4

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILIEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

SAR-Landsat Image Registration Study

Stephen W Murphrey
Internatıonal Business Machınes Corporation
18100 Frederick Pıke
Garthersburg, MD 20760

September 1978
Final Report

Prepared under NASA contract NAS6-2827 for
Wallops Flight Center
Wallops Island, VA 23337

Approved by:

Ralph Bernstein, Mgr. Advanced Image Processing Analysis and Development

Approved by:

PREFACE

This is the final report on the IBM SAR-Landsat Image Registration Study performed under NASA contract NAS6-2827. It summarizes the effort and results of the enture study, and it is submitted in accordance with Item 2 of Article IX of the study contract.

TABLE OF CONTENTS
Section Page
INTRODUCTION AND SUMMARY 1-1
Purpose 1-1
Scope of the Study 1~1
Summary of Effort 1-1
Conclusions 1-2
Recommendations 1-2
New Technology 1-2
LANDSAT PROCESSING 2-1
Summary of Landsat Processing 2-1
2.1
Sources of Landsat Imagery 2-1
2.2
Preprocessing 2-2
2.3
Control-Point Location 2-3
2.5 Scene Correction 2-8
SAR PROCESSING 3-1
Summary of SAR Processing 3-1
Preprocessing 3-1
Temporal Registration 3-2
Processing Steps for Temporal Registration of SAR Data 3-2
Descrıption of Least-Squares Fitting Algorithm 3-3
IMAGE PROCESSING 4-1
Enhancement 4-1
Contrast Enhancement 4-1
Digital Filtering for Edge Enhancement 4-3
Enhancement Processing 4-4
Film Plotting and Photographic Processing 4-4
Resampling Methods 4-4
TECHNICAL EVALUATIONS 5-1
Landsat Processing Evaluation 5-1
SAR Image Processing Evaluation 5-1
Salisbury SAR Image 5-1
Cambridge SAR Image 5-3
SAR-LANDSAT PROCESSING CAPABILITY 6-1
SUPPORT TO NASA PLANNING ACTIVITIES' 7-1
7.1 Documentation 7-1
7.2 Photographic Products for Presentations 7-1
Section Page
8 RESULTS AND CONCLUSIONS 8-1
8.1 Feasibility of SAR/Landsat Registration 8-1
8.2 Control-Point Location Results 8-1
9 REFERENCES 9-1

Appendix A Functional Description of SAR/Landsat Data Merging System Appendıx B Detaıled Design of the SAR/Landsat Data Merging System

ILLUSTRATIONS

Figure Page
2-1 Landsat-MSS Histograms 2-4
2-2 Example of Shadeprint 2-9
4-1 Locating Output Points in Input Space 4-5
4-2 Two-Way Cubic Convolution Resampling 4-5
TABLES
Number Page
5-1 Results of Accuracy Check for Landsat Data 5-2
5-2 Results of Accuracy Check for Salisbury SAR Data 5-4
5-3 Results of Accuracy Check for Final Cambridge SAR Data 5-5

Section 1

INTRODUCTION AND SUMMARY

1.1 PURPOSE

This is the final report on $I B^{\prime \prime}$ s $S A R-L a n d s a t$ Image Registration Study. It describes the work performed under contract NAS6-2827 and satisfies Item 2 of Article IX of that contract. Some results of additional related studies outside the scope of this contract performed by IBM under its Independent Research and Development (IRAD) program are also described in this report.

1.2 SCOPE OF THE STUDY

The primary purpose of this study was to develop techniques and capabilıties to assemble SAR/Landsat data sets. To accomplish thys, two SAR data sets were extensively analyzed. Suitable algorithms and techniques were developed to register $S A R$ data with corrected Landsat-MSS data. Then an example of registered SAR and Landsat-MSS data was produced. The results of this processing are presented later in this report.

A second purpose of this study was to contribute to the writing of the SAR/Landsat System Plan. This document, published by Wallops Flight Center, was edited by Purdue/LARS and jointly authored by Wallops Flıght Centex, Purdue/LARS, IBM Corporation, and Goodyear Aerospace Corporation.

A third purpose of this study was to design a software system that will be able to produce registered $S A R$ and Landsat data sets. If it is approved and funded by NASA, the system will be implemented at Purdue/LARS in FY 1979. The Landsat processing portion of the system was designed in detail. Documents (Appendixes A and B) describing this design were produced.

1.3 SUMMARY OF EFFORT

During the course of this study which began in April 1977, the following results were accomplished:
a. One Landsat-MSS frame was geometrically corrected (using geodetic control points) to a 50.8 -meter pixel spacing. Two subimages of this frame were corrected to a 25.4 -meter pixel spacing.
b. SAR data sets were registered to each of the 25.4 -meter corrected Landsat subimages.
c. An informal report that represents $I B M$'s contribution to the SAR/Landsat System Plan was written and submitted to Purdue/LARS.
d. The Landsat-MSS portion of the SAR/Landsat Data Merging System was designed in detail. A document describing the system was written.
e. Support of NASA planning activities was provided as required by NASA.

An IRAD program of related investigations outside the scope of this contract was defined and completed. Some of the results are included in this report.

1.4 CONCLUSIONS

The primary conclusion to be drawn from the results of this study is that digital methods provide a viable technology for accurate registration of SAR and Landsat-MSS data. Existing software, developed previously by IBM, was used to produce an example of registered SAR and Landsat-MSS data. Residual RMS errors at the registration control points of this data set were on the order of 55 meters.

1.5 RECOMMENDATIONS

The results of this study lead to the following recommendations for future NASA actions:
a. NASA should implement the SAR/Landsat Data Merging System at Purdue/LARS. This will provide the means by which NASA and other users can create a data base of registered SAR and Landsat-MSS data.
b. Experiments should be conducted to determine how the addition of a registered SAR channel to the Landsat-MSS channels contributes to the information extraction process.
c. NASA should fund a study to determine the differences (if any) involved in registering digital images from Seasat-1 SAR data with corrected Landsat-MSS images. Technıques for modeling geometric distortions should be investigated thoroughly in this study.
d. The subject of registration of image data from different types of instruments (that has been shown feasible by this study) should be pursued with regard to other instruments. Sensors from both aircraft and spacecraft devices should be studied.

1.6 NEW TECHNOLOGY

No new technology was discovered during the course of this contract.

Sectıon 2

LANDSAT PROCESSING

2.1 SUMMARY OF LANDSAT PROCESSING

The first step in the registerıng of aircraft SAR image data and Landsat-MSS data was the geometric correction of the Landsat data to a Universal Transverse Mercator (UTM) map projection. This included the creation of both digital and enhanced photographic images that were registered to a UTM map. The processing involved was organized into the following parts:
a. Preprocessing
b. Control-Point Location
c. Scene Correction
d. Digıtal Filtering
e. Film Plotting and Photographic Processing

Each of these is described below or in Section 4, following a brief summary of Landsat-MSS digital data and its sources.

2.2 SOURCES OF LANDSAT IMAGERY

A multispectral scanner (MSS) is part of the payload of each of the first three Landsat spacecraft. In addition, inclusion of an MSS device in the Landsat-D payload is currently planned by NASA. The launch dates of the Landsat satellites follow:
a. Landsat-1, July 1972
b. Landsat-2, January 1975
c. Landsat-3, March 1978
d. Landsat-D, Scheduled in 1981

The MSS instruments on these spacecraft image the surface of the earth in four (Landsat-1 and Landsat-2) or five (Landsat-3 and Landsat-D) spectral bands. This is done simultaneously through the same optical system. The first four bands operate in the solar-reflected spectral region, and the fifth band operates in the thermal (emıssive) spectral region, as follows:
a. Band $1,0.5$ to 0.6 micrometers
b. Band 2, 0.6 to 0.7 micrometers
c. Band 3, 0.7 to 0.8 micrometers
d. Band 4, 0.8 to 1.1 micrometers
e. Band 5, 10.4 to 12.6 micrometers (Landsat-3 and Landsat-D only)

MSS computer compatible tapes (CCTs) may be purchased from EDC. If a user does not know which scenes he requires, he may request a computer geographic search to obtain a listing of available scenes in his area of interest. To place an order, to inquire about the avallabilıty of data, or to establish a standing order, a user may contact:

User Services Unıt
EROS Data Center
Sioux Falls, South Dakota 57198
Phone 605/594-6511, extension 151
Users within the NASA community may be able to obtain MSS data directly from NASA-GSFC.

A new processing system at EDC will become operational in 1978. Digital MSS data sets obtained prior to this are in a two-pixel-interleaved (X) format. The new system will produce data sets in either band-sequential (BSQ) or band-interleaved (BIL) format.

The new EDC system will provide two levels of processing for MSS data: partial processing and full processing. Partially processed data has been radıometrically corrected. That is, decompression, gain, and offset adjustments have been applied to the image data. Fully processed data has, in addition, been geometrically corrected. That is, the image data has been resampled by either cubic convolution or nearest neighbor techniques to present the data in one of several possible map projections. Corrections due to spacecraft altitude, ground truth, etc., have been applied.

A complete description of the Landsat program, its available products, and how to acquire them may be found in the Landsat Data Users Handbook, Revised. A new version of this document is being prepared by NASA Goddard Space Flight Center (GSFC) and USGS EROS Data Center (EDC) and is expected to be available in the lattex part of 1978.

2.3 PREPROCESSING

Preprocessing consisted of all work of a preparatory nature that was performed before the major parts of the geometric correction process were started. It involved reorganization, evaluation, and radiometric correction of the image data.

The first step was the reformatting of the digital image data from the X format to the BSQ format required by the existing software at IBM. There were some I/O errors on the input CCTs, but the reformatting was eventually completed for two MSS scenes: 2579-14535 (the State of Delaware and the Eastern Shore area of Maryland) and 2579-14541 (the southern part of the Delaware-Maryland-Virginia peninsula).

The reformatted data was histogrammed to obtain knowledge, about the distribution of the pixel intensities in each spectral band. The histogram program was run once for each spectral band of each of the two Landsat-MSS scenes. The output from this program consisted of absolute frequency distribution, cumulative frequency distribution, arithmetic mean, standard deviation, and root of the mean of the squares (RMS). Sample output is shown in Figure 2-1.

Using the mean and standard deviation of the paxel intensıty distrıbution of the image data and knowledge of the radiometric characterıstics of the IBM Drum Scanner/Plotter, ${ }^{1}$ gain and blas coefficients were computed for each spectral band of each scene. The data from spectral band 3 (0.7 to 0.8 micron wavelength) of each scene was radiometrically adjusted using the gain and bias coefficients in a first-degree polynomial transformation. This radiometric adjustment was merely a contrast stretch that enabled the plotting device to produce a high-quality image. The two adjusted images were plotted on fllm (see Section 4.2), and the resulting 1 mages were visually evaluated. The pictures appeared to be of good quality.

At this point, at the request of NASA, the Landsat processing was limited to the Delaware scene (2579-14535). All further Landsat processing was done on that scene.

It is well known that Landsat-1 and Landsat-2 MSS data often exhıbit an undesirable strıping pattern that occurs on a six-scan-lıne basis. This strıping is especially evident in spectral band 1 (0.5 to 0.6 micron wavelength). A stripıng reduction program that uses a sweep mean and standard deviation equalization algorithm ${ }^{2}$ was used on all four spectral bands of the Deleware scene (2579-14535). A gain and bias correction function was used to perform this radiometric correction. A new gain and bias were calculated for each image-scan-line in such a way that the mean and standard deviation of each corrected image scan line equaled those of the uncorrected six lines of that scan-mirror sweep. The resulting image data still displayed some striping, especially in the coastal regions. However, it was an improvement over the uncorrected data. The radiometrically corrected data was used as input to all of the remaining Landsat processing.

2.4 CONTROL-POINT LOCATION

In order to perform precise geometric correction of Landsat-MSS data, it was necessary to use scene data to define some of the error corrections. $2,3,4,5,6,7,8,9$ In particular, UTM map coordincates and input-image pixel coordinates of several control points were needed. Twenty-five control points were found.

Figure 2-1. Landsat-MSS Histograms (sheet 1 of 4)

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 2-1. Landsat-MSS Histograms (sheet 2 of 4)

Figure 2-1. Landsat-MSS Histograms (sheet 3 of 4)

ORIGINAL PAGE IS
OF POOR QUAIJTY

Figure 2-1. Landsat-MSS Histograms (sheet 4 of 4)

Several years ago, IBM produced a mosaic image of the State of New Jersey. The bottom scene (1079-15133) in that mosaic is of the same ground area as the Delaware scene. An attempt was made to correlate the control points from the older scene to the current scene. Six control points were located in this manner, using a digital correlation program. Several points in the older scene either were not found or had a correlation peak that was too small. The remaining control points were found manually.

The first step in manual control-point location was to select some potential control points. This was done by viewing the film image and locating features that were visible both on the image and on a map. Next, computer generated shadeprints were created for each potential control point. A shadeprint is a display of a subimage on a computer listing as a two-dimensional array of printed characters, on which gray levels are simulated by overstrike printing (see Figure 2-2). The shadeprints and maps were then manually compared to determine corresponding points in both pixel and map coordinates. Finally, the set of control-point locations was checked for errors by an iterative process of evaluating the geometric transformation (between corrected output space and uncorrected input space) derived from a given set of control points and mapping those control points through that transformation. Points at which the geometric errors were largest were rechecked for location errors, and the process was repeated for the refined set of points.

2.5 SCENE CORRECTION

Scene correction of Landsat-MSS data is the accurate geometric correction of the data to a UTM map projection. It involved two steps: determining the geometric transformation between the corrected and uncorrected images, and resampling (interpolating) the uncorrected data to the data samples in the corrected data set.

The geometric transformation used for the Delaware scene used fifth-degree leastsquares polynomials according to algorithms and techniques ${ }^{10}$ developed by IBM under contract NAS5-21716. Twenty-five well-distributed control points were used to generate the image error models. The error models were evaluated at a nine-by-nine array of points, and the polynomial models were obtained by fitting to these eighty-one points.
Cubic convolution ${ }^{2}, 10$ resampling incorporating a high-frequency correction technique was used to remove some horizontal geometric errors. Resampling was done at two different pixel lattices. First, the full frame was resampled to a horizontal and vertical pixel spacing of 50.8 meters. Second, two subimages (one of the Salisbury, MD area and one of the Cambridge, MD area) were resampled to a spacing of 25.4 meters. These particular spacings were chosen to give images of 1:500,000 and $1: 250,000$ scales when the data was plotted on the IBM Drum Scanner/ Plotter with a nominal pixel spacing of .004 inches in both directions. The Salisbury SAR data was spaced at 25 meters, and this led to the selection of 25.4 meter spacing for the Landsat subimages.

Copies of all digital data sets that represent processed Landsat images were sent to NASA/WFC or to Purdue/LARS as requested by NASA.

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 2-2. Example of Shadeprint

Section 3

SAR PROCESSING

3.1 SUMMARY OF SAR PROCESSING

Once the Landsat-MSS data was geometrically corrected to register with a UTM map, the SAR data was geometrically corrected to register with the corrected Landsat data. This included the creation of both digital and enhanced photographic images having the same geometry as the corrected Landsat images. The processing unvolved was organized into the following parts:
a. Preprocessing
b. Temporal Registration
c. Digıtal Filtering
d. Film Plotting and Photographic Processing.

Each of these is descrıbed below or in Section 4.

3.2 PREPROCESSING

Ten aircraft SAR data sets were provided at the beginning of this contract. There were two different pixel spacings of each of five ground areas. All preprocessing done on this data was for the purpose of generating film lmages. Histograms were created for each data set. That information was used to create radiometrically adjusted (i.e., contrast-stretched) data suitable for film plotting. That data was plotted on film, and various photographic products were created from the resulting negatives. These ten images were of very marginal quality. The data was extremely noisy, and landmarks were very difficult to distinguish. A SAR data set containing Salisbury, MD was selected to be the subject of further study.

A second SAR data set was obtained by scanning a black-and-white print of a SAR image of Cambridge, MD. The scanning was performed on the IBM Drum Scanner/Plotter. A nominally square aperture of size . 004 inches was used. The pixel spacing was .004 inches in both the horizontal and the vertical directions. Although there was stall some noise evident in the data, the qualiry of the image was considerably better than that of the Salisbury image. There were several lines in the image that appeared to be norse. They are believed to be a result of scratches in the negative used to produce the print from which the digital data was scanned.

The digital data produced by the scanning process was subjected to several preprocessing steps to prepare it for further study. Histogramming, contrast stretching, and film plotting were done as described above to verıfy the quality of the digital data.

3.3 TEMPORAL REGISTRATION

Temporal regastration experiments were conducted with both the Salısbury and the Cambridge images. One version of temporally registered data for each of these data sets was created under IRAD funding. The Cambridge image was then subjected to further study and a second version of temporally registered data was created. The technıques used to register the SAR data were identical in each case and are described below.

3.3.1 Processing Steps for Temporal Registration of SAR Image Data

The first step was to select potential registration control points (RCPs) in both the corrected Landsat data and the uncorrected SAR data. This was done by viewing pictures made from each data set and locat.ng features that were visible in both pictures. For the Salisbury ımage, this was very difficult to do. The high noise content of the SAR data resulted in few good features being visible. Selecting potentıal control points was much easier for the Cambrıdge image, since the noise content was much lower. However, there were still some regions of the image in which control points could not be found.

The second step was to generate shadeprints (i.e., display of the subimage with a computer line printer as a two dimensional array of printed characters, on which gray levels are simulated by overstrike pranting) for both the uncorrected SAR and the corrected Landsat-MSS data. One shadeprant was generated for each potential control point in each of three data sets: SAR, MSS band 2, and MSS band 4. Some features visible in one MSS spectral band were not visible in another band. Bands 2 and 4 were used because they are frequently the most useful bands for control-point location.

The third step was to manually determine control-point locations (i.e., corresponding pixel coordinates in each image space) by viewing the shadeprints. This was very difficult for the Salisbury image. The noise content rendered most of the SAR shadeprints useless. For the Cambridge image, this problem was not as severe. Consequently, many more control points were located in the Cambridge image.

The fourth step can be called refinement of control-point locations. It involved checking the control-point locations for errors. This was done by obtaining the geometric transformation resulting from a set of control points, evaluating the geometric transformation at the control-point locations (in corrected Landsat-MSS space), and computing the differences between the observed and computed values of the control points (in uncorrected SAR space). These differences, or residual errors, were then studied to see if any errors in control-point location could be discovered. (Frequently the residual error for a mislocated point is larger than that of the correctly located points.) The process was iterated until a reasonable set of control points was obtained.

For Salisbury, a total of 14 control points were used. For Cambridge, a total of 73 control points were used. In this partıcular example, many of these control points were clustered in sets of two or three similar locations. The important factor seems to be the distrubution of the control points. Wherever there was a relatively large region of the SAR image in which there were no control points, registration accuracy observed in the photographic ımages seemed
to be lower. This was evident in the Salısbury 1 mage and in the first two processed versions of the Cambridge image.

The fifth step was the calculation of the coefficients of the geometric transformation that were used to correct the SAR data. Least-squares polynomials in two variables of degree five were used. Each point (y, x) in corrected Landsat-MSS space was mapped to the point (v, u) in uncorrected SAR space. Here $v=H(y, x)$ and $u=V(y, x)$, where H and V were fifth-degree polynomials. Each polynomal contained 21 terms and the sum of the exponents in any term was less than or equal to five. (See Section 3.3.2 for a description of the least-squares algorıthm.)

The sıxth, and final step was the resampling of the SAR image data. Cubic convolution ${ }^{2,10}$ resampling was used.

3.3.2 Description of Least-Squares Fitting Algorithm

A direct polynomial fit to the registration control points was used to define the transformation between corrected Landsat space and uncorrected SAR space. This process involved the following steps:
a. Locating a set of RCPs in both the corrected Landsat data and the uncorrected SAR data, as discussed above.
b. Selecting an appropriate polynomial form to use as a geometric transformation.
c. Determining the coefficients of the polynomials by a least-squares fit.

The resulting polynomials were used by the resampling program to create a corrected SAR image.

It can be very difficult to locate RCPs in the SAR data. The high noise content in the Salisbury, MD image (see EVALUATION OF TECHNICAL RESULTS section below) made precise location of RCPs impossible for that image. The Cambrıdge, MD 1mage had much lower noise content, and RCP location was much easier. The nature of SAR data itself contributes to the RCP location problem. The radiometry of a feature in an SAR image is usually totally different to that of the same feature in a Landsat image. In addition, shadowing or apparent widening of edges is present in SAR data, but not in Landsat data.

A manual technique for RCP location was used by IBM in its experiments with the Salisbury and Cambridge SAR data sets. Potential RCPs were displayed using a computer printout in which overstrikes are used to simulate gray levels.
(These are called shadeprints.) RCPs were located by visually comparing Landsat and SAR shadeprints.

To discuss the least-squares technique used to obtain the polynomials that mapped corrected Landsat space into uncorrected SAR space, let

$$
\mathrm{R} \quad=\left[\begin{array}{cc}
\mathrm{H}_{1} & \mathrm{v}_{1} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\mathrm{H}_{21} & \mathrm{v}_{21}
\end{array}\right]
$$

$$
\begin{aligned}
& \begin{aligned}
\left(y_{i}, x_{i}\right) & =\text { horizontal and vertical pixel coordinates of } i^{\text {th }} \text { RCP in } \\
& \text { corrected Landsat space. }
\end{aligned} \\
& \begin{aligned}
\left(v_{i}, u_{i}\right)
\end{aligned}=\begin{aligned}
& \text { horizontal and vertical pixel coordinates of } i^{\text {th }} \text { RCP } \text {, in } \\
& \text { uncorrected SAR space. }
\end{aligned} \\
& \mathrm{T}=\left[\begin{array}{cc}
\mathrm{v}_{1} & u_{1} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\mathrm{v}_{\mathrm{n}} & u_{\mathrm{n}}
\end{array}\right] \\
& W=\left[\begin{array}{ccc}
f_{1}\left(y_{1}, x_{1}\right) & \ldots & f_{21}\left(y_{1}, x_{1}\right) \\
\cdot & & \vdots \\
\cdot & & \vdots \\
f_{1}\left(y_{n}, x_{1}\right) & \ldots & f_{21}\left(y_{n}, x_{n}\right)
\end{array}\right]
\end{aligned}
$$

The columns of R will represent the coefficients of two polynomials. That is,

$$
\begin{aligned}
H(y, x)= & H_{1}+H_{2} x+H_{3} x^{2}+H_{y} x^{3}+H_{5} x^{4}+H_{6} x^{5}+ \\
& H_{7} y+H_{8} y x+H_{9} y x^{2}+H_{10} y x^{3}+H_{11} y x^{4}+ \\
& H_{12} y^{2}+H_{13} y^{2} x+H_{14} y^{2} x^{2}+H_{15} y^{2} x^{3}+ \\
& H_{16} y^{3}+H_{17} y^{3} x+H_{18} y^{3} x^{2}+ \\
& H_{19} y^{4}+H_{20} y^{4} x+ \\
& H_{21} y^{5} \\
= & \sum_{i=1} H_{i} f_{i}(y, x) \\
& 21 \\
V(y, x)= & \sum_{i=1} V_{i} f_{i}(y, x)
\end{aligned}
$$

The polynomials H and V approximate the mappıng

$$
\left(y_{i}, x_{i}\right) \longmapsto\left(v_{i}, u_{i}\right) \quad \text { for } i=1,2, \ldots, n
$$

in the least square sense. That is,

$$
\left.\begin{array}{l}
H\left(y_{i}, x_{i}\right) \approx v_{i} \\
V\left(y_{i}, x_{i}\right) \approx u_{i}
\end{array}\right\} \text { for } i=1,2, \ldots, n
$$

The coefficients of H and V are found by solving the matrix equation $T=W R$ for R. The solution is

$$
\begin{equation*}
R=\left(W^{T} W\right)^{-1} W^{T} T \tag{1}
\end{equation*}
$$

The equations given above are for full, fafth-degree, bavariate polynomials. This is the form selected to correct the Cambrıdge image. For the Salisbury image, only 12 RCPs were found. Full, third-degree, bivariate polynomials were used for that image.

In each case, the form of the polynomials was determined empırically. Several polynomials were found by performing the least-squares fit, and the resulting residual errors were computed. The ideal situation in doing a direct fit to RCPs is to have a highly overdetermaned system (equation 1) and to have very low residual errors. This would indicate that the polynomials were good models of the geometric distortions. This did not happen for the two amages in question. For the Salisbury image, the small number of RCPs led to a system that was only slightly overdetermined. Polynomials of degree less than that used led to unacceptably high residual errors. The Cambrıdge image had enough RCPs located to give a very overdetermined system, and the corresponding residual errors were acceptably small.

Full bivarıate polynomials of degrees three, four, five, six, and seven were considered for the processing of the Cambridge SAR image. Those of degree five appeared to fit the control points best, especially near the edges of the SAR image data. The results of the least-squares fitting, using the final set of 73 control points, are shown in Section 5.

Section 4

IMAGE PROCESSING

Some of the processing performed on $1 m a g e$ data under this contract was identical for both SAR and Landsat data. These standard image-processing techniques include:
a. Enhancement
b. Film Plotting and Photographic Processing
c. Resampling Methods
which are discussed below.

4.1 ENHANCEMENT

It is possible to modify Landsat digital data in such a way as to enhance certain aspects of the image. Two such aspects are contrast and edge definition. The purpose of both types of enhancement is to make certain features more visible in a photographic rendition of an image. An enhanced image ususally represents a less accurate reconstruction of the true data than the original Iandsat digital radiometric data. However, enhanced images generally appear to be more pleasing to view and to contain more information.

4.1.1 Contrast Enhancement

The usual purpose of contrast enhancement is to enable an image display device (such as a film plotter, a CRT display, or a computer line printer) to utilize ıts full dynamic range capabilıty. Consider a 256 -level plotter being used with 64-level Landsat-MSS data. Unless some contrast stretching is done to the data, the resulting image will be too dark (since only the lowest fourth of the dynamic range of the plotter is beang used). Another use for contrast enhancement is to bring out the information in a particular region in an rmage.

A standard method of stretching the contrast of a digital image is to apply a first-degree polynomial function to the image data. That is, let

$$
C(i, j)=g I(1, j)+b
$$

where

$$
\begin{aligned}
I(i, J) & =\text { intensity value of } I^{\text {th }} \text { sample in } j^{\text {th }} \text { line in the input data } \\
& =\text { gain coefficient. } \\
b & =\text { bias coefficient. } \\
C(1, J)= & \begin{array}{l}
\text { intensxty value of } \\
\\
\text { contrast-stretched data. }
\end{array}
\end{aligned}
$$

It is assumed that the values $C(1, j)$ have been clipped to fat the dynamic range of the display device.

The gain and bas coefficıents can be determined through a vexy simple statıstical technique:

$$
\begin{aligned}
& \mathrm{g}=\mathrm{S} / \mathrm{s} \\
& \mathrm{~b}=\mathrm{M}-\mathrm{gm}
\end{aligned}
$$

where
$m=$ mean of the subimage of input data that is of interest.
$s=$ standard deviation of the subimage of input data.
$M=$ desired mean of the subimage of output data.
$S=$ desired standard deviation of the subimage of output data.
The values of the statistical parameters of the subimage of output data are determined empirically. However, reasonable values may be estımated by letting M be the midpoint of the effective dynamic range of the image display device and by letting S be one sixth the length of the effective dynamic range of the device.

For example, consider a plotter that accepts pixel values in the range $\emptyset, 1, \ldots, 255$ and that plots the same gray level for all values in the range $\varnothing, 1, \ldots, 55$. In the range $56,57, \ldots, 255$ assume that the response (gray level versus pixel value) is approximately linear. The effective dynamic range of this hyopthetical plotter is $56,57, \ldots, 255$. Then $M=155$ and $S=33$ should be reasonable values to obtain a good plot with this plotter. Experience would enable these values to be refined.

4.1.2 Digital Filtering for Edge Enhancement

Edge enhancement is an artificial sharpening of the features of a digital image. It is often used to accentuate boundaries of features or to brang out linear features of an image. Prctures of edge enhanced images are generally more appealing than those of unenhanced images (although this is very subjective).

