NAS

Aeronautical Engineering A Continuing

NASA SP-7037 (121) April 1980

National Aeronautics and

CASEFILE ronautical Engineering Aer g Aeronautical Engineerin Ae 10

ACCESSION NUMBER RANGES

Accession numbers cited in this Supplement fall within the following ranges.

STAR (N-10000 Series) N80-14017 - N80-16022

IAA (A-10000 Series) A80-17361 - A80-21040

This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by Informatics Information Systems Company.

AERONAUTICAL ENGINEERING

A Continuing Bibliography

Supplement 121

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in March 1980 in

- Scientific and Technical Aerospace Reports (STAR)
- International Aerospace Abstracts (IAA).

NASSA Scientific and Technical Information Branch 1980 National Aeronautics and Space Administration Washington, DC

INTRODUCTION

Under the terms of an interagency agreement with the Federal Aviation Administration this publication has been prepared by the National Aeronautics and Space Administration for the joint use of both agencies and the scientific and technical community concerned with the field of aeronautical engineering. The first issue of this bibliography was published in September 1970 and the first supplement in January 1971. Since that time, monthly supplements have been issued.

This supplement to Aeronautical Engineering -- A Continuing Bibliography (NASA SP-7037) lists 411 reports, journal articles, and other documents originally announced in March 1980 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA).

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the bibliography consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged in two major sections, IAA*Entries* and *STAR Entries*, in that order. The citations, and abstracts when available, are reproduced exactly as they appeared originally in IAA and STAR, including the original accession numbers from the respective announcement journals. This procedure, which saves time and money, accounts for the slight variation in citation appearances.

Three indexes -- subject, personal author, and contract number -- are included. An annual cumulative index will be published.

AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A80-10000 Series)

All publications abstracted in this Section are available from the Technical Information Service, American Institute of Aeronautics and Astronautics, Inc. (AIAA), as follows: Paper copies of accessions are available at \$7.00 per document up to a maximum of 40 pages. The charge for each additional page is \$0.25. Microfiche⁽¹⁾ of documents announced in *IAA* are available at the rate of \$3.00 per microfiche on demand, and at the rate of \$1.25 per microfiche for standing orders for all *IAA* microfiche. The price for the *IAA* microfiche by category is available at the rate of \$1.50 per microfiche plus a \$1.00 service charge per category per issue. Microfiche of all the current AIAA Meeting Papers are available on a standing order basis at the rate of \$1.50 per microfiche.

Minimum air-mail postage to foreign countries is \$1.00 and all foreign orders are shipped on payment of pro-forma invoices.

All inquiries and requests should be addressed to AIAA Technical Information Service. Please refer to the accession number when requesting publications.

STAR ENTRIES (N80-10000 Series)

One or more sources from which a document announced in *STAR* is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: NTIS. Sold by the National Technical Information Service. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code followed by the letters HC or MF in the *STAR* citation. Current values for the price codes are given in the tables on page viii.

Documents on microfiche are designated by a pound sign (#) following the accession number. The pound sign is used without regard to the source or quality of the microfiche.

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Section, Springfield, Va. 22161.

NOTE ON ORDERING DOCUMENTS: When ordering NASA publications (those followed by the * symbol), use the N accession number. NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number. Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other *report* number shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail: SOD (or GPO). Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, at the standard \$3.50 price, for those documents identified by a # symbol.)

⁽¹⁾ A microfiche is a transparent sheet of film. 105 by 148 mm in size, containing as many as 60 to 98 pages of information reduced to micro images (not to exceed 26:1 reduction).

- Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, D.C. 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory.
- Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in *Energy Research Abstracts*. Services available from the DOE and its depositories are described in a booklet, *DOE Technical Information Center - Its Functions and Services* (TID-4660), which may be obtained without charge from the DOE Technical Information Center.
- Avail: Univ. Microfilms. Documents so indicated are dissertations selected from *Dissertation Abstracts* and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.
- Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.
- Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, California. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.
- Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)
- Avail: Fachinformationszentrum, Karlsruhe. Sold by the Fachinformationszentrum Energie, Physik, Mathematik GMBH, Eggenstein Leopoldshafen, Federal Republic of Germany, at the price shown in deutschmarks (DM).
- Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.
- Avail: U.S. Patent and Trademark Office. Sold by Commissioner of Patents and Trademarks, U.S. Patent and Trademark Office, at the standard price of 50 cents each, postage free.
- Other availabilities: If the publication is available from a source other than the above, the publisher and his address will be displayed entirely on the availability line or in combination with the corporate author line.

GENERAL AVAILABILITY

All publications abstracted in this bibliography are available to the public through the sources as indicated in the *STAR Entries* and *IAA Entries* sections. It is suggested that the bibliography user contact his own library or other local libraries prior to ordering any publication inasmuch as many of the documents have been widely distributed by the issuing agencies, especially NASA. A listing of public collections of NASA documents is included on the inside back cover.

SUBSCRIPTION AVAILABILITY

This publication is available on subscription from the National Technical Information Service (NTIS). The annual subscription rate for the monthly supplements is \$50.00 domestic; \$100.00 foreign. All questions relating to the subscriptions should be referred to NTIS, Attn: Subscriptions, 5285 Port Royal Road, Springfield Virginia 22161.

ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics Technical Information Service 555 West 57th Street, 12th Floor New York, New York 10019

British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England

Commissioner of Patents and Trademarks U.S. Patent and Trademark Office Washington, D.C. 20231

Department of Energy Technical Information Center P.O. Box 62 Oak Ridge, Tennessee 37830

ESA-Information Retrieval Service ESRIN Via Galileo Galilei 00044 Frascati (Rome) Italy

Her Majesty's Stationery Office P.O. Box 569, S.E. 1 London, England

NASA Scientific and Technical Information Facility P.O. Box 8757 B. W. I. Airport, Maryland 21240

National Aeronautics and Space Administration Scientific and Technical Information Branch (NST-41) Washington, D.C. 20546

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 Pendragon House, Inc. 899 Broadway Avenue Redwood City, California 94063

Superintendent of Documents U.S. Government Printing Office Washington, D.C. 20402

University Microfilms A Xerox Company 300 North Zeeb Road Ann Arbor, Michigan 48106

University Microfilms, Ltd. Tylers Green London, England

U.S. Geological Survey 1033 General Services Administration Building Washington, D.C. 20242

U.S. Geological Survey 601 E. Cedar Avenue Flagstaff, Arizona 86002

U.S. Geological Survey 345 Middlefield Road Menlo Park, California 94025

U.S. Geological Survey Bldg. 25, Denver Federal Center Denver, Colorado 80225

Fachinformationszentrum Energie, Physik, Mathematik GMBH 7514 Eggenstein Leopoldshafen Federal Republic of Germany

NTIS PRICE SCHEDULES

Schedule A

STANDARD PAPER COPY PRICE SCHEDULE

(Effective January 1, 1980)

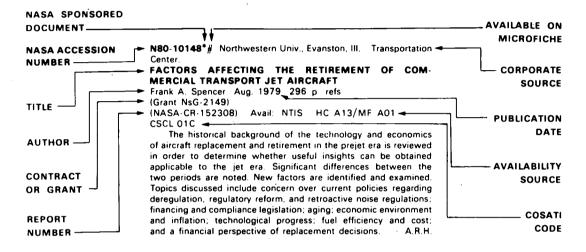
Price	Page Range	North American	Foreign
Code		Price	Price
A01	Microfiche	\$ 3.50	\$ 5.25
A02 .	001-025	5.00	10.00
A03	026-050	6.00	12.00
A04	051-075	7.00	14.00
A05	076-100	8.00	16.00
A06	101-125	9.00	18.00
A07	126-150	10.00	20.00
A08	151-175	11.00	22.00
A09	176-200	12.00	24.00
A10	201-225	13.00	26.00
A11	226-250	14.00	28.00
A12	251-275	15.00	. 30.00
A13	276-300	16.00	32.00
A14	301-325	17.00	34.00
A15	326-350	18.00	36.00
A16	351-375	19.00	38.00
A17	376-400	20.00	40.00
A18	401-425	21.00	42.00
A19	426-450	22.00	44.00
A20	451-475	23.00	46.00
A21	476-500	24.00	48.00
A22	501-525	25.00	50.00
A23	526-550	26.00	· 52.00
A24	551-575	27.00	54.00
A25	576-600	28.00	56.00
A99	601-up	1/	2/

1/ Add \$1.00 for each additional 25 page increment or portion thereof for 601 pages up.

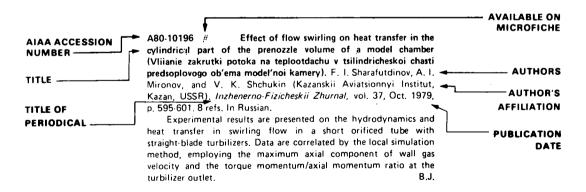
2/ Add \$2.00 for each additional 25 page increment or portion thereof for 601 pages and more.

Schedule E

EXCEPTION PRICE SCHEDULE


Paper Copy & Microfiche

Price	North American	Foreign
Code	Price	Price
EO1	\$ 5.50	\$ 11.50
E02	6.50	13.50
E03	8.50	17.50
E04	. 10.50	21.50
E05	12.50	25.50
E06	14.50	29.50
E07	16.50	33.50
E08 、	18.50	37.50
E09	20.50	41.50
E10	22.50	45.50
E11	24.50	49.50
E12	27.50	55.50
E13	30.50	61.50
E14	33.50	67.50
E15	36.50	73.50
E16	39.50	79.50
E17	42.50	85.50
E18	45.50	91.50
E19	50.50	100.50
E20	60.50	121.50
E99 - Write for quote		
NO1	28.00	40.00


TABLE OF CONTENTS

IAA Entries	
STAR Entries	
Personal Author Index	B-1
Contract Number Index	C-1

TYPICAL CITATION AND ABSTRACT FROM STAR

TYPICAL CITATION AND ABSTRACT FROM IAA

AERONAUTICAL ENGINEERING

A Continuing Bibliography (Suppl. 121)

IAA ENTRIES

A80-17402 Wire obstacle warning system /WOWS/ - A real-time airborne sensor for automatic detection and recognition of wirelike objects. R. Kleehammer, J. Hunt (Fairchild Camera and Instrument Corp., Syosset, N.Y.), and A. Kleider (U.S. Army, Fort Monmouth, N.J.). In: Smart sensors; Proceedings of the Seminar, Washington, D.C., April 17, 18, 1979. Bellingham, Wash., Society of Photo-Optical Instrumentation Engineers, 1979, p. 167-174. Grant No. DAAB07-77-C-2167.

A sensor has been designed to provide real-time detection and recognition of 3mm wires at a range of 300 meters during nighttime helicopter flight operations. An Army-sponsored program to demonstrate such automatic wire detection and warning for Nap-of-the-Earth (NOE) helicopter missions is currently in progress. Wire or wire-like objects are electro-optically detected and then recognized by a pattern recognition technique. The recognition algorithm is accomplished within 50 msec of the first wire detection indication. A flyable exploratory development WOWS model, consisting of a scanning laser transmitter, electro-optical receiver, real-time processor and display unit is described. (Author)

A80-17517 Map-matching techniques for terminal guidance using Fourier phase information. C. D. Kuglin, A. F. Blumenthal, and J. J. Pearson (Lockheed Research Laboratories, Palo Alto, Calif.). In: Digital processing of aerial images; Proceedings of the Seminar, Huntsville, Ala., May 22-24, 1979.

