDANT		MALFUNCTION OCCURRENCE	
OV -1 OV -2 OV -3 OV -4 OV -5 OV -6 OV -7	OV-1Provide positive shutoff ofOV-2propellant to individualOV-3thrusters. Provide on-offOV-4control of propellants toOV-5igniter valves and bi-propellantOV-6control valve.	Failure to open prior to thruster use.		Low	
OV-8 OV-9 OV-10 OV-11 OV-12 OV-13 OV-14		Failure to close after thruster usage.		Low	
OV-15 OV-16 OV-17 OV-18 OV-19 OV-20 OV-21		Valve opens slowly,		Low	
0V-22 0V-23 0V-24 0V-25 0V-26 0V-27 0V-28	22 23 24 25 26 27	Valve closes slowly.		Low	
OV-29 OV-30 OV-31 OV-32 OV-33 OV-33 OV-34 OV-35		Valve closes prematurely.		Low	
0V-35 0V-36 0V-37 0V-38		One valve fails to open (either oxid or fuel). Structural failure.		Low	

COMPONENT IDENTIFI						PROBABILITY OF
NAME	DR/ NU)	AWING MBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
Bi-Propellant Isolation Valve	lation ValveFV-1OV-1Provide positive shutoff ofFV-2OV-2propellant to individualFV-3OV-3thrusters. Provide on-offFV-4OV-4control of propellants toFV-5OV-5igniter valves and bi-propellantFV-6OV-6control valve.FV-7OV-7Fail closed on loss of power.	Failure to open prior to thruster use.		Low		
	FV-8 FV-9 FV-10 FV-11 FV-12 FV-13 FV-14	OV -8 OV -9 OV -10 OV -11 OV -12 OV -13 OV -14		Failure to close after thruster usage.		Low
	FV-15 FV-16 FV-17 FV-18 FV-19 FV-20 FV-21	OV-15 OV-16 OV-17 OV-18 OV-19 OV-20 OV-20 OV-21		Valve opens slowly.		Low
	FV-22 FV-23 FV-24 FV-25 FV-26 FV-27 FV-28	0V-22 0V-23 0V-24 0V-25 0V-26 0V-27 0V-28		Valve closes slowly.		Low
	FV-29 FV-30 FV-31 FV-32 FV-33 FV-34 FV-35	0V-29 0V-30 0V-31 0V-32 0V-33 0V-33 0V-35		Valve closes prematurely.		Low
	FV-36 FV-37 FV-38	OV-36 OV-37 OV-38		One valve fails to open (either oxid or fuel). Structural failure.		Low
				One valve closes prematurely A. Before operation. B. During operation.		Low

COMPONENT IDENTIFICATION

		FAILURE	MODE AND EFFECTS ANALYSIS	SYSTEM 2.0, 5.0 SUBSYSTEM 2.1, 2.5, 5.1, 5.	ASSEMBLY 2.1.3, 2.5.3, 5 1 3, 5.4.3 4SHEET of
FAILURE EFFECT ON					MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	RECONMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
Selected chruster rendered inoperative. Failed thruster must be isolated with possible loss of one level of redundancy.	No effect,	No effect on crew safety or primary mission objective	Measure igniter chamber pressure or valve position.	None	Booster A(4) B(3) C(4) Orbiter A(4) B(3) C(4)
Thruster cannot be isolated.	No cffect.	No offect on erew safety or primary mission objective.	Measure valve position.	Bleed off system at safing or prior to reentry.	Booster. N(4) B(4) C(4) Orbiter A(4) B(4) G(4)
No effect.	No effect.	No effect on crew safety or primary mission objective	Measure valve position.	None.	Booster. A (4) B (4) C (4) Orbiter. A (4) B (4) C (4)
No effect.	No difect	No effect on crew safety or primary mission objective,	Measure valve position.	None.	Booster. A(4) B(4) C(4) Orbiter A(4) B(4) G(4)
Loss of thrust in selected thruster. Failed thruster must be isolated with possible loss of one level of redundancy	No effect.	No effect on crew safety or primary mission objective.	Measure valve position.	None -	Booster & (4) B(4) C(4) Orbiter & (4) B(4) C(4) C(4)
Selected thruster rendered in- operative. Thruster cannot be isolated.	No effect.	No effect on crew sufety or primary mission objective.	Measure igniter chamber pressure.	None	Booster A(4) B(3) C(4) Orbiter A(4) B(3) G(4)
A. Failure to achieve thrust. B. If fuel value, loss of thrust, probable high M.R. and thruster damage If oxid value, loss of thrust, failed thruster must be isolated with possible loss of one level of redundancy.	No effect	No effect on crew safety or primary mission objective.	Measure igniter chamber pressure.	This mode of failure is rather temote.	Booster A(4) B(4) C(4) Orbiter A(4) B(4) C(4) C(4)
		L	<u> </u>	<u> </u>	

ş

ц,
느
드
്ന

COMPONENT IDENTIFI	CATION		ION OF MAI FUNCT		PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF Component	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE	
2.2.1.1 & 5 2 1.1 Accumulator Tankage	T-4 T-5 T-6 T-7 T-8 T-9 T-10 T-11	Receive GO ₂ and GH ₂ -propellants for storage at approximately 1500 psia and 500°R to minimize conditioning equipment restarts.	 Major external leakage Minor external leakage 		1) Low 2) Low	
2 2 1 2 & 5.2.1.2 Filter	F-4 F-5 F-6 F-7 F-8 F-9 F-10 F-11	Remove particulate contaminants from gaseous propellants upon ex- pulsion from accumulators	 Flow path through filter element ob- structed Major external leakage. Manor external leakage 		1) Low 2) Low 3) Medium	
2.2 1.3 & 5 2 1.3 Pressure * Regulator	R-5 R-18 R-31 R-6 R-19 R-32 R-7 R-20 R-33 R-8 R-21 R-34 R-9 R-22 R-35 R-10 R-23 R-36 R-11 R-24 R-36 R-12 R-25 R-13 R-26 R-14 R-27 R-15 R-28 R-16 R-29 R-17 R-30	Reduce accumulator supply pressure from 1500 psia to pressure levels commensurate with flow rate require- ments for APS thrusters	 Fails open or fails to to regulate. Fails closed. 	 Fails open or fails to regulate Fails closed. 	1) Medium 2) Low 1) Low 2) Low	
2 2 1.4 & 5.2.1.4 Solenoid Valve	V-29 V-42 V-30 V-43 V-31 V-44 V-32 V-33 V-34 V-35 V-36 V-37 V-38 V-39 V-40 V-41	Admit regulated propellants to propellant feed assembly.	 Valve fails to open. Valve fails to close of leaks internally. 	 Valve fails to open. Valve fails to close or leaks internally. 	2) Low	

		FAILURE	MODE AND EFFECTS ANALYSIS	SYSTEM 2,0 & 5 0 SUBSYSTEM 2 2 & 5 2	ASSEMBLY 2 2 1 5 2 1 SHEET of _1
	FAILURE EFFECT ON				MISSION
SUBSYSTEM	SYSTEM	MISSION	RECOMIENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
 Contamination of subsystem compartment Pressure loss of affected assembly and all in- terconnected assemblies with time Same as above 	 Performance degradation or complete system operability loss Same as above 	 Mojor effect on crew safety and primary mission objective Sama as above 	Measure accumulator pressure and subsys- tem compartment pressure	Include accumulator isolation valves and bypass lines to permit isolation of failed accumulator and maintain complete system operation or establish safety factor greater than that required for normal operating equipment	1) A(2A) B(2B) C(2A) 2) A(2A) B(2B) C(2B) C(2A)
 Fropellant delivery capability to affected engine subsystems reduced Gontaminetion of subsystem com- partment Pressure loss of af- fected assembly and all inter- connected assemblies with time Same as above 	 Performance degradation of affected engine subsystems Performance degradation or complete system operability loss Same as 2) above 	 Major effect on crew safety and primary mission objective Same as 1) above Same as 1) above 	 Measure pressure drop across filter Perform periodic leak checks Same as 2) above 	None	1) A(2A) B(3) C(2A) 2) Λ(2A) B(3) C(2A) 3) A(3) B(4) C(3)
1) No offect 2) No offect	1) No affect 2) No effect	 No effect on crew safety or primary mission objective No effect on crew safety or primary mission objective 	 Monitor pressure regulator band width Measure downstream pressure 	None	1) A(4) B(4) C(4) 2) A(4) B(4) C(4)
 Possible overpressurization of affected ACS thrusters Assembly rendered useless for delivery of propellants to af- fected thrusters 	 ACS thrustor performance degraded Possible thruster loss due to avplosion or fire Complete loss of affected thruster modules 	 Major effact on crew safaty and primary mission objective Major effect on crew safaty and primary mission objective 	 Honitor pressure regulator band width Measure downstream pressure 	None	1) A(24) B(3) C(2A) 2) A(2A) B(6) C(2A)
 No effect Assembly connot be isolated 	1) No effect 2) No effect	 No effect on crew safety or primary mission objective Same as 1) above 	Valve position switch, Measure pressure downstream of valve	Perform valve cycle and lesk test.	1) A(3) B(4) C(3) 2) A(3) B(4) C(3)
 Assembly rendered useless for delivery of propellants to affected thrusters Assembly cannot be isolated 	 Complete loss of affected thruster modules No effect 	 Major effect on crow safety or primary mission objective No effect on crow safety or primary mission objective 	Same as 1) above		1) A(2A) B(3) C(2A) 2) A(3) B(4) C(3)
·					B-117

β
8

COMPONENT IDENTIFICATION			FAILURE MOD	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
2 2.2.1 & 5.2.2 1 Quick Disconnect Coupling	C-8 C-9 C-10	Allow connection of ground lines for loading and unloading GO_2 and GH_2 propellants.	 Coupling restricts propellant inflow and outflow. Major external leakage. Minor external leakage. 		1) Low 2) Medium 3) Medium
2,222 & 5222 Solenoid Valve	V-79 V-80 V-44 V-70	Admit CO2 and GH2 propellants to fill lines Isolate airborne sys- tem from ground loading system.	 Valve fails to open Valve fails to close or leaks internally 		1) Low 2) Medium
2.2 2.3 & 5.2.2.3 Relief Valve	V-25 V-27 V-45 V-71	Preclude overpressurization of auxiliary propulsion system.	 Relieves at too low pressure Relieves at too high pressure Major external leakage. Minor external leakage 	, ,	1) Low 2) Low 3) Low 4) Medium
2.2.2.4 & 5 2.2.4 Manual Valve	V-26 V-28 V-67 V-68	Permit manual relief capability to auxiliary propulsion system	 Valve fails closed. Valve fails open or leaks internally 		1) Low 2) Low

+

SYSTEM 20&50 SUBSYSTEM 2.2 & 5 2

.

				SUBSISIEN 2,2 & 5 2	SHEET 1 of 1
	FAILURE EFFECT ON				MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR Detection Method	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
 Propellant loading and un- loading rates reduced No effect No effect 	1) No effect 2) No effect 3) No effect	 No effect on crew safety or primary mission objective Same as abovo. Same as abovo 	Neasure pressure drop across coupling Ferform leak checks	None	1) A(4) B(4) C(4) 2) A(4) B(4) C(4) 3) A(4) B(4) C(4) C(4)
 Propellants cannot be loaded or unloaded No effect 	 System rendered inoperable No effect 	 Major effect on primary mission objective, no effect on crew safety No effect on crew safety or primary mission objective 	 Valve position switch Valve position switch provide pres- sure top between series redundant valves for single point failure de- tection 	 None Perform valve cycle and leak test 	1) A(2B) B(4) C(2B) 2) A(3) B(4) C(3)
 Accumulator pressures below operating requirements Accumulator pressures above operating requirements Accumulator pressure decay with time Accumulator pressure decay with time 	 Performance degraded due to low accumulator pressures Safety margin reduced Poten- tial for rupture or loak of components increased Overboard propellant loss ro- sulting in eventual loss of system⁻ Overboard propellant loss re- sulting in eventual loss of system 	and primary mission objective 3) Same as 2) above 4) Same as 2) above	1) None 2) None 3) Perform laak test 4) Perform laak test		1) $\Lambda(3)$ B(4) C(3) 2) $\Lambda(2\Lambda, 1S)$ B(1S) $C(2\Lambda, 1S)$ 3) $\Lambda(2\Lambda, 1S)$ B(4) $C(2\Lambda, 1S)$ 4) $\Lambda(3)$ B(4) C(3)
 Accumulator pressure cannot be relieved manually Accumulator pressure decay with time 	 No affact Overboard propeliant loss re- sulting in eventual loss of system operability 	 No effect on primary mission objective or crew safety Major offect on crew safety and primary mission objective 	 Perform valve cycle test Porform leak test and valve cycle test 		1) A(3) B(4) C(3) 2) A(2A) B(3) C(2A)
					8-119

ASSEMBLY 2.2.2 5 2.2 SHEET <u>1</u> of <u>1</u>

COMPONENT IDENTIFICATION			FAILURE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
2.3.1.1 Turbine *	U-1 U-2 U-3	Convert gas generator thrust to rotating power and transmit to power train	 1) Turbine fails to ro- tate at required RPM. 2) Turbine fails to ro- tate 		1) Low 2) Low
2 3.1.2 Power Train*	PT-1 PT-2 PT-3	Transmit turbine power to pump.	Power linkage fails.		Low
2313 Pump*	P-1 P-2 P-3	Receive liquid hydrogen at 20 ps.a, boost to accumulator pressure or A/B engine system pressure, and deliver to heat exchangers or A/B propellant distribution lines	 Major external leakage due to seal failure. Impeller fails to ro- tate at required RPM. Impeller fails to ro- tate. 		1) Medium 2) Low 3) Low
2 3.1.4 Solenoid Valve	V-90 V-91 V-92 V-93 V-94 V-63	Admit liquid hydrogen into suction side of pump	 Valve fails to open. Valve fails to close or leaks internally. 		1) Medium 2) Low
				 Valve fails to open. Valve fails to close or leaks internally 	1) Medium 2) Low
2.3.1 5 Check Valve	V-64 V-65 V-66 V-67 V-68 V-68 V-69	Insure unidirectional flow of liquid hydrogen from discharge side of pump. Preclude reverse flow of gaseous and/or liquid hy- drogen in system during A/B engine start	 Valve fails to open. Valve fails to close or leaks internally 		1) Low 2) Low
				 Valve fails to open. Valve fails to close or leaks internally. 	2) Medium
* Critical component					1

SYSTEM 2 0

ASSEMBLY: 2 3.1

				SUBSYSTEM 2 3	SHEET	_1_of _2_
	FAILURE EFFECT ON		RECOMMELIDATIONS FOR		MISSION OPERATIONS	
SUBSYSTEM	System	MISSION	DETECTION METHOD	OTHER RECOMMENDATIONS		RITICALITY ATEGORY
 Insufficient power delivered to pump resulting in perform- ance degradation No power delivered to pump 	 Accumulator repressurization rate capability and LH2 flow- rate to A/B engine system re- duced Same as 1) above 	 No effect on crew safety or primary mission objective Same as 1) above 	Measure turbine speed	None,	 Λ(3) B(3) C(3) Λ(3) B(3) C(3) 	
No power delivered to pump	Accumulator repressurization rate capability and LH2 flowrate to A/B engine system reduced	No effect on crew safety or pri- mary mission objective	Measure turbine speed and pump speed or gearbox temperature	Perform scheduled inspection and main- tenance of lubrication system	1) Λ(3) B(3) C(3)	
 Contamination of subsystem compartment Unable to deliver LH₂ to heat exchanger and A/B engine sys- tem at proper flowrate Same as 2) above 	 Accumulator repressurization rate capability and LH2 flow- rate to A/B engine system re- duced Same as 1) above Same as 1) above 	 No affect on craw safety or primary mission objective. Same as 1) abova Same as 1) abova 	 Measure pump discharge pressure or compartment temperature Measure pump speed Measure pump speed 	None	1) A(3) B(4) C(3) 2) A(3) B(4) C(3) 3) A(3) B(4) C(3)	
 Turbopump randered useless to subsystem Assembly cannot be isolated 	 Accumulator repressurization rate capability and LH₂ flow- rate to A/B engine system re- ducad Possible offect on pumps in airbreathing engines due to the delivery of high pressure bi-phase hydrogen 	 No effect on erraw safety or primary mission objective No effect on erraw safety or primary mission objective 	Use valve position switch and measure pump suction pressure	Perform valve cycle and leak test	1) A(3) B(4) C(3) 2) A(4) B(4) C(4)	
 Turbopump rendered useless to subsystem Assembly cannot be isolated 	1) Same as 1) above 2) Same as 2) above	 No effect on crew safety or primary mission objective. Najor offect on crew safety or primary mission objective 			1) A(3) B(4) C(3) 2) A(3) B(4) C(2A)	
 Assembly rendered useless for delivery of LH₂ to A/B engine system A/B engine propellant delivery line cannot be purged No effect 		 No effect on crew safety or primary mission objective No effect 	Measure pump discharge pressure or line pressure downstresm of valva	 Perform check valve functional test. Perform check valve functional test. 	1) A(3) B(4) C(3) 2) A(4) B(4) C(4)	
1) Same as 1) above 2) Reverse flow of LH ₂ possible	1) Same as 1) above 2) No effect	1) Same as 1) above. 2) No effect	Provide pressure tap between series re- dundant valves for single point failure detection	Redundancy may not be required	1) A(3) B(4) C(3) 2) A(4) B(4) C(4)	B-121

٣
122

COMPONENT IDENT	IFICATION		FAILURE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
2,3,1,6,1 Heat Exchanger	H-1 H-2 H-3	Convert liquid hydrogen to gaseous form using hot exhaust gases from gas generator and deliver to hy- drogen gas accumulators at approx- imately 1500 psia.	 Partial blockage of coil by contaminants in LH₂ Coil major leakage. Coil minor leakage 		1) Low 2) Low 3) Medium
2.3 1.6 2 Solenoid Valve	V-45 V-46 V-47 V-48 V-49 V-50	Direct flow of liquid hydrogen from discharge side of pump to A/B engine system or heat exchanger as required by system demand	 Valve fails to open. Valve fails to close or leaks internally. 		1) Medlum 2) Low
				 Valve fails to open. Valve fails to close or leaks internally. 	1) Medium 2) Low
-					
,		r			
			, ,		

		FAILURE	I MODE AND EFFECTS ANALYSIS	SYSTEM 2 0 SUBSYSTEM 2 3	ASSEMBLY 2 3.1 SHEET <u>2</u> of <u>2</u>
	FAILURE EFFECT ON				MISSION
SUBSYSTEM	SYSTEM	MISSION	RECOMMELEDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
 Reduced capability to recharge accumulators Turbine overspeed potential exists Reduced capability to recharge accumulators 	 Accumulator repressurization xate capability reduced Accumulator overpressurization possible Accumulator repressurization rate capability reduced 	 No effect on crew safety or primary mission objective. Same as 1) above. Same as 1) above. 	Measure heat exchanger outlet pressure If pressure falls below lower limit, pump suction valves must be closed to isolate system	None	1) A(3) B(3) C(3) 2) A(3) B(3) C(3) 3) A(3) B(3) C(3) C(3)
 Assembly rendered useless for accumulator ropressurization Gas generator cannot be purgel. No effect 	 Accumulator repressurization rate capability reduced. No effect 	 No effect on crew safety or primary mission objective No effect 	Use valve position switch, measure pump discharge pressure or gas generator in- let prossure	None	1) A(3) B(4) C(3) 2) A(3) B(4) C(3)
 Same as 1) abova LH₂ flow to heat exchanger cannot be controlled 	 Same as 1) above Possible over-pressurization of Hg accumulators Capabil- ity to deliver LHg to air- breathing engines impaired 	 Same ns 1) nbove Possible effect on craw safety or primary mission objective 	Use valve position switch, measure pump discharge pressure or gas generator in- let pressure		1) A(3) B(4) C(3) 2) A(2A) B(3) C(2A)
					B-123
					123

,

.

COMPONENT IDENTIFICATION			FAILURE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
2 3 2 1 Gas Generator	G-1 G-2 G-3	Provide turbine drive gases for the turbopump assembly and a high temperature heat source for the heat exchangers.	 Major hot gas external leakage. Blockage of propellant injectors 		l) Low 2) Low
2 3 2 2 Heat Exchanger	н-4 н-5 н-6	Assure delivery of gaseous hydro- gen at the proper conditions to the hydrogen accumulators and gas generator bootstrap system	 Partial blockage of coil by contaminants in LH₂. Coil major leakage Coil minor leakage. 		1) Low 2) Low 3) Medium
2 3.2.3, 2.3 2 4 Solenoid Valve	GOV-1 GFV-1 GOV-2 GFV-2 GOV-3 GFV-3	Admit GO ₂ and GH ₂ propellants to the gas generator	 Valve fails to open Valve fails to close or leaks internally. 		1) Nedium 2) Low
				 Valve fails to open Valve fails to close or leaks internally 	1) Međium 2) Low
2 3 2 5 Check Valves	V-51 V-95 V-52 V-96 V-53 V-97	Allow unidirectional flow of GH ₂ to the accumulators Preclude backflow of high pressure gas through the heat exchanger	 Valve fails to open Valve fails to close or leaks internally 		1) Low 2) Low
				 Valve fails to open Valve fails to close or leaks internally. 	1) Medium 2) Low

		FAILURE	NODE AND EFFECTS ANALYSIS	SYSTEM 2 0 SUBSYSTEM 2 3	ASSEMBLY 2 3 2 <u>SH</u> EET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON				MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	RECONMELDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
 Loss of subsystem Possible performance degradation of turbine 	 Compartment fire could result Decrease in turbine output would affect repressurization capability and also affect LH₂ flowrate to A/B engines 	 Catastrophic loss of stage, Loss of hydrogen conditioning subsystem could affect mission termination 	Measure gas generator chamber pressure	None	1) A(1) B(3) C(1) 2) A(2A) B(3) C(2A)
 Reduced capability to recharge accumulators Turbine overspeed potential exists Reduced capability to recharge accumulators 	rate capability reduced	 No effect on crew safety or primery mission objective ' Same as 1) above Same as 1) above 	Measure heat exchanger outlet pressure If pressure falls below lower limit, pump suction valves must be closed to isolate system	None	1) A(3) B(3) C(3) 2) A(3) B(3) C(3) 3) A(3) B(3) C(3) C(3)
 Turbopump rendered uscless No effect 	 Possible performance degradation due to loss of turbopump assembly No effect 	 No effect on crew safety or primary mission objective No effect on crew safety or primary mission objective 	Use valve position switch, measure gas generator chamber pressure	None	1) A(3) B(4) C(3) 2) A(3) B(4) C(3)
 Turbopump rendered useless Overboard loss of propellants Assembly cannot be isolated 	 Possible performance degradation due to loss of turbopump assembly Accumulator pressure loss with increasing time resulting in system loss 	 No effect on crew safety of primary mission objective, Major effect on erew safety and primary mission objective 	Use valve position switch, measure gas generator chamber pressure	Parform valva cycle and loak test	1) A(3) B(4) C(3) 2) A(2A) B(3) C(2A)
 Eminent turbopump failure due to deadhead pumping Sub- assembly rendered usless for accumulator recharge No effect 	rate capability reduced	 No effect on crew safety or primary mission objective Same as above , 	 Measure heat exchanger outlet pres- sure Provide pressure tap between series redundant values for single point failure detection 	1) None 2) Perform check valve functional test	1) A(3) B(4) C(3) 2) A(4) B(4) C(4)
 Same as 1) above. No effect 	1) SAme as 1) above 2) No effect	1) Same as 1) above 2) No effect	Provide pressure tap between series redundant valves for single point failure detection	Perform check valve functional test	1) A(3) B(4) C(3) 2) A(4) , B(4) C(4)
					- - -
					B-125

÷
<u>ث</u>
i v
Ö.

COMPONENT IDENTIFICATION			FAILURE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
2 4.1.1 Turbine*	U-4 U-5 U-6	Convert gas generator thrust to ro- tating power and transmit to power train	 Turbine fails to rotate at required RPM Turbine fails to rotate. 		1) Low 2) Low
2 4 1 2 Power Train*	PT-4 PT-5 PT-6	Transmit turbine power to compressor.	Power linkage fails		Low
2 4 1 3 Compressor*	CV-1 CV-2 CV-3	Remove ullage gas from main LO_2 tank at 35 to 40 psia and compress to 1500 psia for delivery to GO_2 accumulators	 Major external leakage due to seal failure Compressor blade fails, Compressor bearing fails. 		1) Medium 2) Low 3) Medium
2 4 1 4 Check Valve	V-54 V-85 V-55 V-86 V-56 V-87	Insure uni-directional flow of 1500 psia GO_2 into accumulators Preclude reverse flow of high pressure GO_2 into compressor.	 Valve fails to open Valve fails to close or leaks internally 		1) Low 2) Medium
		6 2 3 4 4 4 4 4 7 4 7		 Valve fails to open Valve fails to close or leaks internally. 	1) Low 2) Medium
2 4 1 5 Solenoid Valve	V-57 V-58 V-59 V-60 V-61 V-62	Admit low pressure (35 - 40 psia) GO ₂ to compressor.	 Valve fails to open. Valve fails to close or leaks internally 		1) Medıum 2) Medıum
				 Valve fails to open Valve fails to close or leaks internally 	1) Medlum 2) Medlum
* = Critical component					

.

SYSTEM 2 0

ASSEMBLY 2 4 1

			· · · · · · · · · · · · · · · · · · ·	SUBSYSTEM 2 4	SHEET 1	
	FAILURE EFFECT ON	·····			MISSION OPERATIONS	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICAL CATEGORI	
 Insufficient power delivered to compressor resulting in reduced output of high pressure GO₂ No power delivered to compressor resulting in reduced output of high pressure GO₂ 	 Accumulator repressurization rate capability reduced Same as above 	 No effect on craw safety or primary mission objective Same as above 	Measure turbine speed	None	1) A(3) B(3) C(3) 2) A(3) B(3) C(3)	
o power delivered to compressor	Accumulator repressurization rate capability reduced	No effect on crew safety or primary mission objective	Measure turbine speed and compressor speed or gearbox temperature	Perform scheduled inspection and maintenance of lubrication system	A(3) B(3) C(3)	
 Contemination of subsystem compartment by GO₂ Reduced output of high pressure GO₂ Same as 2) above 	 No effect Accumulator repressurization rate capability reduced Same as 2) above 	 No effect on crew safety or primary mission objective Same as above Same as above 	 Measure compressor discharge pressure or compartment pressure Inspection Measure compressor speed and/or bearing temperature 	 None Perform scheduled inspection per postflight procedures None 	1) A(3) B(3) C(3) 2) A(3) B(3) C(3) 3) A(3) B(3) C(3) C(3)	
 Assembly rendered useless to subsystem for accumulator repressurization subsystem performance degraded No effect 	 Accumulator repressurization rate copability reduced No effect 	 No effect on crew safety or primary mission objective Same as above 	Measure compressor discharge pressure Provide pressure tap between series redundant valves for single point failure detection	Ferform check valve functional test	1) A(3) B(4) C(3) 2) A(4) B(4) C(4)	
) Same as 1) above) Possible reverse flow of high pressure GO ₂ into compressor	 Same as 1) above Potential exists for over- pressurization of main LO2 tanks 	 Same as 1) above Possible effect on crew safety and primery mission objective 	Heasure compressor discharge pressure Provide pressure tap between series redundant valves for single point failure detection	Perform chack valve functional test	1) A(3) B(4) C(3) 2) A(2A) B(3) C(2A)	
) Assembly rendered usaless to subsystem for accumulator repressurization) No effect	 Accumulator repressurization frate capability reduced * No effect 	 No effect on crew safety or primary mission objective Same as 1) above 	Use valve position switch, measure compressor inlet pressure	Ferform valve cycle and leak check	1) A(3) B(4) C(3) 2) A(4) B(4) C(4)	
) Same as 1) above) Assembly cannot be isolated	1) Same as 1) above 2) No effect	1) Same as 1) above 2) Same as 1) above	Use valve position switch, measure compressor inlet pressure	Parform valve cycle and lesk check	1) A(3) B(4) C(3) 2) A(3) B(4) C(3)	

COMPONENT IDENTIF:			FAILURE	MODE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY-	REDUNDANT	MALFUNCTION OCCURRENCE	
2 4.2 1 Gas Generator	G-4 G-5 G-6	Provide turbine drive gases for the turbocompressor assembly.	 Major hot gas external leakage Blockage of propellant injectors 		1) Low 2) Low	
2 4 2 2 Solenoid Valve	GOV-4 GOV-5 GOV-6	Admit GO2 propellants to the gas generator.	 Valve fails to open. Valve fails to close or leaks internally 		l) Medium 2) Medium	
				 Valve fails to open. Valve fails to close or leaks internally. 	1) Medium 2) Medium	
2 4 2 3 Solenoid Valve	GFV-4 GFV-5 GFV-6	Admit GH ₂ propellants to the gas generator.	 Valve fails to open. Valve fails to close or leaks internally. 		1) Medium 2) Medium	
				 Valve fails to open. Valve fails to close or leaks internally 	1) Medium 2) Nedium	
	L					

SYSTEM 2 0 SUBSYSTEM 2 4

242 ASSEMBLY

.

.

		1742012	TODE AND EFFECTS ANALTSIS	SUBSYSTEM 2 4	SHEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON					MISSION
SUBSYSTEM	SYSTEM	MISSION	RECOMIENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
 Contamination of subsystem compartment Possible performance degradation of turbine 	 Accumulator repressurization rate capability reduced Same as above 	 No effect on crew safety or primary mission objective Same as above 	Measure gas generator chamber pressure	None	1) A(3) B(3) C(3) 2) A(3) B(3) C(3)
 Turbocompressor assembly rendered useless to subsystem for accumulator recharge Assembly cannot be purged No effect 	 Accumulator repressurization rate capability reduced No effect 	 No effect on crew safety or primary mission objective Same as above 	Use valve position switch, messure gas generator inlet pressure	Perform valve cycle and leak test	1) A(3) B(4) C(3) 2) A(4) B(4) C(4)
 Same as 1) above Overboard loss of propellants- assembly cannot be isolated 	 Same as 1) above Accumulator pressure loss with time resulting in eventual system loss 	 Same as 1) above Major effect on crew safety and primary mission objective 	Use valve position switch, measure gas generator inlet pressure	Perform valve cycle and leak test	1) A(3) B(4) C(3) 2) A(2A) B(3) C(2A)
 Turbocompressor assembly rendered useless to subsystem for accumulator recharge - assembly cannot be purged No effect 	 Accumulator repressurization rate capability reduced No effect 	 No effect on crew safety or primary mission objective Same as above 	Use valve position switch, measure gas generator inlet pressure	Porform valve cycle and leak test	1) A(3) B(4) C(3) 2) A(4) B(4) C(4)
 Same as 1) above Overboard loss of propellants Assembly cannot be isolated 	 Same as 1) above Accumulator pressure loss with time resulting in eventual system loss 	 Same as 1) above Major effect on crew safety and primary mission objective 	Use valve position switch, mossure gas generator inlet pressure	Perform valve cycle and leak test	1) A(3) B(4) C(3) 2) A(2A) B(3) C(2A)
			- -		
					- 12¥

FAILURE MODE AND EFFECTS ANALYSIS

COMPONENT IDENTIFICATION			FAILURE	PROBABILITY OF	
NAME `	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
2.6.1 1 Gas Generator	G-7 G-8 G-9	Frovide turbine drive gases for the turbine	 Hot gas external leakage (major) Blockage of propellant injectors, 		1) Low 2) Low
2 6.1.2 Turbine*	X-1 X-2 X-3	Convert gas generator thrust to rotating power and transmit to power train.	 Turbine fails to rotate at required RPM, Turbine fails to rotate. 		1) Low 2) Low
2.6.1 3 Power Train*	PT-7 PT-8 PT-9	Transmit turbine power to booster power converter	Power linkage fails	///	Low
2 6 1 4 GH ₂ Solenoid Valve	GFV-7 GFV-8 GFV-9	Admit GH2 propellants to the gas generator.	 Valve fails to open Valve fails to close or leaks internally. 		1) Medium 2) Medium
	ť	1		 Valve fails to open. Valve fails to close or leaks internally. 	1) Medıum 2) Medıum
2 6.1.5 GO ₂ Solenoid Valve	GOV-7 GOV-8 GOV-9	Admit GO2 propellants to the gas generator.	 Valve fails to open Valve fails to close or leaks internally. 		1) Medlum 2) Medlum
				 Valve fails to open Valve fails to close or leaks internally 	1) Medium 2) Medium
,					
* = Critical component					

FAILURE MODE AND EFFECTS ANALYSIS SYSTEM 2 0 SUBSYSTEM 2 6					ASSEMBLY: 2.6.1 SHEET 1 of 1.
FAILURE EFFECT ON				HISSION	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
 Contamination of subsystem compartment Possible performance degradation of turbine 	 Maximum power cutput capability to booster power converters reduced Same as above 	 No effect on crew safety or primary mission objective Same as above 	MOAsuré gas generator chamber pressure	None	1) A(3) B(4) C(3) 2) A(3) B(4) C(3)
 Insufficient power delivered to power converter No power delivered to power converter 	 Maximum power output capability to booster power converters reduced Same as above 	 No effect on crew safety or primary mission objective Same as above 	Measure turbing speed	None	1) A(3) B(4) C(3) 2) A(3) B(4) C(3)
No power delivered to power converter	Moximum power output capability to booster power converters reduced	No effect on crew safety or primary mission objective	Measure turbine speed and power converter output or gearbox temperature	Perform scheduled inspection and maintenance of lubrication system	A(3) B(4) C(3)
 Turbine drive assembly rendered useless to subsystem for power supply to power converters Assembly cannot be purged No effect 	 Maximum power output cspability to booster power converters reduced No effect 	 No effect on crew safety or primary mission objective Same as above 	Use valve position switch, measure gas generator inlet pressure	Parform valve cycle and leak test.	1) A(3) B(4) C(3) 2) A(4) B(4) C(6)
 Same as 1) above Overboard loss of propellants Assembly cannot be isolated 	 Same as 1) above Accumulator pressure loss with time resulting in eventual loss of system 	 Same as 1) above Najor effect on crew safety and primary mission objective 	Use value position switch, measure gas generator inlet pressure	Parform value cycle and leak test	1) A(3) B(4) C(3) 2) A(2A) B(3) C(2A)
 Turbine drive assembly rendored usoles to subsystem for power supply to power converters Assembly cannot be purged No effect 	 Morisum power output capability to boster power converters reduced No effect 	 No effect on crew safety or primary mission objective Same as 1) above 	Use volve position switch, measure gas generator inlet pressure	Perform valve cycle and leak test.	1) A(3) B(4) C(3) 2) A(4) B(4) C(4)
 Same as 1) above Overboard loss of propellants Assembly cannot be isolated 	 Same as 1) above Accumulator pressure loss with time resulting in eventual loss of system 	 No effect on crew safety or primary mission objective Najor effect on crew safety and primary mission objective 	Use valve position switch, measure gas generator imlet pressure	Perform valve cycle and leak test	1) A(3) B(4) C(3) 2) A(2A) B(3) C(2A)

x

٣
132

COMPONENT IDENTI	FICATION		FAILURE	MODE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE	
5 3 1.1 Gas Generator	G-1 G-2 G-3	Provide turbine drive gases for the turbopump assembly and a high temperature heat source for the heat exchanger.	 Major hot gas external leakage. Blockage of propellant injectors. 		1) Low 2) Low	
5312 Heat Exchanger	H-4 H-5 H-6 H-7 H-8 H-9	Assure delivery of gaseous hydro- gen and oxygen at the proper conditions to the hydrogen and oxygen accumulators, respectively, and to the gas generator bootstrap system.	 Partial blockage of coil by contaminants in LO2 or LH2 Coil major leakage Coil minor leakage. 		1) Low 2) Low 3) Medium	
5 3 1.3 and 5 3 1.4 GO ₂ and GH ₂ Solenoid Valve	GOV-1 GOV-2 GOV-3 GFV-1 GFV-2 GFV-3	Admit GO2 and GH2 propellants to the gas generator	 Valve fails to open. Valve fails to close or leaks internally 		1) Medium 2) Low	
				 Valve fails to open. Valve fails to close or leaks internally 	1) Medium 2) Medium	
5 3 1,5 and 5 3,1 6 GO ₂ and GH ₂ Check Valve	V-46 V-47 V-48 V-49 V-50 V+51 V-30 V+61	Allow unidirectional flow of GH ₂ or GO ₂ to the accumulators. Preclude backflow of high pressure gas through the heat exchanger	 Valve fails to open Valve fails to close or leaks internally 		1) Low 2) Low	
	V-81 V-82 V-83 V-84 V-85			 Valve fails to open. Valve fails to close or leaks internally 		
	V-84	1			2) Medium	

SYSTEM 50 Subsystem 53

ASS

					SUBSYSTEM 5 3		SHEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON					MISSION		
	SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIOAS	CRITICALITY CATEGORY
1) 2)	compartment	 Accumulator representization rate capability and H₂ flow- rate to A/B engine system reduced Same as above 	 No effect on crew safety or primary mission objective Same as above. 	Measure gas generator chamber pressure	None	1) A(3) B(3) C(3) 2) A(3) B(3) C(3)	
1) 2) 3)	recharge accumulators Turbine overspeed potential exists.	 Accumulator repressurization rate capability reduced Accumulator overpressurization possible Accumulator repressurization rate capability reduced 	 No effect on crew safety or primary mission objective Same as above Same as above 	Measure heat exchanger outlet pressure If pressure falls below lower limit, pump suction valves must be closed to isolate system	None	1) A(3) B(3) C(3) 2) A(3) C(3) C(3) 3) A(3) B(3) C(3) C(3)	
1) 2)	Turbopump rendered useless No effect ,	 Possible performance degradation due to loss of turbopump assembly No effect 	 No effect on crew safety or primary mission objective Same as 1) above 	Use valve position switch, measure gas genorator chamber pressure	None	1) A(3) B(4) C(3) 2) A(3) B(4) C(3)	
1) 2)	Turbopump rendered useless Overboard loss of propellants Assembly cannot be isolated	 Same as 1) above Accumulator pressure loss with time resulting in eventual system loss 	 Same as 1) above Major effect on crew safety and primary mission objective 	Use valve position switch, measure gas generator chamber pressure	 None Perform valve cycle test and leak check 	 λ(3) B(4) C(3) λ(2λ) B(3) C(2A) 	
1) 2)	Eminent turbopump failure due to deadhead pumping Sub- assembly rendered useless for accumulator recharge No effect	 Accumulator repressurization rate capability reduced No effect 	 No effect on crew safety or mission objective Same as 1) above 	 Measure heat exclusion outlet pressure Provide pressure tap between series redundant valves for single point failure determination. 	1) Nonu 2) Perform check valve functional test.	1) A(3) B(4) C(3) 2) A(4) B(4) C(4)	
1) 2)	Same as 1) above No effect	1) Same as 1) above 2) No effect	1) Same as 1) above 2) Same as 1) above	1) Same as 1) above 2) Same as 2) above	1) None 2) Perform check valve functional test.	1) A(3) b(4) C(3) 2) A(4) b(4) C(4)	
					Effect on External Subsystem		8-1 133

ASSEMBLY: 5.3.1

COMPONENT IDENTIFI			FAILURE MODE		PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE	
5 3 2 1 Turbine*	U-1 U-2 U-3	Convert gas generator thrust to rotating power and transmit to power train.	 Turbine fails to rotate at required RFM. Turbine fails to rotate 		1) Low 2) Low	
5322 Power Traiπ*	PT-1 PT-2 PT-3	Transmit turbine power to pump and power converters	Power linkage fails.		Low	
5.3.2.3 Pump ⁺	P-1 P-2 P-3 P-4 P-5 P-6	Receive liquid hydrogen at 20 psia boost to accumulator pressure or A/B engine system pressure, and deliver to heat exchangers or A/B propellant delivery system.	 Major external leakage due to seal fracture Impeller fails to rotate at required RPM. Impeller fails to rotate. 		1) Medium 2) Low 3) Low	
5.3 2 4 and 5 3 2.5 LO ₂ and LH ₂ Solenoid Valve	V-52 V-53 V-54 V-55 V-56 V-57	Admit liquid hydrogen or LO ₂ into suction side of pump	 Valve fails to open. Valve fails to close or leaks internally 	 Valve fails to open Valve fails to close or leaks internally. 	1) Medium 2) Low 1) Medium 2) Low	
*Critical component.						

-14

SYSTEM 50

ASSEMBLY 532

				SUBSYSTEM 5 3	SHEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON				HISSION	
SUBSYSTEM	SYSTEM	MISSION	RECOMMELDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
 Insufficient power delivered to pump and orbiter power converters resulting in performance degradation No power delivered to pump and orbiter power converters 	 Accumulator representization rate capability and Hg flow- rate to A/B engine system reduced Same as above 	 No effect on crew safety or primary mission objective. Same as above 	Measure turbine speed	None	1) A(3) B(3) C(3) 2) A(3) B(3) C(3)
No power delivered to pump and orbiter power converters	Accumulator repressurization rate capability and H ₂ flowrate to A/B engine system reduced Power output to orbiter power converters reduced	No offect on crew safety or primery mission objective	Measure turbine speed and pump speed on gearbox temperature	Perform scheduled inspection and maintenance of lubrication system	A(3) B(3) C(3)
 Contamination of subsystem compartment Unable to deliver LH₂ and/or LO₂ to heat exchanger and H₂ to A/B engine system at proper flowrate Same as 2 above 	 Accumulator repressurization rate capability and H₂ flow- rate to A/B engine system reduced Same as 1) above Same as 1) above 	 No effect on crew safety or primary mission objective No effect on crew safety or primary mission objective No effect on crew safety or primary mission objective 	 Measure pump discharge pressure or compartment temperature Measure pump speed Measure pump speed 	None	1) A(3) B(4) C(3) 2) A(3) B(4) C(3) 3) A(3) B(4) C(3)
 Turbopump rendered useless to subsystem No effect 	 Accumulator repressurization rate copability and H₂ flow- rate to A/B engine subsystem reduced. No effect 	 No effect on crew safety or primary mission objective Same as above 	Use valve position switch, measure pump suction pressure	Perform valve cycle and leak test	1) A(3) B(4) C(3) 2) A(4) B(4) C(4)
 Same as 1) above Same as 2) above 	 Some as 1) above Uncontrolled flow of LH₂ or 'LO₂: through pump, heat exchanger, and into accumula- tors Assembly cannot be isolated 	 Same as 1) above Major effect on crew safety or primary mission objective 	Use valve position switch, measure pump suction pressure	Perform valve cycle and leak test.	1) A(3) B(4) C(3) 2) A(3) B(4) C(2A)
					Effects on External Subsystem

Β
-
ω
D

COMPONENT IDENTIFICATION			FAILURE 1	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
3111 and 61.1.1 Fan*	Not evailable	 Supplies inlet air to compressor. Contributes to thrust through bypass. 	Failure to deliver inlet air to low pressure compressor.	None	Low
3 1.1.2 and 6.1 1.2 Low-Pressure Compressor*	Not available	Compresses fan inlet air to higher pressure and temperature	Failure to raise pressure and temperature of air supplied to high pressure compressor.	None	Low
3 1 1.3 and 6 1 1.3 High-Pressure Compressor*	Not available	Accepts air from low pressure compressor and conditions air for inlet to burner.	Inadequate pressure and temperature of air supplied to burner inlet	None	Low
3 1 1 4 and 6 1 1.4 Burner	Not available	Mixes air and fuel, 1gn1tes mixture and expels the combustion products	 Fuel Manifold wear Fuel injection can wear or burn-out Combustion chamber wear or burn-out 	None	Low
3 1 1 5 and 6 1.1 5 High-Pressure Turbine*	Not available	Drives the high pressure compressor	Loss of speed and failure to rotate high pressure compressor	None	Low
3.1.1 6 and 6.1 1 6 Low+Pressure Turbine*	Not available	Drives the low pressure compressor	Loss of speed and failure to rotate low pressure compressor.	None	Low
*Critical component.					

SYSTEM 30 and 60 SUBSYSTEM 31 and 61 3.1.1 ASSEMBLY 611

			MDE AND EFFECTS AMEISTS	SUBSYSTEM 31 and 61	SHEET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON				MISSION
SUBSYSTEM	SYSTEM	MISSION	RECOMMELIDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	GPENATIONS CRITICALITY CATEGORY
Decrease in power assembly efficiency and loss of thrust	Loss of thrust from one engine requires additional thrust output from the remaining operating engines	Booster vehicle loss with more than two engines out Orbiter vehicle loss with more than one engine out except when nonpowered landing is possible	 In-place ground visual inspection with baroscope or pyrometer Monitor vibration level Monitor sound level Monitor total specific fuel consumption (TSFC) 	None	A(2A) B(4) C(2A)
Decresse in power assembly efficiency and loss of thrust	Loss of thrust from one engine requires additional thrust output from the remaining operating engines	Booster vehicle loss with more than two engines out Orbiter vehicle loss with more than one engine out except when nonpowered landing is possible	 In-place ground visual inspection with baroscope or pyrometer Monitor vibration level Monitor sound level Monitor total specific fuel consumption Monitor engine pressure ratio 	None	A(2A, B(4) G(2A)
Decrease in power assembly efficiency and loss of thrust	Loss of thrust from one engine requires additional thrust output from the remaining operating engines	Booster vehicle loss with more than two engines out Orbiter vehicle loss with more than one engine out except when nonpowered landing is possible	 In-place ground visual inspection with baroscope or pyrometer Monitor vibration level Monitor sound level Monitor TSFC Monitor speed 	None	A (2A) B(4) C(2A)
Burn through of outer engine casing with loss of thrust	Loss of thrust from one engine requires additional thrust output from the remaining operating engines	Vehicle loss from <u>fire or</u> <u>explosion</u>	 Flame-out detection signal Bugine compartment fire signal In-place ground visual inspection of fuel injection can and combustion chamber 	Provide a combustion chamber design which utilizes six different ground removeable chambers and injection cans	A(1) B(2B) C(1)
Decrease in power assembly efficiency and loss of thrust	Loss of thrust from one angine requires additional thrust output from the remaining operating engines	Booster vehicle loss with more than two engines out Orbiter vehicle loss with more than one engine out except when nonpowered landing is possible	 In-place ground visual inspection with baroscope or pyrometer Monitor vibration level Monitor sound level Monitor TSFC 	None	л (2л, В(4) С(2л)
Decrease in power assembly efficiency and loss of thrust	Loss of thrust from one engine requires additional thrust output from the remaining operating engines	Booster vehicle loss with more than two engines out Orbiter vehicle loss with more than one engine out except when nonpowered landing is possible	 In-place ground visual inspection with baroscope or pyrometer Monitor vibration level Monitor sound level Monitor TSFC Monitor speed 	None	A(2A) B(4) G(2A;
					B- 1137

•

·-- -

ሞ	
138	

COMPONENT IDENTIFICATION			FAILURE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
3 1 2 1 and 6 1 2 1 Inlet Shutoff Valve	Not available	Allows the supply of LH ₂ to the variable displacement pump from the Propellant Management Subsystem	 Wear on seals Electrical fatigue Wear and yield on closure mechanism. 	None	Medium
3 1.2 2 and 6 1.2.2 Variable Displacement Valve Pump	Not available	 Accepts LH₂ from the Propel- lant Management Subsystem. Delivers LH₂ through the fuel control system to the fuel heater 	 Wear on seals. Wear and fatigue on blades Wear and fatigue on shafts 	None	Low
3.1.2.3 and 6.1.2.3 Cooldown and Pressure Relief Valve	Not available	Conditions LH ₂ for entrance to the fuel heater.	 Electrical fatigue. Wear and fatigue on closure mechanism. Wear on seals. 	None	Medium
3 1 2 4 and 6 1.2.4 Fuel Heater	Not available	Accepts LH ₂ and emits hydrogen vapor	 Electrical fatigue Wear on seals. 	None	Low
3.1.2.5 and 6.1.2 5 Flowmeter	Not available	Measures the H ₂ vapor flowrate from the fuel heater to the combustion chamber.	 Electrical fatigue Wear on seals. 	None '	Medium
3 1 2.6 and 6.1.2.6 Shutoff and Dump Valve	Not available	 Controls flow of H₂ vapor from fuel heater to engine burner After stopping flow to the engine the valve dumps excess propellant overboard 	 Electrical fatigue Wear on seals. Wear and fatigue on closure mechanism Wear and fatigue on dump mechanism 	None	Medium
3.1 2.7 and 6.1.2.7 Electronic Controller	Not available	 Accepts inputs from gas path analysis, power level angle and flowmeter Controls speed of variable displacement vane pump 	 Electrical fatigue. Wear, fatigue, and yield on mechanical control mechanism 	None ,	Medium

	- Fi	AILURE	MODE	AND	EFFECTS	ANALYSIS	
--	------	--------	------	-----	---------	----------	--

SYSTEM 30 and 60 SUBSYSTEM 31 and 61 3.1 2 ASSEMBLY: 6.1.2

				SUBSISIEN S L and C L	SHEET _1_ of _1_
	FAILURE EFFECT ON		RECOMMENDATIONS FOR		MISSION OPERATIONS CRITICALITY
SUBSYSTEM	SYSTEM	MISSION	DETECTION METHOD	OTHER RECOMMENDATIONS	CATEGORY
Failure to attain engine start	Engine would not function	Booster vehicle loss with more than two engines out Orbiter vehicle loss with more than one engine out	 Monitor valve open/close/intermediate status when system is in operation Perform ground function and electri- cal checks 	Provide valves in series-parallel.	A(2A) B(4) C(2A)
Decresse in power susceptly efficiency and loss of thrust	Loss of thrust from one engine requires additional thrust output from the remaining operating engines	Boostor vehicle loss with the equivalent of more than two angines out Orbiter vehicle loss with the equivalent of more than one engine out	Lesk checks during lesk checks of other system components	None	A (2A) B(4) C(2A)
Decrease in power assembly efficiency and loss of thrust	Loss of thrust from one engine requires additional thrust output from the remaining operating engines	Booster vehicle loss with the equivalent of more than two engines out Orbiter vehicle loss with the equivalent of more than one engine out	Perform ground function and electrical checks	Provide valves in parallel	Δ(2Δ) Β(4) C(2Δ)
Decrease in combustion efficiency resulting in loss of thrust	Loss of thrust from one engine re- quiras additional thrust output from the remaining operating engines	Booster vehicle loss with the equivalent of more than two engines out Orbiter vehicle loss with the equivalent of more than one engine out	Perform ground electrical checks and pressure decny lesk tests	None	A (2A) B (4) C (2A)
	Loss of thrust from one engine requires additional thrust output from the remaining operating engines	Booster vehicle loss with the equivalent of more than two engines out Orbiter vehicle loss with the equivalent of more than one engine out	Perform ground electrical checks and functional test	Provide flowmeters in parallel	А (2А) В(4) С (2А)
possible decrease in power assembly efficiency and loss of	Engine would not function and loss of thrust from one engine requires additional thrust output from the remaining operating engines	Booster vehicle loss with the equivalent of more than two engines out Orbiter vehicle loss with the equivalent of more than one engine out	 Nonitor valve position when system is in operation Perform ground electrical and functional tests 	Provide valves in parallel	A(2A) B(4) C(2A)
possible decrease in power	Engine would not function and loss of thrust from one engine requires additional thrust output from the remaining operating engines	Booster vehicle loss with the equivalent of more than two engines out Orbiter vehicle loss with the equivalent of more than one engine out	 Monitor functioning status of controller during system operation Parform ground electrical and functional rests 	None	А(2A) В(4) С(2A)
					Đ-139

SHEET 1 of 1

_	_	

COMPONENT IDENTIFICATION			FAILURE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
3.1.3.1 and 6 1.3 1 Scavenge Pump*	Not available	Transfer oil from bearings to storage tank.	 Wear and fatigue on seals. Wear and yield on drive mechanism Wear and yield on gears Leakage. 		Low
3.1.3.2 and 6.1.3.2 Oil Boost Pump and Main Oil Pressure Pump*	Not available	Supplies oil pressure for direction of oil to various bearings, gearboxes etc.	 Wear and fatigue on seals. Wear and yield on drive mechanism. Wear and yield on gears Leakage. 	None	Low
3 1.3 3 and 6 1.3.3 Oil Strainer	Not available	Removes particles that may be detrimental to bearing operation	 Clogging of screen. Leakage 	None	Medium ~
3 1.3 4 and 6.1.3.4 Boost Pump Relief Valve	Not available	Controls oil boost pump discharge pressure by relieving excess pressure caused by vehicle altitude changes	 Wear and fatigue on seals. Wear on sensing element. Wear and yield on closure mechanism Leakage. 	None	Low
3.1 3.5 and 6.1 3.5 Boost Pump Regulating Valve	Not available	Supplements oil boost pump discharge pressure.	 Wear and fatigue on seals. Wear on sensing element. Wear and yield on closure mechanism. Leakage. 	None	Low
3.1.3.6 and 6 1.3.6 Main Pressure Regulating Valve	Not available	Supplements oil pressure pump discharge pressure.	 Wear and fatigue on seals Wear on sensing element. Wear and yield on closure mechanism Leakage. 	None	Low
6.1.3.7 Zero-G Pressure Supply System	Not available	Prevents oil evaporation during zero-G environment.	 Wear and fatigue on seals. Wear on sensing element. Leakage. 	None	Low
*Critical components.					

		FAILURE	MODE AND EFFECTS ANALYSIS	SYSTEM: 3.0 and 6.0 SUBSYSTEM: 3.1 and 6.1	ASSE4BLY: 3.1.3 6.1.3 SHEET <u>1</u> of <u>1</u>
	FAILURE EFFECT ON				MISSION OPERATIONS
SUBSYSTEM	SYSTEM	NISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CRITICALITY CATEGORY
"Oil hiding" with prolonged engine use would cause bearing heating and eventual loss of engine power assembly efficiency	Loss of thrust from one engine requires additional thrust output from the remaining operating engines	Booster vehicle loss with more than two engines out. Orbiter vehicle loss with more than one engine out except where unpowered landing is possible.	Monitor oil level in storage tank Monitor oil temperature at storage tank inlet monitor oil pressure	None	А(2А; В(4) С(2А)
Low oil pressure results in improper bearing lubrication, bearing heating and eventual loss of engine power assembly efficiency	See above	See above,	Monitor oil pressure pump discharge flowrate and pressure Monitor oil boost pump discharge flowrate and pressure	None	а(2А) В(4) С(2А)
See above	See above	See above	Homitor oil pressure pump discharge pressure Homitor oil level in storage rank	None	A(2A) B(4) C(2A)
See abovo	See above	See abovo	Monitor oil level in storage tank Numitor oil boost pump discharge flowrate and pressure.	None	Δ(2λ) Β(4) C(2λ)
See above	See above	See above	Monitor oil level in storage tank, Monitor oil boost pump discharge flourate and pressure	None	A(2A) B(4) C(2A)
See above	See above	See above.	Monitor oil level in storage tank. Monitor oil pressure pump discharge pressure.	None	A(2A) B(4) C(2A)
See above.	See above	See льоче	Nonitor oil level in storage tank. Nonitor system temperature and pressure.	Noac	λ(2λ) Β(6) G(2λ)
					B-1141

,

 PPOPARII ITV	0

COMPONENT IDENTIFIC			FAILURE MODE		PROBABILITY OF MALFUNCTION OCCURRENCE
NAME	DRAWING NUMBER	FUNCTION OF Component	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
3.1.4.1 and 6 1.4.1 Solid-Start Cartridge	Not available	 Provide engine start in event of failure of primary start technique. Supply energy for rotating high pressure turbine until engine start is attained. 	 Electrical signal failure. Squib failure due to seal loss or shorted bridgewire. 	None	Low

		FAILURE	MODE AND EFFECTS ANALYSIS	SYSTEM 3 0 and 6 0 SUBSYSTEM 3 1 and 6 1	ASSEMBLY 3 1 4 6 1 4 SHEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON				NISSION	
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Failure to attain engine start	Engine would not function	Booster vehicle loss with more than two engines out Orbiter vehicle loss with more than one engine out except when nonpowered landing is possible	Pailure to start engine as evaluated by high pressure curbine speed	None	A(2A) B(4) C(2A)
					P- 143

σ
1
مير -
4
4

COMPONENT IDENTIFICATION			FAILURE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
3.1 5 1 and 6 1.5 1 Igniter Plug	Not available	Provide fuel ignition.	Electrical short circuit	None	Low
3 1.5.2 and 6.1.5 2 Ignition Compositor	Not available	Provide high voltage for igniter plug	Electrical short-open circuit.	None	Low
3.1 5 3 and 6 1.5.3 Ignition Exciter	Not available	Converts input voltage to ignition pulses.	 Input filter short- open Motor brushes Transformer short- open. Selenium rectifier short. Wear and fatigue on cams Wear and fatigue on switches. Wear and fatigue on drive mechanism 	None	Low

SYSTEM 30 and 60 SUBSYSTEM 31 and 61 ASSEMBLY: 3 1 5 6 1.5

-		FAILUR	E MODE AND EFFECTS ANALYSIS	SUBSYSTEM 3 1 and 6 1	SHEET <u>1</u> of <u>1</u>
SUBSYSTEM	FAILURE EFFECT ON	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	NISSION OPERATIONS CRITICALITY CATEGORY
Failure to achieve fuel ignition	Engine would not function	Booster vehicle loss with more than two engines out Orbiter vehicle loss with more than one engine out except when nonpowered landing is possible	Monitor voltage output of ignition excitar	None	A (2A) B (4) C (2A)
Failure to achieve fuel ignition	Engine would not function	See above	Monitor voltage output of ignition exciter	None	A (2A) B(4) C(2A)
Failure to achieve fuel ignition	Engine would not function	Sec above	Monitor voltage output of ignition exciter Monitor input voltage and current of ignition exciter	None	λ(28) B(4) C(2λ)
					8-145

COMPONENT IDENTIFICATION			FAILURE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF Component	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
3 2.1 1 Inlet Pressurization Diffuser	Not available	Provide uniform distribution of gas into ullage area	Structural (fatigue failure).	None	Low
3.2.1.2 Hemisphere Segments	Not available	Welded segments provide storage vessel for LH ₂ .	Structural (leakage due to fatigue failure).	None	Low
3.2.1 3 Outlet Line	Not available	Provides LH ₂ transfer to turbofan engines	Structural (leakage due to fatigue failure).	None	Low
3 2.1.4 Vent Line	Not available	Provides gas transfer for relieving tank gas pressure	Structural (leakage due to fatigue failure)	None	Low
3.2 1 5 Mounting Brackets	Not available	Maintain position of tank assembly inside the main LH2 propulsion system storage vessel.	Structural (fatigue failure).	None	Low
				•	
				1	

SYSTEM 3 0

ASSEMBLY 321

				SUBSYSTEM 3 2	SHEET of
	FAILURE EFFECT ON				MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR Detection Method	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Improper tank pressure and loss of adequate tank outflow characteristics	Hydrogen conditioning system pump damage due to particle injection Loss of engine thrust	Vehicle loss with an equivalent of two engines out	Failure would be detected by subsystem performance	None	Λ(3) Β(2E) G(2A)
Improper tank pressure and loss of adequate tank outflow characteristics	Loss of engine thrust	Vehicle loss with an equivalent of two engines out	 Visual periodic inspection Periodic tank pressure decay check 	None	A(3) B(2B) C(2A)
Loss of adequate LH2 tank outflow rate	Loss of engine thrust	Vehicle loss with an equivalent of two engines out	Visual periodic inspection	None	A (3) B (2B) C (2A)
Loss of tank pressure and adequate tank outflow characteristics	Loss of engine thrust	Vehicle loss with an equivalent of two engines out	Visual periodic inspection	None	A (3) B(2B) G(2A)
Loss of LH ₂ supply	Loss of engine thrust and damage to main propulsion system tankage	Vchicle loss	Visual periodic inspection	None	A(1) B(2D) C(1)
				Effects on	external subsystems
					B-147

œ
1
د بر
-1-
ÓO

COMPONENT IDENTIFICATION			FAILURE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT PRIMARY REDUNDANT		MALFUNCTION OCCURRENCE	
3 2 2.1 Storage Vessel Transfer Line (4-in -dia Line)	None	Transfers LH ₂ from cruise tanks to hydrogen conditioning system	Structural (fatigue failure)	None	Low
3.2.2.2 Solenoid Valve Package (4-in valve)	V-54 V-55 V-56 V-84	Controls LH ₂ outflow from cruise tank to hydrogen conditioning system.	 Fail to open Fail to close Major leakage. 	One valve in each parallel leg fails to open.	1) Low 2) Low 3) Low
		,			

SYSTEM 3.0

ASSEMBLY 3 2.2

٠

		FAILURE	MODE AND EFFECTS ANALYSIS	SUBSYSTEM 3 2	SHEET 1 of 1
	FAILURE EFFECT ON		RECOMMERIDATIONS FOR		MISSION OPERATIONS CRITICALITY CATEGORY
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	CATEGORY
Loss of cruise tank pressure and adequate tank outflow characteristics	Loss of engine thrust	Vebicla loss with an equivalent of the engines out	Ground Visual Inspection	None	A(1) B(3) C(1)
 One value failure in each parallel leg would stop LH2 flow to Hydrogen Conditioning system None Loss of system pressure 	 Turbofan engines would lose thrust None Turbofan engines would lose thrust 	 Vehicle loss with an equivalent of two engines out None Vehicle loss with an oquivalent of two engines out 	 Monitor position of each valve Monitor position of each valve Monitor system pressure 	1) None 2) None 3) None	1) A(1) B(3) C(1) 2) A(4) B(3) C(4) 3) A(1) B(3) C(1)
					8-

e.