Digital edge enhancement can be performed by a digatal fılter (discrete convolutıon) function of the form

$$
E(i, j)=\sum_{m=1}^{3} \sum_{n=1}^{3} I(i+m-2, j+n-2) F(m, n)
$$

where

$$
\begin{aligned}
I(i, j)= & \text { Intensity value of } 1^{\text {th }} \text { sample in } j^{\text {th }} \text { line in the input data } \\
F(*, *)= & 3 \times 3 \text { matrıx of filter welghts } \\
E(i, j)= & \text { intensuty value of } i^{\text {th }} \text { sample in } j^{\text {th }} \text { Ine in the edge-enhanced }
\end{aligned}
$$

The particular algorithm depends only on the matrix of filter weights
To perform edge enhancement, the filter matrix F must define some kind of high-pass fılter. Four examples of Laplacian-type, high-pass fılters are:

$$
\begin{array}{ll}
F_{1}=\left[\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{array}\right] & F_{2}=\left[\begin{array}{ccc}
-1 & -2 & -1 \\
-2 & 13 & -2 \\
-1 & -2 & -1
\end{array}\right] \\
F_{3}=\left[\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & 9 & -1 \\
-1 & -1 & -1
\end{array}\right] & F_{4}=\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 5 & -2 \\
1 & -2 & 1
\end{array}\right]
\end{array}
$$

Each of these examples has the property that the sum of the weights is one. This results in an image that us the sum or the original image plus a Laplacianfiltered image. Therefore, the resulting radiometry of an edge-enhanced image will be somewhat comparable (statistically) to that of the orıginal image.

4.1.3 Enhancement Processing

The Salisbury subimage, corrected to 25.4 -meter pixel spacing, was digitally filtered for edge enhancement in two ways. First, a Laplacian filter was used on the data and the result added to the image data. Numerically, this amounted to multıplyıng a given pixel value by five and subtracting each of its four (horizontal. and vertical) neighboring pixel values (filter F_{f} above). The resulting image contained enhanced edges and also contained the intensity distribution of the orıginal data.

The second method involved using a Laplacian filter on the data and adding a constant to the result. This amounted to multıplying a given pixel value by four and subtracting each of its four neighboring pixel values. The resulting image contained only edge information.

In addıtion, contrast enhancement (às described in Section 4.1.1) was performed on all Landsat and SAR images that were created under this contract. The purpose of this processing was to obtain digıtal data that was compatible with and well-suıted to the film plotting device that was used to make photographıc negatives.

4.2 FILM PLOTTING AND PHOTOGRAPHIC PROCESSING

Digital ımages were converted to film negatives on the IBM Drum Scanner/Plotter ${ }^{1}$. From these negatives, two basic photographic products were made: black-and-white contact prints, and false-color contact prints. The false-color prints used MSS spectral bands 1,2 , and 4 to give yellow, magenta, and cyan colors on the prints.

Copies of all photographic products have been delivered to Dr. Harold Maurer (NASA/WFC). Some pictures were also sent to Paul Anuta (Purdue/LARS) for his use in a related effort.

In addition, 35 mm slides and other transparencies were prepared and sent to Dr. Harold Maurer as requested.

4.3 RESAMPLING METHODS

One of the requirements normally imposed upon image processing when the image is in digital form is that the output pixel lattice be regular, or equispaced, in the output space. This is needed for two reasons: compact data storage, and the limitations of many film recorders. If the output pixel lattice is not regular, then additional information must be carried to specıfy pixel locatıon. The last requirement precludes the simple repositıoning of the original image pixels. The only way to change geometry and specify the target pixel location, too, is to "resample" the orignal image. Resampling here consists of calculating the location of a particular target pixel in the original image and interpolating over the surrounding original pixels to determine the output intensity. During processing, the target pixels are considered output and the original pixels are considered input. Figure $4-1$ shows the relationship between input and output pixels.

In the following discussion, the calculation of the output paxel location in the input image is presumed.

Figure 4-1. Locating Output Points in Input Space

Cubic convolution is a family of resamplers that approximate the SINC, or SINE (x)/x function. The SINC function is the theoretical perfect resampler, but it requires an infinite number of terms. Cubic convolution substitutes a truncated piecewise cubic approximation to the SINC function, so that the amount of processing is feasible for large image data sets. Cubic convolution is a one-dimensional process that must be repeated to provide for two-dimensional resampling. This is illustrated in Figure 4-2, where four horizontal resamplings provide the values for a final vertical resampling. The final vertical resampling then provides the output intensity. This is for a so-called four-point resampler.

Figure 4-2. Two-Way Cubic Convolution Resampling

The equation of the classic four-point cubic-convolution resampling algorithm used for this contract is
$I_{\text {OUP }}=\mathrm{D}\left\{\mathrm{D}\left[\mathrm{D}\left(-\mathrm{I}_{-1}+\mathrm{I}_{0}-\mathrm{I}_{1}+\mathrm{I}_{2}\right)+\left(2 \mathrm{I}_{-1}-2 \mathrm{I}_{0}+\mathrm{I}_{1}-\mathrm{I}_{2}\right)\right]+\left(\mathrm{I}_{1}-I_{-1}\right)\right\}+I_{0}$

An experimental program that evaluates this equation five times for each output pixel and that uses $32-b i t$ floating point arithemetic was used to resample both Landsat and SAR data.

For SAR data, each of the four one-dimensional horizontal resamplings used the same value for D in Equatıon 1. That is, $D=D_{1}$ as in Figure 4-2. For Landsat-MSS data, each one-dimensional resampling used a distinct value for D. This is due to the use of the resampling program to remove high-frequency geometric errors that occur in the horizontal direction in MSS data.

Section 5

TECHNICAL EVALUATIONS

In this section, the evaluations of the geometry of the corrected Landsat-MSS umage and the corrected Salisbury SAR amage, and the final version of the corrected Cambridge SAR image are described.

5.1 LANDSAT PROCESSING EVALUATION

Under contract NAS6-2827, IBM processed Landsat-2 MSS scene number 2579-14535. The processing performed was scene correction. That is, the image was geometrically corrected to a Universal Transverse Mercator (UTM) map projection using geodetic control points to model scene dependent errors (attatude and altitude). Digital data at two scales was produced. First, the entire scene was processed, resulting in an image with pixels at a spacing of 50.8 meters in both the horizontal and the vertacal directions. Second, two subimages of the scene were processed with pixels spaced at 25.4 meters in both directions.

The geometric accuracy of the corrected Landsat ımages was evaluated by checking the errors at the locations of the geodetic control points (GCPs) that were used to correct the image. For each GCP, a nominal input-space location was found by the following transformations:
a. Mappıng the UTM coordınates into output-space pixel coordinates using the elementary rotation, translation, and scale-change transformation which exists between the two coordinate systems
-
b. Mapping the output-space coordinates into input-space pixel coordınates using the mapping polynomials that define the geometric transformation for the scene.

These nominal input-space locations were compared with the corresponding observed input-space locations that were found manually from the input data. The resulting errors in meters were found. The RMS of these errors, as shown in Table 5-1, was 77.3 meters.

The corrected digital data was recorded on film. The resulting photographic image products were of good quality.

5.2 SAR IMAGE PROCESSING EVALUATION

5.2.1 Salisbury SAR Image

A subset of the SAR image containing Salisbury, MD was chosen to be temporally registered to the corrected Landsat data from MSS scene 2579-14535. This SAR data had very high nouse content which hindered the finding of registration control-point (RCP) locations. Due to the sparsity of suitable visible features in the SAR data, only 14 RCPs were located.

Table 5-1. Results of Accuracy Check for Landsat Data

Measured				Observed Input-Space Coordinates		Nomina1 Input-Space Coordinates		Input-Space Differences In Pixels		Radial Error In Meters
Gep	NORTHING	EASTING	ZGNE	Yobs	- x06s	YNOM	- Xnom	DELY	DEt-X	RSSM*
1	4368380	三99200	18	301.00	729.00	359.69	730.32	1.3081	-1.3200	128.517
2	4319160	370820	18	91.00	1402.00	90.57	1402.00	0.4348	-0.0004	24.843
3	4264533	450258.	18	1618.00	1623.00	1618.81	1622.84	-0.8133	0.1637	48.244
4	4281320	465530	18	1243.00	1625.00	1883.10	1625.96	-0.0990	-0.0551	7.1-45-
5	4265817	477486	18	2155.00	1784.60	2156.48	1784.25	-1.4757	-0.2456	86.537
6	4269440	407370	18	945.00	1415.00	944.69	1917.11	0.3063	-2.1149	108.413
7	4249185	379330	18	554.00	2236.00	554.46	2236.31	-0.4646	-0.3072	36.014
8	4235348	419500	18	1303.00	2304.00	1303.69	2303.83	-0.6935	0.1690	41.826
9	4238490	420600	18	1308.00	2262.00	1308.49	2262.53	-0.4887	-0.5264	50.181
10	4243210	370290	18	425.00	2333.00	-425.45	2332.60	-0.4459	0.3172	-35*783-
12	4241985	375720	18	524.00	2333.00	524.59	2333.89	-0.5905	-0.8859	77.853
12	4340075	399120	18	261.00	465.00	260.61	465.84	0.3899	-0.8435	70.425
13	43 E2940	408410	18	454.00	529.00	453.25	529.51	0.7472	-0.5134	58.959
14	4377045	413810	18	S73.00	- 6.00	572.66	587.82	-0,-337-	-1.8218	-145.569-
- 15	-4350880	387920	18	244.00	971.00	243.51	972.12	0.4946	-1.1209	93.167
16	4378540	449910	18	1185.00	478.00	1183.88	478.70	1.1172	-0.6984	84.470
17	4381505	451450	18	1196.00	438.00	1197.01	438.07	-1.0054	-0.6745	78.452
18	4372495	453540	18	1273.00	\$43.00	-1272.57	543.26	0.4295	-0.259	-32.022
19	4367505	453665	18	1298.00	599.00	1298.92	599.61	-0.9172	-0.6115	71.356
20	4379950	425480	18	760.00	523.00	760.06	522.99	-0.0573	0.0066	3.314
21	4373880	422460	18	736.00	004.00	735.36	604.63	0.6420	-0.6303	61.952
22	4357310	493810	18	2026.00	626.00	2025.99	626.98	0.0140	-0.9799	77.609
23	4319340	516745	18	2589.00	1031.00	2588.68	1031.95	0.3244	-0.9549	77.866
24	4317520	511740	18	2510.00	1067.00	2510.85	1066.76	-0.8480	0.2375	51.979
25	4273070	494460	18	2414.00	1652.00	2414.46	1652.81	-0.4622	-0.8053	09.032
					MEAN RMS	$\begin{aligned} & \text { OF EACH } \\ & \text { F RSSM } \end{aligned}$	LUMN:	-0.0726	-0.5790	$\begin{aligned} & 67.261 \\ & 77.301 \end{aligned}$

Full, bıvarıate, cubıc, least-squares polynomıals were used to define the transformation between corrected and uncorrected SAR data. The RSS residual errors (in pixels) of the least-squares fit at the RCP locations are shown in Table 5-2. These results seem reasonable.

The resulting amage that was produced using the least-squares fit summarized in Table 5-2 had reasonable registration at the 14 RCP locations. However, some severe misregistration is evident at locations between the RCPs For example, US Route 50 east of Salısbury is clearly visible in both the SAR and the Landsat data. In the corrected SAR image, that road is displaced to the north of ats proper location. RCPs above (lake) and below (airport) the misregistered road are properly registered.

The conclusion that can be drawn is that the distortions in the SAR data are too severe to be modeled by cubic polynomals. Since the maxamum number of terms in a least-squares polynomial is directly related to the number of points being fitted, it would be dıfficult to obtain signıficant amprovement in the correction accuracy of the Salısbury SAR image.

5.2.2 Cambridge SAR Image

Exactly the same procedure as was used on the Salısbury image was used on the Cambridge image. However, 73 control points and fifth-degree polynomials were used for the least-squares fittıng process. The results from the least-squares fit are shown in Table 5-3. The mean RSS error of about 5 pixels is quite acceptable, since the pixels in the Cambridge image are much smaller (about 10 meters) than were those in the Salisbury image.

A visual check of false-color composite photographic images of this SAR mage merged with corrected Landsat-MSS data indicated that the SAR data were suitably registered to the Landsat data. The visual check is evidently necessary. The first two attempts at correcting the Cambridge SAR image used some incorrectly located control points, but a simılar mean RSS error of about 5 pixels at the control-point locations was attained in each case. Each of these first two versions was easily found to be misregistered by visual inspection of false-color composite pictures.

It can also be seen from the photographic products that the SAR data added information that was not present in the Landsat data. For example, highly detailed information in the Cambridge urban area was present in the SAR data, but not in the Landsat data.

Table 5－2．Results of Accuracy Check for Salisbury SAR Data

$\begin{gathered} \pi \\ 1 \\ \ldots \end{gathered}$	Observed Output－Space Coordinates		Observed Input－Space Coordinates		Mapped Input－Space Coordinates		Tnput－Space Differences In Pixels		$\begin{gathered} \text { Radial } \\ \text { Error } \\ \text { in Pixels } \\ \text { RSS } \end{gathered}$
	Y（I）	x（1）	YP（i）	xp（i）	YEVAL	$x=v a L$	Dr	nx	
	1＾37．c＾ご	1マニワ－caro	393．0～00	2ヘ5ヵ．0c 30	303．c143	2＾59．0749	$-\mathrm{CH} 143$	－n．r349	n． 6377
	1143.0 neci	1347.0300	603．nnth	2488．coon	6K2．3 3^{3}	2406．4555	9.6975	1．5445	－． 0.6045
		1853.60	367．rico	2570.60	366． 687 n	2560．6435	－ 3101	－：3565	C：4785
	177500270	2¢58．00no	726．n730	2sc4．9\％3n	327．7par	28r4，38．55	－1．：92f	－ 0 － 3925	1.1476 0.9254
	11550～7n？	21－a．chace	6850% 244.0030	2912．0ccr	685.9728 243.3934	2911：9775	－¢．${ }_{0} 728$	－ 0.0225	n． 9254 0.6752
	¢83．n＇ $\mathrm{c}=$	2446．can	24c． 7 O\％	3265：3～う	24r．1956	9264： 2272	－9．1ヶ56		C O 0 0 15050
	$6 \square 3.230$	26C7．ça	358.0002	3402．3n）	257：95C	$34 \sim 20 \cap 32$	－ 0 － 498	－ 7.0932	－01857
	1153.0069					7513．6959		－ 1.6869	
		2197.00 CD	635．7c90	$2925.00 \% 0$	684．8124	2825.9929	－r． 3176	－ 0.0988	1.0385
	917．n：Co	2159．0300	562.0000	2830．090n	563.1898 498.9147		$-C .1998$ -2.653	－0．c58日	0.2019
	rstirnoj	2？13．coco	542.0300	ว999：ク0n	4a7．6ペ6	$2805 . c 484$	－1．6．66	－ r ． 9516	2.2312 1.8683
	6E7．cJon	2246.0000	286．0c00	3011：000	285．1294	$3 \mathrm{Cl} \mathrm{Cl}_{50} 73$	－1：1794	ก．95	C． $5 ¢ 94$
					MEAN＿O	H COLUMN－	－0．cnon	2.0901	0.9263

ORIGINAL PAGE IS
OF POOR QUALITY

Table 5-3. Results of Accuracy Check for Final Cambrıdge SAR Data

Section 6
SAR/LANDSAT PROCESSING CAPABILITY

Under this contract, a SAR/Landsat Data Merging System (SLDMS) was designed. The documentation produced during this effort is included in the appendixes of this report:
a. Appendix A - Functional Description of the SAR/Landsat Data Merging System
b. Appendix B - Detailed Design of SAR/Landsat Data Merging System

Section 7

SUPPORT TO NASA PLANNING ACTIVITIES

7.1 DOCUMENTATION

IBM generated documentation, as required by NASA, to support its planning activities. In particular, inputs were provided to support the 1978 RTOP on SAR/Landsat Data Mergang.

7.2 PHOTOGRAPHIC PRODUCTS FOR PRESENTATIONS

At various times durang the course of this contract, IBM generated photographic products of the SAR and Landsat-MSS data being investıgated. Some of these products were produced in color transparency, 35 mm slide, or lantern slıde format for use as visual aids for oral presentations by NASA investigators.

8.1 FEASIBILITY OF SAR/LANDSAT REGISTRATION

The results from the experiment on the Cambridge SAR image indicate that temporal registration of SAR data with Landsat-MSS data is both feasible (from a technacal viewpoint) and useful (from an information-content viewpoint). Multi-sensor temporal registration is likely to be a very desirable process in the future. It will enable users to make use of varied sources of information to solve their problems. This experıment shows the viability of using SAR data in this way.

8.2 CONTROE-POINT LOCATION RESULTS

This investigation confirmed that the greatest difficulty in registering aircraft SAR data to corrected Landsat-MSS data is control-point location. The diffaculties occur in the following areas:
a. Feature selection
b. Distrubution of control points
c. Comparing Landsat and SAR features
d. Correctness of control-point locations.

The results and conclusions regarding control-point location that are implied by this study are described below.

The selection of features that will serve as good control points is made difficult by the differences in SAR and MSS data. Features that are usually high-quality control points in the MSS data (such as road intersections) were often unusable in the SAR data. Features of normally lower quality in MSS data (such as agricultural field boundaries) had to be used. This problem is compounded by the fact that features often looked quite different in the data from the two sensors. For example, the shadowing in the SAR data did not occur in the MSS data.

The experıments on the Salısbury and Cambridge SAR images clearly demonstrated the importance of having a set of control points that is well-distrıbuted throughout the image. In every case tried during this contract (and the related IRAD work), there were geometric errors in any relatively large areas that contained no control points.

The experience on this contract indicates that SAR and Landsat-MSS data are unsuitable for automatic computer correlation of digital control-point data. It is clear that the gray-level data cannot be compared by computer, due to the different response characteristics of the MSS and SAR images. The mage data could be processed by an edge-detection algorıthm prior to machine correlation, but the SAR shadowing would likely cause this method to be ineffective. However,
the high noise content of the SAR data makes edge detection very difficult, if not impossible. The rotational difference between the SAR and Landsat-MSS data precluded any attempt at machine correlation of control points during this study.

All of the problems normally associated with checking for errors in control-point location are present in the SAR/Landsat registration problem. However, extreme care must be taken to avold obvious errors. All points near the edges should be double checked, since ercors in these points can easily go undetected. Errors in control-point coordinates caused the first two versions of the corrected Cambridge SAR data to have severe geometric errors. Most of these control-point location errors were on points near the border of the SAR image. When a set of control points that contalned only correctly-located points was used, the resulting corrected ımage had good registration with the corrected Landsat-MSS image.

1. M. E. Friar, R. D. Hogan, T. J. Min, J. V. Sharp, and D. R. Thompson, "System and Design Study for an Advanced Drum Plotter," Final Technical Report, USAETL contract DAAK-02-69-C-0015, Aprıl 1970.
2. "Independent Research and Development (IRAD) Program PCI No. 7604, Advanced Sensor Analysis," Final Report, IBM Federal Systems Division, Gaithersburg, MD, December 30, 1977.
3. "Synthetic Aperture Radar/Landsat Image Regıstration Study," NASA Reference Publication.

4 R. Bernstein and D. G. Ferneyhough, Jr., "Digatal Image Processing," Photogram. Eng., vol. 41, pp. 1465-1476, Dec. 1975.
5. R. Bernstein, "Scene Correction (Precision Processing) of ERTS Sensor Data Using Digital Image Processing Technıques," in Proc. 3rd ERTS-1 Symp., vol. 1, sect. B, 1973, pp. 1909-1928.
6. R. Bernsteın, "Digital Image Processıng of Earth Observation Sensor Data," IBM J. Res., Develop., vol. 20, pp. 40-57, Jan. 1976.
7. R. Bernstein, "Digıtal Image Processing - Past, Present, Future," Presented at the Int. Symp. on Image Processing, Interactions with Photogrammetry and Remote Sensıng, Technical Univ., Graz, Austria, 1977.
8. R. Bernstein and L. P. Schoene, "Advances in Digital Image Processing of Earth Observation Sensor Data," presented at the 13th Space Congr., Cocoa Beach, FL, 1976.
9. R. Bernstein and G. C. Stierhoff, "Precision Processing of Earth Image Data," Amer. Sci., vol. 64, pp. 500-508, 1976.
10. R. Bernstein, "All-Digıtal Precision Processing of ERTS images," Funal Report, NASA contract NAS5-21716, IBM Federal Systems Divısion, Gaithersburg, M, April 1975.

APPENTIX A

FUNCTIONAL DESCRIPTION

OF THE

SAR/LANDSAT DATA MERGING SYSTEM

September 1978

By
Stephen W. Murphrey
Section Page
A. 1 GENERAL SYSTEM REQUIREMENTS A-I
A. 1.1 Functional A-I
A. 1.2 Hardware A-1
A. 1.3 Software A-1
A. 2 IMPLEMENTATION AT LARS A-2
A. 21 Landsat-MSS A-2
A. 2.2 Aircraft SAR A-4
A. 2.3 Seasat SAR A-5
A. 3 USER CONSIDERATIONS A-5
A. 4 FUNCTIONAL REQUIREMENTS OF SLDMS PROGRAMS A-6
A.4.1 Reformatting Program A-6
A. 4.2 Automatıc Control-Point Locatıon Program A-6
A. 4.3 Manual Control-Pount Location Program A-9
A.4.4 Geometric Transformatıon Program A-9
A. 4.5 Resampling Program A-11

F1gure	Page
A-1 Software Paths	A-3

TABLES

Table	Page	
A-1	Reformatting Program Functions	A-6
A-2	Reformatting Program Functıons	A-7
A-3	Automatıc Control-Point Location Program Functions	A-8
A-4	High Erequency Horizontal Geometric Errors	A-9
A-5	Manual Control-Point Location Program	A-10
A-6	Geometric Transformation Program	A-12
A-7	Resampling Program	A-13

A. 1 GENERAL SYSTEM REQUIREMENTS

A.1.1 Functional

The SAR/Landsat Data Merging System (SLDMS) will have the capabılıty of producing SAR and Landsat MSS images that are registered to each other and to a Universal Transverse Mercator (UTM) map projection. A SLDMS user will accomplish this by processing the Landsat data to his own specifications and then processing the SAR data to register with the corrected Landsat data. He then can use the corrected SAR and Landsat data for multispectral classification and other information extraction processes.

The specıfic Landsat processing functions that the SLDMS will have are radiometric correction and geometric correction. Radiometric correction is defined to be a striping reduction process that is performed on MSS data that has been radiometrically calıbrated but not resampled. Geometric correction is defined to be the resampling of MSS data to a UTM map projection. The user will be able to specify both the spacing between pixels in the output UTM rmage and the orientation of the image (i.e., the direction of north relative to the image scan lines).

The specifyc SAR processing function that the SLDMS will have is registration. Registration is defined to be the resampling of SAR data to have the same geometry as a corrected Landsat-MSS data set. That is, the SAR data will be resampled to the same lattice of pixels as was the geometrically corrected Landsat-MSS data.

A.1. 2 Hardware

The SLDMS wall run on the IBM $370 / 148$ computer at LARS. The only hardware requirements for the system are the tape drives needed for image data sets and sufficient virtual memory for the resampling program. The system will be designed to minimize the use of disk space by using tapes wherever it is reasonable to do so.

The resampling program will require an internal input buffer large enough to store the maximum number of input image lines that will be needed to create one output image line. This is a function of the rotational difference between the input and output images. Therefore, the memory requirement varies from image to 1mage.

A.1.3 Software

The SLDMS will be written in Fortran IV and IBM 370 Assembler Language. Generally, Fortran will be used wherever it is reasonable to do so. However, Assembler Language wall be used for those programs that would be significantly more inefficient uf written in Fortran.

The programs will use some local LARS programs to perform certain standard functions. For example, the program TAPOP will be used to perform image data set I/O.

A. 2 IMPLEMENTATION AT LARS

A.2.1 Landsat-MSS

Landsat-MSS processing software which will be implemented at LARS will be defined in this section. Full use of techniques, algorithms, and software developed under the Master Data Processor (NAS5-22999) and the Landsat-C Return Beam Videcon (RBV) Software and Interactive Ground Control Point (GCP) System (NAS5-23790) contracts will be made in implementing the SLDMS. In particular, the Control Point Lıbrary Copy Tape, which is a back-up copy of NASA's control point library, will be used by the SLDMS.

The Landsat-MSS software will consist of five programs:

```
a. Reformatting Program
b. Automatic Control-Pount Location Program
c. Manual Control-Point Location Program
d. Geometrıc Transformation Program
e. Resamplıng Program.
```

The inputs, functions, and outputs of each of these programs are described below.

There are three kinds of input MSS data that can be processed by the SLDMS:
a. Uncorrected Data -- This consists of four bands of MSS data in the X format. The image data has been radiometrically corrected and linelength adjusted, but no other corrections have been applied. Ancillary data includes no geometric transformation.
b. Partially Processed Data -- This consists of four or five bands of MSS data in the BSQ format. The only correction applied to the image data is radiometric correction. Ancillary data includes geometric transformation information.
c. Fully Corrected Data -- This consists of four or five bands of MSS data in the BSQ format. Both radiometric correction and geometric correction have been applied to the data.

The SLDMS will be able to geometrically correct and perform a striping reduction on both uncorrected and partially processed data. It will also be able to resample fully corrected data in order to change the pixel spacing.

As shown in Figure A-1, there axe three paths through the software. The first path involves the reformatting, automatic control-point location, geometric transformation, and resampling programs. This path would normally be used for an uncorrected MSS scene for which a corresponding control-point library exists. The result from this path is a fully corrected MSS scene with user-selected orientation and pixel spacing. This would be the most desirable path for processing uncorrected data. It can also be used to correct partially processed data. If no control-point library exists for an uncorrected MSS scene that is to be processed, there are two alternate paths through the system that can be used.

Figure A-1. Software Paths

The second path involves the reformatting, geometric transformation, and resampling programs. This path would normally be used for an uncorrected MSS scene for which no control-point library exists or for a partially processed MSS scene. The result from using this path on an uncorrected MSS scene would be a systematically corrected MSS scene with user-selected orientation and pixel spacing. From a partially processed scene, a fully corrected MSS scene that has been either systematically corrected or scene corrected (depending on the original ancillary data) can be produced with this path through the software.

The third path involves the reformatting, manual control-point location, geometric correction, and resampling programs. This path would normally be used for an uncorrected MSS scene for which no corresponding control-point library exists or for a fully corrected MSS scene. The result from this path would be a fully corrected MSS scene in either case. For a fully corrected input scene, only the reformatting and the resampling portion of the manual control-point location program are used. In this case, the result is a fully corrected scene with different pixel spacing.

A.2.2 Aircraft SAR

The aircraft SAR processing software which will be implemented at LARS will be defined in this section. The techniques and algorithms were developed by IBM under contract NAS6-2827.

The aircraft SAR software will consist of three programs:
a. Manual Control-Point Location Program
b. Geometric Transformation Program
c. Resampling Program.

These programs have the same functions as the corresponding Landsat programs.
The Geometric Transformation Program is a least-squares fitting program. It will be a modification of an existing LARS program. This modification will be performed by LARS, and it is not included in this document.

The other two programs are minor modifications of the corresponding Landsat programs. That is, the MSS high-frequency corrections must be removed in order to process SAR data. These are included in this document.

The input to this portion of the SLDMS consists of digital image data from aurcraft SAR instruments. The first step is the location of control points in both the SAR data and the corrected Landsat data. Then a geometric transformation that maps points (X, Y) in the corrected Landsat image to points (U, V) in the SAR image is obtained in the form of 21 -term fifth-degree polynomials $u(X, Y)$ and $v(X, Y)$ such that $U=u(X, Y)$ and $V=v(X, Y)$. Finally, the SAR data is resampled using the above geometric transformation. The result is a corrected SAR data set that is registered to the corrected landsat data set.

A.2.3 Seasat SAR

The only difference between the Seasat and aircraft SAR processing software is the Geometric Transformation Program. The Manual Control-Point Location Programs and the Resampling Program used for aircraft SAR data will also be usable for Seasat SAR data (assuming that it is 8 -bit data).

The Geometric Transformation Program will use the algorithms defined in the Seasat SAR Investigation described above.

The input to the Seasat SAR portion of the SLDMS is digital image data from the Seasat SAR instrument and the corresponding Seasat ancıllary parameters. The output is a corrected SAR data set that is registered to the corrected Landsat data set.

A. 3 USER CONSIDERATIONS

Users of the SAR/Landsat Data Merging System (SLDMS) have several cholces to make when processing a Landsat data set. These user options are discussed in this section.

