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APPENDIC A 

CODE VERIFICATION
 

Abs tract
 

This appendix includes a summary of the code verification task as 
it appeared in G. E. Space Division document No. 77SDS 4203, dated 
January 24, 1977, entitled "1500 kW Wind Turbine Generator Program 
Preliminary Design Report." The objective of the code verification 
task was to verify the computer codes used for rotor loads analysis 
by comparing predictions with experimental measurements from the 
Mod 0 WTG. The goal was to demonstrate the capability of the codes 
to predict load magnitudes within 20 percent, and to duplicate the 
harmonic content. 



2.7 CODE VERIFICATION 

A code verification task was performed to verify where practical all computer codes related 
to the rotor loads analysis and the coupled system dynamics. Data from the Mod-O WTG 
during four operational conditions was used to compare experimental measurements of loads 
and deflections with the code predictions. The goal of the code verification was to demon
strate the capability of the codes to predict magnitudes within 20 percent and duplicate 
harmonic content (IP, 2P, etc.). This code verification was performed using the same 
analytical codes that are being used for Mod-i. 

The flow of the Mod-O verification analysis is shown in Figure 2.7-1 and follows the same 
methods being used for Mod-I analysis. A model of the tower, bedplate and shaft was 
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Figure 2.7-1. Mod "0"Code Verification 

generated and provided to Hamilton Standard for their code verification using the F762 code. 
At GE, a model of the complete system including the rotor was developed and analyzed using 
the DYNAMO codes. The measured Mod-O data was provided by NASA to define the wind 
conditions. 

In this section, the Mod-0 WTG is described briefly, the selected Mod-0 operationing condi
tions are reviewed, the analytical model is described, comparison of measured model data 
and analytical predictions are given and predicted loads are compared with measured values. 

2.7.1 DESCRIPTION OF THE MOD-0 WTG 

The following excerpt from the NASA Report TMX-71601, "Early Operation Experience on 
the ERDA/NASA 100 kW Wind Turbine, " provides a general overview of the Mod-0 WTG. 

"The 100 kW Experimental Wind Turbine is a part of the national wind energy pro gram 
under the direction of the Energy Research and Development Administration (ERDA). 
The NASA Lewis Research Center has designed, built and erected this machine near 
Sandusky, Ohio, and is currently testing it to obtain engineering data on large hori
zontal axis wind turbines. 

The wind turbine has a 125-foot diameter, two-bladed rotor which drives a 100 kW 
capacity synchronous generator through a step-up gear box. The rotor Is positioned 
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downwind of a 100-foot steel truss tower, as pictured in Figure 2.7-2. The rotor is 
designed to operate at a constant speed of 40 rpm, and it drives a 480 Volt, 60 Hz, 
three-phase generator at 1800 rpm. Constant rotor speed is maintained by controlling 
the blade pitch angle with an active feedback control system. The rotor, generator, 
transmission and associated equipment are mounted in a nacelle, Figure 2.7-3, which 
can be yawed to align the rotor with the wind. Power, instrumentation and control 
connections to the ground are made through slip rings. 

The turbine was designed to begin generating power in winds of 10 mph (100 feet), and 
produce 100 kW at a wind velocity of 19 mph. In winds above 18 mph, the generator 
continues to operate at a 100 kW output by adjusting the pitch of the rotor to spill the 
excess wind energy. When the wind velocity exceeds 40 mph, the blades are feathered 
to bring the rotor to a stop in a horizontal position. A brake is then applied at the high
speed drive shaft to look the rotor blades against rotation. 

Final assembly of the machine was completed in September, 1975; it began operation in 
October. In December, 1975, the machine first achieved its design speed of 40 rpm 
and produced 100 kW of power. During the course of these initial operations, data was 
taken on the rotor, blades, the nacelle and the tower." 

"The 100 kW wind turbine data system provides approximately 100 channels of real time 
continuous information. Some of this data is discussed below. 

1. 	 Wind velocity and azimuth from a meteorological tower 

2. 	 Wind velocity and nacelle yaw angle relative to the wind, from the wind tur
bine nacelle 

3. 	 Tower deflections x and y 

4. 	 Nacelle accelerations x, y, and z at the rotor shaft bearing support nearest 
to the rotor 

5. 	 Rotor blade pitch angle 

6. 	 Rotor blade bending moments, indicating beamwise (Mm) and chordwise (Mn) 
bending at two stations along the blade span 

7. 	 Rotor shaft torque M z and bending moments Mx and My 

8. 	 Rotor speed and blade position 

9. 	 Alternator output. 

Figures 2.7-4 and 2. 7-5 give a schematic representation of these measurements, their 
location on the wind turbine, and the sign convention of each." 
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Figure 2.7-2. 100-Kilowatt Experimental Wind Turbine 
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Figure 2.7-S. 100 kW Experimental WTG 100 kW Wind Turbine Drive Train Assembly 

tfter initial operation of the Mod-0, two changes were made to the configuration. First, 
the stairs and external elevator, Figure 2.7-2, were removed to reduce the amount of 
velocity retardation behind the tower and, hence, reduce the dynamic loads on the blade. 
After additional operational data were obtained, the operating speed was reduced to 20 rpm 
by changing the pulley ratio in the drive train, Figure 2.7-3. 

Included in the Mod-0 system are two structural non-linearities which may have a significant 
influence on the dynamic loads of the system. These are indicated in Figure 2. 7-6. Within 
the low speed shaft of the generator drive train, a Faulk coupling is installed which varies 
considerably with the torque. At low torque, the coupling is relatively soft as indicated by 
the slope of the curve in Figure 2.7-6 near zero. As the torque is increased, the stiffness 
also increases as shown by the slope of the curve. The other non-linearity is in the yaw 
drive used to align the rotor with the wind. As indicated in Figure 2.7-6, there is a sig
nificant amount of free play permitting a yaw rotation of the nacelle. However, in one of 
the four cases selected for analysis, a "keeper" was installed in the yaw drive to eliminate 
the free play. 
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2.7.2 DESCRIPTION OF MOD-0 LOAD CASES 

The four Mod-O load cases selected for comparison of measured and analytically predicted 
loads are shown schematically in Figure 2.7-7. The significant characteristics of each 
case are described below: 

Case 1. This case was obtained shortly after initial operation of the WTG and includes 
a large "tower shadow" effect. The nominal operating condition was at 40 rpm with a 
wind velocity of 28 mph, producing an output power of 100 kW. 

Case 2. This is a gust condition in which the nominal velocity increased from 20 to 
35 mph. The stairs were removed, reducing the tower blockage. Nominal operating 
conditions were 20 rpm with 37 kW of output power. 

Case 3. During this condition, large torsional oscillations of the drive train were 
experienced. The "torque bloom" appears to be a limit cycle oscillation resulting from 
coincidence of the drive train torsional resonant frequency with a multiple of the rotor 
speed. Nominal conditions were 41 rpm, 28 kW of output power with the tower stairs 
removed. 

Case 4. In this case, the "yaw keeper? was installed, eliminating the free play in the 
yaw drive. The stairs were removed providing minimum tower blockage. Nominal 
operating conditions were 40 rpm, and 98 kW of output power with a nominal wind speed 
of 25 mph. 

During the initial stages of the verification analysis, it became apparent that some of the 
measuYements were conflicting. As a result, "soft" measurements were considered to be 
the outf t power, the wind velocity and the wind direction. The rotor power derived from 
the shaft torque and operating speed was considered to be the best measure of the WTG 
power. The wind direction was specified by NASA based on their review of the data. The 
wind velocity measured on the nacelle was considered to be the best velocity measurement. 
However, the wind velocity and blade pitch angle were considered to be soft and could be 
varied to achieve the rotor power. 

/ 

Wind tunnel data on a scale model of the.Mod-0 tower both with and without stairs wer 4 

available to estimate the velocity retarqation behind the tower. The data show a consider
able scatter epending on the wind direction, Figures 2.7-8 and 9. The average velocity 
was determined by NASA, using the actual width of the shadow as the averaging distance. 
Typically, the shadow width is between 1. 4 and 1. 5 times the geometric width of the tower. 
On this basis, the velocity profiles shown in Figure 2.7-10 were selected as representative 
profiles. The profile for the stair configuration is based on measured profile data using a 
value of-0. 3 for the maximum retardation and providing an average velocity ratio over the 
tower shadow width of approximately 0.65. For the "bare" tower, a simplified notch having 
a height of 0.8 was selected in that no prevalent profile was evident from the data. * All 

*Based on a review of the results from the first Case 4 analysis, it was felt that the tower 
shadow was slightly less severe than indicated by the-kvind tunnel measurements. Conse
a second analysis was made using a similar shape with a velocity ratio of 0.76 in the 
retarded flow area. 
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Figure 2. 7-8. Vertical Distribution of the Average and Minimumn 
Wind Seeds in the Wake of the Mod-0 Tower Model 
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Figure 2.7-10. Mod-O Tower Shadow Models 

profiles consider the shadow width to be 50 percent wider than the tower. As indicated pre
viously, the shadow follows the tower outline providing a tapered shadow. 

2.7.3 MOD-0 DYNAMIC MODEL DEVELOPMENT 

2.7.3.1 Approach 

The development of the Mod 0 dynamic model followed the same methods used in the Mod 1 
analysis. This system also divided naturally into substructures for separate modal analysis 
at bearing attachments located at each rotor blade, at the hub, the low and high speed shaft 
supports and the bedplate/tower interface. A natural division at the yaw drive was also 
made. This produced five substructures for the system: tower, bedplate, hub/shaft, and 
two rotor blades. Each of the substructures was analyzed separately by formulating finite 
element models to obtain substructure modes and frequencies. Assembly into a complete 
system model was accomplished by modal synthesis using stiffness coupling through flexible 
links representing the bearing attachments. The completed model was then used to obtain 
the coupled eigenvalues and eigenvectors for use in the forced response and loads analysis 
(see Figure 2.7-11). 

Since modal test data existed for this system, the structure was modeled to duplicate the 
test configuration. This required the nacelle along the east-west axis, blades in a horizontal 
position and feathered and low speed shaft locked. Comparison to modal test data determined 
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Figure 2.7-11. Mod-C Dynamic Model Analysis Flow 

any required modifications to the model parameters were required. Development of 
subsequent models to match the load case conditions required only a change in blade pitch 
angle, release of the shaft lock and the appropriate nacelle orientation. 

2.7.3.2 Analytical Substructures 

The test model was developed using data obtained from NASA in the form of drawings, 
reports and tabulated mass and stiffness data. These data were used directly as input to 
the substructure models and as checkpoints to verify the model substructures prior to final 
assembly: 

Tower. The tower model was developed using drawings obtained from NASA (CF 758447 
through CF 758450). It consisted of approximately 584 bars, rods, and plate elements 
representing each member of the tower truss and stairway, according to the drawing. 
These elements were connected at 264 nodes (1512 degrees of freedom). A computer 
plot of this substructure is shown in Figure 2.7-12. Through modal compression 
methods the number of nodes were reduced for inertia loading to 29, most with S degrees 
of freedom. Weight distribution was provided by the computer program with the gross 
weight adjusted to match the weight data given by NASA TMVIX-71979 with differences of 
less than 1 percent. Elgenvalue solutions with the tower cantilevered at the base were 
made as input for the system synthesis. This model was used for all load cases. 
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Figure 2.7-12. Mod-0 Tower Computer Model 
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Bedplate. The bedplate model was developed using NASA supplied drawings CR 757667 
and CR 757669. There were 394 nodes (222 degrees of freedom) connected by 571 bar 
and plate elements representing this structure. For the eigenvalue problem, the nodes 
were reduced to 37 for inertia loading, most with 3 degrees of freedom. Figure 2. 7-13 
shows a computer plot of the complete bedplate analytical model. Weight distribution 
was based on the computer analysis of the structure. Component weights and adjust
ments were made according to NASA memo to agree with the total machine weight of 
38, 347 pounds within less than 1 percent. A cg check was also made which agreed 
within 3 percent of the memo notation of 4.8 feet toward the hub. Eigenvalues and 
eigenvectors of the bedplate were calculated with free attachment coordinates at the 
yaw bearing interface as the coupled solution input data. 

Hub/Shaft. This substructure was modeled using straight beam elements both for the 
hub and the high and low speed shafts. This substructure was modeled using shaft and 
hub drawings supplied by NASA. Nodes were selected to correspond to the bearing 
attachment locations, coupling, gearbox, bearing supports and other mass loading 
points. Gearbox flexibility was included in the form of beam elements which considered 
gear ratio effects. Twenty-one nodes were used to represent this complete assembly 
from the hub to the generator. Weight distribution was made according to the NASA 
memo referenced previously and the stiffness was checked by calculating eigenvalues 
using a rigid mass and inertia representation of the rotor blades. Input for the coupled 
solution was obtained by calculating eigens without rotor blade mass and with free 
attachment coordinates. A free shaft model was used reflecting a soft coupling through 
the generator. 

Rotor. Rotor blade mass, stiffness and airfoil properties were provided by NASA and 
were used as input data for the blade computer program, STRAP. Mode shapes and 
frequencies were calculated with free attachment coordinates. They were also calcu
lated with the blade cantilevered from the lower bearing. Since test data were available 
for the rotor blades mounted to a simulated hub, this provided a convenient checkpoint 
for blade natural frequencies. Table 2.7-1 shows the frequencies comparison for 
in-plane and flapping modes differ by 6.4 to 7.5 percent. This first torsion mode dif
fered only by 4. 9 percent. As a result of this comparison, the free blade modes were 
used as input to the coupled system solution. Thirteen nodes with 6 degrees of freedom 
each were used to represent a single blade. 

2.7.3.3 Stiffness Links 

The stiffness links required to assemble the complete system were developed based on data 
supplied by NASA and from the bearing manufacturers. These data were used to form 
stiffness matrices which were used as the flexibility links in the modal synthesis which 
related each substructure at its attachment coordinates. Bearings were identified by the 
drawings which aided in obtaining the stiffness properties direct from the manufacturer. In 
addition to bearing stiffness, the blade to hub stiffness link also included the pitch actuator 
stiffness since the actuator mechanism was not modeled explicitly. This was accomplishedf sing the actuator stiffness as the rotational restraint about the blade axial direction. 

similar fashion, yaw drive system stiffness (obtained from test data) was included in 
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Figure 2.7-13. Mod-O WTG Bedplate Computer Model 



Table 2.7-1. Cantilevered Mod "0" Blade Frequencies 

Mode Analysis* Test** %Difference Description 
No. 

1 1.60 1.73 7.5 lst Flapping 

2 2.49 2.66 6.4 1st In Plane 

3 4.62 4.99 7.4 2nd Flapping 

4 9.06 9.80 7.5 2nd InPlane 

5 9.68 10.38 6.7 3rd Flapping 

6 34.4 32.8 4.9 1st Torsion 

*Cantilevered at lower bearing.
 

**Mounted to simulated hub.
 

the yaw bearing stiffness matrix as rotational restraint about the yaw axis. Separate stiff
ness links were developed for the blade to hub, hub/shaft to bedplate, and bedplate to tower 
interfaces. 

2.7.3.4 Coupled Dynamic Model 

Oe Mod 0 structure was assembled with the same procedures and methods described for 
Mod 1. The stiffness coupling methods in the SCAMP computer program were used con
sidering the stiffness links between two substructures at a time: 

1. Tower to bedplate 

2. Bedplate to hub/shaft 

3. Hub/shaft to blade No. 1 

4. Hub/shaft to blade No. 2 

The orientation of each substructure was such that the total assembly configuration matched 
that of the modal test. This was done to enable a direct comparison with modal test data 
and thus, validate the substructure models and the assembly technique. 

A plot of the complete dynamic model for the modal test configuration is given in Figure 
2. 7-14. A total of 468 degrees of freedom for all substructures was used to describe the 
dynamic behavior of the system. For the coupled system solution, the final size of the 
eigenvalue solution was reduced by the dynamic transformation in the SCAMP program, as 
shown in the summary of Table 2.7-2. The column heading "Eignevalue Size" size" gives 
the substructure eigens going into SCAMP. Of the 468 available modes; a total of 333 modes 
were used to synthesize the coupled model. The final size of the eigenvalue problem 
* DOF) was determined from the total of modes "kept". The distribution of kept and
 
reduced modes is also shown in the table.
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Figure 2.7-14. Mod-0 Model Test Configuration 

Table 2.7-2. Substructure DOF Table 

Substructure Joints DOF Eigenvalue Modes Modes 
Size Kept Reduced 

Tower 264 1512 90 18 36 

Bedplate 394 2222 114 14 28 

Hub/Shaft 21 108 108 27 54 

Blade No. 1 is 78 78 26 52 

Blade No. 2 13 78 78 26 52 

Totals 705 3998 468 111 222 

Total
 
Modes Used
 

54
 

42 

81
 

78
 

78 

333
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5he final solution resulted in 20 modes under 10 Hz. Plots of the eigenvalues and elgen
ectors are given in Figures 2.7-15 through 2.7-19 for the fundamental structural modes. 

These modes were used to compare directly with the results reported in NASA TMX-71879, 
3426, and the final report by the University of Cincinnati on the modal testing. 

2.7.3.5 Modal Test Comparison 

A direct comparison of analytical and test results was possible for four tower modes and 
three blade modes. Although other frequencies were measured on test, modal identification 
was lacking and correlation on a frequency basis alone was not attempted. Excellent agree
ment with test, however, was obtained for those comparable modes as shown by the listing 
in Table 2.7-3. All of the first 22 modes noted in the tabulation were clearly identified for 
the structure as high as second bending in the tower and as high as third order blade modes. 
Four stairway modes appeared in this set of 22 modes which were distinct but not coupled 
significantly to any blade response. 

This comparison showed agreement in modal frequency within less than 1 percent for the 
first tower bending (N-S), first tower torsion and second tower bending (N-S). The first 
rotor fiatwise and edgewise modes differed by only 3 to 4 percent and the others by not 
greater than 9 percent. A check of modal displacements also showed good agreement for 
the tower bending modes (Modes 4 and 5). The upper bay motion plotted in Figure 2.7-20 
shows similar diagonal motion as that measured on the test which was obtained along with 
Ihsimilar amount of displacement. This diagonal motion was not observed on identical 

\X 

Figure 2.7-15. First Rotor Flatwise - Cyclic 
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Figure 2.7-16. Tower Bending, N-S 

4. 

Figure 2.7-17. Tower Bending, E-W 
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Figure 2. 7-18. First Rotor Edgewise - Collective 

VA 

,I, 
/ 

Z Figure 2.7-19. First Tower Torsion 
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Table 2.7-3. MOD-0 Modal Test Comparison 

Made No. Descriptive 

1 Bedplate Rotation 

2 Shaft Torsion 

3 First Rotor Flatwise - Cyclic 

4 Tower Bending, N-S 

5 Tower Bending, E-W 

6 1st Rotor Edgewise, Collective 

7 2nd Rotor Flatwise, Collective 

8 Tower Stairs, Lat., N-S 

9 2nd Rotor Flatwise, Cyclic 

10 2nd Rotor Edgewise, Cyclic 

11 2nd Rotor Edgewise, Cyclic 

12 2nd Tower Stairs, N-S 

13 Lower Tower Stairs Twist 

14 Upper Tower Stairs Lat 

15 3rd Rotor Flatwise, Cyclic 

is 3rd Rotor Edgewise, Cyclic 

17 3rd Rotor Flatwise, Collective 

18 Rotor Torsion 

19 3rd Rotor Edgewise, Collective 

20 ist Tower Torsion 

21 2nd Tower Bending (with torsion 
N-S) 

22 2nd Tower Bending, E-W 

GE Analysis
(Freq = Hz) 

Modal Test
(Freq = Hz) 

1.07 

1.53 

1.78 1.73 

2.09 2.1 

2.40 2.2 

2.63 3.0 

3.54 

3.78 

3.84 

4.49 

4.66 

5.04 

6.47 

6.67 

6.84 

8.37 

8.90 

8.99 

9.72 

9.76 9.8 

10.38 10.4 

10.46 
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Figure 2.7-20. Tower Bending Deflection Comparison 

modal solutions where the shaft was unrestrained. It also did not appear on the tower alone 
modal plots which points to a blade/tower coupling rather than the suspected influence of 
the stairway structure. 

A review of several checkpoints in the model buildup and synthesis provided a substantial
 
basis to confirm the model adequacy:
 

Weight - Within I percent on major substructures.
 
CG of bedplate within 3%
 

Frequency - Cantilevered blade within 7.5%
 
Three coupled system modes within 1%
 
Two coupled system modes within 3-4%
 
Two coupled system modes within 6-9%
 

Modes - Modes clearly identifiable
 
Diagonal tower motion reproduced
 
Tower fundamental mode displacements similar
 

P3lased on the confirmation of the model by the test data, the configuration was then con
sidered ready to be modified for the test conditions under study. 
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2.7.4 DYNAMIC MODEL CONFIGURATIONS 

The Mod 0 analytical model for the modal test served as a baseline model for the test cases 
under study. With this configuration established, the shaft was released and the blade and 
bedplate were reoriented for each test condition. 

A summary of the test conditions proposed for study is given in Table 2.7-4, along with the 
modal test. (These conditions are discussed further in Section 2.7.5). Operating condition, 
blade and nacelle configurations were supplied as a part of the strip chart, digital printout 
and tabulated data supplied by NASA. Flex coupling and yaw bearing stiffness data were 
also supplied by NASA but not as a part of the test measurement package. It was necessary 
to use these data analysis to "tune" the shaft to the desired 4P shaft torsion frequency for 
the Case 3 configuration and 6P for the other cases. This was done by adjusting the flex 
coupling stiffness until the resonant shaft condition which occurred during the "torque bloom" 
condition was achieved. The yaw drive stiffness value was obtained from the nacelle load 
deflection data provided by NASA. The basis of selection was the range of tower deflection 
shown by the strip charts. The effective generator inertia was increased to reflect the 
.pulley ratio change for Case 2. 

In order to calculate responses and loads it was necessary to develop a seaprate system 
dynamic model for each case because no two nacelle positions and corresponding blade 
angles, drive and shaft configurations matched another case. In addition, within a particular 
case configuration, a separate system model with rotor positions at 00 (12 o'clock), 450, 
90s, and 1350 were also required for the piecewise linear response analysis, thus requiring 
a total of 16 coupled system models for the four cases. 

A summary of mode descriptions and frequencies for Case I is given in Table 2.7-5. This 
summary is for the rotor blade in the horizontal position and is given as a comparison point 
for the test model. Modal plots for these modes are given in Figures 2.7-21 through 2.7-25. 
From this comparison, some similarities with the modal test model were evident, especi
ally in the tower modes. Although mode position shifted on the blade modes, frequencies 
remained essentially unchanged for tower first and second bending, tower torsion and the 
four stair modes. Bedplate rotation mode changed by only about 10 percent but blade modes 
shifted considerably in mode position and character. This was expected since the blade was 
not feathered and centrifugal stiffening is present due to blade rotation at 40 rpm. 

The other rotor positions were calculated and plotted but are not given here. It was possible 
to track the change in some modal frequencies with azimuth change such as bedplate rotation 
and tower bending (both directions). The fundamental and second flapwise mode, however, 
was noted to change very little with azimuth. Changes in the edgewise modal frequency with 
azimuth were not as easy to trace as the rotor azimuth changed. This was due to the coup
ling of this mode with some of the tower modes. Stair modes maintained their modal 
frequencies. 

The modal data for the four rotor azimuth positions for each case were computed in a simi
lar fashion. The correlation of the feather condition results with the analytical model for 
the modal test gave the required confidence that the modes and resonant frequencies could 
be used as input to the forced response problem. 
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Table 2.7-4. MOD-0 Load Cases 

Load Cases 

Test Case 1 Case 2 Case 3 Case 4 

Operating Conditions 

RPM 0 40 20 41 40 

KW 0 100 37 27.8 98 

Wind Velocity Vw 0 28 2-35 mph 20.5 25 

Inflow Angle On 0 40 100 -5 ° 120 

Gust 0 - See Vw - -

Blade 

Airfoil Pitch -900 -8- -20' -8.50 -5.50 

Powered/Feathered Feathered Powered Powered Powered Powered 

Model No. MOB05L 

Shaft 

Flex Coupler K I lX10 8 1. xI10 8 i.IX10 8 0.6X10 7 i. IX10 8 

(in- Ib/rad) 

/rev 6p 6p 6p 4p 6p 

Freq (Hz) 3.86 3.86 3.86 2.95 3.86 

Model No. SFT002 SFT002 SFT002 SFT003 SFT002 

Nacelle 

Angle On 2350 262' 264' 224' 256.2' 

Tower/Bedplate 00 -27' -29' +11' -2.120 

Yaw Bearmg 

Stiffness K 1.65E8 1.65E8 1.65E8 1.65E8 1.65E9 
(in-lb/rad) 

Spring No. WTG003 WTGOO 1.65E8 WTG003 WTGO02 

Stairs V - -
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Table 2.7-5. MOD-0 Modes and Frequencies - Case 1 
(900 Position) 

MODE 
NO. DESCRIPTION 

1 ROTOR ROTATION 

2 BEDPLATE ROTATION 

3 1ST ROTOR FLATWISE -COLLECTIVE 

4 TOWER BENDING, N-S 

5 1ST ROTOR EDGEWISE - CYCLIC 

6 TOWER BENDING, E-W 

7 ROTOR BLADE TORSION 

8 1ST ROTOR FLATWISE - CYCLIC 

9 TOWER STAIRS, LATERAL, N-S 

10 2ND ROTOR FLATWISE - COLLECTIVE 

11 TOWER STAIRS TWIST 

12 2ND ROTOR FLATWISE - CYCLIC 

13 TOWER STAIRS - DIAGONAL 

14 2ND ROTOR EDGEWISE - CYCLIC 

15 TOWER STAIRS - UPPER 

16 2ND ROTOR EDGEWISE- COLLECTIVE 

17 3RD ROTOR FLATWISE - CYCLIC 

18 3RD ROTOR FLATWISE - COLLECTIVE 

19 2ND ROTOR TORSION 

20 1ST TOWER TORSION 

21 2ND TOWER BENDING, N-S 

22 2ND TOWER BENDING, E-W 

23 TOWER STAIR TWIST 

24 4TH ROTOR FLATWISE - CYCLIC 

25 4TH ROTOR FLATWISE - COLLECTIVE 

FREQUENCY FREQUENCY 
(Hz) (1/REV) 

0. 0. 

1.19 1.79 

1.77 2.65 

2.07 3.10 

2.39 3.S9 

2.52 3.78 

3.25 4.88 

3.41 5.12 

3.78 5.67 

4.86 7.29 

5.03 7.54 

5.13 7.70 

6.46 9.69 

6.50 9.75 

6.69 10.35 

6.86 10.29 

8.95 13.43 

9.53 14.30 

9.56 14.49 

9.76 14.64 

10.14 15.21 

10.58 15.87 

12.91 19.37 

14.59 21.89 

15.48 23.22 
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Figure 2.7-21. First Rotor Flatwise - Collective 
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x
 

Figure 2.7-22. Tower Bending N-S 
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Figure 2.7-25. Tower Torsion 

2.7.5 CODE VERIFICATION RESULTS 

The code verification task has been completed for Case I and 4. Selected results are 

included to indicate the correlation with measured results. One run was made for Case I 
and two runs have been made for Case 4 although the changes in the Case 4 run are insigni
ficant. Excellent correlations were obtained with regard to peak and cyclic loading, bed
plate accelerations and tower deflections including comparable harmonic content. 

The operating conditions for each case were obtained by adjusting the wind velocity to 
obtain the desired rotor power. The blade position was set based on the measured blade 
angle. The wind direction was also set at the value specified by NASA. Using the mea
sured shaft torque and rotor speed to establish the rotor power, the wind velocity was 
varied until the desired rotor power was obtained. This established the aerodynamic and 
inertial forces to excite the Mod-0 system. 

The first 20 elastic modes of the system were used at each of eight rotor positions with 
aerodynamic damping coefficients obtained from the fully coupled mode shapes. The 
resonant frequencies and modal damping coefficients for the first ten modes at each rotor 
position are given in Table 2.7-6A and 613. Examination of the table indicates significant 

Case 1
I lfferences in the system dynamic characteristics for the models of the two case. 
(cludes a flexible yaw drive system which has a major contribution to the first three modes 

and, although the damping is relatively high, reduces the modal damping relative to Case 4. 

ORIGINAL PAGE IS
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Table 2.7-GA & 6B. Sunnary of Resonant Frequencies and Modal 
Dumping Coefficients for the First Ten Modes 

CASE 1 

00 450 900 1350 

MODE 
NO. f(1/REV) C/Cc f(1/REV) C/Cc f(1/REV) C/Cc f(1/REV) C/Co 

1 2.30 .2217 1.96 .3271 1.78 .3953 1.91 .3599 
2 2.45 .2529 2.64 .3233 2.66 .3632 2.66 .3758 

3 2.67 .3818 2.77 .1885 3.10 .1284 3.03 .1376 

4 3.63 .0774 3.69 .0806 3.59 .0825 3.51 .0739 

5 4.11 .0539 3.93 .0554 3.78 .0622 3.96 .0633 
6 4.86 .0518 4.90 .0566 4.87 .0700 4.82 .0783 

7 5.08 .0508 5.21 .1127 5.12 .1273 5.04 .0808 
8 5.66 .0500 5.66 .0500 5.66 .0500 5.66 .0500 

9 6.42 .1873 6.95 .1378 7.29 .1927 7.10 .1569 
10 7.29 .1866 7.30 .1862 7.54 .0562 7.30 .1734 

CASE 4 

0 ° 450 9o 1350 

MODE 
NO. f(1/REV) C/Cc f(1/REV) C/Cc ff1/REV) C/Cc f(1/REV) C/Cc 

1 2.36 .3930 2.31 .4046 2.24 .4177 2.28 .4073 
2 2.66 .4008 2.65 .3862 2.65 .3789 2.66 .3870 

3 3.02 .0565 3.04 .0587 3.24 .0730 3.20 .0685 
4 3.67 .0754 3.74 .0759 3.58 .0715 3.55 .0708 
5 4.11 .0534 3.93 .0535 3.86 .0602 4.02 .0562 
6 4.93 .0514 4.92 .0508 4.92 .0519 4.92 .0525 
7 5.66 .0500 5.66 .0503 5.66 .0510 5.66 .0504 

8 6.40 .1914 6.16 .1815 5.97 .1749 6.08 .1695 
9 7.32 .1864 7.30 .1874 7.30 .1920 7.30 .1917 

10 7.38 .0528 7.54 .0513 7.55 .0507 7.54 .0517 
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The damping of the higher modes is due largely to structural damping although significant 
aerodynamic damping is evident in some of the modes, e.g., Mode 9. It will be noted that 
a structural damping coefficient of 0.05 was added to the aerodynamic damping coefficients. 
This is typical of the damping of spacecraft structures excited at relatively large ampli
tudes and was considered representative for Case 1 in view of the yaw drive motions that 
occur. The structural damping coefficient of 0.05 was also used for Case 4 although it may 
be excessive because the yaw drive free play is eliminated in this case. 

Initial comparisons of the time histories of the blade root bending moments (Station 40) 
are shown in Figures 2.7-26 and 2.7-27 for Case 1 and 4 respectively. In general, the 
major peaks of the load time history are preserved in the analytical predictions with the 
proper phasing. The harmonic analysis of the blade root moments is shown in Figure 2.7-28 
and 29, and also compare favorably. The Case I comparisons are not as good as Case 4 
but, in view of the linearized modeling of the yaw drive, this would be expected. The 
analysis predictions tend to be conservative for flapwise bending but are in closer agree
ment with measured loads for chordwise bending. 

The comparison of the analytical and measured loads is summarized in Table 2.7-7. The 
peak value is compared with the range of peak values over approximately three cycles and 
a similar comparison is made of the cyclic components (half the difference between the 
maximum and minimum loads). A harmonic content and waveform rating Is also shown 
based on a criteria of matching or exceeding the major harmonics components: Excellent 
(80 to 100%), Good (50 to 80%), Fair (20 to 50%), Poor (less than 20%). The table Indicates 

)that over 80 percent of the calculated loads were within 20 percent of the measured values 
and that the harmonic content was good to excellent for most comparisons. For two 
loads, Lockheed REXOR calculated values are also shown. For the main drive shaft 
"pitch" moment (Myy), the measured values appear to be in error while the calculated 
values compare favorably with REXOR calculations. The main drive shaft MXj values 
appear high as indicated by the REXOR calculations. In general, the waveforms compared 
favorably although there appears to be a significant amount of IP loading which may be due 
to blade inertial or aerodynamic loading or variations in the wind conditions. 

The tower accelerations and deflections are compared in Table 2.7-8. The calculated values 
are generally much larger than the measured values although the waveform comparisons 
indicated comparable response frequencies as high as 10P (bearing "B" vertical accelera
tion). A portion of the difference is due to a large 2P component of response in the cal
culated transverse accelerations which may result from the linearization of the yaw drive 
system for Case 1. Although the calculated responses tend to be conservative, the code 
provides an excellent tool for the early identification of undesirable dynamic couplings 
throughout the system. 