٣	
150	

COMPONENT IDENTIFICATION			FAILURE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
3.2 3 1 and 6 2 1 2 Transfer Line B - 4-in -dia Line O - 2 5-in -dia Line	L-32 booster none orbiter	Ducting for Transfer of T/F fuel (LH_) from APS Hydrogen Condition- ing Subsystem (Booster) and Turbopump Assembly (Orbiter) to the Turbofan Engine Valve Package	Structural (fatigue failure).	None	Low
3 2 3 2 and 6 2 1 1 Solenoid-Valve Package (3 Packages on the Orbiter). (7 Packages on the Booster). (1.2-in Valves)	EFV-1 thru EFV-28 (Booster) EFV-1 thru EFV-12 (Orbiter)	To supply LH ₂ from the Propellant Management Subsystem to the T/F engines,	 Failure to open Failure to close Major leakage 	One valve fails to open in each parallel leg	1) Low 2) None 3) Low

		FAILURE	NODE AND EFFECTS ANALYSIS	SYSTEM 30 and 60 SUBSYSTEM 32 and 62	ASSEMBLY	5.2 5 6 2 1 . SHEET of
······································	FAILURE EFFECT ON		RECOMMELIDATIONS FOR DETECTION NETHOD		MISSION OPERATIONS	CRITICALITY
SUBSYSTEM	SYSTEM	MISSION	DETECTION NETHOD	OTHER RECOMMENDATIONS	· · · · ·	CRITICALITY CATEGORY
Loss of adequate flow characteristics	Loss of engine thrust	Booster vehicle loss with an equivalent of two engines out Orbiter vehicle loss with an equiv- alent of one engine out except when nonpowered landing is possible	Ground visual inspection	None	A(1) B(3) C(1)	
 One valve failure in esch parallel leg would stop LH₂ flow None Loss of system pressure 	 Turbofan engine would lose thrust None Turbofan engines would lose thrust 	 Booster vehicle loss with an equivalent of two engines out Orbiter vehicle loss with an equivalent of one engine out except when nonpowered landing is possible None Vehicle loss with an equivalent of two engines out 	 Honitor position of each valve Honitor position of each valve Monitor system pressure 	1) None 2) None 3) None	1) A(1) B(3) C(1,) 2) A(4) B(3) C(4) 3) A(1) B(3) C(1)	٨
-						9

,

•

FAILURE MODE AND EFFECTS ANALYSIS

•

ASSEMBLY 6 2 1

COMPONENT IDENTIFICATION		CUNCTION OF	FAILURE	PROBABILITY OF		
	DRAWING FUNCTION OF NAME NUMBER COMPONENT		PRIMARY REDUNDANT		MALFUNCTION OCCURRENCE	
3.2.4 1	Transfer Line (6-in. line)	L-31	Ducting for rapid transfer of fuel tank gas to atmosphere	Structural (fatigue failure causing leakage).	None	Low
3.2 4.2	Valve Package (6-in valves)	V-70 V-71 V-72 V-73	Controls rapid overboard dumping of fuel tank gas.	 Failure to open, Failure to close Major leakage 	One valve in each parallel leg fails to open	Low Low Low
3.2.4.3	Quick Disconnect Coupling (6-in. coupling)	C-10	Allows ground control for venting of fuel tank gas.	Structural (fatigue failure).	None	Low
,	·					

FAILURE MODE AND E	EFFECTS ANALYSIS	
--------------------	------------------	--

\$

SYSTEM 3.0

ASSEMBLY 3 2.4

					SUBSYSTEM 3 2	SHEET <u>1</u> of <u>1</u>
		FAILURE EFFECT ON				MISSICH OPERATIONS
	SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR Detection Method	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
Fuel t vehicl	ank gas would be vented to e internal compartments	Thermodynamic conditions external to components would change	None - line is isolated by vent valves	Ground visual inspection	None	A(4) B(2B) C(4)
2) Fu 3) Fu 3) Fu	e valve failure in each rollel leg would prevent nk venting el tank pressure could not maintained el tank pressure could not maintained	 None - system could be vented through the functioning system in the other body of the body vehicle Loss of engine thrust Loss of engine thrust 	 None Vehicle loss with an equivalent of two engines out. Vehicle loss with an equivalent of two engines out 	Monitor fuel tank pressure	None None ; None	1) A(4) B(2B) C(4) 2) A(1) B(2B) C(1) 3) A(1) B(2B) C(1) C(1)
Fuel ta in veh: ment	ank gas would be vented iele main engine compart-	None	None - coupling isolated by vent valves	Ground visual inspection	None	A (4) B(3) C(4)
				^		
			-			
						8 1 1 1 1 3 3
1						

COMPONENT IDENTIFICATION			FAILURE	10DE	PROBABILITY OF
		FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
2 5 1 Quick Disconnect Coupling	Ĉ-5	Provides coupling for GSE fill line Provides low level propellant loss capability during connection	 Fails closed or minor internal leakage Major leakage internal or external. 	None	Low
252 Transfer Line	L-21	Ducting for transfer of propellant from quick disconnect coupling to fill valve.	Structural (fatigue failure causıng leakage).	None	Low
.2.5.3 Fill Valve (Solenoid Operated with Integral Relief Provisions)	V-74	Provides positive shutoff for propellant fill and drain	 Fails open, minor internal leakage, major internal leakage. Fails closed. Major external leakage (upstream flange). Major external leakage (downstream flange). Fails to relieve at designed back pressure 	None	1) Low 2) Low 3) Medium 4) Low 5) Low

· .

~

.

SYSTEM 3 0 SUBSYSTEM 3 2 ASSEMBLY 3.2 5

~

.

- -

				0000101011 9 2	2HEELT_01 _T
	FAILURE EFFECT ON				MISSION OPERATIONS
SUBSYSTEM	SYSTEM	MISSION	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
No effect - fill valve provides position propellant isolation	None	None	Ground visual inspection	None	A(4) B(3) C(4)
Fuel leakage into vehicle compartments during leading	None	None	Ground visual inspection	None	A(4) B(3) C(4)
 No effect-checking mechanism at fill coupling maintain leak intogrity No effect-valve is normally closed during flight No effect-valve filght Loss of fuel tank pressure No effect-coupling relief mechanism opens under overpressure 	 No effect due to shutoff redundancy of coupling check/ shutoff mechanism None None Loss of turbofan engine thrust None 	 None None None Vehicle loss with an equivalent of two engines out except where unpowered landing is possible None 	 Monitor valve position. Monitor valve position. Monitor tank pressure Monitor tank pressure Monitor tank pressure 	 None None None None Coupling design requires safety relief 	1) $A(4)$ B(4) C(4) 2) $A(4)$ B(3) C(4) B(3) C(4) B(3) C(4) B(3) C(4)
		-	· ·		B-155
	1			ł	55

φ
1
U.
б

COMPONENT IDENTIFICATION			FAILURE	MODE	PROBABILITY OF	
·	NAME DRAWING NUMBER		FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENC
3,3,1,1	Transfer Line from Regulator Package to LH ₂ tank (2-ın lıne)	L-33A	Ducts GH ₂ to pressurize the LH ₂ A/B propellant supply tank for T/F engines.	'Structural (fatigue failure causing leakage)	None	Low
3 3.1.2	Series - Parallel Regulator Package (2-in, regulator)	R-37A R-38A R-39A R-40A	Controls the pressure level and reduces the accumulator pressure from 1500 psia to LH ₂ tank pressure of 20 psia.	 Internal leakage. External leakage (upstream side). Wear, failed closed 	None	1) Low 2) Low 3) Medlum
3 3 1.3	Parallel Solenoid Valve Package (2-in, valve)	V-75A V-76A	Allows release of GH ₂ from the accumulators to pressurize the LH ₂ T/F supply tanks	 Failure to open. Failure to close. Major leakage (extend). 	 Both valves fail to open. Both valves fail to close. 	1) Low 2) Low 3) Low
3.3 1 4	Filter (2-in. filter)	F-12	Removes particles or contaminants from GH ₂ before gas reaches the pressure regulators	 Clogging. Legkage. Rupture. 	None	1) Low 2) Low 3) Low
				-		

SYSTEM 3 0 SUBSYSTEM 3 3 ASSEMBLY 3.3.1

		FALLUKC	MODE AND EFFECIS ANALYSIS	SUBSYSTEM 3 3	SHEET _1 of
SUBSYSTEM	FAILURE EFFECT ON SYSTEM	MISSION	RECOMMELIDATIONS FOR Detection Method	OTHER RECOMMENDATIONS	MISSION OPERATIONS CRITICALITY CATEGORY
Fuel gos leakage in vehicle compartment	Major leakage would cause loss in tank gas pressure and decrease in turbofan engine thrust,	Vehicle loss with an aquivalent of two engines out	Monitor tank gas pressura	Nono	A(1) B(3) C(1)
 No effect due to relief valve built into regulator, None Loss of tank pressure 	 None Increased requirements for H₂ gas supply Decrease in turbofan engine thrust. 	 Noma Decrease in mission capability Vehicle loss with an equivalent of two engines out 	 Ground test Monitor H₂ supply tank gas volume Monitor regulator position 	1) None 2) None 3) None -	1) A(4) B(3) C(4) 2) A(3) B(3) C(3) 3) A(1) B(3) C(1)
 Loss of tank pressure if both valves fail No effect None 	 Decrease in turbofsm engine thrust No effect Increased requirements for H₂ gas supply. 	 Vehicle loss with an equivalent of two engines out No effect Decrease in mission capability 	 Monitor valve position None because failure has no effect on system, subsystem or mission Monitor V₂ supply tank gas volume 	 Valve should be made to fail normally open None None 	1) A(1) B(3) C(1) 2) A(4) B(3) C(4) 3) A(3) B(3) C(3)
 Decrease in tank pressure None Contamination 	 Decrease in turbofan thrust Increased requirements for Hg gas supply Eventual damage of regulators 	 Vehicle loss with an equivalent of two engines out Decrease in mission capability Loss of regulators 	 Nonitor tank gas prossure and periodic replacement Monitor H₂ supply tank pressure and ground loak tests Measure ΔP across filter 	 Provide series-parallel filters None Frovide series-parallel filters 	1) A(1) B(3) C(1) 2) A(3) B(3) C(3) 3) A(3) B(3) C(3) C(3) C(3)
	,			Effects on	external subsystems
i					

,

COMPONENT IDENTIFICATION		CHARTON OF	FAILURE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
62.21 Pump*	P-7 P-8 P-9	Transmits LH ₂ from storage vessel to turbofan subsystem.	 Major external leakage. Impeller fails to rotate at required RPM. Impeller fails to ro- tate 		Low
6 2 2.2 Solenoid-Operated Valve Package	V-58 V-59 V-60 V-61 V-62 V-63	Admits lıquıd H ₂ ınto suction side of pump.	 Fails to open Fails to close Major external leakage. 	None	Low
6.2 2 3 Turbine*	V-4 V-5 V-6	Converts gas generator thrust to rotating power and transmits power to pump.	 Turbine fails to rotate at required RPM. Turbine fails to rotate Power leakage fails. 		Low
6.2 2.4 Check Valve	V-64 V-65 V-66	Insure one directional flow from discharge side of pump.	 Fails to open Fails to close Internal leakage, External leakage, 	None	Medıum

*Critical component

FAILURE M			NODE AND EFFECTS ANALYSIS	SYSTEM 6 0 SUBSYSTEM 6,2	ASSERSLY: 6.2.2 SREET <u>1</u> of <u>1</u>
FAILURE-EFFECT_ON			RECOMMENDATIONS FOR		MISSION OPERATIONS CRITICALITY
SUBSYSTEM	SYSTEM	MISSION	DETECTION METHOD	OTHER RECOMMENDATIONS	CATEGORY
Loss in upstream flowrate	Decrease in turbofan engine thrust	Vehicle loss with the equivalent of one engine out except when nonpowered landing is possible	Measure pump discharge pressure, suction pressure and vibration level	None	1) A(1) B(2B) C(1) 2) A(15) B(2B) C(1) 3) A(1) B(2B) C(1)
LH2 2) Turbopump cannot be isolated	Becrease in LH ₂ flowrate to turbofan engines No effect Decrease in LH ₂ flowrate to turbofan engines	Vehicle loss with the equivalent of one engine out except when nonpowered landing is possible No effect Vehicle loss with the equivalent of one engine out except when nonpowered landing is possible	Measure valve position and pump suction pressure Measure valve position Measure valve position and pump suction pressure	None	1) A(1) B(23) C(1) 2) A(4) B(3) C(4) 3) A(1) B(23) C(1)
Lõss in upstream flowrate	Decrease in LH ₂ flowrate to turbo- fan engines	Vehicle loss with the equivalent of one engine out except when nonpowered landing is possible.	Measure turbine speed and vibration level.	None	A(1) B(2B) G(1)
 Allows pressurization of upstream liner 	 Decrease in LH2 flowrate to turbofan engines Decrease in LH2 flowrate to turbofan engines No affect Decrease in LH2 flowrate to turbofán engines 	Vehicle loss with the equivalent of one engine out except when nonpowered landing is possible	Measure pump discharge pressure and provide pressure top between series redundant values for single point detection. None	None	1), 2), & 4) A(1) B(2B) C(1) 3) A(4) B(4) C(4)
					B-159
					159

•

COMPONENT IDENTIFICATION			FAILURE	PROBABILITY OF	
NAME	DRAWING NUMBER	FUNCTION OF COMPONENT	PRIMARY	REDUNDANT	MALFUNCTION OCCURRENCE
6.2.3 1 Gas Generator	G-4 G-5 G-6	Provide turbine drive for the turbopump assembly.	 Major hot gas external leakage Blockage of propellant injectors 	None	Low
6.2.3.2 H ₂ Series Solenoid- Operated Valve Package	GFV-4 GFV-5 GFV-6	Admit GH ₂ to the gas generator	 Fails to open. Fails to close. Major external leakage 	 Both fail to open Both fail to close 	Low
6 2.3.3 O ₂ Series Solenoid- Operated Valve Fackage	GOV-4 GOV-5 GOV-6	Admit GO ₂ to the gas generator	 Fails to open Fails to close, Major external leakage 	 Both fail to open Both fail to close 	Low

FAILURE (MODE AND EFFECTS ANALYSIS	SYSTEM 6 D SUBSYSTEM 6 2	ASSEMBLY 6 2 3 SHEET <u>1</u> of <u>1</u>
FAILURE EFFECT ON				MISSION	
SUBSYSTEN	SYSTEM	MISSION	RECONMENDATIONS FOR DETECTION NETHOD	OTHER RECOMMENDATIONS	OPERATIONS CRITICALITY CATEGORY
 Loss of subsystem Decrease in combustion efficiency and hence decrease in turbine RPM 	 Compartment fire could result Decrease in turbofan engine thrust 	 Catastrophic loss of stage Vehicle loss with an equivalent of one engine out except where unpowered landing is possible 	Measure chamber pressure	Compartment in vicinity of Gas Generators should have flame detectors	 a) A(1) b(2B) c(1) c(1) b(2B) c(1)
 Combustion process will be incomplete H₂ gas floods combustion chamber Decrease in combustion efficiency 	 Decrease in turbofan engine thrust Fuel caturated combustion causing decrease in turbopump efficiency and turbofan engine thrust Decrease in turbofan engine thrust 	Vehicle loss with an equivalent of one engine out except where unpowered landing is possible	Monitor valve position Monitor gas generator chamber pressure	None	A(1) B(2B) C(1)
 Combustion process will be incomplete O₂ gas floods combustion chamber Decrease in combustion efficiency 	 Decrease in turbofan engine thrust O₂ saturated combustion causing decrease in turbopump efficiency and turbofan engine thrust Decrease in turbofan engine thrust 	one engine out except where unpowered landing is possible	Monitor valve position Monitor gas generator chamber pressure	None	A(1) B(2B) C(1)
					B-16

•

B-162

r

SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.4 ASSEMBLY: 1.1.1 & 4.1.1 COMPONENT: 1.1.1.1 & 4.1.1.1 SHEET <u>1</u> of <u>1</u>

			r		SHEET 1 of 1
PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	other Recordendation
Ball Bearings	Take out shaft axial/radial loads, transmit to housing, pro- vide shaft/impeller/turbine position control within housing to prevent rub, and clearance variations.	Ball and race wear, spalling, brinnelling	Increased torque requirements, increased shaft vibration, dis- placement, labyrinth seal and impeller, turbine rub; leading to erratic start characteris- tics, lew output.	Vibration, inlet pressure; discharge pressure, pump rpm; torque check at maint. cycle.	
		Cracked ball - disintegrating.	Abrupt reduction in flow/ pressure output.	Pump rpm; discharge pressure vibration/displacement; torque check.	
		Cracked race,	Accelerated wear of balls. Same as first line entry.	Same as above.	
		Cracked retainer,	Same as above.	Same as above	
		Worn retainer	Same as above.	Same as above	
Impeller	Provide pressure rise.	Vane breakage structural fatigue	Reduced pressure/flow output Increased vibration, Possi- bility of jamming, with complete loss of output	Pump rpm, vibration, discharge pressure	
Shaft	Support turbine and impeller, transmit loads to bearings.	Breakage. Structural fatigue.	Abrupt loss of output. Turbine overspeed and severe damage to internal components	Fump discharge pressure; pump rpm. (Extremely rapid sequence of events - detection and re- action time usually insufficient to avoid damage.)	
Turbine Nozzles	Control flow of drive fluid to turbine blades (passive).,	Spalling, cracking, pitting.	Reduction in turbine efficiency - reduced output.	Fump rpm; discharge pressure; inlet pressure.	
Turbine Blades	Convert drive fluid energy to shaft rotational energy.	Distortion	Reduction in turbine efficiency	Pump rpm; discharge pressure; inlet pressure.	
		Loss of blade(s) structural fatigue.	Reduced turbine efficiency. Progressive damage to turbine with very low output. Increased vibration.	Vibration; pump rps; discharge & inlet pressure.	
Labyrinth Seals	Provide controlled leak seals at impeller inlet and outlet, and bearing coolant inlet passage	Secondary wear as a result of excessive shaft radial dis- placement (This is a function of design point clearances).	Reduced output.	Bearing detection system should provide primary data.	
					8-1 53

		FMEA ON CRITICAL COMPONENTS		SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1	ASSEMBLY 1.1 1 & 4 1 1 COMPONENT 1 1 1 2 & 4 1.1.2 SHEET 1 of 2	
PART NAME	FUNCTION	FAILURE Mechanish	FAILURE EFFECT ON COMPONENT	RECONMENDATIONS FOR DETECTION METHOD	OTHER RECOMENDATION	
Ball Bearings (2 rows in pumping area, 2 rows in turbina).	Maintain impeller/turbine to housing clearances, take out axial and radial loads.	Ball and race wear, spalling, brinnelling	Increased torque required, in- creased shaft vibrations, dis- placements, reduced efficiency, possible impeller/turbine rub/ shaft rub, low output.	Vibration, inlet pressure, pump rpm, discharge pressure.		
	1	Cracked ball disintegrating.	Abrupt reduction in flow/pressure output	Same as above		
		Cracked race.	Accelerated wear of balls, same as first line entry.	Same as above.		
	[Cracked/worn retainer	Same as above.	Same as above.		
Drive Shaft	Transmit turbine drive energy to impellers, distribute loads to bearings, thrust balancer.	Breakage	Abrupt loss of pump output Frobable turbine overspeed with severe internal damage.	Pump speed to provide as rapid a shutdown as possible		
Inducer/Impeller Blades	Provide pump pressure rise.	Crack with loss of blade piece.	Reduced output, increased vibra- tion, possible jamming of piece with progressive damage to TPA. May pass through to preburners, nozzle, with subsequent damage.	Vibration, inlet pressure, outlet pressure, pump speed		
Piston Ring Seals	Provide interstage assembly pressure scals	Loss of spring tension, crack.	Reduced pumping efficiency	Inlet pressure, discharge pres- sure, pump speed, preburner power valve position		
		•				

ASSEMBLY

B-164

SYSTEM 10&40 SUBSYSTEM 1.1 & 4 1

~

		·····			SHEET 2 07 2
PART NAME	FUNCTION	FAILURE Mechanism	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOPPIENDATION
Liftoff Scal	Provide static scal between 3rd stage and turbine prior to operation, provide controlled flow scal dynamically.	Face wear, loss of retaining force	Increased static leakage to turbine and engine.	Leak check at maint. cycle.	
Thrust Balancer	Limit axial loads on bearings.	Face wear (bearing or other abnormal displacement is cause)	Reduced output, increased vibration.	Pump speed, vibration, inlet pressure, outlet pressure; preburner pressure/temp.	,
Hot Gas Turbine	Convert hot gas stream energy to rotational energy.	Distortion of blade.	Reduced effeciency tip rub low output.	Pump speed, vibration proburaer chamber pressure, temperature inlet pressure; discharge pressure	
	-	Loss of blades(s).	Increased vibration, reduced efficiency, possible progressive damage with loss of output.	Vibration, pump speed.	
		Disc distortion	Rub, with reduced officiency; vibration increase.	Vibration; preburace chamber press./temp., pump speed, inlet pressure, outlet pressure.	
Turbine Nozzles	Control flow of hot gas to turbine blades	Pitting, distortion	Loss of efficiency, low output.	Same as above.	
Check Yalve, Outlet of 3rd Stage, Inlet to First Stage,	Prevent excessive fuel leakage to chamber/outside of engine prior to start. Spring tension set to relieve somewhat above head/prepressure settings.	Fails to open at set pressure. Fails to close at shutdown, fails to seat adequately at shutdown	No effect on fuel TPA. Loss of coolant to OTPA turbine bearings No effect on fuel TPA Small fuel leak through engine after shutdown, until prevalve is closed	Valve position discrete; coolant outlet temperature. Leak checks at maint. cycle valve position discrete.	
					8-165

SUBSYSTEM 11&41

FAILURE FAILURE EFFECT ON RECOMMENDATIONS FOR OTHER MECHANISM DETECTION METHOD RECOMMENDATION FUNCTION COMPONENT PART NAME Ball Bearings Take out shaft axial/radial Ball and race wear, spalling, Increased torque requirements, Vibration, inlet pressure, loads, transmit to housing, brinnelling increased shaft vibration, disdischarge pressure, pump rpm, provide shaft/impeller/turbine placement, reduced efficiency. torque check at maint. cycle. position control within housing to prevent rub and clearance Labyrinth seal, impeller turbine Same as above. variations. rub due to excessive wear Possible detonation with pump rupture, fire. Cracked ball, disintegrating. Abrupt reduction in flow/pressure Same as above. output, Accelerated wear of balls. Same Cracked race. Same as above as first line entry above Worn/cracked retainer Same as above. Same as above Reduced pressure/flow output, Impeller Provide pressure rise Pump rpm vibration discharge Vane breakage Structural increased vibration. Possibility fatigue. pressure of jamming, with complete loss of output Possibility of detonation with pump rupture, fire Shaft Support turbine and impeller. Breakage (structural fatigue) Abrupt loss of output Rub, Pump discharge pressure, pump transmit loads to bearings. possible detonations with rpm (extremely rapid sequence of events). pump rupture, fire. Turbine Nozzles Control flow of drive fluid to Spalling, cracking, pitting. Reduction in turbine efficiency, Pump rpm, inlet pressure, disturbine blades (passive) reduced output. charge pressure Turbine Blades Convert drive fluid energy Distortion. Reduction in turbine efficiency. Same as above. to shaft rotational energy. Loss of blade(s), structural Reduced efficiency, progressive Vibration, pump rpm, inlet damage to turbine is probable, fatigue. pressure, discharge pressure. increased vibration; possible detonation with pump rupture, fire. Provide controlled leak seals at Labyrinth Seals Secondary wear as a result of Reduced output. Bearing detection system should impeller inlet and outlot, and excessive shaft radial displaceprovide primary data. bearing coolant passage. ment (this is a function of design point clearances).

-

8-165

ASSEMBLY 1116411

1113&41.13 SHEET 1 of 1

COMPONENT

1.0 & 4.0 SYSTEM SUBSYSTEM 1.1 & 4.1

-

ASSEMBLY: 1.1.1 & 4.1.1 COMPONENT 1.1.1.4 & 4.1.1.4 SHEET 4 of 4

.

PART NAME	FUNCTION	FAILURE (IECHANISH	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMENDATION
Labyrinth Seal, at Turbine Hydrostatic Seal	Provide gross back-flow protec- tion for hydrostatic seal and	Secondary wear as a result of bearing wear.	No effect - bearing failure would precede any major effect.		
	running ring from turbine gases.	Structural failure.	Distortion of hydrostatic and lift-off running ring Excessive fuel bypass from preburners - minor reduction in engine por- formance.	Leak checks at maint. cycle Engine performance parameters.	-
Thrust balancer	Provide major portion of axial thrust takeout, to limit bearing loads	No primary mode of failure. Excess axial shaft motion due to worn bearings could cause face wear, and accelerate the bearing wear. (See bearings)	Reduced flow/pressure output.	Vibration, displacement; thrust balance cavity pressure.	
Lift-off Seal	Provide static seal between turbine roller bearing coolant and turbine area.	Wear, loss of seal tension (bellows or spring) cracked bellows.	Excess static overboard leakage of fuel (secondary failure). (Requires failure of H.P.F T P A. check valves)	Leak checks at maintenance cycle	
Hydrostatic Face and Journal Seals	Provide controlled flow seals between 2nd stage output and seal cavity, also between turbine roller bearing and seal cavity	No primary failure mode. Wear would result from excessive bearing wear (see bearings)	Reduced pump output	(See bearings)	
Filter	Frovides filtered flow for bear- ings, hydrostatic seals, labyrinth, thrust balancer, preburner injectors. Solf cleaning design.	Channel to plate separation opening the equiv orifice size.	Possible plugging of passages Accelerated bearing wear, possible seal wear with loss of pump performance.	(See bearings)	
					· · ·
					B-167

		FMEA ON CRITI	CAL COMPONENTS	SYSTEM 10&40 SUBSYSTEM 1.1&4.1	ASSEMBLY 1116411 COMPONENT 1.1.1464114 SHEET 1 of 4
PART NAME	FUNCTION	FAILURE MECHANISH	FAILURE EFFECT ON COMPONENT	RECONMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Roller Bearing (turbine area)	Transmit radial shaft loads to housing, maintain clearances.	Roller/race wear, spalling, brinelling End and rolling surface (minor wear).	Increased vibration, increased shaft displacement, slightly reduced performance	Vibration, shaft displacement	it displacement
		Same as above, except major wear	Turbine blade rub, labyrinth seal rub, increased vibration Reduced performance.	Vibration, shaft displacement pump rpm inlet pressure, dis- charge pressure, preburner chamber pressure, temp.	
		Cracked roller, disintegrating	Abrupt reduction in flow/pressure output, increased vibration, severe labyrinth seal rub, journal seal rub, possible detonation	re Vibration, pump rpm inlet pres- sure discharge pressure	
		Cracked race	Accelerated wear of balls, same as first line entry above.	Vibration, shaft displacement.	
		Worn/cracked retainer.	Same as above.	Same as above	
Ball Bearings (2 rows) and Roller Bearing (between first and	Transmit axial and radial shaft loads to housing Maintain clearances	Ball/race wear, roller/race wear (minor).	Same as Line 1 entry above.	Same as above	
second stage pump impellers) ~		Same as above except major wear	Increased vibration, displace- ment, possible labyrinth/hydro- static seal rub, possible impeller rub, with possible detonation, rupture of pump and fire	Same as above Pump rpm, vibration, displace- ment, inlet pressure discharge pressure	
				-	

유 없 ASSEMBLY 111&41.1

10&40

SYSTEM

SYSTEM 10&40 SUBSYSTEM 11&41 ASSEMBLY: 1.1 1 & 4.1.1 COMPONENT 1 1.1 4 & 4.1.1.4 SHEET 2 of 4

PART NAME	FUNCTION	FAILURE NECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Ball/Roller Bearings (cont)	Continued	Gracked ball or roller, with disintegration	Abrupt reduction in pump output, increased vibration, impeller rub, soal rub, probable detona- tion with rupture of pump, fire	Vibration, shaft displacement, pump speed, discharge pressure inlet pressure	
		Cracked race	Accelerated wear of rollers/ balls Same as Line 1 entry	Vibration, pump rpm displacement, inlet pressure, outlet pressure.	
		Worn/cracked retainer	Same as above	Same as above	
Inducer	Boost inlet pressure for first stage	Loss of vane or piece	Increased vibration, reduced output, possible jamming of piece in inducer, first stage or second stage, piece may go through to main TCA. Possible detonation, rupture of pump, fire	Vibration, pump rpm inlet pres- sure, first and second stage outlet pressure	
First/Second Stage Impellers	Provide required head rise	Loss of Vane or Piece	Samo as above	Same as above	
Turbine	Convert hot gas flow energy to rotational energy	Blade distortion, disc distor- tion.	Turbine rub, reduced output, increased vibration	Vibration, pump rpm, preburner chamber pressure, temp., inlet pressure (lox), discharge pressure.	
					B-169
					6

·····			ICAL COMPONENTS	SYSTEM 10&40 SUBSYSTEM 11&4.1	ASSEMBLY 1 1.1 & 4 1 1 COMPONENT 1.1.1 4 & 4 1 1 4 SHEET <u>3</u> of <u>4</u>
PART NAME	FUNCTION	 FAILURE MECHANISM 	FAILURE EFFECT ON Component	RECONNENDATIONS FOR DETECTION NETHOD	OTHER RECOMMENDATION
Turbine (cont)	Continued	Loss of blade	Increased vibration, probable progressive turbine damage, loss of pump output.	Vibration, pump rpm discharge pressure inlat pressure.	
Turbine Nozzles	Control flow of hot gas to turbine (passive).	Distortion, spalling, crack.	Reduced turbine efficiency - low pump output	Pump rpm, preburner chamber pres- sure/temp. inlat pressure, discharge pressure	
Diameter Seal (upstream)	Provide an assembly seal between first stage and inducer.	Loss of spring tension/cracked ring (depends upon design)	Reduced output (minor) of pump.	Same as above	· · · · · · · · · · · · · · · · · · ·
Diameter Seals	Provide assembly seals in inter- propellant seal cavity, between second stage and oxid vent cavity, also between turbine cavity and fuel vent cavity.	Loss of spring tension/cracked ring (depends upon design).	Reduced output (minor) of pump.	Seal cavity ovid. vent pressure, fuel vent pressure, plus param- eters directly above.	
Labyrinth Seals - Inducer/ Impeller Area	Provides controlled flow seal at inducer outlet, first stage outlet, flow to bearings, second stage inlet.	Secondary wear as a result of bearing wear.	(See bearings) Reduced pumping efficiency, Possible detonation depending upon materials, degree of rubbing.	(See bearings)	
Labyrinth Scals, Scal Cavity	Provides controlled helium purge seal flow to oxid. and fuel vent cavities.	Same as above.	(See bearings) Excessive purge gas requirement	(See bearings) Seal cavity pressure.	

SYSTEM 10 SUBSYSTEM 11

ASSEMBLY 1.1.1 COMPONENT 11.1.8 SHEET 1 of 1

PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR Detection Method	OTHER RECOMIENDATION
Motor Actuator and Gear Train	Frovide driving force to open/ close valve via a gear train	Open winding, short to ground	Valve fails to open at start, or slow to close at shutdown	Valve position.	
		Shorted turns	Valve may open slowly	Valve position	
		Bearings wear, gall, or jam.	Slow open/close, failure to open, failure to close		
		Gear breakage (structural fatigue) possible jamming	Valve may fail to open, or it may fail to close	Valve position	
Linkage	Translate rotary gear output to linear value motion	Gracked (structural fatigue)	Valve fails to open or closes slowly	Valve position	
Spring	Provide added closure force for sbaling with no head pressure	Breskage (structural failure or loss of spring tension)	Fails to seal at bleed-in and shutdown,	Leak check at maint cycle	
Shaft Bearings	Transmit shaft radial loads to valve housing	Wear, galling of shaft.	Erratic valve opening/closing	Valve position trace	
Poppet Scal	Provide positive shutoff	Wear, particle in seal (secondary failure)	Excessive leak during chill-down, postfiring	Leak checks at maint cycle	
Filters, Flow-Through System	Prevent plugging of pressure balance orifices (0 05 to 0 1 in)	Plugging due to accrued contam (secondary effect) or, structural failure of either filter	Closes earlier in shutdown tail- off of pressure, valve fails to open at start possible premature closure	Valve position	
Static Scals	Prevent external leakage	Creep	None – external fire hazard	Leak checks at maint cycle	
					B-171

	· · · · · · · · · · · · · · · · · · ·	·····		SUBSYSTEM 1.1 & 4 1	COMPONENT 1 1.1 9 & 4 1 1 SHEET <u>1</u> of	
PART NAME	FUNCTION	FAILURE HECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR Detection method	OTHER RECOMMENDATION	
Motor Actuator and Gear Train	Provide driving force to open/ close valve via a gear train.	Open winding, short to ground	Valve fails to open at start, slow to close at shutdown	Valve position.		
		Shorted turns.	Valve may open/close slowly	Valve position		
		Gear breakage (structural fatigue), possible jamming.	Failure to open/close	Valve position		
		Bearings wear, gall or jam	Slow to open/close, failure to open/close.	Valve position		
Linkage, Shaft	Translate rotary gear output to linear valve motion,	Cracked (structural fatigue)	Valve fails to open, closes slowly.	Valve position.	· · · · · · · · · · · · · · · · · · ·	
Spring	Provide added closure force for scaling with no head pressure.	Breakage, loss of tension.	Fails to seal at chill-down or shut down, slow to close	Valve position. Plus leak checks at maint cycle		
Shaft Bearings	Transmit shaft radial loads to valve housing.	Wear, galling of shaft.	Erratic valve opening/closing	Valve position.		
Poppet Scal	Provide positive shutoff	Wear, particle imbedded in seal (secondary failure)	Excessive internal leak at chill down, post fixing	Leak checks at maint cycle		
Pilot Valve (passive)	Provides pressure balance for opening	Fails to open (structural fail- ure).	Fails to open	Valve position.		
		Fails to close (seal wear, contam.)	Small leak at shutdown	Leak checks at maint cycle.		
Static Scals Prevent external leakage.	Prevent external leakage.	Creep.	None - external safety hazard	Leak checks at maint, cycle,		
	1					

ASSEMBLY 11164.1.1 COMPONENT 11.1964119 SHEFT 1 of 1

B-172

.

.

SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1 ASSEMBLY: 1,1,1 & 4,1,1 COMPONENT: 1,1,1,1,0 & 4,1,1,10 SHEET <u>1</u> of <u>1</u>

			· · · · · · · · · · · · · · · · · · ·) —	
PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Motor/Gear Train Drive	Provide valve positioning force.	Open winding, short to ground	Failure to open, fails to close, fails static, not resp. to commands.	Valve position.	
		Shorted turns.	Slow response.	Valve position.	
		Gear failure (structural fatigue).	Failure to open, remains open at shutdown. Fails static with no response to commands.	Valve position.	
		Motor bearings gall, possibly jam.	Failure to open, slow to open/ close, failure to close.	Valve position.	
Shaft	Transmits power from gear train to valve piston.	Breskage (structural failure).	Failure to open, failure to close at shutdown, fails static - no response to commands	Valve position.	
Shaft Bushings	Take out shaft radial loads & provide guide.	Wear, galling.	Failure to open, failure to close, erratic operation of valve,	Valve position.	
Shaft Seal (Primary)	Provide pressure seal between valve cavity and secondary scal.	Wear,	Possible slight effect on valve response.	Leak check at maint. cycle.	<u></u>
Shaft Seal (Secondary)	Provide scal between primary seal and motor cavity.	Wear,	No effect. Secondary failure causing external leak.	Leak checks.	
Piston Ring (Upper)	Part of valve C_{V} determination.	Wear, loss of spring force	Slight change in value C _V . Change in position for given power demand.	Valve position Preburner chamber pressure.	
Piston Ring (Lower)	Provide a pressure balance seal.	Wear, loss of spring force.	Increased opening time, decreased closing time,	Valve position. Preburner chamber pressure	-,
Static Seals	Prevent external leakage.	Creep.	None - external safety hazard	Leak checks at maint. cycle.	
				,	

SYSTEM 10 & 4 0

SUBSYSTEM 11&4.1

SHEET 1 of 1 FAILURE FAILURE EFFECT ON RECOMMENDATIONS FOR OTHER FUNCTION PART NAME MECHANISM COMPONENT DETECTION METHOD RECOMMENDATION Motor/Gear Train Drive Provides valve opening/position-Open winding, short to ground. Failure to open, or premature Valve position ing force. closure Shorted turns. Slow response. Valve position Gear failure (structural Failure to open, premature Valve position fatigue) possible jamming closure, failure to close. Motor bearings gall and jam. Failure to open, slow opening/ Valve position ۰. closing, failure to close. Shaft Transmits power from gear train Breakage (structural failure) Failure to open, premature Valve position to valve piston. closure. Shaft Bushings Take out shaft radial loads, and Wear, galling. Failure to open, failure to Valve position provide guide close, erratic operation of valve Shaft Seal (primary) Provide pressure seal between Wear Slight effect on valve response Leak check, valve position valve cavity and secondary seal. time. Shaft Seal (secondary) Provide seal between primary Wear Secondary failure resulting in Leak check seal and engine exterior. external leak Piston Ring (upper) Provide restricted flow path dur-Wear, loss of spring force. Valve not controlling start and Valve position, preburner chamber ing start to MPL. shutdown transient properly pressure, temperature. slight change in position for given power demand Piston Ring (lower) Provide a pressure bal. seal. Wear, loss of spring force. Increased opening time, de-Same as above. creased closing time (very small effect) Shutoff Seal Provide positive shutoff. Wear, contaminate particle in Excessive internal leakage of Leak checks at maint. cycle. seal (secondary). ovid. Static Seals Prevent external leaks Creep None - external safety hazard Leak checks at maintenance cycle

11.1&411

COMPONENT 1.1.1.11 & 4 1.1 11

ASSEMBLY

COMPONENT 1131&4131 SHEET <u>1</u> of <u>1</u>

ASSEMBLY 113&413

/			L		SHEET 1 of
PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD -	OTHER RECONTION
Oxidizer Valve, Solenoid 28 vdc	Provide on-off control of oxidizer flow to igniter in response to	Fails to open	Fails to ignite.	Valve position discrete	
	command 28 vdc valve is a fail- close on loss of power	Opens slowly	Fails to ignite	Valve position discrete, preburner chamber pressure	
		Premacure closure	Fails to ignite.	Same as above	
		Fails to close due to sticking at closure signal	Burnout of igniter chamber, with possible burn-through to hot gas manifold high temp discharge gas	Valve position discrete, main C C pressure	
		Seat leakage beyond spec limits	Hard start, possible igniter tube damage	Leak check at maintenance cycle Main C C pressure Physical check of igniter plug.	
Souther (Redundant)	Convert 28 vdc to 30,000 volt 50 pps energy to plug	No output or low output	Fails to ignite	Igniter current	
Cable from Exciter to Plug (Each Exciter to Plug)	Conduct high-voltage pulses from exciter to spark plug	Open circult	Fails to ignite	Igniter current	
evolter to Flug) axel		Short circuit, or spark gap to ground not allowing spark to dis- charge at plug	Fails to ignite	Ignition detector	
Spark Plug (Redundant)	Provide controlled spark gap	Short to ground	Fails to ignize	Ignition detector	
ν.					

SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1 ASSEMBLY. 1.1.1 & 4.1.1 COMPONENT 1.1.1.2 & 4.1.1.12 SHEET <u>1</u> of <u>1</u>

	· · · · · · · · · · · · · · · · · · ·	1		SHEET <u>1</u> of <u>1</u>
FUNCTION	FAILURE (IECHANISM	FAILURE EFFECT ON Component	RECOMIENDATIONS FOR DETECTION METHOD	OTHER RECOMIENDATION
Provide valve opening/positioning force.	Open winding, short to ground	Failure to open, premature closing.	Valve position.	
	Shorted turns.	Slow response.	Valve position	
	Motor bearings gall and jam,	Failure to open, slow to open/ close, failure to close	Valve position.	
	Gear failure (structural fatigue), possible jamming.	Failure to open, premature closure: failure to close.	Valve position.	
Transmits power from gear train to valve position.	Breakage (structural failure).	Failure to open, premature closure.	Valve position,	
Take out shaft radial loads and provide guide.	Wear, galling.	Failure to open, failure to close, erratic operation of valve.	Valve position.	
Provide pressure scal between valve cavity and secondary seal	Wear.	Slight effect on valve response, depending upon severity.	Loak checks, possibly valve position.	
Provide seal between primary seal and engine exterior.	Wear.	No effect Requires double failure - then external leak would be evidenced.	Leak checks.	
Provide restricted flow path during start to MPL.	Wear.	Slight increase of oxid flow to preburner during start and shutdown. Valve not controlling flow properly.	Preburner chamber pressure, temperature.	
Provide a pressure balance seal	Wear.	Slightly increased opening time, decreased closing time,	Valve position, preburner chamber pressure	
Provide positive shutoff.	Wear/particle imbedding	Excessive internal leakage of orid.	Leak checks at reg. maint. cycle.	
Prevent external leakage	Creep.	None - external safety hazard	Leak checks at reg maint. cycle.	· · · · · · · · · · · · · · · · · · ·
				, \
			1	
			-	8-175
	Provide valve opening/positioning force. Transmits power from gear train to valve position. Take out shaft radial loads and provide guide. Provide pressure scal between valve cavity and secondary scal Provide scal between primary scal and engine exterior. Provide restricted flow path during start to MPL. Provide a pressure balance scal Provide positive shutoff.	FUNCTION MECHANISM Provide valve opening/positioning force. Open winding, short to ground Shorted turns. Shorted turns. Motor bearings gall and jam. Gear failure (structural fatigue), possible jamming. Transmits power from gear train to valve position. Breakage (structural failure). Take out shaft radial loads and provide guide. Wear, galling. Provide pressure scal between valve cavity and secondary seal and engine exterior. Wear. Provide restricted flow path during start to MPL. Wear. Provide a pressure balance seal Wear. Provide positive shutoff. Wear/particle imbedding	FUNCTION HECHANISM COMPONENT Provide valve opening/positioning force. Open winding, short to ground force. Tailure to open, premature closing. Shorted turns. Slow response. Motor bearings gall and jam. Failure to open, slow to open/ close, failure to close Gear failure (structural fatigue), possible jamming. Failure to open, premature closure failure to close. Transmits power from gear train to valve position. Breakage (structural fatigue). Pailure to open, premature closure. Failure to open, premature closure. Take out shaft radial loads and provide guide. Wear, galling. Failure to open, failure to close, erratio oper, depending upon severity. Provide pressure scal between valve cavity and secondary scal and engine exterior. Wear. Slight effect on valve response, depending upon severity. Provide restricted flow path during start to MPL. Wear. Slight increase of oid flow to prolumer during start and shutdown. Valve not controlling flow properly. Provide a pressure balance scal Wear. Slightly increased opening time, decreased closing time, decreased closing time, Provide positive shutoff. Wear/particle imbedding Excessive internal leakage of orid.	FUNCTION IECHANISM COMPONENT DETECTION METHOD Provide valve opening/positioning force. Open winding, short to ground force. Pailure to open, premature closing. Valve position. Shorted turns. Slow response. Valve position. Motor bearings gall and jam. Failure to open, slow to open/ close, failure to close. Valve position. Transmits power from gear train to valve position Breakage (structural fatigue). Failure to open, premature closure failure to close. Valve position. Take out shaft radial loads and provide guide. Wear, galling. Pailure to open, failure to close cratic operation of valve cavity and secondary seal Wear. Slight effect on valve response, depending upon severity. Laal checks, possibly valve position. Provide pressure seal between valve cavity and secondary seal Wear. Slight effect on valve response, depending upon severity. Leak checks, failure - thon external leak vold be avidenced. Leak checks. Provide restricted flow path during start to MPL. Wear. Slightly increased opening time, decreased closing time, flow properity. Preburner chember pressure, chamber pressure Provide positive shutoff. Wear/particle imbedding Slightly increased opening time, dor of oil. Valve position, preburner chamber pressure

SYSTEM	1.0 & 4.0
SUBSYSTEM	1.1 & 4 1

ASSEMBLY 1 1.3 & 4.1.3 COMPONENT 1 1.3.1 & 4 1 3 1

SHEET 1 of 1 FAILURE MECHANISM FAILURE EFFECT ON RECOMMENDATIONS FOR OTHER FUNCTION COMPONENT DETECTION METHOD RECONVIENDATION PART NAME Provide on-off control of Oxidizer Valve, Solenoid, Fails to open. Fails to ignite. Valve position discrete. 28 vdc oxidizer flow to igniter in response to command 28 vdc. Opens slowly. Fails to ignite. Valve position discrete, pre-Valve is a fail-close on loss of burner chamber pressure. power. Premature closure. Fails to ignite, premature loss Same as above. of ignition Reduction in life expectancy of Fails to close due to sticking, Valve position discrete. igniter assy, burnout of igniter chamber, metal contamination of Check at maintenance cycle at signal to close (functional and leak). proburner injector. Seat leakage beyond spec limits. Pressure spike in igniter Leak check at maintenance cycle chamber Possible igniter Conduct physical check of damage. igniter plug Exciter (redundant) Convert 28 vdc input signal to No output or low output Fails to ignite. Igniter current. 30,000 volt 50 pps energy to plug Cable from Exciter to Plug Conduct high-voltage pulses from Open circuit. Fails to ignite. Igniter current, (each exciter to plug) exciter to spark plug. Short circuit or spark gap to Fails to ignite. Ignition detector ground, not allowing spark to discharge at plug Spark Plug (redundant) Provide controlled spark gap. Short to ground. Fails to ignite. Ignition detector B-177

SYSTEN: 1 0 & 4.0 SUBSYSTEM 11&41

		FHEA ON CRITI	CAL COMPONENTS	SUBSYSTEM 11&41	COMPONENT 1.1 3 2 & 4 1 3 2 SHEET 1 of 1	
PART NAME	FUNCTION	FAILURE HECHANISH	FAILURE EFFECT ON Component	RECONNENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION	
Oxidizer Valve, Solenoid, 28 vdc	Provide on-off control of oxidizer flow to igniter in	Fails to open.	Fails to ignite	Valve position discrete		
vuc	response to command 28 vdc. Valve is a fail-close on loss	Opens slowly.	Fails to ignite.	Valve position discrete, pre- burner chamber pressure.		
	of power.	Premature closure	Fails to ignite.	Same as above		
		Fails to close due to sticking, at closure signal	Reduction in life expectancy of igniter assy, burnout of igniter chamber, metal con- tamination of preburner injector	Valve position discrete, check at maintenance cycle, functional and leak check.		
		Scat leakage beyond spec limits.	Excessive pressure spike, possible igniter damage.	Leak check at maintenance cycle, check igniter plug condition		
Exciter (redundant)	Convert 28 vdc input signal to 30,000 volt 50 pps energy to plug.	No output or low output.	Fails to ignite.	Igniter current.		
Cable from Exciter to Plug (each exciter to plug)	Conduct high-voltage pulses from exciter to spark plug	Open circuit	Fails to ignite.	Igniter current.		
		Short circuit, or spark gap to ground not allowing spark to discharge at plug.	Fails to ignite.	Ignition detector		
Spark Plug (redundant)	Provide controlled spark gap.	Short to ground.	Fails to ignite.	Ignition detector		

B-178

ASSEMBLY 1.1 3 & 4 1 3

SYSTEM 10&40 SUBSYSTEM 11&41 ASSEMBLY 1 1.4 & 4 1 4 Gimbal Actuator & Power Pack SHEET 1 of 2

r	T		(
PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Hydraulic Power Pack	Provide hydraulic fluid at 3000 psig nominal to the TVC gimbal actuators	Minor fluid leakage (not at suf- ficient rate to deplate reserve fluid during mission.	Fault isolation and repair or re- placement required prior to next flight	Reservoir fluid level measurement (piston position transducer)	
		Major fluid leakage (at rate suf- ficient to deplete reserve fluid and eventually starve pump inlet).	Impending loss of pressure to gimbal actuators, resulting in actuator slow response while ac- cumulator discharges and then in hardover actuators	Same as above	Lock actuators in null position when this failure mode is de- tected
		Turbine-driven pump failure to deliver flow	Rapid loss of pressure to gimbal actuators as accumulator dis- charges (2 to 12 seconds, depend- ing on actuator activity), result- ing in actuator slow response for brief period and then in hardover actuators	Supply pressure measurement	Operate motor-driven pump and lock actuators in null position when this failure mode is de- tected
		Motor-driven pump failure to de- liver flow	Inability to checkout or service gimbal actuator and power pack Loss of backup to turbine driven pump for actuator null lock opera- tion	Supply pressure measurement.	
		Loss of accumulator gas charge	Neglible effect if turbine-driven pump is ok. However, if this con- dition exists, a sudden failure of the turbine-driven pump to deliver flow is likely to disable capabil- ity to lock actuators in null position (because of too rapid loss of pressure to actuators be- fore motor-driven pump can come up to speed).	•	Possibly operate motor-driven pump whenever turbine-driven pump is operating (set pressure compen- sator on motor-driven pump to lower pressure so that it normally operates at no load)
		Excessive particulate contamina- tion in hydraulic fluid (due to pump wear, erosion of fluid pas- sages, etc)	Clogging of filters at actustor inlets, reducing filter effective- ness and allowing contamination to reach actuator servovalves May result in servovalve failure to function	Periodic sampling of hydraulic fluid for analysis (ground mainte- nance operation)	Flush and refill component with clean fluid when indicated by re- sults of fluid sample analysis Replace actuator filters whenever extrome fluid contamination has occurred
Gimbal Actuator	Position the rocket engine for TVC	Minor internal leakage (servovalve able to deliver flow at load re- quired to hold actuator at com- manded position).	Slow response of gimbal actuator	Actuator position measurement com- mand	
					B-179

SYSTEM 10&40 SUBSYSTEM 11&4.1

			The second secon		
PART NAHE	FUNCTION	FAILURE HECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR Detection Method	OTHER RECOMMENDATION
Gimbal Actuator (continued)		Major internal leakage (in excess of servovalve ability to deliver flow at pressure required to hold actuator at commanded position)	Actuator goes toward hardover position. Detection of error causes actuator to return to null and lock (as if both primary and secondary servovalves had failed as below)	Actuator position measurement compared to command.	
		Primary servovalve fails to re- spond to electrical input signal	No response of actuator to com- mand. Detection by external sys- tem, which compares the input sig- nal to the actuator output posi- tion, results in disabling of the primary servovalve and enabling of the secondary servovalve The actuator will then function nor- mally	Same as above	
		Secondary servovalva fails to re- spond to electrical input signal (after disabling of primary servo- valve).	No response of actuator to com- mand Detection (as for primary servovalve foilure) disables the secondary servovalve, arms the null lock, and allows the center- ing valve to drive the actuator to null position	Same as above	
		Actuator does not lock in null when required by other failure modes being detected or engine shutdown (Failure of solenoid valve, centering valve, selector valve, null lock, or feedback mechanism)	Actuator goes hardover and remains there	Actuator null position switch,	
		Null lock inadvertently arms (solenoid valve or disarm piston seal fails)	Actuator locks in null position	Actuator position measurement com- pared to command.	
		Feedback mechanism backlash (due to wear or partial failure).	Excessive null shift, loss of position accuracy, and possible unstable actuator position (oscil- lation)	Same as above	
		Feedback machanism failure	Unmodulated actuator position (full extend or full retract posi- tions only)	Same as above	Arm actuator null lock to lock in position if actuator passes through null.
		Extremely high fluid temperature due to excessive internal leakage from crifice wear	E>cessive null shift	Same as above	
		Dynamic load dampor failure (sticking piston, clogged orifice, or broken spring)	Unstable actuator position (oscil- lation)	Actuator position measurement analyzed for oscillation	Lock actuator in null position when this condition is detected

SYSTEM 1.0 & 4.0 SUBSYSTEM 1.1 & 4.1 ASSEMBLY. 1.1.5 & 4.1.5 COMPONENT: 1.1.5.4 & 4.1.5.4 SHEET <u>2</u> of <u>2</u>

· · · · · · · · · · · · · · · · · · ·			· · · ·		
PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Power Modules for Valves, Ignition, Solenoid Locks, Motor Drives	Provide outputs to on-off, modu- lating valves, gimbal actuator servos, igniters, extendible	Driver fails to deliver power on command	Loss of redundancy	Current sensors in driver circuits	
MOLOT DIIVES	nozzle drivers and locking mechanisms, glubal actuator null locks.				
Power Modules for Instrumenta-	Provide regulated power as	Failure to regulate	LOBB OF redundancy	Primary/secondary comparison	
tion	required for transducers	Loss of power	Loss of redundancy	Primary/secondary comparison	
"BITE" Modules	Perform tests on processor, power modules.	Logic failure, loss of check capability	Loss of redundancy	Failure mode gives "switch" signal to CCU, or CPU to switch bite	······································
Channel Control Unit	Select functional modules based on bite signals for operable flow path This unit is fail neutral - a failure in the GCU results in continuation of the last structure An additional failure in the controller re- sults in a safe engine shut- down via the shutdown module	Failure of select switches, logic, ,	Loss of select cspability	None - faile neutral Shut- down module still available	
Emergency Shutdown Module	Shuts down engine on fixed se- quence, selected in event of failure of the shutdown capa- bility associated with other , two channels.	Failure of logic switch	Loss of third level redundant shutdown capability	None	
					B-181

ASSEMBLY 1 1.5 & 4 1.5

PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATIONS
DC Amplifier Analog Multiplexer	Amplify low level signals from transducers, to a level suitable	Amplifier zero drift	Loss of redundant data channel.	Computation comparison	
	for multiplexing, multiplex 16	Noisy channel.			
	channels into one output.	Loss of signal.			
		Clamped full scale signal.			· · · · · · · ·
		Gain change		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		Constant output from one channel (MUX switch fails to reopen)	Loss of 16 channel redundancy	Computation comparison.	· · · · · · · · · · · · · · · · · · ·
Node Analog Switches	Provide selection of any of the 16 channel amplif/MUX modules	Loss of signal	Loss of all redundancy in one input subsystem (analog inputs).	Computation comparison.	
,	into one of two or both analog- to-digital converters	Constant output - from one module (MUX switch fails to rcopen).	input subsystem (analog inputsy.		
Analog-to-Digital Converter.	Convert high level analog signals from node switches to binary digits.	Ref. supply drift.	Same as above.	Computation comparison. BITE	
		"Hanging" digits or dropping digits.			
		Ref. resistor open, with digitizing error			
Digital Processor/Memory	Perform calculations, tests, sequencing, self checks.	Failura in core, logic failure, clock failure, power supply failure.	Loss of one complete channel.	Computation comparison.	
Counter Input Module	Convert periodic input signals (rpm flow) to binary digits.	Improper counting, logic failure.	Same as above	Computation comparison.	
Digital Interface	Provide logic interface between vehicle data/command bus and controller.	Logic element failure.	Same as above.	Diagnostic routine from vehicle comp/interface.	
1		1	1		

4

SYSTEM 10&40 SUBSYSTEM 11&41

ASSEMBLY I 1.5 & 4.1.5 COMPONENT Ignition Control Harness SHEET <u>1</u> of <u>1</u>

PART NAME	FUNCTION	FAILURE NECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Cable, from Controller to Exciter	Conduct 28 vdc on command from	Open circuit at connectors	Loss of continuity	Igniter current	
(Two Exciters, Two Cables) Fuel Preburner, Oxid Preburner, Main Combustion Chamber	controller power bus to spark ex- citer unit	Short circuit to ground in cable or connector	Loss of power transmission to exciter	Igniter current (breaker should blow, showing loss of current)	
		Open circuit in cable	Loss of continuity	Igniter current	
		High resistance connection	High resistance to current flow	Ignicer current	
Cables from Controller to Individual Valves, Including Con- nectors	Conduct de or ac from controller power bus to valves.	All modes result in loss or ex- treme degradation of conduction	The valves will fail to open, or will fail to prescribed condition, as specified The individual valve failure modes and effects include this mode	N/A ,	
	-				
					Ģ
					B-183

.

		FMEA ON CRITICAL COMPONENTS		SYSTEM 4.0 SUBSYSTEM 4.1	ASSEMBLY 4 1 8 SECOMPONENT 4.1.8.3 SHEET 1 of 1
PART NAME	FUNCTION	FAILURE Mechanish	FAILURE EFFECT ON Component	RECONNENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Motor Drive Unit for Extending Retracting Nozzle	Provides power to drive the extension assembly. (Redundant motor mechanisms).	Open circuit Short circuit	Failure to extend or retract, stopping at intermediate position	Nozzle position Notor current	
	(Accundant motor mechanisms). Operates from system electrical power.	Shorted turns	Slow operating, with potential for incomplete extension prior to separation/ignition	Nozzle position Motor current	-
		Gear breakaga, bearing galling, jamming (or circuit mech. slip- page).	Slow operation, failure to extend/retract, stopping at intermediate position	Same as above	
Cable Drive	Transmit output force of motor drive unit to nozzle (redundant cable drives).	Breakage	Failure to extend/retract, stopping at intermediate posi- tion	Same as above	
Lock Drive Mechanism	Provide driving force for nozzle locking/scaling at extended position. (Redundant motor mechanisms.) Oporates from system electrical power	Open circuit. Short circuit	Failure to lock, failure to un- lock, partial unlock/lock	Lock position Motor current	
		Shorted turns	Slow operation - ultimate motor burnout	Motor current	
		Gear broakage, gears wear, jamming	Failure to lock/unlock, partial unlocking/locking	Motor current Lock position	

.

SYSTEM 10&4.0 SUBSYSTEM 11&4.1 ASSEMBLY_ 1,1 5 & 4,1 5

PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Fuel Temperature, Fuel Preburner Inlet	Provide temperature data for mix- ture ratio control loop.	Shift of resistance vs temperature sensitivity	Change sensitivity	Compare redundant data	
Fuel Temp, Oxid Preburner Inlet		Open circuit	Loss of signal	Compare redundant data	
Oxid Temp, Oxidizer Flowmeter, Preburn		Low impedance short across signal leads	Change (reduction) of sensitivity	Compare redundant data	
Oxid Temp, Main Combustion Cham- ber Flowmeter					
Oxid Flow, Preburners	Provide oxid flow rate (volumetric) Data for mixture ratio control	Open circuit in pickoff coil	Loss of signal, one coil	Compare redundant data - (second coil)	
Oxid Flow, Main Combustion Chamber	1000.	Low impedance short circuit across signal leads	Reduced output voltage, one coil	Compare redundant data - (second coil) (effect may be a signal below system threshold).	
<u> </u>	-	Bearing wear or contamination	Erratic output, change in calibra- tion factor, loss of signal in both pickoff coils, due to rotor locking	Compare redundant data.	
Pressure, Main Combustion Chamber	control loops (Thrust and mix-	Open circuit in power or signal leads	Loss of signal	Shunt calibrate or compare redundant data	
Fuel Pressure, Fuel Preburner Inlet	ture ratio)	Low impedance short across power or signal leads	Reduction of sensitivity	Same as above	,
			Zero off-set	Same as above.	
Fuel Pressure, Oxid Preburner Inlet		Open circuit in shunt calibration leg(s)	Failure to provide step output on one or both steps	Same as above	
Oxid Fressure, Oxid Flowmeter Oxid Pressure, Main Combustion		Shift of shunt calibration re- sistance value	Nonlinear output of shunt calibra-	Same as above	
Chamber Flowmeter Pressure, Fuel Freburner, Combus-	-	Low impedance from shunt calibra- tion leg to any other	Zero off-set	Same as above	
tion Chamber		Lion leg to day bener	Nonlinear shunt calibration steps	Same as above	
Pressure, Oxid Freburner Combus- tion Chamber		Shift of shunt-to-force sensitiv- ity bonding slip or change in mechanical properties	Change of output sensitivity with pressure	Compare Redundant Data	
AP, Inlet to Chamber, Fuel Preburner		Open circuit in one leg	Zero off-set (large)	Shunt calibration or compare redundant data	
△P, Inlet to Chamber, Oxid Preburner		Open circuit in two legs	Zero off-set or loss of signal	Same as above	
Oxid pressure, 1st Stage Disch, HPOTPA]	Open circuit in three legs.	Loss of signal	Same as above	
Oxid Pressure, 2nd Stage Disch, HPOTPA					P

		FMEA ON CRI	TICAL COMPONENTS	SYSTEM 4.0 Subsystem 4.4	ASSEMBLY 4.4.2 Oxidizer Tank - COMPONENT 4 4.2 1 Vent Valve SHEET <u>1</u> of <u>1</u>
PART NAME	FUNCTION	FAILURE MECHANISH	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECONMENDATION
Primary Pilot Valve	Provides force to open main valve	1) Fails open 2) Fails closed,	No effect No effect	Valve position indicator Valve position indicator	Method should be devised to checkout pilot valve
Secondary Filot Valve	Backup to primary pilot velve	1) Fails open 2) Fails closed	Valve could not operate as a normally closed valve, Valve could not operate in the open mode	Valve position indicator Valve position indicator	Same as above
`					
		2			

•

SYSTEM 4 O SUBSYSTEM 4 4 ASSEMBLY 4.4.4

COMPONENT: 4.4.4.2 Fuel Isolation Valve SHEET 1 of 1

	· · · · · · · · · · · · · · · · · · ·				<u> </u>
PART NAME	FUNCTION	FAILURE IIECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR Detection Method	OTHER RECOMMENDATION
Relief Valve	Frevents the overpressurization of feed lines downstream of the shutoff valve in the event all valves are closed and lines are filled with fuel	Fails closed. Fails open	Feed lines downstream would burst External loakage	Valve position indicator Valve position indicator	Devise method for valve checkout.
Actuator	Provides actuation for valve.	Fails to operate	Valve fails open or closed	Valve position indicator.	
(¹			1		
			4	F	
					œ
					B-187
	<u> </u>			<u> </u>	

SYSTEH 4 0	ASSEMBLY	4 4 5
SUBSYSTEI 4 4	COMPONENT	4 4 5 2 Fuel Tank Vent Valve

SHEET 1 of 1

					SHEET <u>1</u> of <u>1</u>
PART NANE	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR Detection Method	OTHER RECOMMENDATION
Primary Pilot Valve	Provides force to open main valve	Fails open. Fails closed.	No effect - secondary pilot would operate valve No effect - secondary pilot would operate valve	Valve position indicating switch. Valve position indicating switch.	Method should be devised to c/o pilot valve
Secondary Filot Valve	Backup to primary pilot valve	Fails open. Fails closed	Valve could not operate as a normally closed valve Valve could not operate in the open mode	Valve position indicating switch. Valve position indicating switch.	Nethod should be devised to c/o pilot valve
			١	E Contraction of the second	

FHEA ON CRITICAL COMPONENTS

SYSTEM 4 0 SUBSYSTEM 4 5

ASSEMBLY 4 5 1 & 4.5 2 COMPONENT 4.5.1.3 & 4.5.1.7 Regulator

FHEA ON CRITICAL COMPONENTS

SHEET 1 of 1

PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR Detection Method	OTHER RECOLUTENDATION
Relief Valve	Prevents the over-pressurization of the downstream on-orbit tank- age	Fails closed. Fails open	Component would not operate as a relief valve Major leak path through regulator.	Tank pressure measurement. Tank pressure measurement	
					2 2
				ι	

SYSTEM 2 0

SUBSYSTEM 23,24,26

COMPONENT Turbine SHEET <u>1</u> of <u>1</u>

ASSEMBLY 2 3 1 1,2.4 1 1,2 6 1 2

PART NAME	FUNCTION	FAILURE , HECHANISH	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Turbine Case	Locate and support vanes and blade tip seals Support turbine ex- haust ducting	Cracking due to high loads and thermal stress	Possible loss of vane or seal support	Visual inspection, measure tur- bine speed	None
Rotor Shaft	Support turbine disks Transmit torque from disks to power train and provide spacing for rotor parts	 Shaft deplection due to high load or excessive tempera- tures Fatigue cracking due to vibra- tion Shaft separation (secondary failure) 	 Possible rubbing of turbine blades against case Reduced bearing life Reduced part life, possible shaft separation Complete loss of turbine 	 Measure turbine vibration, visual inspection Visual inspection Measure turbine rotor speed, visual inspection 	None
Turbine Disks	Support blade scals and spacers Provide avial spacing for rotor parts Transmit driving torque from blades to rotor	 Radial growth due to over- speed or overheating Galling or wear of blade at- tachment slots due to vibra- tion or gas load 	 Limited growth will result in blade tip or scal rubbing and snap growth, which could re- sult in rotor shaft unbalance Reduced part life 	 Measure turbine vibration, visual inspection Visual inspection 	None
Turbine Blades	Transmít energy from gas stream to disks	 Airfoil cracking due to vibration and centrifugal loads Blade tip rub due to material creep or extreme gas generator condition 	 Reduced part life Possible loss of blade resulting in rotor unbalance and possible damage to downstream parts Blade tip and case wear Possible vibration 	 Measure turbine vibration, visual inspection Visual inspection 	None , I
Seals	Form flow path at blade tips,	 Wear due to rubbing Distortion due to gas loads and thermal growth 	 Loss of efficiency due to leakage Increased seal clearance re- sulting in gas leakage and performance loss 	 1) Visual inspection 2) Visual inspection 	None
Vanos	Direct gas generator combustion products to turbine blades	 Bending of vanes due to gas loads or overtemperature Gracking due to blade wake- excited vibration Erosion due to hot gas impingement 	 Loss of efficiency due to flow distortion Reduced part life Possible total or partial vane loss resulting in downstream dam- age and/or loss of efficiency Reduced part life 	 Visual inspection, measure gas temporature Visual inspection Visual inspection 	None

SYSTEM 2 0 SUBSYSTEM 2 3 ASSEMBLY 2 3,1 3 COMPONENT Pump SHEET <u>1</u> of <u>1</u>

· · · · · · · · · · · · · · · · · · ·					,
PART NAME	FUNCTION	FAILURE NECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Main Housing	Contain LH2 propellant Locate and support bearings and seals Provide compartments for location and mounting of impeller and bear- ings Provide mounting pads for gearbox housing and structural mem- bers	 Cracking of housing at mount- ing pads due to high loads and stress concentrations Cracking of impeller support lugs due to high loads Loosening of studs or bolts due to thermal expansion or high loads 	 External leakage of LH₂ and possible bearing misalignment with reduced part life Reduced mount strength, possi- ble impeller misalignment with reduced part life External leakage of LH₂ and possible bearing misalignment with reduced part life 	 Visual inspection Visual inspection Visual inspection 	None
Seals	Prevent leakage between impeller shaft and housing	 Wear caused by time in opera- tion or impellor unbalance Distortion caused by excess pump pressure 	 External leakage of LH₂ with reduced part life External leakage of LH₂ with reduced part life 	 Visual inspection, measure pump discharge pressure Visual inspection, measure pump discharge pressure 	None
Impeller	Transmit LH ₂ propellant at a spec- ified inlet pressure to a higher pressure at the pump outlet	 Blade damage caused by pitting due to particle ingestion and/ or local cavitation Impeller misalignment due to bearing wear or improper as- sembly 	 Change in pump efficiency and increase in vibration Impeller rub against main hous- ing Reduced part life with loss in pump efficiency 	 Measure pump vibration, visual inspection Measure pump speed, visual in- spection 	Иоле
Bearings	Locate and support impeller within the main housing	Wear of bearings due to high loads or overheating	Reduced part life with possible bearing failure resulting in loss of impeller support Possible impeller rub against housing	Bearing temperature measurement, visual inspection	Νοπα
					B-191

ASSEMBLY 2 4 1 COMPONENT Compr

COMPONENT Compressor SHEET 1 of 1

· · · · · · · · · · · · · · · · · · ·					SHEET <u>1</u> of <u>1</u>
PART NAME	FUNCTION	FAILURE HECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Compressor Housing	Locate and support bearings and seals Provide compartment for location and mounting of shafts and bearings Contain high-pres- sure gaseous oxygen Provide mounting pads for gearbox housing and structural members	 Cracking of housing at mount- ing pads due to high leads and stress concentrations Cracking of shaft support lugs due to high loads Loosening of studs or bolts due to thermal expansion or high loads 	 External leskage of high- pressure gascous oxygen and possible bearing misalignment with reduced part life Reduced mount strength, pos- sible shaft misalignment with reduced part life External leskage of high- pressure gascous oxygen and possible bearing misalignment with reduced part life 	 Visual inspection Visual inspection Visual inspection 	None
Rotor Shaft	Support compressor disks. Trans- mit driving torque to disks and provide spacing for rotor parts	 Shaft deflection due to high load or avcessive temperatures. Fatigue cracking due to vibra- tion Shaft separation (secondary failure) 	 Possible rubbing of compressor blades against housing Re- duced bearing life Reduced part life, possible shaft separation Complete loss of compressor 	 Measure compressor vibration, visual inspection Visual inspection Measure compressor rotor speed, compressor outlet pressure, visual inspection 	None,
Compressor Blades	Increase pressure of gascous oxygen to 1500 psia for oxygen accumulator resupply		 Reduced part life Loss of blade resulting in rotor un- balance and possible damage to downstream parts Blade tip and housing wear Possible vibration 	 Measure compressor vibration, visual inspection Visual inspection 	None
Compressor Disks	Support blade seals and spacers Provide axial spacing for rotor parts Transmit driving torque to blades	 Radial growth due to overspeed or overheating Galling or wear of blade at- tachment slots due to vibra- tion or gas load 	 Limited growth will result in blade tip or seal rubbing and snap growth, which could re- sult in rotor shaft unbalance Reduced part life 	 Measure compressor vibration, visual inspection Visual inspection 	None
High-Pressure Compressor Seals	Limit interstage gas recirculation	Seal distortion due to gas loads and thermal growth	Increased scal clearance resulting in greater interstage gas leakage and performance loss.	Visual inspection	None
Compressor Vanes and Stators	Direct gas from one rotor stage to the next	 Bending of vanes due to gas loads or overtemperature Airfoil cracking due to blade wake-excited vibration. 	 Loss of efficiency due to flow distortion Reduced part life Possible total or partial vane loss ro- sulting in downstream damage and/or loss of efficiency 	 Visual inspection Measure stage gas temperature Visual inspection 	None ,
Rotor Shaft Bearings	Locate and support rotor shaft within the compressor housing	Wear of bearings due to high loads or overheating	Reduced part life with possible bearing failure resulting in loss of shaft support Possible blade tip rub against housing	Bearing temporature measurement, visual inspection	None

.

