```
(NASA-CR-155566) EVALUATION OF STOL
N78-17051
NAvigATION AVIONICS Final Techaical Report
{Santa Clara Oniv.) 276.p HC A13/MF A01
CSCL 01D Unclas
G3/06 02520
```


WLCTRICAL RNGINERRING AND COMPUTER SCIENCE

FINAL TECHNICAL REPORT'
NASA Grant NGR 05-017-031
Evaluation of STOL Navigation Avionics

December 1, 1977

PREFACE

This final technical report covers work performed under NASA-Ames Grant NGR 05-017-031, Evaluation of STOL Navıgation Avionics.
Inquiries regarding the contents of this report should be directed to:

Dr. W. R. Dunn, Principal Investigator c/O Department of Electrical Engineering \& Computer Science University of Santa Clara

Santa Clara, California 95053

TABIE OF CONIENTS

I	Introduction \& Summary
II	Aircraft Attatude Measurement Using a Vector Magnetometer
III	Earth Elecrric Field Research - E-Field Model Of Cumalonjmbus Cloud
IV	Aircraft Noise Suppression - Electronic

I. INTRODUCTIION AND SUMMARY

The following summarize the research projects undertaken on NASA Grant NGR 05-017-031. Detailed research results are presented in Sections II through V.

PROJECT: $\quad \frac{\text { Application of Vector Magnetometer to Aircraft Control }}{\text { and Navigation. }}$

INVESTIGATORS:
W. R. Dunn and R. Pietila

Recent technological improvements and corresponding cost reductions in 3-axis (i.e., vector) magnetometry led to Investigation by Ames and University of Santa Clara researchers into use of this device in avionics flight control and navzgation applications. Early analytical work showed that vector magnetometer outputs could be used to detemmne aircraft change provided that one attitude angle was known. These results were confirmed by successful correlation of attitude compured from magnetometer data taken during a NASA Convaur 880 test with actual aurcraft atintude. To demonstrate the viability and uncover the lumitations of the theory, development of a solld state remote magnetic inducator was undertaken. The effort involved development of a microprocessor based system employing a 3-axus magnetometer and evaluation of the system using rest apparatus constructed at the University. The background and results of this work are described in detail in Section II of this report. Results of the research were also published in [1] and [2].

PROJECT: Application of Earth Electric Field Phenomena to Aircraft Control and Navigation.

INVESTIGATORS: W. R. Dunn, C. Keller, W. Keller, R. Wilson, R. Yarbrough
Hill's [3] late 1972 paper on use of the earth's electric field in flight control prompted NASA and University researchers to undertake investigation of earth field applications to large aurcraft control and navi-
gation.
The principle underlying Hill's work is the fact that in clear weather, the earth's surface termunates a large (approximately $300 \mathrm{v} / \mathrm{m}$ at the surface) electric field which is close to the local vertical. Hill then successfully demonstrated that airborne (RPV) measurements of this field could be used to provide pitch/roll control.

University investigations were undertaken to evaluate the use of this phenomena 'in bad (e.g. IFR) weather conditions. The pruncupal finding of this investigation was that this field (direction) can be significantly altered in and near cloud structures particularly the cumulonimbus cloud structure. Section III provides a review of the basic earth electric field phenomena and develops the basic field model for the cumulonimbus structure. The basic conclusion of this work is that the variability of the effects of the cumulonimbus on the clear weather electric field made navigational use of thus field in all flight condituons a highly unrelıable proposition. It is further proposed that electric field measurements maght possibly better serve in a low cost system for identifying the direction and change intensity of cumulonimbus clouds during flight.

PROJECT: Electronic Aircraft Cabin Noise Suppression
INVESTIGATORS: W. R. Dunn and W. Keller

Section IV describes an extension of Olson's [4] pioneering work in the use of active compensation as a means of reducing acoustic noise. This extended work provides a theoretical basis on which wide band acoustic noise can be signıficantly reduced in aircraft cabins.

PROJECT: SIRU (Strapdown Inertial Reference Unit) Technical Support. INVESTIGATORS: W. R. Dunn, W. Keller, C. Keller

University researchers worked with govemment and (government) contractor
personnel in the installation and checkout of the Carco motion sumulator facillty developed for use in the SIRU program. This effort consisted of Carco table orthogonality measurements, adjustment and calibration of recordung electronics, and specification of Carco Table/Sigma 7 computer anterface.

Section II

Aircraft Attitude Measurement
Using a Vector Magnetometer

PRECEDING PAGE BLANK NOT FLIMGI

Acknowledgment iii
Abstract IV
I A VECTOR AUTOPILOT SYSTEM
1-1 Introduction 1
1-2 Attitude Determination 2
1-3 Attitude Determination Employıng Magnetıc Field Components 6
1-4 A Possible System Configuration 8
1-5 Other Considerations 15
1-6 Conclusions. 19
II AN ATTITUDE INDEPENDENT REMOTE MAGNETIC INDICATOR
2-1 Introduction 20
2-2 An Algorithm to Compute Aırcraft Heading 21
2-3 Mechanization of the Heading Algorithm 27
2-4 Conclusions 28
III DESIGN OF A MICROPROCESSOR BASED HEADING INSTRUMENT
3-1 Introduction 30
3-2 Hardware Design Considerations 31
3-3 Software Design Consıderations 37
3-4 Desıgn of Subroutines 39
3-5 Conclusions 50
IV HEADING INSTRUMENT ERROR ANALYSIS
4-1 Introduction 54
4-2 Sensor Errors 55
4-3 Analog Subsystem Error Analysis 74
4-4 Processing Errors 90
4-5 Measurement Error summary 97
4-6 Sample Error Analysis 99
4-7 Conclusions 102

Table of Contents (Continued)

V LABORATORY EVALUATION OF THE ATTITUDE INDEPENDENT
REMOTE MAGNETIC INDICATOR AND HEADING INSTRUMENT
5-1 Introduction 104
5-2 Test Apparatus 105
5-3 Heading Measurements With No Offset Correction 109
5-4 Headlng Measurements to investigate Orthogonality Error 113
5-5 Conclusions 114

Appendix B: Assembly Language Program 130
Appendix C: Table Generating Programs 156

CHAPTER I

A VECTOR AUTOPILOT SYSTEM

1-1 INTRODUCTION

An essential requirement of an aircraft attitude control system is that deviation of the body axes relative to a reference axes frame must be sensed. In addition, to overcome the ever-present possibility of errors or fallure of the sensors, various configurations of redundant sensors are usually employed to assist in detection and correction of errors. To this end, there has been a continuing effort to improve existing sensors, to develop new sensor configurations, and to develop new sensor devices.

This chapter discusses the role of a vector magnetometer ${ }^{l}$ as a new instrument for, aırcraft attitude determinacion. Although magnetometers have played a role in the attitude measurement of missiles and satellites [Ref. 1-1], there is an apparent lack of application in aircraft systems. By providing independent measures of attitude, the solid state vector magetometer sensor system can not only assist In improving accuracy and reliability of existing systems but can also reduce component count with obvious benefits In weight and cost. Additionally, since a large number of aircraft heading reference systems depend on measurement of the Earth's magnetic field, 1τ can be shown that by substituting a three-axis magnetometer for the remote sensing unit; both heading and attitude measurement functions can be deraved using common elements, thereby further reducing the component count.

[^0]To Investigate the feasubility of the above system, this chapter will proceed by developing a technique to determine attıtude given magnetic field components. Sample calculations are then made using the Earth's magnetic field data acquired during actual flight conditions. Results of these calculatıons are compared graphically with measured attitude data acquired simultaneously with the magnetic data. The role and possible implementation of various reference angles are discussed along with other pertinent considerations. Finally, it is concluded that the Earth's magnetic field as measured by modern vector magnetometers can play a signifュcant role in attitude control systems.

1-2 ATTITUDE DETERMINATION

Coordinate systems are usually defined by orthogonal right-handed sets of three unit vectors. An example of such a set is lllustrated in Fig. l-l where the orientation of the body fixed frame used in this paper is delineated. Angular rotations are conventionally defined as rotations in the plane normal to a unit vector with the positive sense of rotation defined by the right-hand rule [Ref. 1-2].

To derive relationships of attitude varıations as a function of magnetic vector component variation, we can proceed by considering matrix representations of an orthogonal transformation. If Hx, Hy, and Hz are the magnetic components measured at a desired airframe attitude and Hx', Hy', and Hz ' are the components measured after any rotation of the body, vector $H^{\prime}=\left[\mathrm{Hx}^{\prime} \mathrm{Hy}^{\prime} \mathrm{Hz}^{\prime}\right]^{T}$ can be related to vector $H=[H x H y H z]^{T}$ by an orthogonal linear transformation $H^{1}=A H$. Here A must satisfy the orthogonality condition $A A^{T}=I$, where A^{T} is the transpose of A; addytionally, the determinant of A must be unity [Ref. 1-3, 1-4].

Fig. 1-1 AXIS ORIENTATION

Rotations about the z axis in pig. l-l result in yaw deviations (w) and in new components (H^{\prime}), as shown by

$$
\left[\begin{array}{l}
\mathrm{H} X^{\prime} \tag{1-1}\\
\mathrm{HY} \mathrm{Y}^{\prime} \\
\mathrm{Hz}
\end{array}\right]=\left[\begin{array}{ccccc}
\cos & \psi & \sin & \psi & 0 \\
-\sin \psi & \psi \cos & \psi & 0 \\
0 & 0 & & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{Hx} \\
\mathrm{HY} \\
\mathrm{~Hz}
\end{array}\right]
$$

Similarly, independent rotations about the y axis and the x axis result in pitch (θ) and roll (ϕ) dependent variathons in the measured H components, as shown by

$$
\begin{align*}
& {\left[\begin{array}{l}
H x^{\prime} \\
H y^{\prime} \\
H z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\mathrm{Hx} \\
\mathrm{Hy} \\
\mathrm{~Hz}
\end{array}\right]^{\cdot}} \tag{1-2}\\
& {\left[\begin{array}{l}
H z^{\prime} \\
H y^{\prime} \\
H z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
H x \\
H y \\
H z
\end{array}\right]} \tag{1-3}
\end{align*}
$$

The effect of a combined rotation can be expressed by using the product of the transformation matrices. In additıon, if the rotations are small, the total rotation experlenced by applying sequential rotations is independent of the order in which the rotations are performed [Ref. 1-3,1-4].

$$
\begin{align*}
& {\left[\begin{array}{l}
H x^{\prime} \\
H y^{\prime} \\
H z^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & \\
0 & \cos \phi & \sin \phi \\
0 & -\sin & \phi & \cos
\end{array}\right]\left[\begin{array}{l}
H x \\
H y \\
H z
\end{array}\right]} \tag{1-4a}\\
& {\left[\begin{array}{l}
H x^{\prime} \\
H y^{\prime} \\
H z^{\prime}
\end{array}\right]=\left[\begin{array}{rrr}
\cos \psi \cos \theta & \sin \psi \cos \phi+\sin \theta \cos \psi \sin \theta \\
-\sin \psi \cos \theta & \cos \psi \cos \phi-\sin \phi \sin \psi \sin \theta \\
\sin \theta & -\cos \theta \sin \phi
\end{array}\right.} \\
& \left.\begin{array}{l}
\sin \phi \sin \psi-\sin \theta \cos \psi \cos \phi \\
\cos \psi \sin \phi+\sin \psi \sin \theta \cos \phi \\
\cos \phi \cos \theta
\end{array}\right]\left[\begin{array}{l}
\mathrm{Hz} \\
\mathrm{Hy} \\
\mathrm{~Hz}
\end{array}\right] \tag{1-4b}
\end{align*}
$$

Assume that the angular variations θ, ψ, and ϕ are small enough so that the small angle approximations

$$
\begin{aligned}
& \sin \theta \simeq \theta, \sin \psi \simeq \psi, \sin \phi \simeq \phi, \\
& \cos \theta \simeq \cos \psi \simeq \cos \phi \cong 1
\end{aligned}
$$

can be made. Then, if the products of small angles (in radians) can be assumed to be much smaller than the angles alone, the expression reduces to

$$
\left[\begin{array}{l}
\mathrm{Hx}^{\prime} \tag{1-5}\\
\mathrm{Hy}^{\prime} \\
\mathrm{Hz}
\end{array}\right]=\left[\begin{array}{rrr}
I & \psi & -\theta \\
-\psi & I & \phi \\
\theta & -\phi & I
\end{array}\right]\left[\begin{array}{l}
\mathrm{Hx} \\
\mathrm{Hy} \\
\mathrm{~Hz}
\end{array}\right]
$$

Further modifications in the form of the matrices result in

$$
\left[\begin{array}{l}
\mathrm{Hx}^{\prime} \tag{1-6}\\
\mathrm{Hy}^{\prime} \\
\mathrm{Hz}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
-\mathrm{Hz} & \mathrm{Hy} & 0 \\
0 & -\mathrm{Hx} & \mathrm{~Hz} \\
\mathrm{Hx} & 0 & -\mathrm{Hy}
\end{array}\right]\left[\begin{array}{l}
\theta \\
\psi \\
\phi
\end{array}\right]+\left[\begin{array}{l}
\mathrm{Hx} \\
\mathrm{Hy} \\
\mathrm{~Hz}
\end{array}\right]
$$

By subtracting, we arrive at an expression for the difference in H components as functzons of angular deviation.

$$
\left[\begin{array}{l}
\mathrm{Hx} \tag{1-7}\\
\mathrm{Hy} \\
\mathrm{~Hz} \mathrm{I}^{\prime}
\end{array}\right]-\left[\begin{array}{l}
\mathrm{Hz} \\
\mathrm{Hy} \\
\mathrm{~Hz}
\end{array}\right]=\left[\begin{array}{l}
\Delta \mathrm{Hx} \\
\Delta \mathrm{Hy} \\
\Delta \mathrm{~Hz}
\end{array}\right]=\left[\begin{array}{ccc}
-\mathrm{Hz} & \mathrm{Hy} & 0 \\
0 & -\mathrm{Hx} & \mathrm{~Hz} \\
\mathrm{Hx} & 0 & -\mathrm{Hy}
\end{array}\right]\left[\begin{array}{l}
\theta \\
\psi \\
\phi
\end{array}\right]
$$

It is signıficant to note at this point that the transformation matrix is singular implying that solutions for θ, ψ, and• ϕ are not independently available.

1-3 ATTITUDE DETERMINATION EMPLOYING MAGNETIC FIELD COMPONENTS

A given orthogonal set of three unit vectors can be displaced in Euclidean space by rotating the system through any angle δ about a directed rotation axis. It is also customary to represent this rotation vectorially as a directed line segment whose length is proportional to the rotation angle. This rotation is analogous to the rotation experienced by the body fixed frame of Fig. l-1 as the alrcraft experiences combined pitch, yaw, and roll varıation. During flight the body fixed set rotates about this rotation axis assuming new (possibly erroneous) attıtudes in space. The task of the attrtude sensing system is to provide measures of compounded pltch, yaw, and roll that would result in the same attitude assuming that the rotations occurred sequentially about the X, y and z axes rather than the actual rotation axis.

It was shown in the previous section that a compounded rotation of an orthogonal set can be described by a product of respective.transformation matrices. Additıonally it was noted that for small angular rotations the order of multiplication is unımportant. Using the relationshıps of (l-7), expressions for the angular deviations in terms of measured magnetic vector components can be derived.

$$
\begin{equation*}
\Delta H x=-H z \theta+H y \psi \tag{1-8a}
\end{equation*}
$$

ylelds

$$
\begin{align*}
\theta & =(H y \psi-\Delta H x) / H z \tag{1-8b}\\
\psi & =(\Delta H x+H z \theta) / H y \tag{1-8c}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\Delta H y=-H x \psi+H z \phi \tag{1-9a}
\end{equation*}
$$

yields

$$
\begin{align*}
& \psi=(H z \phi-\Delta H y) / H x \tag{1-9b}\\
& \theta=(\Delta H y+H x \psi) / H z \tag{1-9c}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta H z=H x \theta-H y \phi \tag{1-10a}
\end{equation*}
$$

yuelds

$$
\begin{align*}
& \theta=(\Delta \mathrm{Hz}+\mathrm{Hy} \phi) / \mathrm{Hx} \tag{1-10b}\\
& \phi=(\mathrm{Hx} \theta-\Delta \mathrm{Hz}) / \mathrm{Hy} \tag{I-10c}
\end{align*}
$$

Assuming that Hx, Hy and Hz are nominal vector components as measured in a reference attitude and that $H x^{\prime}$, Hy' and $\mathrm{Hz}{ }^{\prime}$ are new fleld components at the new attitude, then $\Delta H x=H x^{\prime}-H x, \Delta H y=H y^{\prime}-H y, \Delta H z=H z^{\prime}-H z$ are expressions of the incremental changes in field components. AddItionally, before using (1-8), (1-9) or (1-I0) to solve for attıtude variations (pitch, yaw, or roll), one additıonal angle from an auxiliary sensor ${ }^{2}$ must be supplied. Using one addrtional angle of rotation (about any one axis) the remaining two rotations can then be calculated.

To illustrate this point, flight data acquired during the fllght of a NASA flown Convalr 900 instrumented with a three-axis magnetometer and a Litton inertial navigation system were used to calculate roll, pitch, and yaw.

[^1]Attitude variation about each of the three axes was calculated using measured magnetic field components supported by one angle from the inertial system. The results of these calculations are plotted in Figs. 1-2 through 1-4.

It is significant to note that the rotations shown occurred simultaneously (i.e., time base is the same for all three figures). The flight was at an altıtude of approximately 5000 ft at an airspeed of approximately $250 \mathrm{nmi} / \mathrm{h}$.

Although the data used to plot the attitudes shown in Figs. l-2 through $1-4$ were not acquired specifically for this purpose, the correlations in measured and calculated attitude clearly show that, within the lımıts of instrument accuracy, signals proportional to attıtude varıation can be derived using Elight data.

1-4 A POSSIBLE SYSTEM CONFIGURATION

Since the intent of this chapter is to introduce the notion that magnetometer technology has advanced to the point where three-axis magnetometers can be incorporated in aircraft attitude sensing systems on a cost effective basis, the system discussion will be limited in scope to describing a possible combined heading and attitude measurement method.

Heading references fall into three classes; 1) those that depend on the Earth's magnetic field, 2) those that depend on the use of low-drift gyroscope to retain a preset azimuth, and 3) those (gyrocompasses) that depend on sensing the Earth's rotation [Ref.l-5]. By far the greatest number of aircraft heading systems depend on the Earth's magnetic field, although many of these include gyroscopes to improve the performance characteristucs.

FIGURE 3 -3 petci AXIS

FIGURE 1-4 YAN AXIS

A popular system combination (with no gyro) is to combine a pendulous remote magnetic sensor and a synchro receiver $1 n$ a null seeking circuit. The philosophy belng to attempt to measure only the horizontal component of the Earth's magnetic field and to swing the receiver into alignment with it. Under acceleration, departures of the sensor unit from the horizontal result in angular heading errors ε [Ref. 1-5].

$$
\varepsilon=(\mathrm{aH} / \mathrm{g}) \tan \gamma \sin \theta
$$

where $a H$ is the horizontal acceleration, g is the acceleration due to gravity, θ is the angle between the acceleration vector and magnetic north, and γ is the magnetic field dip angle; arctan (vertical field/horizontal field).

Accuracy of this system can be mproved by incorporating a strapped-down solid state magnetic sensing unit (free of acceleration errors) that measures and displays the angle of the Earth's horizontal magnetic component relative to the aircraft. This system can be implemented as follows:
I) Determine the direction of the magnetic vector F relative to the sensors (and the airframe), by measuring the x, y and z components (Flgs. 1-1 and 1-5). The direction cosines $\cos \alpha, \cos \beta, \cos \gamma$ are the cosines of the angles α, β, γ between the magnetic vector and the positive x, y and z axes. Additionally,

$$
\begin{aligned}
& \cos \alpha=x /\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}} \\
& \cos \beta=y /\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}} \\
& \cos \gamma=z /\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

2) Using either a vertical reference ${ }^{3}$ or knowledge of aircraft attitude, we can effectively rotate the body axes such that the $x-y$ plane is horizontal (see Chapter II).
3) Simple application of direction cosines will yield the direction of magnetic north in the aircraft's $x-y$ plane.

FIg. I-5 FIELD VECTORS AND DIRECTION COSINES

Although the preceding discussion implies that heading can be determined by using a strapped-down magnetometer, there remains the problem of attitude determination. Another widely used system for obtaining a heading reference

[^2]is to combine the relatively excellent short term stability of a directional gyroscope with the long term stabilıty of magnetic field measurements. By slaving the directional gyroscope to the magnetic field [Ref. $1-5, \mathrm{sec} .10 .4 .7]$, gyroscopes with relatively large free drift error can be used to provide an excellent heading reference.

Replacement of the pendulous remote sensing unit of this type of system with a strapped-down vector magnetometer would result in both heading and attitude information on a continuous basis. This combination would operate as follows:

1) The system is initıalized by determining a reference attitude (perhaps by using a primary inertial attitude system) .
2) The angular position of the horızontal magnetic field component is computed as above and used to slave the directional gyroscope.
3) The directional gyroscope, with relatively good short term stability (devices with free drift of less than 0.5 deg/h have been designed), is used to determine yaw (w) errors.
4) For small angle deviations, (1-8), and (1-9), and (1-10) can be employed to recalculate aircraft attitude. The process loops back to step 2) closing the loop on a combined attitude and heading reference system.

The sampling frequency required to malntain an acceptable level of error is of course determined by the aircraft performance expected (angular rates) and by the gyro error (drift rate plus errors due to additional sources such as
gyroscope tilt from vertical). The overall system is such that heading can be determined as before with errors due to sensor departures from horizontal substituted for long term accumulation of attitude uncertainty (this can be corrected by looping to step l) at a frequency dependent on error rates). Addrtionally one gains measurements of attitude with minimal computation and replacement of a mechanical remote sensing unit with a solid state strapped-down magnetometer sensor.

1-5 OTHER CONSIDERATIONS

The characteristics of the Earth's magnetic field and its variations have long been established [Ref. 1-6-I-I0]. Since the field is to be used as a reference in the attitude measurement scheme, there is a need here to discuss its adverse characterıstics. Although the field does experience variatıon, most of the variation is elther in amplıtude (lonospheric contributions) or has time constants that make the variatıon neglıgible (secular varıatıon).

In traversing local anomalies, there will, however, be deflections in the ambient field due to the additive effect of local dipoles or monopoles. The effect of local terrain caused anomalies can be visualized by picturing the main field vector oriented in space with a second modulating vector rotating at its tip. Maximum angular error would occur when this modulating vector has maximum magnitude and is positioned at right angles to the maln vector.

To illustrate the effect of local anomalies one can calculate the level of anomaly required to cause an error. Since the Earth's maln field is typically in the order of 0.50 G it is readily apparent that a local anomaly of approximately 0.01 G at right angles to the local field is
required to cause an error of 1 deg. Furthermore, "the local anomaly would have to be aligned with one of the aircraft body axes to result in one degree of attitude error in any one axis. Fortunately, anomalies with components of this magnitude positioned at right angles to the main field are extremely rare. In addition, the anomalies are localızed over ore bodies or other geophysical irregularities, have magnitudes that diminish as the cube of altitude, and tend to average to zero over relatively short distances. In summary, the probability of encountering an anomaly that would cause as much as a I degree error is relatively small. The error, if introduced, will be short lived and, unlike drıft error, will average to zero.

Fundamental to a magnetic field referenced system is the abılity to measure orthogonal components of the field vector. Precision and accuracy of measurement of the components is of course specified by the desired control specIfications.

Since the Earth's magnetic field varies in magnitude on a global basıs between 0.3 G and $0.6 \mathrm{G}(30,000$ gamma to 60,000 gamma), it is apparent that full scale measurements of 0.6 G can be expected. Sensors mounted at right angles to the field will monitor no measureable field and thus define the lower limat of measurement to be zero. For the continental United States the declination varies between 60 and 80 deg , resulting in a range in horizontal component of 0.15 to 0.25 G with vertical component in the range of 0.4 to 0.55 G. Heading variatıons (yaw) result in changes of the horizontally sensed field components and would specify the maximum precision required. In addition, flight at $45 \mathrm{deg} \pm$ (n $x 90$ deg) (where n is any whole number) with respect to magnetic north results in minimum sensitavaty of the x and y
axes measurements. In this case sensor inputs would range between 0.106 and 0.177 G with minimum field at the north. Assuming the preceding ambient measurements, variations in component magnitude of approximately 0.0180 to $0.0305 \mathrm{G} / \mathrm{deg}$ for small angle variations can be expected.

A brief survey of commercial magnetometer manufacturers reveals that triaxial magnetometers that measure from zero to 0.6 G with linearities of 0.5 percent, noise less than ± 1 mG and sensitivies of at least 2.5 V per 600 mG are currentIy available. In addition, these devices have a bandwidth of direct current to at least 500 Hz and are rated to have less than 1 deg error in orthogonality.

From a precision standpoint, it is apparent that varıatıons in yaw for this worst case situation can be sensed co better than 0.1 deg with currently available magnetometer technology. The sensor technology required to mplement an attitude sensing system of reasonable specifications is available (more detailed analysis is presented in Chapter III).

Although the preceding calculations indicate that for small angular variations attitude can be calculated using measured magnetic data, there is a need to consider the effects of larger finite rotations. In this case the small angle assumptions would not be valld and an Euler transformation would have to be made. Measurement of three axes of fleld components could be used to develop the direction cosines required to determine the orientation of the axis of rotation, the angular rotation about it, and the three angular rotations of pitch, roll, and yaw.

For the special case where the axis of rotation aligns with the magnetic vector, there would of course be no
α *
measured component changes. ${ }^{4}$ By measuring the atticude of a second vector (not in alignment with the magnetic vector), we could resolve the ambiguous situation clted above and provide additional redundancy.

The optimum auxiliary vector would be one that could be sensed whthout using inertial devices. The Earth's electric field can be considered. The main reason for considerıng this field as a means of providing an auxiliary angular reference is that the resultant system has the potential of being completely solid state. The electric field vector can be used to determine attitude varıation in a manner analogous to the magnetic vector system. Inherent limitations of each single vector system can be obviated If the vectors are not coincident.

Although Hill [Ref. I-11] reported success in controling pitch and roll using the electrostatic field alone, comments by Markson [Ref. l-12] indicate that the electrostatic field is not always a reliable vertical reference. Employment of the electrostatic field for this attitude measurement system is limited to augmenting the magnetic field measurements by eliminating ambiguity of motion around the magnetic vector. The requirement of vertical electrostatic field is thus removed and replaced by a requirement that the field dırection is relatively stable.

By using two independently derived vectors we have sufficient data to obviate the ambiguity just cited and we have the potential of providing redundancy as well.

[^3]This chapter has identified a novel method of measuring aircraft attitude using relatively inexpensive, well developed instrumentation. It has recognized that magnetic field sensing systems have been used to some extent in attitude sensing and control of space vehicles; $1 t$ has also suggested, however, that with appropriate support, magnetometers can find increased application in aircraft attıtude measurement systems.

This clalm is corroborated by actual flight test data. Magnetometers have evolved to a polnt where three axis measurements of the Earth's magnetic fleld can be made with sufficient precision and accuracy to enable measurement of small angle attitude variations.

This chapter has also discussed a possible system configuration combining heading determination and attitude measurement functions. By replacing the conventional remote sensing unit with a three-axis magnetometer, it has been suggested that both functions can be obtained with the hardware required previously for heading measurement alone.

As with any system, there are limitations imposed. The main limitation for a vector magnetometer system seems to be the inability to sense rotations around the magnetic vector itself. This problem is not unlike the ambiguity experienced by magnetic heading systems at high latıtudes. By judıciously incorporating auxiliary instruments, not only can the ambiguities be removed but a degree of redundancy can be added while still maıntaining a cost and weight advantage over comparable systems.

AN ATTITUDE INDEPENDENT REMOTE MAGNETIC INDICATOR

2-I INTRODUCTION

Preliminary investigation [Ref.2-I] revealed that aurcraft attitude can be calculated using measurements of earth's magnetic field vector and a single auxiliary rotation angle. An algorithm to compute the two remalning aircraft rotational angles was developed. Using flıght data, it was demonstrated that an excellent correlation in computed versus actual aircraft attıtude could be achıeved. In addition to providing measurements of the magnetic field for redundant attitude' computations (to improve accuracy and reliability of existing autopilot systems), it was noted that the vector magnetometer could substitute for the remote magnetic sensing unit. In. this manner both heading and attrtude measuremencs could be derived using common elements with obvious benefits in weight and cost.

This chapter discusses the mechanization of a microprocessor based computer system that uses a three axis magnetometer plus gyro data to compute heading. The magnetometer is a three axis solid state device that can be mounted in a strapped down conflguration resulting in an attıtude independent remote magnetic indicator. Gyro measurements of pitch and roll angle plus three axis magnetic measurements are used by the algorithm to compute aircraft heading. The system can function independently to compute heading or by simply increasing the stored program could implement the attıtude computing algorithm of [Ref. 2-l] as well.

The chapter proceeds by developing an algorithm to compute aircraft heading using the strapped down magnetometer
and two gyro measured angles. Practical aspects of designing the system including, both hardware and software are then presented. In addition, the limitations in instrument accuracy and operation as determined by sensor errors, signal processing errors, arithmetic precision and computation speed are discussed. Consıderable computational capability inherent'in the system enables minımızation of systematic errors. It is demonstrated that inexpensive sensors can be employed with offset and orthogonality errors compensated by microprocessor programming. Finally, it is concluded that a microprocessor based computer with a solid state magnetometer can play a significant role in aircraft instrumentation.

2-2 AN ALGORITHM TO COMPUTE AIRCRAFT HEADING

Coordinate frames are usually defined by orthogonal right-hand sets of three unit vectors. An example of such a set is illustrated in Fig. l-1 where the orientation of the body fixed frame used in this chapter is delineated. The reference coordinate frame referred to in this chapter is orlented with axes x and y in the horizontal plane and axis z vertical (z down is positive). Pitch attitude angle (θ) of an aircraft is defined [Ref. 2-2] as the angle between some preferred longitudinal axis and the horizontal reference. In this chapter, pitch angle is the angle between the x axis of the alrcraft and the $x-y$ plane of the reference axis set. Since angular rotations are conventionally defined as rotations in the plane normal to a unit vector with the positive sense of rotation defined by the right-hand rule [Ref. l-2], we will define positive pitch angle (θ) as the "nose up" or positive rotation about the y axis when the y axis is horizontal. The roll and yaw angles (ϕ and ψ) will then simply be rotations about the x and y axes respectively.
$\rightarrow \rightarrow$
By aligning the three magnetometer axes with the respective x, y and z axes of the aircraft, we can measure magnetic field components of the aircraft at any attitude. For the trivial case where pitch (θ) and roll (Φ) are both zero degrees, Hx and Hy are the horizontal field components and we can compute yaw from the horızontal vectors as follows:

$$
\begin{equation*}
\Psi_{1}=\cos ^{-1}\left(\mathrm{Hx} /\left(\mathrm{Hx}^{2}+\mathrm{Hy}^{2}\right)^{\frac{1}{2}}\right. \tag{2-1a}
\end{equation*}
$$

or

$$
\begin{equation*}
\Psi_{1}=\sin ^{-1}\left(H y f\left(H x^{2}+H y^{2}\right)^{\frac{1}{2}}\right. \tag{2-1b}
\end{equation*}
$$

We select either $(2-1 a)$ or $(2-1 b)$ based on the relative magnitudes of $H x$ and Hy. By manimizing the numerator of the argument we guarantee that the inverse trigonomerric operation results in an angle between zero and forty-five degrees with maximum sensitivity ensured. Heading is then computed using the signs of $H x$ and $H y$ to select the appropriate equation from Table 2-1.

	NEGATIVE	POSITIVE
Negative	$\Psi=180-\Psi_{1}$	$\Psi=\Psi_{1}$
Positive	$\Psi=\Psi_{1}+180$	$\Psi=360-\Psi_{1}$

Table 2-1. Formulae to Compute Heading

For most cases, the pitch and roll angles are not zero and inverse rotations are required to determine the actual horizontal field components $H x$ and Hy. Since any aircraft attitude can be represented as a sequence of rotations about each axis beginning at some reference attitude, we can
determine the reference $H x$ and Hy field components by performing an inverse roll followed by an inverse pitch computation ${ }^{1}$.