In some cases, a user will have a chonce of using partially processed or fully corrected input MSS data. Since fully corrected data is already resampled to a standard map projection, further resampling may not be necessary. A common reason for further resampling would be the need to have the corrected Landsat data at a different pixel spacing than the 57 meters (horizontal and vertical) of the fully corrected data set. Although resampling the data only once is clearly desirable, a recent study (Bi-resampled Data Study; Final Report for Contract NAS5-23708; R. Benner, W. Young; IBM Corp., March 1977) has indicated that a second resampling will degrade the data only slightly and-will not essentially change multispectral classification results.

When processing uncorrected MSS data and some partially processed MSS data, a SLDMS user must decide whether to use geodetic control points in determining the geometric transformation between the corrected and uncorrected spaces. If a systematic correction will provide satisfactory geometric accuracy to meet a user's needs and if no control-point library exists for a particular scene, then the expense of control-point location can be avoided by using systematic correction.

The SLDMS will have the capability to resample with nearest neighbor or cubic convolution. Although cubic convolution is widely regarded as a better algorithm than nearest neighbor, it is considerably more expensive to perform on a general purpose computer. Computer expense for resampling is directly proportional to the number of pixels that are being created.

Pixel spacing in the corrected Landsat data is a user option in the SLDMS. MSS input data is spaced at about 57 meters horizontally and at about 79 meters vertically. Fully corrected MSS data produced by the MDP will be spaced at 57 meters in both directions. A particular spacing may be chosen because the SAR data has a simllar spacing. A second factor that a user must consider when
choosing the pixel spacing is resampling cost. The number of output pixels that are created in the resampling step is anversely proportional to the pixel spacing.

Another user option for Landsat MSS processing is the orientation of the image. Orientation is the angle between North and an mage scan line at some point in the ımage. The standard orientation is such that the spacecraft velocity vector is approximately perpendicular to the image scan lines. That is, input-space scan lines are nearly parallel to output-space scan lines. Orientation affects the resampling step. The memory required for the resampling program is directly proportional to the angle between the input-space scan lines and the outputspace scan lines.

A. 4 FUNCTIONAL REQUIREMENTS OF SLDMS PROGRAMS

A.4.1 Reformatting Program

The reformatting program converts Landsat MSS computer compatible tapes (CCTs) into LARS Multispectral Image Storage Tape (MIST) format. The inputs, functions, and outputs of this program are stated in Table A-2. It is important to note that the reformatting program performs different functions on each of the different kinds of input data. The different possibilitues are shown in Table A-1.

Table A-1. Reformatting Program Functions

Uncorrected	Partıally Processed	Fully Corrected
Convert to MIST	Convert to MIST	Convert to MIST
Remove LCC pıxels		
Detector histograms	Detector histograms	
Stripıng red. tables	Stripıng red. tables	
Striping reduction	Striping reduction	
Extract ancillary	Extract ancallary	Extract ancıllary

A.4.2 Automatıc Control-Point Location Program

The automatic control-point location program is used to locate the input-space coordinates of a set of points whose geodetic coordinates are known. The output from this program is a set of pixel coordinates of control points. These coordinates are specified to a fraction of a pixel, and the location accuracy is assumed to be within one tenth of a pixel for a good control point.

The specific functions of this program are shown in Table A-3. Basically, the program extracts suitable prototype control points from a tape, creates corresponding search areas from an image tape, correlates the data, and determines the search-area coordinates of the control points. The tape containing the control points is a Control Point Library Copy Tape, which is a back-up copy of NASA's control-point library. It is also possible to obtain prototype control points from an 1 mage tape.

Table A-2. Reformatting Program Functions

Input	Process	Output
1. MSS computer tapes ${ }^{\text {- }}$	1. Convert uncorrected MSS data from X format to MIST format.	1. MIST format tape.
a. Uncorrected		2. Ancillary data set.
b. Partially processed	MSS data from BSQ format to MIST format.	3. Printer listing.
c. Fully corrected		
2. User's requests.	3. Convert fully corrected MSS data from BSQ format to MIST format.	
	4. Remove line-length correction (LLC) puxels from uncorrected data.	
	5. Compute detector histograms.	
	6. Compute straping reduction tables.	
	7. Perform striping reduction.	
	8. Extract ancıllary data from input tapes.	

Table A-3. Automatic Control-Point Location Program Functions

Input	Process	Output
1. Control Point Library Copy Tape.	1. Extract prototype control pounts from:	1. Enlarged ancillary data set containing control point locatıons.
2. Ancillary data set (from Reformatting).	a. Control Point Library Copy Tape	2. Prantex listing.
3. MIST format tape (from Reformatting).	b. MIST format image tape	
4. User's requests.	2. Extract search areas from image tape.	
	3. Horizontally resample search areas (and control points, if from image tape) to correct high-frequency errors.	
	4. Obtain correlation surface for each control point.	
	5. Fit correlation surface to find control point location to sub-pixel accuracy.	
	6. Evaluate qualıty of each control point.	

A.4.3 Manual Control-Point Location Program

The basic function of the manual control point location program is to process image data in a way that will enable a user to determine control-point coordinates manually. The specific functions of this program are listed in Table A-4.

In order to assist a user to determine control-point coordinates manually, this program produces two kinds of output. First, it generates a resampled image data set for each control point. Second, it displays a control-point data set on a computer listıng by simulating pixel gray levels with printer overstrikes.

The resampling that is performed for a control-point location task has two purposes. First, horizontal geometric distortions that are high-frequency in nature are removed during the resampling process. These distortions are listed in Table A-5. Second, a change of scale is performed. This is done to enlarge the control-point subimage so that a user may determine the control-point coordinates to a sub-pixel accuracy level.

A.4.4 Geometric Transformation Program

The geometric transformation program has the following basic functions for uncorrected or partially processed scenes:
a. To define the transformation between the corrected output space and the high-frequency-corrected input space.
b. To assess the accuracy of the geometric transformation.

The resulting geometric transformation is added to the ancillary data set that corresponds to the scene. It is specified as a finite, tabular function. A set of output-space grid points is defined, and the corrected input-space coordinates are determined. This grid-point correspondence is the primary output of the program.

Table A-4. High-Frequency Horizontal Geometric Errors

Line length variations
Earth rotation errors
Sampling delay errors
Band-to-band offset
Mirror velocity errors

The specific functions of this program are shown in Table A-5. For uncorrected data for which no control points exist, models that correct all known systematic errors are used. If control point locations are available for an uncorrected or a partially processed data set, models that correct all known systematic and scene-dependent errors are used. These error models are then used to determine grid point correspondence.

Table A-5. Manual Control-Point Location Program

	Input	Process	Output
	1. MIST format tape (from Reformatting).	1. Extract small subimages to computer memory.	1. MIS' format tape.
	2. User's requests.	2. Resample small subimages including:	2. Shadeprints on listing data set.
		a. Scale change	3. Printer listing.
		b. Hagh-frequency error correction	
		3. Histogram small subimages.	
$\stackrel{\stackrel{\rightharpoonup}{1}}{\stackrel{1}{0}}$		4. Obtain translate tables using histograms.	
		5. Print shadeprint on listing with overstrikes.	

In the case of scene correction, this program also provides an assessment of the geometric errors. This is done using the covariance matrix of the attitude/ altitude futting process, as described in section LANDSAT MSS IMAGE TO MAP REGISTRATION.

This program can also create a grid point correspondence from the ancillary data for a partially processed scene.

A.4.5. Resampling Program

The resampling program creates a geometrically corrected image data set from an ınput image data set. It can resample the data using nearest-nelghbor or cublcconvolution resampling algorithms.

The resampling program can process the \ddagger ollowing kinds of data:
a. Uncorrected or partially processed Landsat MSS data.
b. Fully processed Landsat MSS data.
c. SAR image data.

The program operates in essentially the same way for all three kinds of data. However, when uncorrected or partially processed Landsat MSS data is resampled, the program removes horizontal, high-frequency, geometric errors as part of the resampling process.

The specific inputs, functions, and outputs are shown in Table A-6. A check-point-restart capability is included because cubic-convolution resamplıng is a computationally bound process.

Table A-6. Geometric Transformation Program

Input	Process	Output
1. Ancillary data set. 2. User's requests.	2. Systematıc error modeling for uncorrected MSS data.	1. Enlarged ancillary data set containıng grind-point correspondence.
	2. Scene exror modeling for uncorrected or partıally processed MSS data.	2. Printer listing.
	3. Output space definıtion.	
	4. Interpolation grid point creation from error models.	
	5. Interpolation grid point creation from ancillary data (for partıally processed scenes).	
	6. Geometric error assessment from error models.	

Table A-7. Resampling Program

Input	Process	Output
1. Ancillary data set from geometric transformation program.	1. Set up interpolation grid point arrays	1. MIST format tape. 2. Printer listing.
2. MIST format tape from uncorrected or partially processed scene.	2. Horizontal, high-frequency error correction 3. Cubic convolution resampling.	3. Checkpoint restart data set.
3. User's requests.	4. Nearest neighbor resampling.	
4. Checkpoint restart data set.	5. Checkpoint restart capability.	

APPENDIX B

DETAILED DESIGN

OF THE

SAR/LANDSAT DATA MERGING SYSTEM

September 1978
by

Stephen W. Murphrey

Section		Page
B. 1	INTRODUCTION	B-1
B. 2	SYSTEM DATA SETS	B-2
B.2.1	X-Format CCT	B-2
B.2.2	BSQ-Format CCT	B-2
B. 2.3	BIL-Format CCT	B-2
B. 2.4	MIST-Format CCT	B-2
B.2.5	CPL Copy Tape	B-4
B. 2.6	Checkpoint Tape	B-8
B. 2.7	Anczllary Data Set	B-8
B. 2.8	Shadeprint Data Set	B-21
B. 2.9	User-Request Data Set	B-21
B. 3	REFORMATTING PROGRAM (MRFT)	B-22
B.3.1	Statement of Problem	B-22
B.3.2	Data Flow	B-22
B.3.3	Non-Image Data Considerations	B-22
B.3.4	Program Description	B-22
B. 4	AUTOMATIC CONTROL-POINT LOCATION PROGRAM (ACPL)	B-33
B.4.1	Statement of Problem	B-33
B.4.2	Data Flow	B-33
B.4.3	Program Description	B-33
B. 5	MANUAL CONTROL-POINT LOCATION PROGRAM (MCPL)	B-43
B.5.1	Statement of Problem	B-43
B.5.2	Data Flow	B-43
B.5.3	User-Specified Inputs to MCPL	B-43
B.5.4	Program Description	B-46
B. 6	GEOMETRIC TRANSFORMATION PROGRAM (GTRN)	B-60
B. 6.1	Statement of Problem	B-60
B.6.2	Data Flow	B-61
B.6.3	Program Description	B-61
B. 7	RESAMPLING PROGRAM (RSMP)	B-89
B. 7.1	Statement of Problem	B-89
B.7.2	Data Flow	B-89
B. 7.3	Inputs to Resampling Process	B-90
B. 7.4	Algorithm Considerations	B-93
B. 7.5	Handling Edges in Resampling Via Hybrid Space	B-95
B. 7.6	Program Description	B-95

Figure Page
B-1 Organization of Ancillary Data Set B-8
B-2 Example of a Shadeprint B-21
B-3 Module Hierarchy for Landsat MSS Reformatting Program B-23
B-4 Module Hierarchy for Automatic Control-Point Location Program B-34
B-5 Module Hierarchy for Manual Control-Point Location Program B-47
B-6 Image Spaces B-61
B-7 Module Hierarchy for Geometric Transportation Program B-62
B-8 Horizontal and Vertical Resampling B-89
B-9 Resampling Spaces B-90
B-10 Construction of Hybrid Space B-91
B-11 Construction of Output Space B-92
B-12 Six-point Resampling B-93
B-13 Construction of Hybrid Space B-96
B-14 Construction of Output Space B-97
B-15 Resampling Spaces (Drawn to Scale) B-98
B-16 Module Hierarchy for Resampling Program B-99

Table		Page
B-1	Data Set/Program Cross Reference	B-3
B-2	Control-Point Library Copy Tape Record Formats	B-4
B-3	Library Control Record	B-5
B-4	Control Point Library Directory Record	B-6
B-5	Library Control Point Record	B-7
B-6	Ancillary Data Set: Title Card Format	B-9
B-7	Ancillary Data Set: Data Card Format	B-9
B-8	Format of Ancillary Data Set	B-10
B-9	Ancillary Data Set Fields (X-Format CCT Header Data)	B-12
B-10	Ancillary Data Set Fields (CCT SIAT Data)	B-12
B-11	Ancillary Data Set Fields (Detector-By-Detector Histogram)	B-13
B-12	Ancillary Data Set Fields (Detector-by-Detector Statistical Data)	B-14
B-13	Ancillary Data Set Fields (Output-Space Definition)	B-15
B-14	Ancillary 'Data Set Fields (Error Models)	B-15
B-15	Ancillary Data Set Fields (Error Assessment)	B-16
B-16	Ancillary Data Set Fields (CCT Header Data)	B-17
B-17	Ancillary Data Set Fields (CCT Ancillary Record Number 1 Data)	B-18
B-18	Ancillary Data Set Fields (CCT Ancillary Record Number 2 Data)	B-19
B-19	Ancillary Data Set Fields (HRS Points from Ancillary Records 3-10)	B-20
B-20	Ancillary Data Set Fields (VRS Points from Ancillary Records 3-10)	B-20
B-21	MCPL Namelıst	B-44

Table Page
B-22 Shadeprint Character Set \quad B-45
B-23 Subimage Description Record B-45
B-24 Typical Resampling Constants (Weights) B-94

B. 1 INTRODUCTION

This document describes in detail the software that comprises the SAR/LANDSAT (SLDMS). Its primary purpose is to specify the software in sufficient detail so that a competent, image-processing programmer can write the SLDMS programs. It is assumed that the programmer will be somewhat familiar with the IBM existing image-processing software and that he (or she) will use or modify existing code wherever possible.

A second purpose of this document is to provide NASA with enough knowledge to be able to understand the characteristics of the SLDMS.

The design of each SIDMS program is described by a module hierarchy diagram and a set of program specifications (one for each module). In general, the program specifications are independent of the particular programming language chosen for implementation.

B. 2 SYSTEM DATA SETS

The SLDMS software uses various input and output data sets. These data sets are described in this section at a system level. A cross-reference of the data sets and programs used in the SLDMS is contained in Table B-1. Each of these data sets is described below in some detail. While it is expected that the formats of some data sets will be changed during the SLDMS implementation effort, the descriptions in this document should give a reasonable indication of the amounts and kinds of data that will be used by the SLDMS.

B.2.1 X-Format CCT

This tape, purchased from EROS Data Center (EDC) or obtaıned from NASA/GSFC, contains uncorrected MSS image data. There are five files on this tape. The format is completely described in the following:
"Generation and Physical Characteristics of the Landsat 1 and 2 MSS Computer Compatible Tapes," Goddard Space Flight Center, November 1975, NASA Publication X-563-75-223.

B.2.2 BSQ-Format CCT

Partially processed MSS data and fully corrected MSS data can be produced on CCTs by the $M D P$. The formats of these tapes are defined in the following Interface Control Documents between the Image Processing Facility and EDC Digital Image Processing System for Landsat:
"Fully Processed Multispectral Scanner Computer Compatible Tape (CCT-PM)," IBM/FSD, Contract NAS5-22999
"Partially Processed Multispectral Scanner Computer Compatible Tape (CCT-AM)," IBM/FSD, Contract NAS5-22999

B.2.3 BIL-Format CCT

No documentation on BIL-format CCTs is currently available.

B.2.4 MIST-Format CCT

The MIST format will be used for all image files created by the SLDMS. It is a BII format in which one record contains data from all spectral bands of a given line. The format is completely described in the following:
"LARSYS System Manua1," Pages 5-52 through 5-58.

Table B-1. Data Set/Program Cross Reference

Data Set	Program				
	MRFT	ACPL	MCPL	GTRN	RSPL
X-Format CCT	I				
BSQ-Format CCT	I				
BIL-Format CCT	I				
MIST-Format CCT	0	I	I 0		IO
CPL Copy Tape		I			
Checkpoint Tape					I 0
Ancillary Data Set	0	10		10	1
Shadeprint Data Set			0		
User-Request Data Set	I	1	I	1	I
Temporary Data Set	X				

B.2.5 CPL Copy Tape

The Control-Pount Library (CPI) Copy Tape provides a copy of elther the operational sub-library or the delta sub-library of a library residing on a given MDP system. Its use in NASA's Control-Point Library Building System (CPLBS) is to transfer the operational library to the other system, to restore the operational library, to update operational libraries on both systems, or to restore the delta library.

The CPL Copy Tape wall provide prototype control points (windows) to users of the SLDMS. For those Landsat MSS scenes that have corresponding control points on the tape, an SLDMS user will be able to perform precise geometric correction (to his particular scale and orientation) with an automatic process.

The format of the CPL Copy Tape is currently under review at IBM. The format described below is not necessarily the actual format that will be used.

The tape contains in the following order:
a. Library Control Record
b. All directory records
c. All control-point records

The directories and control points are copies of the corresponding CPLBS disk files. In general, the data will require more than one tape reel. Each reel will contain the Library Control Record followed by the remaining data. The Library Control Record will insure that the reel is part of the sequence. Detailed descriptions of the above records follow.

The directory file and the control-point files on the CPL Copy Tape contain data blocked at five records per block. Record lengths and block lengths are shown in Table B-2. In the case of the control-point file, block size is not a multiple of record length. Record formats are shown in Tables B-3, B-4, and B-5.

Table B-2. Control Point Library Copy Tape Record Formats

Record Type	Record Length	Block Length	Maximum \# Records
Library Control Record	400	400	1 per reel
Directory Record	360	1800	6250
Control-Point Record	1244	6232	125000

TABIE B-3. ITERARY CCNTROL RECORD

PARAMETEG	DESCRIPTION
DMCFFNAM	ALPHANUMERIC SYSTEM NAME OF FILE
DMCFPROG	NAME OF PROGRA THAT HROTE THIS RECCRD
DMCFDATE	DATE RECORD WAS LAST WRITTEN
DMCFTIME	TIME RECORD WAS IAST WRITMEN
DMCFSTAT	RECORD STATOS
DMCFVALD	SUE-LIBRAPY VALID INDICATOR
DMCFSYST	SYSTEM ON WHICH THIS SUB-IIERARY RESIDES
DMCFREC\#	CONTROL RECORD NUMBER IN DMTI
DMCFGPNM	GROUP NAME (PRODUCTION OR EEVELOPMENT)
DMCFIBNM	IIBRARY NAME (MSS OR RBV)
DMCFSINM	SUB-ITBRARY NAME S OPERATIONAL OR DELTA
DMCEIBDT	DATE IIERARY INITIALIZED
DMCFINSV	INDEX FILE SNT VALUE
DMCFINNM	INDEX FILE NAME
DMCFDRSV	DIRECTORY FILE SNT VALUE
EMCFDRNM	DIRECTORY FILE NAME
DMCFCPSV	CONTPOL YOINT FILE SNT VALUE
DMCFCENM	CGNTRCI POINT FILE NAME
	ALIGNMENT
DMCFDRA\#	SEXTA AVAIIABLE DIRECTORY RECORD NUMBER
LMCFDR\#D	NUMEER OF DEIETED DIRECTORY RECORDS
DMCFCFA\#	NEXT AVAILABIE CONTROI POINT RECORD NUMBER
DMCFCP\#D	NUMBER OF DELETED CONTROL EOINT RECCRDS
DMCFSLUP	DATA WRTTTEN TO SUB-ITERARY STNCE IAST COPY TAPE?
DMCFCTS\#	TAPE NUMBER OF IAST COPY TAPE ERODUCED
DMCFRINP	RESTORE-IN-EFOGRESS (YES OR NO)
DMCFRT\#	SEQUENTIAL TAPE\# OF TAPE USED IN LAST RESTORE
LMCFRT\#	SYSTEM ID (A OR B)
DMCFRT\#A	SEC. TAPE \# OF LAST RESTORE TAPE FROM SYSTEM A
DMCFRT\#B	SEQ TAPE \# OF IAST RESTORE TAPE FBCM SYSTEM B
	ALTGNMENT
- -	SPARE
DMCFPMUR	NEXT PAGE NUMBER FOR DMUR REPORT
DMCFPESV	PERFORMANCE DATA FILE SNT
DMCFUTNP	UPDATE-IN-PROGRESS
DMCFUT\#	SEQUENTIAL TAPE \# OF TAPE US巳D IN LAST UPDATE
DMCFUT\#T	SYSTEM ID (A OR B)
DMCFUT\#A	SEQ. TAPE \# OF LAST UPDATE TAPE FROM SYSTEM A
DMCFUT\#B	SEQ TAPE \# OF LAST UPEATE TAPE FROM SYSTEM B
DMCFRS\#	RFET NUMBEP
DMCFTAPC	CONTENTS OF TAPE (DELTA, OPFRATIONAL, PERFORMANCE)
-	ALIGNMENT SPARE

COLUMNS	FORMAT
1-8	C8
$9-12$	C 4
13-16	C4
17-22	C6
23-24	X2
$25-26$	Y2
$27-28$	\pm
$31-32$	$\stackrel{1}{C} 2$
$33-34$	C2
$35-36$	C2
37-44	C8
45-48	A 4
49-50	I2
51-58	C8
50-69	I2
$61-68$	C8
60-70	I2
$71-78$	C8
$79=89$	A2
$81-84$	A 4
$85-88$	T 4
$89-92$	I 4
93-96	I4
97-100	14
101-104	A 4
$105-106$	Y2
107-108	I2
199-119	Y 2
$111=112$	T2
$113=114$	I2
$115=116$	I2
117 - 118	T2
119 - 120	A 2
121-124	A4
125-128	14
129-130	T2
$131-132$	Y2
$133-134$	I2
$135-136$	I2
$137-138$	T2
139-140	12
141-144	A 4
145-146	r2
147-158	C12-
159-169	A2
161-400	¢240

TABLE B-4. CONTROL POINT LIBRARY DIRECTORY RECORD

PARAMETER
DMDRFNAM DMDPEFOG DMDRDATE DMDRTIME DMDRSTAT DM DRCHAN DMDE DMDRSNSR DMDRFATH DMDFROKN DMDRQUAD DMDRREGT DMDRMISN DMDROBSD DMDRUPDL DMDRMODI DMDRCPCT DMDRCIDS DMDRCRBS DMDRL RU1 DMDRLRU2 DMDRLRU3 DMDRIRU4 DMDRSRU1 DMDRSRU2 DMDRSEU3 DMDRSRU4 DMDRL BH 1 DMDRLRH2 DMDRLPH3 DMDRLEH4 DHDRSRH1 DMDRSRH2 DMDPS EH3 DMDRSRH4 DMDRLTU D MDPSWO DMDRLWH DMDRSWH DMDRNGLA DMDRNLON DMDRBETA DMDCCNCT
DMDCUDAT DMDCUOTD DMDCOS YS DMICUTAP DMDCMDAT DMDCMUID DMDCMSYS DMDCMTAP

DESCRIPTION
ALP HANOMERIC SYSTEM NAME OF PILE
NAMF OF PROGEAM THAT WROTE THIS RECORD
DATE RECORD KAS LAST FRITTEN (YDDD RECCRD STATOS
CHETN POINTER - RELATIVE RECORD NOMBER SPARE
SENSOR
Spare
WRS PATH NUMBER
WRS ROF NUMBER
RBV IMAGE CUADRANT
REGISIRATION TYPE
LANDSAT MISSION
TMAGE OBSERVATION TIME: LDDDHHMMS
OPDATE LEVEL OF CONTROL PCTNT SET
MODIFICATION LEVEL OF CONTROL POINT SET
\# OF ENTRIES IN CONTROL POINT ID AND POINTER LISTS
CCNTRCI POINT ID NUMBER ITST

COLUMNS

TABLE B-5. LIERARY CONTROL POINT RECORD

PARAMETER
DMCPFNAM
DMCPPROG
DMCPDATE
DMCPTTME
DMCPSTAT
DMCPSNSR
DMCPEATH DMCERCWN DMCPQUAD DMCPREG DMCPMISN DMCPOBSV DMCPUFDL DMCPMODI D MCPCNCT DMCPTTYP DMCPLOII D MCPLOSM DMCPEXMN DMCPSHFT DMCFPXVR DMCPMMAG DMCPISBR DMC PISBC -
DMCP ${ }^{\text {HNDW }}$ EMCECOFS DMCP SPBD DMCPIXEC DMCPIY FC DMCPEFOT

D MC SCOBS DMCSEIIC DMCSMPSC DMCSNGDE DMCS 7ACR DMCSOUTS DMCSEDGE DMCSNIMG DMCSNCOR DMCSPEAK IMCSCURV DMCSSEEK DMCS SCRV DMCSLOLT DMCSICLN DMCSELFV DMCSERAT LMCSERCT DMCSUSER DMCSCDAT DMCSMCTD
DMCSCTAP

ALPHA NUMERIC SYSTEM NAME OF FILE

VARIANCE OF WINDOW PIXEI VALUES X WINDOH SIZE MEAN MAGNITUDE OF CONDITTCNED KINDCW (P1) $\left.\begin{array}{l}\text { \# LEADING SIGN BITS TN IARGEST ROW FFT COMPONENT } \\ \text { \# IFADING SIGN BITS IN LARGFST COL FFT COMPONENT } \\ \text { SPARE } \\ \text { P3 }\end{array}\right)$ SPARE
WINDOW ARRAY (32-BY-32 ARRAY OF 8-BIT PIXEIS) SPECTRAI BAND NUMBER
GEOCENTRIC RECTANGUIAR X COORD OF CONTROL POINT GEOCENTRIC RECTANGULAR Y COGRD OF CCNTROL POINT VELOCITY OF CONTROL POINT DUE TO EARTH ROTATION SPARE
SOURCE IMAGE TD: A. LDDD. HHMMS
GENERIC IDENTIFICATION CODE
MAP SCAIE CODE
NODF;DESCFNDING/ASCENDING
\# IMAGES IN WHICH CP VIOLAMED 7-ACRCSS RESTRICTION
\# IMAGES TN WHTCH EST. CP ICC. OUTSIDE AVATE. DATA
\# IMAGES IN WHICH LOC. OF PEAK TOO NEAR EDGE OF SA \# IMAGES FOR WHICH CORRELATION AAS ATTEMPTED NUMBER OF SUCCESSFUL CORRELATIONS
MEAN OF PEAK CORRELATION VALTES OBSERVED
MEAN, OBS, VAIUES OF MIN. CURVATURE OF COR SURF. PEAK CORREIATION VALUE
CURVATURE OF CORRELATTON SUREACE AT PEAK
FEATUEF LOCATION IN GEODETTC LATITODE
FEATURE LOCATION IN LONGITUDE
ELEVA TTON OF FEATTUPE (METERS ABOVE BEF ELITPSOID)
AXIS 99\% EREOR ELITPSE EST: AIONG TRACK (METERS)
ID OF USER BHO CREATED THTS POINT
CREATION DATE - YDDD (JULTAN DAT)
NASA CP TD \# FROM MAP CP DESCRIPTIGN DATA TAPE TD OF SYSTEM ON WHICH CREATED
ID OF TAPE WHICH ENTERED INTO OPER'L LIB.

COLUMNS FORMAT

B.2.6 Checkpoint Tape

The Checkpoint Tape is created and used by the Resampling Program (RSPL). Its purpose is to save data whenever a checkpoint is taken. Whenever a computer failure occurs, this data set can be used to restart RSPL at the last checkpoint. This reduces the amount of lost computer time in the event of a failure during the expensive resampling program.

The format of the Checkpoint Tape will be defined during the implementation of the SLDMS.

B.2.7 Ancillary Data Set

Every MSS scene that is processed by the SLDMS will have an associated Ancillary Data Set (ADS). It contains information that completely describes the associated scene as well as information produced by one SLDMS program for use by another program.

The ADS will be a sequential data set consusting of 80 -byte records. It will usually reside on a direct-access device, although it may be a tape data set. It is organized into sections, each consisting of a title record followed by one or more data records. All data in a single section is functionally related. Figure B-1 shows the layout of the ADS.

Figure B-1. Organization of Ancillary Data Set

Most of the data on the ADS is expected to be in printable character form. This whll permit SLDMS users to easily determine what data is on an ADS by viewing it at a terminal or printing it with a standard utilıty. The basic formats of the two types of ADS records are shown in Tables $B-6$ and $B-7$.