To aid in understanding the dynamic loading of the system, the mode providing the largest 
contribution to the load at each interface is tabulated. The modal load table for Case I and 
4 are given in Tables 2. 7-9 and 2.7-10. At the blade root (Interface 4) for Case 1, the table 

mhows that the maximum negative flapwise moment (MY) occurs at a rotor position of 216 
egrees with the largest contribution from Mode 3 (Model positioned at 45 degrees). This 
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Table 2.7-7. GETSS Load Comparison Summary (Ft - Lbs x 10- 3 ) 

PEAK CYCLIC RATING 

MOMENT CASE MEASURED ANAL. % MEASURED ANAL. % HARMONICS WAVEFORM 

FLAP AT 1 123-132 122 -1 63-70 76 +9 E E 
STATION 40 4 33-53 50.3 0 24-36.5 32.2 0 E E 

FLAP AT 1 28-32 29.5 0 16.8-21.3 22 +3.3 G 
STATION 370 4 5.5-13 10.2 0 65-12.5 8.8 0 E E 

CHORD AT 1 72-82 58 -19 53.5-8.5 51 -5 G G 
STATION 40 4 52-59 42 -19 40.5-45.5 39 -4 E E 

CHORD AT 1 17-22 21 0 14-19.1 17 0 G 
STATION 370 4 7.5-8 12.5 456 6.5-8 8.2 +2.5 G G 

DRIVE 1 55-56(21) 38 -31 47.5-48(21) 39 -18 E 
SHAFT, MXX 4 32-34(? 17 47 31-33(?) 17.5 44 P G 

DRIVE 1 141-145(122) 128 (+5) 705-72.5(122) 128 (+5) G 
SHAFT, Myy 4 66-83 66 0 61-75.5 65 0 E E 

DRIVE 1 4.6-r.8 7.0 +3 6.0-7.0 11.5 +65 - F 
SHAFT, MZZ 4 2.3-4.2 4.2 0 1.65-3.95 2.9 0 E 

( REXOR PREDICTIONS 

* 82% OF PREDICTED VALUES ARE WITHIN 
20% OF MEASURED VALUES 

* HARMONIC CONTENT: GOOD TO EXCELLENT 
* WAVEFORM REPRODUCED 

Co 
00



Table 2.7-8. Acceleration and Deflection Summary 

BEARING "B" MEASURED WAVEFORM HARMONIC 
DIRECTION CASE ACCEL. (±g) ANAL. % RATING RATING 

I'I 

.87 +120 E -VERTICAL 1 .25 - .4 
4 .018- 07 .10 + 43 a 0 

1 .14 -. 2 .28 + 40 G 
4 .044- .058 .087 + 50 0 E 

THRUST ! .07 -'11 .18 + 64 6 4 .014- .056 .031 0 a E 

TOWER PEAK (INCHES) CYCLIC (± INCH) WAVEFORM 
DIRECTION CASE MEASURED ANAL.* % MEASURED ANAL.* % RATING 

X 1 .32-.39 .34 0 .21-.28 .34 + 21 G 

Y 1 (.22) .36 +73 (.12) .25 +100 

PREDICTION BASED ON TOWER CORNER
 
3 REXOR PREDICTION
 

* REARING ACCELERATIONS AND TOWER DEFLECTIONS 

ARE CONSERVATIVE 
* CAPTURES 1fP RESPONSE 
* LINEARIZED YAW DRIVE APPEARS TO CAUSE HIGH 2P 

RESPONSE
 



Table 2.7-9. Summary of Largest Modal Contributions, Case 1 
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Ca	 Table 2.7-10. Summary of Largest Modal Contributions, Case 4 

MODAL LOAD MAXIMUM PoSN h00 MHINIMUN POSH MOVE
 
314 RADIUS BLARE LOCAL LOADS 	 VI 34.14 162.0 14.32 -35.58 342.0 14.00 

V 210.0a 246.0 5.003 -20l.2 12.00 15.00 
Vs 323.0 219.0 1.003 -366.9 39.00 1.000 
xi-j 31.41 282 .0 4.030 -?.98 66.00 5.000 

"IY 22. 27.00 	 9.003 -10S1. 219.0 1.000 
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is the same mode that causes the maximum edgewise moment (MZ). This mode shape is 
shown in Figure 2.7-30. It is a cyclic mode with a large coupling between the rotor and 
the bedplate. Similarly for Case 4, the first elastic mode is the major contributor to the 
flapwise moment at the blade root. With the yaw drive locked, this mode is the fundamental 
cyclic flap mode of the rotor and has negligible tower motion, Figure 2.7-31. However, 
the chordwise moment results from Mode 4 at the 90 degree model position and does show 
significant interaction with the tower, Figure 2. 7-32. At Interface 8 (yaw bearing), the 
maximum yaw moment (MX) is seen to result from the same mode that causes the maximum 
flapwlse moment at the blade root for Case 1. Although experimental data for these cases 
are not available at the yaw drive, other data show a large 2P one sided component which 
is also predicted by the analysis. In Case 1 the large vertical acceleration at 10P is due to 
the response in Mode 11 (MY at the yaw bearing). This mode is shown in Figure 2.7-33 and 
involves a resonance of the tower and stairway. These comparisons indicate that the sys
tem approach captures the major coupling between the rotor, bedplate and tower structure 
and predicts the cyclic loading with reasonable accuracy. 

The results of the Mod-0 analysis verify the adequacy of the GETSS code. The code pro
vides loads which are generally within 20 percent of experimental measurements and shows 
good to excellent agreement on harmonic content. A realistic tower shadow based on 
measured wind tunnel test results can be used directly in the code without modification. 
An outstanding feature of the code is the prediction of dynamic interactions between various 
parts of the system in a manner that can be readily traced and understood. 

'4' /// 
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YN 

Figure 2.7-30. Mode 3 for Rotor at 45' Position, Case 1 
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Figure 2.7-32. Mode 4 for Rotor at 90' Position, Case 4
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Figure 2. 7-33. Tower Stair Mode Excited by 10P 
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2.8 	 SENSITIVITY ANALYSIS 

Sensitivity analyses are being performed to evaluate several critical parameters in the 
design loads calculations. These critical parameters are: 

1. 	 SOIL FLEXIBILITY - This parameter will be varied to evaluate the change in the 
base flexibility of the tower and to determine the effects on the tower modal 
properties and their effect oa the Interface loads. Soil stiffness calculations will 
consider foundation geometry and ranges of soil stiffness. 

2. 	 TOWER STIFFNESS - This parameter will be varied to examine the change in 
interface loads with a range of tower stiffness values. A range of tower stiffness 
values will be selected such that the fundamental bending modes of the tower range 
from the present value of 2.2P (which meets the specification requirements) to 
values as high as 3.4P. Evaluation of the change in interface loading with respect 
to present design loads will be made. The properties of all the other substructure 
and stiffness links will remain constant. 

3. 	 BLADE STIFFNESS - Blade stiffness values will be increased to determine the 
effect on interface loads with blade stiffness. To enable only the effect of blade 
stiffness to be made, the tower stiffness value will be placed at about 3.4P to 
ensure that tower/blade coupling will not obscure blade effects. 

Analysis in each of these areas is in progress and some results are expected by the time of 
the PDR presentation. 

2.9 	 SUMMARY 

Structural dynamic analysis are being performed to assure the dynamic adequacy of the WTG 
system design. Significant results obtained are as follows: 

1. 	 An analytical approach is being used which captures the dynamic interactions 
between various portions of the system. The system is synthesized by substruc
tures which permit portions to be readily rotated to various positions and enable 
bearing stiffness to be readily varied. By using a series of linear models, the 
coupling causing maximum dynamic loading can be readily understood and correc
tive action taken. Damping of the various system modes is identified which provides 
an early indication of the significant modes relative to coupling with the control 
system and utility. Loads at major interfaces can be calculated to assure adequate 
treatment of the structure, yaw drive and other critical elements. 

2. 	 Code verification results indicate conservative peak and cyclic load predictions. 
In applying the AISC code, the peak and cyclic loads are the critical parameters. 
These loads are generally within approximately 20 percent and are conservative. 
The analysis uses a realistic tower shadow model representative of wind tunnel 
data considering the tapered tower geometry and increased shadow width. The 
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code uses 20 elastic modes of the system enabling higher order responses of the 
tower to be included. Major dynamic coupling is apparent and readily traceable 
to system characteristic. Modal test comparisons verify the adequacy of the 
dynamic modeling of the structure. 

3. 	 The Mod-i tower and nacelle structure have been sized for preliminary strength 
and stiffness requirements. Although some member sizes are being Increased and 
and local areas are undergoing redesign, the majority of the structure shows 
positive margins of safety. Of the various loading conditions, the cyclic loads 
appear to be the most critical because of the reduced range stress. However, 
conservative phasing.of the applied loads should assure the adequacy of the design. 
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APPENDIX B
 

DESIGN LOAD DEFINITION
 

Abstract
 

This appendix is a copy of G.E. Space Division FIR WTG 1500-77-015;
 
dated November 2, 1977. It defines the design loads at each of the
 
principal WTG interfaces for critical loading conditions, both peak
 
and cyclic. Also included is PIR WTG MOD-l-78-012B, dated March 22, 1979,
 
which details the latest blade loads.
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PHILWEIPHIA 

PROGRAM INFORMATION REQUEST/RELEASE 'USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED 

FRO G. Sardella TO W. Lucas & Distribution #8 

oATS SENT DATE INFO. REQUIRED PROJECT AND REQ. NO. REFERENCE DIR. NO. 

11/2/77 
SUBJECT 

DESIGN LOADS FOR WTG; MODEL 400 - STEEL BLADE 

INFORMATION REQUESTED/RELEASED 

1. 0 SUNMARY 

This FIR updates and supercedes the Reference 1 Loads FIR. This revision is 
the first load set using the Dynamic Model 400 series which represents the final 
tower structure geometry, the plate design bedplate, the first cut Boeing steel blade, 
and with a system power output rated at 1845 KW at 24.8 mph. Loads were calculated 
for the wind conditions of Table 1 which remain unchanged from Reference 1. To complete 
the load set, an approximation for peak loads for Case C, Emergency Feather, is in
cluded which shows a significant increase in peak flap moment (My) at the blade retention 
bearing (hub side) over the peak moment calculated for case B. This load is an 
approximation based on steady-state assumptions to indicate the magnitude of load 
that could occur at the Hub and which will require further dynamic analysis. Case D 
has been updated to reflect blade area changes from the Lockheed configuration. This 
load set shall be used to check current designs and will be updated when the final 
steel blade configuration has been selected. 

2.0 OPERATING CONDITIONS 
The loads analysis was performed tor Table 1 operating conditions. These
 

conditions are unchanged from the previous load set except for the new case
 
identification letters A thru D. Case C, Emergency Feather is included since the 
overspeed which would occur under this condition could give rise to larger flap 
moments, My, at the blade retention bearing than all of Case B conditions. (This
 
may also be a consideration for blade design to buckling loads). To approximate
 
this condition a 40% overspeed was assumed and the blade angle was trimmed for zero
 
torque. A steady state loads case with 50 mph airspeed (40% gust) was calculated
 
which produced the Table 5 load set. A transient load analysis is under con
sideration at this time and when performed may provide a more accurate evaluation 
of this load. 
3.0 LOADS ANALYSIS 

For this loads analysis, Dynamic Model 413 was used to represent the WTG system.
 
This model includes the current tower structure geometry, the "plate design" bed
plate and the first cut Boeing steel blade. This blade is similar to configuration 2 
of the blade parametric studies and is rated at 1845 KW at 24.8 mph. The blade
 
weight is approximately 19850 lbs and the system weight corresponds to that reported
 
FW 31 (see Reference 2).
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The WINLD code of the GETSS' program calculated the aerodynamic and gravitational
 
system forces for the Table 1 operating conditions. With these forces, the aero
damping coefficients from the QAERO code, and the Model 413 system modes and frequencies,
 
the system loads were calculated for several interfaces and components. Loads
 
calculated were in terms of shear and moments in the three orthogonal system axes
 
(both rotating and fixed) and also in terms of accelerations and deflections for the
 
same axes. The following interfaces were defined:
 

a. Loads
 

(2) Blade, sta. .75R (6) Blade rat. bg (hub side)
 
(2) " " .50R (7) Main Rotor bg (Hub side) 
(3) I " .25R (8) " " " (bedplate side) 
(4) it " .11 (9) Yaw Bearing 
(5) Blade rat. bg (blade side) (10) Tower base
 

b. Accelerations
 

(1) Main Rotor brg. (5) Bedplate corner, +Y+Z
 
(2) Transmission (6) It -Y+Z
 
(3) Generator (7) It +Y-Z
 
(4) Yaw bearing (8) I It -Y-Z 

Design loads for the WTG structure are given for the six structural interfaces
 
described above (interfaces 6-10). The Blade stations are not given but can be obtained
 
in plotted form for steady wind speeds in Reference 3. Values of the mean, peak and
 
cyclic components of forces and moment are given at each of the structural interfaces.
 
Accelerations at the major masses listed above are also tabulated along with bedplate
 
corner accelerations and the yaw bearing Ctower top). A summary of the data is as
 
follows:
 

a. Tabulations
 

Table 1 Wind Conditions for Design
If 2 Fatigue Loads - Case A 
" 3A Dynamic and Gravity Loads Case B Upgust, +410 in flow 
" 3B 1" ft IT it f [I , -410 in flow 
" 4A If " Downgust, +41' in flow 
" 4B " It it It i Downgust, -41 in flow 
" 5 Emergency Feather - Case C 
" 6 Hurricane - Case D 
if 7 Component Accelerations - Fatigue, Case A 
" 8A " " - Upgust, Case B +410 in flow 
" 8B " " - " I -41 in flow 

9A " " - Downgust " +41' in flow 
99B it -41* in flow 
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b. 	Figures
 

Figure 1 Sign Convention - Rotating System
 
Figure 2 Sign Convention - Stationary System 

4.0 LOADS APPLICATION
 

The WTG structural design shall be evaluated for each of the four operating
 
conditions given in Table 1. Loads for these cases are presented as described above
 
in Tables 1-9 along with steady state aerodynamic loads given in Table 10. In the
 
application of the loads it is important to note that two set of coordinates are re
quired. For blade loads, the blade retention bearing and the rotating hub, a
 
rotating set of coordinates was required and are defined in Figure 1. This system
 
should be used for load applications at these interfaces. For the hub bearing (B/P
 
side), yaw bearing and tower base interfaces; however, a stationary axes set which
 
is defined in Figure 2 is referenced. This stationary set should be used for
 
application of loads at these interfaces. Acceleration loads are given for component
 
and bedplate locations which are referenced to the stationary axis.
 

For the fatigue condition of Case A, the cyclic loads given in Table 2 shall be
 
applied to the system. Accelerations calculated for this condition are also given in
 
Table 7 and are provided to complete the load configuration. The maximum value of
 
stress range determined from these loads shall be kept equal to or below the constant
 
amplitude fatigue limit specified by the latest ASS14TO code. This case will cover
 
the range of operating velocities and includes inflow variation and gust dispersion.
 

Case B will be considered a peak loading case and shall be used to compute.peak
 
stresses. These stresses will be checked against the peak allowable stresses of the
 
latest AASHTO code and the appropriate buckling criteria. Since both up and down
 
gusts are considered for each maximum inflow variation each load set of Tables 3 
and 	4 must be evaluated.
 

Case C and Case D are extreme loading conditions occurring very infrequently.
 
Peak loads occurring from these conditions shall be evaluated for stresses to the 
allowables specified by the code for such infrequent loading not to the peak stress
 
allowables used for Case B.
 

5.0 REFERENCES
 

1. 	Sardella, G., "Design Loads for WTG Structure and Component", FIR WTG

1500-77-015C, July 18, 1977.
 

2.' 	Fuoco, J., "Weight Breakdown, Center of Mass, and Intertias for WTG,
 
FW 31", PIR WTG-1500-77-094, August 19, 1977.
 

3. 	"Specification for WTG Rotor Blade", No. 273A6684. 
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BOEING STEEL BLADE LOADS
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1.0 SUMMARY 

This PIR presents blade loads for the MOD-1 WTG models 621 and 622. Model
 
621 	was for a 24.8 mph wind, trimmed to rated power (2043 KW at the shaft),and
 
running at 35 RPM. Model 622 was for a 35 mph wind, trimmed to zero power, and
 
running at 38.85 RPM.
 

2.0 DISCUSSION
 

The Boeing steel blade properties which were used in these models were the
 
revision F inertia, area, and elastic axis data, and the weight curve labeled revision
 
G (total weight of 19618 lb. excluding tip weight). Additional weight was distributed
 

* 	 by area among the nine blade sections in the model to bring the total to 19917 lb.;
 
440 lb-of tip weight was included in both models.
 

After the aforementioned models were assembled, the Boeing blade weight estimate
 
was increased to 20,222 lb. exclusive of the tip weights. To ascertain the effect of
 
this change, the blade was remodeled, distributing the additional 305 lb. by area and
 
the cantilevered frequencies were determined. The frequency change was found to be
 
not significant, and it was decided that a revision of the assembled WTG models was
 
not warranted.
 

3.0 RESULTS
 

Table 1 contains the results of the calculations for the model 621 and 622 loads.
 
The means have been corrected to account for the effect of blade flexibility in the
 
calculation of the centrifugal loads. The coordinate system for these loads is as
 
follows.
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APPENDIX C
 

SHIPPING AND ASSEMBLY
 

Abs tract
 

This appendix is a summary of shipping and assembly requirements,
 
used for preliminary planning of these activities.
 



APPENDIX C
 

SHIPPING AND ASSEMBLY
 

1. Introduction
 

In the design of the MOD-i WTG, consideration was given to the requirements 
for shipping and assembly. The general requirements specified by NASA in
cluded the following: 

(a) The design shall provide for a maximum of shop assembly and a 
minimum of field assembly prior to erection.
 

(b) Consideration should be given to transportation via existing
 

surface vehicles.
 

(c) The installation site may be anywhere from Alaska to the Caribbean.
 

These requirements were aimed at minimizing shipping and installation costs
 
while avoiding undue technical risks and schedule delays. Once the installa
tion site had been identified as Boone, North Carolina, a significant parameter
 
was eliminated from the equation and it was possible to complete definite cost
 
analyses for competing approaches. The two basic approaches were to ship the
 
nacelle as a complete assembly and erect it on the tower in a single lift, or
 
to ship and erect subassemblies that could be handled by less costly vehicles
 
and lifting equipment. The Boone site favored the latter approach. The detail
 
requirements and procedures for handling the MOD-l WIG as subassemblies not
 
exceeding 50 tons in weight are described in the following paragraphs.
 

2. Shipping Plan
 

The overall shipping and assembly plan is illustrated in Figure 1. Major
 
components are shipped from their point of manufacture to the assembly and
 
test facility in Philadelphia, known as the Riverside facility. Assembly
 
procedures at the test facility will parallel those to be used on site, so
 
that after disassembly the shipping configuration of major sub-assemblies
 
will correspond to the units lifted to the top of the tower, with minor
 
differences noted later. Approximately ten trucks will be required to ship
 
all equipment from the test facility to the site. Major components that are
 
not required at the test facility but will be shipped directly from the point
 
of manufacture to the site will include (a) blades, (b) tower, and (c) sub
station transformer.
 

2.1 SHIPPING CONFIGURATION OF MAJOR SUB-ASSEMBLIES
 

The shipping configurations of major subassemblies are summarized in Table I,
 
listing weight and envelope dimensions. Note that items exceeding 75,000 lb.
 
in weight and 12 feet in width require permits for road travel. Permitted loads
 
may travel only in daylight hours, excluding holidays and weekends and over
demensional loads will require escorts. Where possible, the overwidth loads
 
(bedplate, yaw section, pintte, and fairing) will be shipped in convoy to
 
minimize escort requirements.
 

C-I 



2.2 	SPECIAL HANDLING AND PACKING REQUIREMENTS
 

(a) 	Lifting lugs will be provided to facilitate handling of the bedplate,
 
rotor assembly, and yaw section. The two forward lifting lugs on the
 
bedplate are bolted in place and may be removed during shipment to
 
limit the envelope width. The gearbox, generator, fairing, and
 
ground enclosure are equipped with integral lifting lugs.
 

(b) Machined mating surfaces, such as the bottom surface of the bedplate,
 
will be protected during shipment by a 3/4 inch thick plywood sheet.
 
Internal packing, bracing, and other special procedures required in
 
preparing for shipment will be performed during disassembly at the
 
test facility, while protective coverings and tiedowns will be pro
vided by the shipper.
 

(c) 	Large bearings, such as the yaw bearing, are vulnerable to damage
 
during shipment and must be protected against severe shocks. One
 
precaution will be to completely fill the housing with a light oil.
 

2.3 	BLADE SHIPMENT
 

Each of the blades will be shipped in special fixtures, tilted at 260 to lower
 
the height for highway movement. Each blade, in its shipping configuration
 
will weight approximately 27,800 lbs. Envelope dimensions will be 101 ft.,
 
3 in. long, 7 ft., 3 in. wide, and 12 ft., 4 in. high. The blade tip will
 
overhang the rear fixture support by 25 feet.
 

For rail travel from Seattle, Washington to Lenoir, North Carolina, each blade
 
will be centered on one 89 ft. steel deck flat car with a flat deck idler car
 
positioned at the rear to provide clearance for the overhanging blade tip. At
 
Lenoir the blades will be loaded and secured to a truck tractor and a steer
able 	tag vehicle for transport to the site.
 

3.0 	SITE ASSEMBLY PROCEDURE
 

Assembly of the wind turbine at the site will be conducted in the following
 
stages:
 

(a) 	Site preparation and installation of foundation.
 

(b) 	Erection of tower.
 

(c) 	Lift and installation of major nacelle sub-assemblies.
 

(d) 	Installation of control enclosure and utility connection.
 

(a) 	Installation of blades.
 

The nacelle equipment will arrive at the site after erection of the tower is
 
complete. By staging the truck shipments in Boone, each sub-assembly will
 
arrive at the top of Howard Knob in the sequence required for erection. Erection
 
and installation procedures are summarized in Table II. Note that the weight
 
to be lifted may differ slightly from the weight in the shipping configuration.
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The oil cooler, removed for shipment, will be installed under the bedplate while
 
the bedplate is suspended or supported at ground level. The yaw slip ring may
 
also be installed at this time, or with equal facility, can be installed after
 
the bedplate has been mounted on the yaw structure. Installation of the rotor
 
assembly with the low speed shaft attached requires removal of the cover plate
 
on the bedplate. The cover plate will then be lifted and installed as a
 
separate unit.
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TABLE I 

WEIGHT AND SIZE SUMMARY 

WEIGHT 
(TONS) 

SIZE NOTES 

1. Bedplate 40 L=395" (32' - 11") 
W=150" (12' - 6") 
H=120" (10') 

2. Rotor Assy 40 L=270" (22' - 6") 
W=100" ( 8T - 4") 
H=130" (10' - 10") 

3. Gearbox 31.5 L=119" ( 9' - 11") 
W= 92" ( 7' - 8") 
H=120" (10') 

4. Generator 7.2 L=103" 8' -
-W= 62" ( 5' -

H= 72" (5') 

7") 
2") 

5. Nacelle 
Multiplexer 
Unit 
(NMU) 

1400 lb. L= 60" (5') 
W= 36" (3') 
H= 92" ( 7' - 8") 

6. Yaw Section 25 L=177" 
W=170"
H1= 91" 

(14' - 9") 
(14' - 2")( 7' - 7") 

7. Slipring 600 lb. 1= 90" 
W= 40" 
H= 30" 

( 7' - 6") 
( 3'  4")
( 2' - 6") 

8. Pintle 20.5 L=186" 
W=186" 
H=129" 

(15' 
(15' 

(10' 

- 6") 
- 6") 
- 91 ' ) 
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TABLE I
 

WEIGHT AND SIZE SUMMARY
 

(CONTINUED)
 

WEIGHT SIZE NOTES
 
(TONS)
 

9. 	 Fairing 6500 lb L=400" (33' - 4") 
W=158" (132 - 2") 
H=131" (10' - 11") 

10. 	Ground 17 L=337" (28' - 1") 
H=128" (l0 - 8") 
W=127" (10' - 7") 

11. Miscellaneous #1 2000 lb 	 L=136" (11' - 4") 
W=120" (10') 
H= 24" ( 2') 

12. 	Miscellaneous #2 1800 lb 1=136" (i1' - 4") 
W= 96" (8') 
H= 48" (41) 

NOTES TO TABLE I
 

SIncludes rotor hub, adapter structure, low speed shaft and flexible couplings,
 
pitch mechanism, fixture.
 

> Includes shipping stand, low-speed rigid coupling, high-speed shaft assembly. 

D Includes cooling air manifold, resistor, but not a shipping crate.
 

L Includes shipping crate.
 

L Dimensions are for assembled fairing.
 

SIncludes oil cooler, bedplate crosswalk, braces, yaw slip ring shield,
 
generator exhaust duct, rotor slip ring, and structural interface bolts.
 

> Includes pintle decking, ladders, wireways, and junction boxes. 
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TABLE II
 

PROPOSED ASSEMBLY SEQUENCE
 

ITEM ASSEMBLY WEIGHT ASSEMBLY ACCESS ATTACHMENT INTERFACE 
NO. LIFTED AIDS REQUIRED REQUIRED REQUIRED BEFORE CONNECTION AND 

(LB) REMOVING CRANE INSTALLATIONS 
AFTER CRANE 
REMOVAL 

1 Pintle(upper 41,000 a Alignment pins a Top of tower legs 24-1k dia. bolts 6 Torque bolts 
section of for access to bolts o Install floor 
tower) e Install hand rails 

o Install personnel
lift 

2 Yaw Structure 47,800 o Temporary alighment a Temporary stand on 32-1k dia. bolts * Retorque all 
pins upper level of bolts 

o Portable pump to tower for access a Install lower 
pressurize yaw to bolts ladder 
brakes 

3 Bedplate 87,400 * Temporary alignment e Through yaw 26-1k dia. bolts e Install exterior 
pins structure for access (interior) bolts (26) 

v Guide to protect yaw to interior bolts * Retorque all bolts 
motors * Temporary scaffold e Remove guide 

from upper level fixtures 
of tower for access o Install upper 
to exterior bolts ladder 

* Install slip ring 
* Connect cables to 
slip ring 

o Hydraulic lines 
o (10) 
01 



5 Gearbox, 60,700 * Tool to rotate gear-

box high speed shaft 

for alignment 


a Alignment dowels 


t 

-4 

aquua tool to rotate 
generator 

* Alignment dowels 

7 Fairing 5,500 a Alignment lips on 
bedplate 

8 Slip Ring 520 a Sling through hole 
in bedplate 

9 Blades (2) 20,000 a Temporary alignment 
pins 

C 

K. 

a Top of bedplate 8-1 bolts a 	Retorque all
 
*hrough yaw boS
 

structure (note: • At rigid
 
safety railings in coupling to shaft
 

& 	remove shaft
place) 

support
 

o Pull rotor cables
 
through shaft &
 
gearbox & connect
 
to slip ring

Install flex
 

coupling between
 
gearbox & lube pumI
 

* Remove safety
 
railing
 

a Tqp of bedplate 4-1 dia. bolts e 	Attach rigid 
coupling to high 
speed shaft 

e Remove shaft
 
support
 

c Nacelle exterior e Approx. 80 bolts & Install weather
 
(blind fasteners) seals at rotor
 

adapter
 
o 	Install generator 
cooling duct 

a Interior of yaw
 
structure a Connect cables
 

a Rotor hub interior 56-1k bolts a 	Torque bolts
 
through access 	 o Connect instru
opening 	 mentation wiring
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APPENDIX D 

METAL BLADE STUDY 

Abstract
 

This appendix is an edited version of the Task Completion Report 
submitted by Lockheed - California for the Mod 1 Metal Blade Study 
Program. The editing has deleted reference data, supplementary 
notes, and presentation material that were considered superfluous. 
A complete set of performance data has been included only for the 
selected blade configuration (5.K. RFI). 



TASK COMPLETION REPORT 

MOD. I METAL BLADE PROGRAM 

INTRODUCTION
 

Effort on this program was initiated in March 21, 1977. The objective of the 

contract at that time was preliminary design, detail design and fabrication of two 

back-up metal blades. On April 29, 1977, the program was redirected to eliminate 

the detail design and fabrication of blades and perform a limited parametric
 

analysis to determine the design criteria which would lead to a minimum cost blade
 

for a 1500 kW WTG. Thus, on April 29, the objective was to perform a parametric
 

analysis as shown in Figure 1.1. The results were to be reviewed on May 23rd and 

a final configuration selected from the parametric candidates.
 

At the parametric analysis review with GE on May 23, 1977, it was decided to
 

determine the preliminary design characteristics of a minimum cost 110 foot metal
 

blade which would produce 2000 kW shaft power at a rated windspeed of 22 mph
 

(30 ft. height).
 

On June 2, 1977, GE was notified in telephone conference that the require

ment of 35 rpm design rotational speed creates conditions which result in a heavy
 

and expensive blade. Because, the rotational speed cannot be reduced, it was
 

decided to revert back to a shorter blade which would produce 2000 kW shaft power
 

at a rated windspeed higher than 22 mph.
 

The format of this report is as follows: 

1. Introduction
 
2. Selection of Blade Geometry
 
3. Load Analysis

4. Structures 
5. Dynamic Analysis
 

6. Producibility
 
7. General Recommendations
 
8. Blade Data
 
9. Presentation Material (DELETED)
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OBJECTIVES
 

* 	 HELP G.E. ESTABLISH DESIGN REQUIREMENTS FOR 

MOD 1METAL BLADES 

* 	 EVALUATE EFFECTS OF'RPM, AIRFOIL SECTION, TWIST, 

AND LENGTH ON FABRICATION COST OF MOD 1 METAL 

BLADES
 

* 	 METAL BLADE REQUIREMENTS MUST MINIMIZE MODIFICATIONS 

TO PRESENT DES IGN OF THE REST OF THE WTG SYSTEM 



CAVEATS
 

* 	 PARAMETRIC STUDY - NOT A DESIGN 

* 	 ALL COSTS ARE ENGINEERING PARAMETRIC ESTIMATES 
AND DO NOT INCLUDE SOME ITEMS COMMON TO ALL 

CONFIGURATIONS. 

BLADE DESIGN REQUIREMENTS TRADE-OFFS ARE SUB-
OPTIMIZED FOR BLADE ONLY 



VARIABLE DESIGN PARAMETERS
 

R P M Blade Twist Nominal 
Para metric Blade Length 

Configuration Airfoil 31.5 35 Opt. None 95' 100' 104' 

1. (2.6.1,2) 44XX X X X.
 

2. (2.6.3) 44XX. X X X
 

3. (5.X.3) LS-1 X X X 

4. (5.X.4) LS-1 X X X 

5. (5.X.6) LS-1 X X X 

CUT-OUT WINDSPEED 35 mph AT 9 METER HEIGHT 

I i - 
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2. Selection of Blade Geometry
 

Optimizing the torque force along the major working portions of the blade 

(outboard of 40% of radius) with consideration of realistic constraints may be 

accomplished in the following general manner. Achieving low induced drag losses 

and high lift-to-drag ratios (low profile drag losses) at structurally acceptable 

low thickness ratios, 21 to 12%, results in a planform taper ratio of approximately 

3 to 1 for the chords measured at the 40% and the 100% radius stations, respectively. 

Selection of the airfoil series determines the Ci's for high lift-to-drag ratios 

and the margins between high operating C 's and the stall C 's. This aspect of the 

design selection will be addressed later in this section. 

Structurally acceptable narrow chord blades, in combination with the initial 

matrix of rpm's and diameters, make it feasible to achieve near maximum efficiency
 

at rated and mean wind speed regions (top speed ratio 8 to 11) with blades having a 

two segment linear twist (approximately -80 from centerline to 40% radius; approxi

mately -5 0 40% to 100%radius) and a two segment thickness ratio distribution with 

a break in the thickness distribution at 40%radius stations. Metal blade fabrication 

does not require straight line sanwise elements, but special spanwise curvatures are
 

not especially warranted for performance. 

Two airfoil families have been considered in the preliminary study, the NACA 

44XX airfoil series, and the NASA IS (1) -04XX series. Figure 2.1 shows a com

parison of the two airfoil families in the thickness ratio range of 12 to 21%. The 

particular advantages of the LS (1) -04XX series occur in the region nearer the 

lower thickness ratios of this range, which also exhibits higher design CI capability 

with roughness, Figure 2.2. 

Candidate configurations with both airfoil families have been studied with 

allowance for a manufacturing joint at the break in linearity of twist and thickness 

ratios. In addition to a preliminary requirement of 1670 kW shaft power a cut-in 

power of 100 to 150 kq was considered as a reasonable power level. A subsequent 

lower level of 90 kilowatts was still considered reasonable. 

Configuration 2.6.1, (candidate 1 in Figure 1.1) was taken as a first con

figuration which was known to meet the requirements and was shown to be overdesIgned 

for the rated power when the 44XX airfoil is used in place of the 230XX airfoil. 

Configuration 2.6.2 is an alternate version with the manufacturing points and breaks 

in linearity of twist and thickness ratio moved to 48% for ease in manufacturing 

with this blade length. 



Configuration 2.6.3, (candidate 2 in Figure i.i) is the same as configuration 

2.6.1, but operating at 31.5 instead of 35 REM. This configuration could be con

sidered representative of the 44XX airfoil series blades. 

The remaining effort has been directed to the IS (1) -O0XX's airfoils which 

permits smaller blades for the rated and cut-in powers. At rated power, the 

Is (1) -04XX series allows higher operating Cl's, higher L/D's and higher margins 

to stall Cl's. Configuration 5.X.3, (candidate 3 in Figure 1.1) provides the 

smallest blade to meet the performance and is designed for 35 RPM. An alternate 

configuration, 5.X.9, with a higher thickness ratio at 10% radius, .40 versus 

.294, was considered for meeting frequencies and structural loads, but did not meet 

rated power at rated wind speed. Configuration 5.X.4, (candidate 4 in Figure 1.1) 

was the next smallest blade that could meet the rated power but at the lower RPM 

of 31.5. Configuration 5.X.6, (candidate 5, Figure 1.1) shows the increase in 

diameter required to meet rated power of 1670 MT at 31.5 RBM of the blade has 

zero twist. 

Redirection in target design resulted in a requirement of 2000 kW shaft power 

at rated speed with a blade length of 110 ft. at 35 RIM. Structural examination 

of this configuration, 5.X.F13, showed that attempts to refine this design resulted 

in a continually increasing weight, and operation at Ci's which did not really 

take advanTage of IS (1) -04XX airfoil series characteristics. 

A second redirection in design resulted, allowing the rated wind speed to be 

increased from 22 to 23.74 MPH. This design includes the thickness ratio distribution 

of 5.X.9 and the slighly increased chords of 5 .X.RF1, but at a blade length of 

99.6 ft. This configuration is the smallest blade which meets the performance, 

frequencies and loads. It takes better advantage of the performance characteristics 

of the LS (1) -04X airfoil series. 
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, 2.1 COMPARISON OF AIRFOIL PROPERTIES 

Airfoil 	 Surface Approx. RN 

NACA 44XX (1)  Mid Smooth & N ACA Std 6x 106
 
ough
 

NASA LS(1)04XX ASA Std Rough 6 x 10
 
120 -.


/\ 
/\ 

lao 	 / 
10 

13 

C 
I--

I-
U.. 