Bellingham, Wash., Society of Photo-Optical Instrumentation Engineers, 1979, p. 21-29. DARPA-sponsored research; Grant No. DAAK40-76-C-1193.

The application of Lockheed's phase correlation image matching technique to missile guidance has been systematically investigated during the past several years. An effective approach to the scene distortion problem has been developed and verified for a variety of sensor types by computer simulation. The method involves the computation of a full bandwidth Fourier phase difference matrix for the reference and sensed scenes to be matched, followed by the application of the inverse Fourier transform to the phase matrix modified by a series of bandwidth-reducing filters to produce a set of trial correlation functions. The 'best' matchpoint is then selected using parameters derived from each correlation function. A novel method for onboard reference map storage has been developed using quantized Fourier phase angles. (Author)

A80-17518 Guidance system position update by multiple subarea correlation. T. K. Lo and G. Gerson (Hughes Aircraft Co., Advanced Missile Systems Div., Canoga Park, Calif.). In: Digital processing of aerial images; Proceedings of the Seminar, Huntsville, Ala., May 22-24, 1979. Bellingham, Wash., Society of Photo-Optical Instrumentation Engineers, 1979, p. 30-40. Contract No. F30602-77-C-0049.

Correlation is a common and powerful method for updating inertial guidance systems. Performance of correlation methods degrades in the presence of geometric distortion between the images being correlated, or when the image structure is strongly asymmetric. The Multiple Subarea Correlation (MSC) technique has been developed to reduce performance losses due to these effects. The MSC technique consists of selecting a set of subareas from the reference

APRIL 1980

image, and correlating each reference subarea against the sensed image, producing a correlation function for each subarea. There must be at least three subareas; typically six subareas are selected. The correlation functions are processed to determine a consistent set of local maxima which are in gross agreement as to the relative displacement of the two images. Then, using this set of local maxima and the known subarea locations, a least-squared-error estimate of an affine transformation between the two images is computed. The transformation is applied to the update point in the reference image to find the corresponding point in the sensed image. The technique allows selection of subareas with the most favorable content for correlation. Optimum subarea dimensions exist and depend upon the amount of distortion expected. The variance of the update point position is shown to be inversely proportional to the number of subareas. (Author)

A80-17521 Discontinuous registration of industrial radiographs using profile analysis and piecewise correlation techniques. D. L. Davies, P. H. Smith, and J. F. Liutermoza (United Technologies Corp., Pratt and Whitney Aircraft Group, East Hartford, Conn.). In: Digital processing of aerial images; Proceedings of the Seminar, Huntsville, Ala., May 22-24, 1979. Bellingham, Wash., Society of Photo-Optical Instrumentation Engineers, 1979, p. 63-72. 9 refs.

Two methods of measuring internal machine part clearances by digital processing of industrial radiographs are presented. The first technique requires mathematical modeling of the expected optical density of a radiograph as a function of machine part motion. Part separations are estimated on the basis of individual image scan lines, with the final part separation estimate produced by fitting a polynomial to the individual estimates and correcting for imaging and processing degradations simulated by a mathematical model. The second method applies image registration where radiographs are correlated in a piecewise fashion to allow inference of relative motion of machine parts in a time varying series of images. Each image is divided into segments which are cross-correlated with subsequent images to identify machine part motion in image space. Since the magnitude of a correlation peak is a function of the similarity between an image segment and a subsequent image, it can be used to infer the presence of relative motion of features within each image segment thus identifying feature boundaries. АΤ

A80-17534 Performance evaluation of image correlation techniques. J. M. Geros and A. J. Witsmeer (Boeing Aerospace Co., Seattle, Wash.). In: Digital processing of aerial images; Proceedings of the Seminar, Huntsville, Ala., May 22-24, 1979.

Bellingham, Wash., Society of Photo-Optical Instrumentation Engineers, 1979, p. 197-205. Contract No. F33615-76-C-1300.

A technique capable of improving the navigation system accuracy of operational systems using low-altitude correlation update information is desired. The technique makes use of the unique signature of the land mass passing beneath the vehicle to establish its position history and update its inertial navigation system. The generic types of sensors available to provide external mapping data for low-altitude correlation, the correlation performance measures developed for system analyses and the simulation studies performed to validate these performance measures are described. This paper will emphasize the ability to and the importance of developing analytical techniques in predicting the behavior of correlation update or image matching systems both in terms of fix accuracy and probability of correct correlation or acquisition. This type of analysis validated first by simulation and later by flight test results provides a solid basis on which to develop the system and bring it into operational utility with (Author) a high degree of confidence.

A80-17553 Development aspects of a dynamically tuned gyro for strapdown - AHRS. H. Sohst (Litton Technische Werke, Freiburg im Breisgau, West Germany). In: Symposium on Gyroscope Technology, Bochum, West Germany, September 18, 19, 1978, Proceedings. Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1979. 17 p.

The paper gives an overview of fundamental considerations regarding the development of dynamically tuned strapdown gyros. Especially guidelines and areas of significant efforts are reviewed which have important impact to the development of the K-273 strapdown gyro at LITEF. Design goal and technical resources are described. Emphasis is put on practical development aspects. Since the object of consideration is still in a process of development this paper has to be looked upon as an interim report. (Author)

A80-17558 A strapdown inertial reference system for commercial airline use in navigation and flight control. P. J. Donoghue and L. B. Cotter (Teledyne Systems Co., Northridge, Calif.). In: Symposium on Gyroscope Technology, Bochum, West Germany, September 18, 19, 1978, Proceedings. (

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1979. 19 p.

This paper describes a strapdown inertial reference system (IRS) for use on next generation commercial airlines utilizing equipment complying with the new ARINC 704 standards. The system is derived from state-of-the-art inertial technology utilizing hardware already developed and flight tested specifically for this application. (Author)

A80-17559 An integrated strapdown guidance and control system for launch vehicle application. C. W. Kirk and P. J. Donoghue (Teledyne Systems Co., Northridge, Calif.). In: Symposium on Gyroscope Technology, Bochum, West Germany, September 18, 19, 1978, Proceedings. Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1979. 28 p.

This paper presents an application of strapdown technology and integrated systems concepts to a guidance and control system designed for a launch vehicle. The complete vehicle alignment, guidance, launch sequencing, timing, ignition commands, control and telemetry are provided by the strapdown system which can be adapted to other applications by simple software or custom I/O changes. (Author)

A80-17671 Concerning the information efficiency of aerodynamic experiments. G. L. Grodzovskii (Tsentral'nyi Aerogidrodinamicheskii Institut, Moscow, USSR). (*TsAGI, Uchenye Zapiski,* vol. 9, no. 2, 1978, p. 36-43.) *Fluid Mechanics - Soviet Research,* vol. 8, Jan.-Feb. 1979, p. 103-111. 11 refs. Translation.

The paper formalizes two concepts: (1) information efficiency of the measuring system, and (2) the information efficiency of the experiment. The determination methodology for these efficiencies for typical problems of aerodynamic experimentation is presented. The relationship between the minimum duration of the optimal experiment, the effective coefficient of noise levels, permissible relative error and the required degree of detail in the unknown functional relationship is established for the optimal experiment. This is accomplished by employing efficient optimal estimates of single measurements of parameters and D-G optimal polynomial experimental designs for determination of the functional relationship. M.E.P.

A80-17673 Effect of the relative area of the flow core on the performance of a hypersonic wind tunnel. V. Ia. Bezmenov (Tsentral'nyi Aerogidrodinamicheskii Institut, Moscow, USSR). (TsAGI, Uchenye Zapiski, vol. 9, no. 2, 1978.) Fluid Mechanics -Soviet Research, vol. 8, Jan.-Feb. 1979, p. 122-132. 9 refs. Translation.

The paper examines the effect of relative area of the flow core on the performance of, a hypersonic wind tunnel. Results of investigations of the performance of hypersonic wind tunnels, such as the pressure recovery coefficient in the diffuser and test-section blockage ratio, are usually plotted as a function of the Mach number M and Reynolds number Re. However, the results of study of flows in hypersonic nozzles are reduced to the dependence of the Mach number in the flow core, or of the boundary layer displacement thickness on similitude parameters. Expressions are derived for the relative wind tunnel operation time and the Reynolds number based on the maximum velocity, friction viscosity, and stagnation density. It is concluded that the relative pressure recovery of diffusers, the relative time of wind-tunnel operation, and the blocking of the test section by models, controlled by the operating regime and the startup regime of the wind tunnel are governed by the relative area of the flow core and pertinent similitude ratios describing the flow of gas in the nozzle. A.T.

A80-17675 # Effect of naphthenic aromatic hydrocarbons on the oxidizability of hydrogenated jet fuel (Vliianie naftenoaromaticheskikh uglevodov na okisliaemost' gidroochishchennogo topliva RT). V. M. Veselianskaia, E. D. Radchenko, B. A. Englin, and A. A. Kir'ianova (Vsesoiuznyi Nauchno-Issledovatel'skii Institut Neftianoi Promyshlennosti, Moscow, USSR). *Khimila i Tekhnologiia Toplivi Masel*, no. 12, 1979, p. 27-31. 10 refs. In Russian.

A80-17696 # Application of a higher order panel method to realistic supersonic configurations. E. N. Tinoco, F. T. Johnson (Boeing Aerospace Co., Seattle, Wash.), and L. M. Freeman (Mississippi State University, University, Miss.). (American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 17th, New Orleans, La., Jan. 15-17, 1979, Paper 79-0274.) Journal of Aircraft, vol. 17, Jan. 1980, p. 38-44. 21 refs.

A higher-order panel method has been developed for the analysis of linearized subsonic and supersonic flow over configurations of general shape. This method overcomes many of the slender body limitations of present day programs in the analysis of supersonic configurations. The capabilities of this method are demonstrated through its application to the analysis of realistic supersonic cruise configurations. Comparisons are shown with experimental data and with results from other methods in current use. These comparisons demonstrate the unique capabilities of a major new software system called PAN AIR soon to be available as a general boundary value problem solver. (Author)

A80-17697 * # Analytical investigation of aerodynamic characteristics of highly swept wings with separated flow. C. S. Reddy (Old Dominion University, Norfolk, Va.). *Journal of Aircraft*, vol. 17, Jan. 1980, p. 58, 59. 9 refs. Contract No. NAS1-14193-48.

Many modern aircraft designed for supersonic speeds employ highly swept-back and low-aspect-ratio wings with sharp or thin edges. Flow separation occurs near the leading and tip edges of such wings at moderate to high angles of attack. Attempts have been made over the years to develop analytical methods for predicting the aerodynamic characteristics of such aircraft. Before any method can really be useful, it must be tested against a standard set of data to determine its capabilities and limitations. The present work undertakes such an investigation. Three methods are considered: the free-vortex-sheet method (Weber et al., 1975), the vortex-lattice method with suction analogy (Lamar and Gloss, 1975), and the quasi-vortex lattice method of Mehrotra (1977). Both flat and cambered wings of different configurations, for which experimental data.are available, are studied and comparisons made. S.D. A80-17698 # Comment on 'Handling quality criterion for heading control'. C. R. Chalk (Calspan Corp., Buffalo, N.Y.). Journal of Aircraft, vol. 17, Jan. 1980, p. 60-63; Author's Reply, p. 63, 64. 9 refs.

A80-17699 # Effects of the aerodynamic cross-coupling and lateral acceleration derivatives on airplane dynamic characteristics. D. G. Mitchell and D. E. Johnston (Systems Technology, Inc., Hawthorne, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0170. 13 p. 14 refs. Contracts No. F33615-76-C-3072; No. F33615-78-C-3604.