The inverse roll computation can be developed by considering vector components of an arbitrary vector \vec{H} in Fig. 2-1. The first set $\left(X_{2}, y_{2}, z_{2}\right)$ represents the vector components measured in a reference orientation. The second set has common origın and aligns with common x axis component. It is rotated (rolled) about the x axis resulting in new y and z values, We can describe vector \bar{H} in both coordinate frames as

$$
\begin{equation*}
\overline{\mathrm{H}}=x_{2} \cdot \hat{i}_{2}+y_{2} \cdot \hat{j}_{2}+z_{2} \cdot \hat{k}_{2} \tag{2-2}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\mathrm{H}}=\mathrm{x}_{3} \cdot \hat{i}_{3}+y_{3} \cdot \hat{j}_{3}+z_{3} \cdot \hat{k}_{3} \tag{2-3}
\end{equation*}
$$

Since the vector $\overline{\mathrm{H}}$ is unique, we note that equations (2-2) and $(2-3)$ are equal. Furthermore if we form dot products we solve for the horizontal components x_{2}, Y_{2}, and z_{2} in terms of the rotated values and the roll angle (\$).
. From (2-2) we obtaln

$$
\begin{gather*}
\bar{H} \cdot \hat{i}_{2}=x_{2}\left(\hat{i}_{2} \cdot \hat{i}_{2}\right)+y_{2}\left(\hat{J}_{2} \cdot \hat{i}_{2}\right)+z_{2}\left(\hat{k}_{2} \cdot \hat{i}_{2}\right) \\
\bar{H} \cdot \hat{i}_{2}=x_{2} \tag{2-4a}
\end{gather*}
$$

and from (2-3) we obtain

$$
\begin{gather*}
\bar{H} \cdot \hat{i}_{2}=x_{3}\left(\hat{i}_{3} \cdot \hat{i}_{2}\right)+y_{3}\left(\hat{j}_{3} \cdot \hat{i}_{2}\right)+z_{3}\left(\hat{k}_{3} \cdot \hat{i}_{2}\right) \\
\vec{H} \cdot \hat{i}_{2}=x_{3} \tag{2-5a}
\end{gather*}
$$

[^4]then
\[

$$
\begin{equation*}
x_{2}=x_{3} \tag{2-6}
\end{equation*}
$$

\]

Similarly,

$$
\begin{gather*}
\bar{H} \cdot \hat{j}_{2}=y_{2}=x_{3}\left(\hat{i}_{3} \cdot \hat{j}_{2}\right)+y_{3}\left(\hat{j}_{3} \cdot \hat{j}_{2}\right)+z_{3}\left(\hat{k}_{3} \cdot \hat{j}_{2}\right) \\
(2-7 a) \\
y_{2}=y_{3} \cos \Phi-z_{3} \sin \phi \tag{2-7b}
\end{gather*}
$$

and

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\mathrm{H}} \cdot \hat{\mathrm{k}}_{2}=\mathrm{z}_{2}=\mathrm{x}_{3}\left(\hat{\mathrm{l}}_{3} \cdot \hat{\mathrm{k}}_{2}\right)+\mathrm{y}_{3}\left(\hat{\jmath}_{3} \cdot \hat{\mathrm{k}}_{2}\right)+\mathrm{z}_{3}\left(\hat{\mathrm{k}}_{3} \cdot \hat{\mathrm{k}}_{2}\right) \tag{2-8a}
\end{equation*}
$$

$$
z_{2}=Y_{3} \sin \Phi+z_{3} \cos \Phi
$$

These expressions can be summarized as

$$
\left[\begin{array}{l}
x_{2} \tag{2-9}\\
y_{2} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \Phi & -\sin \phi \\
0 & \sin \Phi & \cos \Phi
\end{array}\right] \cdot\left[\begin{array}{l}
x_{3} \\
y_{3} \\
z_{3}
\end{array}\right]
$$

Fig. 2-1 AXES ROTATED IN ROLI

Similarly, consıdering an axis set rotated in pitch as shown in Fig. 2-2, we can express the reference set x_{1}, y_{1}, z_{1} in terms of the rotated set x_{2}, y_{2}, z_{2} as follows

$$
\left.\left[\begin{array}{l}
x_{1} \tag{2-10}\\
y_{1} \\
\bar{z}_{1}
\end{array}\right]=\left[\begin{array}{ccc}
\cos & 0 & 0 \\
\sin \theta \\
0 & 1 & 0 \\
-\sin & \theta & 0
\end{array}\right] \cdot \cos \theta\right] \cdot\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]
$$

Fig. 2-2 AXES ROTATED IN PITCH

Finally, if we assume that the axis set subscripted with 3 represents components of Earth's magnetic vector measured at an arbitrary aircraft attitude, we can derive the magnetic components (Hxh, Hyh, Hzh) in the horrzontal plane for a given headıng

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{Hxh} \\
\mathrm{Hyh} \\
\mathrm{Hzh}
\end{array}\right]=\left[\begin{array}{cccc}
\cos & \theta & 0 & \sin \\
0 & 1 & 0 \\
-\sin & \theta & 0 & \cos \\
0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos & \Phi \\
0 & -\sin \Phi \\
0 & \sin \Phi & \cos \Phi
\end{array}\right] \cdot\left[\begin{array}{l}
\hat{H} x_{3} \\
\mathrm{Hy} \\
\mathrm{H} z_{3}
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{Hxh} \\
\mathrm{Hyh} \\
\mathrm{Hzh}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & (\sin \theta \sin \Phi) & \sin \theta \cos \Phi \\
0 & \cos \Phi & \cdots \sin \phi \\
-\sin \theta & (\cos \theta \sin \Phi) & \cos \Phi \cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
H x_{3} \\
H y_{3} \\
H z_{3}
\end{array}\right]}
\end{aligned}
$$

The algorithm to be mplemented with the microprocessor would therefore require operations as outlined in Fig. 2-3. Details of programing method, modifications to the above equations to facllıtate programming and computation speed versus accuracy tradeoffs are discussed in following sections.

> DO FOREVER

Measure, Digitize and Store
$\mathrm{Hx}, \mathrm{Hy}, \mathrm{Hz}, \theta$ and Φ

Correct Sensor Errors

Compute the Horlzontal Field Components Using Equation 2-11

Compute Heading Using Equation 2-1

Display Heading

FIg. 2-3 LOGICAL OPERATIONS REQUIRED TO COMPUTE HEADING

2-3 MECHANIZATION OF THE HEADING ALGORITHM

A. General Considerations

To evaluate the performance of an integrated system experimentally, an instrument was designed to implement the algorithm developed above. Several approaches were considered to implement the heading instrument for experimentation:

1) A minıcomputer implementatıon incorporating an HP-2100 minicomputer supported by peripheral interface and analog circuitry. Programming of the HP-2100 would have enabled the computer to control multiplexing and processing of sensor data as suggested by Parısh and Lee [Ref. 2-3].
2) A hybrid system composed of a remote data acquisition system to collect data from sensors for subsequent processing by a computer (possibly an HP-2l00).
3) A digital/analog electronic $1 m p l e m e n t a t i o n ~ i n c o r p o r-~$ ating the design of a special purpose computer to perform the required functions of a heading instrument.

The first two approaches were abandoned since it was desirable to perform the experiments at various locations remote from a computer facılity and to have data available immediately without having to rely on off-line computations at a later date. The design task then evolved to the design of a special purpose computer system to implement the algorithm, provide a means for evaluating the performance of the proposed algorithm and to allow modifications to the system if required.
B. Design Crıteria

Having decided on the general approach to implementing
the algorithm lt became necessary to consider the performance criteria desired of the instrument.

1) Accuracy As a design goal, an absolute accuracy of $\pm 1.0^{\circ}$ in heading uncertainty was selected for the laboratory implementation. This accuracy is compatible with commercially avaılable heading systems.
2) Computation Speed The bandwidth of the system is determined mainly by the computation speed of the computer ${ }^{2}$. As a design goal, complete heading updates once per second was established.
3) Flexibility

A desirable feature of the laboratiory evaluation instrument was considered to be flexibility. Revisions or additions to the algorithm as predicted by experimental data should be incorporated with minimal redesign of the instrument.

2-4 CONCLUSIONS
 developed above uses a three axis magnetometer to measure magnetıc field data $1 n$ the vicinity of an aircraft. Since the magnetometer proposed is a solid state three axis fluxgate device and is permanently mounted in a strapped down configuration, the implementation results in an attitude independent

[^5]remote magnetic indicator ${ }^{3}$.

Several factors will contribute to system inaccuracy. Although the major error sources can be evaluated mathematically (Chapter IV), there is a need to evaluate the implementation experimentally. Systematic errors that arise can be reduced by instrument computation. This capability (inherent with a computer based system) enables incorporation of less expensive sensors in the heading instrument with less concern with factors such as temperature regulation, sensor orthogonality and sensor offset ${ }^{4}$.

Since the algorithm can be implemented using a microprocessor as the major computer element, the resulting instrument will have lnherent computation capability, be small in size and consume relatively little power. These factors make the instrument an ideal device for aircraft application where the need for redundant distributed processıng capabılıty is invaluable.

[^6]DESIGN OF A MICROPROCESSOR BASED HEADING INSTRUMENT

3-1 INTRODUCTION

Progress in device and component technologies during the 1970's. has led to an assortment of sophisticated integrated carcults (IC) devices [Ref. 3-I] which enable the design of instruments with a high degree of sophistication and accuracy. Of these devices, the microprocessor has to date been the most explozted component in industrial control and instrumentation applications [Ref. 3-2 through 3-7]. There have been many papers presented addressing the general applic̣ation and feasibılıty of applying microcomputers to partıcular design tasks [Ref. 3-8 through 3-21].

Although much of the literature to date on microprocessors has addressed the design of commercial products (usually the final result of a carefully orchestrated effort beginning with a market survey), the design of a laboratory instrument for algorıthm evaluation dıffers in design philosophy. In particular, the laboratory instrument is designed to evaluate a proposed algorıthm under laboratory conditions. The tradıtional benchmark evaluations and attempts to match the microprocessor to the application is not only difficult but unnecessary. If the processor is much more powerful than necessary, the "overkill" is little noticed; but if an insufficiently endowed microprocessor is selected, the effects can be devastating. Not only will the program be difficult to write and voracious of memory, it would be difficult to change to a more powerful microprocessor part way through the project. With these considerations in mind, a general purpose, flexible microprocessor with powerful architecture and instruction set the Signetics 2650 mlcroprocessor [Ref. 3-22] was selected.

The design of a microprocessor based system begins by considering the total system level block diagram to be implemented (Fig. 3-1). Inputs from five sensors including x, y and z axıs magnetic data plus pitch and roll angles (Hx, Hy, Hz, θ and Φ) are to be multiplexed, sequentially sampled and converted to a digital representation prior to processing (executing the algorithm developed above). The main subsystem of Fig. 3-I, the central processing unit (CPU), operates under control of instructions stored in the system memory and interfaces with the input and output subsystems via data ports.

At this early stage in the design, it is significant to note that the block diagram of Fig. 3-1 differs slightly from that of a classical discrete hardware solution. The input subsystem (composed of analog multıplexer, sample and hold, and analog to digital converter) differs from a conventıonal data acquisition in that it is devoid of a control section. The microprocessor will control the data acquisition sampling and conversion in addition to performing the arithmetic function associated with the algorithm.

Having established a tentative block diagram of the instrument, the design continues by addressing relevant characteristics and limıtations of each subsystem. These characterIstics will then in term be considered in configuring the final system and program to be executed.

1) The Analog Subsystem

Composed of the analog multiplexer, sample/hold and analog to digital converter, the analog subsystem of Fig. 3-1 affects both system accuracy and throughput rate. The

well-known Shannon theorem [Ref. 3-23, 3-24] on sampling theory defines one of the basic limits on throughput rate stating that the minimum frequency for sampling must be double the highest significant frequency of the signal, including the nolse on the signal. This minimum frequency is necessary, the theorem states, if the sampled signal is to contain all of the information needed for undistorted reconstruction. At a lower sampling frequency alliasing can occur ${ }^{1}$. The mınımum sampling rate for data to be used in this heading instrument (based on the design goal of Chapter II) then results in a system bandwidth of 30 hertz. The analog signals from each sensor are low pass filtered to reduce frequency content above 60 hertz. A survey of commercially available multiplexers, sample and hold modules and analog to digital convert modules (ADC) [Ref. 3-25 to 3-28] reveals that subsystems with throughput characteristics exceeding the requirements of a system sampled at one second intervals are readily available (pertinent specifIcations are discussed in more detall in Chapter IV). The limiting parameter determining total system speed performance will, then be the execution time of the algorithm (a programming consideration). A further system consideration is the ability to adjust analog system offset and gain. These adjustments are made using varıable resistors (trim pots) connected to appropriate leads on the sample and hold and analog to digital converter modules.
2) The Central Processing Unit (CPU)

The central processing unit (Fig. 3-2) is composed of the microprocessor (Signetics 2650) supported by peripheral logic elements (Fig. 3-2). Design of this subsystem involved medium

[^7]

Fig. 3-2. TIIE CPU SUBSYSTEM
and small scale integrated circuits using well-known [Ref. 3-29 through 3-31] design techniques. To facilitate system development several features were included in the design of the CPU subsystem (features that would not necessarily be required in a production instrument). These Include:
a) System reset, single step and normal run mode operation controlled by switches and logic elements.
b) An RS-232 teletype interface is included to enable manual intervention and development capability during program development. The program was developed by loading and executing instructions into the random access memory (RAM) under control of the PIPBUG ${ }^{2}$ program.
3) The Memory Subsystem

The memory subsystem (Fig. 3-3) was organized onto cards each with two thousand byte capability. In this manner system memory could easily be expanded (or reduced) in increments of 2 K bytes. The memory chips selected were organized as 256 four bit words and feature pin for pln compatibility with commercially available random access (RAM) and programable read only memory (PROM) chips. Program segments could then be developed in RAM and finally "burned" into PROM chips for a permanent, nonvolatile operation. In this manner the system development begins with 1 K bytes of memory devoted to the resident PIPBUG program (in ROM chlps) with the remainder of memory allocated as RAM for both program and scratch pad usage.

[^8]

Fig. 3-3. MEMORY SUBSYSTEM (1 Card)

As the program is developed, additional memory $1 s$ added in increments of 2 K bytes per card or 256 bytes on the card. Modifications to the program can be easily made using the PIPBUG program and teletype.
4) The Output Subsystem

For laboratory development the output subsystem of Fig. 3-4 was designed to provide seven segment visual output of the aircraft heading with three significant digits displayed. To expediate the design cycle and to enhance system throughput rate, the outputs were deslgned as ports with latches and decoder drıver functions provided by hardware. In other applications a hardware/software tradeoff could be made with the data decoding and driving implemented using table lookup and multiplexing controlled by the CPU.

3-3 SOFTWARE DESIGN CONSIDERATIONS

'The general purpose processor selected to implement the CPU was designed to $1 m p l e m e n t$ programmed logic and to perform conventional computer operations. This heading instrument takes advantage of both areas. Since the instrument is actually a special purpose compuier under control of a stored program, the functional speclalization resides in the program rather than the hardware logic. Modifications can be made relatively easily, satısfying the flexıbilıty design goal of Chapter II.

Having decided on the tentative hardware structure described in Section 3-2 above, the program development leading to the final listing in Appendix B proceeded as follows:
I) Structured flow charts were developed depicting the total system operation as an ordered sequence of operations. Each

Fig. 3-4 THE OUTPUT SUBSYSTEM
operation is identified as a separate subroutine which in turn can have "nested" subroutines of its own (Fig. 3-5).
2) System accuracy requirements were next investigated (discussed in detail in Chapter IV) to ascertain the precision requirements ${ }^{3}$ of the various subroutines.
3) The respective subroutines outlined in 1) above were developed and implemented using a cross assembler program [Ref. 3-32]. Each subroutine was then loaded into the development hardware and "debugged" prior to total program integration. The above program development depicts a top down strategy of program development [Ref, 3-33] and leads to an expedient system development with subroutines being individually developed to yield a modular program construction.

3-4 DESIGN OF SUBROUTINES

The total program consists of an overall system program composed of nested subroutines. The discussion in this section $2 s$ limated in scope to the design of the more-complex subroutines required to implement the solld state remore magnetic heading algorithm.

1) Subroutine "SAMP" (Fig. 3-6a)

The first portion of this subroutine is dedicated to the control function of selecting an analog channel via the multiplexer, sampling and holding the data, resetting and reading data from the analog to digital converter ($A D C$). Prior to or during the programming of this section, data fields in

[^9]

Power on reset of all registers and subsystems

Compute the aircraft heading

Fig. 3-5a. SYSTEM PROGRAM

Sample all analog channels

Compute the horizontal Hx Eleld

Compute the horizontal Hy field

Compute the hormzontal Eield vector

Compute heading

Output the data

Fig. 3-5b. SUBROUTINE "MAIN"

Fig. 3-6a. SUBROUTINE '"SAMP"

PRELOAD VARIABLES REQUIRED TO CORRECT FOR OFFSET ERROR SADD

PERFORM A DOUBLE PRECISION ADD OR SUBTRACT

```
    RESTORE CORRECTED DATA TO TABIE
```


RETURN

Fig. 3-6b. SUBROUTINE "OFST"

Fig. 3-6c. SUBROUTINE "SADD"
input ports 1 and 2 and output port 1, of Fig. 3-1 are allocated. Control information is then passed to the peripheral module by writing control words to output port 1 . Analog to digital converter status and the 12 bit data field are sampled by reading input ports 1 and 2 .

Sensor outputs were blased at +2.5 Volts with transfer characteristics as deplcted in Fig. 3-7a [Ref. 3-34]. The ADC selected for this laboratory instrument had a binary output data format related to analog input as shown in Fig. 3.7b [Ref. 3-35]. The second function of the sampling subroutine "SAMP" was to convert data from a unipolar binary format to a sign magnitude format. Since the total transfer function from sensor mput to $A D C$ output (Fig. 3-7a and b) indicates an offset of 2.5 Volts or $1 / 2$ the $A D C$ output range, the sign magnitude format can be generated as shown in Fig. 3-8.

Fig. 3-7a. SENSOR TRANSFER CHARACTERISTIC

Fig. 3-7b. VDC TRANSFER CHARACTERISTICS

Fig. 3-8 CONVERSION OF DATA

The third function of the "SAMP" subroutine was to reverse the sign of the Hx and Hy data (to correct a test fixture problem) and to correct for sensor offsets. Although analog subsystem offsets are corrected by adjusting either the sample and hold module or the ADC, the independent sensors themselves have offsets ${ }^{4}$. Offset errors for the laboratory instrument were compensated by determining the offset correction term for each sensor (method described in detail in Chapter V) and then either adding or subtracting the term to the respectuve data during the sample subroutine. By characterizing the sensor errors ${ }^{5}$, actual datum could be improved further during this step.

The final function of the "SAMP" subroutine was to correct for sensor orthogonality error (subroutine "ORTH"). AIthough the sensors were physically aligned and specified to have orthogonality characteristic [Ref. 3-34] less than ± 1 degree relative to the base coordinates, this nonorthogonality contributes appreciably to total system error (see error analysis in Chapter IV). The physical misalignment of the sensors was determıned experimentally (Chapter V) and determined to be mainly a masalignment of sensor x in the $x-y$ plane as illustrated in Fig. 3-9.

The actual data measured with the x axis, sensor is then related to the true $H x$ and $H y$ values as

$$
H x^{l}=H x \operatorname{Cos} \varepsilon-H y \operatorname{Sin} \varepsilon .
$$

[^10]

Fig. 3-9 X AXIS NONORTHOGONALITY

Using small angle approximations, we can solve for the desured true value of Hx

$$
\begin{aligned}
& H x^{1}=H x-H y \operatorname{Sin} \varepsilon \\
& H x=H x^{1}+H y \operatorname{Sin} \varepsilon
\end{aligned}(3-1 a)
$$

By measuring ε (Chapter V) and storing the angle as a constant, the x axis data was then restored using equation 3-1b above in subroutine "ORTH".
2) Subroutines ROTX and ROTY

These subroutines compute arithmetic values for Hxh and Hyh of equation 2-1lb using sign magnitude quantities and table lookup to determine solutions for the transcendental functions. Subroutines "SADD" and "SMPY" are nested and used to perform double precision add and multiply as required.
3) Subroutine HVEC

Following computation of the horizontal X and Y axis magnetic vector, the subroutine "MAIN" calls subroutine "HVEC" to. compute the square of the horizontal vector. Vectors $H x$ and Hy are squared by calling subroutine "SQU" then added, yielding H (HORIZONTAL) ${ }^{2}$.
4) Subroutine WICH

To compute heading, equaiion $2-1$ (or a similar form) must be solved using the horizontal magnetic field vector and either the x or y axis horizontal field component. Although the square root operation implıed in equation $2-1$ could be implemented using a numerical technique [Ref. 3-37, 3-38], the computation time is decreased by using a table lookup method. Subroutane "WICH" (Fig. 3-10) compares the absolute magnitude of the two horizontal field vectors $H x$ and Hy to determine the relative heading of the aircraft ${ }^{6}$ with respect to the northsouth and east-west axes (Fig. 3-11).

Fig. 3-10. SUBROUTINE "WICH"

[^11]

Fig. 3-11. MAGNITUDES OF Hx AND Hy RELATED AIRCRAFT HEADING
5) Subroutines COSY and SINY (Fig. 3-12, 3-13)

Depending on the relative absolute magni.tudes of $H x$ and Hy, either "COSY" or "SINY" is called to compute aircraft heading. These subroutines invoke subroutine "DIVI" to form the quotient of the axis vector squared and the horizontal field vector squared (a double precision operation). Subroutine "ANGL" is then called to perform an associative table lookup operation using successive approximation and interpolation to complete the inverse cos squared operation. The double precision binary quantity is then converted to three ' digit binary coded decimal format (BCD) prior to computation of aircraft heading (subroutine "HDG").

The subroutine "SINY" of Fig. 3-12 includes a subtraction of the computed angle from 90 degrees following conversion to BCD format. This operation ensures that the angle passed to

Fig. 3-12. SUBROUTINE "COSY"

Ro, $\mathrm{RI}=\mathrm{Hy}{ }^{2}$	
DIVI	$\mathrm{A}=\mathrm{Hy}{ }^{2} / \mathrm{Hh}^{2}$
ANGL	$B=\operatorname{arcos}^{2}(A)$
BCDA	Convert B to BCD Format
$B=90-B$	
HDG Compute Heading	
RETURN	

Fig. 3-13. SUBROUTINE "SINY"
the calling subroutine upon exiting either "SINY" or "COSY" is an alrcraft heading angle relating sensor x to the north-south axis.
6) Subroutine HDG (Fig. 3-14)

The function of this subroutine ls to compute aircraft heading having established the angle between the x axis sensor and the north-south geodetic axis. Determination of the actual heading is accomplished by comparing the signs of both the x and y axis horizontal vectors prior to computing heading (Fig. 3-15). It should be noted that all of the preceding computations leading to horizontal vector data were on sign magnitude quantities preserving the correct horızontal vector polarities ${ }^{7}$.

3-5 CONCLUSIONS

- This chapter has outlined the practical aspects of designing an instrument to evaluate both the heading algorithms and solid state magnetic indicator proposed in previous chapters. The chapter outlined a design approach that can be used to implement a microprocessor based instrument. In particular, the need to consider the total system hardware requirements while simultaneously considering the programming requirements was Identified. Design proceeded by outlining a system block dıagram (Fig. 3-I) with major subsystems considered. The instrument required a special purpose computer with an analog subsystem to sample and digıtize five sensor signals. Timıng and control of the analog subsystem plus digital processing of data was controlled by a mıcroprocessor based central processing unit (CPU). Memory for permanent storage of

[^12]

Fig. 3-I4. SUBROUTINE "HDG"

s

Fig. 3-15. POLARITIES OF HORIZONTAL VECTORS RELATED TO AIRCPAFT HEADING
instructions and temporary storage of data was implemented using memory chips organized on cards with 2048 byte capacity. The particular memory chips selected feature pin compatibilIty ${ }^{8}$ with both read only and volatile random access versions. System inputs consisted of sensor signals from a three axis solid state fluxgate magnetometer plus two analog signals simulating gyroscope outputs. System outputs consist of visual seven segment readout displayıng computed heading. In addition, an RS-232 teletype interface was provided to facilntate system development and experimentarion.

By adentifying the total system in block diagram form at the very beginning, the role and requirements of each subsystem as well as the supporting software were identified. The design then evolved on a modular basis with each subsystem and its supportang program developed in parallel. In this manner pın assignments for input/output ports and critical timıng requirements that involved both hardware and software considera-. tion were handled efficiently. By outlining the program requirements $u n$ flow chart form (analagous to the block diagram of the hardware subsystem), subroutines were identifıed facılltating a modular program development. Where possible, subroutines were shared in a nested manner avoiding replycation of programming and waste of memory.

Details of error analysis and calculation of overall system throughput rate were deferred to Chapter IV. It was pointed out however, that errors induced by imprecision of data plus truncation and roundoff during processing of the algorathm were to be considered early in the design phase. These data were required to select the sensors and the analog to digital

[^13]converter as well as to design the supportlve software for the analog subsystem. In addition, the data precision requirements were necessary prior to programming the algornthm ${ }^{9}$.

By incorporating a microprocessor as the main CPU element, considerable sophistication in both control and computing performance was achıeved. The overall system was designed relatively quickly, provided a convenıent laboratory instrument for evaluation of the proposed algorithms and featured inherent flexibilıty.

[^14]
CHAPTER IV

HEADING INSTRUMENT ERROR ANALYSIS

4-1 INTRODUCTION

The heading instrument designed to evaluate the heading and solid state remote magnetic indicator algorıthms is prone to error from many sources. These errors will accumulate and degrade the accuracy of aircraft headıng or yaw angle computatıons. This chapter addresses the varıous error sources to determine their relative magnitudes and effects on the overall computation.

Prior to beginning the hardware design of the microprocessor based unstrument many of these potential error sources were considered. Their effects were considered in establishing parameters such as word lengths, A / D converter precision, computation speeds, sampling rates, magnetometer sensor accuracies', system noise tolerance, etc. As the design of the microprocessor based system evolved, the error analysis refined. Ultimately, important limitations in instrument design and operation were identified by combined error analysis and empirical data. By carefully analyzing the source and extent of the limiting parameters (such as sensor offset and nonorthogonality), the magnitude of errors unique to this laboratory sensor array were identified. Specialized software was then added (with empiracally derived constants) to correct for the otherwise limiting sensor irregularities improving the total system performance.

In this manner, it is apparent that error analysis is an integral part of instrument design. Not only are important parameters identified early in the design cycle (prior to system block diagram development), but shortcomings in conventional
sensors can be improved by judicial application of error correcting algorithms. In this case, data constants were determined after the final instrument became operational. The sensor peculiarıties, were analyzed empirically using the instrument itself.

The chapter begins by first identifying and carefully analyzing potential error sources in the sensors. This analysis is followed by a similar consideration of errors originating in the analog subsystem. Processing errors that originate due to the finite word length and precision of the macroprocessor along with the effects of simplifications made to the algorithms are finally analyzed. The chapter then concludes with a summary of measurement errors, a sample error analysis, a comparison of predicted to measured error and a summary.

4-2 SENSOR ERRORS

The heading computation algorithm employing the remote magnetic indicator (Chapter II) is prone to error proportional to both fluxgate magnetometer'sensor and gyroscope measurement errors. Errors inherent in the fluxgate magnetometer are summarlzed on the data sheet [Ref. 3-34]. Since the experimentation employed simulated gyroscope sensors with voltage levels accurately represented, the analysis of sensor errors will assume ideal gyroscope sensors to predict experimental data.

A) Sensor Offset Error

Magnetometer sensors exhibit error caused by both electronlc and magnetic phenomena. Errors in the Develco sensors were outlined by Workentine [Ref. 4-1]. These offset errors are induced in the Develco sensors by both electronic offset voltages and currents in the respective sensor electronics and
by residual magnetic fields in the magnetic mass of the sensor assemblies. Although the physical and electronic design attempts to reduce offset error, a finite non-zero output can exist when a zero input is applied.

Offset error for each sensor in the Develco model 9200C three axis magnetometer assembly is specified [Ref. 3-34I as "Zero Field Bias +2.5 Volts $+1.0 \%$ ". This offset translates into a worst case maximum error voltage of

$$
\text { EOFFSET }= \pm(2.5 \mathrm{~V} \times 0.01)= \pm 25 \mathrm{mV}
$$

Since the offset error is sensor dependent, correction cannot be made at a single physical point (as for analog subsystem offsets described in Section 4-3). Corrections can however be made to the measured data by simply adding. or subtracting a constant equal to the offset magnitude following each data measurement ${ }^{1}$.

Offset values for each sensor used in the experiment were obtained by rotating the sensor into alıgnment with earth's magnetic field vector to measure both positive and negative maximum values. The difference in magnetic measurement (assuming negligible analog subsystem error) is related to system offset error composed of sensor electronic and sensor plus test fixture induced magnetic offset error. The actual offset error can be calculated using these two measurements

[^15]\[

$$
\begin{gathered}
|E m a x|=E f+E O \\
|E m i n|=E f-E O \\
|E m a x|-|E m ı n|=(E f+E O)-(E f-E O)=2 E O \\
E O=(1 / 2) \quad(|E m a x|-|E m i n|)
\end{gathered}
$$
\]

where

$$
\text { Emax }=\text { The maximum positive voltage recorded when the }
$$ sensor alıgns with earth's field vector.

Emin $=$ The maxımum negatıve voltage recorded when the sensor aligns 180° with earth's field vector.
$E f=$ The magnitude of earth's magnetic vector represented in volts.

EO = The sensor offset voltage due to both electronic and magnetic phenomena

Data recorded during x, y and z axis offset measurements as described above are recorded in Table $4-1$. Since the offset error is a function of sensor magnetic permeabilıty, the actual offset value will vary whth thme depending on induced magnetic fュelds ${ }^{2}$.

Final offset correction values were determined by rotatlng two sensors in the horızontal plane around the third vertıcal axis and measuring offsets in two seṇsors at a time. Recorded data for each sensor was previously corrected for orthogonality error by the sample subroutine "SAMP" (duscussion

[^16]| SENSOR
 AXIS | . DATA RECORDED \|Emax| | (HEXADECIMAI)
 \|Emin| | OFFSET
 (HEXADECIMAI
 PLUS SIGN) |
| :---: | :---: | :---: | :---: |
| | - | | |
| X | 628 | E78 | $+40$ |
| Y | 640 | E5D | -15 |
| Z | 637 | E68 | -25 |

[^17]of this correction follows in Section 4-2B). Data recorded in this manner, appears in Tables 4-2 and 4-3. Final correctıon . terms for correcting sensor offset error were calculated using these data. Offset terms to be added or subtracted from respective data channels are tabulated in Table 4-4.

By correcting system offset errors in this manner, the effective error contribution can be reduced appreciably (see final data discussion Chapter V). For a flight instrument, sensor offset characteristics as a function of temperature varıation and supply voltage can be derived empirically and appropriate offset corrections made by computing the value of the correction term variable. Magnetically induced offsets can be reduced by degaussing the sensor assembly periodically.
B) Axis Alignment Errors

The error specification of [Ref. 3-34] indicates'that the maximum axis alignment error is +1 degree relative to base reflerenced coordinates. This error results in sensor directional uncertannty as illustrated in Fig. 4-l. Each sensor is located within a right circular cone with axis along the true sensor axis and vertex at the common sensor origin. Although this alignment uncercannty contributes no error in determining the total magnetic vector

$$
\bar{H}=\left(\overline{\mathrm{H}} \mathrm{x}^{2}+\overline{\mathrm{H}} y^{2}+{\left.\overline{\mathrm{H}} z^{2}\right)^{\frac{1}{2}}, ~}^{2}\right.
$$

there is considerable uncertainty in attempting to resolve the true magnetic field component along any axis of the reference coordinate system. This alignment uncertalnty of magnetic sensors limits system performance of conventional field dir-. ection measuring apparatus [Ref. 4-1].

Table 4-2 X AND Y AXIS ERROR MEASURED BY RORATING X, Y AROUND Z IN THE HORIZONTAL PLANE

Protractor Heading Measurement (Degrees)	Hz Data Measured (Unyts)	Protractor Heading Measurement (Degrees)	Hz Data Measured (Units)	Offset Error (Unzts)
0.5	0	180.5	-56	-56
315.5	-527	135.5	469	-58
270.5	-763	90.5	707	-56
225.5	-571	45.5	513	-58

Table 4-3 $\quad 2$ AXIS OPFSET ERROR MEASURED BY ROTATING THE Z AXIS AROUND THE VERTICAL X AXIS

Sensor Axis	Total Average Offset (Units)	Required	Amount of Correction		
Correction	Decimal	Binary	Hex		
X	88.9	Subtraction	45	00101101	$02 D 0$
Y	43.4	Addition	22	00010110	0160
Z	47.0	Addition	29	00011101	$01 D 0$

Table 4-4 OFFSET CORRECTION VALUES

FIg. 4-1 SENSOR ALIGNMENT UNCERTAINTY

Although this error source can be reduced by physically aligning the sensors more accurately during assembly, cost of the sensors increases. Ultumately, durectionality of the magnetic sensors becomes a function of the physical sensor itself and more accurate sensors are required as pointed out by Gise [Ref. 4-2]. A heading system that tolerates sensor masalignment is therefore a very desirable alternatıve to requiring precise alignment or more elaborate sensors.

- During assembly of the Develco fluxgate magnetometer sensor array, sensor misalignment is determined by using earth's magnetic field and a precision mechanical rotation assembly. A sensor (assume the X axis) is aligned with earth's magnetic
vector by positioning the sensor to maximize electrical output ${ }^{3}$. One of the other sensors (assume the y axist) is aligned with the rotation axis of the precision calıbration assembly (Fig. 4-2) and perpendicular to the first by rotating the sensor array around the second sensor axis (y axis in this case) and adjust-. ing its relative posituon until a null output is achieved at all rotation angles. Mechanical orthogonality of the sensors is then Imited only by the mechanical imprecision of the calibration device (orthogonality within ± 0.01 degrees can be easily achieved in the calibration tool) and by the directional characteristics of the physical sensors.

Fig. 4-2 MECHANICAI ORIENTATION OF THE MAGNETOMETER SENSORS DURING CAIIBRATION

In addition to functioning as an alignment apparatus, the calibration device described above provides a convenient means

[^18]to characterize sensor assemblies after final assembly adjustments are made. Any misalignment of the second sensor relative to the first results in a coning of the second sensor around the rotation axis ${ }^{4}$ with a sinusoidal output voltage that is a function of total earth's magnetic field and axis alignment error. The peak to peak voltage resulting from sensor conlng is recorded during the final alignment test and made available to sensor purchasers, Coning voltages developed for the sensor assembly used with this experment were obtained from Develco [Ref. 4-3] and are recorded in Table 4-5. Sensor mısalıgnment for each axis can be derıved using additional data provided by Develco along with additional emplrical data derived by experimentation.

The total ambient magnetic field at the Develco laboratory is measured using the three sensors (applying equation 4-1) and is supplied as digital data. In our case, the total field measured was 15.73 units or
$\frac{1573 \text { units }}{2048 \text { units }} \times 60,000$ gamma F.S. $=46,084$ gamma (γ)
Full Scale (F.S.)

Sensitivity of the sensor $=\frac{2.5 \text { Volts.F.S. }}{60,000 \text { YF.S. }}=42 \mu \mathrm{VOlts} / \gamma$
Consıdering the X axis sensor, coning resulted in a signal of 38 mV peak to peak (or 19 mV peak). Misalignment of the X axis sensor from the $Y-Z$ plane can then be calculated as

[^19]
SENSOR ASSEMBLY NO. S/N 1043-013

Rotation Axis	Coning Voltage (Peak-Peak mV)	Orthogonality Error (Degrees)
X	38	0.57
Y	8	$\simeq 0$
Z	51	

Table 4-5 MAGNETOMETER ORTHOGONALITY MEASUREMENTS

Peak Signal $=19 \mathrm{mV}$ or 456 gamma angular misalignment

$$
\begin{aligned}
& \varepsilon_{x}=\sin ^{-1} \frac{456}{46,084} \\
& \varepsilon_{x}=0.57 \text { degrees }
\end{aligned}
$$

Similarly, the Y and Z axis have misalignment errors of $\varepsilon Y \simeq 0$ and $\varepsilon z=0.76$ degrees with respect to the $X-Z$ and $X-Y$ planes respectively (sensor orthogonality errors are tabulated in Table 4-5).

Having established that sensor orthogonality errors exist, the remaining task is to Identify the direction that the sensor axis polnts relative to the other two sensor axes. Since the Y axis has relatively little orthogonality error', lt will be assumed to be perpendicular to the $X-Z$ plane. In addrition, since the Hz data enters into the algorithm in a second order manner relative to the Hx and Hy measured data, correction and characterization of the $H x$ sensor was considered to be of primary concern. Orientation of the X axis sensor relative to the Y and Z axes was determined empırically.

Angular position of the X axis sensor can be described using the error angles $\varepsilon x y$ and $\varepsilon x z$ as delineated in Fig. 4-3. Characterization of sensor orthogonality error in terms of these two angles would enable algorithmic corrections of measured data.