SYSTEM 20 SUBSYSTEM 23,24,2.6

ASSEMBLY: 2 3.1, 2.4.1, 2.6.1 , 2.6 COMPONENT Power Train

	· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR Detection method	OTHER RECOMMENDATION
Gearbox Housing	Locate and support bearings and seals Provide compartment for location and mounting of gears, shafts, bearings Provide mount- ing pads for turbine, pump, oil pumps, and structural members	 Cracking of housing at mount-, ing pads due to high loads and stress concentrations Cracking of gearbox support lugs due to high loads Loosening of studs or bolts due to thermal expansion or high loads 	 0il leakage and possible bear- ing misalignment with reduced part life Reduced mount strength, possi- ble driveshaft misalignment with reduced part life 0il leakage and possible gear misalignment, reduced part life 	 Visual inspection Visual inspection, oil pressure measurement Visual inspection 	None
Gear Shafts	Support and position gears within the gearbox Transmit torque from gear to gear	 Wear of splines due to part movement Shear of spline due to over- load 	 Reduced part life Loss of torque transmission and support to gears Possible loss of oil pump or power transmission capability 	 Visual inspection Visual inspection, oil pressure measurement 	None
Bearings	Locate and support gear shafts within the gearbox	Wear of bearings due to high loads or overheating	Reduced part life with possible bearing failure resulting in loss of shaft support and loss of force transmission to components	011 pressure measurement, 011 temperature measurement	None
Gears	Transfer torquo between shafts within genrbox	 Gear year due to high loading or oil contamination Web cracking due to vibratory loading. 	 Reduced part life Reduced part life with possi- ble shear failure resulting in loss of power transmission to components 	1) Visual inspection 2) Visual inspection	None
Seals	Contain oil and air pressure at component mounting pads	Wear or cracking due to misalign- nent or high load	Reduced part life, possible oil loakage	Measure oil level, visual inspec- tion	None
					B-193

SYSTEN 50 SUBSYSTEM 53 ASSEMBLY 5 3.2 CONPONENT Power Train SHEET 1 of 2

					SHEET <u>1</u> of <u>2</u>
PART NAME	FUNCTION	FAILURE Mechanism	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Gearbox Housing	Locate and support bearings and seals Provide compartment for location and mounting of gears, shafts, bearings. Provide mount- ing pads for clutch, pumps, oil pumps, heat exchangers and struc- tural members	 Cracking of housing at mount- ing pads due to high loads and stross concentrations Cracking of gearbox support lugs due to high loads Loosening of studs or bolts due to thermal expansion or high loads. 	 011 leakage and possible bear- ing misalignment with reduced part life 2) Reduced mount strength, pos- sible driveshaft misalignment with reduced part life 3) 011 leakage and possible gear misalignment, reduced part life 	 Visual inspection Visual inspection, oil pressure measurement Visual inspection 	None
Gear Shafts	Support and position gears within the gearbox Transmit torque from gear to gear	 Wear of splines due to part movement Shear of spline due to over- load 	 Reduced part life Loss of torque transmission and support to gears Possi- ble loss of oil pump or power transmission capability 	 Visual inspection Visual inspection, oil pressure measurement. 	None
Geor Shaft Bearings	Locate and support gear shefts within the gearbox	Wear of bearings due to high loads or overheating	Reduced part life with possible bearing failure resulting in loss of shaft support and loss of force transmission to components	011 pressure measurement, oil temperature measurement	None
Gears	Transfer torque between shafts within gearbox	 Cear wear due to high loading or oil contamination Web cracking due to vibratory loading 	 Reduced part life Reduced part life with possible shear failure resulting in loss of power transmission to components 	 Visual inspection Visual inspection 	None
Seals	Contain oil and air pressure at component mounting pads	Wear or cracking due to misalign- ment or high load	Reduced part life, possible oil leakage	Measure oil level, visual inspec- tion	None
Clutch Housing	Locate and support bearings and seals Provide compartment for location and mounting of clutch, power shaft, bearings Provide mounting pads for turbine, gearbox, and structural members	 Cracking of housing at mount- ing pads due to high loads and stress concentrations Cracking of clutch support lugs due to high loads Loosening of studs or bolts due to thermal expansion or high loads 	 Possible bearing misalignment with reduced part life Reduced mount strength, pos- sible power shaft misalign- ment with reduced part life Possible bearing misalignment, reduced part life 	 Visual inspection Visual inspection Visual inspection 	None
Power Shaft	Transmit power from turbine to goarbox through clutch plates Support clutch plates	 Shaft deflection due to high load or excessive températures Fatigue eracking due to vibra- tion. Shaft separation (secondary failure). 	 Clutch misalignment resulting in possible seal or clutch plate rubbing, reduced bearing life Reduced part life, possible shaft separation Axial shift of power shaft resulting in clutch plate rubbing, loss of power trans- mission capability 	 Measure clutch vibration, visual inspection Visual inspection Measure turbine speed, gear- box output, visual inspection 	None

		FMEA ON CRIT:	ICAL COMPONENTS	SYSTEM 50 SUBSYSTEM ⁴ 53	ASSEMBLY 5 3.2 COMPONENT: Fower Train SHEET 2 of 2
PART NAME	FUNCTION	FAILURE HECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Power Shaft Bearings	Locate and support the power shaft within the clutch housing	Wear of bearings due to high loads or overheating	Reduced part life with possible bearing failure resulting in loss of shaft support and loss of force transmission to components	Bearing temperature measurement, visual inspection	Νοπα
Seals	Preclude contamination of clutch housing by external contaminants	Wear or cracking due to misalign- ment or high load	Reduced part life, possible clutch housing contamination	Visual inspection.	None
Clutch Plates	Control power transmission from turbine to gearbox	 Cracking of plates due to high loads and stress concentra- tions Separation of clutch plate (secondary failure). 	 Reduced part life, possible plate separation Loss of power transmission control to gearbox, possible loss of clutch housing 	 Visual inspection Measure clutch vibration, visual inspection. 	Νοπα
Clutch Flate Control Solemoid	Control engagement of clutch plates	 Feilure to engage plates Failure to disengage plates 	 Loss of power transmission capability to gearbox, Possible overload of turbine 	 Measure turbine and gearbox outputs (speed) Measure turbine speed 	None ,
					9 5 5 5 5 5

SYSTEM 30&60

SUBSYSTEM 3.1 & 6 1

PART NAME	FUNCTION	FAILURE HECHANISH	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR Detection Method	OTHER RECOMIENDATION
Blades	Increase pressure of engine air to low-pressure compressor	 Foreign object damage Blade tip rub due to material creep or extreme engine conditions Cracking of airfoil or dovetail due to blade flutter 	 Decrease in performance proportional to the extent of damage Blade and seal damage Possible loss of part of blade with downstream damage and high vibration 	 Ground inspection, increased vibration Ground inspection Inspection at overhaul, increased vibration 	None
Fan Disks/Hubs	Support blades, blade locks, scals, and rim spaces Transmit driving torque to blades Provide axial spacing for rotor parts	 Radial growth due to overspeed or overheating Cracks in rim lugs or web due to cycle loading. Galling or wear of blade attachment slots due to gas loads and vibration 	 Blade tip or scal rubbing resulting in rotor shift and unbalance. Tensile yield or burst which results in severe engine damage Reduced part life 	 Overhaul inspection and engine vibration Overhaul inspection, engine vibration, loud noise Overhaul inspection 	None
Stator Vanes	Direct air from one rotor stage to the next.	 Foreign object damage Surface damage due to blade contact Cracking due to vibration Wear of surface due to damage Loose fasteners 	 Decrease in performance Decrease in performance Possible part failure with downstream damage Reduced part life Downstream blade and vane damage 	 Overhaul inspection, increased Total Specific Fuel Consumption (TSFC) Overhaul inspection, increased TSFC Overhaul inspection, reduced engine pressure ratio Overhaul inspection Overhaul inspection 	None
Bearings	Provide radial support to front fan rotor	 Skid or wear due to low load Wear or seizure due to overheating 	 Reduced part life possible premature failure Same as above, 	 Overhaul inspection or engine vibration Same as above 	None

유 ASSEMBLY 311&611

COMPONENT 3 1.1 1 & 6.1.1 1 SHEET 1 of 1

\$

SYSTEM 3.0 & 6 0 SUBSYSTEM 3 1 & 6 1

ASSEMBLY 3 1.1 & 6.1.1 COMPONENT 3.1.1 2 & 6.1.1.2 SHEET <u>1</u> of <u>1</u>

FAILURE FAILURE EFFECT ON RECOMMENDATIONS FOR OTHER FUNCTION MECHANISM DETECTION METHOD COMPONENT RECOMMENDATION PART NAME **Blades** Increase pressure of engine air D Wear of shroud contact faces 1) Loose blades reduced 1) Inspection at overhaul, None to high-pressure compressor due to vibration vibration damping noisy rundown, increased 2) Foreign object damage 2) Decrease in performance vibration 33 Blade tip rub due to material proportional to extent of Ground inspection, increased 2٢ creep or extreme engine damage vibration condition 3) Blade and seal damage 3) Ground inspection Cracking of airfoil or dovetail 4) 4) Possible loss of part of 4) Inspection at overhaul, due to blade flutter blade with downstream damage increased vibration and high vibration Disks/Hubs Support blades, blade locks, 1) Radial growth due to overspeed 1) Blade tip or seal rubbing 1) Overhaul inspection and None or overheating seals and rim spacers resulting in rotor shift and engine vibration Transmit driving torque to 2) Cracks in rim lugs or web due unbalance 2) Overhaul inspection, engine blades to cyclic loading 2) Tensile yield or burst which vibration, loud noise. Provide axial spacing for rotor 3) Galling or wear of blade results in severe engine 3) Overhaul inspection. attachment slots due to gas parts damage. loads and vibration 3) Reduced part life Air Seals Limit interstage air Wear or cracking due to rubbing Increased seal clearance resulting Overhaul inspection and increase None in higher interstage air leakage recirculation in TSFC and performance loss Stator Vanes Direct air from one rotor stage 1) Foreign object damage Decrease in performance 1) Overhaul inspection, 1) None to the next 2) Surface damage due to blade 2) Decrease in performance increased TSFC. contact. 3) Possible part failure with 2) Same as above Cracking due to vibration. 3) 3) downstream damage. Overhaul inspection, reduced 4) Wear of surfaces due to 4) Reduced part life engine pressure ratio damage 5) Downstream blade and vane 4) Overhaul inspection 5) Loose fasteners damage 5) Overhaul inspection Bearings Provide radial support to front 1) Reduced part life, possible 1) Skid or wear due to low load 1) Overhaul inspection or None fan rotor 2) Wear or seizure due to premature failure engine vibration 2) overheating Same as above 2) Same as above 8-197

•

٤

SYSTEM 30&6.0 SUBSYSTEM 3.1&6.1 ASSEMBLY 311661.1 COMPONENT 3.1.1366113 SHEEI <u>1</u> of <u>3</u>

	Y	1 ·····			JULE 1 01 3
PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON Component	RECONNENDATIONS FOR DETECTION HETHOD	OTHER RECOMMENDATION
Blados	Increase pressure of engine air	 Airfoil cracking due to vibrating and centrifugal loads Wear of attachment lugs Blade tip rub due to material creep or extreme engine condition 	 Reduce part life because of possible loss of blade airfoil resulting in rotor unbalance and damage to downstream parts Reduce part life replacement at overhaul Blade tip and seal wear, possible vibration reduced surge margin Possible IFS and PER for parts replacement 	 Engine vibration, increased TSFC overhaul inspection Overhaul inspection Overhaul inspection, increased TSFC 	None
High-Compressor Disks/Hubs	Support blade seals and rim seals Provide spacing for rotor parts (integral spacers) Transmit driving torques to blades	 Radial growth (yield or creep) due to overspeed or over- heating. Fatigue cracks in rim, lugs, bolt holes, or web due to cyclic loading Galling or wear of blade attachment slots due to vibration and gas load 	 Limited growth will result in blade tip or seal rubbing and snap growth which could result in rotor shift and unbalanced engine shutdown & FER. Cracks weaken disks and lead to tensile yield or burst which results in severe engine damage and engine shutdown Reduced part life Removal at overhaul. 	vibration and loud noise 3) Overhaul inspection	None
Seals	Limit interstage air recirculation.	Knife edge wear or cracking due to rubbing, seal land distortion due to gas loads and thermal growth and surface wear due to blade rub	Increased seal clearance resulting in greater interstage dir leakage and performance loss Alteration of internal thrust balance could cause reduced life of thrust bearing	Overhaul inspection and increased TSFC	None

	_	FMEA ON CRIT	ICAL COMPONENTS	SYSTEM 30&60 SUBSYSTEM 31&61	ASSEMBLY 3.1.1 & 6.1.1 COMPONENT: 3.1.1 3 & 6.1.1.3 SHEET <u>2</u> of <u>3</u>
PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
High-Fressure Compressor Variable Vanes	Direct engine air from one rotor stage to the next	 Cracking of vane due to combined bending and vibrating leads. Bending of blades due to gas leads or over-temperature Wear of vane pivot due to vane movement. Cracking of carbon support bearings due to shock leadings Linkage disconnect or fracture due to vibration or high lead 	downstream parts and probable engine shutdown 2) Loss of efficiency and possible restriction of vane movement 3) Redúced part life Loosened fit of pivots with possible	 Increased Total Specific Fuel Consumption (TSFC), engine vibration, overhaul inspection Increased TSFC, overhaul inspection Overhaul inspection Overhaul inspection Overhaul inspection 	None
Bearings	Provide radial support to rear of high pressure rotor,	 Skidding of rollers due to low radial load. Fretting or spinning of inner race on hub due to loss of restraint Bearing wear or seizure due to overheating Roller or race wear due to high load or rotor vibration 	 Reduced part life resulting in replacement at overhaul Possible premature failure resulting in engine shutdown Same as above Same as above. Same as above. 	 Overhaul inspection, vibration Same as above Same as above Same as above 	None ,
		-			8-199

		FMEA ON CRITICAL COMPONENTS			COMPONENT 3 1 1.3 & 6 1 1.3 SHEET <u>3</u> of <u>3</u>
PART NAME	FUNCTION	FAILURE MECHANISK	FAILURE EFFECT ON COMPONENT	RECONMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Bearings (cont)	Same as above,	5) Cage wear or separation.	 a) Contamination of oil resulting from wear b) Bearing failure results from separation leading to radial shift of rotor with probable blade and vane contact and engine shut- down 	5) a) Overhaul inspection b) Engine vibration, RFM decrease	
				•	
				_	

SYSTEN: 30&6.0

ASSEMBLY 311&611

FMEA ON CRITICAL COMPONENTS HIGH PRESSURE TURBINE

~

SYSTEM 3 0 & 6 0 SUBSYSTEM 3,1 & 6,1

r

ASSEMBLY 3 I 1 & 6 I 1 COMPONENT 3 I.1 5 & 6 I 1.5 SHEET <u>1</u> of <u>3</u>

PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Turbine Blades	Transfer energy from gas stream to high-pressure disks,	 Cracking of airfoil or attachment due to cyclic loading and vibration Corrosion or erosion of blades 	Possible blade loss resulting in reduced efficiency, high rotor unbalance, and impact damage to adjacent and downstream parts Reduced efficiency of turbine Blade pitting could lead to cracking	Inspect at overhaul Measure vibration Inspect at overhaul	Part replacement at overhaul. None
Turbine Disks	Supports blades, seals and spacers. Transmits torque to shaft	 Disk burst due to overspeed Radial growth due to overspeed Grack in rim, bolt holes, or web due to cyclic loading 	Severe engine damage. Probable case penetration with possible stage damage Limited growth will result in blade tip or seal rubbing Cracks weaken disk and lead to tonsile yield and burst	Severe vibration, loud noise. Overhaul inspection, engine vibration Overhaul inspection	None
			,		
				• •	
					8-201

.

•

SYSTEM 30&60 SUBSYSTEM 31&61 ASSEMBLY 311&611 COMPONENT 3115&6115 SHEET <u>2</u> of <u>3</u>

				·	
PART NAME	FUNCTION	FAILURE HECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECONSIGNDATION
Turbine Rim Spacer	Supports labyrinth seals Limits disk run axial deflections. Dampen disk rim vibration	 Radial growth due to over- speed or overtemp Gracking due to cyclic loading 	Seal rub and wear, loss of efficiency due to interstage air recirculation Part replacement at overhaul.	Increased Total Specific Fuel Consumption (ISFC) Overhaul inspection Overhaul inspection	None
Turbino Blade Tip Scals	Forms flow path at blade tips	 Wear due to blade rubbing Distortion due to overheating 	Air leakage past blade tips resulting in reduced turbine efficiency Scal damage and blade damage resulting in loss of turbine efficiency.	Increased TSFC Overhaul inspection Same as above Same as abovo	None
Turbine Case	Supports vanes and blade tip seals	Gracking due to high load and temperature	Possible loss of vane or seal support with vane deflection and possible rotor rub,	Overhaul inspection	Part removal at overhaul

	······································	FMEA ON CRIT	ICAL COMPONENTS	SUBSYSTEM 3.1 & 6 1	COMPONENT 3 1 1 5 6 6 1.1.5 SHEET _3_ of _3_
PART NAME	FUNCTION	FAILURE NECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Turbine Vanes	Directs the combustion gases to turbine blades	 Bowing of vanes due to high temperature Cracking of airfoils due to severe thermal gradients Cracking of vane feet due to cyclic loading 	Turbine gas flow distortion resulting in reduced efficiency Reduced part life Possible blade-vame rubbing	Increased Total Specific Fuel Consumption (TSFC) Overhaul inspection Overhaul inspection Increased TSFC Overhaul inspection	None Replace at overhaul None
Turbine Interstage Labyrinth Seals		Knife edge wear or cracking due to rubbing	Increased seal clearance resulting in greater interstage air leakage and performance loss.	Increased TSFC Overhaul inspection	None
					B-203
~		<u> </u>	<u> </u>		<u>تن</u>

.

ASSEMBLY 311&61.1

SYSTEM 30&60

F		FMEA ON CRIT Low Pressur	ICAL COMPONENTS E TURBINE	SYSTEN 30&60 SUBSYSTEM 31&61	ASSEMBLY 3.11 & 6.1.1 COMPONENT 3 11 6 and 6 1 1 6 SHEET <u>1</u> of <u>3</u>
PART NAME	FUNCTION	FAILURE MECHANI SM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMIENDATION
Turbine Blades	Transfer energy from gas stream to low pressure turbine disks	 Cracking of airfoil or attachment due to cyclic loading and vibration Corrosion or erosion of blades 	Possible blade loss resulting in reduced efficiency, low rotor unbalance and impact damage to adjacent and downstream parts Reduced efficiency of turbine Blade pitting could lead to cracking	Inspect at overhaul Inspect at overhaul.	Part replacement at overhoul None
Turbine Disks	Supports blades, seals, and spacers Transmits torque to shaft	 Disk burst due to overspeed Radial growth due to overspeed Crack in rim, bolt holes, or web due to cyclic loading 	Severe engine damage Probable case penetration with possible stage damage. Limited growth will result in blade tip or seal rubbing Cracks weaken disk and lead to tensile yield and burst	Severe vibration Loud noise Overhaul inspection Engine vibration. Overhaul inspection	None None None
	, "				

SYSTEM 3.0 & 6.0 SUBSYSTEM 3.1 & 6.1

ASŞEMBLY 1 Componen

ASSEMBLY 3.1.1 & 6.1.1 COMPONENT 3.1.1.6 & 6.1.1.6 SHEET _2_ of _3___

Frank and a second					
PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMIENDATION
Turbine Rim Spacer	Supports labyrinth seals Limits disk run axial deflections Dampen disk rim vibrations,	 Radial growth due to overspeed or overtemperature Cracking due to cyclic loading 	Same as HPT Same as HPT.	Increased Total Specific Fuel Consumption (TSPC) Overhaul inspection Overhaul inspection.	Nonc Nonc
Turbine Blade Tip Seals	Forms flow path at blade tips	 Wear due to blade rubbing. Distortion due to overheating 	Air leakage past blade tip re- sulting in reduced turbine efficiency Seal and blade damage resulting in air leakage past blades and cooling air leakage.	Increased TSFC Overhaul inspection Increased TSFC. Overhaul inspection.	None None
Turbine Vanes		 Centering pin wear due to thermal growth and vibration Deflection of vane platforms due to thermal gradients Deflection of airfoil due to high temperature Airfoil cracking at leading or trailing edge 	Fart replacement at overhaul Air leakage between platforms with reduced cooling and possible blade bowing Loss of efficiency Possible airfoil deflection		None
					φ
				```	B-205

-

SYSTEM 3.0 & 6.0

SUBSYSTEM 3.1 & 6.1

ASSEMBLY 3.1.1 & 6.1.1 COMPONENT 3.1.1.6 & 6.1.1.6 SHEET 3_0f 3_

FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	OTHER Recommendation
	Knife edge wear or cracking due to rubbing	Increased seal clearance resulting in greater interstage air leakage and performance loss	Increased Total Specific Fuel Consumption (TSFC) Overhaul inspection	None
of low-pressure turbine rotor.	low load 2) Roller or race wear due to blob load	Possible premature failure result- ing in engine shutdown, Same as above Same as above Contamination of oil results in bearing failure and engine shutdown Same as above	Engine vibration Engine vibration, Engine vibration RPM increase Engine vibration	
	Provide radial support to rear end of low-pressure turbine rotor,	Provide radial support to rear end of low-pressure turbine rotor.       1) Roller skid or wear due to low load         2) Roller or race wear due to high load       3) Bearing wear or seizure due to worknesting         4) Cage wear or separation       5) Fratting or spinning of outer race on hub due to loss of	Provide radial support to rear end of low-pressure turbine rotor.       1) Roller skid or wear due to low load       Increased seal clearance resulting in greater interstage dir leakage and performance loss         Provide radial support to rear end of low-pressure turbine rotor.       1) Roller or race wear due to low load       Possible premature failure result-ing in engine shutdown, Same as above Same as above         3) Bearing wear or seizure due to or overheating       4) Cage wear or separation S) Fretting or spinning of outer race on hub due to loss of       Same as above	FUNCTION     MECHANISM     COMPONENT     DETECTION METHOD       Reference     Knife edge wear or cracking due to rubbing     Increased seal clearance resulting in greater interstage eir leekage and performance loss     Increased Total Specific Fuel Consumption (TSFC) Overhaul inspection       Provide radial support to rear end of low-pressure turbine rotor.     1) Roller skid or wear due to low load     Possible premature failure result- ing in engine shutdown, Same as above     Engine vibration Engine vibration RPM increase       3) Bearing wear or sejaure due to overheating     6) Cage wear or separation Sime as above     Same as above Same as above     Engine vibration Engine vibration Same as above       4) Cage wear or separation S) Fracting or spinning of outer race on hub due to loss of     Same as above shutdown     Same as above shutdown

.

. SYSTEM 3 0, 6 0 ASSEMBLY 3 1.3, 6 1 3

COMPONENT 3131 Scavenge 6131 Pump

SUBSYSTEM 3 1, 6.1 SHEET 1 of 1 FAILURE MECHANISM FAILURE EFFECT ON COMPONENT RECOMMENDATIONS FOR OTHER RECOMMENDATION FUNCTION DETECTION METHOD PART NAME High oil temperature, low oil pressure and level, engine smoking, ground inspection.
 Low oil level, engine smoking, overhaul inspection. Scavenge Pump Remove oil from gearbox compart-1) Compartment flooding due to 1) Increased oil temperature. Possible oil leakage reduced None engine attitude, or pump ments for return to oil tank. part life Possible engine cavitation. shutdown. 2) Gear wear due to high loading or misalignment 2) Reduced part life Possible gear failure with pump failure and compartment flooding (see 3) Pump jamming due to contami-3) See 2) above 4) Overhaul inspection nents. Gear journal wear due to high loading. 4) above). Compartment flooding (see 3) above). Reduced pump life and effi-ciency replacement at overhaul. 4) 5 1 B-207 4

# 8-208

ASSEMBLY 313,613

SYSTEM 3 0, 6 0

SUBSYSTEN 3.1, 6.1

COMPONENT 3.1 3 2 Oil Pressure 6.1 3 2 Pump

· · · ·	<b></b>	· · · · · · · · · · · · · · · · · · ·			SHEET <u>1</u> of <u>1</u>
PART NAME	FUNCTION	FAILURE Hechanism	FAILURE EFFECT ON COMPONENT	RECONMENDATIONS FOR Detection Method	OTHER RECOMMENDATION
Main Oil Pressure Pump	Supply pressurized oil to engine for lubrication and cooling.	<ol> <li>Input shaft or pump housing damage due to high backpres- sure.</li> <li>Pump jamming due to contami- nents.</li> <li>Gear journal wear due to high loading.</li> <li>Gear Wear due to high loading or misalignment.</li> </ol>	<ol> <li>Reduced lubricant flow or pos- sible loss of flow resulting in reduced bearing and seal</li> </ol>	<ol> <li>Low oil pressure.</li> <li>Low oil pressure.</li> <li>Loss of oil pressure.</li> </ol>	None

FMEA ON CRITICAL COMPONENTS

FMEA ON CRITICAL COMPONENTS

SYSTEM 6.0 SUBSYSTEM 6.2 ASSEMBLY 6 2 2

COMPONENT 6.2 2 1 Pump SHEET <u>1</u> of <u>1</u>

-

PART NAME	FUNCTION	FAILURE MECHANISM	FAILURE EFFECT ON COMPONENT	RECOMMENDATIONS FOR DETECTION METHOD	OTHER RECOMMENDATION
Main Housing	Contains LH2 propellant and, through proper sizing, controls suction and discharge propellant velocity.	<ol> <li>1) Inlet pitting caused by cavitation and/or particle injection</li> <li>2) Outlet pitting caused by cavitation and/or particle injection</li> <li>3) Overpressure caused by excess suction pressure</li> </ol>	<ol> <li>Change in pump efficiency</li> <li>Change in pump efficiency.</li> <li>Change in impeller tip clearance and loss of pump efficiency</li> </ol>	<ol> <li>Evaluation of head rise across pump</li> <li>Evaluation of head rise across pump</li> <li>Evaluation of head rise across pump</li> </ol>	Evaluation can be accomplished with computation of head rise and suction specific speed based on the following measurements: a) Pump speed, b) Suction pressure, c) Discharge pressure
Seals	Frevent leakage between impeller shaft and housing	<ol> <li>Wear caused by time in operation</li> <li>Overpressure caused by excess suction pressure</li> <li>Fatigue caused by impeller unbalance.</li> </ol>	<ol> <li>External leakage causing change in loss of discharge pressure</li> <li>External leakage causing loss in discharge pressure.</li> <li>External leakage causing loss in discharge pressure</li> </ol>	<ol> <li>Limit usage based on time sensitivity</li> <li>Measure discharge pressure</li> <li>Measure discharge pressure and vibration level</li> </ol>	None
Impeller	Transmits LH ₂ propellant at a specified inlet pressure to a higher pressure at the pump outlet.	Blade damage caused by pitting from particle ingestion and/or local cavitation.	Change in pump efficiency and in- crease in vibration level.	Evaluation of head rise across the pump, and measure vibration level	None
		1			
					B-209

FMEA ON CRITICAL COMPONENTS

•

SYSTEM 6.0

SUBSYSTEM 6 2

ASSEMBLY 622

	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·		
PART NAME	FUNCTION	FAILURE HECHANISM	FAILURE EFFECT ON Component	RECOMMENDATIONS FOR Detection Method	OTHER RECOMMENDATION
Rotor Blades	Transmits energy from gas stream to disks	<ol> <li>Cracking due to cyclic load- ing and vibration.</li> <li>Corrosion or erosion of blades.</li> </ol>	<ol> <li>Blade Loss resulting in re- duced efficiency.</li> <li>Pitting which could lead to cracking.</li> </ol>	Periodic visual inspection and vibration monitoring.	None
Disks	Support blades seals and spacers and transmits torque to shafts	<ol> <li>Disk burst due to overspeed</li> <li>Creep due to overspeed.</li> <li>Cracks due to cyclic load- ing</li> </ol>	<ol> <li>Probable case penetration.</li> <li>Seal rubbing and shaft un- balance.</li> <li>Tensile yield and disk rup- ture</li> </ol>	<ol> <li>Measure turbine speed</li> <li>Measure vibration level</li> <li>Measure turbine speed.</li> </ol>	None
Shaft	Transmits torque pump impeller rotation.	<ol> <li>Deflection due to load</li> <li>Cracking due to vibration.</li> </ol>	<ol> <li>Seal rubbing and rotor un- balance</li> <li>Reduced life</li> </ol>	<ol> <li>Measure vibration.</li> <li>Measure turbine speed</li> </ol>	None
Seals	Form flow path at blade tips	<ol> <li>Wear due to rubbing</li> <li>Distortion due to thermal gradients</li> </ol>	<ol> <li>Loss of efficiency due to leakage.</li> <li>Reduced efficiency.</li> </ol>	<ol> <li>Heasure turbine speed</li> <li>Measure turbine speed</li> </ol>	None
Turbine Case	Support vanes and blade tip scals. Support turbine exhaust case	Cracking due to load and tempera- ture.	Possible loss of vane or seal support.	Measure turbine speed	None
Vanes	Direct Combustion products to rotor blades.	<ol> <li>Bowing due to temperature</li> <li>Cracking due to thermal gradients</li> <li>Broosion due to hot gas im- pingement</li> <li>Cracking due to cyclic loading</li> </ol>	<ol> <li>Flow distortion and reduced efficiency.</li> <li>Reduced part life</li> <li>Reduced part life.</li> <li>Possible blade vane rubbing</li> </ol>	Measure turbine speed	None

B-210

APPENDIX C - LRU MAINTENANCE PROCEDURES

## MAINTENANCE PROCEDURES FOR THE LINE REPLACEABLE UNITS

This appendix is comprised of the summary maintenance procedures that were developed for the propulsion systems' Line Replaceable Units (LRUs). These procedures were prepared in the course of deriving the checkout functions to be performed as a part of LRU removal, replacement and retest.

The maintenance procedures for the booster and orbiter main propulsion systems are presented first. The auxiliary propulsion LRU maintenance procedures start on page C-57, and the airbreathing LRUs start on Page C-99.

LRU (1) LO, Tank Vent Package

LRU (12) LH, Tank Vent Package

SYSTEM - Booster and Orbiter Main Propulsion

SUBSYSTEM - Propellant Management

ASSEMBLY - Tank Vent

COMPONENT - N/A

TASK TIME - 1 hour

SPECIAL CONSIDERATIONS - Vent Subsystem to Ambient Pressure

#### PROCEDURE

- 1. REMOVAL
  - a. Remove access panels to forward region.
  - b. Install contamination protection equipment around valve.
  - c. Install valve removal equipment.
  - d. Disconnect electrical cables; sensors, valve flange retaining bolts to vent line; valve flange bolts to LOX and LH₂ tank.
  - e. Remove valve, and all seals.
  - f. Take swab samples per contamination procedure.
  - g. Cap all line openings and valve openings.

## 2. REPLACEMENT

- a. Remove all protective caps.
- b. Take swab samples.
- c. Install valve seals; valves and bolt-up both ducts.
- d. Connect electrical cables and sensors.
- e. Remove all GSE.
- f. Install safety wire and perform visual inspection of area.

- a. Perform electrical checks.
- b. Perform valve leak check.
- c. Perform valve functional check through main system computer.
- d. Checkout of sensors.

LRU (2) LO2 Tank Isolation Valve

## LRU (3) LH, Tank Isolation Valve

SYSTEM - Booster and Orbiter Main Propulsion

SUBSYSTEM - Main Propellant Management

ASSEMBLY - Distribution and Feed

COMPONENT - 1.2.2.2 and 1.2.7.2

TASK TIME - 3 hours

SPECIAL CONSIDERATIONS - Insure system is purged and vent to ambient.

## PROCEDURE

- 1. REMOVAL
  - a. Remove _____s doors.
  - b. Install contamination protection equipment around valve.
  - c. Install valve removal GSE and duct supporting fixture.
  - d. Disconnect electrical cables, sensors, valve flange retaining bolts to LOX engine distribution duct; valve flange bolts to tank sump.
  - e. Remove_valve and all seals.
  - f. Take swap samples.
  - g. Cap duct opening and sump opening.
- 2. REPLACEMENT
  - a. Remove all protective caps.
  - b. Take swap samples.
  - c. Install valve seals; valve and secure both flange ends.
  - d. Connect electrical cables and sensors.
  - e. Remove all GSE.
  - f. Install safety wire and perform visual inspection.

- a. Perform electrical checkout.
- b. Perform valve leak check.
- c. Perform valve functional checkout.through main system computer.
- d. Checkout of all sensors.
- e. Checkout of built-in relief valve.

C-4

#### MAINTENANCE PROCEDURE

## LRU (4) LO, Prevalve

SYSTEM - Booster Main Propulsion

SUBSYSTEM - Main Propellant Management

ASSEMBLY - Oxidizer Feed

 $\underline{\text{COMPONENT}} - 1.2.1.2$ 

TASK TIME - 2 hours

SPECIAL CONSIDERATIONS - Insure system is purged and vented.

#### PROCEDURE

- 1. REMOVAL
  - a. Remove access panels to rear base region.
  - b. Install contamination protection equipment around valve.
  - c. Install valve removal equipment.
  - d. Disconnect electrical cables; sensors; valve flange retaining bolts to engine suction duct; valve flange bolts to oxidizer feed ducting.
  - e. Remove valve, and all seals.
  - f. Take swab samples per contamination procedure.
  - g. Cap all duct openings.

## 2. REPLACEMENT_

- a. Remove all protective caps.
- b. Take swab samples.
- c. Install valve seals; valves and bolt-up both ducts.
- d. Connect electrical cables and sensors.
- e. Removal all GSE.
- f. Install safety wire and perform visual inspection of area.

- a. Perform electrical checks.
- b. Perform valve leak check.
- c. Perform valve functional check through main system computer.
- d. Checkout of sensors.

SYSTEM - Booster and Orbiter Propulsion

SUBSYSTEM - Main Propellant Management

ASSEMBLY - Fill and Drain

COMPONENT - N/A

TASK TIME - 1 hour

SPECIAL CONSIDERATIONS - Insure valve is purged.

## PROCEDURE

- 1. REMOVAL
  - a. Remove access panels to lower aft region.
  - b. Install contamination protection equipment around valve.
  - c. Install valve removal equipment.
  - d. Disconnect electrical cables; sensors; valve flange retaining bolts to fill and drain lines.
  - e. Remove valve, and all seals.
  - f. Take swab samples per contamination procedure.
  - g. Cap all line openings and valve openings.
- 2. REPLACEMENT
  - a. Remove all protective caps.
  - b. Take swab samples.
  - c. Install valve seals; valves and bolt-up both ducts.
  - d. Connect electrical cables and sensors.
  - e. Remove all GSE.
  - f. Install safety wire and perform visual inspection of area.
- 3. RETEST
  - a. Perform electrical checks.
  - b. Perform valve leak check.
  - c. Perform valve function check through main system computer.
  - d. Checkout of sensors.

**C-6** 

## MAINTENANCE PROCEDURE

# LRU (6), (25) Booster/Orbiter Fuel Autogenous Line Filter LRU (7), (22) Booster/Orbiter Oxidizier'Autogenous Line Filter

SYSTEM - Booster and Orbiter Main Propulsion

SUBSYSTEM - Main Pressurization

ASSEMBLY - Autogenous Pressurization

COMPONENT - 1.3.1.4 and 1.3.1.8

TASK TIME - .5 hour

SPECIAL CONSIDERATIONS - Insure system is vented to ambient.

## PROCEDURE

1. REMOVAL

- a. Remove flange bolts, seals.b. Remove filter.
- 2. REPLACEMENT
  - a. Clean flange ends.
  - b. Insert new filter, seals.
  - c. Bolt up flange fittings and install safety wire.
- 3. RETEST
  - a. Leak check.

# LRU (8), (26) Booster/Orbiter Fuel Pressurant Control Valve Package LRU (9), (23) Booster/Orbiter Oxidizer Pressurant Control Valve Package

SYSTEM - Booster and Orbiter Main Propulsion

SUBSYSTEM - Main Pressurization

ASSEMBLY - Autogenous Pressurization

COMPONENT - 1.3.1.3 and 1.3.1.7

TASK TIME - 2 hours

SPECIAL CONSIDERATIONS - Insure system has been vented to ambient.

## PROCEDURE

- 1. REMOVAL
  - a, Remove access doors.
  - b, Install contamination equipment.
  - c. Remove electrical wiring and sensors.
  - d. Cut brazed sleeves at notched sections.
  - e. Remove welded assembly and clean.

- a. Install welded assembly and perform brazing operation.
- b. Connect electrical wiring and sensors.
- c. Remove contamination protection GSE.
- 3. RETEST
  - a. Perform leak test.
  - b. Perform electrical test.
  - c. Operate valve with system pressurized with helium.

C~8

## MAINTENANCE PROCEDURE

# LRU (1) , (24) Booster/Orbiter Oxidizer Pressurant Control Orifice LRU (1) , (27) Booster/Orbiter Fuel Pressurant Control Orifice

SYSTEM - Booster/Orbiter Main Propulsion

SUBSYSTEM - Main Pressurization

ASSEMBLY - Autogenous Pressurization

COMPONENT - 1.3.1.2 and 1.3.1.6

TASK TIME - .5 hour

SPECIAL CONSIDERATIONS - Insure system is vented to ambient.

#### PROCEDURE

1. REMOVAL

- a. Remove access panels.
- b. Remove lock-wire, flange bolts, and seals.
- c. Remove orifice.

- a. Clean flange ends.
- b. Insert new orifice, record serial number.
- c. Insert new seals.
- d. Bolt up flange ends and install lock wire.
- 3. RETEST
  - a. Leak check around flange.

## LRU (13) Booster Fuel Fill Line Coupling

## LRU (19) Orbiter Fuel Fill Coupling

## LRU (16) Orbiter Oxidizer Fill Coupling

SYSTEM - Booster and Orbiter Main Propulsion

## SUBSYSTEM - Propellant Management

ASSEMBLY - Fuel Fill and Drain

COMPONENT - 1.2.9.2

TASK TIME - 1 hour

## PROCEDURE

1. REMOVAL

PRECAUTION - Vent subsystem to ambient pressure.

- a. Remove bolts from flanges.
- b. Remove sealing devices.
- c. Remove structural mounts.
- d. Remove coupling half.

## 2. REPLACEMENT

- a. Install sealing devices after cleaning sealing surfaces.
- b. Make structural attachments.
- c. Install bolts and torque per specified value and sequence.
- d. Perform retest procedure specified below.
- e. Return system to secured state.

## 3. RETEST

a. Leak test bolted flange connection by:

- 1) Attaching GSE to newly installed coupling,
- 2) Close tank vent valves,
- 3) Pressurize through GSE with 20 psia helium,
- 4) Bubble test flanges for leaks.

## LRU (14) Fuel Tank Vent Coupling

SYSTEM - Booster and Orbiter Main Propulsion

SUBSYSTEM - Propellant Management

ASSEMBLY - Fuel Vent Assembly

<u>COMPONENT</u> - N/A

TASK TIME - 1 hour

## PROCEDURE

1. REMOVAL

PRECAUTION - Vent subsystem to ambient pressure.

- a. Remove bolts from flanges.
- b. Remove sealing devices.
- c. Remove structural mounts.
- d. Remove coupling half.

## 2. REPLACEMENT

- a. Install sealing devices after cleaning sealing surfaces.
- b. Make structural attachments.
- c. Install bolts and torque per specified value and sequence.
- d. Perform retest procedure specified below.
- e. Return system to secured state.

- a. Leak test bolted flange connection by:
  - 1) Attaching GSE to newly installed coupling,
  - 2) Close tank vent valves,
  - 3) Pressurize through GSE with 20 psia He,
  - 4) Bubble test flanges for leaks.

LRU (15) . (2) Booster/Orbiter Fuel Tank Prepressurization Coupling LRU (17) . (13) Booster/Orbiter LO, Tank Prepressurization Coupling

SYSTEM - Booster and Orbiter Main Propulsion

SUBSYSTEM - Pressurization

ASSEMBLY - Helium Pressurization

<u>COMPONENT</u> - N/A

TASK TIME - 1 hour

## PROCEDURE

1. REMOVAL

<u>PRECAUTION</u> - Vent subsystem to ambient pressure

- a. Remove bolts from flanges.
- b. Remove sealing devices.
- c. Remove structural mounts.
- d. Remove coupling half.

## 2. REPLACEMENT

- a. Install sealing devices after cleaning sealing surfaces.
- b. Make structural attachments.
- c. Install bolts and torque per specified value and sequencer
- d. Perform retest procedure specified below.
- e. Return system to secured state.

#### RETEST

- a. Leak test bolted flange connection by:
  - 1) Attaching GSE to newly installed coupling,
  - 2) Close tank fill valves,
  - 3) Pressurize through GSE with 20 psia He,
  - 4) Bubble test flanges for leaks.

C-12

## MAINTENANCE PROCEDURE

# LRU (16) , (17) Booster/Orbiter LO₂ Recirculation Coupling LRU (18) Orbiter LH₂ Recirculation Coupling

SYSTEM - Booster and Orbiter Main Propulsion

SUBSYSTEM - Propellant Management

ASSEMBLY - Geyser Suppression

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURE

REMOVAL

PRECAUTION - Vent subsystem to ambient pressure

- a. Remove bolts from flanges.
- b. Remove sealing devices.
- c. Remove structural mounts.
- d. Remove coupling half.

- a. Install sealing devices after cleaning sealing surfaces.
- b. Make_structural attachments.
- c. Install bolts and torque per specified value and sequence.
- d. Perform retest procedure specified below.
- e. Return system to secured state.
- 3. RETEST
  - a. Leak test bolted flange connection by:
    - 1) Attaching GSE to newly installed coupling,
    - 2) Close tank valves,
    - 3) Pressurize through GSE with 20 psia He,
    - 4) Bubble test flanges for leaks.

## LRU (19) LO, Fill Coupling

SYSTEM - Booster Main Propulsion

SUBSYSTEM - Propellant Management

ASSEMBLY - Oxidizer Fill and Drain

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURE

1. REMOVAL

PRECAUTION - Vent subsystem to ambient pressure.

- a. Remove bolts from flanges.
- b. Remove sealing devices.
- c. Remove structural mounts.
- d. Remove coupling half.

- a. Install sealing devices after cleaning sealing surfaces.
- b. Make structural attachments.
- c. Install bolts and torque per specified value and sequence.
- d. Perform retest procedure specified below.
- e. Return system to secured state.
- 3. RETEST
  - a. Leak test bolted flange connection by
    - 1) Attaching GSE to newly installed coupling,
    - 2) Close tank valves,
    - 3) Pressurize through GSE with 20 psia He,
    - 4) Bubble test flanges for leaks.

**C-1**4

## MAINTENANCE PROCEDURE

## LRU (20) Main Booster Engine

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engines

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 8 hours

SPECIAL CONSIDERATIONS: Engine GSE is required for this procedure.

## PROCEDURE

- 1. REMOVAL
  - a. Install contamination protection equipment.
  - b. Disconnect four (4) data cables, 3 power cables; GH₃ purge line.
  - c. Attach engine handling fixture, gimbal support fixture.
  - d. Disconnect propellant lines (48 ea-3/8" bolts); 2 gimbal pads; GH₂, GOX tank pressurization lines; recirculation lines.
  - e. Remove engine, using handling fixture; flange seals.
  - f. Take swab samples of LOX/GOX lines.
  - g. Install closures on lines and electrical connectors.
- 2. REPLACEMENT
  - a. Move engine into position.
  - Remove suction line covers. Move engine into position, install seals, then mate engine to vehicle suction lines, install all bolts, torque, safety wire.
  - Remove covers from tank pressurization lines install seals, mate, bolt, safety wire.
  - d. Remove covers from all other lines, repeat c.
  - e. Connect gimbal pads; remove support fixture.
  - f. Remove engine handling gear, contamination protection. Connect all electrical cables.
- RETEST
  - a. Leak check, 50 psi GH2, interface joints only.
  - b. Perform electrical power, and system electrical verification checks.
    - 1) Gimbal power,
    - 2) Controller functions,
    - 3) Valve functional via controller.
  - c. Perform gimbal actuator alignment with optical test equipment.

LRU (4) On-Orbit LO₂ Vent Package LRU (5) On-Orbit LH₂ Vent Package

SYSTEM - Orbiter Main Propulsion

SUBSYSTEM - On-Orbit Propellant

ASSEMBLY - Oxidizer Tank Vent, Fuel Tank Vent

COMPONENT - N/A

TASK TIME - 1 hour

SPECIAL CONSIDERATIONS - Vent subsystem to ambient pressure

#### PROCEDURE

- 1. REMOVAL
  - a. Remove electrical connections and secure wiring.
  - b. Cut brazed sleeves at notched section with cutting tool.
  - c. Remove welded assembly and clean remainder of sleeve from mating line.

## 2. REPLACEMENT

- a. Install welded assembly and perform brazing operation on sleeves.
- b. Connect electrical wiring.
- c. Perform retest described below.
- d. Return system to secured state.

## RETEST

- a. Leak Test Pressurize tank with 20 psia He. Monitor tank pressure for decay. (This leak tests the upstream sleeve on the replaced LRU package). Install GSE to vent and close vent valve. Open all valves on the replaced package and monitor tank pressure for decay. (This leak tests the downstream sleeve on the replaced LRU package.
- b. Electrical During leak test verify valve positions and continuity.

## LRU (6) On-Orbit Fuel Tank Pressurant Filters

# LRU (9) On-Orbit LO₂ Tank Pressurant Filters

SYSTEM - Orbiter Main Propulsion

SUBSYSTEM - On-Orbit Pressurization

ASSEMBLY - Fuel Tank Pressurization, Oxidizer Tank Pressurization

COMPONENT - N/A

TASK TIME - 1/2 hour

SPECIAL CONSIDERATIONS - Vent subsystem to ambient pressure.

## PROCEDURE

- 1. REMOVAL
  - a. Remove flange bolts, seal.b. Remove filter.
- 2. REPLACEMENT
  - a. Clean flange ends.
  - b. Install new filters and seals.
  - c. Make bolted flange connections.
- 3. RETEST
  - a. Leak Test
    - 1) Attach GSE to vent coupling,
    - 2) Open vent valves,
    - 3) Pressurize tanks with 20 psia He.
    - 4) Leak check filter connections.
    - 5) Vent and secure subsystem.

# LRU (7) On-Orbit Fuel Tank Pressurant Control Regulator Package

SYSTEM - Orbiter Main Propulsion

SUBSYSTEM - On-Orbit Pressurization

ASSEMBLY - Fuel Tank Pressurization, Oxidizer Tank Pressurization

COMPONENT - N/A

TASK TIME - 1 hour

SPECIAL CONSIDERATIONS - Vent associated subsystems to ambient pressure.

## PROCEDURE

## 1. REMOVAL

- a. Remove electrical connections and secure wiring.
- b. Cut brazed sleeves at notched section with cutting tool.
- c. Remove welded assembly and clean remainder of sleeve from mating lines.

- a. Install welded assembly and perform brazing operation on sleeves.
- b. Connect electrical wiring.
- c. Perform Retest described below.
- d. Return system to secured state.
- 3. RETEST
  - a. Leak Test Load 1500 psia GH₂ into APS bottles. Open tank vent valves. Open solenoid valve for the regulator package which was just installed. Perform bubble leak test on regulator connections.
  - b. Electrical Perform continuity check.
  - c. Functional Close solenoid valve for the regulator package which was not replaced. Open solenoid valve for newly installed regulator package. Close tank vents. With 1500 psia in APS bottles verify tank pressure level within specified limits.

## LRU (8) Fuel Tank Pressurant Shutoff Valve

## LRU (11) Oxidizer Tank Pressurant Shutoff Valve

SYSTEM - Orbiter Main Propulsion

SUBSYSTEM - On-Orbit Pressurization

ASSEMBLY - Fuel Tank Pressurization, Oxidizer Tank Pressurization

COMPONENT - N/A

TASK TIME - 1 hour

SPECIAL CONSIDERATIONS - Vent associated subsystems to ambient pressure.

## PROCEDURE

- 1. REMOVAL
  - a. Remove electrical connections and secure wiring.
  - b. Cut brazed sleeves at notched section with cutting tool.
  - c. Remove welded assembly and clean remainder of sleeve from mating lines.

## 2. REPLACEMENT

- a. Install welded assembly and perform brazing operation on sleeves.
- b. Connection electrical wiring.
- c. Perform Retest described below.
- d. Return system to secured state.

- a. Leak Test Load 1500 psia GH₂ into APS bottles. Open tank vent valves. Open newly installed solenoid valves. Monitor tank for pressure decay.
- Electrical During leak test verify valve positions and continuity.

## LRU (28) Main Orbiter Engine

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 9 hours

<u>SPECIAL CONSIDERATIONS</u> - Engine GSE is required for this procedure. The removal, replacement, and checkout of some components on the orbiter engine will require extension of the nozzle to full aft position, and the use of a nozzle protective and support fixture. This will, in general, add approximately one half hour to the corresponding booster time.

PROCEDURE

This procedure will be exactly like that of the booster engine except for special precautions that must be taken with the extendible nozzle.

.

## LRUS MAIN ENGINE SUBSYSTEM

This section of Appendix C presents the maintenance procedures for the Main Engine Subsystem. Many of these LRUs are shown in the exploded view of the main engine in Figure C-1.

## LRU (1) Low Pressure Turbopump

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine
    - ASSEMBLY Engine Power
      - COMPONENT Low Pressure Fuel Turbopump

TASK TIME - 8 hours

#### PROCEDURE

- 1. REMOVAL
  - a. Install contamination protection equipment.
  - b. Disconnect hydraulic lines, cap.
  - c. Remove sensors, cap lines and connectors.
  - d. Connect handling equipment to L.P.T.P.A.
  - e. Remove turbine drivelines; L.P. discharge line; seals, cap lines, and exposed joints.
  - f. Disconnect suction line to L.P.T.P.A. (24 ea. 3/8" bolts).
  - g. Remove TPS support brackets.
  - h. Move L.P.T.P.A. aft to clear suction spool.
  - j. Disconnect upper suction spool (24 ea. 3/8" bolts). Remove spool.
  - k. Remove L.P.T.P.A. forward and out; seals. cap lines.

- a. Move L.P.T.P.A. into position aft of normal.
- b. Remove cap and install seal L.P. suction line.
- c. Install L.P. suction spool; seal to L.P.T.P.A.
- e. Connect L.P.T.P.A. support bracket.
- f. Install L.P.T.P.A. turbine driveline; L.P.T.P.A. discharge line including seals. Remove handling equipment.
- g. Connect hydraulic lines.
- h. Install sensors. Mate connectors.
- 3. RETEST
  - a. Leak check, 50 psig GHe.
  - b. Sensors elect, ok via controller.

# EXPLODED VIEW - MAIN ENGINE SUBSYSTEM

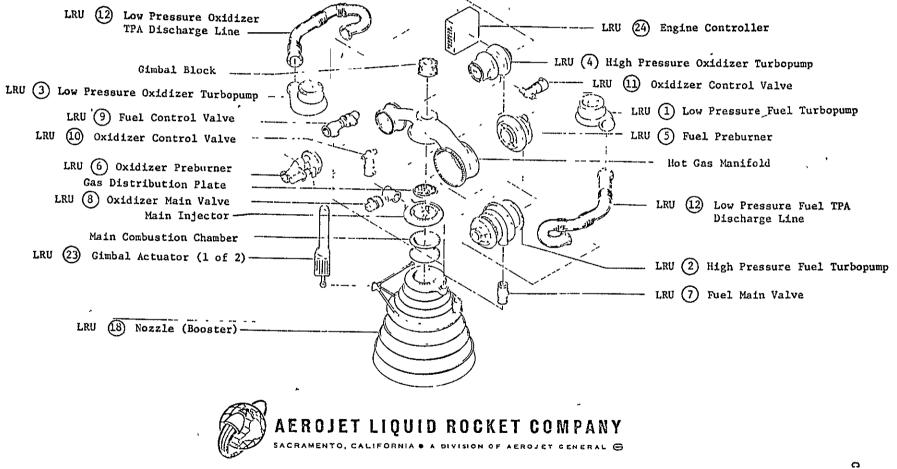



Figure C-1

## LRU (2) High Pressure Turbopump

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Engine Power

COMPONENT - High Pressure Fuel Turbopump

TASK TIME - 8 hours

#### PROCEDURE

- 1. REMOVAL
  - Install contamination protection equipment. a.
  - Remove sensors; L.P.T.P.A. discharge lines; seals, ь. cap lines and connectors.
  - Disconnect L.P.T.P.A. turbine driveline; LH₂ recirc. с. line; main fuel valve; H2 cooling lines; purge lines.
  - đ. Install tooling on H.P.T.P.A. discharge line to clear joing to fuel valve.
  - Remove H.P.T.P.A.; seals, cap openings. e.

- a. Remove protective caps.
- ь. Install seals; H.P.T.P.A. release discharge line and connect to H.P.T.P.A. (or valve).
- Install seals; L.P.T.P.A. discharge line. с.
- Connect L.P.T.P.A. turbine driveline; LH, recirculation đ. line (after installing new seals); H, cooling; purge lines.
- e. Remove handling equipment.
- f. Install sensors; connect cables.
- 3. RETEST

  - a. Leak check GH , interface seals (includes sensors).
     b. Sensors check: VIA controller, at combined systems test.

## LRU (3) Low Pressure Turbopump

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine
    - ASSEMBLY Engine Power

COMPONENT - Low Pressure Oxidizer Turbopump

TASK TIME - 8 hours

## PROCEDURE

#### 1. REMOVAL

- Install contamination protection equipment. a.
- b. Remove sensors, cap lines, connectors.
- c. Connect handling equipment to TPA.
- d. Remove turbine driveline; L.P. discharge line; seals, cap lines, and exposed joints.
- e. Disconnect suction line to L.P.T.P.A. (24 3/8" bolts).
- f. Remove TPA support brackets; L.P. OPTA; seals.
- g. Take swab sample.
- h. Install closure on suction spool.

- Move L.P.O.T.A. into position with handling equipment a.
- b. Remove suction line closure.
- Install seal on suction line; L.P.O.T.P.A.; seals; с. turbine drive line; L.P.O.T.P.A. discharge line; O.T.P.A. support brackets.
- d. Remove handling equipment.
- e. Install sensors; connect cables, safety wire.
- 3. RETEST
  - a.
  - Leak check GH_e, 50 psig. Sensors: VIA controller at combined systems test. Ъ.

## LRU (4) High Pressure Turbopump

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Engine Power

COMPONENT - High Pressure Oxidizer Turbopump

TASK TIME - 8 hours

## PROCEDURE

## 1. REMOVAL

- a. Install contamination protection equipment.
- Remove sensors; disconnect cables; cap lines and connectors.
- c. Remove L.P.O.T.P.A. discharge line; line to preburner shutoff valve; discharge line to main TCA valve; seals; H₂ coolant lines. Install closures.
- d. Aftach handling equipment.
- e. Remove H.P.O.T.P.A. (36 1/2" bolts); seals. Install closure.

## 2. REPLACEMENT

a. Remove closure.

ı.

- b. Install seal; H.P.O.T.P.A., fasten to hot gas manifold (36 - 1/2" bolts).
- c. Remove handling equipment.
- d. Install seals; discharge line; line to preburner; L.P.O.T.P.A. discharge line; H₂ coolant lines.
- e. Install sensors. Connect cablés, safety wire.
- 3. <u>RETEST</u>
  - a. Leak check: GH_, 50 psig.
  - b. Sensors: VIA controller at combined systems test.

## LRU (5) Fuel Preburner

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine
    - ASSEMBLY Engine Power

COMPONENT - Fuel Preburner

TASK TIME - 2.5 hours

## PROCEDURE

#### 1. REMOVAL

- a. Install contamination protection equipment.
- b. Remove sensors. Cap lines and connectors.
- c. Disconnect LOX inlet line; fuel inlet line, igniter lines; spark cable; igniter valve electrical line; oxygen valve control cable.
- d. Attach handling equipment.
- e. Remove preburner (36 bolts); seals. Cap all lines.

## 2. REPLACEMENT

- a. Move preburner into place, using handling equipment.
- b. Remove caps, closurès.
- c. Install seals; preburner to hot gas manifold (36 bolts).
- · d. Remove handling equipment.
  - e. Connect LOX inlet line; fuel inlet line; igniter lines; electrical cables.
  - f. Install sensors. Connect cables. Safety wire.

- a. Leak check: 50 psig GH
- b. Electrical: Perform igniter, valve, and sensor electrical checks VIA controller at combined systems test.

# MAINTENANCE PROCEDURE LRU 6 Oxidizer Preburner

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Engine Power

COMPONENT - Oxidizer Preburner

TASK TIME - 3 hours

#### PROCEDURE

- 1. REMOVAL
  - Install contamination protection equipment. a.
  - b. Remove sensors. Cap lines and connectors.
  - c. Disconnect preburner oxidizer shutoff valve; fuel inlet line; igniter lines; oxidizer line to fuel preburner; igniter valve electrical line; control cables to LOX and LH control valves. d. Attach²handling equipment.

  - e. Remove preburner (36 bolts); seals. Cap all lines.

- a. Move preburner into place, using handling equipment.
- b. Remove caps, closures.
- c. Install seals; preburner to hot gas manifold (36 bolts).
- d. Remove handling equipment.
- e. Connect preburner oxidizer shutoff valve; fuel inlet line; igniter lines; oxidizer line to fuel preburner; igniter valve electrical line; control cables to LOX and LH, control valves.
- Instalf sensors. Connect cables. Install safety wires. f.
- RETEST
  - a. Leak check: 50 psig GH
  - b. Electrical: Spark, control valves igniter valves, sensors at combined systems test.

## LRU (7) Main Valve

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine
    - ASSEMBLY Engine Power

COMPONENT - Fuel Main Valve

TASK TIME - 4 hours

## PROCEDURE

- 1. REMOVAL
  - a. Disconnect electrical cables; sensors; valve body retaining bolts from pump discharge and orifice housings; regenerate nozzle cooling line; chamber coolant line; nozzle coolant outlet line; fuel line to fuel preburner.
  - Remove fuel line assembly (all lines itemized above); valve; seals.
  - c. Cap all lines, openings.

## 2. REPLACEMENT

- a. Remove caps.
- b. Install seals; valve; fuel line assembly.
- c. Connect electrical cables; sensors. Install safety wire.

- a. Leak check: Upstream of valve 50 psig GH . Downstream of valve TBD.
- b. Valve functional: VIA controller at combined systems test.
- c. Sensors: VIA controller at combined systems test.

## <u>LRU (8) Main Valve</u>

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Engine Power

COMPONENT - Oxidizer Main Valve

TASK TIME - 3 hours

## PROCEDURE

- 1. REMOVAL
  - a. Install contamination protection equipment.
  - b. Disconnect electrical cables; sensors; valve body retaining bolts to pump discharge line; oxidizer
     `turbine driveline from discharge line.
  - c. Remove pump discharge line to valve; valve; seals. Take swab samples.
  - d. Cap all lines and openings; electrical connectors.

## 2. REPLACEMENT

- a. Remove protective caps.
- b. Install seals; valve; pump discharge line.
- c. Connect oxidizer turbine driveline; electrical cables; sensors. Install safety wire.