A study has been performed to evaluate the contributions of the static aerodynamic cross-coupling and lateral acceleration derivatives on the denominator and numerator roots which affect lateral closed-loop control. Time vector analysis is shown to enhance physical insight to the contribution of each aerodynamic and kinematic term of the coupled 6 DOF math model and facilitate simplification so that tractable, literal transfer function approximate factors can be developed. Time vectors are also applied to 3 DOF models with and without lateral acceleration derivatives to illustrate their contribution. The method provides insight to the influence of the static and acceleration derivatives on key dynamic modes.

(Author)

A80-17700 * # Estimation of the accuracy of dynamic flightdetermined coefficients. R. E. Maine and K. W. Hiff (NASA, Flight Research Center, Edwards, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0171. 18 p. 26 refs.

This paper discusses means of assessing the accuracy of maximum likelihood parameter estimates obtained from dynamic flight data. The commonly used analytical predictors of accuracy are compared from both statistical and simplified geometric standpoints. Emphasizing practical considerations, such as modeling error, the accuracy predictions are evaluated with real and simulated data. Improved computations of the Cramer-Rao bound to correct large discrepancies caused by colored noise and modeling error are presented. This corrected Cramer-Rao bound is the best available analytical predictor of accuracy. Engineering judgement, aided by such analytical tools, is the final arbiter of accuracy estimation.

(Author)

A80-17716 Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response. J. G. Yen and T. T. McLarty (Bell Helicopter Textron, Fort Worth, Tex.). Vertica, vol. 3, no. 3-4, 1979, p. 205-219. 13 refs.

The mode displacement, force integration, impedance and matrix displacement methods for the analysis of the dynamics of coupled helicopter rotor-fuselage systems are evaluated. The mode displacement method allows a completely coupled rotor-fuselage system to be analyzed by replacing rotor inertial couplings in the fuselage equations with stiffness couplings, and good results for rotor loads can be obtained. The force integration method is used to compute hub shears and moments by integrating dynamic and aerodynamic forces along each rotor blade, however this approach requires more computer time. Fuselage or rotor impedance, a useful concept in vibration analysis, is used to analyze rotor natural frequencies and rotor loads, and to calculate the vibration characteristics of a multi-bladed helicopter successfully and economically. The matrix displacement method systematically automates the coupling of rotating and nonrotating component equations, however requires longer computation time and exhibits poor numerical ALW. accuracy.

A80-17717 * Formulation of coupled rotor/fuselage equations of motion. W. Warmbrodt (NASA, Ames Research Center, Moffett Field, Calif.) and P. Friedmann (California, University, Los Angeles, Calif.). *Vertica*, vol. 3, no. 3-4, 1979, p. 245-271. 19 refs. Grant No. NsG-1578. The governing equations of motion of a helicopter rotor coupled to a rigid body fuselage are derived. A consistent formulation is used to derive nonlinear periodic coefficient equations of motion which can be used to study coupled rotor/fuselage dynamics in forward flight. The methodology of rotor/fuselage coupling is clearly described and the importance of an ordering scheme in deriving consistent nonlinear equations of motion is reviewed. The final equations which are presented in partial differential form can be used to model coupled rotor/fuselage aeroelastic response or stability problems. (Author)

A80-17718 Rotational noise of helicopter rotors. Y. Nakamura and A. Azuma (Tokyo, University, Tokyo, Japan). *Vertica*, vol. 3, no. 3-4, 1979, p. 293-316. 48 refs.

The rotational noise of helicopter rotors is analyzed by means of the direct integration of distributed sources on an influential surface or surfaces. The sound pressure generated by a moving source as formulated by Ffowcs Williams and Hawkings (1969, 1963) is decomposed into the components of thickness noise, far field thrust noise, near field thrust noise, far field drag noise and near field drag noise. An analytical prediction of rotor noise characteristics is obtained for the integrand, integral region and observer time derivative portions of solutions to the wave equation. Noise characteristics such as directivity and wave form are expressed in terms of rotor parameters by numerical calculations. Parametric studies are used to determine the effects of rotor speed, advance ratio, blade number, chord length, rotor diameter, airfoil section, load distribution and directivity on noise levels, and means of reducing rotor noise are proposed on the basis of the computations. The analysis also indicates that the predominant source of noise is the thickness noise, and it is thus proposed as one of the probable causes of blade slap. A.L.W.

A80-17720 Airport noise, location rent, and the market for residential amenities. J. P. Nelson (Pennsylvania State University, University Park, Pa.). Journal of Environmental Economics and Management, vol. 6, Dec. 1979, p. 320-331. 23 refs.

The present.study reports on the influence of aircraft noise on housing prices in the vicinity of six major U.S. airports, including San Francisco, St. Louis, Cleveland, New Orleans, San Diego, and Buffalo. The sampling procedures attempt to control for the effect of accessibility on location rent, and hence, housing prices. Regression results are reported for the individual samples and for a pooled sample consisting of 845 observations. The regression coefficients for aircraft noise are stable about their weighted mean and are comparable to coefficient estimates from the pooled sample. Dummy variables and partitioned regressions are used to test for remaining accessibility effects. (Author)

A80-17723 The loads at landing impact (Die Lasten des Landestosses). K. König (Vereinigte Flugtechnische Werke-Fokker GmbH, Bremen, West Germany). (Deutsche Gesellschaft für Luftund Raumfahrt, Sitzung über Aeroelastik und Strukturdynamik, Immenstaad, West Germany, July 14, 1978.) Zeitschrift für Flugwissenschaften und Weltraumforschung, vol. 3, Nov.-Dec. 1979, p. 344-360. 9 refs. In German.

The paper describes a comprehensive calculation method for determining landing gear loads. Several aircraft of the younger generation and of varying designs are used to exemplify the influence of system parameters and initial conditions. Attention is given to aircraft structure with emphasis on spring struts, shock absorbers, vertical impact shock, horizontal landing speed, and various roll, pitch, and yaw angles. A cost analysis is made to determine the overall cost of examining aircraft data by employing a digital computer program. It was found that the use of a program is comparable to five man hours of engineering and that the computers in aviation are basically cost effective. C.F.W.

A80-17724 On the influence of steady state temperature and pressure distortion on the flow characteristics in an installed multistage jet engine compressor (Zum Einfluss stationärer

Temperatur- und Druckstörungen auf die Strömungsverhältnisse in einem installierten, vielstufigen Strahltriebwerk-Verdichter). H. Künkler (Industrieanlagen-Betriebsgesellschaft mbH, Ottobrunn, West Germany) and H. Tonskotter (Aachen, Rheinisch-Westfälische Technische Hochschule, Aachen, West Germany). Zeitschrift für Flugwissenschaften und Weltraumforschung, vol. 3, Nov-Dec. 1979, p. 360-378. 6 refs. In German. Deutsche Forschungsgemeinschaft Contract No. SFB-83.

The investigation presented here was aimed at the experimental determination of the local variation of flow fields due to steady state circular distortion in a multistage jet engine compressor taking into account the operating conditions and restraints of the complete turbine engine interaction. A qualitative analysis was made in advance on the effects of the disturbances on the flow characteristics considering the interaction between the disturbed and undisturbed compressor flow. With this prediction and by use of computer aided test methods it was possible to significantly reduce the complexity of the tests and the test equipment facilities. (Author)

A80-17730 Gas turbine carcase and accessory vibration -Problems of measurement and analysis. D. S. Pearson, A. H. E. Holme, and P. R. Watts (Rolls-Royce, Ltd., London, England). (Society of Environmental Engineers, Symposium on Environmental Engineering Today, London, England, May 9-11, 1979.) Society of Environmental Engineers, Journal, vol. 18-4, Dec. 1979, p. 15-22.

Measuring system requirements, pitfalls in data analysis and severity assessment, and the role of laboratory simulation are presented in terms of gas turbine engine vibration testing. Distortion in piezoelectric accelerometers due to a charge generated by temperature gradients or strain is described, and electrical noise and overload resulting from frequencies of 15 to 10,000 Hz, and peak accelerations from 0.3 to 1000 g during vibrational monitoring, are considered. Spectral analysis is discussed, as are frequency, coherence and transmission path analysis as means of presenting data in visual form, while modal analysis techniques appear capable of visually coordinating previously unrelated engine data. It is suggested that severity criteria be revised to assess 3-plane resolved true motion, the combined effect of simultaneous excitation at a range of frequencies, and the cumulative effect of individual vibration phenomena. J.P.B.

A80-17737 * # Preparing aircraft propulsion for a new era in energy and the environment. W. L. Stewart, D. L. Nored, J. S. Grobman, C. E. Feiler, and D. A. Petrash (NASA, Lewis Research Center, Cleveland, Ohio). *Astronautics and Aeronautics*, vol. 18, Jan. 1980, p. 18-31, 37. 22 refs.

Improving fuel efficiency, new sources of jet fuel, and noise and emission control are subjects of NASA's aeronautics program. Projects aimed at attaining a 5% fuel savings for existing engines and a 13-22% savings for the next generation of turbofan engines using advanced components, and establishing a basis for turboproppowered commercial air transports with 30-40% savings over conventional turbofan aircraft at comparable speeds and altitudes, are discussed. Fuel sources are considered in terms of reduced hydrogen and higher aromatic contents and resultant higher liner temperatures. and attention is given to lean burning, improved fuel atomization, higher freezing point fuel, and deriving jet fuel from shale oil or coal. Noise sources including the fan, turbine, combustion process, and flow over internal struts, and attenuation using acoustic treatment, are discussed, while near-term reduction of polluting gaseous emissions at both low and high power, and far-term defining of the minimum gaseous-pollutant levels possible from turbine engines are also under study. J.P.B.

A80-17876 Low-aspect-ratio limit of the toroidal reactor -The spheromak. M. N. Bussac, M. N. Rosenbluth (Institute for Advanced Study, Princeton, N.J.), H. P. Furth, M. Okabayashi, and A. M. M. Todd (Princeton University, Princeton, N.J.). In: Plasma physics and controlled nuclear fusion research 1978; Proceedings of the Seventh International Conference, Innsbruck, Austria, August 23-30, 1978. Volume 3. Vienna, International Atomic Energy Agency, 1979, p. 249-264; Discussion, p. 264. 24 refs. Contracts No. EY-76-C-02-3073; No. E(11-1)-3237.

The ideal and resistive MHD stability properties of a class of toroidal plasma configurations ('spheromaks') having internal toroidal and poloidal fields and external poloidal fields are considered. The reactor advantage of the spheromak is two-fold; (1) the maximum field strength at the external coils is about half the field at the plasma centre, rather than twice, as in a tokamak, and (2) a roughly spherical blanket can be used, rather than a blanket that links the plasma topologically. Taylor's criterion, which ensures stability against both ideal and resistive modes, has been applied to force-free spheromaks of unity aspect ratio. In the presence of a loosely fitting external conducting shell, oblate spheromaks are stable against all modes except short-wave surface kinks (which are an artifact of the idealized current density profile). The Mercier criterion gives a beta-limit below 1%; however, at aspect ratio greater than or almost equal to 1, the beta-limit for representative spheromak models rises into the range 2-4%. (Author)

A80-17900 On the dynamics of compressor surge. A. Tondl (Statni Vyzkumny Ustav Konstrukce Stroju, Bechovice, Czechoslovakia). International Journal of Non-Linear Mechanics, vol. 14, no. 4, 1979, p. 259-266. 5 refs.