Fig. 4-3 X AXIS SENSOR ORIENTATION

1) Empirical Determination of $\varepsilon x z$

The angle exz (angle between the x axis sensor and the z axis of the geodetic coordinate system) was determined in several steps using the test apparatus described in Chapter V.
i) The x and y sensors were orrented in the horizontal plane with the z axis sensor vertical downward.
ii) The x and y sensors were rotated around the z axis wath magnetic data measurements (corrected for sensor offset error as described in section $4-2 A$) recorded in Table 4-6 for incremental rotation angles.
iil) The total horizontal field at each angular position was calculated

$$
\text { Hht }=\left(H x^{2}+H y^{2}\right)^{\frac{1}{2}} \text {. }
$$

iv) Average horizontal field Hav was computed by averaging the results of iii) above.
v) The horızontal field deviation H was computed for each angular position; tabulated in Table 4-6 and plotted on Fig. 4-4.

$$
\mathrm{Hd}=(\mathrm{Hav}-\mathrm{Hh} t)
$$

The horizontal field deviation or error (as shown on Fig. 4-4) was now examined. An angular exror exz should cause the horizontal fleld error curve to peak at 90 and 180 degrees. Since this obviously was not the case, it was concluded that major error in x axis orthogonality was due to the component हxy.

Total
Computed

Physical* Heading (Degrees)	Displayed** Heading (Degrees)	Measured Data (Units) Hx	Hy	Horizontal Field (Hht) (Units)	Hd (Hav-Hht) (Units)
355	90	12	-727	727	-3
335	70	258	-682	729	-1
315	50	477	-555	732	2
295	30	637	-362	733	3
275	10	720	-127	731	1
255	350	718	127	729	-1
235	330	628	363	725	-5
215	310	464	569	734	4
195	290	242	687	728	-2
175	270	-10	731	731	1
155	250	-258	686	733	3
135	230	-476	557	733	3
115	210	-635	362	731	1
95	190	-721	123	$73 I$	1
75	170	-718	-133	730	0
55	150	-628	-371	729	-1
35	130	-460	-565	729	-1

Total Hht $=12415$

Average (Hav) $=730$
*Measured using a protractor on the test apparatus. **Computed and displayed digitally by the instrument.

Table 4-6 MEASUREMENT OF HORIZONTAL FIELD

Fig. 4-4 DEVIATIONS OF THE HORIZONTAL FIEID MEASUREMENT

Fig. 4-5 DEVIATION OF Hx AND IIY DATA FROM THE COMPUTED FIELD COMPONENTS AS A FUNCTION OF YAW

2) Empirical Determination of $\varepsilon X y$

The angle $\varepsilon x y$ representing x axis sensor misalignment relative to axis y was measured as follows:

Steps i) and iI) above were repeated with the exception that the calculated values for $H x$ and $H y$ ($H x c$ and Hyc respectIvely) were recorded with measured $H x$ and $H y$ data (Hxm and Hym respectıvely) in Table 4-7. The calculated values were obtained by assuming that the angle $\varepsilon x z$ as determined above was negligible and that the y axis sensor was perpendicular to the $x-z$ plane. With these assumptions, we note that at the heading of zero degrees (extrapolated between display of 10 and 350 degrees of Table 4-7 and Fig. 4-5), there is no error in yaw due to either Hx or Hy. By physically rotating the sensors in fixed intervals from yaw $=0$ degrees and noting that the horizontal fleld Hh $=730$ units, we can then compute expected Hx and Hy data at respective yaw orientations.

Physical orlentation of the x axis sensor is easily determined by considering orientation at the maximum error excursIons. These observations are illustrated in Fig. 4-6. We note that the only possible orientation of the x axis sensor satisfying the data in Fig. 4-5 is that of Fig. 4-6.

Fig. 4-6 (a) SENSORS ORIENTED AT YAW $=+90$ degrees
(b) SENSORS ORIENTED AT YAW $=+270$ degrees

Physical* Heading (Degrees)	Displayed** Heading (Degrees)	Measured Data (Units)		Computed Data (Units		Deviation ($\mathrm{Hxm}-\mathrm{Hxc}$)	(Units) (Hym-Hyc)
		Hxm	Hyַm	HxC	Hyc		
355	90	12	-727	0	-730	$+12$	$+3$
335	70	258	-682	250	-686	+ 8	+ 4
315	50	477	-555	469	-559	$+8$	+ 4
295	30	637	-362	632	-365	+ 5	+3
275	10	720	-127	719	-127	$+1$	0
255	350	718	127	719	+127	- 1	0
235	330	628	363	632	365	-4	- 2
215	310	464	569	469	559	- 5	10
195	290	242	687	250	686	- 8	1
175	270	-10	731	0	730	-10	1
155	250	-258	686	-250	686	- 8	0
135	230	-476	557	-469	559	- 7	- 2
115	210	-635	362	-632	365	- 3	- 3
95	190	-721	123	-719	+127	- 2	- 4
75	170	-718	-133	-719	-127	1	- 6
55	150	-628	-371	-632	-365	4	- 6
35	130	-460	-565	-489	-559	9	

* Measured using a protractor on the test apparatus.
** Computed and displayed digitally by the instrument.

Table 4-7 MEASURED AND COMPUTED Hx AND Hy DATA IN THE HORIZONTAL PLANE

Magnitude of the angle $\varepsilon x y$ can be computed as follows using data from Fig. 4-5

$$
\begin{aligned}
& \text { Max. delta from Fig. } 4-5=10 \text { units } \\
& \text { Average horizontal field }=730 \text { units } \\
& \qquad \begin{aligned}
\text { exy max } & =\sin ^{-1} \frac{10}{730} \\
& =0.79 \text { degrees }
\end{aligned}
\end{aligned}
$$

We note that the angle of 0.79 degrees is approximately the same as determined by Develco during manufacture of the sensors (Table 4-5). The added exror is due to test set $1 n-$ accuracy.
C) Fluxgate Sensor Noise Induced Error

The analog output from the fluxgate sensors can exhibit an error due to signal uncertainty resulting from noise. Although the data sheet [Ref. 3-34] Indicates that 5 mV peak to peak of ripple can exist on the output, the frequency content centers In the 550 kHz range (draver frequency of the fluxgate magnetometer) and no appreciable ripple ${ }^{5}$ exists below 60 Hz (especially when the sensor output is filtered prior to data sampling). The noise specification of less than 1 gamma peak to peak in the 1 Hz bandwidth region is also negligible. In summary, no appreciable error due to noise on the magnetometer signal lines is evident.
D) Magnetometer Gain Error

The magnetometer is specified to have gain (sensitivıty) of 2.5 Volts $/ 600$ millıgauss, $\pm 1 \%$ which translates into a maximum signal uncertainty of

[^20]$$
\pm(2.5 \mathrm{~V} \times 0.01)= \pm 25 \mathrm{mV}
$$

This represents a sensor transfer function of 4.16 Volts/gauss or 0.24 gauss per vol.t. The uncertainty then can be expressed as

$$
\begin{aligned}
\pm(0.24 \text { gauss } \times 0.01) & = \pm 2.4 \mathrm{mllligauss} \\
& = \pm\left(2.4 \times 10^{2}\right) \text { gamma }
\end{aligned}
$$

Since this error is not corrected in the laboratory instrument lt will be considered in total in the final error analysis. It is worth noting however, that should the magnetometer gain uncertainty be characterized, gain corrections for each sensor could be made during computation by the computer. In addition the error term is proportional to actual signal level applied.
E) Magnetometer Linearity Error
D.C. linearity of the magnetometer is specified to be $\pm 0.5 \%$ of signal level. This uncertainty at full scale can be expressed as $\pm(2.5$ Volts $x 0.005)= \pm 12.5 \mathrm{mV}$. Alternately, linearity error can cause a signal uncertainty of ± 1.2 milligauss or $\pm\left(1.2 x^{*} 10^{2}\right)$ gamma. Linearity error is also not corrected during computation and is considered in the final error analysis. By simply characterizing and correcting the linearity characteristics of each sensor, considerable improvement in system accuracy could be achieved.

4-3 ANALOG SUBSYSTEM ERROR ANALYSIS

The analog subsystem of the instrument is outlined in block diagram form in Fig. 4-7. This subsystem accepts analog slgnals from magnetometer and gyroscope transducers,performs a time division multiplexing between the signals and digitizes

Fig. 4-7 TIIE ANALOG SUBSYSTEM
the respective signals prior to subsequent processing by the computer. During this data acquisition and conversion process, errors are introduced into each of the signals. This section addresses the potential error sources and computes the respective error contributions to be expected during operation of the instrument.

Although the multiplexer and sample and hold blocks of Fig. © 4-7 could be eliminated (eliminating possible error sources) by digitızıng each signal with a unique analog to digıtal converter, it can be shown that such a system would be expensive and difflcult to implement. The analog to digital converter (A/D) quantızes an analog signal in afinıte amount of time. Speed of conversion is predicted in a finite amount of tume by both the resolution of the converter and the frequency of the signal to be converted. Time required to perform a conversion is generally called the "aperature time".

Fig. 4-8 APERATURE TIME AND AMPLITUDE UNCERTAINTY

As illustrated in Fig. 4-8, aperature time and amplitude uncertainty are related by the time rate of change of the ana\log signal. For the particular case of a sinusoidal signal to
be converted, the maximum rate of change occurs at the zero crossing of the waveform and the amplitude change is:

$$
\begin{gather*}
\Delta V=\frac{d}{d t}(V \sin w t) t=0 \times \text { ta } \tag{4-1a}\\
\Delta V=V \text { w ta } \tag{4-1b}\\
\text { giving } \frac{\Delta V}{V}=w \text { ta }=2 \pi f \text { ta. } \tag{4-2}
\end{gather*}
$$

From this result we can determine the aperature cime required to digntzze a 30 Hz signal to 12 bits resolution (a resolution of 1 part in 4096 or 0.0244%).

$$
\mathrm{ta}=\frac{\mathrm{V}}{\mathrm{~V}} \times \frac{1}{2 \mathrm{f}}=\frac{.000244}{6.28 \times 30}=1.3 \times 10^{-6}
$$

This result indicates that to reman within 1 bit of resolution (0.0244%) we require an aperature time of 1.3 microseconds to process analog signals varying at a rate of 30 Hertz. It can be seen that the system would require fast A / D converters plus extremely fast computational capabilıty to accommodate this confıguration of sensors and analog subsystem. By using multiplexing and sample and hold circuitry we can however reduce the number of A / D converters required to one and alleviate the aperature and processing requirements imposed above.

The operation of sampling to be used by the instrument is Illustrated in Fig. 4-9 which shows an analog signal and a train of sampling pulses. The pulses are provided by the central processing unit. A switch connects the analog signal for a very short perlod of time to the hold circuitry charging a capacitor and storing the sampled voltage until the next sample is requared. This type of sampler is called sample and hold.

Fig. 4-9 SIGNAL SAMPLING PROCESS

A) Sampling Rate Errors

The process of uniformly sampling a function of continuous time can yield a significant source of error if the samplIng period T is selected too large [Ref. 4-4, 4-5]. This error can be illustrated by considering an analog signal xa(t) that has the Fourier representation [Ref. 4-6]

$$
\begin{align*}
& x a(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x a(J \Omega) e^{j \Omega t} d \Omega \tag{4-3a}\\
& x a(J \Omega)=\iint_{-\infty}^{\infty} x a(t) e^{-j \Omega t} d t \tag{4-3b}
\end{align*}
$$

The sequence $x(n)$ whth values $x(n)=x a(n T)$ is said to be derıved from xa(t) by periodic sampling and T is the sampling period. The reciprocal of T is called the sampling frequency or sampling rate. In order to determane the sense in which $x(n)$ represents the original signal xa(t), it is convenient to relate $X a(j \Omega)$, the continuous-time Fourier transform of xa(t), to $X\left(e^{j \Omega}\right)$, the discrete-time Fourier transform of the sequence $x(n)$. From (4-3a) we note that

$$
\begin{equation*}
x(n)=x a(n t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x a(j \Omega) e^{J \Omega n t} d \Omega \tag{4-4}
\end{equation*}
$$

From the discrete-time Fourier transform we also obtaln the representation [Ref. 4-4]

$$
\begin{equation*}
x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x\left(e^{J \omega}\right) e^{J \omega n} d \omega \tag{4-5}
\end{equation*}
$$

To relate the equations (4-4) and (4-5) we can express (4-4) as a sum of integrals over intervals of length $2 \pi / T$, as in

$$
x(n)=\frac{1}{2 \pi} \sum_{r=-\infty}^{\infty} \int_{(2 r-1) \pi / T}^{(2 r+1) \pi / T} \begin{align*}
& X a(j \Omega) e^{j \Omega n T} d \Omega \tag{4-6}\\
& (2 \Omega
\end{align*}
$$

Each term in the sum can be reduced to an integral over the fange $-\pi / T$ to $+\pi / T$ by a change of variables to obtain

$$
\begin{align*}
& x(n)=\frac{I}{2 \pi} \sum_{r=-\infty}^{\infty} \int_{-\pi / T}^{\pi / T} X a\left[j\left(\Omega+\frac{2 \pi r}{T}\right)\right] e^{j\left(\Omega+\frac{2 \pi r}{T}\right) n T} d \Omega \tag{4-7a}\\
& x(n)=\frac{1}{2 \pi} \sum_{r=-\infty}^{\infty} \int_{-\pi / T}^{\pi / T} X a\left(j \Omega+j \frac{2 \pi r}{T}\right) e^{j \Omega n T} e^{j 2 \pi r n} d \Omega \tag{4-7b}
\end{align*}
$$

F we now change the order of integration and summation and note that $e^{J^{2 \pi r}}=1$ for ali Integer values of r and n, we obGann

$$
\begin{equation*}
x(n)=\frac{1}{2 \pi} \int_{-\pi / T}^{\pi / T}\left[\sum_{r=-\infty}^{\infty} X a\left(j \Omega+j \frac{2 \pi r}{T}\right)\right] e^{j \Omega n T} d \Omega \tag{4-8}
\end{equation*}
$$

Ty substituting $\Omega=\omega / T$ we get

$$
x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[\frac{1}{T} \sum_{r=-\infty}^{\infty} x a\left(\frac{\left.j \omega+j \frac{2 \pi r}{T}\right)}{T}\right] e^{J \omega n} d \omega\right.
$$

Hhich is Identical in form to equation (4-5). We can therefore make the identification (equating like terms of (4-5) and (4-9)

$$
\begin{equation*}
X\left(e^{J \omega}\right)=\frac{1}{T} \sum_{r=-\infty}^{\infty} X a\left(\frac{j \omega}{T}+j \frac{2 \pi r}{T}\right) \tag{4-10}
\end{equation*}
$$

e can also express (4-10) in terms of the analog frequency variable Ω (where $\Omega=\omega / T$) as

$$
\begin{equation*}
X\left(e^{j \omega T}\right)=\frac{I}{T} \sum_{r=-\infty}^{\infty} X a\left(j \Omega+j \frac{2 \pi r}{T}\right) \tag{4-1I}
\end{equation*}
$$

The last two equations clearly reveal the relationship between the continuous-time Fourier transform, and the Fourier transform of a sequence derived by sampling. For example, if Xa ($j \Omega$) is as depicted in Fig. 4~li0a then $X\left(e^{j \omega}\right)$ will be as shown in Fig. 4-l0b when the sampling period T is too long and as shown in Fig. $4-10 C$ if T is short enough.

From Fig. $4-10 c$ It is obvious that if $\frac{\Omega O T}{2}<\pi$, i.e., we sample at a rate at least twice the highest frequency of $\mathrm{Xa}(\mathrm{j} \Omega)$, then $X\left(e^{j \omega}\right)$ is identical to $X a(\omega / T)$ in the interval $-\pi \leq \omega \leq \pi$ and can be recovered from the samples $x a(n T)$ by an appropriate interpolation formula.

For the remote magnetic indicator instrument designed in. previous chapters, the analog signals are filtered with a low pass section reducang frequency content above 30 Hz . The sampling rate must therefore exceed $60 \mathrm{~Hz} \mathrm{(T<16.67m.s)}$. accurate dynamic operation of the system.

Laboracory measurements of sampling rates on the functional microprocessor based instrument revealed that the analog subsystem operated at a sampling rate of 62.5 Hz ($16 \mathrm{~m} . \mathrm{s}$.) indicating that the algorithm execution rate supported a system bandwidth of 31.25 Hz . If frequency content of the analog signals is less than 31.25 Hz there is no error due to sampling.
B) Analog Multiplexer Induced Error

The analog multiplexer of Fig. 4-7 selectively connects one analog transducer output at a time to the input of the sample and hold subsystem. The Datel Systems, Inc., multiplexer [Ref. 4-7] selected for the remote magnetic indicator experiment features eight MOS-FET switches with associated driver circuits,

(a) Fourier transform as a continuous-tıme signal

(b) Fourier transform of the discrete-time signal obtained by periodic sampling (T is too large)

(c) Same as (b) except T is short enough

Fig. 4-10 FOURIER TRANSFORMS OF CONTINUOUS AND DISCRETE-TIME SIGNALS

FET pull-up to reduce propogation delays and all of the necessary decoding logic to enable random channel addressing wath a four bit parallel binary input.

Several important parameters are used to characterize analog multiplexers and can contribute error.

1) Transfer Accuracy

Transfer accuracy is a function of the source impedance, switch resistance, load impedance (if the multiplexer is not buffered) and the signal frequency. It expresses the input to output error as a percentage of the input. In our case the system configuration predıcates a maxımum error due to transfer accuracy of ($+0.01 \%$) ylelding an error term of

$$
\pm 0.0001 \times 2.5 \text { Volts }= \pm 25 \mathrm{mV}
$$

2) Settling Time

This parameter defines the tume elapsed from the application of a full scale step input to the time when the output has entered and remained within a specified error band around its final value. In our case the selected multiplexer has a maximum settling time of 1 microsecond to $\pm 0.01 \%$ full scale (F.S.) Sance the control system selecting channels is amplemented using a macroprocessor, the minimum tame between analog subsystem commands wilil always be greater than 3.0 microsecond ${ }^{6}$. The multıplexer will therefore always have settled to the final value before the sample and hold circuit (following this subsystem) can be actıvated with no error due to the settling time parameter.

[^21]
3) Throughput Rate

The highest rate at which the multiplexer can switch from channel to channel at its specified accuracy is in this case 500 kHz . Since this rate is more than four orders of magnitude greater than the operational rate of the subsystem there is no error due to throughput rate limitations.

4) Input Leakage Current

The amount of signal coupled to the output as a percentage of input slgnal applied to all OFF channels together can be calculated by considerıng the maxımum leakage current specified from OFF channels to the ON channel. In our case the maximum error signal can be calculated

$$
\begin{aligned}
\text { Error }=[4 & \left.(8 \text { na } \times 2000 \text { ohms source imped. })^{2}\right]^{\frac{1}{2}} \\
& \text { Error }=32 \text { microvolts }
\end{aligned}
$$

Note that in this case the voltage levels are statistically independent allowing an R.S.S. of error sources to calculate total error [Ref. 4-8, 4-9].
C) Sample and Hold Cırcuit Induced Errors

The sample and. hold subsystem consists of a switch and capacitor arrangement as shown in Fig. 4-11. The Datel Systems, Inc., model SHM-IC-l integrated circuit sample and hold device [Ref. 4-l0] features a self-contained high gain differentıal ınput amplıfier, a digitally controlled electronic switch and a hıgh input impedance buffer amplifier. The external components used with the sample and hold circuit in the solid state remote magnetic indicator instrument consisted of the $0.001 \mu f$ holding capacitor and a l00K offset trimpot. By connecting
the output back to the negative input of the input amplifier (Fig. 4-11), the sample and hold subsystem operated in a unity gain, noninverting mode. When the switch is closed, the unit is in the sampling or tracking mode (Digital Control = 0 Volts), and will follow a changing input signal.

Figure 4-11 SAMPLE AND HOLD SUBSYSTEM

When the switch opens the unit is in the hold mode and retains a voltage on the capacitor for some period of time depending on capacitor and switch leakage. Sample and hold devices are characterized by a number of important parameters that must be considered in the design of a data acquisition subsystem.

1) Acquisition Time

The time lapse between the time that the sample command is given to the point where the output enters and remains withIn a specified exror band around the input value is specified to be less than 4 microseconds time to transit from 0 to 0.1% of lo Volts with $C=0.001 \mu f$ [Ref. 4-10]. Thas implies that the control signals emanating from the central processor should allow at least $4 \mu s$ acquisition time prior to entering the hold mode. We note that the sample and hold subroutine (Appendix B) executes the instruction

> IORI, R3 H'80' READY TO HOLD,
a two machine cycle instruction prior to sending the hold control signal. This instruction delays control signal transmıssion by $(2 \times 3 \mu s)=6 \mu s$ allowing the sample and hold circuit ample time to settle with no appreciable error due to the acquisition time parameter.
2) Hold Mode Voltage Droop

The maximum change in output voltage as a function of time is specified to be $50 \mathrm{mv} / \mathrm{sec}$ maxımum using a $0.001 \mu \mathrm{f}$ polystyrene capacitor. Since the maxımum total accumulated time to completion of the analog to digital conversion can be calculated as
5 Instructions (1l machine cycles) $=33 \mu \mathrm{~s}$
1 Analog to Digital Conversion
$=20 \mu \mathrm{~s}$
3 Instructions if Conversion not
synchronized wath instructions
(7 machine cycles)
we can then compute droop error to be $50 \mathrm{mv} / \mathrm{sec} \mathrm{x}\left(74 \times 10^{-6}\right)$ $\mathrm{sec}=3.73 \mathrm{mv}$.
3) Aperature Delay

The maxımum time lapse between the time of hold signal receipt to opening of the switch is specified to be 50 nsec , an insignificant length of time in the instrument. There is therefore no error due to aperature delay.
4) Offset Error

Although the maximum offset error is specified to be 20 mv maximum [Ref. 4-10], the error was eliminated using the 100K trimpot offset adjustment. There was no appreciable offset error contribution due to the sample and hold circuit.
5) Gain Error

The gain error of a sample and hold circuit $1 s$ apparent during the sample mode when the transfer function of the total amplifier deviates from the ideal unity slope condition (Fig. 4-12). In the noninverting unity gain mode, the specified gain error $1 s \pm 0.05 \%$ maxımum yielding a signal error of

$$
(\pm 0.0005) \times 5.0 \mathrm{~V}=250 \mathrm{mV}
$$

This error can, however, be eliminated with the galn

Fig. 4-12 GAIN, OFFSET AND LINEARITY ERRORS
adjustment available at the analog to digital converter. There will therefore be no appreciable net galn error due to the analog subsystem.
6) Nonlinearıty Error

Nonlinearity error is apparent in the sample and hold crrcuit if the transfer function departs from a linear curve (Fig. 4-12). In the noninverting unity gain mode with a $0.001 \mu f$ holding capacitor the maxımum nonlinearity is 0.01% resulting in a worst case signal uncertannty of (.0001) x 2.5 Volts $=25 \mathrm{mV}$.
7) Hold Mode Feedthrough

This error appears due to input signal appearing at the output when the unit is in the hold mode. Although the
feedthrough varıes with signal frequency and the expected signal frequencies are substantially lower than the upper frequency limits of the sample and hold device (30 Hz max. versus several kiloHertz), we consider the worst case feedthrough of 0.01% [Ref. 4-10] or 25 mV .
D) Analog to Digital Converter Induced Errors

The A / D Converter selected for the solid state magnetic Indicator instrument (Datel ADC-MAl2BIB) [Ref. 4-II] uses the successive approxımation technique to achieve excellent linearity and speed. Important parameters that potentially contribute errors are addressed below.

1) Resolution Error

The smallest analog change that can be distinguished by the A / D converter is

Least Significant Bit $(L S B)=\frac{\text { Full Scale }}{2^{n}}$

$$
L S B=\frac{5}{2^{12}}=1.22 \mathrm{mV}
$$

this uncertalnty manifests itself as an error in computing by limiting the precision of any calculation.

2) Linearıty Error

The maxımum deviation from a straight line drawn between the end points of the converter transfer function are specified in [Ref. 4-1l] to be $\pm 1 / 2 \mathrm{LSB}$ (in our case $\pm 1.22 \mathrm{mV}$ of analog signal).

Accuracy Error

The input to output error of the A / D converter is specified in [Ref. 4-Il] to be $\pm 0.012 \%$ F.S. $\pm 1 / 2$ LSB or

$$
\pm(0.00012) \times 5.00 \mathrm{~V} \pm 1.22 \mathrm{mV}= \pm 1.82 \mathrm{mV} \text { Worst Case }
$$

In reality, the two error terms are unrelated and the

$$
\begin{aligned}
\text { Rss Error }= \pm & {\left[(.00012 \times 5 \mathrm{~V})^{2}+(1.22 \mathrm{mV})^{2}\right]^{\frac{1}{2}} } \\
& \operatorname{RSS} \text { Error }= \pm 1.36 \mathrm{mV}
\end{aligned}
$$

4) Offset Error and Gain Error

Both che offset error and gain error were adjusted to zero using the trimming potentiometers (Fig. 4-7) and the calibration procedure outlıned in Ref. 4-ll. A reference signal of plus $1 / 2$ ISB (1.22 mV) was applied to che converter and the offset trimming potentiometer adjusted until the output flackered equally between logic "0" and logic "1". The gain was then adjusted by setting the converter input to full scale minus $1-1 / 2$ ISB (4.99817 Volts) and the gain trimming potentiometer was adjusted untıl the output flickered between logic "111...110" and logic "111...111". The above steps were repeated until no appreciable error in gain or offset was evident.

4-4 PROCESSING ERRORS

Errors in processing data accrue due to several sources including lmprecision and truncation. Since the microprocessor selected for the instrument is inherently an eight blt device, single precision calculations are conducted with elght bits and double precision calculations are conducted with a total

Of sixteen bits. This section addresses the effects of computational precision and truncation in the varlous subroutines and relates these to overall computational accuracy. The varlous subroutines are analyzed in chronological order as they appear in the main program.
A) Subroutine "SAMP"

The sample subroutine (delineated in Fig. 3-6a) selects and digitızes analog slgnals by controlling respective analog subsystem modules. During the first portıon of this subroutine, A / D converter data bits are stored in two consecutive bytes ${ }^{7}$ in the computer memory. The A / D conversion precision of 12 bits is thereby preserved.

The second, third and fourth operations of the sample subroutine convert the unipolar binary format of the data to sign magnitude format, adds offset quantities and merely changes the signs of the Hx and Hy data. The operations are conducted in a double precision manner and precision of the data remanns unaltered.

Correction of x axis orthogonality error is the final operation of the sample subroutine. Equation (3-1) is implemented at this point using a table lookup (for the sin function), multıplication and addıtion. The final result can be expressed as

$$
H x=H x^{\prime}+H y \operatorname{Sin} \varepsilon
$$

[^22]where the respective quantities have the following forms
\[

$$
\begin{aligned}
H x^{1} & =x_{1}+\sum_{i=1}^{11} a_{1} 2^{i} \\
H y & =x_{2}+\sum_{j=1}^{11} a_{j} 2^{j} \\
\operatorname{Sin} \varepsilon & =\sum_{k=1} a_{k} 2^{-k}
\end{aligned}
$$
\]

and
$\mathrm{x}_{1}, \mathrm{x}_{2}$ are sign bits
$a_{i, J, k}$ equal 0 or 1 depending on whether the respective term is to exist or not

We can analyze the effects of mprecision and truncation by noting that the sin function has elght significant binary bits resulting in a resolution of $1 / 256$ or $90^{\circ} / 256=0.352^{\circ}$.

The relative error in $\sin \varepsilon$ is computed by Dahlquist [Ref. 4-12] as follows

$$
\text { let } \begin{aligned}
\tilde{a} & =\text { the approximate value of } \sin \varepsilon \\
a & =\text { the exact value of } \sin \varepsilon
\end{aligned}
$$

then the relative error in \tilde{a} is
$(\tilde{a}-a) / a$ if $a \neq 0$

Since data in the sin table has been truncated, maximum relative error can be as large as $\pm\left(1 / 2^{12}\right)$ or $\pm 0.02 \%$.

From the definition of relative error we obtain the following relationships between exact, estimate and estimated
relative error

$$
\tilde{a}=a+a r=a(I+r)
$$

If a_{1}, and a_{2} have relative errors of $\pm 0.39 \%$ and $+0.02 \%$, respectively, then

$$
\begin{aligned}
\tilde{a}_{1} \tilde{a}_{2} & =a_{1}(1 \pm 0.0039) \text { a }(1 \pm 0.00024) \\
& =a_{1} a_{2}(1 \pm 0.0039)(1 \pm 0.00024)
\end{aligned}
$$

Thus, the relative error in $\tilde{a}_{1} \tilde{a}_{2}$ is

$$
\begin{gathered}
(1 \pm 0.0039)(1 \pm 0.00024)-1= \\
\pm(0.0039) \pm(0.0039)(0.00024) \pm(0.00024) \\
\cong \pm(0.0041)
\end{gathered}
$$

Since the maxımum value of $\sin \varepsilon$ to be encountered occurs when the orthogonality error (ε) is 1 degree, $\sin \varepsilon=0.017$ maximum. The maxımum value for Hy can be 0.6 gauss or 2048 units. Maximum error due to imprecision in the product HySine is then

$$
\begin{aligned}
\text { Er Max } & =(2048 \times 0.017)(1+.0041)-(2048 \times 0.017) \\
& =0.1427 \text { unyts }
\end{aligned}
$$

Since only the integer portion is retalned in the final product, insignificant error can be attributed to imprecision of the $\sin \varepsilon$ term in this case. Orthogonallty error wall be adequately corrected.
B) Subroutines ROTX and ROTY

These subroutines were developed in Chapter III and implement the equation of $2-11$ required to compute horizontal
x and y magnetic field components. Equations to be implemented by the respective subroutines are

$$
\begin{align*}
H x= & H x m \operatorname{Cos}(p i t c h) \\
& + \text { Hym Sin (pitch) Sın (roll) } \tag{4-12}\\
& \text { Hzm Sin (pitch) Cos (roll) }
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{Hy}=\mathrm{Hym} \operatorname{Cos}(r o l l)-\mathrm{Hzm} \sin (r o l l) \tag{4-13}
\end{equation*}
$$

where Hxm, Hym and Hzm are measured field components made available.from the magnetometer via the analog subsystem.

Since the transcendental functions are implemented using cable lookup and are limited in precision to 8 bits, imprecision in these varıables will domınate in generating error. In partlcular, the sin/cos terms wll have relative error in the order of $\pm 1 / 256$ or $\pm 0.39 \%$ while the measured field data has relative uncertainty of only $\pm 1 / 4096$ or $\pm 0.02 \%$. Multiplicarions will result in addition of the bounds for the relative error as illustrated in section 4-4A above.

The transcendental terms above are limıted in magnıtude to 1.0 maximum while the field measurements can be 0.60 gauss max. In this case the individual product terms of (4-12) and (4-13) can have maximum errors of

$$
E r=(2048)(1+0.004 I)-(2048)=8.4 \text { units }
$$

Errors in $H y$ and $H x$ (4-12 and 4-13) will be maxımum when roll and pitch are at 45 degrees and the fields are equal. In this case the error in Hy will be

```
EHY = [(0.707)(2048)(I+0.004I)-(0.707)(2048)]-
        [(0.707)(2048)(1-0.0041)-(0.707)(2048)]
    EHy = 4.94-5.94=11.87 units
Similarly, maximum error in Hx can be calculated as
    EHX = [(0.707)(2048)(1.0041)-(0.707)(2048)] x 3
    EHX ~}=17.8 unzts maxamum
```

It should be noted that these error terms are worst case and peak at multiples of 45 degrees in yaw.
C) Subroutines COSY and SINY

These two subroutines compute the angle between the x axis sensor (When projected onto the horizontal plane) and the north-south horizontal vector of earth's magnetic field. The first two opeations of these subroutines perform double precision multiplication and duvision. Since the daca varlables involved are 12 bits in length and the computations performed preserving 16 bits, no error is introduced.

The "ANGL" subroutine called by the above two subroutines computes the desired (x axis to horizontal vector) angle by completing an associative table look up procedure. The rask required is to match a given data quantity either (Hx ${ }^{2} / \mathrm{Hh}^{2}$ or Hy ${ }^{2} / \mathrm{Hh}^{2}$) whth the contents of a memory cell. The address of this cell is then the required angle.

Since the table, is limited in precision to 16 bits there are obviously cases where an interpolation is required to
ascertain the true address ${ }^{9}$. The function stored in tabular form is $\cos ^{2} \theta$ where θ varies from 45 to 90 degrees. Maximum error will therefore be induced while attempting to locate solutions (angles near 90 degrees if inadequate precasion is provided. Error in this region due to resolution of tabular data can be examıned by noting the entries an Table 4-8

θ	$\cos ^{2} \theta$	Most Signıficant Binary Bit $\left(2^{-x}\right)$
90	0	-
89	0.000305	12
88	0.001218	9
87	0.00274	8

Table 4-8 $\operatorname{Cos}^{2} \theta$ AND MOST SIGNIFICANT BINARY DIGITS
provided to indicate the relatıve magnitudes of $\operatorname{Cos}^{2} \theta$ in the region of $\theta=90$ degrees. We observe that the most significant binary digit affected at 89 degrees is binary decimal digit 12 implying that the resolution of $\mathrm{Hx}^{2} / \mathrm{Hh}^{2}$ or $\mathrm{Hy}^{2} / \mathrm{Hh}^{2}$ (the argument of $\cos ^{2} \theta$) must be accurate to at least $1 / 2^{12}$ or 0.024 。

Considering the horizontal field of earth's magnetic vector as observed in laboratory experimentation at this latrtude, we note that Hh is 730 units. At a heading of $89 \mathrm{deg}-$ rees, $H x=730 \operatorname{Cos} 89=12.7$ units. The argument would therefore be

$$
A R G=\mathrm{Hx}^{2} / \mathrm{Hh}^{2}=\frac{(12.7)^{2}}{(730)^{2}}=0.000305
$$

[^23]Since, the squaring and division operations are conducted in double precision, precision is preserved and the algorithm should be able to resolve heading to at least one degree over all portions of the compass.

D) Errors Due to the Remaining Subroutines

Since all of the remaining subroutines work with daca that has been rounded to a precision representing 1 degree or better and the computations involve addıtıon or subtraction in double precision binarý or binary coded decimal (BCD) format, we note that there will be no further appreciable error due to truncation or rounding.

4-5 MEASUREMENT ERROR SUMMARY

Errors due to sensors and measurement of their respective outputs were discussed in sections 4-2 and 4-3 above. Before proceeding with the analysis of errors, the total signal inaccuracy due to contribution from the many sources above will be summarızed in Table 4-10. Total instrument error can then be computed by considering the propagation and enhancement of these errors during the computation process.