- a. Leak check upstream of valve 50 psig GH_. Downstream-TBD.
- b. Valve functional VIA controller at combined systems test.
- c. Sensors VIA controller at combined systems test.

## LRU (9) Fuel Control Valve

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine
    - ASSEMBLY Engine Power

COMPONENT - Fuel control valve, oxidizer preburner

TASK TIME - 1 hour

## PROCEDURE

- 1. REMOVAL
  - a. Disconnect electrical cables; fuel line to valve.
  - b. Remove valve; seals.
- 2. REPLACEMENT
  - a. Install seals, valve.
  - b. Connect fuel line; electrical cables.

- a. Leak check upstream of valve 50 psig GH_e. Downstream of valve - TBD.
- b. Valve functional VIA controller at combined systems test.

## LRU (10) Oxidizer Control Valve

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Engine Power

COMPONENT - Oxidizer Control Valve, Oxidizer Preburner

TASK TIME - 1 hour

## PROCEDURE

- 1. REMOVAL
  - a. Disconnect electrical cables; valve body from oxidizer distribution line downstream of shutoff valve; valve body from preburner.
  - b. Remove valve; seals.
  - c. Take swab sample.
  - d. Cap lines; openings.

## 2. REPLACEMENT

- a. Remove caps.
- b. Install seals; valve.
- c. Connect electrical cables.
- d. Install safety wires.

- a. Leak check upstream of valve 50 psig GH_e. Downstream of valve TBD.
- b. Valve functional VIA controller at combined systems test.

## LRU (11) Oxidizer Control Valve

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Engine power

COMPONENT - Oxidizer Control Valve, Fuel Preburner

TASK TIME - 1 hour

## PROCEDURE

- 1. REMOVAL
  - a. Disconnect electrical cables; oxidizer line to valve body.
  - b. Remove valve; seals.
  - c. Take swab sample.
  - d. Install caps.

## 2. REPLACEMENT

- a. Remove caps.
- b. Install seals; valve.
- c. Connect oxidizer line.
- d. Connect electrical cables.

- a. Leak check upstream of valve 50 psig GH . Downstream of valve TBD.
- b. Valve functional VIA controller at combined systems test.

## LRU (12) Propellant Lines

SYSTEM - Main Propulsion

1

SUBSYSTEM - Main Engine

ASSEMBLY - Engine Power

COMPONENT -	Inte	rconnect Arti	culating Lines,	Consisti	ng of:
	(1)	L.P.F.T.P.A.	Discharge Line		97 lb
	(2)	L.P.O.T.P.A.	Discharge Line		66 lb
	(3)	L.P.F.T.P.A.	Turbine Drive 1	Line	10 lb
	(4)	L.P.O.T.P.A.	Turbine Drive	Line	10 lb

TASK TIME - N/A

- GENERAL All four lines require disconnects at both ends and new seals. The discharge lines require handling equipment due to the weight. Each line requires a vacuum check with portable test equipment. Approximate time per line: 1 hour.
- 1. REMOVAL
  - a. Disconnect sensors; bolts at line ends.
  - b. Remove line; seals.
  - c. Install caps on openings.

- a. Remove caps.
- b. Install seals; lines; sensors. Safety wire.
- c. Connect cables to sensors.
- 3. RETEST
  - a. Leak check 50 psig GH .
  - b. Vacuum check use shop equipment.
  - c. Sensors VIA controller at combined systems test.

## LRU (13) Interconnect Lines

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Engine Power

COMPONENT - Interconnect Lines, Consisting of:

- (1) Fuel Suction
- (2) Fuel Main Valve Outlet
- (3) Fuel Inlet, Fuel Preburner
- (4) Fuel Inlet, Oxidizer Preburner
- (5) Oxidizer Suction
- (6) Oxidizer Valve Outlet
- (7) Oxidizer Inlet, Fuel Preburner
- (8) Oxidizer Inlet, Oxidizer Preburner
- (9) Fuel Coolant, Gas Manifold
- <u>GENERAL</u> The removal, replacement, and checkout procedures are essentially unique. Some grouping is possible. Details are given within each group. None of the line sections is expected to exceed 30 lbs weight.
- A. SUCTION LINES (Engine to vehicle interface). Elapsed Time - 2 hours per line
  - 1. REMOVAL
    - a. Install contamination protection equipment, bellows compressor.
    - b. Remove 38 3/8" bolts (24 ea. end).
    - c. Compress bellows.
    - d. Remove suction line; seals.
    - e. Install closures on line/opening.
  - 2. INSTALLATION
    - a. Install bellows compressor.
    - b. Remove caps, closures.
    - Install seals; suction line; release compresser; bolts; safety wire.
  - 3. RETEST
    - a. Leak check 50 psig GH_.

- B. FUEL MAIN VALVE OUTLET Elapsed Time - 3 hours
  - 1. REMOVAL
    - Remove flange bolts at fuel main valve outlet; chamber coolant valve inlet; nozzle coolant manifold outlet; main fuel line at fuel preburner inlet; sensors.
    - b. Separate lines and remove outlet line, seals.
    - c. Cap lines and connectors.
  - 2. REPLACEMENT
    - a. Install seals; line; bolts; sensors; safety wire.
  - 3. RETEST
    - a. Leak check 50 psig GH ..
    - b. Electrical VIA controller at combined systems test.
- C. FUEL INLET, FUEL PREBURNER Elapsed Time - 3 hours
  - 1. REMOVAL
    - a. Remove bolts at orifice flange; bolts at nozzle coolant manifold outlet; bolts at fuel preburner inlet; sensors.
    - Disconnect fuel line to oxidizer preburner, at fuel preburner.
    - c. Remove fuel inlet line, seals.
    - d. Cap all openings, lines.
  - 2. REPLACEMENT
    - a. Install seals; fuel inlet line.
    - b. Connect fuel line to oxidizer preburner; nozzle coolant manifold outlet.
    - c. Install sensors; safety wire.
  - 3. RETEST
    - a. Leak check 50 psig GH
    - b. Electrical: sensors VIA controller at combined systems test.
- D. FUEL INLET, OXIDIZER PREBURNER Elapsed Time - 2 hours
  - 1. Removal
    - a. Remove sensors. Cap lines, connectors.
    - b. Disconnect flanges at both ends of fuel line.
    - c. Remove fuel line; seals.
  - 2. REPLACEMENT
    - a. Install seals; fuel line; sensors; safety wire.
  - 3. RETEST
    - a. Leak check 50 psig GH_.
    - b. Electrical: Sensors VIA controller at combined systems test.

#### C-36

- E. OXIDIZER INLET, FUEL PREBURNER Elapsed Time - 2 hours
  - 1. <u>REMOVAL</u>
    - a. Disconnect flanges at both ends of line.
    - b. Remove line, seals.
    - c. Cap openings.
  - 2. REPLACEMENT
    - a. Install seals; line; safety wire.
  - 3. RETEST
    - a. Leak check 50 psig GH_.
- F. OXIDIZER VALVE OUTLET; OXIDIZER INLET, OXIDIZER PREBURNER; FUEL COOLANT, GAS MANIFOLD. Elapsed Time - Each - 3 hours

## GENERALIZED PROCEDURE

These lines are short sections, requiring disconnect at both ends, and seal removal. The configurations of the lines are TBD. Replacement and checkout involves seals, reconnection of flanges, and pressure check.

## <u>.RU (14) Select Valve</u>

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Engine Power

COMPONENT - Oxidizer Recirculation Select Valve

TASK TIME - 3 hours

#### PROCEDURE

- 1. REMOVAL
  - a. Install contamination protection equipment.
  - b. Disconnect electrical cables. Cap connectors.
  - c. Disconnect oxidizer recirculation line from value to interface, at value; oxidizer recirculation line from HPOTPA to value at value; value from LPOTPA turbine. Remove value, seals.
  - d. Inspect for particles, contamination.
  - e. Cap all lines, openings.

#### 2. REPLACEMENT

a. Remove caps.

1

- b. Install seals, valve.
- c. Connect electrical cables.
- d. Install safety wire.
- 3. RETEST
  - a. Leak check: GN₂, 50 spi, with valve in "tank" and "turbine" positions.
  - b. Electrical check: Functional valve with leak check, via controller.

## LRU (15) Select Valve

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine
    - ASSEMBLY Engine Power
      - COMPONENT Fuel Recirculation Select Valve

TASK TIME - 3 hours

#### PROCEDURE

- 1. REMOVAL
  - a. Install contamination protection equipment.
  - b. Disconnect electrical cables; cap connectors.
  - c. Disconnect fuel recirculation line from valve to interface, at valve; fuel recirculation line from HPFTPA to valve at valve; valve from LPFTPA turbine. Remove valve, seals.
  - d. Inspect for particles, contamination.
  - e. Cap all lines, openings.

- a. Remove caps.
- b. Install seals, valve.
- c. Connect electrical cables.
- d. Install safety wire.
- e. RETEST
  - a. Leak check: GH_e, 50 ps1, with valve in "tank" and "turbine" positions.
  - b. Electrical: Functional valve with leak check, via controller.

## LRU (16) Control Valve

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Engine Power

COMPONENT - Fuel Recirculation Control Valve

TASK TIME - 3 hours

#### PROCEDURE

- 1. REMOVAL
  - a. Install contamination protection equipment.
  - b. Disconnect electrical cables. Cap connectors.
  - c. Disconnect fuel recirculation line from valve to regulator at valve; valve from HPFTPA. Remove valve, seals.
  - đ. Inspect for particles, contamination.
  - e. Cap line, openings.

- a. Remove caps.
- b. Install seals, valve.
- c. Connect electrical cables.
- d. Install safety wire.
- 3. RETEST
  - a. Leak check: 50 psi GH, with select valve to turbine. b. Electrical: Open and close valve via controller.

## LRU (17) Recirculation Regulator .

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine
    - ASSEMBLY Engine Power

COMPONENT - Fuel Recirculation Regulator

TASK TIME - 2 hours

#### PROCEDURE

- 1. REMOVAL
  - a. Install contamination protection equipment.
  - b. Disconnect line from regulator to select valve, at regulator; line from regulator to control valve at regulator. Remove regulator, seals.
  - c. Inspect for particles, contamination.
  - d. Cap lines.

#### 2. REPLACEMENT

- a. Remove caps.
- b. Install seals, valve, safety wire.

#### 3. RETEST

a. Leak Check: 50 psi GH_e, with recirculation select valve to turbine.

## LRU (18) Booster Nozzle

SYSTEM'- Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Thrust Chamber

COMPONENT - Booster Nozzle

TASK_TIME - 8 hours

#### PROCEDURE

- 1. REMOVAL
  - a. Install contamination protection equipment; nozzle support equipment; gimbal actuator support equipment.
  - Disconnect gimbal rod ends; coolant inlet line; coolant outlet line.
  - c. Disconnect nozzle (48 ea 1/2" bolts).
  - d. Remove nozzle; seals.
  - e. Install protective covers.

- a. Remove protective covers.
- b. Move nozzle into position, using handling equipment.
- c. Install seals.
- d. Connect nozzle (48 ea 1/2" bolts); coolant lines; gimbal actuator rod ends.
- e. Install safety wire.
- f. Remove nozzle and gimbal support equipment.
- 3. RETEST
  - a. Leak check: 50 psig GH_.

## LRU (19) Coolant Control Valve

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Thrust Chamber

COMPONENT - Chamber Coolant Control Valve

TASK TIME - 1 hour

#### PROCEDURE

- 1. REMOVAL
  - Disconnect valve electrical connectors; chamber coolant a. valve (16 ea - 1/4" bolts).
  - ь. Disconnect coolant valve from fuel discharge line "Spider" (8 ea - 1/4" bolts).
  - c. Remove coolant valve; seals.
  - d. Install caps on line, opening.

#### 2. REPLACEMENT

- a. Remove caps.
- b. Install seals; valve; chamber coolant line.
- c. Connect electrical connectors.
- d. Install safety wire.

#### 3. RETEST

- a. Leak check: Upstream of valve - 50 psig GH_. Downstream of valve - 50 psig GH . Electrical: Valve functional at combined systems test.
- ь.

## LRU (20) Interconnect Lines

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Thrust Chamber

COMPONENT - Interconnect Lines, Consisting of:

- (1) Main Chamber Coolant Inlet (TBD)
  - (2) Nozzle Coolant Inlet (TBD)
  - (3) Main Injector Inlet.

TASK TIME - N/A

#### PROCEDURE

GENERAL - The main injector inlet line is definable at this time. The line runs from the oxidizer pump 2nd stage outlet to the main oxidizer valve inlet. The other lines are TBD, but in general are short small diameter lines. This procedure covers only the main injector inlet (oxidizer) line.

#### 1. <u>REMOVAL</u> Elapsed Time - 2 hours

- a. Install contamination protection equipment.
- b. Remove sensors. Cap lines, connectors.
- c. Disconnect oxidizer line to LPFTPA; ignitor oxidizer line; main injector line at both ends.
- d. Remove main injector line; seals.
- e. Cap lines, openings.
- 2. REPLACEMENT
  - a. Remove caps, closures.
  - b. Install seals; main injector line.
  - c. Connect oxidizer line to LPFTRA; ignitor oxidizer line.
  - d. Install sensors; safety wire.
- 3. RETEST
  - a. Leak check 50 psig GH.
  - b. Electrical Sensors VIA controller at combined systems test.

**C-4**4

#### MAINTENANCE PROCEDURE

## LRU (21) TCA Igniters

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Ignition

COMPONENT - Preburner and Main TCA Igniters

TASK TIME - 1 hour

#### PROCEDURE

- 1. REMOVAL
  - Disconnect high voltage spark cables; igniter valve cables; propellant lines; sensors. Cap all lines, connectors.
  - b. Remove igniter bolts; igniter assembly.
  - c. Install protective cover.

#### 2. REPLACEMENT

- a. Remove protective covers.
- b. Install igniter assembly.
- Connect propellant lines; spark cable; valve cables; sensors. Install safety wire.

#### 3. RETEST

- a. Leak check downstream of igniter values, 50 psig GH_e. Upstream of igniter values, 50 psig GH_e.
- b. Valve functional VIA controller at combined systems test.
- c. Sensors VIA controller at combined systems test.

## LRU (22) Interconnect Lines

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine
    - ASSEMBLY Ignition
      - COMPONENT Interconnect lines, consisting of preburner and main TCA igniter propellant inlet lines.
      - TASK TIME Each 2 hours

## PROCEDURE - (ALL)

- 1. REMOVAL
  - Disconnect flanges at both ends of line. a.
  - Remove support clamps; line; seals. ь.
- 2. REPLACEMENT
  - a. Install seals; line; support clamps.
- 3. RETEST
  - a. Leak check 50 psig GH_e.
    b. Electrical None.

## LRU (23) Gimbal Actuators

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine

ASSEMBLY - Thrust Vector Control

COMPONENT - Gimbal Actuators and Power Pack

TASK TIME - N/A

PROCEDURE

GENERAL - The actuators (2) weigh approximately 100 lb, each, attached by clevis/spherical rod ends. The main pump weighs approximately 15 lb and the electrical auxiliary pump weighs approximately 20 lb. The major replacement effort centers around the actuator, and is the main subject of this procedure. Task Time - 8 hours.

#### A. ACTUATORS

- 1. REMOVAL
  - a. Install contamination protection equipment.
  - Disconnect electrical cables; hydraulic lines.
     Cap all lines, connectors.
  - c. Attach nozzle positioning equipment; actuator handling equipment.
  - d. Remove clevis pins; actuator.
- 2. REPLACEMENT
  - a. Position actuator, using handling equipment.
  - b. Attach rod ends to upper and lower clevis.
  - c. Connect hydraulic lines; electrical cables.
  - d. Install safety wire.
- 3. RETEST
  - a. Adjust nozzle zero position.
  - b. Bleed-in hydraulic lines.
  - c. Leak check high pressure system operating auxiliary pump from shop power.
  - d. Electrical test actuator and servo system at combined systems test VIA controller.

**C-46** 

- B. MAIN PUMP Estimated time 3 hours
  - 1. REMOVAL
    - a. Install contamination protection equipment.
    - Disconnect hydraulic lines. Cap all openings, lines.
    - c. Remove main pump (TBD bolts); seal.
  - 2. REPLACEMENT
    - a. Install seal; main pump; safety wire.
    - b. Connect hydraulic lines.
  - 3. RETEST
    - a. Bleed-in system.
    - Leak check operate auxiliary pump to obtain full system pressure at flanges.

## LRU (24) Engine Controller

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine

ASSEMBLY - Engine Control

COMPONENT - Engine Controller

TASK TIME - 60 minutes

#### PROCEDURE

#### 1. REMOVAL

- a. Attach handling fixture.
- b. Disconnect interconnects cables
- c. Remove attachment bolts.
- d. Remove controller.

#### 2. REPLACEMENT

- a. Position controller.
- b. Install attachments bolts.
- c. Connect interconnect cables.
- d. Safety wire.
- e. Remove handling fixture.

#### 3. RETEST

- a. Connect test GSE (may be via vehicle).
- b. Load diagnostic program.
- c. Operate controller, perform internal tests.
- d. Reload operational program.
- e. Perform internal tests.
- f. Perform engine functional check including all programs.

## LRU (25) Wire Harness

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine

ASSEMBLY - Engine Control

COMPONENT - Ignition and Valve Control Harness

TASK TIME - 1 hour per subassembly

PROCEDURE

GENERAL - The harness configuration will probably consist of two to four subassembly harnesses, with multi-pin connectors at the controller, and fanning out to individual valves by area grouping. The ignition harness (low voltage) may be integral with the control cables. The high voltage conductors are considered part of the ignitor component.

#### 1. REMOVAL

- a. Remove safety wires; support clamps.
- b. Disconnect connectors, both ends. Cap.
- c. Remove harness.

- a. Position harness
- b. Connect cable connectors.
- c. Install cable clamps; safety wires.
- 3. RETEST
  - a. Electrical Via controller at combined systems test.
  - b. Valve functional Via controller at combined systems test.

## LRU (26) Instrumentation Harness

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine
    - ASSEMBLY Engine Control
      - COMPONENT Instrumentation Harness
      - TASK TIME 2 hours per subassembly
    - <u>GENERAL</u> The probable configuration is a set of six to ten subassemblies, serving perhaps ten transducers, with one multi-pin connector at the controller end. This discussion deals with each subassembly.

#### PROCEDURE

- 1. REMOVAL
  - a. Disconnect connectors at transducer and controller ends.
  - Cap connectors.
  - b. Remove cable clamps; harness.

.

- a. Place harness in position.
- b. Connect connectors, both ends.
- c. Install cable clamps, safety wires.
- 3. RETEST
  - a. Electrical Via controller at combined systems test.

## LRU (27) Check Valve

## SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Tank Pressurant

COMPONENT - Fuel Tank Pressurization Check Valve

TASK TIME - 1 hour

## PROCEDURE

- 1. REMOVAL
  - a. Disconnect valve flanges.
  - b. Remove valve, seals.
  - c. Cap lines.
- 2. REPLACEMENT
  - a. Remove caps.
  - b. Install seals; valve.
- 3. RETEST
  - a. Leak check Upstream and downstream requires simultaneous application of 25 psig GH_.

## LRU (28) Check Valve

SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine

ASSEMBLY - Tank Pressurant

COMPONENT - Oxidizer Tank Pressurization Check Valve

TASK TIME - 1 hour

#### PROCEDURE

#### 1. REMOVAL

- a. Disconnect valve flanges.
- b. Remove valve; seals.
- c. Take swab sample.
- d. Cap lines.

- a. Remove caps.
- b. Install seals; valve.
- 3. RETEST
  - a. Leak check upstream and downstream requires simultaneous application of 25 psig GH_.

## LRU (29) Heat Exchanger

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine

ASSEMBLY - Tank Pressurant

COMPONENT - Oxidizer Heat Exchanger

TASK TIME - 1 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Install contamination protection equipment.
  - b. Disconnect hot gas inlet line; hot gas outlet line; oxidizer inlet line; oxidizer outlet line.
  - c. Remove heat exchanger mounting bracket; heat exchanger; seals.
  - d. Install caps on lines.

#### 2. REPLACEMENT

- a. Remove caps.
- b. Install seals; heat exchanger; bracket.

#### 3. RETEST

a. Leak test - oxidizer lines, TBD. Hot gas lines - 50 psig, GH.

#### C-54

#### MAINTENANCE PROCEDURE

## LRU 30 Purge Valves

- SYSTEM Main Propulsion
  - SUBSYSTEM Main Engine

ASSEMBLY - Engine Purge

COMPONENT - Purge Valves

TASK TIME - Each component, 30 minutes.

### PROCEDURE

- 1. REMOVAL
  - a. Disconnect electrical connector.
  - b. Remove flange bolts; valve; seals.
  - c. Cap lines; openings.

## 2. REPLACEMENT

- a. Remove caps, closures.
- b. Install seals; valve.
- c. Connect electrical connector.
- d. Install safety wire.

## 3. RETEST

- a. Leak check TBD
- b. Electrical check operate valve.

## LRU (31) Extendable Nozzle

#### SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine, Orbiter Only

ASSEMBLY - Extendable Nozzle

COMPONENT - Extendable Nozzle

TASK TIME - 16 hours

#### PROCEDURE

1. REMOVAL

- a. Attach nozzle handling equipment, with nozzle in 90% aft position.
- b. Remove seal ring.
- c. Disconnect drive cable clamps; position sensor cables. 1
- d. Remove nozzle.

#### 2. REPLACEMENT

- a. Move nozzle into position, using handling equipment nozzle to be at 90% aft/ position - match position index marks.
- b. Attach drive cable clamps.
  - c. Install seal ring.
- d. Connect position sensor cables.
- e. Install safety wires.
- f. Remove handling equipment.
- 3. RETEST

÷

Mechanical - Using shop power, operate nozzle to fully a. stowed, full aft, and fully stowed.

## LRU (32) Nozzle Deployment Kit

#### SYSTEM - Main Propulsion

SUBSYSTEM - Main Engine, Orbiter Only.

ASSEMBLY - Extendable Nozzle

COMPONENT - Extendable Nozzle Deployment Kit

TASK TIME - 8 hours (one guide rail, cable, drive assembly kit).

#### PROCEDURE

#### 1. REMOVAL

- a. Install nozzle support equipment nozzle extended.
- b. Disconnect electrical cables. Cap connectors.
- c. Remove cable; drive unit.
- d. Disconnect guide column supports.
- e. Remove guide column.

#### 2. REPLACEMENT

- a. Install guide column; cable and drive unit.
- b. Connect electrical cables; safety wire.
- c. Remove nozzle support equipment.

#### 3. RETEST

a. Operational - Using shop power, return nozzle to stowed position, and cycle to full extension/fully stowed.

LRUs Auxiliary Propulsion System

This section of Appendix C contains the maintenance procedures for the Booster and Orbiter Auxiliary Propulsion Systems.

#### LRU (1) Engine Package, Booster - RCS/Separation

## LRU (1) Engine Package, Orbiter - RCS/OMS

SYSTEM - Auxiliary Propulsion

SUBSYSTEM - RCS, OMS, Separation Engine

ASSEMBLY - N/A

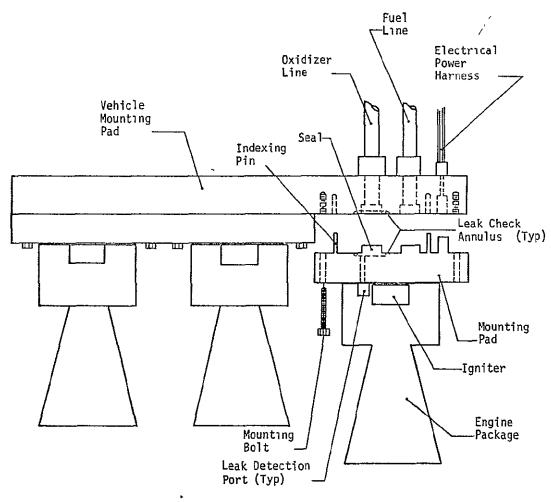
COMPONENT - N/A

TASK TIME - 3 hours

PROCEDURE (Refer to Figure C-2)

- 1. REMOVAL
  - a. Assemble engine package removal fixture.
  - b. Disconnect mounting bolts; lockwire.
  - c. Remove mounting bolts.
  - d. Remove engine package

#### 2. REPLACEMENT


- a. Attach mounting fixture to engine package.
- b. Orient package to mounting index-guide pins.
- c. Install seals; engine package-to-vehicle-mounting-pad seals on thruster assembly.
- d. Orient engine package to mounting pad indexing pins and slide toward the mounting pad until contact is made.
- e. Install engine package mounting bolts through mounting pads to threaded holes in vehicle mounting pad.
- f. Install lockwire.

#### 3. RETEST

- a. Leak check -
  - Apply nitrogen or helium pressure to the oxidizer and fuel lines with the bipropellant isolation valves in a closed position.
  - 2) Monitor leak detection ports for interface seal integrity.

b. Electrical -

- 1) Actuate the igniter valve similar to that for thruster operation.
- 2) Energize the igniter spark plug and visually monitor spark through the thrust chamber exit with appropriate tooling.



- Electrical harness includes igniter power, instrumentation, and valve actuation circuit.
- Each propellant delivery interface has leak check annulus and port.
- Vehicle Mounting Pad is hard-mounted to vehicle.
- •All engine control valves included in engine package.

Fig C-2RCS/OMS/Separation Engine Package Removal and Replacement

LRU (2) . (3) Booster GO₂. GH₂ Filter LRU (2) . (3) Orbiter GO₂. GH₂ Filter

SYSTEM - Auxiliary Propulsion

SUBSYSTEM - APS Propellant Management

ASSEMBLY - N/A

<u>COMPONENT</u> - N/A

TASK TIME - 3/4 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Cut brazed sleeves with cutting tool.
  - b. Remove filter and clean propellant distribution lines.

#### 2. REPLACEMENT

- a. Install replacement filter and braze sleeves to propellant distribution lines.
- b. Remove brazing equipment and perform visual inspection.

#### 3. RETEST

- a. Verify accumulator isolation values closed in affected subsystem ( $O_2$  or  $H_2$ ).
- b. Connect heliüm pressurization line to appropriate quickdisconnect coupling.
- c. Pressurize accumulators to 1500 psia.
- d. Monitor accumulator pressure for decay.
- e. If pressure decay noted, perform bubble leak test on replaced filter to verify.
- f. Reduce accumulator pressure to 19 psia.
- g. Disconnect pressurization system.

# LRU (4) . (5) Booster GH₂. GO₂ Solenoid Valve LRU (4) . (5) Booster GH₂. GO₂ Solenoid Valve

SYSTEM - Auxiliary Propulsion

SUBSYSTEM - APS Propellant Management

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3/4 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Disconnect electrical control and instrumentation,
  - b. Cut brazed sleeves with cutting tool.
  - c. Remove solenoid valve and clean propellant feed lines.'

#### 2. REPLACEMENT

- a. Install replacement solenoid valve and braze sleeves to propellant feed lines.
- b. Remove brazing equipment and perform visual inspection.
- c. Connect electrical control and instrumentation.

#### 3. RETEST

- a. Apply 28 vdc electrical actuation signal to solenoid valve and verify response with position indicator instrumentation.
- b. Connect helium pressurization line to appropriate quickdisconnect coupling.
- c. Close solenoid valve.
- d. Pressurize accumulators to 1500 psia.
- e. Monitor accumulator pressure for decay (internal leakage).
- f. Perform bubble leak test (external leakage).
- g. Open solenoid valve and monitor feed line pressure.
- h. Reduce accumulator pressure to 19 psia.
- i. Disconnect pressurization system.

## LRU (6) Booster/Orbiter GH2 Check Valve Package

SYSTEM - Auxiliary Propulsion

SUBSYSTEM - Booster Hydrogen Conditioning Orbiter Propellant Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3/4 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Cut brazed sleeves with cutting tool.
  - Remove check valve package and clean propellant lines. b.

#### REPLACEMENT 2.

- Install replacement check valve package, verify installation a. in proper direction, braze sleeves to propellant lines.
- b. Remove brazing equipment and perform visual inspection.
- 3. RETEST
  - a. Verify accumulator isolation valves closed in affected subsystem.
  - Connect helium pressurization line to GH2 quick-disconnect b. coupling.
  - c. Pressurize accumulators to 1500 psia.
  - d. Monitor accumulator pressure for decay, (Downstream leak check, internal leak check).
  - e. Pressurize upstream side to 1500 psia. (Upstream leak check, internal leak check).
  - f. Reduce pressure in accumulators and verify check valve operation. g. Perform external bubble leak check if required.

  - h. Reduce system pressure to 19 psia.
  - i. Disconnect pressurization system.

## LRU (7) Booster/Orbiter Gas Generator GH, Propellant Valve Package

SYSTEM - Auxiliary Propulsion

SUBSYSTEM - Booster Hydrogen Conditioning, Booster Oxygen Conditioning, Booster APU, Orbiter Propellant Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Disconnect electrical control and instrumentation.
  - b. Cut brazed sleeves with cutting tool.
  - c. Remove gas generator  $GH_2$  propellant valve package and clean propellant lines.

#### REPLACEMENT

- a. Install replacement valve package and braze sleeves to propellant lines.
- b. Remove brazing equipment and perform visual inspection.
- c. Connect electrical control and instrumentation.
- RETEST
  - a. Apply 28 vdc electrical actuation signal to each solenoid valve and verify response with position indicator instrumentation.
  - b. Connect helium pressurization line to GH2 quick-disconnect coupling.
  - c. Close both solenoid valves.
  - d. Pressurize accumulators to 1500 psia.
  - e. Monitor accumulator pressure for decay with:

    - Main GH₂ valve closed, isolation valve open,
       Main GH₂ valve open, isolation valve closed, (internal leakage)
  - f. Perform bubble leak test on upstream brazed joint with both valves closed (external leakage).
  - g. Close turbine overboard dump valve.*

*This valve is required to allow pressurization of gas generator and turbine for leak checks and has not been identified in the DRM.

- i. Perform bubble leak test on downstream brazed joint (external leakage).
- j. Reduce accumulator pressure to 19 psia.
  k. Close main GH₂ and isolation valves and open overboard dump valve.
- 1. Disconnect pressurization system.

## LRU (8) Booster/Orbiter Gas Generator GO, Propellant Valve Package

<u>SYSTEM</u> - Auxiliary Propulsion

SUBSYSTEM - Booster Hydrogen Condition, Booster Oxygen Conditioning, Booster APU, Orbiter Propellant Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Disconnect electrical control and instrumentation,
  - b. Cut brazed sleeves with cutting tool.
  - c. Remove gas generator  $\mathrm{GO}_2$  propellant valve package and clean propellant lines.

- Install replacement valve package and braze sleeves to a. propellant lines.
- b. Remove brazing equipment and perform visual inspection.
- c. Connect electrical control and instrumentation.
- 3. RETEST
  - Apply 28 vdc electrical actuation signal to each solenoid a. valve and verify response with position indicator instrumentation.
  - b. Connect helium pressurization line to GO, quick-disconnect coupling
  - c. Close both solenoid valves.
  - đ. Pressurize accumulators to 1500 psia.
  - Monitor accumulator pressure for decay with: e.

    - Main GO₂ valve closed, isolation valve open.
       Main GO₂ valve open, isolation valve closed. (internal leakage). ۲
  - f. Perform bubble leak test on upstream brazed joint with both valves closed (external leakage).

- g. Close turbine overboard dump valve.*
- h. Open main GO₂ and isolation valves and pressurize gas generator and turbine.
- i. Perform bubble leak test on downstream brazed joint (external leakage).
- j. Reduce accumulator pressure to 19 psia.
- k. Close main GO2 and isolation valves and open overboard dump valve.
- 1. Disconnect pressurization system.

*This value is required to allow pressurization of gas generator and turbine for leak checks and has not been identified in the DRM.

## LRU (9) Booster LH, Check Valve Package

SYSTEM - Booster Auxiliary Propulsion

SUBSYSTEM - Booster Hydrogen Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3/4 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Cut brazed sleeves with cutting tool.
  - b. Remove check valve package and clean propellant lines.
- 2. REPLACEMENT
  - a. Install replacement check valve package, verify installation in proper direction, braze sleeves to propellant lines.
  - b. Remove brazing equipment and perform visual inspection.
- RETEST
  - a. Pressurize airborne cruise tank and propellant distribution line to 25 psia.
  - b. Open LH, pump isolation and suction valves.
  - c. Monitor system pressure for decay and, if required perform bubble leak check for external leakage.
  - d. Reduce cruise tank and propellant distribution line pressure to ambient.
  - e. Close cruise tank propellant distribution valves and monitor propellant distribution line pressure (internal leakage).
  - f. Reduce system pressure to 19 psia.
  - g. Disconnect pressurization system.

## LRU (10) Booster Turbopumps

SYSTEM - Booster Auxiliary Propulsion

SUBSYSTEM - Hydrogen Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 6 hours

**PROCEDURES** (Refer to Figures C-5 and C-6)

- 1. REMOVAL
  - a. Drain gearbox lubrication system.
  - b. Disconnect electrical instrumentation.
  - c. Cut brazed sleeves on pump suction and discharge lines with cutting tool.
  - d. Attach turbopump removal fixture.
  - e. Remove mounting bolts from gas generator and mounting flanges on pump and turbine.
  - f. Remove turbopump.
  - g. Remove gas generator/turbine seals and clean.

#### REPLACEMENT

- a. Install gas generator/turbine seals.
- b. Attach mounting fixture to turbopump.
- c. Install replacement turbopump.
- d. Install mounting bolts in gas generator and mounting flanges.
- e. Remove mounting fixture.
- f. Braze pump suction and discharge lines.
- g. Remove brazing equipment and perform visual inspection.
- h. Connect electrical instrumentation.
- j. Replace gearbox lubrication oil.

#### 3. RETEST

- a. Verify gearbox lubrication oil level.
- b. Pressurize APS hydrogen accumulators to 1500 psia.
- c. Open pump isolation and suction valves.
- d. Perform bubble leak check on pump suction and discharge line brazed connections.
- e. Close turbine overboard dump valve.*

*This value is required to allow pressurization of gas generator and turbine for leak checks and has not been identified in the DRM.

- f. Open gas generator main GH₂ and isolation valves and pressurize gas generator and turbine.
- g. Perform bubble leak test on gas generator/turbine seals (external leakage).
- h. Reduce accumulator pressure to 15 psia.
- i. Connect cold-gas turbine drive ground support equipment.
- j. Open turbine overboard dump valve.
- k. Activate cold gas turbine drive gas.
- 1. Verify turbine speed instrumentation, and lubrication system operation.
- m. Perform visual inspection for gearbox/pump seal leakage.
- n. Deactivate cold-gas turbine drive gas.
- o. Disconnect cold-gas turbine drive ground support equipment.
- p. Pressurize accumulator to 19 psia.
- q. Close pump isolation and suction valves and gas generator main GH₂ and isolation valves.
- r. Disconnect pressurization system.

#### LRU (11) Booster Turbopump Suction Valve Package

#### LRU (16) Orbiter LH, Pump Suction Valve Package

#### SYSTEM - Auxiliary Propulsion

SUBSYSTEM - Booster Hydrogen Condition, Orbiter Propellant Conditioning,

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURES

- 1. REMOVAL
  - a. Disconnect electrical control and instrumentation.
  - b. Cut brazed sleeves with cutting tool.
  - c. Remove valve package and clean suction lines.

#### 2. REPLACEMENT

- a. Install replacement valve package and braze sleeves to suction lines.
- b. Remove brazing equipment and perform visual inspection.
- c. Connect electrical control and instrumentation.

#### RETEST

- a. Apply 28 vdc electrical actuation signal to each solenoid valve and verify response with position indicator instrumentation.
- b. Close both solenoid valves.

. .

- c. Connect helium pressurization line and pressurize appropriate tank (cruise tank or on-orbit LH₂ tank) to 30 psia.
- d. Monitor tank pressure for decay with:
  - 1) Suction valve closed, isolation valve open.
  - 2) Suction valve open, isolation valve closed. (internal leakage).
- e., Perform bubble leak test on brazed joints with both valves open (external leakage).
- f. Reduce system pressure to 19 psia.
- g. Close pump suction and isolation valves.
- h. Disconnect pressurization system.

#### LRU (12) Booster Gas Generator/Heat Exchanger Package

#### SYSTEM - Booster Auxiliary Propulsion

SUBSYSTEM - Hydrogen Conditioning Subsystem

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 4 hours

- PROCEDURES (Refer to Figure C-3)
- 1. REMOVAL
  - a. Disconnect electrical instrumentation and control.
  - b. Cut brazed sleeves with cutting tool.
  - c. Remove mounting bolts from turbine inlet duct and structural mounting pads.
  - d. Remove gas generator/heat exchanger package and clean lines.
  - e. Remove turbine inlet duct seal.

#### 2. REPLACEMENT

- a. Install replacement turbine inlet duct seal.
- b. Install replacement gas generator/heat exchanger.
- c. Install mounting bolts in turbine inlet duct and structural mounting pads.
- d. Braze-heat exchanger inlet and outlet lines and gas generator propellant lines.
- e. Remove brazing equipment and perform visual inspection.
- f. Connect electrical instrumentation and control.
- 3. RETEST
  - a. Pressurize APS hydrogen accumulators and LH₂ cruise tanks to 30 psia.
  - b. Open LH₂ pump isolation and suction valves and accumulator resupply and isolation valves.
  - c. Perform bubble leak check on heat exchanger inlet and outlet brazed connections (external leakage).
  - d. Close accumulator resupply and isolation valves.
  - e. Close turbine overboard dump valve.*

*This value is required to allow pressurization of gas generator and turbine for leak checks and has not been identified in the DRM.

- g. Open gas generator main GH₂ and isolation valves and pressurize gas generator, Eurbine, and heat exchanger to 1500 psia.
- h. Monitor heat exchanger outlet pressure (internal leakage) and perform bubble leak check on turbine inlet duct seal (external leakage).
- i. Reduce accumulator pressure and cruise tank pressure to 19 psia.
- j. Close gas generator main GH₂ and isolation valves and open overboard dump valve.
- k. Disconnect pressurization system.

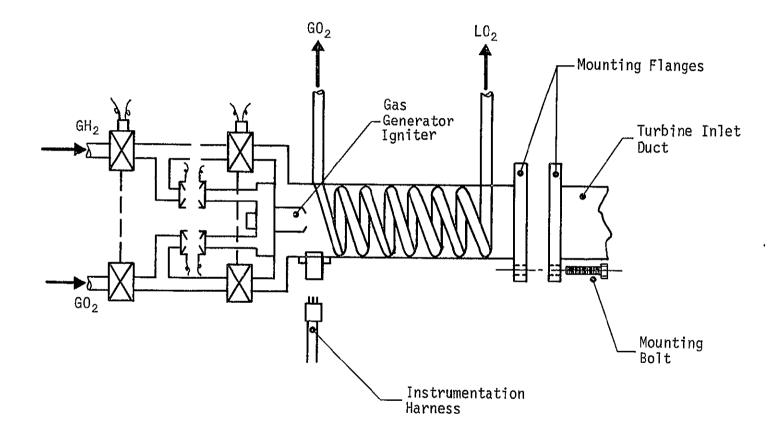



Fig. C-3 Booster Gas Generator/Heat Exchanger Package Removal and Replacement

### LRU (13) Booster LH, Solenoid Valve Package

SYSTEM - Booster Auxiliary Propulsion

SUBSYSTEM - Hydrogen Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURES

- 1. REMOVAL
  - a. Disconnect electrical control and instrumentation.
  - b. Cut brazed sleeves with cutting tool.
  - c. Remove LH₂ solenoid valve package and clean lines.

#### 2. REPLACEMENT

- a. Install replacement valve package and braze sleeves to lines.
- b. Remove brazing equipment and perform visual inspection.
- c. Connection electrical control and instrumentation.

#### RETEST

- a. Apply 28 vdc electrical actuation signal to each solenoid valve and verify response with position indicator instrumentation.
- b. Close both solenoid valves.
- c. Open LH, pump suction and isolation valves.
- d. Pressurize APS hydrogen accumulators to 30 psia and on-orbit LH₂ tanks to 15 psia.
- e. Monitor accumulator pressure for decay with:
  - 1) Resupply valve closed, isolation valve open.
  - 2) Resupply valve open, isolation valve closed (internal leakage).
- f. Open both solenoid valves and pressurize LH₂ tank to 30 psia.
- g. Perform bubble leak test on brazed joints with solenoid valves open (external leakage).
- h. Reduce system pressure to 19 psia.
- i. Close accumulator resupply and isolation valves.
- j. Close LH₂ pump suction and isolation valves.
- k. Disconnect pressurization system.

### LRU (14) Booster/Orbiter Gas Generator

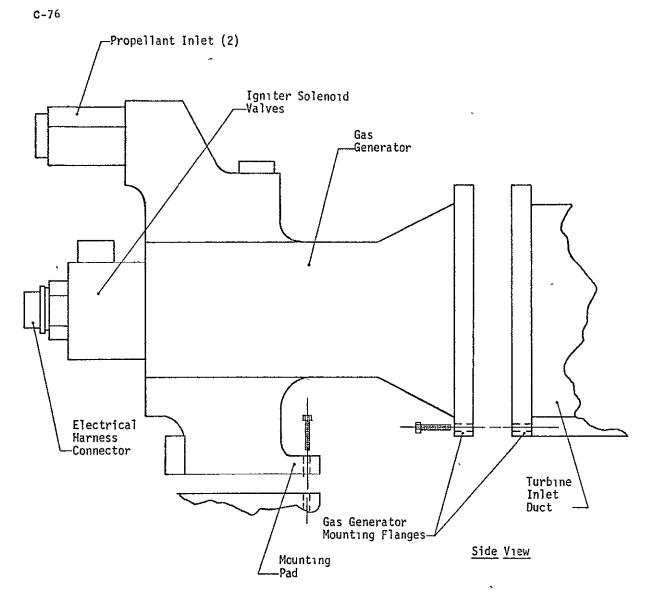
SYSTEM - Auxiliary Propulsion

<u>SUBSYSTEM</u> - Booster Hydrogen Conditioning, Booster Oxygen Conditioning, Booster APU, Orbiter Propellant Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3 hours


PROCEDURE (Refer to Figure C-4)

- 1. REMOVAL
  - a. Disconnect electrical instrumentation and control.
  - b'. Cut brazed sleeves with cutting tool.
  - c. Remove mounting bolts from turbine inlet duct and structural mounting pads.
  - d. Remove gas generator and clean propellant lines.
  - e. Remove turbine inlet duct seal.

#### REPLACEMENT

- a. Install replacement turbine inlet duct seal.
- b. Install replacement gas generator.
- c. Install mounting bolts in turbine inlet duct and structural mounting pads.
- d. Braze propellant inlet lines.
- e. Remove brazing equipment and perform visual inspection.
- f. Connect electrical instrumentation and control.
- RETEST
  - a. Close turbine overboard dump valve*.
  - b. Open gas generator main propellant and isolation valves.
  - c. Pressurize appropriate accumulators to 1500 psia.
  - d. Perform bubble leak check on turbine inlet duct seal (external leakage).
  - e. Reduce accumulator pressure to 19 psia.
  - f. Close gas generator main propellant and isolation valves and open overboard dump valve.
  - g. Disconnect pressurization system.
  - h. If required, a hot firing test may be performed by loading APS propellants and cycling gas generator through a start and shutdown sequence. This test must be followed by a system purge and safing procedure.

*This valve is required to allow pressurization of gas generator and turbine for leak checks and has not been identified in the DRM.



- Electrical harness includes igniter power, igniter valve control, and instrumentation.
- Mounting flanges have removable seals.

Fig. C-4 Gas Generator Removal and Replacement

## LRU (15) Booster Compressor GO, Inlet Valve Package

#### <u>SYSTEM</u> - Booster Auxiliary Propulsion

SUBSYSTEM - Oxygen Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Disc onnect electrical control and instrumentation
  - b. Cut brazed sleeves with cutting tool.
  - c. Remove compressor GO₂ inlet valve package and clean propellant lines.

- Install replacement valve package and braze sleeves to propellant lines.
- b. Remove brazing equipment and perform visual inspection.
- c. Connect electrical control and instrumentation.
- RETEST
  - a. Apply 28 vdc electrical actuation signal to each solenoid valve and verify response with position indicator instrumentation.
  - b. Connect helium pressurization line to main LO₂ quickdisconnect coupling.
  - c. Close both solenoid valves.
  - d. Pressurize system to 30 psia.
  - e. Monitor main LO, tank pressure for decay with:
    - 1. GO, propellant valve closed, isolation valve open.
    - 2. GO₂ propellant valve open, isolation valve closed (internal leakage).
  - f. Perform bubble leak test on brazed joints with both valves open (external leakage).
  - g. Reduce main LO₂ tank pressure to 19 psia.
  - h. Close GO2 propéllant and isolation valves.
  - i. Disconnect pressurization system.

#### LRU (16) Booster Turbocompressor

SYSTEM - Booster Auxiliary Propulsion

SUBSYSTEM - Oxygen Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 5 hours

#### PROCEDURE

- 1. REMOVAL
  - a. Disconnect electrical instrumentation.
  - b. Remove mounting bolts from GO₂ outlet and overboard ducting flanges.
  - c. Remove mounting bolts from compressor inlet and turbine inlet flanges.
  - d. Attach turbocompressor removal fixture.
  - e. Remove mounting bolts from mounting pads.
  - f. Remove turbocompressor.
  - g. Remove flange seals and clean flanges.

#### 2. REPLACEMENT

- a. Attach mounting_fixture to replacement turbocompressor.
- b. Install replacement flange seals.
- c. Install replacement turbocompressor and install mounting bolts in mounting pads.
- d. Install mounting bolts in compressor inlet and turbine inlet flanges.
- e. Install mounting bolts in GO₂ outlet and overboard ducting flanges.
  - f. Remove turbocompressor mounting fixture.
  - g. Connect electrical instrumentation and perform visual inspection.
- 3. RETEST
  - a. Close turbine overboard dump valve.*
  - b. Open gas generator main propellant and isolation valves.
  - c. Pressurize appropriate accumulators to 1500 psia.
  - d. Perform bubble leak check on turbine inlet and outlet duct seals (external leakage).

*This value is required to allow pressurization of gas generator and turbine for leak checks and has not been identified in the DRM.

- e. Reduce accumulator pressure to 19 psia.
- f. Close gas generator main propellant and isolation valves and open overboard dump valve.
- g. Connect helium pressurization line to main LO₂ quickdisconnect coupling.
- h. Open GO₂ propellant and isolation valves.
- i. Pressurize system to 30 psia.
- j. Perform bubble leak test on GO₂ outlet and overboard ducting flanges of compressor (external leakage).
- k. Reduce main LO, tank pressure to 19 psia.
- 1. Close GO, propéllant and isolation valves.
- m. Disconnect pressurization systems.
- n. Connect cold-gas turbine drive ground support equipment.
- o. Activate cold gas turbine drive gas.
- p. Verify turbocompressor speed instrumentation.
- q. Deactive cold-gas turbine drive ground support equipment.
- r. Disconnect cold-gas turbine drive ground support equipment.

# LRU (17) Booster GO₂ Check Valve Package

## LRU (18) Orbiter GO, Check Valve Package

SYSTEM - Auxiliary Propulsion

SUBSYSTEM - Booster Oxygen Conditioning, Orbiter Propellant Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3/4 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Cut brazed sleeves with cutting tool.
  - b. Remove check valve package and clean propellant lines.
- 2. REPLACEMENT
  - a. Install replacement check value package, verify installation in proper direction, braze sleeves to propellant lines.
  - b. Remove brazing equipment and perform visual inspection.
- 3. RETEST
  - a. Verify accumulator isolation valves closed in affected subsystem.
  - b. Connect helium pressurization line to GO₂ quick-disconnect coupling.
  - c. Verify compressor GO₂ propellant and isolation values (booster) or LO₂ pump suction and isolation values (orbiter) closed.
  - d. Pressúrize accumulators to 1500 psia.
  - e. Monitor accumulator pressure for decay. (Downstream leak check, internal leak check).
  - f. Pressurize upstream side to 1500 psia. (Upstream leak check, internal leak check).
  - g. Reduce pressure in accumulators and verify check valve operation.
  - h. Perform external bubble leak check if required.
  - i. Reduce system pressure to 19 psia.
  - j. Disconnect pressurization system.

#### LRU (19 Booster Turbine

#### LRU (15) Orbiter Turbine

SYSTEM - Auxiliary Propulsion

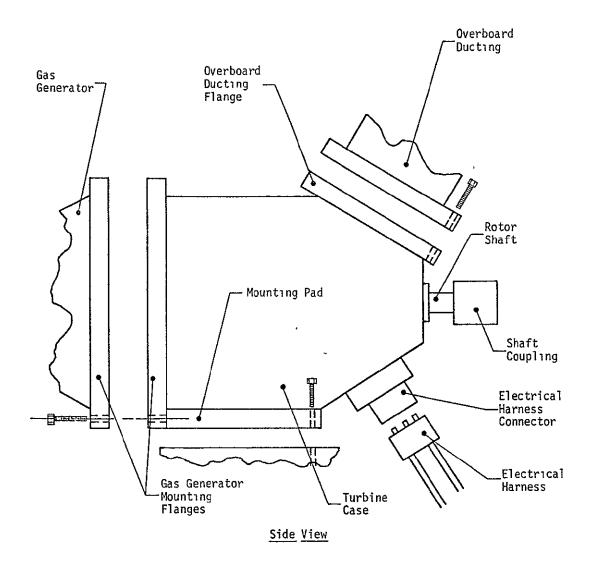
<u>SUBSYSTEM</u> - Booster Hydrogen Conditioning, Booster Oxygen Conditioning, Booster APU, Orbiter Propellant Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 4 hours

PROCEDURE (Refer to Figure C-5)


- 1. REMOVAL
  - a. Disconnect electrical instrumentation.
  - b. Remove mounting bolts from gas generator and overboard ducting flanges.
  - c. Disconnect rotor shaft coupling.
  - d. Remove mounting bolts from mounting pads and remove turbine.
  - e. Remove inlet and outlet duct seals and clean.

#### 2. REPLACEMENT

- a. Install replacement inlet and outlet duct seals.
- b. Install replacement turbine.
- c. Install mounting bolts in mounting pads and inlet and outlet flanges.
- d. Connect rotor shaft coupling.
- e. Connect electrical instrumentation.
- 3. RETEST
  - a. Close turbine overboard dump valve.*
  - b. Open gas generator main propellant and isolation valves.
  - c. Pressurize appropriate accumulators to 1500 psia.
  - d. Perform bubble leak check on turbine inlet and outlet duct seals (external leakage).
  - e. Reduce accumulator pressure to 19 psia.
  - f. Close gas generator main propellant and isolation valves and open overboard dump valve.
  - g. Disconnect pressurization system.

*This valve is required to allow pressurization of gas generator and turbine for leak checks and has not been identified in the DRM.

- h. Connect cold-gas turbine drive ground support equipment.
- i. Activate cold-gas turbine drive gas.j. Verify turbine speed instrumentation and proper operation of turbine-driven equipment. k. Deactivate cold-gas turbine drive gas.
- 1. Disconnect cold-gas turbine drive ground support equipment.



•Electrical harness includes turbine instrumentation circuits.

•Mounting flanges have removable seals.

Fig. C-5 Turbine Removal and Replacement

## LRU 18, 22 Orbiter/Booster GH₂ Manual Valve LRU 21, 19 Orbiter/Booster GO₂ Manual Valve

SYSTEM - Auxiliary Propulsion

SUBSYSTEM - Booster/Orbiter Propellant Management

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3/4 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Cut brazed sleeves with cutting tool.
  - b. Remove valve and clean propellant fill lines.
- 2. REPLACEMENT
  - a. Install replacement valve and braze sleeves to propellant fill lines.
  - b. Remove brazing equipment and perform visual inspection.
- RETEST
  - a. Verify accumulator isolation valves closed in affected subsystem (0, or H₂).
  - b. Connect helium pressurization line to appropriate quickdisconnect coupling.
  - c. Verify manual valve closed.
  - d. Pressurize accumulators to 1500 psia.
  - e. Monitor accumulator pressure for decay.
  - f. If pressure decay noted, perform bubble leak test on replaced valve to verify.
  - g. Cycle valve open and closed to verify operation.
  - h. Reduce accumulator pressure to 19 psia.
  - i. Disconnect pressurization system.

## LRU (19), (23) Orbiter/Booster GH₂ Relief Valve LRU (22), (20) Orbiter/Booster GO₂ Relief Valve

SYSTEM - Auxiliary Propulsion

SUBSYSTEM - Booster/Orbiter Propellant Management

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3/4 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Cut brazed sleeves with cutting tool.
  - b. Remove valve and clean propellant fill lines.
- 2. REPLACEMENT
  - a. Install replacement valve and braze sleeves to propellant fill lines.
  - b. Remove brazing equipment and perform visual inspection.

#### 3. RETEST ---

- a. Verify accumulator isolation values closed in affected subsystem  $(O_2 \text{ or } H_2)$ .
- b. Connect helium pressurization line to appropriate quickdisconnect coupling.
- c. Pressurize accumulators to 1500 psia.
- d. Monitor accumulator pressure for delay.
- e. If pressure decay noted, perform bubble leak test on replaced value to verify.
- f. Reduce accumulator pressure to 19 psia.
- g. Disconnect pressurization system.

## LRU (2), (24) Orbiter/Booster GH₂ Quick-Disconnect/Solenoid Valve Package LRU (23), (21) Orbiter/Booster GO₂ Quick-Disconnect/Solenoid Valve Package

#### SYSTEM - Auxiliary Propulsion

SUBSYSTEM - Booster/Orbiter Propellant Management

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Disconnect electrical control and instrumentation.
  - b. Cut brazed sleeves with cutting tool.
  - c. Remove mounting bolts from vehicle structure mounting flange on coupling.
  - d. Remove valve package and clean propellant fill lines.

#### 2. REPLACEMENT

- a. Install replacement valve package.
- b. Install mounting bolts in vehicle structure mounting flange on coupling.
- c. Braze sleeves to propellant fill lines.
- d. Remove brazing equipment and perform visual inspection.
- e. Connect electrical control and instrumentation.

#### 3. RETEST

- a. Apply 28 vdc electrical actuation signal to solenoid valve and verify response with position indicator instrumentation.
- b. Verify accumulator isolation valves closed in affected subsystem (0₂ or H₂).
- c. Connect hélium pressurization line to appropriate quickdisconnect coupling.
- d. Open solenoid valve and pressurize accumulators to 1500 psia.
- e. Close solenoid valve and remove pressurization line.
- f. Monitor accumulator pressure for decay (internal leakage).
- g. Perform bubble leak test on brazed sleeve (external leakage).
- h. Open solenoid valve and perform bubble leak test on quick-disconnect coupling.
- i. Close solenoid valve and connect pressurization line.
- j. Open solenoid valve and reduce accumulator pressure to 19 psia.
- k. Disconnect pressurization system.

## LRU (25) Booster/Orbiter GO₂ Regulator Package LRU (26) Booster/Orbiter GH₂ Regulator Package

#### SYSTEM - Auxiliary Propulsion

#### SUBSYSTEM - Booster/Orbiter Propellant Management

- ASSEMBLY N/A
  - COMPONENT N/A
  - TASK TIME 1 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Disconnect electrical control and instrumentation.
  - b. Cut brazed sleeves with cutting tool.
  - c. Remove mounting bolts from vehicle structure mounting pads.
  - d. Remove regulator package and clean propellant distribution lines.

- a. Install replacement regulator package.
- b. Install mounting bolts in vehicle structure mounting pads.
- c. Braze_sleeves to propellant distribution lines.
- d. Remove brazing equipment and perform visual inspection.
- e. Connect electrical control and instrumentation.
- 3. RETEST
  - a. Apply 28 vdc electrical actuation signal to each regulator and verify response.
  - b. Verify accumulator isolation values closed in affected subsystem ( $O_2$  or  $H_2$ ).
  - c. Connect hélium pressurization line to appropriate quickdisconnect coupling,
  - d. Close accumulator isolation valve in parallel regulator package.
  - e. Pressurize accumulators to 1500 psia.
  - f. Perform bubble leak check on brazed sleeves (external leakage).
  - g. Verify proper pressure in propellant feed lines.
  - h. Reduce system pressure (accumulators and feed lines to 19 psia.)
  - 1. Disconnect pressurization system.

## LRU (9) Orbiter LH, Pump

SYSTEM - Orbiter Auxiliary Propulsion

SUBSYSTEM - APS Propellant Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 4 hours

PROCEDURE (Refer to Figure C-6)

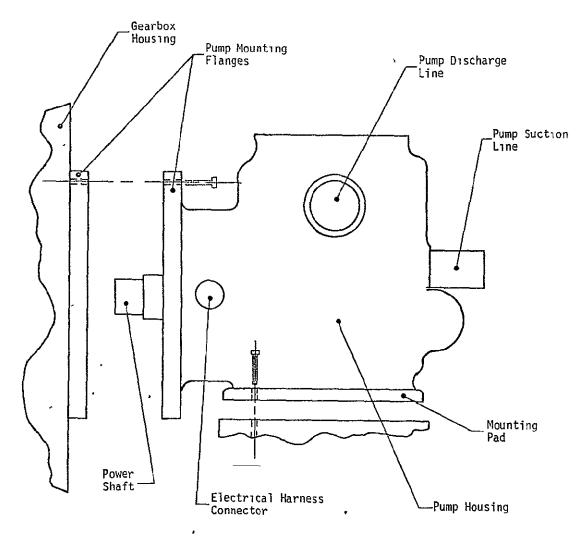
- 1. REMOVAL
  - a. Drain gearbox lubration system.
  - b. Disconnect electrical instrumentation.
  - c. Cut brazed sleeves on pump suction and discharge lines with cutting tool.
  - d. Remove mounting bolts from gearbox and mounting flanges.
  - e. Remove LH₂ pump and clean lines.
  - f. Remove gearbox/pump seals.

- a. Install replacement gearbox/pump seals.
- b. Install replacement pump.
- c. Install mounting bolts in gearbox and mounting flanges.
- d. Braze pump suction and discharge lines.
- e. Remove brazing equipment and perform visual inspection.
- f. Connect electrical instrumentation.
- g. Replace gearbox lubrication oil.
- 3. RETEST
  - a. Verify gearbox lubrication oil level.
  - b. Pressurize APS hydrogen accumulators and on-orbit  $\rm LH_2$  tanks to 30 psia.
  - c. Open pump isolation and suction valves.
  - d. Perform bubble leak check on pump suction and discharge line brazed connections.
  - e. Reduce system pressure to 19 psia.
  - f. Close pump suction and isolation valve.
  - g. Disconnect pressurization system.
  - h. Connect cold-gas turbine drive ground support equipment.
  - i. Activate cold-gas turbine drive gas.
  - j. Verify pump speed instrumentation and lubrication system operation.
  - k. Perform visual inspection for gearbox/pump seal leakage.
  - 1. Deactivate cold-gas turbine drive gas.
  - m. Disconnect cold-gas turbine drive ground support equipment.

## LRU (10) Orbiter LO, Pump

SYSTEM - Orbiter Auxiliary Propulsion

SUBSYSTEM - APS Propellant Conditioning


ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 4 hours

- PROCEDURE (Refer to Figure C-6)
- 1. REMOVAL
  - a. Drain gearbox lubrication system.
  - b. Disconnect electrical instrumentation.
  - c. Cut brazed sleeves on pump suction and discharge lines with cutting tool.
  - d. Remove mounting bolts from gearbox and mounting flanges.
  - e. Remove LO, pump and clean lines.
  - f. Remove geárbox/pump seals.

- a. Install replacement gearbox/pump seals.
- b. Install replacement pump.
- c. Install mounting bolts in gearbox and mounting flanges.
- d. Braze-pump suction and discharge lines.
- e. Remove brazing equipment and perform visual inspection.
- f. Connect electrical instrumentation.
- g. Replace gearbox lubrication oil.
- 3. RETEST
  - a. Verify gearbox lubrication oil level.
  - b. Pressure APS oxygen accumulators and on-orbit LO, tanks to 30 psia.
  - c. Open pump isolation and suction valves.
  - d. Perform bubble leak check on pump suction and discharge line brazed connections.
  - e. Reduce system pressure to 19 psia.
  - f. Close pump suction and isolation valves.
  - g. Disconnect pressurization system.
  - h. Connect cold-gas turbine drive ground support equipment.
  - i. Actuate cold-gas turbine drive gas.
  - j. Verify pump speed instrumentation and lubrication system operation.
  - k. Perform visual inspection for gearbox pump seal leakage.
  - 1. Deactivate cold-gas turbine drive gas.
  - m. Disconnect cold-gas turbine drive ground support equipment.



- •Electrical harness includes pump speed instrumentation.
- •Pump mounting flanges have removable seals.

Fig. C-6 Typical  $LH_2/LO_2$  Pump Removal and Replacement

## LRU (1) Orbiter LO, Heat Exchanger

SYSTEM - Orbiter Auxiliary Propulsion

SUBSYSTEM - APS Propellant Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 2 hours

PROCEDURE (Refer to Figure C-7)

- 1. REMOVAL
  - · a. Disconnect electrical instrumentation.
    - b. Cut brazed sleeves with cutting tool.
    - c. Remove mounting bolts from turbine exhaust and overboard ducting flanges.
    - d. Remove heat exchanger and clean lines.
    - e. Remove seals from ducting flanges.

- a. Install replacement ducting seals.
- b. Install replacement heat exchanger.
- c. , Install mounting bolts in turbine exhaust and overboard ducting flanges.
- d. Braze heat exchanger inlet and outlet lines.
- e. Remove brazing equipment and perform visual inspection.
- f. Connect electrical instrumentation.
- 3. RETEST
  - a. Pressurize APS oxygen accumulators and on-orbit LO, tanks to 30 psia
  - b. Open LO₂ pump isolation and suction valves.
  - c. Perform² bubble leak check on heat exchanger inlet and outlet brazed connections (external leakage).
  - d. Close LO₂ pump suction and isolation valves.
  - e. Close turbine overboard dump valve*.
  - f. Increase APS oxygen accumulator pressure to 1500 psia.

^{*} This valve is required to allow pressurization of gas generator and turbine for leak checks and has not been identified in the DRM.

- h. Monitor LO₂ pump discharge pressure (internal leakage) and perform bubble leak check on turbine exhaust and overboard ducting seals (external leakage).
- i. Reduce accumulator pressure to 19 psia.
- j. Close gas generator main GO₂ and isolation valves and open overboard dump valve.
- k. Disconnect pressurization system.

## LRU (12) Orbiter LH, Heat Exchanger

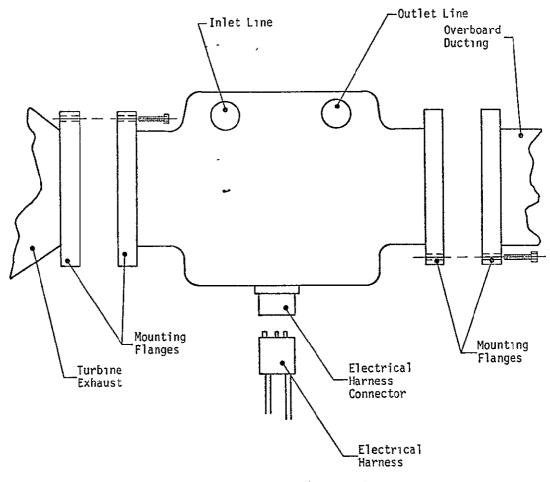
SYSTEM - Orbiter Auxiliary Propulsion

SUBSYSTEM - APS Propellant Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 2 hours


PROCEDURE (Refer to Figure C-7)

- 1. REMOVAL
  - a. Disconnect electrical instrumentation.
  - b. Cut brazed sleeves with cutting tool.
  - c. Remove mounting bolts from turbine exhaust and overboard ducting flanges.
  - d. Remove heat exchanger and clean lines.
  - e. Remove seals from ducting flanges.

