BEACH EROSION CONTROL STUDY AT PASS CHRISTIAN

Prepared For

The Harrison County Board of Supervisors

and

The National Aeronautics and Space Administration

(NASA-CR-162349) BEACH EROSION CONTROL STUDY AT PASS CHRISTIAN (Mississippi State Univ.) 173 p HC A08/MF A01 CSCL 08C

Unclas G3/48 35905

N79-33779

The research and preparation of this report was financed through a grant by the National Aeronautics and Space Administration. Grant # NGL-25-001-054

Remote Sensing Applications Program

and

Department of Geology and Geography Mississippi State University

December 31, 1978

NA

BEACH EROSION CONTROL STUDY AT PASS CHRISTIAN

Prepared For

The Harrison County Board of Supervisors

and

The National Aeronautics and Space Administration

The research and preparation of this report was financed through a grant by the National Aeronautics and Space Administration. Grant # NGL-25-001-054

Remote Sensing Applications Program

and

Department of Geology and Geography Mississippi State University

December 31, 1978

ACKNOWLEDGEMENT

The research upon which this report is based was conducted by faculty, staff and students from the Remote Sensing Applications Program and the Departments of Geology and Geography, Landscape Architecture, Mathematics, and Forestry at Mississippi State University. The research team included Dr. Gary Higgs, Dr. Charles Wax, Mr. Edwin Owen, Jr. (Project Manager), Mr. Rick Hoin, Mr. Robert Brown and Mr. Van Neie (Landscape Architecture Consultant).

Appreciation is extended to Mr. Bradley Carter, Mr. Frank Miller, Mr. Dale Quattrochi, and Dr. Jim Solomon of Mississippi State University. Mr. John Tabb, Mr. Paul Teng, Mr. Sonny Bryant and Mr. Shag Pyron of the State Highway Commission, Dr. Cornell Ladner and Mr. J. E. Thomas of the Mississippi Marine Resources Council, Mr. Leroy Urie and Mr. William McDonald of the Harrison County Board of Supervisors; the Corps of Engineers, the Mississippi Research and Development Center and Mr. Steve Dickerson of WLOX TV, Biloxi, are also thanked.

TABLE OF CONTENTS

						Page
ACKNOWLEDGEMENTS	•	•	•	•	•	11
LIST OF FIGURES	•	•	•	•	•	vi
LIST OF TABLES	٠	•	•	•	•	viii
CHAPTER						
I. THE NATURE AND PURPOSE OF THE STUDY	•	•	•	٠	•	1
Location and Setting	•	•	•	•	•	1
History of the Beach	•	•	•	•	•	4
The Problem	•	•	•	•	•	6
Mechanics of Aeolian Erosion	•	٠	•	•	•	8
Sand Grain Size	•		•	•	٠	9
Problematic Context	٠	•	•		•	10
The Approach	•	•	•	•	•	11
Study Design	•	٠	•	•	•.	13
II. METHODOLOGY	•	٠	• .	٠	٠	14
Objective 1	•	•	•	•	•	14
Digital ADP Activities	•	•	•	•	٠	16
Tape Selection and Format Change .	•	•	٠	•	•	16
Gray Tone Maps and Histograms	•	٠	•	••	•	16
Erosion Zone Groups	•	•	•	•	•	16
Analogue Optical Image Activities	•	•	•	•	•	20
Objective 2	•	٠	•	•	•	26
Meteorological Data Collection Procedure	Ł		•			28

		Page
	Field Data Collection Procedures	28
	Physical Laboratory Procedures	31
	Landsat Data	32
III.	ANALYSIS	39
	Beach Morphology	39
	Off- and Onshore Features	41
	Sand Moisture Content	41
	Landsat Defined Erosion Areas	42
	Meteorological Analysis	48
	Summary	55
IV.	DESIGN SOLUTION	56
	Introduction	56
	Methodology	57
	Site Observations - Human Activities	57
	Site Observations - Natural Systems	59
	Generalizations and Implications	61
	Generalized Plan	63
V.	OVERALL DESIGN AND SPECIFIC SITE PLAN	73
·	General Beach Land Use	73
	Conceptual Site Plan of High-Use Design	75
	Forms	76
	Macro Exterior Design Consideration of High Use Zones	82
	Micro Interior Design Consideration and Component	83

	Page
VI. CONCLUSIONS	86
FOOTNOTES	88
APPENDICES	
APPENDIX A. SELECTED REFERENCES	90
APPENDIX B. GRAY LEVEL PRINTOUT, BAND 5, OF STUDY AREA	91
APPENDIX C. HISTOGRAMS	93
APPENDIX D. SAND MOISTURE TABLES	115
APPENDIX E. SYNOPTIC WEATHER TYPES - PERCENT OF HOURS FOR MOBILE 1977	139
APPENDIX F. CONSTRUCTION MATERIAL	155
APPENDIX G. PLANT MATERIAL	157
APPENDIX H. THEORY OF SAND MOVEMENT	160

LIST OF FIGURES, ILLUSTRATIONS, AND SHEETS

	Page
Figure I-1	Map of Mississippi Gulf Coast Study Area 2
Figure I-2	Coastal Zone Profile
Figure II-1	Gray Level Printout of Coast
Figure II-2	Histogram of Beach Training Site
Figure II-3	Image Display on Ball VMIS
Figure II-4	Image Display on Color Additive Viewer
Figure II-5	Image Display on I ² S
Figure II-6	Signal Slice of Beach
Figure II-7	Spectral Display of All Land and All Water Interim Class of Beach
Figure II-8	Spectral Display of Emerging Wet Beach 27
Figure II-9	Sand Moisture Map of Beach, June 10, 1978 34
Figure II-10	Sand Moisture Map of Beach, July 7, 1978 35
Figure II-11	Sand Moisture Map of Beach, July 16, 1978 36
Figure II-12	Sand Moisture Map of Beach, August 2, 1978 37
Figure II-13	Summary Sand Moisture Zone Map
Figure III-1	Plane Table Survey of Beach 40
Figure III-2	Landsat Defined Erosion Zones 43
Figure III-3	Landsat Defined Erosion Zones
Figure III-4	Landsat Defined Erosion Zones 45
Figure III-5	Landsat Defined Erosion Zones 46
Figure III-6	Landsat Defined Erosion Zones 47
Illustration 1	••••••••••••••••••••••

vi

Sheet 1 of 6	Site Analysis/Locater Sheet 67
Sheet 2 of 6	Site Analysis/Locater Sheet
Sheet 3 of 6	Erosion and Aesthetical Problems 69
Sheet 4 of 6	Preliminary Beach Plan
Sheet 5 of 6	Preliminary Beach Plan
Sheet 6 of 6	Typical Development
Figure V-1	Relationship Matrix
Illustration 2	
Illustration -	Plan View (in middle of page)

Page

LIST OF TABLES

			Page
Table	II-1.	Pixel Line and Scan Number	17
Table	I I-2.	Satellite Flyby	30
Table	III-1.	Characteristic Wind Directions and Speed for Selected Synoptic Weather Types, Keesler AFB, Mississippi, 1977	54

CHAPTER I

THE NATURE AND PURPOSE OF THE STUDY

This study analyzes the locational and control aspects of aeolian erosion zones along the sand beach of the Mississippi Gulf Coast in the vicinity of Pass Christian, Mississippi. The specific study area stretches from Henderson Point to the eastern city limits of the community of Pass Christian, a distance of approximately 6.5 miles (Figure I-1).

Location and Setting

The study area constitutes only a small portion of the approximately 60 miles of Gulf shoreline of Mississippi which forms the southern border of the state. This specific 6.5 mile study area is located about midway between Mobile, Alabama, and New Orleans, Louisiana, on the Mississippi Sound, a partially sheltered arm of the Gulf of Mexico. The Sound is a shallow offshore body which extends 75 miles from Mobile Bay, Alabama to Lake Bergne, Louisiana. Its eastern end is separated from the open Gulf by an irregular chain of low, narrow, sand islands 8-12 miles offshore and its western end is separated by a group of mud islands of the Mississippi Delta, known collectively as the Louisiana Marshes. The depth of the Sound is shallow, averaging 12-14 feet and ranging up to 20 feet. In places, depths of six feet may occur up to one mile from the mean sea level (MSL) position of the shore.

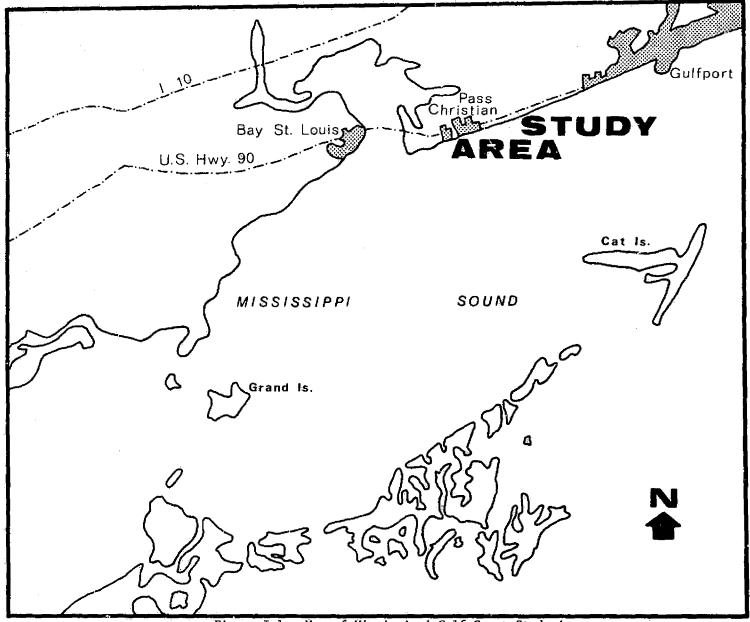


Figure I-1. Map of Mississippi Gulf Coast Study Area.

N

The present beach, consisting of both foreshore (wave-worked area) and backshore (normally open sand, not wave-worked) is about 200 feet in width. The beach of the study area is situated immediately between the waters of the Sound and U. S. Highway 90, the Coast Road, and the coastal communities.

The local area has a pleasant atmosphere and a delightful climate which, together with its proximity to major cities and inland areas, has resulted in a high tourist recreational potential. The coastal area is thus a center for recreational activity for both local residents and vacationers from distant cities.

These natural advantages of climate and setting have caused this area to be among the fastest population growth areas in the region, and have contributed to the development of the tourist industry which has become one of the leading income producers for the area and the State. The turnover from revenues generated by this industry has greatly benefited the economy of the coastal zone and has, in part, been put to use to improve the coastal physical and cultural environment through the development and preservation of natural and historical features as well as to provide for maintenance of the beach and the resort community. These reinvestments have, in turn, further added to the area's attractiveness and to increased recreational activities and recreational revenues.

This area will continue to play an important role in the economy of the State because tourism in Mississippi, as measured by the sales of gasoline, motel rooms, restaurant sales and tourist attractions, is

rapidly rising. According to the MISSISSIPPI GULF COAST TOURIST INDUSTRY REPORT, published by the Bureau of Business Research, School of Business Administration, University of Southern Mississippi, Hattiesburg, Mississippi, the Arab oil embargo and resulting increase in fuel costs have done little to slow the Mississippi tourist index which had a 7 percent increase in 1978. Current forecasts for the area indicate a 9.6 percent growth rate per year. This growth is attributed to the colder winters forcing Northern inhabitants South, and to local residents and residents of neighboring states taking advantage of the beach atmosphere. Thus, tourist use is an increasingly important factor in the area's economy. For these reasons, the beach is a significant asthetic and economic resource of the coastal area, and its existence and maintenance is a key component in both the present and future cultural and economic health of the area.

History of the Beach

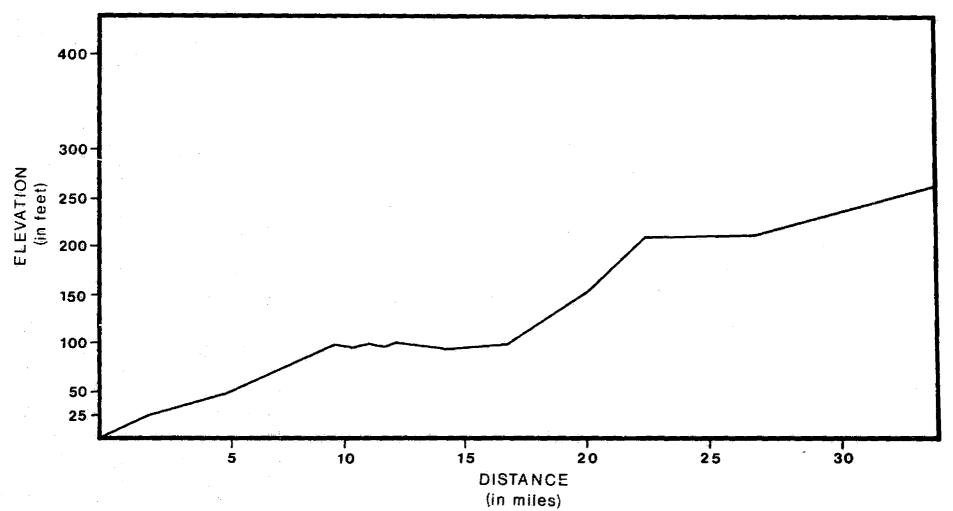
Prior to 1916 and before the installation of the sea wall in 1925, the Gulf Coast shoreline of this portion of Mississippi was primarily an intermittent sand beach interrupted by narrow mud, shell, and rock flats with only limited sand deposits. This material was derived by wave erosion of the shoreline land mass. The underlying geologic formations in the region from which these materials came are the Port Hudson clays, deposited during the Pleistocene epoch. The marine phase of these deposits, known as the Biloxi beds, consists of alternate

layers of blue clay and sand (1).* These original deposits ranged from 80-100 feet in width and up to as much as 200 feet in some instances, and were about 2 feet above MSL.

In a geologic context, the coastal zone setting of this beach and the Sound area appears to be an area of mildly subsiding masses due to the increased weight of the deltaic deposits of the Mississippi River and other rivers depressing the crust of the earth and dragging down much of the surrounding area (2, 3). In addition, the erosive wave action has apparently been causing the land mass to retreat at an undetermined rate. With time, these factors have caused the shoreline to progress inland and become a serious threat to the coastal road, U. S. Highway 90, and the coastal cities and residences. In 1925, this situation led to the establishment of a protective sea wall. During the period 1925-1928, the Harrison County sea wall, designated as a road protection system, was constructed behind the existing beach to protect the road right-of-way and urban areas from wave water damage and erosion (4).

During the period from 1925 to 1942, the original beach in this area entirely disappeared leaving a narrow mud-sand-shell-gravel tidal flat and an exposed, undercut and damaged sea wall. The removal of the beach and the damage of the sea wall appears to have been due to the intensification of the scouring action of the waves produced by the sea wall acting as a wave reflector.

* Footnotes appear at end of term.


Beginning in 1947, the recognition of this problem by both local and federal interests led to a program to repair the sea wall and construct a new artificial beach as wall protection (5). This program was conducted under the authority of Section 2 of the Rivers and Harbors Act approved July 3, 1930 (Public Law No. 520, 71st Congress and Public Law 166, 79th Congress, approved July 31, 1945).

The beach was reconstructed with sand dredged from borrow pits located approximately 1 to $\frac{1}{2}$ mile offshore and containing medium to fine sand with high concentrations of clay. The dredging processes left the clay behind in the water, and the resulting beach is therefore composed largely of medium to fine sand with less than 10% silt and clay, and highly subject to aeolian erosion (6).

The Problem

Since the time of artificial beach creation (1947), the litoral (wave water) and aeolian (wind blown) erosion has proceeded at a rate approximately matched by Corps of Engineers and Harrison Gounty beach nourishment activities, and therefore the beach has, in an overall context, been in a state of apparent equilibrium in terms of sand budget. While sand losses have been in both the litoral and aeolian categories, the aeolian erosion has had particular significance because of its impact on the people of the coastal zone. Aeolian erosion of this type is a problem associated with virtually all sand beaches; however, it is an especially serious issue in areas such as the Mississippi Coast where the shoreline has a low profile (Figure I-2), and where

٩,

Figure I-2. Coastal Zone Profile.

~ 1

cultural activities are located immediately adjacent to the beach area. The aeolian erosion, a natural and on-going beach process of this coast, occurs when breezes and winds from the Gulf and Mississippi Sound area blow the loose sand of the beach from the dry portions of the foreshore and the backshore zones onto U. S. Highway 90 and into the towns and cities, storm drains, sidewalks, and vegetation. This erosion and redeposition results in high cleanup costs, property damage, and safety and health hazards to the local communities, and therefore becomes a serious issue.

Mechanics of Aeolian Erosion

Attempts at dealing with the problem of aeolian erosion require a fairly complete understanding of the mechanism of the wind-driven erosion process. A relatively comprehensive literature review has indicated that aeolian erosion is primarily a function of several variables: sand moisture, salt/organic crust, beach topography, offand onshore structures and local meteorology. The literature suggests that sand erosion is greater from dry beaches with high relief and loose, uncrusted sand surfaces which are exposed to high winds. Further, aeolian erosion occurs differentially from surfaces within the beach area according to many factors and it is virtually impossible in the field to establish the location of zones experiencing high, medium, or low rates of erosion because of the inability to distinguish points of origin of moving particles.

It has been generally established that under the influence of these factors, aeolian erosion tends to exhibit certain patterns. Among these are the fact that erodable sand has a consistent size (diameter of grain) and that the erosion processes may be viewed in detail as movement within an isoceles triangle pointing into the wind. Under this triangular theory, particles are picked up at the apex and rolled or bounced along by the wind and deposited along the base of the triangle. This process becomes quite complicated by the fact that many such triangles exist and overlap one another. Thus, sand particles move generally parallel to the direction of the wind, but not necessarily in precisely the same direction.

Sand Grain Size

Sand grain size of aeolian material has been intensely studied and classified as follows by sieves and weight measuring (7, 8):

<u>Classification</u>	Grai	n Diameter
Coarse Gravel		8-4mm
Gravel		4-2mm
Fine Gravel		2-1.mm
Coarse Sand		1– ¹ 5mm
Medium Sand		12-12mm
Fine Sand		½−1/8mm
Very Fine Sand	ν.	1/8-1/16mm
Dust		< 1/16mm

Sand grain size is extremely important because it is among the main factors controlling the erodability of a sand area. Generally, it has been found in sand research that aeolian sand consists mainly of fine to coarse sizes and excludes very fine and very coarse material; the explanation of this phenomenon is called "the large and small particle exclusion rules." The large particle exclusion rule states that generally, large particles tend to be excluded from blowing sand because of their size. This is complemented by the "small particle exclusion rule" which states that in the case of particles smaller than fine sand, there tends to be a general absence from all filled beaches and most sand areas.

Thus, as far as particle movement is concerned, generally, the coarser ingredients are not moved and the finer grains are entirely blown away. For this reason, aeolian erosion and redeposition is a problem of mid-sized particles (See appendix H for detailed discussion).

Problematic Context

A variety of technical and physical solutions for the control of wind-blown sand may be possible; however, within the context of the physical determinants of wind-blown sand and the monetary, aesthetic, and recreational costs and constraints, several administrative and organizational problems exist. This latter complexity is illustrated by the fact that many different governmental and private civic interest groups have regulatory responsibility, input or concern with this portion of the beach. Any physical solution that is not compatible

with and conducive to the recreational use of the beach is not an acceptable alternative. For this reason, there is a multidimensional nature to the attempt to solve the problems.

Given the physical conditions of the aeolian erosion problem, and the social, political and economic constraints, the purpose of this research is to investigate the erosion patterns on a selected section of the coastal area of Mississippi, identify these areas within the study site which are experiencing differential erosion, and design stabilizing systems which would have ameliorating effects on the sand movement while improving the environment for recreational activities.

The Approach

The inability to identify the areas of differential erosion and to adequately understand the patterns of beach sand movement was the initial problem in dealing with the erosion situation on the Mississippi Coast. However, several studies indicated that remote sensing methods exist which can circumvent this problem and allow the identification of eroding areas upon which attempts at control might prove successful. Remote sensing, which includes the use of satellite data, holds substantial promise for the identification of erosion zones since the characteristics of eroding beach zones, principally their relative dryness, can be distinguished from the perspective of space imagery. In particular, it has been found in remote sensing erosion studies that as "water is stored in and around the grains of the sediment (of a beach), the surface tension of the water tends to stabilize the sediment,

while the water coating the sand grains tends to cause them to become heavier and to have a darker hue." It has also been found that at low tide time "the sand remains wet for a period (distance) far landward of the strand line (line of deposition of shells, trash, etc.) and that, osmotic pressure forces some ground water toward the surface, which maintains a high moisture content for the sand and produces a slightly darker hue in the sand." These darker hues are related to sand stability and are distinguishable as spectral properties of the beaches by satellite sensors (NASA, 600).

Furthermore, it has been concluded that, "as the sand dries, onshore sand tends to move under the force of the more dominant onshore winds, first as sand ripples and eventually as waves or dunes. Since wind velocity seldom reaches levels where coarse material such as shell can be moved, a rougher surface develops which consists primarily of residual material. Because of the drying effect of the moving air, the wind-blown sands dry rapidly and take on a lighter color" (9). These lighter colors are again spectrally distinguishable. Thus, remote sensing in the form of satellite imagery, aircraft and scanner data can be used to provide information on erosion zones that is otherwise unavailable.

A greater understanding of the mechanics of sand movement and some improvement in controlling erosion and improving the environment for recreation should be possible from this work. This progress will likely result because given the objectives of the study, the established factors, the nature of sand erosion, and the ability to measure these

factors or their surrogates through remote sensing imagery, we presently possess a means of measuring the existence of erosion and the effect of sand stabilization control systems.

Study Design

Subsequent chapters of this report are developed around the methodology, analysis, proposed solutions, and general conclusions and recommendations. The methodology and analysis sections collectively address the issue of procedures, field work, data gathering and identification of erosion zones. The proposed design solutions consider the characteristics of the beach as they relate to sand stabilization and improved tourist recreational atmosphere.

13

÷

CHAPTER II

METHODOLOGY

Methodologically, the study of acolian erosion has been approached through the establishment of three objectives: (1) refining and adapting remote sensing techniques to identify and define those beach areas along the Mississippi Gulf Coast at Pass Christian, Mississippi, which are sources of wind-blown sand; (2) developing procedures for relating remote sensing data, ground truth information, and meteorological data to estimate origin zones of sand movement; and (3) siting and designing sand stabilization or turbulence obstruction features which, when located on the beach, will reduce sand erosion, be aesthetically pleasing, and be consistent with tourist attraction and the conduct of local commercial activities. The methodology and analysis of Objectives 1 and 2, since they relate to understanding the erosion system, are dealt with in Chapters II and III, and the methodology and analysis of Objective III, since they relate to the design of stabilization systems, are considered in Chapter IV.

Objective 1

Objective 1 has been addressed through two tasks - the selection of equipment, software, and approach, and the refinement and adaptation of techniques. The first task of Objective 1, selection of equipment, software and approach, involved the evaluation of alternative digital automatic data processing (ADP) and analogue optical image analysis systems and procedures. Among the digital software packages evaluated

were the IBIS [Jet Propulsion Lab (JPL)], ELLTAB [Earth Resources Lab (ERL)], EOD-LARSYS [Johnson Spacecraft Center (JSC)], and Procedure I (Lockheed, LARS-Purdue). These evaluations were performed at the sites of the generating sources, at the MSU Computer Center, or both. The EOD-LARSYS was selected as the most promising package, and the remaining packages were rejected for the purpose of this study as being either too specialized, too elaborate, too unstable, or incompatible with locally available systems.

Among the analogue or image analysis systems evaluated were the Comptal-Aerojet General MDAS, RCA Display Keyboard, Ball Brothers VMTS, I^2S -type signal slicers, color additive viewers, and the Apple microprocessors. These systems possess a wide variety of capabilities and many have unique attributes. For this reason they were found to contribute differentially but complementarily to the identification and definition of aeolian erosion zones. The I^2S -type signal slicers appear to provide the most direct and immediately applicable results. Work is continuing on the application of the remaining analogue and image processing systems with an emphasis on the Apple systems.

The second task of Objective 1, refinement and adaption of selected aeolian analysis techniques, centered on the use of the EOD-LARSYS software package resident on the MSU Univac 1100/80 system and on the I²S-type image processors at EROS (Bay St. Louis) as the primary analysis systems, and the Aerojet General MDAS (and GE Image 100 located at JSC) as supplementary screening and processing systems.

Refinement and adaption using digital and analogue optical techniques proceeded along two separate but parallel courses.

Digital ADP Activities

<u>Tape Selection and Format Change</u>. The digital approach and analysis began with the selection of a Landsat tape, #14766-49-2-8, from the MSU Landsat files. Preliminary processing of the Landsat CCT's to a computer compatible format had previously been accomplished.

<u>Gray Tone Maps and Histograms</u>. Multi- and single band gray tone dumps were prepared from the tape using the EOD-LARSYS gray tone subroutines to identify the pixels corresponding to the study area. Band 7 (Figure II-1 and Appendix B) provided the greatest discrimination of the study area. From this interim product, a table of pixel line and scan number coordinates identifying the pixels which contained the spectral beach data related to erosive properties was completed (Table II-1). These pixels were grouped into computer readable (convenient scan and line) groups and processed through the training site histogram subroutines of the LARSYS package to develop histograms (Figure II-2 and Appendix C). The histograms of the spectral properties of the beach revealed that although the beach was essentially a monomial spectral group and class in first analysis, there was appreciable spectral variation both among and between given training sets, and therefore within the beach itself.