Since the errors in Table 4-9 are stochastically independent, we can compute error for any given signal level by finding the RSS of respective error sources. In this manner, the instrument error can be evaluated by considering all input signals with errors superimposed to produce an erroneous computation of heading.
PARAMETER ERROR COMMENT

1. Magnetometer

Offset $\quad \simeq 0$
Orthogonality
Noise
Gain
Linearity
Negligible $\pm 0.01 \%$

Corrected by software
Corrected by software $\pm 0.01 \%$ Proport.to signal level
2. Analog Subsystem Sampling

Multiplexer
Transfer Accuracy $\pm 0.01 \% \quad$ Proport.to signal level Settling Time $\quad-0$
Rate $\simeq 0$
Input Leakage $\quad=0$
Sample and Hold
Acquisition
Hold
Aperature Delay
4 mV
Offset
Gain
Nonlinearity
Feedthrough
Negligible Sampling rate \& filtering adequate

A/D Converter
Resolution
Accuracy
Offset
Gain

$$
\begin{gathered}
\pm 1.2 \mathrm{mV} \\
\pm 1.4 \mathrm{mV} \\
\quad \cong 0 \\
\simeq 0
\end{gathered}
$$

4-6 SAMPLE ERROR ANALYSIS

Orthogonality correction using the algorithmic method can be verified by computing expected error prior to correction and comparing measured system output with the error predicition. Assuming that the angle between the x and y sensors exceeds 90 degrees as in Fig. 4-13, we can proceed to compute error by noting the following relationships

$$
\begin{aligned}
H x & =H h \operatorname{Cos}(+\psi) \\
H y & =H h \operatorname{Sin}(\psi) \\
H x_{l} & =H x \operatorname{Cos} \varepsilon-H y \operatorname{Sin} \varepsilon \\
\text { True Yaw } & =\psi T=\operatorname{Cos}^{-1}\left(\frac{H x}{\left(H x^{2}+H y^{2}\right)^{\frac{1}{2}}}\right)
\end{aligned}
$$

Computed yaw

$$
\begin{aligned}
\psi \mathrm{m} & =\operatorname{Cos}^{-1}\left[\frac{\cdot H x \operatorname{Cos} \varepsilon-H y \operatorname{Sin} \varepsilon}{\left.(H x \operatorname{Cos} \varepsilon-H y \operatorname{Sin} \varepsilon)^{2}+H y^{2}\right)^{\frac{1}{2}}}\right] \\
& =\operatorname{Cos}^{-1}\left[\frac{H h \operatorname{Cos} \psi \operatorname{Cos} \varepsilon-H h \operatorname{Sin} \psi \operatorname{Sin} \varepsilon}{\left[(H h \operatorname{Cos} \psi \operatorname{Cos} \varepsilon-H h \operatorname{Sin} \psi \operatorname{Sin} \varepsilon)^{2}+\mathrm{H}^{2} h \operatorname{Sin}^{2} \psi\right]^{\frac{1}{2}}}\right]
\end{aligned}
$$

Using small angle approximations with $\varepsilon \tilde{=} 0.79^{\circ}$

$$
\cos \varepsilon \tilde{=} 1 \text { and } \sin \varepsilon \simeq 0.014
$$

then

$$
\psi \mathrm{m}=\operatorname{Cos}^{-1}\left[\frac{\mathrm{Hh} \operatorname{Cos} \psi-0.014 \operatorname{Sin} \psi}{\left[\mathrm{Hh}^{2}(\operatorname{Cos} \psi-0.014 \operatorname{Sin} \psi)^{2}+\mathrm{Hh}^{2} \operatorname{Sin}^{2} \psi\right]^{\frac{1}{2}}}\right]
$$

Computed error

$$
\text { Error }=\psi \mathrm{m}-\psi
$$

Fig. 4-13 ANGLE (X - Y) $>90^{\circ}$

We can now evaluate computed yaw angle ($\psi \mathrm{m}$) given a particular yaw (ψ) and the horizontal fleld vector (Hh). Heading error.for horizontal field vector of 730 units at various yaw angles with pitch and roll angles of zero degrees is tabulated In Table 4-10 and plotted along with actual measured yaw error (data taken during experimentation of Chapter V) in Fig. 4-14.

Heading (Degrees)	Computed Error (Degrees)	Heading (Degrees)	$\begin{aligned} & \text { Computed } \\ & \text { Error } \\ & \text { (Degrees) } \end{aligned}$
90	0.8	290	0.7
70	0.7	270	0.8
50	0.5	250	0.7
30	0.2	230	0.5
10	0.0	210	0.2
350	0.0	190	0.0
330	0.2	170	0.0
310	0.5	150	0.2
		130	0.5

Table 4-10 COMPUTED HEADING ERROR WITH Hh $=730$ UNITS

4-7 CONCLUSIONS

The preceeding error analysis has identified potential error sources along with relative magnitudes of error to be expected. Magnetometer sensor and analog subsystem errors were identıfied and analyzed indıvidually. During this analysis it became apparent that errors due to sensor offset and nonorthogonality dominated and would severely limit total instrument performance. The relative magnitudes of these errors and their mode of contribution would have degraded system capacity.

By carefully characterizing the offset and orthogonality error it was determined that these systemmaric errors could be reduced by appropriate programming. A need to identify the extent of each error unique to the laboratory instrument imposed a need to evaluate the instrument empirically. Using earth's magnetic field and the laboratory test fixture (described in Chapter V) to provide control inputs each of the parameters was identified and measured. An algorithm with the empirically determined correctıon coefficients was included in the final system to reduce the error and to improve final system performance. The remaining potential error sources were tabulated and relative magnitudes noted.

Processing errors due to register precision and truncation were analyzed by considering pertinent subroutınes indıvidually. It was noted that the relative error bounds add when multiplyIng variables with relative error. In addition, it was noted that error accrued during processing is proportional to sensor signal levels involved. The final uncertainty is then proportıonal to actual aircraft attıtude with error increasing as displacement from level flight occurs. Computational error is also noted to increase at particular headings causing the error function to peak at specific yaw angles.

The sample error analysis clearly shows that $\dot{\text { a }}$ correlation between sensor nonorthogonality induced error and measured (uncorrected) data exists. By predicting and computing an error function prior to experımentally verifying the result we gain confidence that the sensor characterıstics derived empirically in previous sections are correct.

CHAPTER V

LABORATORY EVALUATION OF THE ATTITUDE INDEPENDENT
REMOTE MAGNETIC INDICATOR AND HEADING INSTRUMENT

5-1 INTRODUCTION

- This chapter addresses laboratory evaluation of the microprocessor based computer designed to implement the heading measurement instrument. An integral part of this instrument was the three axis fluxgate magnetometer used to implement the attitude independent remote magnetic indicator of Chapter II. The laboratory evaluation was designed to investigate empirıcally the effects of physical parameters that would otherwise be impossible to assess.

Although phenomena such as nolse, magnetic field gradient, sensor orthogonalıty errors and offset errors can be predicated, combined effects on the proposed instrument and remote magnetic indicator are best evaluated in the laboratory. In addition, it was noted that errors due to sensor offset and nonorthogonality could be corrected by software included with the sample subroutine. Determination of the effectiveness of this correction technique necessitated laboratory measurements of the errors (to determine correction constants) and comparison of data prior to and following corrections.

The chapter begıns by discussing laboratory test apparatus designed to evaluate the instrument. Actual data measured and recorded during experimentation is then presented in both tabular and graphic form to facilitate comparison and evaluation. Finally, the laboratory data is discussed and it is concluded that the remote magnetic indicator used with the heading measurement instrument results in a viable alternative to conventional heading measurement systems. The microprocessor based
computer amplentation of the instrument has added unique sensor measurement correction ability that enhances performance of otherwise marginal sensors. In this manner limitations in systems performance that now exist due to sensor inadequacy can be minimized without incurring the burden of using more expensive sensors.

5-2 TEST APPARATUS

A) Electronic Subsystem

The mlcroprocessor based computer (lllustrated in photos 5-1 and 5-2) was constructed on printed circuit boards consisting of a central processing card, two memory cards (2K bytes capacity each) and an output board. A separate analog subsystem card contained the multiplexer, sample and hold, analog to digital converter and trımming potentiometers. The circuit cards were all organized with edge connectors and mounted vertically into a hand wired backplane assembly as shown in photos 5-1 and 5-2.

The card in the left foreground of photo $5-1$ served as the output display with three seven-segment displays displaying significant figures of system heading. A small printed circuit in the right foreground of photo 5-1 contamed potentiometers used to generate analog signals proportıonal to roll and pitch signals (simulating gyroscope outputs). Cards shown vertically mounced in photo 5-2 can be Identified from right to left as the analog subsystem, two memory cards and the central processing card. The large integrated circuit shown on the CPU card is the Signetics 2640 microprocessor.
B) Sensor Assembly

To evaluate the effects of combined aircraft pitch, roll

Photo 5-1. MICROPROCESSOR BASED HEADING COMPUTER

[^24]and yaw a three axis gimbal apparatus was required. In addition, since angular measurements were required, a means of measuring angular rotation in each of the three exes was provided. The gimbal apparatus as illustrated in photos 5-3 and 5-4 was fitted with large protractors centered on the rotation axes. Pointers were provided to enable angular rotation measurements on the respective protractor scales. Since the angular precision on each protractor scale resolved angular position to 0.5 degrees, angular measurements to a resolution of at least 0.5 degrees were possible. Angular position was measured by estimating the decimal place of each measurement with accuracy to ± 0.5 degrees ensured.

Since the three axis magnetometer (housed in the rectangular block of photos $5-3$ and 5-4) measured ambient magnetic fields the test apparatus was constructed of nonferrous material. This ensured that local fields due to residual magnetic fields in the test apparatus would be minimized. In addition, since the material had low permeability, there would be little deformation of the local field causing error due to changing field gradient.

The sensor package shown in photos $5-3$ and $5-4$ was physically mounted such that the sensors were centered as close to the center of the gimbal as possible. This precaution ensured that measurement error due to sensor translation was minimized ${ }^{1}$. During instrument evaluation, the entire gimbal assembly and sensor were leveled and mounted in a Helmholtz coil assembly as illustrated in photo 5-5. Although the coils were not activated during experimentation, the rotations in heading were

[^25]
REPRODUCIBILITY OE THE

Photo 5-3 MAGNETOMETER SENSOR MOUNTED ON
GIMBALLED TEST FIXTURE

Photo 5-4 SENSOR AND GIMBAL ASSEMBLY WITH PROTRACTORS
carefully controlled since the gimbal assembly was an integral part of the Helmholtz coil fixture with the vertical rotation axis serving as the system yaw axis.

Photo 5-5 TEST FIXTURE MOUNTED IN HELMHOLTZ COIL ASSEMBLY

5-3 HEADING MEASUREMENTS WITH NO OFFSET CORRECTION

By maintaining heading of the text fixture constant (no rotation about the vertical axis) and varying both pitch and roll angle, the instrument display was observed to vary. This variation gave a direct measure of instrument error since a constant heading was maintained and a constant display was to be expected.

Data variations were recorded in Tables 5-1 and 5-2 and plotted on Figures $5-1$ and $5-2$. With only ± 10 degree variation in pitch combined with ± 30 degree variation in roll we note that the heading display varies 14 degrees. Obviously,

Fig. 5-1 HEADING COMPUTED AT A FIXED YAW ANGLE WITH VARYING θ AND 1 (NO OPFSET CORRECTION)

Fig. 5-2 HEADING COMPUTED AT A FIXED YAN ANGLE WITH VARYING θ AND Φ (NO OFFSET CORRECTION)
instrument operation indicated excessive error requiring more elaborate sensors or correction of a sensor inadequacy.

5-4 HEADING MEASUREMENTS TO INVESTIGATE ORTHOGONALITY ERROR

System performance was evaluated by initially aligning the sensors whth zero pitch and roll angle. Sensor Z was positioned vertically with positive direction downwards. By observing the z axis output ${ }^{2}$ as the test fixture was rotated about the vertical axis, adjustments were made in pitch and roll angle to minimize coning of the z axis. Angular measurements on the respective roll and pitch axis protractors were then made to establish the initial reference attitude angles.

Heading measurement accuracy was evaluated by rotating the test fixture in the horizontal plane untrl the display flickered between (XX9) and (XX9+1). The rotation was then continued a very small amount until a steady display (multiple of 10 degrees) was observed ${ }^{3}$. Measurements ranging from 0 to 350 degrees were made by recording angular position required to produce specrfic heading data displays. Sets of data were recorded at various combinations of pitch and roll then tabulated in Tables 5-3 through 5-8. Relative error was computed by determining angular position expected at each display value and then computing the difference in angular positions. Errors at the roll extremes of ± 44 degrees are plotted for pitch angles of plus and minus 20 degrees on Fig. 5-3 through 5-6 inclusive.

[^26]Data in Tables 5-5, 5-6 and Fig. 5-3, 5-4 were recorded with no sensor orthogonality error correction implemented. Data in Tables 5-7, 5-8 and Fig. 5-5, 5-6 was recorded with the sensor orthogonality correction implemented. Comparison of these data indicate that considerable improvement in accuracy is achieved by correcting sensor orthogonalyty error.

5-5 CONCLUSIONS

Laboratory evaluation of the heading measurement instrument has shown that the algorithms developed in previous chapters are viable. Operation of the device in a laboratory environment has enabled empirical evaluation of the system under adverse combinations of noise, field gradient and sensor plus instrument error sources.

Test apparatus descrıbed in section 5-2 served to enable controlled simulation of roll, pitch and yaw rotations. The apparatus was nonmagnetic in nature and contributed insignificant error due to fleld pertebation. Mounting of protractors and pointers on the test apparatus made angular measurements possible to a precision of at least ± 0.5 degrees.

Effects of sensor offsets were evaluated in section 5-3 by recording system heading computations when only roll and pitch varied. Since the variations in Figures 5-1 and 5-2 prior to offset correction exceed the maximum excursions of Figures 5-3 and 5-4 by at least a factor of two (angular excursions in first set also less than in the record) and we note that offset errors were corrected prior to recording data in the second set of' data, we conclude that offset in magnetometers can be a

PITCE ANGIJE 0 DEGREES

ROLI ANGLE 0 DEGREES

Heading Displayed (Degrees)	Angular position (Degrees)	Relative Error (Degrees)
10	275.3	0.3
30	295.2	0.2
50	315.4	0.4
70	335.5	0.5
90	355.5	0.5
130	34.8	-0.2
150	54.3	-0.7
170	74.0	-1.0
190	94.0	-1.0
210	114.4	-0.6
230	135.0	0.0
250	155.5	0.5
270	174.7	-0.3
290	195.5	0.5
310	215.2	0.2
330	235.2	0.2
350	254.7	-0.3

[^27]
PITCH ANGLE 0 DEGREES
 ROLI ANGLE 0 DEGREES

Heading Displayed (Degrees)	Angular Position (Degrees)	Relative Error (Degrees)
10	276.6	-0.4
30	296.6	-0.4
40	306.7	-0.3
50	316.7	-0.3.
60	327.2	+0.2
70	337.0	0.0
90	355.9	-1.1
130	37.0	0.0
160	67.2	0.2
190	96.8	-0.2
220	126.9	-0.1
250	157.0	0.0
280	186.9	-0.1
310	216.6	-0.4
340	246.9	-0.1
350	256.4	-0.6

Table 5-4 HEADING MEASUREMENTS WITH OFFSET AND ORTHOGONALITY CORRECTIONS MADE

+ Heading	Roll $=44^{\circ}$		Roll $=20^{\circ}$		Roll $=-20^{\circ}$		Roll $=-44^{\circ}$	
- Displayed (Degrees)	Angular Position	Error						
10	276.3	1.3	276.5	1.5	275.0	0.0	274.0	-1.0
30	296.3	1.3					293.6	-1.4
40			306.1	1.1	304.0	-1.0		
50							313.8	-1.2
60	325.8	0.8						
70			335.6	1.6	334.3	-0.7	333.8	-1.2
90	355.0	0.0	354.0	-1.0	353.1	-1.9	353.0	-2.0
130	34.3	0.7	34.3	-0.7	34.6	-0.4	34.4	-0.6
160	64.5	-0.5	64.0	-1.0	65.0	0.0	65.0	0.0
190	94.3	-0.7	94.6	-0.4	95.0	0.0	95.5	0.5
220	125.2	0.2	125.3	0.3	126.0	1.0	126.5	1.5
250	156.6	1.6	156.2	1.2	156.7	1.7	157.0	2.0
280	186.6	1.6	186.8	1.8	186.5	1.5		.
310	216.8	1.8	216.8	1.8	215.9	0.9	215.9	0.9
340	246.0	1.0	246.8	1.8	245.0	0.0		
350							224.9	-0.1

TABLE 5-5 HEADING MEASUREMENTS AT PITCH $=20^{\circ} \mathrm{WITH}$ NO ORTHOGONALITY CORRECTION

Fig. 5-3 HEADING MEASUREMENT ERROR AT PITCH $=20^{\circ}$ (NO ORTHOGONALITY CORRECTION)

Heading	Roll $=44^{\circ}$		Roll $=20^{\circ}$		Roll $=-20^{\circ}$		Roll $=-44^{\circ}$	
Displayed (Degrees)	Angular Position	Error						
10	276.1	1.1	275.1	0.1	274.2	-0.8	273.7	-1.3
30	296.2	1.2	295.9	0.9			293.6	-1. 4
50	316.4	1.4	316.1	1.1			314.1	-0.9
70	336.5	1.5	336.4	1.4	335.5	0.5	334.6	-0.4
90	355.5	- 0.5	355.3	0.3	355.0	0.0	354.2	-0.8
130	36.0	1.0	36.4	1.4	135.7	0.7	135.7	0.7
150	55.3	0.3	55.9	0.9			55.8	0.8
170	74.5	-0.5	75.6	0.6			75.5	0.5
190	94.9	-0.1	95.3	0.3	95.5	0.5	95.5	0.5
210	115.0	0.0	115.4	0.4			115.6	0.6
220					125.5	0.5		
230	135.0	0.0	135.6	0.6			136.0	1.0
250	155.6	0.6	155.4	0.4	155.5	0.5	155.7	0.7
270	174.8	-0.2	174.8	-0.2			175.0	0.0
290	195.6	0.6	195.4	0.4			195.3	0.3
310	215.5	0.5	215.3	0.3	214.6	-0.4	214.5	-0.5 ${ }^{\text {² }}$
330	235.7	0.7	235.1	0.1			234.2	$-0.8{ }^{*}$
350	255.6	0.6	255.2	0.2			253.8	-1:2

Table 5-6 HEADING MEASUREMENTS AT PTTCH $=-20^{\circ}$
WITH NO ORTHOGONALITY CORRECTION

Fig. 5-4 HEADING MEASUREMEITT ERROR AT PITCH $=-20^{\circ}$ (NO ORTHOGONALITY CORRECTION)

Heading Displayed (Degrees)	$\begin{gathered} \text { Roll = } \\ \text { Angular } \\ \text { Position } \end{gathered}$	0\% Error	$\text { Roll }=$ Angular position	44° Error	$\text { Roll }=$ Angular position	-44° Error
20	287.3	0.3	287.5	0.3	286.3	-0.7
40	307.2	0.2	307.5	0.3	306.0	-1.0
60	327.0	0.0	327.9	0.7	325.9	-1.1
80	346.3	-0.7	347.5	0.3	345.6	-1.4
90	355.9	-1.1	357.0	0.2	356.2	-1.8
140	46.9	-0.1	47.0	-0.2	46.5	-0.5
150	67.0	0.0	67.3	0.1	67.1	0.1
180	86.6	-0.4	86.5	-0.7	87.0	0.0
200	107.0	0.0	107.3	0.1	108.1	1.I
220	127.6	0.6	127.3	0.1	128.3	1.2
240	147.2	0.2	147.4	0.2	148.5	1.5
260	167.0	0.0	167.1	-0.1	168.5	1.5
280	187.3	0.3	187.1	-0.1	188.5	1.5
300	207.2	0.2	207.1	-0.1	208.0	1.0
320	227.3	0.3	227.0	-0.2	227.5	0.5
340	247.4	0.4	247.3	$+0.1$	247.4	0.4
0	266.4	-0.6	267.0	-0.2	266.0	-1.0

[^28]

Fig. 5-5 HEADING MEASUREMENT ERROR AT PITCH - 20° (OFFSET AND ORTHOGONALITY ERROR CORRECTED)

Heading Displayed (Degrees)	Roll $=44^{\circ}$ Angular Position	Error	Roll $=-44^{\circ}$ Angular Position	Error
20	287.0	-0.4	286.5	-0.3
40	307.0	-0.4	306.7	-0.1
60	327.0	-0.4	326.8	0.0
80	347.0	-0.4	346.8	0.0
90	356.7	-0.7	355.6	-0.2
140	47.8	0.4	48.0	1.2
160	67.7	0.3	68.0	1.2
180	87.0	-0.4	87.8	1.0
200	107.6	0.2	108.0	1.2
220	127.7	0.3	128.0	1.2
240	147.8	0.4	147.4	0.6
260	167.6	0.2	167.2	0.4
280	187.6	0.2	187.0	0.2
300	207.1	-0.3	206.5	-0.3
320	227.1	-0.3	226.6	-0.2
340	247.1	-0.3	246.9	0.1
0	266.3	-0.9	266.0	-0.8

TABLE 5-8 HEADING MEASUREMENTS AT PITCH $=-20^{\circ}$ WITH OFFSET AND ORTHOGONALITY ERROR CORRECTED

Fig. 5-6 HEADING MEASUREMENT ERROR AT PITCH $=-20^{\circ}$ (OFFSET AND ORTHOGONALITY CORRECTED)
major error source ${ }^{4}$. Additionally, we note that the correction of offset error in sensors has been successful. Experımental results have verıfied that not only can offset errors be determinded (Chapter IV), but a suitable algorithm can be implemented in the computer to improve system operation. It is postulated that offset error correction can be extended to include correction of varying offset values (functions of temperature and supply voltage) by monitoring error causing variables (example temperature) and computing correction constants prior to offset correction as above.

Errors induced by sensor nonorthogonality were predicted in Chapter IVsection 4-2 and verified by plotting expected error along with measured error in Fig. 4-14. The curves of Fig. 4-I4 were plotted for heading rotations with no pitch or roll angle. To évaluate system performance and the effect of orthogonality error with combined angular rotations, measurements of heading error were plotted in Fig. 5-3 thorugh 5-6 inclusive.

Comparison of these data indicate that maximum excursions of error as a function of heading are significantly less when orthogonalıty corrections are made. It is also postulated that data could be mproved further by simılarly correcting orthogonality error in te Z axis sensor ${ }^{5}$.

In summary, the experimental evaluation has provided inslght into the operation of an attitude independent remote magnetic indicator and heading computer in the "real world"

[^29]environment complete with all contributang error sources. The error analysis evolved during development of the system has proven adequate in that an operatıonal system was developed. Major error sources were measurable as predicted and the means of reducing their effects were successfully implemented. Correction of sensor offset and orthogonality error required an empirical evaluation of the respective sensor. These evaluations were performed, the errors characterızed, correction coefficients determined, and correction algorıtms implemented.

Successful mplementation of these corrections was evidenced by significant reductions in system error. The correctIon methods presented can be extended in future with the net result that less demand is required of physical sensors if the sensor parameters can be established empirically prior to completion of instrument design. Utillzation of a microprocessor in the instrument has added the computational flexubility required to facilitate accommodation of sensors with varying error magnıtudes.

APPENDIX A

This appendix lists the instruction set of the signetics 2650 microprocessor chip used to implement the heading instrument.

LOAD／STORE INSTAUCTIONS			Lengetit thytusi	bintr	（＊）${ }^{\text {a }}$	Branch on Incrementing liegister absolute	3		
LOD\％	，	Loud Regmater Zeru	1	BDRA，	（＊）a	Branch on Deercmentung Register Relative	2		
LOUTr	v	Load lmmedrate	2	BDRA，	（＊）ja	Bratation Dicremenomg Register Vbsolute	3		
LODR，	$(+)^{\prime}$	Loud Rehative	2	BXA	（＊） H （，x）	Branch tndexed aisolute（ncondinonat	3		
LODA，r	（＊）a（，X）	I oud Absoluti	3	ZBRR	（＊）\downarrow	Zuro Branch Relative，Unconditonal	2		
STR2	（ $1 \times$ ）	Store Repgoter Zulo	1						
Stur，	（＊）${ }^{\text {c }}$	Store Relative	2	SUBrout	INE BRAN	Ch／AETUFIN INSTRUCTIONS			
Sthat	（ 4 ） 4 （，X ）	Store Absolute	3	BS＇TR，V	（＊）${ }^{\text {a }}$	Branch to Subroutint on Condition True，thelative	2		
ARITHMETIC Instructions				BSFA， v	（＊）a	Branch to Subroutine on Condition	2		
ADDZ	r	Add to liegistar 2 ero	1			False，Relative			
ADDIr	\checkmark	Add Imamediate	2	［3S＇A，v	（＊） 4	Branch to Subroutme on Condition	3		
ADDR，	（＊）${ }^{\text {a }}$	Add Relative	2			True ubsolute			
AUDi，r	（ $*$ Ju（, X ）	Add Absolute	3	BSPA，V	（＊）a	Branch to Subroutme on Condition	3		
SUB／	r	bubtrat from licgister zero	1			False tboolute			
sUBIr	\checkmark	Suberact immediate	2	BSNR，r	（＊）${ }^{\text {d }}$	Branch to Subroutme on Von Zero	2		
SUBR，	（＊）	Subiract lelative	2			Register，Relative			
SUBA，r	$(*) d, \lambda)$	Stutract Absofute	3	BSNA，${ }^{\text {r }}$	（＊）	Branala to Subroutme on Aon Zero Regrster，Absolute	3		
－logical instructions				BSAA	（＊） $2(, x)$	Branch to Sulzroutme Indered Unconditional	3	Q H	
ANDZ．	r	And to Register Lino	1	REPC，V		Return From subroutine Condutonal	1	8	
ANDI r	v	And lommediate	2	RLIL，v		Rlcurn From Suhnoutme und Frable	1	E	
ANDR．r		And Relative	2			Interript．Conditional		－	
ANDA，	（＊） $3(, \mathrm{X}$ ）	And Absolute	3	zBSR	（＊）， 4	Zero Branch to Subnoutme	2		
IORL	r	Inclusive or to Rentister 2 ero	1			Relative，Unconditional		\cdots	
10RH，	v	Inclusive or limmedrate						0	
LOKR，	1＊）${ }^{\text {d }}$	Inclusive or Relative	）	PROGRAM STATUS INSTRUCTIONS				－	
1014 Str	$(+140, x)$	Inclusivc or sboolute	3	LPbu		Load itogam blacus，＇＇pper	1	年	
LORL	r	Cisclusive or to Regeter 2ero	1	LPSL		I oad Program Status，L owar	1		
EOKI r	v	Exclusive or immechate	2	Spsu		Store Program Statha，Upper	1	081	
LOHR，		Exilusive or Relative	2	BrsL		stote Program Status，Lover	1		
LOHRA，	$(*) \ldots(, \mathrm{X})$	Cacjusive or absolute	3	cras	v	Chau Progrdil Stutus，（ppen Srlective	2	吹	
				CPSL	v	Char Program thatus，Lower selective	2	$8+$	
COMPARISON INSTRUCTIONS				PPSU	v	Preset Program Status，Upper Selectue	2		
COVZ	r	Compate to Renbatir Lero	1	Presi	v	Presal l＇rogran Status Lover Sclective	2	边	
covils	v	Compare lamedate	2	Trsu	v	＇l＇est Programs status Upper selective	2	41	
comiker		Compare Metative	2	Tres	v	＇Inst Program status I uwar belective	2		
				input／outpur instructions					
Rotate instructions			Length（bytes）	WRTPD，		Write Data	1		
RfRr，		Rolate Register tught	1	REDD，		Brad Data	1		
MR1．rs		Rolste Heghsur Lelt	1	WHTC．		Wrate Control	1		
			RLDC，		Read Controt	1			
DAANCH INSTRUCTIONS				WRTE，	v	Write Lxtended	2		
BCIfRV	（＊）${ }^{\text {a }}$		Branuli on Condinon＇frue Relative	2	REDE， 5	v	Rexd Extended	2	
bcir ${ }^{\text {a }}$	（＊）${ }^{\text {d }}$	Brame h on Condtron Fialse Relative	2						
BC．1A，v	（＊）a	Branh on Condimon true dbsolute	3	miscellanegous instructions					
BCfiv	（－）${ }^{\text {d }}$	Brambit on Comdition Fidse Absolute	，	HAIT		Halt Enter Watt Stat	1		
BRNR， r	（＊）	Brambh on Register Non－Zero Relative	2	DARs		Decimal tdjust Register	1		
BRA A， r		Hranch on Regrster Nim／ero Aboblute	3	TM｜r	v	West Uindur Vask Immudiate	2		
BLRR，r	（＊） 4	Branch on Incrementug fupristr Refative	2	NOH		No Ogitration	1	\cdots	

APPENDIX B

This appendix contains alisting of the assembly language program used to implement the remote magnetic indicator heading algorithm. The program was assembled on, the A2650 cross assembler program operational on the HP 2100 computer at the University of Santa Clara.

3					
4	0000	no	Enu	0	
5	（16）1	H1	Eus	1	
6	0 0，02	H2	Euv	2	
1	0003	H 3	Euv	1	
${ }^{3}$	40no	UN	tou	0	
9	04100	L	Eru		
10	O日Cl	p	tou	1	
11	（10n2	\cdots	Eus	2	
12	10000	＋0	Ers	0	
13	not）	or	Eud	1	
14	（100）	r	EDu	1	
15	nu02	$1 . T$	EOU	2	
16	0003	UN	EOU	3	
17	0402	Cum	E，dU	H02，	
18	－110	HS	Eus	H1108	
19	טกns	WC	End	$\mathrm{H} \cdot 0 \mathrm{H}$ ，	
20	000F	LUWR	EQU	H．OF゙，	
21	nu） 0	UPPR	Eu）	Hofor	
22	0040	flag	Eidu	H／401	
63	0 O 20	11	Eus	H 20 O	
14	nuff	HSAM	Eidu	H．fF，	
25	0001	MSB	tou	1	outpu：
26	nun2	LSH	tiou	2	output
27	01604	yhta	EISU	4	－urar
28	niond	PHI	tou	8	
4	0010	SbIt	E円U	16	
10		－0000	いいッ40		
31		＊＊a＊	data	STORAGE IN HAM	－404
32			OHG	H．450，	
33	14450	data	RES	1 n	Raw gata
34	n45A	DATM	RES	10	corbectei daya
35	11464	LUPS	RES	1	
36	0465	TEMP	HrS	$\stackrel{1}{2}$	
37	0467	SIND	H2S	5	
318	0469	SINR	RES	2	
39	1546	HiN2	H2S	2	hit Sulahed jata
40	$\mathrm{OH}_{6} \mathrm{fL}$	SIGN	kes	1	
4	n44E	$n \times 2$	KES	2	n土 Suldampa data
42	10410	HY2	KES	c	
4		H2C	KES	$\stackrel{1}{2}$	
4	18474	UuAD	Res	1	
45	0475	COSR	Res	2	
45	14.17	«SLT	Hes	C	
1	91419	0p121	krs	2	
4	110	cipha	HES	c	
4	0480	STE：	RES	，	
\％	14．ts	SHES	kf ${ }^{\text {d }}$	，	
1	01675	DATX	fris	2	
\％	（1） $\mathrm{Cl}^{\text {1 }}$	OATY	Hes	2	
3	41013	［1ATl	HES	\checkmark	
34	（1943	cost	kfs	1	

fir agbfmhler versioin scu levet. 1 heauing instrument assemly program 1976 page

pif assfmaler version scu level i heauing instrument ascemly prugram 1976 dage b


```
PIP ASSFMALFR VERSIUN SpU LEVEI I HEADING INSTRIMENT ASSEMLY PROGRAM 1976 DAGF 6
```


LINE ADOR LATL HI HS 13 HL PRROK GOUECE

154				
159				
100				
101				
162				
163				
104				
105				
106				
107				
108				
$\begin{aligned} & 109 \\ & 170 \end{aligned}$				
11				
172	0100	07:0	115	Ff
173	07 H ?		06	04
174	0704		$0 /$	01
175	0766		15	08
116	07188	ก7a8	$f 3$	
117	-1789		6)	an
178	0783		$F 3$	
179	0 Luc		114	8
100	07טE.		no	
141	0748		50	
182	07L0		14	
14.3	07 Cl	07 Cl	70	
144	47 c ?		$F 4$	it
185	$07 \mathrm{C4}$		14	7 H
106	$07 \mathrm{C6}$		24	FF
187	07ca		44	Ft
184	U7CA		0	24 ל1
189	u7CD		30	
110	U/CF		24	+F
141	0700		C	24 45
196	4703		G)	01
173	07135		47	(1)
194	071)7		FA	57
1\%5				
196				
191	0714		77	18
198	$0 / 0 \mathrm{~B}$		06	FF
149	07101		$0)$	01
200	U70F	$0 / 1 \mathrm{jF}$	0 E	2450
201	W7EL		14	17
20.	U7t 4		C	
203	O/ES		2	
204	0756		77	01
cus	07EA		AE	$34 \quad 30$
206	07EM		CE	6, ba
2U1	07Ef		20	
208	U7EF		11	

 LINE ADDR LABSL HI B? H.J B4 ERNUK SOURCE

LHILE AUOF LATHE HI IP 13 B4 fRKÖN SOUHCE

Hif agsfmaler vargion scu levet 1 heauling instrimpnt ashemiv prugat 1976 pagf 1

[^30]

HiP AGSFMALLR VFKSION SCL LEVEI 1 HEAUING INSIRUMFNT ASSEMLY PKUGRAM 1976 PAGE 20

714	DG90		昩 0477		L．004，R2	HSLT	MS GYyE Of arg．
715	jeato		0517		LOOL，Kl	23	IST ESTIMAYE
116	vanz		0717		LODI，R3	23	TWICE IST INCREMENT
717	ubas	$1 \mathrm{Ha4}$	0 D OR HA	LUPA	Lulda，RO	$\mathrm{COSM}_{\mathrm{S}} \mathrm{Rl}$	cus（ESt．）
718	UBA7		1501		CPSL	C	MUDIFY \＆TEST CTH．
719	0849		53		HRR＊R3		
720	ubab		1815		нСтк．？	LAST	
721	OBAC		E2		COmz	R7	
7c2	veran		19 on			El．ta	GK．If ESt．＜ANGLF
723	0baf		1A 12		8CIn，LT	Egta	Brs．If ESI，＞ANGLE
124	Qusi	nsin！	E4 il	EOL	COMl． HO	1	
725	0883		10 ac 43		bCta，gi	Oult	
726	0ь日6		1 CoC 49		hCTA，EQ	OnE	
727	u8b9		if or 27		gcta，un	ITLS	MS BlTS ARE ENU．$K<1$
728	usac	nhel	7501	Llya	crsi	6	INCR．ESY．
729	UHESE		01		Lous	H_{1}	
130	0taf		d3		ADD2	H_{3}	
731	04CO		Cl		STHZ	R1	
732	0 BCl		186）		BCTH，in	Lupa	CONTINUE LOOPING
733	ObCJ	ntic3	7701	EGTA	PPSL	C	DECR．EST．
734	0BC5		01		Louz	${ }^{1}$	
7.15	ObCh		A 3		Su82	H	
736	08C7		CI		Sriz	H	
717	04Ca		1850		bCTm，un	Lifa	LUOP Back
738	uyca	ntica	07 OA	LAST	LOD L． $\mathrm{H3}$	10	LASt iterations
739	U⿴囗CC	orcc	no bat HA	LUPG	L．ODA， HO	CoSmekl	
740	ubcf		Fc		Cuma	k）	
141	Usuo		1915		BCIR，GT	$E_{1} T$	
742	UBOL		1409		bCin．lit	$\varepsilon \mathrm{GT}$	
743	UH04		15 Ont ${ }^{\text {a }}$		bCia，un	ESL！	test vs uuty I
744	108）7	and ${ }^{\text {a }}$	7501	ELT	cpst	c	
745	us309		4501		allol：RI	1	
740	Utide		1－104		HCim，Un	IGTK	
147	U6tio	（12at	7701	tog	Prest	C	
14.8	0BdF		Ab 41		Sustort	1	
749	OBEI	not 1	5864	ISTR	BUPR，K3	LuPb	LUOP If Rewn
151					EGIN INTEN	Latint，	MSBITS
dbl	ube 3		OD ha lia		LOOA． 40	CoSmplel	
752	Ubet		$t 2$		COMS	K？	
753	U6E 7		141%		BCin．gT	1 tr	
754				4	Takt if cis	（EST．）＜	
7bs	UoEg		${ }^{3}$		STHL	H_{7}	TEmp ST．Cosifst．）
756	08EA		00 6h 1．4		LOUA，RO	$\mathrm{C} \mathrm{SS}_{5}+1$	
157	UnEn		7701		HPSL	C	
788	Uhef		a 3		Suti	H	
769	UEFO		75 O1		$\mathrm{CHSL}^{\text {che }}$	c	
100	06t 2		n）		RHR，RO		
701	U8F3		1501		cubl	6	
102	OHFs		a		AUD 2	R3	
103	vort		f．		Comis	${ }^{6}$	IWTERA．Valif vis and
104			＋E ur－ 1		Exta， LCT	HH11	
165	vetta				HHSL	\checkmark	

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR


```
    - yrare Hy OIGIIS PLis SIGH
000
HOL GPSL,RONC*C
            BCTmeN YANO ON. IF NEG
    * SULVE FUR HFAOING (HCLS FORN)
    LODN,NO
" STMHI MENE O pOS. HY & nX
            BCTM,to nyN
            SOliHO Hig0,
            SlogL K
            JAR,RO
```



```
            UD1,H2 H
            SUBlokE O
            ACIH.lIN FINT
* ENith mitre ff mx=POS. & hy=ntg.
Mrly LODt.ke horys,
            LODL,ke
```


PIP AGSFMHLLER VHRSI IN SCU IEVEL 1 HEAUINC INSTRIMENT ASSEMLY PRUGRAM 1976 DAGF 24

PIP ASSHMLLH URESION SCU LFVEI 1 HEAUING INSTRAMEINT ASGEMLY PRUGRAM 147h PARE

LINE ADOR LADL BI Gi H3 BL fHRUK GONRCE

The transcendental functions used throughout the heading computation algorithm were implemented using a table look up procedure. To generate the respective look up tables in computer memory data was first generated using algol programs. This technıque expedıted modifications to tabular data and provided output data in a convenıent (hexadecimal) format.