Investigations concerned with the stability of stationary states and the possibility of self-excited oscillation (surge) occurring in systems with a centrifugal compressor (or a centrifugal pump) lead, for a simplified model, to an analysis of a set of two first-order differential equations. The paper presents such an analysis for the case when the machine characteristic can be expressed by a continuous unique curve as well as for that when the characteristic is neither a unique nor even a smooth curve. It is shown which of the singular points is the saddle point and in the case of the latter type of characteristic, which point can be taken for the saddle; this approach is believed to make practical analyses more straightforward. (Author)

A80-17958 # Determination of the stress intensity factor of composite structural members (K opredeleniiu koeffitsienta intensivnosti napriazhenii v elementakh konstruktsii iz kompozitsionnogo materiala). V. I. Grishin and B. M. Medvedev (Tsentral'nyi Aerogidrodinamicheskii Institut, Zhukovsky, USSR). Problemy Prochnosti, Oct. 1979, p. 61-64. 6 refs. In Russian.

The paper deals with the numerical determination of the stress intensity factor of boron- and graphite-fiber plastics, of the type used in the aircraft industry, by the finite element method. The accuracy of this approach is analyzed. A simple relation is proposed for evaluating the stress intensity factor in terms of the stress concentration factor of a plate with a hole and two lateral cracks. V.P.

A80-17965 # Evaluation of the intensity of beat-induced vibrations (Otsenka intensivnosti vibratsii pri bieniiakh). M. K. Sidorenko (Kuibyshevskii Aviatsionnyi Institut, Kuibyshev, USSR). Problemy Prochnosti, Oct. 1979, p. 112-114. In Russian.

Beats in multiple-rotor gas-turbine engines may arise when the rotors rotate at roughly the same frequency or in the aerodynamic excitation of higher-order mode shapes of blade vibrations. In the present paper, beat-induced vibration standards are critically analyzed. It is proposed to evaluate the beat intensity on the basis of a generalized transfer function of oscillatory systems, which makes allowance for the ratio of the beat component frequencies. V.P.

A80-17998 An analytical method of testing pavement strength (Analytische Überprüfung der Tragfähigkeit von Flugbetriebsflächen). G. Beecken (Deutsche Shell AG, Hamburg, West Germany), R. C. Koole (Koninklijke/Shell-Laboratorium, Amsterdam, Netherlands), and W. Visser (Pavement Consultancy Services, Rotterdam, Netherlands). *Airport Forum*, vol. 9, Dec. 1979, p. 23-27, 30-33. In English and German.

The article presents a fully developed analytical method of designing airport pavements, measuring the residual bearing capacity of existing surfaces, and designing the reinforcements needed. Measurements, which are subsequently evaluated with the aid of a computer program, are made with falling weight devices which make allowance for the complex stress pattern produced by the various different aircraft types. The results can also be presented in the form of LCN values, a particular advantage of the method described here and one important reason why the analytical method may be expected to gain further ground at the expense of empirical methods. (Author)

A80-17999 Marseilles - Metamorphosis of an airport. *Airport Forum*, vol. 9, Dec. 1979, p. 51-55. In English and German. The article surveys the program of enlargement and modernization at the Marseilles-Marignane airport which began in 1972. It is noted that passenger traffic at the airport has been growing at the rate of 5.3% a year, and cargo traffic at 7.5% annually. Attention is given to the principal requirements laid down for the planners and architects under the expansion program such as no interference with airport operations, and a final design flexible to ensure easy adaptation to future needs. Topics covered include organization of. the terminal, the new control tower, runway extension and finally. M.E.P.

A80-18000 Centralized ground power systems conserve energy. R. L. Frantz (Hobart Brothers Co., Troy, Ohio). *Airport Forum*, vol. 9, Dec. 1979, p. 63, 64, 66-68, 70. In English and German.

It is noted that fixed 400 Hz systems for supplying aircraft with ground power are increasingly being installed in new airport facilities. The article examines how economical the latest installations with centralized electricity generation can be. Discussion covers the advent of centralized power supplies, a typical system, the planning of a central system, cost aspects, and some present installations. It is concluded that in view of the new aircraft ordered for the eighties and the urgent need to conserve energy, ground power supply should be seriously considered by airport and airline operators.

A80-18022 * Adaptive allocation of decisionmaking responsibility between human and computer in multitask situations. Y.-Y. Chu (Perceptronics, Inc., Woodland Hills, Calif.) and W. B. Rouse (Illinois, University, Urbana, III.). *IEEE Transactions on Systems, Man, and Cybernetics*, vol. SMC-9, Dec. 1979, p. 769-778. 15 refs. Grant No. NsG-2119.

As human and computer come to have overlapping decisionmaking abilities, a dynamic or adaptive allocation of responsibilities may be the best mode of human-computer interaction. It is suggested that the computer serve as a backup decisionmaker, accepting responsibility when human workload becomes excessive and relinquishing responsibility when workload becomes acceptable. A queueing theory formulation of multitask decisionmaking is used and a threshold policy for turning the computer on/off is proposed. This policy minimizes event-waiting cost subject to human workload constraints. An experiment was conducted with a balanced design of several subject runs within a computer-aided multitask flight management situation with different task demand levels. It was found that computer aiding enhanced subsystem performance as well as subjective ratings. The queueing model appears to be an adequate representation of the multitask decisionmaking situation, and to be capable of predicting system performance in terms of average waiting time and server occupancy. Server occupancy was further found to correlate highly with the subjective effort ratings. (Author)

A80-18062 * Comparative resistance of Beta-Si3N4 solid solutions to molten silicon attack. R. R. Wills, I. Sekercioglu, J. S. Ogden, C. A. Alexander, and D. E. Niesz (Battelle Columbus Laboratories, Columbus, Ohio). *American Ceramic Society Bulletin*, vol. 58, Dec. 1979, p. 1198. Contract No. NAS7-100.

A80-18186 Flight certification of the Cessna TU206G amphibious floatplane. R. K. Rice (Cessna Aircraft Co., Wichita, Kan.). Society of Flight Test Engineers, Journal, vol. 2, Jan. 1980, p. 2-15.

A flight test program to develop and certify the 1979 Cessna TU206G turbocharged amphibian is discussed. The test program consisted basically of two parts: certification and performance. Development testing showed that certain modifications were required, e.g., engine cowl inlet and cowl exit areas had to be increased to provide additional cooling air flow, the static system had to be modified to obtain satisfactory speed calibrations. A spin test, included into the test program, showed that the longest recovery from a one-turn spin was three-fourths of a turn and occurred with abnormal use of controls during recovery. Performance tests showed a significant improvement of rate of climb over the U206G floatplane, cruise speeds and specific range were significantly lower for the amphibian than the TU206G landplane, and takeoff and landing distances of the amphibian were similar to the landplane model for land operation but lengthened somewhat on water. The results of the test program were applied to a similar model, the TU206G floatplane, which, combined with the test programs of 206 floatplane models, allowed certification for two new models at the cost of only one flight test program. V.L.

A80-18235 * # Experimental and computational study of transonic flow about swept wings. A. Bertelrud, M. Y. Bergmann, and T. J. Coakley (NASA, Ames Research Center, Moffett Field, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0005. 17 p. 12 refs.

An experimental investigation of NACA 0010 and 10% circular arc wing models, swept at 45 deg, spanning a channel, and at zero angle of attack is described. Measurements include chordwise and spanwise surface pressure distributions and oil-flow patterns for a range of transonic Mach numbers and Reynolds numbers. Calculations using a new three-dimensional Navier-Stokes code and a two-equation turbulence model are included for the circular-arc wing flow. Reasonable agreement between measurements and computations is obtained. (Author)

A80-18238 # Reynolds number and compressibility effects on dynamic stall of a NACA 0012 airfoil. N. L. Sankar and Y. Tassa (Lockheed-Georgia Co., Marietta, Ga.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0010. 15 p. 24 refs.

The unsteady two-dimensional Navier-Stokes equations are solved for laminar compressible flow around a NACA 0012 airfoil. The governing equations are cast in a strong conservation form in a body-fitted coordinate system, and solved using an alternating direction implicit procedure. Test cases are presented to establish the reliability and accuracy of the procedure, including a case dealing with the static stall of a Joukowski 9% airfoil. The present technique is applied to the dynamic stall of a NACA 0012 airfoil, for several combinations of Mach number, Reynolds number, and reduced frequency. The numerical results are compared with incompressible Navier-Stokes Solutions and water tunnel experiments. (Author) A80-18245 # Estimation of noise source strengths in a gas turbine combustor. M. Muthukrishnan, W. C. Strahle, and D. H. Neale (Georgia Institute of Technology, Atlanta, Ga.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0034. 5 p. 8 refs. U.S. Department of Transportation Contract No. FA-77WA-4077.

Experiments were conducted to determine the cause(s) of gas turbine combustor noise and to quantify the portion of noise radiated from a combustor which is linearly, causally related to combustor events. Using multiple coherence analysis on results obtained with a combustor terminated by a choked nozzle-diffuser combination it was found that a) a two source model is adequate with the two sources being direct combustion noise and entropy noise, b) entropy noise is only important at low frequencies, but is highly coherent with combustion noise, c) with a choked nozzle termination the noise is higher frequency than previously demonstrated and d) some other uncertain source, external to the combustor, contaminated the results. (Author)

A80-18248 * # Structural parameters that influence the noise reduction characteristics of typical general aviation materials. J. Roskam and F. Grosveld (Kansas, University, Lawrence, Kan.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0038. 11 p. 7 refs. NASA-supported research.

Effect of panel curvature and oblique angle of sound incidence on noise reduction characteristics of an aluminum panel are experimentally investigated. Panel curvature results show significant increase in stiffness with comparable decrease of sound transmission through the panel in the frequency region below the panel/cavity resonance frequency. Noise reduction data have been achieved for aluminum panels with clamped, bonded and riveted edge conditions. These edge conditions are shown to influence noise reduction characteristics of aluminum panels. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial and biaxial in-plane stresses are presented and discussed. Results indicate important improvement in noise reduction of these panels in the frequency range below the fundamental panel/cavity resonance frequency. (Author)

A80-18251 * # An improved sensing element for skin-friction balance measurements. J. M. Allen (NASA, Langley Research Center, Supersonic Aerodynamic Branch, Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0049. 6 p. 5 refs.

A nulling, parallel-linkage sensing element has been developed for a skin-friction balance in order to minimize the introduction of extraneous forces. Advantages of the present element over the conventional single-pivot sensing element include its insensitivity to element misalignment and off-center normal forces. Wind tunnel tests of the effects of gap size and element misalignment on parallel-linkage balance measurements indicate the greater sensitivity of the device to misalignment at small gap sizes and large lip sizes, as well as its relative insensitivity to off-center normal forces. It is concluded that a parallel-linkage device with a small lip is virtually insensitive to gap size and element misalignment, representing an improvement in skin-friction-measuring characteristics. A.L.W.

A80-18252、 # Controllers for aircraft motion simulators. W. R. Sturgeon (Systems Analysis and Control, Ridgecrest, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0050. 10 p. 6 refs.