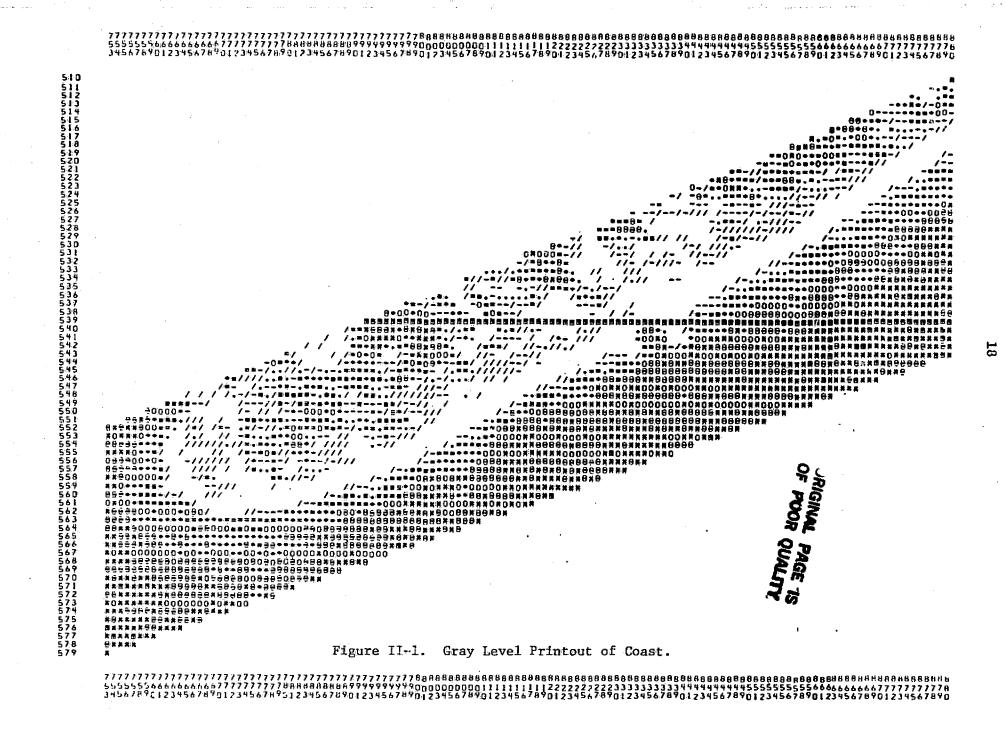
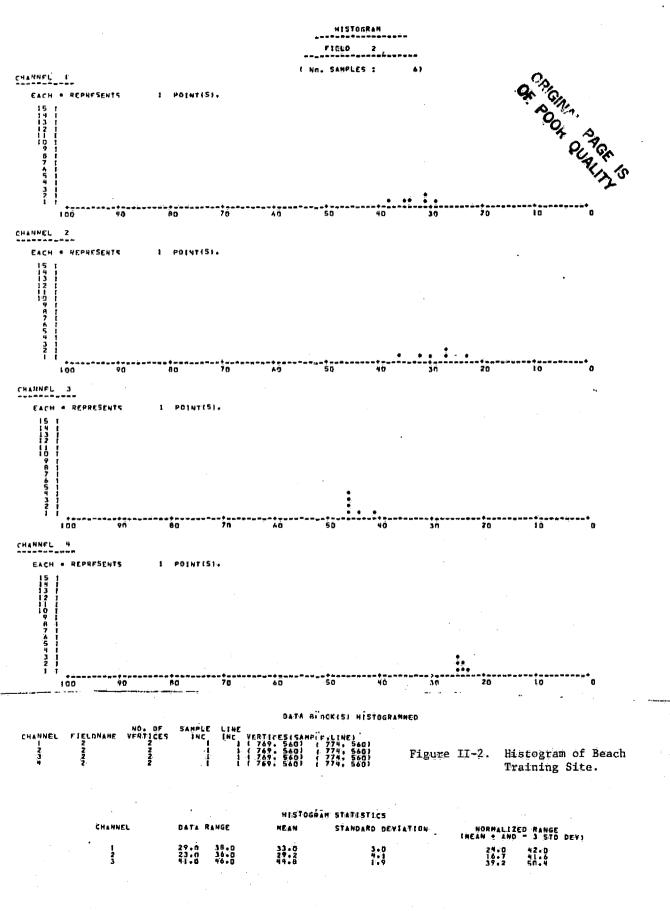

<u>Erosion Zone Groups</u>. The pixels comprising the study area were processed at JSC through the ISOCLS subroutines of the LARSYS package,

TABLE II-1

FIXEL LINE AND SCAN NUMBER


LINE	SCAN
560	762-787
561	767-782
562	768-773
559	779-789
558	784-793
557	788-797
556	791-799
555	792-800
554	794-802
553	797-804
552	799-806
551	804-808
550	805-811
549	807-813
548	809-816
547	812-819
546	815-823
545	819-826
544	822-830
543	825-833
542	829-836 832-838
541	032-030
540 539	835-841
538	837-843
537	839-845
536	841-847
535	843-850
534	844-851
533	845-852
532	846-853
531	848-855
530	851-857
529	853-859
528	854-860
527	856-861
526	858-863
525	860-867
524	863-870
523	866-872
522	869-874
521	871-876
520	872-877
519	874-879
518 <u>-</u>	875-880
517	876-880
516	880-880

↓ 516

19 HISSISSIPPI STATE UNIVERSITE HISSISSIPPI STATE, HISSISSIPPI

Q7/20//P

and class maps of the beach relative to the erosion factors were developed. This mapping phase, although quite promising, was terminated due to technical difficulties and time constraints at MSU; thus, the ADP refinement and adaption were not completed.

Analogue Optical Image Activities.

Landsat images for the dates of 6/11, 7/7 (L2E30124-15501-5), 7/16, and 8/2, 1978, were ordered in 9 x 9 format from the EROS Data Center, Sioux Falls, South Dakota. Only the 7/7 image has been received. This image, together with several file images of dates not corresponding to ground truth, was processed on the Ball VMIS (Figure II-3), Color Additive Viewer (Figure II-4), and the I²S and related signal slicers (Figure II-5). The product from these latter signal slicers proved to be the most valuable tools, interims of scale, resolution, and discrimination of sub-beach spectral zones.

The specific analysis processes using the signal slicer systems involve mounting the images in the field of view of the processor's scanning camera, focusing and enlarging the beach zone to a maximum, and progressively refining sub-beach spectral discrimination zones (Figure II-6). The methodology of the refining and electrical/ optical tuning of the images involved classifying all features in the image into two categories or colors - all land, and all water (Figure II-7) - inserting a third class (color) statistically (in terms of spectral values) between the all land and all water classes, and progressively moving individual points from the land category to the

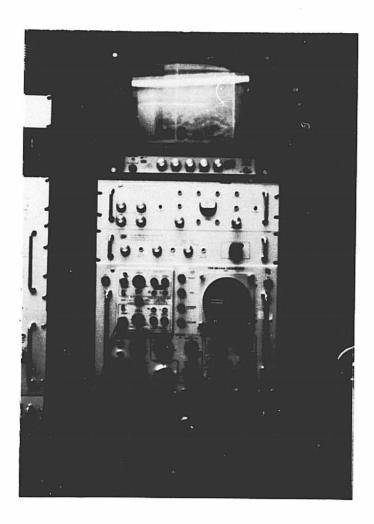


Figure II-3. Image Display on Ball VMIS.

DRIGINAL PAGE IS

Figure II-4. Image Display on Color Additive Viewer. Beach appears as white area at right center of picture.

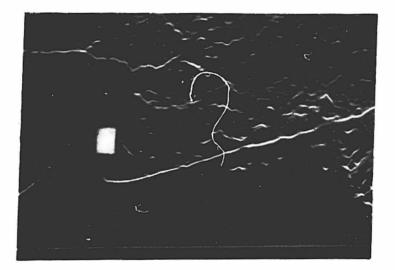


Figure II-5. Image Display on I²S. Beach appears as thin white line in the center of the image.

> ORIGINAL PAGE IS OF POOR QUALITY

Figure II-6. Signal Slice of Beach. Illuminated rectangle in the center of the image is the beach study area. Dark gray irregular line in the center of the rectangle is the beach proper; lighter tones of gray are progressively dissimilar spectral types without moisture distinction.

Figure II-7. Spectral Display of All Land and All Water Interim Class of Beach. Land is black; water is orange.

ORIGINAL PAGE IC OF POOR QUALITY new category. The effect of this was to cause the third color (category) to appear where those pixels of land which were most water. like in their spectral signature appeared (Figure II-8). When reversed, the processes moved those points out of the third color first if they were driest, and, if carried on from the water side, created the third category and color in the driest portions of the beach; i.e., those sites and points of the beach which were most like land. For discrimination, a fourth color was added and the dry areas compared and found to be reciprocal with the wet areas. The image products of this analysis constitute a picture of those areas of the beach which are the wettest and driest, and therefore subject to differential degrees of erosion. The analogue optical image analysis refinement and adaption are complete, and the capability to define areas of differential erosion potential is online and operational using these systems.

Thus, two basic complementary and supplementary remote sensing data processing approaches exist or are available to define intra-beach spectral differences as they relate to aeolian erosion potential. Figure II-5 and II-8 particularly relate to the Pass Christian zone.

Objective 2

Objective 2, the development of procedures for relating remote sensing data, ground truth information and meteorological data to zones of sand movement origin, required as a precondition the establishment of a ground truth data picture of the aeolian erosion situation on the Pass Christian Coast, and collection and compilation of data relating to erosion and sand moisture data. The generation of the ground truth

-

Figure II-8. Spectral Display of Emerging Wet Beach. Beach appears as thin, light colored line near the image center.

URIGINAL PAGE IS

thus became a significant and critical phase of this project. Following the completion of the prestudy, Objective 2 was addressed through 4 main tasks: 1) collection and analysis of meteorological data to determine the role of winds in the coastal regime and erosion; 2) collection of beach moisture and topography data; 3) laboratory analysis of beach sand moisture; and 4) analysis, display, and relation of Landsat to ground truth data which began with an essential prestudy reconnaissance and survey of the study area.

Meteorological Data Collection Procedure.

Meteorological data observed and collected at the National Weather Service first order weather station at Mobile, Alabama, and at Keesler Air Force Base, Mississippi, were obtained from the National Climatic Center, Asheville, North Carolina. These data were used to classify the weather of the coastal region into synoptic weather types in order to identify and characterize meteorological parameters contributing to the beach erosion processes.

Field Data Collection Procedures.

An initial trip was designed to be a basic survey and to acquaint the field crews with the study area. Following the prestudy survey and acquisition and preliminary analysis of meteorological data, an extensive field data collection effort spanning many months was conducted. This activity involved a plane table surveying of the beach topography, and collection of sand samples and recording of observations coordinated

with satellite overflight times. This phase of activity involved the sub-tasks of calculation of a satellite timetable and the mounting of multi-day, satellite-coordinated ground truth expeditions (Table II-2).

The field methodology of the sand collection expeditions, designed primarily to provide data concerning sand moisture and grain size, was critical and required rapid, timely action as the moisture properties of samples were transient. For these reasons, field procedures consisted of the following steps (variations for expediency occurred but were minimized when possible):

- (1) marking of beach pixels at either end of the study area (6, 1' x 1' mirrors and 200 feet of aluminum foil). This task was necessary to facilitate registration of satellite data to the study area.
- (2) sample collection, beginning at Henderson Point at least ¹/₂ hour before the scheduled overpass time and concluding as rapidly as possible.
 - (a) two sand samples, one immediately behind the water wash area on the foreshore, and a second approximately 20 feet seaward of the sea wall on the back shore, were collected at approximately regular intervals, usually every 500 feet except on June 11, 1978, when threatening weather conditions necessitated an acceleration in rate of collection and a change in spacing to approximately 2,000 feet between sample sites for the eastern twothirds of the beach. The location of each sample was

TABLE II-2

SATELLITE FLYBY

Path 23 Frame 039 is footprint

Path 23 Frame Footprint 039

Availability		Availability	
Status	<u>LS 2</u>	<u>Status</u>	<u>LS 3</u>
A	6/11	N/A	6/1
N/A	6/28	N/A	6/19
Α	7/16	A	7/7
A	8/2	N/A	7/25
N/A	8/21	N/A	8/12
N/A	9/8	N/A	8/30
N/A	9/26	N/A	9/17
N/A	10/14	N/A	10/5

mapped or recorded with reference to identifiable locations. Each sample was placed in a metal sample can, numbered and sealed.

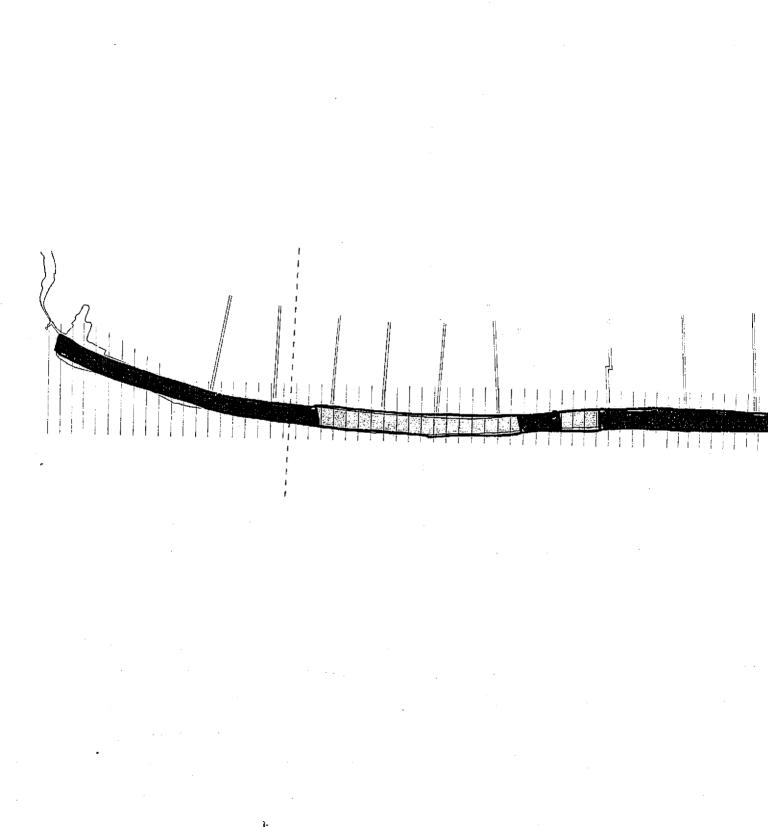
- (b) sample cans were packed in sealed ice chests and rushed from the beach to the laboratory for processing and analysis.
- (3) beaches were staked with red-flagged, pine survey stakes to determine and verify sand removal over varying areas and periods. Stakes were placed at one-quarter mile intervals.
- (4) Beaches were tarped and flagged to determine sand deposition over varying periods at quarter mile intervals.

Physical Laboratory Procedures.

Laboratory processing of samples involved a standarized procedure which consisted of the following steps:

- The sand sample and container with top were weighed and recorded after removal of sealing tape.
- (2) Samples were placed in an oven for at least 12 hours at 100° C.
- (3) Samples were removed from the oven, cooled, and reweighed and recorded. Moisture content in percent was determined by

Containers were weighed and the weights subtracted from the sample weight before calculation of moisture content.


(4) These values were tabulated and summarized into sand moisture tables (Appendix D), plotted and mapped onto workmaps (Figures II-9 - II-12), and generalized into a single map showing potential aeolian erosion zones (Figure II-13).

Landsat Data

The availability and quality of Landsat computer compatible tapes (CCTs) and images in 70 mm and 9" x 9" format was investigated in browse files at the EROS Users Assistance Center. Browse file inspection indicated that only certain images and tapes were available and of adequate quality over the study area (see Table II-2). The available and acceptable images and tapes were ordered during the summer of The CCT's have not been received; however, the images have been 1978. received and processed using the optical methodology discussed above. As a result of the unavailability of CCT's and the problems of ADP technology setup and timing on the MSU computer facility, the main body of analysis in this study centered on analogue optical image analysis employing the I²S and related systems (Figures II-4, II-5, and II-6). The image products of this optical methodology are related in an automatic sense to the ground truth of Figures II-9, II-12, and II-13. Thus, graphically, the ground truth data and remote sensing data are related spatially for interpretation and analysis.

Legend for Figures II-9 - II-12

Green = Wet
Yellow = Moderately Wet
Red = Dry

FOLDOUT FRAME

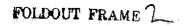
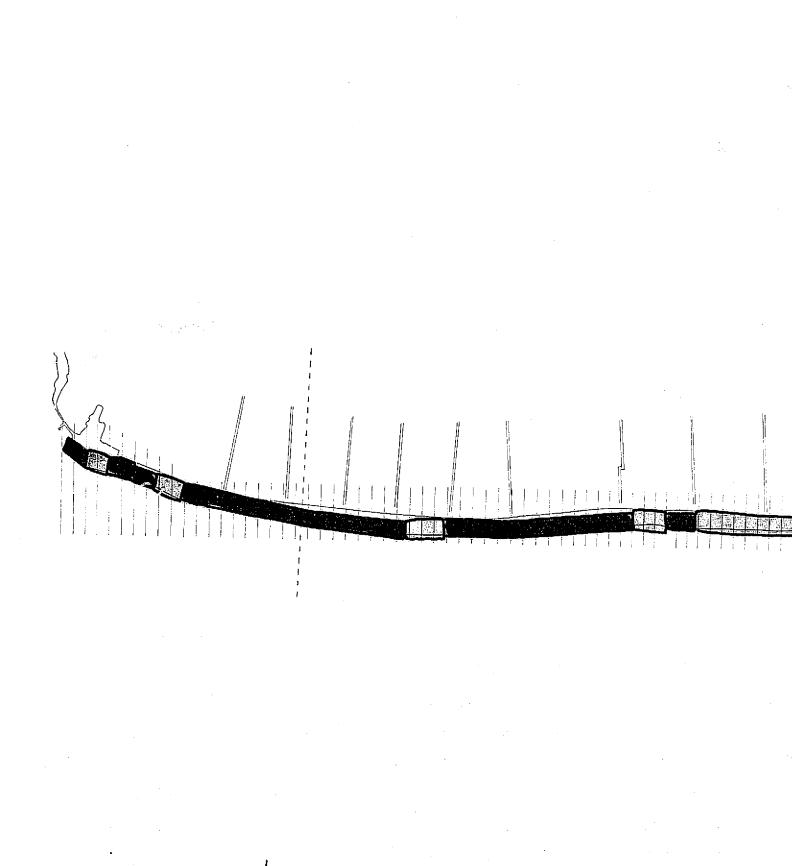
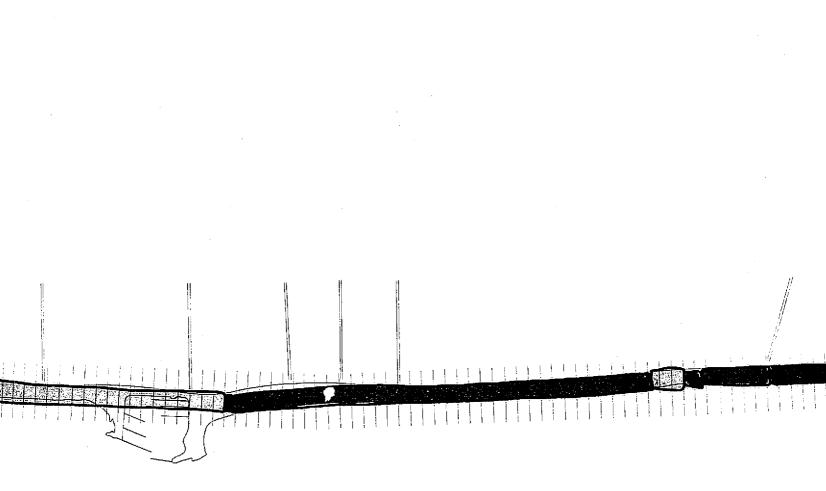
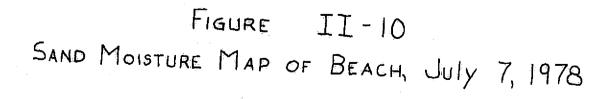
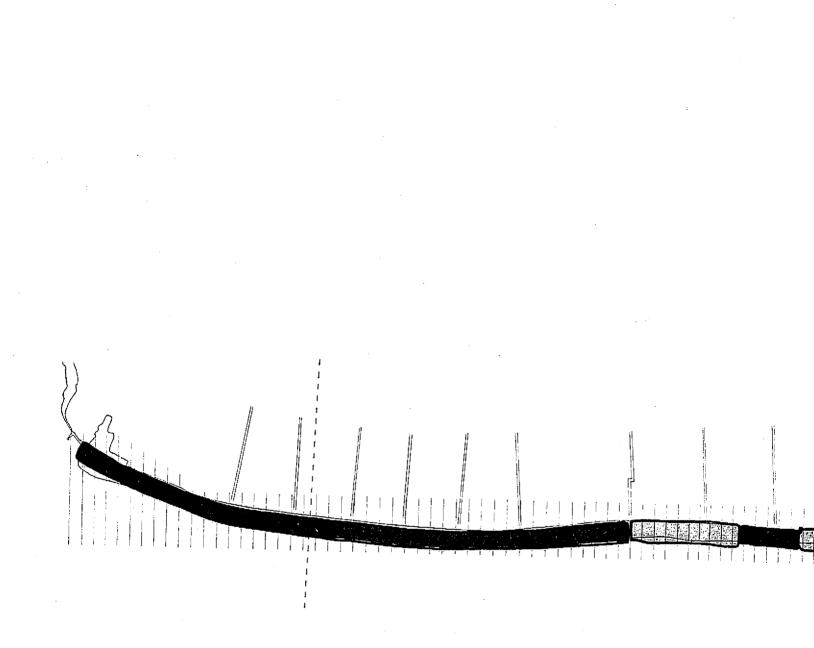




FIGURE II-9 SAND MOISTURE MAP OF BEACH, JUNE 10, 1978



STATE TUOL

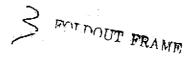


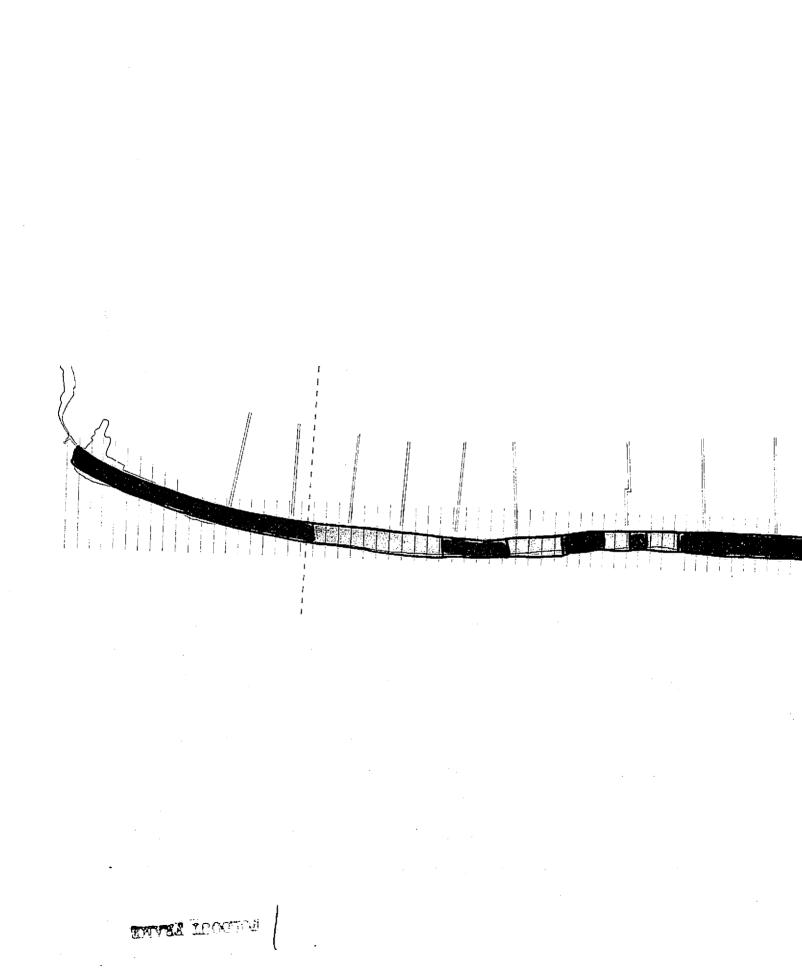
ORIGINAL PAGE IS OF POOR QUALITY

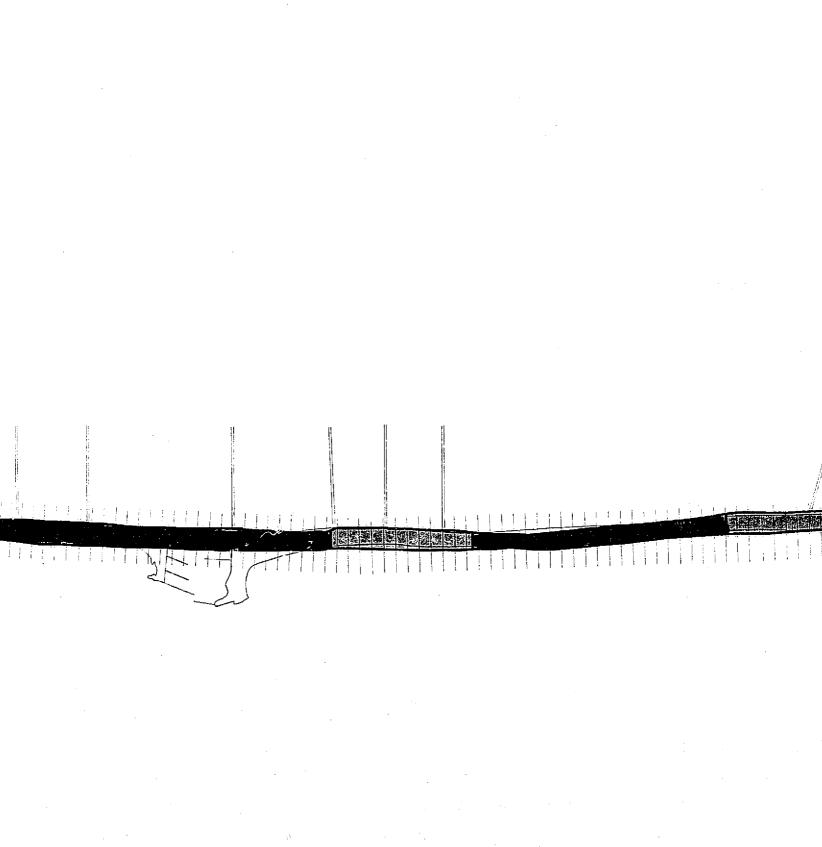
FOLDOUT FRAME 2

3 NOLDOUT PRAME

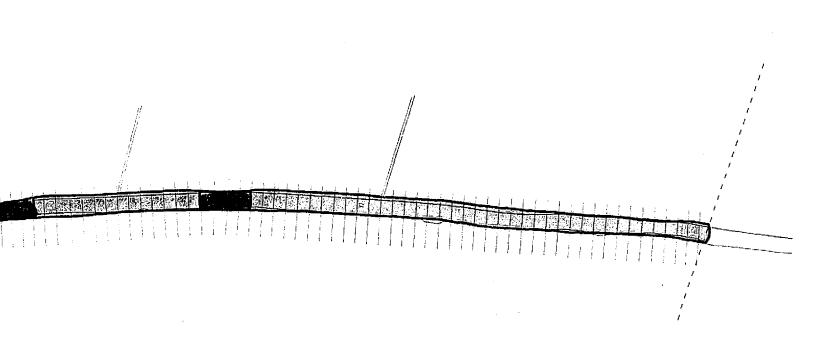
ORIGINAL PAGE IS

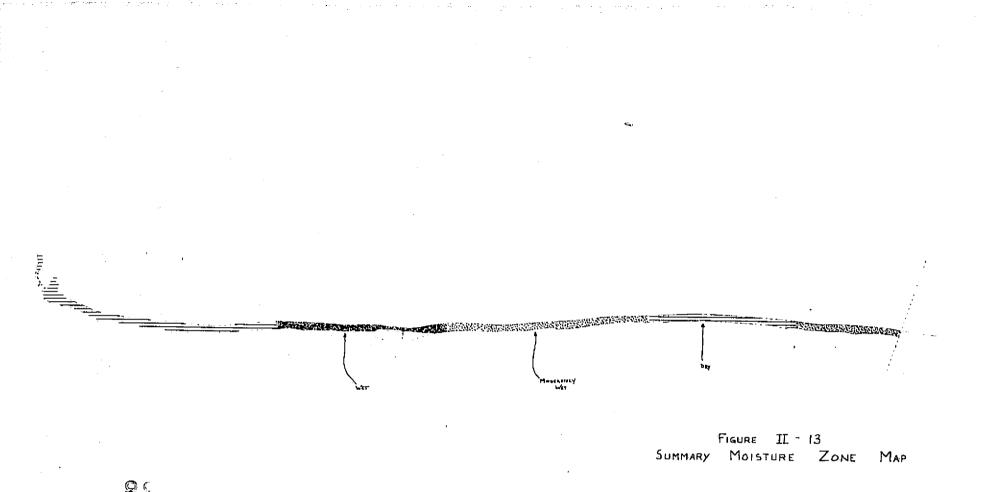

FOLDOUT FRAME


ORIGINAL PAGE IS OF POOR QUALITY


l

FOLDOUT FRAME 2


FIGURE II - 11 SAND MOISTURE MAP OF BEACH, JULY 16, 1978

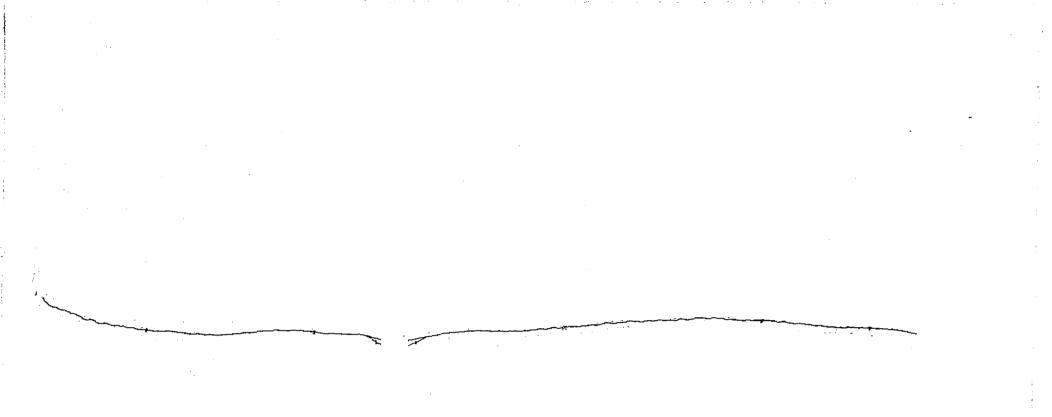


URIGINAL PAGE #

FIGURE II - 12 SAND MOISTURE MAP OF BEACH, AUGUST 2, 1978

TWY & ANTONIC EXYME

unnernal page is Of Poor Qual my


CHAPTER III

ANALYSIS

The ground truth data on beach morphology, off- and onshore structures, sand moisture, and the products of the analysis of Landsatdefined erosion areas were related, analyzed, and interpreted. The meteorological analysis characterized the weather during 1977 and results of these analyses are discussed individually in the following sections.