Programs that calculated $\cos (\theta)$ and $\operatorname{Cos}^{2}(\theta)$ to eight bit and sixteen bit resolution respectively are included.

REPRODUCIBLITY OF THE ORIGINAL PAGE IS POOR

pagt vUI

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

A	ThETA	$\cos \omega \cos$	binary	H上
(AUDR.)	(1)EG)		OATA	
45	45.00000	. 900000	011111111111111	
48	46.00000	. 482550	0111101110001000	788
47	47.00000	.465122	0111011100010010	771
48	48.00000	. 447736	0111001010011110	729
44	44.49999	. 430413	0110111000101111	6 ¢ 2
30	50.00000	.41.3176	0110100111000101	69 C
51	51.00000	. 396044	0110010101100011	656
52	52.00001	. 379039	0110000100001000	610
51	37.001000	. 362191	0101110010110111	5 C 8
54	54.00000	. 345491	0101100001110010	$\begin{array}{lll}5 & 8 & 7\end{array}$
ל ל	55.00000	. 326990	0101010000111000	543
So	54.70000	- 312697	0101000000001100	500
37	57.00000	. 296672	0100101111110000	4 BF
Ss	SF.00000	. 280814	0100011111500011	47 E
ל*	34.49999	. 265264	010n001111101000	$43 E$
60	00.00001	. 250000	001111111111111	$3 F \%$
01	61.00000	- 335040	0011110000101011	3 C 2
ar	63.00000	. 22040 J	0011100001101100	396
63	63.00000	. 206107	0011010011000011	34
64	64.00000	-192169	0011000100110010	31
65	65.00000	. 178606	0010110110111001	20
66	06.00000	. 165435	0010101001011001	2 A
67	6R.4999H	. 152671	0010011100010101	27
¢8	6R.00000	. 140370	0010001111101100	23
09	04.00000	. 128427	0010000011100200	20
70	10.00000	. 116978	0001110111110010	10
11	11.00000	. 105995	$00 n 1101100100010$	B
12	7. 2.00000	. 095491	0001100001110010	18
13	77.00000	- 08548 l	0001010111100010	15 E
14	77.99498	. 075476	001001101110011	1
15	15.00000	-10669a7	0001000100100110	1126
16	14.00000	. 058526	ounalilol111011	0 ¢ F ${ }^{\text {c }}$
11	17.0000?	. 050603	00nal10011110100	$0 \mathrm{C} F 4$
18	18.00000	.043227	0uno101100010000	0 צ1 10
19	79.00000	. 030408	vunot00101010010	(1) 95
so	84.00400	. 030154	vonnol1110111000	0788
81	81.00000	- 024478	0unpoi1001000011	0043
- ${ }^{3}$	8 B .n0000	. 0193 x	0008010011110101	0455
83	d7.n0n00	. 014852	vonnool111001101	03 C 0
84	84.00002	.010926	0003001011001100	02 Cc
45	84.49498	. 00150	0ungooul11110001	$\begin{array}{llll}0 \\ 0 & 1 & \text { f }\end{array}$
86	86.00000	. 004866	tona000100111110	$\begin{array}{llll}0 \\ 0 & 1 & 3\end{array}$
47	67.00000	. 002739	00nm000010110nl!	0083
${ }_{4}$	8 8.90000	. 001210	0000000001001111	004 F
84	49.30000	. 000305	000000000010011	$\begin{array}{lllll}0 & 0 & 1 & 3\end{array}$
90	94.00000	.0000no	00nhou0000000000	0000

```
PAGE 00!
```


REPRODUCBILITY OF THE ORIGINAL PAGE IS POOR

A	Theta	$\cos ($ Hetas	ainamy	mex
(AUOR.)	(nE(i)		DATA	
45	45.00000	. 707107	1.11.1.1	85
46	46.10000	. 644659	1.11...1	4
47	47.00000	. 581998	1.1.111.	A
48	4R.00000	. 669131	1.1.1.11	A
49	48.99999	.656059	1.1..111	A
bo	50.00000	. 642788	1,1..1.,	A
51	51.00000	. 629370	1.1....1	A
52	52.00001	.615662	1.111.1	90
53	53.00000	. 601815	1..11.1.	9 A
34	54.nonon	. 587785	1..1.11.	96
55	55.00000	. 571576	1..1..1.	92
50	Sh.00000	. 559193	1...1111	8 F
ל7	57.00000	. 544639	1...1.11	88
98	58.00000	. 529919	1....111	y 7
59	58.99999	. 515038	1.....11	83
60	60.00001	. 500000	.111111	
61	61.00000	.484810	.1111..	7 c
62	62.00000	, 669471	.1111...	
63	67.00000	.453991	.111.1..	
64	64.00000	.43837!	.111....	7
65	65.001100	.422614	.11.11..	6 c
66	66.00000	.406737	.11.1...	6
67	$66.99+98$. 190731	.11..1..	6
68	62.00000	. 374667	.1.11111	
54	56.130000	- 3543xt	.1.11.11	b 9
74	70.00000	. 342020	.1.1.111	57
71	71.00000	- 325588	.1.1..11	53
12	77.00000	. 109017	.1..1111	
73	17.1)000n	. 292372	.1.1.1.	
74	77.99494	. 275637	.1...11.	
15	15.00000	. 258319	.1....1.	
78	7\%.00000	. 241972	..111.1	
77	77.00002	. 224951	..111..1	
18	7R.0000n	.207912	..t1.1.1	
19	70.00000	. 190808	..11...	
80	80,00000	. 173646	..1.11..	
¢1	-1.00noo	. 15643	..1.1..	
¢	g, 60000	.139173	..1...11	
B. 1	83.00 non	-1218x9	...1111	
44	84.00002	. 104528	...11.1.	1.
45	84.99998	. 087176	...1.11.	16
46	85.00000	.064757	...1...1	
87	87.00000	.105233611.1	00
84	88.00000	.11349001...	08
89	ya.00ron	. 0174521.	04
40	Yn. 00000	-.000000	-•..	00

BIBLIOGRAPHY

[1-1]	C. C. Kalweit, "The ESRO I attltude measurement system," IEEE Trans. Aerosp. Electron. Syst., vol. AES-7, pp. 132-141, Jan. 1971.
[1-2]	G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill, 1961, sec. 14.10-2.
[1-3]	E. V. Condon and H. Odıshaw, Handbook of Physics, 2nd ed., 1967, ch. 2-3.
[1-4]	S. H. Crandall, Dynamics of Mechanical and Electromechanical Systems. New York: McGraw-Hill, 1968, pp. 42-152.
[1-5]	M. Kayton and W. Fried, Avionics Mavigation Systems. New York: Wiley, 1969.
[I-6]	S. Chapman and J. Bartel, Geomagnetism, vol. II, New York: Oxford Univ. Press, 1940.
[1-7].	Vestine et al., "The geomagnetic field, Its description and analysis," Dept. Terrestrial Magnetısm, Carnegie Inst. Technol., Pittsburgh, PA., publ. 580, ch. 2, 1947.
[1-8]	E. Irving, Paleomagnetism and Its Appiication to Geology and Geophysical Problems. New York: Wlley, 1964, ch. 3.
[1-9]	F. D. Stacey, Physics of the Earth. New York: Wlley, 1969, ch. 5.
[1-10]	D. R. Hartman, D. J. Tskey, and G. L. Friedberg, "A system for digital aeromagnetic interpretation," Geophysics, vol. 36, pp. 891-918, oct. 1971.
[1-11]	M. I. Hill, "Introducing the electrostatic autopilot", Astronaut. Aeronaut., pp. 24-31, Nov. 1972.
[1-12]	R. Markson, "Practical aspects of electrostatic stabilization," Astronaut. Aeronaut., pp. 44-49, Apr. 1974.

BIBLIOGRAPHY (Continued)

[2-1]	R. Pietila and W. R. Dunn, Jr., "A Vector Autopilot System," IEEE Transactions on Aerospace and Electronic Systems," vol. AES-12, No. 3, May, 1976.
[2-2]	G. A. Korn and T. M. Korn, Electronic Analog Computer, McGraw-Hill, 2nd ed., 1956.
[2-3]	E. A. Parrish, Jr., and Y. C. Lee, "A microcomputer preprocessor/postprocessor for analog signals," IEEE Trans. on Industrial Electronics and Control Instrumentatron, vol. IECI-2l, No. 1, Feb. 1974, pp. 3841.
[3-1]	R. Allan, "Components: Microprocessors Galore," IEEE Spectrum, vol. 13, no. 1, Jan. 1976, pp. 50-56.
[3-2]	G. Kaplon, "Industrial Electronics to Boost Productivity," IEEE Spectrum, vol. 13, no. 1, Jan. 1976, pp. 87-90.
[3-3]	H. Falk, "Computers: Poised for Progress", IEEE Spectrum, vol. 13, no. l, Jan. 1976, pp 44-49.
[3-4]	D. Christianson, "Technology '76", IEEE Spectrum, vol. 13, no. 1, Jan. 1976, pp 42-43.
[3-5]	W. Myers, "Key Developments in Computer Technology: A Survey", Computer, IEEE Computer Society, vol 9, no. 11, Nov. 1976, pp 48-77.
[3-6]	E. A. Terrero, "Focus on Microprocessors", EZectronic Design 7, March 29, 1976, pp 58-64.
[3-7]	R. Noyce, "From Relays to MPU's", Computer, IEEE Computer Society, vol. 9, no. 12, Dec. 1976, pp 26-29.
[3-8]	E. R. Garren, "Applying Microprocessors and Microcomputers", Modern Data, Feb. 1975, pp. 54-57.
[3-9]	D. N. Kaye, "How to Pıck a Microprocessor, a Mıni or Anything in Between", Electronic Design 16, Aug. 1975, pp. 26-30.

[3-21]	A. 'R. Ward "LSI Microprocessors and Microcomputers: A Bibliography Contınued", Computer, IEEE Computer Society, vol. 9, no. l, Jan. 1976, pp. 42-53.
[3-22]	Signetics 2650 Microprocessor Manual, Signetics Corporation, Sunnyvale, CA. 1975.
[3-23]	A.V.Oppenheim and R.W.Schafer, Digital Signal Processing, Prentice Hall, N.J., 1975.
[3-24]	C.E.Shannon, "Communlcation in the Presence of Noise", Proc. IRE, vol. 37, No. 1 (Jan. 1949), pp 10-21.
[3-25]	Engineering Product Handbook (A / D and D / A Converters), Datel Systems Incorporated, 2nd Prınting. Canton, Massachusetts.
[3-26]	Analog-Digital Converter Data Sheets, Analog Devices, Inc., Norwood, Massachusetts.
[3-27]	Analog-Digrtal Converter Data Sheets, Burr-Brown Research Corp., Tucson, AZ.
[3-28]	User's Guide to A/D Converters. Electronic Products, Dec. 1976.
[3-29]	T.R.Blakeslee, Digital Design with Standard MSI and LSI, Wiley=Interscience Pub.,John Wıley \& Sons,1975.
[3-30]	J. B. Peatman, The Design of Digital Systems, McGrawHill, 1972.
[3-3I]	H. W. Gschwind, Design of Digital Computers, SpringerVerlag, N.Y., 1967.
[3-32]	The Signetics 2650 Assembler Version SCU Level 1 (Signetics part number 2650 AS1000/1100) operational on the HP2l00 computer at the University of Santa Clara.
[3-33]	C.McGowan "Structured Programming: A Review of Some Practical Concepts",IEEE Computer, Vol 8,No.6,June,1975
[3-34]	Three Axis Ftuxgate Magnetometer Specification, Model 9200C. Develco, Inc., Mountain View, CA.
[3-35]	Analog to Digital Converter Specification, Model ADC-MA12B2B. Datel Systems, Inc., Canton, Mass.

BIBLIOGRAPHY (Continued)
[3-36] Telephone conversations with Dr. Opher of. Develco Inc., during summer of 1976.
[3-37] G. Dahlquist and A.Bjorck, Numerical Methods, Prentice Hall, 1974.
[3-38] C.V.Ramamoorthy, J.R.Goodman and K.H.Kim, "Some Properties of Iterative Square-Rooting Methods Using High speed.
[4-1] Telephone conversation with Develco magnetometer project engineer, Ronald Warkentine, November 3, 1976.
[4-2] P.E. Glse, "A Cylindrical Thin-Film Magnetometer Sensor", PhD Thesis, University of Santa Clara, 1976.
[4-3] Telephone Conversation with Ronald Warkentine (project engineer) at Develco, November 24, 1976.
[4-4] J.A. Cadzow, Discrete Time Systems, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973.
[4-5] A.V.Oppenheim, R.W.Schafer, Digital Signal Processing, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.
[4-6] S.Mason and H.J. Zimmerman, Electronic Circuits, Signals and Systems, John Wiley \& Sons, Inc., New York, 1960.
[4-7] Model MM-8, 8 Channel Analog Multiplexer Data Sheets, Datel Systems, Inc., Cancon, Mass., 1975
[4-8] B.A.Barry, Engineering Measurements, J. Wıley, \& Sons, Inc., N.Y., 1964.
[4-9] M.B.Stout, Basic Electrical Measurements, PrenticeHall, Inc., N.J., 1960.
[4-10] Model SHM-IC-I, Sample and Hold Integrated Circuit, Datel Systems, Inc., Canton, Mass.., 1975.
[4-11] Model ADC-MA12B1B, Analog to Digital Converier Data Sheets, Datel Systems, Inc., Canton, Mass., 1974.
[4-12] G.Dahlquist, Numerical Methods, Prentice-Hall, Inc., Englewood Cliffs, N.J.; 1974.

Section III

Earth Electric Field Research -
\& Field Model of Cumulonimbus Cloud

TABLE OF CONTENTS

Puge
Abstract iv
I. Introduction 1
II. Atmospheric Electricity 2
III. Meteorology 9
IV. Existing Models 14
V. General Near-Field Model 20
VI. Conclusion 31
Appendix A 39
Appendix B 59

I. INTRODUCTION

The fact that the Earth has a surrounding electric field has been known for centuries, but the study of the effect of clouds on this electric field is a fairly new area of study. Ideally the earth's electric field is a perfect vertical, however since clouds are not electrically neutral, their presence distorts the earth's field; nearly neutral clouds causing slight perturbations while heavily charged clouds actually reverse the direction of the resultant field. The most highly charged clouds belong to the cumulonimbus family.

The report evaluates various electrical models of cumulonmbus clouds. The resultant field of each model is compared with actual readings of the earth's electric field in the presence of a cumulonimbus cloud at various heights and distances from the cloud. Using the actual field readings, this report will develop a new electrical model of a cumulonimbus cloud.

This paper also reviews the electrical properties of the atmosphere, particularly of clouds and suggests some possible uses of the knowledge of the field around a cumulonimbus cloud.

II. ATMOSPHERIC ELECTRICITY

Atmospheric electricity is defined by Dolezalek [1] as "the science of everything electric in the atmosphere between the solid and liquid surface of the earth to the lower regions of the ionosphere, including the boundary layers of both."

Like every science, atmospheric electricity has its own sign conventions. Distance is measured positively upward. Current flow to the earth is considered positive. Electric potential is measured relative to earth. The terms "field" and "potential gradient" are in general used to denote the same quantity, i.e. the partial derivative of voltage with respect to height. The units used are the MKSA system.

All lines of force commence on a positive charge and end on a negative charge. The density of lines of force across any area gives a measure of the field. If the line of force terminates on the earth's surface, it must enter vertically. Any change in space charge will immediately effect the lines of force and thus, the electric field.

As space charge appears, a potential gradient is produced immediately at the ground. The air-earth current will change as w_{11} the lines of force. To determine the potential gradient change produced due to the appearance of the space charge, one must know the relaxation time, ε / λ, of the air where ε is the permittivity of the air and λ is the
conductivity. Near the earth's surface the relaxation time generally ranges between 5 to 40 minutes depending to a great extent on the pollution level. The higher the pollution level, the lower the conauctivity and, therefore, the higher the relaxation time. At an altitude of 18 km the relaxation time is about 4 seconds while at 70 km it is on the order of 10^{-8} seconds. At the earth's surface it is 10^{-6} seconds or less. The potential gradient at some time after a change in space charge can be given by the equation [2]

$$
\begin{equation*}
E=E_{1} e^{-t / \tau}+E_{2}\left(1-e^{-t / \tau}\right) \tag{1}
\end{equation*}
$$

where E_{1} is the potential gradient immediately after the change, E_{2} is the potential gradient when the conditions are acsin quasistatic, τ is the relaxation time and E is the potential grad ent in the intervening time.

Ions are relatively rare when compared to the total "mber of molecules in the atmosphere. A cubic meter of clean land air will contain approximately 800 million ions out of 10^{25} molecules. The corductivity of the atmosphere may be written as [1]

$$
\lambda=\Sigma n_{i}^{+} e_{i}^{+} k_{i}^{+}+\Sigma n_{j}^{-} e_{j}^{-} k_{j}^{-}
$$

where n_{i}^{+}is the number of positive ions with a chares of $e_{i}^{+}=-c^{+}$ mobility of k_{1}^{+}, n_{j}^{-}is the number of negative ions $x^{=-h}$ a cherze γ^{4} e_{j}^{-}and a mobility of k_{j}^{-}, and λ is the conductivit the mor \boldsymbol{F}^{\prime},
is computed from the potential gradient E and the velocity of the particle v by

$$
\begin{equation*}
k=v / E \tag{3}
\end{equation*}
$$

or the velocity acquired in, a potential gradient of 1 volt/meter. The mobility is highly dependent on physical properties of the 10 n such as size and shape.

Since the air-earth current is continually bringing positive charges to the earth there must be some restoring component which wlll complete the circuit carrying the positive charges upward again. The most popular theory on the generation and contrnuation of the electrical characteristics of the atmosphere is the condenser theory. [1,3] In this theory the ionosphere is positively charged with respect to the earth. The air-earth current tends to continually discharge this global condenser. However, this process is compensated by thunderstorms which act as the generator restoring positive charge to the ionosphere. Figure 1 shows the schematic of this global circuit. The lower portion of a thunderstorm is negatively charged while the upper portion is positive. The world wide occurrence of thunderstorms also corresponds to the diurnal variation of the earth's electric field.

The study of atmospheric electricity is divided into two quite different divisions, fair weather and disturbed weather. Disturbed weather is defined by Dolezak as "when we have hydrometers in the atmosphere fog, rain, snow - or when we have high winds, in particular in

Figure 1
(from IEEE Spectrum [3])
connection with blown-up dust or snow, or when we have much of the sky covered by substantial clouds." [1] The absence of these phenomena is considered fair weather. Fair weather conditions are predictable and one can assume a quasistatic state to determine its properties, while disturbed weather conditons, can alter rapidly and a quasistatic state cannot be applied.

Fair weather conditions have several characteristic quantities. Voltage increases with height. The potential gradient is positive and essentially vertical. It is constant for the first few meters and shows a progressive decrease with height at approximately 100 meters. The conductivities are also constant for the first few meters, then show a marked increase with height at approximately 100 metors due to an increase with altitude of ionization by cosmic rays and a decrease in pollution. The current density is the same at all levels and is equal to the voltage of the ionosphere with respect to earth divided by the resistance of a $1 \mathrm{~m}^{2}$ column of air from the earth to the ionosphere. Tables 1 and 2 list fair weather parameters as compiled by Dolezelek.

The disturbed weather phenomena is much harder to typify. The potential gradient can have horizontal variations of large magnitude. There are added currents carried by precipitation and lightning. Constant changes in conductivity occur due to fresh charges. It is in this still unsolved phenomena that much of the current work is being performed.

Part of Atmosphere for which the Values are Calculated	Currents, I, in A; and current densitjes, i , in A / m^{2}	Potential Differences, U, in V; field strength E in V / m	Resistances, R, in Ω; Columnar res., R_{C}, in Ωm^{2} Resistivities, p. in $\Omega \mathrm{m}$
Volume element at about sea level, one cubic meter	$i=3 \times 10^{-12}$	$E_{0}=1.2 \times 10^{2}$	$\rho_{0}=4 \times 10^{13}$
Lower column of $1 \mathrm{~m}^{2}$ cross section - sea. level to 2 km	same as above	at upper end: $U_{1}=1.8 \times 10^{5}$	$R_{c 1}=6 \times 10^{16}$
Volume element at about 2 km height, $1 \mathrm{~m}^{3}$	same as above	$E_{2}=6.6 \times 10^{1}$	$\rho_{2}=2.2 \times 10^{13}$
Center column of $1 \mathrm{~m}^{2}$ cross section - 2 to 12 km	same as above	at upper end: $U_{m}=3.15 \times 10^{5}$	$\mathrm{R}_{\mathrm{cm}}=4.5 \times 10^{16}$
Volume element at about 12 km height, $1 \mathrm{~m}^{3}$	same as above	$E_{12}=4.2 \times 10^{0}$	$\rho_{12}=1.3 \times 10^{12}$
Upper column of $1 \mathrm{~m}^{2}$ cross section - 12 to 65 km	same as above	at upper end: $U_{u}=3.5 \times 10^{5}$	$R_{c u}=1.5 \times 10^{16}$
Whote solumn of $1 \mathrm{~m}^{2}$ cross section - 0 to 65 km	same as above	at upper end: $U=3.5 \times 10^{5}$	$R_{C}=1.2 \times 10^{17}$
Total spherical capacitor area: $5 \times 10^{14} \mathrm{~m}^{2}$	$I=1.5 \times 10^{3}$	$U=3.5 \times 10^{5}$	$\mathrm{R}=2.4 \times 10^{2}$

Table 1

Part of Atmosphere for which the Values are Calculated

Volume element at about sea level, one cubic meter

Lower column of $1 \mathrm{~m}^{2}$ cross section - sea level to 2 km

Volume element at about 2 km height, $1 \mathrm{~m}^{3}$

Center column of $1 \mathrm{~m}^{2}$ cross section - 2
to 12 km

Volume element at about 12 km height, ! m^{3}

Upper column of $1 \mathrm{~m}^{2}$ cross section - 12 to 65 km

Whole column of $1 \mathrm{~m}^{2}$ cross section - 0
to 65 km

Total spher-
ical capacitor area: $5 \times 1014 \mathrm{~m}^{2}$

Conductances, G, Capacitances, C, in Ω^{-1}; Col. in F; Col. conductances capacitances G_{c}, in $\Omega^{-1} m^{-2} ; \quad C_{c}$, in Fm^{-2}; total cond. Capacitovities Λ, in $\Omega^{-1} \mathrm{~m}^{-1}$
ε, in Fnl^{-1}

$$
\varepsilon_{0}=8.9 \times 10^{-12}
$$

$$
\Lambda_{0}=2.5 \times 10^{-14}
$$

$$
G_{C l}=1.7 \times 10^{-17}
$$

$$
C_{c l}=4.4 \times 10^{-15}
$$

$$
\tau_{c]}=2.6 \times 10^{2}
$$

$$
\Lambda_{2}=4.5 \times 10^{-14}
$$

$$
\varepsilon_{2}=8.9 \times 10^{-12}
$$

$$
\tau_{2}=2 \times 10^{2}
$$

$$
G_{\mathrm{cm}}=5 \times 10^{-17}
$$

$$
c_{\mathrm{cm}}=8.8 \times 10^{-16}
$$

$$
\tau_{\mathrm{cm}}=1.8 \times 10^{1}
$$

$$
\Lambda_{12}=4.0 \times 10^{-13}
$$

$$
\varepsilon_{12}=8.9 \times 10^{-12}
$$

$$
\tau_{12}=1.2 \times 10^{1}
$$

$$
G_{c u}=2.5 \times 10^{-17}
$$

$$
c_{c u}=1.67 \times 10^{-76}
$$

$$
\tau_{c u}=6.7 \times 10^{0}
$$

$$
G_{C}=8.3 \times 10^{-18}
$$

$$
C_{c}=1.36 \times 10^{-16}
$$

$$
\tau_{c}=1.64 \times 10^{1}
$$

Table 2

III. METEOROLOGY

The nomenclature for the various sections of the atmosphere are not agreed upon by all who study the atmosphere, however the divisions and their names as used by Dobson [4] are shown in Figure 2.

The lowest cloud in the troposphere is known as fog. This occurs when the ground is within a few degrees of the dew point. Fog can be produced three ways. Radiation fog is created on clear mights if the earth cools greatly since without a cloud cover the heat radiates into the upper atmosphere. A slight breeze will then bring the earth to the dew point. Advection fog is caused by warm moist air blowing over a colder surface and becoming chilled to its dew point. Frontal fog may be produced when cold air mixes with warm moist air. Other cloud types are summarized in Table 3.

The cloud names come from four basic words: cirrus, cumulus, stratus and nimbus. Cirrus clouds are composed of ice crystals and are delicate and curly in appearance. Sun shines through them without a shadow. Cumulus clouds are lumpy or billowing forms. The sheetlike cloud layers are stratus clouds. Nimbus clouds are stratus or cumulus that develop a "head" or thickness. "Alto" is also used as a prefix to indicate clouds a.t intermedrate heights.

When two air masses of differing temperatures, pressures and relative humidities mix, a front is formed. The colder air mass sits

Figure 2

High Clouds

Cirrus
Cirro-cumulus
Cirro-stratus
Alto-cumulus
Alto-stratus

Strato-cumulus
Stratus
Nimbo-stratus

Clouds with Vertical Development
Cumulus

Cumulo-nimbus

Middle Clouds

Low Clouds
$30,000 \mathrm{ft}$. (10,000 to $50,000 \mathrm{ft}$.
$20,000 \mathrm{ft}$. (8,000 to $36,000 \mathrm{ft}$.)
$35,000 \mathrm{ft}$. (15,000 to $45,000 \mathrm{ft}$.)
$12,000 \mathrm{ft}$. (3,000 to $27,000 \mathrm{ft}$.)
$15,000 \mathrm{ft}$. (5,000 to $35,000 \mathrm{ft}$.
$5,000 \mathrm{ft} .(1,000$ to $15,000 \mathrm{ft}$.
$2,000 \mathrm{ft} .(50$ to $6,000 \mathrm{ft}$.
. $\quad 2,500 \mathrm{ft} .(200$ to $18,000 \mathrm{ft}$.

$$
\begin{aligned}
& \text { 2,500 ft. (} 1,000 \text { to } 10,000 \mathrm{ft} .) \\
& \text { Tops may extend to } 20,000 \mathrm{ft} . \\
& 2,500 \mathrm{ft} \text {. (} 500 \text { to } 10,000 \mathrm{ft} .) \\
& \text { Tops may extend to over } 35,000 \mathrm{ft} \text {. }
\end{aligned}
$$

Table 3

(from Aerology for Pilots [5])
wedgelike under the warmer air mass. The air that is displacing another air mass gives its name to the front; thus, if cold air is displacing warm air it is known as a cold front. Likewise, in a warm front warm air displaces the colder air. An occluded front exists when two colder air masses trap a third air mass between them forcing the third air mass aloft until it dissipates. Figure 3 shows cross sections of the warm and cold types of fronts and the clouds assocrated with them.

Figure 3
(from Introduction to Aviation [6])

IV. EXISTING MODELS

The cumulonimbus cloud differs from other types of clouds in its rate of accumulation of charge. A collection of charges, such as á cloud, in a conductive medium will attract an equal but oppositely charged screening layer and, therefore, cause no appreciable change in the electric field. However, since the rate of increase of charge in a cumulonimbus cloud within the time constant of the surroundingatmosphere approximately doubles the amount of charge [7], an effective screening layer can not be generated and, therefore, the cloud effects the neighboring electric field. Models of cumulonimbus clouds can eliminate the screening layer and simply use the net increase in charge as the only charge present.

Experimentors have been attempting for years to gather data on the electric field in the vicinity of a thundercloud, i.e. a cumulonimbus cloud, in order to generate a valid electrical model for the cloud. The measurements were originally made at ground level but more recently include airborne measurements in, around and above thunderclouds.

In 1948 0.H. Gish and G.R. Wait [8], in an effort to show that thunderclouds could supply the negative current flow necessary to maintain the general electrification of the earth, gathered measurements of the electric field strength above thunderstorms. Their findings were as follows: Of 87 traverses across thunderstorms, in 22 data was
incomplete or unsatisfactory, 31 profiles corresponded well to a bipolar model while the remaining 34 were of a more complicated nature where a bipolar model was only a good first approximation, additronal dipoles would be required for an accurate model.

A model was proposed using the data gathered on a flight an an altitude of 43,000 feet on October 28,1948 . This data was typical of a storm when 11ttle lightning activity was present. The data and associated model are shown in Figure 4. A complete mapping of the electric field in an area 21 km in horizontal distance from the cloud's charge concentrations and to a height of 16 km 1s shown in Figure 5.

Israel [9] lists two other proposed electrical models for a thundercloud, one from Simpson and Robinson and the other from D.J. Malan. The model proposed by Simpson and Robinson is often referred to as the "Classical Model." It consists of a positive charge of 24 coulombs at a height of 6 km , a charge of -20 coulombs at 3 km and a charge of 4 coulombs at 1.5 km . The Malan model has a charge of 40 coulombs at approximately $10 \mathrm{~km},-40$ coulombs at about 5 km and 10 coulombs at about 2 km . The electric field map for the Simpson and Robinson model is shown in Figure 6 and for the Malan model in Figure 7.

The program used to generate the data used in Figures 5, 6 and 7 and the data listings from the program are contained in Appendix A. The charge system for each of the three models used as inputs to the program are shown in Figure 10, utilizing the method of electrical images as described in the next section.

POTENTIAL GRADIENT (VERTICAL COMPONENT) OVER THUNDERSTORM, OCTOBER 28, 1948, STORM NO. 1, TRAVERSE NO. 8, (A) OBSERVED, (B) CALCULATED FOR MODEL SHOWN

Figure 4
(from Gish and Wait [8])

Scale: 1 In. $=4000 \mathrm{v} / \mathrm{m}$

$A=39$ coulombs
$B=-39$ coulombs

ELECTRIC FIELD MAP FOR
GISH AND WAIT MODEL.

Figure 5

Scale: $1 \mathrm{in} .=4000 \mathrm{v} / \mathrm{m}$

$A=24$ coulombs
$B=-20$ coulombs
$C=4$ coulombs

ELECTRIC FIEL.D MAP FOR

SIMPSON AND ROBINSON MODEL
Figure 6

ELECTRIC FIELD MAP FOR
MALAN MODEL
Figure 7
y

V. GENERAL NEAR-FIELD MODEL

The field at any point in space due to a single point charge Q can be computed from Guass's law,

$$
\begin{equation*}
\S \vec{D} \cdot d \vec{s}=\delta_{v} \zeta d V \tag{4}
\end{equation*}
$$

where \vec{D} is the electric flúx density, V is the volume enclosed by the surface S and ζ is the charge density within V. If one considers S to be a spherical surface with its center at Q (Q being the only charge within S), the equation becomes

$$
\begin{equation*}
\vec{D}=\left(Q / 4 \pi r^{2}\right) \vec{r} \tag{5}
\end{equation*}
$$

Since $\vec{D}=\varepsilon \vec{E}$ where ε is the permittivyty of the substance then

$$
\begin{equation*}
\vec{E}=\left(Q / 4 \pi r^{2} \varepsilon\right) \vec{r} \tag{6}
\end{equation*}
$$

The direction of \vec{E} is radially outward if Q is positive and radially inward if Q is negative. See Figure 8 where Q is a positive charge. The magnitude of E is inversely proportional to the square of the distance to Q. If the permittivity is constant over all space concerned, the field created at a point P due to more than a single point charge may be computed by the vector addition

$$
\begin{equation*}
\vec{E}=\frac{1}{4 \pi \varepsilon}\left(\frac{Q_{1}}{r_{1 P}} 2 \vec{r}_{1 P}+\frac{Q_{2}}{r_{2 P}} 2 \vec{r}_{2 P}+\ldots+\frac{Q_{N}}{r_{N P}} 2 \vec{r}_{N P}\right) \tag{7}
\end{equation*}
$$

where Q_{J} is the charge located at a point J and $r_{J P}$ is the distance between Q_{J} and P. The permittivity used for this problem is that of free space, i.e. 8.854×10^{-12} farads per meter.