~40 

THICKNESS RATIO 

0 
0 	 .4 .8 1.2 1.6 2,0 

LIFT COEFFICIENT- CL 

(1) Processed-from NACA Rpt 824 
(2) Data Source: NASA TM X-72843 	 iz-

20 



COMPARISON OF SECTION CHARACTERISTICS 

NASA GA(W)-I airfoil 
0 NASA standard roughness 
G NACA standard roughness 

NACA airfoil, NACA standard roughness (ref.5) 

.04 652- 415 4-4'4 -, .Gl.S ,,vrS 
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3. LOADS ANALYSIS 

An initial load.: analysis was performed for the GE fiberglass blade so that 

a common point of departure would be established and that the equivalence of 

frequency calculating methods at GE and Lockheed would be verified. The results 

of this analysis proved the equivalence of the two methods. 

The loads analysis consists of the following: 

o Frequency spectrum 

o Case descriptions 

o Blade tip deflection 

o Blade flapwise and chordwise bending moment distributions for each 

design case as specified in the statement of work
 

Under the statement of work, the frequency placement requirement was a
 

major structural design parameter. Those configurations which did not meet the
 

frequency requirement-were eliminated and, in most cases, loads were not calculated.
 

Table 3.1 is a summary of the configuraticas analyzed and the frequency placement
 

of the first flap and first in-plane modes. Loads analyses were performed on the 

following configurations: 2.6.1, 2.6.3, 5.X.9 (alternate configuration to 5.X.3 

to try and meet the frequency requirement), and 5.X.RF1. 

The loads data for each configuration analyzed are included in this report 

under the particular configuration number. 
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DES IGN LOADS
 

METHOD OF ANALYSIS 

LOCKHEED COMPUTER PROGRAM "WINTUR" 

AFULLY COUPLED FLAPWISE-CHORDWISE BLADE DYNAMIC RESPONSE 
ANALYSIS METHOD-- INCLUDES BLADE DYNAMIC TORSION ANALYSIS 

A SUB-SET COMPUTES COUPLED FLAPWISE- CHORDWISE NATURAL 
FREQUENC IES 

APPLICATION AND CREDIBILITY 

APPLIED TO ALL HELICOPTER ROTORS DEVELOPED AND BUILT BY LOCKHEED 

RESULTS COMPARED IN A HELICOPTER INDUSTRY-WIDE LOADS PREDICATION 
COMPARISON STUDY AT 1974 AHS/NASA-AMES ROTOR SPECIALIST'S MEETING 

MOD-0 100 kW METAL BLADES FOR NASA-LEWIS 

MOD-a CORRELATION OF ANALYTICAL AND ACTUAL LOADS DATA FOR NASA-
LEWIS
 
MOD-OA 200 kW METAL BLADES FOR LAS/NASA-LEWIS
 



WIND ENVIRONMENT
 

WIND SPEEDS 

SPEC IFIED BY THE STATEMENT OF WORK (SOW) 

WIND SHEAR PROFILE 
Hfl 

V"V (H-) ; AS SPECIFIED BY SOW 

WHERE: 	 n 00.167 

H0 30FEET 

V0 - SPECIFIED WIND SPEEDATH - 30FEET 

TOWER SHADOW 

30 AZIMUTHAL SECTOR BASED ON A29%TOWERSHADOW 

w 

J
5p 

V 
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4. STRUCTURES 

4.1 Structural Considerations
 

The structure is sized to achieve a target life of 30 years without appreciable
 

fatigue damamge, cracks <.25"•
 

At such time as a crack appears, from whatever source (material flaw, corrosion,
 

stress corrosion, fatigue), the crack propagation rate must be low enough to maintain
 

adequate residual strength capability between inspection periods.
 

The above fundamental criteria determines the selection of the structural
 

configuration, material and the sizes of the structural members.
 

4.2 Fatigue and Fail Safe Criteria
 

The fatigue criteria is defined in the GE work statement: paragraph 1.4, 2.1.2.1
 

and 2.1.2.4. It requires the determination of the average mean and cyclic loading
 

for wind speeds up to the cut off wind speed (35 MPH). The cyclic loading is
 

established at the predominant frequency which is assumed at one per rev.
 

The number of cycles which occur over a 30 year period distributed in accordance
 

with the velocity duration curve (work statement Exhibit B) is shown below in
 

Figure 4.2.1. It should be noted that any cycles which number above 106 require the
 
allowable to be below the endurance limit. On this basis, operation at the higher
 

speeds sizes the blade.
 

The variation of cyclic loading at a specified wind speed is required to be log 

normal distributed having a mean cyclic load equal to the calculated value. The 

flatwise and edgewise cyclic loads are required to have a standard deviation such 

that the 3rloads are 1.85 and 1.2 times the mean cyclic load, respectively. The 

cuanmuative damage shall be determined using the dominant frequency of cyclic 

loading. 

The above criteria for a log normal distribution applies factors (1.85 and 1.2)
 

to cover loadings other than those occurring from steady wind conditions. It is
 

assumed these factors take care of transients such as gusts, cross winds and yaw
 

motions.
 

The ratio of the transient load to steady load levels, will vary with the
 
absolute value of the steady wind speed and the specific dynamic characteristics of
 

the generator system. The flatiwise bending 3rvalue was the overriding factor
 

which established the member sizing of the blade main structural box section.
 

14.-1
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The basic log normal distribution formulae are shown in Figure 4.2.2. 

An example of distribution used in the blade analyses in terms of mean cyclic loading 

and number of cycles is shown in Figure 4.2.3. 

In order to determine fatigue damage using the Palmgren-Miner theory of 

linear cumulative damage the allowable fatigue stresses (S-N curve) must be deter

mined and a realistic level of hardware fatigue quality must be assumed. 

For the sizing of the members required before mass and stiffness properties 

can be calculated, a fatigue quality index of 5 was assumed. To achieve this 

value in the actual hardware will require careful attention to the detail design 

of joints and fittings. The actual fatigue quality index achieved in the hardware 
.
must be substantiated by tests covering the cyclic range required l07


A typical allowable curve for the aluminum alloys used in the sizing of the 

structure is shown below in Figure 4.2.4. The values shown are for a 50% probability. 

These values must be reduced to arrive at the allowables for sizing of the blade, 

approximately 20% in the high cycle range. 

Fail Safe requirements are established to give a damage tolerance level which
 

would result in a capability to carry maximum design loads after the failure of a 

single number. 
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4.3 Structural description 

The basic blade primary structural section is composed of an aluminum, 

mechanically attached trapezoidal shaped box composed of heavy skins and corner 

caps. 

To this basic section is attached the leading edge nose skin and trailing 

edge stringer stiffened skin to form the basic airfoil. This structural 

configuration was sized to carry the maximum design load, and comply with 

fatigue and frequency requirements. The basic geometry, weight, structural 

properties, mass and stiffness properties, resulting from the sizing exercise 

are given in Figures 4.3.1 thru 4.3.8. 

The blade has been designed to carry all the design loads specified in the 

work statement and shown in the loads section of this report. 

-?4-7
 



TII
 

tt 0.a 1 z 

tr-0.12 

sCr-T. A-A 

_Fcvso,5 ,3,/ B LADE GEOMETRY 

!x.L 
< 5 rtf4P~rr?,~r~o~T~oa 



-4o 5--6.- 9- /0 -i
 

____ 

G __ 

~~~ 

X 

IL 4 

taaz 

_ _n___ 

4.s4.9 

12111 '0oL2Wd 

7nk 17 -d4P~, 
-Jd ~R S7_____,__ 

Jn23±a~9, La22 

-7.47l q~ IeS.4-S-3o~ .7-

9,-9..- ___ _ -l 

Ifr:3,7ha i t 196.(, -7j9O ?., -7 

TO 4,d 

4t2 .<7 

Sz2~0, s9 I- e)9 

'z C, V 3A 

Is 

S,_C47 e____A !5. t) 1 .09 

_____ 4'- 2,cL 7s 0 4 

IL ~ RIIA PAt* IStSa-- ~ S z 
.0 U2A~i1ns~z~1±~s1 ~'-'-'*T i2±&.4f. i __ 



-
.
 
,
 



-
7
7
 

A
 D

IV
ISIO

N
 O

F
 L

O
C

K
H

E
E

D
 


.
,
 

-
,
 

L
O

C
K

H
E

E
D

-C
A

L
IF

O
R

N
IA

 
C

O
M

P
A

N
Y

 
A

IR
C

R
A

FT
 C

O
R

P
O

R
A

T
IO

N
 

C
H

E
C

K
E

o By 
A

E
PO

R
T

 90 
.2 


,
 

,
 

,, 
.
 

t~
1

4
.i.r;:~

~
~

--
-

.. 
.I....................... 

...... 
.
t
 

.... 
.. 

.. 
.
 

-
-

-
-

-
-

-
-

-
-
4


 

-
-
-

-
-
-
-
-
.
.
 

•
 
•
,


 

.
.
 

. 
.

... 
. 
.
 

.
.
.
.
.

.
.
.
 



,
.
.
=
•
~
~
~
~
~
~
 

:
 
"
"
 

"
-
., 

.::..:. 
: 

t 
:A . K-i 

.
Z
-
-.-::-_

:
.
=
_
:
 

.
.
 
.
.
-
•
 



.
.
-
.
 

.
.

.
.

.
. 

.. 
... 

....... 
I_.....
 

.
:
.
 

.
. 

•
 

'
:
:
 

. 
:
 

. 
-

.
;
:
 

.
"
 

. 
.

. 
.
 

.
.
 

"
.
_
"
.
 

:
•
:
.
.
 

.
"
 

.+ 
-
-

_ 
_ 

_._.__ 
.
 

_ 
_ 

_ 
_ 

_ 
. 

-"-...... 
-_ 

... ......
_ 

.. 
_.. ........ 

-
_ 

_ 
_ 

_ 
_ 

_
 

*
-
-
.
.
 .
 

.
.
.
.
.

.
.
 

.
 
.

.
.
.
.
 

.
.. 

-
7

,.:[: 
-

.
......... 

..... 
. 
.
.
 

"
 ,

-
"
"
 

.
.


 

-
-

-
-

-
-
.
 

.
.
.
.
 

.
 

.
.
.
.
-
-

-------.-......... 
....... 

. 
..


-
.... 

... r
.
.
.
.
.
 

...


.
.
.
.
 
.
 

..... E
............ 

.
. 

.
 

.
.
 

-
"
.


 

.
-:': 

.
.
 
.

-
t
-

.
.
.
.
.
-
.
 

......... 
+

... 
.

-
.
.
.
..
 

....... 
. 

.
.
 
..
.
.
.
 

:
 *
.
 

-
.

.
 

.
.
 

. 
t 

-
.
 

... 
...... "



 

.
.
.
.
.
.
 

.............. 
.
.
.
.
.
.
.
.
.
.
.
.
 

t.... 
,.............. 

l..... 
.
.
t
'
 

.


 

:
 

. 
.t 

.. -
-

'
"
'
-
-
:
.
'
 

'
:
 

:
 

.
:
:
:
 

_
 _

 
.
 

.
.
 

.
.
.
 

-
r
 

. 
.

-
-

,
 

.
.
 

-


"
 

' 
.
 

.
.
-
.

f
"

"
N
-
-
•
-

:-,:::=
: 1 i

-
-
4
.
p
-j3.''-

.
 

:-..-.:: 
.:: 

-
F
 

.
.
 
.
 
.
.
.
.
.
.
.
 

.
 
.
 

.
I
.
 

....... 
y 

1 .in>
 

. 
.
.
 

.'
'
 

-
-

-
.
 

-
.
4
!
 

.. 
. 

r
-

.
t
.
.
2
 

-


-
.
 

.
.
 
.
 

.
. 

.
.
 



..--.-.. 
-

. 
.-

-. 
. 

. 
....... 

.
 

.
.
 

.
.
 

.
.
 

.
 

. 
•
.
 

... 
..-

*-
.*.. 

.
.

. 

,
.
-
.
 

-
-

-
-'
-

.1...z 
. 

... 
..... ........ 

........ 
.
.
 

.
.
 

........ 
.: 

.. 
. '

 
,


 

-
~~t:;:::-

rl 

-
-
-
.


 

I
I


 

.
.

.
 

-
.
.

.
.
I
:
 "



I 
"
I
+
 

"
 

.
 

.
 

*
a
 

"
 

-
_
 

-
-

:
 "
r
 

--. 
.
.


 

0 

.
-
...
 ;
 

.
 

:
:
 

.
 

.
.
 

.
 
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

..... 
.. 

.. 
.

.
 

n
 
.
:
:
 

-
-

.
 

.
.
.
.
 

.
-

.
i '- .

1
 

.9 
:=-.-1-.-. 

t
,
=
=
.
-
=
 

.
 

-
_
 

_
_
-
.
.
.
,
•
:
:
-

:____
 
_
.
.
.
 

.
.
.
 

}
 

.
.
 

.
 

.
.
 

\
.-
.
.
 

.
 

.. 
-. 

.
.
.
.
 

. 
t. 

.
 

r-.: 
.:. 

.
.
.
.
.
.
 

.
-

•
 

:
"
-

-
"
.
 

".
 

. 
.
.
 
:
I
 

"
.
.
 

..... 
,

. 
.. :
I
l
~
t
I
l
'. 

[
.
.
 

o
.
.
.
.
.
.
.
.
.
.
.
.
.
.


 

.
.
.

.
_
 
.
.
.
.
r
.
+
'
 

.
.
 .
.
 

,
-
-,
+
-

.
 

* 
.
 .

.
-
:
 

-
-

.
.
 A

-
+,

.
.
 

.
..
 

.
.
.
.

.
.
.
.
 
-

-
-

-
.
.
..

. 
-

.... 
. .

.
 

-
.-.
 

+
 
.

_
_
"
,
 
.
 
.

..
 
..
 .
 

.
.m
 

*
 

+
 
.
..
 

.
.

p
.

+
 ~ 

a
+
 

i
.
.
.
 

.
.
.
 

m
 

.
.
 

.
+
 
.

.
.
 

.
.
.
 

_ .
_
 
.
 
,
 

"
 

i
 

..r 
-
-
f
+

.
 

.
.
.
 



.
.
 



......... 
.L

-. 
. 

.:.L
-...... 

::.=
: 

.......... 
p
....i...... 


.
. 



-
-
-
 

-
-
 

,
C
P
A
R
O
MY 

-
LO

C
K

H
EED

-C
A

LIFO
R

N
IA

 
C

O
M

P
A

N
Y

 
P
A
c
.
_
_
_
_
_
_
Z
 
o
.
f
 

V
A
T
S
 

r
_
-

-
-
7
 -7 

A
 D

IV
IS

IO
N

 
O
F
 L

 C
XH

EEO
 

A
IR

C
IA

F
T

 C
O

R
P

O
R

A
T

O
N

 
m

o
z
tz

L
.... 

I..)
t
 

C
IE

C
X

tD
 
B
y
 

R
E

P
O

R
T

 
N

O
 

-	
.
L
:
-
.
.
:
-

:::-
:
 
-
-
-
-

:
 
i
 

:
 F
 
!
 
:
 
.
:
.
-
,
-

,
1
 
-
:
-
r
-
.!
 

'
:
 -
.:
,
 
	



-0
.

'
k
-
:
=
:
-
p
 

.
.
 

.
 
.
.
.
 
.
.
 

_
 
.
 

:-=
~

 
.
.
 .
	
 

_
.
._
.
.
 

_
.
.
 
.
.
 
_
_
.
.

.
.
 .
_
.
.
.
_
.
.
..
 
_
_



.
.
.
..
.
.
..
. .....

,
.
..
..
 
.
.
...

.
.
..
.
 
/
 
	

2
"
 
,.
.
.
.
.
.
.
 ..

 


.



.
.
.
.
.
.
.
 

-
-
.-
-
-
-
-
-
-
-
-
-
-
-
.


 

S
.
.
.

.
.
 

.
.
.
.
.
.
.
.
 .
.
.
.
.
 

.
.
.
.
.
.
.
.
 

.
 
.
.
.
.
.
.
.
.
.
 
	

.
..


 

rM
.~ 	

-' 
.
.
-
.
.
 

z:. 
:
 

-
-
.
 .
.
 
.
 .
 

.
.
.
.
.
.
.



...
..
 
.
.
.


 

t-,-
"
 

"
-

-
-

--
-

.............. 	


r....... 
.

--------	
-
.
.
 

.
.
.
.
 

"


 

,
"
 
:-

--
:
.
T
-
:
 

,
'
 

.
	
 

k
 

.
 

!
 .

.
.
 

: "
 :::"":" 

'
 

*----r-	
------

-
-
-
-
	

t-


-
.
 I 

.
.
 

.
•
.
 

•
 
•
~
-

.
.
.
.
.
 

.
.
.
.
.

t
.
.
.
 

.: 
.
.
.
.
.
 

-....... 
-
-

,
:. -

.. --
-
-
-.
.
 

.
. 

.j 
:
.
.
.
.
.
.
.
.


-
.
-

--
-
.
-

-
-

-	
-
-
-
.
 

-


-
-

-
.
 
.
 

.
 
.
 

.
.
 

.
.
.
 

'
 

.
 
.
 

.
.
.
 
.
'
. .
 .
 ....-...-...

.
 

.
I
 
	

I 
.

.
.
 

.
.
 

.
.
.

.
 

. 
'
i
'
_
n
.
.
 

.
.
.
 

_
 

.
.
 

.
 

'
 
_
'
 

_
 

:: 
,
.
 

.
.
.
 

.
 
.
.
.
.
 

.
.
.
 
.
 
.
.
.
.
.
 

.
+-

j
.
.

.
 

-
--

; 
.
.
.
.
.
.
 

:
z
:
.
.
.
.
.-t-

-
-
.
.
.
 

-
-

:
.
 
--. 	

.
.
.
 



.
_
 

_ 
_ 

_ 	
A

-_-.:--__-.. 
|
 

"
 
'
-

,
:

.
r
-
_
 
	

:
=


 

"
-

.
'
 

.
 

.
.
.
 
-
"
.
 

.
.
..
.
..
.
 .
.
 
	

.
.
 

.
 
.
.
.

-..
.
.
.
 
.
.
.
 .
.
 

.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
 



"
 

.
.

.
.
.
.
.
.
.
 

-
.
.
=
 

I-

I
!
:
-
'
"
 

.
.
.
.
.
-

.
 .
-

.
.
-
.
.
 
.
.
.
.
 
.
.
-
-

,
 =
-
'
-
"
-

-
.
.
 
.
.
.
.
.

u
 

-. 
~

 
. 

.
.
.
..
 
.
.
..

.
 
.
 
.
.
 

.
.t
.
.
.
.
 

.
.
 
.-x--r/ 

-
.
 
.
.
.
.
..
.
.
 

r~ ~~ 
~

t..... r~ -
-

-
---~ .

.
.
.
 

.
.
.

.~
~

7
'l 

.
.
 
'=,.
.
 
.
.
.
.
.
.
.
.
.

-
-
.
.
-
.
 
,
 
-
-

-Z T
.
 

t
.
.
.
 

.
"
 

.
 

.. 
r.

.
.
 
.
 
:
:
:
-
4
:
J
:
- -_

.
.
.
.
 
	

.-
~ 

-
.
 
.
.
,
 

*
'
 

-
.
.
.
.
.
.
. ..
.
 

-
,
 -

-
.
-
.
_
 
-
=
 
:
 _
 --

:: 
,
 
°
 

°
.
 .
--

-
-..I

 
.
.


~ 	
t-..t...,,l
~ 

.
.
 

-
:
"
"
'
/
 .
 
.
.
 

.
 

"
.
.
.
.

.
.
.

.
.
 

-
'
 



:
:
-
-

_
.
.
 

-.. 
.
.
 
.
 

.
.
 
.


 

.
.
.

.
.
 .

.
.
.
.
 
.
 

.
.
.
 

.



-
=
 

.
 

.
.
.

.
4
-..

.
 
.
 
...
 .
-
.
 
...
 
.
 
.
.
.
.
.
.
 
.
 
.

..... .
.
 

-
-
'
.
,
 .
.
.
.
 
	

=
 

fr 

-
-
-
-
	

.
.
 _
=I
__._ 

,
-
-
"
-
'
=
'
-

.
 

.
.
.
.


 

I
.
 

0
 

.
.
.
.
 

.
.
.
 

..
.
 
.
.
 

.
.
 

. 
.

.
 

.
 

.
.

.
..
.
.
 
.
 

•
.
 

.
.
..

.
 

.
)
.
.
.
.
 

.
 

.
_
 

_
 

.
L
 

.
)
 
	

.
 

-
_
.
.
 

.


 

.
 

.
:
:
 
	

.




-
-
 

-
-

-
-
-
 --
-
 

-
-
-
 -

-
-
 

• 
R

h ,A
R

90 
SY

, 
JD

A
TW

 
6" 

C
:h

IE
C

K
tO

 
I
D
y
 

3 
-7'
" 

-
L

C
C

K
H

E
E

D
-C

A
L

IFO
R

N
IA

 
C

O
M

P
A

N
Y

 
A

 D
IV

ISIO
N

 O
F LO

C
EKEED

 A
tfItA

F
T

 C
O

R
PO

R
A

T
IO

N
 

p
A

r
m

--.. 
6_ 

tO
0L

_'-9-
L

'-
E

 
R

E
O

R
'T

 
N

O
 
.
.
 

.
 

.
.
.
.
.
.
.
.
 

......... 

e 
._

..o
°::.....-:.-°f-.. 

. 
.t. 

. .. 
-o

:z
:.. 

-p.-az...
.... 

. 
•

)-:.... 

.
.

.' 


... . 
. 

...... 
... 

. 
.

....
................ 


!
 

.
.
. |
.
. .
.
.
.
.
.
.
 
.
.
.
.
 

.
.
 
.
 

.
..
.
.
 

,
 
.
 

.
.
.



•
 
.
o
 
.
.
.
.
. .
.
 

.


 

.. 
.

. 
, 

. 
.

+
 

. 
• 

.
• 

• 
+

. 
.ot. 

.. 
.
 
.
.
.
 

... 
... 

. 
. 

W
E

 
. 

.
.

.. 
.
 

." 
-

... 

F
 
-
-
-
-
-
-
-
-
-
-

:
:
:
-

--
--

--
-

--
-

-
-
-

. 
.... .

 .
 

. 
-

.
.. 

.
.
.
 

.
-------. 

I--------. 
.
 

4
.
.
 

. 
.

. 
. 

.-
.. 

.
.
 

. 

S
. .... 

. 
.. ...... 

. 
.. 

.. 
.

2 
t. 

-0-


_
_

_
_

_
_

_
 

.
 

.
.
 . 

.
 

.
.
.
.
.
.
.
.
 

1 
.
.
.
 

.
.
.
.
.


 

.
.

.. 
+ 

. 
..... .. 

.. I.. 
... .. 

. 
r
...... 

. 
........... 

-
I


.. 
.. 

4 
2..Z

=.. 
. 

.. 
..... 

. 
.. 

. 
.

.... 
. 

.I 
.. 

| 
n, 

, 
-

7 
, 

, 

".. 
I-

..-... -
-

...-
-

-,--
...... 

T
'" 

t-"
 :-t------T ...... 

--------------------------------------.. 
... 

..----
-. • 

.... 


... 
.. 

...
 
::. 

z.. . . 
.

.. 
. 

. 
. 

.. 
...--.. -. 

. 
. 

...-
-

-
--. 

. 
..--

. 
.. 

-f.%
 

---
--

---
---

b
:4

: 
-
-
-
-

•
.-. 

2
~

--
---

--
--

-

o 
-" 

-
o 

. -
.

. 
. 

--
-"---

.. 
.

.
.

.
. 

.
. 

..-
. 

-_ 
.

-
-

. --.--. 
-

-
o 

-
+

 
-

o 
-

. 
---

-.
. 

-.. . 
.. 

. 
.

. 
. 

'
-

-r 
;i 

"--
-..-

. 
..--

--
-

-' 
-"-'"--

I__ _ 
.. 

.. 
....--... 

.. 
..-

" 
=

 
-. 

-. 
...--
--



-
..
.
 . .

.
.
. .
.
.
.
.
t


 

-
.



-
+



.
 .- .

.
 

.
.
 
.
.
.

.
.
-
o
 

...
.


 

-
-

=
 

-
, 

.... 
'-

---
,-

-": 
--

:-'-,,'--
--

. --
-.....-

--
/ 

-
"-

-
...-. 

u. 

-7


+
...

=
+

=
 . 

. 
--. 

.. 
.... 

.. 
+

 
-

. 
... 

+
 

+
 

•---k
... 

.. 
... 

... 
.

. 
... 

. 
.... 

-... .. 
--

. 
.. 

.. 
..--

.
. 

. 

-
..-

" 
+

 
--

I-
:T

 
". 

: 
."=

=
L

" 
:.:r 

--
-

-. 
::: 

' 
: 

"
-:=

 
=

 
-

.-
-

" 
" 

-
.

°
 
-
-

to
-

-
-

I
 

::: -Z
 

--
.~~~ _

t.-( 
.:: 

.! 
~~ 

" 
---

--
". 

... ---. _. 
...--... 

..
._-:- :---:-



-j.. 
.. 

.. 
.. 

. 
; . ... .:;... ..--

: 
-...

.. 
, 

.. 

,, 
.
.



•
 

t
 

.
.
.
 

t
.
.
 

2: 

.. 
.

, 
. 

.
. 

+ 
? 

-
.

. 
. ; 

. .
.-

.. 
--

-
-

_ 

:3
:
:
.
.
 

.
.
 

.
o
-

+
.
 

.
 

.
 

.
.
 
.
.

.
 

.
.
 
r
:
 

:
±
.
.
.
.
 

.
.
 

:
-
.
.
.

.
.
.
 

.
 
.
 

.
.
.
.
.
.

.
-

.
.



•
 
.
-

-
o.--::L

-::... 
.

.
 

.
.
 

.
 

*: 
: 

.
:
.



-
... 

: 
. ..+

 
'-

. .. 
.. 

,..... 
.. 

.. 
..-- -

-


-L 
t 

..----- .... 
x....i 

. 
.. 

:.. 
.

. .. 
_ -

+
 -

.... 
. 

.
. 

.. 

. 
.. 

.
. 

.
+ 


-

-
-

[---
-4

 
. 

t ..-.-
' 

t 
.

" 
" 

-
--



....... ... 
. 

. 
. 

. 
........ 

. 
. 

:-' 
, 

: 
: 

. 
. 

' 
" 

: 
" 

.-. 
+ 

" 
i 

" 
.

: 
.

' 
' 

: 
" 

tT
"

-"K
..

-
'-'.. 

". .. 
.. 

"' 



P
"W

A
R

E
D

 M
yv 

LO
C

K
H

EED
-C

A
LIFO

R
N

IA
 

C
O

M
P

A
N

Y
 

P
A

C
L

._
4

_
F

._

 

V
A

T
. 

A
 01V

ISIO
N

 O
F LO

CXIhEED A
IC

IA
F

T
 C

O
N

PO
R

A
TIO

N
 

m
oor,
 

C
H
E
C
K
E
O
 gyR

t]flIS? 
C
'


 

-., 
t... -

. 
-.

. 
-

. 
-

...-
-.. 

-
....-

; 
-

.....
-

.-
--...-

-
-

-
- .... 

-
-. 

. 
.. 

...... ........... 
. 

... 
.
 

.


 

.
...................... 

-... 
-7..-


-
---

:f-----,--
-:: 

-
..-

;... 
. 

....:.......r:. 
......... 

.. 
.. 

. 
...--

-
. 

..
 
.
.
.
.
 
.
.
 
.
.
.
.
.



.......-... 

. 
.. 

.. . 
.. 

.
.
.
 

.
" . 

"...... 
. 

. 
. 

. 
.

. 
. 

' 
. 

. 

S
t...:........ 


...... 
... 

.... 
. .. 

.... . 
... 

. 
.. 

2:-._ 
_.

.
. 

.
.. ... 

....... .
.
.
.
.
.
.
.
.
.
.
.
 



........ 

. 

......-----
:-, 

-
-. 

....
. _--

-... :-::
r . 

.: 
.
.
.
.
.
.
.
.

.
.

.
.-. 

. 
"" 

.........-.. 
"-. 

.. -: 
."

 
:. 

. 
-. 

." " 
: 

•
 

.. 
.... 

...............
 

.
 

.
 

.
.
.
 

.
.
.
.
 

.
 

.. 
.... 

. 
.

.
. 

.
. 

.
L

-
r 

.
. 

... 
... 

:° 
t 

,_.' 
... 

--


.... 
:_

;~~~~~~~~~~~~~~~~~...
.-..-..-...=....-.-..-.... 

..............: 
-:-........--:.:.. 

............ 
..
 

~
~

~
~

..
~~ 

.
. 

. 
_.... 

..... 
. 

"
,.•........-

. 
l 

~ 
. 

..... 
.2'................ 

°°°-....... 
" 

.". 
. 

.......
 

'£ 
I'---

S
.,2:..-

: 4,* 
-::y

-
:-

_
 

r-
-

: 
: .: 

'-.-r 
...-

: 
.. 

:_ 
.-. . . 

..
. 

. 
. -.

.
.. 

.-
. 

" -'.. . 
-

. 
.

. 
.. . . 

" 
A

 
.

. 
-

L
.:--2

.:
.
i
.
.
 

.
 

..... 
.. 

-
.
 
.
 .
.
 

..... 
........ 

. 
.



-L 
. 

.... 
...-

i 
.-....... 

ot 


,.-....-
... 

"
,.--....-...-.-....... 

.......--....... 
...... 

....... 
....... 

....... 
........ 

.... 
.. 

..
 
t 

.:.Z
 

-
. 

.. 
.

.
" 

-
. 

.. 
.. 

.. 
.. 

=
.. 

.--:. 
: 

-
.. 

-::' 
:=... 

-
.:::=

 
.=

 
.. 

: 
. 

:
 
o
 

. 
. 

. 
. 

.
.

.. 
. 

. .
.~

 ~ 
~ 

. 
-. 

.
.

. 
-

. 
-

.
. 

. 
. 

.
. 

. 
.

o
 

.
.

.
. 

.
.. 

. o
. 



... 
. 

.. 
. 

.. 
.................. 

.... 
...... 

.. 
. 

... -
.. 

: 
-o


 

.
. .

. . 
-.

.
. 

.
. 

,_ .
.

.
. 

.
. 

. 
.

.... 
. 

.
.

. 
.

. -.. 
.

.
. 

.
. 

... 
B

I 
i:E

-
x 

, 
_ 

. 
' 

L
 

.
. 

.
. 

.-
. 

... 
... 

.. 
.. 

.. 
.

.
.. 

..-. .
.. 

.
.

. 
.,. 

.... 
. 

.. : 
~ 

. 
-

. 
42

• . 
.. 

... 
. 

. 
-

-.... 
.

o-
.

.. 
. 

. 
.

.• 
. 

. -
. 

-
. ..-...--

. 
-

-
.

. 
. 

.* 
. 

.
.o.. 

.
.

.
. 

. 
.... 

t .. 
. 

. 
-.....

.
. 

-. 

"-
i .

.
. 

.. 
........ 

..... 
. . . . 

. 
:.. ......

,-
...... 

.
.

.
. 

: 
'
 

15 
L
-
-


.... 
" 

=
.:-: 

" .. 
..... 

.... 
:.....................


..... 
: 

. 
.

. . 
.. 

.. 
. 

.
. 

....-
-

-: 
_

..:.... 
... 

_.2.-....= 
., 

.=.1
 
-
-

_ 
_
:
F-

, 
.
.
 

_
-

.
.
 

'
_
-


,
.
|
-
-

. _
_
_
.
.
.
 

.
.
 

.
.
 

.
.
 

.
.
.
 

.
 

.
.
.



,
 

.
.
 

.
.


 

. 
.

... 
. 

.. 
../ 

4 
.. 

. 
. 

:.- t 
t-Z

 
..-. 

: 
.: 

. 
.... 

.... 
....... 

. 
.. 

..
 

:: 
::.:= 

.. 
-

V
! "A

;-
. 

. 
.; : 

.,." 
-. 



-- 

P
R

P
A

R
K

0
 M

,_
r4

S
I~

fC
a
J
 

LO
C

K
H

E
E

D
-C

A
LIFO

R
N

IA
 

C
O

M
P

A
N

Y
 

.
.
.
.
.
 

,
A
Q
a
L
-
.
F
 

r
.
 

V
A
T
C
 

A
 C

IV
IS

IO
N

 O
F LO

CXHEEf 
A

IC
A

F
r C

O
R

PO
aA

T
IO

N
 

M
O

D
IL

 
C

H
E

C
K

E
D

 
R

tP
O

R
T

 
N

O
 

........ 
7 

..... 
..--	

...........
 

.....................................................
.. ......... .

.



.....
.
.
.
.
 



,
 
.
 

"'---------------------------------------
-----------------

= 
. 

.
.
.
.
.
.
.


 

--
.
-----
.
 

.
 

.
.
 
.
.
 
.
	

,
L

t 
-

5
-
.
 

' 
.
 

.
.
.

-
I
 

.
.
 
*
.
 

-
.
.
.
.
 

.
 
.
 
.
.
 
.
F
r
.
.
 

:
.
. :: 

4
; 

K
 

.
 

x 
.
 

L
.~~1_-

7 t-
r 

t:
-
r-
-
-
-
-

-


-
_--

.
:
.
-
!


 

,
,
.
 
!
"

.
-:
:-:d'.:-!
!
.
-
-
-
:
 

F-:.=" 
;
 

!
.
-
-
-
- '
.
'

-
-
'
-
-
-
-
.
-
"
:
 "
 
-
-
"
 _
-
- -
-

:
-

.
-
i
.
.
 

) :
.
 

-
I
.
 

t
'
 
-
-
.
.
.
 

.l 
-

-


.
.
=
 

.
	
 


.
 

.
.
.
.
 
	

,
.
.
 .
.
 
.
 

-r
-
- 

•--.. :'r-j-
.. .

.
.
.
.
.
 

.
.
.
 
.
.
.
.
.
.
 
.
 

.
.
.
.

.
 

.
.
.
.
.
 

.



.
	
 

I
.
.
.
.
 

.


 

.
.

.
 

.
.

.
t
 
.
 

.
.
 

.
.
 

.
.



I 
£:u 

.
.
 

. W
 -..
.

.
.
.
 

.
.
 

.. 
-

.
 

"
 

:
:


 

-
J 
•
-
<
 .

.
.
.
-
.
-
-

-
-
- -T
n
-
'
. ; : 

.
.
.

.
-
-

-
-

---
=
 !
.
 -
-
-
.
'
-
-
-
-
-
L
 -
: r
. I:
- .

-- w
-t.-" 


-
-
.
-
:
:
 :
-
.
 

-
-
.
-:=: 

z.. 
.
 ): .

 
. 5
.
.
.
:
u
:
.

.
.
.

.
 
.
 
.
.



•
 
	

.
:
-

.
-
-

-
-:
,
 -
-
-:
. :
-

-
:
.
 

-
:
.
 

t 
: 

-
R- :

:
-

> 
4 

.
.
 

.
.
.
 



-
_
"
:
$
 

--
I 

-
~
 

-
;

-----
-

-
-:

~~~~~~~ 
-
-
-
-
-
-
-
	



4
=
.