Two techniques applicable to the design of motion simulator controllers have been developed. The first, a linear optimal controller synthesized with a quadratic performance index, provides all of the response characteristics previously obtained by classical designs, and consists only of constant gain feedforward and feedback loops around the actuators. The resulting closed-loop system is, therefore, relatively simple as no additional filters or compensators are required. The second technique involves the use of accelerometers and rate gyros, located at the pilot station, to close outer feedback loops around the simulator. This causes the fidelity to be dependent on the feedback (sensors) rather than the simulator, and results in a lower sensitivity to parameter variations and nonlinearities. These techniques, when applied to a planar model of the Vertical Motion Simulator, which had the synergistic, overcontrolled, and nonlinear properties of the actual system, provided a controller with the desired response characteristics. (Author)

A80-18253 * # Computer simulation of engine systems. L. H. Fishbach (NASA, Lewis Research Center, Flight Performance Section, Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0051. 15 p. 32 refs.

The paper discusses the availability throughout the government and industry of analytical methods for calculating both the steady state and transient performance of an aircraft engine during an entire flight regime. The historical development of some of the analytical tools capable of evaluating installation effects on engine performance is traced and their present status is described. C.F.W.

A80-18254 # Multi-variable cycle optimization by gradient methods. H. Brown (General Electric Co., Evendale, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0052. 10 p.

Variable-cycle engine (VCE) concepts are being explored as a potential approach for advanced military or commercial supersonic propulsion. This paper represents a progress report on a continuing program for the development of a multivariable cycle optimization capability which can be applied to the problem of VCE control schedule development. The discussion covers conventional nonlinear optimization techniques, the cycle calculation process and its potential effect on the optimization process, two possible approaches to cycle optimization, and examples of their application to VCE control schedule development. Both approaches use internal unbalanced cycle calculations for generating partial derivatives, frequent derivative updates, and a constrained gradient approach to the optimization process. The first approach employs a numerical integration external to the cycle balance process, while the second approach incorporates the optimization within the internal cycle balance. S.D.

A80-18255 # Regression techniques applied to parametric turbine engine simulations. J. R. Ruble (USAF, Aero Propulsion Laboratory, Wright-Patterson AFB, Ohio), R. A. Sulkoske, and R. E. Clark (General Motors Corp., Detroit Diesel Allison Div., Indianapolis, Ind.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0053. 9 p. 5 refs.

Parametric gas turbine engine computer simulations are used in overall aircraft/mission analysis to develop optimum trends relative to system design variables. Regression analysis curve-fitting was applied to several areas of a base-line parametric engine simulation, and procedures were evaluated individually and collectively. These areas included thermodynamic properties, matrix coefficient prediction, component characteristics, and the ideal compression process. Some areas of study are shown to be of general benefit to industry while others have more narrow application or could not be considered cost-effective changes. The collective evaluation demonstrated a 46% cost reduction. (Author)

A80-18260 # A comparison of first and second order techniques for computing optimal horizontal gliding trajectories. W. E. Williamson, Jr. (Sandia Laboratories, Albuquerque, N. Mex.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0061. 5 p. Research supported by the U.S. Department of Energy.

The problem of numerically computing maximum endurance subsonic gliding trajectories which remain in a horizontal plane and return to the original starting point is considered. The control is parameterized and numerical solutions for two different types of parameterization are shown. Piecewise continuous polynomial control approximations are shown to produce consistent results for the trajectories which should be close approximations for the true optimal solution. C.F.W.

A80-18261 # Conformal mapping analysis of multielement airfoils with boundary-layer corrections. N. D. Halsey (Douglas Aircraft Co., Long Beach, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0069. 8 p. 12 refs. Research sponsored by the McDonnell Douglas Independent Research and Development Program.

A conformal mapping technique for the potential-flow analysis of multielement airfoils is extended to include first-order viscous effects. Boundary layers are simulated by modification of either the airfoil coordinates (displacement method) or the boundary conditions (blowing method). In the displacement method, multiple bodies with open trailing edges are transformed to multiple (closed) circles. In the blowing method, the multiple circles are analyzed with nonzero specified normal velocity components. These extensions demonstrate that conformal mapping techniques can be applied to many problems formerly thought to fall in the exclusive realm of the more general distributed singularity techniques. (Author)

A80-18268 # Acoustic radiation from axisymmetric ducts -A comparison of theory and experiment. W. L. Meyer, B. R. Daniel, and B. T. Zinn (Georgia Institute of Technology, Atlanta, Ga.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0097. 9 p. 7 refs. Contract No. F49620-77-C-0066.

A special integral representation of the exterior solutions of the Helmholtz equation is used to calculate the free field acoustic radiation patterns around two finite axisymmetric bodies; a straight pipe and a jet engine inlet. The radiation patterns around these bodies are then measured experimentally, with the free field being approximated through the use of an anechoic chamber. The inlet tested has a hard wall while the straight pipe is tested with both a hard and lined wall. The computed theoretical and the measured experimental acoustic radiation patterns are found to be in good agreement. A discussion of possible sources of error, both theoretical and experimental, is included. (Author)

A80-18271 # Engine aerodynamic installation by numerical simulation. L. Dutouquet and J. M. Hardy (SNECMA, Centre de Villaroche, Moissy Cramayel, Seine-et-Marne, France). American

Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0108. 16 p. 25 refs.

The aerodynamic optimization of current engines under various flight conditions involves the simultaneous computation of several streams. The paper demonstrates the necessity of studying transonic flows with a method capable of explaining the free streamlines, of introducing a plug in the supersonic region, and of being incorporated into the overall computational program. An analysis likely to meet all these requirements is proposed, and preliminary results are presented. The development of a combined computer program has proven to be very useful. S.D.

A80-18272 * # Propulsion/airframe integration considerations for high altitude hypersonic cruise vehicles. J. P. Weidner (NASA, Langley Research Center, High-Speed Aerodynamics Div., Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0111.9 p. 6 refs.

A study has been conducted to determine the implications of top-mounted inlet nacelles on propulsion performance and cruise range. The top-mounted nacelle would be less visible from ground-based radar below and ahead of the aircraft. For this study, the nacelle is integrated with a high altitude Mach 5 turbojet/ramjet-powered airplane concept requiring a large nacelle. Results of the study suggest nacelle installation advantages and improved inlet mass flow ratio for the top-mounted nacelle, but at the expense of a higher installed drag at transonic and supersonic speeds. (Author)

A80-18276 # The criticality of engine exhaust simulations on VSTOL model-measured ground effects. J. R. Lummus (General Dynamics Corp., Aerospace Technology Dept., Fort Worth, Tex.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0230. 10 p. 16 refs. Navy-supported research.

To improve the accuracy of current prediction methodologies and to gain physical understanding of the flow mechanisms involved, an experimental investigation was conducted to determine the criticality of full-scale engine-nozzle exit conditions (nozzle exit turbulence, total pressure distribution, and pressure ratio over the ranges expected for full-scale aircraft engines) on the propulsioninduced aerodynamic forces for two-, three-, and four-nozzle configuration models with flat plate blocking surfaces. The criticality of performing accurate full-scale engine exhaust simulations during model-measured VSTOL ground effects testing is demonstrated. If the effects of nozzle exit conditions of the engines expected for use on VSTOL aircraft are not considered, costly errors in aircraft sizing will result. S.D.

A80-18277 * # Recent development of a jet-diffuser ejector. M. Alperin and J. J. Wu (Flight Dynamics Research Corp., Van Nuys, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0231. 10 p. Navy-NASA-supported research.

The paper considers thrust augmenting ejectors in which the processes of mixing and diffusion are partly carried out downstream of the ejector solid surfaces. A jet sheet surrounding the periphery of a widely diverging diffuser prevents separation and forms a gaseous, curved surface to provide effective diffuser ratio and additional length for mixing of primary and induced flows. Three-dimensional potential flow methods achieved a large reduction in the length of the associated solid surface; primary nozzle design further reduced

the volume required by the jet-diffuser ejectors, resulting in thrust augmentation in excess of two, and an overall length of about 2 1/2 times the throat width. A.T.

A80-18303 * # Thermal barrier coatings for aircraft gas turbines. R. A. Miller, S. R. Levine, and S. Stecura (NASA, Lewis Research Center, Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0302. 6 p. 13 refs.

Improvements in gas turbine performance are approaching the limits imposed by alloy properties and excessive cooling air requirements. Thin ceramic coatings can increase the difference between gas temperature and metal temperature by several hundred degrees. Thus, they are potentially a major step forward in surface protection. These coatings offer the potential to reduce fuel consumption by permitting reduced coolant flow or higher turbine inlet temperature or to improve durability by reducing metal temperatures and transient thermal stresses. At NASA Lewis, in-house and contractualprograms are in place to bring this promising technology to engine readiness in the early 1980's. Progress towards this goal is summarized in this paper. (Author)

A80-18304 # Sonic fatigue design data for bonded aluminum aircraft structures. M. J. Jacobson (Northrop Corp., Hawthorne, Calif.). American Institute of Aeronautics and Astronautics, Aserospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0303. 14 p. 12 refs. Contract No. F33615-75-C-3144; No. F33615-75-C-3016. AF Project 14710130.

A combined analytical/experimental program was conducted to determine sonic fatigue design properties of bonded structural sections commonly used in aircraft and to formulate data and criteria for the development of sonic fatigue designs of such structure. An objective of the program was to develop information applicable to aircraft fuselage panels using adhesive bonding in the primary structure, in lieu of mechanical fasteners such as are currently used. The lives of the bonded panels were generally much greater than the sonic fatigue lives of riveted 7075-T6 aluminum alloy panels of comparable size and thickness. Based on the test data and theoretical considerations, a sonic fatigue design chart was developed. It is expected that the approach in developing the sonic fatigue systems and surface preparations are considered. (Author)

A80-18306 # Fatigue life prediction of a bonded splice joint. C. T. Liu (U.S. Navy, Naval Air Station, Alameda, Calif.) and R. A. Heller (Virginia Polytechnic Institute and State University, Blacksburg, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0305. 10 p. 15 refs.

A linear cumulative damage model utilizing the actual state of stress ahead of a crack tip is used to predict the fatigue life of a double-overlapped splice joint. The joint is made of 7075-T6 aluminum and SAE 4130 steel. Two stress states, normal stress and octahedral shear stress, are considered and calculated from a finite element method. The effect of the stress state on the fatigue life of the joint is investigated and cumulative damage calculations with two load levels are presented. (Author)

A80-18308 * # Experimental determination of pure rotary stability derivatives using curved and rolling flow wind tunnel, F. H. Lutze (Virginia Polytechnic Institute and State University, Blacks-

burg, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0309. 8 p. 18 refs. Contract No. NAS1-13175-16.

The technique of using a curved and rolling flow wind tunnel to extract pure rotary stability derivatives is presented. Descriptions of the curved flow and the rolling flow test sections of the Virginia Tech Stability Wind Tunnel are given including methods for obtaining the proper velocity profiles and correcting the data acquired. Results of testing current fighter configurations in this facility are presented with particular attention given to comparing pure rotary derivatives with combined rotary and unsteady derivatives obtained by standard oscillation tests. Also the effect of curved and rolling flow on lateral static stability derivatives is examined.

(Author)

A80-18309 # Investigation of leading-edge devices for drag reduction of a 60-deg. delta wing at high angles of attack. D. M. Rao (Old Dominion University, Norfolk, Va.) and T. D. Johnson, Jr. American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0310. 11 p.