Figure 8

The earth, here considered flat over the area under consideration is an equipotential. To produce an equipotential surface one can use the method of electrical images, where an imaginary distribution of charges inside a conducting body of an electrostatic system is determined which would produce exactiy the same field outside the body as that produced by the induced free charges over its surface. For the system of a conducting plane, one can look at a simplified problem of a single positive charge located above the plane. See Figure 9. As shown in the figure, an equal but oppositely charged point is placed an equal distance below the plane as the positive charge is above the plane. Now if the plane is removed, the field above the plane would remain unchanged. Therefore, the field produced by all the charges induced on the conducting plane may be reduced to the field produced by the single point, $-Q$. This method can be expanded to include an oppositely charged point below the plane for each charged point above the plane in a more complex system. The systems suggested as thundercloud electrical models by Simpson and Robinson, Gish and wait, and Malan are shown in Figure 10 using the method of electrical images.

Each of these models was derived using the data collected by the particular experimentor under a particular set of conditions. The models fit the individual data, yet they vary considerably in the overall field maps as shown in Figures 5, 6 and 7. For example,

Figure 9

SIMPSON AND ROBINSON MODEL

GISH AND WATT MODEL

MALAN MODEL

Figure 10
at 500 meters horizontally from the charge centers and at gound level, the Simpson and Robinson model yields a field with a magnitude of 938 volt/meter, the Gish and Wait model yields a magnitude of 26122 volts/meter, while Malan's model has a magnitude of 19991 volts/meter at that location. If a model could be generated to best fit a combination of various field readings taken at different heights and different times under a variety of conditions, the result would be a more universal model of a thundercloud.

The model developed in this paper is found by starting with the charge center values and locations determined by Simpson and Robinson, Gish and Wait, and Małan. The field strength is calculated for selected locations using one model at a time and compared to actual values measured by various experimentors. The measured values used for the comparison and the source of each value are shown in Table 4. The readings from Wormell [10] are average potential gradients taken over all directions from the charge centers at ground level immediately before a lightning discharge.

The calculated value of the field using Equation 7 at location 1 , EFLD(I), is subtracted from the measured value, $E F(I)$, and the percentage of variation computed as

$$
\begin{equation*}
\frac{E F(I)-E F L D(I)}{E F(I)} 100 \tag{8}
\end{equation*}
$$

DISTANCE FROM

CHARGE CENTERS (METERS)

MEASURED
FIELD STRENGTH* (VOLTS/M)

SOURCE

1	2500	- 1310	Wormell [10]
2	5000	- 1160	"
3	7500	- 760	"
4	10000	- 460	"
5	12500	- 260	"
6	15000	- 135	"
7	17500	- 60	"
8	20000	0	"
9	13100	33000	\& Wait [8]

Note: 1 through 8 are horizontal distance with measurements made at ground level. 9 is a vertical height directly above the charge centers.
*due to cloud only.

Table 4

The resulting value is then squared. The square of the percentage of variation is computed for each location in Table 4 and added together to produce a quantity ESQRT. The amount of charge at one of the charge centers is now varied in increments of .01 coulombs until a mini.7um is found for ESQRT. The process of calculating the fields and computing ESQRT is begun again with this new charge quantity replacing the old value for the selected charge center and a different charge center quantity is varied until a new minmum is found for ESQRT. The program continues to vary one charge center quantity at a time, each trme finding the minimum ESQRT, unti. 1 ESQRT is less than or equal to 100 or until ESQRT reaches a local minimum. The program listing and resulting output from the program are contained in Appendix B.

The resulting field maps of the Simpson and Robinson; Gish and Wart, and Malan models, after being modified by the program shown in Appendix B, are shown in Figures 11,12 and 13 respectively. The progressive evaluation of the charge center values are shown in the output listings in Appendix B. The charge center values used for the modified Simpson and Robinson model are 4.6 coulombs at 6 km , -11.3 coulombs at 3 km and 5.97 coulombs at 1.5 km . ESQRT had a value of 5.22×10^{2} at these values. The charge centers for the modified Gish and Wait model are 1.52 coulombs at 6096 meters and -2.64 coulombs at 3048 meters; ESQRT equals 6.24×10^{2}. The charge centers for the modified Malan model are 20.1 coulombs, -36.8 coulombs and 12.7 coulombs at $10 \mathrm{~km}, 5 \mathrm{~km}$ and 2 km respectively; ESQRT equals 7.99×10^{2} at this point.

1 In. $=400 \mathrm{v} / \mathrm{m}$

$A=4.6$ coulombs
$B=-11.3$ coulombs
$C=5.97$ coulombs

ELECTRIC FIELD MAP FOR
MODIFIED SIMPSON AMO ROBINSON MODEL
Figure 11

$$
\mathrm{In} .=400 \mathrm{v} / \mathrm{m}
$$

HORIZONTAL DISTANCE
(km)
$A=1.52$ coulombs $B=-2.64$ coulombs

ELECTRIC FIELD MAP FOR
MODIFIED GISH AND WAIT MODEL
Figure 12

- $1 \mathrm{In} .=400 \mathrm{v} / \mathrm{m}$

$A=20.1$ coulombs
$B=-36.8$ coulombs
$C=12.7$ coulombs
ELECTRIC FIELD MAP FOR
MODIFICD MALAN MODEL
Figure 13

VI. CONCLUSION

In order to select the model which most, closely approximates a typical thundercloud, one must use more than the values of ESQRT which 'eere generated. The modified models come closer to fitting the electric field values measured at ground level by Wormell and the values Gish and Wait measured to 40,000 feet than the original models as shown in Figures 14 and 15 , yet the final model should most nearly conform to all electric field measurements made in the vicinity of a thundercloud without lightning present.
R. Markson [11] states that thunderclouds, not considering lightning flashes, can effect the electric field whthin 50 km or more. In order to evaluate the ability of the modified models to meet this requirement, one can note the effect the various models have on the electric field at the farthest distance evaluated, i.e. 27 km . Using. an expression for the approximate electric field given by Dolezalek [1], h being the height in km ,

$$
\begin{equation*}
E=81.8 \exp (-4.52 h)+38.6 \exp (-.375 h)+10.27 \exp (-.121 h) \tag{9}
\end{equation*}
$$

the field values at $4 \mathrm{~km}, 10 \mathrm{~km}$ and 16 km are $4.59 \mathrm{v} / \mathrm{m}, .640 \mathrm{v} / \mathrm{m}$ and $.119 \mathrm{v} / \mathrm{m}$ respectively. The values at 21 km horizontal distance from the charge centers at these heights are $16.53 \mathrm{v} / \mathrm{m}$ at 73° from the vertical, . $6.77 \mathrm{v} / \mathrm{mat}-12^{\circ}$ from vertical and $4.24 \mathrm{v} / \mathrm{mat}-47^{\circ}$ from vertical for the modified Simpson and Robinson model. The modified Gish and Wart model yields $15.8 \mathrm{v} / \mathrm{m}$ at $-0.1^{\circ}, 5.18 \mathrm{v} / \mathrm{m}$ at -10° and $2.53 \mathrm{v} / \mathrm{m}$ at -36° and

Figure 15
$34.42 \mathrm{v} / \mathrm{m}$ at $20^{\circ}, 45.2 \mathrm{v} / \mathrm{m}$ at -12° and $51.15 \mathrm{v} / \mathrm{m}$ at -56° for the modified Malan model. Since these values are for 21 km and the field is to be effected within 50 km or more, the largest resultant field values at the greatest angles must be chosen as being the closest fit. Here the modified Malan model is the best fit, followed by the modified Simpson and Robinson model, then the modified Gish and Wait mode 1.
D.R. Lane-Smith [12] states that "tropical thunderstorms have been observed to produce negative electric fields of $3000 \mathrm{v} / \mathrm{m}$ or higher." All three modified models quallfy under this criterion, Simpson and Robinson having a negative field as high as $47,000 \mathrm{v} / \mathrm{m}$ at a distance and height of 1 km and 4 km , Gish and Wait producing $13,000 \mathrm{v} / \mathrm{m}$ at 1 km and 4 km height, and Malan producing $179,000 \mathrm{v} / \mathrm{m}$ at 1 km and 10 km height. C.G. Stergis, G.C. Kein and T. Kangas [13] in balloon flights over thunderclouds made the measurements shown in Figures 16 and 17 The electric field measurements at a horizontal distance of 1 km and a height of 16 km for the three modified models are $85.17 \mathrm{v} / \mathrm{mi}$ for Simpson and Robinson, $33.05 \mathrm{v} / \mathrm{m}$ for Gish and Wait and $2886.61 \mathrm{v} / \mathrm{m}$ for Malan. Because the value of the field strength will decrease as the height increases to that of the readings in Figures 16 and 17, i.e. above 21 km , the modified Malan model is the only one which could possibly satisfy these readings.

Flight at an altitude of 70,000 Feet on 21 July 1956

Flight at an altitude of 71,000 Feet on 30 July 1956

ELECTRIC FIELD MEASUREMENTS ABOVE THUNDERCLOUDS

Figure 16
(from Stergis, Rein and Kangas [13])

Flight at an altitude of 76,000 Feet on 3 August 1956

Flight at an altitude of 76,000 Feet on 20 July 1956

ELECTRIC FIELD MEASUREMENTS ABOVE THUNDERCLOUDS

Figure 17
(from Stergis, Rein and Kangas [13])

| Height above the thundercloud
 Where E was measured,
 $\mathrm{E}_{\text {max }}, \mathrm{v} / \mathrm{m}$ | $0-100$ | $100-300$ | $300-500$ | $500-1000$ | 1,000 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of measurements | | | | | |

Similarly, Ya. M. Shvarts [14] gives the mean values of the maximum vertical component of the electric field at various distances above thunderclouds as shown in Table 5. In the modified Simpson and Robinson model the highest charge center is at 6 km , the top of the cloud could therefore be considered to be somewhat below 8 km . The vertical component of the electric field reading at 1 km horizontal distance and the 8 km height is $4821 \mathrm{v} / \mathrm{m}$ and, therefore, within the range of values in Table 5. The modified Gish and Wait model has its highest charge center also near 6 km . In this case the vertical $=$ component of the electric field reading at 7 km and 8 km height is $1822 \mathrm{v} / \mathrm{m}$. This is somewhat lower than the values in Table 5 . The uppermost charge center of the modified Malan model is at lokm. The top of the cloud could be considered to be near 13 km . Therefore, using the reading at 1 km and 14 km height, the vertical component is $7239 \mathrm{v} / \mathrm{m}$. This is slightly high yet still within the range shown by Shvarts.

When considering the electrical specifications for a typical thunderstorm as described in the last two sections, the modified Malan model appears to be the best fit. The new electrical model of a cumulonimbus cloud has a charge of 20.1 coulombs at lukm, -36.8 coulombs at 5 km and 12.7 coulombs at 2 km .

The knowledge of the electric field surrounding a typical thundercloud. ${ }^{-}$ has some practical uses and some limitations. Low cost avionics such as the field measuring device as described by M.L. Hill [14] and later by R. Markson [11] would be able to detect a fleld mapping of a thundercloud and therefore warn the pilot to avoid such an area. Yet, this model is only of a typical thundercloud; any specific thundercloud could exhibit quite different electric field characteristics, particularly during lightning, which has not been accounted for in this model. A model which would include lightning would demand an exceedingly complex system of which this model is only a beginning.

APPENDIX A

The following program, written for the HP2100 computer, is used to produce a field map for a sýstem of three charge centers of values $Q(1), Q(2)$ and $Q(3)$ at the corresponding heights of $Y(1), Y(2)$ and $Y(3)$. The ou'tput lists the X and Y locations, X field value, Y field value, total field and the angle in radians of the total field at the location (X, Y). X is incremented by 2000 m from 1000 m to $21000 \mathrm{~m} ; \mathrm{Y}$ is incremented by 2000 m from ground leve 1 to 16000 m .

ORIGINAL PAGE IS POOR

```
        PROGRAM EMAP
    REAL NX,NY,KNY
    DIMENSION Y(6),Q(6)
20 READ (5,1) Y(1),Y(2),Y(3),Q(1),Q(2),Q(3)
    1 FORMAT (6F10.2)
    IF (Y(1)) 22,22,21.
2] Y(4)=-Y(3)
    Y(5)=-Y(2)
    Y(6)=-Y(1)
    Q(4)=-Q(3)
    Q(5)=-Q(2)
    Q(6)=-Q(1)
    READ (5,4) AT,A2,A3,A4,A5,A6,A7
4 FORMAT (7A4)
    INITE (6,5) AT,A2,A3,A4,A5,A6,A7
5 FORMAT (1H1,45X,7A4,//,3X,"CHARGE C[NTER 1",5X,"CHARGE CENTER 2",5
    1X,"CHARGE CENTER 3",/,2X,"HEIGHT",3X,"COULOMBS",3X,"HEIGHT",3X,"CO
    2ULOMBS",3X,"HEIGHT",3X,"COULOMBS")
    WRITE (6,2) Y(1),Q(1),Y(2),Q(2),Y(3),Q(3)
2 FORMAT (IH,6F10.2)
    WRITE (6,6)
6 FORMAT (//, 3X,"X",5X,"Y", 4X,"X FIELD", 3X,"Y FIELD",4X,"TOTAL",5X,"
    ITHETA")
    CONST = 4.*3.1416*8.854* (10.** (-12))
    DO 10 NNY=0,16,2
    NY=NNY*1000.
    DO 10 NNX=10,2.10,20
    NX=NNX*100.
    EXSUM=0.
    EYSUM=0.
    00 11 N=1,6,1
    EXSUM=EXSUM +Q(N)*NX/(CONST* (NX* 2 + (NY-Y (N) - (NY-Y (N)))**1.5)
11 EYSUM=EYSUM+Q(N)x (NY-Y(N))/(CONST* (NX+*2+ (NY-Y (N)) (NY-Y (N)))**1.5
    1)
    KNY=NY/1000.
    EYSUM=EYSUM-81.8*EXP(-4.52*KNY)-38.*EXP(-.375*KNY)-10.27*EXP(- 121
7*KNY)
    IF (EXSUM) 15,13,12
12 THETA=ATAN (EYSUM/EXSUM)
16 ETOTL=SQRT (EXSUM+EXSUM+EYSUM+EYSUM)
14 WRITE (6,3) NX,NY, EXSUM, EYSUM, ETOTL, THETA
    3 FORMAT (216,3F10.2,F10.4)
10 CONTINUE
    GO TO 20
15 PI=3.1416
    ANGLE=SIGN(PI, EYSUM)
    THETA=ANGLETATAN(EYSUM/EXSUM)
    GO TO 16
13 ANGLE=3.1416/2.
    THETA=SIGN(ANGLE, EYSUM)
    ETOTL=EYSUM
    gO TO 14
22 END
```

SIMPSON AND ROBINSON MODEL

$\begin{gathered} \text { CHARGE } \\ \text { HEIGHT } \\ 6000.00 \end{gathered}$	$\begin{aligned} & \text { CENTER } 1 \\ & \text { COULOMBS } \\ & 24.00 \end{aligned}$	$\begin{aligned} & \text { CHARGE } \\ & \text { HEIGHT } \\ & 3000.00 \end{aligned}$	CENTER 2 COULOMBS -20.00	$\begin{aligned} & \text { CHARGE CE } \\ & \text { HEIGHT } \\ & 1500.00 \end{aligned}$	CENTER 3 COUIOMBS 4.00
X	Y	X FIELD	Y FIELD	TOTAL	THETA
1000	0	. 00	4066.83	4066.83	- 1.5708
3000	0	. 00	2559.72	2559.72	1.5708
5000	0	. 00	-887. 20	-881.20	-1.5708
7000	0	. 00	-1285.40	-1285.40	-1 5708
9000	0	. 00	-1054.19	-1054.19	-1.5708
11000	0	. 00	-797.06	-797.06	-1.5i08
13000	0	. 00	-605.92	-605.92	$2-1.5708$
15000	0	. 00	-474.12	-474.12	$2-1.5708$
17000	0	. 00	-383.90	-383.90	-1.5708
19000	0	. 00	-321.34	-327.34	$4-1.5708$
21000	0	. 00	-277.11	-277.17	$1-1.5708$
1000	2000.	-34552.17	64956.74	73574.67	$7 \quad 2.0597$
3000	2000	-7460.80	-123.11	7451.82	-3.1251
5000	2000	-787.46	-1881.66	2039.79	- -1.9671
7000	2000	245.10	-1399.23	1420.54	-1.3974
9000	2000	306.39	-957.06	1014.43	$3-1.2640$
11000	2000	229.31	-675.36	713.22	-1.2435
13000	2000	157.24	-483.80	508.71	$1-1.2566$
15000	2000	106.70	-356.71	372.33	-1.2801
17000	2000	73.30	-270.68	280.43	-1.3063
19000	2000	51.36	-211.07	217.23	-1.3321
21000	2000	36.75	-168.81	172.76	-1 3564
1000	4000	-42327.79	-97247.95	106060.39	-1.9813
3000	4000	-1222.37	-13244.89	13301.17	$7-1.6628$
5000	4000	1358.17	-3666.89	3910.34	-1.2161
7000	4000	1077.23	-1591.73	1927.99	--. 9758
9000	4000	714.07	-902.53	1150.84	$4-.9015$
11000	4000	463.20	-589.46	749.68	--.9048
13000	4000	303.79	-415.05	514.35	- -. 9390
15000	4000	203.43	-305.87	367.34	$4-.9839$
17000	4000	139.51	-232.83	271.43	- 7.0310
19000	4000	97.98	-181.91	206.62	- -1.0767
21000	4000	70.38	-145.35	161.49	-1.1199
1000	6000	21042344	-15336.63	210981.59	$9-.0728$
3000	6000	17672.71	-6032. 24	18673.86	- -. 3289
5000	6000	4772.50	-2261.52	5281.21	$1-4425$
7000	6000	2042.89	-1072.73	2307.41	$1-.4835$

X	Y	X FIELD	Y FIELD	TOTAL	THETA
9000	6000	1093.99	-631.81	1263.32	-. 5237
11000	6000	655.36	-427.21	782.31	-. 5777
13000	6000	418.42	-311.83	521.84	-. 6405
15000	6000	27.8 .75	-237.61	366.28	-. 7059
17000	6000	191.85	-186.06	267.25	-. 7701
19000	6000	135.65	-148.64	207.24	-. 8310
21000	6000	98.18	-120.74	155.62	-. 8881
1000	8000	18077.88	32606.24	37282.39	1.0646
3000	8000	11414.12	5261.37	12568.38	. 4319
5000	8000	4725.81	563.86	4759.33	. 1188°
7000	8000	2246.16	-134.77	2250.20	-. 0599
9000	8000	1229.38	-226.77	1250.12	-. 1824
11000	8000	. 742.58	-215.60	773.25	-. 2826
13000	8000	478.86	-187.20	514.15	-. 3727
15000	8000	323.02	-158.48	359.85	-. 4564
17000	8000	225.34	-133.35	267.84	-. 5343
19000	8000	161.45	-112.08	196.54	-. 6068
21000	8000	118.28	-94.50	151.40	-. 6741
1000	10000	2631.71	9182.00	9551.70	1.2917
3000	10000	4116.18	4404.92	6028.78	. 8193
5000	10000	2896.25	1547.05	3283.54	. 4906
7000	10000	1777.12	483.03	1841.60	. 2654
9000	10000	1102.76	111.90	1108.42	. 1011
11000	10000	712.94	-20.71	713.24	-. 0290
13000	10000	479.75	-67.37	484.45	-. 1395
15000	10000	333.74	-80.73	343.37	-. 2373
17000	10000	238.55	-80.62	251.80	-. 3259
19000	10000	174.38	-75.18	189.90	-. 4071
21000	10000	129.96	-67.94	- 146.64	-. 4817
1000	12000	748.58	3825.96	3898.50	1.3776
3000	12000	1598.30	2610.45	3060.89	1.0214
5000	12000	1556.23	1395.26	2090.12	. 7309
7000	12000	1199.36	662.58	1370.21	. 5047
9000	12000	860.01	291.66	908.12	. 3270
11000	12000	609.46	112.35	619.73	. 1823
13000	12000	435.98	26.07	436.76	. 0597
15000	12000	316.79	-15.06	317.14	-. 0475
17000	12000	234.00	-33.81	236.43	-. 1435
19000	12000	175.57	-41.23	18035	-. 2307
21000	12000	133.65	-42.89	140.36	-. 3106
1000	14000	296.39	1984.18	2006.20	1.4225
3000	14000	723.55	1573.04	1731.51	1.1396
5000	14000	845.55	1044.32	1343.71	. 8902
7000	14000	767.55	629.30	986.87	. 6797
9000	14000	623.99	344.12	712.58	. 5040
11000	14000	484.45	179.98	516.81	. 3557

X	Y	X FIELD	Y FIELD	TOTAL	THETA
13000	14000	370.29	85.95	380.14	. 2281
15000	14000	282.64	32.89	284.55	. 1159
17000	14000	216.82	3.36	216.84	. 0155
19000	14000	167.62	-12.68	168.10	-. 0755
21000	14000	130.74	-20.94	132.41	-. 1588
1000	16000	142.35	1173.79	1182.39	1.4501
3000	16000	372.18	1004.45	1071.18	1.2160
5000	16000	483.71	754.30	896.07	1.0006
7000	16000	490.83	515.07	711.48	. 8095
9000	16000	440.14	329.57	549.85	. 6427
11000	16000	370.05	200.88	421.06	. 4973
13000	16000	301.17	116.66	322.98	. 3696
15000	16000	241.51	63.21	249.64	. 2560
17000	16000	192.67	29.86	194.97	. 1537
19000	1.6000	153.74	9.36	154.03	. 0608
21000	16000	123.08	-3.00	123.12	-. 0244

GISH AND WAIT MODEL

$\begin{aligned} & \text { CHARGE } \\ & \text { HE IGHT } \\ & 6096.00 \end{aligned}$	$\begin{gathered} \text { CENTER 1 } \\ \text { COULOMBS } \\ 39.00 \end{gathered}$	CHARüE HEIGHT	$\begin{gathered} \text { CENTER } 2 \\ \text { COULOMBS } \\ -39.00 \end{gathered}$	$\begin{gathered} \text { CHARGE } \\ \text { HEIGHT } \\ .00 \end{gathered}$	CENTER 3 COULOHBS .00
		3048.00			
X	Y	X FIELD	Y FIELD	TOTAL	THETA:
1000	0	-. 00	46473.19	46473.19	1.5708
3000	0	. 00	13560.42	13560.42	1.5708
5000	0	-. 00	1791.56	1791.56	1.5708
7000	0	. 00	-672.18	-672.18	-1.5708
9000	0	. 00	-966.69	-966.69	-1.5708
11000	0	. 00	-841.81	-841.81	-1.5708
13000	0	. 00	-676.21	-676.21	-1.5708
15000	0	. 00	-541.02	-541.02	-1.5078
17000	0	. 00	-440.81	-440.81	-1.5708
19000	0	-. 00	-368.09	368.09	-1.5708
21000	0	. 00	-315.17	-315.17	-1.5708
1000	2000	-108718.89	109432.34	154257.06	2.3529
3000	2000	-21174.68	4780.39	21707.59	2.9196
5000	2000	-3802.59	-948.36	3919.07	-2.8972
7000	2000	-504.58	-1243.51	1341.98	-1.9563
9000	2000	114.77	-1006.48	1013.00	-1 4573
11000	2000	187.85	-757.27	780.22	-1. 3276
13000	2000	157.06	-565.07	586.50	-1. 2997
15000	2000	116.66	-426.54	442.21	-1.3038
17000	2000	84.33	-328.00	338.67	-1. 3191
19000	2000	67.00	-257.49	264.62	-1.3382
21000	2000	44.61	-206.39	211.15	-1.3579
1000	4000	-104554.09	-181997.62	209892.09	-2.0922
3000	4000	-10832.73	-23238.61	25639.44	-2.0070
5000	4000	-803.75	-5802.10	5857.43	-1.7084
7000	4000	509.48	-2232.55	2289.94	-1.3464
9000	4000	578.85	-1172.51	1307.61	-1.1122
11000	4000	452.19	-741.18	86824	-1.0230
13000	4000	325.58	-516 84	610.84	-1.0087
15000	4000	230.37	-380.52	444.82	-1.0264
17000	4000	163.69	-290.07	333.07	-1.0570
19000	4000	117.79	-226.91	255.66	-1.0920
21000	4000	86.10	-181.33	200.73	-1.1275
1000	6000	334420.31	-65541. 23	340782.31	-. 1935
3000	6000	25453.36	-13660.82	28887.57	-. 4926
5000	6000	5864.96	-4583.87	7443.76	-. 6634

REPRODUCIBILTTY OF THE ORIGINAL PAGE is POOR.

χ	Y	X FIELD	Y FIELD	TOTAL	THETA
7000	6000	2295.37	-1901.85	2980.90	-. 6919
9000	6000	1211.50	-984.07	1560.81	-. 6822
11000	6000	738.83	-607.15	956.30	-. 6879
13000	6000	483.46	-420.12	640.50	-. 7154
15000	6000	329.47	-311.14	453.16	-. 7568
17000	6000	231.05	-240.02	333.16	-. 8044
19000	6000	165.83	-190.20	252.34	-. 8537
21000	6000	121.47	-153.73	195.93	-. 9021
1000	8000	32652.30	54711.66	63714.52	1.0327
3000	8000	18372.59	6858.57	19611.02	. 3573
5000	8000	6873.42	65.88	6873.74	. 0096
7000	8000	3002.36	-547.50	3051.88	-. 1804
9000	8000	155787	-467.76	1626.58	-. 2917
11000	8000	917.97	-357.29	985.05	-. 3712
13000	8000	587.85	-277.19	649.92	-. 4406
15000	8000	397.35	-220.69	454.52	-. 5070
17000	8000	278.74	-179.23	331.39	-. 5714
19000	8000	201.04	-147.64	249.43	-. 6334
21000	8000	418.25	-122.96	192.61	-. 6924
1000	10000	4416.47	14565:66	15220.50	1.2764
3000	10000	6586.64	6468.16	9231.52	. 7763
5000	10000	4350.91	1974.11	477782	. 4259
7000	10000	2512.04	481.38	2557.75	. 1893
9000	10000	1485.50	37.40	1485.97	. 0252
11000	10000	930.13	-90.61	934.53	-. 0971
13000	10000	614.63	-122.40	626.70	-. 1966
15000	10000	423.93	-123.41	441.53	-. 2833
17000	10000	302.16	-114.40	323.09	-. 3819
19000	10000	220.97	-102.57	24362	-. 4346
21000	10000	165.01	-90.60	188.25	-. 5021
1000	12000	1196.20	5814.28	593605	1.3679
3000	12000	2497.73	3826.18	4566.00	. 9936
5000	12000	2333.49	1919.59	3021.59	. 6884
7000	12000	1724.09	839.38	191756	. 4531
9000	12000	1190.52	332.74	1236.15	. 2725
11000	12000	819.34	107.33	826.34	. 1303
13000	12000	574.33	7.58	574.38	. 0132
15000	12000	412.00	-36.05	413.58	. .0873
17000	12000	302.12	-53.86	306.89	-. 1764
19000	12000	225.87	-59.41	233.56	-. 2572
21000	12000	171.73	-59.08	181.61	-. 3313
1000	14000	456.98	2925.56	2961.03	1.4158
3000	14000	1099.50	2273.60	2525.50	1.1204
5000	14000	1253.13	1456.99	1921.76	. 8605
7000	14000	1104.81	827.48	138034	. 6429
9000	14000	873.05	436.67	976.17	. 4638

X	Y	X FIELD	Y FIELD	TOTAL	THETA
11000	14000	661.57	215.99	695.94	. 3156
13000	14000	496.24	95.67	505.37	. 1905
15000	14000	373.66	30.78	374.92	. 0822
17000	14000	284.04	-3.87	284.06	-. 0136
19000	14000	218.33	-21.99	219.43	-. 1000
21000	14000	169.73	-30.69	172.48	-. 1789
1000	16000	213.59	1693.36	1706.78	1.4453
3000	16030	553.23	1437.78	1534.94	1.2021
5000	16000	707.20	1052.13	1267.72	. 9790
7000	16000	703.10	698.73	991.25	. 7823
9000	16000	617.32	433.55	754.35	. 6123
11000	16000	50907	256.01	569.82	. 4660
13000	16000	407.65	143.80	432.27	. 3391
15000	16000	322.76	74.81	331.31	. 2278
17000	16000	255.06	32.95	257.18	. 1285
19000	16000	202.18	7.85	202.34	. 0388
21000	16000	161.14	-6.94	161.28	-. 0431

MAL AN MODEL

CHARGE HEIGHT 10000.00	CENTER 1 COULOMBS 40.00	CHARGE HEIGHT 5000.00	CENTER 2 COULOMBS -40. 00	CHARGE HEIGHT 2000.00	CENTER 3 COULOMBS 10.00
x	Y	X FIELD	Y FIELD	TOTAL	THETA
1000	0	. 00	-12251.73	12251.73	-1. 5708
3000	0	-. 00	4015.52	4015.52	1.5708
5000	0	. 00	2591.42	2591.52	1.5708
7000	0	-. 00	¢32. 18	632.48	1.5708
9000	0	. 00	-247.33	-247.33	-1. 5708
11000	0	. 00	-537.95	-537.95	-1.5708
13000	0	. 00	-587.30	-587.30	-1.5708
15000	0	. 00	-551.52	-551.52	-1.5708
17000	0	. 00	-492.79	-492.79	-1. 5708
19000	0	. 00	-433.99	-433.99	-1.5708
21000	0	. 00	-382.39	-382.39	-7.5708
1000	2000	78723.22	28109.79	83591.31	. 3430
3000	2000	-2692.49	10027.17	10382.37	1.8331
5000	2000	-3037.11	2608.98	4003.85	2.4319
7000	2000	-1313.15	320.30	1351.65	2.9024
9000	2000	-449.35	-366.78	580.04	-2.4570
11000	2000	-102.73	-530.26	540.12	-1.7622
13000	2000	21.59	-520.62	521.07	-1.5294
15000	2000	58.41	-459.97	463.67	-1.4445
17000	2000	62.82	-391. 33	396.34	-1.4116
19000	2000	56.43	-328.87	333.68	-1.4009
21000	2000	47.45	-276.16	280.20	-1.4006
1000	4000	-117514.45	133725.22	178022.72	2.2918
3000	4000	-24778.07	8331.59	26141.32	2.8172
5000	4000	-6751.43	-378.73	6762.04	-3.0856
7000	4000	-2037.31	-1102. 32	2316.41	-2.6456
9000	4000	-540.37	-954.34	1096.70	-2.0860
11000	4000	-42.81	-754.78	756.00	-1.6275
13000	4000	111.29	-595.46	605.77	-1.3860
15000	4000	144.15	-474.77	496.17	-1. 2760
17000	4000	135.96	-382.97	406.39	-1.2297
19000	4000	116.25	-312.38	333.31	-1. 2145
21000	4000	95.57	-257.55	274.71	-7.2155
1000	6000	-120686.14	-142335.00	186612.97	-2.2741
3000	6000	-23275.31	-19824.02	30573.39	-2.4361
5000	6000	-4897.77	-6664.76	8270.87	-2.2046

χ	Y	X FIELD	Y FIELD	TOTAL	THETA
7000	6000	-976.07	-2978.22	3734.08	-1.8875
9000	6000	16.83	-1586.22	1586.31	-1.8875 -1.5602
11000	6000	265.29	-969.45	1005.09	-1.3037
13000	6000	297.59	-657.70	721.90	-1.1459
15000	6000	265.77	-480.23	549.35	-1.0637
17000	6000	222.12	-368.41	430.91	-1.0282
19000	6000	179.59	-292.18	342.97	-1.0197
21000	6000.	143.60	-237.19	277.27	-1.0264
1000	8000	21198.36	-95907.80	98222.58	-1.3533
3000	8000	9820.07	-27568.87	29265.62	-1.2286
5000	8000	3454.41	-8824.13	9475.19	-1.1977
7000	8000	1714.37	-3563.27	3954.23	-1.1224
9000	8000	1067.79	-1741.09	2042.45	-1.0207
11000	8000	742.80	-990.34	1237.95	-. 9273
13000	8000	544.33	-634.98	836.36	-. 8621
15000	8000	409.54	-445.56	604.19	-. 8275
17000	8000	313.02	-333.47	457.35	-. 8170
19000	8000	241.97	-260.99	355.90	-. 8232
21000	8000	188.84	-210.66	282.91	-. 8399
1000	10000	356977.94	-12116.47	357183.50	-. 0339
3000	10000	34966.09	-7850.73	35836.60	-. 2209
5000	10000	9876.40	-4179.14	10724.20	-. 4003
7000	10000	3963.03	-2198.17	4531.83	-. 5064
9000	10000	1994.93	-1232.97	2345.20	-. 5536
11000	10000	1175.08	-753.90	1396.13	-. 5704
13000	10000	768.44	-502.01	917.89	-. 5787
15000	10000	537.57	-359.77	646.85	-. 5898
17000	10000	392.89	-273.12	478.49	-. 4076
19000	10000	295.74	-216.30	366.40	-. 6315
21000	10000	227.34	-176.57	287.85	-. 6604
1000	12000	31233.70	5811742	65978.62	1.0777
3000	12000	20824.47	10466.50	23306.79	. 4657
5000	12000	9037.53	1317.70	9133.19	. 1448
7000	12000	4310.54	-266.50	4316.48	-. 0525
9000	12000	2316.31	-417.18	$2353.58{ }^{\text {- }}$	-. 1782
11000	12000	1381.88	-368.39	1430.15	-. 2605
13000	12000	895.93	-295.87	943.52	-. 3190
15009	12000	618.29	-236.96	662.14	-. 3650
17000	12000	446.61	-193.30	486.64	-. 4085
19000	12000	333.48	-160.96	370.29	-. 4497
21000	12000	255.22	-136.36	289.36	-. 4907
1000	14000	4700.79	16794.50	17439.98	1.2979
3000	14000	7520.32	8299.14	11799.60	. 8346