- a. Install replacement ducting seals.
- b. Install replacement heat exchanger.
- c. Install mounting bolts in turbine exhaust and overboard ducting flanges.
- d. Braze heat exchanger inlet and outlet lines.
- e. Remove brazing equipment and perform visual inspection.
- f. Connect electrical instrumentation.
- 3. RETEST
  - a. Pressurize APS hydrogen accumulators and on-orbit LH  $_2$  tanks to 30 psia.
  - b. Open LH, pump isolation and suction valves.
  - c. Perform² bubble leak check on heat exchanger inlet and outlet brazed connections (external leakage).
  - d. Close LH, pump suction and isolation valves.
  - e. Close turbine overboard dump valve*.
  - f. Increase APS hydrogen accumulator pressure to 1500 psia
  - g. Open gas generator main GH and isolation valves and pressurize gas generator, ²turbine, and heat exchanger to 1500 psia.
  - h. Monitor LH₂ pump discharge pressure (internal leakage) and perform bubble leak check on turbine exhaust and overboard ducting seals (external leakage).

^{*} This valve is required to allow pressurization of gas generator and turbine for leak checks and has not been identified in the DRM.

- Reduce accumulator pressure to 19 psia.
  Close gas generator main GH₂ and isolation valves and open overboard dump valve.
  bisconnect pressurization system.



•

*

- Electrical harness includes pressure and temperature instrumentation circuits.
- •Flanges have removable seals.

٦

Fig. C-7 Typical Orbiter  $LH_2$ ,  $LO_2$  Heat Exchanger Removal and Replacement

.

#### LRU (13) Orbiter Power Train Unit

- SYSTEM Orbiter Auxiliary Propulsion
  - SUBSYSTEM APS Propellant Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 6 hours

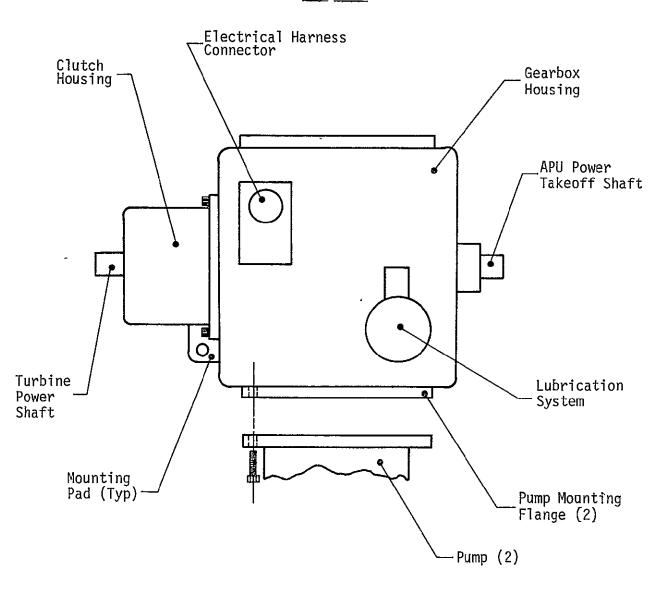
- PROCEDURE (Refer to Figure C-7)
- 1. REMOVAL
  - a. Drain gearbox lubrication system.
  - b. Disconnect electrical harness.
  - Remove mounting bolts from LH₂ and LO₂ pump mounting c. flanges, remove pumps and pump seal.
  - d. Disconnect turbine and APU power shafts.
  - e. Remove mounting bolts from mounting pads.
  - f. Remove power train unit.

#### 2. REPLACEMENT

- a. Install replacement power train unit.
- b. Install mounting bolts in mounting pads.
- c. Connect turbine and APU power shafts.
- d. Replace pump seals.
- e. Install-LO and LH pumps and mounting bolts. f. Connect electrical harness.
- g. Replace gearbox lubrication system oil and perform visual inspection.

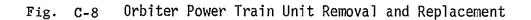
#### 3. RETEST

- a. Verify gearbox lubrication system oil level.
- Ъ. Connect cold-gas turbine drive ground support equipment
- c. Verify turbine overboard dump valve open*.
- d. Activate cold-gas turbine drive gas.
- e. Activate gearbox control and verify APU, LH, pump, and LO, pump operation.
- f. Verify lubrication system instrumentation and operation.
- g. Perform visual inspection for pump seal leakage.
- h. Deactivate cold-gas turbine drive gas.
- i. Disconnect cold-gas turbine drive ground support equipment.


.

^{*} This valve is required to allow pressurization of gas generator and turbine for leak checks and has not been identified in the DRM.




1

,



•Electrical harness includes clutch and gearbox control and instrumentation circuits.

• Pump mounting flanges have removable seals.



## LRU (17) Orbiter LO, Pump Suction Valve Package

SYSTEM - Orbiter Auxiliary Propulsion

SUBSYSTEM - APS Propellant Conditioning

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURE

#### 1. REMOVAL

- a. Disconnect electrical control and instrumentation.
- b. Cut brazed sleeves with cutting tool.
- c. Remove valve package and clean suction lines.

#### 2. REPLACEMENT

- a. Install replacement valve package and braze sleeves to suction lines.
- b. Remove brazing equipment and perform visual inspection.
- c. Connect electrical control and instrumentation.

#### RETEST

- a. Apply 28 VDC electrical activation signal to each solenoid
  - valve and verify response with position indicator instrumentation.
- b. Close both solenoid valves.
- c. Connect helium pressurization line and pressurize on-orbit LO tank to 30 psia.
- d. Monitor tank pressure for decay with:
  - 1) Suction valve closed, isolation valve open.
  - 2) Suction valve open, isolation valve closed.
- e. Perform bubble leak test on brazed joints with both valves open (external leakage).
- f. Reduce system pressure to 19 psia.
- g. Close pump suction and isolation valves.
- h. Disconnect pressurization system.

LRUs Airbreathing Propulsion System

This section of Appendix C contains the maintenance procedures for the Booster and Orbiter Airbreathing Propulsion Systems. The maintenance procedures for the LRUs within the turbofan engine are also included in this section.

#### LRU (1) Turbofan Engine

<u>SYSTEM</u> - Booster Airbreathing Propulsion

SUBSYSTEM - Turbofan Engine

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 6 hours

#### SPECIAL CONSIDERATIONS

- A. New engine has experienced "hot firing" acceptance test.
- B. Electrical, pneumatic and hydraulic connections are minimized.
- C. A ferry mission will occur prior to launch so that engine can be fired after installation.

**PROCEDURE** (Refer to Figure C-9)

1. REMOVAL

PRECAUTION - Vent associated subsystems to ambient pressure.

- a. Remove upper wing box panel (see following Figure ).
- b. Disconnect electrical, pneumatic and hydraulic connections.
- c. Install engine removal ground support equipment.
- d. Remove engine mounting brackets.
- e. Raise engine from wing compartment with ground support equipment.
- f. Secure electrical, pneumatic and hydraulic connections.

- a. Lower engine into wing compartment with ground support equipment.
- b. Install engine mounting brackets.
- c. Remove ground support equipment.
- d. Make electrical, pneumatic and hydraulic connections.
- e. Perform retest procedure below.
- f. Install upper wing box panel.
- g. Return system to secured state.
- 3. RETEST
  - a. Helium leak test fuel system connections.
  - (Pressure Decay Test through Propellant Management System).
  - b. Electrical Continuity.
  - c. Perform engine start dry simulation test.

# PRECEDING PAGES

C-105

#### MAINTENANCE PROCEDURE

### LRU (5) Cruise Tank Vent Disconnect Coupling

SYSTEM - Booster Airbreathing Propulsion

SUBSYSTEM - Propellant Management

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3/4 hour

#### PROCEDURE

1. REMOVAL

PRECAUTION - Vent subsystem to ambient pressure.

- a. Remove bolts from flanges.
- b. Remove sealing devices.
- c. Remove structural mounts.
- d. Remove coupling half.

- a. Install sealing devices after cleaning seal surfaces.
- b. Make structural attachments.
- c. Install bolts and torque per specified value and sequence.
- d. Perform Retest Procedure specified below.
- e. Return system to secured state.
- 3. RETEST
  - a. Leak test bolted flange connections by:
    - 1) Attaching GSE to newly installed coupling.
    - 2) Close tank vent valves
    - 3) Pressurize through GSE with 20 psia helium.
    - 4) Bubble test flanges for leaks.

### LRU (6) Cruise Tank Fill Valve

SYSTEM - Booster Airbreathing Propulsion

SUBSYSTEM - Propellant Management

ASSEMBLY - N/A

 $\underline{\text{COMPONENT}} - N/A$ 

TASK TIME - 3/4 hour

#### PROCEDURE

1. REMOVAL

PRECAUTION - Vent subsystem, to ambient pressure.

- a. Remove electrical connections and secure wiring.
- b. Disconnect flange bolts and remove sealing devices.
- c. Remove valve.

- a. Clean sealing surfaces as required.
- b. Install new valve and new sealing devices.
- c. Install flange bolts and torque to specified value and sequence.
- d. Perform retest described below.
- e. Return system to secured state.
- 3. RETEST
  - a. Leak Test Pressurize Cruise Tank with 20 psia He. Monitor Cruise Tank pressure for decay. (This leak tests the valve flange closest to the cruise tank). Open the Fill Valve and monitor Cruise Tank pressure for decay. (This leak tests the valve flange furthest from the tank).
  - Electrical During leak test verify valve positions and continuity.

#### LRU (7) Cruise Tank Fill Coupling

SYSTEM - Booster Airbreathing Propulsion

SUBSYSTEM - Propellant Management

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3/4 hour

#### PROCEDURE

1. REMOVAL

PRECAUTION - Vent subsystem to ambient pressure.

- a. Remove bolts from flanges.
- b. Remove sealing devices.
- c. Remove structural mounts.
- d. Remove coupling half.

- a. Install sealing devices after cleaning sealing surfaces.
- b. Make structural attachments.
- c. Install bolts and torque per specified value and sequence.
- d. Perform Retest Procedure specified below.
  - e. Return system to secured state.
- 3. RETEST
  - a. Leak test bolted flange connections by:
    - 1) Attach helium supply to fill coupling.
    - 2) Close fill valve.
    - 3) Pressurize with 20 psia He.
    - 4) Bubble test flanges for leaks.

### LRU (8) Cruise Tank Pressurization Regulator Package

<u>SYSTEM</u> - Booster Airbreathing Propulsion

SUBSYSTEM - Pressurization

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURE

1. REMOVAL

PRECAUTION - Vent associated subsystems to ambient pressure.

- a. Remove electrical connections and secure wiring.
- b. Cut brazed sleeves at notched section with cutting tool.
- Remove welded assembly and clean remainder of sleeve from mating lines.

- a. Install welded assembly and perform brazing operation on sleeves.
- b. Connect electrical wiring.
- c. Perform Retest described below.
- d. Return system to secured state.
- 3. RETEST
  - a. Leak Test Load 1500 psia GH₂ into APS bottles. Open Cruise Tank vent valves. Open solenoid valve for the regulator package which was just installed. Perform bubble leak test on regulator.connections.
  - b. Electrical Perform continuity check.
  - c. Functional Close solenoid valve for the regulator package which was not replaced. Open solenoid valve for new installed regulator package. Close cruise tank vents. Close Fuel Distributing Valves. With 1500 psia GH₂ in APS bottles, verify Cruise Tank pressure at 20 - 2 psia.

# LRU (9) Cruise Tank Pressurization Valve Package

SYSTEM - Booster Airbreathing Propulsion

SUBSYSTEM - Pressurization

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURE

1. REMOVAL

PRECAUTION - Vent associated subsystems to ambient pressure.

- a. Remove electrical connections and secure wiring.
- b. Cut brazed sleeves at notched section with cutting tool.
- c. Remove welded assembly and clean remainder of sleeve from mating lines.

- a. Install welded assembly and perform brazing operation on sleeves.
- b. Connect electrical wiring.
- c. Perform Retest described below.
- d. Return system to secured state.
- 3. RETEST
  - a. Leak Test Load 1500 psia GH₂ into APS bottles. Open Cruise Tank Vent valves. Open newly installed solenoid valves. Monitor Cruise Tank for pressure decay.
  - b. Electrical During leak test verify valve positions and continuity.

# LRU (10) Pressurization Filter

<u>SYSTEM</u> - Booster Airbreathing Propulsion

SUBSYSTEM - Pressurization

ASSEMBLY - N/A

 $\underline{\text{COMPONENT}} - \text{N/A}$ 

TASK TIME - 3/4 hour

## PROCEDURE

1. REMOVAL

PRECAUTION - Vent associated subsystems to ambient pressure.

- a. Cut brazed sleeves at notched section with cutting tool.
- b. Remove welded assembly and clean remainder of sleeve from mating lines.

- a. Install welded assembly and perform brazing operation on sleeve.
- b. Perform Retest described below.
- c. Return system to secured state.
- 3. RETEST
  - a. Leak Test Load 1500 psia GH₂ into APS bottles. Monitor APS bottles for decay. (This test will verify leakage integrity of brazed connections).

LRU (3) GH₂ Valve Package LRU (5) GO₂ Valve Package

SYSTEM - Orbiter Airbreathing Propulsion

SUBSYSTEM - Propellant Management

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURE

1. REMOVAL

PRECAUTION - Vent associated subsystem to ambient pressure.

- a. Remove electrical connections and secure wiring.
- b. Cut brazed sleeves at notched section with cutting tool.
- c. Remove welded assembly and clean remainder of sleeve from mating lines.

- a. Install new valve package and perform brazing operation on sleeves.
- b. Connect electrical wiring.
- c. Perform Retest described below.
- d. Return system to secured state.
- RETEST
  - a. Leak Test Pressurize APS bottles with 1500 psia He. Monitor bottles for pressure decay. (This leak tests the upstream brazed sleeve connection). Open valves and monitor bottles for pressure decay. (This leak tests the downstream brazed sleeve connection).
  - b. Electrical During leak test verify valve positions.

# LRU (4) Gas Generator Assembly

SYSTEM - Orbiter Airbreathing Propulsion

SUBSYSTEM - Propellant Management

ASSEMBLY - N/A

 $\underline{\text{COMPONENT}} - N/A$ 

TASK TIME - 2 hours

#### PROCEDURE

1. REMOVAL

PRECAUTION - Vent associated subsystems to ambient pressure.

- a. Remove electrical connections and secure wiring.
- b. Disconnect bolts at turbopump inlet duct.
- c. Cut brazed sleeves at inlet/outlet ports with cutting tool.
- d. Remove gas generator assembly and clean remainder of brazed sleeve from mating lines.

- a. Install new gas generator assembly and perform brazing operation on sleeves.
- b. Install new seal at turbopumps inlet duct and bolt flanges together using specified torque value and tightening sequence.
- c. Connect electrical wiring.
- d. Perform Retest described below.
- e. Return system to secured state.
- 3. RETEST
  - a. Leak Test Pressurize GO₂ APS bottles with 1500 psia He. Open GO₂ values at inlet to gas generator assembly. Monitor for pressure decay at GO₂ bottles. (This leak tests the brazed sleeve connection at GO₂ value and the turbopump inlet duct bolted flange). Vent GO₂ bottles and close GO₂ value. Perform same procedure using GH₂ bottles and GH₂ inlet values.
  - b. Electrical Apply electrical power and monitor current and voltage at igniter plug. During leak test verify GO₂ and GH₂ valve positions.

# LRU (6) LH, Valve Package

<u>SYSTEM</u> - Orbiter Airbreathing Propulsion

SUBSYSTEM - Propellant Management

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURE

1. REMOVAL

PRECAUTION - Vent associated subsystem to ambient pressure.

- a. Remove electrical connections and secure wiring.
- b. Cut brazed sleeves at notched section with cutting tool.
- c. Remove welded assembly and clean remainder of sleeve from mating lines.

## 2. REPLACEMENT

- a. Install new valve package and perform brazing operation on sleeves.
- b. Connect electrical wiring.
- c. Perform Retest described below.
- d. Return system to secured state.

# 3. RETEST

- a. Leak Test Pressurize on-orbit LH₂ tanks with 20 psia He. Monitor tank pressure for decay. (This leak tests the upstream sleeve on the replaced LRU package). Open the solenoid valves on the replaced package and again monitor on-orbit LH₂ tanks for pressure decay. (This leak tests the downstream sleeve on the replaced LRU package).
- Electrical During leak test verify valve positions and continuity.

# LRU (7) Turbopump Assembly

SYSTEM - Orbiter Airbreathing Propulsion

SUBSYSTEM - Propellant Management

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME + 2 hours

# PROCEDURE

1. REMOVAL

PRECAUTION - Vent associated subsystems to ambient pressure.

- a. Remove electrical connections and secure wiring.
- b. Disconnect bolts at Gas Generator Assembly outlet duct.
- c. Cut brazed sleeves at suction and discharge sides of the pump with cutting tool.
- d. Remove turbopump assembly and clean remainder of brazed sleeves from mating lines.

- a. Install new turbopump assembly and perform brazing operation on sleeves.
- b. Install new seal at turbopump inlet duct and bolt flanges together using specified torque value and tightening sequence.
- c. Connect electrical wiring.
- d. Perform retest described below.
- e. Return system to secured state.
- 3. RETEST
  - a. Leak Test Pressurize  $GO_2$  APS bottles with 1500 psia He. Open  $GO_2$  values at inlet to Gas Generator Assembly. Monitor for pressure decay at  $GO_2$  bottles. (This leak tests the seal at the turbopump inlet duct). Vent  $GO_2$  APS bottles and close  $GO_2$  values. Pressurize on-orbit LH₂ tanks with 20 psia He. Open LH₂ values at inlet to pump. Monitor LH₂ tank pressure for decay. (This leak tests the brazed connections at suction and discharge sides of the pump).
  - b. Electrical Verify valve positions during leak test.

# LRU (8) Check Valve Package

SYSTEM - Orbiter Airbreathing Propulsion

SUBSYSTEM - Propellant Management

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3/4 hour

#### PROCEDURE

1. REMOVAL

PRECAUTION - Vent associated subsystems to ambient pressure.

- a. Cut brazed sleeves at notched section with cutting tool.
- b. Remove value package and clean remainder of sleeve from mating lines.

#### 2. REPLACEMENT

- a. Install new valve package and perform brazing operation on sleeves.
- b. Perform Retest described below.
- c. Return system to secured state.

ŧ

- 3. RETEST
  - a. Leak Test Pressurize on-orbit LH₂ tanks with 20 psia He. Open LH₂ values at inlet to turbopump. Monitor LH₂ tank pressure for decay. (This technique will simultaneously leak check both the upstream and downstream brazed connections.

# LRU (2) Fuel Control Assembly

<u>SYSTEM</u> - Booster/Orbiter Airbreathing Propulsion

SUBSYSTEM - Turbofan Engine

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3 hours

#### PROCEDURE

1. REMOVAL

PRECAUTION - Vent associated subsystems to ambient pressure.

- a. Remove electrical connections to component modular package.
- b. Remove electrical connections to electronic controller.
- c. Disconnect plumbing connections to component modular package and remove the package.
- d. Remove electronic controller.

- a. Install new, preprogrammed, Electronic Controller.
- b. Install component modular package and connect plumbing lines.
- c. Make electrical connections.
- d. Perform Retest described below.
- e. Return system to secured state.
- 3. RETEST
  - a. Leak Test Pressurize Propellant Management Subsystem with helium. Open valves in Fuel Control Assembly and bubble check plumbing connections.
  - b. Electrical Perform Dry Engine start simulation. Verify valve functions and Electronic Controller performance.

LRU (3) Electronic Controller

SYSTEM - Booster/Orbiter Airbreathing Propulsion

SUBSYSTEM - Turbofan Engine ~

ASSEMBLY - N/A

 $\underline{\text{COMPONENT}} - N/A$ 

TASK TIME - 2 hours

## PROCEDURE

1. REMOVAL

PRECAUTION - Vent associated subsystems to ambient pressure.

- a. Remove electrical connections.
- b. Remove mounting hardware.
- c. Remove electronic controller.

- a. Install new, preprogrammed, Electronic Controller.
- b. Make-electrical connections.
- c. Perform Retest described below.
- d. Return system to secured state.
- 3. RETEST
  - a. Electrical Perform Dry Engine start simulation. Verify Electronic Controller performance.

# LRU (4) Scavenge Pump

<u>SYSTEM</u> - Booster/Orbiter Airbreathing Propulsion

SUBSYSTEM - Turbofan Engine

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3 hours

#### PROCEDURES

1. REMOVAL

PRECAUTION - Vent pressure from Lubrication Assembly.

- a. Remove electrical connections and secure wiring.
- b. Drain lube oil from engine.
- c. Cut brazed sleeves at notched section with cutting tool.
- d. Remove modular package and clean remainder of sleeve from mating lines.

- a. Install new modular package and perform brazing operation on sleeves.
- b. Connect electrical wiring.
- c. Flush oil system.
- d. Refill oil system.
- e. Perform retest described below.
- f. Return system to secured state.
- 3. RETEST
  - a. Leak Test Function Lubrication Assembly and monitor lube oil pressure for decay. Perform visual inspection of con-'nection for leaks during functional test.
  - Electrical Verify electrical connections and functions during leak test.

LRU (5) 0il Boost Pump or LRU (6) 0il Pressure Pump

<u>SYSTEM</u> - Booster/Orbiter Airbreathing Propulsion

SUBSYSTEM - Turbofan Engine

ASSEMBLY - N/A

 $\underline{\text{COMPONENT}} - N/A$ 

TASK TIME - 2 hours

#### PROCEDURES

1. REMOVAL

PRECAUTION - Vent pressure from Lubrication Assembly.

- a. Remove electrical connections and secure wiring.
- b. Drain lube oil from engine.
- c. Cut brazed sleeves at notched section with cutting tool.
- d. Remove pump and clean remainder of sleeve from mating lines.

- a. Install new pump and perform brazing operation on sleeves.
- b. Connect electrical wiring.
- c. Flush oil system.
- d. Refill oil system.
- e. Perform retest described below.
- f. Return system to secured state.
- 3. RETEST
  - a. Leak Test Function Lubrication Assembly and monitor lube oil pressure for decay. Perform visual inspection of connections for leaks during functional test.
  - Electrical Verify electrical connections and functions during leak test.

# LRU (7) Oil Strainer

SYSTEM - Booster/Orbiter Airbreathing Propulsion

SUBSYSTEM - Turbofan Engine

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 1/2 hours

# PROCEDURE

1. REMOVAL

PRECAUTION - Vent pressure from Lubrication Assembly.

- a. Drain lube oil from engine.
- b. Disconnect threaded fittings and remove oil strainer.
- c. Visually inspect sealing surfaces for damage (if damaged refinish surface as specified by procedures).
- 2. REPLACEMENT
  - Install new oil strainer and torque threaded fittings as a. specified.

  - b. Flush oil system.c. Refill oil system.
  - d. Perform retest described below.
  - e. Return system to secured state.
- 3. RETEST
  - a. Leak Test Function Lubrication Assembly and monitor lube oil pressure for decay. Perform visual inspection of connections for leaks during functional tests.
  - b. Electrical Verify electrical connections and functions during leak test.

LRU (8) Boost Pump Relief Valve or LRU (9) Boost Pump Regulating Valve or LRU (10) Main Pressure Regulating Valve

<u>SYSTEM</u> - Booster/Orbiter Airbreathing Propulsion

## SUBSYSTEM - Turbofan Engine

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 2 hours

#### PROCEDURE

1. REMOVAL

PRECAUTION - Vent pressure from Lubrication Assembly.

- a. Remove electrical connections and secure wiring.
- b. Drain lube oil from engine.
- c. Cut brazed sleeves at notched section with cutting tool.
- d. Remove value and clean remainder of sleeve from mating lines.

### 2. REPLACEMENT

- a. Install new valve and perform brazing operation on sleeves.
- b. Connect electrical wiring.
- c. Flush oil system.
- d. Refill oil system.
- e. Perform retest described below.
- f. Return system to secured state.

#### 3. RETEST

- a. Leak Test Function Lubrication Assembly and monitor lube oil pressure for decay. Perform visual inspection of connections for leaks during functional test.
- Electrical Verify electrical connections and functions during leak test.

# LRU (11) Zero-G Lube Pressure System

SYSTEM - Orbiter Airbreathing Propulsion

SUBSYSTEM - Turbofan Engine

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 3 hours

### PROCEDURE

1. REMOVAL

PRECAUTION - Vent pressure in Lubrication Assembly to ambient.

- a. Remove electrical connections and secure wiring.
- b. Drain lube oil from engine.
- c. Cut brazed sleeves at notched section with cutting tool.
- d. Remove modular package and clean remainder of sleeve from mating lines.

# 2. REPLACEMENT

- a. Install new modular package and perform brazing operation on sleeves.
- b. Connect electrical wiring.
- c. Flush oil system.
- d. Refill oil system.
- e. Perform retest described below.
- f. Return system to secured state.

# RETEST

- a. Leak Test Pressurize gas container in zero-g lube pressure system with gaseous nitrogen. Function the zero-g pressure system and monitor lube oil pressure for decay.
- b. Electrical Verify zero-g lube system is functioning.

# LRU (12) Ignition Exciter

<u>SYSTEM</u> - Booster/Orbiter Airbreathing Propulsion

SUBSYSTEM - Turbofan Engine

ASSEMBLY - N/A

<u>COMPONENT</u> - N/A

TASK TIME - 1 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Remove electrical connections from ignition compositor and ignition exciter.
  - b. Remove ignition compositor from ignition exciter.
  - c. Remove ignition exciter.

- a. Install new ignition exciter.
- b. Re-install ignition compositor on ignition exciter.
- c. Install electrical connections.
- d. Perform retest described below.
- 3. RETEST
  - a. Electrical Apply electrical power to ignition exciter. Monitor input voltage and current to exciter; output voltage and current from ignition compositor. Visually evaluate spark at ignition plug.

# LRU (13) Ignition Compositor

# SYSTEM - Booster/Orbiter Airbreathing Propulsion

SUBSYSTEM - Turbofan Engine

<u>ASSEMBLY</u> - N/A <u>COMPONENT</u> - N/A <u>TASK TIME</u> - 1 hour

#### PROCEDURE

- 1. REMOVAL
  - a. Remove electrical connections from ignition compositor and ignition exciter.
  - b. Remove ignition compositor from ignition exciter.

- a. Install new ignition compositor.
- b. Install electrical connections.
- c. Perform retest described below.
- 3. RETEST
  - a. Electrical Apply electrical power to ignition exciter. Monitor input voltage and current to exciter; output voltage and current from ignition compositor. Visually evaluate spark at ignition plug.

# LRU (14) Ignition Plug

<u>SYSTEM</u> - Booster/Orbiter Airbreathing Propulsion

SUBSYSTEM - Turbofan Engine

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

## PROCEDURE

- 1. REMOVAL
  - a. Remove electrical connections.
  - b. Remove ignition plug from engine power assembly burner.
- 2. REPLACEMENT
  - a. Install new ignition plug.
  - b. Install electrical connections.
  - c. Perform retest described below.

#### 3. RETEST

 a. Electrical - Apply electrical power to ignition exciter. Monitor input voltage and current to exciter; output voltage and current from ignition compositor. Visually evaluate spark at ignition plug.

# LRU (15) Solid Start Cartridge

SYSTEM - Booster/Orbiter Airbreathing Propulsion

SUBSYSTEM - Turbofan Engine

ASSEMBLY - N/A

COMPONENT - N/A

TASK TIME - 1 hour

#### PROCEDURE

1. REMOVAL

<u>PRECAUTION</u> - Remove Vehicle Electrical Power prior to Start Cartridge Removal.

- a. Remove electrical connections.
- b. Remove cartridge.

- a. Install new start cartridge.
- b. Install electrical connections.
- c. Reconnect vehicle electrical power.
- d. Perform retest described below.
- 3. RETEST
  - a. Electrical Apply electrical power to ignition exciter. Monitor input voltage and current to exciter; output voltage and current from ignition compositor. Visually evaluate spark at ignition plug.

APPENDIX D - CHECKOUT AND MONITORING REQUIREMENTS ANALYSIS

# APPENDIX D

, CHECKOUT AND MONITORING

REQUIREMENTS ANALYSIS

This appendix replaces the Checkout and Monitoring Requirements Analysis, Appendix D of MCR-70-274 (Issue 1), and MCR-70-306 (Issue 3). A conversion has been made from a subsystem-by-subsystem analysis of the orbiter stage to a detailed phase-by-phase analysis to improve the continuity of the previous analysis and to include GSE requirements and the detailed measurement requirements. The result is a step-bystep sequence for a nominal mission, including the values expected for a given measurement at a given time, and justification for the required measurements.

This task was accomplished by taking the previous analysis and molding the activities of each subsystem during a given phase into a cohesive phase analysis. This phase analysis was then evaluated against the subsystems requirements documentation. This procedure was followed through each mission phase. Finally, the detailed operations of the tasks that were indicated in the phase-by-phase analysis were added.

Glossary of Symbols:

#### ELEMENTS

V = valve L = line E.C. = engine controller  $T_{e}F_{e} = turbofan$ T.R. = thruster T.C. = thrust chamber FCA = fuel control assembly = lube assembly LA G = gas generator  $\mathbf{PT}$ = power train TP = turbopump = flowmeter FM FH = fuel heater н = heat exchanger С = coupling т = tankGOV = LO2 valve GFV = LH₂ valve EFV = engine fuel valve IGN = ignition U SC-----= turbine = start cartridge CT. = clutch Р = pump = flame detector  $\mathbf{FD}$ COMP = compartment

#### USES

-

R =	read	line	SS
-----	------	------	----

. .

- S = status
- M = monitor
- C = control
- C/O = checkout

This page not used.

# ORBITER

# I. FERRY PREFLIGHT

- 1. Connect the Ground Power GSE.
- 2. Power up OCMS.
- 3. Perform an OCMS self-check, including engine controllers.
- 4. Power up all propulsion systems.
  - a) Make the following MPS readiness checks.

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
F.P.	4	V-1	LOIV-1	1	R	Closed
	1	V-2	LOIV-2	ţ	1	1
		V-3	LOVV-1			
		<b>V-4</b>	LOVV-2	ł		
		V-5	LOVV-3			
		V-6	LOVV-4			
		V-7	LOFV-1			
		V-8	LFIV-1			
		V-9	LFIV-2			
		V-10	LFTVV-1			
		V-11	LFTVV-2	ł		
		V-12	LFTVV-3			
1		V-13	LFTVV-4		1	
		V-14	LFFV-1			
		V-19	LOPCV-1			
		V-20	LOPCV-2			
		V-21	LFPCV-1			
		V-22	LFPCV-2			
		V-23	LOIV-3			
		<b>V-24</b>	LOTVV-1			
		V-25	LOTVV-2			
		V-26	LFIV-3			
		V-27	LFIV-4			
	i i	V-28	LFTVV-5		-	
	1	V-29	LFTVV-6		ł	
1		V-30	LFTVV-7			
		V-31	LFTVV-8			
		V-32	LOPV-1	-		
	1	V-33	LOPV-2			
	1	V-34	LFPV-1			
		V-35	LFPV-2			
	]	C-1	LOFC-1			
		C-2	LHC-1,2			
		C-3	LFTVC-1			
1	1	C-4	LHC-3,4			
Ÿ	Y	C-5	lffC-1	★		, ₩
F.P.	4	C-6	LHC-5,6	1	R	Closed

PHASE	STEP	ELEMENT			X1 (* 15	EXPECTED
FIROE	DIFF		MEASUREMENT	SAMPLES	USE	VALUE
F.P.	4	C-8	LHC-7,8	1	Ŗ	Closed
}	i	C-11	LFVC-1	Ī	î	Closed
		T-3	PFT-1		· ·	19 PSIA
		 T⊷5	PfT-2			1
		т-6	PfT-3			
		T-1	PoT-1			
ĺ		T-2	PoT-2		ŀ	
		T-4	PoT-3			
ļ		L-17	PoL-2			
		L-20	PfL-1		1	
ł		L-21	PfL-4			
		C-5/V-14	PfF-1			
		C-1/V-7	PoF-1			
		L-8	PfS-1			
		L-9	PfS-2			1
		L-3	PoS-1			¥
	1	I4	PoS-2			19 PSIA
		<b>T-4</b>	QoT-7			UNC
1		<b>T-4</b>	QoT-8			1
		T-4	QoT-9			
	1	T-5	QfT-4			
		T <b></b> 5	QfT-5			·
		T+5	QfT-6			1
		T-6	QfT-7			
		Т <b>-</b> б	QfT-8			Ţ
	l l	T-6	QfT-9			UNC
		T+5	TfT-2			AMBIENT
		Т-б	TfT-3			1
		T-4	ToT-3			
ł		L-20	TfL-1		i.	
		L-21	TfL-4	1		
1	1		TfL-5	1	L	
Y	V	L-17	ToL-2	A	V	V
F.P.	4		ToL-4	1	R	AMBIENT

# FERRY PREFLIGHT (Continued)

b) Perform main engine readiness checks. (Include Gimbal Locks & Ign.)

/

c) Verify all main engine covers installed.

Make the following APS readiness checks.

F.P.	5		PoL-8	1	R	19 PSIA
1	1		PoL-9	1	ł	1
			PfL-9			★
	ľ		PfL-10	Y		19 PSIA
		T.C(1-37)	LBIV-(1-37)	1/valve=37		Closed
		T.C(1-37)	LMBV-(1-37)			\$
₩	<b>V</b>	T.C(1-37)	LIOV-(1-37)	.1/valve=37		Closed
F.P.	5	T.C(1-37)	VII-(1-37)	1/T.C.=37	R	ov
F.P.	5	T.C(1-37)	LIFV-(1-37)	1/valve=37		Closed

# FERRY PREFLIGHT (Continued)

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
F.P.	5	V-36	LOPV-3	1	R	Closed
1	1	V-37	LOPV-4	Ĩ		Í
	1	V-38	LOPV-5			
		V-39	LOPV-6			
i i i i i i i i i i i i i i i i i i i		V-40	LFPV-3			
		V-41	LFPV-4			r
		V-42	LFPV-5			
		V-43	LFPV-6			
		C <b>-9</b>	LOFC-2			
		C-10	LFFC-2			
	ł	V <b>-</b> 44	LOFV-2			V .
1	-	V-70	LFFV-2			Closed
		T-8	PoT-4			19 PSIA
		T-9	PoT-5			
		T-10	PfT-4			<b>V</b>
		T-11	PfT-5			19 PSIA
		T-8	ToT-4			AMBIENT
		T <b>-</b> 9	ToT-5			
		T-10	TfT-4			4
		T <b>-11</b>	TfT~5			AMBIENT
		GOV-1	LGOV-1		Ì	Closed
		GOV-1	LGOV-11			
		GOV-2	LGOV-2			
		GOV►2	LGOV-2I			
		GOV-3	LGOV-3			
(		GOV-3	LGOV-3I			
l l		GFV-1	LGFV-1			1
		GFV-1	LGFV-11			
-	1	GFV-2	LGFV-2			
		GFV-2	LGFV-2I			ļ
	ľ	GFV-3	LGFV-3			
		GFV-3	LGFV-3I	Ì	ł	
		<b>V−</b> 52	LLIV-1			
		V-52	LPSV-1			
ļ		V-53	LLIV-2	•		
		V-53	LPSV-2		1	
		V-54	LLIV-3			
		V-54	LPSV-3			
		V-55	LFIV-1			
		V-55	LPSV-4			
		V-56	LFIV-2			
		V-56	LPSV-5			, l
		V-57	LFIV-3			Y
		V-57	LPSV-6	1		Closed
Ţ		G+1	VII-38	Ţ	T	ov
Y	Y	GH2	VII-39	Y	V	ov
F.P.	5	G-3	VII-40	1	R	OV

•

FERRY P	REFLIGHT	(Continued)				
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED
F.P.	5	G-1 G-1 G-2	LIOV-38 LIFV-38 LIOV-39	1	R	Closed
F.P.	<b>V</b> 5	G-2 G-3 G-3	LIFV-39 LIOV-40 LIFV-40	<b>↓</b> 1	¥ R	Closed

Visually verify that all RCS and OMS protective covers are installed. Request vehicle to close all RCS thermal protective doors and confirm. Perform the following A/B readiness checks.

F.P.	6	GFV-4	LGFV-41	1	R	Closed
1		GFV-4	LGFV-4	Ì	1	
		GFV-5	LGFV-5I	-		
		GFV-5	LGFV-5		1	
		GFV-6	LGFV-6I			
		GFV-6	LGFV-6			
		GOV-4	LGOV-4I			
		GOV⊷4	LGOV-4			
		GOV-5	LGOV-5I		]	
		GOV-5	LGOV-5			
1		GOV−6	LGOV-6I			
		GOV-6	LGOV-6			
r		V-58	LFIV-4		ĺ	
		V-59	LPSV-7			
		V-60	LFIV-5	1		
		V-61	LPSV-8			
		V-62	LFIV-6			
		V-63	LPSV-9			
		EFV-1.	LEFV-1			
		EFV-2	LEFV-2			
		EFV⊢3	LEFV-3			
	}	EFV-4	LEFV-4		1	
		EFV-5	LEFV-5			
ļ		EFV-6	LEFV-6			
ł		EFV-7	LEFV-7			
		EFV-8	LEFV-8			
		EFV-9	LEFV-9			
		EFV-10	LEFV-10			
		EFV-11	LEFV-11			<b>*</b>
Ì		EFV-12	LEFV-12			Closed
			PfL-11			19 PSIA
<b>∀</b>	Ý		PfL-12	<b>N</b>	<b>V</b>	ų – – – – – – – – – – – – – – – – – – –
F.P.	6		PfL-13	i	R	19 PSIA
A/B	E.C	1,2,3 perfor	m the following r	eadiness che	ecks.	
F.P.	7	FCA-1	LFIVA/B-1	1	R	Closed

F.P.7FCA-1LFIVA/B-11RClosedF.P.7FCA-1LCPRV-11RClosed

FERRY PREFLIGHT	(Continued)
-----------------	-------------

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
F.P. F.P.	7       7	FCA-1 IGN-1 FCA-2 FCA-2 FCA-2 IGN-2 FCA-3 FCA-3 FCA-3 IGN-3	LSPV-1 VIIA/B-1 LFIVA/B-2 LCPRV-2 LSPV-2 VIIA/B-2 LFIVA/B-3 LCPRV-3 LSPV-3 VIIA/B-3	1 1	R R	Closed OVDC Closed Closed OVDC Closed Closed OVDC

Verify that the turbofan engine cradles are lowered and locked. Verify that all turbofan engine covers have been removed.

# LOAD

	Servicing and Pressurization	to	the	appropriate
couplings and perform	the following status checks:			

F.P. F.P. Open	7 V 7 the fo	C-1 C-2 C-2 C-5 C-8 C-8 C-9 C-10 C-11	LOFC-1 LHC-1 LHC-2 LFFC-1 LHC-7 LHC-8 LOFC-2 LFFC-2 LFFC-2 LFVC-1	1 V 1 Desition.	S	Open Open
F.P. F.P.	8	V-7 V-23 V-24 V-25	LOFV-1 LOIV-3 LOTVV-1 LOTVV-2	1	s ▼ s	Open Open
		to slow t ation by c	ransfer mode.			
F.P. When	9	L-17	ToL-2	1	S	<200 ⁰ R
F.P.	10	T-4	QoT-7	10/Sec	C	Covered

Command LOX belium recirculation on and LOX transfer to fast fill.

When

F.P.	11	<b>T-</b> 4	QoT-8	<b>10</b> /Sec	С	Covered
------	----	-------------	-------	----------------	---	---------

•

FERRY 1	PREFLIGHT	(Continued)				
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
C.	ommond TOV	two-show to			<b>-</b>	
		transier to	slow fill, and t	erminate neli	um recire	culation.
W	hen					-
F.P.	12	T-4	QoT-9	10/Sec	C	Covered
Ce	ommand LOX	transfer to	mode hold.			
Ve	erify the :	following:				
F.P.	13	T-4	ToT-3	1	S	164 <mark>+</mark> 3°R
		L-17	ToL-2	1		164 <u>-</u> 3°R
		L-17 L-3	PoL-2 ToS-1			164+3°R
		L-4	ToS+2	1		164-13°R
l	Ţ	L-3	PoS-1		1	-
	Y	L-4	PoS-2	Y	Y	
F.P.	13	L-7	PgRL-1	1	S	t
Cł	neck for le	akage with a	scan cameras.			
OF	pen V-44;	check				
F.P.	14	V-44	LOFV-2	1	S	Open
Of	f-Load the	e stored hel:	ium in T-8 and T-9	9		
F.P.	15	T-8	PoT-4	1/Sec	S	14.7 PSIA
F.P.	15	T-9	PoT-5	1/Sec	S	14.7 PSIA
Op	en V-70;	check				
F.P.	16	V-70	LFFV-2	1	S	Open
Of	f-Load the	stored held	ium in T-10 and T-	•11		
F.P.	17	T-10	PfT-4	1/Sec	S	14.7 PSIA
F.P.	17		PfT+5	1/Sec		14.7 PSIA
Lo	ad T-8 and	T-9 with GC	02.			
F.P.	18	T-8	PoT-6	1/Sec	С	1500 PSIA
1		T-8	, ToT-4	1	1	
<b>V</b>	<u> </u>	T-8 T-9	PoT-7		¥	1500 PSIA
F.P.	18	T-9	ToT-5	1/Sec	С	
Co	mpute accu	mulator quan	tity and send sto	p signal to a	the GSE a	t full load.
C10	ose V-44;	check				
F.P.	19	V-44	LOEV-2	1	S	Closed

•

FERRY PR	EFLIGHT	(Continued)			,	
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	JUSE	EXPECTED VALUE
		····· · · · · · · · · · · · · · · · ·				
Moni	Ltor					
F.P.	20	T-8	PoT-6	1/Sec	М	, 1500 PSIA
1	Ĩ	T-8	ToT-4	1, 500		, 1900 1911
	<b>v</b>	T-9	PoT-7		<b>V</b>	1500 PSIA
F.P.	20	T-9	ToT-5	1/Sec	М	
for	decay.					
Loa	ad T-10 a	and T-11 with	GH2.			
F.P.	21	T-10	PfT-6	1/Sec	С	1500 PSIA
* • * •		T-10	TfT-4	1/560	1	TOOD LOTY
4	V	1-10 T+11	PfT-7	4	¥	1500 PSIA
F.P.	21	T-11	rfr-5	1/Sec	c	1200 LDTV
				-,	-	
Con	npute acc	umulator qua	intity and send st	op signal to	GSE at f	ull load.
C10	ose V-70;	check (	•			
F.P.	22	V-70	LFFV-2	1	S	Closed
Mor	nitor.					
F.P.	23	T-10	PfT-6	1/Sec	м	1500 PSIA
1		T-10	TfT-4	1	Ĩ	1900 10111
V	Ŵ	T-11	PfT-7	4	4	1500 PSIA
F.P.	23	T-11	TfT-5	1/Sec	M	2000 2020
	r decay.					
Rev	verify		-			
F.P.	24		PoL-8	1	S	19 PSIA
1			PoL-9			
4			PfL-9	<b>V</b>	<b>Y</b>	Ý
F.P.	24		PfL-10	1	Ś	19 PSIA
Con	mand ope	n; verify				
F.P.	25	V-28	LFTVV-5	1	S	Open
* • * •	Ĩ	V-29	LFTVV-6	ī	Ĩ	
	4	V-30	LFTVV-7		H I	4
F.P.	25	V-31	LFTVV-8	1	S	Open
				~	-	- <b>r</b>
	-	n; verify				
F.P.	26	V-27	LFIV-4	1 ▼	S	Open
*	<b>V</b>	V-14	LFFV-1		S V S	<b>*</b>
F.P.	26	V-26	LFIV-3	1	S	Open

1

FERRY PR	<u>EFLIGHT</u>	(Continued)	)			
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
		er fuel tree	nsfer to T-5 and T-	6		
Con	mence si	ow ruer trai	ister to 1-5 and 1-	0.		
Ver	ify oper	ation by che	cking;			
F.P.	27	L-20	TfL-1	1 ♥	S	< 50°R
¥ F.P.	<b>*</b> 27	L-21	TfL-4 TfL-5	1	S ▼ S	<50°R <50°R
				-		
Whe	n both					
F.P.	28 28	T-5	QfT-4	10/Sec	C C	Covered Covered
F.P.	20	T-6	QfT-7	10/Sec	-	COVELED
Con	mand fue	1 transfer t	to fast fill			
Whe	n					
F.P.	29	<b>T-5</b>	QfT-5	10/Sec	C	Covered
			-			
or,						
F.P.	30	<b>T-</b> 6	QfT-8	10/Sec	C	Covered
Con	mand fue	1 transfer t	o slow fill.			
Whe	n					
		mt	0.58 (	10/0	~	a
F.P.	31	T-5	QfT-6	10/Sec	C	Covered
Or,				_		
F.P.	32	<b>T-</b> 6	QfT-9	10/Sec	C	Covered
Com	mand fue	1 transfer t	o mode hold when t	he other one	covers.	
					,	
or	TBD seco	nds after th	e first one covers	•		
V	erify no	leakage wit	h compartment dete	ctors.		
v	erify sa	fe condition	with compartment	fire detecto	rs.	
v	erify;					
F.P.	33	T-5	TfT-2	1	Ş	36 <b>-</b> 40°R
		Т-6 L-20	TfT-3 TfL-1			
ļ		L-21	TfL-4			
		L-8 L-9	TfS-1 TfS-2			<b>▼</b> 36-40°R
¥	¥	L-9 L-8	PfS-1	¥	¥	30 <b>∞40</b> ℃K
F.P.	33	L-9	PfS-2	1	Ś	

FERRY PREFLIGHT (Continued)

.

FERRY PR	EFLIGHT	(Continued)				
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Con	mand and	verify:				
F.P.	34	<b>V-1</b> 4	LFFV-1	1	S	Closed
If						
F.P.	35,	T-4	QoT-9	1	S	Uncovered
Con	mand LOX	transfer to	slow fill.			
Whe	en					
F.P.	36	T-4	Qot-9	10/sec	C	Covered
Cor	mand LOX	transfer to	stop.			
Con	mand and	verify;				
F.P.	37	V-7	LOFV-1	1	S	Closed
If						
F.P.	38	T-5	QfT-6	1	S	Uncovered
and	/or					
F.P.	39	<b>T-6</b>	QfT-9	1	S	Uncovered
Com	mand and	verify				ç
F.P.	40	V-14	LFFV-1	1	R	Open
Com	mand fue	l transfer to	o slow fill.			
Whe	n ⁻					
F.P.	41	T-5	QfT-6	10/sec	C	Covered
or						
F.P.	42	T-6	QfT-9	10/sec	С	covered
Com	mand fue	1 transfer to	o stop when the ot	her covers, c	or <u>TBD</u> s	econds
aft	er the f	irst one cove	ers.			
Com	mand and	verify:				
F.P.	43	V-14	I.FFV-1	1	ç	Closed

FERRY PRE	FLIGHT	(Continued)				TYNEOUT
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
······································						
Comm	and and	verify;				
F.P. F.P.	44 ↓ 44	V-24 V-25 V-28 V-29 V-30 V-31	LOTVV-1 LOTVV-2 LFTVV-5 LFTVV-6 LFTVV-7 LFTVV-8	1	S S	Closed V Closed
Pres	<u>surizat</u>	ion				
Veri	fy				~	
F.P. F.P.	45 ♥ 45	T-8 T-9 T-4	PoT-6 PoT-7 PoT-3	1 ▼ 1	R R	1500 PSIA 1500 PSIA <30 PSIA
Comm	and and	verify;				
F.P.	46	V-33	LOPV-2	1	S	Open
Veri	fy					
F.P.	47	T-4	PoT-3	1	S	35-40 PSIA
Comm	and and	verify;				
F.P.	48	V-33	LOPV-2	1	S	Closed
Comm	and and	verify;				
F.P.	49	V-24	LOTW-1	1	S	Open
F.P.	49	<b>V</b> ⊷25	LOTVV-2	1	S	Open
Veri	fy;					
F.P.	50	<b>T-4</b>	PoT-3	1	S	Ambient
Comm	and and	verify;				
F.P.	51	V-24	LOTVV-1	1	S	Closed
F.P.	51	V-25	LOTVV-2	1 1	S	Closed
Comm	and and	verify;				
F.P.	52	V-32	LOPV-1	1	S	Open
veri	fy;					
F.P.	53	T-4	PoT-3	1	S	35-40 PSIA

4

FERRY	PREFLIGHT	(Continued)

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Con	mand and	verify;				
F.P.	54	V-32	LOPV-1	1	S	Closed
Ver	ify;					
F.P.	55	T-10	PfT-6	1	S	1500 PSIA
		T-11	PfT-7			1500 PSIA
<b>V</b>		T-5	PfT-2	1 ¥	V	<30 PSIA
F.P.	55	<b>T-6</b>	PfT-3	1	S	<30 PSIA
Con	mand and	verify;				
F.P.	56	V <b>-</b> 35	LFPV-2	1	S	0pen
Ver	ify:					
F.P.	57	T <b>-</b> 5	PfT-2	1	S	35-40 PSIA
F.P.	57 .	т-6	PfT-3	1	S	35-40 PSIA
Con	mand and	verify;				
F.P.	58	V-35	LFPV-2	1	S	Closed
Con	mand and	verify;				
F.P.	59	V-28	LFTVV-5	1	Ş	Open
		V-29	LFTVV-6	1		- 1
*	V	V-30	LFTVV-7	*	<b>v</b>	
F.P.	59	V-31	LFTVV-8	i	S	Open
Ver	ify:					
F.P.	60	T-5	PfT-2	1	S	Ambient
F.P.	60	т-б	PfT-3	1	S	Ambient
Com	mand and	verify;	-			
F.P.	61	V-28	LFTVV-5	1	s	Closed
		V-29	LFTVV-6			
Ý.	♥	V-30	LFTVV-7	¥.		v v
F.P.	61	V-31	LFTVV-8	1	Ś	Closed
Com	mand & ve	rify;				
F.P.	62	V-34	LFPV-1	1	S	0pen
Ver	ify;					~
F.P.	63	T-5	PfT-2	1	S	35-40 PSIA
F.P.	63	T-6	PfT-3	1	S	35-40 PSIA

.

HASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Cor	mand and	verify;				
F.P.	64	V-34	LFPV-1	1	S	Closed
Mon	itor:					
F.P.	65 V	T-4	PoT-3	1/Sec	S ▼ S	35 <b>-</b> 40 PS
_ <b>\</b>		T-5	PfT-2	_ <b>, y</b>	Ţ	V.
F.P.	65	T-6	PfT-3	1/Sec	S	35-40 PS
For	mi:	nutes for de	cay			
Con	mand and	Verify;				
F.P.	66	<b>∀</b> -32	LOPV-1	1	Ş	Open
1		V-33	LOPV-2	Ł		
¥	Ţ	V-34	LFPV-1	<b>Y</b>	Y	, Ý
F.P.	66	V-35	LFPV-2	1	Ś	Open
Ret	ract and	verify;				
F.P.	67	C-1	LOFC-1	1	S	Closed
		C-2	LHC-1			
		C-2	LHC-2			
		C-5	LFFC-1			
	ł	C-8 C-8	LHC-7 LHC-8			
		C-9	LOFC-2			
¥	<b>V</b>	C-10	LFFC-2	<b>V</b>	4	<b></b>
F.P.	67	C-11	LFVC-1	1	S	Closed
Co	mmence;					
F.P.	68	T-8	PoT-6	1/Sec	M,C	1500 PS
		T-8	ToT-4		1	
		T-9	PoT-7			1500 PS
		T-9	ToT-5			
		T-10	PfT-6			1500 PS
Ţ	L L	T-10 T-11	TfT-4 pfr-7	L.	4	1600 00
<b>7</b>	68	T-11 T-11	PfT <b>~7</b> TfT <b>~</b> 5	↓ 1/Sec	M,C	1500 PS
F.P.				1,060	ri <b>,</b> 0	
്ണ	pute and	display quan	ntity on request.			

F.P.	69	GOV-1	LGOV-11	1	S	Open
1		GOV−2	LGOV-21		1	
		GOV-3	LGOV-3I			
		GFV-1	LGFV-1I			
[		GFV-2	LGFV-2I			
4		GFV-3	LGFV-3I	*		4
F.P.	69	V-52	LLIV-1	1	S	Opén

HASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTE VALUE
F.P.	69	V~53	LLIV-2	1	S	Open
1	1	<b>V</b> ⊷54	LLIV-3	Ī		
		V-55	LFIV-1	Ţ		
٧	Y	V <b>-</b> 56	LFIV-2	Y	¥	4
F.P.	69	V-57	LFIV-3	1	Ś	Open
Con	mand the	APU shaft cl	utches to engage	on all three	e section	9.
Con	mand and	verify;				
F.P.	70 V	G <b>-1</b>	VII-38	1 ▼	ş	28, VDC
V	V	G-2	VII-39	<b>Y</b>	*	♥
F.P.	70	G <b>-</b> 3	VII-40	1	S	28 VDC
Con	mand & v	erify;				
F.P.	70	G <b>~1</b>	LIOV-38	1	S	Open
Inf	tiate ig	niter spark,	verify;			
F.P.		G <b>-1</b>	IIE-38	1	S	Pulses
F.P.	71	G <b>-1</b>	PC-38	1	S	
Con	mand and	verify;				
F.P.			LIFV-38	1	S	Open
F.P.	71	G <b>-1</b>	PC-38	1	S	· · · ·
Con	mand and	verify;	-			
F.P.			LGOV-1	1	S	Open
7.P.	72	G-1	PC-38	1	S	
Con	mand and	verify:				
F.P.	73	GFV-1	LGFV-1	1	S	Open
F.P.	73	G-1	PC-38	1	S	
Che	ck;					
F.P.	74	G <b>⊷1</b>	TC-1	1	S	
1		U <b>-1</b>	NT-1	2/Sec	C	
		PT-1	NS-1	1	S	
4		PT-1	QPTL-1	Ţ	S	
¥ T	V V	PT-1	PPTL-1	Y	S	
F.P.	۲4 ^۲	PT-1	TPTL-1	1	S	
	- 1111-1 -	anahag standy	-state, command is	mitor anon		

FERRY P	REFLIGHT	(Continued)				
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Co	mmand and	word for .				
0		verily;				
F.P.	76	G-2	LIOV-39	1	S	Open
In	itiate ig	niter spark,	verify			
F.P.	77	G-2	IIE-39	1	S	Pulses
F.P.	77	G-2	PC-39	1	S	
Co	mmand and	verify;				
F.P.	78	G-2	LIFV-39	, 1	S	Op <b>e</b> n
F.P.	78	G-2	PC-39	1	S	
Co	mmand and	verify;				
F.P.	79	GOV-2	LGOV-2	1	S	Open
F.P.	79	G-2	PC-39	1	S	-
Co	mmand and	verify;				
F.P.	80	GFV-2	LGFV-2	1	S	Open
F.P.	80	G-2	PC-39	1	S	
Ch	eck;					
F.P.	81	G-2	TC-2	1	S	
		U-2	NT-2	2/sec	C S	
		PT-2 PT-2	NS-2 QPTL-2	1	5 	
	4	PT-2	PPTL-2	<b>V</b>	¥	
F.P.	81	PT-2	TPTL-2	i	s	
Wh	en NT-2 r	eaches steady	v-state, command :	lgniter spark	c off, ver	cify;
F.P.	82	G-2	IIE-39	1	S	0
Co	umand and	verify;		-	,	
F.P.	83	G <b>-</b> 3	LIOV-40	1	S	Open
In	itiate Ig	niter Spark,	verify;			
F.P.	84	G-3	IIE-40	1	S	Pulses
F.P.	84	G-3	PC-40	1	S	
Cor	mand and	verify;				7
F.P.	85	, G <b>⊢</b> 3	LIFV-40	1	S	Open
F.P.	85	G <b>~</b> 3	PC-40	1	S	

/

FERRY PREFLIGHT (Continued)

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Cor	nmand and	verify;				
F.P. F.P.	86 86	GOV-3 G-3	LGOV-3 PC-40	1 1	S S	Open
Cor	nmand and	verify;				
F.P. F.P.	87 87	GFV-3 G-3	LGFV-3 PC-40	1 1	S S	Open
Che	eck;					
F.P. F.P.	88 ↓ ▼ 88	G-3 U-3 PT-3 PT-3 PT-3 PT-3	TC-3 NT-3 NS-3 QPTL-3 PPTL-3 TPTL-3	1 2/Sec 1 ↓ 1	ន C S 	
Whe	en NT-3 r	eaches stead	y-state, command i	lgniter spark	off, ver	cify;
F.P.	89	G-3	IIE-40	1	S	0
Con	mence mo	nitoring:	,			
F.P.	90             	G-1 G-1 U-1 PT-1 PT-1 PT-1 PT-1 G-2 G-2 U-2 PT-2 PT-2 PT-2 PT-2 PT-2 PT-2 PT-2 PT	PC-38 TC-1 NT-1 QPTL-1 PPTL-1 TPTL-1 TPTL-1 NS-1 PC-39 TC-2 NT-2 QPTL-2 PPTL-2 PPTL-2 TPTL-2 TPTL-2 PC-40 TC-3 NT-3 QPTL-3 PPTL-3 TPTL-3 NS-3	<pre>1/Sec 1/Sec 2/Sec 1/2 sec 1/2 sec</pre>	M	

91 Connect A/B Ground Start GSE

FERRY PF	EFLIGHT	(Continued)				
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Con	mand and	verify;				
F.P.	92	V-58	LFIV-4	1	S	Open
1		V-60	LFIV-5			
		V-62	LFIV-6			
¥.		V-59	LPSV-7	L I	1	
•	•	V-61	LPSV-8	Y	<b>Y</b>	
F.P.	92	V-63	LPSV-9	1	S	Open
Con	mand and	verify;				
F.P.	93	G-4	IIE-41	1	S	Pulses
Con	mand and	verify;				
F.P.	94	GFV-4	LGFV-4I	1	S	Open
F.P.	94	GFV-4	LGFV-4	ī	S	Open
Com	mand and	verify;				*
F.P.	95	GOV≁4	LGOV-4I	ч	c	0
F.P.	95 95	GOV-4	LGOV-41 LGOV-4	1 1	S S	Open Open
* <b>* 1</b> •		607-4	1601-4	L	6	open
Aft	er <u>TBD</u> s	econds, check	3			
F.P.	96	<b>U-4</b>	NT-4	1	C,S Č	S.S.
		PT-4	PTPL-1		S	
1	1	PT-4	QTPL-1	1		
V	•	PT-4	TTPL-1	Y	¥	
F.P.	96	P-7	PPD-7	1	S	
Ter	minate s _i	park, verify;	:	*		
F.P.	97	G-4	IIE-41	1	S	0
Che	ck <b>;</b>		2			
F.P.	98	P-8	PPD-8	1	ន ន	< TBD PSIA
F.P.	98	P-9	PPD-9	1	S	<tbd psia<="" td=""></tbd>
Com	mand and	verify;				
F.P.	99	G <b>-</b> 5	IIE-42	l	S	Pulses
Com	mand and	verify;				
F.P.	100	GFV-5	LGFV-5I	1	S	Open
F.P.	100	GFV-5	LGFV-5	1 1	ŝ	Open
Com	mand and	verify;		-		
F.P.	101	GOV-5	LGOV-51	1	S	Open
F.P.	101	GOV-5	LGOV-5	1	S	Open
				*	D	ohen

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTE VALUE
Aİt	er <u>TBD</u> s	econds, check				
F.P.	102	<b>U-5</b>	NT~5	1	C,S	S.S.
ł	l	PT-5	PTPL-2	1	S	
	ļ	PT-5	QTPL-2		1	
w la	4	PT-5	TTPL-2		<b>V</b>	
F.P.	102	P-8	PPD-8	1	s	
، Tea		park, Verify	3			
F.P.,	103	G <b>-</b> 5	IIE-42	1	S	0
Cor	umand and	verify;				
F.P.	104	G-6	IIE-43	1	S	Pulses
Con	amand and	verify:				
F.P.	105	GFV-6	LGFV-6I	1	S	Open
F.P.		GFV-6	LGFV-6	ī	S S	Open
Cor	mand and	verify;				
F.P.	106	GOV⊷б	LGOV-61	1	S	Open
F.P.	106	GOV-6	LGOV-6	1	S	Open
Aft	ter <u>TBD</u> s	econds, check	<:		-	
F.P.	107	<b>U-6</b>	NT-6	1	C,S	S.S.
	1	PT6	PTPL-3	1	Ś	
		PT-6	QTPL-3		1	
4	٧	PT-6	TTPL-3	*	*	
F.P.	107	P-9	PPD-9	1	▼ S	•
Ter	rminate s	park, verify	•			
F.P.	108	G-6	IIE-43	1	S	0
Сог	nmand and	l verify;				
F.P.	109	EFV-1	LEFV-1	1	ş	Open
1	1	EFV-2	LEFV-2			-
ų.	V	EFV-3	LEFV-3	Ý	*	4
F.P.	109	EFV-4	LEFV-4	i	S	Open
Çhe	eck:					
F.P.	110		PfL-11	1	s,c	
F.P.	110		TfL-6	ī	s,c	

PLACE PI	KEFLIGHI	(Continued)				
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Cor	mand and	verify;				
F.P. F.P.	1111 V 1111	EFV-5 EFV-6 EFV-7 EFV-8	LEFV-5 LEFV-6 LEFV-7 LEFV-8	1     1	s s	Open Open
Che	eck:					
F.P. F.P.	112 112		PfL-12 TfL-7	1 1	S,C S,C	
Cor	mand and	verify;				
F.P. ↓ F.P.	113 V 113	EFV-9 EFV-10 EFV-11 EFV-12	LEFV-9 LEFV-10 LEFV-11 LEFV-12	1 ↓ 1	S ↓ S	Open Open
Che	eck:					
F.P. F.P.	114 114		PfL-13 TfL-8	1 1	s,c s,c	
Con	mence mo	nitoring:				
F.P. F.P.	115	G-4 G-4 U-4 P-7 G-5 G-5 U-5 P-8 G-6 G-6 U-6 P-9 PT-4 PT-4 PT-4 PT-5 PT-5 PT-6 PT-6 PT-6 PT-6	PC-41 TC-4 NT-4 PPD-7 PC-42 TC-5 NT-5 PPD-8 PC-43 TC-6 NT-6 PPD-9 PfL-11 PfL-12 PfL-13 QTPL-1 PfL-13 QTPL-1 PTPL-1 TTPL-1 QTPL-2 PTPL-2 TTPL-2 QTPL-3 PTPL-3 TTPL-3 TTPL-3	10/Sec 1/Sec 5/Sec 5/Sec 10/Sec 1/Sec 5/Sec 5/Sec 5/Sec 5/Sec 5/Sec 5/Sec 1/2 Sec 1/2 Sec 1/2 Sec 1/2 Sec 1/2 Sec 1/2 Sec 1/2 Sec 1/2 Sec 1/2 Sec	M	

# FERRY PREFLIGHT (Continued)

FERRY PR	EFLIGHT	(Continued)				EXPECTED
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
			<u>, , , , , , , , , , , , , , , , , , , </u>			
Con	mand tur	bofan #1 to s	start.			
Act	ivate tu	rbofan Ground	l Start GSE.			
The	e engine	controller co	mmands and verif:	les:		
F.P.	116	FCA-1	LFIVA/B-1	1	Ş	Open
		FCA-1	NVDVP-1	[		
		FCA-1	PDVDVP-1			
ł		FCA-1	LCPRV-1	Į		Open
		FH-1	VFH-1			28 VDC
		FH-1	IFH-1			
		IGN-1	VIIA/B-1			28 VDC
		IGN-1	III-1			Pulses
		LA-1	PLPD-1			
		LA-1	PSPD-1			
Ŀ	1	LA-1	TSPD-1			
Y	Y	LA-1	QLO-1	V	¥	
F.P.	116	FM <b>-1</b>	FfF-1	1	S	
Whe	en:					
F.P.	117	TF <b>-1</b>	NHPT-1	100/Sec	С	Nx
The	e engine	controller co	mmands and verifi	les:		
F.P.	118	FCA-1	LSPV-1	1	S	Open
A/B	B E.C1	verifies comb	ustion by checkin	ıg:		
F.P.	119	FD-1	FLB-1	A.R.	S	On
E.C	1 comme	ences to moni	tor the following	g for gas pat	h analysi	Ls:
F.P.	120	TF <b>-1</b>	PFI-1	100/Sec	С	
			TIA-1		Ĩ	
			NF-1			
	ł		NHPT-1			
			FfF-1			
			PHPT-1			
	,		THPT-1			
			PED-1			
			TED-1 TLPTD-1			
4	4	4		4	4	
¥ F.P.	<b>▼</b> 120	▼ TF-1	TCI-1 PDVDVP-1	<b>y</b> 100/Sec	V C	
					-	
AĽ	sceady-St	ace thrust,	the engine contro	etter command	s and ver	TITLES!
F.P.	121	IGN #1	III-1	1	S	0

•

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTEI VALUE
) <u>ज</u>	1 com	menses to mon:	itor+			
<b>*</b> *				,		
F.P.	122	LA-1	QL0-1	5/Sec	М	
		LA-1	PLPD-1	5/Sec	l l	
		LA-1	PSPD-1	5/Sec		
		LA-1	TSPD-1	5/Sec		
		LA-1	PG-1	5/Sec		
	L	FCA-1	IFH-1	1/Sec	1	
Y	<b>V</b>	COMP-1	FIC-1	1/Sec	Y	
	~	bofan 2 to si mands and ve:	tart. Activate ti rifies:	ne turbofan G	Fround St.	art GSE
F.P.	123	FCA-2	LFIVA/B-2	1	S	Open
		FCA-2	NVDVP-2			
		FCA-2	PDVDVP-2			-
		FCA-2	LCPRV-2	}	1	Open
		FH-2	VFH-2			28 VDC
1		FH-2	IFH-2			

<b>♥</b> F.P.	¥ 123	LA-2 FM-2	QLO-2 FfF-2	¥ 1	¥ s	
Whe	en:					
F.P.	124	TF-2	NHPT-2	100/Sec	С	Nx
en 1				~ •		

VIIA/B-2

III-2

PLPD-2

PSPD-2

TSPD-2

28 VDC

Pulses

0n

The engine controller commands and verifies:

LSPV-2 F.P. 125 FCA-2 1 S Open

E.C.-2 verifies combustion by checking:

IGN #2

IGN #2

LA-2

LA-2

LA-2

F.P. 12	.6 FD-2	FLB-2	A.R.	S	
---------	---------	-------	------	---	--

E.C.-2 commences to monitor the following for gas path analysis:

F.P.	127	TE-2	PFI-2	100/Sec	С
I			TIA-2		
	ł		NF-2		
			NHPT-2		1
Í	1		FfF-2		
			PHPT-2		
Í	1	ſ	THPT-2		1
			PED-2		
ļ	1		TED-2		
			TLPTD-2		1
	4	4	TCI-2		
F.P.	127	TF-2	PDVDVP-2	100/Sec	ć

,

ERRY PR	EFLIGHT	(Continued)				D-23
PHASE	STEP .		MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
At	steady-si	tate thrust,	E.C2 commands a	and verifies:		
F.P.	128	IGN. ∦2	III-2	1	S	0
E.C	2 Comm	encés to moni	tor:			
F.P.	129	LA-2 LA-2 LA-2 LA-2	QLO-2 PLPD-2 PSPD-2 TSPD-2	5/Sec	м 	
		LA-2	PG-2	5/Sec		
₩ N	120	ECA-2	IFH-2	1/Sec	Y	
F.P.	129	COMP-2	FIC-2	1/Sec	М	Off
Com	mand Tur	bofan 3 to st	art, activate Gro	ound Start GS	Ε.	
E.C	3 comm	ands and veri	fies:			
F.P.	130	FCA-3 FCA-3 FCA-3 FCA-3	LFIVA/B-3 NVDVP-3 PDVDVP-3 LCPRV-3	1	S	Open Open
		FH-3	VFH-3			28 VDC
		FH-3	IFH-3			
		IGN. #3 IGN. #3	VIIA/B-3 III-3			28 VDC
		LA-3	PLPD-3			Pulses
		LA-3	PSPD-3			÷
		LA-3	TSPD-3			
Ŷ	<b>V</b>	LA-3	QLO-3	4	<b>V</b>	
F.P.	130	FM-3	FfF-3	i	S	
Whe	n:					
F.P.	131	TF-3	NHPT-3	100/Sec	С	Nx
E.C	3 comm	ands and veri	fies			
F.P.	1 <b>3</b> 2	FCA-2	LSPV-3	1	S	Open
E.C	3 veri:	fies combusti	on by checking:			
F.P.	133	FD-1	FLB-3	A.R.	S	On
			tor the following			
240						19 i
		TF-3	PFI-3	100/Sec	C	
F.P.	134		TIA-3 NF-3 NHPT-3			
	134		NF-3 NHPT-3 FfF-3			
			NF-3 NHPT-3 FfF-3 PHPT-3			
			NF-3 NHPT-3 FfF-3			

FERRY PR	EFLIGHT	(Continued)				
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
F.F. ▼	134	TF-3	TLPTD-3 TCI-3	100/Sec	Ç. ▼	
F.P.	134	TF-3	PDVDVP-3	100/Sec	C	
At	steady-s	tate thrust,	E.C.#3 commands a	nd verifies:		
F.P.	1.35	IGN. #3	III-3	l	S	0
E.C	. #3 con	mences to mor	nitor:			
F.P.	136	LA-3 LA-3 LA-3 LA-3 LA-3	QLO-3 PLPD-3 PSPD-3 TSPD-3 PG-3	5/Sec	M	
<b>V</b>	¥ 136	FCA-3 COMP-3	IFH-3 FIC-3	1/Sec	¥ M	055
F.P.			ect Ground Start G	1/Sec SE	£1	Off

138 Verify vehicle power buses.

Execute power transfer.