This paper reports an experimental study of leading-edge flow manipulators for alleviating the lift-dependent drag due to breakdown of attached flow on blunt leading edges of highly swept wings. The potential of conventional as well as novel devices (fences, chordwise slots, pylon vortex generators and 'vortex-plate') was explored in subsonic wind tunnel tests on a 60-deg delta wing model. In addition to balance measurements, leading-edge suction distributions were obtained to monitor the spanwise flow development and its modification by the different types of devices. The results indicate significant possibilities of drag reduction to high angles of attack through partial recovery of leading-edge thrust by means of the proposed devices and their combinations. In addition, improvements in the longitudinal stability were also found. (Author)

A80-18315 * # Studies of leading-edge thrust phenomena. H. W. Carlson and R. J. Mack (NASA, Langley Research Center, Supersonic Aerodynamics Branch, Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0325. 11 p. 14 refs.

A study of practical limitations on achievement of theoretical leading-edge thrust has been made and an empirical method for estimation of attainable thrust has been developed. The method is based on a theoretical analysis of a set of two-dimensional airfoils to define thrust dependence on airfoil geometric characteristics and arbitrarily defined limiting pressures, an examination of twodimensional airfoil experimental data to provide an estimate of limiting pressure dependence on local Mach number and Reynolds number, and employment of simple sweep theory to adapt the method to three-dimensional wings. Because the method takes into account the spanwise variation of airfoil section characteristics, an opportunity is afforded for design by iteration to maximize the attainable thrust and the attendant performance benefits. The applicability of the method was demonstrated by comparisons of theoretical and experimental aerodynamic characteristics for a series of wing-body configurations. Generally, good predictions of the attainable thrust and its influence on lift and drag characteristics were obtained over a range of Mach numbers from 0.24 to 2.0.

(Author)

A80-18316 * # Development of a vortex-lift-design method and application to a slender maneuver-wing configuration. J. E. Lamar (NASA, Langley Research Center, Hampton, Va.), R. T. Schemensky (General Dynamics Corp., Fort Worth, Tex.), and C. S. Reddy (Old Dominion University, Norfolk, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0327. 12 p. 16 refs.

A method has been developed to optimize the mean camber surface of a cranked slender wing having leading-edge vortex flow at transonic-maneuver conditions using the suction analogy. This type of flow was assumed because it was anticipated that the slenderness of the wing would preclude attached flow at the required lift coefficient. A constraint was imposed in that the camber deflections were to be restricted by a realistic structural-box requirement. The resulting application yielded mean-camber shapes which produced effective suction levels equivalent to 77 percent of the full-planar leading-edge value at the design lift coefficient. (Author)

A80-18317 # The rational design of an airfoil for a high performance jet trainer. S. A. Powers and D. F. Sattler (Vought Corp., Dallas, Tex.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0328. 10 p. 8 refs.

This paper discusses the preliminary design of an airfoil tailored to the design requirements of a high performance jet trainer. The airfoil design requirements are discussed, and the development of the pressure distribution model outlined. The use of an airfoil design program is discussed and the results presented. The indications are that the designed airfoil will have a majority of the desired characteristics. (Author)

A80-18318 # Effects of non-planar strake-wing on the vortex lift characteristics of a twin-jet fighter configuration. G. E. Erickson (Northrop Corp., Hawthorne, Calif.). *American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0329.* 10 p.

A fow-speed wind tunnel investigation using a 1/10-scale model of a twin-jet fighter configuration to determine the effect on the aerodynamic characteristics of a nonplanar strake-wing arrangement is presented. The configuration has leading edge vortex-generating surfaces mounted on and extending forward of the side-mounted engine inlets and are closely-coupled with a conventional planar strake-wing combination. These additional lifting surfaces result in vortex-induced lift increments, drag polar improvement, and undesirable pitch-up. Water tunnel flow studies of models indicate that the inlet hood vortex favorably interacts with the wing-strake vortex, delaying strake vortex breakdown to higher angles of attack. The lateral/directional stability levels are reduced but the turn performance is enhanced by implementation of the inlet hoods; the stability reduction indicates the need for further improvement in the inlet hood configuration. AT

A80-18319 # An inverse transonic wing design method. P. A. Henne (Douglas Aircraft Co., Long Beach, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0330. 11 p. 21 refs.

An inverse, transonic flow method for the design of threedimensional wings has been developed. The flow method is based on a three-dimensional, finite difference solution of the full-potential equation. The inverse scheme utilizes a Dirichlet boundary condition in conjunction with surface transpiration to affect geometry definition. Such a scheme has previously been utilized in a twodimensional method. This paper summarizes an analogous development for three dimensions. Basic steps and underlying assumptions of the inverse scheme are described. Applications of the method to both simple and complicated design problems are discussed and advantages of the method are identified. (Author) A80-18328 # Photon correlation laser velocimeter measurements in highly turbulent flow fields. C. D. Catalano, H. E. Wright (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio), A. Cerrulo, and H. Rogers. American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0344. 6 p. 6 refs.

A laser velocimeter using a photon correlation processing scheme has been developed for use in obtaining reliable information in turbulent mixing regions. Quantities measured in this investigation include mean velocities and turbulent intensities. Measurements have been made in a rectangular nozzle free jet flow both with the laser velocimeter and with a hot wire anemometer. The Mach number at the exit plane of the nozzle was varied from 0.2 to 0.8. The laser velocimeter obtained mean velocity data was found to correspond quite closely to the information obtained by using the hot wire. The turbulent intensities were found to be much more difficult to measure using the laser velocimeter. Additionally, measurements have also been made in the inlet circular duct flow for an actual jet engine. The results pointed out the importance of particle dynamic analysis in establishing the credibility of laser velocimetry in specific flow fields. (Author)

A80-18336 # Hinged vehicle equations of motion. M. J. Abzug. American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0364. 11 p. 5 refs.

The six-degree-of-freedom equations of motion for flight vehicles having one or more hinged parts are derived from very general vector-dyadic equations that were originally written for space vehicles. The application of these equations is illustrated by the case of an interceptor vehicle consisting of a body of revolution that has a single two-degree-of-freedom hinge. Dynamic cross-coupling terms of up to third order in the variables of motion are obtained. Development of equations by the generalized method of this paper is considered preferable to ad hoc methods to minimize the possibility of errors. (Author)

A80-18340 # Improved numerical simulation of high speed inlets using the Navier-Stokes equations. D. D. Knight (Rutgers University, New Brunswick, N.J.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan, 14-16, 1980, Paper 80-0383. 17 p. 42 refs. Contract No. F33615-78-C-3008.

An improved numerical algorithm has been developed to calculate the flowfield in two-dimensional mixed-compression high speed inlets using the Navier-Stokes equations. The explicit finite-difference algorithm of MacCormack is utilized, together with a modified treatment of the viscous sublayer and transition wall region of the turbulent boundary layers. A variety of flows have been considered, including shock-turbulent boundary layer interaction on a flat plate and three different configurations of a simulated high speed inlet. The computed results compare favorably with the experimental data. (Author)

A80-18346 # Practical method of fatigue crack growth analysis for damage tolerance assessment of aluminum structure in fighter type aircraft. M. Levy, A. S. Kuo, and K. Grube (Fairchild Republic Co., Farmingdale, N.Y.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0405. 11 p. 22 refs.

The relationship between crack growth rate under a variableamplitude spectrum da/dF, and the stress intensity per unit stress, alpha is found to be unique for similar loading spectra. Once this relationship, f of alpha, is established, the cycle-by-cycle integration is not needed and simple integration of f of alpha can be applied to obtain the crack growth curve. An illustration of the da/dF vs. alpha approach as recommended for the A-10A Damage Tolerance Reassessment is demonstrated. It includes two different stress spectra applied on coupon tests with various geometry and loading configurations. The function f of alpha assumes the form used by the Forman equation for da/dN, normalized about some reference stress. This function is shown to fit best the data points generated by the Coupon test. (Author)

A80-18351 * # Determination of the spin and recovery characteristics of a typical low-wing general aviation design. M. B. Tischler and J. B. Barlow (Maryland, University, College Park, Md.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0169. 10 p. 17 refs. Research supported by the Minta Martin Fund for Aeronautical Research; Grant No. NsG-1570.

The equilibrium spin technique implemented in a graphical form for obtaining spin and recovery characteristics from rotary balance data is outlined. Results of its application to recent rotary balance tests of the NASA Low-Wing General Aviation Aircraft are discussed. The present results, which are an extension of previously published findings, indicate the ability of the equilibrium method to accurately evaluate spin modes and recovery control effectiveness. A comparison of the calculated results with available spin tunnel and full scale findings is presented. The technique is suitable for preliminary design applications as determined from the available results and data base requirements. A full discussion of implementation considerations and a summary of the results obtained from this method to date are presented. (Author)

A80-18352 # Enhanced departure/spin recovery of fighter aircraft through control of the forebody vortex orientation. W. A. Moore, A. M. Skow, and D. J. Lorincz (Northrop Corp., Aircraft Group, Hawthorne, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan, 14-16, 1980, Paper 80-0173. 14 p. 21 refs.

A combined experimental and analytical study was undertaken to develop active blowing concepts to control the asymmetric orientation of the vortex system emanating from an aircraft forebody at high angles of attack. The objective of the study was to utilize the side-force associated with asymmetric vortices, in a controlled manner, to enhance the capability of a fighter to recover from a departure from controlled flight. Results from water tunnel and wind tunnel tests show a small amount of tangential blowing along the forebody can effectively alter the forebody vortex system and generate large restoring yawing moments. Six degree-of-freedom digital simulation results show this concept can substantially enhance departure recovery characteristics of fighter aircraft having long, slender forebodies. (Author)

A80-18356 # Correlation of predicted longitudinal aerodynamic characteristics with full-scale wind tunnel data on the ATLIT airplane. J. Roskam, C. P. G. van Dam, and M. Griswold (Kansas, University, Lawrence, Kan.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0186. 7 p. 8 refs.

Current methods for predicting longitudinal aerodynamic characteristics of a light twin-engine airplane are compared with full-scale wind tunnel results. Correlations are performed on the lift, drag, and pitching moment coefficients for the following configurations: (1) tail-on and tail-off; (2) propellers removed; (3) power on. The methods used in arriving at theoretical predictions are essentially those outlined in the USAF Datcom (lifting line). In addition some use was made of computerized lifting surface methods. Fairly good agreement was obtained for both pitch and drag. Lift predictions show some discrepancy in both angle of zero lift and maximum lift. The increments due to power were well predicted. (Author)

A80-18357 # Flow in transonic compressors. J. L. Kerrebrock (MIT, Cambridge, Mass.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0124. 22 p. 50 refs.

Current knowledge of the aerodynamics of transonic compressors and prospects for significant improvement in their efficiency are reviewed. Attention is given to describing the role of the technology and its status, to discussing some recent progress toward understanding the flow field, and to indicating the trends of future research work. It is concluded that the exercise of pertinent experimental and computational capabilities together in a rationalized design process can result in improvements of 5% or more in transonic compressor efficiency. S.D.

A80-18358 # Multiple tactical aircraft combat performance evaluation system. D. S. Hague (Aerophysics Research Corp., Bellevue, Wash.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0189. 11 p. 13 refs. Contract No. F33615-78-C-3000.

The recently developed multiple tactical aircraft combat performance evaluation system (MULTAC), designed to analyze the outcome of a close-in M-on-N air combat, is detailed. The trajectories of up to 20 aircraft engaged in an aerial combat are simultaneously integrated under the time varying angle-of-attack, bank angle and throttle history using the fourth-order Runge-Kutta algorithm. Encounter outcome is rated by the average survival probability using either a Monte-Carlo model or a co-kill probability model. The system is provided with a library of tactical aircraft and weapon characteristics are stored in an on-line computerized data base. An example of the MULTAC system application illustrates a trade off between advanced technology and number of aircraft. In the series of encounters considered a 25 percent increment in lift capability could offset a 3:2 but not a 2:1 numerical advantage. V.L.