Beach Morphology

The plane table surveys of the beach indicated that it is essentially flat (Figure III-1) with very slight local relief, approximately 18 inches The beach tapers gradually from the water wash line at mean sea maximum. level to a sand height at the sea wall and roadbed of approximately 2 to 4 ft. in a horizontal distance of 200 to 400 ft. (Sheet I through Sheet 6); thus, with a slope of 1 to 2%. The greater portion of the small relief difference is immediately against the sea wall. Periodic evaluation of the beach throughout the research period indicated that despite notable sand movement in certain areas, no essential variation in beach morphology occurred with the exception of sand collection and buildup at the sea wall. The stability of the beach form and moderation of the sand buildup at the sea wall appear to be due largely to the beach maintenance practices which involve daily combing of most areas of the beach by sand sifters. These large machines effectively level the evolving microforms, remove vegetation, and, coupled with the dozing and scraping of sand

BERNA TOPOGRAPHY - CONTOUR INTERVAL = 2 FF WITH A FF. SUPPLEMENTAL CONTOURS

Figure III - I Plane Table Survey of Beach

accumulations back from the sea wall, tend to produce an apparent equilibrium of beach form. Thus, beach morphology remained generally constant and effectively played no role in differential erosion.

Off- and Onshore Features.

With the exception of the Pass Christian harbor and marina facility, both ground truth and remote sensing data on existence of off- and onshore features related to the local aeolian erosion did not reveal any significant feature. Considering the direction and velocity of the predominant winds and the suspected land-sea breeze, reduced erosion due to wind obstruction is very limited and is indicated only in the areas immediately adjacent to this complex. Thus, although off- and onshore features and local wind regime may tend to exert differential influences in terms of their moderation of erosion, data from this study are insufficient to establish this relation.

Sand Moisture Content.

Ground truth data on sand moisture (Appendix D and Figures II-9 -II-13) reveal this variable to be the only established factor of erosion which exhibits clearly pronounced variance throughout the study area. Sand moisture variance occurs not only throughout the beach, but also throughout the study period. From Figures II-9 - II-13, it is apparent that the sand moisture patterns of the beach were not permanent and regular in nature, but dynamic and variable with time. These variances, however, did tend to form patterns of zones with some consistency, and

thereby revealed tendencies for greater or lesser moisture and correspondingly greater or lesser erosion. From Figure II-13, five basic zones within the study area can be distinguished on a basis of sand moisture content. These five zones are (1) a severely eroding zone stretching from Henderson Point on the west to approximately Magnolia Avenue, (2) a slight to moderate erosion zone stretching from the vicinity of Magnolia Avenue to slightly east of the Pass Christian harbor and marina facility, (3) an alternating slight to severe erosion zone extending from the Pass Christian marina area to the vicinity of Menge Avenue, (4) a severe erosion zone extending from Menge Avenue to approximately 2500 ft. east of Espe Road and (5) a moderate erosion zone running from the latter point to the eastern edge of the study area.* Thus the principle erosion character of the study area is one of variance of potential among zones of substantial size.

Landsat Defined Erosion Areas.

The remote sensing image data (Figures III-2 - III-6) generated on the July 7, 1978, image using the I^2S and related signal slicers clearly

*Although numerous field trips were conducted to the study area, these zones were established with data gathered on only four field trips. Unstable weather conditions, satellite timing problems, image/data nonavailability, sample spoilage, errors in data collection, or other problems compromised the integrity of many samples causing their exclusion from the final report.

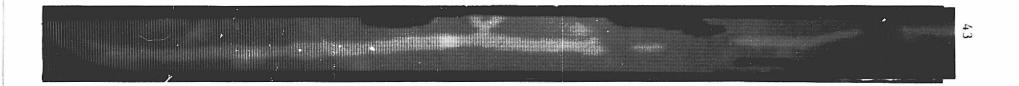


Figure III-2. Landsat Defined Erosion Zones. Illuminated rectangle in the center of the image is the beach study area. White, broken area in the image center is the beach proper.

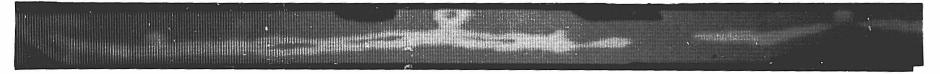


Figure III-3. Landsat Defined Erosion Zones. Emerging dark areas within the white beach zone are wet areas; gray tones outside of beach are spectral zones denoting undefined noise classes.

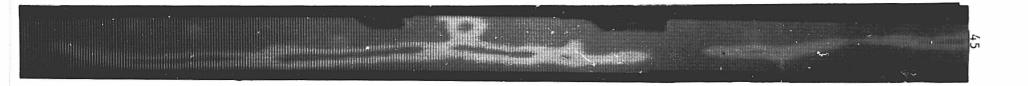
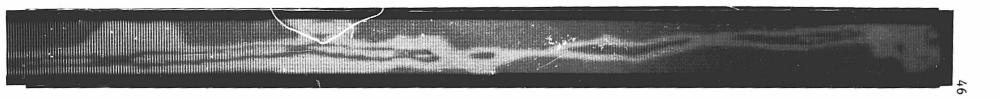



Figure III-4. Landsat Defined Erosion Zones. Expanded dark areas within white beach area represent augmented moist areas. The additional areas of dark gray over those present in Figure III-3 represent areas of lower moisture levels.

OF FOOR QUALITY

Figure III-5. Landsat Defined Erosion Zones. Expanded dark gray zones indicate areas of still further defined moisture. The additional dark gray zones over those present in Figure III-4, however, represent somewhat drier areas. The light gray areas in the middle of the dark gray areas within the beach indicate a zonation of the moist portions of the beach. This effectively produces a contour map of beach sand moisture. The light gray tones within the dark gray areas replicate the original dark gray beach zones illustrated in Figure III-3.

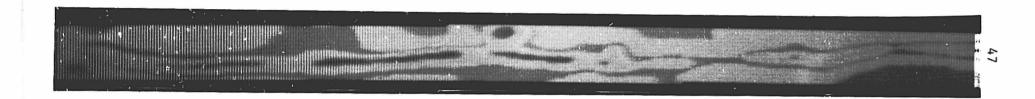


Figure III-6. Landsat Defined Erosion Zones. Light gray zones within the beach highlight the most moist portions of the beach. Together with the other gray tones present, the image indicates 5 levels of moisture classes within the beach.

L

reveal the existence of spectral zones of relatively dry areas on the beach which closely correspond with those identified from the July 7 sand moisture data (Figure II-10). It is significant to note that the remote sensing image contains three zones which correspond to dry sand areas and therefore to zones of high erosive sand, one west of Pass Christian, one east of Pass Christian, and one extending from approximately Menge Road to approximately 3000 ft. east of Espe Road. Further, it is possible to observe that the satellite and computer-defined erosion regions do not extend to the extreme western end of Henderson Point, but taper off and break up with interruptions of wet and stable sands in the vicinity of Fort Henry and Lady Mary Avenues. In Figure III-6, the beach moisture/erosion zone map, it can be noted that only on the July 7 field data is the highly erosive zone interrupted in this area.

Generally then, the Landsat satellite data of Figure III-6 revealed a marked pattern of correspondence with the erosion danger zones of Figure II-10. Although further study is obviously needed to verify the consistency of predictability of this imagery method, satellite data are clearly a valuable indicator of potential beach erosion sites.

Meteorological Analysis.

Local meteorological phenomena are central to the issue of aeolian sand erosion because weather events contribute energy to physical processes on the beach, and given the potential erosion state, are the driving force of erosion. An important consideration in understanding

the input of atmospheric elements in the beach erosion problem is that coastal environments are meteorologically unique. Physical processes of air, sea, and land interact at the shoreline, producing a triple interface which creates atmospheric motion on several scales. The objectives of this project cannot be met without at least some understanding of three scales of motion:

- 1) synoptic scale
- 2) mesoscale
- 3) microscale

The synoptic scale includes weather phenomena such as tropical cyclones and mid-latitude traveling cyclones. Mesoscale activity is illustrated by the land-sea breeze phenomenon, and microscale motions involve small, chaotic eddies (turbulence) initiated by thermal or mechanical causes.

Major sand erosion factors in the synoptic scale are wind speed and direction, atmospheric moisture content, and precipitation patterns and frequencies. Wind direction and speed governs the amount of aeolian erosion, the direction of transport of the sand, and areas of deposition of the blown sand. Moisture content of the air masses governs evaporation rates and consequently the sand moisture profile. Precipitation governs moisture and cohesiveness of sand grains, directly affecting the potential for aeolian processes.

The most important mesoscale activity relevant to this project is the land-sea breeze phenomenon, and its existence is governed partially by the synoptic scale occurrences. The land-sea breeze phenomenon is a

local wind regime superimposed on the larger regional wind patterns determined by synoptic scale pressure fields - the distribution of high and low barometric pressure. Some synoptic scale weather situations prohibit the land-sea breeze from becoming established, whereas other situations allow or enhance its establishment. One objective of this climatic analysis is to determine if a land-sea breeze phenomenon exists in the study area, what its characteristics are, what patterns of synoptic scale weather events favor or discourage its development, and what the annual regime of the phenomenon is. Answers to these questions should provide insight into the weather's contribution to beach erosion.

Microscale characteristics are complex, and identifying their interactions in detail is outside the scope of this project. However, this level of meteorological activity is recognized as being extremely important and functional in the design of mechanical structures to alter wind erosion, and this is the perspective from which characterization of micro-scale motions will be approached.

In order to develop a procedure to relate meteorological events and conditions to the beach erosion problem, it was necessary to identify the aforementioned characteristics at all three levels of motion. For that purpose, weather along the coast was classified into synoptic weather types. Muller (1977) has published the results of a classification of daily weather at New Orleans, Louisiana, into eight all-inclusive synoptic weather types. These eight types - Pacific High, Continental High, Frontal Overrunning, Coastal Return, Gulf Return, Frontal Gulf

Return, Gulf High, and Gulf Tropical Disturbance - are based upon regional atmospheric circulation patterns and can effectively index local wind flow. Detailed descriptions of the synoptic weather types can be found in Muller's work (1977).

Wax, Muller, and Borengasser (1978) have shown these eight synoptic weather types to be useful in a number of environmental and resource management problems. The weather along the Mississippi Gulf Coast fits into Muller's eight types, and the 1977 climatic data observed at the First Order Weather Station of the National Weather Service in Mobile, Alabama, were used to construct a synoptic weather-type calendar for that year.

Initial analysis of these data, grouped by synoptic weather types, provided identification and characterization of synoptic scale wind speed and direction, air temperature, dew point temperature, selative humidity, and cloud cover associated with each type. Additionally, the analysis established precipitation characteristics and frequencies, and durations of each of the synoptic weather types in 1977. Selected data, characterizing the meteorological parameters associated with the different types of weather, are included in tabular form in Appendix E.

Further analysis evaluated the synoptic weather types and the seasons most conducive to development of the land-sea breeze phenomenon. Results of the analysis using Mobile data were discouraging. Evidentally, the data collected at the Mobile site were too far removed from the beach itself and were not representative of the conditions at the study

site. However, the land-sea breeze phenomenon was evident in the data for two of the eight synoptic weather types (Appendix E, Table 3).

The Gulf High weather type, characterized generally by westerlysouthwesterly winds, showed a marked diurnal change in wind speed and direction in July. Characteristic wind for that weather type in July was westerly at 3 knots at 0600 hours, whereas the wind at 1500 hours blew at 19 knots from the south, manifesting the directional and velocity changes associated with the land-sea breeze. The Gulf High weather type was present at the Mobile site 42% of the time during July, and 54% of the monthly precipitation was recorded during the occurrence of this weather type. Over the entire year, however, the Gulf High weather type occurred only 16% of the time, and produced just 7% of the total annual precipitation. Therefore, this weather type is clearly seasonal in its impact on the beach processes.

The Pacific High weather type, characterized by westerly winds on the average (Appendix E, Table 3), exhibited a similar diurnal wind shift during October. Winds at 0600 blew at 5 knots from the NNW, and winds at 1500 blew from the SSE at 11 knots. This weather type was present 6% of the time during October and 2% of the time for the entire year, producing no precipitation during any of its occurrences. The impact of this weather type thus appears to be relatively unimportant even though the land-sea breeze occurs in the type.

Further examination of the data in Appendix E, Tables 1 through 15, revealed no evidence of diurnal wind shifts. However, these tabulated data show the average conditions of the other meteorological parameters

as they relate to the beach erosion problem both annually (Appendix E, Tables 8 & 15) and seasonally (Tables 4 and 7). For example, nearly $\frac{1}{2}$ of the total annual precipitation fell during combined Frontal Overrunning and Frontal Gulf Return synoptic weather types (Table 2), although together these two were present only about 1/3 of the time during the year (Table 1). Additionally, temperature and relative humidity, cloud cover, and winds eed and direction are illustrated for each of the weather types. Therefore, this method of analyzing the meteorological data appears to be a meaningful procedure for evaluating the weather element of the beach erosion problem, providing useful information on moisture/energy exchanges as well as on wind patterns.

The analysis was therefore extended to the Keesler Air Force Base data, collected at a site nearer to and more representative of the study site. Since only the Gulf High and Pacific High weather types were indicated as conducive to the formation of the land-sea breeze phenomenon, the analysis of data observed at this site was limited to these two weather types plus the one other high pressure synoptic weather type, Continental High. However, only characteristic wind speeds and directions for 0600 and 1500 were assessed. The resulting data are shown in Table III-1.

Inspection of Table III-1 shows that during March and December the land-sea breeze occurs in the Pacific High weather type. It also appears to occur in the Gulf High weather type during April, June, July, September, and October, and in the Continental High weather type during

	Pacific High		Gulf High		Continental High	
	0600	1500	0600	1500	0600	1500
Jan	31/10	28/14	27/08	27/06	35/10	35/11
Feb			22/05	18/10	04/06	33/08
Mar	32/06	21/08	25/02	20/13	02/08	29/10
Apr			35/03	25/10	34/05	31/09
May			14/11	14/10	02/05	05/04
June			29/07	20/13	03/04	12/08
July			32/05	22/10		
Aug			•	•		
Sept			31/03	22/10	03/06	12/07
Oct	32/03	34/06	30/02	21/09	01/06	06/08
Nov	29/03	25/09		_, •,	34/05	09/06
Dec	06/05	19/05	18/06	22/05	35/04	30/07

Table III-1: Characteristic Wind Directions* and Speed** for Selected Synoptic Weather Types, Keesler AFB, Mississippi, 1977

*in azimuth x 10, ** in knots $(31/10 = wind \text{ from } 310^{\circ} \text{ at } 10 \text{ knots};$ 18/06 = wind from 180° at 6 knots)

March, June, and September. It is especially worth noting that in almost every case, the afternoon wind speeds (sea breeze) were higher than the morning wind speeds (land breeze). This affirms the sea breeze as a viable contributor of energy to the beach erosion process.

It appears that further investigation into the meteorological and climatological aspects of beach erosion processes is justified by these preliminary findings. There is clearly a substantial relationship between the beach erosion problem and the frequencies and extremes of meteorological/climatological parameters. This analysis has pointed out that only certain weather types favor the land-sea breeze occurrence. Further, the analysis shows a definite seasonality to the distribution of its occurrence. Further study could strengthen these conclusions, and could possibly indicate more of the relationships between atmospheric elements and the beach erosion problem in Mississippi.

Summary

Collectively, these forces and factors operate to influence the erosion patterns of this study area and to produce the zones illustrated in Figure II-13. With this zonation as a basis, and the mechanics of erosion (Chapter 1) and the principal mechanism the land-sea breeze established, it is possible to consider the nature of systems that would reduce the problem.

CHAPTER IV

DESIGN SOLUTION

Introduction

Objective 3 of this research, the siting and design of sand stabilization or turbulence obstruction features which are consistent with tourist attraction, and the economic well being of local commercial activities, must be met primarily by a design effort. The emphasis of this effort is focused on modifying the nature of the erosion zones defined in the previous chapters, while preserving or improving the recreational and economic environment of the area. Thus, the basic task of Objective 3 is to create a design which will:

- Stop or retard acolian erosion of the beach and sand deposition on the adjacent roadway.
- Be aesthetically pleasing to all who physically and visually use the beach.
- 3. Provide for user needs and safety.
- Facilitate or lessen the need for both beach and highway maintenance.

The scope of design work in this study is necessarily at a conceptual rather than a work-plan level because of legal, consent, and judicial restrictions. These limitations are based on the principle that the Mississippi Practice Act prohibits the protice of landscape architecture without a license. Also, sound legitimate design procedures require consent and input from local citizens and interest groups, and judicial and permit limitations have been established regarding the erection of structures or modifications on the beach. These factors, together with normal development procedures, suggest a course of development involving design refinement, public input, and activity approval before construction modification.

Methodology

The landscape architectural processes utilized for conceptual problem solution involve the steps of:

- site analysis observations, focusing on human use and natural condition;
- 2. interpretation of implications,
- 3. generalization of solution; and
- 4. presentation of conceptual plan.

Site Observations - Human Activities.

(See Sheet 1, 2 of 6 at the end of this chapter). The beach was observed approximately 20 times during the field work design phases of this study, with emphasis on prime use periods (July 4th and Labor Day). The principal objectives of this observation were to record beach design factors and to determine areas of use and beach conditions. The primary use of the beach is clearly recreational. This area is the site of some of the most intensive beach-oriented tourism in the State of Mississippi. The significance of the intensity of this human activity on the beach is that it seems to be related to erosion zones where the presence of people and their movements break up the natural salt and organic crust and disturb the vegetation, thereby destroying the natural stabilization systems of the beach.

Observations indicated that most people were attracted to Henderson Point, located at the far western end of the study area. Twenty-five random interviews were conducted and the reported reasons for this concentration of activities included:

- The area is attractive because it is physically removed from the highway (U. S. 90), thus allowing off-road parking and reduced road noise.
- A large stand of trees provides shade and an asthetic environment in contrast to a seemingly endless barren strip of sand.
- The trees and vegetation provide personal privacy and shelter and seclusion for changing clothes.

4. Drinking water is available.

In the beach zone east of Henderson Point and west of the Pass Christian Marina, beach use was random and dispersed. General beach use in this area is discouraged by the lack of adequate parking. Parking is parallel or pull-in (see Sheet 3 of 6) without physical separation from the flow of traffic, thus constituting a safety hazard. Even on the heaviest days of use (July 4 and Labor Day), people did not occupy the entire width of sand (approximately 200 ft.) from U. S. 90 to the water in this area. In the sparsely used areas, virtually all recreational activity occurred within fifty feet of the water, and in

high concentration use areas seldom more than 100 ft. of beach was occupied. These observations were consistent throughout the entire length of the study area, and suggest that the 6.5 miles of two-hundred foot wide sand beach are significantly in excess of current and projected beach needs.

The area in the vicinity of the Pass Christian Marina and Harbor is a relatively heavily used recreational spot. Apparently this area is attractive because of the supporting amenities of the community, the visual variety of the marina, and the earlier attempts at beach-scaping (dead palms) which provided a visual break in the beach scene.

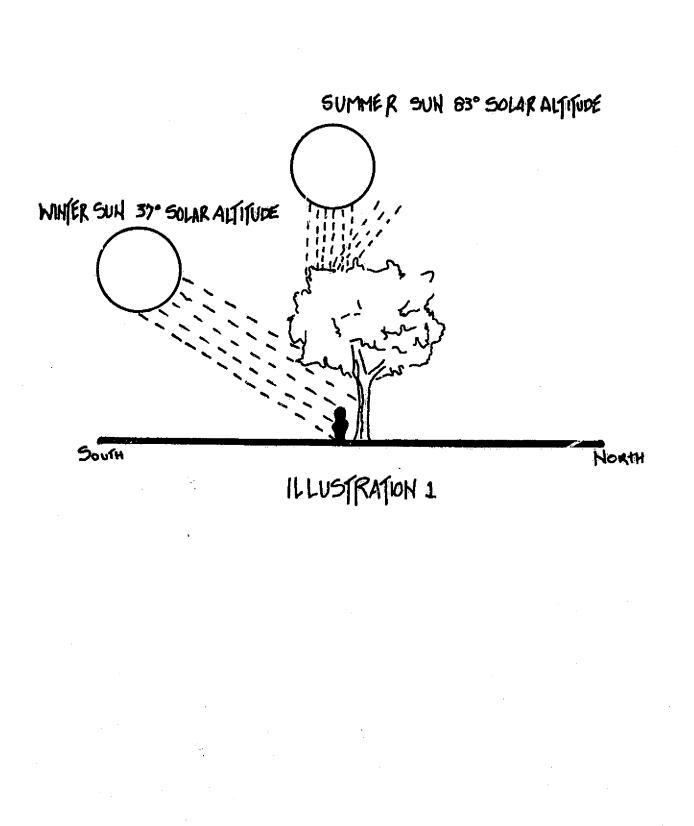
East of the Pass Christian Marina, the beach is largely an open, uninterrupted and seldom used area with the exception of two Least Tern nesting reserves where human activities are presumably excluded. These areas are slightly grassed and not frequented by the tourists or maintenance crews. Human use of this eastern section of the beach is scattered, random, and dispersed. Erosion seems lower in nesting reserves where developing grasses are reducing sand movement considerably. Generally, the processes operating within these areas have precipitated the development of miniature dunes and clumps of beach grasses which have trapped blowing sand and slowed surface winds below erosion thresholds.

Site Observations - Natural Systems.

(See Sheets 1, 2 of 6). Field observations and meteorological records indicate that from the point of erosion and recreation, winds

are the dominant natural features on the beach. This factor coupled with the human pressures produces a complex system which in turn interacts and influences the condition of the beach and its suitability for human recreational activity. Generally, it appears that the prevailing wind is east-southeast at an average speed of 20 mph (measured several feet above the ground). This wind appears to be dominant aeolian erosion factor.

Erosion and sand deposition occur unevenly throughout the area; deposition in particular, varies according to inland obstructions. This appears to be verified by the fact that the wide median islands of U. S. 90 which are well planted with grass, shrubs, and trees, offer a considerable barrier to sand drifting from the coastward eastbound lanes to the more inland westbound lanes. Substantial mounds of sand develop on the shore side of these islands with some deposition on inland lane. In contrast, narrow concrete islands provide little obstruction to wind-driven sand, and in the areas of U. S. 90 divided by three narrower islands, sand accumulates on the inland, west bound lanes and on private property further inland (see Sheet 3 of 6).


In addition to the sand, vegetation, wind, and water, the major remaining natural component of the beach is the sun. The sun is especially important as a design factor because of its dominance; conceptually in design, there should be shade for relief in warm weather, and open sunny areas for cooler temperature periods. The sun angles were plotted to determine how the design concept will be influenced during summer and winter. The sun angle was found to be at a maximum

solar altitude (height overhead) of 83 degrees during summer (June 22) and at a minimum solar altitude of 37 degrees during winter (December 22) (see Illustration No. 1). These values suggest that in order to provide for summer shade and winter sun, the north side of the design should be planted more heavily with trees than the southern side. Also, the tree species on the north could be more dense, in terms of foliage, than the species on the southern side.

Generalizations and Implications.

The above observations support several generalizations relating to the design of stabilization systems:

- erosion appears to occur throughout the study area and seems most severe in zones I, III, and IV of Figures II-10 and III-6;
- 2. the transport and deposition factors of sand which regulate its accumulation on roads and inland public and private property, are related to the narrow separation between beach and roadway, the narrow traffic islands, and the general absence of vegetation;
- 3. the presence of intensive human pressure (tourist use and maintenance activities) is not conducive to the development of wind-stable beach areas;
- 4. generally, even at very high use periods, the beach zone exhibits low levels of occupancy with peak period concentrations as low as 25 people per mile. Higher concentrations have been noted in the vicinity of Henderson Point and the Pass Christian Marina.