X	Y	X FIELD	Y FIELD	TOTAL	THETA
5000	14000	5424.10	3011.47	6204.01	. 5068
7000	14000	3362.94	961.95	3497.82	. 2786
9000	14000	2082.60	243.79	2096.82	. 1165
11000	14000	1341.62	-2.14	1341.62	-. 0016
13000	14000	905.85	-83.00	909.65	-. 0914
15000	14000	638.60	-105.42	647.24	-. 1636
17000	14000	466.70	-107.03	478.82	-. 2254
19000	14000	351.07	-101.35	365.41	-. 2810
21000	14000	270.20	-93.40	285.89	-. 3328
1000	16000	1366.02	7108.68	7238.74	1.3809
3000	16000	2945.49	4908.01	5724.03	1.0303
5000	16000	2903.74	2666.07	3942.04	. 7428
7000	16000	2255.76	1287.59	2597.37	. 5187
9000	16000	1621.80	58409	1723.78	. 3457
11000	16000	1150.72	246.31	1176.79	. 2109
13000	16000	826.67	85.77	831.11	. 1034
15000	16000	606.64	9.07	606.71	. 0150
17000	16000	455.31	-27.59	456.15	-. 0605
19000	16000	348.89	-44.61	351.73	-. 1272
21000	16000	272.20	-51.70	277.07	-. 1877

MODIFIED SIMPSON AND ROBINSON MODEL

CHARGE HEIGHT 6000.00	CENTER 1 COULOMBS 4.60	$\begin{gathered} \text { CHARGE } \\ \text { HEIGHT } \\ 3000.00 \end{gathered}$	CENTER 2 COULOMBS -11.30	$\begin{gathered} \text { CHARGE } \\ \text { HEIGHT } \\ 1500.00 \end{gathered}$	$\begin{aligned} & \text { CENTER } 3 \\ & \text { COULOMBS } \\ & 5.97 \end{aligned}$
X	Y	X FIELD	Y FIELD	TOTAL	THETA
1000	0	. 00	-10538.48	-10538.48	-1.5708
3000	0	. 00	1939.86	1939.85	1.5708
5000	0	-. 00	770.68	770.68	1.5708
7000	0	-. 00	177.66	177.66	1.5708
9000	0	. 00	-20.31	-20.31	-1.5708
11000	0	-. 00	-88.79	88.79	-1.5708
13000	0	-. 00	-114.33	114.33	-1.5708
15000	0	-. 00	-124.48	124.48	-1.5708
17000	0	. 00	-218.68	-128.68	-1.5708
19000	0	. 00	-130.42	-130.42	-1.5708
21000	0	-. 00	-131.11	131.11	-1.5708
1000	2000	2650.72	52024.13	52091.62	1.5199
3000	2000	-3226.18	2930.23	4358.27	2.4042
5000	2000	-918.40	537.89	1064.33	2.6118
7000	2000	-279.52	153.89	319.08	2.6383
9000	2000	-93.95	41.60	102.75	2.7247
11000	2000	-34.56	. 63	34.56	3.1235
13000	2000	-13.63	-15.77	20.84	-2.2837
15000	2000	-5.63	-22.64	23.33	-1.8145
17000	2000	-2.35	-25.57	25.68	-1. 6630
19000	2000	-. 96	-26.79	26.81	-1.6066
21000	2000	-. 34	-27.25	27.25	-1.5832
1000	4000	-29521.43	-36532.12	46969.25	-2. 2505
3000	4000	-4359.65	-2692.04	5123.83	-2.5884
5000	4000	974.39	-440.09	1069.16	-2.7174
7000	4000	-304.88	-102.55	321.66	-2.8171
9000	4000	-111.29	-34.15	116.41	-2.8439
11000	4000	-44.17	-19.65	48.34	-2.7231
13000	4000	-18.43	-16.91	25.02	-2.3993
15000	4000	-7.89	-16.60	18.38	-2.0143
17000	4000	-3.35	-16.64	16.97	-1.7693
19000	4000	-1.32	-16.62	16.67	-1.6502
21000	4000	-. 41	-16.52	16.53	-1.5956
1000	6000	38668.84	-7161.18	39326.34	-. 1831
3000	6000	1607.50	-2427.45	2911.46	-. 9859
5000	6000	-21.39	-690.32	690.65	-1.6018
7000	6000	-90.12	-220.81	238.49	-1.9583
9000	6000	-53.42	-82.80	$98.54{ }^{\circ}$	-2.1438

X	Y	X FIEL.D	Y FIELD	TOTAL	THETA
11000	6000	-26.85	-37.86	46.42	-2.1877
13000	6000	-12.78	-21.92	25.37	-2.0985
15000	6000	-5.82	-15.78	16.81	-1.9240
17000	6000	-2.44	-13.17	13.39	-1.7544
19000	6000	-. 83	-11.92	11.95	-1.6404
21000	6000	-. 08	-11.23	11.23	-1.5778
1000	8000	3119.30	4820.74	5741.91	. 9965
3000	8000	1548.54	188.47	1559.96	. 1211
5000	8000	381.93	-235.11	448.49	-. 5518
7000	8000	80.84	-145.22	167.08	-1.0658
9000	8000	12.37	-74.57	75.59	-1.4065
11000	8000	-. 95	-39.09	39.10	-1.5951
13000	8000	-2.06	-22.69	22.79	-1.6615
15000	8000	-1.10	-15.06	15.10	-7.6139
17000	8000	-. 20	-11.36	11.36	-1.5885
19000	8000	. 34	-9.46	9.47	-1.5350
21000	8000	. 60	-8.41	8.43	-1.5000
1000	10000	389.07	1106.02	1172.46	1.2325
3000	10000	525.92	367.35	641.52	. 6097
5000	10000	277.42	19.99	278.14	. 0719
7000	10000	113.39	-46.45	12253	-. 3888
9000	10000	43.38	-41.14	59.79	-. 7589
11000	10000	1693	-27.92	32.65	-1.0257
13000	10000	7.27	-18.44	19.82	-1.1950
15000	10000	3.73	-12.78	13.31	-1.2868
17000	10000	2.36	-9.55	9.84	-1.3285
19000	10000	1.76	-7.71	7.90	-1.3468
21000	10000	1.43	-6.62	6.77	-1.3583
1000	12000	93.86	377.89	389.37	1.3274
3000	12000	181.48	210.26	277.75	. 8587
5000	12000	145.99	66.95	160.61	. 4300
7000	12000	86.33	3.99	86.42	. 0462
9000	12000	45.34	-13.40	47.28	-. 2873
11000	12000	23.26	-14.64	27.48	-. 5617
13000	12000	12.34	-12.05	17.24	-. 7734
15000	12000	7.04	-9.38	11.72	-. 9270
17000	12000	4.40	-7.41	8.61	-1.0351
19000	12000	3.00	-6.08	6.78	-1.1119
21000	12000	2.21	-5.22	5.66	-1.1707
1000	14000	31.83	164.82	167.86	1.3800
3000	14000	72.40	114.53	135.50	1.0071
5000	14000	73.86	56.83	93.20	. 6558
7000	14000	55.56	19.21	58.78	. 3328
9000	14000	36.16	1.52	36.20	. 0419
11000	14000	22.20	-4.80	22.71	-. 2130

X	Y	X FIELD	Y FIELD	TOTAL	THETA
13000	14000	13.54	-6.19	14.89	-. 4291
15000	14000	8.48	-5.88	10.32	-. 6067
17000	14000	5.56	-5.18	7.60	-. 7499
19000	14000	3.84	-4.51	5.92	-. 8656
21000	14000	2.79	-3.98	4.86	-. 9603
1000	16000	13.30	84.13	85.17	1.4140
3000	16000	33.00	65.71	73.53	1.1054
5000	16000	38.80	40.76	56.27	. 8100
7000	16000	34.25	20.22	39.77	. 5332
9000	16000	26.01	7.43	27.05	. 2784
11000	16000	18.29	. 87	18.31	. 0476
13000	16000	12.47	-1.98	12.63	-. 1578
15000	16000	8.50	-2.99	9.01	-. 3378
17000	16000	5.90	-3.18	6.71	-. 4942
19000	16000	4.22	-3.07	5.22	-. 6293
21000	16000	3.11	-2.88	4.24	-. 7463

MODIFIED GISH AND WAIT MODEL

$\begin{aligned} & \text { CHARGE } \\ & \text { HEIGHT } \\ & 6096.00 \end{aligned}$	CENTER 1 COULOMBS 1.52	$\begin{aligned} & \text { CHARGE } \\ & \text { HEIGHT } \\ & 3048.00 \end{aligned}$	$\begin{aligned} & \text { CFNTER } 2 \\ & \text { COULOMBS } \\ & -2.64 \end{aligned}$	CHARGE HEIGHT .00	CENTER 3 COULOMBS . 00
		-			
X	Y	X FIELD	Y FIELD	TOTAL	THETA.
1000	0	. 00	3545.22	3545.22	1.5708
3000	0	-. 00	1187.98	1187.98	1.5708
5000	0	. 00	250.43	250.43	1.5708
7000	0	. 00	-13.31	-13.31	-1.5708
9000	0	-. 00	-91. 15	91:15	-7.5708
11000	0	. 00	-116.55	-116.55	-1.5708
13000	0	. 00	-125.58	- -125.58	-1. 5708
15000	0	. 00	-128.98	-128.98	-1.5708
17000	0	. 00	-130.27	-130.27	-1.5708
19000	0	. 00	-130.73	-130 73	-1.5708
21000	0	. 00	-130.86	-130.86	-1.5708
1000	2000	-7475.19	8083.68	1101019	2.3171
3000	2000	-1617.19	741.00	1778.87	2.7119
5000	2000	-385.38	158.82	416.83	2.7507
7000	2000	-108.76	35.33	114.35	2.8275
9000	2000	-34.87	-3.81	35.07	-3.0328
11000	2000	-12.29	-18.04	21.83	-2.1690
13000	2000	-4.62	-23.54	23.99	-1.7645
15000	2000	-1.78	-25.71	25.77	-1. 6399
17000	2000	-. 66	-26.54	26.55	-1.5958
19000	2000	-. 21	-26.82	26.83	-1.5785
21000	2000	-. 02	-26.87	26.87	-1.5716
1000	4000	-7871.57	-10551.76	13164.40	-2.2117
3000	4000	-1323.56	-1069.44	1701.62	-2.4620
5000	4000	-335.01	-203.10	391.77	-2.5966
7000	4000	-108.12	-56.04	121.78	-2.6634
9000	4000	-39.07	-25.36	46.53	-2.5651
11000	4000	-14.98	-18.42	23.74	-2.2536
13000	4000	-5.93	-16.76	17.78	-1.9109
15000	4000	-2.32	-16.30	16.46	-1.7123
17000	4000	-. 83	-16.09	16.12	-1. 6224
19000	4000	-. 21	-15.94	15.94	-1. 5838
21000	4000	. 05	-15.80	15.80	-1.5677
1000	6000	12714.70	-3423.76	13167.60	-. 2630

X	Y	X FIELD	Y FIELD	TOTAL	THETA
3000	6000	621.85	-834.46	1040.68	-. 9304
5000	6000	17.03	-256.63	257.19	-1.5045
7000	6000	-24.18	-89.68	92.89	-1.8342
9000	6000	-15.81	-38.13	41.28	-1.9639
1100J	6000	-7.83	-20.88	22.30	-1.9297
13000	6000	-3.46	-14.62	15.02	-1. 8032
15000	6000	-1.33	-12.12	12.20	-1.6801
17000	6000	-. 35	-11.01	11.02	-1.6024
19000	6000	. 08	-10.44	10.45	-1.5631
21000	6000	. 25	-10.11	10.12	-1.5462.
1000	8000	1201.91	1821.65	2182.42	. 9876
3000	8000	580.59	79.03	585.95	. 1353
5000	8000	151.69	-83.67	173.24	-. 5041
7000	8000	36.74	-56.27	67.20	-. 9924
9000	8000	8.45	-31.35	32.47	-1.3076
11000	8000	1.92	-18.54	18.64	-1.4675
13000	8000	. 66	-12.49	12.51	-7.5183
15000	8000	. 53	-9.61	9.63	-1.5156
17000	8000	. 57	-8.19	8.21	-1.5071
19000	8000	. 58	-7.43	7.45	-1.4925
21000	8000	. 55	-7.00	7.02	-1.4919
1000	10000	147.57	420.51	445.66	1.2333
3000	10000	199.73	141.81	244.95	. 6174
5000	10000	107.87	9.84	108.32	. 0909
7000	10000	46.23	-17.46	49.42	-. 3612
9000	10000	19.05	-16.94	25.49	-. 7270
11000	10000	8.28	-12.67	15.13	-. 9921
13000	10000	4.05	-9.39	10.23	-1.1635
15000	10000	2.32	-7.38	7.74	-1.2658
17000	10000	1.54	-6.21	6.40	-1.3272
19000	10000	1.14	-5.52	5.64	-1.3677
21000	10000	. 89	-5.11	5.18	-1.3982
1000	12000	35.78	144.76	149.11	1.3285
3000	12000	69.59	81.26	106.99	. 8626
5000	12000	56.88	26.50	62.75	. 4360
7000	12000	34.59	1.73	34.64	. 0499
9000	12000	18.92	-5.70	19.76	-. 2928
11000	12000	10.21	-6.73	12.23	-. 5828
13000	12000	5.75	-6.07	8.36	-. 8129
15000	12000	3.47	-5.24	6.28	-. 9853
17000	12000	2.27	-4.58	5.11	-7.1104
19000	12000	1.59	-4.12	4.42	-1.2015
21000	12000	1.18	-3.81	3.99	-1.2695
1000	14000	12.26	63.59	64.76	1.3803
3000	14000	28.05	44.40	52.52	1.0074
5000	14000	28.97	22.21	36.51	. 6540

X	Y	X FIELD	Y FIELD	TOTAL	THETA
7000	14000	22.23	7.46	23.45	. 3237
9000	14000	14.87	. 26	14.87	. 0178
11000	14000	9.44	-2.52	9.77	-. 2606
13000	14000	5.98	-3.31	6.83	-. 5054
15000	1-4000	3.89	3.36	5.14	-. 7120
17000	14000	2.64	-3.19	4.14	-. 8794
19000	14000	1.87	-2.99	3.53	-1.0117
21000	14000	, 1.39	-2.83	3.15	-1.1152
1000	16000	5.18	32.64	33.05	1.4133
3000	16000	12.92	25.55	28.63	1.1025
5000	16000	15.35	15.88	22.08	. 8024°
7000	16000	13.75	7.81	15.81	. 5162
9000	16000	10.66	2.66	10.98	. 2445
11000	16000	7.68	-. 09	7.68	-. 0118
13000	16000	5.38	-1.37	5.55	-. 2500
15000	16000	3.78	-1.90	4.22	-. 4653
17000	16000	2.69	-2.06	3.39	-. 6541
19000	16000	1.97	-2.09	2.87	-. 8137
21000	16000	1.48	-2.05	2.53	-. 9455

MODIFIED MALAN MODEL

CHARGE HEIGHT 10000.00	$\begin{aligned} & \text { CENTER } 1 \\ & \text { COULOMBS } \\ & 20.10 \end{aligned}$	CHARGE HEIGHT 5000.00	CENTER ? COULOMBS -36.80	$\begin{gathered} \text { CHARGE } \\ \text { HEIGHT } \\ 2000.00 \end{gathered}$	CENTER 3 COULOMBS 12.70
χ	Y	X FIELD	Y FIELD	TOTAL	THETA
1000	0	. 00	-19578.95	19578.95	-1.5708
3000	0	-. 00	3637.27	3637.27	1.5708
5000	0	-. 00	3716.05	3716.05	1.5708
7000	0	-. 00	7895.86	1895.86	1.5708
9000	0	. 00	834.24	834.24	1.5708
11000	0	-. 00	318.36	318.36	1 1.5708
13000	0	-. 00	74.38	74.38	1.5708
15000	0	-. 00	-41.76	41.76	-1.5708
17000	0	. 00	-97.60	-97.60	-1 5708
19000	0	. 00	-124.44	-124.44	-1.5708
21000	0	-. 00	-137.05	137.05	-7.5708
1000	2000	103233.12	27386.64	106804.06	. 2593
3000	2000	-220.84	11093.19	11095.39	1.5907
5000	2000	-2687. 20	4168.82	4959.85	2.1434
7000	2000	-1469.13	1723.87	2264.96	2.2766
9000	2000	-694.81	750.14	1022.49	2.3179
11000	2000	-323.74	326.33	459.67	2.3522
13000	2000	-152.78	131.82	201.79	2.4297
15000	2000	-73.20	39.62	83.24	2.6456
17000	2000	-35.29	-4.78	35.62	-3.0069
19000	2000	-16.79	-26.07	31.01	-2.1430
21000	2000	-7.61	-35.92	36.72	-1.7795
1000	4000	-106052.11	13257597	169774.69	2.2455
3000	4000	-22433 32	12080.09	25479.06	2.6476
5000	4000	-6881.11	2186.94	7220.28	2.8339
7000	4000	-2651. 36	604.03	2719.30	2.9176
9000	4000	-1133.96	219.37	1754.98	2.9505
11000	4000	-514.44	83.59	521.19	2.9805
13000	4000	-242.18	22.49	243.22	3.0490
15000	4000	-116.43	-7.75	116.69	-3.0752
17000	4000	-56.17	-22.75	60.60	-2.7568
19000	4000	-26.49	-29.72	39.81	-2.2988
21000	4000	-11.62	-32.40	34.42	-1.9151
1000	6000	-112747.42	-120485.62	1.65011 .41	-2.3230
3000	6000	-24307.53	-12275.94	27231.50	-2.6739
5000	6000	-6793.48	-3155.99	7490.77	-2.7067

. X	Y	X FIELD	Y FIELD	TOTAL	THETA
7000	6000	-2468.76	-1113.56	2708.28	-2.7179
9000	6000	-1045.96	-455.83	1140.97	-2.7306
11000	6000	-481.72	-211.68	526.18	-2. 7276
13000	6000	-231.42	-113.86	257.91	-2.6844
15000	6000	-112.84	-72.00	133.85	-2.5737
17000	6000	-54.37	-52.51	75.59	-2.3736
19000	6000	-24.85	-42.35	49.10	-2.1015
21000	6000	-9.82	-36.26	37.57	-1.8354
1000	8000	6212.02	-60396.07	60714.70	-1.4683.
3000	8000	-268.39	-18165.98	18167.96	-1.5856
5000	8000	-1294.72	-5611.02	5758.46	-1.7976
7000	8000	-840.03	-2057.74	2222.60	-1.9584
9000	8000	-468.22	-867.77	986.04	-2.0656
17000	8000	-251.55	-408.78	479.98	-2.1?.25
13000	8000	-137.84	-212.91	250.42	-2.1252
15000	8000	-66.51	-122.65	319.53	-2.0677
17000	8000	-31.09	-78.18	- 84.14	-1.9493
19000	8300	-12.11	-54.75	56.07	-1.7885
21000	8000	-2.16	-41.49	41.54	-1.6227
1000	10000	178385.59	-10509.62	178694.91	-. 0588
3000	10000	15647.43	-6656.05	17004.27	-. 4022
5000	10000	3283.88.	-3374.60	4708.69	-. 7990
7000	10000	794.46	-1638.40	1802.85	-1.1193
9000	10000	188.63	-81780	839.28	-1 3441
11000	10000	36.77	-428.97	430.54	-1.4853
13000	10000	3.73	-238.40	238.43	-1.5552
15000	10000	1.04	-141.21	141.22	-1.5634
17000	10000	4.47	-89.55	89.66	-1. 5209
19000	10000	7.70	-60.86	61.35	-1.4449
21000	10000	9.56	-44.18	45.20	-1.3577
1000	12000	15343.80	2707787	31123.04	1.0553
3000	12000	9643.77	3652.56	10312.30	. 3621
5000	12000	3639.16	-331 55	3654.24	-. 0909
7000	12000	1391.71	-660.15	1540.34	-. 4429
9000	12000	562.67	-487.56	74452	-. 7140
11000	12000	244.91	-314.33	398.48	-. 9089
13000	12000	117.72	-198.32	230.62	-7.0351
15000	12000	64.31	-127.23	142.56	-1.1028
17000	12000	40.48	-84.50	93.70	-1.1241
19000	12000	28.85	-58.65	65.36	-1.1135
21000	12000	22.48	-42.67	48.23	-1.0860
1000	14000	2204.57	7239.22	7567.46	1.2752
3000	14000	3376.22	3169.39	4630.75	. 7538
5000	14000	2220.67	792.93	2357.99	. 3430
7000	14000	1197.03	16.01	1197.14	. 0134
9000	14000	620.33	-159.92	640.61	-. 2523
11000	14000	327.34	-162.03	365.25	-. 4596
13000	14000	181.07	-127.25	221.31	-. 6126

x	Y	X FIELD	Y FIELD	TOTAL	THETA
15000	14000	106.90	-93.18	141.81	-. 7170
17000	14000	67.96	-67.41	95.72	-. 7814
19000	14000	46.49	-49.41	67.85	-. 8158
21000	14000	33.92	-37.15	50.31	-. 8308
1000	16000	604.37	2822.63	2886.61	1.3599
3000	16000	1259.94	1806.48	2202.46	. 9678
5000	16000	1160.41	819.86	1420.81	. 6151
7000	16000	875.26	271.42	859.25	. 3214
9000	16000	516.19	39.06	517.67	. 0755
11000	16000	317.21	-40.16	319.74	-. 1259
13000	16000	196.48	-57.73	204.79	-. 2858
15000	16000	125.36	-54.10	136.53	-. 4074
17000	16000	83.34	-45.11	94.76	-. 4961
19000	16000	57.98	-36.24	68.37	-. 5586
21000	16000	42.17	-28.97	51.16	-. 6010

APPENDIX B

The following program, written for the HP2100 computer, is used to minimize the percentage of variation as shown in Equation 8 by varying the values of three charge centers A, B and C which are located at $Y A, Y B$ and $Y C$. One charge center is modified at a time beginning with A, then B, then C, back to A and so on until an oscillation is noticed in the percentage of variation. At that pornt, the value of INC can be decreased and the program restarted using the A, B and C values which were computed as the oscillation began. The output gives the values of A, B and C in coulombs and the corresponding sum of the squares of the percentage of variations.

The initial value of INC was 0.1. Osclllation using this value of INC occurred at $A=6.8, B=13.8$ and $C=3.4$ for the Simpson and Robinson model. ESQRT equalled . 187×10^{4}. Oscillation in the Gish and Wait model occurred at $A=2.7$ and $B=5$ with ESQRT equalling $.813 \times 10^{3}$ while in the Malan model it occurred at $A=22.9$, $B=-40, C=10$ and $\operatorname{ESQRT}=.269 \times 10^{4}$.

Changing INC to equal . 01 and using the A, B and C values found in - the previous step resulted in the following values for the modified models:

MODIFIED HODEL	A	B	C	ESQRT
Simpson \& Robinson	4.6	-11.3	5.97	522
Gish \& Wart	1.52	- 2.64	0.0	624
Malan	20.1	-36.8	12.7	799

```
    PROGRAM FIELD
    REAL INC,MULT
    DIMENSIONT EFLD(9),X(9), EF(9),Y(9)
11 READ (5,3) A,E,C,YA,YB,YC
    3 FORMAT (6F10.1)
    IF (A) 13,12,13
13 READ (5,4) A1, A2, A3,A4,A5,A6,A7
    4 FORMAT (7A4)
    WRITE (6,5) A1,A2,A3,A4,A5,A6,A7
    5 FORMAT (1H1,45X,7A4,//',3X, "CHARGE CENTER A",5X,"CHARGE CENTER B", 5
    IX,"CHARGE CENTER C",/,2X,"HEIGHT",3X,"COULOMBS", 3X,"HEIGHT",3X,"C0
    2ULOMBS",3X,"HEIGHT",3X, "COULOMBS")
    WRITE (6,3) YA,A , YB,B,YC,C
    VALUE=A
    INC=.1
    J=1
    EF(1)=-1310.
    EF(2)=-1160.
    EF(3)=-760.
    EF(4)=-460.
    EF(5)=-260.
    EF(6)=-135.
    EF(7)=-60.
    EF(8)=1.
    EF(9)=33000.
    X(1)=2500.
    x(2)=5000.
    X(3)=7500.
    X(4)=10000.
    X(5)=12500.
    X(6)=15000.
    x(7)=17500.
    X(8)=20000.
    X(9)=13100.
    MULT=1./(4.*3.1415*8.854*(10.**(-12)))
131 II=7
    K=1
130 EXQRT=0.
    DO 10 I= 1,8,1
    EFLD(I)=MULT*((2.*YA*A/ (X (I)**2.+YA**2.)**1.5)+(2.*YB*B/(X(I)**2.+
    1YB**2.)**1.5)+(2.*YC*C/(X(I)**2.+YC**2.)**1.5))
    ESQRT=ESQRT+(EF(I)-EFLD(I))*(EF(I)-EFLD(I))/(EF(I)*EF(I))
10 CONTINUE
    EFLD(9)=MULT* (A/(Y(9)-YA)**2.-A/(Y(9)+YA)**2.+B/(Y(9)-YB)**2.-B/(Y
    I(9)+YB)**2.+C/(Y(9)-YC)**2.-C/(Y(9)+YC)**2.)
```

```
    ESQRT=ESQRT+(EF(9)-EFLD(9))*(EF(9)-EFLO(9))/(EF(9)*EF(9))
    ESQRT=ESQRT*100.
    IF (II-1) 20,20,30
20 ESMIN=ESQRT
    G0 TO 40
30 IF (ESQRT-ESMIN) 20,20,50
50 IF (II-2) 60,60,70
60 K=-K
    VALUE=VALUE+K*INC
40 II=II+1
    VALUE=VALUE+K*INC
    IF (ESMIN-100.) 180,180,80
80 IF (J-1) 90,90,100
90 A=VALUE
    GO TO 130
100 IF (J-2) 110,110,120
110 B=VALUE
    go T0 130
120 C=VALUE
    GO TO 130
70 IF (J-1) 140,140,150
140 A=VALUE
    VALUE=B
    J=2
    GO TO 190
150 IF (J-2) 160,160,170
160 B=VALUE
    value=c
    J=3
    GO TO 190
170 C=VALUE
    value=A
    J=1
190 WRITE (6,2) A,B,C,ESMIN
    2 FORMAT (4E10.3)
    go TO }13
180 WRITE (6,6)
    6 FORMAT (//,1X,"CHARGE A",2X,"CHARGE B",2X,"CHARGE C",3X,"EFLD(1)",3
        1X,"EFLD(2)",3X,"EFLD(3)",3x,"EFLD(4)",3X,"EFLD(5)",3X,"EFLD(6)",3X
        2,"EFLD(7)",3X,"EFLD(8)",3X,"EFLD(9)")
        WRITE (6,1)A,B,C,EFLD(1),EFLD(2),EFLD(3), EFLD(4),EFLD(5),EFLD(6),
        IEFLD(7),EFLD(8),EFLD(9)
    1 FORIATT (12E10.3)
        go to 11
12 END
```

Bibliography

1. Dolezalek, H. A Brief Introduction to Atmospheric Electricity. Notes from a course at Chautauqua. August-October, 1972.
2. Chalmers, J.A. Atmospheric Electricity. Pergamon Press, 0xford, 19.67.
3. Tilson, S. "Electricity and Weather Modification," IEEE Spectrum, April 1969, pp. 26-45.
4. Dobson, G.M.B. Exploring the Atmosphere. Clarendon Press, Oxford, 1963.
5. Aerology for P1lots. McGraw-H711, New York, 1943.
6. Introduction to Aviation. Aero Education Associates, California, 1970.
7. Imyanitov, I.M., Chubarina, Ye.V. and Shvarts, Ya.M. Electricity of Clouds, WASA Technical Translation TTF-718, June, 1972.
8. Gish, O.H. and Wait,G.R., "Thunderstorms and the Earth's General Electrification," Journal of Geophysical Research, V55, 1950, pp. 473-484.
9. Israil, H. Atmospheric Electricity, Keter Press, Jerusalem, 1973.
10. Wormell, T.W. "The Effects of Thunderstorms and Lightning Discharges on the Earth's Electric Field," Phil. Trans. R. Soc., VA238, pp. 249-303.
11. Markson, R. "Practical Aspects of Electrostatic Stabilization," Astronautics and Aeronautics, Apr11 1974, pp. 44-49.
12. Lane-Smith, D.R. "The Influence of Point Discharge Current and Precipitation on the Vertical Profile of Potential Gradient," Journal of Geophysical Research, Apr11 20, 1972, pp.2147-2150.
13. Stergis, C.G., Rein, G.C., and Kangas, T. "Electric Field lleasurements Above Thunderstorms," Journal of Atmospheric and Terrestrial Physics, 1957, Vol. 11, pp. 83-90.
14. Shvarts, Ya.M. "Calculation of the Electrical Structure of Thunderclouds," Studies in Atmospheric Electricity, Keter Press, Jerusalem, 1974
15. Hill, M.L. "Introducing the Electrostatic Autopilot," Astronautics and Aeronautics, Nov. 1972, pp. 24-31.
16. Mason, B.J. The Physics of Clouds, Clarendon Press, Oxford, 1971.

Section IV

Alrcraft Noise Suppression -

Electronic Acoustic Noise Suppression

TABLE OF CONTENTS

PageAbscract
Introduction 1
Math Model 2
System Design 8
Butterworth-Chebyshev Lag-Lead Compensation 16
Coriclusion 32
Brbliography 33

An alternative to passive sound insuiation is active electronic control. In the approach, described earlier by 01 son [1,2] and others [3,4], one connects a microphone, an inverting amplifier, and a loudspeaker in a negative feedback fashion to reduce noise. In this system (figure 1), the electric signal produced by the microphone from an incident sound pressure P_{7}, is amplified by an inverting amplifier with a gain of $-K_{a}$. The amplifier drives the loudspeaker, producing an output pressure P_{0}. This pressure is summed acoustically with the incident sound pressure P_{i}. The resulting pressure at the microphone is the sound pressure error signal, ${ }_{\varepsilon} ;$

$$
P_{\varepsilon}=P_{i}+P_{o}
$$

The resulting sound pressure level P_{ε} at the microphone has been shown to be less than the incident sound pressure level $P_{1},[1,2,5]$. If the microphone is placed near one's ear, a considerable reduction in the noise level is observed. However, airborne nolse reduction through active electronic control is confined to a fairly narrow range of frequencies.

This treatise will show that signal time delays from wave propagation through the acoustic medium and inherent transducer delay are responsible for this narrow bandwidth limitation. A classical method of lag-lead compensation will be used to improve the bandwidth of airborne-noise-
reduction systems developed in the references [1,2,5]. Finally, lag-lead compensation using maximally-flat (Butterworth) and equal-ripple (Chebyshev) polynomials will be developed to further extend the bandwidch.

MATH MODEL

The active compensation system of figure 1 is depicted schematically by the block diagram in figure 2. Here, $-K_{a}$ represents the gain of an ideal amplifier. $G_{m}(s), G_{f}(s)$, and $G_{S}(s)$ are tie transfer functions of the microphone, filter, and loudspeaker respectively, in the s domain. (The transfer function $G_{f}(s)$ is the principle topic of this paper and is discussed below in detail.) System time delay τ is represented by $e^{-S \tau}$. T^{\prime} is transformation from the tome domain to the frequency domain has been accomplisned according to the Laplace shift theorem:

$$
L\left\{y(t-\tau) U_{\tau}(t)\right\}=e^{-S \tau} Y(s), \text { where } U_{\tau}(t)= \begin{cases}0 & t<\tau \tag{2}\\ 1 & t>\tau\end{cases}
$$

$$
\begin{equation*}
\tau=\tau_{p}+\tau_{t}, \text { where } \tau_{p}=\text { wave propagation delay } \tag{3}
\end{equation*}
$$

$$
\text { and } \tau_{t}=\text { total } \text { iransducer delay. }
$$

Tine delay τ is the sum of transducer delay and acoustic wave propagation delay. When time delay is present in a feedback control system, numerical analysis of that system is difficult because of the introduction of the transcendental function $e^{-S \tau}$, in the transfer function. However, a graphical approach is often adequate for stability analysis of feedback systems with time delay. This is the method used here.

Active compensation scheme
Figure 1

The open-loop response (where $G_{f}(s) \equiv 1$) of an active electronic airborne-noise controller are shown in figures 3a and 3b. At the higher frequencies, the phase-frequency relationship becomes linear, indicating the presence of time delay. This is graphically illustrated in figure 4. Note that the system phase is the sum of the phase associated whth two poles and the phase that represents pure time delay. At high frequencies, for which all phase associated with poles and zeros can be considered a constant, the delay τ of equation (4) is simply the slope of the system phase function.

$$
\begin{equation*}
L e^{-j \omega \tau}=-\omega \tau \tag{4}
\end{equation*}
$$

For the system represented in figures $3 \mathrm{a}, 3 \mathrm{~b}$, and 4 a time delay of $49 \mu s e c s$ is determined. Meeker [5] achieved this result with a microphone-speaker separation of 3.1 mm (. 125 inch), which accounts only for 9 usecs of signal delay due to acoustic wave propagation (with an acoustic wave velocity of 347 meters/sec.) Approximately 40 usecs of delay must be attributed to the transducers. This conclusion is substantiated by the work of C.A. Ewaskio and O.K. Mawardi [6]. Their measurements of phase shift in loudspeakers indicated time delays of the magnitude found above. Transducer delay τ_{t} in equation (3) is equal to $40 \mu s e c s$ for the system of figures $3 a$ and $3 b$.

nyquist diagram of figure 3a
Figure 3b

The magnitude function in figure 3 a indicates a bandwidth of $4 \mathrm{KH}_{z}$, at which point it rolls-off at $-12 \mathrm{~dB} /$ octave. For this sytem to achieve stability without compensation, the open-loop gain must be made lejs than unt ty.

Lowering the gain of the system, however, decreases its effectiveness. The acoustic nuise intensity Ir is calculated by comparing the sound pressure error signal P_{ε} with the original incident sound pressure P_{1} - Ir in decibels is:

$$
\begin{equation*}
I_{r}(J \omega)=20 \log _{10} \frac{P_{i}(j \omega)}{P_{\varepsilon}(j \omega)} \tag{5}
\end{equation*}
$$

The sound pressure is measured at the nocrophone's diaphragm, P_{ε} is measured with the active electronic control functioning, P_{1} is measured with the system off.

From the block diagram (figure 2), P_{ε} for real frequencies is,

$$
\begin{align*}
& P_{\varepsilon}(j \omega)=\frac{P_{1}(J \omega)}{1+K_{a} G_{t}(J \omega) e^{-j \omega \tau}}, \tag{6}\\
& \quad \text { where } G_{t}(j \omega) \triangleq G_{m}(j \omega) G_{f}(j \omega) G_{s}(j \omega) .
\end{align*}
$$

Substituting into equation (5), I_{r} becomes

$$
\begin{equation*}
I_{r}(J \omega)=20 \log _{10}\left|1+K_{a} G_{t}(J \omega) e^{-j \omega \tau}\right| \tag{7}
\end{equation*}
$$

For those real frequencies ω, where the open-loop gain is much greater than unity, $\left|K_{a} G_{t}(j \omega) e^{-j \omega \tau}\right| \gg 1$, the reduction in the acoustrc noise intensity at the microphone's diaphragm is approximately equal to the system's open-loop gain.

$$
\begin{equation*}
I_{r}(j \omega) \cong 20 \log _{10}\left|K_{a} G_{t}(j \omega)\right|, \text { since }\left|e^{-j \omega \tau}\right| \equiv 1 \tag{8}
\end{equation*}
$$

Thus, for maximum noise reduction, the open-loop gain should be kept as high as possible.