:
 
:
=
 
*
:
:
 =
-
.
 -
-
.
' :
:
 .

-
-
"

.-.. 
.
.
.
.
 
.
.
.
 
.
 .
 

.
.
.
 

.
.
.
.
 
.
.
.
 

.
.
.
 

-.
 
--

=
 T
 

-
"..= 

.
.
 

.
.

.


 

. I 
.
.
.
 .
.
.
.
 
.
.
 

.
.
 

.................. .
.
.
 
.
 . 

-
-
.
.
.
.
.
.
.
.
.
.
 

-
=
g
 



k
r 

.
. 4
-
	

.
 

.
 

.
 

.
i
-
.
.
.
 

I
t
.
.
.
 

;.. 
.
 ,
 -
"
.
.
 
T
r
 

.
 

.
.
	

.
.
.
 

.
 

-
:
"
.
.
 

-
.
 .
.
 
.
.
 



.
.
 

.
. -
.
.
 

-
.

-
.
 
.
.


 

K 
-
t
x
.
.
.
 
.

.
 
.
.
.
.
.
.
.
.
 
.
 

. . 
.

.-
-

.
.
.
.
.
.
.
. .--

tf.l 


,
_ I
" .
.
 



t
.
.
.
 
..... 

.. 
.
.
.
 

.
.

".
.
.
.
.
.
.

.
 .
-
-

O
 k-!" 

r
.
.
.
.
 



_
_
.
 
.
L
 

.
.
.
.
.
.
.
.
.
.
.
.


 

-
|
 


•
'
 
"
 
:
-



.
.
 .
.
 

*- .

-
-
.
.
.
 

.
.


 

w f
-lt
"
_
'

,-
--

-
.
:
.
- .
.
-
-
. •
 
.
 

.=
 

-
-

..
-
:
_
 .
- :-

-
. -

-N
.. 

.
 

.
 

.
.
 

:-... 
. 

.
 
.
.
.
.
.
.
.

-
-

--


.
*
 
.
 
.
.
 .
. *
.
.
.
.
.
.
.

...... 
.
.
.
 
-
-
-
.
.
.
 

.
.
.
.
.
.
. .
.
.
-



--.-. 
-
-


.
 

.
.
.
 
.

.
-
.
.
 

.
 -

.
.
 .
.
.
.
.
 .
 

...... 
.. 

-
.
.
 

.
.

r
.
-

.
.
 
.
.
.
 
.
.
.
 
	

2:
.


 

.
	
 

u
.
.
 

.
-
.
=
 

:
 
,
-

-
.~
.
.
.
.
.
.
 

.
.
.
.
.
.
.
.
.
.
 



-
-

:
 ,
-

:
 -
;
 
=
 

-
•


 

-
-

-
-

-
-

-
-

- :
 --

-
.- -:-----.:- -:

: -
%

---
-
-

:
-
:
 

:
=
 

.
.
 :
:
 .
 

-
-

-
-

4
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
	
 

CF z
r
.
.
.



.
.
.
.
.
.
.
 

.
.
.
.
 



-
'
-
=
 

-



'
 



-
-
-

-	
-
-
-
-
=
=
'
 -

"
 

:-------=
 

-----
= 

=
-
-
-
--

-
.
.
 

.
'

-
-

-
-.

r
=
:
=
" ==:-i:--

--

.
:
-


"--..
t --

"
 
=-:J-


'-='"-" 
-
"
 



.
.
.
 

;
 

-
V
 
-

-
t----'---.-... 

I 
-

"
 

L'r".r-. .
 -
.
 -
"
 
:
.
 "
 

'
 

-
"
 

.
.
 
	

.
.


 

.
. r
.
.
 
.
.
-

.
-
. .
.
.
.
 
.
.
 

'
 
	

.
 

4 
.
-
. ,.

_
 
_
.
_
.
.
 

_.,_
._

 _
/
_
 
	

F
 
o
 
.
 
,
:
 
- a
 

9
.
 

.
.
-

- ,
_
 

_
 

-
_
_ - -

1
=
_
_
- _

 _
 _
-

=
.
 .
0
-
.
.
z
o
.
-
:..L .".t 

.
.
 

._:--&

..
.
.
 
.
.

'_
_
 

.
'
.
.
"
_
 

.
,
 
-9
.
.

.
:
.
:
' :
.
'
-
'
L
c
a
:
-
-
o
.

, 



-
-
-
-
-
-
-
-

P
R

E
P

A
R

E
D

 
u

f.-A
-ft. 

LO
CKHEED -C

A
LIFO

R
N

IA
 

C
O

M
P

A
N

Y
 

"
a
a

t.. 
_
_
j
 6. 

... za....A
C

A
T

L..........t..Z
 

D
IV

S
IO

N
 O

F LO
C

XH
EIO

 
A

I1ckA
Fr C

O
AR

PO
R

ATIO
N

 
O

t..4( 
.ea
 

R
E

P
O

R
T

 N
O

C
I4

E
c

K
z
 sv 

7
E

 

.
 .
.
 

. 
,.. 

.
.
 

.
. 

7 
.
 

l
.
.
-
.
.

.
 ..

...
 

..
.
.
 
.
 

.
.
.
.
 

-
. 

.
.
 
.
 

.
 

.
 . 



:
"
 

,
o
.
.
.
.
.
.
 

"
 

:
:
.
.
;
,

-
.
.
.
 

0
 
:
 

_
 
'
 

.
.
.
 

. 
-
-

.
.
 

-
,.. 

. 
.
.

-... 
.
.
.
.
 

--
.. 

.. 
. 

.
. 

.T
. 

.
.
 

: 2 
2 

.
.

.
 

. 
.
'
 
:
 
."
_
-
-

.
.
 

-
"
 

"
 

.
.
 

.
.
.
.
.
 

-
.
 

..
.

.. 
-

" '
-
:
 

.
": 

.
 

-
_
"
 

_
:..:-:::.:I

 
-
.
.
:". 

7
 

". 
-
- ". 

'
"
.
.
.
.
.
 

.. 
:-

.
 

:-":. I 
"

'"
.."

.... 

.
.
.+. 

.
... 

. 
... 

.
 

.
 .
.
.
..
.
.
.
.
.
.
.
.
.
. .. 

............
 
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
 

. 
.. 

*
.......... 

o
-"

......
.
.
-
-
.
 

+
.
 

. 
. 

. 
. 

!.... 
, 
-..
'
"
 

'
 

-. 
.z
.
.
.

:
 

.,: 
:.:.'--w

 
.
-
.
 t
:
:
-
:
"
 
.
:
 .+:. 

:
 .
 

.
 '
 

'
 

-

.
.
.
.
.

.. -
.... 

..... 
.
 

.
 

.... 
. 

. 
,........... 

.
.
 

.
.
 

.
 

...... 
. 

.... 
-

--
-~

~
~

~
~

~
.-

.. 
. 

. ... 
. 

. 
......... 

.
 

.. 
..... 

.
.
 

-
:
-

'
 

:7
:
_
-
!
.
.
.
 

.
 

r-
; 

-
.
.
.
 

. 
.
.
.
.
 

.
_
 

"
 

:
:
.
:
-
.
 
.
;

I 
.
.
 

-
.
.
 
.
 

.
.
 

. 
:
 
-

...
:
 

:.-
.tstw

 
'
":'::t 



zn 
t.--:: : .

.
.
.
 
.
 

...... 
t................ 

.
.
-
.
.
 

. 
.
-
.
 

. 
.

. 
. 

.:

t 

.. 
i
t
 

+
-

i
,
+
.
 

.
.
 

.
.

+
 

,
 

.
.
 

L
 

-
. 

. 
. 

.
.
-

p
 

.i
 

,.
 

.
 

.
.
 

.
.

. 
+
.
 

.
 

.
.
 

.
,
 

.... 
*
_

. 
o

~
.
.
 

.
 

.
.
.
 
.
 

1
,
;,...................... 

"'
 
.
" t ...-................................... 

.......... 
.................. 

..... 1 
........... 

.+
.....................:.

 
.......
 

..
 

...
.

.
.
.
.
.
 

.
 

.
.
.
 

.
.
 

.
.
 

.
 

. 
-
-

-


.
,
 

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

•....

.

+
 
.
 

.
.
 
.
..
+
o
+
.
 

i
.
 
*
 

.
.
o
 

............ 
... 

t........ 
....... 

...... 
*


 

-
"
 

:
-
'
 
-
N
'
.
.
:
 
-
,
.
.
.
.
 .
.
 .
.
.
 .
 

.
.
 
.
.
 

.
. 

: 
"
~:
,
"
 

=
 
-

"
 

N
 

.
 

.
.
.
 

..
. 

j.2 
:
:
 

kN
-

I 
N
.
.
.
.
.
•
.
.
 

.
.
 
.
 

.. 
,
.
,
.
.
 ' 

r
o
-

=
 

-
~
-
-
.
.
.
.
.
 

.
 
.
 
.
.
.
 

-4 1
57_-_ 

.
 
.
 
7
i
.


 

-
* 

I 
.X

, 

.. 
r...........;..........,"........

Lt. 
-. 

+
 

-
-..

.
.
.
-
-
-


."..... . 
r
-
:
 

:
 
"
 
'
"
 

-
.
.
 

I. 
-_......................... 

.-. 
1
 

,
 .
.=
 
.


 

=
=
,
=
+
 
.

=
 
.
"
 
-

"
-

i
.

,
 

:
 

=
.
.
.



.
:
 

_.= 
.

.
 

.
.

-
-


-
-
.
 :
:
=
:
:
I
=
:
=
.
:
+
:
=
'
:

=
 

r
 ":.-_ 

'"

-
=
:
+
 
:
 

=.::= 
=.: 

.
-
'
i
-
/
 

I
"
 

.
t
"
 

"


 

L
'
 

F
'
:
'
-
:
K
. , 7
Z
.
.
.
.
.
.
.



K
 

-
.
-
.
.

1
.
.
 





5. DYNAMIC ANALYSES
 

5.1 Flutter and Divergence Analyses
 

Flutter and divergence analyses were performed on configuration 2.6.1 for a
 

wind speed of 65 MPH. The subsequent paragraphs report on these analyses.
 

The basic data used in the analyses are presented in Table 5.1. The 

calculated vibration analysis modes which are presented in Tables 5.2 and 5.3 

were input to the flutter and divergence analyses. The flutter and divergence 

analyses performed are summarized in Table 4. These analyses investigated the 

collective and cyclic boundary conditions for variations in: 

Control system stiffness
 

Static mass balance 

Tower fore and aft bending modes 

As shown in Table 5.4, these flutter and divergence analysis results are presented 

in Figures 23,24 and 25. (Figures 1 thru 22 and 26 thru 33 have been deleted.) ' 

No analyses were conducted for the configuration 5.X.RFl. It is estimated, 

though, that the 5.X.RFl cantilevered blade torsion mode frequency (infinite pitch 

control stiffness) is only slightly lower than the 22.10 BZ of the 2.6.1 configuration. 

The 2.6.1 configuration local centers of gravity are between the 36 to 41% chord for 

an elastic axis at the 34% chord. The 5.X.RF1 local centers of gravity are located 

at the 32% chord for an elastic axis at the 30% chord. The torsion/bending modes 

for the 5 .X.RF! configuration are more inertially and aerodynamically decoupled 

than are the torsion/bending modes for the 2.6.1 configuration.
 

Stall flutter could be encountered (based on control system stiffness/inertia 

given) in an emergency feathering condition or in the case of gusts. Therefore,
 

there exists a potential for severe stall induced loads to be developed unless a
 

minimum requirement of .7 reduced frequency is satisfied and maintained. Figure 34
 

shows blade limit cycle angle versus reduced frequency. Placed on this curve is
 

the configuration 5.X.RF1 estimated reduced frequency.
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5.2 Wind Turbine Transient Response and Low Frequency Stability 

In the design of minimum cost large wind turbines it is necessary to distribute 

carefully the blade structural stiffness and mass to achieve acceptable dynamic 

behavior. System stability in all normal and emergency operating conditions and 

minimal loads amplification must be achieved. 

System stability, for a designed system, may be assessed by use of the rotary 

wind flutter and the RESOR W.T. computer programs. The flutter program determines 

the stability of the aerodynamically coupled higher frequency blade modes by a 

roots extraction procedure. As such it employs linear constant coefficient 

differential equations with or without insteady aerodynamics. 

REOR W.T. determines the stability of the low frequency blade modes coupled 

with lower motions and the blade feathering control systems. It employs a step 

by step integration of the non-linear, periodic coefficient differential equations 

of the fully coupled modes. Pitch-flap-lag stability is determined by "plucking" 

the blades in the in-plane direction and noting the decay of the oscillations, so 

induced.
 

REXOR W.T.can also be used, for stall flutter analyses. The first dynamic 

torsion blade mode and possibly a second flap mode should be included for reasonable
 

results.
 

Steady and quasi-steady oscillatory loads are calculated by WiTWR and rapid
 

transient responses are calculated by RECOR W.T. An example of the latter is the 

Emergency Feather Condition.
 

5.3 Pitch-Flap-Lag Stability 

The following degrees of freedom were employed to model the Mod 1 wind turbine 

in the REXOR W.T. program: 

Blade No. I flatwise cantilever mode 

Blade No. 2 flatwise cantilever mode 

Rotor cyclic edgewise mode 

Rotor rigid body torsion mode
 

Generator armature torsion mode
 

Tower first lateral mode
 

Tower first fore-aft mode 

Tower first torsion mode
 

In addition, the blades are free to twist in a quasi-static torsion feathering 

mode.
 



The flatwise and edgewise modes of an individual blade are non-linearly 

coupled due to different bending stiffnesses in the two directions; products 

of edgewise forces and flatwise deflections and vice-versa lead to feathering
 

moments. Flatwise-edgewise coupling is also furnished by coriolis accelerations. 

The wind turbine is driven by a wind shear profile of index =.167 with the 

reference velocity specified at the 9.0 meter height. A tower shadow of 30.0 

degree sector centered on the tower center line was employed with a 21% uniform 

velocity decrement within the sector. 

Structural damping of approximately 3% was employed in the tower and 

generator shaft and 4% in the blades. Windage damping of a further 3% was applied 

to the generator armature. A synchronous spring between the armature and tower 

was employed.
 

The non-linear edgewise-flatwise coupling noted above contributes to pitch

flap-lag instability. Since the feathering moment terms are functions of blade 

mean flapping deflection and collective pitch which in turn are functions of power 

extracted and windspeed, it is necessary to investigate stability over the full 

range of power available, including transient power ranges at each windspeed-rpm 

pwint. 

In the present analyses pitch-flap-lag stability investigations were made at 

the synchronous rpm at cut-in, design and cut-out wind speeds at zero power, design 

power and double design power respectively. At the design wind speed, zero power 

was also checked.
 

A steady state case was run to stimulate a gust at 65 MPH at design power and 

rpm.
 

The pitch-flap-lag cases are summarized in Figure 35 and time histories are 

presented for each of the cases cited. No pitch-flap-lag instabilities were 

found; though low damping was found in some cases as reported in the presentation
 

to GE of May 23, 1977.
 

A complete analysis would include investigation at all rpm from zero to
 

overspeed with approximate transient power (both positive and negative) and 

windspeed considered.
 

Figure 36 lists the natural frequencies (on primitive frequencies) of the
 

wind turbine components employed in the analysis.
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5.4 Emergency Feather
 

Emergency feather produces significant flap bending loads and large 

flapping deflections that are of importance in setting tower-blade tip clearance. 

A gust of wind is assumed to drive the rotor torque to a level that forces 

the generator out of sync. This causes the power output to drop to zero and the 

rotor rpm to accelerate. At the same time the system initiates nose down blade 

feathering at maximum rate that continues until the blades reach the full 

feathered stop.
 

The rotor accelerates for approximately a second until the angle of attack 

reaches zero. After that the blade lift reverses and a negative torque is
 

produced that reduces rpm.
 

The rpm reduces rather slowly, however, and after the passage of a further
 

second or two the blade stalls upside down and remains stalled until the rpm
 

approaches zero. 

Emergency feather cases listed in Figure 35 were run at the design wind
 

speed under the assumptions that the gust caused loss of sync and then disappeared. 

A possibly more severe case, with the gust velocity remaining at its maximum 

value should be examined. Tracings of the emergency feather cases are included 

in the section of this report dealing with configuration 2.6.1. 

Case 4 and 5 were run with 140/sec. maximin feathering rate. Case 4 employed 

steady non-linear section aerodynamics suitable for stall flutter analyses. Case 5 

showed considerably more dynamic blade motion than Case 4 but could not have shown 

stall flutter had it existed because of a lack of a blade dynamic torsion mode in 

the analysis. 

Case 10 was run with 80/sec. for comparative purposes. Maximum loads were 

not significantly less than those of Case 4. The shapes of th e two sets of 

curves were different however suggesting that the blade azimuth at emergency feather 

initiation may have a significant effect on maximum loads. 
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SUMMARY OF CONDITIONS ANALYZED BY CONFIGURATION
 

Pitch-Flap Transient 
Configuration Flutter Divergence Lag Stability Dynamics 

o 0-50 rpm o 40 - 160 mph mph rpm pwr 1500 kW 
2.6.1 o 65 mph 10 35 0 35 rpm 

o Cyclic o WidoverL. 35 35 0 22 mph 
o Collective at45 22 35 1500 8 Isec 
o Cantilever o Control Stiff. 35 35 1500 and 
o 10 - 100% Control Stiff. 10 - 10070 35 35 3000 14 Isec 
o Mass Balance 65 35 1500 

65 50 1500 

5. X o 0 - 50 rpm o 40 - 160 mph None None 
o 65 mph 
o Cyclic 
o Collective 
o Cantilever 
o 10 - 100% Control Stiff. 
o Mass Balance 

5. X NT o '0 - 50 rpm None 35 35 1500 None 
o 65 mph 65 35 1500 
o Cyclic 65 50 1500 
o Collective 
o Cantilever 
o 10 - 130% Control. Stiff. 
o Mass Balance J 



PITCH FLAP - LAG STABILITY ANALYSIS SUMMARY 

~DAMP I NC 
COND ITION 

CONFIGURATION Vw mph RPM kW 
g gLESS ASSUMED 

STRUCT. DAMP. 

2.6.1 10 35 0 0.11 .07 
35 35 0 0.10 .06 
35 35 1200 0.055 .015 
22 35 1500 0.053 .013 
35 35 1500 0.040 .00 
35 
65 

35 
35 

3000 
1500 

0.06 .02 

65 50 1500 

5. X .4 35 35 1500 0.06 .02 
(NO TWIST) 65 

65 
35 
50 

1500 
1500 

0.06 .02 
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MOD I BLADE FRODUCIBILITY 

The producibi.ity features of the blade axe best demonstrated in the trade studies 

son on Pages .A _! and C . The initial decision to use a heavy plate 

main spar box resulted in simplifying the structure by eliminating the stringers, 

ribs and web stiffeners which are usually associated with box spar designs. 

lImrInatIon of these non-recuruLng costs has a heavy impact on actual blade costs 

vhen dealing with small production quantities. 

The trade study (pg.-AJ) compares "D" spar versus box spar structure configura

tions and steel versus aluminum. The primary disadvantage of the '!D" spar config

ration is the difficulty of forming the thick surface panels to the tight leading 

edge radii. The principle disadvantages of steel ar- the difficulties of forming 

the panels, the span time for machining the spar caps, the increased weight and the 

high cost. 

Configuration I=I (aluminum box spar) is clearly the preferred candidate having 

four methods for skin forming, an. is lower in cost by -as much as $459,000 for 

the second blade set. 

"%e trade study (pg. .j compares the box spar skin panel fabrication approach 

as applied to the aluminum box spar. Candidate I, stretch formed skins is a prime 

candidate for higher production quantities. Mhe high tooling cost ($259,000 for 

stretch dies), howevery eliminates stretch formidng from consideration for smsll 

production quantities. Candidate fl, shot peen forming, is eliminated for this 

particular blade configuration because the shot peen process cannot produce the 

tight contour radius required in the area of the front beam (12% chord). 

Candidate I, Die formed skins. ITs forming process consists of progressively 

moving the material through an 8-foot long forming die set. This could be a viable 

candidate for greater production quantities but is mre costly than candidate IV 

for the quantities considered here. 

Candidate IV, Extruded skins, is the preferred skin panel fabrication method. 

These panels require no forming and no machining other than edge txim and is the 

lowest in cost of the viable candidates. 



MDo] 3 Blade Producibility (Cont.) -2- 5-2T-TT 

The trade study (pg. C) compares blade config=rations. Except for candidate I, 

the cost differences axe primarily the result of size and weight variations. These 

candidates are comparable from the standpoint of producbility. Candidate I, in 

addition to being the largest and heaviest, is also the most complex having a three 

spar box as compared to the 2 spar box of the other candidates. 

The cost figuresshown on all trade studies are parametric, developed by Engineer

ing for comparative purposes only, and do not include some items which are common 

to all candidates. These figures camot be used to determine the actual cost of 

any candidate. 

16-2
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CADIDATE DESCRIPTION 

"4/, AIRFOIL 

10375 R-3SPAR 
A.,rOc&,0". t'S. 

44YX AIWFOIL 

31 t API 

ios a-A% tsp~a215I%4103 75 2 

co- 2 4 

Lr, :FI!
I 35 PFNH * 

u t;9j7 R- . SPAR 

Ll I A FOIL 

T170
4 997 A- SP;iR 

, 
T - 1$24 

L$I AIRFOIL 
ao TrPIIA 
!A ILT
, 

024 P-2 ,P)R 
'I Q ICl' * Its 

li p co k2 

0,	I7b A-26011. 

4FG7. I;% .1, /4 

COTC PE P,.E,'.hETIt, DEVELOPED 

SHAFT POWER -

CUTIN 
;lL.©A
22.#MPH1L 11 MPH 

17S2 9. 

1685 145 

1670 111 


131 

1671 110 

1714 92 

I 
COMPI.RBY ENOINEEInO rOAR 

~' 	 7 -Y1-fii~d~f1O~~fl7Z.%Y,9PD 	 A2-, ... , ' 
BLAL CO FTJ RIO 

_I _ RLAIV COST it ODER 
, O-BASIC WEIGHT/SFT D 	

I,IS
BLADE DESIGN EFFORT (bALANlEwVrSNOrIICL),, DYNAMICS TOOLING_ , SET -7 - 

1
 

120% 32,3, j 47-	 "6" 
i
 

+
 

6I,600 72 $00 133,900 -6430011,6)1 

100% 23,000 Isr -67,000 -I10,300. 177.300 -8,100 

I 

105% 2,0r4	 N -69,500 -106,000 -175,500 -84,300 

,
 

108%. 2 c) 	 2w" , 9,50O • 3.4CC -bT,23, -. 50,)
G" - 9,0 l72- .g 

118% P-3.000 3R4 ZO400 -74200 -J.O0 -6c-)o 

iIVc pUR"O-'S eNLY L-DO NOr INCLIJ-E C,. C I1LM. 0CM TO ALL CANDIDATES 	 ,.. - - 

'0 

%to
 



7. G1RAL REC0MMENnAMIONS 

A. 	 Dynamics substantiation analysis of the coupled system is recommended follow
ing 	completion of the detailed design. This is essential to further the
 

assurance of a successful design. 

B. 	 !he pitch control mechanism system integrity is critical to the stability mar

gins of the system, both with respect to classical flutter and stall flutter. 
It is currently estimated that 600 million inch-lbs./rad stiffness will be 

required to prevent serious load amplification due to stall unless damping is 
present or added to the pitch circuit. 

C. 	 Slop in either the blade root bearing system and/or pitch circuit will result 
in self higher harmonic tuning, which produces high loadings and may produce 

limit cycle oscillations. 

D. 	 The design must offer the widest possible latitude for tuning adjustments of 

dynamic components so that movement within the constraints is still possible. 

Possible variations in design Versus actual test results obtained, as may be 
expected in any hardware development program, must be considered as basic re

quired latitudes for which such provisions are made. 

E. 	 Proposed aeroelastic and dynamic stability criteria for Mod-I are: 

a. 	 Limited available pitch-flap-lag stability solutions indicate that the 
nominal stiffness of 150 million inch-lbs./rad is marginal. 

b. 	 The coupled system predicted loads are highly dependent on the accuracy 

of the support description and must be current therefore with respect 

to the fabricated design, since harmonic loadings are amplified due to 

inner harmonic coupling effects. 

a. 	 Structural fatigue life is a direct function of stress concentrations 

associated with the details of both the sub-structure, as well as the 
super structure of the detail design. A Kt of 5 is reccmmended as a 

target for a well executed design. 



S.(Continued) 

d. 	 Emergency conditions commonly prodace the highest transient loading
 

cases, based on experience, and these are functions of the logic
 
applied to the control circuits. System control logic mist constantly 

be regarded with respect to structural adequacy when adoption of oper

ational modes and subsequent failure modes are considered. 

e. 	 Limit Design Rotor Speed - The maximum anticipated rotor overspeed as 

used for design. Establishment of this overspeed shall be based on due 

consideration of all control system failure modes. 

Flutter and Divergence-Rotating - The rotor system shall be shown to be 

free by analysis from aerodynamically induced flutter and divergence 

to 	in excess of 1.25 times limit design rotor speed. (Also, by test, 

the 	system shall be shown to be stable to 1.05 times limit design rotor 

speed.) 

Pitch-Flap-Lag Stability - By analysis the system stability shall be 

shown to no less than the assumed structural damping within the oper

ational envelope and to limit design rotor speed. (Also, by test, the 

system shall be stable over the operating envelope with a margin of not 

less than a g=O.015 and shall be stable at 1.05 times limit design rotor 

speed.)
 

Flutter and Divergence-Ron-Rotating - The system shall be shown by 

appropriate analytical methods to be free from aerodynamically induced 

flutter and divergence to in excess of 1.2 times the maximum hiurricane 

design wind speed with the wind coming from any direction. 

T7-2
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APPENDIX E
 

PRELIMINARY BLADE DESIGN REVIEW 
(COMEOSITE BLADE) 

Abstract 

This appendix is a report on composite blade development performed 
by Hamilton-Standard, consisting of copies of the slides that were 
used in a presentation at NASA-Lewis Research Center. This report 
was originally published as G. E. Space Division document No. 77SDS
 
4217, dated March 8, 1977.
 



PROGRAM SUMVfMARY
 
1500 kW WIND TURBINE GENERATOR
 

PRELIIMINARY BLADE DESIGN REVIEW
 

INTRODUCTION 

The Preliminary Blade Design herein described was prepared by the Advanced Energy 
Programs organization of the General Electric Company's Space Division under Contract 
NAS 3-20058",1500 kW Wind Turbine Generator Program". This program is being 
directed by the NASA Lewis Research Center's Wind Power office for the Energy Research 
and Development Administration, and is an integral part of the Federal Wind Energy 
Program. 

The objective of this contract is to design, fabricate, assemble, install and checkout a 1500 
kW wind turbine that generates electricity and delivers it into a utility network at costs 
competitive with alternative energy sources. Also, this wind turbine is to be designed for 
safe reliable operation over a period of thirty years, and it is to be compatible with utility 
interface requirements and general utility operations and maintenance practices. The con
tractor is to select the design, fabrication, assembly and installation options available 
throughout the contract that will best meet the above objectives, including the utilization of 
a management plan and work plan that will allow him to closely follow the schedule as 
agreed upon. 

This project consists of the following nine tasks: 
f 

Task I: 	 Requires all program management functions necessary to fulfill the 
objective of this contract. 

Task 11: 	 Requires the design analyses and the preliminary design of the wind 
turbine system. 

Task IfI: 	 Requires the detail design of the wind turbine system, cost estimates of 
additional units, and the design of tooling and shipping containers. 

Task IV: 	 Requires definition of the instrumentation, data acquisition, and testing 
requirements for this project. 

Task V: 	 Requires the procurement and fabrication of the complete wind turbine 
system. 

Task VI: 	 Requires the site preparation necessary for interfacing the ind turbine 
with the user's existing system. 

Task VII: 	 Requires the assembly, installation, and operational checkout of the wind 
turbine at the site. 

E-2 



Task VfI: Requires the procurement of a second 1500 kW wind turbine system. 

Task IX: Requires all reporting for this contract. 

As the Prime Contractor, General Electric has total responsibility for each of these task.-
The Hamilton Standard Division of United Technologies, under subcontract to GE, is 
designing and fabricating the rotor system which includes the blades, hub and pitch change 
mechanism. 
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REQUIREMENTS/CHARACTER ISTICS SUMMARY
 

SYSTEM REQUIREMENTS BLADE REQUIREMENTS
 

POWER 1500 KW 1670 KW 

RATED WIND SPEED 22 MPH 
CUT-IN/CUT-OUT WIND SPEED t1/50 MPH 

MAXIMUM WIND SPEED (SURVIVAL) 150 MPH 

ROTORS PER TOWER 1 

LOCATION OF ROTOR DOWNWIND 

BLADES PER ROTOR 2 

CONE ANGLE OPTIONAL > t0 

ROTOR INCLINATION < 150 00 

ROTOR SPEED CONTROL BLADE PITCH
 

ROTOR SPEED OPTIONAL 35 RPM
 

BLADE DIAMETER >200 FEET
 

AIRFOIL SECTION L/D > 50 

BLADE TWIST OPTIONAL 

BLADE TIP CLEARNACE 50 FEET 

YAW RATE < 2°/SEC 0.25/SEC 

SYSTEM LIFE 30 YEARS 

ROTOR REQUIREMENTS REFLECT NASA 
SPECIFICATION WITH ADDITIONAL CONSTRAINTS 



BLADE DESIGN REQUIREMENTS 

* 	 ENVIRONMENTAL PROTECTION (SALT-SPARY, SAND, DUST) 

* 	 BALANCE PROVISIONS 

* 	CONDUCTIVE PATH FOR LIGHTNING STRIKES 

* 	 STRAIN GAGE PROVISIONS 

* 	 TWISTAND TAPER TO CONSIDER COST, STRUCTURAL EFFICIENCY, 
FABRICATION, DURABILITY 

* WEIGHTWITHIN I PERCENT
 



STABILITY REQUIREMENTS
 

* CHORDWISE CG POSITION TO PRECLUDE DIVERGENCE 

TORSIONAL FREQUENCY PLACEMENT TO PRECLUDE FLAP-PITCH OR FLAP-LAG-
PITCH INSTABILITY 

ESTABLISHED CRITERIA AND EXPERIMENTAL DATA TO EVALUATE STALL FLUTTER 
AND PANEL FLUTTER 

NASA STABILITY REQUIREMENTS
 
IMPOSED TO ASSURE BLADE STABILITY
 



BLADE TUNING REQUIREMENTS 

NASA SPECIFICATION 

* FUNDAMENTAL FLAP: > 2.15P
 

, FUNDAMENTAL CHORD: > 415P
 

0 FUNDAMENTALS NOT COINCIDENT WITH EVEN ORDERS
 

GE SPECIFICATION 

* FUNDAMENTAL FLAP: 2.15<f <2.7P 

* FUNDAMENTAL CHORD: 4.4P< f < 4. 7P 

* HIGHER BLADE FREQUENCIES DIFFER FROM n ORDER BY 0.3 (n < 6) 

* INCLUDE HUB IMPEDENCE INBLADE FREQUENCY CALCULATION 

BLADE TUNING NARROWED TO
 
PRECLUDE ADVERSE DYNAMIC COUPLING
 



BLADE LOAD CONDITIONS
 

CASE 1 	 STEADY WIND AT 22 MPH, 35 RPM, 1670 KW POWER, (108 CYCLES) 

CASE 2 	 GUST 22 MPH TO 60 MPH IN0.25 SECOND, 25 PERCENT OVERSPEED, 
(105 CYCLES) 

CASE 3 	 EMERGENCY FEATHER IN 11 SECONDS, 22 MPH (PROPORTIONAL 
LIMIT) 

CASE 4 	 GUST 22 MPH TO 0 MPH (105 CYCLES) 

CASE 5 	 HURRICANE 120 MPH WIND, LOCKED AND FEATHERED 

(PROPORTIONAL LIMIT) 

CASE 6 	 INFLOW OF 200 AT 50 MPH WITH 20/SEC YAW RATE (105 CYCLES) 

CASE 7 	 STEADY 50 MPH WITH 50 PERCENT TOWER SHADOW (105 CYCLES) 
o GE IMPOSED 35% TOWER SHADOW 



BLADE REQUIREMENT CHANGES UNDER CONS IDERATION
 

* CORRELATION FACTOR ON BLADE LOADS 

* MODIFIED GUST -CASE 2 

2(a) 	 INFREQUENT GUST (PROPORTIONAL LIMIT) 22 MPH TO 40 MPH, 
7-SECOND PERIOD 

2(b) 	 FREQUENT GUST (105 CYCLES) 22 MPH TO 35 MPH, 15-SECOND 
PERIOD
 



Aerodynamic FbiainSrcua 
Requirements FbiaonMaterial Srcua 

External Method Requirements 

~Preliminary 

Load 
Capacity
 

Dynamic 
Characteristics 

Physical 

Blade Design Overview Characteristics 
General Requirements 

Structural 

* Load cases from Exhibit B,Para. 2.1.2 
* Supplementary load cases 
* Stability cases from Exhibit A, Para. 2c 
* Critical speed placement from Exhibit B,Para. 2.1.3 
* Stall flutter from Exhibit A, Para. 2f 
* Divergence from Exhibit A, Para. 2e 

Environmental 

* Life 
* Lightning 

Geometric 
* Shape 
* Weight 
* Balance 
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Specifications Mod-I Wind Turbine 

* Output power - 1670 KW (2240 HP) 

* Rated velocity - 22 MPH at 30' 

* Cut-in velocity - 11 MPH at 30' 

* Ground clearance - 50' 

* Diameter > 200' 

* Tip speed < 400'/sec 

* Wind shear &tower shadow 

2 BLADES/37 5 AF 
~ (22 MP}H)i NAA20XX SECTIONS 

203 FT. PROJECTED DIAMETER0.40 ats
0.40 I //II 7I I 7", 35RPM WINDSHEARI 

0.36I/I ! !% 20%TOWER SHADOW 
0.36 '/' i \I \\ASA RO0UGHNESS 

0.32 	 I
 

.23 2 4 "5 ia 111213 14 15 1 1
 
0~.28 - - -	 - 

0. 