Based on these observations, the following accomplishments would be beneficial in improving the recreational quality of the beach and reducing erosion:

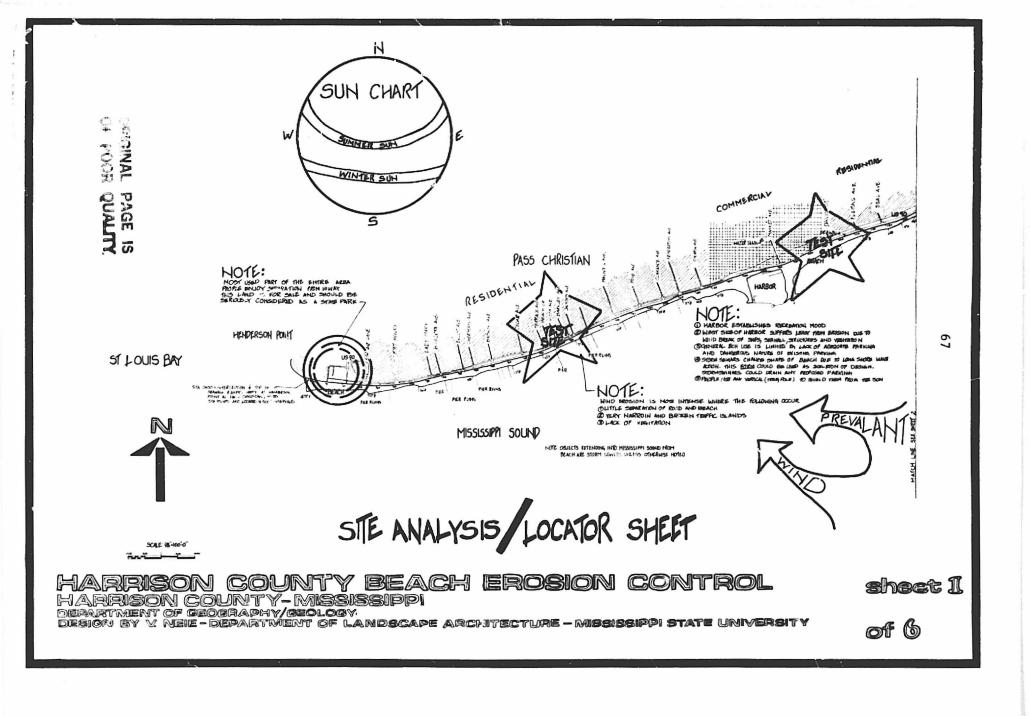
- provide a separation distance and wind obstruction system between erosive beach areas and the roadways.
- increase the volume and variety of vegetation on the beaches, or between the beach and road.
- 3. create certain high-use zones to attract users within the broad expanse of the beach study area, thereby lessening the population pressure on the undeveloped, major portion of the beach, and allowing natural processes to effect stabilization in low-use zones.
- establish additional or expand existing Least Tern areas in the undeveloped portion of the beach where human activity will be at a minimum.
- 5. establish or encourage natural processes within the large undeveloped areas (backshore) to allow the natural vegetation to establish a micro-stabilizing environment.
- provide services and facilities at high-use areas to increase beach utility.

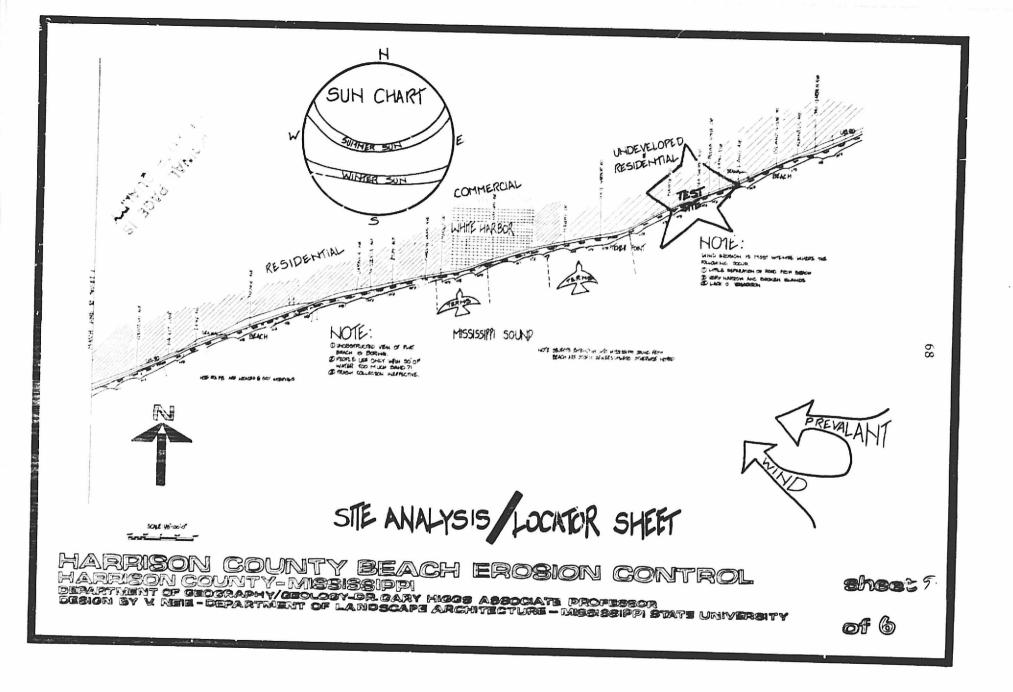
Generalized Plan

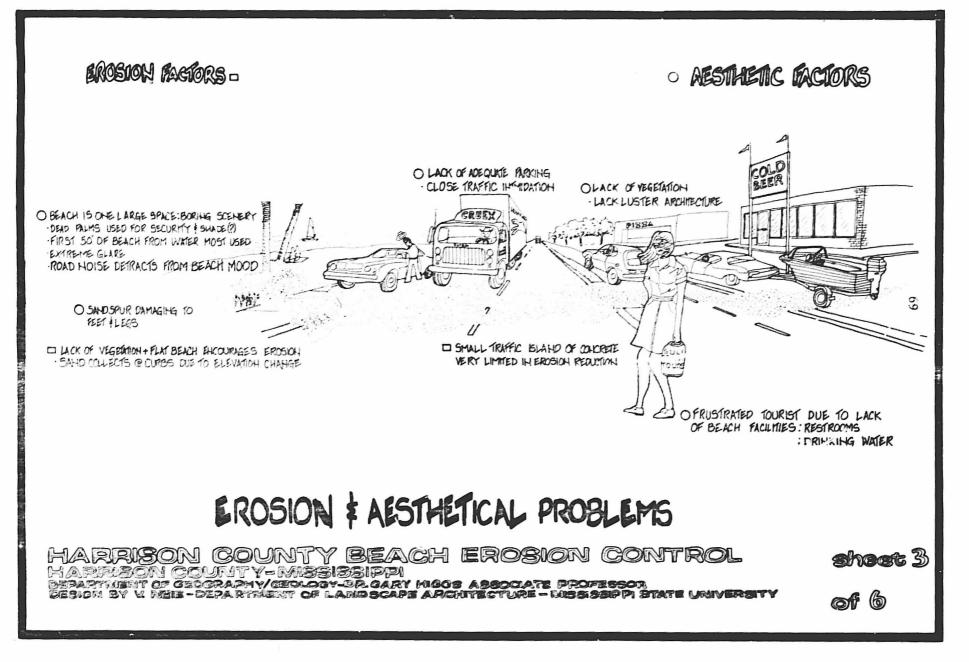
Given the above suggestions regarding present beach-use patterns, low levels of user service, and associated maintenance and erosion potential, the possibility exists to provide greater tourist beach

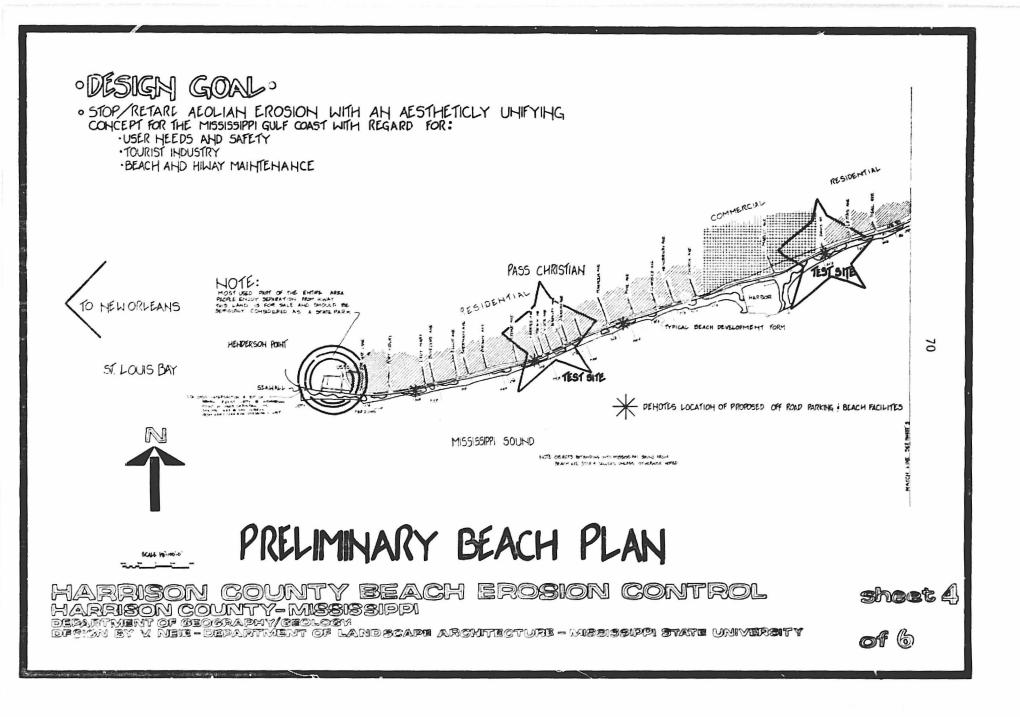
satisfaction and reduced erosion through a strategy of beach facility design, arrangement, and location which will influence user behavior. The key component of such a strategy would be an environment which encourages people to use selected special areas very intensively, and to avoid other areas entirely.

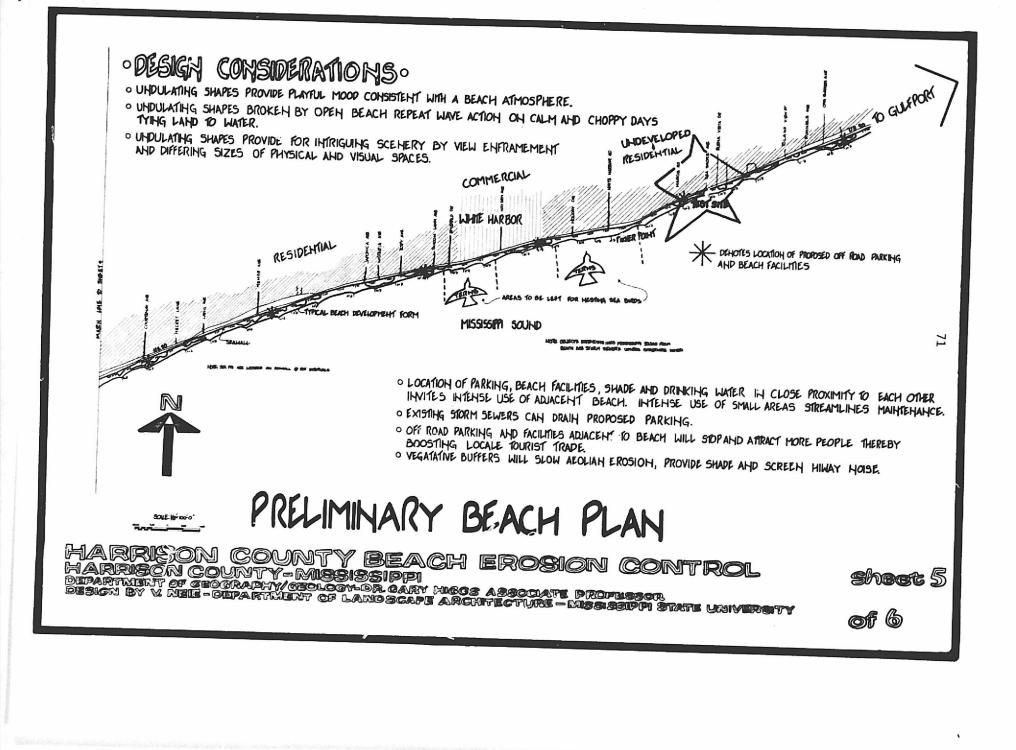
The two principal mechanisms employed to influence this behavior are the design and establishment of attractive amenity sites, and the setting of restrictions. The attractive amenity sites of the strategy include vegetation, berms or dunes, activity elements, and adjacent off-road parking areas (see Sheets 4, 5, and 6 of 6). Activity elements proposed as part of a designed site would not only provide physical facilities, but also a psychological atmosphere conducive to recreational use.

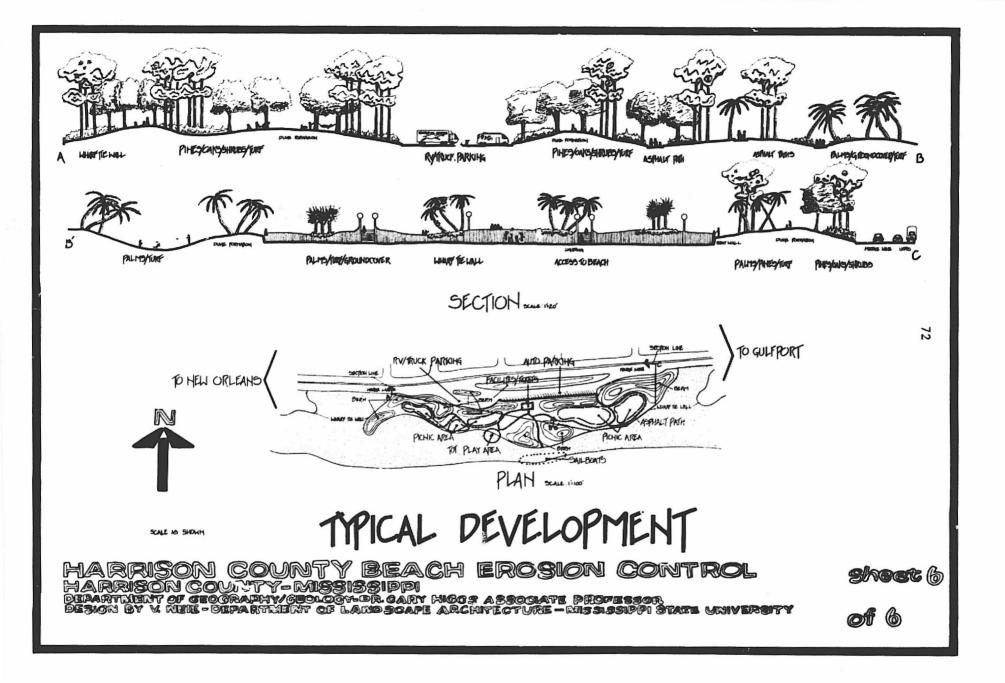

The psychological factors of this atmosphere would be based on the concept that design elements act as a reference point to provide variety in the visually uncomplicated and simple environment of the beach. This is illustrated by the fact that vertical tree trunks provide a sense of psychological security, while the overhead foliage provides shade and enclosure. The psychological role of such elements can be conceptualized by visualizing the sensation of walking through a large, freshly plowed field and experiencing the feeling of exposure in contrast to the feeling of walking through a forested area of the same size. The trees aid the individual in relating to the space through the feeling of enclosure provided by the trunks and overhead canopy


which form walls and ceilings. Similarly, these features also provide anonymity as it is possible to stand next to a tree and feel "at one" with, and a part of the environment. The only verticals presently existing in the beach vicinity are trees at certain points along the highway (U. S. 90) median and a few dead palms on the beach. The importance of such features and the validity of atmosphere notion controlling human activities is suggested by the fact that people have been regularly observed sitting next to and in the shade of these dead palms (see Sheet 3 of 6) seeking relief from the sun, lying in the shade of parked cars, and parking and picnicking on the medians under This behavior suggests that trees incorporated into the beach trees. landscape would channel activities by keeping people off of the medians and on the beach in selected high use zones. Vegetation used in this manner would eliminate the existing single, large, visually boring expanse by breaking up the beach into smaller areas.


The counterpart of the creation of attractive amenity zones, restrictions or prokination of activities in certain areas, would result in a further lessening of the human pressures on the natural stability system throughout the broad expanse of under-used beach. This, coupled with the establishment of additional or enlargement of existing Least Tern nesting areas, could have the effect of materially reducing erosion and improving the environment.


Under this set of strategies, largely for psychological reasons and convenience, recreational use of the beach would tend to become


concentrated in certain zones. This concentration of activities into small, well-designed, high use zones separated by broad expanses of natural conditions, such as low maintenance backshore areas and expanded wildlife habitats, would provide an opportunity to better serve recreational users through concentration of facilities for trash deposit and removal, bath facilities, and food and beverage service and parking. These activities would result in lower maintenance costs, a more aesthetically, pleasing environment, and greater tourist attraction.



Chapter V

OVERALL DESIGN AND SPECIFIC SITE PLAN

General Beach Land Use

Along the beach section of this study area, two locations have special properties which render these sites uniquely suited for the location of high-use zones. These are Henderson Point and the area in the vicinity of the Pass Christian Harbor Marina. Henderson Point, while not centrally involved with the aeolian erosion and redeposition problem, is significant for consideration as a special case because of its setting. It is privately owned, currently for sale, undeveloped (with the exception of two mobile homes), moderately vegetated, has good roadway access and a high-use factor due to this attractive atmosphere (see Sheet 1 or 6). This location has good potential for development as a high-use zone to provide overnight camping as well as daylight recreational use. Benefits derived from such a facility at this site would include preservation of the attractive atmosphere, control over the future land use of Henderson Point, regulation of commercialization, and stimulation of both first and subsequent tourist visits to this strategic west-end of the beach zone.

The Pass Christian site is more directly involved in the aeolian erosion and deposition problem than the Henderson Point site, and for this reason, development here is more pertinent to the issue of stabilization. This location, therefore, is a prime choice for test sites for evaluation of a stabilization system (see Sheet 1 of 6).

The Pass Christian site has several attributes that render it suitable as a high use zone. These include the presence of a harbor/ marina which establishes a mood consistent with beach recreation. The key element of this mood is aesthetic scenes, including varying land uses and private and commercial vessels and activities. This site could be a major focal point drawing users from other portions of the beach, thereby reducing the pressure on the low-use and restricted-use areas. Aside from the aesthetics, the beach area west of the Harbor suffers less erosion than the beach area east of the Harbor; this is possibly due to the windbreak provided by the boats and structures (see Figure II-10).

The remaining beach areas between these sites, and to the eastern end of the study area in the vicinity of Pitcher Point, are not sufficiently differentiated to provide a basis for distinguishing specific sites. Thus, two additional test locations have been arbitrarily designated; one within the high erosion area midway between Henderson Point and Pass Christian, and a second in the moderate erosion zone immediately east of Pitcher Point (see Sheets 4, 5 of 6).

Low-use areas outside of these three sites may experience a decrease in use. This change may in turn enable a reduction in maintenance effort and allow development on the backshore of natural micro-dune systems for erosion control. It will also result in preservation of the foreshore portion for use by those individuals seeking solitude and greater privacy than that afforded at the high-use

sites. The recreational use of the narrow foreshore sand allows stabilization uses of backshore areas. Among the alternative backshore uses is off-road parking and wind-break vegetation. Additional benefits derived from such a plan are removal of parked vehicles from the roadway, increased margin of safety for driver and pedestrian, less parking difficulty, and improved movement of road traffic. Throughout the low-use areas, dune-like formations covered with beach grasses would evolve, providing open expanses of beach to separate high-use areas.

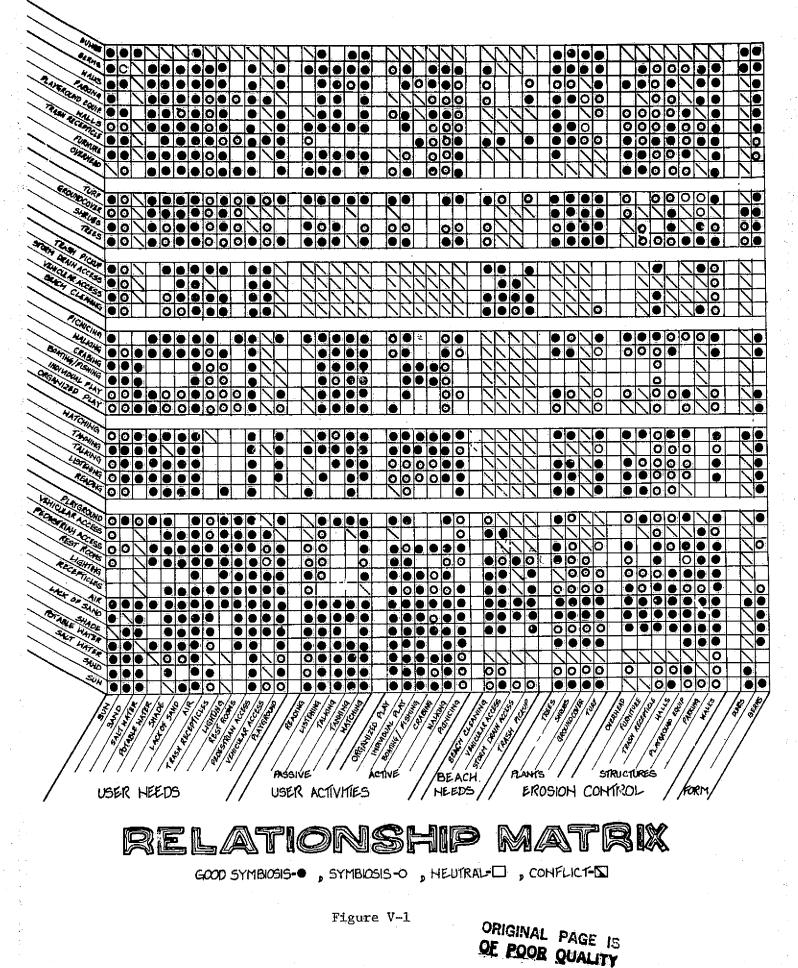
Conceptual Site Plan of High-Use Design

In the design of the high-use areas at designated points, the basic manmade character of the beach is the fundamental feature and must be considered together with the erosion and human activities of the area. Designs concerned with shaping the pattern of use of the beach are logically stronger if they recognize and reflect these considerations.

As nebulous as this design principal seems, there is a method of deriving such a design by form study. Conceptually, the principal of form study seeks to accomplish these objectives in simulation of natural forms by a manmade structure. The freedom and mood of relaxation necessary for a recreational atmosphere can be expressed in flowing lines in contrast to the tension of hard corners. A sense of isolation and focus, as well as confinement for the high-use zones, can be obtained with variations in elevations and use of plant

materials to form "exterior rooms." Elevation changes can be calculated to control views, to curb road noise, to direct people, and to provide privacy or open areas for those few beach users who might prefer open or isolated views.

All of these concepts of design can be synthesized into a design which accommodates the objectives of the study and focuses on the specific test sites along the beach. The key features of the beach have been evaluated in the form of a Relationship Matrix (Figure V-1). In this matrix, all of the features considered are listed on two axes of a graph and their relationship to one another is indicated according to a functional, corresponding value. The following ratings were employed:


Good Symbiosis - work well with each other and enhance each other. Symbiosis - work well with each other.

Neutral - no affect.

Conflict - work against each other,

Forms.

The analysis of features begins with form study. Considering elements in the Landform class relative to their erosive properties, it can be noted that walls stop blowing sand more effectively than any other form. This principal is based on Bagnold's finding that the angle of repose of sand is a maximum of 34 degrees against a vertical surface (see Illustration 2) (Bagnlid). This value is useful in determination of height and width of a drift equal to the height of an obstacle (Appendix

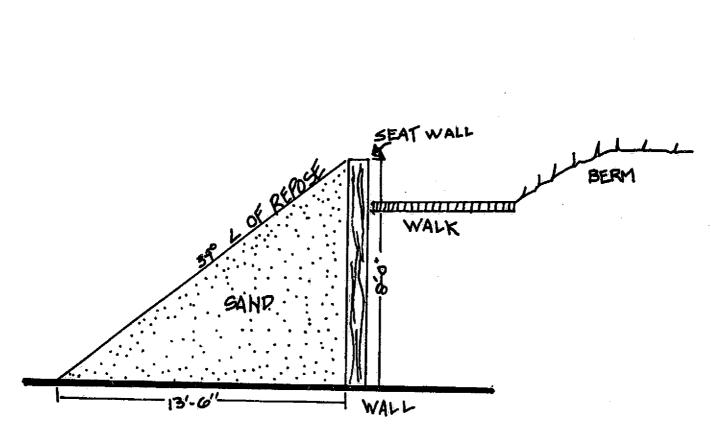


ILLUSTRATION 2

F). For example, a structure eight feet tall would require a drift thirteen feet wide prior to its overtaking the top of the structure. Furthermore, sand will react differently to different obstacles in that it will be deposited at the base of a solid wall, but be blown around and through an ill-defined structure, such as an elevated plant form. Therefore, the most limiting factor of erosion is a solid structure, with plant forms being secondary. A review of the Relationship Matrix indicates that a wall will be a compatible design component with all beach elements except dunes, groundcover, storm drains, vehicular access, beach- cleaning activities, and salt water. These points of conflict can, however, be circumvented if the wall encloses the dunes, does not shade out groundcover, avoids storm drains, leaves openings for maintenance vehicles to access the beach, and does not extend into the Thus, walls appear to have the properties necessary for an water. important component of the high-use stabilization system and could be the fundamental element in the site plans.

In considering the form the wall is to take, the initial design concept of merging the manmade aspect of the beach with its recreational nature and erosion control must be employed in a manner such that a manmade quality could be retained with a feeling of freedom yet confinement. Also, the study principal that form should follow the shape of natural functions is especially important in this environment and suggests that the wind, the dominant erosive force, will dictate the form. Given these principals, a plastic flowing form which

emulates a wave seems most conducive to the concept and most compatible with the function of blunting and re-directing the wind. In a theoretical and practical sense, a wall in the shape of a wave would facilitate the aesthetic and stabilization goals in several ways:

- 1. the wave shape will have the property of blunting and redirecting the wind so as to cause it to reduce its energy and cause a drop in wind-blown sand as well as retarding sand creeping along the ground;
- 2. the advantage of this shape in a contextual image capacity is that it repeats the waves on the water and ties the land and water closer together in a visual sense. Additionally, with these wave forms (walls) elevated in the shape of a dune they resemble islands in the sand. The sand can be viewed as a fluid medium forming a transition between the dune and the water;
- 3. A wall outlining the shape of a dune-like island would enable maintenance of the beach, since it will not obstruct cleaning. At the same time, the wall will serve as a barrier between the sand and the roadway. Such a feature would allow sand buildup on the seaward portion of the wall to be redistributed, thus preventing loss onto the roadway. In this manner, the wall will function as the current sea wall does with the exception that there will be less sand collected in front of it, because the foreshore area will be smaller

than the present beach width. The well lighted wooden wall, as depicted on Sheet 6 of 6, would serve as a retention wall on the beach side and a seat wall on the road side (see Illustration 2). If beach access is open to the wind, then a buffer wall should be placed in front of the access to prevent sand from blowing up the steps (see Illustration below).

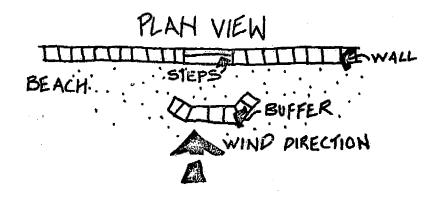


Illustration 3. Plan View

The portion of the beach behind the wall is designed as a high use site.

Generally, a wall with the above characteristics is compatible with concentrated human use areas. However, such a beach wall has certain constraints which influence how it may be used within the beach setting. These constraints include:

- a. A fifty foot setback from the water to allow unobstructed foreshore use for the observed user patterns as well as for maintenance machinery access to the foreshore.
- b. The radius of the wall must be fifty feet or greater due to size requirement of beach equipment.

Macro Exterior Design Consideration of High Use Zones

Proceeding from the basic form study premise that form is dictated by function, the free flowing lines of the wall (the fundamental design component) should be assembled into a coherent design unifying the entire beach. One method of unification is through repetition of form; however, repetition of form can lead to boredom. This problem can be eliminated through the modulation of the sizes of repeated shapes.