The formats of the data cards n each "section" will be determined during the implementation of the SLDMS. Preliminary definitions of all ADS "sections" follow in Tables B-8 through B-20.

TABLE B-8. FORMAT OF ANCILLARY DATASFT


```
    TABLE`B-8. FORMAT CF ANCILLARY DATASET (CONTINUED)
|
ERRCR MODEIS:


```

ROIL2
PTTH2
YAF 2
ROIL3
PTCH3
YAM3
ERROR ASSESSMENT:

OSH1	OSV1
OSH2	OSV2
\vdots	\vdots
OSHN	OSVN

CTPH1	CTPV1	AFSTH1	AESTV1
CTPH2	CTPV2	AESTH2	AESTV2
\vdots	\vdots	\vdots	\vdots
CTPHN	CTPVN	AESTHN	AESTVN

CCT HEADER DATA:

SCENE	ASC/DSC
SENSOR	MISSION
WRSLIN	WSPIX
MFANN	MFANC
TSSOIN	IFCDMAT
FASSIYPE	CAIDUYST

HRSPTH	HRSROW
ORBIT	ADSTAT
CPYEAR	CPDAY
GCFYLG	GCDFLG
ILTYPE	
UBANDS	MBNDNO

NOMDET	TSVID
CPHODR	CPMIN
RSTYPG	FCDFFG
MAPROJ	

CCT ANCTLLLARY RECORD NUMBER 1 DATA:

ISHID	ISLEN	ISPACH	I SPACV		
OSWID	OSLEN	OSPACH	OSPACy	SCALTM	ISHIDM
	MIRP		MI PR1		MIRR2
	MTPR3		MAxMIR		
	SCSKF ${ }_{\text {A }}$		TBTHN		TACT TVE
SD11	SD12	SD 13	SD14	SD15	SD16
SD21	SD22	SD23	SD24	SD25	SD26
SD31	SD32	SD43	SD 44	SD45	SD46
SD5	SD52	BOFF	OFr2	OFF3	BBOFF4

CCT ANCILIARY EECORD NOMBER 2 DATA:

WESFRM	WSOCRB	It AT	WRSLON NADLON	FCXCTIM	
	NADIRX		MADTRY		NADIRZ
	BETA		INADIIN		INADSPI
	DELVV		FRVEL		ERPARM
PITCHO	PImCH	PTTCH2	pitch3		
Y Aho	Yanj	Ya ${ }^{\text {¢ }}$	צムラ3		
DELHO	DELH 1				

HRS FCINTS FROM ANCILIARY RECORDS 3-13:

TABLE B-9. ANCILLARY LATA SET FIELDS (X-FORMAT CCT HEADER DATA)

PARAMETEF	DESCRIPTION	CCLUMNS	FORMAT
TTTLE	X-FORMAI CCT HEADER DATA: ${ }^{\text {a }}$	$1-60$	C60
NEEC	NUMBER OF DATA EECORDS TN THIS "SECTION" (= 3)		
SCENT	BLANK CHARACTER		${ }^{C 1}$
SCENE	NASA SCENE IDFNTTFIER SCENE	2-11	C10
ACODATF	DATF OF ACQUISIPTON OF SCENE	12 22	C10
DIRPEC	DIRECT OR RECORDED DATA INDICATOR	$32=41$	C15
	BLANK CHARACTER		
NADLAT	LATITUDE OF SPACECRAFT NADIR (RADIANS)	2 12 $=11$	F10
FCLAT		22-31	F10
FCLON	LONGIIUDE OP FORMAT CENTER (RADIANS)	32-41	F10

table b-10. ancillary cata Sft fields (cCt Siat data)

PARAMETER	DESCRIPTION	COLUMNS	FORMAT
$\begin{aligned} & \text { TTTMIE } \\ & \text { NRC } \end{aligned}$	CCT STAT DATA: RECORDS TN THIS "SECTION"	$1-60$ $61=7$	C69
	BLANK CHARACTER		10
NATEST		2 2	F10
ALFER	EARTH ROTATION ANGLE (RACIANS)	22-31	F10
DELVV	NOFMALTZED VELOCI PY CHANGE	$32-41$ 42	$\stackrel{\mathrm{F}}{\mathrm{F}} 10$
AMSN LN	LONGITUDE OF SPACECRAPT NADIR (RALIANS)	52-61	F10
	BIANK CHARACTER		
AMSPCT1	TMM	$12=11$	F10
AMSPIT 1	AMS PITCH MEASTREMENT 1	$22=31$	F 10
AMSY AM 1	AMS YAh MEASUREMENT 1	32-41	F10
AITSALM 1	TIME OF ALTITUDF MEASUREMENT	$42-51$ $52-61$	Fin
-	,		
-	-	-	
-	BIANK CHARACTER		1
ATTTTM 9	TIUE OF ATTITODE MEASUREMENT 9	2-11	${ }_{\text {F1 }} 1$
AMSRCI'	AMS RCLI MEASUREMENT ${ }^{\text {a }}$ 9	12-21	F10
AMSYA ${ }^{\text {A }}$	AMS YAW MEA SUREMENT 9	32-41	F10
AITTMMG	TTME OF ALTITUDE MFASUREMENI 9	$42=51$ $52=61$	F10
AMSALT9	AMS AITITUEE MEASUREMENT 9	52-61	Fic
-	BLANK CHARACTER		F1c
A ITMIM 10	TIME OF ALTITUDE MEASUREM ENT 10	$42=51$	${ }_{F} 10$
AMSA LT 10	AMS ALIITUDE MEASUREHENT 10	52-61	F1C
-	BIANK Character		C1
AITTIM11	SPARE OF AITITUDE MEASUREMENT 11	2 $42=51$	F10
AMSALT 11	AMS ALITTUDE MEASOREMENT 11	52-61	F10

TABLE B-11. ANCILLARY DATA SET FIELDS (DETECTOR-BY-DETECTOR HISTOGRAMS)

PARAMETER	DE SCRIPTIT N	COLOMNS	FORMAT
TTTLE	DETECTOR-BY-LETFCTOR STATISTICAT PARAMETERS:	1-60	C60
NRFC	NUMBER OF DATA RECORDS IN THIS "SECTION" ($=11$	61-70	I19
-	BIANK CHARACTER	-1	C1
E1D14	MEAN OF BAND-1, DETECTOR-1 PIXELS	2-11	F10
B1D2M	MEAN OF BAND-1, DETECPOR-2 PIXELS	$12-21$	F10
E1D3M	MEAN OF BAND-1, DETECTOR-3 PTXEIS	22-31	F10
B1D4M	MEAN OF BAND-1, DETECTOR-4 DIXEIS	$32-41$	F10
B1D6M	MEAN OF BAND-1: DETECTOR-6 PIXELS	52-61	F19
B1M	MEAN OF BAND-1 PIYELS	62-71	F10
	BLANK CHARACTEP		C1
B1D1S	STANDARD DEVIATION OF BANE-1, DETECTOR-1 PIXELS	$2-11$	F10
B1D2S	STANDARD DEVIATION OF BAND-1, DETECTOR-2 PIXELS	12-21	F10
B1D3S	STANLARD DEVIA TION OF BAND-1: DETECTOR-3 PIXELS	22-31	F10
E1D4S	STANDARD DEVIATION OF BANL-1, DETECTOR-4 PIXELS	32-41	F19
B1D5S	STANDARD DEVIATION OF BAND-1, DETECTOR-5 PIXELS	42-51	F10
B1D6S	STANDARD DEVIATION OF BANE-1, DETECTOR-6 PIXELS	$52-61$	F19
B1S	STANDARD DEVIATION OF BANL-1 PIXELS	62-71	F10
-	-		
,	-		
-	BLANK CHARACTER	1	C1
B5D1M	MEAN OF BAND-5, DETECTOR-1 PTXEIS	$2-11$	F10
B5D2M	MEAN OF BAND-5, DETECTOR-2 PIXELS	12-21	F10
B5D3M	MEAN OF BANL-5, DFTECTOR-3 PTXPLS	22-31	F10
B 5D4M	MEAN OF BAND-5, DETECTOR-4 PIXEIS	$32-49$	F10
B5D5M	MEAN OF BANL-5, DETECTOR-5 PIXELS	42-51	F 19
B5 D6 M	MEAN OF BANI-5, DFTECTOR-6 PIXEIS	52-61	F10
B5M	MEAN OF BAND-5 PIXELS	62-71	F10
-	BLANK CHARACTER	1	C1
B501S	STANDARD DEVIATTON OF BAND-5, DETECTOR-1 PIXELS	$2-11$	F10
B5D2S	STANDARD DEVIATION OF EANE-5, DETECTOR-2 PIXELS	12-21	F10
B5D3S	STANDARD DEVIATION OF BAND-5, DETECTOR-3 PTXELS	22-31	F10
B5D4S	STANDARD DEVTATTON OF BAND-5, DETECTOR-4 PIXELS	$32-41$	F10
B5D5S	STANDARD DEVIATION OF BAND-5, DETECTOR-5 PIXELS	42-51	F1n
B5D6S	STANDARD DFVTATION OF BAND-5, DETECTOR-6 PIXELS	$52-61$	F10
B5 S	STANDARD DEVIATION OF BAND-5 PIXELS	62-71	F10

TABLE B-13. ANCILLARY DATA SET FIELDS (OUTPUT-SPACE DEFINITION)

TABLE B-14. ANCILLARY DATA SET FIELDS (ERROP MODELS)
parameter
DESCRIPTION
COLUMNS FORMAT

TABLE B-15. - ANCILLARY LATA SET FIELDS (ERROR ASSESSMENT)

ORIGINAL PAGE IS OF POOR QUALITY
table $\bar{B}-1 \overline{6}$. ancillary data set fields (CCT header data)

PARAMETER	DESCRIPTION	COLUMNS	PORMAT
TIPTLE		$1=60$	$\mathrm{C} 60$
NREC	NUMBER OF DATA RECORDS IN THIS "SECTION" (${ }^{\text {(}}$ ()	$61-70$	I10
-	BLANK CHARACTER		c1
SCENE	NASA SCENE IDENTIFIER	$12=11$	C10
A ${ }^{\text {A SCDSPTH }}$	ASCENDING OR DESCENDING NODE	$12=21$ 22	C10
WRSROH	HRS FOH NUMBER	32-41	I 10
-	BLANK CHARACTER		C1
SENSOR	SENSOF IDENTIFIER	2-11	C1n
ORBT ${ }^{\text {M }}$	SPACECRAFT ORBIT NUMBER	$12=21$ 22	C10
ADSTA	ACTIVE DETECTORSTATUS	32-41	X 10
NUMDET	NUMBER OF ACITVE DETECTORS	42-51	T10
ISKID	WIDTH OF INEUT SPACE (PIXELS)	52-61	I 10
-	BLANK CHARACTER		C1
HPSLIN	LTNE NUMBER OR HRS PORMAT CENTER		T 10
WPSPIX	PIXEL NOMBER OF GRS Format cen	12-21	I10
CPPEAR		$\begin{array}{r}22 \\ 32 \\ \hline 21\end{array}$	I
CPHOUP	CENTER PICTURE EXPOSURE TIME (HOUR)	42-51	I 10
CPMIN	CENTER PICTURE EXPOSURE TIMF (MINUTES)	52-61	F10
-	BLANK CHARACTBR		C1
MPANN	NUMBER OF MAJOT PRAMES OF ANNOTATION DATA	12-11	± 10
MFANC	NOMBER OF MAJOR FRAMES OF ANCILIARY DATA	12-21	T1ñ
${ }_{\text {GCDFIG }}$	GECMETRIC COFRECTION DATA FLAG	22-31	${ }_{C} 10$
PCFLG	RADIOMETRIC CORRECTION FLAG	42-51	C10
RCDFIG	RADICMETRIC CORRECTION DATA FLAG	52-61	C 10
IST	BLANK CHARACTER		C
ISITN	NOMBER OF MAJOR FRAMES (LINFS) OF IMAGE DATA	2-11	± 10
IFTYEE	TMAGE DATA FORMAT	$12=21$	C10
ILCNT	ITNE INTERLEAVING COUNT	32-41	I19
ESTYPE	TYPE OF RESAMPITNG APPLIED	42 52	${ }_{C} 10$
MA FECJ	MAP EFOJECTICN APPLIED	52-61	C12
-	BLANK CHARACTER		c1
WRSOFF	WRS OFFSET FROM FULLY PROCESSED IMAGE CENTER	$12=11$	T10
UBANDS	NUMBEWR OF OSABLE SPECTRAL BANDS	12 22 - -	C10
MENDNC	MSS SPECTRAL BAND NUMBER	32-41	I1
PASSTYPE	BIANK CHARACTER TYPE OF PASS MCDE CF CALIERATION WEDGE	2 12	C1 C10 C10

TABLE B-17. ANCILLARY LATA SET FIELDS (CCT ANCILLARY RECORD NUMBER 1 DAMA) PARAMETER

DESCRIPTION
COLUMNS FORMAT

$\frac{\text { TITLE }}{\text { NREC }}$		$1-60$ $61-70$	$C 60$ I 10
	BLANK CHARACTER	-11	1
ISWID	WIDTH CF INEUT SPACE (PIX EIS)	2-11	F10
ISLEN	IENGTH OF INPUT SPACE (PIXEIS)	$12-21$	F10
I SPACH	HOF. SPACING BETWEEN TNPUT-SPACE PIXEIS (METERS)	22-31	F10
ISPACV	VER. SPACING BETWEEN INPUT-SPACE PIXELS (METERS)	$32-41$	F10
	BLANK CHARACTER	1	C1
OSWID	WIDTH OF OUTPUT SPACE (PIXEIS)	$2-11$	F10
OSIEN	LENGTH OF OUTPUT SPACE (PIXFIS)	$12=21$	F10
OSPACH	HOR. SPACING BETWEEN OUTPUT-SPACE PIXELS (METERS)	$22-31$	F10
OSPACV	VER. SPACTNG BETHEEN OUTPOT-SPACE PIXELS (METERS)	32-41	F10
SCAITM	NOMINAL SPACFCRAFT ALT TTUDE (METERS)	42-51	F10
ISWIDM	WIDTH OF INPUT SPACE (METERS)	$52-61$	F10
	BLANK CHARACTER		C1
MIRR	CONSTANT COEFFICIENT OF MIRROR-VEIOCITY MODEL	$2-21$	D20
MIRR1	DFGREE-1 COFFFICIENT OF MIRROR-VELOCITY MODEL	22-41	D 20
M IRR 2	DEGREE-2 COEFFICIENT OF MIRROR-VELOCITY MODEL	42-61	D20
-	BLANK CHARACPER		1
MTRR 3	DEGREE-3 COEFFICIENT OF MIRROR-VEIOCITY MODEL	2-21	D20
MAXMIR	MAXIMUM SCAN-MIFROR ANGLE (RADIANS)	22-41	D 20
	BLANK CHARACTER	1	1
SCSKEW	SCAN-SKEW EARAMETER	$2-21$	D20
TBTWN	TTME BETWEEN CONSECUTTVE MIRROR SWEFPS	$22-41$	D20
TACTIVE	TIME FOR AN ACTIVE MIRROR SCAN (SECONDS)	$42-61$	D20
	BLANK CHARACTER	1	C1
A	SEMIMAJOR AXIS OF FARTH-SPHEROID MODEL (METERS)	$2-21$	D2C
B	SEMIMINOR AXIS OF EARTH-SPHEROTD MOEEL (METERS)	$22-41$	D20
ECCON	EARIH-CURVATURE CONSTANT	$42-61$	D20
	BLANK CHABACTER		1
SD11	SAMPLING-DELAY CORRECTTON FOR EAND $1 . ~ D E T E C T O R ~ 1 ~$	12-11	F10
SD12	SAMPIING-DELAY CORRECTION FOR BAND 1, DETECTOR 2	12-21	F10
SD13	SAMPLTNG-DELAY CORRECTION FOR BAND 1, DETECTOR 3	22-31	F10
SD 14	SAMPIING-DELAY CORRECTION FOR BAND 1, DETECTOR 4	$32-41$	F10
SD15	SAMPITNG-DELAY CORRECTION FOR BAND 1 , DETECTOR 5	$42-51$ $52-61$	F10
SD 16	SAMPLING-DELAY CORRECTION FOR BAND 1, DETECTOR 6	52-61	F10
-	*	-	
	BLANK CHARACTER		
SD41	SAMPLTNG-DELAY CORRECTION POR BAND 4, DETECTOR 1	12-11	F10
SDU2	SANPITNG-DEIAY CORRECTION FOR BAND 4, DETECTOR 2	$12-21$	F10
SD43	SAMPLING-DELAY CORRECTION FCR BAND 4 , DETECPOR 3	$22-31$	F10
SD44	SAMFIING-DELAY CORRECTION FOR BAND 4 DETECMOR 4	42-41	F10
SD45	SAMPIING-DELAY CORRECTION POR BAND 4, DEEECTMR ${ }^{\text {SAMPI ING-DELAY }}$	$52-51$	F10
	BLANK CHARACIER		C1
SD51	SAMPLING-DELAY CORRECTION FOR BAND 5, DETECTOR 1	2-11	F10
SD52	SAMPLING-DELAY CORRECTION FOR BAND 5, DETECTOR 2	$12-21$	-10
BBOFF5	BAND-TO-BAND OFFSET FOR BAND 5	22-31	F10
BBOFF6	BAND-FO-BAND OFFSET FOP BAND 6	32-41	F10
BBOFF7	BAND-TO-BAND OFFSET FOR BAND 7	42-51	F10
BBOFF8A	BAND-TO-BAND OFFSET FOR BAND 8A	$52-61$	F10
BBOFP8B	BAND-TO-BAND OFFSET FOR BAND 8B	62-71	F10

TABLE B-18. ANCILLARY DATA SET PIELDS (CCT ANCILLARY RECORD NUMBER 2 DATA)

PARAMEMER
DE SCRIPTION
COLUMNS FORMAI

TTTEC		1 61	C60 ± 10
-	BLANK CHARACTER	-11	
WRSFPM	WRS FRAME	$2=11$	F10
WRSORB	GEODETIC LATITUDE OF GRS FORMAT CENTER (RADIANS)	12-31	Fin
WRSLON	LONGITODE OF WRS FORMAT CENTER (RADIANS)	32-41	F19
FCXCTIM	SPACECRAFT TIMEOF FRAME CENTER	42-61	C2n
	BIANK CHARACTER		1
NADLAT	GEODETIC LATITODE OF SPACFCRAFT NADTR (RADIANS)	$22-21$	D20
	LONGITUDE OF SPACECRAPT NADIR (RADIANS)		
	BLANK CHARACTER		,
NADITRX	EARTH-FIXED COORDINATE OF SPACECRAFT NADIR (METERS	$22=21$	${ }^{\mathrm{D}} 20$
NADIRZ	EARTH-FIXED COOPDINATE OF SPACECRAFT NADIR (METERS)	42-61	D20
	BLANK CHARACTER		C1
BETA	HEALING ANGLE	2-21	D 20
INADLIN	INPUT-SPACE LINE NUMBER OP SPACECRAFT NADIR	22-41	D29
INADSEL	INPUT-SPACE SAMPLE NUMBER OF SPACECBAFT NADIR	42-61	D29
	BLANK CHARACTER		1
DELVV	NORMALIZED VELOCITY CHANGE OF SPACECRAFT	2-21	D29
ERVEL ERPARM	EARTH-ROTATION PARAMETER	$22=41$ $42-61$	${ }^{\text {D2 }} 20$
	BLANK CHARACTER		1
ROILC	CONSTANT-TERM COEFPICIENT OF ROLI MODEL	2-11	F10
FOLI ${ }^{\text {ROLI }}$	DEGREE-1-TERM COEFFICIENT OF ROIL MCDEL	$12=21$	F1ก̃
$\mathrm{BCIL}^{\text {R }}$	DEGEEE-3-TERM COEFFICIENT OF ROLI MODEL	32-41	Fin
	BLANK CHARACTER		1
PTTCHO	CONSTANT-TFRM COEFPICIENT OF PITCH MODEL	2-11	F19
PITCH1	DEGREE-1-TERM COEFFICIENT OF PTTCH MODEL	$12=21$	F10
Qitch3	DEGREE-3-TERM COEFFICIENT OF PITCH MODEL	32-41	F10
	blank characier		
YA WC	CONST ANT-TEFM COEFFICIENT OF YAM MODEL	2-11	F10
YAW 1	DEGREE-1-TEPM COEFFICTENT OF YAM MODEL	$12-21$ $22-31$	F10
Y ${ }^{\text {a }}$ W3	DEGREE-3-TERM COEFFICTENT OF YAM MODEL	32-41	F10
	BIANK CHARACTER		
DELEHC	CONSTANT-TERM COEFFICIENT OF ALTTTUDE-CHANGE MODEL	2-11	F10
DELH 1	DEGREE-1-TERM COEFFICIENT OF ALTITUDE-CHANGE MODEL	$12=21$	F10
NUMGCP	BLANK CHARACIER NUMBER OF GCES USED TO GET ERROR MODELS	$2-11$	F10

TABLE B-19. ANCILIARY CATA SET FIELDS (HRS POINTS FROM ANC. RECORDS 3 - 10)

PARAMETER	DESCRIPTION	COLUMNS	FORMAT
TITLE		1-60	C60
NREC	NUMBER OF DATA RECORDS IN THIS "SECTION" ($=\mathrm{K}+1$)	$61=70$	I 19
${ }^{-}$	BLANK CHARACTER	1	C1
H1	HRS PCINT NOMBER 1	$2-5$ 6	R4
H2	HRS POINT NOMBER 2		R4
-	-	-	-
Hi6	HRS POINT NOMBER 16	62 - 65	+ 4
	BLANK CHARACTER 17	$2-\frac{1}{5}$	C1
H18	HRS POINT NOMBER 18	$2-5$	R4
-	-	.	-
H32	HRS POINT NOMBER 32	$62 \div 65$	+ 4
	-		
-	-	-	-

TABLE B-2c. ANCILIARY DATA SET FIELDS (VRS POINTS FROM ANC. RECORDS 3 - 1C)

Parameter	DESCRIPTTON	COLUMNS FORMAT
TTTLE NREC		$\begin{array}{r}1-60 \\ 61 \\ \hline\end{array}$
V1	BLANK CHARACTER	2- 5 C1
H2	VRS POINT NOMBER 2	$2-9$ $6-9$
-	-	- -
Vi6	VRS POINT NUMBER 16	$62-65$ + 4
	BLANK CHARACTER 17	2- $\quad 1 \begin{aligned} & \text { C1 }\end{aligned}$
V178	VRS VRS POINT	$2-5$ 6
-	-	- .
v3่2	VRS ECINT NUMBER 32	$62: 65$ P. 4
-	-	-

ORIGINAL PAGE IS OF POOR QUALITY

B.2.8 Shadeprint Data Set

The shadeprint data set is a computer listing on which image data is displayed. Gray levels are simulated by overstrike printing. Each printed character position represents a single pixel. An example of a shadeprint data set is shown in Figure B-2.

Figure B-2. Example of a Shadeprint

B.2.9 User-Request Data Set

Each of the SLDMS programs has its own User-Request Data Set (URDS). It is used to allow a user to supply any optional or necessary data to the program.

The general formats of all URDSs are similar. Each will consist of a FORTRAN NAMELIST followed by formatted data. The records on a URDS are 80 -byte card images.

B. 3 REFORMATTING PROGRAM (MRFT)

B.3.1 Statement of Problem

MSS data, as obtanned from NASA or EDC, can be in any of several formats. The LARSYS System uses a particular Multispectral Image Storage Tape (MIST) format that facalitates multispectral processing. This format is defined on pages 5-52 through 5-58 of the LARSYS System Manual. Reformatting, as defined here, is the reorganization of the ımage data into the MIST format.

Durang the reformatting process, it is convenient to perform several other preliminary processing tasks. These include removing line-length-correction pixels, histogramming, striping reduction, and ancillary-data extraction.

B.3.2 Data Flow

There is a severe limit on the amount of temporary disk storage available on the LARS computer. This restriction has influenced the way data will flow through the reformatting program. In particular, temporary image data sets will be stored on tape data sets. This will require somewhat more I / O than would be necessary on a system that had available about 35 million bytes of temporary disk space. In order to minimize tape-drive utilization, the X-format and BSQ-format tapes will be reformatted so as to use a maximum of three tape drives at one time.

B.3.3 Non-Image Data Considerations

The non-image data that is contained on the Landsat MSS computer tapes will be used by other programs in the SLDMS. For X-format CCTs, the non-image data fields are completely defined (see "Generation and Physical Characteristics of the Landsat 1 and 2 MSS Computer Compatible Tapes," GSFC, November 1975, X-563-75-223). The format of the BSQ and BIL tapes that will be produced by EROS Data Center are apparently not yet officially defined. These will be specified in the new edition of the Landsat Data User's Guide (expected to be published in January, 1979). Actual coding of some sections of the reformatting program cannot be started until those formats are defined. Currently, definntions of only X format and BSQ format (from MDP) are available to IBM.

B.3.4 Program Description

The design of the Reformatting Program is described in Figure $B-3$ and the nine program specificatıons that flow.