1 1

100 3 4 6 7 8 9 10 1 12 3 1 1 \ I 


Velocity Ratio 

Predicted Performnnce Mod-i Wind Turbine 
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2 SLADES/37.5 AF/NACA 230XX SECTIONS 
203 FT. PROJECTED DIAMETER 

45,000 LB-IN TORQUE 

10
 

so 

60 50 M.PH (Cut-0 ut) 
_~Design 

40 

20 M (t In 

0 4 8 12 16 20 24 28 32 3
 
RPM 

Mod-1 Wind Turbine Start-up Blade Angle Schedule 

Mode Cases 

Case 1-A wind velocity of 22 mph occurs 30 feet above ground level The rotor produces 1670kw 
of power (no losses) at operating rotor speed (endurance limit). 

Case 2 - With the rotor blades set to operate for Case 1,the wind velocity increases to 60 mph in 
0.25 seconds. No change in blade pitch angle occurs. The rotor speed increases to 25 percent 
overspeed (105 cycles). 

Case 3 - With the rotor blade pitch angle set to operate for Case 1,the wind velocity isat 22 mph and 
the rotor speed at operating rpm the blade pitch angle ischanged to the feathered position in 11 seconds 
(proportional limit). 

Case 4 -With the rotor blade pitch angle set to produce 1670 kw of power (no losses), the wind velocity 
decreases from 22 mph to 0 mph in 0 25 seconds (105 cycles) 

Case 5 - With the blades set and locked in ahorizontal feathered position, amaximum wind velocity of 
120 mph occurs at 30 ft. above ground level inany direction while the blade yaw angle remains fixed 
(proportional limit) 

° Case 6-With the rotor yawed to the wind 20 and operating at design rpm rotor speed at awind velocity 
of 50 mph, the nacelle isyawed at its maximum rate of.25°/sec inthe direction producing the maximum 
shaft bending moments (105 cycles) 

Case 7 - With the rotor operating at design rpm rotorspeed and no power on the generator, atower shadow 
of 50 percent (velocity retardation) occurs behind the tower (105 cycles) 
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10

-

Ca 
a¢ 

2 

Case No. 

22-80 

2 

50 MPH 

2G Yaw 
6 

22-40 

A 

22-15 

B 

45-60 

C 

45-30 

0 

15 MPH 

E 

Supplementary Load Cases 

S 

C10 

4 " , CoC 

24 Q 

=2 

C I 

108 Cycles 

* 2 x 106 Cycles 
&Proportional Limit 

0 

E 

4 8 

5 

12 16 20 

Mean Stress x 10 3 PSI 
24 28 32 

Blade Goodman Diagram 
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Blade Retention Bearing
 

Bearing Design Requirements
 

30 yrs. life for following conditions 

Condition I 22 MPH steady state 
5 x 109 cycles 

Condition II 22 MPH gusting to 60 MPH 
1x 1a6 cycles 

Condition III 50 MPH steady state 
200 inflow angle 

5.5 x 108 cycles 
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Blade Status 

* Spar mandrel templates complete 

* Shell mandrel templates started 

* Retention ring material ordered 

* System dynamic analysis started 

* Estimated blade weight 15,100 lbs. 

Blade Retention Bearing Types 

o Three roller 

o Duplex tapered roller 

o Duplex angular contact ball 
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Bearing Status 

Bearing type selected 

Loading defined 

Bearing specification sent to vendors 

Bearing vendors have responded 

Mod-I Wind Turbine Blade Materials 

Glass Roving PPG Type 1062NT-15 

Finish Chrome-Silane 

Resin Epon 826 

Hardener Jeffamne D230 

Mix Viscosity CPS @21 0C 450 

Part Cure RT Followed By 
16 Hrs @800C 
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o Literature data for axial load 
tests of Scotchply 1002-E glass epoxy


50 cylinders, corrected to ± 300
 

* HS data from pressure loaded 
40 cylinders fabricated by ABL
 

,using wind turbine material
"	30
 
30 , p system, ± 300 to principal stres
 

0 0 0
 
f20 0
 

10-' 	 1 UTS =82 KSI Ave. 

* UTS = 81.6 KSI
 
0 II I I I Ifill II 1111711 I 1
 

104 105 106 107 108
 
Cycles 

Test Results from Cylinders
 
(Room Temp., Stress Ratio R = 0. 1)
 

8
 
Filaments ± 600To Principal Stress Direction 
Room Temp., Stress Ratio R = 0.1 

0 

0,0 

E 0 
X
 

III1I1Lit1 I 1 4 	 l111 1 111tl 11111
5
0102 10o1	 1n 106 10710
 

Number Of Cycles 

Fatigue Tests Results from Cylinders Wound by AEL Using Wind 

Turbine Blade Materials System 
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General Inspection Test Coverage 

* Visual 

During winding
 
Final overall
 

* Tap test 	 V) 

Spar
 
Shell
 

* 	 Bright light 

Entire completed blade 

* 	 X-ray/fluoroscope 

Recommended for recording of metal ring area 

Saifatr LaiaeBihtLgtTs
 
', - .- n

%. 

L1 --

Satisfactoryz Laminate Bright Light Test 
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Unsatisfactory Laminate Bright Light Test 

iX 

Mod-1 First Article Inspection 

WIDTH 

BLADE THICKNESS 

CONTOUR 

TWI ST ANGLE 

SHELL THI CKNESS 

LEADING EDGE ALIGNMENT 

FACE ALIGNMENT 
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Manufacturing Prototype Blade Measured Aerodynamic Shape 

0.05 0. 32
 

0.4-0 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Percent of Blade Radius OR 
4S' From measured airfoil width 
* From measured airfoil thickness 
* From measured angles 

Experimental Modal Analysis 

* Determines blade resonant frequencies and mode shapes 

* Performed with blade cantilever mounted T.E. up 

* Blade randomly excited with a shaker 

* Accelerometer responses recorded at intervals along blade 

* Responses computer plotted for frequency peaks 

* Displacement mode shapes computer synthesized and plotted 

* Test successfully performed on mfg. prototype blade 
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Test Arrangement 

R P EMA Shaker Installation 

ORIGINAL PAGE IS 

OF POOR QUALITY 
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Manufacturibg Prototype - Mode Shapes 

Flatwise Edgewise 

Test 
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\Predicted 
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""Test 

2nd 2nd 

3rd 3rd 

Comparison with Analytical Model 
Manufacturing Prototype in Test Mot 
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Mode ...An.Itcal Expenmerntl 
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Blade Under Static Load 

Mod-O Manuacturig Prototype Longitudinal Strain Distribution 
Load at 600 in Station 

1.00 

0.8 Steel_ -


X Ring

E Tip 

qu Load 
Station 

- Theoretical 
0 Experimental

0.4 

0.2 _-

0 100 20 300 400 500 600 700 800 

Station, In. 

ORIGINAL PAGE IS 
OF POOR QUALITY 
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Mod-O Manufactaring Prototype Blade Proof Moment Plot 

2365 LBS @712 IN.STATION DEAD WEIGHT MOMENT INCLUDED 
1200
 
1000 .
 

800
 

400 450 500 550 600 650 700

Station 
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Specifications Mod-i Wind Turbine 

* Output power - 1670 KW (2240 HP) 

* Rated velocity - 22 MPH at 30' 

* Cut-in velocity - 11 MPH at 30' 

* Ground clearance - 50' 

* Diameter > 200' 

* Tip speed < 400'/sec 

* Wind shear & tower shadow 

32 i 1 d 

Vel =Vel 30'(-T) urbineeWind 
30 Tip Vety 

WWind Tuurbiee 

A24 

Wind Turbme
 
Tip Velocity
 
Tip Veloc it22 

PRated Velocity I__ 

40 80 120 160 200 240 280 
Altitude - h(Ft.) 

Wind Shear Velocity Gradient 
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Z2i I~ 
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Oimensuonteu Wind Speed, Va 

Vertical Distribution of the Average and Minimum Wind Speeds in
 
the Wake of the Bare Mod-O Tower Model
 

Aerodynamic Design Objective: 

To meet performance specifications with maximum yearly power 
output consistant with structural constraints. 

Parameters 	Investigated 

" Twist distribution 
* Planform 
" Activity factor 
* RPM 
* Diameter 

Optimization 	Study Parameters 
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2 GLAD ES/37.5 AF/NACA 230XX SECTIONS
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NASA ROUGHNESS 
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Parametric Study of Diameter and RPM1 

2 BLADES/37.5 AF/NACA 2SOXX SECTIONS
 
203 FT. PROJECTED DIAMETER
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0
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Velocity Ratio 

Predicted Performance Mod-i Wind Turbine 

MODEL NO. 2
 

30 ACTiVITY FACTOR
 
MACA 23DXX AIRFOIL SECTIONS
 

2 SLADES/fi FT DIAMETER
 
01 -__7_ SYMBOL1 RUNT 04 MEAN VELOCITY
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0q 4 os50 11 (37) 

o +1 up0 11 (37) 
- - C 13 .t5 
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Effect of Blade Angle on Measured Power Ratio 
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Velocity Ratio 

Predicted Performance Mod-i Wind Turbine 

2 ELADES/37.5 AF/NACA 2SOXX SECTIONS
 

203 FT. PROJECTED DIAMETER
 

45,000 LB-IN TORQUE
 

100 =, 

Be 

5= PH (Cut-Out) 
- DesignS4j3- RPIM 

40 " ' 

20I I i M 

0 4 8 12 16 20 24 28 32 156 
RPM 

Mod-i WVnd Turbine Start-up Blade Angle Schedule 
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Aerodynamic Fabrication Material Structural 

emen Method Requirements 

I Capacit
 
Dynamic


Characteristics
 

Characteristi 

Blade Design Overview 

General Requirements 

Structural 
* Load cases from Exhibit B,Pare. 2.1.2 
* Supplementary load cases 
* Stability cases from Exhibit A, Para. 2c 
* Critical speed placement from Exhibit B,Para. 2.1.3 
* Stall flutter from Exhibit A,Para. 2f 
* Divergence from Exhibit A,Para. 2e 

Environmental 
* Life 
* Lightning 

Geometric 
* Shape 
* Weight 
* Balance 
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Blade Isometric View 

101.25 FL. 

Sta 1245 

t 

33.6 

-60" 

,1 

1 5 

Sta 33 

68. 

External Shape 
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I STA 575.0 

SPARJ SHELL 

STA 124.50 

Blade Cross Sections 

1.2 \ 

U\1.0 

-0.6 -

0.4 

0.2 _ _ _ _ _ _ _ _ _ 

0 200 400 600 800 1000 1200 1400 
Blade Radius - Inches 

Blade Spar Wall 
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EBASE= 3.47 X 106 PSI 

1.02 X 106 PSIGBASE-

(10) 10 

(101 
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Design Load Cases 

Case 1 -A wind velocity of 22 mph occurs 30 feet above ground level. The rotor produces 1670kw 
of power (no losses) at operating rotor speed (endurance limit). 

Case 2 - With the rotor blades set to operate for Case 1,the wind velocity increases to 60 mph ;n 
0.25 seconds. No change inblade pitch angle occurs. The rotor speed increases to 25 percent 
overspeed 1105 cycles). 

Case 3 - With the rotor blade pitch angle set to operate for Case 1.the wind velocity isat 22 mph and 
the rotor speed at operating rpm the blade pitch angle ischanged to the feathered position in11 seconds 
(proportional limit). 

Case 4 - With the rotor blade pitch angle set to produce 1670 kw of power (no losses), the wind velocity 
decreases from 22 mph to 0 mph in 0 25 seconds (105 cycles). 

Case 5 - With the blades set and locked inahorizontal feathered position, amaximum wind velocity of 
120 mph occurs at 30 ft. above ground level in any direction while the blade yaw angle remains fixed 
(proportional Irmit). 

Cae 6-With the rotor yawed to the wind 200and operating at design rpm rotor speed at awind velocity 
of 50 mph, the nacelle isyawed at its maximum rate of.25°/sec in the direction producing the maximum 
shaft bending moments (105 cycles). 

Cse 7 - With the rotor operating at design rpm rotor speed and no power on the generator, a tower shadow 
of 50 percent (velocity retardation) occurs behind the tower (105 cycles). 

- Supplementary Load Cases 

Case A 22-40 
Case B 22-15 Instantaneous gust, 
Case C 45-60 no blade angle change 
Case 0 45-30 

Case E 15 MPH steady state 
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Blade Design Criteria 

* Smooth airfoil loadings 

* Wind shear profile 

* Tower velocity retardation - 35% 

* Gust modeled as a step change 

AV 
a:.35_ 

Tower 

Blade rotational position 

Tower Shadow 

E-36
 



253.0 

151. 5Z 

Vs 
Vo 

In (ZIZo) 
In (ZrIZo) 

o 

a 

50.0 

30. 0 

0o 1.0 1.'428 

1.311 
1.089 

Wind velocity ratio - VsIVo 

Wind Shear 

2.0-

1.6 

1.2-

Shank flatwisB banding moment 

50 mph 50%tower shutdown 

35 rpm; 2200 hp 

0.4

0.11 

0 

1 

40 80 

-

120 160 200 
Azithumal Position Degrees 

240 280 320 

Slnk Moment 

-E-3 7 



~Flatwise Stress 

14-

CII -dgewise Stress, " 

1 -40. 800 120 ° 1600 2000 2400 2800 3200 3600 
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Shank Stress 

10011 
1 

a) s C.,, Blade Fletwise Moment/ 

80 

40 

-- Blade Edgewise Moment 
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Case No. 
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200 Yaw 
6 
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Supplementary Load Cases 

15 MPH 

E 

10 

2 
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E , 
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Blade Goodman Diagram 
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Blade Tip Deflecton 
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Nastran Level - 16.0
Element Type - CQUAD 2 

Nastran Buckling Model 

H- 40-- _ __ _ 

Serial Layer 
No. 1 21 3 4 51 6 

1thru 10 40 -30 +30 -30 +30 90 

050±010 11 thru 20 0 +60 -60 +60 -60 0 

13.0 
Buckling 

Stress Load 
Nastran 47754 30517 
Nastran Corrected* 34956 22338 

Test" 37314 24217 

* Correction Factor, a= 0.732, Structural Analysos Of Shells, pg 230 
AFFDL TR 73-7, Vol. l,(Cylinder No. 10) 

Cylinder Buckling Test Case 
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20 

0CR -

1222-60 MP Gust 

4 

01 0.2 

6-50MPH; 50% Tower Shadow 

___ 145 To 30 PH Downust 

22 MPH RatedConditon 

0 3 0.4 05 0.6 0.7 0.8 

x = r/R 

Buckling Capacity 

09 1.0 

Crin-ai Speed Placement 

Requirements 

Current blade 

1st F 

2.15-2.7 P 

2.6 

2nd F 

-

6.35 

1st E 

4.4-4.7 P 

4.57 

1st T 

-

19.2 
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Stability Conditions 

Rotor Speed Wind Speed* 
RPM MPH 

20 22 50 80 
35 	 2 ,5 80 
60 22 50 80 

*All wind velocities @30 feet above 

ground. 

F 72 X 106 In-Lb/Rad 
180 X 106 In-Lb/Rad 

r---1216 X 106 In-Lb/Rad 

Normal Operating Range 

Stall Flutter and Divergence 

* 	 Blade isfree of stall flutter over full range of 
load and stability cases 

* 	 Blade isfree of static divergence 

* 	 Blade isdynamically divergent under load case 2 
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Blade Retention 

Inboard Blade Nastran Model 
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Blade Stats 

* Spar mandrel templates complete 

* Shell mandrel templates started 

* Retention ring material ordered 

* System dynamic analysis started 

* Estimated blade weight 15,100 lbs. 

Blade Retention Bearing Types 

o Three roller 

o Duplex tapered roller 

o Duplex angular contact ball 
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Blade Retenton Bearing 

Bearing Design Requirements 

30 yrs. life for following conditions 

Condition I 22 MPH steady state 
5 x 109 cycles 

Condition II 22 MPH gusting to 60 MPH 
1 x 106 cycles 

Condition III 50 MPH steady state 
200 inflow angle 

5.5 x 108 cycles 
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Bearing Load Summary 

Condition I 

Condition II 

Condition III 

Moment 
In-Lbs 

10.9 x 106 max 
1.6 x 106 min 

40 x 106 max 
0 min 

29.1 x 106 max 
8.3 x 106 min 

Centrifugal 
Load 
Lbs 

176,000 

176,000 

176,000 

Side 
Load 
Lbs 

25,540 max 
9,500 min 

58,280 max 
3,130 min 

50,000 max 
15,300 min 

Blade 
Retention 
Rings 

Hub 

A Trunnion 

Blade Retention Bearing Model 
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Bearing Status 

Bearing type selected 

Loading defined 

Bearing specification sent to vendors 

Bearing vendors have responded 
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Glass Roving Reinforcement for Wind Turbine Blade 

Roving Designation -

Filament 

Material 
Diameter 
Tensile strength 

Strand 

Type 
Strand ten. strength 

Roving 

No. of strands 
No. of filament ends 
Nominal yield 

Sizing 

Chrome-silane 

Composition 

Epoxy resin 
Hardener 
Epoxy/hardener ratio 

Viscosty, CPS @70°F 
Pot life, hrs. 
Cure 

HDT,oF 

Mechanical Properties 

Tensile strength, PSI 
Tensile modulus, PSI x 106 
Ultimate elongation, % 
Flexural strength, PSI 
Flexural modulus, 106 PSI 

PPG's type 1062 NT-I5 

- E-glass
 
- 50-55 x 10- 5 inch
 
- > 225,000 PSI
 

- ECK 37
 
- > 200,000 PSI
 

- 15
 
- (15) (408 filaments/strand) = 6,120
 
- 247 yds./ilb.
 

Resin Materials 

Propeller Blade Wind Turbine Blade 

ERL 2256 EPON 826 
Sonite 41 Jeffamine 0230 
80/20 pbw 100/30 pbw 

910 450 
7 8 
1.5 hrs. @200°F 16 hrs. @176 0 F 

and 
2.0 hrs. @300 0F
 

290 185
 

9,000 10,600 
0.57 0.43 
2 4 7.7
 
15,000 17,600
 
0.50 0.43 
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Fiberglass Propeller 

RIGINAL PAGE IS
OF POOR QUALITY 
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2000 

1500 e. 
9LIj1000 

> 500_.-

0 
0 1 2 3 4 567 

Time-Hours 

Resin Vi.scosity vs Time 

Protectve Coatings 

Blades and spinners 	 Laminar 8-6 with conductive carbon 
filler (anti static coating) 

Spinners Thickness - 5 to 7 mils 

Blades Thickness - 5 mils rain. 

Wind turbine 	 Laminar 8-B-6 with conductive carbon 

filler 

Thickness - 5 to 7 mils 

Mir-C-81773 urethane coating (insigCa 

white)
 

Thickness - I to 2 mils
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o Literature data for axial load 
tests of Scotchply 1002-E glass epoxy 

50 cylinders, corrected to ±300 

* HS data from pressure loaded 
40 cylinders fabricated by ABL 

Zusing 	 wind turbine material
 
(]30 0 system, ± 300 to principal stress
 

20 	 0 0 0 0 0 0 

10 	 o UTS-82 KSI Ave. 

9 UTS = 81.6 KSI 
I~l I I IIIIII I IIIIII]a 	 11I11l111! 

5
104 10 106 107 108
 

Cycles 

Test Results from Cylinders 
(Room Temp., Stress Ratio R = 0. 1) 

Filaments ± 600 To Principal Stress Direction 
Room Temp., Stress Ratio R = 0.1 

0 

£002-I 
?~4 

E 	 0

01 1 1l l~' I I 11 11 I 1111111 I 1 111111 1 it 1 111 F 1 11111 

4 "05
002 103 i	 106 107 108
 

Number Of Cycles 

Fatigue Tests Results from Cylinders Wound by ABL Using Wind 

Turbine Blade Materials System 
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(Flat Specimens Removed From 40" Dia. Cylinder From AB L) 

25 

2 

20
 

OO0 0 

S15 
Legend: LL 
0 R.T.- Uncoated - Dry 'L. 

= 10 - C 125oF. UncoatedDry 
A R.T. - Uncoated- 7 Days 100% R.H. Minimum@ R.T. 

M 0 125F. Uncoated -7 Days 100% R.H. Minrmum@125 0F 
5 - O R.T. - Coated -7 Days 100% R.H. Mininum@R.T. 

7 R.T. - Coated -7 Days 100% R.H. Minimum @125 0F 
a 1251F - Coated- 7 Days 100% R.H. Minimum,@R.T. 

2 5
101 10 103 104 10 106 107 108
 
No. Of Cycles 

Tension-Tension Fatigue Test Data for +300 Filament Wound Composite 
fl= 0.1 Room Temp. 

1100
 

1000
 

900 
Sao- -.

700
 

cn 

= 500 -

E 400 Code Condition Static Strength 

"m 300 0 Rm. Temp. 2804.8 psi 
M 2 200 Water Soaked, R.T.125 ° 2596 psi2569.4 psi 

100- 0 -400 2880 psi 

4 105 103 107
 

Cycles 

Interlaminar Shear Strength of Region of Interrupted 
Mlanufacturing During Filament Winding 
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Moisture Effects Comparison 

WIND TURBINE RESIN VS 300 °F TEMPERATURE CURED RESIN 
USED INPROPELLER BLADE SHELLS;-+450 E-GLASS CLOTH 

REINFORCEMENT IN BOTH RESINS 

Material Cure 
Pre-Test 

Treatment 
Moisture 
Absorption 

(1) 
S.B.S. R, 

Epon 826/Jeffamine O-230 2hrs @R.T. 
16 hrs @176F 

24 hr. distilled 
H20 boil 

0.79 0.61 

APCO 434/Sonite41 11/z hrs @200OF 
2hrs @300°F 

24 hr. distilled 
H20 boil 

0.67 0.69 

(1) Short beam shear strength ratio, 24 hour water boil specimen 
test results divided by as-cured specimen test results. Tests 
conducted inroom temperature air. 
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AA 
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Wind Turbine Blade Filament Wound E-Glass/Epoxy 
4.79 Inch Diameter Test Cylinder 

E-58 



-  -

20 

/R=0.1 -30°Pf+3016 ,'=0. _ _ __ 

12 -- o5 Typical Tube _ _ 

-lO8- J Fatigue Data 

Design' 5 ITypical 
4 Tube 

UTS 
0 
0 

108~_I
10 20 30 40 50 60 70 

I I 
80 90 

Mean Stress - KSI 

Modified Goodman Diagram for Wind Turbine Blade Maternal 
Room Temperature Properties 

Sr 

3- C0000 

" Typical Tube
-_138- Fatigue Data 

-108 , 

00T 2 4 6 8 .0- 10Tube UTS 12 

Mean Stress - KSI 

Modified Goodman Diagram for Wind Turbine Blade Material 

Room Temperature 
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300 

500 j400 IR0 

/I - 105L Typical Specimen 
j G0ata 

- 00200 DeslgoR"____ ___ 

100 

0 400 800 1200 1600 2000 2400 
Mean Stress - PSI 

Modified Goodnan Diagramn for miterlaninar
 
Shear Strength at Point of Manufacturing Interruption
 

Room Te~zperature
 

01.0Conservatism In 
I I IR -1 Fatigue Strength I 11\ ymbo MatrialLayup 

Estimates Using Data With Se 
0 Scotchply 10025 00 

Applied Mean Stress 0 08s A Scotchplyt XP251S 0. 
N 0' Scotchply 1002S 00-90 ° 

.' 

0.2 

0 0.2 0.4 0.6 08 10 2 

Mean Stress 
Ultimate Tensile Strength 

FP Fatigue Strength 
10 7 Cycles 
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Mod-O/Mod-1 Common Technology 

* Integrally wound monolithic structure 

* Sparlshell design 

* Integrally bonded inner adapter sleeve 

* Bonded outer adapter sleeve 

* Collapsible spar and shell mandrels 

* Filament winding technique 

Technology Needs for Increased Length 

* Mandrel deflection assessment 

* Mandrel removal demonstration 

* Filament winding procedures scaled to larger size 

* Dimensional accuracy assessment 
* Weight prediction verification 

* Material strength demonstration 

Above needs addressed in demonstration
 
spar program
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Mod-i Blade Manufacturing Process Controls 

To include 
* Materials receiving inspection 

* Winding program control 

* Resin mixing 
* Mandrel assembly & preparation 
* Layup spot check 

* Weight control 
* Cure time &temperature 

* Component detail inspection 

Wind Turbine Blade Weight Control 

* For each ply drop section: 
Record weight of fiber & resin used 
Subtract weight of wet & dry scrap 
Subtract est. wt. of end scrap 
Compare with control weight 

* Adjust as necessary insubsequent layers by: 
Adjusting resin content within tolerance 
Adjusting ply length within tolerance 
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Mandrel Shaft Installation 

spar Mandrel Former
 

E-65
 

/iv 



Spar Mandrel Former Assembly 

Spar Retention to Airfoil Transition 
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Spar Mandrel Buildup 

Complete Spar Mandrel 
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Spar Trial Winding 

S 

Filament Delivery System 
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lit J--

Spar Wound to 345-Inch Station 04N 

Finish Wound Spar with Peel Ply 
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Retention Machining 

Shell Mandrel Former 
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Shell Mandrel Former Assembly 

Shell Helical Winding 
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Mod-1 Blade 	Improved Structure 

* 	 Use low circuit patterns 

Reduces cross overs 

Eliminates band buildup voids 

Verified on demo span 

* Increase shell layup angle 

* Machine modifications 

Final Blade Cure 

E-72 



Finished Blade in Shipping Fixture 

Demonstration Spar Program 

Introduced to reduce jeopardies 

o Large filament wound structures 

o Mandrel deflection 

o Mandrel removal 

ORI'GINV, 

OE oon 3QWIS 
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Specific Objectives 

Verify: 

* Mandrel deflection 

* Mandrel removal 

* Filament winding process 

* Dimensional accuracy 

* Weight 

* Spar physical properties 

Spar Definition 

Length ...... .... 98.5 Ft.
 

Weight ..... ..... 7800 Lb.
 

Winding angle. . ...... ±300
 

Root size ....... .. 67 In.x 58 In.
 

Maximum wall thickness 1.0 In.
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Program Accomplishments 

" Facilities complete 

* Tooling complete 

* Excellent filament winding patterns developed 

* Predicted mandrel deflection confirmed 

* Mandrel removal successfully accomplished 

-. 

93 b 

"RRI 

Center Mandrel Shaft Parts 
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TO4 

Dry Trial Winding to Second Generating Disk 

Mandrel Assembly 
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Dry T ia Winding Around Inboard Generating Disk 

Dry Trial Winding Around Inboard Generating Disk 
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Dry 	Trial Winding Around Outboard Generating Disk 

---Demonstration Spar Problem 

1. 	 Program on schedule thru 2/17/77 

2. 	 Winding complete through 3of 4 turn around disc locations 

3. 	 Pins in mandrel shaft joints fractured late 2/18/77 while winding 
to final turn around disc 

4. 	 Four of five joints beefed up with added pins - 2/22/77 

5. 	 One layer wound full length - 2/24/77 - bolts in fifth joint fractured 
and mandrel twisted about 585 in station 

6. 	 Cured partially completed spar - 2/28/77 

7. 	 Mandrel removed - 3/3/77 0 

8. 	 Soar inspection - 3/5/77"V 
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Joint No.
 
1 2 3 4 5
 

585" 720" 855" 990" 1125" 

Station Station Station Station Station 

Joint Location 

Overall Length 1260" 

Demonstration Spar Mandrel Shaft 

Clearance 
0.005-0.012 

Mandrel Shaft Joints 2-5
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0.012-0.016 0.012-0.016 
Clearance Clearance 

Mandrel Shaft Joint 1 

Mod-1 Mandrel Design 

Actions to preclude demo spar mandrel problems 

* Review tool concepts 

" Tool stress analysis 

* Tool design review 

* Tool hardware review 

* Mandrel inspection after trial winding 

Current thinking is to reduce loads on tooling by 
removing spar mandrel prior to shell winding 

E-80
 



1977
 

Mod-1 
Winding Facility 
Preparation 
Trial Winding 
First Spar Wind 
Retention Rings 
Available 
Nod-I FOR 

Mod-
Facility Relocation 

Trial Winding 

Blades 2 & 3 Wind 

Mar Apr May Jun 

-_ 

17 

Jul Aug Sep Oct Nov Dec 

Mod-O/Mod-1 Blade Schedules 

Spar Inspection/Testng 

* Tap test 

* Bright light inspection 

* Weight 

* Dimensional inspection 
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Demo Spar/Mod-I Spar Comparisons 

Demo Spar Mod-1 Spar 

Material . . . Same . . .
 

Length 98.5 Ft. 100.7 Ft.
 

Winding angle ± 300 ± 300
 

Max section 67 in.x 58 in. 69 in. x 56 in.
 

Weight 7800 lb. 9300 lb.
 

Mod 1 Demo Spar Weight 

Estimated th ru 17th layer - 6030 # 

Estimated wt. add'l layers- 1720 # 

Total estimated 7750 # 

Total design wt. @completion (± 10% wt. tol.) 7800 ± 10% 
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General Inspection Test Coverage 

GENERAL INSPECTION TEST COVERAGE 

* Visual 

During winding
 
Final overall
 

* Tap test 

Spar
 
Shell
 

* 	 Bright light rt 

Entire completed blade 

* 	 X-ray/fluoroscope 

Recommended for recording of metal ring area 

Bright Light Inspection 
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Blade Internal Inspection 

E-84
 



AA 

, at,. 

Sisatr LaiaeBihtLgtTs 
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03 

IJf 

t)t 

Ur 

Unsatisfactory Bright Light Test 



Plumb Line 

/ 
0 9001Level 

Helght 
.I = 900 

FA4-3DFA.4 

" 2 4 I n ./ 
900 
"i 

t
Leela 
Heet'gh t -Level 

Taut Wire 
Chalk Line 

Transit 

C r FA -0.30to-0.45 
LEA -0 02 to +0 90 

Wind Tuarbine Blade Dimensional Inspection 

Mod-1 First Article Inspection 

Width 

Blade thickness 

Contour 

Twist angle 

Shell thickness 
Leading edge alignment 

Face alignment 
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_ ____ 

Edge and Face Alignment Procedure 

* Level blade between retention center and tip airfoil 
* 	 Establish parallel 24 in.offset taut line and chalkline 
* 	 Rotate blade from keyway to make station vertical 
* 	 Mark station with plumb line 
* 	 Project centerline on blade 

* 	 Measure dimension from taut line to blade surface 
* 	Subtract from 24 in.to get F.A. 
* 	 Place level on blade leading edge 

* 	 Measure along plumb line from level to centerline 
projection to get L.E.A. 

MANUFACTURING PROTOTYPE BLADE MEASURED AERODYNAMIC SHAPE 

0. 05 -0. 5 -32 _ _ _ _ _ 

0. 04 0. 4 -.24 OBD 

0.o03 0.3 -1 

0.02-0.2- 8 

0.01-0.1- 0 

0- 0 - 8 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Percent of Blade Radius rIR 

c, From measured airfoil width 
G From measured airfoil thickness 
I From measured angles 
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Contour Inspection 

STA AJ 
75.00 

105.00 0.053 Max Allowable Depression 
150.00 0.051 At Any Station Shall Not Exceed AJe ni. 
195.00 0.049 
240.00 0.046 
285.00 0.042 
330.00 0.039 Airfoil Contour Established 
375.00 0.037 By ATaut Cord Circumscribing 
420.00 0.036 The Airfoil Station Scale: None 
465.00 0.035 
510.00 0.033 
555.00 0.031 
585.00 0.030 
830.00 0.028 
690.00 0.027 
735.00 0.026 

L1 
 L2 

Sta Ste 
A Total Weight B 

Sta of
 
CG Location
 

1
2412 Lbs Total Weight = (L - Tarel)+(L2 - Tare2) 

CG Location = (L2 -Tare 2) (B-A)Total Weight 

Weight and Moment Determination 
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-s- 

4 

ORIGINAL PAGE IS 
OF POOR QUALITY Blade Weight Measurement 
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Experimental Modal Analysis 

* Determines blade resonant frequencies and mode shapes 

* Performed with blade cantilever mounted T.E. up 

* Blade randomly excited with a shaker 

* Accelerometer responses recorded at intervals along blade 

* Responses computer plotted for frequency peaks 

* Displacement mode shapes computer synthesized and plotted 

* Test successfully performed on mfg. prototype blade 

Test Arrangement 
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--- NNW 

EMA Shaker Installation 

sy 

SOUT MION 

DIGITALVIBRATION 

Test Arrangement 
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Ist Edgewise 

~f = 2.63 

'00 

f=936 

Fd 

L 

f= 22.38 

3rd Edgewise , 

f = 22.38 

T icalFR "ErCdg T Fnt T 

Typical Edgewise Transfer Function Typical Experimental Mode Shapes 



MANUFACTURING PROTOTYPE 

Flatwise 

Test 

stTest 

Predicted 

- MODE SHAPES 

Edgewise 

Predicted 

2nd2n 
33 

3rd .-- 3rd 



1, w 
LUMIPAhIUllUN WI II'AVALY I I/.AL M/UUtL' 

MANUFACTURING PROTOTYPE INTEST MOUNT 
Freq uency - Wt? 

Mode .Analytical Expeirienal 
1st Flatwise 1.45 1.53 
1st Edgewise 2.51 2.63 
2nd Flalwise 3.73 4.05 
3id Flatwise 8 08 8.59 
2nd Edgewise 9.86 9.36 
3rd Edgewise 24.75 22.38 
Static Torsional 28.59 29.26 

5 6P. 5P 

4P 

41-SECOND FLATWI SE--- ---

U, a Exper. 
3 o----Analy. 