A80-18359 # Euler solutions for wing and wing-body combination at supersonic speeds with leading-edge separation. G. H. Klopfer and J. N. Nielsen (Nielsen Engineering and Research, Inc., Mountain View, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0126. 16 p. 14 refs. Navy-sponsored research.

A computational procedure is presented for computing steady supersonic flowfields surrounding wings and wing-body configurations with sharp leading edges. The Euler equations are solved by MacCormack's scheme. The viscous effects, important near the sharp edges, are simulated by a Kutta condition. Results are presented for two delta wings and a wing-body configuration at M = 3.0. The wing-body interference factor of a delta wing in the presence of a circular body at an angle-of-attack of 10 deg and M = 3.0 is also determined. (Author) A80-18367 * # Analysis of transonic flow about harmonically oscillating airfoils and wings. W. H. Weatherill (Boeing Commercial Airplane Co., Seattle, Wash.) and F. E. Ehlers (Boeing Computer Services Co., Seattle, Wash.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0149. 9 p. 12 refs. Research supported by the Boeing Commercial Airplane Co.; Contract No. NAS1-15128.

A finite difference method for analyzing the unsteady transonic flow about harmonically oscillating wings is discussed. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting partial differential equations for small disturbances. Initial solutions were obtained using relaxation procedures, but the solution range proved to be limited in terms of Mach number and reduced frequency. Recent two-dimensional results are presented which have been obtained with direct solution procedures in which the difference equations are solved 'all at once' and these provide reasonable correlation for practical values of Mach number and reduced frequency. (Author)

A80-18375 * # The effects of leading edge modifications on the post-stall characteristics of wings. A. E. Winkelmann, J. B. Barlow, J. K. Saini, J. D. Anderson, Jr., and E. Jones (Maryland, University, College Park, Md.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0199. 16 p. 18 refs. Research supported by the Minta Martin Fund; Grant No. NsG-1570.

An investigation of the effects of leading edge modifications on the post-stall characteristics of two rectangular planform wings in a series of low speed wind tunnel tests is presented. Abrupt discontinuities in the leading edge shape of the wings were produced by placing a nose glove over a portion of the span or by deflecting sections of a segmented leading edge flap. Six component balance data, oil flow visualization photographs, and pressure distribution measurements were obtained, and tests made to study the development of flow separation at stall on small scale planform wing models. Results of oil flow visualization tests at and beyond stall showed the formation of counter-rotating swirl patterns on the upper surface of the '2-D' and '3-D' wings, and results of a numerical lifting line technique applied to wings with leading edge modifications are included. A.T.

A80-18376 # Streamwise development of the flow over a delta wing. P. M. Sforza and M. J. Smorto (New York, Polytechnic Institute, Farmingdale, N.Y.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0200. 8 p. 10 refs.

An experimental investigation of the low speed flow over a highly swept delta wing with sharp leading edges is presented. Velocity measurements in the separated leading edge vortex which dominates the three-dimensional flow field are shown for several different chordwise stations, and serve to illustrate the streamwise development of the vortex. This data is also used to determine the trajectory of the vortex over the delta and to calculate the circulation distribution in the flow, and these results are compared to those of previous studies. (Author)

A80-18534 # Modular strapdown guidance unit with embedded microprocessors. J. P. Gilmore (Charles Stark Draper Laboratory, Inc., Cambridge, Mass.). (American Institute of Aeronautics and Astronautics, Guidance and Control Conference, Palo Alto, Calif., Aug. 7-9, 1979, Paper 78-1239.) Journal of Guidance and Control, vol. 3, Jan.-Feb. 1980, p. 3-10. 5 refs. Contract No. F08635-76-C-0306.

The Low-Cost Inertial Guidance System (LCIGS) is a modular strapdown implementation of attitude (gyro) and velocity (accelerometer) axes which permits the interchangeable use of different manufacturer's instruments without affecting the system's electronic or mechanical interfaces or processing software. This design flexibility is made possible by the use of microprocessors for processing and control. The microprocessors are embedded in each module and five are used: one per accelerometer triad, one each per gyro module, and one in the service module. The processors effect on-line digital torquing control of the gyros, active instrument error model compensation, including modeling for temperature sensitivity effects, temperature control, self-testing, etc. Adaptation of processing and calibration algorithms to accommodate for instrument changes or sensed environmental variations is achieved through the use of an alterable read-only data base that may be updated by the LCIGS support equipment as required at calibrations or upon an instrument replacement. This data base is accessed by the microprocessors and used to compute coefficient corrections for the processing algorithms. The system architecture is presented and the microprocessor (Author) software partitioning and functions are described.

A80-18537 # A statistical method applied to pilot behavior analysis in multiloop systems. N. Goto (Kyushu University, Fukuoka, Japan). Journal of Guidance and Control, vol. 3, Jan.-Feb. 1980, p. 62-68. 22 refs.

A recently developed statistical method has been applied to the analysis of pilot control behavior in multiloop systems. The method utilizes the so-called autoregressive scheme, and produces analytical results in terms of root mean square values, power spectra, and pilot describing functions. The method is practical in that it manipulates operating records and it can check the validity of the assumed compensatory control system structure. To show the usage and feasibility of the method, the data from a series of moving-base simulator experiments have been analyzed by the method. Emphasis of the experiment was placed on the lateral-directional control of an aircraft in the landing approach phase under the influence of turbulence. The variation of pilot control behavior with respect to two experimental variables, the Dutch-roll damping ratio and the flight rules, is presented with the discussion as to the system structure and the limitations of the method. Since the application of the method to the field of pilot behavior analysis is guite new, the described method and the presented results are considered to help better analyze and understand pilot behavior in multiloop systems. (Author)

A80-18538 # Constrained optimum trajectories with specified range. H. Erzberger and H. Lee (NASA, Ames Research Center, Moffett Field, Calif.). *Journal of Guidance and Control*, vol. 3, Jan.-Feb. 1980, p. 78-85. 7 refs.

The characteristics of optimum fixed-range trajectories whose structure is constrained to climb, steady cruise, and descent segments are derived by application of optimal control theory. The performance function consists of the sum of fuel and time costs, referred to as direct operating costs (DOC). The state variable is range-to-go and the independent variable is energy. In this formulation a cruise segment always occurs at the optimum cruise energy for sufficiently large range. At short ranges (500 n. mi. and less) a cruise segment may also occur below the optimum cruise energy. The existence of such a cruise segment depends primarily on the fuel flow vs thrust characteristics and on thrust constraints. If thrust is a free control variable along with airspeed, it is shown that such cruise segments will not generally occur. If thrust is constrained to some maximum value in climb and to some minimum in descent, such cruise segments generally will occur. The performance difference between free thrust and constrained thrust trajectories has been determined in computer calculations for an example transport aircraft. (Author)

A80-18722 # Automation and air traffic control. J. Goodwin (Royal Signals and Radar Establishment, Malvern, Worcs., England). *Journal of Navigation*, vol. 33, Jan. 1980, p. 18-22.

The present paper shows how a computer-based system may ease the tasks of a controller so that considering the increased demands for air transport the best combination of man and automation should assure safety and efficiency in air traffic control. Used as an example is the Computer Aided Approach Sequencing system (CAAS) designed with the aim of assisting air traffic controllers to bring aircraft through the final stages of approach to London's Heathrow Airport. A computer is used to process and distribute air traffic data making it possible for the controller to retrieve useful data that would otherwise be unobtainable, while changes in data values can be relayed to him swiftly, so that his information can be more accurate and up-to-date. This improves efficiency while the basic air traffic control procedures and patterns remain the same. Thus, the pattern recognition powers of the controller, vital to safety, have been preserved and combined with the exactitude of the computer. V.L.

A80-18723 # The economics of air traffic control. A. Hislop. Journal of Navigation, vol. 33, Jan. 1980, p. 23-29.

The economics of air traffic control (ATC) is becoming a critical element of aircraft operating costs due to a number of reasons, including the increase of fuel costs, rapid growth in air traffic, and the increase in air traffic control charges. A study into the long-term development of air traffic control systems in Europe showed that new ATC techniques, such as automatic collision-avoidance systems (CAS), computer aided approach-sequencing (CAAS) and time-slot systems, could considerably improve the operating economics of aircraft. Some of these improvements are: reductions in airway distance between destinations, reductions in number of 'restricted' climb and descent profiles, regular achievement of optimum cruise altitude at correct stage, and reduction in number and cost of delays. Estimated savings per flight in pounds sterling and as percentage of direct operating costs are presented and examples of costs of the new ATC system for general aviation are also given. V.L.

A80-18724 # ATC and the airborne traffic-situation display. R. L. Ford (Royal Signals and Radar Establishment, Malvern, Worcs., England). *Journal of Navigation*, vol. 33, Jan. 1980, p. 64-74; Discussion, p. 75-79. 12 refs.

An airborne traffic-situation display (ATSD) is basically a synthetic CRT display showing, in relative plan position, other aircraft which are at the same flight level as one aircraft or which could penetrate that flight level. It is proposed that ATSD be used as a back-up for ground-based ATC equipment. If correctly integrated into the ATC system, the use of ATSD could result in more efficient operations, particularly landing and take-off, more efficient use of airspace, minimization of communication problems, pilot assurance and increased safety. Some recent air disasters are examined and it is shown how they could have been avoided if the pilots had ATSD in their cockpits. Annual savings in operating costs to the airspace users through the adoption of ATSD are estimated at over one thousand million dollars for the mid '80s. The savings would result mainly from reduced delays at terminals, reduced flight time and fuel consumption as well as prevention of carrier losses due to accidents. V.L.

A80-18725 What brings us down tomorrow - Landing guidance systems for the 1980s. R. Goodson. Interavia, vol. 35, Jan. 1980, p. 58, 59.

Instrument landing systems (ILS) and precision approach radars (PAR) will continue to serve as basic landing aids in civil and military aviation in the U.S. and in other countries around the world well into the 1980's. Advanced ILS use 100 percent solid state electronic circuitry and allow for landings with zero ceiling and runway visibility as low as 200m (700 feet) and is a 'protected' ICAO navigation aid until 1995. PAR is a short-range primary radar landing aid and while ILS can only be installed on a single runway, PAR has the advantage of being movable and can be rotated from one landing strip to another as needed. The new microwave landing system (MLS) is being developed in the meantime and its prototype is now being tested in the U.S. The U.S./Australian Time Reference Scanning Beam (TRSB) Microwave Landing System has been selected by ICAO as the advanced all-weather airport landing system to replace ILS in the future. During the 1980s MLS will be brought nearer to practical realization but it is not yet known how long it will be until its final development. V.L.

A80-18864 # Technology of the Rolls-Royce RB211 engine. J. F. Coplin. Aircraft Engineering, vol. 51, Dec. 1979, p. 8-11.