FIGURE B-3. MODOLE HIERARCHY FOR LANDSAT MSS REFORMATTING RROGRAM.
FUNCTION THIS IS THE TOP-LEVEL DRIVER FOR THE LANDSAT MSS REFORMATTING
FROGEAM.

```
INPUTS
```



```
OUTPUTS ........ 1. AN IMAGE TAPE TN MIST PORMAT.
    2. AN SIDMS ANCILILARY DATA SEI FOR THE SCENE TO BE PROCESSED,
    3. A PRINTER IISTING DATA SET.
```

COMMON BLOCKS ..
FESTPICTICNS ...
CALITNG SEQ. ... NOT AFPLICABLE.
PDL (PROGRAM OUTLINE)
PRINT PROGRAM-ENTRY MESSAGE
READ USEF'S GFCUESTS
PRIN ${ }^{m}$ PAPAMETERS DEFINING THIS RUN
CASENTMY
CASE
EFFOGMAT X-FCRMAT DATA
CASE REFOKMAT BSC-FORMAT DATA
CASE FEFORMAT BIL-FORMAT DATA
ENLCASE
DATA TS UNCORRECTED OR PARTIALIY-PROCESSED DATA
THEN
IF DETATS UNCOPRECTEDOR PARTIALLYY-P
DETEFMINE STRTPTNG-REDUCTION RABLES
PERFORM STRIFING REDOCTION
ENDIF
ENDTE
FRI $\bar{N} T$ FRCGRAM-EXIT MESSAGE

```
                                    SAR/LANDSAT DATA MERGING SYSTEM PROGRAM SPECIFICATION
NAME ........... MRFTBS
DESIGNEP ....... STEPHEN W. MURPHREY
FUNCTION ....... REFORMATS IMAGE DATA IN BSQ FORMAT.
INPUTS ......... 1. SEE CALLING SEQUENCE.
OUTPUTS ........ 1. SEE CALLING SEQUENCE.
COMMON BLOCKS ..
FESTRICTIONS ...
CALLING SEO. ... CALI MRFTBS ()
    VARIABLE TYPE I/O DIM DESCRIETION UNITS
PDI (EFOGRAN OUTIINE)
    OFEN FIRST INPUT DATA SET (I,1)
    READ AND PROCESS NON-IMAGE RECÓRDS
    GRITE ID PECCRD
    DO FOR EACH IMAGE RECORD
            READ ONE INEUT FECORD P(IT, 1)
            INITIALIZE NON-IMAGF FIELDS IN OÜTPUT BUFFER
            WRITEONE OUTPUI RECORD (0,1)
    ENDDO
    WRITE END-OF-TAPE RECORD
    CLOSE DATA SETS (T, 1) AND (0, 1)
    DO FOR EACH REMAANING INPUUTOGATA SET (IN,N)
        CPEN NEXT INPUT EATA SEMT
        READ AND FROCESS NON-IMAGE RECOOSDS
        COPY ID RFCORD FRRM (O N-1) TO (O,N)
            READ ONE INPUT RECORD (O,N-1)(I,N)
            PROCESS INPUT DATA AND DLACE IT IN OUTPUT BUFFER
            WRITE ONE OUTPUT RECORD (O,N)
        ENDDO
            WRINE END-OF-TAPE RECORD
    ENDDO
```

 SAR/LANDSAT DATA MERGING SYSTEM PROGRAM SPECIFICATION
 NAME MRFTXA
DESIGNER STEPHEN W. MURPHREY
FUNCTION RFADS AND PROCESSES X-FORMAT NON-IMAGE RECORDS.
INPUTS 1. SEE CALLING SEQUENCE.
OUTPUT\S 1. SEE CAILING SEQUENCE.
COMMON BIOCKS ..
RESTRICTIONS ...
CALLING SEO. ... CALL MRFTXA ()
VAPIABLE TYPE I/O DIM DESCRIPTION JNITS
PDI (EFOGRAM OUTIINE)
GEAD 4n-BYTE ID RECOFD FFOM INPUT DATA SET
READ 624-RYPE ANNOTATION RECORD FROM INPUT DATA SET
DETERMTNE FORMAT LEVEL
FPINT FIELDS FROM ID FECORD:
SCENE/FRAME ID
CCT STQUENCE NUMEER
DETA RECORD IENGTH
IAT TDENTIFICATICN
MSS ADJUSTED IINE LENGTH = LLA
MSS DATA MODE/CORRECTION CODE
PRINT FIELDS FROM ANNOTATION RECORD:
DAmE OF ACCUISITION
FORMAT CENTER IATITTUDE AND LONGITUDE
NADIR IATITUDE AND LONGITODE
ORBIT DIPECTION
NOMTNAL EATH AND FOW
SENSOP AND SPECTRAL BAND SPECIFIC INFORMATION
DIRECT OR GECORDED TRANSMISSION
SUN ELEVATION AND AZIMUTH ANGLES
TYPE OF COPRECTICNS CN DATA
SCALE OF IMAGE
MAP EROJECTICN
RESAMPLING ALGORITHM
EREDICTED OR DPFINITIVE EPHEMERIS DATA
FROCESSING PROCEDURE
EARTH IMAGF OR RBV CALIERATION IMAGE
SENSOR GAIN OPTIONS
TYEE OF MSS TRANSMISSION
TYPE OF MSS DATA PROCESSING
FEAME IDENTIFICATION NDMBER
NDPFIDENTIFICATION CODE
DIFECT OF FFCORDED MSS DATA
MSS DATAAACOUISITIONSITE
TTCK-MARK IOCATTICN DATA
IF THTS TS FROM FTRST STRIP THEN
WRITE ID DATA TC ANCILLARY DATA SET
WRITE ANNOTATION DATA TO ANCILIARY DATA SET
ENDIF

ORIGINAL PAGE IS OF POOR QUALITY

```
                                    SAR/LANDSAT DATA MERGING SYSTEM FROGRAM SPECIFICATION
NAME
                    MRFTX
DESIGNER ....... STEPHEN W. MURPHREY
FUNCTICN ....... REFORMATS X-FORMAT EATA.
TNPUIS ......... 1. SEE CAIIING SEQUENCE.
OUTPUTS ........ 1. SEE CAILING SEQUENCE.
CONMCN BLOCKS ..
PESTEICMIONS
CRIIING SEQ. ... CALL MRFTX ( )
VAPIABLE TYPE I/O DIM DESCRIPTION UNITS
PDL (PROGRAM OUTITNE)
    OPFN FTRST TNPUT DATA SET (TSN (T, 1)
    EEAD \̇ND PROCESS NCN-IMAGE RECÓRDS
    WEITE ID EECORD
    DO FOR EACH IMAGE RECORD
```



```
            INITIALIZE NON-IMAGE FIELDS IN OUTPUT BUFFER
```



```
    ENDDO
    WRIME END-OF-TAPE RECORD
    CIOSEREATA SETS (T, 1) AND (O,1)
```



```
                EEAD ONE INRUT RECORD (ON-1)(I,N)
```



```
                    WFIME ONE OUIPUTM RECORD (O,N)
            FNDDC
            WRINE END-OF-TAPE RECORD
    ENDDO
        CLOSE DATA SETS (I,N) AND (O,N-1) AND (O,N)
    READ AND PROCESS SIAT FIIE
```

```
                SAR/LANDSAT DATA MERGING SYSTEM PROGRAM SPECIFICATION
NAME .......... MRFTBA
DESIGNER ....... STEPHEN W. MURPHREY
FUNCTION ...... RFADS AND PROCESSFS NCN-TMAGE RECORDS FROM BSQ-FORMAT OR
    BIL-FCRMAT TAPE.
INPUזS ......... 1. SEE CALLING SEQUENCE.
OUMPUTS ........ 1. SEE CALIING SFOUENCE.
COMMON BLOCKS ..
FESTRICTICNS ...
CALLING SEQ. ... CAIL MRFTBSA ()
    VARIABLE TYPE I/O DIM DESCRIPTION UNTTS
PDI (PROGRAM OUTLINE)
    DO UNTTL END-OF-DATA IS REACHED
        READ ONE NCN-TMAGE RECORD
    ENDDO
    IF THIS IS FIRST FILE OF INPUM TAPE THEN
        PRINT DIRECTORY RECORD NRY DIRECTORY DATA TO ANCILLARY DATA SET
    ELSE
        ERINT TRATIER RECORD
        WRITE TRAIIER DAIA TO ANCIILARY DATA SET
    ENDIF
    PRINT HEADER RECORD
    ERTNT ANCIILARY RECORDS
    PRINT ANNOTATION RECORDS
    WRITE HEADER DATA TO ANCIILARY DATA SET
    WRTTE ANCIILARY DOTA TO ANCTLLARY DATA SET
    WRITE ANNOTATION DATA TO ANCIILARY DATA SET
**摂安水
    END OF SPECIFICATION
```


Abstract

NAME MRFTBII


```
DESIGNER ....... STEPHEN W. MURPGREY
```

FUNCTION PROCESSES ONE LINE OF BSQ-PORMAT OR BIL-FORMAT IMAGE DETE.
INPUTS 1. SEE CAIIING SEQUENCE.
OUTPUTS 1. SEE CAILING SEQUENCE.
CCMMON BIOCKS ..
FESTRICTICNS
CFLLING SEQ. ... CAII MRFTBI ()
VARIABEE TYPE I/O DIM DESCRIPTION UNTTS
PDI (EFOGRAM CUTIINE)
MOVE TMAGE DATA TNTO CURRENT-BAND AREA OF OUTPUT BUFPER
IF THIS IS PARTIALLY-PROCESSED DATA THEN
DO FOR EACH IMAGE PIXEL
CBTAIN $V=P I X E T V A L U E$
FNDINCREMENT V COUNTER FOR CURRENT DETECTOR BY 1
ENDDO
ENDIF

SAR/LANDSAT DATA MERGING SYSTEM PROGRAM SPECIFICATION

NAME MRFTBI

DESIGNER STEPHEN W. MURPHREY
FUNCTION REFORMATS BIL-FORMAT DATA.
INPUTS 1. SEE CALLING SEQUENCE.
OUTPUTS 1. SEF CALLING SEQUENCE.
COMMON BLOCKS ..
RESTRICTIONS ...
CAIIING SEQ. ... CAIL MRFTBI ()
VARIABLE TYPE I/O DIM DESCRIPYION UNITS

FDI (EFOGRAM OUTIINE)
OPEN TNPUT $\mathrm{CATA} S E T$
OPEN OUTPUT DATA SET
READ AND PROCESS NON-IMAGE RECORDS
WPITE ID RECOKD
DO FOR EACH IMAGE LINE INITIALIZE NON IMAGE FIELDS IN OUTPUT BUFFER
DO FOR EACH SPFCTRAL EAND
READ ONE INPOT RECORD
PROCESS INPUT DATA AND PLACE IT IN OUTPUT BUFFER
ENDDO
WRITE ONE OUTPUT FECORD
END-OF-TAPE EECORD
CLOSE INPUT AND OUTPUT DATA SETS
END OF SPECIPICATION

B. 4 AUTOMATIC CONTROL-POINT LOCATION PROGRAM

B.4.1 Statement of Problem

The objectuve of this program is to determine the locations of a set of control points in a Landsat MSS image. These locations are plxel coordinates in the high-frequency-corrected input space (see Figure B-6 in Section B.6). They are to be used as inputs to the Geometric Transformation Program.

In order to locate a particular control point in a given high-frequency-corrected input space, it is necessary to know the location of that control point in some high-frequency-corrected input space. A search area is defined to be a 128-by128 pixel subimage of the given high-frequency-corrected input space. The control point is assumed to be contained in the search area, but its precise location within the search area is not known. A window is defaned to be a 32-by-32 pixel subimage of a high-frequency-corrected input space. The control point is near the center of the window, and its location within the window is precisely known.

The Automatic Control-Ponnt Location Program uses cross correlation to compare the window with all possible 32-by-32 pixel subimages of the search area. This results in a $97-b y-97$ array of regularly spaced points on a correlation surface. The location of the peak of the correlation surface represents the location of the control point. Therefore it is the function of this program to locate the peak of the correlation surface for each control point.

This program is required to determine control-point locations in an automatic process that requires no manual effort by the user.

B.4.2 Data Flow.

The data flow through the Automatic Control-Point Location Program involves both image data and ancillary data. Windows and search areas are obtained and horizontally resampled to remove high-frequency errors, if necessary. Some ancillary parameters are used to determine locations of the search areas. The results from this program are added to the ancillary data set.

B.4.3 Program Description

The design of the Automatıc Control-Point Location Program is described in Figure B-4, the eight program specifications that follow, and five of the program specifıcations from the Manual Control-Point Location Program.

FIGUPE B-4. MODULE HIERARCHY FOR AOTOMATIC CCNTROL-POINT LOCATION PROGRAM.

```
*******
SAR/LANDSAI DATA MERGING SYSTEM EROGRAM SPECIFICATION
NAME ........... ACPL
DESIGNER ....... STEPHEN W. MURPHREY
FONCTION ....... THIS IS THE TOP-LEVEL DRIVER FOR THE AUTOMATIC CONTROL POINT
                                    LOCATION PROGRAM.
INFUTS ......... 1. CONTFOL POINT LTERARY COPY TAPE OR MTST -FORMAM TAPE.
                2. AN SLDMS ANCILIARY EATA SET FOR THE SCENE TO BE PROCESSED.
                3. A DATA SETT CONTATNING USER'S REQUESTS (ON CARD IMAGES).
OUTPUTS ........ 1. THE UPDATED SLDMS ANCILIARY DATA SET.
                2: A ERINTER IISTING EATA SET.
COMMON BLOCKS ..
RESTRICTIONS ...
CAILING SEQ. ... NOT APPLICABLE.
PDI (FFOGRAM CUTIINE)
    PRINT PROGRAM-ENTRY MESSAGE
    READ USER'S REQUESTS NDONS COME FROM CPI COPY TAPE THEN
    EXTRACT 32-SY- 32 PIXEL WINDOWS FPOM CPI COPY TAPE INTO MEMORY
    ELSF
            RESAMPLE 32-BY-32 PIXEL WINDOWS FROM A MIST FORMAT TAPE INTO MEMOPY
    ENDIF
    FTND INPUT-SPACE COORDINATES OF SEARCH AREAS
    RESAMDLE 128-BY-128 PIXEI SEARCH AREAS FROM THE MIST-FORMAT TAPE INTO MEMORY.
    OBTATN 5-BY-5 CORRELATION SURFACE CFNTPREDAST NEAREST PIXEL TO EACH GCP. 
    COEFFTCIENTS OF DFGRFF-4 LEAST SQUARFS POLYNOMTALPFIT TO SURFACE OF EACH GCP.
    IOCATE DEAK OF EACH GCP SURFACE BT NEWTONSS METHOD.
    ESTIMATE QUAIIMY EACH GCP (VAIUE OF SURFACF AND MINIMUM CURVATURE AT PEAK).
    WRITF RFSULTS TO ANCILIARY DATA SET
    PRINT PROGRAM-EXIT MESSAGE
```

 END OR SPECIFICAMION
    ```
NAME ........... ACPLCT
```



```
PDL（PROGRAM OUTLINE）
SET \＄HRS AND \(\$\) EOF FLAGS TO FALSE
```



```
SET \＄EOF FLAG TO TRUE－HN
FNDT PRINT MESSAGE THAT SUITABLE CONTROL FOINTS WERE NOT FOUND
ENDIF WRS ROH，HRS PATH，AND REGISTRATION TYPE ARE AS REOUESTED
THEN
IF A SPECTFIC LANDSAT MISSION WÄS REQUESTED BY THE USER THEN SET DSAT MISSION ISSAB ENDIF
ELSE
FNDTEET \＄TRS FLAG TO TROE
ENDIF
ENDDC
CLOSE \(\$\) LIRSECTORY FILE OF \(\operatorname{CRI}\) COPY MAPE
IF \＄WRS IS TRUE THEN
PRINT INFORMATION FROM CURRENT DIRECTORY RECORD
FNDTF CONTROL－POINT FILE ON REEL 1 OF CPL COFY TAPE
SET N \(=1\)
DO FOR EACH CONTPOL－POINT POINTER PI
\(\mathrm{K}=\mathrm{EI}-\mathrm{N}\)
DO WHTLE K \(\quad\)＞
```



``` CLCSE CONTROL－POINT FILE ON CURRENT REEL OF CPL COPY EEAD（SKIE）CNE CONTROL POINT RECORD ENDIF
\(\stackrel{\mathrm{K}}{\mathrm{N}}=\mathrm{K}+1\)
ENDDO
READ ONE CONTROL POINT RECORD INTO MEMORY
IF END－OF－DATA IS REACHED THEN
CLOSE CONTROL－POINT FTLE ON CURRENT REEL OF CPL COPY TAPE OPEN CONTROL FOTNT FIIE ON NEXT REEL OF CPI COPY TAPE READ ONE CONTROL POINT RECORD INTO MEMORY
ENDIF
\(\mathrm{N}=\mathrm{N}+1\)
ERINT ANCIILARY LATA FROM CONT FOL POINT RECORD
Close current contrci－point file
```


PDL（EFOGRAM OUTIINE）
COMFUTE ATTITUDE／AITITUDE MODELS FROM AMS DATA＜ADTAAMOD＞ COMPUTE THE ANGLE BETA（S／C GROUND TRACK INCLINATION）＜CQBETA＞
COMEUTE THE EARTH CENTERED COORDINATES OF THE NADIR
 MAP THE INPUT CONTROI POINTS FROM IAT／LON TC EARTH CENTERED（ILEC MAE THE INPOT CONTRCI FOINTS PROM EARTH CENTERED TO CTP＜ECCTP＞ COMPUTE EARTH－ROTATIONAL VELOCTITY VECTORS FOR THE CONTROL POTNTS MAP THE TNPUT CONTROL POINTS FROM CTP TO UTE＜CTPUTP MAP m


```
******
    SAR/LANDSAT DATA MERGING SYSTEM PROGRAM SPECIFICATION
NAME ........... ACPIRS
LESIGNER ....... STEPHEN W. MORPHREY
FUNCTION ...... RESAMPLES 32-BY-32 OR 128-BY-128 PIXEL AREAS FROM A MIST-FORMAT
    MSS TAPE. THE ONIY CHANGE RESULTING FROM THE RESAMPLING IS THE
    REMOVAL OF HIGH-FREQUENCY, HORIZONTAL GEOMETRIC ERRORS.
INEUTS ......... 1. SFE CALIING SEQUENCE.
OUTPUTS ........ 1. SEE CALLING SEQUENCE.
COMMON BIOCKS ..
RESTRICTIONS ...
CALIING SEQ. ... CALI ACPLRS()
    VARIABLE TYPE I/O DIM DESCRIPTION UNITS
PDI (PROGRAM OUTLINE)
    EXTPACT ALI SUBTMAGES TO COMPUTER MEMORY (MCELEX).
    DO FOR EACH EXTRACTEL SUBIMAGE
    COMPUTE GPIDDPOINT CORRESPONDENCE AND OTHER CONSTANTS (MCPLGP)
    RESAMPIE SUBIMAGE CORRECTING ONLY HIGH-FREQUENCY ERRORS (MCPIGR).
    ENIDO
```

END OF SPECIFICATION

NAME ACPLCS

DESIGNER
FUNCTION

STEPHEN W. MURPHREY
COMPUEES 97-BY-97 CORPELATI ON SURFACE, AND FINDS THE PEAK THAT DETERMINES THE 5-BY-5 CORRELATION SURPACE THAT WILI BE USED TO LOCATE THE CONTROL ECINT.

INPUTS 1. SEE CALLING SEQUENCE.
OUTPOTS 1. SEE CALLING SEQUENCE.
COMMON BIOCKS ..
RESTPICTIONS ...
CALLING SEQ. ... CALI ACPLCS (C,A)

VARIABLE	TYPE	I/O	DIM	DESCRIPMION	UNITS
C	R*8	I	$25 X 1$	$5-B Y-5 ~ C O R R E I A T I C N ~ M A T R I X ~$	-

PDI (FROGRAM OUTIINE)
DO FOR EACH CONTROL ECINT.
PL ACE 32-BY-32 WINDOH IN THE CENTER OF A 128-BY-128 ARRAY. INITIALIZE ALI CTHER PIXELS IN THIS ARRAY TO ZERO. NORMALTZE $W I N D O W$ ARPAY BY SUBTRACTING WINDOK MEAN FROM EACH ELEMENT. CALCULATE THE VARIANCE OF THE VINDON. CALCUIATE 97-BY-97ARRAY OF $32-B Y-32$ SEARCH-AREA VARIANCES. DO FOR EACH ROF OF $128-E Y-128$ SEARCH-AREA ARRAY.

CALCULATE COOLEY-TUKEY FAST FOURIER TRANSFOFM OF CURRENT ROW. ENDDO
DO FOR EACH COLUMN OF 128-BY-128 TRANSFORMED SEARCH-AREA ARRAY. ENDDO
DO FOR EACH ROW OF 128-BY-128 HINDOH ARRAY
CALCULATE COOLEY-TUKEY FAST FOURIER TRANSFORM OF CURRENT ROH. ENDDO
DO FOR EACH COLUMN OF 128-BY-128 TRANSFORMED MINDOH ARRAY
CALCULATE COOLEY -TUKEY FAST FOURIER TRANSFORM OF CURRENT COLUMN.
ENDDO
DOT PRODUCT: (SEARCH-AREA TRANSFORM) (COMPLEX-CONJUGATE WINDOW TRA NSFORM) DO FOF EACH COIUMN OF 128 -BY-128 ERCDUCT ARRAY

CALC. COOLEY-TUKEY INVERSE FAST FOURIER TRANSFORM OF CURRENT COLUMN. ENDDO
DO FOR EACH ROH OF 128-BY-128 TRANSFORMED PRODUCT ARRAY.
CALCULATE COCIEY-TUKEY INVERSE FAST FOURIER TRANSFORM OF CURRENT ROW. ENDDO DO FOR CENTER 97-BY-97 ELEMENTS OF FTNAL TRANSFORMED ARRAY ENDDO
SET C $=5-B Y-5$ SUBMATRIX CENTERED AT MAXIMUM OF CORRELAGION SURFACE.

COMPUTES COEFFICIENTS OF A DEGREE 4 (95-TERM) LEAST-SQUARES

 ECIYNCMIAI THAT FITS THE 5-BY-5 CORRELATION SURFACE. THIS IS DONE FOR EACH CONTROL DOTNT.INPUTS 1. SEE CAILING SEQUENCE.
OUTPDTS 1. SEE CALIING SEQUENCE.
COMMON BLOCKS ..
RESTRICTIONS ...
CALLING SEQ. ... CALL ACPLSF (C,A)
VARIABLE $\underset{Y}{ }$ YPE I/O DIM DESCRIPTION UNITS

M	R*8	-	25×15	INTERNAL MATRIX	
P	R* 8	$\bar{\square}$	15×25	INTERNAL LEAST-SQUARES MATRIX	
C	R*8	I	25×1	5-BY-5 CORREIATICN MATRIX	
A	R*8	0	15×1	POLYNOMTAL COEFFICIENT MATRIX	

PDI (EROGRAM OUTIIINE)
$K=1$

$\left.\begin{array}{l}M(K, 1 \\ M \\ M\end{array}\right)=1$.

ENDDO
ENDDO
$P=\left(M^{T} M\right)^{-1} M^{T} \quad(M A T R I X$ EQUATION; P IS 15-BY-25 MATRIX)
DO FOR EACH CONTFOL POINT.
$A=P C \quad$ (MATRIX EQUATION)
ENDDO

NAME ACPISP
EESIGNER STEPHEN F. MURPHREY
FUNCTION COMPUTFS LOCATTON OF THE CORRELATION-SURFACE PEAK USING
INPUIS 1. SFE CALITNG SEQUENCE.
OUTPUTS 1. SEE CALIING SEQUENCE.
COMMON BLOCKS ..
CAILING SEQ. ... CALL ACPISP (C,A)

VARIABIE	TYPE	I/O	DIM	DESCRIPTION U	UNITS
NGCP	I* 4	-		NUMBER OF CONTROL ROINTS	
F	R*8	-	2×1	1ST PARTIALS	
S	R*8	-	2X1	FRACTICNAL CORREIATION' PEAK COORDS.	-
N	R* 8	-	2×2	2ND PARTIALS	
IH	左*8	I	NGCP	INTEGER CORREIATION PEAK COORDINATE	E
IV	R*8	I	NGCP	INTEGER CORREIATION PEAK COORDINATE	E
WH	R*8	I	NGCP	WINDOG COORDINATF OF GCP FEATURE	-
WV	R*8	T	NGCP	HINDOF COORDTNATF OF GCP FEATURE	-
H	R*8	0	NGCP	INPUT-SPACE GCP COORDINATE	-
V	$\mathrm{R} * 8$	0	NGCP	INPUT-SPACE GCP COORDINATE	-

PDL (PROGRAM OUTLINE)
DO FOR EACH CONTPOL POINT $L=1$ TC NGCP BY 1
INITIALIZE $X=Y=0$.
DO FIVE TIMES.
$F(1)=A_{1}+2 A_{3} X+A_{4} Y+3 A_{6} X^{2}+2 A_{7} X Y+A_{8} Y^{2}+4 A_{1 D} X^{3}+3 A_{11} X^{2} Y+2 A 12 X Y^{2}+A_{13} Y^{3}$
$F(2)=A_{2}+2 A_{4} X+A_{5} Y+3 A_{7} X^{2}+2 A_{8} X Y+A_{9} Y^{2}+4 A_{11} X^{3}+3 A_{12} X^{2} Y+2 A A_{13} Y^{2}+A_{14} Y^{3}$
$N(2,2)=D F 1 D X=2 A_{3}+6 A_{6} X+2 A_{7} Y+12 A_{10} X^{2}+6 A_{11} X Y+12 A_{12} Y^{2}$
$N(1,2)=-D F 1 D Y=-A_{4}-2 A_{7} X-2 A_{8} Y-3 A_{11} X^{2}-4 A_{12} X Y-3 A_{13} Y^{2}$
$\mathrm{N}(2,1)=-\mathrm{DF} 2 \mathrm{DX}=-\mathrm{DF} 1 \mathrm{DY}$
$N(1,1)=D F 2 D Y=2 A_{5}+2 A_{8} X+6 A_{9} Y+2 A_{12} X^{2}+6 A_{13} X Y+12 A_{14} Y^{2}$
$D=1 . /(D F 1 D X * D F 2 D Y-D F 1 D Y * D F 2 D X)$
$S=S-D N F \quad$ (MATRIXEQUATION)
$X=S(1)$
$Y=S(2)$
$\stackrel{H}{V}\left(\frac{L}{L}\right)=S\binom{1}{L}+I H\binom{L}{L}+W H(L)$
END OF SPFCIFICATION

NAME ACPLEC
DESIGNER STEFHEN W. MURPHREY
FUNCTION COMPUTES ESTIMATES OF THE QUALITY OF THE CORRELATION-SURFACE
INFUTS 1. SFE CALLING SEQUENCE.
OUTPUTS 1. SEF CAILING SEQUENCE.
COMMON BLOCKS ..
CALLING SEQ. ... CALL ACPLPQ ()
VARIABLE TYPE I/O DIM DESCRIPTION UNITS

DDL (PROGRAM OUTLINE)
DO FOR EACH CONTROL POINT I = 1 TO NGCP BY 1

$\mathrm{X}=\mathrm{S}(1)$
$\mathrm{Y}=\mathrm{S}(2)$
$M A X C O R=A_{0}+A_{1} X+A_{2} Y+A_{3} X^{2}+A_{4} X Y+A_{5} Y^{2}+A_{6} X^{3}+A_{7} X^{2} Y+A_{8} X{ }^{2}+$

ENDDO ERINT RESULT

$$
A_{0} Y^{3}+A_{10} X^{4}+A_{11} X^{3} Y+A_{12} X^{2} Y^{2}+A_{13}^{34} X Y+A_{14} Y
$$

B. 5 MANUAL CONTROL-POINT LOCATION PROGRAM

B.5.1 Statement of Problem

The objective of this program is to produce digital image data sets in which the scale has been changed or horizontal, high-frequency geometric errors have been removed. These two geometric changes are optional, and no other kinds of geometric changes will be performed.

The geometric changes are produced by resampling the digital image data using cubic convolution. The concept of resampling is discussed in detail in Section B.7. The algorithm described there is also used in thas program. The scale change is required to be a digital enlargement by an integral factor (inputpixel spacing is an integral multıple of output-pixel spacing). This simplifies the resampling process and guarantees that output-pixel coordinates can easily be converted to input-pixel coordinates.

B.5.2 Data Flow

One pass through an input MIST-format data set is made by this program. During this pass, all subimages are extracted and stored in the computer's (virtual) memory. This obviously places some limit on the amount of data that may be processed. The program is designed to process a maximum of 100 subimages. The buffer that contains the input subimage data is obtanned dynamically at execution time. Therefore, the effective maximum number of subimages depends on the amount of virtual memory available and the size of the subimages being processed. It will be fewer than 100 in some cases.

If histograms of the subimages have been requested by the user, input (unresampled) data will be used. These histograms may be used to generate character sets for the line-printer displays (shadeprints) of the subimages.

B.5.3 User-Specified Inputs to MCPL

The user-specified input parameters for MCPL are contained in a data set consisting of 80 -byte records. This data set contains the following:
a. A FORTRAN NAMELIST
b. A shadeprint character set (optional)
c. One or more Subimage Descriptor Records.

These are described in Tables B-21, B-22, and B-23.

TABLE E-21. MCPI NAMEIIST

parameter	DESCRIPTION
NWID	WIDTH OF A SUBI
NLEN	LENGTH OF A SUBIMAGE TO BE TSED FCR SHADEPRTNTS
BANDS	LIST OF SPFCTRAL BANDS TO BF PROCESSED
\$HIS	INDICATES THAT HISTOGRAMS OF SUBIMAGES ARE WA
\$RDC HR	INDICATES THAT USER WILL SUPPIY SHADEPRINT CHAPACERER
$\begin{aligned} & \text { \$SHDPRT } \\ & \text { \$RSFI } \end{aligned}$	INDICATES THAT SHADEPRINTS OR SUBIMAGES ARE WANTED INDICATES THAT RESAMPLING WILL RE PERFORMED ON EACH
\$HFCOR	SCARIMAGE TEAT HIGH-FREQUENCY HORIZONTAL ERRORS
	WTIL BE CORRECTED
\$ISUBW	INDICATES THAT A TAPE COPY OF ONCORRECTED SUBIMAG
\$OSUBG	INDICATES THAT A TAPE COPY OF RESAMPLED SUBIMAGES
HSPACO	HORIZONTAL SEACTNG BETHEEN PIXEL CENTERS OF
VSPACO	RESAL SPACING BETWEEN PIXEL C
	RESAMPLED SUBIMAGE
HSPACI	HCRIZONTAL SEACING BETHEEN PIXEL CENTERS OF
VSPACI	TICAL SPACING BETMEEN PIXEL CENTERS OF
	OOM
$\begin{aligned} & \text { HSCFAC } \\ & \mathrm{VSCFAC} \end{aligned}$	VEFTICAL SCALE FACTOR = VSPACI/VSPACO

UNITS DEFAOLT

PIXELS	-
PIXELS	$\overline{4}$
-	$1,2,3,4,5$
-	F
-	-
METERS	-
-	-
-	-

ORIGINAL PAGE IS
OF POOR QUALITY
TABLE B-22. SHADEPRINT CHARACTER SET

PARAMETEF	DESCRIPTION	COLUMNS PORMAT
\$CHAP	PRINTABLE CHARACTERS FOR PTXEL VALDES 0-63 USED FOR 1ST OVERSTRIKE	1-64 64C1
\$CHAR	PRINTABLF CHARACTERS FOR RIXEL VALJES 64 - 127 USED FOR 1ST OVERSTRIKE	1-64 64c1
\$CHAR	PRINTABLE CHARACTERS FOR PIXEL VALOFS 128-191 OSED FOR 1ST OVERSTRIKE	1-64 64c1
\$CHAR	PRINTABLE CHARACT ERS FOR PIXEL VALUES 192-255 USED FOR 1ST OVERSTRIKE	1-64 64c1
\$CHAR	PRINTABIE CHARACTERS FOR PIXEL VALUES 0-63 USED FOR 2ND OVERSTRIKE	1-64 64c1
\$ CHA ${ }^{\text {P }}$	PRINTABIF CHARACTERS FOR PIXEI VALUES 64-127 USED FOR 2ND OVERSTRIKE	1-64 64C1
\$CHAR	PRINTABLE CHARACTERS FOR PIXEL VALDES 128-191 USED FOR 2ND OVERSTRIKE	1-64 64c1
\$CHAR	PRINTABLE CHARACT ERS FOR PIXEL VALUES 192-255 USED FOR 2ND OVERSTRIKE	1-64 64C1
-	-	$\bullet \quad$ -

TABLE B-23. SUBIMAGE LESCRIPTOR RECORD

PARAMETER	DESCRIPTION	COLUMNS	PORMAT
censam	INPUT-SPACE HORIZONTAL COORDINATE OF CENTER PIXEL OF SDBTMAGF	1-5	I 4
CENLIN	INFUT-SPACE VERTICAL COORDINATE OF CENTER PIXEL OF SUBTMAGE	6-10	I4
$\begin{aligned} & \text { WIDTH } \\ & \text { LENGTH } \\ & \text { BANDS } \end{aligned}$	WIDTH OF SUBIMAGE IN PIXELS LENGTH OF SUBIMAGE IN PIXELS ITST OF SPFCTRAL PAND NUMBFRS	$11=15$ $16=20$ $21-25$	T4
TITEE	PRINTABLE TITLEFOR THE SUBIMAGE	$26=72$	47 C 1

The NAMELIST allows the user to define the functions to be performed and to specify certaln constants. The shadeprint character set may be specified by the user, if desired. There must be a Subimage Descriptor Record for each subimage to be processed.

B.5.4 Program Description

The design of the Manual Control-Point Location Program is described in Figure B-5 and the program specifications that follow.

FIGURE B-5. MODULE HIERARCHY FOR MANOAL CONTFOI-POINT LOCATION PROGRAM.