HZ FIRST EDGEWISE 

2 FIRST " 
"" "" 

IF LA T W IS E / _/ . _ _ .-
- . . . p-T % .. .- --

- " "- -
-

'P 

10 20 30 40 50 60 70 
RPM 



BLADE INSTRUMENTATION CALIBRATION
 

* 	 Relates strain gage outputs to applied loads 

* 	 Performed with blade cantilever mounted 

* 	 Blade deflected with concentrated load 

* 	Similar ESA testing successfully performed on 
manufacturing prototype Mod-O blade 

* 	 Proof load testing successfully performed on 
manufacturing prototype Mod-O blade 
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ESA Test Setup 

Deflection Measurements 
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Hub Deflection 
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Blade Static Load Test Setup 
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Blade Under Static LoadNa 

Blade Test 
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102
_s________ 
1.0
 

X Ring " z 
Tip 

I / 
Load 

Statian 
=0.6 o 

-Theoretical 
o Experimental 

= 0.4 

0
 

0 100 200 300 400 500 S0 700 800 
Station, In 

Mod-O Manufacturing Prototype Longitudinal 

Strain Distribution Load at 600-inch Station 

2385 LBS @712 IN STATION DEAD WEIGHT MOMENT INCLUDED 
1200 

______oo1000 

80 

12 600 ____Ct~f 

400 _____ 

408 450 500 550 600 650 700 
Station 

Mod-0 Manufacturing Prototype Blade Proof Moment Plot 
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Mod-i Blade Winding Machine Operations Projection 

Mod-O experience 

Manufacturing prototype required 200
 
Actual machine hours
 

X.67 Factor for development problems during winding 

X.5 Factor for production 2to 1speed increase 
in system
 

67 Machine hours net production estimate
 

Mod-1 projection 

402 machine hours net production 

equals 67 x 7.5 Mod-1 FRP factor 
Mod-O FRP 

x 	 _. factor for size effect on per pound cost estimates
 
5
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Recommendations 

* 	The PD R Mod-1 blade configuration be approved for detail design 

* 	Approval be given for ordering long lead time hardware 

* 	 Additional testing be considered to obtain more experience 
with blade 

* 	 Evaluate the effect of certain Changes being considered 

Long Lead Hardware 

Approval to procure the following long lead time 

hardware is requested 

* 	 Blade retention bearings 

* 	 Blade retention ring material 

* 	 Blade tooling 

Additional Testing - Mod-O 

Install & run composite blades on Plum Brook machine to: 

* 	 Obtain early load/stress verification 

* 	 Obtain early confirmation of blade dynamic 
structural action 

* 	 Early confirmation of blade integrity under 
operating conditions 

* 	 Evaluate environmental effects 

Mod-1 blade is a large scale version of Mod-O blade 
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Additional Testing - Mod-i 

Fabricate spare blade for structural testing 

ESA Test (Experimental stress analysis) 
* 	 Determine stress distnbution in retention and 

selected airfoil areas 
* Determine blade axis 
" Apply concentrated static loads 
* 	Temporary local hard points 

Fatigue Test 
* 	Confirm that blade strength & design limits 

are compatible 

EMA Test (Experimental modal analysis) 

* 	 Conduct before and after Fatigue Test 
* 	 Use to determine that blade structure not effected 

by fatigue loading 

Buckling Test 
a Verify satisfactory buckling capacity 

Retention Proof Test 

Changes Being Considered 

* Incorporate design factors from code verification 

* Modify conditions of load case 2 

* 	 System criteria affecting pitch change stiffness/ 
blade stability 

E-104 



.- - . 

EMA Test Setup 

!7- 0 q+ 

EMA Test 
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APPENDIX A 

QUESTIONS AND ANSWERS 

1. 	 A plot of CL vs. r/R at design conditions where: 

CL - lift coefficient
 
r - local blade radius
 
R - blade tip radius
 

2. 	 A plot of B CJ/R vs. r/R showing the actual design values compared to the ideal 
values at the design condition where: 

B - local blade chord 

3. 	 A summary of the aerodynamic design conditions analyzed. Are these conditions suf
ficient to design the WTG or are there more critical conditions that should also be 
considered? 

4. 	 Why does the peak blade stress occur at the 65%position of the blade radius? Why 
isn't the blade designed for a uniform stress with a view towards reducing blade weight? 

5. 	 To what degree does the shape of the lift coefficient vs. angle of attack curve near the 
stall point affect aerodynamic design, weight, or blade stress ? Does a "flat top" lift 
curve have any benefits in off-design performance? Have blunt-base airfoils been 
considered for use near the hub region of the rotor to reduce the local drag coefficient 
and increase the local lift coefficient? (refer. Hoerner-Flud-Dynamic Drag, pg. 
3-20 to 3-22). 

Additional Aerodynamic Information on Mod-i 

In response to Mr. Puthoff's request for additonal aerodynamic information, the following 
is presented. 

1. 	 The lift coefficient, CL distribution along the blade for the rated velocity at -iO'blade 
angle at 3/4 radius is presented in figure 1. CL is plotted versus r/R where 

r - local blade radius
 
R - blade tip radius
 

The lift distribution is based on uniform flow. It should be recognized that this curve 
varies azimuthally due to wind shear and tower shadow. 
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2. 	 The bCL/R distribution corresponding to the CL distribution is compared to the optimun 

bCL/R d-tnbution in Figure A-2. 

- local blade chorde 

e drop-off from the optimum in the shank region is due to these sections having 
narrower chords than those specified for the optimum because of practical considera

tions. This deviation from the optimum results in some degradation in performance. 

3. 	 A parametric study spanning blade activity factor, planform shape, twist distribution,
 
diameter and rpm was made to select the mi-nium diameter with maximum yearly
 

power out.
 

4. 	 The blade is proportioned to meet all of the seven load cases. As shown in Figure
 
A-3, the peak total compressive stress is around 0.75 radius for gusting and high
 
wind velocity conditions. The rated condition and the down-gust condition produce
 
relatively flat stress distributions. In addition, the critical speed locations influence
 
the stiffness and mass distribution which, in turn, affect the stress distribution for a
 
given applied moment.
 

5. 	 The NACA 23OXX airfoil family was selected from both aerodynamic and manufacturing 
considerations and is an excellent family for the application of relatively thick airfoil 
sections characteristic of wind turbines. Figure A-4 shows the airfoil aerodynamic 
characteristics of a NACA 23015 section, typical of the thickness at 85% radius. Lift 
and drag coefficients versus angle of attack are shown for smooth airfoils and NACA 
roughness, both based on test data, and NASA roughness which is based on trends define 
for other airfoil sections. The surface of the Mod-i blades is more closely representec 
by the NASA roughness criteria. Although the stall characteristics are rather abrupt, i 
should be noted that the blade does not operate near stall during normal operation. 

During gusts, the blades do operate in the stall region. A study of the relative torsionai 
stabilities of the NACA 230JX and an airfoil with a "flat top" CL distribution was made 
for the Mod-a blades using the Steinnian stall flutter analysis. It was found that the air
foils with the "flat top" CL are slightly more stable in forward gusts while the NACA 
230XX airfoils are somewhat more stable in reverse gusts. The differences were small 
and it was concluded that neither has a clear advantage over the other with respect to 
flutter. 

Airfoils generally greater than 25% thick can derive some benefit by blunting the trailing 
edge. A limited amount of data (Figure A-4) shows that although miniTnumn drag is in
creased, the maximum lift coefficient is increased with a corresponding delay in drag 
rise. Thus it would appear that for the inner 40% of the Mod-i blades, a potential per
formance benefit could be obtained by blunting the trailing edge. Available data have 
indicated that below 25% thickness such blunting of the trailing edge would result m 
performance losses. 
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1.0 
VR = 8.8 
03/4 = -1" 

UNIFORM FLOW 

0.u 0.6 _ __ 

0.2 
0 

0.1 

0.16 

0.2 

Figure A-I. 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 
x= r/R 

Mod-i Lift Coefficient Distribution at Rated Velocity 

VR =8.8 
63/4 =-1o 

UNIFORM FLOW 

1.0 

.0 8ptimum 

a \Mod-l' 

0.04 

0.1 0.2 0.3 0.4 

Figure A-2. 

0.5 0.6 0.7 

x r/R 

Mod-i Loading Distribution 
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2.0 I I 
NACA 23015 

1.6 - - I I 
1.6 -o Smooth 

a NASA Roughness 

a NACA Roughness1.2 
- 0.8 0.04 Ka--ted 

0.4- 0.03I, k ,Cu-I 

o Q0 0.02 i '-Cut-out# ( 

.0.01-

-0.4-0.8 0
z-4 0 4 a 12 16 20 

Angle Of Attack,a 

Figure A-4. Airfoil Aerodynamic Characteristics 

c = S in. 

Rc-10 6 
1.2 

1.0 , With 0.4 t Edge 

CL - Ft.4C 
/
CL 7 With Thin Edge t4 -. 4t 

0.6 

0.4 -L ;t
 

0.2 /{ Ref. Fluid Dynamics Drag Hoerner (Fig. 42)
,'1
 

0.1 0.2 0.3 
-0.2 1CoI 

Figure A-5. Lift and Drag of a 40% Thick Airfoil Having Square Ends 
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APPENDIX F
 

SYSTEM TRADE STUDY
 

Abstract
 

This appendix is a report on the results of a parametric system 
trade study, entitled "Mod 1 Parametric Trade Study - Final Report", 
dated March 30, 1979. The report consists of copies of slides 
that were used in a presentation at NASA - Lewis Research Center, with 
some additional explanatory test. 
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1.0 INTRODUCTION
 

This study was authorized and outlined by NASA Lewis Research Center Management for the expressed purpose
 

of documenting a compilation of tradeoff data. This data was prepared and analyzed for the purpose of developing
 

a low weight, low cost wind turbine generator using the experience of the MOD-I hardware design and fabrication,
 

and the in-place personnel and analytical tools. G.E. was directed to prepare a conceptual design of a MOD-i
 

class utility system with a goal of achieving 400,000 lbs (total weight at the base of the tower). The system
 

parameters outlined by NASA Lewis included the following:
 

a 2000 kilowatt class machines
 

o Utility class power
 

* Horizontal Axis wind turbine generator
 

* Less than 400,000 lb. system.
 

The current MOD-l system, to be delivered and installed in 1978, weighs approximately 696,000 lbs. (weight
 

at the base of the tower). General Electric was instructed to use any combination of factors, subsystems,
 

components or design alternatives that could achieve the results of a less than 400,000 lb. system. Risks
 

and areas for possible future development in the event that state-of-the-art technology cannot be used, should be
 

identified for future potential research and engineering development tasks. The duration of the study was
 

three months, formal kick-off was October 12, 1977.
 

This document represents the final report of this study.
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STUDY OBJECTIVES,
 

APPROACH AND
 

RESULTS
 

STUDY OBJECTIVES
 

APPROACH
 

ANALYSIS FLOW
 

3 CANDIDATE SYSTEMS
 

RESULTS
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1.1 STUDY OBJECTIVES
 

In order to establish reasonable credibility for a'study of this nature, GE was instructed to use the MOD-i
 

operational requirements as a baseline. Equipment hardware configuration could deviate from the MOD-I system,
 

but its operational characteristics should be identical with any exceptions noted. GE examined deviations
 

from the operational requirements such as hurric-ane conditions, low temperature conditions, etc., but deter

mined no deviations were required. The MOD-i operational requirements were therefore met completely.
 

In addition to the less than 400,000 lb. goal, GE felt it was necessary to impose cost restrictions in
 

order to ultimately achieve a competitive system. For second unit costs, we established bogeys for each major
 

subsystem both in weight and cost that totaled 400,000 lbs and $1000 per kilowatt and established 5t per kilowatt

hour as a cost of energy goal.
 

GE has participated significantly in many system and economic analysis studies. However, in order
 

to achieve the best learning from MOD-l hardware design experience, it was imperative to use the in-place
 

design team for the tradeoff study. Similarly, existing analytical tools for the determination of dynamics and
 

stress of systems and components, those that had been proven against MOD-C operational data and used for the
 

MOD-l design, were to be utilized. Furthermore, in order to establish hardware credibility, GE utilized common
 

MOD-I functions and design concepts where applicable.
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STUDY OBJECTIVES 

STUDY 
MOD-i GOALS 

WIND REGIME 18 MlPH 18 MPH 

RATED POWER 1818 kW 2000 kW 

LIFE 30 YEARS 30 YEARS 

WEIGHT 696,000 LBS. ( 400,000 LBS. 

2ND UNIT COST ($/kW) $2035 $1000 

COST OF ENERGY 11 5 
(¢/kW-HR) 

KEY OBJECTIVE: ACHIEVE '400,000 
POUND SYSTEM WITH MOD-i ENERGY 

PERFORMANCE 
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1.2 	APPROACH
 

The Analysis Flow diagram on Page 1. describes the methodology of the study
 

approach. Using the MOD-i as the system base-line, major weight and cost drivers were
 

identified, ranging from dynamic loads to installation procedures. Each major sub

system including assembly and test/erection and installation were examined to
 

determine the critical weight, cost and design drivers that forced the MOD-l into a
 

696,000 pound machine. Candidate solutions that approached the weight and cost
 

bogeys were subsequently identified for each of the major subsystems and components.
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APPROACH
 

a IDENTIFY MAJOR COST & WEIGHT DRIVERS 

- FATIGUE & STEADY STATE LOADS 

- MASSIVE STRUCTURAL COMPONENTS 

- OVERLY COMPLEX FUNCTIONS 

- INSTALLATION PROCEDURES 

o 	 REDUCE LOAvS 

- UPWIND ROTOR 

- TEETERED ROTOR 

- 3 BLADES 

- NATURAL FREQUENCY PLACEMENT 

* 	 SIMPLIFY AND/OR ELIMINATE SUBSYSTEM FUNCTIONS
 

- REDUCED MOVING PARTS
 

- LESS STRUCTURE
 

- CONTROL SYSTEM SIMPLICITY
 

o SIMPLIFY FABRICATION & ERECTION TECHNIQUES 

TAKE FULL ADVANTAGE OF MOD-i
 

LEARNING
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Two parallel efforts were then initiated:
 

1)	To determine an assumed weight and load alleviation from MO-1 system utilizing up-wind rotor,
 

teetered rotor, 3-blade rotor and soft-tower (bending frequency placement). Neither time
 

nor funds allowed the study of free-yaw, independent coning or gust relief solutions. Existing
 

codes were not equipped for these analyses. Prior to the investigation of subsystems hardware
 

reduction/simplification, we assumed results of the load alleviation would provide approximately
 
25% load reduction, which could be directly related to the size, weight and durability of major
 

components. With that assumption in hand, the second part of the parallel design effort was
 

initiated.
 

2) 	To define alternate system concepts utilizing new subsystems with reduced moving parts,
 

reduced structure and increased overall system simplicity. Three system concepts were
 
thereby defined that would achieve at least 25% load alleviation, each of which would incor

porate a combination of the new subsystem configurations.
 

Certain reduced in-size components were identified, applicable to all three concepts while
 

other components required individual approaches for each concept. Preliminary weight and cost
 

analyses were conducted on the three concepts, each of which had been detailed conceptually
 

to the same degree of completion. Based on weight and cost considerations, one system was
 

selected and a final simulated complete set of loads was conducted to assure the feasibiltiy
 
of the concept. This final simulated load analysis was to establish the validity of the 25%
 

loads reduction assumed earlier in the study and provide for additional weight and cost system
 
and subsystem reduction, if practicable, which would then feed into a final concept design.
 

Throughout the study, while evaluating various component and subsystem candidates, both simplicity of
 
assembly/fabrication techniques and processes as well as erection/installation costs and methods dominated
 

the design effort.
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MOD I ANALYSIS FLOW 

WEIGHT/COST WEIGHT & LOADS FINAL 
DRIVERS ALLEVIATION LOADS 

ANALYSIS ANALYSIS 

UPWIND ROTOR 
TEETERED ROTOR 

0 3 BLADE ROTOR 
FREE YAW SYSTEM FINAL 
SOFT TOWER CONCEPT CONCEIPTUAL 
INDEPENDENT CONE SELECTION DESIGN 
GUST RELIEF 

ASSUMED REDUCED LOADS WEIGHT/COST 
ANALYSIS 

ALTERNATE _ SYSTEM CONCEPT #1 
SYSTEM - (2 BLADES) 

CONCEPTS 

BLADES 
HUB SYSTEM CONCEPT #2 
PITCH CHANGE (2-3 BLADES) 
GEAR BOX .... 
NACELLE & BEDPLATE 
YAW DRIVE 
GENERATOR 
CONTROLS SYSTEM CONCEPT #3 
TOWER l- (2 BLADES TEETERED) 
ERECTION 
ASSEMBLY 
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1.3 THREE CANDIDATE SYSTEMS
 

The final three concepts include an up-wind reduced MOD-i (2 blades fixed hub) an up-wind
 

epicyclic gear configuration (3 blades fixed hub) an upwind or down-wind integral gear
 

box (2 blades teetered hub). Each concept met the weight goal of less than 400,000 pounds
 

and each came close to meeting the cost goals. The final loads determination provided an
 

added bonus in both weight and cost reduction because loads were actually alleviated by
 

approximately 40% rather than the assumed 25%. These weights have accounted for this
 

additional load alleviation factor.
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SYSTEM PARAMETERS 


# BLADES 


PITCH CHANGE 


HUB 


ROTOR LOCATION 


GEAR DRIVE 


ELECTRICAL 

GENERATION 


YAW DRIVE 


TOWER 


MOD-i 


2 


FULL SPAN 


FIXED 


DOWNWIND 


PARALLEL 

SHAFT 


CONSTANT SPEED 

SYNCHRONOUS 


HYDRAULIC/

PINION 


TRUSS-STIFF 


THREE CANDIDATE SYSTEMS
 

CONCEPT #1 


2 


PARTIAL SPAN 


FIXED 


UPWIND 


PARALLEL 

SHAFT (MOD-i) 


CONSTANT SPEED 

SYNCHRONOUS 


HYDRAULIC/

ACTUATOR 


TRUSS-SOFT 


CONCEPT #2 


3 


PARTIAL SPAN 


FIXED 


UPWIND 


EPICYCLIC 


CONSTANT SPEED 

SYNCHRONOUS 


HYDRAULIC/ 

ACTUATOR 


SHELL-SOFT 


CONCEPT #3
 

2
 

PARTIAL SPAN
 

TEETERED
 

DOWNWIND
 

PARALLEL
 
SHAFT (MODI)
 

CONSTANT SPEED
 
SYNCHRONOUS
 

HYDRAULIC/
 
ACTUATOR
 

SHELL-SOFT
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Common elements among the concepts include the following.
 

v 	Two blades (MOD-i design blade)
 

- Concept #1
 

- Concept #3
 

* Partial Span Control (replacing the MOD-i pitch change mechanism)
 

- Concept #1
 

- Concept #2
 

- Concept #3
 

* Fixed Hub
 

- Concept #1
 

- Concept #2
 

* MOD-i geardrive
 

- Concept #1
 

- Concept #3 (outer structural housing modified to replace bed-plate and yaw bearing support)
 

* MOD-i electrical generation and controls subsystem
 

- Concept #1
 

- Concept #2
 

- Concept #3
 

* 	Hydraulic Actuator Yaw Drive
 

- Concept #1
 

- Concept #2
 

- Concept #3
 

* Approximately 1.2P tower
 

- Concept #1 (truss tower)
 

- Concept #2 (conical shell tower)
 

- Concept #3 (conical shell tower)
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THREE CANDIDATE SYSTEMS
 

I I 

-
ip 

t -

DESIGN CONCEPT #1 DESIGN CONCEPT #2 DESIGN CONCEPT #3
 
(REDUCED MOD - 1) (EPICYCLIC GEAR) (INTEGRAL GEARBOX)
 

s FIXED HUB a FIXED HUB a TEETERED HUB
 
* 2 BLADES a 3 BLADES * 2 BLADES
 
* UPWIND ROTOR a UPWIND ROTOR s DOWNWIND OR UPWIND
 
* PARTIAL SPAN CONTROL o PARTIAL SPAN CONTROL a PARTIAL SPAN CONTROL
 
a MOD-I GEARBOX a EPICYCLIC GEARBOX * MOD-i GEAR DRIVE
 
* MOD-i ELEC. GEN. a MOD-i ELEC. GEN. a MOD-i ELEC. GEN. 
s TRUSS TOWER (SOFT) a SHELL TOWER (SOFT) a SHELL TOWER (SOFT) 

TOTAL WEIGHT TOTAL WEIGHT TOTAL WEIGHT
 

LBS 355,000 LBS 320,000 LBS
 

FAVORABLE RESULTS COMPARED
 

TO MOD-i WEIGHT OF 696,000
 

1-12 



1.4 RESULTS
 

From the previous discussion, it was determined that all three concepts in various configurations
 

can meet the weight objectives of the study program. Certain commonality of the MOD-i hardware has been
 

retained, such as the entire control system, power generation equipment and utility inter-connect, portions
 

of all of the MOD-I gearbox and the MOD-l blade. Other innovations which include integral structure housing,
 

partial span control, and conical shell tower at 1.2p do not require new technology development. Based on an
 

early go-ahead utilizing the MOD-] in-place team, a system of the characteristics of one of the three concepts
 

can be rotating 19 1/2 months after contract go-ahead.
 

Because of major subsystems simplicity and loads alleviation, the concept selected isapplicable to
 

larger or smaller machines inwind regimes with low, moderate or high mean wind averages.
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0 

RESULTS I
 

SEVERAL ALTERNATE CONFIGURATIONS.
 

a UTILIZATION OF MOD-i TECHNOLOGY & HARDWARE.
 

* ROTATING 19 1/2 MONTHS AFTER START.
 

* APPLICABLE TO LARGER OR SMALLER MACHINES.
 

SELECTED SYSTEM CAN DEMONSTRATE EARLY
 

ECONOMIC WIND ENERGY PRODUCTION
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2.0 TECHNICAL DISCUSSION - Introduction 

This technical discussion will cover the MOD-I design drivers,
 

the approaches to reaching the weight and cost goals, the major
 

subsystem characteristics of the three candidate systems, the
 

final loads analyses comparison and the selection summary.
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TECHNICAL DISCUSSION
 

MOD-I DESIGN DRIVERS
 
SYSTEM CONCEPT GOALS
 
DESIGN REQUIREMENTS
 
CONCEPT #1
 
CONCEPT #2
 
CONCEPT #3
 
LOAD COMPARISONS
 
CONCEPT #3 SELECTION
 

SUMMARY
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2.1 MOD-l COST, WEIGHT AND DESIGN DRIVERS
 

The second unit MOD-I costs, subsystem weight,specific costs in dollars per pound, and the summary
 

of the design drivers for the major subsystems are shown here. Itwas determined early that fatigue
 

loads, for which the entire MOD-l system is designed, are the key and most influential cost and weight
 

drivers of the MOD-I system. In order to achieve the goals, itwas necessary to reduce these fatigue
 

loads so that the system would be stress-designed as much as possible, rather than fatigue designed,
 

to make more efficient use of the structure.
 

In order to achieve the less than 400,000 pound goal, a weight at the top of the tower bogey
 

was established at less than 200,000 pounds. Although the pit.h change mechanism (torque control)
 

was not a large weight driver in itself, the combination of weight and large over-hung moment con

tributed indirectly to a significant portion of the structural weight at the top of the tower. Similarly,
 

the massive yaw control and structure contributed significantly to top-of-tower weight. Since tower
 

weight is directly impacted by weight on top, then if these drivers could be reduced or eliminated,
 

the potential for achieving the 400,000 machine was possible. Each subsystem, as well as assembly/
 

test and site preparation erection/and check-out contributes significant cost and weight. Each
 

subsystem was independently investigated for potential simplicity and cost/weight reduction.
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MOM 

COST, WEIGHT & DESIGN DRIVERS
 

2ND UNIT 
SUBSYSTEM COST WEIGHT SPEC.COST DESIGN DRIVER 

K$ % K LB % $/LB 

BLADES 280 7.6 36.0 4.8 7.75 FATIGUE LOADS, EMERGENCY FEATHER 
LOADS, TOWER SHADOW, WEIGHT 

HUB 341 9.2 41.2 5.5 8.30 FATIGUE LOADS, BLADE ROOT MOMENTS, 
CONTROL MOMENTS 

TORQUE CONTROL 161 4.4 42.6 5.7 3.77 GUST LOADS - MAX FORCE EMERGENCY SHUT 
DOWN - MAX. RATE STIFFNESS 

BEARING & DRIVETRAIN 308 8.3 73.4 9.8 4.20 MAX. & CYCLIC TORQUE ROTOR LOADS ON 
BEARING 

NACELLE/STRUCTURE 316 8.5 73.9 9.8 4.30 FATIGUE LOADS - LOAD PATH NO. OF 
COMPONENTS IN NACELLE GEARBOX MOUNTING 
BRG. MTG. 

POWER GENERATION POWER LEVEL, POWER QUALITY (AV), 
EQUIPMENT 290 7.8 70.1 9.4 4.15 WTG/UTILITY PROTECTION 

CONTROLS 173 4.7 8.1 1.1 21.35 UNATTENDED OPERATOR & UTILITY 
QUALITY POWER 

YAW DRIVE SYSTEM 268 7.3 51.3 6.8 5.22 YAW TORQUE, OVERHUNG MOMENT, BEARING 
SUPPORT STRUCTURE 

TOWER 360 9.7 352.7 47.1 1.00 LATERAL STIFFNESS/FATIGUE, TOWER SHADOW, 
LOW TEMP IMPACT REQUIREMENTS 

ASS'Y & TEST 587 15.8 - - - NO. OF PARTS, NO. OF JOINTS & CONNECTIONS,
CRITICAL ALIGNMENTS, WEIGHT 

SITE PREP. ERECT 616 16.6 - - SITE CHARACT. & LOCATION, WEIGHT, SYSTEM 
& CHECK-OUT COMPLEXITY 

TOTALS 3700 100 749.3 100 4.9b MAJOR DRIVERS 
_ __# I* FATIGUE LOADS 

2-4 
a FULL SPAN TORQUE CONTROL &RELATED 
a YAW SUPPORT/DRIVE & TOWER 

COMPONENTS 



2.2 CONCEPT GOALS
 

Certain judgment was used in establishing difficult and sometimes unrealistic goals
 

for each major subsystem. Each subsystem design team was given the objective to produce
 

a conceptual design meeting the overall MOD-l operational requirements, but within cost
 

and weight bogeys. Volumetric space was also allocated for those components on top of the
 

tower in a manner similar to the way aircraft designers are constrained.
 

While the subsystem designers examined approaches to meet or exceed their allocated
 

bogeys, the dynamic/stress team modified existing models to simulate modifications to MOD-l
 

that would achieve load alleviations through up-wind rotor, three-bladed rotor and/or
 

teetered hub. The three system concepts evolved utilizing variations of two-blades, fixed
 

or teetered hub, upwind, downwind, and soft-tower.
 

Emphasis was placed throughout on reducing labor during assembly and test as well as
 

site preparation erection and checkout, both of which contribute significantly to today's
 

second unit cost.
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2ND UNIT 2ND UNIT
 

SUBSYSTEM 


BLADES 


HUB 


TORQUE CONTROL 


NACELLE/STRUCTURE
 

& DRIVE TRAIN 


POWER GENERATION 


EQUIPMENT
 

CONTROLS 


YAW DRIVE SYSTEM 


TOWER 


ASS'Y & TEST 


SITE PREP, ERECT 


& CHECK-OUT
 

TOTAL 


MOD I-A BOGIES 

COST WEIGHT 

$K K LB 


323 22 


129 15 


65 8 


291 95 


178 46 


97 6 


112 33 


194 175 


258 

355 


2002 400 


s REDUCE LOADS
 
* ELIMINATEFUNCTION,
 

SIMPLIFY COMPONENTS
 
a INTEGRATE FUNCTIONS
 
s SIMPLIFY ASS'Y &
 

ERECTION
 

MOD-I
 
COST WEIGHT
 
$K K LB
 

280 36.0
 

341 41.2
 

161 42.6
 

624 147.3
 

290 70.1
 

173 8.1
 

268 51.3
 

360 352.7
 

587
 

616
 

3700 749.3
 



2.3 CONCEPT DESIGN REQUIREMENTS
 

The system concept operational and design requirements
 

are restated for the purpose of emphasizing that the selected
 

configuration must meet the MOD-i operational requirements.
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CONCEPT 	DESIGN REQUIREMENTS 

a RATED POWER 	 - 2000KW
 

* 	WIND SPEEDS @ 30'
 

- MEAN - 18 MPH
 

- MIN. CUT IN - 11 MPH
 

- CUT OUT - 35 MPH
 

- MAX. SURVIVAL -150 MPH
 
(NO SHEAR)
 

s POWER GENERATION - SYNCHRONOUS, UTILITY TYPE POWER
 

QUALITY
 

* CONTROLS 	 - UNATTENDED OPERATION
 

a SYSTEM LIFE 	 - 30 YRS WITH OVERHAULS
 

* AVAILABILITY 	 - > 90%
 

- CUMULATIVE FATIGUE FROM CUT IN TO CUT
 
OUT
 

a DESIGN LOAD CASES AS MOD 1 	 - MAX UP & DOWN GUST
 

- HURRICANE - NONOPERATING
 

- EMERGENCY FEATHER
 

REQUIREMENTS SAME
 
AS PRESENT MOD-i
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2.4 CONCEPT #I (REDUCED MOD-fl
 

The first concept considered was a direct extrapolation from MOD-i with minimum
 

deviations from the MOD-i Design. The similarities to MOD-i are as follows:
 

a 	Two-blades (basic MOD-i blade design)
 

o 	Gear box
 

o 	 Electrical generation and control system
 

* 	Reduced (but similar fabrication) bed-plate and Nacelle
 

structure
 

e Truss tower.
 

Deviations from MOD-i System Design include the following:
 

o 	 Fixed hub up-wind rotor
 

o 	Partial span torque control (in lieu of full-blade pitch change
 

mechanism)
 

o 	 Reduced main bearing diameter
 

o 	 Modified hydraulic yaw actuation
 

o 	 Soft tower
 

2-9
 



9oz 

REDUCED MOD-i 

(CONCEPT 1) 

II_ _ 

_ 
_ 

-"' 

WEIGHTS K LB. 

MOD-i CONCEPT #1 
TOP OF TOWER 343 235 

TOWER T5310 51TOTAL SYSTEM 696 340 

__ t U L 

34096.0 
DIA

_ 

138" 

.. 
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The structural fatigue loads were alleviated by putting the rotor upwind.
 

The elimination of the nacelle located pitch change mechanism and its ro

totating equipment allowed a significantly smaller bed-plate and support
 

structure. The rotor center of gravity overhang was reduced 28 inches.
 

Similarly, because of the lower weight on top of the tower and the simplified
 

yaw support structure and actuator, the base diameter of the yaw system was
 

reduced 48 inches. By reducing the weight at the top of the tower to
 

approximately 235,000 pounds from 337,000 pounds and by selecting a soft truss
 

tower, total weight at the base of the tower of 340,000 pounds is achieved.
 

Because of the significant commonality to the MOD-i design, Concept #1 is
 

in the class of being the lowest risk, earliest practicable implementation of
 

a proposed next generation W.T.G.
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CONCEPT #1
 

MAIN FEATURES
 

* FOLLOWS CLOSELY MOD-i CONCEPT.
 

* PARTIAL SPAN TORQUE CONTROL.
 

* UPWIND 2 BLADE ROTOR AND REDUCED OVERHANG REDUCES LOADS.
 

a INCLINED AXIS.
 

s SIMPLIFIED YAW DRIVE - REDUCED YAW BEARING DIAMETER 8 FT.
 

a SAME HARDWARE FOR DRIVE TRAIN, POWER GENERATION EQUIPMENT & CONTROLS.
 

* TRUSS TOWER.
 

WEIGHTS
 

TOP OF TOWER 235,000 LBS.
 

TOWER 105,000 LBS.
 

TOTAL WEIGHT 340,000 LBS.
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2.5 	 CONCEPT #2 (EPICYCLIC GEAR)
 

a

From the standpoint of reduced fabrication complexity, Concept #2 has 


Instead of the built-up steel fabricated
significant advantage over Concept #1. 


an
bed-plate, it utilizes a 6-Ft. tubular steel 1/2 inch pipe that is cut at 


approximate 45 degree angle and turned to house a smaller (in weight and size)
 

epicyclic gear-box.
 

The features retained from the MOD-I are as follows:
 

o Electrical generation and controls
 

Features which depart from the MOD-l design or require entirely new designs
 

include the following:
 

* Three-blade up-wind rotor
 

e Partial span torque control
 

@ Epicyclic gear drive
 

o Cylindrical shell housing and structure
 

o Modified yaw actuator
 

a Conical shell tower (1.2p)
 

In addition to the 3-bladed rotor a 2-bladed hub was designed for this system
 

as well. With this two-bladed configuration,
that would accommodate up-wind rotor 


the MOD-l blade can be used.
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CYLINDRICAL SHELL S CTURE NACELLE
 

(CONCEPT #2)
 

EPICYCLIC GEARBOX
 

(WP 11)
 
Mac> 

14EIGHTS K Ly._ _1 ' 

MD1 CONCEPT #2 .. j 

TOP OF TOWER 343 200 CONTROLS
 

TOWER 155
 
TOTAL SYSTEM 696 355
 

DIA 



By reducing the weight at the top of the tower to 200,000
 

pounds and using a cylindrical soft (1.2p) tower the total
 

weight of the system is 355,000 pounds, If, however, a truss

tower is used with the configuration, a total system weight of
 

305,000 pounds can be achieved. Although Concept #2 was the
 

lowest weight, in this configuration with a Truss-Tower, it
 

ended up being the highest in cost because of the cost penalty
 

of the epicyclic gear and the labor associated with the erection.
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CONCEPT #2
 

MAIN FEATURES
 

* 3 BLADED UPWIND ROTOR.
 

* PARTIAL SPAN TORQUE CONTROL.
 

* EPICYCLIC GEARBOX.
 

* TUBULAR BEDPLATE STRUCTURE SERVES AS FAIRING.
 

a JOURNAL BEARING FOR YAW SUPPORT/DRIVE.
 

* TUBULAR TOWER.
 

WEIGHTS
 

TOP OF TONER 200,000 LBS.
 

TOWER 155,000 LBS.
 