Size modulation requires that size be determined by the way the viewer experiences the design. In the instance of the beach, there are two possible perspective views, that of the pedestrian and that of the occupant of a moving vehicle. In terms of freedom of concentration and perception, these two settings are at opposite ends of the attention scale. The contrast of these modes of attention is illustrated by the time difference between walking one hundred feet along the beach and driving that same distance at fifty miles per hour on the coastal highway. In these two situations, perceptual exposure variance may range from several minutes to a fraction of a second. During the walk there is an abundant opportunity (time and freedom of attention) to view the surroundings and, therefore, shapes can be small and intimate.

During the drive vision time and attention is very limited; hence, the visual experience can only involve large sizes and macro proportions of design. Relative to this difference in viewer capacity, the design must possess both large and small forms. Sheets 4 and 5 of 6 show a suggested size and location for larger forms with the following functions:

- the flowing shapes repeat the basic wave theme but provide size fluctuation which breaks up the visual bordom of similar pattern repetition;
- the shapes are sufficiently large for the auto viewer to experience;
- 3. open areas between shapes are left so that the beach will still touch the roadway. These openings will not inhibit erosion at these points, but they do provide an unobstructed perspective of the water, and in this manner each space will act as a picture with the walls serving as a frame;
- 4. concentration of such shapes and features and associated visual and functional service amenities will be attractive and encourage intense beach use in those zones designated as high use.

Micro Interior Design Consideration and Component

Areas within the high use zones are listed in the Relationship Matrix as User Activities and classified into two categories - passive and active activities. In a conceptual and locational sense, the passive forms of activities should be spatially separated from active

forms as they are often incompatible. The shape and size of features and areas within a typical high use zone are illustrated on sheet 6 of 6. Within these areas the pedestrians will be able to relate to the shapes most directly, if the shapes are modulated with elevation change. Berms or dunes can be incorporated into this wavy concept for repetition of general shape as well as for controlling different areas of enclosure and views. Reference to the Relationship Matrix will reveal that berms are more compatible than dunes. This is true mainly because dunes characteristically have fragile vegetation which will not stand trampling by pedestrians. In contrast, berns are generally covered with turf which accommodates heavy pedestrian use (Appendix G). The combination of these factors, walls and berms or dunes, provides the design with the man-made quality, a sense of unity and freedom, interest to both vehicular and pedestrian viewers, and the ability to curb erosion.

Movement between areas of activity within these high-use zones can be directed to the facilities, picnic areas, play area, and boat area by locating these facilities between dune formations. This directed movement can be enhanced with vegetation and channeled by asphalt paths for orientation and a firm walking surface.

The picnic area adjacent to the Childrens Play Area is generally for active groups and families with children, while the Picnic Areas isolated from the Childrens Play Area would accommodate other groups. Picnic Areas should be provided with picnic tables, drinking water,

and trash recepticles and be positioned in such a manner as to take advantage of the winter sun, with generous tree plantings to filter the summer sun. The Play Area should be located to bridge the gap between beach and green space. A boat frame for climbing or a wall for sliding are much more attractive to young imaginations than the standard swing set and teeter-totters. The Facilities Office should include restrooms for changing and convenience, drinking fountains, and an information board for the area.

CHAPTER VI

CONCLUSION

Landsat imagery and data can be effectively used to identify areas of differential aeolian erosion on beaches. Aeolian erosion on the Mississippi Gulf Coast has essentially the same basic physical processes or aspects of aeolian erosion as do all coasts; it is, however, somewhat more complex in this area because of a unique low topographic profile, an intensive proximate cultural development (towns and coastal roads), and heavy recreation beach use. For these reasons, aeolian erosion, which is a natural part of the beach coastal cycle, takes on added dimensions of significant economic impact and concern for human health and safety.

Because of the heightened local concern with the economic and environmental impact of acolian erosion and inland deposition, the use of Landsat data to identify areas of blowing sand was investigated. With the successful establishment of the limits of these areas, a study of the mechanics and processes of acolian erosion suggested that certain types of features and structures could be combined into site designs. The site design areas would function to concentrate human activity, diminish stress and erosion throughout the full extent of the beach, and trap blown sand and alleviate erosion.

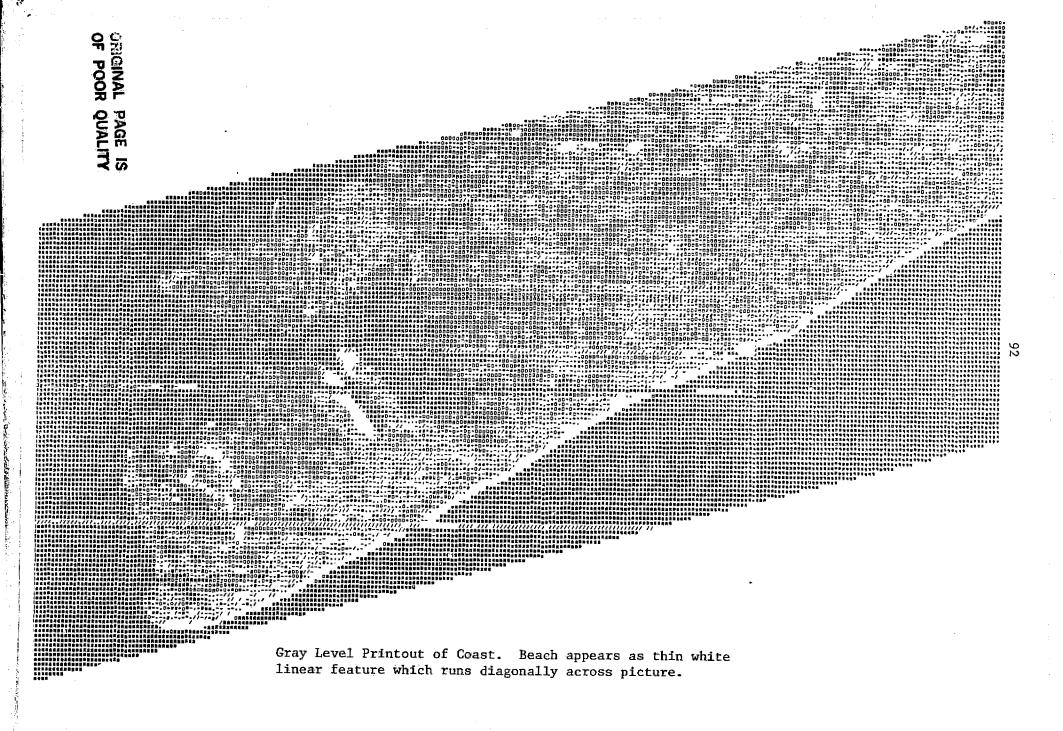
Collectively, these designed sites, separated by expanded or additional access-prohibited Least Tern nesting and low-use areas, should have the effect of materially reducing erosion. This decrease

in erosion at the design sites would occur because unstable, exposed sand surfaces will be replaced with relatively stable areas planted with shrubs and trees. These designed areas would also provide sand trapping and wind-reducing surfaces. Within the larger, whole-beach context, reduced erosion in out-site areas would result from the natural sand stabilization in the areas of prohibited access, and the lessened population pressure in the low use areas.

Footnotes

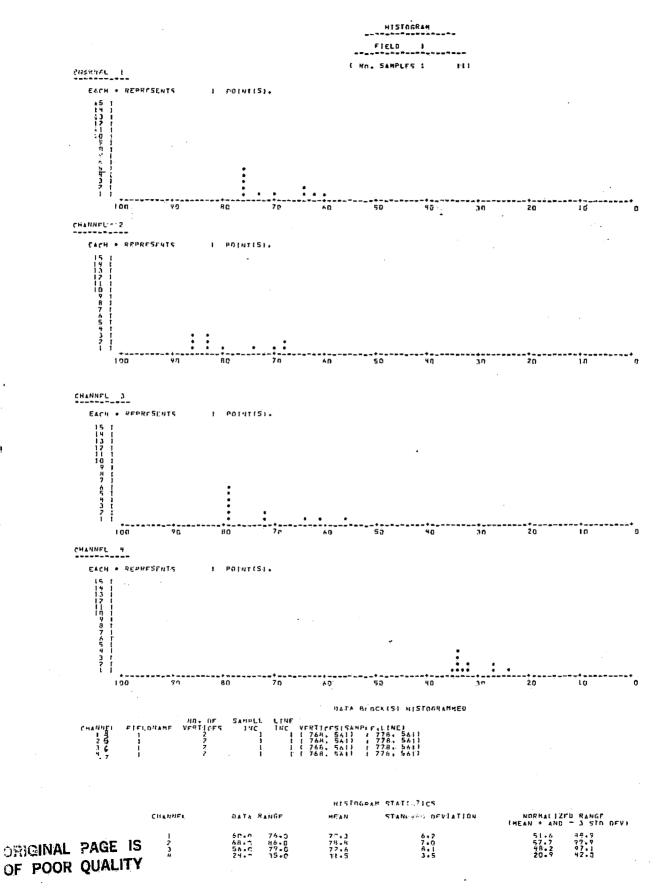
- 1) Beach Erosion Report on Cooperative Study of Harrison County, Mississippi, Division Engineer, C of E. South Atlantic Division, Atlanta, GA, 1947.
- Russell Rich Joel, "Physiography of Lower Mississippi River Delta," Louisiana Geological Bulletin No. 8, 1936.
- 3) Howe, H. U. Louisiana Petroleum Stratigraphy. American Petroleum Institute, Division of Prod., Paper 901-12B, 1936.
- Congressional Document No. 682, 8th Congress, 2nd Session, 1948, pg. 16, paragraph 30.
- 5) "Behavior of Beach Fill and Borrow Area at Harrison County, Mississippi," Technical Memorandum No. 107, Beach Erosion Board.
- 6) Short note "Behavior of Beach fill Harrison County, Mississippi, December 1975.
- 7) Udden, J. A. The Mechanical Composition of Wind Deposits, 1898.
- Bagnold, R. A. The Physics of Wind Blown Sand and Desert Dunes. 1941.
- 9) NASA Technical Memorandum, The ERTS-1 Investigators (ER-600), Volume II-ERTS-1, Coastal/Estuarine Analysis, NASA LBJ Houston, TX, 77058, July 1976, TMX-58118, JSC-085474, A-19-A24.

APPENDIX A


SELECTED REFERENCES

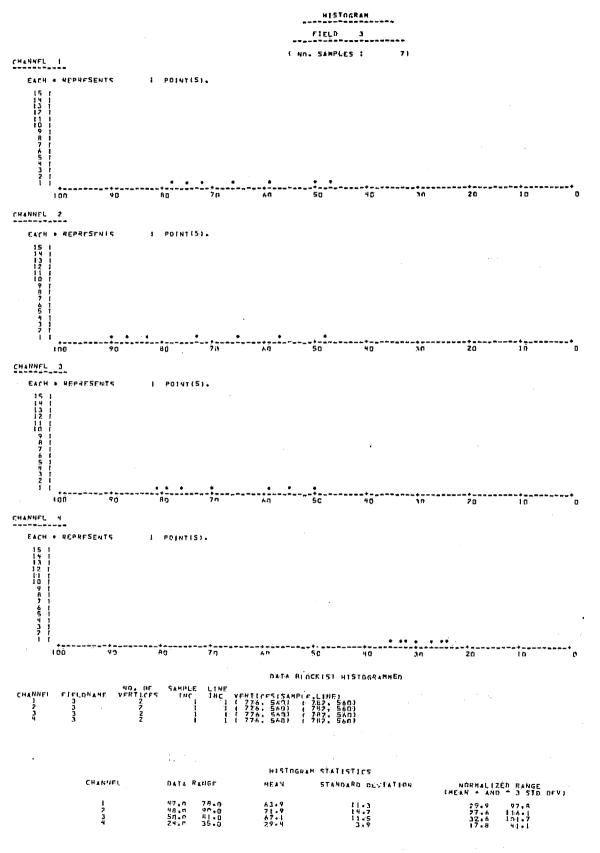
References

- An ERTS-1 Study of Coastal Features on the North Carolina Coast. Coastal Engineering Research Center, Ft. Belvoir, VA. 1973.
- Bagnold, R. A. <u>The Physics of Wind Blown Sand and Desert Deposits</u>. London: Metheun & Co., Ltd., 1941.
- Calio, Suzanne. "Corrective Surgery for San Francisco's Great Highway." Landscape Architecture. September 1978.
- Carnahan, Brice, et <u>al</u>. <u>Applied Numerical Method</u>. New York: John Wiley & Sons, Inc. 1969.
- Dolan, Robert and Jeffrey Heywood. "Landsat Application of Remote Sensing to Shoreline Form Analysis." University of Virginia, Charlottesville. NASA Earth Resources Survey Program. NAS5-20999. December 1975 - January 1977.
- Flores, L. M., C. A. Reeves, S. B. Hixon, and J. F. Paris. <u>Unsupervised Classification and Areal Measurement of Land/Water</u> <u>Coastal Features on the Texas Coast</u>. Houston, Texas. Lockheed <u>Electronics Co., Aerospace Systems Division</u>.
- General Land Office of Texas. <u>Texas Coastal Management Program:</u> Executive Summary and Appendix. 1976.
- Herbich, John B. <u>Remote Sensing Techniques Used in Determining Changes</u> <u>in Coastlines</u>. College Station, Texas. Texas A & M University. 1976.
- Herbich, John B. and Robert E. Schiller. "Shore Protection." <u>Marine Advisory Bulletin</u>. Coastal and Ocean Engineering. Texas A & M University. TAMU SG-76-504. College Station, Texas. February 1976.
- Klemas, V. and D. Bartlett. <u>Identification of Coastal Vegetation</u> <u>Species in ERTS-1 Imagery</u>. University of Delaware, College of Marine Studies. Report # NASA-CR-128169.
- Magdon, D. T. <u>Use of Earth Resources Technology Satellite (ERTS-1)</u> in Coastal Studies. NTIS report, September 29, 1973.
- Mississippi Gulf Coast Tourist Industry Report. Bureau of Business Research, School of Business Administration, University of Southern Mississippi, Hattiesburg, MS.
- Nie, Norman et al. <u>Statistical Package for the Serial Sciences</u>. 2nd ed. New York: <u>McGraw-Hill</u>. 1975.
- The ERTS-1 Investigation (ER-600): Vol. II-ERTS-1 Coastal/Estuarine Analysis. NASA TMX58118. July 1974.


APPENDIX B

GRAY LEVEL PRINTOUT, BAND 5, OF STUDY AREA

APPENDIX C


HISTOGRAMS

HISTOGRAM FIELD 2 No. SAMPLES : A F CHANNEL I EACH + REPRESENTS POINT(S). 1 15 11 12 10 9 8 454321 ---+-. 80 50 20 10 -*---Vn -----*--7n 40. 100 40 30 CHANNEL 2 CACH + REPHESENTS 1 POINTISI. 154321109A7 ž A0 70 49 10 • 90 50 100 40 20 30 CHANNEL 3 FACH + REPRESENTS 1 POINT(S). 1540710 ::: 21 ÷zn 70 100 60 ... 50 40 30 ÷п CHANNEL N EACH . REPHESENTS POINT(S). 1543210987 659121 100 ÷... Rn. 70 5 C 40 20 10 DATA BUNCKESS HISTOGRAMMED SAMPLE LINE TNC TNC 1 1 1 1 NO. OF СНАЛНЕТ РТЕЦПИАНЕ 1 2 2 7 3 2 4 7 PIF,1,1NC) 4 774, 560 1 774, 560 1 774, 560 1 774, 560 1 774, 560 VERTICESUSAND 1 749. 5400 1 749. 5400 1 749. 5400 1 749. 5401 222 HISTOGRAM STATISTICS CHANNEL BATA RANGE HEAN STANDARD DEVIATION NOPHALIZED RANGE IMEAN + AND = 3 STO DEVI 29.4 23.0 41.0 23.9 14.0 16.0 46.0 25.0 13.0 29.2 44.8 24.3 3.0 123 24+0 14+7 39+2 72+1 42.0 41.6 50.4 26.4

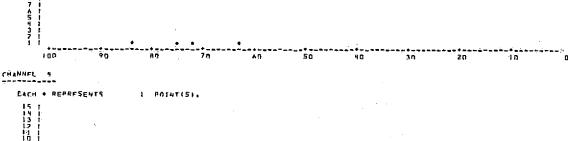
09/20/7#

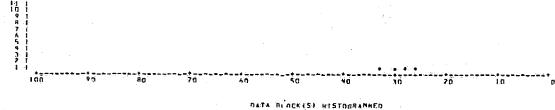
HISSISSIPPI STATE UNIVERSITY HISSISSIPPI STATE, HISSISSIPPI

HISTOGRAM FIELD

CHANNEL 1

14


CHANNEL 2


CHANNEL 3

15 100

1 100

I NA. SAMPLES : 41 EACH + REPRESENTS 1(5). ·~~--+-. 90 ------49 EACH + REPRESENTS I POINT(5). -**•--**30 70 <u>40</u>50 40 90 20 10 EACH · REPHESENTS 1 POINT(Š).

5591

 ND. OF
 SAMPLE
 LINE

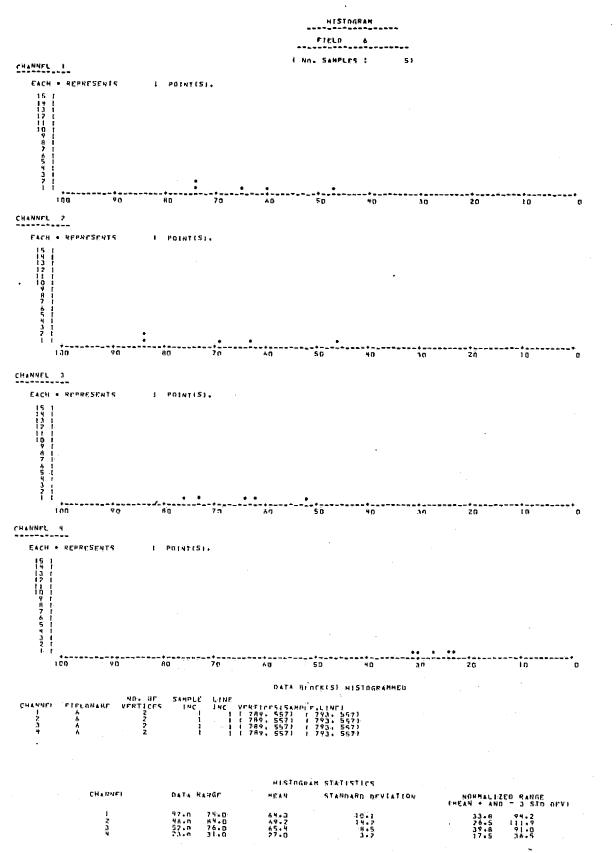
 CHANUEL
 FIFLDNAME
 VFRTICES
 INC
 VFRTICES

 I
 4
 2
 I
 I
 783.55

 2
 4
 2
 I
 I
 783.55

 3
 4
 2
 I
 I
 783.55

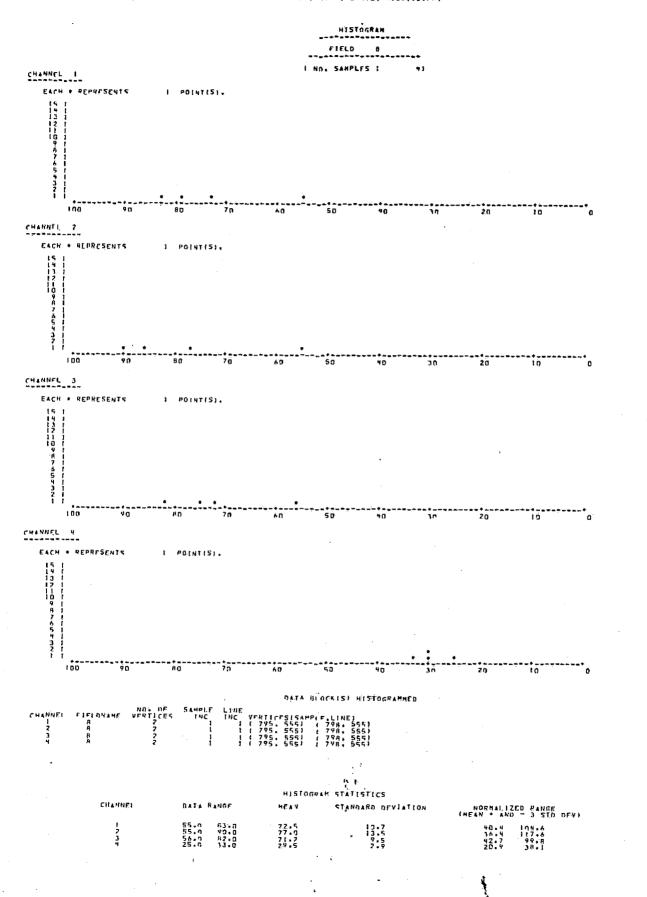
 4
 2
 I
 I
 1783.55
 IPIE,LINC} / 786, 5591 / 786, 5593 / 786, 5591 / 786, 5591

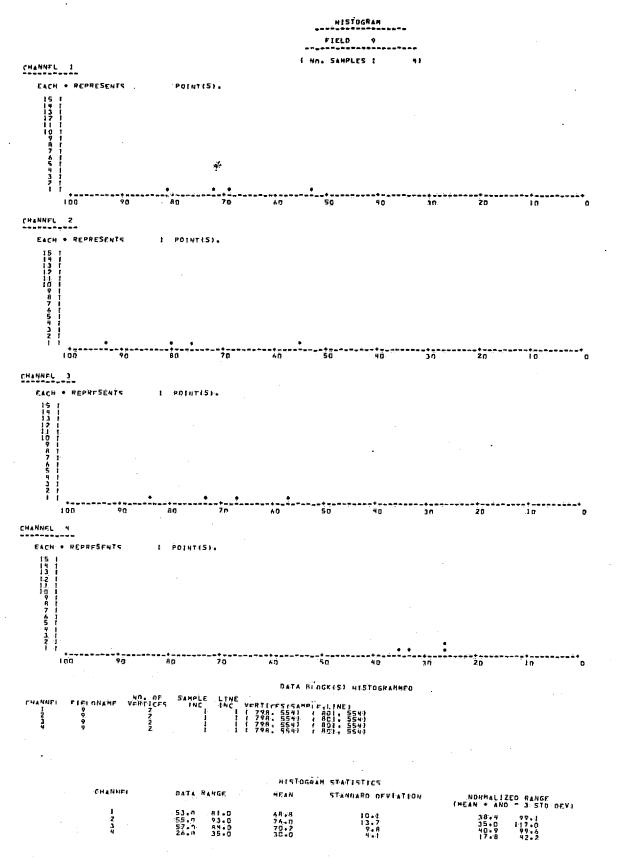

HISTOGRAM STATISTICS CHANNEL NORMALIZED RANGE (MEAN + AND - 3 STD DEV.) DATA RANGE STANDARD DEVIATION HEAN. 1234 57.1 61.0 56.1 92.0 43.1 84.0 26.1 33.0 73.7 74.5 73.5 79.7 8.7 13.0 7.5 2.4 96.9 115+4 96+0 37+0 44.6 37.6 51.0 21.5

MISSIGGIPPI STATE UNIVERSITY MISSISGIPPI STATE, MISSISSIPPI

HISTOGRAM NO. SAMPLES : 43 CHANNEL 1 EACH . REPRESENTS P01NT(5). 15 ij 50 40 3n 20 to .c ÷-*= 90 100 CHANNEL 2 EACH + REPRESENTS 1 PO(INT(5).. 15 F 14 T C 11 C C 10 F 8 F 50 40 30 20 10 0 70 60 100 90 80 CHANNEL 3 1 POINTIS). EACH . REPRESENTS 15412210987 4321 40 50 зп 70 90 70 80 40 10 100 CHANNEL 4 FACH + REPRESENTS 1 POINT(5). 154 13 12 10 9 454371 90 80 70 A0 50 40 30 20 10 100 DATA BINCKIS) HISTOGRAHMED ND. OF SAMPLE LINE FIFLDHAMP VFRTIGES INC NERTIGES(SAMPE,LINF) 5 2 1 1 784.5531 789.554 5 7 1 1 784.5531 789.554 5 7 1 1 784.5541 789.554 5 2 1 1 784.5541 789.554 5 2 1 1 784.5541 789.554 CHANNEL 1234 HISTOGRAM STATISTICS CHANNE! STANDARD DEVIATION NORMALIZED RANGE (MEAN + AND = 3 STD DEV) DATA RANGE METAN 48.8 49.2 50.5 20.7 87.2 106.3 94.0 37.8 6H • 0 77 • 7 72 • 2 29 • 7 57.9 62.0 61.0 25.9 73.0 87.0 81.0 33.0 6 • 4 9 • 5 7 • 3 2 • 9 1734

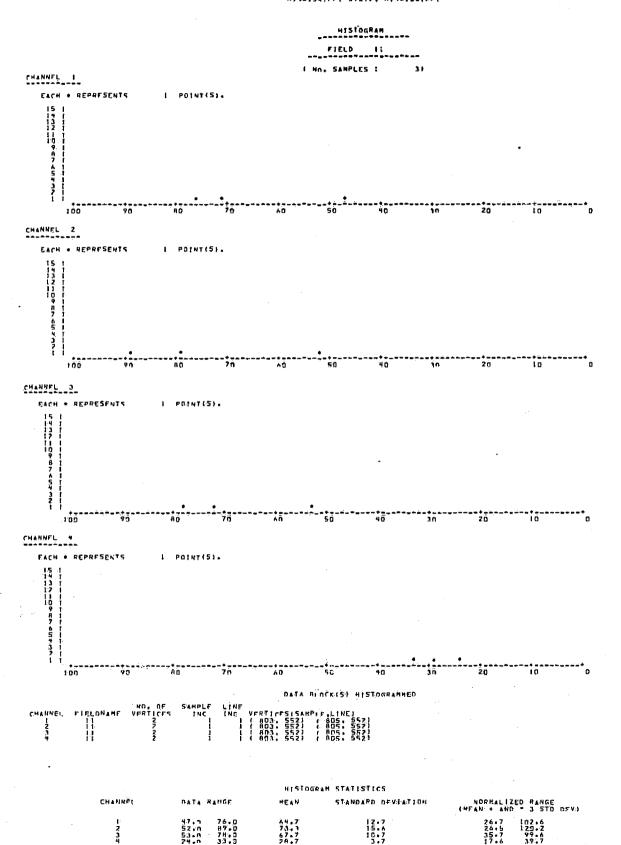
> ORIGINAL PAGE IS OF POOR QUALITY

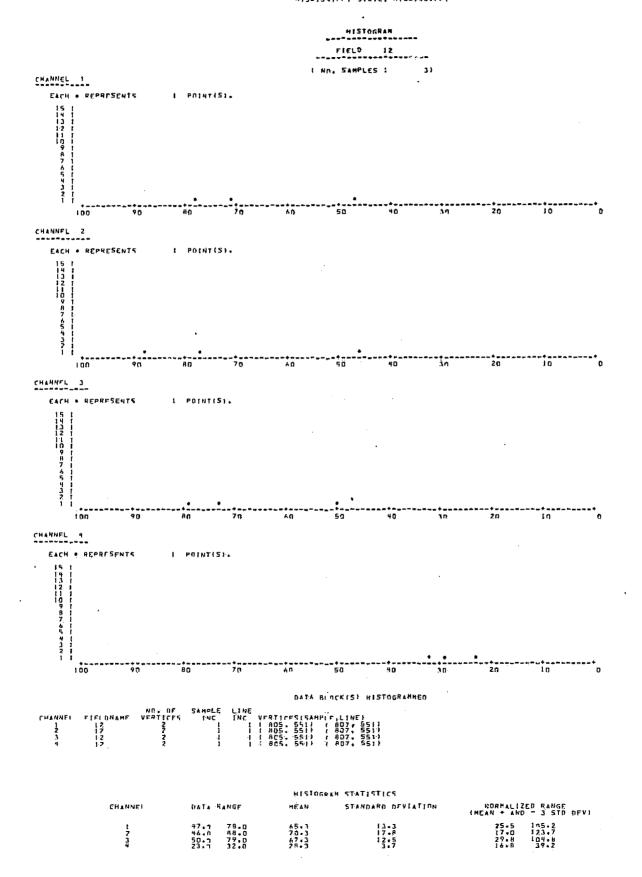

NISSIGSTPPI STATE UNIVERSITY NISSISCIPPI STATE, NISSISSIPPI


HISSISSIPPI STATE UNIVERSITY. HISSISSIPPI STATE, HISSISSIPPI

HISTOGRAM FIELD 7 No. SAMPLES : 41 CHANNEL I EACH + REPRESENTS L POINT(5). 15 14 13 10 40 39 20 ----- Sa ••• 10 100 60 0 CHANNEL 2 EACH + REPRESENTS 1 POINTIST. 15 14 13 12 11 10 30 20 50 40 10 100 --+--7.0 40 °ö 90 60 CHANNEL 3 EACH + REPRESENTS 1 POINT(S). 15 15 13 12 11 10 ·----* o 30 20 10 100 50 40 An. 910 CHANNEL 4 EACH . REPRESENTS 1 POINT(5). 154112109 5 1221 Rp 70 Kġ Sp 4ò 3ô 20 100 98 DATA BLOCK(S) HISTORRANNED NG+ OF CHANNEL FJELDHAME VERTIGES 1 7 2 3 7 2 3 7 2 3 7 2 7 7 7 7 SAMPLE LINE INC INC VENTICESISANPIELINE) I I 793.5561 1796.564 I I 793.5561 1796.564 I I 793.5561 1796.564 I 793.5561 1796.564 HESPOGRAM STATISTICS CHANNEL DATA RANGE HFAN STANDARD DEVIATION NORMALIZED RANGE (REAN + AND = 3 STD DEV) 72.0 76.7 71.5 29.0 7 . Z 8 . 9 5 . 9 7 . 7 61.0 63.7 65.0 25.0 68.0 82.0 32.0 50.5 50.0 53.7 93+5 103+5 89+3 36+2 234