```
NAME
DESIGNER ....... SIEPHEN W. MORPHREY
FUNCTION ....... THIS IS THE TOP LEVEL DRIVER FOR THE MANUAL CONTROL-POINT
    LOCATICN EROGRAM.
INPUTS ......... 1. A DATA SET CONTAINING USER'S REQUESTS (ON CARD IMAGES).
2. A MIST-FORMAT DATA SET
OUTPUTS ........ 1. A FEINTER LISTING DATA SET.
    2. MIST-FORMAT TAPE(S) CONTAINING EXTRACTED SUBIMAGES.
COMMON BLOCKS ..
RESTRICTIONS ...
CALIING SEQ. ... NOT APPLICABLE.
PDI (FFOGRAM OUTLINE)
    PRINT SEPARATOR PAGE TO INDICATE START OF RON.
    READ USER'S REQUESTS AND INITIALIZE CONSTANTS AND ARRAYS.
```



```
        WRITE AII EXTRACTED SUBIMAGES TO TAPE
    ENDIF
    DO FOR EACH EXTRACTEL SUBIMAGE.
    IF HISTOGRAM जAS REOUESTED THEN
                    ACCUMULATE HISTOGRAM DATA.
                    PRINT HISTOGRAM SIATISTICS.
    ENDIF
    IF SHADEPRINT WAS REQUESTED AND CHARACTER SET NOT GIVEN THEN
    fND CREATE A CHARACTER SET FROM THE HISTOGRAM.
    IF RESAMPITNG WAS RFQUESTED THEN
        COMPUTE GRID-POTNT CORRESPONDENCE AND OTHER CONSTANTS.
        RESAMELE SUBIMAGE (CHANGING SCAIE OR CORRECTING HIGH-PREQUENCY ERRORS)
        IF TAPE COPY OF RESAMPLED DATA GAS REQUESTED THEN
                        WGITE RESAMPLED DATA SET TO TAPE.
                ERDIF
    ENDIF
        SHADEPRINT HAS REQUESTED
                                THEN
        DO FOR EACH REOUESTED SPECTRAL BAND
                        PRINT THE SHADEPRINT.
                ENDDO
    ENDIF
    ENDDO
    PRINT SEPARATOR PAGE TO INDICATE END OF RUN.
```

NAME
DESIGNER STEPHEN W. MURPHREY
FUNCTION
EXTRACTS ALI SUBIMAGES FROM INPUT MIST-FORMAT DATA SET

1. SEE CALLING SEQUENCE.
2. SEE CAILING SEQUENCE.
3. A PRINTER LISTING DATA SET.
CALLING SEQ. ... CALI MCPLEX (CHGFLG,CHGLIN,SUPPTR, LINPTR,MAXLIN,TBYTES, NUMSUB)
VARIABIE $¥ Y P E \quad I / O$ DTM DESCRIPTIION UNITS

CHGFLG	I*2	0	2×200	SUBIMAGE INDEX / CHANGE TYPE	
CHGL IN	I*4	0	200	LTNE NUMBER OF CORRESP. CHANGE	PIXELS
SUBPTR	I* 4	0	100	ADDRESS OF SUBIMAGE IN BUFFER	
IINPTR	I* 4	0	100	ADDRESS OF NEXT ITNE IN BUFFER	
MAXITN	I* 4	0	-	NUMBER OF INPUT GECORDS TO USE	
TBYTES	I*4	0	-	SIZEOF BUFFER	BYTES
NUMSUB	T* 4	0	-	NUMBER OF SUBTMAGES TO EXTRACT	

PDI (PROGRAM OUTLINE)
OBTATN VIRTUAL MEMORY FOR SUBIMAGE BUFFER (GETMAIN).

```

```

SUBPTR $(\mathbb{N})=$ SUBPTR ${ }^{2}(N)$
ENDDO
OPEN INPUT MIST-FORMAT DATA SET
READ CCNTROL RECORD
SET IINE\#, NLIVE TO 0
DO WHITE IINE\# < MAXLIN
LEAE ONE INE\#G+ RECORD
OPDATE ARFAYS THAT CONTROL PROCESSING CHANGES
DO WHILE E EOCESS CHANGES AT THIS LINE
COPY ELEMENT FRO\& CHGFIG ARRAY TO BOTTOM OF SEQLST ARRAY
ELS E
FIND ELEMENT OF SEQIST ARRAY THAT IS NO LONGER NEEDED. COPY BOTTOM SEQLST ELEMENT INTO VACAN S SPOT.
NLIVE $=\mathrm{NLIVE}-1$
ENDIF
TNCREMENT RELATIVE POINTER TC NEXT EIEMENT OF CHANGE ARRAYS. $\mathrm{K}=\mathrm{NIIVE}$
DO GHILE K > 0
MOVE IINE NUMBEK INTO SUETMAGE BUFFER (2 BYTES). MOVE 2 BYTES OF ZERO FIIL INTO SUBIMAGE BUFFER. DC FOR EACH SPECTRAL BAND
HOVF TMAGE DATA INTO SUBIMAGF BUFFFRR
MOVE 6 BYTES OF ZERO FILL INTO SUBIMAGE BUFFER. ENDDO
MOVE INPUT IMAGE DATA INTO BUFFER UNDER CONTROL OF ARRAYS ENDDO

```

NAME MCPIRD

DESTGNER
STEPHEN W．MORPHREY
FUNCTION READS USER＇S REQUESTS AND INITIALIZES CONSTANTS AND ARRAYS

INPUTS
1．SEE CALIING SEQUENCE．
OUTPUTS
1．SEE CALITNG SEQUENCE．
2．A PRINTER ITSTING DATA SET．
CALIING SEQ．．．．CALL MCPLED（CHGFLG，CHGLIN，BANDS，LFTSAM，IINPTR，LENGTH， CIDTH ， RECIEN，SUBPTR，TOPIIN，WTITLE，DEFALT，SPLAGS）
\begin{tabular}{|c|c|c|c|c|c|}
\hline VARTABLE & TYPE & I／O & DIM & DESCRIPTIION & UNITS \\
\hline CHGFLG & I＊2 & 0 & \[
2 \times 200
\] & SUBIMAGE INDEX／CHANGE TYPE & \\
\hline CHGLIN & I＊4 & 0 & \[
200
\] & LINE NUMBER OF CCRRESP．CHANGE & PTXELS \\
\hline BANDS & I＊4 & 0 & 100 & EACH BTT IS FLAG POR THAT BAND & \\
\hline IFrisam & I＊ 4 & 0 & 100 & COORDINATE OF LEFT SAMPLE & PTXELS \\
\hline LINPTR & I＊ 4 & 0 & 100 & ADDRESS CF NEXT IINE IN BUFFPR & \\
\hline LENGTH & I＊ 4 & 0 & 100 & VERTICAL SIZE OF SUBIMAGE & PTYELS \\
\hline WTDTH & I＊ 4 & 0 & 100 & HORTZONTAL STZE OF SUBIMAGE & PTXELS \\
\hline RECIEN & I＊ 4 & 0 & 100 & LFNGTH OP ONF SUBIMAGE RECORD & BYTES \\
\hline SUBPTR & I＊ 4 & 0 & 100 & ADDRESS OF SUBTMAGE IN BUTFER & \\
\hline TOPIN & I＊ 4 & 0 & 109 & COORDINATE OF TOE LINE & PIXELS \\
\hline \＄TTTEE & 士＊1 & 0 & 478100 & TITLE OF SUBIMAGE & \\
\hline DEFALT & T＊4 & 0 & 10 & VARIOUS DEFAULT VALUES & \\
\hline \＄FLAGS & L＊4 & 0 & 7 & VARIOUS PROCESSING FIAGS & \\
\hline
\end{tabular}

PDL（EROGRAM OUTLINE）
SET DEFAULT VALUES FCR USER＇S OPTIONS．
READ USER \({ }^{\text {RE }}\) OPTIONS
IF SHADEPRINTS WERE REQUESTED COONT THE（DEFAUIT）NUMBER OP
IF SHADEERINT CHARACTERSET IS SUPPIIED BY THE USER THEDENTED READ THE CHARACTER SET． PRINT TRE CHARACTER SET．
ENDTF
ENDIF
INITTALTZE N，MAXLIN，SUBPTR（1），IINPTR（1）TO 0
DO UNTIL END－OF－DATA IS REACHED＇ON CARD－IGAGE INPUT DATA SET \(N=N+1\)
READ ONE SUBIMAGE－DESCRIPTOR CARD．
 IF WIDTH（N）LENGTH（N）OR BANDS（N）HERE NOT GIVEN T HEN PNDIF
SET SPECTRAL－BAND FLAGS（IN ARRAY EIEMENT）ACCORDING TO BAND LIST．
 SET BCTH INDICES IN CHGFLG ARBAY TO \(4 * N-4\)


\(\operatorname{SUBPTR}(N+1)=\operatorname{SUBPTR}(N)+\operatorname{RECLEN}(N) \quad * \operatorname{LENGTH}(N)\)
MAXLIN \(=\) MAXIMUM（ MAXIIN，TOPLIN（N）＋IENGTH（N）－ 1 ）
ENDTF
\(N=N-1\)
ENDDO
TOTAL BYTES IN BUFFEF \(=S U B P T R(N+1)\)
SORT BOTH CHANGE ARRAYS SO THAT THEY ARE IN ASCENDING ORDER OF CHGIIN APRAY．
```

NAME MCPIWI
DESIGNER STEPGEN W. MURPHREY
FUNCTION WRITES ALI EXTRACTEE SUBIMAGES TO A STNGLE COMPUTER TAPE
INEJTS 1. SFE CAILTNG SEQUENCE.
OUTPUTS 1. SEE CAIITNG SEQUENCE.
1. SEE PRAITTNG SEQUENCENTN SISTING DATA SET.
CALLING SEQ. ... CALL MCELGI (BANDS,LENGTH,RECIEN,SUBPTTR,IDREC)

```

```

PDL (EROGRAM OUTIINE)
INITIALIZE FIELDS IN ID-RECORD BUFFER:
RUN NOMBER
CONTINUATICN CODE
FLIGHT-LINE ID
MONTH, DAY, YEAR, ε-TIME DATA $由 A S$ TAKEN
ALTITUDE OF PLATFORM
HEADING OF VEHICLE
DATEOF THIS TAPE
DO FOR EACH EXTRACTEE SUBIMAGE (I = 1, NUMSUB) -
OPEN OUTPUT TAPE DATA SET FOR FIIEI.
FILL IN REMAINTNG FTELDS IN ID-RECORD BUFFER:
IARS TAPE NUMBER
FILE NOMBER
NUMBER OF DATA CHANNELS
NUMBER OF SAMPLES PER CHANNEI
NUMBER OF LINES IN THE IMAGE
FA VELENGTH RANGE OF EACH SPECTRAL BAND
WRTTETHF ID RECCRD ONTO TGE TAPE
OBTAIN THE ADDRESS OF THE SUBTMAGE DATA FROM THE SUBPTR ARPAY.
OBTAIN TBE WTDTH OF ONE RECORD FROM THE RECLEN ARRAY.
DO FOR EACH IINE IN THE SUBIMAGE.
WRITE THE CURRENT IMAGE RECORD ONTO TEE TAPE TREM OF ONE RECORD.
ENDDO.
CLOSE THE OUTPUT TAPE DATA SET.
ENDDO.
ODEN THE OUTPUT TAPE DATA SET FOR FILE NUMSUB + 1 .
SET FIEIDS IN THE END-OF-TAPE-RECORD BUFFER:
LARS TAPE NOMBER
ETIE NUMBER
CONTINOATION CODE
WRTTE THF END-CF-TAPE RECORD ONTO THF TAPE.
CLOSE THE OUTPUT TAPE DATA SET.

```

END OF SPBCIPICATION
```

NAME
MCPLAH
DESIGNER STEPHEN W. MURPHREY
FUNCTION ACCUMOLATES HISTOGPAM DATA FOR A SINGLE EXTRACTED SUBIMAGE.
INPUTS 1. SEE CALLING SEQUENCE.
OUTPUTS 1. SFE CALLING SEQUENCE.
2. A PRINTER LISTING DATA SET.
CALIING SEQ. ... CALL MCPLAH (BANDS,IENGTH,RECIEN,SUBPTR,HIST)
VARIABLE TYPE I/O DIM DESCRIPTITON ONITS
BANDS I* I* LO DOO EACH BTMTIS FLAG FOR MHAT BAND
RECIEN
SUBPTR INTM
PDI (FROGRAM OUTLINE)
ZERO THE HISTOGRAM AGRAY.
INITIALIZE THE DATA POINTER.
DO FOR EACH IINE IN THE SUBIMAGE.
INTTIALIZE POINTER TO THE BAND-1 HISTOGRAM ARRAY.
INITIALIZE POINTER TO THE BAND-1 DATA ARRAY.
DO FOR EACH SPECTRAL BAND.
DO FOR EACH EIXEL IN THE ITNE.
OBTAIN THE PIXEL VALUE V.
INCREMENT HISTOGRAM-ARRAY-ELEMENT \nabla BY 1.
ENDDO.
INCREMENT HISTOGRAM POINTER TO THE NEXT BAND
INCREMENT DATA POINTER TO THE NEXT BAND
ENDDO.
INCREMENT DATA POINTER TO THE NEXT LINE.
ENDDO.

```
```

NAME
MCEIPH
DESIGNER STEPHEN W. MURPHREY
FUNCTION PRINTS HTSTOGRAMS AND THE RESULTING STATISTICAL PARAMETERS FOR
ALI, BANDS OF A SINGIE EXTRACTED SUBIMAGE.
INPUTS 1. SEF CALIING SEQUENCE.
OUTPUTS 1. SEE CALLTNG SEQUENCE.
1. SEE CALLTNG SEQUENCE.
CALIING SEQ. ... CALL MCPLPH (BANDS,HIST,CUMPCT)

```

```

PDL (PROGRAM OUTLINE)
DO FOR EACH SPFCTRAL EAND.
FTND SMALLEST PTXEL VALUE THAT OCCURS TN THTS BAND.
COMPUTE THE TOTAEL NUMBER OFATPCXELSRSN THTS BAND.

```

```

 ENDDO
 DO FOR EACH SPECTRAL EAND (B) .
 DO FROM K = 1 TO 256 BY 1
 HISPCT (K,B) = HIST(K,B) * 190. / / TOTAI (B)
 CUMPCT
 ENDIF
 IF CUMPCT (K,B) < 50. THEN
 MEDIAN(B) (M)}=
 MENTOT (B)
 ENDDO
 MEAN (B) = MENTOT(B) TOTAL (B
    ```

```

 MFDTAN(B)=MEDIAN(B)
 SUM== O K MODE(B) -
 DO FROM K = MINIMUM VALUE TO MAXIMUM VAIUE BY 1
    ```


```

 ENDDO.
 PRINT, B,NUMBANDS, MEAN(B), STDEV(B), RMS(B), MEDIAN(B), MODE(B)
 ENDDO.
    ```
```

 SAR/LANDSAT DATA MERGING SYSTEM EROGRAM SPECIFICATION
 NAME MCELCS
DESIGNER STEPHEN W. MURPGREY
FUNCTION CREATES CHARACTER SETS (BASED ON HISTOGRAMS) FOR ALL BANDS OF
A SINGLE EXTRACTED SUBIHAGE.
INPUNS 1. SEF CALLING SEQUFNCE.
OUTPUIS 1. SEE CALITNG SEQUENCE.
2. A ERINTER LISTING DATA SET.
CALLING SEQ. ... CALI MCPICS (BANDS,\$CHAR,COMPCT)
VARIABLE TYPE I/O DIM DESCRIPTITON UNTTS
BANDS
\$CHAR
CUMPCT

| TYPE | I / O | DTM |
| :--- | :---: | :---: |
| $T * 4$ | T | 100 |
| $I * 1$ | 0 | 256×5 |
| $R * 4$ | I | 256×5 |

```

```

PDI (PROGRAM OUTLINE)
DO FOR EACH SPFCTRAL EAND.

```


```

 ENDDO.
 IF TNDEX DOES NOT EQUAL I THEN
 ENDIF.
 FNDDO.
 ENDDO.
    ```
```

 SAP/LANDSAT DATA MERGING SYSTEM FROGRAM SDECIFICATION
 ***** SAP/LANDSAT DATA MERGING SYSTEM FROGRAM SDECIFICATION

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline VAPIABLE & TYPE & I/O & DIM & DESCRIPTITON & UNITS \\
\hline IENGTH & I* 4 & I & & LENGTH OF INPUT-SPACE SUBIMAGE & PIXELS \\
\hline WIDTH & I* 4 & I & - & WIDTH OF INPUT-SPACE SUBIMAGE & PIXEIS \\
\hline LFTSAM & 1*4 & I & \(\cdots\) & COORDINATE OF LEFT SAMPLE & PIXELS \\
\hline HSFAC & 1*4 & I & - & HORIZONTAT SCALE FACTOR & PIXELS \\
\hline VSFAC & I* 4 & I & - & VERTICAL SCAIE FACTOR & PIXELS \\
\hline OLEN & T*4 & 0 & \(\cdots\) & LENG TH OF OUTPUT SPACE & PIXELS \\
\hline OWID & I* 4 & 0 & - & WIDEH OF OUTPUT SPACE & PTXEIS \\
\hline I & T*4 & 0 & & NOMBER OF GRID-PCINT SEGMENTS & PIXELS \\
\hline \(\overline{\mathrm{N}}\) & I* 4 & 0 & I & \# HYB.-SP. POTNTS IN A SEGMENT & PIXELS \\
\hline DH & R \({ }^{\text {a }} 4\) & 0 & I & INPUT-SPACE DISTANCE BETHEEN & PIXELS \\
\hline & & & & ADJACENT PIXELS IN A SEGMENT & \\
\hline H & R* 4 & 0 & IX 26 & GRID-POTNT COORDINATES & PTXELS \\
\hline D & さ* 4 & 0 & VSFAC & VERTICAL RESAMPIING DISPLACEMEN & PIXELS \\
\hline
\end{tabular}
```

NAME MCPLGP

```
NAME ........... MCPLGP
DESIGNER ....... STEPEEN W. MURPHREY
```

DESIGNER STEPEEN W. MURPHREY

```


```

INEUTS 1. SEF CALIING SEQUFNCE.

```
INEUTS ......... 1. SEF CALIING SEQUFNCE.
OUTPUTS ........ 1. SEE CALIING SEQUENCE.
OUTPUTS ........ 1. SEE CALIING SEQUENCE.
COMMON BLOCKS ..
COMMON BLOCKS ..
RESTRICTICNS ...
RESTRICTICNS ...
CALLING SEQ. ... MCPLGP()
CALLING SEQ. ... MCPLGP()
PDI (PROGRAM OUTIINE)
PDI (PROGRAM OUTIINE)
    DO FFOM M = 1 TO VSFAC BY 1
    DO FFOM M = 1 TO VSFAC BY 1
    ENDDO
    ENDDO
    CLEN= VSFAC** ( LENGTH-3 - % )
    CLEN= VSFAC** ( LENGTH-3 - % )
    ISHID = G(50 (HSFAC)
    ISHID = G(50 (HSFAC)
    CSWID = ISWII * HSPAC
    CSWID = ISWII * HSPAC
    I=1
    I=1
    C = 1.0
    C = 1.0
    DO WHIIE C LESS THAN OR EQUAL TO NIDTH = 2
    DO WHIIE C LESS THAN OR EQUAL TO NIDTH = 2
        DO FOR EACH DETFCTOR (YIGGFFREQUENCY CORRECTTON BYAS ROQUESTED THEN
        DO FOR EACH DETFCTOR (YIGGFFREQUENCY CORRECTTON BYAS ROQUESTED THEN
                COMPUTE F(J, C + IFTSAM) = HTGH-FREQUENCY CORRECPRD COORD.
                COMPUTE F(J, C + IFTSAM) = HTGH-FREQUENCY CORRECPRD COORD.
                ELSE
                ELSE
                FNDIP
                FNDIP
    NIPIX = MINIMUM(ISHID,WIDTH-3-C)
    NIPIX = MINIMUM(ISHID,WIDTH-3-C)
    N(I) =NTPIX * HSNAC
    N(I) =NTPIX * HSNAC
    TN=I + N
    TN=I + N
    C}=\overline{DH}(M)+NIPI
    C}=\overline{DH}(M)+NIPI
ENDDO
ENDDO
I=I - 1
```

I=I - 1

```
```

 SAR/IANDSAT DATA MERGING SYSTEM PROGRAM SPECIFICATION
 NAME MCPLHF
DESIGNER STEPHEN W. MORPHREY
FUNCTION THIS MODULE COPRECTS HORIZONTAL COORDINATES FOR HIGH-FREQUENCY
GECMETEIC ERRORS. IT CONVERTS A HIGH-FREQUENCY-CORRECT?D
COORDINATE TO AN UNCORRECTED=INPUT-SPACE COORDINATE.
INPUTS 1. SEF CALIING SEQUFNCE.
OUTPUTS 1. SEE CALIING SEQU ENCE.
COMMON BIOCKS ..
RESTRICTIONS ...
CALIING SEQ. ... MCPLHF (HFC,LIF,DET,UIS)
VARIABLE TYPE I/O DIM DESCRIPTITON UNITS

HFC	$\mathrm{R} * 4$	\pm	-	HIGH-FREQUENCY-CCRRECTED	COORD.	PIXELS
ILF	R*4	\underline{I}	-	LINE-IENGTH PACTOR		
DET	I* 4	$\underline{1}$	-	DETECTCR NUMBER		
UIS	R* 4	0	-	UNCORRECTED-INPUT-SPACE	COORD.	PTXELS

PDI (FFOGRAM OUTIINE)
IF THTS IS FTRST EXECUTTON OF THIS MODULE THEN ENDIF
FVALUATE CORRECTION PCLYNOMIAL FOR IHIS DETECTOR.

```

END OF SPECIFTCATTON
```

****** SAR/LANDSAT DATA GERGING SYSTEM PROGRAM SPECIFICATION
NAME MCPIVR
DESIGNER STEPHEN म. MURPHREY
FUNCTICN THIS MODULE PERFORMS VERTICAI RESAMPIING AS PART OF THE
MANUAI CONTROL-POINT LOCATION PROGRAM.
INPUTS 1. SEE CAIIING SEOUENCE.
OUTPUTS 1. SEE CALITNG SEQUENCE.
CONMON BLOCKS ..
RESTRICTICNS ...
CALLING SEQ. ... MCPIVR()
PDI (PROGFAM OUTIINE)
ADD FIRST FOUR LINES TO THE HYBRID-SPACE BUFFER.
IN ITIALIZE THE FOUR POINTERS TO THE HYBRID-SFACE BUFFER.
DO FOR EACH HY BRIDDSFACE LTNNE. (K = VROM I = VRRTICAL-SCALE-INCREASE FACTOR)
DO FROM T T = TOTO K BY 1 (K =
DO FOR EACH OUTPUT SPACE PIXEL (IN ONE IINE)
PERFCRM CUBIC CONVOIUTION USING D(I)
ENDDO
INCREMENT HYBRID-SPACE POINTERS TO NEXT SPECTRAL BAND.
ENDDO
\#RITE ONE LINE OF OUTPUT DAMA.,
FNDDO
ADD NEXT HYBRID-SPACE IINE TO HYBRID-SPACE BUFFER.
RESET THE FOUP POINTERS TO THE HYBRID-SFACE BUFFER.
ENDDO

```
******
SAR/LANDSAT DATA MERGING SYSTEM EFOGRAM SPECIPICATION
NAME ........... MCPLHR
DESIGNER ....... STEPGEN N. MURPHPEY
FUNCTION ....... THIS MODULE PERFORMS HORIZONTAL RESAMPLING AS PART OF THE
    MANOAI CONT ROL-POINT LOCATION PROGRAM. GRID POINTS HAVE BERN
    CORKECIED FOR HIGH-FREQUENCY, HORIZONTAL GEOMETRIC ERRORS.
INPUTS ......... 1. SEE CAILING SEQUENCE.
OUTPUTS ........ 1. SEF CALLING SEQUENCE.
COMMON BIOCKS ..
RESTRTCTIONS ...
CALLING SEQ. ... MCPLHR()
    VARIABTE TYPE I/O DIM DESCRIPTITON UNITS
\begin{tabular}{lccc}
\(T\) & \(I * 4\) & \(T\) & - \\
\(N\) & \(I * 4\) & \(\frac{I}{I}\) & \(I\) \\
NH & \(\mathrm{I} * 4\) & \(I\) & \(I\) \\
\(H\) & \(R * 4\) & \(I\) & \(I X 26\)
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{5}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
--------
-------
--------
--------
PDL (DPOGEAM OOTLINE)
    DO FOR EACH SPECTRAL BAND.
                INITIALTZE FOTNTER TO JTH SET OF GRID-POINT COORDINATES.
            DO FOP EACH GRID-POINT SEGMENT (M=1 TC I BY 1).
                G( *) = GREATESTM INTEGER NOT LARGER THAN *
                D}=H(M,J)-G(H(M,J)
                P = FOMNUTER TC INPUT-SPACE-BUFPER PIXEL G(H M,J) - - 
            DO FOR EACH HYBEID-SPACE PIXEI IN CURRENT GRID-DOINm SEGMENT.
                        PERPORM COBTC CONVOIOTION USING D.
                D = NHI+ IH(M)
                    HILED D=1.0
                        FNDDO
            ENDDO
    FNDDNDDC
    ENDDO
```

```
NAME ........... MCPLPS
DESIGNER ....... STEPHEN W. MORPHREY
FUNCTION ....... PRTNTS A SHADEPRTNT OF A SINGIE SUBIMAGE THAT RESIDES IN THE
    (VIRTUAL) MEMORY OF THE COMPUTER.
INPUTS ......... 1. SEE CALLING SEQUENCE.
OUTPUTS ........ 1. A PRINIER LISTING DATA SET.
CALLING SEQ. ... CALL MCPLPS (BAND,NSTRRSS,OPFSET,SUBINFAD,CHARSAD)
```



```
PDL (PROGRAM OUTLINE)
```



```
ENDDO.
```


B. 6 GEOMETRIC TRANSFORMATION PROGRAM

B.6.1 Statement of Problem

The objective of this program is to determine the mathematical transformation between two MSS image spaces. In particular, this program must produce data that controls the operation of the Resampling Program.