139 Disconnect Ground Power GSE.

D-24

EXPECTED VALUE

USE

	Make the	following che	cks while at crui	se altitude:		
F.F.	. 1	V-1	LOIV-1	1	c	61 1
r • r •	• <u>•</u>	V-1 V-2	LOIV-2	L.	S I	Closed
ļ		V-2 V-3	LOVV-1			
		V-4	LOVV-2			
1		V-4 V-5	LOVV-2			
1		V-6	LOVV-4			
1		V-7	LOFV-1			
	1	V-8	LFIV-1			
		V-9	LFIV-2			
		v-10	LFTVV-1			
		V-11	LFTVV-2			
		V-12	LFTVV-3			
		V-13	LFTVV-4			
		<b>V-1</b> 4	LFFV-1			
		V-19	LOPCV-1			
		V-20	LOPCV-2			
		V-21	LFPCV-1			
		<b>V-22</b>	LFPCV-2			
		V-23	LOIV-3			
		V-24	LOTVV-1			
		<b>V-2</b> 5	LOTVV-2			
		V-26	LFIV-3			
ł		V-27	LFIV-4			
		V-28	LFTVV-5			
		V-29	LFTVV-6			¥
		V-30	LFTVV-7			Closed
		V-31	LFTVV-8			Closed
		V-32	LOPV-1			Open
		V-33	LOPV-2			-
		V-34	LFPV-1			4
		V-35	LFPV-2			Open
Ì	1	C-1	LOFC-1			Closed
	i	C-2	LHC-1,2			
		C-3	LFTVC-1			
İ		C-4	LHC-3,4			
		C-5	LFFC-1			
1	L	C-6	LHC-5,6	1	1	
Ţ	V	C-8	LHC-7,8	<b>V</b>	V	4
F.F.	1	C-11	LFVC-1	1	S	Closed
ī	Monitor:					
F.F.	2	T-1	PoT-1	1/min	М	19 PSIA
1		T-2	PoT-2	1/min	1	19 PSIA
		<b>T</b> −3	PfT-1	1/min		19 PSIA
		L-17	PoL-2	1/min		
ļ		L-20	PfL-1	1/min		
~		L-21	PfL-4	1/min		
		L-17	ToL-2	1/min	V	
F.F.	2	L-20	TfL-1	1/min	М	

						EXPECTED
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
F.F.	2	L-21	TfL-4	1/min.	м	
1	1	т-4	ToT-3	1/10 sec.	ī	
		T-5	TfT-2	1/10 sec.		
		<b>T-6</b>	TfT-3	1/10 sec.		
Í	1	T-4	QoT-7	1/sec.	Í	Until Uncover
		T-4	QoT-8			1
{		T-4	QoT-9			
	(	T-5	Qfr-4			
		T-5	QfT+5			1
		T-5	QfT=6			
		T <b>-</b> 6	QfT-7			
<b>▼</b>	. ♥ .	T-6	QfT-8	Ÿ	<b>V</b>	*
F.F.	2	T-6	QfT-9	1/sec.	M	Until Uncove
Mor	nitor:					
F.F.	3	T-8	Рот-б	1/sec	м,с	1500 PSL
		T-8	ToT-4		M	
		T-9	PoT-7		м, с	1500 PSL
		T-9	ToT-5	ļ	M	
		T-10	PfT-6		M,C	1500 PSL
1	Ţ	<b>T-10</b>	TfT-4		M	
¥	Y	T-11	PfT-7	<b>▼</b>	M,C	1500 PSL
F.F.	3	T-11	TfT-5	1/sec	М	

•

Compute and display accumulator quantity on request.

Continue to monitor:

PT-2       NS-2       1/2 sec         G-3       PC-40       1/sec         G-3       TC-3       1/sec         U-3       NT-3       2/sec         PT-3       QPTL-3       1/2 sec	F。F。	4	G-1 G-1 U-1 PT-1 PT-1 PT-1 G-2 G-2 U-2 PT-2 PT-2 PT-2 PT-2	PC-38 TC-1 NT-1 QPTL-1 PPTL-1 TPTL-1 NS-1 PC-39 TC-2 NT-2 QPTL-2 PPTL-2 TPTL-2	1/sec 1/sec 2/sec <u>1/2</u> sec 1/2 sec 1/2 sec 1/2 sec 1/sec 2/sec 1/2 sec 1/2 sec 1/2 sec 1/2 sec 1/2 sec 1/2 sec	M
$\begin{array}{c cccc} & \text{PT-3} & \text{PPTL-3} & \frac{1/2 \text{ sec}}{1/2 \text{ sec}} \\ & \text{PT-3} & \text{TPTL-3} & \frac{1/2 \text{ sec}}{1/2 \text{ sec}} \end{array}$			G-2 G-2 U-2 PT-2 PT-2 PT-2 PT-2 G-3 G-3 U-3 PT-3 PT-3	PC-39 TC-2 NT-2 QPTL-2 PPTL-2 TPTL-2 NS-2 PC-40 TC-3 NT-3 QPTL-3 PFTL-3	<pre>1/sec 1/sec 2/sec 1/2 sec 1/2 sec 1/2 sec 1/2 sec 1/sec 1/sec 2/sec 1/2 sec 1/2 sec 1/2 sec 1/2 sec</pre>	

D-26

~

FERRY FLIGHT (Continued)

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Ţ	Vhen:					
F.F.	5	T-8	PoT-6	1/sec	C	1500- <u>X</u> PSIA
(	Or:					
F.F.	6	T-9	PoT-7	1/sec	C	1500- <u>x</u> psia
,	Verify:					
F.F.	7 ♥ 7	V-52 V-53	LLIV-1 LLIV-2	1 •	S ♥ S	Open
F.F.	<b>v</b> 7	V-54	LLIV-3	1	S	Open
	Command a	nd verify:				
F.F.	8	V-52 V-53	LPSV <b>-1</b> LPSV-2	1 V	S	Open
F.F.	8	V-54	LPSV-3	1	¥ S	Open
	Engage th	e clutches to	P-1, P-2, P-3.			
	During GO	2 resupply mo	nitor the followin	g additional	paramet	ersi

F.F.	9 I	P-1 H-4	PPD-1 THE-1	2/sec 1/2 sec	M I	1500 PSIA
		H-4	PHEO-1	1/2 sec		15 <b>00</b> PSIA
		P-2	PPD-2	2/sec		1500 PSIA
		H5	THE-2	1/2 sec		
		H-5	PHEO-2	1/2 sec		1500 PSIA
		P-3	PPD-3	2/sec		1500 PSIA
V	¥	н-6	THE-3	1/2 sec	4	
F.F.	9	H-6	PHEO-3	1/2 sec	М	1500 PSIA
Whe	en:			-	•	
F.F.	10	<b>T-8</b>	PoT-6	1/sec	C	1500 PSIA
F.F.	10	T-9	PoT-7	1/sec	С	1500 PSIA

Disengage clutches to P-1, P-2, and P-3.

Discontinue Resupply monitors.

Command and verify:

۲

F.F.	11	V-52	LPSV-1	1	Ş	Closed
	4	´ V−53	LPSV-2	<b>*</b>	<b>V</b>	4
F.F.	11	V-54	LPSV-3	1	Ś	Closed

FERRY FI	LIGHT (C	ontinued)				EXPECTED
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
Whe	en:					
F.F.	12	T-10	PfT-6	1/sec	C	1500-Z-PSIA
Or	:			,		
F.F.	13	T-11	PfT-7	l/sec	С	1500-Z-PSIA
Vei	rify:					
F.F.	14	V-55	LFIV-1	1 ★	S	Open
F.F.	14	V-56 V-57	LFIV-2 LFIV-3	<b>y</b> 1	S- ▼ S	Open
Cor	mand and	verify:				
F.F	15 ¥	V-55	LPSV-4	1 ¥	S	Open
F.F.	15	V-56 V-57	LPSV-5 LPSV-6	¥ 1	S S	Open

Engage clutches to P-4, P-5, and P-6.

During GH2 resupply monitor the following additional parameters:

F.F.	16 	Р-4 Н-7	PPD-4 THE-4	2 <b>/sec</b> 1/2 sec	м I	1500 PSIA
		H-7	PHEO-4	- 1/2 sec		-1500 PSIA
		P-5	PPD-5	2/sec		1500 PSIA
		H-8	THE-5	1/2 sec		
		H <b>-8</b>	PHEO-5	1/2 sec		1500 PSIA
		P-6	PPD-6	2/sec		1500 PSIA
<b>V</b>	<b>†</b>	H-9	THE-6	1/2 sec	<b>V</b>	
F.F.	16	H-9	PHEO-6	1/2 sec	М	1500 PSIA
Whe	en:					
F.F.	17	T-10	PfT-6	1/sec	C	1500 PSIA
F.F.	17	T <b>-11</b>	PfT-7	1/sec	C	<b>1500</b> PSIA

Disengage clutches to P-4, P-5, and P-6.

Discontinue resupply monitors.

Command and verify:

F.F.	1,8	<b>V</b> ≁55	LPSV-4	1	Ş	Closed
<b>V</b>	<b>V</b>	V <b>-</b> 56	LPSV-5			4
F.F.	18	V-57	LPSV-6	1	Ś	. Closed

FERRY FLIGHT (Continued)
--------------------------

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTEI VALUE
Co	ntinue t	o monitor:		4 7_		
F.F.	19	G <del>~</del> 4	PC-41	10/sec	М	
1	ī	G <b>-</b> 4	TC-4	1/sec	1	
		U-4	NT-4	5/sec		
		₽ <b>-</b> 7	PPD-7	5/sec		
		G-5	PC-42	10/sec		
		G-5	TC-5	1/sec		
		U-5	NT-5	5/sec		
		P-8	PPD-8	5/sec		
		G-6	PC-43	10/sec		
		G-6	TC-6	1/sec		
		U-6	NT-6	5/sec		
		P-9	PPD-9	5/sec		
		T-)	PfL-11	5/sec		
			PfL-12	5/sec	ł	
			PfL-13	5/sec		
		PT-4	QTPL~1			
		PT-4	PTPL-1	1/2 sec		
		PT-4	TTPL-1			
		PT-5	QTPL-2	ł		
		PT-5	PTPL-2			
		PT-5	TTPL-2			
	[	PT-6				
		F1=0	QTPL-3		1	
4	4		-	4	±	
∳ F.F.	<b>¥</b> 19	PT-6 PT-6	PTPL-3 TTPL-3	<b>∲</b> 1/2 sec	<b>∀</b> M	
		РТ-6 РТ-6	PTPL-3	♥ 1/2 sec alysis:	<b>♥</b> M	
		РТ-6 РТ-6	PTPL-3 TTPL-3 rform gas path and PFI-1		¥ м с	
E.(	C. #1 con	PT-6 PT-6 atinues to per	PTPL-3 TTPL-3 form gas path and PFI-1 TIA-1	alysis:		
E.(	C. #1 con	PT-6 PT-6 atinues to per	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1	alysis:		
E.(	C. #1 con	PT-6 PT-6 atinues to per	PTPL-3 TTPL-3 form gas path and PFI-1 TIA-1 NF-1 NHPT-1	alysis:		
E.(	C. #1 con	PT-6 PT-6 atinues to per	PTPL-3 TTPL-3 form gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1	alysis:		
E.(	C. #1 con	PT-6 PT-6 atinues to per	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1	alysis:		
E.(	C. #1 con	PT-6 PT-6 atinues to per	PTPL-3 TTPL-3 form gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1 THPT-1 THPT-1	alysis:		
E.(	C. #1 con	PT-6 PT-6 atinues to per	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1 THPT-1 PED-1	alysis:		
E.(	C. #1 con	PT-6 PT-6 atinues to per	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1 THPT-1 PED-1 TED-1	alysis:		
E.(	C. #1 con	PT-6 PT-6 atinues to per	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1 THPT-1 THPT-1 PED-1 TED-1 TLPTD-1	alysis:		
E.(	C. #1 con 20	PT-6 PT-6 ntinues to per TF-1	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1 THPT-1 PED-1 TED-1	alysis: 100/sec		
E.(	C. #1 con	PT-6 PT-6 atinues to per	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1 THPT-1 THPT-1 PED-1 TED-1 TLPTD-1	alysis:		
E.( F.F. F.F.	C. #1 con	PT-6 PT-6 ntinues to per TF-1	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1 THPT-1 THPT-1 PED-1 TED-1 TLPTD-1 TCI-1 PDVDVP-1	alysis: 100/sec	C	
E.( F.F. F.F.	C. #1 con	PT-6 PT-6 ntinues to per TF-1 TF-1	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1 THPT-1 THPT-1 PED-1 TED-1 TLPTD-1 TCI-1 PDVDVP-1	alysis: 100/sec	C	
E.( F.F. F.F. E.(	C. #1 con	PT-6 PT-6 ntinues to per TF-1 TF-1 TF-1	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NHPT-1 FfF-1 PHPT-1 THPT-1 THPT-1 TED-1 TLPTD-1 TCI-1 PDVDVP-1	loo/sec	C	
E.( F.F. F.F. E.(	C. #1 con	PT-6 PT-6 ntinues to per TF-1 TF-1 TF-1	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1 THPT-1 THPT-1 TED-1 TLPTD-1 TCI-1 PDVDVP-1 attor: QLO-1	loo/sec	C	
E.( F.F. F.F. E.(	C. #1 con	PT-6 PT-6 ntinues to per TF-1 TF-1 TF-1	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1 THPT-1 THPT-1 TED-1 TLPTD-1 TCI-1 PDVDVP-1 Attor: QLO-1 PLPD-1	loo/sec	C	
E.( F.F. F.F. E.(	C. #1 con	PT-6 PT-6 ntinues to per TF-1 TF-1 TF-1	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1 THPT-1 THPT-1 TED-1 TED-1 TCI-1 PDVDVP-1 attor: QLO-1 PLPD-1 PSPD-1 TSPD-1	100/sec 100/sec 100/sec 5/sec	C	
E.( F.F. F.F. E.(	C. #1 con	PT-6 PT-6 ntinues to per TF-1 TF-1 TF-1 ntinues to mon LA-1	PTPL-3 TTPL-3 rform gas path and PFI-1 TIA-1 NF-1 NHPT-1 FfF-1 PHPT-1 THPT-1 THPT-1 TED-1 TLPTD-1 TCI-1 PDVDVP-1 attor: QLO-1 PLPD-1 PSPD-1	loo/sec	C	

	<u>IGHT</u> (Co.					EXPECT
HASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
E.C	;. #2 con	tinues to per	rform gas path and	lysis:		r
F.F.	22	TF-2	PFI-2 TIA-2 NF-2 NHPT-2 FfF-2 PHPT-2	100/sec	C	
			THPT-2 PED-2 TED-2 TLPTD-2		,	
₹ F.F.	¥ 22	TF-2	TCI-2 PDVDVP-2	100/sec	C	
E.C	C. #2 con	tinues to mor	nitor:			
F.F.	23	LA-2	QLO-2 PLPD-2 PSPD-2 TSPD-2	5/sec	M	
		LA-2	PG+2	5/sec	ļ	
¥ F.F.	23	FCA-2 COMP-2	IFH-2 FIC-2	l/sec l/sec	M	off
E.(	C. #3 con	tinues to per	rform gas path and	alysis:		
F.F.	24	TF-3	PFI-3 TIA-3 NF-3 NHPT-3	100/sec	c	
			FfF-3 PHPT-3 THPT-3 PED-3			
			TED-3 TLPTD-3			
¥	¥	<b>V</b>	TCI-3	<b>∀</b> 100/sec	♥ C	
F.F.	24	TF-3	PDVDVP-3	100/sec	U	
E.,		tinues to mo		<u>.</u>		
F.F.	25	LA-3	QLO-3 PLPD-3 PSPD-3 TSPD-3	5/sec	M	
	ł			,		
		LA-3 FCA-3	PG-3 IFH-3	5/sec 1/sec		

### FERRY APPROACH & LANDING

- 1. Continue to monitor as in steps 2, 3, 4, 19, 20, 21, 22, 23, 24, and 25 of Ferry Flight.
- 2. After landing, taxi to revetment area.

Command & verify:

COII	mand & v	eriry:				EXPECTED
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
FAL	3 	V-59 V-58 V-61 V-60 V-63 V-62	LPSV-7 LFIV-4 LPSV-8 LFIV-5 LPSV-9 LFIV-6	1	S S	Closed Closed
		l verify:				-
-		-		-	<u> </u>	or the
FAL 💙 FAL	4 ▼ 4	G-4 G-5 G-6	VII-41 VII-42 VII-43	1 ¥ 1	S T S	OVDC
Con	mand and	l verify:				
		GOV-4 GOV-4 GFV-4 GFV-4 GOV-5 GOV-5 GFV-5 GOV-6 GOV-6 GFV-6 GFV-6 GFV-6	LGOV-4 LGOV-41 LGFV-4 LGFV-41 LGOV-5 LGOV-51 LGFV-5 LGFV-51 LGOV-61 LGFV-6 LGFV-61 steps 2, 3, and 1 ring.	1 , 1 9 of Ferry F	S light.	Closed Closed
FAL	б	FD-1	FLB-1	10/sec	м,С	On
E.	C1 Che	cks				
FAL	7	TF-1	TTB-1	25/sec	М	
Fo	r TBD Se	conds				
Wh	en					
FAL	8		PfL-11	5/sec	С	< TBD

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTE VALUE
E.C	1 comm	ands and ver:	lfies T.F1 shut	lown		
FAL	9 	FCA-1 FCA-1 FH-1	LFIV A/B-1 LCPRV-1 VFH-1		S	Closed Closed OVDC
FAL	9	FCA-1	LSPV-1	i	S	Closed
A11	engine	assemblies a:	re stopped.			
Whe	n					
FAL	10	FD-1	FLB-1	10/sec	C	Off
Con	mand and	verify:				
FAL Í	11	EFV-1	LEFV-1	1	S	Closed
4	4	EFV-2 EFV-3	LEFV-2 LEFV-3	L L		4
FAL	11	EFV-4	LEFV-4	1	S	<b>∀</b> Closed
		ontinues mon: proach and La	itoring steps 20 a anding.	nd 21 of Fern	ry Flight	t and step
of E.C	Ferry App	proach and La ences monitor	anding.			-
of E.C FAL	Ferry App 2 commo 12	proach and La ences monitor FD-2	anding.	nd 21 of Fern 10/sec	ry Flight M,C	t and step On
of E.C FAL E.C	Ferry App 2 commo 12 2 check	proach and La ences monitor FD-2 ks	anding. ring FLB-2	10/sec	м,с	-
of E.C FAL E.C FAL	Ferry App 2 commo 12 2 check 13	proach and La ences monitor FD-2 ks TF-2	anding.			-
of E.C FAL E.C FAL FAL	Ferry App 2 commu 12 2 check 13 TBD seco	proach and La ences monitor FD-2 ks TF-2	anding. ring FLB-2	10/sec	м,с	-
of E.C FAL E.C FAL	Ferry App 2 commu 12 2 check 13 TBD seco	proach and La ences monitor FD-2 ks TF-2	anding. ring FLB-2 TTB-2	10/sec	м,с	-
of E.C FAL FAL For Whe FAL	Ferry App 2 common 12 2 check 13 TBD seconn 14	proach and La ences monitor FD-2 ks TF-2 onds.	anding. ring FLB-2	10/sec 25/sec 5/sec	м,С	On
of E.C FAL FAL For Whe FAL	Ferry App 2 common 12 2 check 13 TBD seconn 14	proach and La ences monitor FD-2 ks TF-2 onds. ands and vert FCA-2	ring FLB-2 TTB-2 PfL-12	10/sec 25/sec 5/sec	м,С	On TBD Closed
of E.C FAL FAL FAL FAL FAL E.C	Ferry App 2 commu 12 2 check 13 TBD secon 14 2 comma	proach and La ences monitor FD-2 ks TF-2 onds. ands and vers FCA-2 FCA-2	anding. ring FLB-2 TTB-2 PfL-12 Lfies T.F2 shutd LFIV A/B-2 LCPRV-2	10/sec 25/sec 5/sec	м,С м С	On TBD Closed Closed
of E.C FAL FAL FAL FAL FAL E.C	Ferry App 2 commu 12 2 check 13 TBD secon 14 2 comma	proach and La ences monitor FD-2 ks TF-2 onds. ands and vert FCA-2	anding. ring FLB-2 TTB-2 PfL-12 Lfies T.F2 shutd LFIV A/B-2	10/sec 25/sec 5/sec	м,С м С	On TBD Closed Closed OVDC
of E.C FAL FAL FAL FAL E.C FAL E.C	Ferry App -2 common 12 -2 chech 13 TBD seconn 14 -2 comma 15 15	proach and La ences monitor FD-2 ks TF-2 onds. ands and vert FCA-2 FCA-2 FH-2	anding. ring FLB-2 TTB-2 PfL-12 Lfies T.F2 shutd LFIV A/B-2 LCPRV-2 VFH-2 LSPV-2	10/sec 25/sec 5/sec	M,C M C	On TBD Closed Closed
of E.C FAL FAL FAL FAL E.C FAL E.C	Ferry App 2 common 12 2 chech 13 TBD seconn 14 2 common 15 15 engine a	proach and La ences monitor FD-2 ks TF-2 onds. ands and ver: FCA-2 FCA-2 FH-2 FCA-2 FH-2 FCA-2	anding. ring FLB-2 TTB-2 PfL-12 Lfies T.F2 shutd LFIV A/B-2 LCPRV-2 VFH-2 LSPV-2	10/sec 25/sec 5/sec	M,C M C	On TBD Closed Closed OVDC

FERR	Y APPROA	<u>АСН &amp; І</u>	ANDING (Cont	inued)			
PHAS	<u>e st</u> e	<u> 2P P</u>	LEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
l	Command	and ve	erify:			•	
FAL FAL		17 17	EFV-5 EFV-6 EFV-7 EFV-8	LEFV-5 LEFV-6 LEFV-7 LEFV-8	1     1	S S	Closed
			tinues monito: n and Landing	ring steps 22 and •	l 23 or Ferry	y Flight a	nd 12 of
•	E.C3 (	commen	es monitoring	B			
FAL		18	FD-3	FLB-3	10/sec	M,C	On
	E.C3 (	checks					
FAL	:	19	FT-Ś	TTB~3	25/sec	М	
	for TBD	second	ls				
	When						
FAL	2	20		PfL-13	5/sec	С	<b>&lt;</b> TBD
	E.C3 (	comman	ls and verific	es T.F.~3 shutdow	m.		
FAL V FAL		21               	FCA-3 FCA-3 FH-3 FCA-3	LFIV A/B-3 LCPRV-3 VFH-3 LSPV-3	1     	S         	Closed Closed OVDC Closed
	A11 engi	ine as	semblies are a	stopped.			
	When						
FAL	2	22	FD-3	FLB-3	10/sec	C	Off
	Command	and ve	erify:				
FAL FAL	,	23   23	EFV-9 EFV-10 EFV-11 EFV-12	LEFV-9 LEFV-10 LEFV-11 LEFV-12	1 V 1	S I ▼ S	Closed Closed

E.C.-3 discontinues monitoring steps 24 and 25 of Ferry Flight and 18 of Ferry Approach and Landing.

.

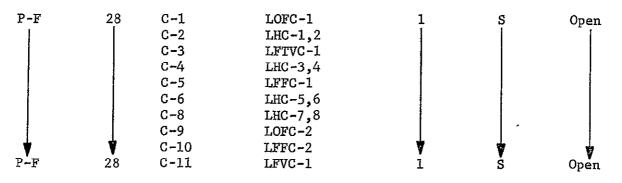
### POSTFLIGHT-FERRY

- 1. Tow the Orbiter into revetment. Chock and tie-down.
- 2. Connect Ground Power GSE.
- 3. Execute power transfer to Ground Power GSE.
- 4. Continue to monitor step 4 of Ferry Flight until the APU shutdown command is received.

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED
			tdown command		0014	VALUE
Co	ommand and	verify:				
P⊷F	5	G-1	VII-38	1	S	OVDC
Co	ommand and	verify:				
P-F	6	GOV-1	LGOV-1	1	S	Closed
P-F	6	G-1	PC-38	1	S	
Co	ommand and	verify:				
P-F	7	GFV-1	LGFV-1	1	S	Closed
P-F	7	G-1	PC-38	1	S	CTOSED
Co	ommand and	verify:				
₽ <b>~</b> F	8	G-1	LIOV-38	1	Š	Closed
P-F	· 8	G <b>-1</b>	PC-38	1	S	oloblu
Co	ommand and	verify:				
P-F	9	G-1	LIFV-38	1	S	Closed
P-F	9	G-1	PC-38	1	S	010004
Di	.sengage t	he clutch to	APU-1.			
Co	mmand and	verify:	-			
P-F	îo	GOV-1	LGOV-1I	1	S	Closed
1		GFV-1	LGFV-11	Ī	Ĭ	CIOSEd
<b>∀</b> Р-F	♥ 10	V-52 V-55	LLIV-1		¥	
r-r	10	v = 55	LFIV-1	1	ន	Closed
Со	mmand and	verify:				
₽ <b>-</b> F	11	G-2	VII-39	1	S	OVDC

,

POSTFLIGHT-FERRY (Continued)


POSTFLI	GHT-FERRY	(Continued	1)						
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE			
Con	mand and	verify:							
P-F	12	GOV-2	LGOV-2	1	S	Closed			
P-F	12	G-2	PC-39	ī	S				
Com	mand and	verify:							
P-F	13	GFV-2	LGFV-2	1	S	Closed			
P-F	13	G-2	PC-39	î	S,	0100CU			
Com	mand and	verify:							
P-F	14	G-2	LIOV-39	1	S	Closed			
P-F	14	G-2	PC-39	ī	S	010864			
Cor	mand and	verify:		<u>_</u>					
P-F	15	G <b>-</b> 2	LIFV-39	1	S	Closed			
P-F	15	G~2	PC-39	ĩ	S	Ologeu			
Dis	engage th	ne clutch to	APU-2						
Con	mand and	verify:							
P-F	16	GOV-2	LGOV-2I	1	S	Closed			
	ļ	GFV-2	LGFV-21	L					
₽~F	<b>¥</b> 16	V-53 V-56	LLIV-2	7	Ý	V I			
r - r	10	v-00	LFIV-2	1	S	Closed			
Com	mand and	verify:							
P-F	17	G-3	VII-40	1	S	OVDC			
Con	mand and	verify:							
P-F	18	GOV-3	LGOV-3	1	S	Closed			
P⊸F	18	G-3	PC-40	1	S	. · · · ·			
Con	Command and verify:								
P-F	19	GFV-3 ´	LGFV-3	1	S	Closed			
P-F	19	G-3	PG-40	ī	S				
Con	mand and	verify:							
P-F	20	G-3	LIOV-40	1	S	Closed			
P-F	20	G-3	PC-40	1	S	OTOBER			

•

\$

POSTFLI	POSTFLIGHT-FERRY (Continued)							
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED		
Cor	mand and	verify:						
P-F	21	G-3	LIFV-40	1	S	Closed		
P-F	21	G <b>~</b> 3	PC-40	1	S			
Disengage the clutch to APU-3.								
Com	mand and	verify:						
P-F	22	GOV-3	LGOV-3I	1	s	Closed		
	Ļ	GFV-3 V-54	LGFV-3I	1	1	1		
P-F	22	v≠54 V−57	LLIV <b>-3</b> LFIV-3	▼ 1	S	Closed		
23. Perform the checks of step la of Ferry Flight.								
24. Tak	e a stati	us sample of	the parameters of	Estep 1b of	Ferry Fli	lght		
Che	ck:							
P-F	25		PoL-8	1	Ş	19 PSIA		
1			PoL-9		1	Ţ		
P-F	25		PfL-9 PfL-10	1	S S	▼ 19 PSIA		
26. Remove tape and hard copy, if any. Debrief crew as required. Review in-flight data and fault-isolation output.								
27. Ins	27. Inspect all subsystems for mechanical disorders.							
PURGE		-						
Con	nect Drai	in and Purce	GSE and verify st	atus of the	following	couplings:		

Connect Drain and Purge GSE and verify status of the following couplings:



Also connect purge GSE to the main oxidizer and on-orbit oxidizer tank vents.

EXPECTED										
PHAS	SE STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE				
	Command and	verify:								
		•••••								
P-F	29	<b>V−3</b> 2	LOPV-1	1	S	Closed				
	Ĩ	₹7-33	LOPV-2	1	[	1				
<b></b>		<b>V-34</b>	LFPV-1	*	4	4				
P-F	29	V-35	LFPV-2	1	S	Closed				
	Command and verify:									
P-F	30	V-70	LFFV-2	1	S	Open				
	When GSE indicates P = ambient at C-10, repressure with helium thru C-10 until									
P-F	31	т-10	PfT-6	1/sec	M,C	1500 PSIA				
P-F		T-11	PfT-7	1/sec	M,C	1500 PSIA				
	02	~	/	27 000	,					
	Command GSE to hold.									
	Command and	verify:								
P-F	31a	V-70	LFFV-2	1	S	Closed				
	Command and	verify:								
P-F	32	V-14	LFFV-1	1	S	Open				
	Program de la	T-2 witch hal	ium thru C-1							
	rressurize .	r-2 wren uer	ium thru C-4.			¥				
	When:									
P-F	33	T-3	PfT-1	1/sec	м,С	. 35 PSIA				
	Command and	verify:								
P-F	34	V-8	T T T T T T 1	1	c	Onen				
r-r	54	V-8 V-9	LFIV-1 LFIV-2	т 1	S I	Open 1				
		V-26	LFIV-3	1	ļ					
	1	V-27	LFIV-4	4		L				
<b>. .</b>	<b>V</b>	V-34	LFPV-1	¥ 3	<b>V</b>	<b>V</b>				
P-F	34	V-35	LFPV-2	Ĺ	S,	Open				
	After 0 min	utod common	d CSF to open wert	t on C-8 for	1 minuto					
			d GSE to open vent through main engin							
	Command and	movi for								

Command and verify:

POSTFLIGHT-FERRY (Continued)

P-F	35	V-28	LFTVV-5	1	S	Open
	]	V-29	LFTVV-6			
<b>₩</b>	*	V-30	LFTVV-7	♥	*	4
P-F	35	V-31	LFTVV-8	1	Ś	Open

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTEI VALUE
Pu	rge out t	hrough C-11 fo	or 1 minute.			
Co	mmand and	verify:				
P-F	36	V-34	LFPV-1	1	S	Closed
P-F	36	V-35	LFPV-2	1	S	Closed
St	op helium	purge from C-	-3.			
Co	mmand and	verify:				
P-F	37	V-10	LFTVV-1	1	S	Open
		V-11	LFTVV-2	ļ	1	1
P-F	<b>♥</b> 37	V-12 V-13	LFTVV-3	¥	*	
Re	verse pur	ge from C-5 ou	LFTVV-4 it_through C-3 ar	- nd C-11 for 1	S .0 minute:	Open s. During
th	is time co	onfigure the m	ain engines and	command and	verify:	
P-F	38	V-21	LFPCV-1	1	S	Open
P≁F	38	V-22	LFPCV-2	1	S	Open
То	purge the	e H ₂ autogenou	s lines out thro	ough C-3.		
Re	turn the r	nain engines t	o initial condit	ions and com	mand and	verify:
P-F	39	V-21	LFPCV-1	1	S	Closed
P-F	39	V-22	LFPCV-2	1	S	Closed
Re	duce heliu	ım pressure to	20 PSIA and com	mand and ver	ify, in a	sequence:
P-F	40	V-10	LFTVV-1	1	S	Closed
		V-11	LFTVV-2		1	
		~~	T TITTTT O	I		1
		V-12	LFTVV-3		1	
		V-13	lftvv-4			

 V-27
 LFIV-4

 V-14
 LFFV-1

 ▼
 T-3
 PfT-1

 40
 PfL-2

V-26

Command and verify:

P-F

ę

P-F 41 V-44 LOFV-2 1 S Open

LFIV-3

When GSE at C-9 indicates P = ambient, repressurize the C-9 with helium until

1

S

Closed

20 PSIA

20 PSIA

	P⊷F P~F	• –	T-8 T-9	Рот-6 Рот-7	1/sec ⁻ 1/sec		1500 PSIA 1500 PSIA
--	------------	-----	------------	----------------	-----------------------------	--	------------------------

<u>PO 57</u>	FLIGH	T-FERRY	(Continue	1)				
<u>PHA</u>	SE	STEP	ELEMENT	MEA SUREMENT	SAMPLE S	USE	EXPECTED VALUE	
	Comma	nd and	verify:	`				
P-F		43	V44	lofv-2	1	S	Closed	
	Command and verify:							
P-F		44	V-7	LOFV-1	1	S	Open	
	Pressurize T-1 & T-2 through C-6 with helium,							
P≁F P≁F	When:	45 45	T⊷1 T-2	PoT-1 PoT-2	<u>1/se</u> c 1/sec	м, С М, С	35 PSIA 35 PSIA	
	Comma	nd and	verify:					
P-F		46 ₩ 46	V-1 V-2 V-23 V-32 V-33	LOIV-1 LOIV-2 LOIV-3 LOPV-1 LOPV-2	1   1	S ┃ ▼ S	Open Open	
	Purge for 10 minutes. After 5 minutes configure the main engines to purge L-3,4 down through the engines for 3 minutes, then return the engines to initial conditions.							
	After	9 minu	ites Command	and verify:				
P-F P-F		47 47	V-24 V-25	LOTVV-1 LOTVV-2	1 1	S S	Open Open	
	And c	open the	e vent on C-	2 for 1 minute.				
	Comma	und and	verify:					
P-F P-F		48 48	V-32 V-33	LOPV-1 LOPV-2	1 1 1	S S	Closed Closed	
	Terminate purge from C-6.							
	Comma	and and	verify:					
P-F		49 ▼ 49	V-3 V-4 V-5 V-6	LOVV-1 LOVV-2 LOVV-3 LOVV-4	1 ↓ ↓ 1	S ■ S	Open Open	

POSTFLI	GHT-FERRY	(Continued	)			<b>EV DE</b> OUEN
PHA SE	STEP	ELEMENT	MEA SUREMENT	SAMPLES	USE	EXPECTED VALUE
Rev	erse purg	e at 35 PSIA	from C-1 out the	rough the main	oxidizer	vent.
Com	mand and	verify:				
P-F	50	V-19	LOPCV-1	. 1 . 1	S	Open
P-F	50	<b>V−</b> 20	LOPCV-2	1	S	Open
And	configur	e the main e	ngines to purge	the oxidizer a	utogenous	lines.
Com	mand and	verify:				
P-F	51	V-19	LOPCV-1	1	S	Closed

r=r	5Ŧ	V#19	LOPCVEL	T	5	Closed
P-F	51	V-20	LGPCV-2	1	S	Closed

And return the main engines to initial conditions.

Reduce the helium pressure to 20 PSIA and command and verify in sequence:

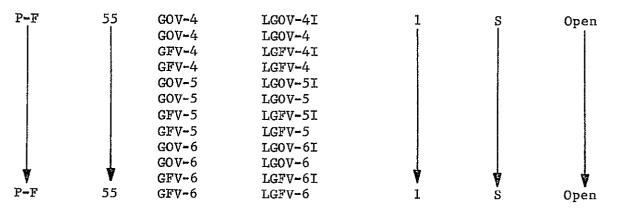
۰.

.

P-F	52	<b>V-</b> 3	LOVV-1	1	S	Closed
ł	1	V-4	LOVV-2			
		V-5	LOVV-3			
		V-6	LOVV-4			
		V-1,	LOIV-1			
		V-2	LOIV-2		ł	
		V-23	LOIV-3			*
		V-7	LOFV-1			Closed
¥	*	T-1	PoT-1	Y	¥	20 PSIA
P−F	52		PoL-1	1	S	20 PSIA

Command GSE to hold.

Command and verify:


P-F	53	GOV-1 GOV-1 GFV-1	LGOV-11 LGOV-1 LGFV-11	1	S	Open
		GFV-1 G-1 G-1	LGFV-1 LIOV-38 LIFV-38			
		GOV-2 GOV-2	LGOV-21 LGOV-2			
		GFV-2 GFV-2	LGFV-2I LGFV-2			
		G-2 G-2	LIOV-39 LIFV-39			
		GOV-3 GOV-3	LGOV-3I LGOV-3 LGEV-3I			
	Ļ	GFV-3 GFV-3 G-3	LGFV-3I LGFV-3 LIOV-40	<b>V</b>	Ļ	
P-F	53	G-3	LIFV-40	1	S	Open

POSTFLIGHT-FERRY (Continued)

						EXPECTED
PHA SE	STEP	ELEMENT	MEASUREMENT	SAMPLE S	USE	VALUE

54. After 2 seconds command and verify all the valves of the previous step closed.

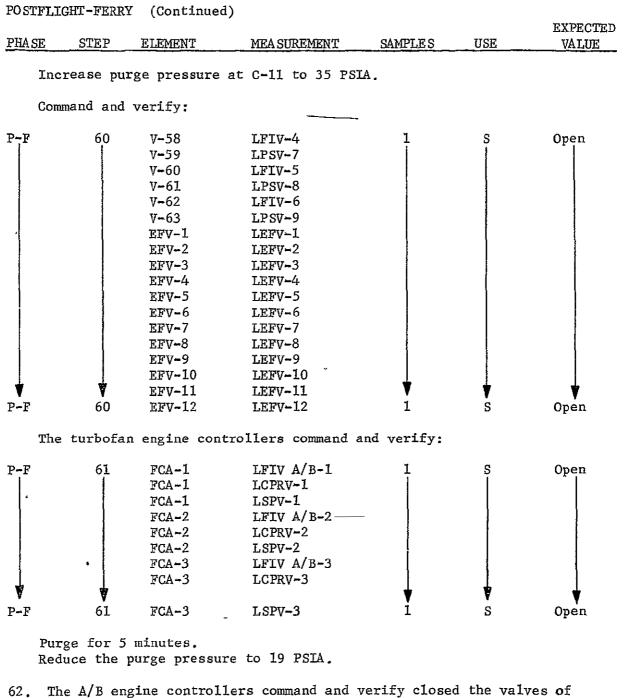
Command and verify:



56. After 2 seconds command and verify all the values of the previous step closed.

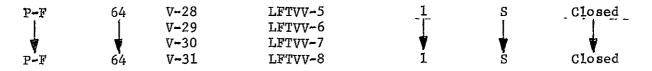
Command and verify:

When GSE at C-10 indicates P = ambient,


Command and verify:

P-F	58	<b>V</b> ⊷55	LFIV-1	1	S	Open
	.	V-55	LPSV-4			
		V-56	LFIV-2			
		V-56	LPSV-5			
<b>∀</b>	Ŵ	V∽57	LFIV-3	<b>Y</b>	¥	4
P-F	58	V-57	LPSV-6	1	, S	Open

Purge for 2 minutes from C-11 out through C-10.


Reduce the purge pressure to 19 PSIA and command and verify in sequence:

P-F	59	<b>V-7</b> 0	LFFV-2	1	S	Closed
	1	V <del>~</del> 55	LFIV-1	1	ł	1
		V <b>-</b> 55	LPSV-4			
		V-56	LFIV-2		1	
		V-56	LPSV-5			
	1	V-57	LFIV-3			V I
		V <b>-</b> 57	LPSV-6			Closed
	Ý	T-10	PfT-4	<b>∀</b>	ቑ	19 PSIA
P-F	59	T-11	PfT-5	1	S	19 PSIA



- step 61 in reverse order to which they were opened.
- 63. Command and verify the values of step 60 closed in reverse order to which they were opened.

Command and verify:



PHASE	STEP	ELEMENT	MEA SUREMENT	SAMPLES	USE	EXPECTEI VALUE
. <u></u>						
Teri	minate pi	urge from C-3				
Ver	ify:					
₽ <b>-</b> F	65	<b>T-</b> 5	PfT-2	1	S	19 PSIA
P→F	65	т-б	PfT-3	1	S	19 PSIA
Att	ach A/B	engine cover	s.			
Com	mand and	verify:				
₽ <b></b> F	66	<b>V-</b> 44	LOFV-2	1	S	Open
Whe	n GSE in	dicates P	ambient at C-9.			
Com	mand and	verify:				
P-F	67	V-52	LLIV-1	1	S	Open
		V-52	LPSV-1			1
		V-53	LLIV-2		ļ	[
		V <del>~</del> 53	LPSV-2			
¥ .	*	V-54	LLIV-3	<b>V</b>	<b>*</b>	4
P-F	67	<b>V-</b> 54	LPSV-3	l	S	Open
			m the on-orbit ox re to 19 PSIA.	idizer vent (	out throu	gh C⊷9.
Сол	mand and	verify in $\bar{s}$	equence:			
P-F	68	V-44	LOFV-2	1	S	Close
	l	V-52	LLIV-1		{	
		V-52	LPSV-1			
		V-53	LLIV-2			
		V <b>~</b> 53	LPSV-2		ļ	
		V-54	LLIV-3			
		V-54	LPSV-3			
V	Ŵ	<b>v-</b> 24	LOTVV-1		Ý.	<b>V</b>
P-F	68	<b>V-25</b>	LOTVV-2	1	S	Closed
Ter	rminate p	ourge from on	-orbit oxidizer v	ent.		
Ver	cify:					
₽ <b>-</b> F	69	T <b>⊷</b> 4	PoT-3	$1_{x}$	s	19 PSI4

Secure and disconnect the Drain and Purge GSE.

PHA SE	STEP	ELEMENT	MEA SUREMENT	SAMPLES	USE	EXPECTEI VALUE
P-F	71	C <b>-1</b>	LOFC-1	1	S	Closed
		C-2	LHC-1,2			
		Č−3	LFTVC-1			
		C-4	LHC-3,4			
		C-5	LFFC-1			
		C-6	LHC-5,6			
		C-8	LHC-7,8			
		C <del>-</del> 9	LOFC-2			
		C-10	LFFC-2			
P-F	71	C-11	LFVC-1	1	S	Closed
	ge compl	-				
Mec	•	y lock V-1,	2, 8, 9, 23, 26, 2	27.		s
Mec Pow	hanicall	y lock V-1,	2, 8, 9, 23, 26, 2	27.		s
Mec Pow	hanicall er down	y lock V-1,	2, 8, 9, 23, 26, 2 LOIV-1	1	S	, Closed
Mec Pow Ver	hanicall er down ify:	y lock V-1, the MPS.			S	
Mec Pow Ver	hanicall er down ify:	y lock V-1, the MPS. V-1	LOIV-1		S	
Mec Pow Ver	hanicall er down ify:	y lock V-1, the MPS. V-1 V-2	LOIV-1 LOIV-2		S	
Mec Pow Ver	hanicall er down ify:	y lock V-1, the MPS. V-1 V-2 V-8 V-9 V-23	LOIV-1 LOIV-2 LFIV-1		S	
Mec Pow Ver	hanicall er down ify:	y lock V-1, the MPS. V-1 V-2 V-8 V-9	LOIV-1 LOIV-2 LFIV-1 LFIV-2		S	

Input flight data to processing system for trend analysis, performance evaluation, and/or maintenance report.

Power down OCMS.

- 1. Tow the orbiter to the maintenance area.
- Perform maintenance as required per maintenance procedures of Appendix C, MCR-70-306, Issue 3.

OCMS is powered up, self-checked, and used for retest.

erify;	OUTD				TICH	EXPECT
IASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
м	3	V-1	LOIV-1	1	S	Closed
1	Ĩ	V-2	LOIV-2	ī	-	1
		V-3	LOVV-1			
	1	V-4	LOVV-2			1
	1	V-5	LOVV-3		ļ	
	1	V-6	LOVV-4			
		V-7	LOFV-1			
		V-8	LFIV-1			
Į		V-9	LFIV-2		·	
	1	V-10	LFTVV-1			
	1	V-11	LFTVV-2			
ţ		V-12	LFTVV-3			
	1	V-13	LFTVV-4			
		V-14	LFFV-1			
	1	V-19	LOPCV-1		·	
	1	V-20	LOPCV-2			
		V-21	LFPCV-1			
1	Ì	V-22	LFPCV-2			
1		V-23	LOIV-3			
		V-24	LOTVV-1			
		V-25	LOTVV-2			1
		V-26	LFIV-3			
		₩~27	LFIV-4			
		V-28	LFTVV-5			
		V-29	LFTVV-6			[
		<b>⊽-</b> 30	LFTVV-7			
		V-31	LFTVV-8			
		<b>V-32</b>	LOPV-1			
		V-33	LOPV-2		1	
		V-34	LFPV-1			1
		V-35	LFPV-2			-
		C-1	LOFC-1			
		C-2	LHC-1, 2			l
1	ł	C-3	LFTVC-1			
		C-4	LHC-3, 4			
		C-5	LFFC-1			
		C−6 <del>~</del>	LHC-5, 6			1
		C-8	LHC-7, 8			Ŷ
		C-11	LFVC-1			Closed
		T-3	PfT-1		•	19 ,PSI
♦	★	T⊷5	PfT-2	4	<b>V</b>	4
M	3	<b>T-6</b>	PfT-3	-	S	19 PSI

PHASE	ANCE (Con STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
M ₩	3	T-1 T-2 T-4 L-20 L-21 L-17	PoT-1 PoT-2 PoT-3 PfL-1 PfL-4 PoL-2	1	s ↓ s	19 PSIA 19 PSIA
Ve	rify:					
M ♥ M	4 ▼ 4		PoL-8 PoL-9 PfL-9 PfL-10	1 1	s ▼ s	19 PSIA 19 PSIA
Ve	rify:					
M M M	5	V-36 V-37 V-38 V-39 V-40 V-41 V-42 V-43 V-44 V-70 C-9 C-10 T-8 T-9 T-10 T-11	LOPV-3 LOPV-4 LOPV-5 LOPV-6 LFPV-3 LFPV-4 LFPV-5 LFPV-6 LOFV=2 LFFV-2 LOFC-2 LFFC-2 LFFC-2 PoT-4 PoT-5 PfT-4 PfT-5	1 1	S	Closed Closed 19 PSIA 19 PSIA
Ve	rify:					
M M	6	GOV-1 GOV-2 GOV-2 GOV-3 GOV-3 GFV-1 GFV-1 GFV-2 GFV-2 GFV-3 GFV-3 V-52 V-52	LGOV-11 LGOV-2 LGOV-21 LGOV-31 LGFV-1 LGFV-11 LGFV-2 LGFV-21 LGFV-3 LGFV-31 LLIV-1 LPSV-1	1	S	Closed

MAINTENANCE (Continued)

-

-

# MAINTENANCE (Continued)

,

HASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTE VALUE
м	ę	V-53	LPSV-2	1	S	Closed
	1	V-53	LLIV-1			
	1	V-54	LLIV-3			1
		V-54	LPSV-3			
	1	V-55	LFIV-1			
		V-55	LPSV-4			
		V-56	LFIV-2			
		V-56	LPSV-5			
		V-57	LFIV-3			
		V-57	LPSV-6			1
		G-1	LIOV-38			
	1	G-1	LIFV-38			
		G-2	LIOV-39			
Y#	4	G-2	LIFV-39	1		1
A	۷	G-3	LIOV-40	V	Y	Y
M	6	G-3	LIFV-40	1	S	Closed
Vei	rify:					
м	7	GFV-4	LGFV-4I	1	S	Closed
1	1	GFV-4	LGFV-4		1	-
		GFV-5	L <b>G</b> FV-5I			
	ł	GFV-5	LGFV-5			
		GFV <b></b> ←6	LGFV-6I			
		GFV-6	LGFV-6			
	Ì	GOV-4	LGOV-41			
		GOV-4	LGOV-4			
	1	GOV-5	LGOV-5I		ł	
		GOV-5	LGOV-5			
		GOV−6	LGOV-6I			
		GOV-6	LGOV-6			
		V~58	LFIV-4			
		V-59	LPSV-7	]		
		V-60	LFIV-5			Ì
		V-61	LPSV-8			
		V-62	LFIV-6			
		V-63	LPSV-9			
		EFV-1	LEFV-1			
	ļ	EFV-2	LEFV-2			
1		EFV-3	LEFV-3			
	Į	EFV-4	LEFV-4		[	
		EFV-5	LEFV-5			
		EFV-6	LEFV-6			
		EFV-7	LEFV-7	1		
		EFV-8	LEFV-8	ĺ		
		EFV-9	LEFV-9			
		EFV-10	LEFV-10	1	ŀ	
		EFV-11	LEFV-11		1	4
		EFV-12	LEFV-12		1	Closed
	Ţ		PfL-11		1	19 PSI
<b>ў</b> м	Ţ		PfL-12	¥	V	19 PSI
37	7		PfL-13	1	S	19 PSL

MAINTE	NANCE (C	Continued)				EXPECTED
PHASE	STEI	P <u>ELEMENT</u>	MEASUREMENT	SAMPLES	USE	VALUE
Т	he A/B e	engine controllers	shall verify	the following	;:	
м	8	FCA-1	LFIVAB-1	1	S	Closed
	1	FCA-1	LCPRV-1			
		FCA-1	LSPV-1			
		FCA-2	LFIVA/B-2			
		FCA-2	LCPRV-2		1	
		FCA-2	lsp⊽⊷2		1	
		FCA-3	LFIVA/B-3	<u> </u>	T	
¥	<b>Ý</b>	FCA-3	LCPRV-3	Y	¥	¥
м	8	FCA-3	LSPV-3	1	S	Closed

Retract the engine cradles.

# V.A.B. MATE

1. Repeat step M-3.

# 2. Verify the following:

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
V.A.B.	2	T <b>-</b> 3	TfT-1	1	S	Ambient
) / •प•D•	Ĩ	r -5	TfT-2	ī	Ĩ	1
		T-6	TfT-3		1	
	1	T-1	ToT-1		ł	
		T-2	ToT-2			*
		т-4 —			}	Ambient
	1	т <u>-</u> 3	QfT-1			uncovere
		T-3	QfT-2			1
	-	T-3	QfT-3			
		T-5	QfT-4			
		T-5	QfT-5			
		T-5	QfT-6			1
		т-б	QfT-7		ł	
		<b>T-6</b>	QfT-8			
		т-6	QfT-9			
		T-1	QoT-1		ł	
		T <b>-1</b>	QoT-2			
		T-1	QoT-3			1
		T-2	QoT-4			
		T+2	QoT-5		1	
		 T-2	QoT+6	`	]	i i
		T-4	QoT-7			ļ
		<b>T-4</b>	QoT-8		1	<b>∀</b>
		T-4	QoT-9		1	Uncovere
			PfL-2	1		19 PSIA
			PfL-3			19 PSIA
		L-20	TfL-1			Ambient
	1		TfL-2			Ambient
A.B.	2		TfL-3	1	S	Ambient

V.A.B. MATE (Continued)

-

V.A.D. M		(critica)				EXPECTED
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
V.A.B	2	L-21	TfL-4	1	ន	. Ambient
1	ļ		TfL-5			Ambient
			PoL-1			19 PSIA
		L-18	PoL-3			19 PSIA
			ToL-1			Ambient
		L-17	ToL-2			
		L <b>-</b> 18	ToL-3			4
			ToL-4			Ambient
		L <del>-</del> 14	PgF-1			19 PSIA
		0-5	PgF-2			ĺ
		L-16	PgF-3			
		C <del>~</del> 5	PfF-1			★
		L-13	PgO-1		ļ	19 PSIA
		0-3	Pg0-2			19 PSIA
		L-15	Pg0-3			19 PSIA
[		L <b>-1</b> 4	TgF-1			Ambient
		L-14	TgF-2			Ambient
		L-13	TgO-1			Ambient
		L-13	Tg0-2		1	Ambient
		L-8	PfS-1			19 PSIA
-		L-9	PfS-2			19 PSIA
<b>`</b>		L-8	TfS-1			Ambient
		L-9	TfS-2			Ambient
		L-3	PoS-1			19 PSIA
		L⊷4	PoS-2			19 PSIA
		L-3	ToS-1			Ambient
		L-4	ToS-2			Ambient
★	Ý	L-7	-PgRL-1	♥	*	19 PSIA
V.A.B.	2	C-1	PoF-1	1	S	19 PSIA

,

# PAYLOAD INSTALLATION

1.. Repeat steps V.A.B. - 1, 2.

# PRELAUNCH

Connect electronics coolant GSE and Ground Power GSE. Power up OCMS and all propulsion systems. Perform OCMS self-check.

 Remove the mechanical stops from V-1, 2, 8, 9, 25, 26, 27. Verify:

Vei	cify:				•	EXPECTED
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
<u></u>						
$\mathbf{PL}$	1	V-1	LOIV-1	1	S	Closed
1	1	V <b></b> - 2	LOIV-2	1	ł	
		V8	LFIV-1			
		V <b>-</b> 9	LFIV-2			
		V-23	LOIV-3			1
<b>∀</b>	<b>*</b>	V-26	LFIV-3	¥	Y	Υ.
PL	1	V-27	LFIV-4	1	S	Closed
Ve	rify leak	integrity:				
$\mathbf{PL}$	2	т⊢3	PfT-1	1	Ŝ	15-20 PSIA
1	1	T-5	- <del>PfT-</del> 2	1	[	[
		т <b>-</b> б	PfT-3			
	1	T <b>-1</b>	PoT-1			
		T-2	PoT-2			
		<b>T-</b> 4	PoT-3			
	ł		PoL-1			
		L-17	PoL-2			
		L-18	PoL-3			
		L-20	PfL-1			l
			PfL-2			
			PfL-3			
	ł	L-21	PfL-4			ļ
		L-3	PoS-1			
	ļ	L-4	PoS-2		ł	
	}	L-8	PfS-1		ļ	
		L-9	PfS-2	<u> </u>		
		L-14	PgF-1			
		0-5	PgF-2			
		L-16	PgF-3			
		L-13	Pg0-1			
		0-3	PgO-2			
		L-15	PgO-3			
		C-5	PfF-1			
		C-1	PoF-1			
	1	L-7	PgRL-1	1	1	1
۷	Y	F-4	PoL-10	Y	V	V
$\mathtt{PL}$	2	F-5	PfL-14	1	S	15-20 PSIA

PHASE	STEP	<u>ELEMENT</u>	MEASUREMENT	SAMPLES	USE	EXPECTE VALUE
	Command a	und verify:				
2L	3	MEC-1		1	S	On
PL	3	MEC-2		ī	S	On
PL	3	MEC-3		ĺ	S	On
	Command a	nd verify:		_	_	
		-				
PL	4	V-1	LOIV-1	1	ន	Open
		V-2	LOIV-2			
		V-8	LFIV-1			
		V-9	LFIV-2			
Ļ	1	V-23	LOIV-3	Ţ	Ţ	
V	¥	V-26	LFIV-3	T	V	Ť.
'L	4	V-27	LFIV-4	1	S	Open
	Verify:					
L	5	V-3	LOVV-1	1	S	Closed
	1	V-4	LOVV-2	1		
		V~5	LOVV-3		-	
	1	V <b>-</b> 6	LOVV-4			
		V-7	LOFV-1	ļ		
		V-10	LFTVV-1			
		V-11	LFTVV-2			
		V-12	LFTVV-3			
		V-13	LFTVV-4			
		V-14	LFFV-1			
		V-19	LOPCV-1			
		V-21	LFPCV-1			
	r r	V-22	LFPCV-2			
		V-23	LOIV-3			
		V-24	LOTVV-1			l
		V-25	LOTVV-2			ł
	[	V-28	LFTVV-5			
		V-29	LFTVV-6			
		V-30	LFTVV-7			
		V-31	LFTVV-8			
		<b>V-</b> 32	LOPV-1			
		V-33	LOPV-2			
		<b>V-</b> 34	LFPV-1			
		V-35	LFPV-2		1	
		C~1	LOFC-1			
		C-2	LHC-1, 2			1
	4	C=3	LFTVC-1			1
	ł	C-4	LHC-3, 4			
		C5	LFFC-1	1	ļ	
		C-6	LHC-5, 6			
		C-8		1	1	
r	₩		LHC-7,8	<b>↓</b>	L.	<u> </u>
6	<b>y</b> 5	C-11 V-20	LFVC-1 LOPCV-2	¥ 1	¥	¥.

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTE VALUE
	6.	(b) Connect G	ydraulic GSE. N2 purge GSE. 2 conduct dry main e.	engine sta	rt and	shutdown
		Status is	reported to CCC.			
Ver	ify:					
PL ↓ PL	7     7	TR-(1-37) TR(1-37) TR(1-37) TR(1-37) TR(1-37) TR(1-37)	LBIV-(1-37) LMBV-(1-37) LIOV-(1-37) LIFV-(1-37) VII-(1-37) IIE-(1-37)	1 ↓ ↓ 1	S             	Closed Closed O VDC O
Sim	ulate:					
PL	7	_ TC-(1-37)	PC-(1-37)	1	c/o	300 PSI
Ver:	ify:					
	8	V-36 V-37 V-38 V-39 V-40 V-41 V-42 V-43 V-44 V-70 C-9 C-10 T-8 T-9 T-10 T-11	LOPV-3 LOPV-4 LOPV-5 LOPV-6 LFPV-3 LFPV-4 LFPV-5 LFPV-6 LOFV-2 LFFV-2 LOFC-2 LFFC-2 PoT-4 PoT-5 PfT-4 PfT-5 PoL-8 PoL-9 PfL-10,9	1	S	Closed Closed 19 PSIA 19 PSIA
And	simula	te:				
2L 1	8 Í	F6	PoL-6 PoL-4	1	C/0	400 PSI <b>1500</b> PS

	- •				
8		PoL-6	1	c/o	400 PSIA
1	<b>F</b> б	PoL-4			1500 PSIA
	T-8	PoT-6			1500 PSIA
	T-8	ToT-4			
ľ	T-9	ToT-5	ſ		
	T-9	PoT-7			1500 PSIA
	F-7	PoL-5			1500 PSIA
<b>*</b>		PoL-7	<b>♥</b>	<b>∀</b>	400 PSIA
8		PfL-7	1	c/o	400 PSIA
	8	F-6 T-8 T-8 T-9 T-9 F-7	8 PoL-6 F-6 PoL-4 T-8 PoT-6 T-8 ToT-4 T-9 ToT-5 T-9 PoT-7 F-7 PoL-5 PoL-7	8 PoL-6 1 F-6 PoL-4 T-8 PoT-6 T-8 ToT-4 T-9 ToT-5 T-9 PoT-7 F-7 PoL-5 PoL-7	8 PoL-6 1 C/0 F-6 PoL-4 T-8 PoT-6 T-8 ToT-4 T-9 ToT-5 T-9 PoT-7 F-7 PoL-5 PoL-7

•

.