SYSTEM DESIGN

To obtain both stability and high gain, bandwidth of the system must be sacrificed. This conclusion will be made clear through graphical stability analysis in the form of a Nyquist diagram. A polor plot of the open-loop frequency response of $K_{a} G_{t}(j \omega) e^{-j \omega \tau}$ for $-\infty \leq \omega \leq \infty$ is constructed. This plot is referred to as a Nyquist diagram of $K_{a} G_{t}(j \omega) e^{-j \omega \tau}$, see figure $3 b$. A minimal-phase (no right half-plane zeros) closed-loop system is stable if and only if the Nyquist diagram of $K_{a} G_{t}(j \omega) e^{-j \omega \tau}$ does not encircle the $(-1, j 0)$ critical point on the complex plane.

01son [1,2] and Meeker [5] used lag compensation to obtain stability, simultaneously obtaining high open-loop gain over a narrow range of frequencies, see figures $5 a$ and $5 b$. To obtarn a gain of 20 dB , the bandwidth had to be lowered to 200 Hz . The compensated noise-reducing system of figure $4 a$ has a filter $G_{f}(j \omega)$, where

$$
\begin{equation*}
G_{f}(j \omega)=\frac{1}{j \omega / 1250+1} . \tag{9}
\end{equation*}
$$

phase
System developed by 01son $[7,2]$
Figure 5a

Nyguist diagram of Figure 5a
Figure 5b

The filter $G_{f}(j \omega)$ has one pole at 200 Hz . Thus, the Nyquist diagram avoids encirclement of the $(-1, j 0) c r i t i c a l$ point, producing a stable system.

From equation (8) and figure 5 a, reduction in the noise intensity is found to be approximately 20 dB up to a frequency of 200 Hz . To increase the bandwidth of the system in figures $4 a$ and $4 b$ one would like to raise the crossover frequency ω_{-180} of $L^{-j \omega \tau}$. $\quad\left(\omega_{-180}\right.$ is defined to be the frequency where $L e^{-J \omega \tau}$ is equal to -180 degrees). One would like to move ω_{-180} to infinity, that is eliminate the tme delay; however, this is not physically realizable. In the airborne-noise-reduction system investigated, a large percentage of the time delay is associated with transducers. With present state-of-the-ari transducers, little can be done to reduce the inherent time delay. Therefore, to avold encirclement of the ($-1, j 0$) point on the Nyquist diagram, the magnitude function must be less than unity before the frequency $\omega_{-180^{\circ}}$. Consequently, this frequency, ω_{-180} must be considered the upper limit on an airborne-noise-reduction system's bandw7dth.

If the bandwidth is to be increased, it must be done through manipulation of the magnitude function. An increase in the bandwidth may be realized if the magnitude function is made to roll-off at a greater rate than that of the one-pole filter in figure $5 a$. This allows the $-3 d B$ bandwidth to move closer to the upper limit, $\omega_{-180^{\circ}}$. In a minimal-phase system increased roll-off is always accompanied by additional phase. Hence, trade-offs must be made.

Lag-lead compensation is commonly used to reduce gain while minimizing excess phase. The transfer function of a lag-lead compensator consists of a simile pole-zero patr:

$$
\begin{equation*}
G_{f}(j \omega)=\frac{T+j \omega / \omega_{z}}{1+j \omega / \omega_{p}} . \tag{10}
\end{equation*}
$$

The pole 15 always nearer the origin of the s plane than the zero. Note that the magnitude function, $G_{f}^{\prime}(j \omega)$, has an initial gain of untty. As ω approaches infinity, the gain becomes ω_{p} / ω_{z}. Moreover, the phase function returns to zero as ω goes to 1 nfinity. Lag-lead compensation allows the magnitude function to decrease while introducing smaller amounts of excess phase than lag compensation.

The use of a first-order (both denominator and numerator are first order polynomials) lag-lead compensator in the airborne-notse-reduction systems of the references $[1,2,5]$ would extend the bandwidth to 300 Hz , see figures 6 a and 6 b . The pole-zero location of the compensator have been determined graphically and found to be

$$
\begin{equation*}
G_{\dot{f}}^{\prime}(j \omega)=\frac{1+j \omega / 2.51 \times 10^{4}}{1+j \omega / 1880} \tag{11}
\end{equation*}
$$

A graphical approach for finding the pole and zero locations of a lag-lead compensator is quite adequate for a single-input, single-output closed-loop systern. The location of the pole and zero is left to the designer. The

O1son's system with first-order lag-lead compensation
Figure 6a

Nyquist diagram of Figure 6 a
Figure 6b
proper phase and gain margins may then be selected for desired overshoot and damping. Insofar as the noise-reduction system can be approximated by a second-order system, the phase-gain margin concept will be a grapnical conventence which can provide approximate closed-loop analysis by inspection. Criteria for phase and gain margins will not be discussed, except for the statement that phase margin greater than 55 degrees and a gain margin greater than 6 dB are desirable. This gives an approximate closed-100p damping $>.55$.

The ideal normalized (the -3 dB bandwidth frequency, defined as $\omega_{-3 d B}$, is equal to one) lag-lead compensator is characterized by a magnitude that is unity for frequencies, $\omega \leq 1$ and can be represented by $1 / K_{f}$, for frequencies $\omega>1$. These ideai properties are not attainable with constant, lumped, and linear newworks, therefore the requirements imposed by the ideal characteristics can be only approximated. This is done by allowing the magnitude and phase to stay within prescribed limits of the ideal, see figures $7 a$ and $7 b$.

It is evident from the magnitude function graphed in figures $8 a$ and $8 b$ that cascading more chan one first-order lag-lead compensator results in a magnitude function $\left|G_{f}^{\prime}(J \omega)\right|$ that tends away from the ideal. Also from figure 8 b , it is evident that excess phase is increased with increased number of cascaded filters.

Figure 7a

Figure 7b

Figure 8a

Figure 8b

BUTTERWORTH-CHEBYSHEV LAG-LEAD COMPENSATION

Functions of the form

$$
\begin{equation*}
G_{f}(s)=\frac{N(s)}{D(s)} \tag{12}
\end{equation*}
$$

which obey the specified constraints of figures 7 a and 7 b , represent approximations to the ideal lag-lead filter. Combinations of the maximally-flat (Butterworth) and the equal-ripple (Chebyshev) polynomals provide candidate approximations to the ideal.

The excess phase associated with the maximally-flat function increases Whth frequency at a much smaller rate than that of the equal-ripple polynomial, see figure $9 a$ and $9 b$. Of the four ratio combinations, representing the equal-ripple polynomal by $N(s)$ (which contributes positive phase) and the maximally-flat polynomial by $D(s)$ (which contributes relative little negative phase) yields the most desirable phase function.

A suitable representation of this lag-lead compensator can be obtarned by starting with the general expression of the magnitude-squared function. Let

$$
\begin{equation*}
\left|G_{f}^{\prime \prime}(J \omega)\right|^{2}=\frac{N\left(\omega^{2}\right)}{D\left(\omega^{2}\right)} \tag{13}
\end{equation*}
$$

for real frequencies ω.

Figure 9a

Fourth-order Betterworth and Chebyshev phase function
Figure 9b

For frequencies $\omega \leq 1$ the magnitude-squared function of the normalized filter $G_{f}(j \omega)$ should be approximately unity. For Frequencies $\omega>1$ the function should not depart appreciably from $1 / K_{f}^{2}$. The filter design to be discussed in detall is

$$
\begin{equation*}
\left|G_{f}^{\prime \prime}(J \omega)\right|^{2}=\frac{1+\varepsilon^{2} C_{n}^{2}\left(\frac{1}{\alpha \omega}\right)}{k^{2}+\varepsilon^{2} \frac{2^{2(n-1)}}{(\alpha \omega)^{2 n}}} \tag{14}
\end{equation*}
$$

where the $C_{n}(x)$ are called the Chebyshev polynomials.

$$
\begin{align*}
c_{n}^{2}\left(\frac{1}{\alpha \omega}\right) & =\cos ^{2}\left(n \cos ^{-1} \frac{1}{\alpha \omega}\right) \tag{15a}\\
& =\cosh ^{2}\left(n \cosh ^{-1} \frac{1}{\alpha \omega}\right) \tag{15b}
\end{align*}
$$

Although either form of $C_{n}^{2}(1 / \alpha \omega)$ can be employed, it is convenient to use equation (15a) for frequencres $1 / \alpha w \leq 1$ and equation (15b) for $1 /$ cw >1. It will presently be shown that $\left|G_{f}^{\prime \prime}(J \omega)\right|^{2}$ is a ratio of an equal-ripple polynomial $\left(N\left(\omega^{2}\right)\right)$ to a maximally-flat polynomial $\left(D\left(\omega^{2}\right)\right)$

For real frequencies ω, when $\omega \rightarrow 0$,

$$
\begin{equation*}
\left|G_{f}^{\prime \prime}(j \omega)\right|_{\omega \rightarrow 0}^{2} \cong \frac{\varepsilon^{2} C_{n}^{2}\left(\frac{1}{\alpha \omega}\right)}{\varepsilon^{2} \frac{2^{2(n-1)}}{(\alpha \omega)^{2 n}}}=1 \tag{16a}
\end{equation*}
$$

because

$$
\begin{equation*}
\cosh ^{2}\left(n \cosh ^{-1} \frac{1}{\alpha w}\right) \cong 2^{2(n-1)}\left(\frac{1}{\alpha w}\right)^{2 n} \text {, for } \frac{1}{\alpha \omega}>1 \tag{16b}
\end{equation*}
$$

For real frequencies ω, when $\omega \rightarrow \omega$,

$$
\left|G_{f}^{\prime \prime}(j \omega)\right|^{2} \cong\left\{\begin{array}{c}
1 / k^{2} \quad \text { for } n \text { odd } \tag{17a}\\
\left(1+\varepsilon^{2}\right) / R^{2} \text { for } n \text { even }
\end{array}\right.
$$

when n is the order of the polynomal.

This is true because

$$
\begin{equation*}
\cos ^{2}\left(n \cos ^{-1} \frac{1}{\alpha \omega}\right)=\cos ^{2}\left(n \frac{\pi}{2}\right) . \text { for } \frac{1}{\alpha \omega} \ll 1 \tag{17b}
\end{equation*}
$$

For frequencies $\omega>1 / \alpha, C_{n}^{2}(1 / \alpha \omega)$ is a cosine-squared function. Therefore

$$
\begin{equation*}
0 \leq\left|C_{n}^{2}(1 / \alpha \omega)\right| \leq 1 \tag{18}
\end{equation*}
$$

The magnitude characteristic of $N\left(\omega^{2}\right)$ is equal-ripple in nature, the numerator of $\left|G_{f}^{\prime \prime}(j \omega)\right|^{2}$ will swing between 1 and $1+\varepsilon^{2}$ exactly n times, for $\omega>1 / \alpha$.

Note that

$$
\left|N\left(\omega^{2}\right)\right|=1 \quad \text { when } C_{n}^{2}(1 / \alpha \omega)=0
$$

This occurs when $\omega=\frac{1}{\alpha} \sec \frac{\pi k}{2 n}$ (where $\bar{k}=1,3,5, \cdots$).
Also,

$$
\left|N\left(\omega^{2}\right)\right|=1+\varepsilon^{2} \quad \text { when } C_{n}^{2}\left(\frac{1}{\alpha w}\right)=1
$$

This occurs when $\omega=\frac{1}{\alpha} \sec \frac{\pi k}{n}$ (where $k=0,1,2, \cdots$).

Because the parameter ε controls the amount of ripple for $\omega>1 / \alpha$, it is called the ripple factor.

All filter designs discussed will be normalized about the filter's -3 dB frequency, $\omega_{-3 d B}$; thus $\omega_{-3 d B}=1$. The normalizing parameter α is the value for which

$$
\begin{equation*}
\left|G_{f}^{\prime \prime}\left(J \omega_{-3 d B}\right)\right|^{2}=\frac{1}{2} \tag{19}
\end{equation*}
$$

The value of α must be solved by a successive-approximation. The value of α as a function of K_{f} / ε for different n is shown in figure 10 . If the approximation (16b) is valid for $\omega=1$, then

$$
C_{n}^{2}\left(\frac{1}{\alpha}\right) \cong 2^{2(n-1)} \frac{1}{(\alpha)^{2 n}}, \text { for } \frac{1}{\alpha}>1
$$

Substituting for $c_{n}^{2}(1 / \alpha)$ in equation (14),

$$
\left|G_{f}^{\prime \prime}(j \omega)\right|_{\omega=1}^{2}=\frac{\varepsilon^{2} 2^{2(n-1)} \frac{1}{\alpha^{2 n}}}{k_{f}^{2}+\varepsilon^{2} \frac{2^{2(n-1)}}{\alpha^{2 n}}}=\frac{1}{2} .
$$

Solving for the normalizing parameter α,

$$
\begin{equation*}
\alpha=\left(\frac{\varepsilon}{\bar{Z}_{f}}\right)^{1 / n} 2^{(n-1) / n}<1 \tag{20}
\end{equation*}
$$

This result is displayed in figure 10 , where $1 t$ is compared w th the calculated value of the normalizing parameter α. Note that equation (20) is valid for a less than untty, because $\cosh (x)$ in the Chebyshev polynomial may be approximated by $e^{x} / 2$. Therefore, equation (20) can be considered valid when

$$
\begin{equation*}
\frac{K}{\varepsilon} f_{>} 2^{n-1} \tag{21}
\end{equation*}
$$

Also of interest is the frequency $\omega=1 / \alpha \cdot\left|G_{f}^{11}(j \omega)\right|^{2}$ becomes

$$
\begin{equation*}
\left|G_{f}^{\prime \prime}(j \omega)\right|_{\omega=\frac{1}{\alpha}}^{2} \cong \frac{1+\epsilon^{2}}{k_{f}^{2}+\varepsilon^{2} 2^{2(n-i)}} . \tag{22}
\end{equation*}
$$

However, if inequality (2i) is valid, then from (22)

$$
\begin{equation*}
\left|G_{f}^{\prime \prime}(J \omega)\right|_{\omega=\frac{1}{\alpha}}^{2} \cong \frac{1+\varepsilon^{2}}{K_{f}^{2}} \tag{23}
\end{equation*}
$$

The denominator $D(s)$ becomes a better approximation to K_{f}^{2} for $\omega>1 / \alpha$. Since the numerator $N(s)$ for these frequencies swings between 1 and $1+\varepsilon^{2}$ (see equation (18)). the magnitude-squared function $\left|G_{f}^{\prime \prime}(J \omega)\right|^{2}$ will swing $1 / K_{f}^{2}$ and $\left(1+\varepsilon^{2}\right) / K_{f}^{2}, n$ times. This ripple effect begins at $\omega=1 / \alpha$ which may be consir'ered the corner frequency of the numerator. The above characteristics are diagrammatically illustrated in figure 11.

Heretofore, just the magnitude function has been studied, because phase information cannot be obtarned from magnitude-squared functions. To acquire the phase functions, the roots of the equal-ripple and maximallyflat polynomials must be found. Expressing the magnitude-squared function as

$$
\begin{equation*}
\left|G_{f}(j \omega)\right|^{2}=G_{f}(J \omega) G_{\hat{p}}(-J \omega) \tag{24a}
\end{equation*}
$$

or

$$
\begin{gather*}
\left|G_{f}(J \omega)\right|^{2}=G_{f}(s) G_{f}(-s) \tag{24b}\\
-s^{2}=\omega^{2}
\end{gather*}
$$

α

Figure 10

Figure 11
$G_{i}(s)$ may be found. It should be remembered that although the notation is in terms of the inaginary variable $j \omega$, the variable which appears in the function is the real variable ω^{2} (for example see (14)). The desired generalization is made by substituting s / J for ω. The remaining problem is to separate equation (2ab) into its two constituents, $G_{f}(s)$ and $G_{f}(-s)$. This is done by realizing that $G_{f}(s) G_{f}(-s)$ contains the poles and zeros of $G_{f}(J \omega)$ and their mirror images with respect to the $J \omega$ axis. Therefore, to assure a stable minimal-phase system one assigns all the left half-plane roots to $G_{f}\left(j_{w}\right)$.

Solving the denominator of equation (14) by substituting s / j for ω, $D(s) D(-s)$ becones

$$
\begin{equation*}
D(s) D(-s)=k_{f}^{2}+\varepsilon^{2} \frac{2^{2(n-1)}}{(-1)^{n} \alpha^{2 n} s^{2 n}}=0 . \tag{25a}
\end{equation*}
$$

To simplify the compuration, a new variable p is defined: $p=1 / s$. Substituting into (25a),

$$
\begin{equation*}
p^{2 n}=(-1)^{n} \frac{\alpha^{2 n_{K}}{ }_{f}^{2}}{\varepsilon^{2} 2^{2(n-1)}} \tag{25b}
\end{equation*}
$$

Solving for the $2 n$ roots,

$$
\begin{equation*}
p_{m}=\sqrt[n]{\frac{2^{n} K_{f}}{\varepsilon 2^{n-1}}} e^{\frac{\pi}{2}\left(1+\frac{2 m-1}{n}\right)} \text {, where } m 1,2,3, \cdots, 2 n . \tag{25c}
\end{equation*}
$$

The n left half-plane roots, p_{k}, may be found from (25 c) to be

$$
\begin{equation*}
P_{k}=\sqrt[n]{\frac{v^{n} k_{f}}{\varepsilon^{2} 2^{n-1}}}\left[-\sin \frac{\pi}{2 n}(2 k-1)+j \cos \frac{\pi}{2 n}(2 k-1)\right] \tag{25d}
\end{equation*}
$$

, where $k=1,2, \cdots, n$.
The roots p_{k} lie on a circle of radius $\sqrt[n]{\frac{\alpha^{n_{K_{f}}}}{\varepsilon 2^{n-1}}}$. Note that if the normalizing parameter a is approximated by ${ }^{5}(20)$ the circle becomes a untt circle.

The function $D(s)$ is found by replacing p with $1 / s$;

$$
\begin{equation*}
D(s)=C_{0}\left[\left.D(p)\right|_{s=\frac{1}{p}}\right] \tag{25e}
\end{equation*}
$$

Since $D(s)$ is constructed from the roots, and the roots solve all p.lynomials that are multiples of $D(p)$, the constant C_{0} is needed. The constant C_{0} is found by equating $D(5)$ with the square roct of equation (25a) for any ω. Solving for the roots of the numerator of equation (14) is more difficult. Subscicuting s / J for,

$$
\begin{equation*}
N(s) N(-s)=1+\varepsilon^{2} C_{n}^{2}(J / \alpha s)=0 \tag{26a}
\end{equation*}
$$

Again utilizing $p=1 / s$ for smplification, equation (26a) can be written

$$
\begin{equation*}
1+\varepsilon^{2} C_{n}^{2}\left(\frac{j p}{\alpha}\right)=0 \tag{26b}
\end{equation*}
$$

With equation (15a),

$$
\begin{equation*}
C_{n}^{2}\left(\frac{j p}{\alpha}\right)=\cos \left(n \cos ^{-1} \frac{j p}{\alpha}\right)= \pm j \frac{1}{\varepsilon} \tag{26c}
\end{equation*}
$$

In solving for p, the complex variable w is introduced,

$$
\begin{equation*}
w=u+j v=\cos ^{-1} \frac{j p}{\alpha} \tag{26d}
\end{equation*}
$$

Substituting and equating real and imaginary parts,

$$
\begin{align*}
\cos n w & =\cos (n u+j n v) \\
& =\cos (n u) \cosh (n v)-j \sin (n u) \sinh (n v)= \pm j \frac{1}{\varepsilon} \tag{26e}
\end{align*}
$$

Hence,

$$
\cos (n u) \cosh (n v)=0
$$

and

$$
\begin{equation*}
\sin (n u) \sin (n v)=\div \frac{1}{\varepsilon} \tag{26f}
\end{equation*}
$$

$\operatorname{Cosh}(n v)$ cannot be equal to zero for real v; therefore, $\cos (n u)=0$. The solutions for u are

$$
\begin{equation*}
u_{m}=\frac{\pi}{2 n}(2 m-1) \text {, where } m=1,2, \ldots, 2 n \tag{26~g}
\end{equation*}
$$

For $u_{m}, \sin \left(n u_{m}\right)$ is equal to one. Solving the remaining equation of (26f),

$$
\begin{equation*}
\sinh (n v)= \pm \frac{1}{\varepsilon}, \text { it follows that } v=\frac{1}{n} \sinh ^{-1} \frac{1}{\varepsilon} \tag{26h}
\end{equation*}
$$

Rearranging equation (26d)

$$
\begin{equation*}
\frac{j p_{m}}{\alpha}=\cos w=\cos \left(u_{m}+j v\right) \tag{26i}
\end{equation*}
$$

$$
\text { where } m=1,2, \ldots, 2 n \text {. }
$$

The n left half-plane roots are,

$$
\begin{align*}
& P_{k}=\alpha\left(-\sin \left(u_{k}\right) \sinh (v)+j \cos \left(u_{k}\right) \cosh (v)\right), \tag{26~J}\\
& \text { where } k=1,2, \ldots, n .
\end{align*}
$$

The function $N(s)$ is found by

$$
N(s)=C_{1}\left[\left.N(p)\right|_{s=\frac{1}{p}}\right]
$$

The constant C_{1} is needed for the same reasons that C_{0} was used in equation (25e).

To realize the benefit of the filter design, one must apply the above results to the noise-reduction systems in the references $[1,2,5]$. For comparison with $[1,2,5]$ the amplifier gain in figure 2 will be 20dB The $G_{f}^{\prime \prime \prime}(j \omega)$ used for this example will be a third-order filter, having a filter gain, K_{f}, of -77 dB and a ripple of 1.5 dB . To obtain the value of $\varepsilon, \sqrt{1+\varepsilon^{2}}$ mus τ be made 1.5 dB greater than 1 , that is

$$
\begin{equation*}
20 \log _{10} \frac{\sqrt{1+\varepsilon^{2}}}{1}=1.5 \mathrm{~dB} \tag{27}
\end{equation*}
$$

Here ε is found to be .6423 .

For a filter gain of $-17 \mathrm{~dB}, \mathrm{~K}_{\mathrm{f}}$ from equation (17a) is

$$
\begin{equation*}
-17 d_{B}=20 \log _{10} \frac{1}{K_{f}} \tag{28}
\end{equation*}
$$

where K_{f} is found to be 7.079 .

In this example, inequality (21) will be considered adequate; then from ('0) α is found to be . 7133.

These four parameters ($n, \alpha, \varepsilon, K_{f}$) provide a good idea of what the normalized magnitude function $\left|G_{f}^{1 " 1}(j \omega)\right|$ will look like; the -3 dB bandwidth frequency is at $\omega=1$; the corner frequency, where the ripple effect begins is at $\omega=1 / \alpha$; magnitude function will swing between $1 / K_{f}=.1413$ and $\sqrt{1+\varepsilon^{2}} / K_{f}=.1679$ exactly $n=3$ times. These characteristics are illustrated in figure 11. Starting with equation (25d) the roots of the $D(s)$ are found to be

$$
p_{1}=-.500+j .866, \quad P_{2}=-1.00, \quad P_{3}=-.500-j .866 .
$$

Multiping the roots together to form $D(p)$,

$$
\begin{aligned}
D(p) & =(p+1.00)\left[(p+.500)^{2}+.866^{2}\right] \\
& =p^{3}+2.00 p^{2}+2.00 p+1 .
\end{aligned}
$$

Using (25e),

$$
\begin{equation*}
\left.D(p)\right|_{s=\frac{1}{p}}=\frac{1}{s^{3}}+\frac{2.00}{s^{2}}+\frac{2.00}{s}+1 \tag{29}
\end{equation*}
$$

Before.finding $D(s), C_{0}$ of equation (25e) must be determined. As $\omega+\infty$ for real frequencies $\left.D(p)\right|_{s=1 / p} ^{-} T\left(\right.$ see (29)) but, $|D(s)|+K_{f}$ (from the square foot of (25a)). Therefore, C_{0} must be equal to K_{f} (see (25e)). It follows that

$$
\begin{equation*}
D(s)=7.079\left[\frac{1}{s^{3}}+\frac{2.00}{s^{2}}+\frac{2.00}{s}+1\right] . \tag{30}
\end{equation*}
$$

Using equation $(26 j)$ the roots are found to be

$$
p_{1}=-.1495+j .6696, P_{2}=-.2990, P_{3}=-.1495-j .6696 .
$$

Multipling the roots together to form $N(p)$,

$$
\begin{aligned}
N(p) & =(p+.2990)\left[(p+.1495)^{2}+.6696^{2}\right] \\
& =p^{3}+.5980 p^{2}+.5601 p+.1407
\end{aligned}
$$

Using (26k)

$$
\begin{equation*}
\left.N(p)\right|_{s=\frac{1}{p}}=\frac{1}{s^{3}}+\frac{.5980}{s^{2}}+\frac{.5601}{s}+.1407 \tag{31}
\end{equation*}
$$

As C_{0} was evaluated C_{q} is found to be K_{f}. Thus

$$
\begin{equation*}
N(s)=\frac{7.079}{s^{3}}+\frac{4.250}{s^{2}}+\frac{3.981}{s}+1 \tag{32}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
G_{f}^{\prime \prime \prime}(s)=\frac{s^{3}+3981 s^{2}+4.250 s+7.079}{7.079 s^{3}+14.76 s^{2}+14.16 s+7.079} \tag{33}
\end{equation*}
$$

The magnitude and phase functions of $G_{f}^{\prime \prime \prime}(j \omega)$ for real frequencies ω are shown in frgure 12.
$G_{f}^{\text {"' }}(s)$ is now used in the noise-reducing system in figures $3 a$ and $3 b$ (f ith amplifer gain $K_{a}=20 d B$) to reduce the open-loop gain from K_{a} to K_{a} / K_{f}. Because the phase of $G_{f}^{\prime \prime \prime}(s)$ (for large n) can shift beyond -180 degrees for some frequencies, the open-loop gain $\left|K_{a} G_{t}\right|$ must be kept greater than untty until the open-loop phase returns to above -180 degrees. This is necessary to avoid encirclment of the $(-1, j 0)$ critical

Third-order Butterworth-Chebyshev Filter
Figure 12
print on the Nyquist diagram. Subsequently, the magnitude must become Tess than unity before the open-100p phase function, which reflects the increasing negative phase of the time delay, returns below -180 degrees, see $13 a$ and $13 b$.

This magnitude characteristic is not always guaranteed by $G_{m}(s) G_{s}(s)$. In this case, an additional lag pole will be necessary.

Through graphical manipulation (using figures $3 \mathrm{a}, 3 \mathrm{~b}, 12 \mathrm{a}, 12 \mathrm{~b}$), the open-100p transfer function characteristics in figure 13 a and 13 b were constructed. Here, the $-3 d B$ frequency $\omega_{-3 d B}$ of $G_{f}^{\prime \prime \prime}(j \omega)$ is found to be 1.0KHz. The normalized filter function (33) is translated to the actual frequenctes by replacing s in (33) by $s / 2 \pi(1000)$:

$$
\begin{align*}
G_{f}^{\prime \prime \prime}(s) \mid & =\frac{4.030 \times 10^{-12} s^{3}+7.01 \times 10^{-8} s+676 \times 10^{-4} s+7.079}{2.85 \times 10^{-12} s^{3}+3.59 \times 10^{-7} s^{2}+225 \times 10^{-3} s \div 7.079} \tag{34}\\
\omega_{-3 d B} & =2000 \pi
\end{align*}
$$

Also, from figures 13 a and 13 b , it can be seen that a pole is needed near 2. 2 KHz to bring the magnitude function below unity. Now the open-loop transfer function in s for figures $13 a$ and $13 b$ is

$$
\begin{equation*}
\left|K_{a} G_{t}(s)\right|=10\left[\left.G_{f}^{\prime \prime \prime}(s)\right|_{\omega}\right] \frac{1}{7.23 \times 10^{-5} s+1} \frac{1}{\left(3.98 \times 10^{-5} s+1\right)^{2}} \tag{35}
\end{equation*}
$$

In the above example the bandwidth was extended to 1000 Hz with a thirdorder, maximally-flat, equal-ripple, lag-lead filter.

Olson's system with Butterworth-Chebyshev Compensation
Figure 13a

Nyguist diagram of Figure 13a
Figure 13b

CONCLUSION

The work reported upon here showed that, by using additional electronic filtering, the bandwidth of an active electronic noise reduction system could be increased by two octaves. This improvement was achreved through the use of the aigebraically tractable Butterworth and Chebyshev functions. Also, filter parameters (n, a, ε, K_{f}) were chosen such that significant filter characteristics could be determined by inspection. Hence, by employing such an easily designed electronic filter, a significant improvement in active electronic noise reduction systems was realized.

For further improvemenzs in system bandwidin, higher-order fiter functions could be cried, in addition to types ocher than Butterworth and Chebyshev. Moreover, improvements which would reduce time delay in other system components should be investigated.

BIBLIOGRAPHY

1. H.F. Olson and E.G. May, "Electronic Sound Absorber", J. Acoust. Soc. Am. 25, 1130-1736 (1953).
2. H.F. Olson, "Electronic Control of Noise, Vibration, and Reverberation," J. Acoust. Soc. Am. 28, 966-972 (1956).
3. 0. Bschorr, "Verminderung des Fluglanms durch gesteuerte Interferenz," Messerschiti-Bolkow-Blohm Gmbh, MBB Bericht Nr: BB-55-71 (1971), (in German).
1. G. Canevert and N. Jessel, "Les Absorbeurs Acoustiques Actif," 7ch Internat. Congress on Acoustics, Budapest, 20 E 5 , (1971), (In French).
2. W.F. Meeker, "Active Ear Defender System. Development of a Laboratory Mode1," NASA Contract No. AF 33(616)-3051, WADC Technical Report 57-368, (1960).
3. C.A. Ewaskio and O.K. Mawardi, "E.ectroacoustic Phase Shift in Loudspeakers", J. Acoust. Soc. Am., 444-448, (1950).

[^0]: ${ }^{1}$ Aviation use to date has been essentially scalar magnetometry.

[^1]: ${ }^{2}$ It was noted following (1-7) that a unique solution for attitude varlation is not possible using magnetic field data alone.

[^2]: 3^{3} Not necessarily derived inertlally [Ref. 1-11].

[^3]: ${ }^{4}$ An example of this would be yaw rotation while flying straight and level over the magnetic poles or roll rotation while flying towards a pole at the magnetic equator.

[^4]: ISance pitch is defined as the angle between the x axis and the horizontal plane we can assume that at any heading, alrcraft attitude results due to a pitch followed by a roll.

[^5]: ${ }^{2}$ The response times of the various sensors and analog circuitry are orders of magnitude greater than the desired one second sample interval.

[^6]: ${ }^{3}$ Current remote magnetic indicators are pendulous and rely on gravity to enable measurements of the horizontal magnetic vector (not attitude independent).
 ${ }^{4}$ Assuming that the sensors have repeatable or measurable characteristics, algorithms can be developed to correct previously measured erroneous data.

[^7]: ${ }^{1}$ That Is, the sampled data derived from a sine wave of frequency f sampled at a frequency less than $2 f$ can be fitted with sine waves of a frequency other than f.

[^8]: ${ }^{2}$ Signetics cradename for the 2650 resident. loader and monitor program.

[^9]: ${ }^{3}$ This step is vital to determine whether the operations outIned in 1) above are to be carried out in a single or multiprecision manner.

[^10]: ${ }^{4}$ With zero stimulus applied the sensors have a finite nonzero output. This error in the fluxgate magnetometer is a function of temperature, voltage and magnetic remanence in the sensor magnetics [Ref. 3-36].
 ${ }^{5}$ Sensor characterıstics relating the temperature and power suppiy coefficlents of offset error and nonlinearity can be derived empirically.

[^11]: $\overline{{ }^{6} \text { If } \mid}|\mathrm{Hx}|<|\mathrm{Hy}|$, then an equation similar in form to 2 -la must be used.

[^12]: 7It is possible at certain attitudes to require sign reversals when computing horizontal vectors.

[^13]: $8_{\text {Memory }}$ Integrated circuit (IC) devices of both types can be used in the same mechanical sockets with actual chap type being used transparent to the remainder of the system.

[^14]: ${ }^{9}$ Some of the subroutines required double precision manıpulations to maintaln overall system accuracy.

[^15]: ${ }^{1}$ Offset corrections were made in the sample subroutine "SAMP" illustrated in Fig. 3-6a.

[^16]: ${ }^{2}$ For example, magnetized screwdrivers or other tools used near the sensor will alter the residual magnetic field.

[^17]: Table 4-1 OFFSET DATA DERIVED BY MEASURING EARTH'S FIELD

[^18]: ${ }^{3}$ By maximizing or nulling a measurement, the mechanical positioning is a function of only the field and the resolution of the voltage measuring device obviating errors due to physical position measurement.

[^19]: ${ }^{4}$ Assume that the first axis is Initially adjusted for maximum output to align it with earth's field and the rotation axis is perpendicular to the field.

[^20]: ${ }^{5}$ Verbally confirmed by Workentine of Develco [Ref. 4-1].

[^21]: ${ }^{6}$ One machine cycle. time for the 2650 microprocessor with 1 mHz clock frequency.

[^22]: ${ }^{7}$ A byte is accepted terminology for an eight bit data quantity.

[^23]: ${ }^{9}$ The procedure determines the relative address by linear interpolation, then selects the closest address as the required angle for the solution.

[^24]: Photo 5-2 CENTRAL PROCESSOR, MEMORY AND ANALOG SUBSYSTEM

[^25]: ${ }^{1}$ Since the local magnetic field has a nonzero gradient, field measurements include a component due to translation of the sensor axes. This component of measurement produces unacceptable error in a system designed to measure field components that change due to rotation.

[^26]: ${ }^{2}$ A speclal subroutine was used to display z axis data directly in BCD format on the seven bar output display.
 ${ }^{3}$ This measurement technique ensured that all heading measurements were made identically. In addition, error due to system imprecision was reduced.

[^27]: Table 5-3 REFERENCE DATA MEASUREMENTS OF HEADING TAKEN WITH NO ORTHOGONALITY CORRECTION

[^28]: Table 5-7 HEADING MEASUREMENTS AT PITCH $=20^{\circ}$ WITH OFFSET AND ORTHOGONAIITY CORRECTION MADE

[^29]: ${ }^{4}$ This corroborates the observations predicted during error analysis in Chapter IV.
 ${ }^{5}$ We note that the error excursions are functions of pitch and roll and that Z axis data is used in the rotation algorithm.

[^30]: REPRODUCIBLLITY OF THE