The transformation is always between an input-image space and a resampled-ımage space. The input space can represent either an uncorrected or a previously resampled, image data set. There are four cases to be considered:
a. Scene processing (with GCPs) of uncorrected or partially processed MSS data.
b. Systematic processing (no GCPs) of uncorrected or partially processed MSS data.
c. Completion processing of partially processed MSS data.
d. Scale/orientation change of fully processed data.

In the case of scene processing, a geometric error assessment from the geometric error models is also computed. In each case, the geometric transformation is specified in tabular form. It consists of input-space grid points (used for horizontal resamplıng) and hybrid-space grid points used for vertical resampling.

If the input data is uncorrected or partially processed MSS data, there are three image spaces unvolved in determining the geometric transformation:
a. Input space -- MSS data that has not been geometrically corrected or resampled in any way.
b. High-frequency-corrected input space -- MSS data that has been horizontally resampled to remove all known high-frequency horizontal geometric errors.
c. Corrected output space -- MSS data (at a user-specified scale and orientation) that has been resampled to remove all known geometric errors.

The transformations between thése image spaces are illustrated in Figure B-6. The geometric transformation to be determined by this program is a tabular representation of the function H of Figure' B-6.
 Input Space

Figure B-6. Image Spaces

If the input data is fully processed MSS data, there are only two image spaces involved in determining the geometric transformation:
a. Fully processed input space -- MSS data that has been resampled to remove all known geometric errors.
b. Corrected output space -- MSS data at a user-specified scale and orientation.

The transformation between these image spaces is a tabular representation of a straightforward rotation and scale change.

B.6.2 Data Flow

The only data used by the Geometric Transformation program is ancillary in nature. Thas data comes from either the Ancillary data set or the User-Request Data Set. The resulting transformation is written into the Ancillary Data Set for use by the Reformatting program.

B.6.3 Program Description

The design of the Geometric Transformatıon Program is described in Figure B-7 and the program specifications that follow.

FIGURE B-7. MODULE HIERARCHY FOR GEOMETRIC TRANSFORMATION PROGRAM.
DESIGNER STEPHEN W. MORPHREY
FUNCTION THIS IS THE TOP LEVEI DRIVER FOR THE LANDSAT MSS GEOMERRICTRANS FCRMATTCN PROGRAM.
INPUTS 1. AN SIDMS ANCILIARY DATA SET FOR THE SCENE TO BE PROCESSED.OUTPUTS 1. THE UPDA TED SLDMS ANCILLARY DATA SET.2. THE ERINTER LISTINE EATA SET.
COMMON BLOCKS ..
RESTRICTIONS
CAILING SEQ. ... NOT APPLICABLE.
PDL (EFOGFAM OUTLINE)
PRTNT STPARATOR PAGE TO INDICATE SmART OF RUN.
READ USER'S REQUESTS.
PEAD ANCIILERY DATA SET TC INITIALIZE DATA AREAS.CASENTRY

CASE 1: SCENE PROCESSING OR SYSTEM PROCESSING
PERFCRM ERROFMODEITNG
CREATE INTERECLATION GRID POINTS (FROM ERROR MODELS) .PERFORM ERROR ASSESSMENT FROM ERRCP MODELS S SATA SET
CASE 2 : COMPIEMICN PFOCESSING.
DEFINE THE OUTPUT SPACE.
CREATE INTERECLATION GRTD POTNTS (FROM TNPUT HRS/VRS COORDINATES) .
PERFORM ERRORASSESSMENT FGOM INPUT ANCILLARY DATA).
WFITE GRID POINT COFRESPONDENCE TO ANCILLARY DATA SET.
CASE 3: SCALE/ORIENTATION CHANGE.
DFFINE THE OUTPUT SPACE.
CREATE INTERECIATION GRID POINTS (BASED ON SCALE AND ORIENTAMION) -
PERFORM ERROR ASSESSMENT (FROM INDUT ANCILTARY DATA) -
WRITE GRID POINI CORRESPONDENCE TO ANCIILARY DATASST.
ENLCASF
PRINT SEPARATOR PAGE TO INDICATE END OF RUN.

```
name ........... GTranc
DESIGNER ....... STEPHEN W. MURPHREY
FUNCTION ....... READS THE SIDMS ANCILLARY DATA SET
INEUTS ......... 1. SEE CALLING SEQUENCE.
```



```
COMMON BLOCKS .. MSSCCNS
RESTRICTIONS
CALLING SEQ. ... CALL GTRRANC ()
        VARIABLE TYPE I/O DIM DESCRIPTIION
                                    UNITS
FDL (PFOGRAM OUTIINE)
        PRINT PROGRAM-ENTPY MESSAGE.
        DO UNTIIL END-OF-DATA ON ANCILIARY DATA SET.
            READ NEXT RECORD (TD RECORD).
            IF IT IS "CCT-HEADER DATA" THEN
            READ NEXT THO RECORDS (DATA RECORDS).
            PRINT CCT-HEADER DATA.
            ENDIF
            IF IT IS "SIAT DATA", THEN
                        READ NEXT THENTY-CNE RECORDS (DATA RECORDS).
            PRINT SIAT DATA.
            ENDIP
        ENDDO
        FRINT FROGRAM-EXIT MESSAGE.
                                END OF SPECIFICATION
```

```
                                    SAR/LANDSAT DATA MERGING SYSTEM PROGRAM SPECIFICATION
NAME ........... GTRUFC
DESIGNER ....... STEPHEN W. MURPHREY
FUNCTION ....... READS USER'S REQUESTS POR "LMSSGT" PROGRAM.
INEUTS .......... 1. SEE CALIING SEQUFNCE.
OUTPUTS ......... 1. SEE 2. A PRINTLTNNGSERTNFNCEENTM SET.
COMMON BLOCKS ..
RESTRICTIONS ...
CAILING SEQ. ... CAIL GTRURQ ()
    VARIABIE TYPE I/O DIM DESCRIPMITON UNITS
PDI (EROGEAM OUQLTNE)
    PPTNT PROGRAM-ENTRY MESSAGEERS
```



```
    READ NAMELTSTR OF USEKS REQUBSLS AND PARAMETER
    PPINT USER'S REQUESTS AND DEFINING PARAMETERS.
    PPINT PROGRAM-EXIT MESSAGE.
                                    END OF SPECIFICAIION
```


p
DESIGNER STEPHEN W. MURPHREY
FUNCTION CONVERTS AN ARRAY OF TNPUT-SPACE COOPDINATES (LINE AND SAMPLE) TO UNCORREC TED-TANGENT-SPACE COORDINATES.

INPUTS 1. SEE CALLING SEQUENCE.
OUTPUTS 1. SEF CAIITNG SEQUENCE.
2. A PRINTER LISTING DATA SET.

COMMON BLOCKS .. MSSCONS
RESTPICTIONS ...
CALLING SEQ. ... CALI IIUTP (NMCP, VRA, VRC, VRAN, VBCN, DELVV, CLINE, CSAMP, KWÁLTY, UTPV', UTPH, DTIME, CTIMG)

VARIABIE	TYPE	I/O	DIM	DESCRIPTITON	UNITS
NMCE	T*2	I		\# OF POTNTS	
VRA	R* 8	I	NMCP	EARTH ROTATION VELOCTTY	METERS/
VRC	R *8	I	NMCP	(ALONG -TRACK) AT TNPUT POINT	S EC
VRC	R*8	I	NMCP	(ACROSS TR ACK) AT INPUT POTNT	
VRAN	R*8	I	-	EARTH ROTATION VELOCTMY	1
				(ALONG-TRACK) AT NADIR	
VRCN	R*8	I	-	EARTH HOTATION VELOCITY	11
				(ACROSS-TRACK) AT NADTR	
DEIVV	R* 8	\pm	-	SPACECRAF ${ }^{\text {P }}$	1
CITNP	R*8	I	NMCP	LINE OF CONTROL EOINT	PIXELS
CSAMP	R*8	I	NMCP	SAMPLE OF CONTROL POINT	PTXELS
KWALTY	T*2	I	NMCP	STATUS OF POTNTS	PTXELS
UTPV	. $\mathrm{R} * 8$	0	NMCP	VERTICAL COORDINATE OF POINT IN UTP	METERS
UTPH	ㄲ * 8	0	NMCP	HOPIZONTAI COORDINATE OF	METERS
CTIME	P*8	0	NMCP	TTME (CONTINUOUS) ASSOCTATED	SECONDS
DTIME	R*8	0	NMCP	MTME (DTSCRETE) ASSOCIATED	SECONDS

```
PDI (FFOGRAM OUNLINE)
    PRINT SUBROUTINE-ENTEY MESSAGE.
    PRINT HEADINGS.
    DO FOR EACH CONTPOL EOTNT:
        CCNVERT TO TMAGE-CENTER-ORTGTN COORDTNATES.
        COFRECT HORIZONTAL COORDINATE FOR MTRROR-VEIOCITY ERRORS.
    COFRECT FOR DIFFERENTIAL INPUT SCALES
    CORRECT VERMICAL COORDINATE FOR SCAN-SKEW ERRORS.
    CORRECT VERTICAI COORDINATE FOR SPACECRAFT-VEIOCITY ERRORS.
    CORRECT FOR DISTORTIONS DUE mO EARTH ROTATION.
    COQRECT HORIZ. COOFDINATE FOR EARTG-CURVATURE*/ DANORAMIC-PROJECTION ERRORS.
    FRINT RTSUITS OF ABOVE FRROR CORRECTIONS.
    ENDDO
    PBINT STBEOUTTNE-EXIT MESSAGE.
```

INPUTS ．．．．．．．．．．1．SEE CALIING SEQUENCE．
OUTPUTS ．．．．．．．．．1．SEE CALLING SEOUENCE．
2．A PRINTER LISTING DẠA SET．
COMMON BLOCKS ．．
RESTRICTIONS ．．．
CALIING SEQ．．．．CALL DELTAS（NMCP，KWALTY，CTPV，CTPH，UTPV，UTPH， DELTAV，DELTAH）

VARIABIE	TYPE	I／O	DIM	DESCRIPTIION	UNIPS
NMCP	I＊2	\underline{T}		\＃OF CONTROL POINTS EQUAL	
KMALTY	T＊＊8	I	NMCP	ST ATUS OF CONTROL POINTS	
CTPH	R＊8	$\frac{1}{T}$	NMCP	CTP HORIZONTAL COORDINATES	METERS
UTPV	R＊8	I	NMCP	UTP VEBTICAL COCRDINATES	METERS
UT PH	R＊8	I	NMCP	UTP HORI ZONTAL CCORDINATES	METERS
DELTAV	R＊8	0	NMCP	DIFFERFNCES BETHEEN VERTICAL	METERS
DELTAH	¢＊8	0	NMCP	DIFFERENCFS BETHEEN HORIZONTAL	METERS
				UTP AND CTP COORDINATES	Mッース

PDL（PFOGRAM OUTIINE）
PRINT PROGRAM－ENTRY MESSAGE． PRINT HEADINGS．
DC FOR EACH CONTROL FCINT
IF THIS IS A GOOD CONTROL POTNT（AS DETERMINED BY THE KHALTY ARRAY）
 SET DEITAH＝UTPH－CTPH FOP THIS POINT
ENDIF
PRINT RESULIS．
ENDDO
EPINT EFOGRAM－EXIT MESSAGE．

NAME
DESIGNER
STEPHEN W. MORPHBEY
COMPUME THE 14 COEFFICIENTS WHICH MODEL THE ATTITUDE AND ALTITUDE OVER A SCENE.

1. SEE CALLING SEQUENCE.

- a printer ilsting data set.

CALI AAFTT (NMCP, NATEST, NALEST, KHALTY, AMSROL, CTPH, DELTAV, DELTAB, ALTNOM, AAMOD, PINV, QINV)

PDL (FROGRAM OUTIINE)
PRTNT PROGRAM-ENTPY MESSAGE.
INITIALIZE "PR' "Q", "R"R AND
CALCULATE ALTITUDF DIFFER
COMPUTE ELEMENTS OF THE "R" MATRIX.
COMPUNE ELEMENTS OF THE MP" MATPIX.
FPINT THE "P", "Q", "R", AND TSHMATRICES
SOLVE THE THO SYSTEMS OF EQUAMIONS.

```
******
                            SAR/LANDSAT DATA MERGTNG SYSTEM PROGRAM SPECIFICATION
NAME
    AAFIT2
DESIGNER ....... STEPHEN म. MURPHREY
FUNCTION ....... COMPUTE THE 14 COEFFICTENTS WHTCH MODEI THE ATPTTUDE AND
    ALTTTUDE OVER A SCENF GHEN "AAFIT" IS NOT APPITCABLE.
INPUIS ......... 1. SEE CALLING SEQUENCE.
OUTPUIS ........ 1. SEE CAILTNG SEQUENCE.
```



```
COMMON BLOCKS ..
RESTRICTIONS ....
CALLING SEO. ... CALI AAFIT2SNMCP NAFEST NALESTAKWAITY, KMSROL,
```



```
PDI (EROGRAM OUTIINE)
    PRINT PROGRAM-ENTRY MESSAGE.
    PFINT HEADINGS.
    COMPUME AMS ATTITUDE AND ALTITUDE MODEL COEFFICIENTS.
    ADJUST GCP DATA FOR AMS RATE AND AITITUDE.
    COMPUTE ROLL BIAS TERM.
    COMPUTE PITCH AND YAF BIAS TFRMS.
    COMPUTN NEW PREVIOUS EIASES AND UARIANCES.
    WRITE QUALITY DATA.
    PRINT PROGRAM-EXIT MESSAGE.
```



```
                                    SAR/LANDSAT DATA MERGING SYSTEM PROGRAM SPECIFICATION
NAME ........... GTOSDF
DESIGNER ....... STEPHEN W. MURPHREY
FUNCTICN ....... THIS SUBROUTINE DEFINES mHE OUTPUT SPACE. ITT COMPUTES THE
OUTPUT-SPACE PIXEI COORDINATES OF THE NOMINAL FORMAT CENTER.
INDUTS ......... 1. SEE CALIING SEOUENCE.
OUTPUTS ........ 1. SEE CALIINGG SEQUENCE.
COMMON BLOCKS ..
RESTRICTICNS ....
CALLENG SEQ. ... CALL GTOSDF ()
    VARIABLE TYFE I/O DIM DESCRIPTTION UNITS
PDI (FFOGRAM OUTLINE)
    PRIN' PROGRAM-ENTRY MESSAGE.
    COMPUTE TANGENT-SPACE COORDINATES OF TORMAT CENTER.
    TRANSFORM FORMAM-CENTER COORDINATES TO GEODETIC LATTMUDE AND LONGITUDE
    TPANSFORM FORMAT-CENTER COOPDINATES TO MAP COORDINATES.
    INPUT NOMINAI-FORMAT-CENTER MAP COORDINATES.
    COMPUTE OUTPUT-SPACE COORDINATES OF NOMINAL FORMAT CENTER.
    SCALE AND EOUND THE NCMINAL-FORMAT-CENTER COORDINATES.
    DRINT PESUITS.
    PRIN`M EROGRAM-EXIT MESSAGE.
```


PDI (EROGRAM OUTLINE)

```
DC FOR FACH ECINT
    ROTATE AND TPANSLATE THE TANGENT SPACE COOFDINATES OF THE POINT
    INTO EARTH CRNTFRED COORDTNATES
        XECT = CV*XEX+CH*XEY+ XECNAD
        Y ECT
        Z ECT
    CV*ZFX+CH*}\textrm{ZEY}+\textrm{ZECNAD
    SPACFTO
```



```
            P2 = ASQR*BSCE+V (3)*V (3)* (A4TH/B4TH-1.ND\)
    S = (PY-DSQRT (P1*P1-P2*P3) SNP?
    PRO
    XFCT THE POTNT FPCM THE TANGENT SPACE TO THE EARTH SURFACE
```



```
    YEEC = YECT-V (2)*S
```

```
```

 SAR/LANDSAT DATA MERGING SYSTEM PROGRAM SPECIFICATION
    ```
```

```
                                    SAR/LANDSAT DATA MERGING SYSTEM PROGRAM SPECIFICATION
```

| AELIPS | R＊8 | I | － | MA JOR | AXIS | OF | EARTH | ELITPSOT | METERS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BELIPS | R＊8 | I | | MINOR | AXIS | OF | EARTH | ELIIPSOI | METERS |
| NUM | I＊2 | I | | NOMBEP | OF | poin | TS TO | TRAN SFO | |
| XEC | R＊ 8 | I | NUM | EARTH | CENT | TERED | X CO | ORDINATE | METERS |
| YEC | R＊8 | I | NOM | EARTH | CRN | ERED | Y CO | ORDINATE | METERS |
| ZEC | R＊8 | I | NUM | EARTH | CFNT | ERED | Z CO | ORDINA ME | METERS |
| RDLATR | R＊ 8 | 0 | NUM | GEODE | IC | ATI | UDE O | F INPUT | RADIANS |
| RDIONR | R＊8 | 0 | NUM | LONG | UDE | | TT | IN 1 | RADIAN |

```
NAME
```

NAME
ECLI
ECLI
DESIGNEP STEPREN W. MURPHREY
DESIGNEP STEPREN W. MURPHREY
FUNCTION MAP POINTS FROM EARTH-CENTERED COORDINATES TO GEODETIC
FUNCTION MAP POINTS FROM EARTH-CENTERED COORDINATES TO GEODETIC
LATITUDE AND LONGITUDE.
LATITUDE AND LONGITUDE.
INPUTS 1. SEE CALLING SEQUENCE.
INPUTS 1. SEE CALLING SEQUENCE.
OUTPUTS 1. SEE CAILING SEQUENCE.
OUTPUTS 1. SEE CAILING SEQUENCE.
2. A PRINTER LISTING DATA SET.
2. A PRINTER LISTING DATA SET.
CCMMON BIOCKS
CCMMON BIOCKS
RESTPICTIONS ...
RESTPICTIONS ...
CALLING SEQ. ... CALI ECLI (AELLPS, BELIPS, NUM, XEC, YEC, ZEC, RDLATR, RLONGR)
CALLING SEQ. ... CALI ECLI (AELLPS, BELIPS, NUM, XEC, YEC, ZEC, RDLATR, RLONGR)
VARIABLE TYPE I/O DIM DESCRIPIITON UNIMS
VARIABLE TYPE I/O DIM DESCRIPIITON UNIMS
PDI (PROGRAM OUTLINE)
PDI (PROGRAM OUTLINE)
DO FOR EACH POTNT
DO FOR EACH POTNT
DO FOR EACH POTNT
LATTTUDE=ARCTAN ((ASQP/BSQR)*ZEC/SQPT (XEC*XEC+YEC*YEC))
LATTTUDE=ARCTAN ((ASQP/BSQR)*ZEC/SQPT (XEC*XEC+YEC*YEC))
LATTTUDE=ARCTAN ((ASQP/BSQR)*ZEC/SQPT (XEC*XEC+YEC*YEC))
IONGTTUDE=ARCSIN (EABS (YEC)/SQRT (XIC*XEC+YEC*YEC))
IONGTTUDE=ARCSIN (EABS (YEC)/SQRT (XIC*XEC+YEC*YEC))
IONGTTUDE=ARCSIN (EABS (YEC)/SQRT (XIC*XEC+YEC*YEC))
${ }^{I} F_{I F}(X E C P O R=C)$
${ }^{I} F_{I F}(X E C P O R=C)$
${ }^{I} F_{I F}(X E C P O R=C)$
$1 F \quad(Y E C<0)$
$1 F \quad(Y E C<0)$
$1 F \quad(Y E C<0)$
LONGITUDE $=-$ IONGITUDE
LONGITUDE $=-$ IONGITUDE
LONGITUDE $=-$ IONGITUDE
ENDIF
ENDIF
ENDIF
ELSE
ELSE
ELSE
TF (YEC < n)
TF (YEC < n)
TF (YEC < n)
LONGITUDE=LONGITUDE-PI
LONGITUDE=LONGITUDE-PI
LONGITUDE=LONGITUDE-PI
ELSE
ELSE
ELSE
IONGITUDE=PI-LONGITUDE
IONGITUDE=PI-LONGITUDE
IONGITUDE=PI-LONGITUDE
ENDIF
ENDIF
ENDIF
FNDIF
FNDIF
FNDIF
PRTNT RESULTS FOR THIS POINT
PRTNT RESULTS FOR THIS POINT
PRTNT RESULTS FOR THIS POINT
ENDDO

```
    ENDDO
```

 ENDDO
    ```

ORIGINAL PAGE IS: OF POOR QUALITY


```

 SAR/LANDSAT DATA MERGING SYSTEM EROGRAM SPECIFTCATION
 NAME GTGDPT
DESIGNER
STEPGEN W. MORPHREY
FUNCTION
THIS SUBROUTINE CALCULATES THE GRID-POINT CORRESPONDENCE THAT
IS THE GEOMETRTC TRANSFORMATION BETWEEN THE OUTPUT SPACE AND
THE INPUT SPACE.
INPUTS 1. SEE CALLING SEQUENCF.
OUTPUTS T. SEE CALLING SEQUENCE.
2. PRINTER LISTING.
COMHON BLOCKS ..
RESTPICTIONS ...
CAIIING SEQ. ... CALI GTGDPT ()
VARIABLE TYPE I/O DIM DESCRIPTIION UNITS
PDL (PROGPAM OUTLINE)
ERINT EROGRAM-ENTRY MESSAGE.
INITIAIIZE OUTPUT-SPACE ARRAY OF GRID POINTS.
CONVERT OUTPUI-SPACE COORDINATES TC MAD COORDINATES.
CONVERT MAP COORDINATES TO GEODETTC COORDTNATES.
CONVERT GEODETIC COORDINATES TO EARTH-CENTERED COORDENATES.
CONVERT EARTH-CENTERED COORDTNATES TO CORRECTED-TANGENT-SPACE COORDTNA MES.
DO WHTLE (\# TTERATIONS < MAXIMUM) AND (1NOMINAI-COMPUTEDI > MAXIMUM).
CCNVERT CORRECTED-TANGENT-SPACE COORDINATES TO UNCORRECTEDTTANGENT SPACE.
CCNVERT UNCORRECTED-TANGENT-SPACE COORDINATES TO TNPUT SPACE.
CCNVERT INPUT-SPACE COORDINATES TO UNCORRECTED~TANGENT SPACE.
CCNVERT UNCORRECTED-TANGRNT-SPACF COORDTNATES TO CORRECTED-TANGENT SPACF.
COMPUTE DIFFERENCES OF NOMINAL AND COMPUTED TANGENT-SPACE COORDINATES.
ENDDO.
PRINT RESULTS.
ERTNT PROGRAM-EXIT MESSAGE.

```
```

DESIGNER STEPHEN W. MURPHREY

```
FUNCTION ...... INITIALIZE A RECTANGULAR LATTICE OF OUTPUT-SPACE GRID-POINT
                        CCORDINATES.
INPUTS . . . . ..... 1. SEE CALIING SEQUENCE.
OUTPUTS ........ 1. SEE CAIITNG SEOUENCE
    2. AEERCAILING SEQUENCETA SET.
COMMON BIOCKS ..
RESTRICTIONS
CALLING SEQ.... CALL INITOS (NUM, HO , VO )
    VARIABLE TYPE I/O DIM DESCRIPTIION UNTTS
    NUM I I*4 I - NUMBER OF POINTSTO TRANSFORM
    \(\begin{array}{lllllll}\text { HO } & \vec{R} * 8 & \frac{I}{1} & N U M & O U T P U T & S P A C E & C O O R D I N A T E \\ V O & R * 8 & I & N U M & O U T P U T & S P A C E & \text { COORDINATE }\end{array}\)
    \(\begin{array}{lllllll}\text { HO } & R * 8 & I & N U M & O U T P U T & S P A C E & C O O R D I N A T E \\ V O & R * 8 & I & N U M & O U T P U T & S P A C E & \text { COORDINATE }\end{array}\)

PDL (PROGRAM OUTLINE)
    TO BE DETERMINED
NAME ........... OIMAF
DESIGNER ....... STEPHEN W. MURPHREY
FUNCTION ....... CONVEET OUTPUT-SPACE PIXEL COORDINATES TO (UTM) MAP COORDINATES.
INEUTS .......... 1. SEE CALIING SEQUENCE.
OUTPUTS ......... 1. SEF CALLING SEQUENCE.
2. A ERINTER LISTING LATA SET.
COMMON BLOCKS ..
RESTRICTIONS ...

\begin{tabular}{|c|c|c|c|c|c|}
\hline variable & TYPE & I/O & DIM & DESCRIPTIION & UNITS \\
\hline NOM & T* 4 & \(\stackrel{\square}{+}\) & - & NUMBER OF PCINTS TO TRANSFORM & \\
\hline BETA & F*8 & \(\overline{\text { I }}\) & - & HEADING ANGIE & RADIANS \\
\hline CNORTH & R*8 & I & NUM & UTM NORTHING OF FORMAT CENTER & METERS \\
\hline CEAST & P*8 & I & NOM & UTM EASTI NG CF FCRMAT CENTER & METERS \\
\hline DNORTH & R*8 & I & NOM & UTM NORTHING COORDINATE & METERS \\
\hline HO & R*88 & \(\frac{1}{1}\) & NUM & OUMPEAS & PTXTLS \\
\hline vo & B*8 & I & NUM & OUTPUT SPACE COORDINATE & \(\mathrm{p}=\mathrm{XETS}\) \\
\hline
\end{tabular}
PDI (EFOGEAM CUTLINE)


DO FOR EACH PCINT
DO FOR EACH PCINT
    HOC \(=\) HO (I) - HSZO
    HOC \(=\) HO (I) - HSZO
    VOC \(=V O\left\{\frac{T}{I}\right\}-\) VSZO
    VOC \(=V O\left\{\frac{T}{I}\right\}-\) VSZO


ENDDO
ENDDO



\footnotetext{
PDI (PROGRAM OUTLINE)
}

END OF SPECIFICATION

```

SAR/LANDSAT DAPA MERGING SYSMEM PROGRAM SPECIPICATION
NAME
ECCTP
DESIGNER STEPHEN W. MURPHREY
FUNCTION MAPS CONTROL POTNTS EXPRESSED TN EARTH-CENTERED COORDINATES TO
CORRECTED-TANGENT-SPACE COORDINATES.
INPUTS 1. SEE CALIING SEQUENCE.
OUTPUTS 1. SEE CALITNG SEQUENCE.
1. SEE CALLTNG SEQUENCE. AR SRNTER LISTMNG DATA SET.
COMMON BLOCKS ..
RESTRICTIONS ...

```

```

VARIABLE	TYPE	I/O	DIM	DESCRIPTITON			UNTTS
NMCP	T*2	I		\# OF CONTRROL	POIN		
XEC	R*8	I	NMCP	X-COORDINATE	(EARTH	-CENTERED)	METERS
Y FC	F * 8	I	NMCP	Y-COORDINATE	11	"	METERS
ZFC	R*8	I	NMCP	Z-COORDINATE	1	1	METERS
XECNAD	R*8	I	-	X-COORDINATE-	NADIR	11	METERS
YEXNAD	R*8	I	-	Y-COORDINATE-	- A AIR	11	METERS
ZECNAD	R* 8	T	-	Z-COORDINATE-	NADIR	" 1	METERS
BETAN	R*8	I	-	SPACECRAFT HE	ADING	ANGLE	RADIANS
RNADID	R*8	I	-	GEODETIC IATI	TUDE	F NADIR	RADIANS
RNADLN	R*8	I	-	LONGITUDE OF	NADIR		RADIANS
CTPV	R*8	0	NMCP	CTP VERTICAL	COORDI	NATE	METERS
CT PH	R*8	0	NMCP	CTP HORIZONTA	1 COOP	RDINATY	METERS

```

\footnotetext{
'PDI (EROGRAM OUTLINE)
}
```

FUNCTION MAP POINTS FROM THE CORRECTED-TANGENT-SPACE TO THE UNCORRECTED-
TANGENT-SPACE. THIS MAPPING CONSISMS OF APPIYING THE ATTITUDE
AND ALTITUDE CORRECTTONS.
INPUIS 1. SEE CALLING SEQUENCE.
OUTPUTS 1. SEF CALITNG SEQUENCE.
2. A EHINTER IISTING DATA SET.
COMMON BLOCKS ..
RESTRICTIONS ...
CALIING SEQ. . . CALI CTPUTP (NUM, TTMEPT, UTPV, UTPH, AAMOD,
AITNOM, APRXCH, CTPV, CNPH)

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline VARIABLE & TYPE & I／O & DIM & DESCRIPTION & UNITS \\
\hline NUM & I＊2 & I & & NUMBER OF POINTS TO TRANSFORM & \\
\hline TIMEPT & R＊8 & I & NTM & TIME OF EACH POINT & S ECONDS \\
\hline UTPV & R＊8 & I & NOM & UTP VERTICAL COORDINATES & METERS \\
\hline UTPH & R＊8 & I & NOM & UTP HORI ZONTAL CCORDINATES & METERS \\
\hline AAMOD & P＊8 & I & 14 & A／A MODEL COEFFTCIENTS & － \\
\hline AITNCM & R＊8 & I & － & NOMINAL S／C ALTTTUDE & METERS \\
\hline CTPV & P＊8 & I & NUM & CTP VERTICAL COORDINATE & METERS \\
\hline CTPH & R＊8 & I & NUM & CTP HORIZONTAL COORDINATE & METERS \\
\hline
\end{tabular}
PDI (FROGRAM OUTIINE)
    DO FOR EACH POINT


ROLI * (AITNOM \(+\mathrm{CTPH}(I) * * 2\) / AITNOM)
ENDDO


PDL (EROGRAM OUTIINE)
PRINT SUBROUTINE-ENTRY MESSAGE.
PRINT HEADINGS
DO FOR EACH CONMROL EOINT:
CORRECT HORIZ. COORDINATE FOR EARTH CCURVATURE / PANORAMIC-DROJECTIOIT ERRORS. COFRECT FOR DISTORTIONS DUE MO EARTH ROTATION COERECT VERTICAI CCORDINATE FOR SCAN-SKEG ERRORS. CORRECT FOR DIFFERENTIAL INPUT SCALES. CORRECT HORTZONTAI COORDINATE FOR HIRROR-VELOCITY ERRORS. CONVERT TO IMAGE-CENTER-ORIGIN CCORDINATES. FRINT RESUITS OF ABOVE ERROR CORRECTIONS.