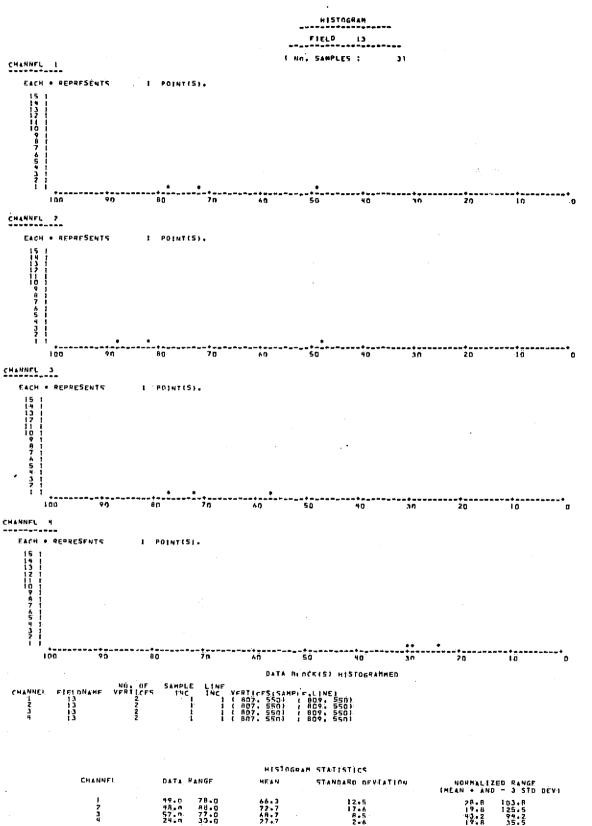
HISSISSIPPI STATE UNIVERSITY MISSISSIPPI STATE, MISSISSIPPI


09220274

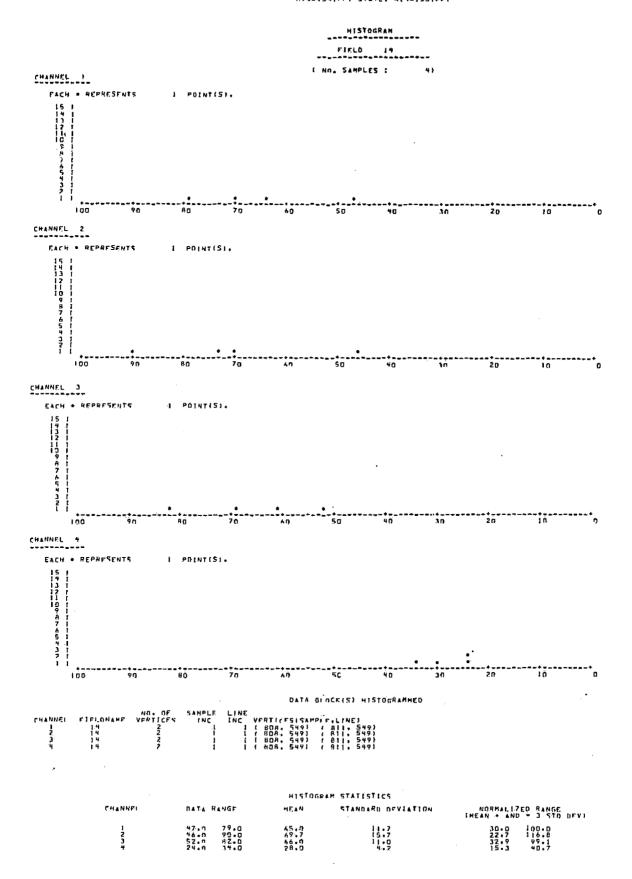

OFFICINAL PAGE IS

HISSISSIPPI STATE UNIVERSITY. HISSISCIPPI STATE, HISSISSIPPI

HISTOGRAM 10 FIELD (NA, SAMPLES : 31 CHANNEL I EACH + REPRESENTS L POINT(S). 1913710987654371 9n 80 60 50 40 3n Z0 10 70 ·---* 100 CHANNEL 2 EACH + REPRESENTS 1 POINT(5). 15 14 12 11 10 987 437 9n 50 40 30 20 to 0 60 100 CHANNEL 3 EACH + REPRESENTS 1 POINTIS1. 4321 -----* 4η 50 4η τη 20 1η υ 101 CHANNEL 4 EACH + REPRESENTS I POINT(5). 80 70 40 50 40 in 20 io c 100 90 ₩0 ⊾ 0,5 VFRTICE9 2 2 2 2 2 2 DATA BEOCKEST HISTOGRAMHED 5AMPLC TNC 1 1 1 LINF INC VERTICES(SAMP, C.LINE) I 1 001, 553) C 003, 553) I (001, 553) C 003, 553) I (001, 553) C 003, 553) I 4 001, 553) C 003, 553) I 4 001, 553) C 003, 553) FIELDNAHF 10 10 10 10 10 CHANNEL 1 2 3 HISTOGRAM STATISTICS CHANNEL. DATA RANGE STANDARD DEVIATION MEAN NORMALIZED RANGE (MEAN + AND = 3 STD DEV) 59.1 61.1 61.0 25.0 71.7 77.0 73.3 78.7 7.0 11.3 8.8 2.6 44.8 43.1 46.9 20.8 98.5 110.9 99.8 36.5 74.0 H5.0 H1.0 31.0 1234



HISSISSIPPI STATE UNIVERSITY HISSISSIPPI STATE, HISSISSIPPI


MISSIGSIPPI STATE UNIVERSITY MISSISGIPPI STATE, MISSISSIPPI


09/20/74

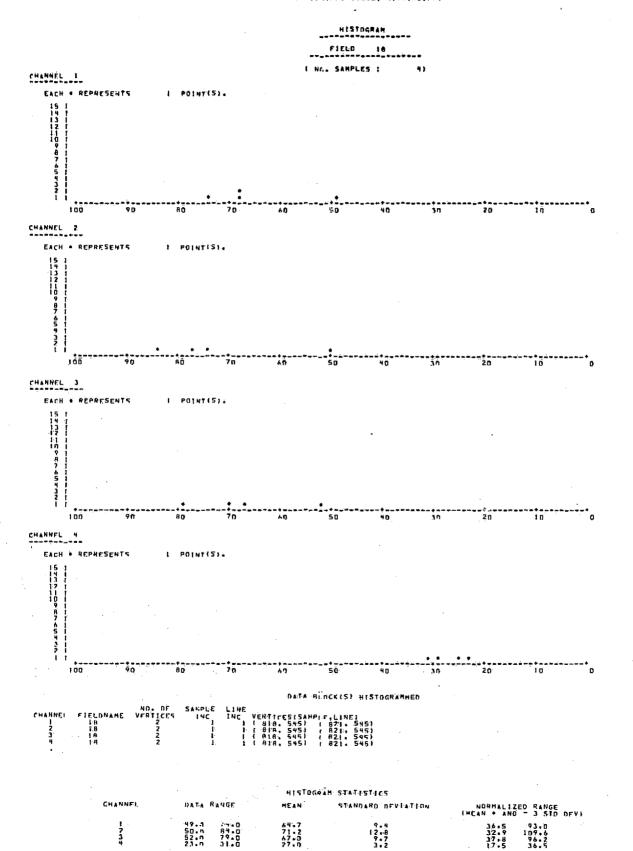
66.3 72.7 68.7 27.47

103.A 125.5 94.2 35.5 28.8 19.8 43.2 19.8

ORIGINAL PAGE IS OF POOR QUALITY

HISSINGIPPI STATE UNIVERSITY HISSISCIPPI STATE, HISSISSIPPI

HISTOGRAM FIELD IS I NO, SAMPLES 1 31 CHANNEL I EACH + REPRESENTS P01N1(5). អ<u>ព</u> +---+-. 40 ٩n 50 រពូក 70 60 10 CHANNEL 7 EACH + REPRESENTS I PRINTISI. 1511312110 80 -----. AD ----+-. 70 50 49 3n 20 1n 0 ----*-. 70 100 CHANNEL 3 EACH . REPRESENTS # PDINTIS:. 54371090 100 ·---+--1n ----*--2n -----CHANNEL 4 EACH + REPRESENTS I POINTISS. 7 100 ΥΠ ΑΓ 70 Αη Εσ 40 τη 20 to 0 DATA BLOCKIST HISTOGRAMMED 54MPLE LINE 1917 INC VERTICES(SAMPER,LINE) 1 I RI3, 547) / A15, 5471 1 I RI3, 5471 / RI5, 5471 1 I RI3, 5471 / RI5, 5471 1 I RI3, 5471 / RI5, 5471 ND. DF FIELDNAME VERTILES. 16 7 16 7 16 7 16 7 16 7 Снация) 1[.] 2 3 4


HISTOGPAN STATISTICS CHANNEL DATA KANGE MEAN STANDARD DEVELTION NORMALIZED RANGE (MEAN + AND * 3 STD UEV) 1 59-5 74-5 49-0 7.1 7 59-5 82-0 73-3 10-7 42-7 104:0 3 61-7 78-6 71-3 7.4 49:1 93-6 4 24-5 79-0 77-7 2-7 20-5 30-5

NISSISSIPPI STATE UNIVERSITY. MISSISSIPPI STATE, MISSISSIPPI

. NISTOGRAM FIELD 17 L An. SAMPLES 1 33 CHANNEL 1 EACH . REPRESENTS 1 POINT-(\$). 1111100 1 1 1 ---------**----***---* 50 40 -----3n 80 40 40 70 100 20 10 'n CHANNEL 2 EACH . REPRESENTS | POINTIS), 1543210987 65432 L 90 80 ----------50 ----+---HO 30 70 10 100 70 '*o CHANNEL 3 EACH + REPRESENTS I POINT(S). 3 1 70 50 ----+--40 6.0 30 10 -•0 20 100 80 70 CHANNEL 4 EACH + REPRESENTS 1 POINTISH. 1540710987454321 110987454321 70 40 80 50 100 90 40 10 30 20 DATA BINCK(S) HISTOGRABHED NO. 0F FIFLONAME VERTICES 17 2 17 2 17 2 17 2 SAMPLE LINE INC INC I I I I I I CHANNEL VFRTICESISAMPIE,LINE) (816, 544) / 814, 5441 (816, 546) / 818, 546) (816, 546) / 818, 546) (816, 544) / 818, 546) 234

		815706+	PAN STATISTICS	
CHANNEL	DATA RANGE	HEAN	STANDARD DEVIATION	NORMALIZED RANGE (MEAN + AND = 3 STO DEV)
5 2 1	45+0 24+0 73+0 87+0 69+9 78+0 28+6 32+0	69+3 78+3 72+0 29+7	4 • 8 6 • 7 4 • 7 1 • 7	55.0 83.7 57.8 96.9 57.3 94.7 24.6 34.8

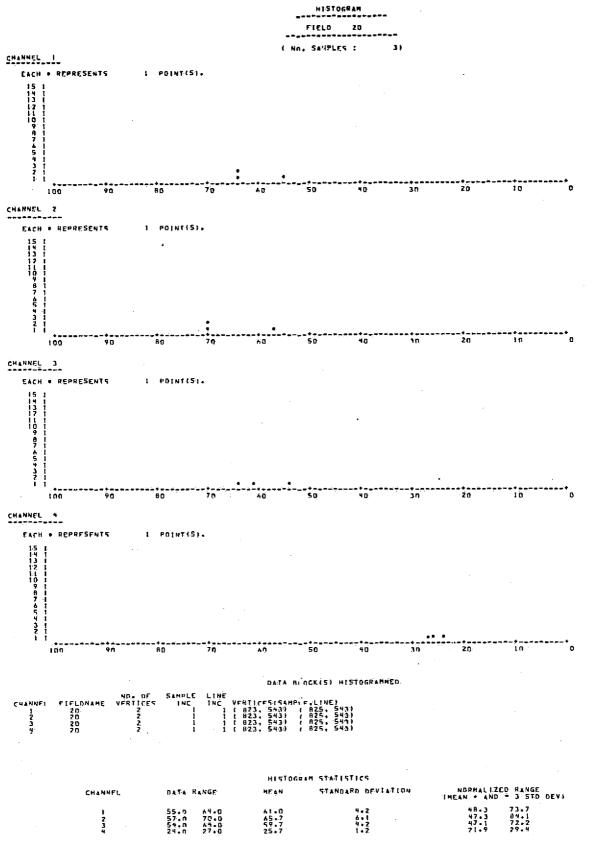
MISSISSIPPI STATE UNIVERSITY. MISSISSIPPI STATE, MISSISSIPPI

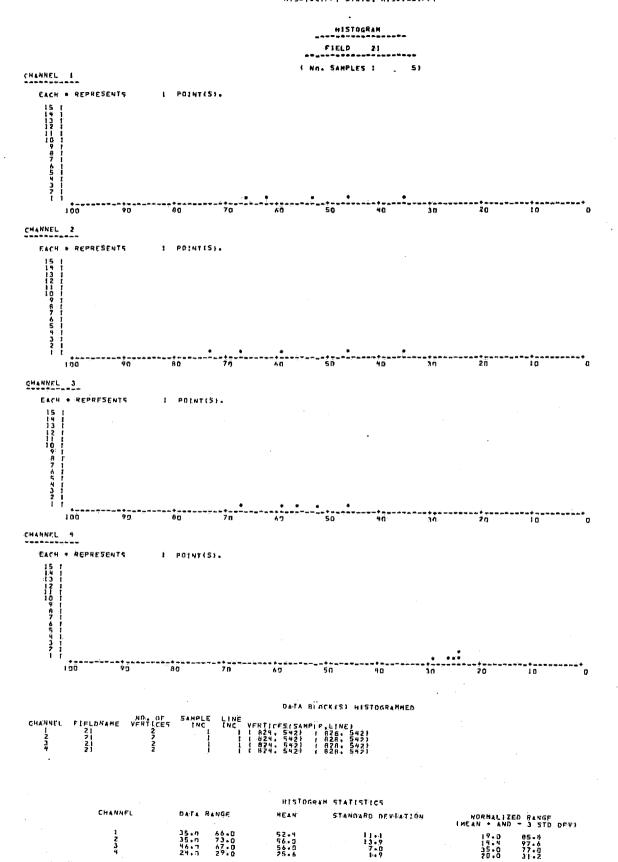
HISSIGSIPPI STATE UNIVERSITY HISSISGIPPI STATE, HISSISSIPPI

HISTOGRAM 19 TELD No. SAMPLES : 31 CHANNEL 1 EACH REPRESENTS 1 POINT(S). 19321098745 j z 1 90 40 100 8ŋ 70 40 50 39 20 10 CHENNEL 2 EACH + REPRESENTS I POINTIS). 1997454321 •• 90 40 30 100 20 10 50 CHANNEL 3 EACH + REPRESENTS I POINTIS). 15 14 12 12 10 9 8 4 1 3 1 7 1 1 1 ---- Sa 40 30 20 10 ·---*o 100 94 80 40 CHANNEL 4 EACH . REPRESENTS I POINT(S). 154 177 177 199 87 45 437 1 21 -----*---RG 70 ------3 n 100 90 ------50 40 i.n 20 DATA BUOCKISE HISTOGRAMMED
 NO. DF
 SAMPLE
 LINE

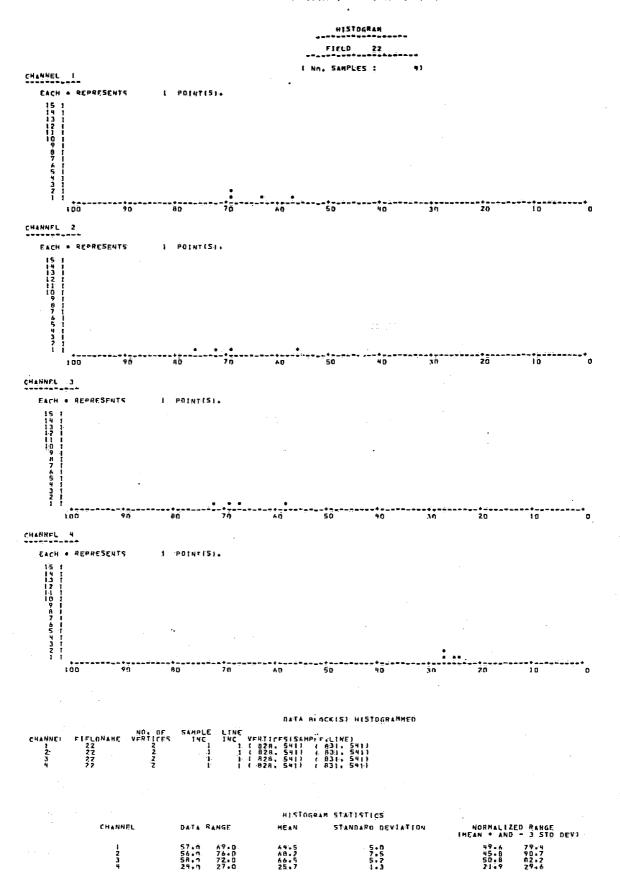
 CHANNEL
 FLFLDNAME
 VERTLEFS.
 INC
 The VERTLEFS.
 The VERTLEFS.

 I
 I
 P
 I
 I
 R21.
 S441


 I
 I
 I
 I
 R21.
 S441
 I

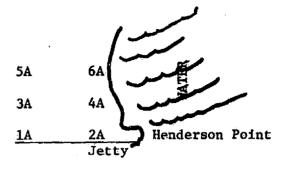

 Z
 I
 I
 I
 R21.
 S441
 I

 J
 I
 I
 I
 I
 R23.
 S441
 I


 J
 I
 I
 I
 I
 I
 R23.
 S441
 RESTOGRAM STATESTICS CHANNEL DATA RANGE STANDARD DEVIATION NORMALIZED RANGE IMEAN + AND = 3 STD DEVI HEAN 59.0 61.0 59.0 25.3 72.0 AZ.0 72.0 79.0 49.3 46.4 49.3 72.0 86+1 101+0 86+1 33+3 47.7 73.7 47.7 27.7 6+1 9+1 6+1 1+9 234

HISSICSIPPI STATE UNIVERSITY MISSISCIPPI STATE, HISSISSIPPI

04/20/7*



APPENDIX D

SAND MOISTURE TABLES

TYPICAL PATTERN

<u>S'</u>	<u>FA. PT.</u>	LOCATION					
	1A	Henderson Point Jetty					
	2A	Henderson Point Jetty					
	19A	Fort Henery Road					
	20A	Fort Henery Road					
	23A	Seashore Avenue					
	24A	Seashore Avenue					
ŵ	40	Island View					
MULTPLE PIXELS	41	Island View					
EE	44 [.]	Beach View					
ILTI	45	Beach View					
W	46	Ronnels Avenue					
	47	Ronnels Avenue					
	50	Oak Gardens					
	51	Oak Gardens					
	56	West Avenue					
•	57	West Avenue					

Data Collected June 11-12. This sampling exercise only covered vicinity of 5th Avenue to Henderson Avenue in detail (500 ft. intervals) successive miles past Henderson Avenue were covered by ½ mile intervals. (H= closest to highway; L=closest to shoreline)

Location	(Moisture) Wt. Less	Avg. Wt. Loss	% Mcisture Loss	Avg. % Loss
1H	1.396	1 256	2.8	2.7
1L	1.316	1.356	2.6	2.7
2H	3.951	0 /78	7.9	4.5
2L	1.004	2.478	2.0	4.2
ЗН	3.259	0 100	6.5	3.4
3L	1,125	2.192	2.3	J . 4
4н	3,203	2,833	6.4	5.6
4L	2.462	2,033	4.9	5.0
5H	0.986	2.197	2.0	4.4
5L	3,407	2.197	6.8	4.4
6н	1.147	0.953	2.3	1.9
6L	0.758	0.50	1.5	* .• <i>></i>
7н	2.716	1.901	- 5.4	3.7
71.	1.085	T •30T	2.1	2.1
8H	2.705	2.764	5.4	5.5
8L	2.822	2.704	5.6	
9H	1.305	3.031	2.6	6.0
9L	4.757	1 ,011	9.5	0.0
101	1.494	4,423	3.0	8.9
10L	7.351	4.463	14.7	
11H	1.503	3.757	3.0	7.5
111	6.010	101	12.0	

Location	(Moisture) 	Avg. Wt. Loss	% Moisture Loss	Avg. % Loss
12H	1,600	4.012	3.2	8.1
12 L	6.423	4.012	12.9	0.1
13H	4.633		9.2	6.1
13L	1.472	3.053	2.9	0.1
14H	1,419	2.058	2.8	4.1
14L	2.697	2.036	5.4	4.1
15H	1.873	3.391	3.7	6.8
15L	4.909	2,247	9,8	0.0
16H	1,296	3.086	2.6	6.1
16L	4,875	3,000	9.6	0.1
17 H	6.952	7.111	13.9	14.2
17L	7.269	/	14.5	1714
18H	7.526	7.563	15.1	15.2
18L	7.599	/.)05	15.2	13.2
19H	7.276	7.150	14.6	14.3
19L	7.024	7.130	14.0	1 4•3
20H	e .78 9	6.907	13.6	13.8
20L	7.024	0.707	14.0	19.0
(Above samp 2 miles)	les made @ 500 f	t. intervals f	rom 5th Ave, to	Henderson Ave.;

2А-н	1.473	1 /00	2.9	3.0
2A-L	1.510	1.492	3.0	5.0
2В-н	2.044	3.730	4.1	7,5
2B-L	5,416	3.730	10.8	

Location	(Moisture) Wt. Loss	Avg. Wt. Loss	% Moisture Loss	Avg. % Loss
ЗА-Н	1.001	0.623	2.0	1.3
3A-L	0.244	0.025	0.5	2.5
3в-н	6.128	5.821	12,3	11.3
3B-L	5.514	3.021	10.3	
4A-H	3.582	2 052	7.2	6.0
4A-L	2.324	2.953	4.7	Utv
4в-н	5,385	4.644	10.8	9.3
4B-L	3.902	4.044	7.8	2.4
5A-H	3.890	2,369	7,8	4.8
5A-L	0.848	2,309	1.7	410
5 B- H	3,933	2 042	7.9	6.0
5B-L	1,991	2,962	4.0	0.0

(The above 16 samples made @ 1/2 mile intervals from Henderson Avenue on.)