TOTAL 355,000 LBS.
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2.6 CONCEPT #3 (INTEGRAL GEAR-BOX)
 

The main MOD-I features retained in Concept #3, include the following:
 

o Two blades, (basic MOD-i blade design)
 

o Gear-Drive
 

* Electrical Generation and Controls
 

The features which deviated from MOD-I for our new design include the
 

followinq:
 

@ Teetered-lub (Up-wind or Down-wind),
 

o Partial Span Torque Control
 

o Modified Yaw Support and Drive
 

s Bed-Plate and nacelle replaced by the qear-box integral structure
 

(gear box housing has been designed to integrate directly with the
 

top of the tower, thus eliminating the need for special conical
 

housing.)
 

* Conical Shell Tower (1.2p)
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INTEGRAL GEARBOX STRUCTURE NACELLE
 

(CONCEPT #3)
 

00
 

WEIGHTS K LB
 

MOD-i CONCEPT #3
 

TOP OF TOWER 343 172
 

TOWER 353( 148
 

TOTAL SYSTEM 696 320
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The most significant load alleviation features of
 

Concept #3 are:
 

1) The simple teetered hub mounted on the gear train
 

drive-shaft and,
 

2) the use of the integral gear-box housing as bed

plate and the main support for the yaw control and
 

support.
 

By reducing the weight at the top of the tower to 172,000
 

pounds and providing a conical shell soft-tower of 148,000
 

pounds the total system weight at the base of the tower is
 

320,000 pounds.
 

Concept #3 is the selected system configuration and is
 

described in more detail in 3.0 entitled, "Selected System
 

Description."
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CONCEPT #3
 

MAIN FEATURES
 

o 2 BLADED TEETERED HUB DOWNWIND
 

* PARTIAL SPAN TORQUE CONTROL.
 

s ROTOR SUPPORT ON L/S GEARBOX SHAFT - INCLINED AXIS.
 

s LOWER GEARBOX STRUCTURE USED AS YAW BEARING SUPPORT STRUCTURE.
 

s SIMPLIFIED YAW DRIVE - 6 FT. YAW BEARING DIA.
 

a TUBULAR TOWER.
 

@ GEAR DRIVE, POWER GENERATION EQUIPMENT & CONTROLS
 
SAME HARDWARE AS MOD-i.
 

WE IGHTS
 

TOP OF TOWER 172,000 LBS.
 

TOWER 148,000 LBS.
 

TOTAL WEIGHT 320,000 LBS.
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2.7 TRADE STUDY LOADS ANALYSIS
 

Several steps are required using GE's analytical codes to develop comparative dynamics and stress
 

analysis to validate the assumption of a minimum 25% loads reduction. Since the MOD-i system was modeled
 

in detail as a down-wind two-bladed rotor with the existing geometry, it was determined that the most expe

ditious approach to establish the impact of various configurations such as up-wind, three-blades, and
 

teetered rotor would be to retain basic geometries (to establish the load changes on a one-for-one basis
 

using the MOD-i as the baseline). Minor code modifications were therefore required to simulate the con

ditions of an up-wind rotor and a teetered rotor. Creation of a new code for three blades was required to
 

understand the impact of three versus two blades. At the completion of the code modifications and their
 

verification for authenticity, the MOD-i (Baseline) was modeled individually as a 2-blade up-wind fixed
 

rotor, 2-blade down-wind teetered rotor, and a 3-blade up-wind fixed rotor. Various combinations were run
 

to determine the impact of soft-tower and reduced weight at the top of the tower. When these loads were
 

finally completed and analyzed, hand calculations were performed on the selected system configuration
 

(Case #6) to account for geometry differences which reduced moments at the yaw, base of the tower and
 

hub/shaft. The following discussions summarize the results of this final loads analysis and comparison.
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LOAD CASES AND DESCRIPTIONSj 

CASE 
# 

SYSTEM 
DESIGN 

# 
BLADES 

WEIGHT 
(K-#) 

ROTOR 
FIXED/TEETERED 

WIND 
UPWIND/ 
DOWNWIND 

SHELL/ 
TRUSS 

TOWER 
FREQ. 

BASELINE 

1 

2 

3 

MOD-i 

MOD-I 

MOD-I 

2 

2 

2 

340 

340 

340 

F 

F; 

T 

D 

U 

D 

T 

T 

T 

3.2 

3.2 

3.2 

4 MOD-i 3 340 F D T 3.2 

COMBINATIONS' 

5 

6 

7 

MOD-i 

MOD-IA 

MOD-IA 

3 

2 

2 

340 

200 

200 

F 

T 

T 

U 

D 

U 

S 

S 

S 

1.4 

1.2 

1.4 
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LOAD COMPARISONS
 

The load calculations for all cases investigated are shown as a fraction of the MOD-l
 

loads (Case -1); since the bending moments 
are the dominant design drivers, only these are shown.
 

Except for the blade flapwise (Myl, blade cordwlse (Mz) and yaw torque (Mx), shown separately,
 

remaining moments are given as combined bending moments not including torsion.
 

All loads are calculated for the MOD-i geometric configuration, i.e. same offsets for rotor to the
 

hub bearing and tower centerline. Partial span control was not-considered in the loads calculation. Blade
 

coning is 90 for MOD-I downwind baseline (Case 1); for all other cases the rotor has zero coning.
 

The comparison was made for the 35 mph steady state case which is the design driver for the fatigue
 

Joads. Peak loads for gust conditions were only calculated for the selected configuration (Case 6).
 

Based on these load calculations and the comparisons shown on the attached charts the following con

clusion can be drawn:
 

(1) The most significant system load reductions result from a teetered rotor or a 3-bladed upwind
 

rotor
 

(2) A most significant reduction results from teetering (note that the reduced
 

loads for the 3-bladed rotor mostly stem from the fact that the weight of a
 

single blade was reduced to 2/3 of the present blade in order.to stay consis

tent; considering the reduced cross-sectional properties, blade stresses in this
 

configuration are essentially the same as for the fixed 2-blade upwind rotor).
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LOAD CALOTIONS
 

35MPH FATIGUE LOADS
 

CASE 	 BLADE RETEN'N HUB/SHAFT YAW BRG. TOWER BASE YAW TORQUE

# DESCRIPTION FLAP EDGE RESULTANT RESULTANT RESULTANT .MX COMMENTS
 

M
 

IBASELIIE 

DOWN- FT-LBS(M) 1.07 1.08 2.08 .46 6.30 .72 MOD-i ACTUALS
 

1 MOD-1* WIND 1%MOD-1 1.0 1.0 1.0 1.0 1.0 1.0
 

2 MOD-i - UPWIND .77 .94 .28 1.22 .41 .54 	 INDIVIDUAL LOAB 
CASES WITH MOD-i 

-3 MOD-i TEETERED .40 .87 .20 .82 .56 .21 	 WT. AND TOWER FOI5 COMPARATIVE
 
4 MOD-i - 3 BLADE .48 .61*" .54 .75 .32 .52 PURPOSES.
 

COMBINATIONS
 
BEST LOAD-COMBIN

5 
 MOD-I -3 BLADES, UPWIND, .47 .60k .12 .18 .04 .18 ATION RESULTS 
1.4P TOWER 

6 	 MOD-IA - TEETERED, DOWN- EI59 .88 .29 39 .20 .15 SELECTED MOD-lA 
WIND, 1.2P TOWER 

7 	 MOD-lA - TEETERED, UPWIND, .37 .90 .26 .71 .30 .18
 
1.4P TOWER
 

* ALL CASES EXCEPT #1 ARE ZERO CONING: CASE #1 IS 90 CONING.
 
** FOR 3-BLADE VERSION BLADE WEIGHT & CHORD THICKNESS ARE ASSUMED 1/3 REDUCED
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(3) 	For a teetered hub, the cyclic tower base loads are so significantly reduced (more
 

than a factor five) that peak bendingmoments from gusting becomes the driver.
 

(For structural shells peak loads become dominating when they are higher than
 

3 to 5 times cyclic loads depending on type of weld.)
 

(4) 	For a teetered hub, up and down wind rotor position result in similar load reductions.
 

.(5) 	 A soft tower (1st lateral bending frequency -- 1.2) has no significant impact on loads 

as long as coincidence of higher tower bending modes with blade flapwise collective 

modes are avoided, 

(6) The main drawback of a fixed upwind compared to a teetered rotor are (Case 2 vs. Case
 

6).
 

a) Cyclic flapwise blade bending moment more than 1 1/2 times higher
 

b) Cyclic bending moments on top of tower (yaw bearing) more than 3 tlmes higher, peak
 

loads 	2 times higher
 

c) Cyclic bending moments on tower base more than 2 times higher
 

d) Cyclic and Maximum yaw torques about twice as high.
 

(7) 	The major reduction in flapwise gust loads (more than a factor 10) for the down gusts
 

(35 ---20 mph) stems in part from the zero-coning; this benefits the blade bending
 

loads which is a design driver for MOD-i. For the same reason the flapwise bending for
 

the upgust remained as high as for MOD-i. Note the significant reduction in gust-peak
 

loads for shaft and yaw drive torque due to teetering.
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LOAD CALCULATIONS 1 
35MRH PEAK LOADS 

CASE 
DESCRIPTION 

BLADE RTEN'N 
FLAP EDGE 

MY MZ 

HUB/SHAFT 
RESULTANT 

YAW BRG. 
RESULTANT 

TOWER BASE 
RESULTANT 

YAW TORQUE 
MX COMMENTS 

BASELIIBASELNE 

1 

I 

MOD-I 

FT-LBS. H 

MOD-i 

3.34 

1.0 

1.29 

1.0 

2.08 

1.0 

1.22 

1.0 

10.80 

1.0 

75 

1.0 

MOD-i ACTUALS 

2 MOD-I - UPWIND .47 .93 .28 .95 .63 .54 

3 MOD-i - TEETERED .44 .89 .20 .70 .72 .20 

4 MOD-i - 3 BLADE .33 .62 .60 .66 .57 .52 

COMBINATIONS 

5 MOD-I - 3 BLADES, UPWIN 
SOFT TOWER 

, .34 .61 .13 .63 .43 .19 

6 MOD-lA - TEETERED, DOWN-
WIND, 1.2P TOWER .50 .88 .42 .52 .48 .17 

7 MOD-IA - TEETERED, UPWIND, .43 
1.4P TOWER 

.91 .26 .53 .47 .0 
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PEAK GUST LOAD 

CASE 
# DESCRIPTION 

BLADE RETEN'N 
FLAP EDGE 

MY MZ 

HUB/SHAFT 
RESULTANT 

YAW BRG. 
RESULTANT 

TOWER BASE 
RESULTANT 

YAW TORQUE 
MX COMMENTS 

BASELINE 

1 

2 

MOD-I 

MOD-i 

UPGUST -FT-#(M) 
DOWNGUST-FT-#(M) 

% MOD 1 
- UPWIND 

2.29 
3.48 
1.0 

1.43 
.84 

1.0 

2.23 
1.42 
1.0 

2.11 
.96 

1.0 

12.70 
5.51 
1.0 

1.48 
1.12 
1.0 

3 MOD-i - TEETERED 

4 MOD-i - 3 BLADE 

COMBINATIONS 

5 

6 

7 

MOD-I - 3 BLADES, UPWIND, 
SOFT TOWER 

MOD-IA - TEETERED, Fr- 1.02 
DOWNWIND, 1.2P I ll[11 

MOD-lA - TEETERED, UPWIND, 
1.4P TOWER 

.80 

.78 
[T--j
[1A 

.82 

.25 

.81 

.20 

[1 
08 

NoT FLMEDpAGj. wsK 
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2.8 Cofl'figurationSelection Summary
 

Several factors contributed to the final selection. The most significant are summarized here.
 

Two Blade vs. Three Blade
 

The preliminary loads alleviation analyses indicated (late in the study) that a three blade up-wind rotor
 

provides a marginal advantage, load-wise, to a two blade (teetered) system. A three blade rotor, however would
 

require a complete blade redeisgn of lighter weight and approximate equal solidity factor. Since the MOD-i blade
 
design and tooling are complete, it was determined early in the study that the cost of a new blade or blade re

design must be offset by other significant cost reductions. Because of the short duration and funds limitation,
 

complete cost/performance trade-offs were considered out of the study scope. As future blade costs are reduced,
 

however, a 3-blade configuration may be more cost effective. Additional analyses and cost trades incorporating
 

the full third blade cost and cost savings resulting from further structural weight reduction (taking advantage of
 

the reduced loads) may provide a cost advantage for future generation systems. For the purpose of this study,
 

utilization of the MOD-I blade design and in-place tooling clearly provides cost and schedule advantaqes for the
 

next generation WTG.
 

Fixed vs. Teetered Rotor
 

In order to alleviate the loads to achieve a stress limited rather than fatigue limited system, both teetered
 

down-wind and fixed up-wind rotor systems are serious candidates. Concept #3 can accommodate either up-wind or
 

down-wind, teetered or fixed rotor. Until the final peak loads and in-depth cost trade-offs between fixed and
 

teetered rotors are in-hand, Concept #3 with a teetered down-wind rotor was selected as the tentative candidate.
 

In addition to the superior preliminary loads alleviation provided by the teetered system, a smaller tilt angle
 

or shorter shaft overhang provide cleaner geometry and lighter weight.
 

Upwind vs. Downwind Rotor
 

By comparing the preliminary load alleviation data for the up-wind vs. down-wind fixed rotor cases, the
 

preferred configuration for both two and three blades isup-wind. However, since teetering significantly reduces
 
yaw moment and flapwise blade bending a teetered rotor is not sensitive to either the up-wind or down-wind con

figurations.
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CONFIGURATION SELECTION 	SUMMARY 
 I
 

o USE MOD-i BLADES WITH MINIMUM MODIFICATIONS- 2 BLADE ROTOR
 

s ALLEVIATE LOADS- TEETERED ROTOR
 

o 	SIMPLIFY COMPONENTS - PARTIAL SPAN TORQUE CONTROL
 

-SIMPLIFIED YAW DRIVE/REDUCED BEARING DIAMETER
 

a INTEGRATE FUNCTIONS'-- ROTOR SHAFT = L/S GEARBOX SHAFT
 

-+ BEDPLATE = GEARBOX STRUCTURE
 

o 	MAKE EXTENSIVE USE OF MOD-i HARDWARE-- SAME GEAR DRIVE
 

D SAME POWER GENERATION EQUIPMENT
 

-* SAME CONTROL EQUIPMENT
 

o 	SIMPLIFY ASS'Y. & ERECTION - SHELL TOWER 

-> SINGLE LIFT 
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Stiff vs Soft Tower
 

Each concept was configured with both a soft and a rigid tower, which had natural frequencies at 1.2, 1.4,
 

1.7, 2.2, and 3.4P. By avoiding critical frequency harmonics of other subsystems it became clear that the
 

lowest cost, lowest weight tower should be a soft-tower in the 1.2P range. In order to assure complete
 

system stability it is necessary that the final configuration be tuned in the field with appropriately
 

placed weights after erection during check-out of the system.
 

Use of existing or designed MOD-l hardware is a benefit that resulted from the final analysis and trade
 

between the three system concepts and allowed the economic use of major hardware components. These include:
 

# Existing gears from MOD-l #2 unit gear box . Existing MOD-l control equipment
 

* Existing MOD-i power generation equipment * Same blade design
 

The selection of Concept #3 incorporating these MOD-l components, further confirms credibility of design
 

without major redevelopment and system design. Features such as partial span torque control utilizing 15% of the
 

blade; the simplified yaw drive, reducing the yaw bearing diameter; the integral rotor shaft and low-speed gear

box shaft; and integral bed-plate/gear box structures contributed to simplifying components and the integration
 

of functions within the structures. These features were considered to be most cost effective and most-weight
 

economic. Again, Concept #3 could accommodate all of these features. Several fabrication steps were either
 

simplified or eliminated entirely. Similarly, the conical, cylindrical tower was selected because of low-cost
 

of its single lift procedure.
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3.0 	 SELECTED SYSTEM DESCRIPTION
 

Based 	on the findings summarized in Section 2.8 Concept #3 was selected.
 

Rot - two blades 200 ft. diameter, 35 RPM, tilted axis, air foil 44xx.
 

* Hub - teetered with fixed blade root
 

• Rotor Torque Control - 15% tip control hydraulicly actuated, servo controlled 

* Nacelle Structure - lower part of gearbox housing carries rotor loads.
 

s Yaw Drive - Single row cross roller bearing with hydraulic cylinder/disc
 

brake drive
 

v Electrical Connection - cable twist
 

* Tower - tubular single member 1.2P bending frequency. 
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SELECTED
 

SYSTEM
 

DESCRIPTION
 

BLADE ASSEMBLY
 
PARTIAL SPAN TORQUE CONTROL
 
TEETERED HUB
 
GEARBOX
 
YAW DRIVE
 
POWER GENERATION & CONTROLS
 
TOWER
 
TECHNICAL RISK ASSESSMENT
 
WEIGHT COMPARISON
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Design Description
 

In order to maximize the benefit from lessons learned from the MOD-i design,
 

MOD-i components and techniques were used as far as economically prudent. The aim
 

was to reduce total cost, minimizing recurring costs such as hardware and erection,
 

as well as keeping engineering and other non-recurring costs compatible with 2nd
 

generation system design. In the following description, therefore,reference to
 

the MOD-i design will be made in order to point out the similarities in design
 

and the natural evolution of this concept from the MOD-i design and experience.
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INTEGRAL GEARBOX STRUCTURE NACELLE
 

(CONCEPT #3)
 

PARTIAL SPA TORQUE GEAR BOX
 
CONTROL WYORAULIC (TYP) MANBAIGH/S SHAFT WN
 

EflR7
L/S SHAFT 


ROTOR
 

GENERATOR
 
I J'-.-SUPPORT 

ESTRUCTURE
 

-0 § g ---- --> CONTROLS

7j4 YAW BEARING 
BLADE r~J 

LINE @4i ~ 
Ime FLAP
 

I-~ WORK PLATFORM 
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3.1 BLADE ASSEMBLY
 

The selected blade is identical in size, weight, exterior geometry, materials, fabrication and assembly
 

techniques as the MOD-i blade. It utilizes the existing tooling already purchased for MOD-i Program. No
 

changes are required to the exterior geometry, including the blade root section, leading and trailing edges,
 

cord and twist. Station 1024 was selected for incorporating the partial span control because it exists at
 

one of the weld stations, between section 5 and 6. A careful analysis indicates that approximately 15%
 

of the span provides sufficient torque control to satisfy the operational requirements.,
 

Since the selected system was zero coning (compared to 9 degree on the MOD-I) a slight modification
 

to the spar could be required. The preliminary load alleviation analysis indicates that the MOD-i blade
 

will be slightly over-designed which means that skin thickness and weight can be reduced. As a matter
 

of expediency in economics, however, a slightly heavier blade using the exact replica of MOD-i is con

sidered a reasonable approach for the selected system. It is necessary to note, however, that any blade
 

within the 20,000 lb weight range can be used as a blade for this design.
 

tOT FILMED 
PAGE BLAK 

pRECEDItiG 
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BLADE ASSEMBLY 

38 

1024 1210 

SEC SEC SEC SEC SEC SEC
 
1 2 3 4 5 16 

MOD 1 WELD LOCATIONS
 

THIS SECTION
 
USED FOR TORQUE
 

CONTROL
 
15.4% OF SPAN
 

PRESENT NOD-i BLADE USABLE
 

WITH MINOR MODIFICATIONS FOR TORQUE CONTROL
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Because of the simplicity of the torque control design the structural integrity
 

of the spar of the MOD-] blade is retained. The additional weight for each partial span
 

is offset by removal of existing MOD-i frequency trim weights at the blade tip. The only
 

additional testing required will be incident to the partial span torque since fatigue sample
 

tests have been conducted on the MOD-i program.
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BLADE ASS'Y. FEATURES
 

ORIGINAL BLADE STA 1024
 

* 	PRELIMINARY STRESS CALCULATION INDICATE MINOR
 

BLADE CHANGES REQUIRED.
 

" 	ADDITIONAL WEIGHT FOR TOROUE CONTROL
 

COMPENSATED BY REDUCTION OF TIP WEIGHTS
 

* ROOT FLANGE INTERFACE IDENTICAL
 

NO INTEGRATION PROBLEMS WITH PARTIAL SPAN
 

TORQUE CONTROL EXPECTED
 

USE OF IDENTICAL BLADE CONFIGURATION MINIMIZES
 

COST & SCHEDULE RISK
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3.2 	 PARTIAL SPAN TORQUE CONTROL
 

Four different concepts were investigated in enough detail to determine a preferred
 

approach from the standpoint of both cost and weight. These included electric motor/gear

drive, hydraulic motor with gear-drive, hydraulic actuator with a long shaft and the hydraulic
 

actuator with the bulk-head bearing concept that was finally selected. Prior to the
 

final selection of the partial span approach to provide for blade pitch, additional concepts
 

were investigated such as flap (partial trailing edge movement), boundary layer control, and
 

spoilers, (leading edge partial surface deflection). Preliminary investigations indicated
 

that the partial span torque control utilizing the hydraulic motor was the most effective
 

from the standpoint of simplicity, power dissipation, and maturity of components and design
 

concept. It consists of a hydraulic actuator mounted on a sLeel chord plate. A bearing
 

separates and maintains structural rigidity between the two blade cord surfaces. A stain

less steel bolt connects the two cords while also acting as the pivot axle.
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This version was configured so that it was compatible with the available space and the structure
 

capabilities of the present MOD-1 blade. As in MOD-i a hydraulic pitch change mechanism was chosen. The
 

selection was governed mainly by several considerations:
 

1) The space requirements on the outer 15% of the blade was such that a hydraulic actuator is
 

easily accommodated.
 

2) The hydraulic actuator reduces the blade outboard weight.
 

3) For emergency conditions, a hydraulic system with reservoirs placed in the blade can be activated
 

in case of power failure or a failure of the control slip ring.
 

Controllability is the same or better than provided on MOD-i. The tip can be moved at a rate that
 

more than compensates for the smaller control surface in order to produce comparable time rate of change
 

of aerodynamic torque.
 

The hydraulic system layout is quite similar to MOD-i, except for a simplification due to the lower
 

force requirement and mechanical trigger for emergency feather.
 

The inherent disadvantage of maintenance and repair of a hub mounted hydraulics was overcome by
 

mounting all hydraulic components (except the tip located actuator) in a compact arrangement on the outer
 

diameter of the hub so that it can be reached from the maintenance/assembly platform. The actuator is
 

mounted on the outside (pressure side) of the blade and can be reached with a "cherry picker."
 

The direct weight savings of 38,000 pounds is attributed to the partial span Torque control.
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* 4 CONCEPTS INVESTIGATED.
 

e CHOSEN APPROACH IS READILY ADAPTABLE TO PRESENT MOD-i BLADE.
 

* 	15% OUTBOARD SPAN AND PITCH RATE PROVIDES SAME
 

TORQUE CONTROL AS MOD-i DESIGN.
 

* 	PRELIMINARY LOAD CALCULATIONS INDICATE EXISTING BLADE
 

STRUCTURE ADEQUATE.
 

* 	HYDRAULIC ACTUATOR SYSTEM - SIMILAR TO MOD-i CONCEPT.
 

- MINIMIZES BLAOE OUTBOARD WEIGHT 
- PROVIDES HIGH PITCH RATES FOR GUST CONTROL & EMERGENCY FEATHER 
- SAFE SHUTDOWN FOR POWER AND SLIPRING FAILURES 

o PIVOT POINT POSITION SELECTED FOR SAFE SHUTDOWN.
 

s UNSYMMETRIC FAILURE NO PROBLEM.
 

a EASY ACCESS TO ACTUATOR & HYDRAULIC SYSTFM.
 

s WEIGHT REDUCED FROM 42,000 TO 4,000 LBS.
 

PARTIAL SPAN CONTROL CONTRIBUTES
 
TO MAJOR SYSTEM COST & WEIGHT REDUCTION
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3.3 TEETERED HUB
 

The hub is a significant departure from the MOD-1 design as it incorporates a teetered
 

blade attachment. In weight and manufacturing cost, however, it is largely simplified
 

compared to the MOD-i design. This stems from the fact that the large root flap moments
 

from the blade do not have to be carried into the shaft and therefore the horizontal part
 

of the hub, or tail shaft is largely reduced in size and cost. The teetering is provided by
 

one cylindrical and one tapered (fixed) roller bearing. This type of bearing is used
 

in the MOD-1 pitchchange mechanism and has the advantage of being essentially maintenance
 

free.
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I 

In order to avoid a tower strike by the blades through extreme gusts or unsymmetric
 

failure of the partial span pitch control, an end stop is provided at the hub limiting
 

teeter travel. The tail shaft is designed so that additional momets during these extreme
 

conditions can be tolerated without damage to the shaft, The hub barrel is a simple
 

cylindrical weldment. The connection between teeter axis and main shaft Is a conical
 

shrink fit with provisions for hydraulic disassembly. This type of connection is extensively
 

used for heavy machinery and was also used for the MOD-l main shaft and coupling connections.
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I 	 TEETERED HUB
 

* 	MINIMIZES BLADE STRESSES - LOWEST LOADS FOR 2 BLADE SYSTEM.
 

* 	Z2 DEGREES - NORMAL OPERATING RANGE 

* 	HUB BARREL ROLLED STEEL WELDMENT WITH REINFORCEMENTS AT SHAFT
 

PENETRATION AND BEARING MOUNTING.
 

a TAPERED AND CYLINDRICAL ROLLER BEARING AS TEETER SUPPORT.
 

s CONICAL SHRINK FIT AS INTERFACE TO MAIN SHAFT.
 

@ WEIGHT REDUCED FROM 41,200 LBS. TO 17,300 LBS.
 

TEETERED HUB PROVIDES BEST
 

LOAD ALLEVIATION FOR
 

TWO BLADED ROTOR
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3.4 GEARBOX/BEDPLATE
 

Tradeoff studies involving epicyclic and standard three stage parallel shaft gear
 

systemswere performed on the selection of the type of gearbox. Even though an epicyclic
 

gearbox reduces weight by approximately 20,000 lbs, the cost based on production of 100
 

units is approximately $80,000 higher. Furthermore, the conventional parallel shaft
 

gear-box lends itself better to a rotor shaft integration. Therefore, economic reasons
 

and overall system weight prompted the selection of a MOD-] type gearbox.
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Basic design of the gearbox is identical with existing MOD-I hardware, except for the
 

minor modifications:
 

v Increased length and diameter of Ist stage shaft.
 

* The lower part of the first stage housing accommodates the yaw bearing where the
 

rotor forces are reacted into the tower structure.
 

* The gearbox lube pump is integral with the gearbox.
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I GEAR\ BOX 

3 STAGE PARALLEL SHAFT GEAR BOX NOT LIGHTEST (+20K LB)
 

BUT LOWEST COST (- 80K $)
 

INTEGRATION OF INPUT SHAFT WITH ROTOR SUPPORT SHAFT ELIMINATES
 

SEPARATE ROTOR BEARINGS, LOW SPEED SHAFT & COUPLINGS
 

LOWER PORTION OF HOUSING SERVES AS YAW BEARING SUPPORT STRUCTURE
 

WEIGHT OF GEAR BOX, BEDPLATE & NACELLE STRUCTURE REDUCED FROM
 

147,30oLBS TO 82,600 LBS
 

INTEGRATION OF ROTOR & YAW
 

SUPPORT INTO GEAR BOX
 

ELIMINATES NACELLE STRUCTURE
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3.5 YAW SUPPORT AND DRIVE
 

The reduced yaw moments due to teetering and the reduced distance between hub
 

and tower centerline allows a significantly simpler and more cost effective yaw drive
 

system.
 

Two hydraulic cylinders, attached on one end to the stationary tower structure,
 

on the other end to a brake, are used as the yaw drive motor.
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The actuators are parked to provide a yaw capability for one stroke which will be
 

sufficient for almost all normal operating yaw maneuvers. After the execution of a yaw
 

maneuver, holding brakes will be locked. The yaw actuators are placed again in position
 

for later yaw corrections when required.
 

The hydraulic actuators and holding brakes are located inside the tower shell for
 

environmental protection. The hydraulic system is also attached to the stationary part
 

of the tower either at the tower base or on the yaw drive service platform on the top inside
 

the shell. The reduced loads result in a significantly smaller yaw bearing diameter
 

(6 ft. vs. 12 ft. for. MO0-1). Even though the bearing loads would allow a further reduction
 

in bearing diameter (6 ft. vs. 12 ft. for MO0-1). Even though the bearing loads would allow
 

a further reduction in bearing diameter, the brake disc for the yaw drive system and the
 

tower bending and torsional stresses as well as access for maintenance, dictate a minimum
 

tower diameter of 6 feet at the yaw bearing interface.
 

3-25
 



a GEARBOX MOUNTED YAW BEARING AND SHELL TOWER ELIMINATE SEPARATE SUPPORT STRUCTURE 

0 HYDRAULIC ACTUATOR COMBINED WITH BRAKE REPLACES HYDRAULIC MOTOR/GEAR DRIVE 

0 REDUCEQ LOADS ALLOWS BEARING DIAMETER REDUCTION TO 6 FT. 

* YAW BEARING SIMILAR TO MOD-I.
 

0 SHELL TOWER PROVIDES ENVIRONMENTAL PROTECTION
 

0 WEIGHT REDUCED FROM 51,300 LBS TO 7,8OLBS.
 

SUBSTANTIAL SAVINGS THROUGH
 

ELIMINATION OF DEDICATED
 

YAW BEARING SUPPORT STRUCIURES
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3.6' POWER GENERATION, INTERCONNECTION EQUIPMENT AND CONTROLS
 

The electrical system is substantially the same as for, MOD-I with some changes as follows:
 

a The generator is provided with a WPII frame suitable for outdoor application and resistance
 

grounding is eliminated.
 

* A cable twist configuration instead of a slip ring will accommodate the yaw rotation.
 

# 	A single auxiliary power supply transformer at 208YI20 is sufficient to handle the reduced 

auxiliary power requirements. 

* The control enclosure size will be reduced, and the base of the shell tower will be considered
 

as control enclosure
 

* Reduction in mechanical complexity permits elimination of several motor starters and feeders.
 

Elimination of the engineering data system from production units is presumed, although the first unit of
 

a new design would probably have an engineering data system. The operational control system is the same as
 

on MOD-] but with reduced hardware costs and less human interface data availability. For production systems,
 

elimination of some sensors, utilization of a micro-processor, reduced memory requirements for the executive
 

system and operator interface programs permit reduction in recurring costs.
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POWER GENERATION & CONTROLS
 

e 	FOLLOWS IDENTICAL APPROACH AS MOD-i.
 

* 	GENERATOR HOUSING WITH WP II FRAME FOR ENVIRONMENTAL PROTECTION.
 

* 	CABLE TWIST INSTEAD OF YAW SLIPRING.
 

a 	REDUCED AUXILIARY POWER REQUIREMENT ALLOWS ELIMINATION OF ONE
 
AUXILIARY POWER TRANSFORMER AND SEVERAL MOTOR STARTERS.
 

o 	SMALLER CONTROL ENCLOSURE - SHELL TOWER AS CONTROL ENCLOSURE CONSIDERED
 

a 	REDUCED SUPPORT EQUIPMENT ALOFT.
 

* 	REDUCED NUMBER OF OPERATIONAL CONTROL SENSORS.
 

* 	ALL EXISTING MOD-i HARDWARE USABLE.
 

SAME CONTROL SYSTEM
 
ELIMINATES MAJOR
 

PORTION OF SOFTWARE
 
DEVELOPMENT
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3.7 	 TOWER
 

Three types of towers were investigated:
 

* Truss type -- similar to MOD-i
 

e Cylindrical shell with conical base
 

0 Conical shell
 

Considering overall cost (including erection) the conical shell was selected for the
 

following reasons:
 

* Reduced yaw bearing diameters without significant weight penalties in the tower.
 

* Simplified erection
 

* Improved aesthetic appearance.
 

The selected configuration has a top diameter of 72 inches and a base diameter of 100
 

inches.
 

The top section (approximately 10 ft.) is connected to the remaining portion and
 

provides a convenient mounting and assembly base. This section also houses the interior
 

work and hydraulic equipment platform and the access door to the nacelle platform.
 

3-29
 



1/ALLi 
7/u1c~twESg WAIL 

TOE* '/-"
 

-ll
 
"116
 

.3/8. 

N* 3I 

////////,/,/ ///////
 



Because of the lower cyclic stresses, a considerable lower bending stiffness was
 

selected, resulting in a lateral bending frequency of approximately 1.2 cy/rev (P).
 

For the preliminary design three materials were considered:
 

s A-588 (Cor-ten)
 

* A-36 with paint finish
 

* A-J72 with paint finish
 

Final selection will be made considering low temperature notch toughness and FAA paint

ing requirements. Unlike MOD-l, where stiffness and fatigue requirements were structural
 

design drives, the maximum base bending moment caused by the rotor thrust is pacing the
 

tower design. Since rotor thrust for equal power level is almost independent of rotor con

figuration (teetered, 3 blades, etc.). This will become a basic design drive for hori

zontal axis wind turbine generators.
 

3-31
 



0 

a 	 CONICAL SHELL - LATERAL BENDING FREQUENCY I.?P 

FULL PENETRATION CIRCUMFERENTIAL WELDS ( C or B) 

* 	 BASE CONSIDERED AS CONTROL ENCLOSURE
 

* TOP SECTION SERVES AS GROUND BASE FOR ASSEMBLY & OVERHAUL
 

a SHELL WEIGHT INCLUDING FLANGES 148,000 LB
 

* 	 MAX. BENDING MOMENT FROM ROTOR THRUST BECOMES DESIGN DRIVER
 

ELIMINATION OF E-WELDS PROVIDES
 

INCREASE FATIGUE ALLOWABLES.
 

SHELL TOWER MINIMIZES ERECIION
 

COST & ENHANCES AESTHETIC APPEARANCE
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3.8 TI&ICAL RISK ASSESEMENT 

The overall program risk has been reduced by maintaining a significant portion of MOD-I commonality through

out the program development. Those new systems requiring new designs/developments are identified as follows:
 

e Partial span torque control * Yaw drive support
 

* Teetered hub * Cylindrical conical tower (soft tower) 

Partial Span Torque Control - The size and power required to drive the partial span torque control will fully
 

provide for the necessary control of the wind turbine generator. Simulation has been performed which indicates
 

that this is a practical approach incontrolling the WTG within the same spectrum as the MOD-l. Design and develop

ment of the hardware, however, has not been proven, except by inference on aircraft structures.
 