\section*{ENDDO}

PPINT SURFOUTINE-EXIT MESSAGE.

NAME

\section*{IIUTP}

DESTGNER . ...... STEPHEN F. MURPHREY
\begin{tabular}{|c|c|}
\hline FUNCTION & CONVERTS AN ARRAY OF INPUT-SPACE COORDINATES TO UNCORRECTED-TANGENT-SEACE COORDINATES. \\
\hline INPUTS & 1. SEF CALLING SEQUENCE. \\
\hline OUTPUTS & \begin{tabular}{l}
1. SEF CALITNG SEQUFNCE. \\
2. A PRINTER LISTING DATA SET.
\end{tabular} \\
\hline COMMON BLOCKS & MSSCONS \\
\hline RESTRICTIONS & \\
\hline CALIING SEQ. & CAIL IIUTP (NMCP, VRA, VRC, VRAN, VRCN, DELVV CLINE, CSAMP, KWALTY, TTPV, UTPH: DTTME, CTIME) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VARIABLE & TYPF & 1/0 & DIM & DESCRIPTITON & UNITS \\
\hline NMCE & I*2 & I & & \# OF PCINTS & \\
\hline VRA & R*8 & I & NMCP & EARTH ROTATION VFLOCIT & MT TERS/ \\
\hline VPC & P48 & & NMCP & (ALONG -TRACK) AT INPUT POINT & S EC \\
\hline VRC & P* 8 & I & NMCP &  & \\
\hline VRAN & R*8 & 1 & - & EARTH ROTATION VELOCITY & 1 \\
\hline & & & & (AIONG-TRACK) AT NADIR & \\
\hline VPCN & P*8 & I & - & EARTH ROTATION VELOCITY & H \\
\hline DELVV & R* 8 & T & - & (ACROSS-TRACK) AT NADIR & 11 \\
\hline CIINE & R*8 & \(\bar{I}\) & NMCP & IINE OF CONTROL FOINT & PTXETS \\
\hline CSAMP & R* 8 & I & NMCP & SAMPLE OF CONTROL POINT & PTXETS \\
\hline KWALTY & I*2 & I & NMCP & STATUS OF DOINTS & PIXELS \\
\hline UTPV & R*8 & 0 & NMCP & VERTICAL COORDINATE OF POINT & METERS \\
\hline & & & & IN UTP & \\
\hline UTPH & R*8 & 0 & NMCP & HORTZONTAI COORDINATE OF & METERS \\
\hline CT IME & R*8 & 0 & NMCP & PIME (CCNTINOOUS) ASSOCIATED & S ECONDS \\
\hline & & & & HITH POTNT & \\
\hline DTIME & R*8 & 0 & NMCP & TTME (DISCRETE) ASSOCIATED & SECONDS \\
\hline
\end{tabular}

PDL (PFOGRAM OUTLINE)
```

PRINT SUBROUTINE-ENTPY MESSAGE.
PRINT HEADINGS.
DO FOR EACH CONTROL POINT:
CCNVEFT TO IMAGF-CENTEE-ORIGIN COORDINATES.
CORRECT HORIZONTAL COORDINATE FOR MTRROR-VELOCITY ERRORS.
COFRECT FOR DIFFERENTIAL INPUT SCAIRS
CORRECT VERTICAL COORDINATE FOR SCAN-SKEY ERRORS.
CORRECT VERTICAL CCCRDINATE FOR SPACECRAFT-VELOCIMY ERRORS.
CORRECT FOR DISTORTIONS DUE TO EAPTH ROTATION
CORRECT HORIZ. COORDINATE FOR EARTH-CURVATURE'/ PANORAMIC-PROJECTION ERRORS.
PRTNT RESULTS OF ABOVE ERROR CORRECTIONS.
ENDDO
PRINT SUBPOUTINE-EXIT MESSAGE.

```
NAME ........... UTPCTP
DESIGNER ........ STEPHEN W. MURPHREY
FUNCTION ....... MAP POINTS FROM THE UNCORRECTED-TANGENT-SPACE TO THE CORRECTED-
FUNCTION ....... MAP POINTS FROM THE UNCORRECTED-TANGENT-SPACE TO THE CORRECTED-
    TANGENT-SPACE. THIS MAPPING CONSISTS OF APPLYING THE ATTITUDE
    TANGENT-SPACE. THIS MAPPING CONSISTS OF APPLYING THE ATTITUDE
    AND ALTITUDE CORRECTIONS.
    AND ALTITUDE CORRECTIONS.
INPUTS ......... 1. SEE CALLING SEQUENCE.
INPUTS ......... 1. SEE CALLING SEQUENCE.
OUTPUTS ........ 1. SEE CALIING SEQUENCE
OUTPUTS ........ 1. SEE CALIING SEQUENCE
    2: A PRINTER LISTING DATA SET.
    2: A PRINTER LISTING DATA SET.
COMMON BLOCKS ..
COMMON BLOCKS ..
RESTRICTIONS ...
RESTRICTIONS ...


\begin{tabular}{|c|c|c|c|c|c|}
\hline VARIABLE & TYPE & I/O & DIM & DESCRIPTION & UNITS \\
\hline NUM & I*2 & I & & NUMBER OF POINTS TO TRANSFORM & \\
\hline TIMEPT & R*8 & T & NUM & TTME OF EACH POINT & SECONDS \\
\hline \[
\begin{aligned}
& \text { UTPD } \\
& \text { UTP }
\end{aligned}
\] & P*8 & I & NUM & UTP VERTICAI COORDINATES & METERS \\
\hline AAMOD & R*8 & I & 14 & A/A MODEL COEFFICIENTS & \\
\hline ALTNOM & R*8 & I & & NOMINAI S/C ALTITUDE & METERS \\
\hline APRXCH & R*8 & & NUM & APPROXIMATE CTP HORIZONTAL & METERS \\
\hline CTPV & P*8 & I & NUM & CTP VERTICAL COORDINATE & METERS \\
\hline CTPH & R*8 & I & NUM & CTP HORIZONTAL CCORDINATE & METERS \\
\hline
\end{tabular}
PDI (EROGRAM OUTLINE)
    DO FOR EACH FOINT
        COMPUTE THE TIME FOP THE POINT
        COMPUNE ROLL PITCH YAF AND DELTA ALT BY EVALUATING THE A/A
            POIYNOMIALS AT THE TIME OF THE POINT
            BY PUTMING THE ATIITUDE VALUES INTO THE DISTORTION MODELS
            ADD the delta corrections to the uncorrected values
    ENDDO
                    END OF SPECTFICATION
```

NAME GTERAS
DESIGNER STEPPHEN W. MURPHREY
FUNCTION ESTIMATES THE ACCURACY TO WHICH GEODETIC COORDINATES (LAM/LON)
INPUTS 1. SEE CALLING SEQUENCE.
OUTPUTS 1. SEE CALITNG SEQUENCE,
2. A PRINTER LISTING DATA SET.
COMMON BLOCKS .. MSSCCNS
RESTRICTIONS ...
CALLING SEQ. ... CALL GTERAS (NMCP, RACOV, PYCOV, CTPV, CMPH, SIGM, AESTV,AESTH)
VARIABLE TYPE I/O DIM DESCRIPTIION UNITS

```

```

PDL (PROGRAM OUTLINE)
DO FOR EACH INPUT POINT
CCMPUTE THE TIME OF THE POINT
COMPUTE MATRIX MY WHICH REIATES THE A/A MODEI COVARIANCES TO HORIZONTAI GEODETIC COVARIANCES
COMPUTE MATPIX M2 FHICH RELATES THE A/A MODEL COVARIANCES TO
VERTICAI GEODETIC COVARIANCES
FROM THF TIME OF THE POINT COMPUTE THE MATRIX TI WHICH ALLOWS M 1
FROM THF TTMF OF THEPPOINT COMPUTE THEMMARIX T2 HHICH ALLOWS, M2

```

```

HORIZONTAL GEODFTIC COVARIANCES AT THE TIME OF THE POINT
COMPUTE F2 = M2*T2 WHICH RELATES THE A/A MODEL COVARIANCES TO
VERTICAL GEODETIC COVARIANCES AT THE TIME OF THE POINT
COMPUTE THE VARIANCE OF THE GEODETIC ACCORACY OF THE HORIZONTAI
COMPUTE THATE OF THE GIVEN POTNT (H VAR = F2*PYCOV*F2T)
DINATE OF THE GIVEN POINT (V VAR = F1*RACOV*F1T
COMPOTE THE HORIZONTAL "RFROR ELLIPSE RADII"= SIGM*SQRT (H VAR)
COMPUTE THE VRRTICAL "ERROR ELIIPSE RADII"= SIGM*SQRT (H VAR)

```

\section*{ENLDO}
```

NAME GTWANC

```
DESIGNER ....... STEPHEN W. MORPHREY
FUNCTION ....... HRITES GEOMETRIC-TRANSFORMATION PARAMETERS TO THE SIDMS
    ANCILLARY DATA SET.
INPUTS .......... 1. SFE CALLING SEQUFNCE,
OUTPUTS ........ 1. SEF CALLINGSEQUFNCF.
    2: A ERTNTER LISTING DATA SET.
COMMON BLOCKS ..
RESTRICTIONS ...
CALIING SEQ. ... CALI GTHANC ()
    VARIABIE TYPE T/O DIM DESCRIPTIION UNITS
PDL (PROGPAM OUTLINE)
    ERINT EROGRAM-ENTRY MESSAGE.
    WRITE ERROR MODEIS TO THE SLDMS ANCILIARY DATA SET.

    WRITE OUTPUT-SPACE DEFINITTON TO THE SLDMS ANCILIARY DATA SET.
    PRINT EROGRAM-EXIT MESSAGE.

\section*{B. 7 RESAMPLING PROGRAM}

\section*{B.7.1 Statement of Problem}

Resampling, as defined here, is the creation of a two-dimensional array of eight-bit words (called output-space pixels) from another two-dımensional array of eight-bit words (called input-space pixels) by the process indicated in Figurea B-8. It involves two main steps: the creation of an intermediate two-


Figure B-8. Horizontal and Vertical Resampling
dimensional array (called hybrıd-space pixels) directly from the input-space array; and the creation of the output-space array from the hybrid-space array. The first of these steps is called horizontal resampling, and the second is called vertical resampling.

\section*{B.7.2 Data Flow}

The three resampling spaces are shown in Figure B-9. Hybrid space is created by a one-dımensional resampling of input space. This is a horizontal resampling. Output space is created by a one-dimensional resampling of hybrid space. This is vertical resampling.


\section*{Figure B-9. Resampling Spaces}

In each case, the resultant image is created one line at a time. The flow is from the top of the image to the bottom. A resampled line is created in segments, as shown in Figure B-10.

In order to resample one line's worth of data, the location of each point in the input data array must be obtained. This is done, within each segment, by a linear interpolation scheme. Consider Figures B-10 and B-11. A rectangular lattice of grid points (usually, but not necessarily, equally spaced) is set up in the coordinate system of the image being created. These interpolation grid points are then mapped to the corresponding input-data coordinate system. The mapped grid points are the SVO and LHO points shown in Figures B-10 and B-11. In each case, another set of grid points with a finer mesh is created by linear interpolation between the mapped grid points. These are the SV and LH points shown in Figures \(\mathrm{B}-10\) and \(\mathrm{B}-11\). There 1 s a set of SV grid points for each line in hybrid space, and there is a set of \(H V\) grid points for each column in output space. In the case of horizontal resampling, some high-frequency geometric errors that are a function of the line number are corrected by adjusting the SV grid points by the magnitude of the errors. The resulting points are the \(\mathrm{SV}^{\prime}\) grid points shown in Figure B-10. Finally, the location of each point in the input data array is calculated by linear interpolation between the \(\mathrm{SV}^{\prime}\) or LH grid points.

\section*{B.7.3 Inputs to Resampling Process}

The following data is required to perform the resampling function:
a. Hybrid-space grid-point locations and corresponding input-space gridpoint locations (SVO grid points).


Figure B-10. Construction of Hybrid Space


Figure B-11. Construction of Output Space
b. Constants required to compute horızontal, high-frequency correction coefficients.
c. Output-space grid-point locations and corresponding hybrid-space grid-point locations (LHO grid points).
d. Input-space array of data values (assume 8-bit pixels).
e. Constants required to evaluate resampling polynomial.

\section*{B.7.4 Algorithm Considerations}

The general formula for a six-point, one-dimensional resampling algorithm may be stated as follows:
\[
\begin{equation*}
V=\frac{D}{K}\left(\frac{D}{K}\left(\frac{D}{K}\left(\sum_{-2}^{3} W_{3, N_{N}}^{I_{N}}\right)+\sum_{-2}^{3} W_{2, N_{N}} I_{N}^{3}+\sum_{-2}^{3} W_{1, N^{I} N}\right)+I_{\emptyset}\right. \tag{1}
\end{equation*}
\]
where
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{N}}=\text { the intensity of pixel } \mathrm{N} \\
& \mathrm{~W}_{\mathrm{I}, \mathrm{~N}}=\text { the weight for pixel } \mathrm{N} \text { in the term of degree } I \text { (a known constant) } \\
& \mathrm{K} \quad=\text { a known constant } \\
& \mathrm{D} \quad=\text { the (positive) distance between pixel } 0 \text { and the output pixel. }
\end{aligned}
\]

The relationships are illustrated in Figure \(\mathrm{B}-12\).


Figure B-12. Six-point Resampling

If, equation (1) is implemented in hardware or software in such a way that the weights \(W_{T, N}\) and the constant \(K\) may be easily changed, then a large class of resampling'algorıthms are included in the single implementatıon. In particular, all six-point and four-point cubic-convolution resamplers are included, as is the four-point quadratic-convolution algorıthm. Some common resampling-algorithm constants are given in Table B-24.

It is obvious fxom equation (1) that the single-1mplementation approach would be a very poor strategy for a software resampler on an IBM 370 computer. Using

Table B-24. Typical Resampling Constants (WeIghts)

equation (1) for a four-point quadratic convolution would use more than twice as much CPU time as would be required by the equation
\[
\begin{equation*}
V=D\left(D\left(I_{-1}-I_{\emptyset}-I_{1}+I_{2}\right)+\left(-I_{-1}+2 I_{1}-I_{2}\right)\right)+I_{\emptyset}, \tag{2}
\end{equation*}
\]
which would elimınate all of the unnecessary multıplıcations by zero. A good software approach is to code each resampling algorıthm separately to minımize CPU utilization. This approach will be used for the SLDMS Resampling Program. The classic 4-point cubic convolution algorithm will be used.

\section*{B.7.5 Handling of Edges in Resamplıng Via Hybrid Space}

The boundary of a digital image that has been resampled is usually not a rectangle that is aligned with the rows and columns of pixels. There is normally some non-image fill data at the edges of a digital image. In order to simplify the handling of edges during resampling, the input-space data will be artificially enlarged by placing fill pixels around the edges. This padding will be sufficiently large to guarantee-that input-space data exists for every hybrid-space pixel and that hybrid-space data exists for every output-space pixel.

Figures \(\mathrm{B}-10\) and \(\mathrm{B}-11\) assume no such enlargement of input space. Figures \(\mathrm{B}-13\) and B-14 assume the enlargement described above. In this case, there are no SV' points (or LH polnts) that are not at least three columns (or rows) interior to the enlarged input space (or enlarged hybrid space). Therefore, no special case will have to be made for output-space pixels that would be mapped outside the input-space image data. All hybrıd-space and output-space pixels are created in the same way by the resampling function. A scale drawing of the three resampling spaces 1s shown in Figure B-15.

\section*{B.7.6 Program Description}

Although the resampling problem is conceptually straightforward, computer software that performs resampling is somewhat complicated. This program, the largest CPU user in the SLDMS, will be written primarily in assembler language to minimize computer utilization costs.

The design of this program is described in Figure \(B-16\) and the program specifications that follow. These describe the cubic convolution algorithm. The nearest-neighbor resampling algorithm will use the same design.

The design of the resampling program has a few significant features. The resampling is performed via an intermediate hybrid space. This method was chosen to mınimıe computer utilization. The four point resampling algorithm will be implemented in fixed-point arithmetic to minimize computer use. The alternative, floatıng-point arithmetıc, would use considerably more CPU.

Another significant feature is the large hybrid-space buffer. In order to minimize the \(I / 0\) processing of the resampling program, the output image will be


Figure B-13. Construction of Hybrid Space


Figure B-14. Construction of Output Space


Figure \(B-15\). Resampling Spaces (Drawn to Scale)
created in full-line increments. This requires hybrid-space data from several lines to be available at essentially the same time. This availability will be provided by a large buffer in the computer memory. The size of this hybridspace buffer is dependent on the size of the output space and the particular geometric transformation between the input and output spaces. The buffer will be allocated dynamically during program execution. This will permit the program to be run in small regions where possible.

Due to the generally high running cost of the resampling program, it will have a checkpoint/restart capabilıty. A checkpoint is taken for each row of LHO grid points. In the event of a computer failure during execution of the resampling program, processing can be resumed at the point at which the last checkpoint was taken.

RSEL ---------- RSELV ----------- RSPLH
FIGURE B-16. MODULE HIERARCHY FOR RESAMPLING PROGRAM.
```

 SAR/LANDSAT DATA MERGING SYSTEM PROGRAM SPECIPICATION
 NAME RSPL
DESIGNER STEPHEN W. MURPHREY
FUNCTION THIS IS THE TOP-LRVEI DRIVER FOR THE RESAMPLING PROGRAM.
INPUTS 1. AN SLDMS ANCTLLARY DATA SET FOR THE SCENE TO BE PROCESSED.
1. AN SLDMS ANCTILARY DATA SET FOR T
3. A DATA SET CONNAINING USER'S REQUESTS (ON CARD IMAGES) .
OUTPUTS 1. AN IMAGE DATA SET IN MIST FORMAT.
2. AN PRINTER IISTING DATA SET.
COMMON BIOCKS ..
RESTERICTIONS ...
CALIING SEQ. ... NOT AFELICABLE.
PDI (PROGRAM OUMLINE)
IF THIS IS A CHECKPOINT/RESTART RUN
THEN
PEFFORM RESTART INITIALIZATION
POSITION DATA SEIS
FRINT RESOLTS
ELSE
READ GRTD-FOTNM CORRES PONDENCE FROM ANCTLLARY DATA SET
INITIALIRE CONSTANTS AND OTHER DATA AREAS
ERINT HESULTS
OBTAIN HYBRID SPACE BUFFER AREA IN (VIRTUAL) MEMORY
CPEN DATA SETS
PRINT RESUITS
ENDIF
TAKF CPU-TIMING READING
EEFFCRM VERTICAL RESAMPLING
TAKE CPU-TIMTNG READING
CLOSE DATA SETS
PRINT RESULTSSOF CPU TIMTNGS
PRINT EROGRAM-EXIT MESSAGE

```
```

 SAR/IANDSAT DATA MERGING SYSTEM PROGRAM SPECIFICATION
 NAME RSPLV
DESIGNER STEPHEN F. MURPHREY
FUNCTION PERFORMS VERTICAL RESAMPLING (INCLUDES CONTROL OF HORIZONTAL
RESAMELING).
INPUTS 1. SEE CALIING SEQUENCE.
OUTPUTS 1. SEE CALLING SEQUENCE.
COMMON BLOCKS ..
RESTRICTIONS ...
CAILING SEQ. ...
VARIABLE TYPE I/O DIM DESCRIPTION
PDL (PPOGRAM OUTLINE)
DO FROM J = 1 TON - 1 (N N = NUMBER OF RCNS OF LHO GRIDD POINTS)
COMPUTF IHK GRID FOINTS FOR EACH COLUMN (K) OF PIXELS
COMPUTE DOK FOR EACH COLUMN OF PIXEISS NOWS OF PIXELS IN SEGMENT J NOM
DETERMINE LOCATION OF FTRST PIXEL IN OUTPUT-SPACE BUFFER
DOFROM K=1 TOLL (I = WIDTHOFONE OUTPUT-SPACE RON)
C = LHK + I ** DVK
TC = G(C) + 2 (G(C) = MAXIMUM INTEGER < C)
DO WHILE IINE ID IS NOmIN THE HYBRID-SPACE BUFFER
HORIZONTALLY RESAMEIE ONE IINE OF INPTT-SPACE DATA
ENDDO
OBTAIN THE FOUR PIXEI INTENSITIES STARTING WITH PIXEL IC
D = C - IC + 2
PERFORM THE FOUR-POINT RESANPIING (EQUATION 2)
INSERT RESUIT INTO THE OUTPUT-SPACE BUFFER
ENDDO
HFITE ONE OUTPUT-SPACE RECORD
ENDDO
TAKE A CHECKEOINT
ENIDO

```
                                    END OF SPECIFICATION
```

SAR/LANDSAT LATA MERGING SYSTEM PROGRAM SPECIFICATION
NAME RSPLH
DESIGNER STEPHEN W. MURPHREY
FUNCTION HORIZONTAL RESAMPLING OF ONE IINE OF INPUT-SPACE DATA.
INPUTS 1. SEE CALIING SEQUENCE.
OUTPUTS 1. SEE CALIING SEQUENCE.
COMMON BIOCKS
RESTRICTIONS ...
CALLING SEQ.
VARIABLE TYPE I/O DIM DESCRIPTION UNIHS
PDL (FFOGEAM CUTIINE)
READ NEXT RECORD INTC INPOT-SPACF BUFFER
READ NEXT SET OF SV' GRID-POINT CCCRDINATES
DETERMINE LOCATION OF NEXT LINE IN HYBRID-SPACE BUFPER
DO FROM DENN= = TO N - 1 (N = NUMBEF OF SV'GFIDD POINTS IN ONE ROW)
DO FROMNE DVJ O TO MJ - 1 (MJ = NUMBER OF PIXELS IN SEGMENT J)
C=SV 'J + I* DVJ

```

```

 D=C-IC-1
 PERFOPM THE FOUR-POINT RESAMPLTNG (ECUATION' 2)
 INSERT THE RESULT INTO THE HY BRID-SPACE BUFFER
 FNDDO
 ENDDO
    ```
**かが*
                                    END OF SPECIFICATION
```

NAME MRFTXI

```
NAME ........... MRFTXI
DESIGNEP ....... STEPHEN ज. MURPHREY
DESIGNEP ....... STEPHEN ज. MURPHREY
FUNCTION ....... PROCESSES X-FORMAT IMAGE DATA.
FUNCTION ....... PROCESSES X-FORMAT IMAGE DATA.
INPUTS ......... 1. SEE CALIING SEQUENCE.
INPUTS ......... 1. SEE CALIING SEQUENCE.
OUTPUTS ........ 1. SEE CALITNG SEQUENCE.
OUTPUTS ........ 1. SEE CALITNG SEQUENCE.
COMMON BLOCKS ..
COMMON BLOCKS ..
PESTRICRIONS ...
PESTRICRIONS ...
CAIIING SEQ. ... CALL MRFTXI ()
CAIIING SEQ. ... CALL MRFTXI ()
    VERIABIE TYPE I/O DIM DESCRIPTION UNITS
    VERIABIE TYPE I/O DIM DESCRIPTION UNITS
PDL (PPOGRAM OUTLINE)
    IF MOHTS IS NOT A THERMAL-BAND RECORD THEN
        DO FOR EACH 8-BYTE GROUP OF INPUT DATA
            MOVF BYTES 1 AND 2 TO BAND-1 AREA OF OUTPUT BUFFER
            ENDDO
        IF THIS IS INPUT DATA FOR STRIP 4 THEN
            ILFF= (IICC + 6 %), ILA = LTNE-IENGTH FACTOR (SAVED IN OUTPUT BUFFER)
            INITIAIIZE "EPOM"AND "TO" ADDRESSES
                FOR BANDS 1 TO 4
                R=ILA
                    LO WHTLE MOVE D RIXENS
                        MOVE D PIXEISS
                            INCREMENT "FROM" BY D D + 1
                ENDD
                    IF R > 0
                            MOVE R PIXELS
                FNLIEREMAINDER OF BUFFER AREA WITH FIII CHARACTERS
                    OBTAIN V = PIXEI VAIDE
                    INCREMENT V COUNTER FOR CURRENT DETECTOR BY {
                ENDDO
            ENDDO
        FNDIF
    ELSE
    MOVE ALI TMAGE DATA TO BAND-5 AREA OF OUTPUT BUFFER
                        FHIS IS INFUT DATA SFT FOR STRIP }
                        REMOVE ITNE-IENGTH CORRECTION DIXELS
                        FTIL REMATNDEF OF BUFFER AREA WITH FILL CHARACTERS
            DO EOR FACH IMAGE PTXEL
                        CBTAIN V = PIXEL VALDE
            ENDDO
        FNDIF
    ENDIF
```

```
*******
SAR/LANDSAT DATA MERGING SYSTEM PROGRAM SPECIFICATION
NAME ........... MRFTXS
DESIGNER ....... STEPHEN F. MURPHREY
FUNCTION ....... READS AND PROCESSES SIAT FTLE FROM X-FORMAT MSS TIAPE.
INEUTS ......... 1. SEE CALLTNG SEQUENCE.
OUTPUTS ........ 1. SEE CALIING SEQUENCE.
COMMON BLOCKS ..
RESTRICTIONS...
CAILING SEQ. ... CALI MRFIXS ( )
    VARIABIE TYEE I/O DIM DESCRIPTION UNITS
PDI (PROGRAM OJTLINE)
    DETERMTNE FORMAT LEEVEL
    PEAD AII 7 OR 8 SIAT FECORDS
    IF FORMATIEVEI 2 OR 3}\mathrm{ THEN
        ERINT CAIIBRATION MODIFIERS
    ENDTF
    EFINT SPACECRAFm PERFCRMANCE DATA
    PRINT ANNOTATION BLOCK DATA
    PRINT MSS COMPUTATIONAL DATA
    PRINT TMAGE LOCATION DATA
    WRITE SIAT DATA TO ANCILIARY LATA SET
                                    END OF SPECIFICATION
```

U.S. DEPARTMENT OF COMMERCE National Technical Information Service N79-13442

SAR/LANDSAT IMAGE REGISTRATION STUDY

STEPHEN W, MURPHREY
September 1978

䚀国行行