Sample <u>No.</u>	Wet Weight of Sample <u>& Container</u>	Wt. After Oven Drying	Change in Wt.	% Change	Wt. of <u>Container</u>	Wt. of Sample <u>After Drying</u>
1A	138.223	138.197	.026	.0002	25.100	113.097
2A	140.877	140.851	.026	.0002	25.239	115.612
ЗA	129,978	129.930	.048	.0004	25.436	104.494
4A	110.406	110.379	.027	.0003	25.137	85.242
5A	109.521	109.450	.071	.0008	24.900	84.55
6A	109.343	109.320	.023	.0002	24.682	84.638
7A	120.788	120.261	.527	.006	26.022	94.239
8A	107.670	106.979	.691	.008	25.468	81.511
9A	112.111	110.432X	1.679	.019	25.760	84.672
10A	113.891	113.870	.021	.0002	25.555	88.315
11A	121.258	121.217	.041	.0004	24,721	96.496
12A	89.410	89.389	.021	.0003	25,388	64.001
13A	121.270	121.239	.031	.0003	25.622	95.617
14A	120.051	119,988	.063	.0007	25.693	94.295
15A	126.191	126.155	.036	.0003	25.368	100.787
16A	110.350	110.309	.041	.0005	25.372	84.937
17A	133.962	133.932	.030	.0003	25.088	108.844
18A	124.748	124.695	.053	.0005	25.472	99.223
19A	128.753	128.721	.032	.0003	25.539	103.182
20A	128.834	128.801	.033	.0003	24.790	104.011
21A	131.229	131.197	.032	.0003	25.482	105.715

Sample No.	Wet Weight of Sample & Container	Wt. After Oven Drying	Change in Wt.	% <u>Change</u>	Wt. of <u>Container</u>	Wt. of Sample <u>After Drying</u>
22A	122.721	122.699	.022	.0002	24.751	97.948
23A	119.759	119.725	.074	. 0008	25.301	94.424
24A	135.959	135.924	.035	.0003	25.624	110.3
25A	137.982	137.939	.043	.0004	25.689	112.25
26A	120.700	120.655	.045	.0005	24.493	96.162
27A	125.520	125.499	.021	.0002	24.871	100.628
28A	110.021	109.965	.057	.0007	24.920	85.045
29A	144.376	144.309	.067	.0006	25.601	118.708
30A					23.943	
31A					25.102	
32A					24.749	
33A	126.068	125.731	.337	.003	25.119	100.612
34A	139.251				25.601	
35A	151.850	151.780	.070	.0006	24.939	126.841
36A	143.973	143.928	.045	.0004	25.940	117.988
37A	122.516	122.407	.109	.001	23.911	98.496
38A	124.756	124.690	.066	.0007	24.709	99.981
39A	130.070	129.941	.129	.001	25.028	104.913
40A	135.720	135.672	.048	.0004	25.189	110.483
41A	143.182	143.120	.062	.0005	24.738	118.382
42A	145.432	145.386	.046	.0004	25.626	119.76
43A	145.698	145.652	.046	.0004	25.762	119.89
44A	144.411	144.383	.028	.0002	24.890	119.493

Sample No.	Wet Weight of Sample <u>& Container</u>	Wt. After Oven Drying	Change in Wt.	% Change	Wt. of <u>Containe</u> r	Wt. of Sample <u>After Drying</u>
45A	140.805	140.481	. 324	.003	25.171	115.31
46A	135.801	135.771	.030	.0003	25.038	110.733
47A	126.250	126.194	.056	.0006	24.410	101.784
48A	134.928	134.899	.029	.0003	25.367	109.532
49A	145.500	145.298	.202	.002	26.053	119.245
50A	107.174	107.151	.023	.0003	25.581	81.57
51A	125.828	125.790	.038	.0004	24.847	100.943
52A	120.594	120.579	.015	.0002	24.860	95.719
53A	125.794	125.773	.021	.0002	25.535	100.238
54A	131.339	131.322	.017	.0002	24.933	106.389
55A	130.839	130.568	.271	.003	25.477	105.091
56A	141.139	141.053	.086	.0007	24.292	116.761
574					25 420	

57A

25.429

	Beach D	ata for July 1	6	123	.*.*				
e. * 	Sample No.	Wet Wt. of Sample <u>& Container</u>	Wt. After Oven- Drying	Wt. of Container	Wt. of Sample	Change In Wt.		ړ <u>Change</u>	
	1A	110.312	109.950	25.100	84.85	0.362		.004	
	18			61.799			<i></i>		
	2A	119.755	119.647	25,239	94.408	0.108	0 250	.001	004
	2B	104.930	104.322	25.778	78.544	0.608	0.358	.007	.004
	3A	116.952	116.889	25.436	91.453	0.063	0 215	.0007	.004
	3B	97.769	97.202	24.843	72.359	0.567	0.315	.008	• 004
	4A	124.838	124.025	25.137	98.888	0.813	0.563	.008	.006
· .	4B	119.099	118.786	25.172	93.614	0.313	0.000	.003	.000
	5A	127.780	127.092	24.900	102.192	0.688	0.399	.007	.004
	5B	115.991	115.882	25.111	90.771	0.109	0.399	.001	.004
	6А	114.815	114.535	24.682	89.853	0.280	0.418	.003	.005
	6B	117.310	116.754	24.981	91.773	0.556	0.410	.006	.005
	7A	92.604	92.310	26.022	66.288	0.294	0.423	.004	.006
	7B	106.330	105.778	25.873	79.905	0.552	0.425	.007	.000
	8A	119.508	119.286	25.468	93.818	0.222	0.308	.002	.003
	8B	123.597	123.204	25.379	97.825	0.393	0.900	.004	.005
	9A	109.858	109.275	25.760	83,515	0.583	0.340	.007	.004
	9B	131.589	131.492	25.388	106.104	0.097	01010	.0009	
	104	113.160	112.361	25.555	86.806	0.799	0.419	.009	.005
	10B	113.119	113,080	25.423	87.657	0.039		.004	
	11A	115.060	114.861	24.721	90.140	1.199	1.010	.013	.012
Ŀ.	11B	99.060	98.248	25.132	73.116	0.812		.011	
	12A	118.162	117.285	25.388	91.897	0.877	0.954	.009	.011
1	12B	105.747	104.716	26.400	78.316	1.031		.013	
	13A	107.031	104.150	25.622	78.528	2.881	1.790	.037	.023
	13B	104.973	104.259	24.806	79.453	0.714		.009	

•

.

4

Sample <u>No.</u>	Wet Wt. of Sample <u>& Container</u>	Wt. After Oven- Drying	Wt. of <u>Container</u>	Wt. of <u>Sample</u>	Change In Wt.		% Change	
14A	106.403	103.452	25.693	77.759	2.951		.038	
14B	120.439	119,785	24,592	95.193	0.654	1.803	.007	.023
15A	127,545	126.949	25.368	101.581	0.596		.006	
15B	104.873	103.019	25.492	77.527	1.854	1.225	.024	.015
16A	119.451	118.831	25.372	93.459	0.620		.007	
16B	106.369	104.035	25.149	78.886	2.334	1.477	.029	.018
17A	119.932	119.316	25.088	94.228	0.616	1 0/0	.007	01.0
17B	102.408	100.925	25.340	75.585	1.483	1.049	.019	.013
18A	120.511	119.762	25.472	94.290	0.749	0 702	.008	000
18B	112.192	111.376	25.236	86.140	0.816	0.783	.009	.009
19A	115.837	114.741	25.539	94.202	1.096	מרו נ	.012	017
19B	112,312	111.049	25.639	85.41	1.263	1.179	.015	.014
20A	93.424	92.275	24.790	67.485	1.149	1.361	.017	.018
20B	107.072	105,500	25,759	79.741	1.572	1.301	.019	.010
21A	125,430	124.553	25.482	99.071	0.877	0.685	.009	.008
21B	114.469	113.976	24.779	89.197	0.493	0.000	.006	.000
22A	104.873	103.130	24.751	78.379	1.743	1.435	.022	.018
22B	114,617	113.491	25.576	87.915	1.126	1.432	.013	•010
23A	106.670	105.358	25.301	80.057	1.312	1.272	.016	.016
23B	105.627	104.395	25.741	78.654	1.232	1.272	.016	.010
24A	119,100	117.715	25.624	92.091	1.385	1.140	.015	.012
24B	118,411	117.521	25.211	92.31	0.890	T.140	.009	.012
25A	103.082	102.050	25.689	76.361	1.032	1 001	.014	Q1 4
25B	110.304	109.149	25.158	83,991	1.155	1.094	.014	.014

Sample <u>No.</u>	Wet Wt. of Sample <u>& Container</u>	Wt. After Oven- Drying	Wt. of <u>Container</u>	Wt. of <u>Sample</u>	Change In Wt.		% <u>Change</u>	
26A	119.712	109.418	24.493	84.925	1.294		.015	
26B	119,227	118,323	25.111	93.212	0.904	1.099	.009	.012
27A	118,920	118.350	24.871	93.479	0.570		.006	
27B	104,031	103,220	25.609	77.611	0.811	0.691	.011	.009
28A	125,979	124.952	24.920	100.032	1.027		.011	
28B	110,963	110.240	25,274	84.966	0.723	0.875	.009	.010
29A	94.966	94.169	25.601	68.568	0.797		.012	
29B	115.010	113.800	25.006	88.794	1.210	1,004	.014	.013
30A	118,539	117.699	24.750	92.949	0.840		.009	
30B	127.157	125.478	24.846	100.632	1.679	1.259	.017	.013
31A	کو بنی جب				مود ک		يونية الكر على	
31B	123,621	122.730	25.770	96.960	0.891		.009	
32A	113.714	112.470	~~*		<u>ه</u> ريني		مە يۇر ب	
32B	128.041	127.419	25.171	102.248	1.244		.012	
33A	107.058	104.961	25.119	79.842	2.097		.026	
33B	115.566	115,532	25.119	90.413	0.034	1.066	.0004	.013
34A	123.339	121.741	25.601	96.140	1.598		.017	
34B	132,698	132.661	23,882	108.779	0.037	0.818	.0003	.009
35A	124.046	122.051	24.939	97.112	1.995		.021	
35B	113.670	113.324	24.650	88.674	0.346	1.171	.004	.013
36A	106.792	104.340	25.940	78.400	2.452		.031	
36B	122.179	120.905	26.372	94.533	1.274	1.863	.013	.022
37A	95.642	94.009	23,911	70.098	1.633		.023	
37B	119,853	115.194	25.442	89.792	4.659	3.146	.052	.038
38A	116.181	113.163	24.709	88.454	3.018		.034	
38B	109.987	105.690	25.038	80.652	4.297	3.658	.053	.044

125

Sample <u>No.</u>	Wet Wt. of Sample <u>& Container</u>	Wt. After Oven- Drying	Wt. of <u>Container</u>	Wt. of <u>Sample</u>	Change In Wt.		% <u>Change</u>	
39A	113.481	109.570	25.028	84.542	3.911	3.254	.046	.039
39B	113.420	110.823	25.521	85,302	2.597		.031	
40A	116.515	112.828	25.189	87.639	3.687	2,771	.042	.032
40B	117.584	115.730	25.081	90.649	1,854		.021	
41A	121.921	119.873	24,738	95.135	2.048	1,710	.022	.020
41B	106.743	105.372	23.939	81.433	1.371		.017	
42A	131.240	130.647	25.626	105.021	0.593	0.369	.006	.004
42B	129.935	129.790	25.027	104.763	0,145		.001	
43A	123.674	120.830	25.762	95.068	2.844	2.897	.029	.031
43B	118.631	115.681	24.760	90.921	2.950		.032	
44A	110.425	108.221	24.890	83.331	2.204	1.782	.026	.020
44B	122.519	121.159	25.358	95.801	1.360		.014	
45A	114.678	114.239	25.171	89.068	0.439	1.615	.005	.019
45B	113.551	110.761	25.639	85.122	2.79		.033	
46A	112.625	111,508	25.038	86.470	1,117	1.704	.013	.019
46B	125.119	122.828	25.818	97.010	2 .29 1		.024	
47A	116.873	114,929	24.410	90.519	1.944	1.547	.021	,017
47B	123.765	122.615	25.451	97.164	1.150		.012	
48A	109.515	108.167	25,367	82.800	1.348	0.724	.016	.009
48B	135.740	135.641	24.821	110.820	0.099		.0009	
49A	106.844	104.083	26.053	78.030	2,761	2.202	.035	
49B	122.902	121.259			1.643			
50A	110.011	107.005	25.581	81.424	3.006	2.515	.037	.030
50B	118.995	116.971	25.049	91.922	2.024		.022	

Sample <u>No.</u>	Wet Wt. of Sample & Container	Wt. After Oven- Drying	Wt. of <u>Container</u>	Wt. of <u>Sample</u>	Change In Wt.		% Change	
51A	103.441	100.031	24.847	75.184	3,410	0 7/0	.045	<u>0/0</u>
51B	106.180	102.110	24.912	77.198	4.070	3.740	.053	.049
52A	121.235	117.503	24.860	92.643	3.732	0 504	.040	000
52B	103.910	102.470	24.842	77.628	1.440	2.586	.019	.030
53 <u>A</u>	101.062	97.890	25.535	72.355	3.172	1.936	.044	.026
53B	114,228	113.529	25.961	87.568	0.699	T*320	.008	.020
54A	109.582	105.820	24.933	80.887	3.762	2.360	.047	.029
54B	115.867	114.909	24.903	90.006	0.958	2.300	.011	.027
55A	103.870	100.848	25.477	75.371	3.022	2.020	.040	.026
55B	116.155	115.137	25.159	89.978	1.018	2.020	.011	.020
56A	114.552	110.651	24.292	86.359	3.901	3,466	.045	.039
56B	118.523	115.492	24.899	90.593	3.031	3,400	.033	•000
57A	114.440	110.189	25.543	84.646	4.251	8.162	.050	.098
57B	119.841	107.769	24.579	83.190	12.072	0.102	.145	
58A	109.350	104.668	24.997	79.671	4.682	5.802	.059	.074
58B	111.262	104.340	25.473	78.867	6.922		.088	
59A	114.018	109.611	24.550	85.061	4.407	6,112	.052	.073
59B	117.290	109.473	25.431	84.042	7.817	0,122	.093	1070
60A	107.372	102,924	24.568	78.356	4.448	7.819	.057	.093
60B	123,599	112.410	24.709	87.701	11.189	, .0	.128	
61A	117.300	112.840	25.301	87.539	4.460	3.560	.051	.040
61B	120,574	117.914	25.500	92.414	2.660		.029	
62A	108.584	104.403	25.009	79.394	4.181	3.952	.053	.048
62B	116.140	112.418	25,452	86.966	3.722		.043	

Sample <u>No.</u>	Wet Wt. of Sample & Container	Wt. After Oven- Drying	Wt. of <u>Container</u>	Wt. of <u>Sample</u>	Change In Wt.		% Change	
63A	117.465	113.470	25.770	87.7	3,995	0 500	.046	0005
63B	110.088	109.037	25.190	83.847	1.051	2,523	.013	.0295
64A	111.451	108.165	25.343	82.822	3.286	2.159	.039	.0255
64B	109.741	108.710	26,119	82.591	1.031	2.137	.012	.0255
65A	94.304	90.875	25.437	65.438	3.429	3.258	.052	.0455
65B	107.613	104.526	25.490	79.036	3.087	J.2J0	.039	.0433
66A	112.089	107.654	24.668	82.986	4.435	3.473	.053	.041
66B	114.327	111.816	24,536	87.28	2.511	J.47J	.029	.041
67A	109.912	105.767	25.099	80.668	4.145	2.825	.051	.0345
67B	109.066	107.561	24.465	83.096	1.505	2.025	.018	,0345
68A	108.271	104.160	24.960	79.2	4.111	3.661	.052	.0445
68B	115.059	111.849	25,292	86.557	3.21	51001	.037	.0110
69A	105.997	101.991	25.270	76.721	4.006	5.398	.052	.0675
69B	112.700	105,910	24.314	81.596	6.79	5.550	.083	
70A	119.301	113,826	24.678	89.148	5.475	5.804	.061	.0655
70B	119.267	113.134	25.583	87.551	6.133	51004	.071	10055
71A	110.170	106.310	24.458	81.852	3.86	2,484	.047	.0295
71 <u>B</u>	120.078	118.970	25.256	93.714	1.108	21101	.012	
72A	115.049	110.709	24.865	85.844	4.34	2.898	.051	.034
72B	113.069	111.614	24.468	87.146	1.455	11020	.017	
73A	117.814	111.331	25.110	86,221	6.483	4.085	.075	.047
73B	113.395	111.708	24.687	87.021	1.687		.019	
74A	117.399	111.040	24.252	86.788	6.359		.073	
75A	117.151	113.442	24.497	88.945	3.709	2.491	.042	.0285
75B	113.337	112.065	25.181	86.884	1.272		.015	

Sample <u>No.</u>	Wet Wt. of Sample <u>& Container</u>	Wt. After Oven- Drying	Wt. of <u>Container</u>	Wt. of <u>Sample</u>	Change In Wt.		% <u>Change</u>	
76A	113.512	108.898	23.165	85.733	4.614		.054	
76B	111.590	110.099	24.909	85.19	1.491	3.053	.018	.036
77A	124,130	121.408	24.541	96.867	2.722	0.067	.028	
77B	119.662	117.850	24,541	93,309	1.812	2.267	.019	.0235
78A	105.510	102.998	25.590	77.408	2.512	1 070	.032	01.00
78B	110.141	110.107	24.553	85.554	.034	1.273	.0004	.0162
7 9 A	102.996	100.591	24 .9 87	75.604	2.405	0.000	.032	0055
79B	116.801	115,129	24,804	90.325	1.672	2.039	.019	.0255
80A	115.611	110.762	24.513	86.249	4.849	3.131	.057	.0365
80B	117.099	115.687	24.919	90.768	1.412	2.131	.016	.0505
81A	114.490	110.730	25.452	85.278	3.76	2.158	.044	025
81B	120.875	120.319	24.865	95.454	.556	2.130	.006	.025
82A	117.400	113.251	24.831	88.42	4.149	2.731	.047	0.21
82B	121.720	120,408	25.625	94.783	1.312	4.731	.014	.031
83A	115.737	110.629	24.515	86.114	5.108	2.748	.059	.0315
83B	112.279	111.892	25.073	86.819	.387	4./40	.004	.0313
84A	120.346	115.792	24.638	91.154	4.554	2.559	.049	,028
84B	110,523	109.960	26.988	82 .9 72	.563	2.337	.007	.040
85A	115.850	113.764	24.922	88.842	2.086	1.499	.023	.017
85B	111,951	111.039	24.692	86.347	.912	1.477	.011	.017
86A	106.252	103.721	25.318	78.403	2.531	1.754	.032	.0215
86B	118,172	117.196	25,485	91.711	.976	T • 1 34	.011	• (222)
87A	101.640	98.984	25.050	73.934	2.656	1.624	.036	.022
87B	101.430	100.839	24.907	75.932	.591	1,044	.008	• 742

Sample <u>No.</u>	Wt. of Can _(Empty)	Wet Wt. of Sample <u>& Can</u>	Oven-Dry Wt. of <u>Sample & Can</u>	Dry Wt. of <u>Sample</u>	Change In Wt.		X Change	
1A	25.100	108.560	108.528					
1B	61.799	102.378	102.360					
2A	25.239	110.072	110.011					
2B	25.778	105.521	105.507					
3A	25,436	105.081	105.639					
3B	24,843	100.450	100.434					
4A	25.137	100.329	100.296					
4B	25.172	104.769	104.730					
5A	24.900	98.801	98.755	73.855	.045	.033	.0006	.0005
5B	25.111	93.720	93.700	68.589	.020	.055	.0003	.0003
6A	24.682	80.270	80.240	55.558	.030	.0255	.0005	.0005
6B	25,102	79.880	79.859	54.757	.021	.0233	.0004	.0005
7A	26.022	98.748	98.710	72.688	.038	.0285	.0005	.0004
7B	25.783	90.418	90.399	64.526	.019	.0205	.0003	.0004
8A	25.468	102.623	102.575	77.107	.048	.031	.0006	.0004
8B	25,739	90.290	90.276	64.537	.014	.031	.0006	.0004
9A	25.760	91.870	91.830	66.070	.040	.0265	.0002	.0004
9B	25.388	96.501	96.488	71.100	.013	.0209	.0002	.0004
10A	25.555	100,577	101.538	75.983	.039	.027	.0005	.0004
10B	25.423	89.569	89.554	64.131	.015	+027	.0002	.0004
11A	24.721	95.930	95.895	71.174	.035		.0005	
118	25.132	empty						
21A	25.388							
12B	26,400						. •	

Sample <u>No.</u>	Wt. of Can (Empty)	Wet Wt. of Sample <u>& Can</u>	Oven-Dry Wt. of Sample & Can	Dry Wt. of <u>Sample</u>	Change In Wt.		% <u>Change</u>	
13A	25.622	108.107	108.080	82.458	.027		.0003	
13B	24.806	79.762	79.750	54.944	.012	.0195	.0002	.0003
14A	25.693	109.516	109.485	83.792	.031	001	.0004	6000
14B	24.592	76.219	76.208	51.616	.011	.021	.0002	.0003
15A	25.368							
15B	25.492	87.572	87.551	62.059	.021		.0003	
16A	25.372	78.500	78.484	53.112	.016	.0125	.0003	.0003
16B	25,149	79.920	79.911	54.762	.009	.0123	.0002	.0003
17A	25.088	73.480	73.450	48.362	.030	.0235	.0006	0005
17B	25.340	78,982	78.965	53.625	.017	.0235	.0003	.0005
18A	25.472	85.131	85.110	59.638	.021	.025	.0004	.0004
18B	25.236	94,368	94.339	69.103	.029	.025	.0004	.0004
19A	25.539	98.929	98.894	73.355	.035		.0005	
19B	25.639							
20A	24.790	96.570	96.546	71.756	.024	.022	.0003	.0003
20B	25.759	99.975	99.955	74.196	.020	.024	.0003	.0005
21A	25.482	96.541	96.500	71.018	.041	.029	.0005	.0004
21B	24.779	91.365	91.348	66.569	.017	.025	.0003	.0004
22A	24.751	86.839	86.801	62.050	.038	.034	.0006	.0005
22B	25.576	96.980	95.950	70.374	.030	•034	.0004	.0005
23A	25.301							
23B	25.741	85.270	85.250	59.509	.020		.0003	
24A	25.624	97.709	97.658	72.034	.051	.0345	.0007	.0005
24B	25.211	90.518	90.500	65.289	.018	•0040	.0003	

_

Beach Data from August 2

Sample <u>No.</u>	Wt. of Can (Empty)	Wet Wt. of Sample <u>& Can</u>	Oven-Dry Wt. of <u>Sample & Ca</u>	Dry Wt of <u>n Sample</u>	Chang In Wt	e .	% <u>Chang</u>	•
25A	25,689	112,380	112.340	86.651	.040		.0005	
25B	25.158	89.841	89.820	64.662	.021	.030		.0004
26A	24.493	98.025	97.990	73.497	.035		.0005	
26B	25.111	81,997	81.971	56.860	.026	.0305		.0005
27A	24.871	97.471	97.441	72.570	.030		.0004	
27B	25.609	91.282	91.001	65.392	.281	.0155		.0022
28A	24.920	67.711	67.691	42.771	.020		.0005	
28B	25.274	95.580	95.559	70.285	.021	.0205	.0003	.0004
29A	25.601	88.872	88.851	63.250	.021		.0003	
29B	31,848	91.829	91.804	59.956	.025	.023	.0004	.0004
30A	24.750	85.179	85,150	60.400	.029		.0005	
30B	24.846	83.830	83.814	58.968	.016	.0225	.0003	.0004
31A	25.214	108,419	108.361	83.147	.058		.0007	
31B	25.770	85.310	85.291	59.521	.019	.0385	.0003	.0005
32A	24.809	99.670	99.639	74.830	.031		.0004	
32B	25.171	82.330	82.315	57.144	.015	.023	,0003	.0004
33A	25.119	115.081	115.037	89.918	-044		.0005	
33B	25.119	75.361	75.289	50.170	.072	.058	.0010	.0008
34 <u>A</u>	25.601	102.511	102.464	76.863	.047		.0006	
34B	23.882	91.271	91.260	67.378	.011	.029	.0002	.0004
3'5A	24.939	94.961	94.932	69.993	.029		.0004	
35B	24.650	76.330	76.318	51.668	.012	.0205	.0002	.0003
	25.940	103.564	103.520	77.580	.044		0006	
36B	26.372	79.871	79.843	53.471	.028	.036		.0006

Sample <u>No.</u>	Wt. of Can (Empty)	Wet Wt. of Sample <u>& Can</u>	Oven-Dry Wt. of Sample & Can	Dry Wt. of <u>Sample</u>	Change In Wt.		% Change	
37A	23.911	74.833	74.809	50.898	.024		.0005	
37B	25,442	80.309	80.291	54.849	.018	.021	.0003	.0004
38A	24.709	87.671	87.649	62,940	.022		.0003	
38B	25.038	69.831	69.821	44.783	.010	.016	.0002	.0003
39A	25.028	97.271	97.240	72.212	.031	.027	.0004	0004
39B	25.521	89.199	89.176	63.655	.023	.027	.0004	.0004
40A	25.189	86.489	86.468	61,279	.021	.0225	.0003	.0003
40B	25.081	94.064	94.040	68.959	.024	•0425	.0003	.0003
41A	24.738	103.959	103.917	79.179	.042	.0315	.0005	.0004
41B	23,939	90.706	90.685	66.746	.021	,UJIJ	.0003	.0004
42A	25.626							
42B	25.027	92.110	92.079	67.052	.031		.0005	
43A	25.762	72.786	72.737	46.975	.049	.0375	.001	.0007
43B	24.760	86.248	86.222	61.462	.026	.03/5	.0004	
44A	24.890	76.164	76.091	51.201	.073	.0475	.001	.0007
44B	25.358	90.041	90.019	64.661	.022		.0003	
45A	25 .1 71	88.799	88.689	63,518	.11	.069	.002	.0013
45B	25,639	83.267	82.239	56.600	.028	1002	.0005	
46A	25.038	73.830	73.777	48.739	.053	.0375	.0010	.0007
46B	25.818	87.770	87.748	61.930	.022	10375	.0004	10007
47A	24.410	76.002	75.919	51,509	.083	.0545	.0020	.0012
47B	25.451	104.348	104.322	78.871	.026	10242	.0003	
48A	25.367	76.490	76.452	51.085	.038	.0450	.0007	.0009
48B	24.821	69.170	69.118	44.297	.052	10 100	.0010	10.009

Sample <u>No</u> .			Oven-Dry Wt. of	Dry Wt of		·		
	(Empty)	<u>& Can</u>	Sample & C	an <u>Sample</u>	Chan In W	ge 't.	% <u>Chan</u> g	2 0
49A	26.053	114.417	114.373	88.320				
49B	24.571	70.742	70.722	46.151		•03	•000 <u>:</u> 2	.0005
50A	25.581	104.650	104.477				.0004	•
50B	25.049	83.131	83.113	78.896	.17:	3 •095	•0020	•0015
51A	24.847	95.008		58.064	.018	3	•0003	
51B	24.912		94.801	69.954	.207		.0020	
52A		87.978	87.952	63.040	.026	-116	.0004	•0012
	24.860	99.120	99.060	73.200	.068		.0009	
52B	24.842	92.690	92.673	67.831	.017	.042	5 •0003	.0006
53A	25.535	103.318	103.231	77.696	.087		.0010	
53B	25.961	80.510	80.496	54.535	.014	.0505	;	.0007
54A	24.933	89.794	89.289	64.356	.505		.0003	
54B	24.903	85.676	85.656	60.753		.2625	.0080	.0042
55A	25.477	52.825	52.811	27.334	.020		.0003	
55B	25.159	80,702	80.681		.014	.0175	.0005	.0005
56A	24.292	96,589		55.522	.021		.0004	10005
56B	24.899		96.560	72.268	.029	.0155	.0004	
57A	25.543	84.563	84.561	59.662	.002	.0133	.00003	.00022
57B		92.292	92.265	66.722	.027		.0004	
	24.579	77.207	77.185	52.606	.022	.0245	.0004	.0004
58A	24.997	87.213	87.185	62.188	.028		.0005	
58B							.0005	
59A	24.550	95.148	95.106	70.556	.042			
59B	25.431	80.778	80.759	55.328		.0305	.0006	.0005
60A	24.568	93.471			.019		.0003	
60B	o	72.340		68.879	.024	.022	.0003	000/
	··		72.320	47.611	.020		.0004	.0004

Sample <u>No.</u>	Wt. of Can _(Empty)	Wet Wt. of Sample <u>& Can</u>	Oven-Dry Wt. of <u>Sample & Can</u>	Dry Wt. of <u>Sample</u>	Change In Wt.		% Chango	
61A	25.301	102.406	102.380	77.079	.026		.0003	
61B								
62A	25.009	73.933	73.908	48.899	.025	0005	.0005	0005
62B	25,452	82,660	82.638	57.186	.022	.0235	.0004	.0005
63A	25.770	77.310	77.282	51.512	.028	010	.0005	000Ė
63B	25.190	82.689	82.659	57.469	.030	.029	.0005	.0005
64A	25.343	90.202	90.171	64.828	.031	0265	.0005	.0005
64B	26.119	68.642	68.620	42.501	.022	.0265	.0005	.0005
65A	25.437							
65B	25.490	88.079	88.041	62.551	.038		.0004	
66A	24.668	78.371	78.339	58.671	.032	.030	.0004	.0004
66B	24.536	82.837	82.809	58.273	.028	.030	.0003	.0004
67A	25.099	86.842	86.819	61,720	.023	.0875	.0003	.0012
67B	24.465	86.39 2	86.240	61.775	.152	.007.9	.0020	.0012
68A	24,960	76.062	76.048	51.088	.014	.0145	.0002	.0002
68B	25.292	78.355	78,340	53.048	.015	-0149	.0002	.0002
69A	25.270	85.880	85.860	60.590	.020	.0225	.0002	.0003
69B	24.314	89.045	89.020	64.706	.025	.024.)	.0003	.0003
70A	24.678	109.350	109.311	84.633	.039	.028	.0004	.0003
70B	25.583	77.179	77.162	51.579	.017	.020	.0002	.0005
71A	24.458	100,480	100.460	76.002	.020	.0165	.0002	.0002
71B	25.256	83,230	83.217	57.961	.013	*GT03.	.0002	*9002
72A	24.865	74.328	74.309	49.444	.019	.019	.0003	.0003
72B	24.468	77.069	77.050	52.582	.019	.017	.0002	.0000