Teetered Hub - Altough the teetered hub is a deviation from the fixed hub approach utilized on MOD-i, it
 

represents a straightforward mechanical design. The teeter shaft (or axle) will utilize common steel fabrication
 

practices such as shrink fit over the gear-box shaft. The teeter shaft bearings are off-the-shelf components and
 

employ a standard interferface into the hub barrel/casement. Both the teeter hub and the hub/shaft interface
 

processes are similar to the MOD-l.
 

Drive Train Dynamics with Short Low Speed Shaft - the Main drive train has been shortened significantly from
 

the MOD-i design reducing shaft flexibility to alleviate the transfer of the impact of wind gusts on the rotor.
 

Main Shaft Deflection/Gear Interference - Concept #3 incorporates the use of the gearbox to house the fore 

and aft main shaft bearings. Concern has been raised regarding the possibility of mainshaft bending causing off

axis rotation of the gears and the gear interface problems'. Preliminary stress and bending analysis indicates 

that the selected gear-shaft diameter is adequate to overcome any potential problems. 

Yaw Support and Drive System - The proposed hydraulic actuator and brake system is a significant departure
 

from MOD-i. It is a straightforward mechanical design In the use of hydraulic actuator and brakes.
 

Soft Tower - The stiff tower design for MOD-l was selected on the basis of confidence and demonstration
 

of the MOD-O approach. With more confidence in the ability to establish natural frequency parameters to major
 

subsystems, and be able to "tune" major components, it has now been determined that a soft tower is a practical
 

solution for a low-weight economic system. it is expected that once placed in the field during the checkout
 

final frequency placement will be required by tuning.
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TECHNICAL RISK ASSESSMENT
 

PARTIAL SPAN TORQUE CONTROl DESIGN LARGEST SINGLE RISK 

- MINIMIZED BY TEST 

- GOOD ANALYTICAL SIMULATION REQUIRED 

TEETERED HUB - STRAIGHT FORWARD DESIGN
 

HUB/SHAFT INTERFACE - STANDARD PRACTICE USED ON MOD-i
 

DRIVE TRAIN DYNAMICS WITH SHORT LOW SPEED SHAFT
 

- NO PROBLEM EXPECTED BUT CAREFUL SIMULATION REQUIRED
 

MAIN SHAFT DEFLECTION/GEAR INTERFERANCE 

- PRELIMINARY NUMBERS INDICATE NO PROBLEM 

- INCREASE OF SHAFT DIAMETER INCONSEQUENTIAL 

NEW YAW DRIVE CONCEPT 

- FALL BACK TO GEAR DRIVE ON BRAKE DISC 

- 23% OF MOD-I TORQUE 

SOFT TOWER 

- MAY REQUIRE TUNING 

- CAREFUL FREQUENCY PLACEMENT REQUIRED 

NO MAJOR IECHNICAL
 

RISK FORSEEN
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3.9 SECOND UNIT CONCEPT #3 WEIGHT AND COST COMPARISONS TO STUDY GOALS AND MOD-i
 

The final weights and Second unit costs of Concept #3 are shown in the cross-hatched
 

blocks and are compared to the study goals and MOD-i system, broken down by subsystem,
 

assembly/test and erection. These original goals, shown in Section 2.2, were not changed
 

throughout the conduct of the study. The early goals were derived somewhat arbitrarily,
 

with the exception of the hub, torque control and total weight at the top of the tower as
 

well as the tower weight. Significant improvements in yaw drive system, tower weights
 

and site preparation, erection and check-out contribute to off-set the early optimistic power
 

generation weights and cost goals, which represent a mature subsystem.
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2ND UNIT WEIGHT & COST COMPARISONS
 

2ND UNIT 2ND UNIT
 
MOD 1-A BOGIES MOD-i 

SUBSYSTEM COST WEIGHT COST WEIGHT 
$K K LB $K K LB 

////ZPTF/ y / / , 

BLADES 323 22 280 36.0 

HUB 129 15 341 41.2 

TORQUE CONTROL 65 8 161 42.6 

NACELLE/STRUCTURE 

& DRIVE TRAIN 624 147.3 

POWER GENERATION 178 46 290 70-1 

EQUIPMENT7 

CONTROLS 97 6//V/ / /I/71//7 173 8.1 

YAW DRIVE SYSTEM 1 2 268 51.2 

TOWER 194 175 360 352.6 

ASS'Y & TEST 258 587 -

SITE PREP, ERECT 355 616 -

& CHECK-OUT 

TOTAL 2,002 400 3,700 749 

a REDUCE LOADS 
* ELIMINATE FUNCTION, 

SIMPLIFY COMPONENTS 
* INTEGRATE FUNCTIONS 
* SIMPLIFY ASS'Y & 

ERECTION -
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3.10 MOD-i CONCEPT #3 WEIGHT COMPARISON
 

The table below provides weights of both MOD-i and Concept #3 and an indication of where significant
 

savings have been achieved.
 

Weight - LB(K) Concept #3 
SUBSYSTEM MOD-I Concept #3 % Of 

MOD-I
 

Blades, Hub and Torque Control 119.8 60.4 50
 

Yaw Support and Drive 51.3 7.8 15
 

Drive Train, Nacelle and Structure 147.3 82.6 56
 

Power Generation (and Controls) 24.6 21.6 87
 

Subtotal (Weight-top of Tower) 343.0 172.0 50
 

Tower 353.0 148.0 42
 

Total (Weight - Base of Tower) 696.0 320.0 46
 

Each major subsystem, with the exception of power generation and controls contributes significantly to the
 

overall weight reduction. Electrical power generation equipment is well within the state-of-the-art and is
 

represented by a high degree of off-the-shelf, proven hardware. It is understandable then that little impact
 

on ovbral] weight can be made in power generation and controls. The major contributions in weight reduction
 

are attributable to the reduction in loads, reduction in sizes of torque control yaw support and drive, the
 
elimination of the bed-plate, the simplification of the support structure, and the soft tower. These all
 

combine to provide an overall total weight that isonly 46% of the entire MOD-l system.
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MOD-I/CONCEPT #3 - WEIGHT COMPARISON 

TOTAL WEIGHT
 
%696,000 LBS
 

'00 T BLADES, HUB
 

90 4& PITCH CHANGE
 

YAW SUPPORT & WEIGHT
DRIVE
80 -xi TOP OF 

TOWER 

70 DRIVE TRAIN, 343,000 LBS 

NACELLE & 

601 STRUCTURE 

GENERATION SUBSYS 


50 


40.YAW
40 


TOWER 

30 - TOWER WEIGHT 

20! I 353,0oo LBS 

20j 


10 
T"148,000 

INCLUDES 10%
 
CONTINGENCY
 

TOTAL WEIGHT * 
320,000 LBS 

BLADES HUB"&" 
TORQUE CONTROLSUPPORT &OfR- WEIGHTTOP OF 

TOWER 
DRIVETRAIN, NACELL 172,000 LBS 

& STRUCTURE
 
GENERATION SUBSYS._i OE
 

1TOWER
 
TOWER WEIGHT
 

LBS
 

MOD-I CONCEPT #3
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3.11 	 MOD-i CONCEPT #3 COMPARISON
 

This sketch provides a slihoutte of Concept #3 superimposed over
 

the MOD-i and shows the relative size advantages. It provdes a-striking
 

comparison of physical sizes.
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4.0 SYSTEM ECONOMICS AND PERFORMANCE
 

Second unit system costs were developed In (1977 dollars) for
 

comparison to MOD-i and to establish the base capital cost to compute
 

the cost of energy. This data is provided in this section.
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SYSTEM ECONOMICS & PERFORMANCE
 

I 	2ND UNIT COSTS
 
POWER OUTPUT
 
ANNUAL ENERGY CAPTURE
 
COST OF ENERGY
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4.1 SECOND UNIT COST AND COMPARISONS
 

This table provides weighting and costing data for both MOD-i and Concept #3
 

on a subsystem by subsystem comparative basis. Although we achieved our goal of less
 

than 400,000 pounds we did not quite achieve the goal of $1000 per kilowatt. It is
 

likely, however, that future improvements from this generation system could easily
 

achieve that goal.
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MOD-i & CflNr.FPT 3 

2ND UNIT WEIGHT & COST COMPARISONS 

(CONSTANT 1977 $) I"
 
MOD-I CONCEPT 3 

(K) !$(K) 

LBS $ LB LBS* $ 

BLADES 36.0 250 6.95 38.5 274 7.10 

HUB 41.2 264 6.40 17.3 118 6.8G 

TORQUE CONTROL 42.6 126 2.95 4.6 15 3.2E 

BEARING & DRIVETRAIN 73.4 240 3.25 76.5 190 2.4E 

NACELLE/STRUCTURE 73.9 246 3.45 6.1 33 5.4C 

POWER GENERATION EQPT. 70.1 230 3.30 68.7 214 3.11 

CONTROLS 8.1 135 16.65 7.5 120 16.00 

YAW DRIVE SYSTEM 51.3 209 4.10 7.8 56 7.20 

TOWER 352.7 321 .91 148.0 110 .75 

749.3 022 2.70 375.0 1130 3.00
SUBTOTAL 

SITE PREPARATION/WTG INSTALL. - 547 - - 215 

- 340 -VF LABOR/OVERHEAD 437 

- 20 - 20 -T&L/COMPUTER 


3026 - 1705 -SUBTOTAL 

432 - 237 -G&A 

242 - 136 -FEE 


TOTAL WTG - INSTALLED 49.3 1700 4.95 2078 5.55
 

* INCLUDES 10% CONTINGENCY 4-4 



4.2 	POWER OUTPUT
 

Because of the load reductions on the blades, there is no limitation in
 

rated capacity as is the case with the MOD-1 system. Therefore, the hatched
 

area on the attached curve represents the increased power output that can be
 

achieved at the various wind speeds at the three different locations: MOD-i
 

specifications (sea level), M06-1 installation, (Boone, N.C.) and a high wind
 

regime.
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4.3 	 ANNUAL ENERGY CAPTURE COMPARISON
 

Using the wind duration curves of the sites previously mentioned, both MOD-i
 

and Concept #3 energy capture were computed and are compared. Depending upon wind
 

availability total annual energy output increase ranges between 3 - 10%. This is
 

,due to the Concept #3 rated capacity of 2000 KW versus 1818 KW, which is a blade
 

structural limitation on the MOD-i system.
 

The cost of energy of Concept #3, depending upon Investor owned or public 

owned category, varies between 4.2t and 6.3t per kilowatt hour as compared to just 

under 7.5t and 11.34 for the MOD-i. The cost of energy calculation is very 

encouraging and represents a potential system that can be marketed competitively 

with either investor owned or public owned utilities, in selective geographical 

areas in the next 3 - 5 years. 
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ANNUAL ENER#CAPTURE COMPARISON
 

60 
HIGH WIND RE4IME 
(21.5 MPH MEAN) 
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50 -
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CnA4CFPT 
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6 
#3 6.08 x1O0 K-HRS/YR 

MOD-i SPECIFICATION 
(18 MPH1 MEAN) _ 

MOD-i 
_ _ 

PUBLIC 
UTILITY 
FCR=.12 

7.6 
___________ 

INVESTOR 
UTILITY 
FCR=.18 

11.3 

M40OD-I 

CONCEPT 

5 .86 

#3 

x 1 

6.07 x 

Ki-HRS/YI' 
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-

30 
30 - - BOONE, N.C.(13.7 MHt MEAN) 

MOD-I 3.15 x 10 KW-HR YR 
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2 
C) 
.- J 

* 

lo 

20 

10 

. CONCEPT #3 io63.48x6 KW-HRS/YR 

ASSUMES 90% AVAILABILIT,Y 

0 
1 2 3 4 5 6 7 8 

-- --- r 

9 

HOURS PER YEAR 8760 
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APPENDIX G 

ELECTRICAL STABILITY ANALYSIS 

Abstract
 

This appendix is a report on the final phase of a series of analyses 
performed by G. B. - Electric Utility Systems Engineering. It includes 
the results of analysis conducted to determine the compatibility of the 
Mod 1 WTG with its selected installation site in the Blue Ridge Electri
cal Membership Co-operative. 



INTRODUCTION
 

The first phase of this study provided a preliminary 

performance appraisal of a single wind generator connected 

to an infinite bus. During Phase II, dynamic performance of 
single and multiple wind generator units in an electric 

utility environment was investigated. This report of the 

third and final phase of the performance study presents the 

results of analysis conducted to determine the compatibility 

of the MOD-I Wind Turbine-Generator with its selected in

stallation site in the Blue Ridge Electric System. In
 

analyzing this compatibility the Phase III study served a 

threefold purpose:
 

1. 	 to examine dynamic stability for a variety of 

possible system conditions,
 

2. 	 to assess transient response to severe wind gusts,
 

and
 

3. 	 to identify and pre-test analytically parameter 
adjustments which could improve performance. 

The analysis discussed herein was performed using
 

models developed previously and described in detail in the
 

Phase I and Phase II reports. Hence dynamic models are not 

discussed in this report. However, a complete data set for
 

the models used in the Phase III analysis has been included
 

in the Appendix.
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SUMMARY
 

This study was undertaken to assess the wind turbine
generator performance on the Blue Ridge Electric System.
 
The study was conducted using digital dynamic simulation
 
techniques to represent the wind generator and the 12 kV 
distribution system. Dynamic stability and transient re
sponse to wind gusts were investigated utilizing this ap

proach.
 

Study results indicated that the system was dynamically
 
unstable when operated at very low power output. It was 
found that this condition could be rectified by adjusting 
the tuned frequency of the notch filter in the power regula
tor. The results also indicated that transient response to 
wind gusts could be substantially improved by slightly 
increasing the transient gain of the power regulator. 
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1. Distribution System Representation
 

The installation site for the MOD-i Wind Generator was 

chosen to be Boone, North Carolina, where it will be con

nected to a 12 kV distribution circuit of the Blue Ridge 

Electric Membership Corporation. Data describing the trans

mission system and significant load characteristics was 
provided by Mr. William Terry of Blue Ridge Electric. This
 

data has been included in its original form in the appendix.
 

From this data, a reduced order model of the distribution 
system was obtained for use in the analysis. 

A one line diagram of the reduced order model is shown 

in Figure 1. Howard's Knob Circuit No. 211 was modeled in
 
detail while the Sands Circuit No. 213 and Bamboo Circuit 

No. 212 were lumped into equivalent lines and loads at buses 

4 and 5. Bus 3 corresponds to the Boone 12 kV bus. Bus 2 
was modeled as an infinite bus representing the higher
 

voltage transmission system. The Wind Generator was located
 

at bus 1. 

Load dynamics play an important role in the overall 
performance of the Wind Generator. The load models used to 

characterize this portion of the Blue Ridge system are 
summarized below: 

Bus 5 	 1200 KVA induction motor load representing 

the water pumping station, hospital, sewage 
treatment 	plant, and lumber company. 

Bus 6 	 300 KVA induction motor load representing the
 

water filtration plant.
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Buses 4,7,8,9 	 Constant current real power load
 

and constant impedance reactive
 

power load.
 

Buses 12,13,15,16 	 Constant impedance loads.
 

Howard's Knob Circuit No. 211 is normally connected to
 

the Boone 12 kV Bus. Alternate modes of operation include 

connecting it through feeders to Sherwood or Hound Ears.
 

-4



HOUNb EARS 

SHERWOOD 

zsys7+" jj.oa. 4 oi 

Horo 
. ....... OTOR
 

One line diagram of distribution system
 

Figure 1
 



2. Dynamic Stability Analysis
 

Dynamic stability of the Wind Generator System was 
assessed by calculating eigenvalues and plotting root migra

tion as a function of four system parameters: 

1. voltage regulator gain, KA,
 

2. power regulator gain, KP,
 

3. power system stabilizer gain, KSTAB' and
 

4. generated power, P.
 

Wind speed was assumed to be constant at 37 ft/sec.
 

with the power regulator and stabilizer gains set to 

zero and the generator operating at full output (1875 KW), 

root migration was plotted as a function of voltage regula

tor gain. Saturation effects were included in the excita

tion system representation. The gain was varied from zero
 

to 975 and the resulting plot is shown in Figure 2A.
 

With the voltage regulator gain at 975 and stabilizer 

gain remaining at zero, the power regulator gain was varied 

from zero to its specified setpoint of 75. The root locus 

plot for this case is shown in Figure 2B. It can be seen 

that the power regulator gain had no effect on most system 

modes of oscillation. However, the only mode significantly
 

affected was the rigid body mode at 2.6 rad/sec., and its 

damping ratio was decreased with increased power regulator 

gain.
 

Root migration as a function of power system stabilizer
 

gain was also investigated. For this case, the voltage and
 

power regulator gains were held at their specified setpoints
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and the stabilizer gain was varied from zero to 500. The 

plot, Figure 2C, shows that the damping ratios of the two 

most lightly damped modes, 2.6 and 76 rad/sec., were sub
stantially improved with increased stabilizer gain.
 

A root locus was also plotted as a function of genera

tor power output. Power was varied from zero to 1875 KW with 

regulator and stabilizer gains set at their recommended 
values. The plot, shown in Figure 2D, indicates dynamic 

instability for the rigid body mode at zero power output. 

Other system roots were well behaved as power output was 

varied.
 

In order to gain an understanding of the mechanism of 
the instability, the transfer function from the blade pitch 

angle, P, to electrical power PE' was calculated for opera
ting points of zero KW and 1975 KW. The magnitude of this 

transfer function is plotted in Figure 2E and the phase 

angle is plotted in Figure 2F. At full power output, the 
rigid body mode natural frequency is at 2.6 r/s, as indi
cated by the resonant peak in magnitude at that frequency. 

At zero power output, the resonance occurs at 2.1 r/s, and 
the magnitude of the peak is greater than that at 2.6 r/s.
 

A Bode plot of the power regulator transfer function is
 

shown in Figure 2G. At 2.6 r/s, the regulator operates with 

a net phase lag of 38 degrees. But at 2.1 r/s, the phase 
lag is 78 degrees suggesting that the power regulator is 

contributing to the instability at low power. In order to
 

compensate for this, the notch filter in the power regulator
 

was adjusted from 2.6 r/s to 2.1 r/s. Gain and phase plots
 

of the adjusted regulator are shown by the dashed lines in 

Figures 2H and 21. With the adjusted notch, the regulator 
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operates with 38 degrees of phase lag at 2.1 r/s. Transient 

gain has also been increased, but gust response indicated 

that this was also a desirable effect. (The transient 

response studies are discussed in detail in Section 3 of 

this report.) The effectiveness of this method of compensa

tion was tested by plotting a root locus as a function of 

generator power output, similar to a previous plot wherein
 

the problem was identified. The root locus plot is shown in
 

Figure 2J. Although the damping ratio of the rigid body 

mode decreases somewhat at low power, the root does remain
 

stable for all power levels.
 

This analysis has shown that rigid body mode frequency 

varies as a function of power output and that appropriate 

filtering in the power regulator can eliminate instability 

caused by that effect. However, rigid body mode frequency 

is typically very strongly influenced by the stiffness or 

short circuit capacity of the ac transmission system. 

In order to investigate WTG stability as a function of 

changes in the host distribution system, seven different 

system configurations were simulated, including conditions 

with weakened higher voltage transmission. Eigenvalues for 

the rigid body mode and the 12 Hz torsional mode are tabul

ated in Figure 2K for all these conditions. ZEQUIV is the 

equivalent system impedance seen from the WTG terminals. 

Zsys is the equivalent impedance of the higher voltage 

transmission system and is identified in Figure 1. The 

results show that rigid body mode frequency changes very 

little with ac system condition. In all cases simulated, the 

frequency remained between 2.2 r/s and 2.75 r/s. Also, 

dynamic stability was achieved in all cases, even with a 

severely weakened ac system.
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SYSTEM CONDITION 


Z EQUIV 


DESCRIPTION (Z MVA BASE) 

TIED TO BOONE 12 KV BUS .142 

TIED TO SHERWOOD 12 KV BUS .172 

TIED TO HOUND EARS 12 KV BUS .172 

TIED TO BOONE & SHERWOOD & HOUND EARS .112 

TIED TO BOONE W/ZSYS = .6 ON 10 MVA .234 

TIED TO BOONE W/ZSYS = 1.2 ON 10 UVA .352 

RIGID BODY MODE 


P = 1875 KW P =O 

EISENVALUE ZETA EIGENVALUE ZETA 

-.365+j2.72 .1329 -.142±j2.24 .0634 

-.373±j2.70 .1367 - 140±J2.23 .0625 

-.374±_j2.70 .1374 -.137±j2.22 .0617 

-.360tj2:75 .1299 -.169±jZ.31 .0733 

-.414_fj2.67 .1531 -.185±j2.39 .0775 

-.543+j2.55 .2086 ..--


EIGENVALUES FOR VARIOUS AC SYSTEM CONDITIONS
 

FIGURE 2K
 

P = 

EIGENVALUE 

-.0815+J76.8 


-.0743_±j76.9 


-.0735±j76.8 


-.0907+j76.8 


-.0696+j76.7 


-.0628+j76.6 


12 lZ TORSIONAL MODE 

1875RW P = O 

ZETA EIGENVALUE ZETA 

.00106 -.0618+J76.6 .00081 

.00097 -.0561±j76.6 .00073 

.00096 -.0555±j76.6 .00072 

.00118 -.0746±76.6 .00097 

.00091 -.0701±J76.6 .00091 

.00082 .-

http:543+j2.55
http:185�j2.39
http:414_fj2.67
http:169�jZ.31
http:137�j2.22
http:374�_j2.70
http:140�J2.23
http:373�j2.70
http:142�j2.24
http:365+j2.72


3. Gust Response
 

Another aspect of assessment of the WTG performance at 
its installation site is its response to wind gusts. Time 
simulations were made to determine the response of the WTG 
to two wind gusts: 

1. a two second duration one-minus-cosine gust, and
 

2. the .1%probability gust derived from site data.
 

The two second gust consisted of an initial and final velo
city of 37 ft/sec., with a peak velocity of 47.5 ft/sec. 
occurring one second after the start of the gust. This gust
 
model was used extensively in prior phases of this study. 
The .1% probability gust was the result of a statistical 
reduction of wind data taken at the Boone site. Its initial
 
velocity was 42 ft/sec., and it attained a maximum velocity 
of 74 ft/sec. Velocity versus time plots for both of these 
gusts are shown in subsequent figures. For all these simu
lations the distribution system was assumed to be in its 
normal condition; that is, with Howard's Knob Circuit No. 
211 connected only to the Boone 12 kV bus. 

The control characteristics of the power regulator have
 
a very strong influence on WTG response to wind gusts. Of 
particular concern is the control response in the frequency 
range over 1 r/s. In order to quantify this sensitivity and 
to assist in tuning the power regulator for optimum transi

ent response, three levels of transient gain were consider
ed. Assuming that the rigid body mode notch were moved to 
2.1 r/s in the present regulator design, the asymptotic 
magnitude-versus-frequency characteristic would be that of 
the lowest curve in Figure 3A. System response to a two 

-20



second wind gust was simulated utilizing this regulator 
design and the results are plotted in Figure 3B. Plotted 
quantities for these and all subsequent gust response plots 
are defined as follows: 

Variable Description Units
 

MCHSPD Generator Rotor Speed Hertz
 
PE Generator Air Gap Power Per Unit
 

PMECH Windmill Rotor Power Per Unit
 

BETA Blade Pitch Angle Degrees
 
WIND Wind Velocity Feet per Second
 

DELTPT Deviation from Power Setpoint Per Unit
 

VREG Voltage Regulator Output Per Unit
 
TERMINAL Generator Terminal Voltage Per Unit
 
VOLTAGE
 

ANGLE Angle of Generator "Q" Axis Degrees 
with respect to Infinite Bus
 

VOLTAGE 
BUS 9 

VOLTAGE
 
BUS 8 

VOLTAGE Bus Voltages as Identified in 'Per Unit
 
BUS 7 Figure 1
 

VOLTAGE
 
BUS 6 

VOLTAGE
 
BUS 5 

Response to the same gust was also simulated utilizing
 

regulators with higher transient gains. A regulator with 
5.2 db gain increase in the region above .2 r/s was produced 

by shifting the time constant T1 from 10 to 5.5 seconds. 
Response to the 2 second gust using this regulator design is
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shown in Figure 3C. This design offers improved response 

over the lower gain regulator in that power-angle swings and
 

voltage dips are substantially reduced. A third design with 
T1 set at 3.67 seconds was also tested and the response is 
shown in Figure 3D. Further improvement in power swing and 

voltage dip response was achieved. 

Significant data concerning maxima and minima from the
 

2 second gust response plots are summarized in tabular form
 

in Figure 3E. For this forcing function, the highest gain 

regulator produces the best response.
 

A worst case, .1% probability, wind gust was also used 
as a forcing function in the assessment of WTG transient 
response. WTG response to the .1% probability gust was 

calculated with each of the three power regulator transfer 
functions tested with the 2 second gust. Transient response 

plots are shown in Figures 3F, 3G, and 3H. Voltage dip re

sponse is summarized in Figure 31. Response to this gust 

has revealed characteristics not evident in the 2 second
 

gust response. If plots of electrical and mechanical power
 

response (PE and PMECH) for each regulator design are com

pared, it can be seen that the the highest gain regulator 

(with T1 = 3.67) causes highly oscillatory behavior after 

the peak of the gust. Although the response is stable, this 

is an indication that the transient gain is too high. 

Based on this gust response analysis it is evident that
 

the power regulator design with T1 = 5.5 seconds offers a 

necessary compromise in performance; it substantially im
proves voltage dip performance without risking post transi

ent oscillations as with the higher gain regulator. 
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Figure 3E: Time Response Summary
 

2 sec 1- Cosine Gust 

T1 = 10 T1 = 5.55 T1 = 3.67
 

PE initial 1.02 1.02 1.02
 
(pu) maximum 1.88 1.75 1.67
 

minimum .19 .26 .44
 

ANGLE initial 44.3 44.3 44.3
 
(deg) maximum 80.2 76.1 72.0
 

minimum 9.9 13.9 21.0
 

TERMINAL initial 1.014 1.014 1.014
 
VOLTAGE maximum 1.072 1.064 1.056
 
(pu) minimum .924 (8.9%) .937 (7.6%) .953 (6.0%)
 

BETA initial 2.1 2.1 2.1
 
(deg) maximum 6.0 7.8 9.4
 

minimum 1.6 0.5 .1
 

VOLTAGE initial .985 .985- .985
 
BUS 5 maximum .999 .998 .995
 
(pu) minimum .968 (1.7%) .972 (1.3%) .973 (1.2%)
 

VOLTAGE initial 1.019 1.019 1.019
 
BUS 7 maximum 1.050 1.044 1.039
 
(pu) minimum .960 (5.8%) .970 (4.8%) .980 (3.8%)
 

VOLTAGE initial .998 .998 .998
 
BUS 9 maximum 1.030 1.024 1.019
 
(pu) minimum .941 (5.7%) .951 (4.7%) .961 (3.7%)
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Figure 31: Voltage Dip Response Summary
 

.1% Probability Gust 

T1 = 10 T1 = 5.55 Tl = 3.67 

TERMINAL initial 1.014 1.014 1.014 
VOLTAGE maximum 1.056 1.044 1.058 
(pu) minimum .848 (16.4%) .932 (8.1%) .940 (7.3%) 

VOLTAGE initial .985 .985 .985 
BUS 5 maximum .994 .992 .991 
(pu) minimum .942 (4.4%) .965 (2.0%) .970 (1.5%) 

VOLTAGE initial 1.019 1.019 1.019 
BUS 7 maximum 1.041 1.043 1.044 
(pu) minimum .937 (8.0%) .972 (4.6%) .975 (4.3%) 

VOLTAGE initial .998 .998 .998 
BUS 9 maximum 1.020 1.022 1.023 
(pu) minimum .918 (8.0%) .953 (4.5%) .956 (4.2%) 
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4. 	 Conclusions and Recommendations
 

The following conclusions can be drawn from the results
 

of this study:
 

1. 	 Overall performance of the NOD-I Wind turbine 
Generator is strongly influenced by the charac
teristics of both the voltage regulator and power
 

controller. Interactions between these two con

trol devices can produce dangerously high torques
 

in the shaft at torsional natural frequencies. It
 
is important, therefore, to implement a coordinat

ed control policy for these devices. 

2. 	 Dynamic instability at low power output was indi
cated when the wind turbine-generator was operated 

with 	 its original design power regulator. Adjust
ment 	of the power regulator notch filter from 2.6
 
r/s to 2.1 r/s eliminated this instability. (The 
original design data is included in the appendix.)
 

3. 	 The transient stability margin and voltage dip 

response of the wind turbine-generator to wind
 
gusts were substantially improved by increasing
 

the transient gain of the power regulator. This 
gain modification was implemented by adjusting the
 

time constant T1 from 10. to 5.5 seconds.
 

4. 	 With the control parameter adjustments mentioned 
above, the wind turbine-generator responded well 
to the .1% probability (worst case) wind gust. 
Angular excursions were very small and the maximum
 

voltage dip on the distribution feeder was 4.6%. 
No stability problems were indicated.
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Appendices
 

A.1 System Reactance Diagram
 

A.2 System Load Diagram
 

A.3 Voltage Sensitive Load Characteristics
 

A.4 Generator Electrical Data
 

A.5 Excitation System Data
 

A.6 Power System Stabilizer Data
 

A.7 Power Regulator Data
 

A.8 Torsional System Data
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A.l System Reactance Diagram
 

(from Mr. W. Terry, Blue Ridge Electric)
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A.2 System Load Diagram
 

(from Mr. W. Terry, Blue Ridge Electric)
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A.3 	Voltage Sensitive Load Characteristics
 

(From Mr. W. Terry, Blue Ridge Electric)
 

1. 	 Water Filter Plant: The plant consists of motors as
 

follows:
 

3 - 60 HP
 

2 - 75 EP
 
1 - 10 HP
 

1 - 3HP
 

5 - IHP
 
The plant's function is to filter and treat water for 

use on the campus of Appalachian State University. 

Undervoltage tripping is used on the main breaker to 

protect the plant from undervoltages. The main breaker
 

trips instantaneously when the voltage dips below 80
 

volts. Operation is restored manually after an under

voltage trip.
 

2. 	 Water Pump: This load consists of the following mo

tors:
 

1 - 200HP
 

1 - 1 1/2HP
 

These pumps are used to provide supplementary water to 

the reservoir for the water filter plant in Item I. 

The motors are put into and removed from service manu

ally and used only occasionally. This plant also has 

undervoltage protection that operates instantaneously 

when the voltage drops below 80 volts. 

3. 	 Lumber Company: The largest motor at this location is 

100 HP. It is one of many that contribute to a demand 

of 430 KVA. The motors are used to power saws and 

other woodworking, gluing and drying equipment. The 

dry kilns operate twenty-four hours a day and have fans 

with magnetic controllers that must be manually reset 

after an outage or severe voltage dip. 
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4. 	 Boone Sewage Treatment Plant: The following motors are
 

used at this location.
 

4 - 20HF
 

1 - 15 HP
 

1 - 5HP
 
At any given time, the maximum load could consist of
 

2 - 20 HP, 1 - 15 HP, and the 5 HP motors. This plant
 

has no undervoltage tripping, but it is subject to
 

controller dropout during extreme voltage dips. This
 

plant is manned twelve hours Monday through Saturday
 

and eight hours on Sunday.
 

5. 	 Hospital: The peak load of 300 KW for this load occurs
 

during the air conditioning season. However, the total
 

load is made up of many small loads as lighting, cook

ing, and medical instruments such as X-Ray. The hospi

tal is presently undergoing an expansion program which
 

will increase its maximum demand to an estimated 1200
 

KW. This new load will consist of the following:
 

Two central water chillers at 419 KVA each.
 

Food preparation equipment.
 

X-Ray equipment.
 

Large 	motors consist of the following:
 

1 - 125 HP
 

1 - 100 HP
 

4 - 30 HP
 

2 - 25 HP
 

2 - 2C HP
 

4 - 15 HP
 

Extreme voltage dips or momentary outages can cause the
 

emergency generator to start, boiler and pump motors to
 

drop out, and terminate telephone conversations. The
 

effect of voltage dips on medical instruments is uncer

tain; however, some lab instruments that are computer
 

controlled would be sensitive to voltage dips.
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A.4 Generator Electrical Data:
 

KVA Rating 


X£e 


Ra 


X d 

xd 

11
 

Xd 


Tdo 


Tit 


Xq 

X
q 

11 
X
q 

To 


Tqo 


1875.
 

.11795
 

.0227
 

2.54
 

.304
 

.22
 

3.34
 

.0318
 

1.57
 

.341
 

.22
 

.1649
 

.003
 

All impedances in per unit on 1875 KVA base.
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A.5 Excitation System Data
 

5 ERTF I F 

K = 975 pu/pu TA = .26 sec. 

KE = .86 TE = .26 sec. 

= KF = .08 TF2 1.5 sec. 

= LIMIT = + 19. pu TF3 .26 sec. 
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A.6 Power System Stabilizer Data
 

CUR _KSTA_ s7 , (1- "1;S)(It73 s "%-T CS 2 
Hue --qsS I . Ts I+,T4 s) -2 S I S 

KSTAB = 100 pu/pu Tw = 10. sec. 

T = .17 sec. T = .017 sec. 

= .17 sec. T4 = .017 sec.T3 


wI = 21. rad/sec. C1 = .1
 

w2 = 21. rad/sec. C2 = .6
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A.7 'PowerRegulator Data
 

Parameters for original system: 

= 75 deg/pu TB = .2 sec. 

T = 10 sec. T2 = .1 sec. 

C .2 wn = 2.6 rad/sec. 

Recommended parameters for Boone site: 

= 75 deg/pu TH = .2 sec. 

T1 = 5.55 sec. T2 = .1 sec. 

= .2 wn = 2.1 rad/sec. 
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A.8 Torsional System Data
 

&EERBOX
 

BLADES
 

2
11 = 28.96 lb ft sec = .744 pu 

12 = 29.70 lb ft sec2 = .763 pu 

213 = 779.6 lb ft sec = 20.04 pu 

14 = 5.829 lb ft sec 2 = .144 pu 

15 = 50.5 lb ft sec2 = 1.298 pu 

KI3 = 2859. lb ft/rad = .390 pu 

K23 = 2859. lb ft/rad = .390 pu 

Y-34 = 10284. lb ft/rad = 1.402 pu 

K45 = 22000. lb ft/rad = 2.999 pu 

C1 3 = 167.1 lb ft sec/rad = 4.296 pu 

C2 3 = 167.1 lb ft sec/rad = 4.296 pu 

All values referenced to 1800 rpm system.
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