## PRELAUNCH (Continued)

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
PL	8	F-8 T-10 T-10 T-11	PfL-5 PfT-6 TfT-4 TfT-5	1	c/o	1500 PSIA 1500 PSIA
	-	1-11 T-11	TfT-5 PfT-7	ļ		1500 PSIA
¥		F-9	PfL-6	4		1500 PSIA
PL	8		PfL-8	1	c/o	400 PSIA
Ver	ify:					
PL	9	GOV-1	LGOV-1	1	S	Closed
		GOV-1	LGOV-1I	1	1	]
		GOV-2	LGOV-2			
	]	GOV-2	LGOV-2I			
		GOV-3	LGOV-3			
	[	GOV-3	LGOV-3I			
	1	GFV-1	LGFV-1			
		GFV-1	LGFV-1I			
		GFV-2	LGFV-2		ł	ł
		GFV-2	LGFV-2I			
	]	GFV-3	LGFV-3	Ì		
		GFV-3	LGFV-31			
		V-52	LLIV-1	•		
		V <b>-</b> 52	LPSV-1			
		V <del>-</del> 53	LLIV-2			
		V-53	LPSV-2			
		<b>V-5</b> 4	LLIV-3			
	ł	V <b>-</b> 54	LPSV-3			
		V <b>-</b> 55	LFIV-1			
	ł	V <b>-</b> 55	LPSV-4	•	•	
	~	V <b>-</b> 56	LFIV-2			
1		V <b>-</b> 56	LPSV-5			
V	V	V~57	LFIV-3	<b>Y</b>		4
PL	9	<b>∇-57</b>	LPSV-6	1	S	Closed
and	:					
PL	9	G <b>-1</b>	LIOV-38	1	S	Closed
		G-1	LIFV-38		1	I
		G-2	LIOV-39			
		G-2	LIFV-39			I
	1	G <b>-</b> 3	LIOV-40			Ŵ
		G <b>-</b> 3	LIFV-40		1	Closed
		G <b>-1</b>	VII-38			ov
		G-2	VII-39			ov
1		G-3	VII-40	Į	1	ov
		G-1	VIEO-1		l	OVDC
		G-2	VIEO-2			OVDC
		G <b>−</b> 3	VIEO-3			OVDC
]		G <b>-</b> 1	IIE-38		1	0
¥	V V	G-2	IIE-39	<b>¥</b>		ŏ
PL	9	G-3	IIE-40	-	S	õ

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTE VALUE
L	9	PT <b>-1</b>	QPTL-1	1	S	
L	9	PT-2	QPTL-2	1	S	
Ĺ.	9	PT <del>−</del> 3	QPTL-3	1	S	
and	l simulat	:e :				
ն	9	G <b>-1</b>	PC-38	1	c/0	
-	Ī	G-2	PC-39	Ī	1	
		G-3	PC-40			
		G-1	TC-1			
		G-2	TC-2			
		G-3	TC-3			
		V <b>−</b> 46	PCV-1		ļ	1500 P
		V-49	PCV-4		ļ	12001
	1	H-4	PHEO-1		l l	Į.
		H-7	PHEO-4		1	1500 P
		H-4	THE-1			1.00 1
		H-7	THE-4			
		P-1	PPD-1		ł	1500 P
		P-4	PPD-4			1,000 1,
	1	v-47	PCV-2			
		V-47 V-50	PCV-5			
		V-50 Н-5	PHEO~2			Ţ
	1	H-8	PHEO-5			1500 P
1	4	H-5	THE-2	4	4	100 1
L	9	H-8	THE-5	1	c/o	
and	L: ,			•		
L	9	P-2	PPD-2	1	c/o	1500 P
£1	Í	P-5	PPD-5	1	0,0	1001
		V-48	PCV-3		1	
		V-40 V-51	PCV-6			
		v-эт н-б	PHEO-3			, i
		. H-9	PHEO-6			1500 P
		н-9 Н-6	THE-3			1500 F
	1	H-9	THE-6			
		P-3	PPD-3			1500 P
		P-6	PPD=5 PPD=6			1500 P
						1000 P
		U <b>∽1</b> U~1	NT-1			
		U~1	AT-1	1		
		U-2	NT-2		ł	
		U-2	AT-2			
		U-3	NT-3			
		U-3	AT-3			
	L	P-1	NP-1		Ţ	
1	Ţ	P-1	AP-1	Y	<b>V</b>	
L	9	P-2	NP-2	1	c/o	

PRELAUNCH (Continued)

D-54

ntinued)

PRELA	<u>AUNCH</u> (Conti	nued)				EXPECTED
PHASE	<u>STEP</u>	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
PL	9	P-2	AP-2	1	c/o	
1	, 	P+-3	NP3	Ī	1	
		P-3	AP-3			
ł		P-4	NP-4		1	
		P-4	AP-4		.	
1		₽ <del>~</del> 5	NP-5			
		₽ <del>−</del> 5	AP-5			
		P-6	NP-6			
		P-6	AP-6	)	1	
		PT <b>-1</b>	NS-1			
		PT-2	NS-2			
ł		PT-3	NS-3			
		CL-1	AC-1	1		
		CL-2	AC-2			
1		CL-3	AC-3		l l	
		CL-4	AC-4			
		CL-5	AC-5			
		CL-6	AC-6			
		CL <del>.</del> 7	AC-7		1	
		CL-8	AC-8		1	
¥	A	CL-9	AC-9	V	Y	
$\mathbf{PL}$	9	P-1	TPB-1	1	c/o	
	And :					
PL	9	P-2	TPB-2	1	c/o	
ىر <u>ع</u> ا	1	P-3	TPB-3	1	1	
		P=4	TPB-4			
		P=5	TPB-5			
Ì		P-6	TPB-6		1	
		PT-1	TPTB-1			
1		PT-2	TPTB-2			
		PT-3	TPTB-3			
	}	PT-1	TPTL-1			
		PT-2	TPTL-2			
	}	PT-3	TPTL-3			
		PT-1	PPTL-1			
t de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l	<b>V</b>	PT-2	PPTL-2	<b>V</b>	¥	
PL	9	PT-3	PPTL-3	i	c/o	
	OCMS will	cond <b>uct</b> a dry	A/B start.			
	Verify:					
PL	10	V-58	LFIV-4	1	S	Closed
		V=60	LFIV-5			
	1	V-62	LFIV-6			1
	Į	V-59	LPSV-7			ļ
4	¥	V-61	LPSV-8	4	¥	Ý
PL.	10	V-63	LPSV-9	1	S	Closed

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTE VALUE
PL	10	G <b>-</b> 4	VII-41	1	S	OVDC
		G-4	IIE-41			0
	1	G-4	VIEO-4			OVDC
		GFV-4	LGFV-4I			Closed
		GFV-4	LGFV-4			Ļ
	1	GOV-4	LGOV-4I	1	4	
T	10	GOV <del>-</del> 4	LGOV-4 QTPL-1	1	S	Closed
PL	10	PT-4	QIPT-T	T	6	
Sin	nulate:					
PL	10	<b>U-4</b>	NT-4	ļ	C/0	
	1	· PT-4	AT-4			
		PT-4	PTPL-1			
		PT-4	TTPL-1	L	1	
<b>Y</b>	<b>X</b>	P-7	PPD-7	<b>Y</b>		50 PSIA
PL	10	P-7	AP-7	1	c/o	
Vei	rify:					
PL	11	G <b>-</b> 5	VII-42	1	S	OVDC
		G <b>⊷</b> 5	IIE-42		1	0
		G <del>-</del> 5	VIEO-5			OVDC
	Ì	GFV-5	LGFV-5I			Closed
		GFV-5	LGFV-5			
		GOV⊬5	LGOV-5I		•	*
¥	V	GOV-5	LGOV-5	<b>V</b>	V	Closed
PL	11	PT-5	QTPL-2	1	S	
Sin	nulate:					
PL	11	<b>U-5</b>	NT-5	ļ	C/0	_
		<b>U</b> <del>−</del> 5	AT-5			
		PT-5	PTPL-2			
		PT-5	TTPL-2	Ţ		
*	¥	P <b>-</b> 8	PPD-8	<b>V</b>	¥	50 PSIA
PL	11	P-8	AP-8	1	c/o	
Ver	:ify:					
PL	12	G <b>-</b> 6	VII-43	1	S	OVDC
1		G <del>-</del> 6	IIE-43			0
		G-6	VIEO-6		ſ	OVDC
1		GFV-6	LGFV-6I		1	Closed

lgfv-6

LGOV-6

QTPL-3

1

S

LGOV-6I

Closed

GFV-6

GOV−6 GOV−6

РТ⊷б

Ņ

12

PL

PRELAUN	<u>CH</u> (Conti	nued)				
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Si	mulate:					
PL PL	12       12	U-6 U-6 PT-6 PT-6 P-9 P-9	NT-6 AT-6 PTPL-3 TTPL-3 PPD-9 AP-9	1 1	c/o	50 PSIA
Ve	rify:					
PL PL	13	EFV-1 EFV-2 EFV-3 EFV-4 EFV-5 EFV-6 EFV-7 EFV-8 EFV-9 EFV-10 EFV-11 EFV-12	LEFV-1 LEFV-2 LEFV-3 LEFV-4 LEFV-5 LEFV-6 LEFV-7 LEFV-8 LEFV-9 LEFV-9 LEFV-10 LEFV-11 LEFV-12 PfL-11 PfL-12 PfL-13	1	S	Closed Closed 19 PSIA 19 PSIA 19 PSIA
Si	mulate:					
PL PL PL	13 13 13		TfL-6 TfL-7 TfL-8	1 1 1	c/o c/o c/o	
	B E.C1 '	will conduct	a dry start of T.	F1 by		
		ፑሮለ - 1	т 9717А /Р – 1	ŋ	q	Cloced
PL	14	FCA-1	LFIVA/B-1	1	S	Closed

гь	그다	r0H-1	The TAY D-T	<u>н</u>	5	CIOSEd
		FCA-1	LCPRV-1	1	1	Closed
		FH-1	VFH-1			OVDC
		FH-1	IFH-1			OADC
		IGN-1	VIIA/B-1			OVDC
	[	IGN-1	III-1			0
		IGN-1	VIEO-1		ł	OVDC
¥	*	LA-1	QLO-1	<b>▼</b>	Ý	
$\mathbf{PL}$	14	FCA-1	LSPV-1	1	S	Closed

# PRELAUNCH (Continued)

HASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTI VALUE
an	d simulat	ing:				
Ľ	14	FCA-1	NVDVP-1	1	C/0	
		FCA-1	PDVDVP-1		1	
		LA-1	PSPD-1		]	
		LA-1	TSPD-1			
•		FM-1	FfF-1			
		TF-1	NHPT-1		1	
		FD-1	FLB-1		1	
		TF-1	PFI-1		1	
		TF-1	TIA-1			
		TF-1	NF-1			
		TF-1	PHPT-1			
		TF-1	THPT-1			
		TF-1	PED-1			
		TF-1	TED-1			
		TF-1	TLPTD-1			
1	<b>∀</b>	TF-1	TCI-1	<b>V</b>	Ý	
E.	14	LA-1	PG-1	1	C/0	
Ĺ.	14	LA-1	PLPD-1	1	C/0	
As	well as:				• -	
	14	TF-1	PfCCI-1	1	c/o	
	1	TF-1	TfCCI-1	Ī		
	1	TF-1	TTB-1		1	
		FCA-1	TFH-1			
		FCA-1	NVDVP-1			
		TF-1	AFFB-1			
		TF-1	AFCB-1			
	Ì	TF-1	ALPRB-1			
	¥	COMP-1	FIC-1	4		
<b>[</b> ,	14	COMP-1	ACEC~1	· 1	c/o	



	15	FCA-2 FCA-2 FH-2 FH-2 IGN-2 IGN-2 IGN-2	LFIVA/B-2 LCPRV-2 VFH-2 IFH-2 VIIA/B-2 III-2 VIEO-2	S	Closed Closed OVDC OADC OVDC O OVDC
PL	↓ ▼ 15	LA-2 FCA-2	QLO-2 LSPV-2	¥ S	Closed

•

## And simulating:

$\mathbf{PL}$	15	FCA-2	NVDVP-2	1	C/0
1	1	FCA-2	PDVDVP-2	1	Ì
1		LA-2	PLPD-2		
1		LA-2	PSPD-2		
	1	LA-2	TSPD-2	1	1
₩.		FM-2	FfF-2	4	<b>V</b>
PL 、	15	TF-2	NHPT-2	i	c/o

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
PL.	15	FD-2 TF-2 TF-2 TF-2 TF-2 TF-2 TF-2 TF-2 TF	FLB-2 PFI-2 TIA-2 NF-2 PHPT-2 THPT-2 PED-2 TED-2 TLPTD-2 TCI-2 PG-2		c/o	
As	well as:					
FL ₽L	15         	TF-2 TF-2 FCA-2 FCA-2 FCA-2 TF-2 TF-2 TF-2 COMP-2 COMP-2	PfCCI-2 TfCCI-2 TTB-2 TFH-2 NVDVP-2 AFFB-2 AFCB-2 ALPRB-2 FIC-2 ACEC-2		c/o ↓ c/o	
A/	B E.C3	will conduct	a dry start of T	.F3 by ver	ifying:	
PL PL	16 16	FCA-3 FCA-3 FH-3 FH-3 IGN-3 IGN-3 IGN-3 LA-3 FCA-3	LFIVA/B-3 LCPRV-3 VFH-3 IFH-3 VIIA/B-3 III-3 VIEO-3 QLO-3 LSPV-3	I V I	S	Closed Closed OVDC OADC OVDC O OVDC Closed
An	d simulat	ting:				
PL	16	FCA-3 FCA-3 LA-3 LA-3 TF-3 TF-3 TF-3 TF-3 TF-3 TF-3 TF-3 TF	NVDVP-3 PDVDVP-3, PLPD-3 PSPD-3 TSPD-3 FfF-3 NHPT-3 FLB-3 PFI-3 TIA-3 NF-3 PHPT-3 THPT-3		C/O	·

# PRELAUNCH (Continued)

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTI VALUE
LIADE	0151	DISTRIBUT	HIADOREHIMI			VALUE
ΡL	16	TF-3	PED-3	1	c/o	
		TF-3	TED-3			
	1	TF-3	TLPTD-3	Ļ	1	
▼ PL	16	TF-3 LA-3	TCI-3 PG-3	<b>Y</b> 1	c/o	
ст	10	<u>T</u> ¥-2	16-5	T	070	
As	well as:	:				
PL	16	TF-3	PfCCI-3	1	c/o	
		TF-3	TfCCI-3			
	-	TF-3	TTB-3			
	ļ	FCA-3	TFH-3			
	[	FCA-3 TF-3	NVDVP-3 AFFB-3	ľ		
		TF-3	AFCB-3			
		TF-3	ALPRB-3			
¥ 🛛	<b>V</b>	COMP-3	FIC-3	*	4	
PL	16	COMP-3	ACEC-3	1	c/o	
Rei	nove all	solid start o	cartridges.			
A/1	3 E.C1,	, 2 <b>,</b> 3 will c	ommand and verify	:		
PL	17	SC-1	VC-1	1	c/o	28 VDC
PL	17	SC-2	VC-2	1	c/o	28 VDC
PL	17	SC-3	VC-3	1	C/0	28 VDC
The	en comman	nd and verify	:			
PL	17	SC-1	VC-1	1	C/0	OVDC
PL	17	SC-2	VC-2	1	c/o	OVDC
PL	17	SC-3	VC-3	1	C/0	OVDC
Cor	nnect Zei	co-G lube pro	essurization GSE			
A/1	3 E.C 1	l, 2, 3 will v	verify:			
PL	18	LA-1	PZGL-1	1	c/o	
PL.	18	LA-2	PZGL-2	1	C/0	
PL	18	LA-3	PZGL-3	1	C/0	
Rep	lace all	sconnect Zero solid start propulsion a	cartridges.			
Con	mand all	. engine contr	collers off.			
Pov	ver down	OCMS.				
Dis	connect	all GSE.				
		to pad.				

### LAUNCH

1. Connect orbiter to pad electrical interfaces.

- Connect Electronic collant GSE.
- Power up OCMS. Command OCMS self-check.
   Power up all engine controllers. Command controller self-checks.
   Power up all propulsion systems.
- 3. Verify:

5.	verity:					EXPECTED
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
L	3	V-1	LOIV-1	1	S	Open
		<b>V-</b> 2	LOIV-2	1	1	Open
		V-3	LOVV-1			Closed
		V-4	LOVV-2		1	
		V-5	LOVV-3			
1		V-6	LOVV-4			*
		<b>V-</b> 7	LOFV-1			Closed
		V-8	LFIV-1			Open
		<b>V-</b> 9	LFIV-2			Open
		V-10	LFTVV-1			Closed
		V-11	LFTVV-2			
		V-12	LFTVV-3			
		V-13	LFTVV-4			1
		V <b>-1</b> 4	LFFV-1			
		V-19	LOPCV-1	1		
		V-20	LOPCV-2			
		V-21	LFPCV-1			V
		V-22	LFPCV-2			Closed
		V-23	LOIV-3			Open
		V-24	LOTVV-1			Closed
		V-25	LOTVV-2			Closed
		V-26	LFIV-3			Open
		V-27	LFIV-4			Open
	l	V-28	LFTVV-5		ł	Closed
		V-29	LFTVV-6			
		V-30	LFTVV-7			
		V-31	LFTVV-8			
		V-32	LOPV-1			
		V-33	LOPV-2			
		<b>V</b> ⊷34	LFPV-1			
		V-35	LFPV-2			
		C-1	LOFC-1			
		C-2	LHC-1,2			
		C+3	LFTVC-1		ľ	
		C-4	LHC-3,4	ļ		
		C-5	LFFC-1	Ì		
		C-6	LHC-5,6			l
		C-8	LHC-7,8			4
1		C-11	LFVC-1			Closed
		T-3	PfT-1	-		15-20 PSIA
*	¥	 T <del>-</del> 5	PfT-2	Ÿ	¥	
Ĺ	3	<b>T</b> -6	PfT-3	1	S	15-20 PSIA

LAUNCH	(Continued)
--------	-------------

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
<u></u>					001	VALUE
$\mathbf{L}$	3	T-1	PoT-1	1	S	15-20 PSIA
		<b>т-</b> 2	PoT-2		[	
		T-4	PoT-3			
			PoL-1			
		L-17	PoL-2			
1		L-18	Pol -3		í	
		L-20	PfL-1			
			PfL -2	1		
			PfL-3			
ļ		L-21	PfL -4			)
		L-3	POS-1			
		L-4	POS -2			
		L-8	PfS-1			
		L-9	Pf <del>9</del> 2			
[	[	C-5	PfF-1		1	[
		C-1	PoF-1			
		L-7	PgRL-1			
1		F-4	PoL-10			}
}	j j	<b>F-</b> 5	PfL-14			}
l,	1	L <b>1</b> 4	PgF-1			
		0-5	PgF-2			
	1	L-16	PgF -3			
	1	L-13	Pg0-1		ļ	
V	Y	0-3	PgO -2	Y	▼	¥
L	3	L-15	PgO -3	1	S	15-20 PSIA

•

-

M.E.C.-1,2,3 will verify actuators locked, and igniters de-energized.

4. Remove all protective covers.

5. Verify RCS doors closed

Verify:

	Closed Closed 19 PSIA
--	-----------------------------

LAUNCH (	Continued)	

LAUNCH (	Continue	(b				D-05
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
L L	6	T-10 T-11	PfT-4 PfT-5 PoL-8 PoL-9 PfL-9	1	S	19 PSIA
	ify:		PfL-10	1	S	19 PSIA
	-					
	7	$\begin{array}{c} \text{GOV-1} \\ \text{GOV-2} \\ \text{GOV-2} \\ \text{GOV-3} \\ \text{GOV-3} \\ \text{GOV-3} \\ \text{GFV-1} \\ \text{GFV-1} \\ \text{GFV-2} \\ \text{GFV-2} \\ \text{GFV-2} \\ \text{GFV-3} \\ \text{V-52} \\ \text{V-52} \\ \text{V-52} \\ \text{V-53} \\ \text{V-52} \\ \text{V-53} \\ \text{V-54} \\ \text{V-55} \\ \text{V-55} \\ \text{V-55} \\ \text{V-55} \\ \text{V-56} \\ \text{V-56} \\ \text{V-57} \\ \text{V-57} \\ \text{G-1} \\ \text{G-2} \\ \text{G-3} \\ \text{G-1} \\ \text{G-2} \\ \text{G-3} \\ \text{G-1} \\ \end{array}$	LGOV-1 LGOV-2 LGOV-21 LGOV-3 LGOV-31 LGFV-1 LGFV-1 LGFV-2 LGFV-2 LGFV-21 LGFV-3 LGFV-31 LLIV-1 LPSV-1 LLIV-2 LPSV-2 LLIV-3 LPSV-3 LFIV-1 LPSV-4 LFIV-2 LPSV-5 LFIV-3 LPSV-6 LIOV-38 LIOV-39 LIOV-40 LIFV-38 LIFV-39 LIFV-40 VII-38		S	Closed
<b>♥</b> L	<b>₩</b> 7	G-2 G-3	VII-39 VII-40	<b>Y</b> 1	¥ S	OV OV
	ify:			-	~	~ 1
I.	8       	GFV-4 GFV-4 GOV-4 GFV-5 GFV-5	LGFV-41 LGFV-4 LGOV-41 LGOV-4 LGFV-51 LGFV-5	1     1	S S	Closed Closed

LAUNCH (Continued)

						EXPECTED
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
L	8	GOV≁5	LGOV-51	1	S	Closed
		GOV-5	LGOV-5	1	1	1
		GFV-6	LGFV-61			
	l	GFV-6	LGFV-6			
		GOV-6	LGOV-6I			
		<b>G</b> OV-6	LGOV-6			
		V-58	LFIV-4			
	1	V-59	LPSV-7			
		V-60	LFIV-5			
	ł	V-61	LPSV-8			
		V-62	LFIV-6		1	*
		<b>V</b> ⊷63	LPSV-9			Closed
		G-1	VII-41		}	OVDC
	5	G-2	VII-42			*
		G-3	VII-43		ł	ovoc
		EFV-1	LEFV-1			Closed
		EFV-2	LEFV-2			
		EFV-3	LEFV-3		Į	
		EFV-4	LEFV-4			
		EFV-5	LEFV-5			
		EFV-6	LEFV-6			
		efv-7	LEFV-7			
		EFV-8	LEFV-8			
		EFV-9	LEFV-9			
		EFV-10	LEFV-10			
		EFV-11	LEFV-11			<b>Ý</b>
		EFV-12	LEFV-12			Closed
			PfL-11			19 PSIA
<b>V</b>	<b>▼</b>		PfL -12	V	V	4
L	8		PfL-13	1	S	19 PSIA
A/1	B E.C1,	2,3 will ver	ify:			
L	9	FCA-1	LFIVA/B-1	1	S	Closed
i	Í	FCA-1	LCPRV-1	Î	ĩ	
		FCA-1	LSPV-1			Closed
		FOR-1				GIOSEU

	FCA-1	LSPV-1		Closed
	IGN-1	VIIA/B-1		OVDC
	FCA-2	LFIVA/B-2		Closed
	FCA-2	LCPRV-2		
	FCA-2	LSPV-2		Closed
	IGN-2	VIIA/B-2		OVDC
	FCA-3	LFIVA/B-3		Closed
	FCA-3	LCPRV-3	1	÷
r	FCA-3	LSPV-3	Y	Closed
	IGN-3	VIIA/B-3		OVDC

10 Connect helium servicing GSE to each main engine purge accumulator and service with 2000 Psia dry helium.

						D-02
LAUNCI	H (Continue	d)				
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
	Connect the	Propellent-	Servicing and Pres	surization	CSE to th	e following
		-	berviering and rie.			c rollowing
	couplings	and verify:				
L	11	C-1	LOFC-1	1	S	Open
		C-2	LHC-1,2	1		-
		C-3	LFTVC-1			
		C-4	LHC-3,4			
		C-5	LFFC-1		]	
		C-6	LHC-5,6			1
		C8	LHC-7,8		ť	
1	L.	C-9	LOFC-2	l l	Ļ	Ļ
Ţ	V.	C-10	LFFC-2	Y	Y	Ŷ
L	11	C-11	LFVC-1	• 1	S	Open
	Command pre	-propellant	loading pur,ge seq	uence of the	e main eng	ines.
I	When the ma	in engine co	ntrollers indicat	e "ready for	: propella	nts",
	command and	verify:				
		-				
Ļ	1,2	V-1	LOIV-1	1	S	Closed
		<b>V-</b> 2	LOIV-2			Closed
·		V-7	LOFV-1		Ţ	Open
Ŷ	V	V-24	LOTVV-1	Y	Y	V
L	12	V-25	LOTVV-2	1	S	Open
1	Command LOX	transfer to	slow mode.		-	
	Verify oper	ations by ch	ecking:			
L	13	L-17	ToL-2	1	S	<200 ⁰ R
١	When:					
L	14	<b>T-</b> 4	QoT-7	10/sec	C	Covered
1	Command LOX	recirculati	on helium on at C	-2. and comm	nand LOX t	ransfer to
				-,		
	fast fil	1.				
ŗ	When:					
L	15	T-4	QoT-8	10/sec	C	Covered
	Command LOX	transfer to	slow fill and co	mmand termin	nation of	helium
	recircul					
-		.cr = 7.617 \$				
Ĭ	When:					
L	16	<b>T−</b> 4	QoT-9	10/sec	C	Covered
نىد	F.A.	<b>—</b> -,	\ <i>•</i>		-	

•

LAUNC	H (Continued	i)				EVARATE
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
	Command LOX	to mode hold.	-			
						,
	Verify:					
Ļ	17	<b>T-4</b>	ToT-3	1	S	164 <u>+</u> 3°R
		L-17	ToL-2			1
		L-3	ToS-1			4
		L-4 L-17	ToS-2 PoL-2			Ŧ
		L-3	PoS-1			
4	v	L-4 -	PoS-2	*	¥	
L.	17	L-7	PgRL-1	1	S	-
	Visually ch	eck for leaka	ge with scan came	eras.		
	Commence mo	nitoring for	leakage with comp	partment gas	analyzer	S.
	Command and	verify:				
L	18	V-3	LOVV-1	1	S	Open
1	1	V4	LOVV-2		1	-
		V-5	LOVV-3		1	
		V-6	LOVV-4		Ţ	<b>V</b>
¥ L	Ý	V-1	LOIV-1	V	<b>V</b>	Open
L	18	₩-23.	LOIV-3	1	S	Closed
	Command LOX	transfer to	slow mode.			
	Verify oper	ation by chec	king:			
$\mathbf{L}$	19		ToL-1	1	S	< 200°R
	When:					
L	20	T <b>-1</b>	QoT~1	10/sec	С	Covered
	Command LOX	Recirculatio	n helium on at C	-2. and comm	and LOX t	ransfer to
				_,		
	fast fill					
	When:					
L	21	T <b>-1</b>	QoT-2	10/sec	С	Covered
	Command LOX	transfer to	slow fill and co	mmand termin	ation of	helium
	recircula	ation.				
	When:					
L	22	T <b>-1</b>	QoT-3	10/sec	C	Covered

INICU .	(Continue	4)				<b>D−</b> 67
ASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTE VALUE
Cor	mand LOX	to mode hold	1.			
Vei	ify:					
L	23	T <b>-1</b>	ToT-1	1	S	164+3°R
L V L	23 ▼ 23		ToL-1	<b>Ý</b> 1	S ∳ S	164 <b>+</b> 3°R
_		<b>T-1</b>	PoL-1	T	8	
Cor	nmand and	verify:				
L L	24 24	V-1 V-2	LOIV-1	1 1	S S	Closed
_			LOIV-2	Ŧ	3	Open
Cor	nmand LOX	transfer to	slow mode.			
Ve	cify oper	ation by che	cking:			
L	25	L-18	ToL-3	1	S	<200°R
Wh	en					
L	26	<b>T-</b> 2	QoT-4	10/sec	С	Covered
Co	nmand LOX	recirculati	on helium on at C.	-2. and comm	and LOX t	ransfer
	to fast					
Wh	en:					
		<b>T D</b>	0.em 5	10/222	0	Corromo
<u></u> ጉ	27	T-2 _	QoT-5	10/sec	C	Covered
Co		transfer to	slow fill and con	umand termin	ation of	helium re-
		_				
	circulat	ion.				•
Wh	en:	ion.				
Wh L		Te2	QoT-6	10/sec	С	Covered
L	en: 28					
L Co	en: 28	T⊷2				
L Co Ve	en: 28 mmand LO> rify:	T⇔2 K to mode hol	d.	10/sec	С	Covered
L Co Ve	en: 28 mmand LOX rify: 29	T⇔2 K to mode hol T-2 L-18	d. ToT-2 ToL-3	10/sec	С	
L Co	en: 28 mmand LO> rify:	T⇔2 K to mode hol T-2	d. ToT-2			Covered 164 <u>+</u> 39
L Co Ve L L	en: 28 mmand LOX rify: 29 29	T⇔2 K to mode hol T-2 L-18	d. ToT-2 ToL-3	10/sec	С	Covered 164 <u>+</u> 39
L Co Ve L L	en: 28 mmand LOX rify: 29 29	T+2 K to mode hol T-2 L-18 L-18 L-18	d. ToT-2 ToL-3	10/sec	С	Covered 164+39

•

.

LAUN	CH (Continue	ed)				
PHAS	E STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
	Command and	verify:				
Ĺ	31	<b>V⊷</b> 44	LOFV-2	1	S	Open
r	When:					
L	32	T-8	PoT-4	1/sec	S	14.7 PSIA
L	32	T-9	PoT-5	1/sec	S 、	14.7 PSIA
	Commence se	ervicing T-8,	9 with GO2.			
	Monitor:					
L I	33	T-8 T-8	PoT-6 ToT-4	1/sec	C	1500 PSIA
¥	<b>V</b>	T-9	PoT-7	_ , 🕈	¥	<b>1500</b> PSIA
L	33	T-9	ToT-5	1/sec	С	
	Compute acc	umulator qua	ntity, and send h	old command	to GSE at	full load.
	Command and	l verify:				
L	34	V <b>-</b> 44	LOFV-2	1	S	Closed
	Monitor:					
Ļ	35	T-8	PoT-6	1	M	1500 PSIA
<b></b>	,	Т-8 Т-9	ToT-4 PoT-7	4	V	1500 PSIA
L	35	T-9	ToT-5	1	M	
	For decay.					
	Command and	l verify:				
L	36	V-70	LFFV-2	1	S	Open
•	When:					
L	37	<b>T-10</b>	PfT-4	1/sec	S	14.7 PSIA
L	37	T-11	PfT-5	1/sec	S	14.7 PSIA
	Commence se	rvicing T-10	, 11 with GH2.			
	Monitor:					
L	38	T-10	PfT-6	1/sec	C	1500 PSIA
	L.	T-10 T-11	TfT-4 PfT-7	↓	<b>V</b>	1500 PSIA
▼ L	38	T-11 T-11	TfT-5	1/sec	Ċ	

,

LAUN	<u>CH</u> (Cont:	inued)					
PHAS	E STI	EP ELEMEN	MEAS	UREMENT	SAMPLES	USE	EXPECTED VALUE
	Compute	accumulator	quantity, a	and send	hold command	to GSE at	full load.
	Command	and verify:					
L	39	V-70	LFFV	-2	1	S	Closed
	Monitor	:					
L I	40	T-10	PfT-		l/sec	M	1500 PSIA
↓ ▼ L	V	T-10 T-11	TfT- PfT-	7		V	1500 PSIA
ц	40	T-11	TfT-	•5	1/sec	Μ	
	For deca	-					
_	Reverif	7:				~	
L 	41		PoL- PoL-		1	s	19 PSIA 
♥ L	<b>V</b> 41		PfL- PfL-		Ť	♥ S	V 19 PSIA
-		vents to TR-			-		I) IDIA
		vents to TR-					
	Verify:						
${\tt L}$	42	F-6	PoL-	4	1	S	1500 PSIA
	1	F-7	PoL-		ļ		1
V L	42	F+8 F-9	PfL- PfL-		¥ 1	S	1500 PSIA
	Command	and verify:					
L	43	TR-2	LBIV	-2	1	Ş	Open
		TR-2 TR-2	LMBV				
1		IR-2 TR-2	LIFV LIOV				
		· TR-3	LBIV				
		TR-3	LMBV				
		TR-3	LIFV	-3			
		TR-3	LIOV				
		TR-9	LBIV		Ĩ		
		TR <b>-9</b> TR-9	LMBV			l	
		TR-9 TR-9	LIFV LIOV				
ł		TR - 15	LBIV				
	ł	TR-15	LMBV				1
¥	¥	TR-15	LIFV		<b>Ý</b>	¥	<del>\</del>
L	43	TR-15	LIOV	-15	1	S	Open

-

.

...

HASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Ļ	44		PoL-8	1/sec A.R.	ç	Ambient
			PoL-9			
Ý	¥		PfL-9	Ý	¥	Ý
L	44		PfL-10	l/sec A.R.	С	Ambient
Con	mand and	verify:				
L	45	TR-2	LBIV-2	ļ	S	Closed
		TR-2	LMBV-2			
1		TR-2	LIFV-2	ł		}
	-	TR-2	LIOV-2			
		TR3	LBIV-3			
		TR-3	LMBV-3			
		TR-3	LIFV-3	ļ	ļ	
		TR-3	LIOV-3			
		TR-9	LBIV-9			
		TR-9	LMBV-9			
		TR-9	LIFV-9			ļ
		TR-9	LIOV-9			
		TR-15	LBIV-15			
	¥	TR-15	LMBV-15			
<b>♥</b> L	45	TR-15 TR-15	LIFV-15 LIOV-15	V 1	Y S	Y Classi
	mand and		1100-12	1.	5	Closed
		-	•			
L ↓ ▼	46	V-36	LOPV-3	1	S	Open
4	*	V-38	LOPV-5	<b>A</b>		
¥ L	<b>¥</b> 46	V-40	LFPV-3		¥	<b>v</b>
		V-42	LFPV-5	1	S	Opén
Ver	ify:					
L	47		PoL-6	1	ş	375-400 PSI
1	1		PoL-7			
<b>∀</b> L	,♥		PfL-7	V	V	W
L	47		PfL-8	1	S	375-400 PSI
Con	mand and	verify:				
Ļ	48	V-36	LOPV-3	1	Ş	Closed
		V-38	LOPV-5			
♥ L	*	V-40	LFPV-3	¥	∲ S	\$
Ĺ	48	V-42	LFPV-5	1	S	. Closed
Rep	eat step	s I-43, 44, 4	45.			
Con	mand and	verify:				
Ļ	49	V-37	LOPV-4	1	S	Open
1	[	V-39	LOPV-6		1	
₩ L	¥	V-41	LFPV-4	*	4	,
_	49	V-43	LFPV-6	1	Š	Open

,

D-70

•

LAUNCH (Continued)

ť

IASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Re	peat step	→ L-47.				
Con	mmand and	verify:				
L	50	V-37	LOPV-4	1	S	Closed
		V-39	LOPV-6		i	
ľ ¥	- 🕅	V-41	LFPV-4	*	4	
L	50	<b>V-43</b>	LFPV-6	L	S	Closed
Mor	nitor:					
Ļ	5,1		PoL-6	5/șec	М	375-400 PS
			PoL-7		Í	1
	V		PfL-7		V	4
L	51		PfL-8	5/sec	M	375-400 PS
For	r decay.					
Cor	mmand and	verify:				
L	52	V-36	LOPV-3	1	S	Open
		V-37	LOPV-4	1	l	1
		V-38	LOPV-5			
		<b>V</b> −39	LOPV-6			
		V-40	LFPV-3			
		V-41	LFPV-4			
\$		V-42	LFPV-5	8		<b>b</b>
Ĺ	52	V-43	LFPV-6	i	S	<b>y</b> Open
Cor	nmand and	verify:		``		
L	53	TR-1	LBIV-1	1	S	Open
Th	rough:					
L	53	TR-37	LBIV-1	1	s	Open
Vei	rifying:					
L	53		PoL-6	1 samp/step	S	375-400 PS
	1		PoL-7	1,b	Ī	
4	4		PfL-7	4	4	₩
<b>♥</b> L	53		PfL-8	1 samp/step	S S	375-400 PS
Bet	tween eac	h valve openi	ing.			
	54. C	ommence monit	oring the press	ires of step T.	-53 AF 1	5 complos /coo
	<i>J r</i> <b>0</b>	Cameros monti	.or me bress	ares or step P.	-JS at :	sampres/sec

Command and verify:

•

L	55	<b>V-44</b>	LOFV-2	1	S	Open
---	----	-------------	--------	---	---	------

<u>LAU</u>	NCH (Continue	d)				
PHA	SE STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
	Тор Т-8, 9	with GO2 from	m C-9, until			
L		T-8	PoT-6	l/sec	С	1500 PSL
L	56	T-9	PoT-7	l/sec	С	1500 PSI
	Command GSE	to Hold, and	E			
L		<b>V−</b> 44	LOFV-2	1	S	Closed
L	57	V-70	LFFV-2	1	S	Open
	Top T-10, 1	1 with GH2 f	rom C-10 until			
L		T10	PfT-6	1/sec	C	1500 PSL
L	58	T-11	PfT <del>-</del> 7	l/sec	С	1500 PSI.
	Command GSE	to hold, and	đ			
L	59	V-70	LFFV-2	1	S	Closed
	Disconnect	the GSE vent	s from TR-2, 3, 9	, 15.		
	Command and	verify:				
Ļ	60	<b>. V−</b> 8	LFIV-1	1	S	Closed
		V-9 V-28	LFIV-2 LFTVV-5			Closed Open
		V-29	LFTVV-6			open 
Ĺ		V-30	LFTVV-7			
▼ L	60	V-31 V-14	lftvv-8 lffv-1	1	₹ S	Open
	Command fue	1 transfer to	o slow fill.			
	Verify oper	ation by chee	cking:			
L	61	L-20	TfL-1	1	S L	< 50°R
L ♥ L	¥	L-21	TfL-4	1 ♥	s.	4
Ĺ	61		TfL-5	1	S.	< 50°R
	When both:		<i>(</i>	t		
L L	62 62	T-5 T-6	QfT-4 QfT-7	10/sec 10/sec	C C	Covered Covered
-			ation from C-8 on,			
		r to fast fil	-	, and		
	When:					
L	63	T <b>-</b> 5	QfT-5	10/sec	с	Covered
ц	Or		<u> </u>		~	
L	63	T6	QfT-8	10/sec	С	Covered

&⊕

.

T.AIINO	H (Continue	.a`\				D-73
PHASE		ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
	Terminate h	elium recircu	lation, and comma	and transfer	to sl <b>o</b> w f	ill.
	When:					
$\mathbf{L}$	64	m r	0.50 6	10/	2	<b>a</b> 1
Ц	04	T-5	QfT-6	10/sec	C	Covered
	Or:					
L	64	<b>T-6</b>	QfT-9	10/sec	С	Covered
	Command fue	l transfer to	mode hold when	the other on	e covers,	
	or <u>TBD</u> se	conds after t	he first one cove	ers.		
	65. M	lonitor compar	tment analyzers :	for leakage.		
			tment fire detect	-		
	Verify:					
L	66	T <del>-</del> 5	TfT-2	1	S	36 <b>-</b> 40°R
Ī		<u>т</u> -б	TfT-3	Ī	ĩ	50-40 R
	1	L-20	TfL-1			
	-	L-21	TfL-4			
		L-8	TfS-1	1		L
		L-9	TfS-2			Y
V	Ŷ	L-8	PfS-1	Ŷ	¥	
L	66	L-9	PfS-2	1	S	
	Command and	verify:				
L	67	V-26	LFIV-3	1	S	Closed
		V-27	LFIV-4	Ī	1	Closed
		V <b>⊷</b> 8	LFIV-1			Open
4		V-9	LFIV-2	<b>V</b>	*	4
<b>♥</b> L	67	V-(10-13)	LFTVV-(1-4)	1	Ś	Open
	Command fue	l transfer to	slow fill.			
	Verify oper	ation by chec	king:			
L	68		TfL-2	1	S	< 50°R
L	68		TfL-3	ī	S	<50°R
	When:					
L .	69	<b>T-3</b>	QfT-1	1	S	Covered
	Command hel:	ium recircula	tion on from C-8	and command	fuel trans	sfer to fast
	fi <b>ll</b> .					
I	When:					
L	70	т-3	QfT-2	1	^ S	Covered

D-73

LAUNC	CH (Contin	ued)				
PHASI	E <u>STE</u> P	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
	Terminate	helium recirc	ulation, and comm	and fuel tra	nsfer to s	low fill.
	When:					
L	71	T-3	QfT-3	1	S	Covered
	Command f	uel transfer t	o mode hold.			
	Verify:	,				
L ♥ Ľ.	72 72	Т-3	TfT-1 TfL-2 TfL-3	1	S S	$36-40^{\circ}$ R $36-40^{\circ}$ R
	Command a	nd verify:				
L	73	<b>V-1</b> 4	LFFV-1	1	S	Closed
	Command a	nd verify:				
L	74	<b>V-1</b>	LOIV-1	1	S	Open
${f L}$	74	V-7	LOFV-1	1	S	Open
	Top T-1 u	ntil:				
L	75	T-1	QoT-3	10/sec	C	Covered
	Terminate	topping.			`	
	Command a	nd verify:				
L	76	V-1	LOIV-1	1	S	Closed
·L	76	V-2	LOIV-2	1	S	Open
	Top T-2 u	ntil				
L	77	<b>Τ⊷2</b> ′	QoT-6	10/sec	С	Covered
	Terminate	topping.				
	Command a	nd verify:				
L	78	V-2 V-23	LOIV-2 LOIV-3	1 1	S S	Closed
$\mathbf{L}$	78		TOTA-2	<u>۲</u>	٥	Open
	Top T-4	untilt				
L	79	T-4	QoT-9	10/sec	С	Covered

.

.

V-7 V V-1	LOIV-3 LOFV-1 LOIV-1 LOIV-2 LFFV-1	1 ¥ 1	s s	Closed Closed Open Open
L 80 V-23 V V-7 V V-1 L 80 V-2	LOFV-1 LOIV-1 LOIV-2	1 ↓ ▼ 1		C <b>lose</b> d Open
V-7 V V-1 L 80 V-2	LOFV-1 LOIV-1 LOIV-2	1     1		C <b>lose</b> d Open
	LOIV-2	1	S	
Command and verify:	T.FFV <b>⊷1</b>			r —
······································	T.FFV <b>⊷1</b>			
L 81. V-14		1	S	Open
Top T-3 until:				
L 82 T-3	QfT-3	10/sec	C	Covered
Terminate topping.				
Command and verify:				
L 82 V-8	LFIV-1	1	S I	Closed
i 2	LFIV-2 LFIV-3	¥	¥ S	Closed Open
L 82 V-27	LFIV-4	1	S	Open
Top T-5, 6 until:				
L 83 T-5 L 83 T-6	QfT-6 QfT-9	10/sec 10/sec	C C	Covered Covered
	dTT-2	10/880	0	COVETED
Terminate topping.				
Command and verify:				
L 84 V-26	LFIV-3 LFIV-4	1 [	S 1	Closed Closed
V-8	LFIV-1			Open
♥ ♥ V-9 L 84 V-14	LFIV-2 LFFV-1	7	¥ S	Open Closed
Command and verify:		-	-	020204
l 85 V-3	LOVV-1	-	S	Closed
V-4	LOVV-2			1
V-5 V-6	LOVV -3 LOVV -4			
V-10	LFTVV-1			
V-11	LFTVV-2			
V-12 V V-13	LFTVV-3 LFTVV-4	V		ļ
L 85 V-24	LOTVV-1	1	S	Closed

LAUNCH	(Continued)	)
PHASE	STEP	ELEM

STE	ድ	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
85     		V-25 V-28 V-29 V-30	LOTVV-2 LFTVV-5 LFTVV-6 LFTVV-7		s	Closed
		V-31	LFTVV-8	1	S	Closed
-			4	_	_	
				1	S	1500 PSI 1500 PSI
86		T-4	PoT-3	1	S	<30 PS1
Command	and v	verify:				
87		<b>V−</b> 33	LOPV-2	1	S	Open
/erify:						
88		T-4	PoT-3	1	S	35-40 PS
Command	and v	verity:				
89		V-33	LOPV-2	1	S	Closed
command	and v	verify:				
90		V-24	LOTVV-1	1	S	Open
90		V <del>-</del> 25	LOTVV-2	1	S	Open
/erify:			,			
91		T-4	PoT-3	1	S	Ambient
omma nd	and v	verify:				
92		<b>v-</b> 24	LOTVV-1	1	S	Closed
92		V-25	LOTVV~2	1	S	Closed
ommand	and v	verify:				、 、
93		V-32	LOPV-1	1	S	Open
heck:						
94		T-4	PoT-3	1	S	35-40 PS
ommand a	and v	erify:	-			
95		V-32	LOPV-1	1	S	Closed
	Verify: 86 86 Command 87 Verify: 88 Command 90 90 Verify: 91 Command 92 92 Command 92 92 Command 93 Command 93 Command 93 Command 93 Command 93 Command 93 Command 94 Command	Verify: 86 Command and 7 87 Verify: 88 Command and 7 89 Command and 7 90 90 90 Verify: 91 Command and 7 92 92 Command and 7 93 Command and 7 94 Command and 7 88 89 89 89 89 89 89 89 89 89	V-28 V-29 V-30 V-30 V-30 V-30 V-30 V-30 V-30 V-30	V-28 V-29 V-29 LFTVV-6 LFTVV-8V-30 V-30 LFTVV-8Verify:86 T-9 F-9 F0T-7 86 T-487 PoT-7 PoT-3Command and verify:87 V-33 V-33 Command and verify:88 T-4 PoT-3Command and verify:89 90 V-25Command and verify:90 90 V-25 V-25Command and verify:91 92 V-25 V-25Command and verify:93 V-32 V-32Command and verify:94 94 V-3274 PoT-3 PoT-3Command and verify:93 94 94 7-494 94 7-495 94 94 7-496 94 7-497 94 94 7-494 94 7-495 94 7-494 94 7-495 94 7-494 7-4 7-495 7-4 7-396 7-4 7-397 7-37-4 7-37-5 7-37-6 7-37-7 7-37-1 7-37-1 7-37-1 7-37-2 7-37-3 7-37-4 7-37-5 7-37-6 7-37-7 7-37-7 7-37-1 7-37-1 7-37-1 7-37-1 7-37-1 7-37-1 7-37-1 7-37-1 7-37-1 7-37-1 7-37-1 7-3	V-28       LFTVV-5 $V-29$ LFTVV-6 $V-29$ LFTVV-7 $V-30$ LFTVV-7 $V-30$ LFTVV-8 $V-30$ LFTVV-8 $V-30$ LFTVV-8 $V-30$ LFTVV-8 $V-31$ LOPV-2 $V-33$ LOPV-2 $V-33$ LOPV-2 $V-33$ LOPV-2 $V-33$ LOPV-2 $V-33$ LOPV-1 $90$ $V-25$ $V-25$ LOTVV-2 $V-25$ LOTVV-1 $V-25$ LOTVV-2 $V-25$ LOTVV-1 $92$ $V-24$ $V-25$ LOTVV-1 $V-32$ LOTVV-2 $V-32$ LOTVV-1 <td>V-28 V-29 V-29 V-30 S5       LFTVV-5 LFTVV-6 V-70 LFTVV-7 V-7       LFTVV-5 Verify: S         86 T-8 Verify:       T-8 T-9 PoT-7 PoT-7 PoT-3       S         86 T-4 Verify:       T-4 PoT-3       S         87 V-33       LOPV-2       1 S         87 Verify:       S         88 T-4       PoT-3       1 S         89 V-33       LOPV-2       1 S         90 V-24 PoT-3       LOPV-2       1 S         90 V-25       LOTV-1 LOTVV-2       1 S         90 V-25       LOTVV-1 LOTVV-2       1 S         91 V-25       LOTVV-1 LOTVV-2       1 S         92 V-25       V-25 LOTVV-2       1 S         93 V-32       LOPV-1       1 S         93 V-32       LOPV-1       1 S         94 T-4       PoT-3       1 S</td>	V-28 V-29 V-29 V-30 S5       LFTVV-5 LFTVV-6 V-70 LFTVV-7 V-7       LFTVV-5 Verify: S         86 T-8 Verify:       T-8 T-9 PoT-7 PoT-7 PoT-3       S         86 T-4 Verify:       T-4 PoT-3       S         87 V-33       LOPV-2       1 S         87 Verify:       S         88 T-4       PoT-3       1 S         89 V-33       LOPV-2       1 S         90 V-24 PoT-3       LOPV-2       1 S         90 V-25       LOTV-1 LOTVV-2       1 S         90 V-25       LOTVV-1 LOTVV-2       1 S         91 V-25       LOTVV-1 LOTVV-2       1 S         92 V-25       V-25 LOTVV-2       1 S         93 V-32       LOPV-1       1 S         93 V-32       LOPV-1       1 S         94 T-4       PoT-3       1 S

		1)				D-77
HASE	Continue STEP	a) <u>ELEMENT</u>	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Mor	itor:					
L	96	T <b>⊷</b> 4	PoT-3	1/sec	М	35-40 PSIA
For	decay.					
Vei	ify:					
L	97 I	T-10	PfT-6	ļ '	S I	1500 PSIA
L	Ļ	T-11	PfT-7	Ļ.		1500 PSIA
▼ L	<b>V</b>	T-5	PfT-2	Y	∳ S	< 30 PSIA
L	97	T-6	PfT-3	1	8	<30 PSIA
Con	mand and	l verify:				
L	98	<b>V-3</b> 4	LFPV-1	1	S	Open
Vei	ify:					
L	99	T-5	PfT-2	1	S	35-40 PSIA
L	99	T-6	PfT-3	1 1	S	35-40 PSI
Cor	mand and	l verify				
L	100	₩-34	LFPV-1	1	S	Closed
Cor	mand and	l verify:				
L 1	101	V-28	LFTVV-5	1 _	S	Open
		V-29	L'FTVV-6	1		
<b>V</b>	Ý	V <del>,</del> 30	LFTVV-7	4	¥ S	\$
L	101	V-31	LFTVV-8	1	S	Opén
Ve	cify:					
L	102	T <b>→</b> 5	PfT-2	٦	S	Ambient
L	102	T-6	PfT-3	1 1	S	Ambient
Cor	mand and	l verify:				
Ļ	103	V-28	LFTVV-5	1       	S	Closed
		∇-29	LFTVV-6		Ţ	
<b>∲</b> L	Y	V-30	LFTVV-7	¥.	v s	
L	103	V-31	LFTVV-8	1	8	Closed
Cor	mand and	l verify:				
L	104	V-35	LFPV-2	1	S	Open
Vei	ify:					
L	105	T-5	PfT⊷2	1 1	S S	35-40 PSL 35-40 PSL
L	105	T-6	PfT-3	T	5	23-40 L9T

D-77

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED
Con	mand and	verify:				
L	106	V <b>~</b> 35	LFPV-2	1	S	Closed
Mor	itor:					
L L	107 107	T~5 T~6	PfT-2 PfT-3	l/sec l/sec	M M	35-40 PS 35-40 PS
Foi	decay.	If none,				
COL	mand and	verify:				
L ↓ ▼ L	108     108	V-32 V-33 V-34 V-35	LOPV-1 LOPV-2 LFPV-1 LFPV-2	1 1	s ▼ s	Open Open
Con	nmand Pre	essurization	of T-1 and T-2 wi	th helium fr	om C-6	
unt	:il:					
L L	109 109	T <b>1</b> T2	PoT-1 PoT-2	10/sec 10/sec	C C	35-40 PS 35-40 PS
Ter	minate p	pressurizatio	n from C-6.			
Co	ntın <b>u</b> e M	onitoring:		•		
L L	110 110	T-1 T-2	PoT-1 PoT-2	10/sec 10/sec	M M	35-40 PS 35-40 PS
For	decay.					
Cor	nmand pre	essurization	T-3 with helium f	rom C-4, unt	<b>il</b>	
L	111	T-3	PfT <b>-1</b>	10/sec	C	35-40 PS
Ter	rminate -p	pressurizatio	n from C-4.			
Con	ntinue mo	onitoring:				
L	112	T-3	PfT-1	10/sec	М	35-40 PS
fo	c decay.					
	113.	Repeat steps 11.)	L-55 through L-5	9. (Top gas	accumula	tors, T-8,9,
			ssurization compl	ete.		

,

PHASE	(Continue	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
C	ommence mo	onitoring:				
Ŧ	114	T <b>-8</b>	PoT-6	1/sec	S	1500 PSIA
L I	114	T-8	ToT-4	1	Ĩ	2000 2022
	1	T-9	Po <b>I</b> ~7			15 <b>00</b> PSIA
	1	T-9	ToT-5			
		T-10	PfT-6			1500 PSIA
Ì		T-10	TfT-4			
¥	4	T-11	PfT-7	▼	Y	1500 PSIA
L	114	T-11	TfT-5	1/sec	S	
C	ompute and	l display acc	umulator quantity	on request.		
С	ommand and	l verify:				
L	115	GOV-1	LGOV-1I	1	S	Open
ĩ	Ĩ	GOV-2	LGOV-2I	Ī	l	- I
		GOV-3	LGOV-31			1
		GFV-1	LGFV-1I			
		GFV-2	LGFV-21			1
		GFV-3	LGFV-31			
		V-52	LLIV-1			
	ļ	V-53	LLIV-2			
		V-54	LLIV-3			
	1	V-55	LFIV-1			
¥	4	V-56	LFIV-2	★	¥	<b>∀</b>
L	115	V-57	LFIV-3	1	S	Open
C	command the	e APU shaft c	lutches to engage	on all thre	e sections.	
C	Command and	d verify:				
L	116	G-1	VII-38	ļ	នុ	28 VDC
L	v.	G-2	VII-39	1 <b>*</b>	V	4
Ľ	116	G-3	VII-40	ĺ	Ś	28 VDC
(	Command an	d verify:				
L	117	G-1	LIOV-38	1	S	Open
:	Initiate i	gniter spark	verify:			
L	118	G-1	IIE-38	1-	۶	Pulses
L	118	G-1	PC-38	1	S	
	Command an	d verify:				
L	119	G <b>-1</b>	LIFV-38	1	S	Open
L	119	G-1	PC-38	1	S	
1.	TTA	G-T	EC-10	*	5	

LAUNCH (Continued)

-

.

•

LAUN	<u>CH</u> (Continued)	)				EXPECTED
PHAS		ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
L L	Command and v 120 120	GOV-1 GOV-1 G-1	LGOV-1 PC-38	1 1	S S	Open
	Command and w	verify:				
L L	121 121	GFV-1 G-1	LGFV-1 PC-38	1 1	S S	Open
	Check:	-				
L ↓ L L	122 122 122 122	G-1 U-1 PT-1 PT-1 PT-1 PT-1	TC-1 NT-1 QPTL-1 QPTL-1 TPTL-1 NS-1	1 2/sec 1 ↓ 1 1	ຊ ຊ ຊ ຊ ຊ ຊ	
	When NT-1	reaches	steady-state, com	mand igniter	sparkoff,	and verify:
L	- 123	G-1	IIE-38	1	S	OADC
	Command and w	verify:		•		
L	124	G <b>-</b> 2	LIOV-39	1	S	Open
	Initiate igni	lter spark	, verify:			
L	125	G <del>-</del> 2	IIE-39	1	S	Pulses
L	125	G-2	PC-39	1	S	
	Command and T	verify:				
L	- 126	G-2	LIFV-39	1	S	Open
L	126	G-2	PC-39	1	S	
	Command and v	verify:				
L	127	GOV-2	LGOV-2	1	S	Open
L	127	G-2	PC-39	1	S	
	Command and y	verify:				
L L	128 128	GFV-2 G-2	LGFV-2 FC-39	1 1	S S	Open
Ъ		G-2	10-39	*	5	
	Check:					
I     	129	G-2 U-2 PT-2 PT-2 PT-2 PT-2 PT-2	TC-2 NT-2 NS-2 QPTL-2 PPTL-2 TPTL-2	1 2/sec 1 1 1	S C S 	
-						

#### LAUNCH (Continued)

1

PHAS	<u>E</u>	STEP	ELEM	INT	MEAS	UREMENT	SAMP	LES	USE		EXPECTED VALUE
	When	NT-2	reaches	steady-s	state,	command	igniter	spark	off,	and	verify:
L		130	G-2		IIE-	39	1		S		OADC
	Comma	and an	nd verif	y <b>1</b>							
L		131	G=3		LIOV	-40	1		S		Open
	Init	iate :	igniter :	spark; ve	erify:						
$\mathbf{L}$		132	G3		IIE-	40	1		S		Pulses
${\tt L}$		132	G <del>-</del> 3		PC <del>-</del> 4	0	1		S		
	Comm	and ar	nd verif	y <b>1</b>							
$\mathbf{L}$		133	G <b>⊷</b> 3		LIFV		1		S		Opan
$\mathbf{L}$		133	G <b>-</b> 3		PC-4	0	1		S		
	Comm	and ar	nd verif	y 1							
L		134	GOV	-3	LGOV	-3	1		S		Open
L		134	G <b>-</b> 3		PC-4	0	1		S		
	Comm	and an	nd verif	y:							
$\mathbf{L}$		135	GFV		LGFV		1		S		Open
L		135	G <b>-</b> 3		PC-4	0	1		S		
	Checl	< <b>:</b>									
Ļ		136	G-3		TC-3		1		S		
			<b>U-</b> 3	<b>`</b>	NT-3		2/se	c	C S		
			PT-:		NS-3 QPTL		1		5		
4		¥.	PT-: PT-:		PPTL						
У L		136	PT+		TPTL		1		▼ S		
	When	NT-3	reaches	steady-s	state,	command	igniter	spark	off,	ver	ify:
L		137	G <b>-</b> 3		IIE-	40	1		S	-	OADC
	Comme	ence 🛛	monitoria	1g :							
L		138	G <b>1</b>		PC <b>−</b> 38	3	1/sec	e	м		
			G-1		TC-1		1/sed				
			U-1		NT-1		2/sec		1		-
			PT-		QPTL		1/2 s				
			PT-		PPTL		1/2 s				
			PT-		TPTL	-1	1/2 s		1		
			PT-3	L	NS-1	<b>^</b>	1/2 s				
			G-2		PC-3		1/sec				
T.		<b>7</b> 138	G-2 U-2		TC-2 NT-2		1/sec 2/sec		<b>∀</b> M		
ىد ۳		138	0-2 PT-0		TPTT_		1/2 a		M		

LAUNCH (Continued)

-

L

138

PT-2

TPTL-2

1/2 sec

М

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
L	138	PT-2	QPTL-2	1/2sec	М	
1		PT-2	PPTL-2	1/2sec	Ŧ	
		PT-2	NS-2	1/2sec	1	
		G-3	PC-40	l/sec		
	ļ	G3	TC-3	1/sec		
		U-3	NT-3	2/sec		
ł		PT-3	QPTL-3	1/2sec		
		PT-3	PPTL-3	1/2sec		
<b>∀</b>	♥	PT-3	TPTL-3	1/2sec	*	
Ľ	138	PT-3	NS-3	1/2sec	M T	

- 139 Verify vehicle power.
- 140 Execute power transfer.
- 141 Disconnect all remaining GSE.

Take final status.

Verify:

L	142	V-1	LOIV-1	1	S	Open
Ī		V-2	LOIV-2	ĩ	ĩ	Open
		V-3	LOVV-1			Closed
		V-4	LOVV-2			1
	-	V-5	LOVV-3			
		V-6	LOVV-4			4
	1	₩-7	LOFV-1			Closed
		<b>V-8</b>	LFIV-1	Í		Open
	ļ	<b>V-</b> 9	LFIV-2			Open
		V-10	LFTVV-1			Closed
	,	V-11	LFTVV-2	Í	Ì	
	1	V-12	LFTVV-3			
[		V-13	LFTVV-4			
		V-14	LFFV-1			
		V-19	LOPCV-1			
		V-20	LOPCV-2			
		V-21	LFPCV-1			
		V-22	LFPCV-2			
		V-23	LOIV-3			
		V-24	LOTVV-1			
		V-25	LOTVV-2			
1	1	V-26	LFIV-3			
		V-27	LFIV-4			
		V-28	LFTVV-5			
		<b>V-</b> 29	LFTVV-6			÷
		V-30	LFTVV-7		ł	Closed
		V-31	LFTVV-8			Closed
	1	<b>⊽</b> 32	LOPV-1			Open
	1	<b>V</b> ⊷33	LOPV-2			· · Î
¥	V	V <b>-</b> 34	LFPV-1	<b>♥</b>	*	4
L	142	V <b>-</b> 35	LFPV-2	1	S	Open

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
L	142	C-1	LOFC-1	٦	S	Closed
1	142	C-2	LHC-1,2	L L	I	l
		C=2 C=3	LFTVC-1			
	1	C=4	LHC+3,4			
		C+5	LFFC-1			
		G+6	LHC+5,6			
		C-8	LHC-7,8			1
		C-11	LFVC-1			V Closed
	ļ	T-3	PfT-1			35-40 PSI
		т=3 Т=3	QfT-2			55-40 FSI
		T=3	QfT-3			
		1-3 T-1	PoT-1			35-40 PSI
		T-1	ToT-1			164 <del>1</del> 3°R
		1−1 T⊷1				Covered
		T <b>+-1</b> T <b>1</b>	QoT-2			Covered
		T-2	QoT-3			35-40 PSI
-		T-2	РоТ-2 ТоТ-2			
						164 <u>+</u> 3°R Covered
	Ì	T <b>−2</b>	QoT-4			L
		T-2	QoT-5			<b>V</b>
		T-2	QoT-6			Covered
		<b>Τ−</b> 4	PoT-3			35-40 PSI
		T <del></del> -4	ToT-3 -			164 <u>+</u> 3°R
		T-4	QoT-7			Covered
		T-4	QoT-&			
		T-4	QoT-9			Covered
		T-5	PfT-2			35-40 PSI
	ļ	Т <b>~5</b> Т	TfT-2			36-40°R
		T+5	QfT-4			Covered
		T-5	QfT-5			
		Τ <b>−</b> 5	QfT-6		1	Covered
	· ·	T-6	PfT-3			35-40 PSI
		T-6	TfT-3			36-40°R
		Т <del>–</del> б	QfT-7			Covered
		<b>T-6</b>	QfT-8		ļ	Ļ
		T <del>-</del> 6	QfT-9		ł	<u>v</u>
			PoL-1			
		L-17	PoL-2			-
		L-18	PoL-3			
		_	ToL-1			164 <u>+</u> 3°R
		L-17	ToL-2			
		L-18	ToL-3			Ţ
			ToL-4			Y
		L-20	PfL-1			
			PfL-2			
			PfL-3			
		L-21	PfL-4			· -
		L→20	TfL-1		1	36 <b>-40</b> °R
¥	Ŷ		TfL-2	¥	V	4
L	142		TfL-3	1	S	36 <b>-</b> 40°R
L	142	T-3	TfT-1	1	S	36-40°R
L	142	T3	QfT-1	1	S	

)-;	84
-----	----

LAUNCH (Continued)

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
L 1	142	L-21	TfL-4 TfL-5	1	S I	36-40 ⁰ R 36-40 ⁰ R
		L-3	PoS-1		1	50 40 R
		L-4	PoS+2			*
		L-3	ToS-1			164+3°R
		<u>I.,4</u>	ToS-2		ł	164 <b>∓</b> 3⁰R
		L <del>-</del> 8	PfS-1			
		L-9	PfS-2			
		L-8	TfS-1			36-40°R
ł		L-9	TfS-2			36-40°R
1		C-5	PfF-1			
		C-1	PoF-1	l.		
	1	L <del>-</del> 14 0-5	PgF+1 BoF-2			-
		0=3 L⊷16	PgF-2 PgF-3			
		L-10 L-13	Pg0 <b>-1</b>			
		0-3	Pg0-2			
		L <b>-1</b> 5	Pg0-3			
		 L+7	PgRL-1			
		L-14	TgF-1			
	1	L <b>1</b> 4	TgF-2	-		
Ţ	<b>T</b>	L-13	Tg0-1		¥	
L	142	L <b>-1</b> 3	Tg0-2	1	S	
and	d:					
Ļ	143	C-9	LOFC-2	1	S	Closed
	1	C-10	LFFC-2.		T	
Ţ	<b>V</b>	V-44	LOFV-2	Y.	Ţ	<b>¥</b>
Ĺ	143	V-70	LFF <b>V-</b> 2	1	S	Closed
and	d:					
ŗ	144	GOV-4	LGOV-4I	1	S	Closed
		GOV-4	LGOV-4			
		GOV-5	LGOV-51		ł	
	1	GOV-5	LGOV-5 LGOV-6I		ł	
	ł	GOV <b>−</b> 6 GOV−6	LGOV-61 LGOV-6	-		
		GFV-4	LGFV-4I			
		GFV-4	LGFV-4			
	[	GFV-5	LGFV-5I			
	ļ	GFV-5	LGFV-5			
		GFV-6	LGFV-6I	1		ł
		GFV-6	LGFV-6			
		V-58	LFIV-4	1		
		∇-59	LPSV-7			
		V-60	LFIV-5			
*	<b>V</b>	V-61	LPSV-8	*	*	Ý
Ĺ	144	<b>∀-</b> 62	LFIV-6	1	S	Closed

-

LAUNCH	(Continued)
--------	-------------

.