Sample No.	Wt. of Can (Empty)	Wet Wt. of Sample <u>& Can</u>	Oven-Dry Wt. of <u>Sample & Ca</u>	Dry Wi of <u>n Sample</u>	Change		% <u>Chang</u>	e
73A	25.110	106.630	106.600	81.490	.030	-	.0003	
73B	24,687	82.245	82.228	57.541	.017	.023	5 .0002	.0003
74A	24.252	97.143	97.122	72.870	.021		.0002	
74B	25.071	97.310	97.288	72.217		.021		.0002
75A	24.497	77.346	77.324	52.827			.0003	
75B	25.181	84.868	84.847	59.666		.0215		.0003
76A	23.165	85.853	85.824	62.659	.029		.0003	
76B	24.909						.0005	
77A	24,541							
77B	24.541	88.456	88.430	63.889	.026		.0003	
78A	25.590	66.966	66.941	41.351	.025			·
78B	24.553	84.207	84.184	59,631	.023	.024	.0006	.0005
79A	24.987	86.860	86.840	61.853	.020		.0004	
79B	24.804	82.508	82.481	57.677	.027	.0235	.0003	.0004
80A	24.513	82.013	81.991	57.478	.022		.0005	
80B	24,919	85.567	85.534	60.615	.033	.0275	.0004	.0005
81 <u>A</u>	25,452	72.355	72.335	46.883	.020		.0005	•
81B	24.865	83.711	83.691	58.826	.020	.020	.0004	.0004
82A	24.831	74,714	74.691	49.860	.023		.0003	
82B	25.625	79.419	79.392	53.767	.027	.025	.0005	.0005
83A	24.515	82.669		58.124	.030		.0005	
83B	25.073	84.323		59.227		.0265	.0005	.0005
84A	24.638	89.910	.	64.233	1.039		.0004	
84B	26.988	77.979		50.972		529	.0160 .0004	.0082

Sample <u>No.</u>	Wt. of Can (Empty)	Wet Wt. of Sample <u>& Can</u>	Oven-Dry Wt. of <u>Sample & Car</u>	of	Change In Wt.		% Change	
85A	24.922	82,103	82.080	57.158	.023	.022	.0004	.0004
85B	24.692	86.381	86.360	61.668	.021	.022	.0003	.0004
86A	25.318	86.161	86.130	60.812	.031	.0285	.0005	.0005
86B	25.485	91.845	91.819	66.334	.026	.0205	.0004	.0005
87A	25.050	102.512	102.484	77.434	.028	0245	.0004	0004
87B	24.907	91.901	91.880	66.973	.021	.0245	.0003	.0004
88A	24.883	77.540	77.515	52.633	.025	0.96	.0005	0005
88B	25,445	79.007	78.980	53.535	.027	.026	.0005	.0005
89A	25.741	99.722	99.698	73.957	.024	0.00	.0003	000%
89B	25.966	87.683	87.651	61.685	.032	.028	.0005	.0004
90A	25.246	98.728	98.698	73.452	.030	.030	.0004	.0005
90B	24.838	82.369	82.339	57.501	.030	.000	.0005	.0003

	HW 90
#	Cannister "A"
1.	Henderson'Pt
10.	Fort Henry Avenue
14.	Lady Mary Ave
19.	Sherman
24.	Cedar Ave
29.	Barkley Ave
35.	Magnolia Ave
38.	Pine Ave
41.	Henderson Ave
44.	Church
48.	Pass Christ Ch. Commerce (West)
49.	Pass Christ Harbor (East)
60.	Seal Ave
70.	Courtenay Ave
75.	Long
81.	Menge
88.	Scenic Drive (East)
	·

Dead Cans 11319B 77A 76B Water Cannister "B" Henderson Pt Sameo Sameo ζ,

Sameo Sameo

APPENDIX E TABLES 1-15 SYNOPTIC WEATHER TYPES -PERCENT OF HOURS FOR MOBILE 1977

	J	F	M	A	M	J	J	A	S	Ó	N	D	YR
PH		9	5										
										6	4	3	2
СН	24	29	8	17	14	13	······		12	36	18	28	
					·					- 30	10	28	15
FOR	50	24	32	6	10		2	4	9	29	29	19	19
CR			5	22	24	· · · · · · · · · · · · · · · · · · ·	6	26	11				
						<u> </u>		20	11	6	6	10	10
GR		20	15	27	16	20	15	23	20	6	12	22	17
FGR	19	10	30	16	12	5	11	2.2					
		· · · · ·					<u></u>	33	11	4	31	14	16
GH	7	7	4	10	23	48	42		24	12		4	16
0000													
GTD	<u> </u>		<u> </u>			14	23	13	12				5
						· · · · · · · · ·			<u>ia</u>		100	100	100

Table E-1: Synoptic Weather Types in Percent of Hours for Mobile, 1977

·	J	F	M	A	M	J	J	<u>A</u>	<u> </u>	0	N	D	YR
PH		·····		·····				نىپ مەسىتى مەربىيە تەسىتى					<u>0</u> 0
CH					$\frac{0.1}{2}$		··						$\frac{0.1}{0}$
FOR	<u>4.0</u> 56	$\frac{0.8}{42}$	<u>2.3</u> 38	$\frac{0.3}{11}$					$\frac{2.5}{26}$	<u>4.0</u> 88	$\frac{2.7}{28}$	$\frac{1.6}{33}$	$\frac{18.2}{28}$
CR					$\frac{0.4}{8}$	· · · · · · · · · · · · · · · · · · ·		<u>0.5</u> 9	$\frac{0.1}{1}$				$\frac{1.0}{2}$
ĞŔ.		· · · · · · · · · · · · · · · · · · ·	$\frac{0.2}{3}$	$\frac{0.1}{4}$		$\frac{0.2}{17}$	$\frac{1.7}{21}$	$\frac{0.3}{6}$	$\frac{0.4}{4}$	$\frac{0.1}{2}$	$\frac{0.2}{2}$		$\frac{3.2}{5}$
FGR	$\frac{3.1}{44}$	$\frac{1.1}{58}$	$\frac{3.6}{59}$	$\frac{2.3}{85}$	<u>3.9</u> 73	<u>0.6</u> 50	$\frac{0.4}{5}$	<u>3.0</u> 56	$\frac{2.7}{28}$	$\frac{0.5}{10}$	$\frac{6.6}{69}$	$\frac{3.3}{66}$	$\frac{31.1}{47}$
GH		<u> </u>			$\frac{0.9}{17}$	$\frac{0.4}{33}$	$\frac{4.2}{54}$	······································	$\frac{1.5}{15}$				$\frac{7.0}{10}$
GTD				نیر ند ند . دجرو چرو	·		$\frac{1.5}{19}$	$\frac{1.6}{29}$	$\frac{2.4}{25}$				<u>5.5</u> 8
Fota	al Pr	ecipi	tatio	n:					_				
	7.1	1.9	6.1	2.7	5.3	1.2	7.8	5.4	9.6	4.6	9.5	4.9	<u>66.1</u>

Table E-2: Monthly Precipitation by Synoptic Weather Types for Mobile, 1977 (inches measured/percent total).

.

	January S		<u>August</u> B			uary J	October C		
- <u></u>	0600	1500	0600	1500	0600	1500	0600	1500	
Сн	34/7	31/11	29/3	34/13		<u></u>	02/5	02/8	
PH			······································				33/5	15/11	
FOR	02/6	36/8	35/4	31/8	34/5	05/5	67/7	34/7	
CR		·	05/5	13/9	05/3	13/7	09/10	12/8	
GR			14/5	16/13	19/3	20/8	15/5	19/11	
FGR	22/9	21/12	18/12	18/15	14/5	22/5	25/4	22/10	
GH	27/9	31/8	33/4	26/9	22/3	19/9	25/3	28/7	
GTD				······································	09/5	13/8			

Table E-3: Characteristic Wind Direction*/Speed** for Synoptic Weather Types at Mobile, 1977, 0600 and 1500 Hours CST

* direction in azimett x 10 ** speed in knots

• •

TABLE E-4.	MEAN	PROPERT	IES OF	SWTs,	JANUARY,	MOBILE,	1977
<u>0600 CST</u>	<u>PH</u>	СН	FOR	CR	GR	FGR	GTD
No. Cases		7	16			6	

T _A (^o f)	24	36	51	25
T _D (^o f)	16	26	47	18
RH (%)	73	70	85	75
*Wind Dir.	34	02	22	27
**Wind Sp.	7	6	9	9
***Cloud Cvr.	0	9	9	0

1500 CST				
No. Cases	7	15	7	2
TA	39	50	55	56
TD	15	30	41	20
RH	40	51	64	24
Wind Dir.	31	36	21	31
Wind Sp.	11	8	12	8
Cloud Cvr.	0	8	9	0

*Director in azimuth X 10

**Speed in t knots

***Cloud cover scale 0 to 10; 0 = clear; 10 = overcast

GTD

GH

2.

TABLE E-5. MEAN PROPERTIES OF SWTS, APRIL, MOBILE, 1977

<u>0600 CST</u>	PH	СН	FOR	CR	GR	FGR	GTD	<u>GH</u>
No. Cases		4	3	7	8	4		4
TA		50	58	56	62	71		53
T _D		46	53	40	61	67		47
RH		89	84	53	94	86		81
Wind Dir.		29	35	05	14	18		33
Wind Sp.		3	4	5	5	12		4
Cloud Cvr.		1	6	3	6	10		1
1500 CST								
No. Cases		4	2	7	8	5		3
TA		74	71	81	79	78		78
T _D		38	62	51	57	66		44
RH		29	72	36	49	66		30
Wind Dir.		34	31	13	16	18		26
Wind Sp.		13	8	9	13	15		9
Cloud Cvr.		1	10	1	5	10		2

TABLE E-6. MEAN PROPERTIES OF SWTs, JULY, MOBILE, 1977

0600 CST	PH	Сн	FOR	CR	GR	FGR	GRT	<u>GH</u>
No. Cases			1	2	5	3	7	13
TA			72	76	76	78	75	77
Ť _D			71	72	73	73	71	74
RH			97	91	92	86	88	91
Wind Dir.			34	05	17	14	09	27
Wind Sp.			5	3	3	5	5	3
Cloud Cvr.			10	7	. 7	7	7	4
<u>1500 CST</u>								
No. Cases			1	2	4	4	7	13
т _А			92	92	82	87	87	90
TD			70	70	73	73	73	74
RH			49	49	75	63	63	59
Wind Dir.			05	13	20	22	13	19
Wind Sp.			5	7	8	5	8	9
Cloud Cvr.			б	4	8	8	9	7

TABLE E-7. MEAN PROPERTIES OF SWTs, OCTOBER, MOBILE, 1977

0600 CST	PH	CH	FOR	CR	GR	FGR	GTD	<u>GH</u>
No. Cases	2	12	10	1	2	1		3
TA	56	50	61	64	73	77		61
T _D	55	46	56	62	68	74		47
RH	94	88	87	93	85	91		88
Wind Dir.	33	02	07	09	15	25		25
Wind Sp.	5	5	7	10	5	4		3
Cloud Cvr.	1	1	9	10	8	3		0.6
1500 CST								
No. Cases	2	11	8	3	2	1		4
TA	77	72	74	78	84	81		76
T _D	58	44	62	61	67	68		45
RH	52	37	69	57	57	65		35
Wind Dir.	15	02	34	13	· 19	22		28
Wind Sp.	11	₹€.	7	7	11	10		7
Cloud Cvr.	2	1	9	4	8	10		2

TABLE E-8.	ANI	UAL	REGIME	OF	MEAN	PROPE	RTIES	FOR	PH,	MORILE	, 197	1
0600 CST	ī	F	M	A	M	<u>J</u>	ī	A	1	<u>s o</u>	<u>N</u>	Ð
No. Cases	0	2	2	0	0	0	0	0	1	0 2	1	1
TA	0	47	55							56	57	43
T _D	0	38	49							55	56	36
RH	0	70	82							94	96	76
Wind Dir.	0	29	31							33	24	25
Wind Sp.	0	8	8							5	3	3
Cloud Cvr.	0	0	2							1	0	0
1500 CST											·	
No. Cases	0	2	1	0	0	0	0	0		0 2	2	1
TA	0	70	76							77	72	67
T _D	0	34	38							58	59	28
RH	0	28	25							52	62	23
Wind Dir.	0	28	34							15	24	27
Wind Sp.	0	12	7							11	6	6
Cloud Cvr.	0	5	0							2	8	2

TABLE E-8. ANNUAL REGIME OF MEAN PROPERTIES FOR PH, MOBILE, 1977

TABLE E-9.	AN	NUAL	REGIME	OF	MEAN	PROPE	RTIES	FOR	СН,	MOBILE,	197	7
0600 CST	<u>J</u>	F	M	A	M	<u>1</u>	Ţ	A	12	<u>s</u> <u>o</u>	N	D
No. Cases	7	9	3	4	5	4	0	0	4	12	5	10
T _A	24	36	40	50	65	70			70) 50	39	33
TD	16	27	30	46	61	62			66	5 46	30	27
RH	73	69	69	8 <u>9</u>	87	79			87	7 88	70	79
Wind Dir.	34	36	02	29	34	01			04	02	36	34
Wind Sp.	7	7	5	3	5	6			4	5	6	6
Cloud Cvr.	0	2	0	1	2	1			1	1	1	1
1500 CST												
No. Cases	7	7	2	4	4	5	0	0	4	. 11	5	8
TA	39	57	63	74	85	90			88	3 72	64	50
TD	15	24	27	38	60	59			68	3 44	32	22
RH	38	29	26	29	43	35			52	2 37	33	33
Wind Dir.	31	36	02	34	05	07			05	5 02	34	35
Wind Sp.	<u>11</u>	8	9	13	8	7			é	5 8	11	12
Cloud Cvr.	0	2	1	1	5	1			2	2 1	5	2

TABLE E-9. ANNUAL REGIME OF MEAN PROPERTIES FOR CH, MOBILE, 1977

TABLE E-10. ANNUAL REGIME OF MEAN PROPERTIES FOR FOR, MOBILE, 1977

0600 CST	Ţ	F	M	A	M	Ţ	<u>J</u>	A	<u>s</u>	<u>0</u>	N	D
No. Cases			3	7	8		2	8	3	1	2	4
TA			42	56	66		75	77	74	64	38	45
TD			38	40	62		72	72	68	62	31	54
RH			8 9	53	87		91	86	84	93	76	91
Wind Dir.			07	05	05		05	05	04	09	02	07
Wind Sp.			4	5	4		3	6	6	10	5	4
Cloud Cvr.			3	3	6		7	5	5	10	1	0
1500 CST												
No. Cases				7	. 7		2	8	3	3	2	2
т _А				81	85		92	88	91	78	58	61
T _D				51	61		70	72	69	61	34	49
RH				36	46		49	60	49	57	41	61
Wind Dir.				13	15		13	09	10	13	7	12
Wind Sp.				9	12		7	10	9	7	7	6
Cloud Cvr.				1	5		4	6	6	4	2	8

TABLE E-11. ANNUAL REGIME OF MEAN PROPERTIES FOR CR, MOBILE, 1977

TABLE E-12.	AN	NUAL	REGIME	OF	MEAN	PROPI	ERTIES	FOR	<u>GR</u> ,	MOBILE,	19	77
0600 CST	<u>J</u>	F	<u>M</u>	A	м	<u>1</u>	<u>J</u>	<u>A</u>	<u>s</u>	<u>0</u>	N	<u>D</u>
No. Cases	0	7	4	8	· 5	6	5	7	4	2	4	6
TA		52	60	61	68	76	77	77	75	73	56	54
T _D		46	55	61	66	73	72	72	70	68	52	72
RH		81	83	94	92	91	86	86	87	85	85	94
Wind Dir.		16	11	14	17	22	12	12	00	15	13	16
Wind Sp.		6	13	5	3	4	6	6	0	5	6	7
Cloud Cvr.		5	10	6	7	5	4	4	2	8	5	8
<u>1500 CST</u>							•			-		
No. Cases	0	5	5	8	4	7	4	7	6	. 4	4	8
TA		70	70	79	83	90	82	87	87	76	71	66
$\mathbf{T}_{\mathbf{D}}$		47	50	57	63	72	73	74	72	45	57	54
RH		45	52	49	51	58	75	64	62	35	63	68
Wind Dir.		18	15	16	20	20	20	17	19	28	15	19
Wind Sp.		10	11	13	6	9	8	8	8	7	10	8
Cloud Cvr.		7	7	5	7	6	8	8	6	2	6	7

TABLE E-13	. 4	NNUAL.	REGIN	1E OF	MEAN	PROP	ERTIES	FOR	<u>FGR</u> ,	MOBI	LĖ, 19	977
0600 CST	Ţ	F	M	A	M	<u>T</u>	Ţ	<u>A</u>	<u>s</u>	<u>0</u>	<u>N</u>	D
No. Cases	6	1	8	4	3	2	3	10	4	1	9	
$T_{\mathbf{A}}$	51	35	69	71	67	69	78	77	74	77	65	
TD	47	23	62	67	63	65	73	73	71	74	62	
RH	85	62	80	86	86	87	86	86	93	91	90	
Wind Dir.	22	30	16	18	13	20	14	22	14	25	15	
Wind Sp.	9	6	10	12	7	3	5	3	4	4	8	
Cloud Cvr.	9	0	10	10	10	8	7	8	8	3	10	
<u>1500 CST</u>											,	
No. Cases	7	4	11	6	5	1	4	11	5	1	9	
TA	55	71	74	78	82	92	87	84	81	81	70	
т _D	41	60	64	66	64	71	73	. 74	71	68	65	
RH	64	68	81	66	58	50	63	72	73	65	83	
Wind Dir.	21	20	18	18	19	24	22	18	24	22	16	
Wind Sp.	12	16	16	15	12	8	5	8	6	10	10	
Cloud Cvr.	9	9	10	10	8	6	8	10	10	10	10	

ABLE E-13. ANNUAL REGIME OF MEAN PROPERTIES FOR FGR, MOBILE, 1977

TABLE E-14.	• •	ANNUAL	REGIME	OF	MEAN	PROP	ERTIES	FOR	<u>GH</u> ,	MOBILE,	1977	7
0600 CST	ī	F	M	A	M	<u>1</u>	Ţ	A	<u>s</u>	0	N	D
No. Cases	2	2	1	4	7	14	13	0	8	3	0	1
TA	25	37	36	53	70	76	77		75	61		52
T _D	18	28	29	47	67	73	74	•	71	47		46
RH	75	70	76	81	91	91	91		89	88		80
Wind Dir.	27	-	-	33	29	25	27		29	25		21
Wind Sp.	9	-	-	4	2	4	3		4	3		10
Cloud Cvr.	0	0	0	1	5	2	4		2	1		0
1500 CST												
No. Cases	2	3	1	3	7	13	13	0	7	4	0	1
TA	56	65	67	78	75	91	90		89	76		50
т _р	20	28	27	44	77	72	74		70	45		27
RH	24	25	24	30	51	54	59		55	35		41
Wind Dir.	31	23	27	26	14	20	19		29	28		19
Wind Sp.	8	12	4	9	6	12	9		6	7		5
Cloud Cvr.	Ø	0	0	2	6	5	7		7	2		5

TABLE E-15.	ANNUA	l règime	OF	MEAN	PROPI	ERTIES	FOR	<u>GTD</u> ,	MOBILE	, 19	77
<u>0600 CST</u>	<u>J </u>	<u>M</u>	A	M	<u>1</u>	<u>J</u>	A	<u>s</u>	<u>0</u>	N	D
No. Cases					4	7	4	4			
TA					75	75	77	76			
T _D					74	71	71	70			
RH			•		96	88	81	81			
Wind Dir.					16	09	12	11			
Wind Sp.					6	5	7	10			
Cloud Cvr.					6	7	8	9			
1500 CST											
No. Cases					4	7	4	4			
TA					90	87	86	84			
T _D					71	73	73	72			
RH					54	63	68	69			
Wind Dir.					18	13	13	14			
Wind Sp.					7	8	10	9			
Cloud Cvr.					6	9	8	9		4	

D

APPENDIX F

CONSTRUCTION MATERIAL

,

Appendix F

Construction Materials. Materials of construction play both an aesthetic and erosive role. Two materials which are traditionally used for wall construction and which are appropriate here are masonry and wood. If masonry is used, footings must be dug and forms must be built. However, these requirements present problems in areas of high water tables and soil with low angles of repose as are typical on the beach. Masonry is also very cold to the eye (concrete) and the touch which is not consistent with a warm recreational atmosphere. Wood piles, on the other hand, require no footings, may simply be driven into the sand, offer a warm feeling when viewed or touched, and provide textures and colors that relate well with the natural setting thus visually tying the wall to the landscape. Treatment of wood piles with appropriate preservative will enable long life and not be harmful to skin or beach.

APPENDIX G

PLANT MATERIAL

Appendix G

<u>Plant Materials</u>. For this design to hold up under heavy pedestrian use, a good turf must be used with irrigation support. Irrigation is expensive initially, but with an automated system designed to deliver the required amount of fresh water at regular intervals the assurance of plant survival is virtually guaranteed. Such a system and plant fertilizer would very likely have prevented the costly loss of palms on the beach. As depicted in the Section of Sheet 6, the planting in addition to the grass turf should consist of trees, shrubs, and groundcover.

By referring to the Relationship Matrix it is possible to evaluate each of these items and arrange and locate each in such a way as to maximize the asthetic as well as the erosion control properties. Groundcover, for instance, should be used sparingly while the others can be used liberally. The implications of the matrix are that the turf could be used extensively, the groundcover may be used to tone down the wharf tie wall and in limited other areas, shrubs could be used along the highway to filter noise and fumes as well as along paths to reinforce direction of movement. Shrubs should be dense at the highway to filter noise and fumes as well as along paths to reinforce direction of movement. Shrub density should diminish as the fore beach is approached to provide a smooth transition into the open beach area. Trees should be used throughout with tropical salt tolerant species supplanting natives as they approach the water. Selective treatment of sandspur weed, as recommended by the Agronomy Department at Mississippi State University, should be by the use of post emergent MSMA (not harmful to Bermuda Grass) at one pound per acre. The recommended turf is common Bermuda grass with a mowing height of 1-1¹/₂ inches. Planting of the seed should be preceeded by incorporation of 15-20 pounds per 1,000 square feet of 13-15-13 fertilizer. Seeding should be done in April as the nightly temperature remains between 40 and 40 degrees F.

Plant materials for the low use areas comprising the balance of the beach are naturally developing species. There development can be facilitated merely by reducing population pressure and altering maintenance practices such that salt organic crust and vegetation are not disturbed and the erosion is reduced.

APPENDIX H THEORY OF SAND MOVEMENT

Appendix H

1. Large Particle Exclusion Rule. Particle size and movement are governed by the following rules. Generally, large particles tend to be excluded from blowing sand because the size of a particle capable of being transported by the current of a fluid varies as the eixth power of the velocity of the current. The diameter of the particle, therefore, varies as the square of the velocity. If the velocity is doubled, the diameter of particles transported may be increased four times. The range of velocities of sand moving winds, as usually measured, certainly exceeds a doubling of their speed, thus there is some upper limit to the size of wind blown sand and it might be expected that the bulk of the sand in some places at least, should consist of grains many times as large as in others. This is, however, not the general case or the specific case of this beach as size samples of beach sand indicate that this study area consists mainly of sand in the fine to coarse categories.

There appears to be two main reasons why blown sand in general and the beach sand and the eroding and redeposition is not composed of larger particles: 1) there appears to be a scarcity of large grains of sand in the dredge zone from which the beach material was taken, therefore, the beach contains virtually no large particles; and 2) wind velocities are usually measured some distance above the ground but aeolian sand is moved only by the very lowest layer in the atmosphere and the velocity of the current in the lower most layer is much lower and is increased at a very slow rate with an increase

in the speed of the layers above it. For this reason, the velocity in the flowing air layers next to the surface on the ground probably seldom reach three miles per hour, a speed at which there is moderate overall movement and only, of course, of finer sized particles. These factors coupled with the fact that as winds increase in speed and pick up a load of suspended material the energy expended by the wind retards the current of air and lessens its carrying power, producing a self-limiting influence on the winds ability to move sand. Thus, larger particles tend to be excluded from wind blown matters and from the beach in general.

Small Particle Exclusion Rule. In the case of particles 2. smaller than fine sand, there tends to be a general absence from all filled beaches and most sand areas for two reasons. First, since the sand in this study area as in most filled beaches was dredged, most of the dust and finer particles were suspended in the water and never became part of the beach. This fact of origin coupled with the second factor that evidently the law which governs the separation of the fine admixtures from the acolian sand implies that materials finer than sand when moved by air are wholly lifted up into swifter air currents and promptly removed from the area results in an absence of small particles. Working in this manner, the transporting power of the wind for smaller material varies more nearly in approximation of its erosive force than to its lifting force. With changes in velocities the latter varies as the sixth power, while the erosive force varies as the square. Thus, small particles are removed completely from the beach environment and the beach tends to consist of only those grains of a middle range of

162

size.

3. <u>Particle Movement</u>. Generally the coarser ingredients are not moved and the finer grains are entirely blown away. Aeolian erosion and redeposition is a problem of mid-sized particles. The mechanics of the movement when studied in detail have suggested that the wind much more rapidly ceases to lift sand grains exceeding one eight of a millimeter in diameter then it ceases to roll grains which become larger than one fourth of a millimeter. In tabular form, the approximate distances of movement are:

> Gravel - a few feet Coarse and medium sand - several weeks Fine sand - less than a mile Very fine sand - a few miles Dust - from 200 miles to around the globe (7, 8).

Table 1-1 summarizes these conditions from the principal sand erosion studies by Udden and Bughold and the gulf coast sand measurement conduced for this research.

These findings have been confirmed in numerous studies where aeolian sand erosion was approached on two fronts: 1) wind tunnel experiments and 2) experimental confirmation in desert and other sand masses. In these works the authors have concluded that:

After much desert travel, extending over many years which sand storms of varying intensity were frequently encountered, I became convinced that the movement of sand (as opposed to that of dust) is a purely surface effect, taking place only within a metre of the ground; and that large-scale eddy currents within the air stream play no appreciable part in maintaining the grains aloft (8).

In wind tunnel experiments, it has been found that moving sand rarely approaches the height of eighteen inches above the ground and also that sand moves by the "ping-pong ball" effect or saltation. That is, a grain of sand is driven aloft by wind, when the energy of the wind on the surface of the grain exceeds the inertia and gravitational attraction of the grain. Grains tend to be held aloft until the force of gravity exceeds the energy of the wind and pulls them to the surface. This grain strikes other grains on the surface and sends them adoft into the stream of air where by the processes is repealed. This "saltation" is complemented by another mode of transport surface creep where the grains are rolled along under the force of the wind (where wind energy is greater than inertia but not greater than gravity and inertia together). Thus, this study is concerned with coarse to fine sized grains of sand whose movement is purely a surface effect limited largely to the first 18 inches of atmosphere.