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED
L	144	V~63	LPSV-9	1	S	Closed
1	1	EFV-1	lefv-1	1	1	1
		EFV-2	LEFV-2		ĺ	
		EFV-3	LEFV-3			
		EFV-4	LEFV-4			
		EFV-5	LEFV-5			
		EFV-6	LEFV-6			
		EFV-7	lefv-7			
		EFV-8	LEFV-8			
		EFV-9	lefv-9		•	
ļ		EFV-10	LEFV-10			
	1	EFV-11	LEFV-11			
		EFV-12	LEFV-12			Closed
			PfL-11	ľ		20 PSIA
¥	4		PfL-12	V	4	4
Ļ	144		PfL-13	ĺ	Ś	20 PSIA

final status.

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTE VALUE
Ver	- 1 Gran		·····		<u> </u>	
ver	ify read	iness:				
В	1	V-1	LOIV-1	1	Ş	Open
		V-2	LOIV-2	l.		Open
		<b>V-</b> 3	LOVV-1			Closed
		V-4	LOVV-2			
		₩-5	LOVV-3			
1		<b>V-</b> б	LOVV-4		1	4
		V-7	LOFV-1			Closed
		V-8	LFIV-1			Open
		<b>V-</b> 9	LFIV-2			Open
		V-10	LFTVV-1			Closed
		V-11	LFTVV-2			1
		V-12	LFTVV-3			
		V-13	LFTVV-4	1	1	
		V-14	LFFV-1			
		V-19	LOPCV-1			
		V-20	LOPCV-2			
1	[	V-21	LFPCV-1		[	
		V-22	LFPCV-2			
		V-23	LOIV-3			
		V-24	LOTVV-1			
	1	V-25	LOTVV-2			
		V-26	LFIV-3			
		V-27	LFIV-4			ł
		V-28	LFTVV-5		ĺ	
		V-29	LFTVV-6			
	İ	V-30	LFTVV-7		1	4
		V-31	LFTVV-8			Closed
	1	V <b>-</b> 32	LOPV-1		1	Open
	1	<b>V-</b> 33	LOPV-2			
		<b>V-3</b> 4	LFPV-1		1	4
	t	V-35	LFPV-2			Open
		G-1	lofc-1			Closed
1		C-2	LHC-1,2		[	1
		C-3	LFTVC-1			
		C-4	LHC-3,4			
	j	C-5	lffC-1		ļ	ļ
		C-6	LHC-5,6			
		C-8	LHC-7,8			¥
		C-11	LFVC-1		ł	Closed
	l l	T-3 -	PfT-1		i	35-40 P
ļ		T-3	TfT-1			36-40°R
1	}	T-3	QfT-1	[	[	Covered
1		T-3	QfT-2		Í	¥
1		т-3	QfT-3		}	Covered
[	1	T-1	PoT-1	1	l	35-40 Pi
	1	T <b>-1</b>	ToT-1			164 <b>+</b> 3°R
		T-1	QoT-1			Covered
4	Ý	T <b>-1</b>	QoT-2	¥.	4	
В	i	T-1	QoT-3	, ,	I.	Covered

•

-

D-86

BOOST (Continued)

BOOST	(Continu	led)				EXPECTED
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
	1	π Δ	D	۹		35 10 2071
B	1	T⊷2 T⊷2	PoT-2 ToT-2	L I	S	35-40 PSIA
		12 T2				164 <u>+</u> 3°R
			QoT-4			Covered
		T-2	QoT-5		ł	
	1	T-2	QoT-6			Covered
	1	T-4	PoT-3			35-40 PSIA
	1	T-4	ToT-3			164 <u>+</u> 3°R
		т-4 <b>т-</b> 4	QoT-7 QoT-8			Covered
		1 <b>-</b> 4 T-4	•		l	<b>V</b>
			QoT-9			Covered
		T-5	PfT-2			35-40 PSIA
		T⊷5	TfT-2	-		36-40°R
		T-5	QfT-4			Covered
		T⊷5	QfT-5			
		T-5	QfT~6			Covered 35-40 PSIA
		T⊷6	PfT-3			36-40 PSIA 36-40°R
		T-6	TfT-3			
1		T-6	QfT-7			Covered
		T-6	QfT-8			
[		т6	QfT-9		ł	Covered
			PoL-1			
		L-17	PoL-2			
	ļ	L=18	PoL-3			16/1000
	Ĩ	T. 47	ToL-1			164 <u>+</u> 3°R
		L-17	ToL-2			4
		L-18	ToL-3			1641200
		* 00	ToL-4			164 <u>+</u> 3°R
1		L-20	PfL-1			
1			PfL-2			
		L-21	PfL-3 PfL-4			
		L-21 L-20	r11=4 Tf1.=1			36-40°R
				:		56 <b>-</b> 40°R
		L-21	TfL-4			26 400
		L-3	TfL-5 PoS-1			36 <b>-40°</b> R
		L-3 L-4	PoS-2			
		L-4 L-3	ToS-1			164+3°R
ł		L-4	ToS-2			
		L-4 L-8	PfS-1			164 <u>+</u> 3°R
		L=0 L=9	P15-1 Pf5-2			
		L-9 L-8	TfS-1			36-40 ⁰ R
		L-8 L-9	TfS-2			36-40 R 36-40 R
		C+5	PfF-1			30-40°K
		C⇔3 C⊷1	PoF-1			
		L-14	Por-1 PgF-1	1		
2		0~5	PgF→2			
		L-16	rgr-2 PgF-3			
		L-13	Pgr-5 Pg0-1			
¥	¥	0-3	Pg0-2	¥	₩	
r B	1	0-3 L-15	Pg0-2 Pg0-3	¥ 1	¥ S	
ם	1.	7-17	r gu-n	r	د	

BOOST	(Continue	d)				
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
<u>r intoli</u>	0151		THAO OKTATISM I	Divit Lind	0014	VALOE
В	1	L-7	PgRL-1	1	S	
		L-14	TgF-1	1		
		L-14	TgF-2			
V	<b>V</b>	L-13	Tg0-1	Y	Y	
В	1	L-13	Tg0-2	1	S	· ·
C	ontinue to	monitor:				
В	2		PoL⊷6	5/sec	М	375-400 PSIA
1			PoL-7			
Ý	<b>V</b>		PfL-7		¥	¥
B	2		PfL-8	5/sec	M	375-400 PSIA
C	ontinue to	monitor:				
В	3	T-8	PoT-6	1/sec	S	1500 PSIA
Ī	Ĩ	T-8	ToT-4		Ī	
		T-9	PoT-7			1500 PSIA
		T-9	ToT-5			
1		T-10	PfT-6			<b>1500 PSIA</b>
		T-10	TfT-4			
<b>V</b>	♥	T-11	PfT-7	4	*	1500 PSIA
B	3	T-11	TfT-5	1/sec	Ś	
С	ontinue to	monitor:				
В	4	G-1	PC-38	1/sec	М	
1	1	G-1	TC-1	1/sec	}	
		U-1	NT-1	2/sec		
		PT-1 ——	QPTL-1	1/2 sec		
		PT-1	PPTL-1	1/2 sec		
		PT-1	TPTL-1	<b>1/</b> 2 sec		
		PT <b>-1</b>	NS-1	1/2 sec		
		G-2	PC-39	1/sec		
		G-2	TC-2	1/sec		
		<b>U-2</b>	NT-2	2/sec		
		PT-2	QPTL-2	1/2 sec		
		PT-2	PPTL-2	1/2 sec		
		PT-2	TPTL-2	1/2 sec		
		PT-2	NS-2	1/2 sec		
	1	G-3	PC-40	1/sec		
		G-3	TC-3	l/sec		
		U-3	NT-3	2/sec		
		PT+3	QPTL-3	1/2 sec		
	L.	PT-3	PPTL-3	1/2 sec		
T	<b>▼</b>	PT-3 PT-3	TPTL-3	1/2 sec	<b>V</b>	
В	4	PT-3	NS-3	1/2 sec	M	

5. At T+153 seconds, command extension of main engine nozzles.

## SEPARATION (T+173 sec)

The CCC commands main engine start.
 At FS + 0.9 seconds, the main engine igniters are turned off.
 At Pc = 90%, the main engine gimbal actuators are unlocked.

At TBD , command and verify.

AL	<u></u> , 0	Command and Ve	=1 + 1 y •			EXPECTED
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
Ş	2	V-19	LOPCV-1	1	Ş	Open
		V-20	LOPCV-2	1		-
<b>*</b>	¥.	V-21	LFPCV-1	*	*	V V
Ś	2	V-22	LFPCV-2	i	Ś	Open
I	n addition	to the main	engine data, mon:	itor.		
S	3	T-3	PfT-1	10/sec	М	35-40 PSIA
Ī	Ĩ	T-3	TfT-1	1/sec	M	36-40°R
		T-3	QfT-2	10/sec	S	C/U
		T-3	QfT-1	10/sec	Č	C/U
		T-1	PoT-1	10/sec	M	35-40 PSIA
		T-1	ToT-1	1/sec	M	164+3°R
		T-1	QoT-2	10/sec	S	C/U
		T-1	QoT-1	10/sec	č	C/U
		T-2	PoT-2	10/sec	M	35-40 PSIA
ł		T-2	ToT-2	l/sec	M	164+3°R
		T-2	QoT-5	10/sec	S	C/U
		T-2	QoT-4	10/sec	C	C/U
	1	L-8	PfS-1	20/sec	M	070
		L-9	PfS-2	20/sec		
		L-9 L-8	TfS-1	1/sec		36-40°R
		L-0 L-9	TfS-2	1/sec		36-40 R 36-40°R
		L-3				30 <b>-</b> 40-x
			PoS-1 PoS-2	20/sec		
	4	L-4 r 2		20/sec	1	164+3°R
v S	3	L-3	ToS-1	1/sec	M M	164+3°R
ð	2	L <b>-</b> 4	ToS-2	1/sec	M	104 <u>T</u> 3~K
C	ontinue to	monitor:				
S	4		PoL-6	5/sec	М	375-400 PSIA
Ĩ	ī		PoL-7	5,500	Î	
4	4		PfL-7		*	¥.
S	4		PfL-8	5/sec	M	375-400 PSIA
5	4		I TD0	57860	*1	575-400 IBIN
C	ontinue to	monitor:				
S	5	T-8	PoT-6	1/sec	S	1500 PSIA
د 		1-8 T-8	ToT-4	TIPEC	1	TOO LOTY
		1-8 T-9	PoT-7			<b>1500 PSIA</b>
		1-9 T-9	ToT-5			TTOO LETH
		T-10	PfT-6		.	1500 PSIA
			TfT-4			TION LOTH
	ų.	T-10		Ļ	. ↓	1500 PSIA
Y.	¥	T-11	PfT-7 TfT 5	1/20-	1	ATCA AACT
S	5	T-11	TfT <del>-</del> 5	1/sec	S	

-

SEPARAT		tinued)				<b>EX DE Out</b> on
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTE VALUE
Cor	ntinue to	monitor:				
00						
S	б	G <b>-</b> 1	PC-38	1/sec	М	
		G <del>-</del> 1	TC-1	1/sec		
		U-1	NT-1	2/sec		
		PT-1	QPTL-1	1/2 sec		
		PT <b>-1</b>	PPTL-1	1/2 sec		
		PT-1	TPTL-1	. 1/2 sec		
		PT <b>-1</b>	NS-1	1/2 sec		
		G-2	PC-39	1/sec		
		G-2	TC-2	1/sec		
		U-2	NT-2	2/sec		
		PT-2	QPTL-2	1/2 sec		
		PT-2	PPTL-2	1/2 sec		
		PT-2	TPTL-2	1/2 sec		
		PT-2	NS-2	1/2 sec		
ł		G3	PC-40	l/sec		
1		G-3	TC-3	l/sec		
		<b>U-3</b>	NT-3	2/sec		
		PT-3	QPTL-3	1/2 sec		
	ŀ	 PT⊷3	PPTL-3	1/2 sec		
¥.	4	PT-3	TPTL-3	1/2 sec	<b>.</b>	
S	6	PT-3	NS-3	1/2 sec 1/2 sec	¥ M	

•

۰.

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Whe	en:					
A	1	T <b>-1</b>	QoT-2	10/sec	S	UNC
A	1	T-2	QoT-5	10/sec	S	UNC
A	1	T <del>-</del> 3	QfT-2	10/sec	S	UNC

The central computer makes an update of the engine cutoff prediction. In addition to the main engine data continue to monitore

in	addition	to	the	main	engine	data,	continue	to	monitor:	
----	----------	----	-----	------	--------	-------	----------	----	----------	--

A	2	<b>T-3</b>	PfT-1	10/sec	М	35-40 PSIA
		T-3	TfT-1	1/sec	М	36-40°R
		T-3	QfT-2	10/sec	S	c/u
		<b>T−</b> 3	QfT-1	10/sec	С	C/U
		T-1	PoT-1	10/sec	м	35-40 PSIA
		T <b>~1</b>	ToT-1	1/sec	М	164+3°R
		<b>T-1</b>	QoT-2	10/sec	S	c/u
		T-1	QoT-1	10/sec	С	C/U
	ł	<b>T-2</b>	PoT-2	10/sec	М	35-40 PSIA
		<b>T</b> −2	ToT-2	1/sec	М	164+3°R
	Į	T-2	QoT+5	10/sec	S	C/U
	1	T-2	QoT-4	10/sec	С	c/u
		L-8	PfS-1	20/sec	М	
		L-9	PfS-2	20/sec	1	
		L-8	TfS-1	1/sec		36-40°R
		L-9	TfS→2	1/sec		36-40 ⁰ R
		L-3	PoS-1	20/sec		
1		L-4	PoS-2	20/sec		
<b>A</b>	Ŵ	L-3	ToS-1	1/sec	*	164+3°R
A	2	L-4	ToS-2	1/sec	ň	164 <del>-</del> 3°R

3. When the 4g limit is reached, command the main engines to MPL.

4. At T + 200 seconds, command the RCS thermal protective doors open.

Command and verify:

A	5	TR-(1-37)	VII-(1-37)	1	S	28 VDC
A	5	TR-(1-37)	IIE-(1-37)	1	S	0 ADC

Continue to monitor:

 A
 6
 PoL-6
 5/sec
 M
 375-400 PSIA

 PoL-7
 PfL-7
 PfL-7
 PfL-7
 PfL-7
 PfL-7

 A
 6
 PfL-8
 5/sec
 M
 375-400 PSIA

IASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTEI VALUE
Cor	tinue to	monitor:				
A	7	T <b>⊷</b> 8	Рот-б	1/sec	S	1500 PS
1	i i	T-8	ToT-4	1		
		T-9	PoT-7			1500 PS
	ł	T-9	ToT-5		]	
		T-10	PfT-6			1500 PS
	1	T-10	TfT-4	Ţ		
¥.	<b>V</b>	T-11	PfT-7	V	<b>7</b>	1500 PS:
A	7	T <b>-1</b> 1	TfT-5	1/sec	S	
Cor	tinue to	monitor:				
Ă Ź	8	G-1	PC-38	1/sec	м	
ī	Ī	G-1	TC-1	1/sec	1	
	1	U-1	NT-1	2/sec		
		PT-1	QPTL-1	1/2 sec		
		PT-1	PPTL-1	1/2 sec		
	1	PT-1	TPTL-1	1/2 sec		
		PT <b>-1</b>	NS-1	1/2 sec		
	ł	G-2	PC-39	1/sec		
		G-2	TC-2	1/sec		
		<b>U-</b> 2	NT-2	2/sec		
,		PT-2	QPTL-2	1/2 sec		
		PT-2	PPTL-2	1/2 sec		
		PT→2	TPTL-2	1/2 sec		
	ł	PT⊷2	NS-2	1/2 sec		
		G <b>-</b> 3	PC-40	1/sec		
1		G <b>~</b> 3	TC-3	1/sec		
	ł	U-3	NT-3	2/sec	·	
i	ł	PT-3	QPTL-3	1/2 sec		
		PT-3	PPTL-3	1/2 sec		
Y	¥	PT-3	TPTL-3	1/2 sec	м	
A	8	PT-3	NS-3	1/2 sec		
Whe	n:					
Á	9	T-1	QoT-1	10/sec	S	UNC
A	9	T-2	QoT-4	10/sec	S	UNC

A shutdown command is sent to the main engine controllers.

(nominally T + 357 sec.)

Conduct Post-Shutdown monitoring checks on the main engines and verify:

A	10	V-1	LOIV-1	1	S	Open
1	[	V-2	LOIV-2		Į	Open
		V-3	LOVV-1			Closed
		V-4	LOVV-2		[	[
		V-5	LOVV-3			
<b>V</b>	*	V-6	LOVV-4	<b>V</b>	•	. 🖞
Å	ío	V-7	LOFV-1	i	Ŝ	Closed

•

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
A 	10 	V-8 V-9	LFIV-1 LFIV-2	1 	s	Open Open
		V-10	LFTVV-1			Closed
	1	V-11	LFTVV-2			
	1	V-12	LFTVV-3			
		V-13	LFTVV-4			¥
	ł	<b>V-1</b> 4	LFFV-1			Closed
	1	V <b>-1</b> 9	LOPCV-1			Open
		V-20	LOPCV-2		-	
		V-21	LFPCV-1			Ý
	1	V-22	LFPCV-2			Open
		V-23	LOIV-3			Closed
	1	V-24	LOTVV-1			1
		V-25	LOTVV-2		ļ	
		V-26	LFIV-3		1	1
		V-27	LFIV-4			
		V-28	LFTVV-5		1	
1	Í	V-29	LFTVV-6			
	· ·	V-30	LFTVV-7			ter de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la cons
		V-31	LFTVV-8			Closed
· ·	ļ	V-32	LOPV-1		[	Open
		V-33	LOPV-2			
ł		<b>V−</b> 34	LFPV-1		1	
ł	1	V-35	LFPV-2			Open
		C-1	LOFC-1			Closed
		C <del>-</del> 2	LHC-1, 2			
		C-3	LFTVC-1			
		C-4	LHC-3, 4			
		C-5	LFFC-1			
		C-6	LHC-5, 6		ł	
4	4	C-8	LHC-7, 8	4	4	<b>L</b>
Ă	10	C-11	LFVC-1	1	v S	Closed
A	10	0-11	TEAC-F	1	J	OTOPER

D-	94
----	----

.

ON-ORBIT	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTE VALUE
<u>r naðla</u>	<u> </u>	1911191119141				
0-0	1	V-1	LOIV-1	1	S	Closed
		V-2	LOIV-2	L		
Ý	Ť	V8	LFIV-1	Y	Y	<b>Y</b>
0-0	1	V <b>-</b> 9	LFIV-2	1	S	Closed
	2 <b>.</b> I	letract the ma	ain engine nozzle:	s.		
	3. (	Command the ma	ain engines secur	e.		
Con	mence mo	mitoring:				
0-0	4	V-1	LOIV-1	1/hr	S	Closed
		V-2	LOIV-2	i i i i i i i i i i i i i i i i i i i		
		V-3	LOVV-1			
		<b>V-</b> 4	LOVV-2			
		V-5	LOVV-3			
ţ	Į	V-6	LOVV-4			Į
		V-7	LOFV-1			
		V-8	LFIV-1			
		V-9	LFIV-2		Į	Į
		V-10	LFTVV-1			
		V-11	LFTVV-2		-	
	Ì	V-12	LFTVV-3			
		V13	LFTVV-4			
		V-14	LFFV-1	ł		
		V-19	LOPCV-1			
	ļ	V-20	LOPCV-2			
		V-21	LFPCV-1			
		V-22	LFPCV-2			
		V-23	LOIV-3		ľ	
		V-24	LOTVV-1			
		V-25	LOTVV-2			
1		V-26	LFIV-3		ļ	ļ
		V~27	LFIV-4			
		V-28	LFTVV-5			
		V-29 V-30	LFTVV-6			4
	ł	V-31	LFTVV-7 LFTVV-8			Close
		V-31 V-32	LOPV-1			Orose
		V-32 V-33	LOPV-2			
-		v-34	LFPV-1			1
		V-35	LFPV-2			0pen
		C-1	LOFC-1			Close
		C-2	LHC-1, 2			
		C-2 C-3	LFTVC-1	1		
		C-4	LHC-3, 4			
		C-4 C+5	LFFC-1		ļ	
		C-6	LHC-5, 6			
Ļ	<b>V</b>	C-8	LHC-7, 8	L.	4	1
<b>v</b>	Ţ	<u>0-0</u>	1110-\ <b>1</b> 0	T	¥	V V

PHAS		STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
0-0		4	T-1 T-2 T-3 L-8 L-9 L-3 L-4 C-5 C-1	PoT-1 PoT-2 PfT-1 PfS-1 PfS-2 PoS-1 PoS-2 PfF-1 PoF-1	1/hr 1/hr	S	19 PSIA 19 PSIA 19 PSIA < X < X
0-0		5	nitoring: T-4 T-4 T-4 T-4 T-5 T-5 T-5 T-5 T-5 T-6 T-6 T-6 T-6 T-6 T-6 T-6 T-6	PoT-3 ToT-3 QoT-7 * QoT-8 * QoT-9 * PfT-2 TfT-2 QfT-4 * QfT-5 * QfT-6 * PfT-3 TfT-3 QfT-7 * QfT-8 * QfT-9 *	<pre>1/sec 1/sec A.R. 10/sec A.R. 10/sec A.R. 10/sec A.R. 1/sec 1/sec A.R. 10/sec A.R. 10/sec A.R. 10/sec A.R. 10/sec A.R. 10/sec A.R. 10/sec A.R.</pre>	S	35-40 PSIA 164+3°R C/U C/U C/U 35-40 PSIA 36-40°R C/U C/U 35-40 PSIA 36-40°R C/U C/U C/U C/U C/U C/U
0-0		6	ed to perfor TR-X niter spark,	m an RCS burn, ve LBIV-X verify:	rify: 1	S	Open
0-0 0-0		7 7	TR-X TR-X verify:	VII-X IIE-X	1 1	S S	28 VDC P <b>uls</b> es
00 0 <b></b> 0	Comm	8 8 nand and	TR-X TR-X verify:	LIOV-X PC-X	1 1	S S	Open
0-0 0-0		9 9	TR-X TR-X	LIFV-X PC-X	1 1	S S	Open

ON-ORBIT (Continued)

PHAS	E ST	EP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
	For sma	11 bi	it impulses,	this would be the	e end of the	thruster	start
	seque	nce.	For larger	burns, command an	nd verify:		
0-0		0	TR-X	LMBV-X	1	S	Open
0-0	1	.0	TR-X	PC-X	A.R.	S	
	At stea	dy-st	ate terminat	te igniter spark,	verify:		
0-0	1	1	TR-X	IIE-X	1	S	0 ADC
	During	burn,	monitor:				
0-0	1	.2	TR-X	PC-X	10/sec	S	300 PSIA
	To shut	down,	command and	l verify:			
0 <del>7</del> 0	1	3	Т <b>R-</b> Х	LMBV-X	1	S	Closed
			TR-X	LIOV-X	1	4	Closed Closed
<b>V</b> 0-0	1	3	TR <b>-</b> X TR <b>-</b> X	LIFV-X PC-X	1	S	Ambient
	Continu	e to	monitor:				
0-0	1	4		PoL-6	5/sec	ι Ş	375-400 PS
		-		PoL⊷7			
	י ד	4		PfL-7 、 PfL-8	5/sec	¥ S	375-400 PS
0-0					57 520	, C	575 100 25
			monitor:		_		
0-0	1	5 1	T-8	PoT-6	1/sec	C S	1500 PSI
			T <b>-8</b> T-9	ТоТ-4 Рот-7		S C	1500 PSL
			T-9	ToT-5		S	
			T-10	PfT-6		C	1500 PSI
	,	,	T-10 T-11	TfT-4 PfT-7	Ţ	S C	1500 PSI
<b>V</b> -0	1	5	T-11	TfT-5	1/sec	S	1000 101
	When:						
0-0	1	б	T-8	Рот-б	1/sec	C	1500- <u>x</u> PSL
	0r:						
)-0	1	7	T-9	PoT-7	1/sec	C	1500- <u>x</u> psi.
	Verify:						
)-0	1	8	V-52	LLIV-1	1	S	Open
)-0	1		V-53	LLIV-2	1	S	Open

¢

.

PHAS	E STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
						VILLOH
	Command and	verify:				
0-0	19	V-52	LPSV-1	1	S	Open
0-0	19	V-53	LPSV-2	1	S	Open
0-0	19	<b>V-5</b> 4	LPSV-3	1	S	Open
	Engage the	clutches to	P-1, 2, 3.			
	During GO2	resupply, m	conitor the follow	ing addition	al parame	eters:
0-0	20	P <b>-1</b>	PPD-1	2/sec	ş	1500 PSIA
		н-4	THE-1	1/2 sec		
		H <b>→</b> 4	PHEO-1	1/2 sec		1500 PSIA
		<b>P</b> +2	PPD-2	2/sec		1500 PSIA
		H-5	THE-2	1/2 sec		
		H-5	PHEO-2	1/2 sec		1500 PSIA
		P-3	PPD-3	2/sec		1500 PSIA
¥.		н-6	THE-3	1/2 sec	V	
0-0	20	H <b>-</b> 6	PHEO-3	1/2 sec	S	<b>1500 PSIA</b>
	When:					
0-0	21	T-8	PoT-6	1/sec	С	1500 PSIA
0-0	21	T-9	PoT-7	l/sec	C	1500 PSIA
	Disengage t	he clutches	to P-1, 2, 3.			
	Discontinue	resupply mo	nitors.			
	Command and	verify:				
0-0	22	V-52	LPSV-1	1	S	Closed
0-0	22	V-53	LPSV-2	1	S	Closed
0-0	22	V <b>-</b> 54	LPSV-3	1	S	Closed
	When;					
0-0	23	T-10	PfT-6	1/sec	С	1500- <u>x</u> psia
	Or:					
0-0	24	T-11	PfT-7	1/sec	С	<b>1500-<u>x</u> psia</b>
	Verify:	'				
0-0	25	V <b>-</b> 55	LFIV-1	1 ′	S	Open
0-0	25	V-56	LFIV-2	1	S	Open
0-0	25	V-57	LFIV-3	1	S	-
0-0	22	γ- <i>□</i> γ	77-77-7	Ŧ	G	Open

.

Engage the clutches to P-4, 5, 6. During GE2 resupply, monitor the following additional parameters: D-0 27 P-4 PPD-4 2/sec S 1500 PP H-7 THE-4 1/2 sec 1500 PP P-5 PPD-5 2/sec 1500 PP P-5 PPD-5 1/2 sec 1500 PP H-8 THE-5 1/2 sec 1500 PP P-6 PPD-6 2/sec 5 1500 PP P-6 PPD-6 1/2 sec S 1500 PP When: D-0 27 H-9 THE-6 1/2 sec C 1500 PP When: D-0 28 T-10 PfT-6 1/sec C 1500 PP Disengage clutches to P-4, 5, 6. Discontinue resupply monitors. Command and verify: D-0 29 V-55 LPSV-4 1 S Closed Continue to monitor: D-0 30 C-1 PC-38 1/sec M G-1 TC-1 1/sec PT-4 S Closed Continue to monitor: D-0 30 C-1 PC-38 1/sec M G-1 TC-1 1/sec PT-4 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-1 PTL-1 1/2 sec PT-2 PTL-2 1/2 sec PT-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 PTL-2 PTL-2 PTL-2 PTL-2 PTL-2 PTL-2 PTL-2 PT	PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTEI VALUE
D-0 26 V-56 LESV-5 1 S Open 26 V-57 LESV-6 1 S Open Engage the clutches to P-4, 5, 6. During GH2 resupply, monitor the following additional parameters: D-0 27 P-4 PPD-4 2/sec S 1500 P H-7 THE-4 1/2 sec 1500 P P-5 PPD-5 2/sec 1500 P P-5 PPD-5 1/2 sec 1500 P H-8 THE-5 1/2 sec 1500 P P-6 PPD-6 2/sec 1500 P V H-9 THE-6 1/2 sec 1500 P 0-0 28 T-10 PfT-6 1/sec C 1500 P Disengage clutches to P-4, 5, 6. Disontinue resupply monitors. Command and verify: D-0 29 V-55 LPSV-4 1 S Closed Continue to monitor: D-0 30 G-1 PC-38 1/sec M G-1 TC-1 1/sec P D-0 30 G-1 PC-38 1/sec M G-1 TC-1 1/sec P D-1 NN-1 1/2 sec P D-1 NN-1 1/2 sec P P-1 PFT-1 1/2 sec P P-1 PFT-1 1/2 sec P P-1 PFT-1 1/2 sec P P-1 PFT-1 1/2 sec P PT-1 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PF	Co	mmand and	verify:				
D-0 26 V-56 LESV-5 1 S Open 26 V-57 LESV-6 1 S Open Engage the clutches to P-4, 5, 6. During GH2 resupply, monitor the following additional parameters: D-0 27 P-4 PPD-4 2/sec S 1500 P H-7 THE-4 1/2 sec 1500 P P-5 PPD-5 2/sec 1500 P P-5 PPD-5 1/2 sec 1500 P H-8 THE-5 1/2 sec 1500 P P-6 PPD-6 2/sec 1500 P V H-9 THE-6 1/2 sec 1500 P 0-0 28 T-10 PfT-6 1/sec C 1500 P Disengage clutches to P-4, 5, 6. Disontinue resupply monitors. Command and verify: D-0 29 V-55 LPSV-4 1 S Closed Continue to monitor: D-0 30 G-1 PC-38 1/sec M G-1 TC-1 1/sec P D-0 30 G-1 PC-38 1/sec M G-1 TC-1 1/sec P D-1 NN-1 1/2 sec P D-1 NN-1 1/2 sec P P-1 PFT-1 1/2 sec P P-1 PFT-1 1/2 sec P P-1 PFT-1 1/2 sec P P-1 PFT-1 1/2 sec P PT-1 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PFT-2 1/2 sec P PT-2 PF	0 <del>-</del> 0	26	V-55	LPSV-4	1	S	Open
D-0 26 V-57 LPSV-6 1 S Open Engage the clutches to P-4, 5, 6. During GH2 resupply, monitor the following additional parameters: D-0 27 P-4 PPD-4 2/sec S 1500 P H-7 THE-4 1/2 sec 1500 P H-7 PHE0-4 1/2 sec 1500 P H-8 THE-5 1/2 sec 1500 P H-8 PHE0-5 2/sec 1500 P H-9 PHE0-6 1/2 sec 1500 P V H-9 PHE0-6 1/2 sec 5 1500 P When: D-0 28 T-10 PfT-6 1/sec C 1500 P D-0 28 T-11 PfT-7 1/sec C 1500 P Discontinue resupply monitors. Command and verify: D-0 29 V-55 LPSV-4 1 S Closed D-0 29 V-56 LPSV-5 1 S Closed Continue to monitor: D-0 30 G-1 PC-38 1/sec M G-1 TC-1 1/sec C Continue to monitor: D-0 30 G-1 PC-38 1/sec M G-1 TC-1 1/sec C D-1 PTT-1 1/2 sec PT-1 NS-1 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec PT-2 PTT-2 1/2 sec							-
During GH2 resupply, monitor the following additional parameters: During GH2 resupply, monitor the following additional parameters: D=0 27 P-4 PPD-4 2/sec S 1500 Pi H-7 THE-4 1/2 sec 1500 Pi P-5 PPD-5 2/sec 1500 Pi H-8 THE-5 1/2 sec 1500 Pi H-8 PHE0-5 1/2 sec 1500 Pi H-9 PHE0-6 1/2 sec 5 1500 Pi When: D=0 28 T-10 PfT-6 1/sec C 1500 Pi Disengage clutches to P-4, 5, 6. Discontinue resupply monitors. Command and verify: D=0 29 V-55 LPSV-4 1 S Closed Continue to monitor: D=0 30 G-1 PC-38 1/sec M G-1 TC-1 1/sec C D=0 30 G-1 PC-38 1/sec M G-1 TC-1 1/sec PT-1 1/2 sec PT-1 PFTL-1 1/2 sec PT-1 PFTL-1 1/2 sec PT-1 PFTL-1 1/2 sec PT-1 NS-1 1/2 sec PT-1 NS-1 1/2 sec PT-1 NS-1 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec	0-0						-
During GH2 resupply, monitor the following additional parameters: During GH2 resupply, monitor the following additional parameters: D=0 27 P-4 PPD-4 2/sec S 1500 Pi H-7 THE-4 1/2 sec 1500 Pi P-5 PPD-5 2/sec 1500 Pi H-8 THE-5 1/2 sec 1500 Pi H-8 PHE0-5 1/2 sec 1500 Pi H-9 PHE0-6 1/2 sec 5 1500 Pi When: D=0 28 T-10 PfT-6 1/sec C 1500 Pi Disengage clutches to P-4, 5, 6. Discontinue resupply monitors. Command and verify: D=0 29 V-55 LPSV-4 1 S Closed Continue to monitor: D=0 30 G-1 PC-38 1/sec M G-1 TC-1 1/sec C D=0 30 G-1 PC-38 1/sec M G-1 TC-1 1/sec PT-1 1/2 sec PT-1 PFTL-1 1/2 sec PT-1 PFTL-1 1/2 sec PT-1 PFTL-1 1/2 sec PT-1 NS-1 1/2 sec PT-1 NS-1 1/2 sec PT-1 NS-1 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec PT-2 PTL-2 1/2 sec	En	gage the	clutches to 1	2-4.5.6.			-
H-7       THE-4       1/2 sec       1500 P;         P-5       PPD-5       2/sec       1500 P;         P-5       PPD-5       1/2 sec       1500 P;         H-8       THE-5       1/2 sec       1500 P;         P-6       PPD-6       2/sec       1500 P;         P-6       PPD-6       1/2 sec       1500 P;         D-0       27       H-9       PHE0-6       1/2 sec       1500 P;         When:       D-0       28       T-10       PfT-6       1/sec       C       1500 P;         D-0       28       T-11       PfT-7       1/sec       C       1500 P;         D-0       29       V-55       LPSV-4       1       S       Closed         D-0       29       V-57       LPSV-5       1       S       Closed         D-0       30       G-1       TC-1       1/sec       P				• •	ng additional	l paramete	ers:
H-7       THE-4       1/2 sec       1500 P;         P-5       PPD-5       2/sec       1500 P;         P-5       PPD-5       1/2 sec       1500 P;         H-8       THE-5       1/2 sec       1500 P;         P-6       PPD-6       2/sec       1500 P;         P-6       PPD-6       1/2 sec       1500 P;         D-0       27       H-9       PHE0-6       1/2 sec       1500 P;         When:       D-0       28       T-10       PfT-6       1/sec       C       1500 P;         D-0       28       T-11       PfT-7       1/sec       C       1500 P;         D-0       29       V-55       LPSV-4       1       S       Closed         D-0       29       V-57       LPSV-5       1       S       Closed         D-0       30       G-1       TC-1       1/sec       P	0-0	27	P-4	PPD-4	2/sec	S	1500 PS:
H-7       PHEO-4       1/2 sec       1500 P:         P-5       PPD-5       2/sec       1500 P:         H-8       THE-5       1/2 sec       1500 P:         H-8       PHEO-5       1/2 sec       1500 P:         P-6       PPD-6       2/sec       1500 P:         P-6       PTD-6       1/2 sec       1500 P:         V       H-9       THE-6       1/2 sec       1500 P:         0-0       27       H-9       PHEO-6       1/2 sec       1500 P:         0-0       28       T-10       PfT-6       1/sec       C       1500 P:         0-0       28       T-11       PfT-7       1/sec       C       1500 P:         Disengage clutches to P-4, 5, 6.       Discontinue resupply monitors.       Command and verify:       C       1500 P:         0-0       29       V-55       LPSV-4       1       S       Closed         0-0       29       V-57       LPSV-6       1       S       Closed         0-0       29       V-57       LPSV-6       1       S       Closed         0-0       30       G-1       PC-38       1/sec       M         0-1       NT-		Í				1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							1500 PS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ŀ	P-5	PPD-5		1	1500 PS
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						{	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							1500 PS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					•	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l tr	4					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-0	27				S	1500 PS
D-0 28 T-11 PfT-7 1/sec C 1500 P Disengage clutches to P-4, 5, 6. Discontinue resupply monitors. Command and verify: D-0 29 V-55 LPSV-4 1 S Closed D-0 29 V-56 LPSV-5 1 S Closed D-0 29 V-57 LPSV-6 1 S Closed Continue to monitor: D-0 30 C-1 PC-38 1/sec M Continue to monitor: D-0 1/2 Sec PT-1 1/2 Sec PT-1 1/2 Sec PT-1 1/2 Sec PT-1 1/2 Sec PT-1 1/2 Sec PT-1 1/2 Sec PT-1 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 1/2 Sec PT-2 PTL-2 PTL-2 1/2 Sec PT-2 PTL-2 PTL-2 1/2 Sec PT-2 PTL-2 PTL-2 1/2 Sec PT-2 PTL-2 P	Wh	en:					
Disengage clutches to P-4, 5, 6. Discontinue resupply monitors. Command and verify: D=0 29 V=55 LPSV-4 1 S Closed D=0 29 V=56 LPSV-5 1 S Closed D=0 29 V=57 LPSV-6 1 S Closed Continue to monitor: D=0 $30$ G=1 PC-38 1/sec M G=1 TC=1 1/sec U=1 NT=1 2/sec PT=1 QPTL=1 1/2 sec PT=1 QPTL=1 1/2 sec PT=1 NS=1 1/2 sec PT=1 NS=1 1/2 sec G=2 PC=39 1/sec G=2 TC=2 1/sec U=2 NT=2 2/sec PT=2 PPTL=2 1/2 sec PT=2 PPTL=2 1/2 sec PT=2 PPTL=2 1/2 sec PT=2 NS=2 1/2 sec	0-0	28	T-10	PfT-6	1/sec	C	1500 PS
Discontinue resupply monitors. Command and verify: D=0 29 V=55 LPSV=4 1 S Closed D=0 29 V=56 LPSV=5 1 S Closed D=0 29 V=57 LPSV=6 1 S Closed Continue to monitor: D=0 30 C=1 PC=38 1/sec M G=1 TC=1 1/sec U=1 NT=1 2/sec PT=1 QPTL=1 1/2 sec PT=1 QPTL=1 1/2 sec PT=1 NS=1 1/2 sec PT=2 PC=39 1/sec G=2 TC=2 1/sec PT=2 QPTL=2 1/2 sec PT=2 QPTL=2 1/2 sec PT=2 PTL=2 1/2 sec PT=2 PTL=2 1/2 sec PT=2 PTL=2 1/2 sec PT=2 PTL=2 1/2 sec	0-0	28	T-11	PfT-7	1/sec	С	1500 PS
Command and verify: D=0 29 V=55 LPSV=4 1 S Closed D=0 29 V=56 LPSV=5 1 S Closed D=0 29 V=57 LPSV=6 1 S Closed Continue to monitor: D=0 30 G=1 PC=38 1/sec M G=1 TC=1 1/sec U=1 NT=1 2/sec PT=1 QPTL=1 1/2 sec PT=1 PPTL=1 1/2 sec PT=1 TPTL=1 1/2 sec PT=1 NS=1 1/2 sec PT=1 NS=1 1/2 sec PT=1 NS=1 1/2 sec Q=2 PC=39 1/sec G=2 TC=2 1/sec U=2 NT=2 2/sec PT=2 QPTL=2 1/2 sec PT=2 PPTL=2 1/2 sec PT=2 TPTL=2 1/2 sec PT=2 TPTL=2 1/2 sec PT=2 NS=2 1/2 sec	Di	sengage c	lutches to P-	-4, 5, 6.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Di	scontinue	resupply mor	nitors.			
D-0       29       V-56       LPSV-5       1       S       Closed         0-0       29       V-57       LPSV-6       1       S       Closed         Continue to monitor:         O       30       G-1       PC-38       1/sec       M         G-1       TC-1       1/sec       M       M       M         U-1       NT-1       2/sec       PT-1       PT-1       1/2 sec         PT-1       PTL-1       1/2 sec       PT-1       PT-1       1/2 sec         PT-1       NS-1       1/2 sec       PT-1       NS-1       1/2 sec         G-2       PC-39       1/sec       G-2       PC-39       1/sec         G-2       PC-2       NT-2       2/sec       PT-2	Co	mmand and	verify:				
D-0 29 V-57 LPSV-6 1 S Closed Continue to monitor: 0-0 30 G-1 PC-38 1/sec M G-1 TC-1 1/sec U-1 NT-1 2/sec PT-1 QPTL-1 1/2 sec PT-1 PPTL-1 1/2 sec PT-1 TPTL-1 1/2 sec PT-1 NS-1 1/2 sec PT-1 NS-1 1/2 sec G-2 PC-39 1/sec G-2 TC-2 1/sec U-2 NT-2 2/sec PT-2 QPTL-2 1/2 sec PT-2 PPTL-2 1/2 sec PT-2 TPTL-2 1/2 sec PT-2 NS-2 1/2 sec	0-0						
Continue to monitor: $0-0$ $30$ $G-1$ $PC-38$ $1/sec$ M $G-1$ $TC-1$ $1/sec$ M $U-1$ $NT-1$ $2/sec$ $PT-1$ $PT-1$ $1/2$ sec $PT-1$ $PTL-1$ $1/2$ sec $PT-1$ $PTL-1$ $1/2$ sec $PT-1$ $PT-1$ $1/2$ sec $G-2$ $PC-39$ $1/sec$ $G-2$ $TC-2$ $1/sec$ $G-2$ $TC-2$ $1/sec$ $U-2$ $NT-2$ $2/sec$ $PT-2$ $PT-2$ $1/2$ sec $PT-2$ $PTL-2$ $1/2$ sec $PT-2$ $PTL-2$ $1/2$ sec $PT-2$ $PT-2$ $1/2$ sec $PT-2$ $NS-2$ $1/2$ sec	0-0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-0	29	V <b>~</b> 57	LPSV-6	1	S	Closed
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Co	ntinue to	monitor:				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0-0	30	G-1	PC-38	1/sec	М	
U-1       NT-1       2/sec         PT-1       QPTL-1       1/2 sec         PT-1       PPTL-1       1/2 sec         PT-1       TPTL-1       1/2 sec         PT-1       TPTL-1       1/2 sec         PT-1       TPTL-1       1/2 sec         PT-1       NS-1       1/2 sec         G-2       PC-39       1/sec         G-2       TC-2       1/sec         U-2       NT-2       2/sec         PT-2       QPTL-2       1/2 sec         PT-2       PPTL-2       1/2 sec         PT-2       TPTL-2       1/2 sec         PT-2       NS-2       1/2 sec			G-1	TC-1		1	
PT-1       QPTL-1       1/2 sec         PT-1       PPTL-1       1/2 sec         PT-1       TPTL-1       1/2 sec         PT-1       TPTL-1       1/2 sec         PT-1       NS-1       1/2 sec         G-2       PC-39       1/sec         G-2       TC-2       1/sec         U-2       NT-2       2/sec         PT-2       QPTL-2       1/2 sec         PT-2       PPTL-2       1/2 sec         PT-2       TPTL-2       1/2 sec         PT-2       NS-2       1/2 sec						1	
PT-1       PPTL-1       1/2 sec         PT-1       TPTL-1       1/2 sec         PT-1       NS-1       1/2 sec         G-2       PC-39       1/sec         G-2       TC-2       1/sec         U-2       NT-2       2/sec         PT-2       QPTL-2       1/2 sec         PT-2       PPTL-2       1/2 sec         PT-2       TPTL-2       1/2 sec         PT-2       NS-2       1/2 sec							
PT-1       TPTL-1       1/2 sec         PT-1       NS-1       1/2 sec         G-2       PC-39       1/sec         G-2       TC-2       1/sec         U-2       NT-2       2/sec         PT-2       QPTL-2       1/2 sec         PT-2       PTL-2       1/2 sec         PT-2       TPTL-2       1/2 sec         PT-2       TPTL-2       1/2 sec         PT-2       NS-2       1/2 sec			PT-1			•	
PT-1       NS-1       1/2 sec         G-2       PC-39       1/sec         G-2       TC-2       1/sec         U-2       NT-2       2/sec         PT-2       QPTL-2       1/2 sec         PT-2       PPTL-2       1/2 sec         PT-2       TPTL-2       1/2 sec         PT-2       NS-2       1/2 sec							
G-2       PC-39       1/sec         G-2       TC-2       1/sec         U-2       NT-2       2/sec         PT-2       QPTL-2       1/2 sec         PT-2       PPTL-2       1/2 sec         PT-2       TPTL-2       1/2 sec         PT-2       NS-2       1/2 sec							
G-2       TC-2       1/sec         U-2       NT-2       2/sec         PT-2       QPTL-2       1/2 sec         PT-2       PPTL-2       1/2 sec         PT-2       TPTL-2       1/2 sec         PT-2       NS-2       1/2 sec							
U-2       NT-2       2/sec         PT-2       QPTL-2       1/2 sec         PT-2       PPTL-2       1/2 sec         PT-2       TPTL-2       1/2 sec         PT-2       NS-2       1/2 sec							
PT-2       QPTL-2       1/2 sec         PT-2       PPTL-2       1/2 sec         PT-2       TPTL-2       1/2 sec         PT-2       NS-2       1/2 sec							
PT-2         PPTL-2         1/2 sec           PT-2         TPTL-2         1/2 sec           PT-2         NS-2         1/2 sec		ĺ					
PT-2     TPTL-2     1/2 sec       PT-2     NS-2     1/2 sec							
♥ PT-2 NS-2 1/2 sec ♥							
	T	4				Ţ	
	<b>∀</b> 0⊷0	30	F1-2 G-3	NS-2 PC-40	1/2 sec 1/sec	▼ M	

-

D-99

~

## <u>ON-ORBIT</u> (Continued)

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
0-0	3,0	G-3	TC-3	1/sec	м	
l	f -	<b>U-</b> 3	NT-3	2/sec	Ī	
		PT-3	QPTL-3	1/2 sec		
		PT-3	PPTL-3	1/2 sec	1	
¥	*	PT-3	TPTL-3	1/2 sec	*	
0-0	30	PT-3	NS-3	1/2 sec	м	
Whe	en requir	ed to perform	an OMS burn, ver	cify:		
0-0	31	TR-1	LBIV-1	ļ	S	Open
		TR-2	LBIV-2			
Ø	V	TR-3	LBIV-3	¥	¥	*
0-0	31	TR-4	LBIV-4	1	S	Open
Ini	itiate ig	niter spark,	verify:			
0-0	32	TR <b>-1</b>	IIE-1	1	S	Pulses
	¥	TR-2	IIE-2	1		
*		TR-3	IIE-3	¥	♥	*
0-0	32	TR-4	IIE-4	1	Ś	Pulses
Cor	mand and	verify:				
0-0	33	TR-1	LIOV-1	1	S	Open
		TR-1	PC-1	1	1	
		TR-2	LIOV-2		l l	Open
		TR-2	PC-2			- 1
		TR-3	LIOV-3			Open
		TR-3	PC-3			-
\$	A	TR-4	LIOV-4	Ý		Open
0-0	33	TR-4 —	PC-4	1	S	_
Con	mand and	verify:				
0-0	34	TR-1	LIFV-1	1	Ş	Open
		TR-1	PC-1	1		•
		TR-2	LIFV-2			Open
		TR-2	PC-2			-
		TR-3	LIFV-3			Open
	T	TR-3	PC-3	1		-
<b>₩</b>	V	TR-4	LIFV-4	A	∳ S	Open
0-0	34	TR-4	PC-4	1	S	
Con	mand and	verify:				
0-0	35	TR-1	LMBV-1	1	Ş	Open
		TR-1	PC-1	A.R.		-
		TR-2	LMBV-2	1		Open
		TR-2	PC-2	A.R.		-
		TR-3	LMBV-3	1		Open
	$\bot$	TR-3	PC-3	A.R.		-
Ŭ, N	V	TR-4	LMBV-4	1	V	Open
0-0	35	TR-4	PC-4	A.R.	S	

		ued)				EXPECTED
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
At	steady-s	tate Pc, term	ninate spark, veri	Lfy:		
0-0	36	TR-1	IIE-1	1	ş	OADC
	Ţ	TR-2	IIE-2	Ļ		Ļ
<b>▼</b> 0-0	▼ 36	TR-3 TR-4	IIE-3 IIE-4	1	V S	<b>▼</b> OADC
			TTU-4	T	5	01120
Dui	ring burn	, monitor:				
0-0	37	TR-1	PC-1	10/sec	S	300 PSL
		TR-2	PC-2		L.	W
<b>V</b>	27	TR-3	PC-3	10/200	¥ s	<b>7</b> 300 PSI
0-0	37	TR <b>-</b> 4	PC-4	10/sec	G	200 L2T
То	shutdown	, command and	l verify:			
0-0	38	TR-1	LMBV-1	1	Ş	Closed
		TR-2	lmbv⊷2			
¥.	<u> </u>	TR-3	LMBV-3	Y	Ţ	V
0-0	38	TR-4	LMBV-4	T	Ś	Closed
Cor	mand and	verify:				
0-0	39	TR-1	LIOV-1	1	Ş	Closed
	1	TR-2	LIOV-2		Ţ	1
Y	<b>V</b>	TR-3	LIOV-3	V 1	S S	<b>V</b> Closed
0-0	39	TR <b>-</b> 4	LIOV-4	1	5	Crosed
Cor	mand and	verify:				
0-0	40	TR-1	LIFV-1	1	ş	Closed
		TR-2	LIFV-2			
		TR-3	LIFV-3			<b>*</b>
		TR-4	LIFV-4			Closed
		TR-1	PC-1			Ambient
		TR-2 TR-3	PC-2 PC-3		4	ų,
<b>∀</b> 0 <b>-</b> 0	40	TR-4	PC-4	1	S	Ambient
Сов	mence mo	nitoring:				
0-0	41	LA-1	PZGL-1	1/hr	S	
1	-+1	LA-1 LA-2	PZGL-2	1	Ĩ	
		LA-3	PZGL-3			
		PT-4	QTPL-1	1		
		PT-5	QTPL-2			
		PT-6	QTPL-3			
	1	PT-4	PTPL-1			
\	♥	PT-5	PTPL-2	<u>, y</u>	¥	
o <b>∔</b> o	41	PT=6	PTPL-3	1/hr	S	

-

D-100

### DOCKING

- 1. Continue monitoring the Main Propulsion System as in steps On-Orbit 4, 5.
- To execute and RCS or OMS burn repeat steps On-Orbit (6-13) or (31-40) respectively.
- Continue to monitor APS gas pressures and temperatures as in steps On-Orbit - 14, 15.
- To execute resupply of the APS accumulators, perform steps On-Orbit - (16-29).
- Continue to monitor Propellant Conditioning System operation as in step On-Orbit - 30.
- Continue to monitor A/B lube pressurization systems as in step On-Orbit - 41.

#### DOCKED

1.	Continue moni	ltoring the Ma	in Propulsion	System as in	Docking step	1. EXPECTED
PHAS	E STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	VALUE
	Command and	verify:				
DD	2	TR-(1-37)	VII-(1-37)	1	S	OVDC
	Command and	verify:		-		
DD	3	TR-(1-37)	LBIV-(1-37)	1	S	Closed
	Command the	RCS doors clos	sed.			

- Continue to monitor as APS gas pressures and temperatures as in steps On-Orbit - 14, 15.
- 5. Continue to monitor A/B lube systems as in step On-Orbit -41.
- 6. Continue operation of the Propellant Conditioning Subsystem until command is received for APU shutdown. Continue monitoring as in Docking step 30 until shutdown. Upon command to shutdown, perform steps P-F-(5-22).
- 7. The Propellant Conditioning Subsystem will be operated 10 minutes per day while on orbit for hydraulic system conditioning. To perform this operation, or to restart the subsystem prior to undocking, perform steps L-115 through L-138.

# DOCKED

8. Before undocking, open the RCS doors, and command and verify:

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
DD	9	TR-(1-37)	VII-(1-37)	1	S	28 VDC
and	,					
DD	10	TR-(1-37)	LBIV-(1-37)	1	S	Open

#### REENTRY

- 1. Continue monitoring the Main Propulsion System as in steps on-orbit- 4, 5.
- 2. Secure the RCS and OMS subsystems as in steps Docked 2, 3.
- 3. Continue monitoring APS pressures and temperatures as in steps on-orbit 14, 15.
- Operate the Propellant Conditioning Subsystem in the resupply mode as in steps on-orbit - (16-29) as required, otherwise monitor as in step on-orbit 30

Terminate zero-g pressurization of the turbofan lube systems and command readiness checks on the turbofan engines:

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
R I	5 	FCA-1 FCA-1	LFIV A/B-1 LCPRV-1	1	R I	Closed Closed
		FCA-1 LA-1	LSPV-1 QLO-1			Closed
		FCA-2 FCA-2	LFIV A/B-2 LCPRV-2			Closed Closed
		FCA-2 LA-2	LSPV-2 QLO-2			Closed
<b>V</b>		FCA-3 FCA-3 FCA-3	LFIV A/B-3 LCPRV-3 LSPV-3	ļ		Closed Closed Closed
R	5	LA-3	QLO-3	1	R	CLOSED

Terminate zero-g pressurization of the A/B Propellant Management Power Train Lube Systems and verify:

R	6	GFV-4	LGFV-41	1	S	Closed
1	[	GFV-4	LGFV-4	1	1	1
		GOV-4	LGOV-4I			
	ł	GOV-4	LGOV-4			Į
		GFV-5	LGFV-5I			
	l	GFV-5	LGFV-5		Į	l
		GOV-5	LGOV-51			
		GOV-5	LGOV-5			
		GFV-6	LGFV-6I		1	
	1	GFV-6	LGFV-6			
	1	GOV-6	LGOV-61			
		GOV-6	LGOV-6			
		V-58	LFIV-4			
		V-59	LPSV-7			
	{	V-60	LFIV-5		ł	
		V-61	LPSV-8			
*	Ŷ	V-62	LFIV-6	¥.	*	4
Ŕ	б	V-63	LPSV-9	1	S	Closed

REENTRY	(Cont	inued)				
PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
				·· · ··· · · ····		
R	6	G-1	VII-41	1	S	OVDC
·		G-2	VII-42	1		<b>V</b>
		G-3	VII-43			ovdc
		EFV-1	LEFV-1			Closed
	Ì	EFV-2	LEFV-2			
		EFV-3	LEFV-3			
		EFV-4	LEFV-4			
		EFV-5	LEFV-5			
		EFV-6	LEFV-6			
		EFV-7	LEFV-7			
		EFV-8	LEFV-8			
		EFV-9	LEFV=9			
	1	EFV-10	LEFV-10			
		EFV-11	LEFV-11			4
		EFV-12	LEFV-12			Closed
			PfL-11			
			PfL-12			
			PfL-13			
		PT-4	QTPL-1			
¥	<b>♦</b>	PT-5	QTPL-2	4	4	
R	6	PT-6	QTPL-3	1	S	

#### <u>APPROACH & LANDING</u> - (Orbital)

- 1. Continue to monitor the Main Propulsion System as in steps on-orbit- 4, 5.
- 2. Continue to monitor APS gas parameters as in step on-orbit 15.
- 3. To resupply the APS gas accumulators execute steps on-orbit (16-29), otherwise monitor the Propellant Conditioning Subsystem parameters as in step on-orbit 30.
- 4. Command the A/B engine cradles to be lowered.
- 5. The A/B Propulsion System is activated and monitored as in Ferry Preflight, steps 92 through 136 except that windmilling is the primary mode of start, with solid start cartridges as back-up, instead of ground start GSE.
- 6. After landing, taxi to the revetment area.
- 7. Shutdown the A/B Propulsion System as in steps 3 through 23 of Ferry Approach and Landing.

POSTFLIGHT - (Orbital)

- 1. Tow the Orbiter into the revetment. Chock and tie down.
- 2. Connect ground power GSE.
- 3. Execute power transfer.
- 4. Continue monitoring Propellant Conditioning Subsystem operation as in step on-orbit - 30, until the APU shutdown command is received. Upon receipt of the APU shutdown command, execute steps 5 - 22 of Postflight-Ferry.
- 5. Take a final status sample of the Main Propulsion System parameters of steps on-orbit 4, 5.
- Remove tape and hard copy, if any. Debrief crew as required. Review in-flight data and fault-isolation output.
- Connect Drain and Purge GSE and verify as in step 28, Postflight-Ferry, (P-F).

SAMPLES

1

ł

1

USE

ទ

¥

S

EXPECTED

VALUE

Closed

Closed

		-		
PHASE	STEP	ELEMENT	MEASUREMENT	
P-0	8	V-32	LOPV-1	
		V-33	LOPV-2	
V	Ý	V <b>-</b> 34	LFPV-1	

V-35

8. Command and verify:

₽-0

Command	and	verify:	
---------	-----	---------	--

8

P0	9	<b>V-</b> 36	LOPV-3	1	S	Closed
	Ĩ	V-37	LOPV-4	Î	i i	
		V-38	LOPV-5			
		V-39	LOPV-6			
		V-40	LFPV-3			
		V-41	LFPV-4			•
¥	*	V-42	LFPV-5	Ý	8	<b>a</b>
P-0	ġ	V-43	LFPV-6	1	S	Closed

LFPV-2

- 10. Perform a purge of the main LH₂ system by executing steps 30 through 40 of Postflight-Ferry.
- 11. Perform a purge of the main LOX system by executing steps 41 through 52 of Postflight-Ferry.

Command and verify:

P-O	12	V-36	LOPV-3	1	S	Open
V	★	V-37	LOPV-4	*	Ť	ver ver
P-O	12	V-38	LPOV-5	i	Š	Open

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
P-0 P-0	12           	V-38 V-39 V-40 V-41 V-42 V-43	LOPV-5 LOPV-6 LFPV-3 LFPV-4 LFPV-5 LFPV-6	1	S S	Open Open
Con	mmand and	verify:				
P-0	13	TR-(14-28)	LBIV-(14-28)	1	S	Open
Con	nmand and	verify:				
₽-0 ₽-0 ₽-0	14 14	TR-(14-28) TR-(14-28) TR-(14-28)	LMBV-(14-28) LIOV-(14-28) LIFV-(14-28)	1 ♥ 1	S S	Open Open
Aft	ter two s	econds, comman	d and verify:			
P-0 P-0	15 V 15	TR-(14-28) TR-(14-28) TR-(14-28)		1 ¥	S S	Closed Closed
Cor	nmand and	verify:				
₽0   ₽-0	16 <b>V</b> 16	V-38 V-39 V-42 V-43	LOPV-5 LOPV-6 LFPV-5 LFPV-6	1 ↓ 1	S S	Closed Closed
Cor	mmand and	verify:				
P-0 P-0	17 17	TR-21 TR-21	LIOV-21 LIFV-21	1 1	S S	Open Open
Uni	t11:					
Р-О Р-О	18 18		PoL-9 PfL-10	A.R. A.R.	C C	19PSIA 19PSIA
Th	en, comma	and and verify:				
P-O P-O	19 💙 19	TR-21 TR-21 TR-(14-28)	LIOV-21 LIFV-21 LBIV-(14-28)	1 ¥ 1	S S	Closed Closed
Co	mmand and	l verify:				
P-0 P-0	20 20	TR-(1-13) TR-(29-37)	LBIV-(1-13) LBIV-(29-37)	1 1	S S	Open Open

POSTFLIGHT - (Orbital) (Continued)

PHASE	STEP	ELEMENT	MEASUREMENT	SAMPLES	USE	EXPECTED VALUE
Com	mand and	verify:				
P-0	21	TR-(1-13) TR-(1-13) TR-(1-13) TR-(29-37)	LIFV-(1-13)		S	Open
₽-0	¥ 21	TR-(29-37) TR-(29-37)		▼ 1	<b>V</b> S	Open
Aft	er two s	econds, comman	d and verify:			
P-0 ▼ P-0	22         	TR-(1-13) TR-(1-13) TR-(29-37) TR-(29-37) TR-(29-37) TR-(29-37)	LIFV-(1-13) LMBV-(29-37)		S	Closed
Com	nand and	verify:				
₽0 ₽0 ₽0	23 ¥ 23	V-36 V-37 V-40 V-41	LOPV-3 LOPV-4 LFPV-3 LFPV-4	1 1	S	Closed Closed
Com	nand and	verify:				
?-0 ?-0	24 24	TR-1 TR-1	LIOV-1 LIFV-1	1 1	S S	Open Open
Unti	11:					
?-0 ?-0	25 25		PoL-8 PfL-9	A.R. A.R.	C C	19PSIA 19PSIA
Ther	command	l and verify:				
-0 -0	26 26	TR-1 TR-1 TR-(1-13) TR-(29-37)	LIOV-1 LIFV-1 LBIV-(1-13) LBIV-(29-37)	1   1	S ₩ S	Closed

27. Purge the gas lines of the Propellant Conditioning Subsystem and A/B Propellant Management Subsystem by executing steps 53-56 of Postflight-Ferry.

28. Purge remaining LH₂ system, less main engines, by executing steps 57-65 of Postflight-Ferry.

```
POSTFLIGHT - (Orbital) (Continued)
```

- 29. Purge remaining LOX system, less main engines, by executing steps 66-69 of Postflight-Ferry.
- 30. Complete main engine purge.
- 31. Secure and disconnect the Drain and Purge GSE. Verify propellant coupling status as in step 71 or Postflight-Ferry. Purge complete.
- 32. Inspect all subsystems for mechanical disorders.
- 33. Attach covers and install desicants where required.
- 34. Command RCS doors closed.
- Secure and verify the MPS isolation values as in step 72 of Postflight-Ferry.
- 36. Power down all propulsion systems and OCMS.
- 37. Input flight data to processing system for trend analysis, performance evaluation, and/or maintenance report.