Some of the proven advantages of the RB211 turbofan engine are discussed. These advantages, which result from the basic design and a series of improvements to the engine, include: low installed fuel consumption and low installed drag, excellent retention of low specific fuel consumption in airline service, good resistance to foreign object damage and demonstrated good record of integrity in service and capability for development to give both lower sfc and higher thrust levels in the future. A range of advanced engineering programs will contribute to the further development of the RB211: e.g. the quiet engine demonstrator (QED), advanced core engine technology (ACET), the high-temperature demonstrator unit (HTDU), and the life and methods design program. Prospects for the engine development in the 1980s and 1990s are outlined. The engine will have a better sfc (5 percent for the 1980s and at least 20 percent for the 1990s), higher bypass ratio, higher operating temperature and better component efficiencies. V I

A80-18865 # Some practical aspects of the calibration of air data systems. *Aircraft Engineering*, vol. 51, Dec. 1979, p. 21-24.

Three calibration techniques of the air data system consisting basically of an air speed indicator, altimeter and machmeter are analyzed. These instruments derive their readings from measurements of air pressures and correction is usually required for errors caused by the interference of the pressure field around the aircraft. Calibration procedures consist essentially in determining the system static pressure error over a range of aircraft incidence. One calibration technique, the Airborne Tracking method, is determining the true pressure height of the aircraft by a ground based tracking system (optical system, radar) and the simultaneous record of the indicated height from the aircraft altimeter, with the static pressure error determined from the observed error in indicated altitude. The Trailing Static method involves the use of a static tube trailed behind or below the aircraft. Once an aircraft has been calibrated by one of the absolute methods it can be used as a pacer aircraft for the calibration of the air data systems of other aircraft by a direct comparison technique. Advantages and limitations of each of these methods are discussed. V.L.

A80-19051 # An overvoltage safety system for direct current aircraft generators (Uklad zabezpieczenia nadnapieciowego lotniczych pradnic pradu stałego). W. Januszewski and I. Siemiradzki. *Instytut Lotnictwa, Prace*, no. 75, 1978, p. 29-42. In Polish. The paper proposes a safety system for protection of the aircraft power circuit against excessive voltage. The system characteristics are in accordance with the requirements of the 8S.3G.100:3 and GOST-19705-74 standard specifications for direct current generators. An analysis of the current overvoltage safety systems, a diagrammatic representation of the proposed system, and a discussion of the operating principle and the test results of a model device are presented. A.T.

A80-19052 # Experimental investigation of the characteristics of pneumatic transfer lines (Badania eksperymentalne charakterystyk pneumatycznych linii przesylowych). B. Niedzialek. *Instytut Lotnictwa, Prace*, no. 75, 1978, p. 43-64. In Polish.

The paper discusses the experimentally determined amplitude characteristics of air lines whose geometric dimensions are L/d of 30 to 500 and d = 1 to 5 mm, for the external pressure amplitude of A sub z = 1.5 to 7.5 kPa. The results obtained for ducts used for piston engine indicators are presented, and correlation between the theoretical and experimental amplitude characteristics is analyzed for small pulsations. The effects of parameters such as A sub z and L/d on duct characteristics are examined, and the generator of sinusoidal pressure pulsations used in tests is described. A.T.

A80-19053 # Investigation of the wear debris content in oil by measurements of the reluctance and eddy current loss in an electric circuit (Studia nad oznaczaniem zanieczyszczen metalicznych w oleju metoda pomiaru reluktancji i stratnosci obwodu elektrycznego). J. Formaniak. *Instytut Lotnictwa, Prace*, no. 76, 1979, p. 3-37. 22 refs. In Polish.

The paper surveys the current methods for detection and evaluation of wear producing materials and presents results of experiments in the determination of metallic impurities in oil by a method based on the measurement of reluctance and the eddy current losses in an electric circuit into which a sample of oil of known contamination by metallic powder was introduced. The tests were performed in frequency ranges from 30 to 1000 kHz; the results were satisfactory for ferromagnetic materials and impurities which are good electrical conductors. The variation in natural frequency of the circuit due to changes in coil inductance or in coil losses was measured, showing that the variation in the Q-factor of the circuit with an oil core containing metallic particles is two orders of magnitude higher than the change in natural frequency. A.T.

A80-19070 # A numerical approach to subsonic viscousinviscid interaction. K. Fujii and K. Karashima (Tokyo, University, Tokyo, Japan). Tokyo, University, Institute of Space and Aeronautical Science, Report no. 575, vol. 44, Oct. 1979, p. 113-128. 17 refs.

In this paper is presented a numerical approach to a subsonic viscous-inviscid interaction involving a boundary layer separation. The formulation is made in such a way that a linear equation for the stream function obtained through a small perturbation scheme for the inviscid flow and intergral forms of the boundary layer equations for the viscous flow constitute a system of basic equations to be solved simultaneously in a flow field. In order to demonstrate the applicability of the present approach, subsonic flows past a divergent wall are solved using an iterative scheme based on the SLOR method and the effects of various parameters on the interaction phenomenon are examined in detail. It is shown that the solution can be obtained without any difficulty even at the separation point. The results indicate that the present approach is capable of predicting the viscous-inviscid interaction involving flow separation. (Author)

A80-19129 # Weather detection using airport surveillance radar. D. D. Hayes (Texas Instruments, Inc., Dallas, Tex.). CATCA Journal, vol. 11, Fall 1979, p. 4-9.

The FAA's newest airport surveillance radar system, the ASR-8, is described and improvements in weather detection and display are proposed. Features of the ASR-8 which eliminate weather from the display, thus enhancing aircraft display capability, are circular polarization, which reduces weather signals by up to a factor of 100, and moving target indication, which uses the Doppler frequency shift to cancel the returns from fixed objects. It is suggested that the function of weather detection be separated from that of aircraft detection, then optimized by signal processing techniques using microprocessors and minicomputers. While the ASR transmitter and antenna will continue as the source of weather signals, a separate receiver and signal processor channel will use the precipitation signal and tailor the sensitivity time control curve specifically to the weather detection process. J.P.B.

A80-19199 # Aircraft torque motors (Aviatsionnye momentnye dvigateli). L. I. Stolov, B. N. Zykov, A. Iu. Afanas'ev, and Sh. S. Galeev. Moscow, Izdatel'stvo Mashinostroenie, 1979. 136 p. 54 refs. In Russian.

The book deals with airborne dc and ac torque motors currently used for activating gyroscopic and servo systems, accelerometers, telescopes, star-trackers, etc. The classification, theory, design, and testing of torque motors with limited and unlimited delta-three angles are examined. V.P.

A80-19269 # A pre-design code for predicting engine acquisition costs. J. Cyrus (U.S. Naval Material Command, Naval Air Development Center, Warminster, Pa.) and E. Onat (Boeing Commercial Airplane Co., Seattle, Wash.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0055. 6 p. 7 refs.

A computer code has been developed to predict engine acquisition costs using thermodynamic and geometric inputs commonly available during the preliminary design phase. With these inputs the code selects component materials, estimates the weight of raw materials used within the engine, and estimates cost based on the raw material content and exotic material factor, or Maurer factor. At this time only a limited validation of the code has occurred. However, the results are encouraging in that the estimated costs for two production engines were within eight percent of the actual costs. (Author)

A80-19280 # Installation effects on cycle selection for small turbo-fan engines. B. F. Kerkam (Boeing Aerospace Co., Seattle, Wash.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0106, 10 p. 14 refs.

This paper provides a brief description of inlet and nozzle performance characteristics for small advanced subsonic air vehicles, applies these characteristics to a turbofan engine cycle analysis, and draws conclusions on the manner in which the installation performance affects engine cycle selection. The primary application of these air vehicles is for reconnaissance drone, target vehicle and cruise missile missions. (Author) A80-19287 # A computer code to model swept wings in an adaptive wall transonic wind tunnel. J. E. Mercer, E. W. Geller, M. L. Johnson (Flow Research Co., Kent, Wash.), and A. Jameson (New York University, New York, N.Y.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0156. 7 p. 6 refs. Contract No. F40600-79-C-001.

A computer program has been developed to calculate inviscid transonic flow over a swept wing in a wind tunnel with specified normal flow at the walls. An approximately orthogonal computational grid which conforms to the wing and the tunnel walls was developed for application of the Jameson-Caughey finite volume algorithm. The code solves the full potential equations in fully conservative form using line relaxation. This program is to be used in place of the wind tunnel for preliminary studies of the adaptive wall concept for three dimensional configurations. It can also be used to assess the magnitude of wall interference in a conventional tunnel. (Author)

A80-19300 * # Engine component improvement program -Performance improvement. J. E. McAulay (NASA, Lewis Research Center, Performance Improvement Section, Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0223. 10 p. 7 refs.

The Engine Component Improvement (ECI) Program is NASA sponsored and is specifically directed at reducing the fuel consumption of commercial aircraft in the near-term. As part of the ECI program, a Performance Improvement (PI) effort aimed at developing fuel saving and retention components for new production and retrofit of JT9D, JT8D, and CF6 engines is underway. This paper reviews the manner in which the PI concepts were selected for development and summarizes the current status of each of the 16 NASA selected concepts. (Author)

A80-19301 # Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines. P. F. Piscopo, R. T. Lazarick (U.S. Navy, Naval Air Propulsion Test Center, Trenton, N.J.), and J. D. Cyrus (U.S. Naval Material Command, Naval Air Development Center, Warminster, Pa.). *American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0224.* 10 p.

The Navy's growing concern for energy efficient propulsion systems has kindled interest in both the recuperative and advanced conventional turboshaft engine cycles as potential candidates for re-engining its long range subsonic patrol aircraft. Studies were conducted to define the specific fuel consumption characteristics of advanced conventional cycle turboshafts over a range of compressor pressure ratios from 10 to 30 and turbine rotor inlet temperatures from 1900 F to 3300 F. Similar studies were conducted to examine the same characteristics of recuperative cycle turboshafts over a range of compressor pressure ratios from 8 to 20 and turbine rotor inlet temperatures from 1200 F to 3400 F. This paper presents the results of these cycle studies and identifies the payoff and critical technology areas for each system. (Author)

A80-19302 # An experimental model investigation of turbofan engine internal exhaust gas mixer configurations, P. K. Shumpert (Lockheed-Georgia Co., Marietta, Ga.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0228. 12 p. 6 refs.

The objective of the work described in the present paper was to improve the technology data base for internal exhaust gas mixer systems through an experimental model program. Tests were carried out with models representing a nominal engine airflow bypass ratio of 0.67 to 2.45. Flow parameters were investigated for a range of nozzle pressure ratios from 1.1 to 3.0 and primary exhaust to fan air temperature ratios from 1.0 to 2.7. A mixing effectiveness function is identified in terms of pertinent flow and geometric parameters. Results are given for mixer nozzle pressure losses, mixing effectiveness, thrust gain, primary thrust recovery during simulated reverser fan thrust operation, and ideal and actual turbofan engine performance. An improvement of 1.6 percent in cruise fuel consumption is indicated with a multi-lobe chute mixer nozzle and currenttechnology bypass ratio 6.0 engine at a flight Mach number of 0.82 and 35,000 feet. V.P.

A80-19303 * # Large scale model tests of a new technology V/STOL concept. D. C. Whittley (De Havilland Aircraft Co., Ltd., Downsview, Ontario, Canada) and D. G. Koenig (NASA, Ames Research Center, Large Scale Aerodynamics Branch, Moffett Field, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0233. 9 p.

An ejector design concept for V/STOL aircraft, featuring a double-delta configuration with two large chordwise ejector slots adjacent to the fuselage side and a tailplane or canard for longitudinal control is examined. Large scale model tests of the concept have shown that ejector systems are capable of significant thrust augmentation at realistic supply pressures and temperatures, so that power plant size and weight can be reduced accordingly. A thrust augmentation of at least 1.75 can be achieved for the isolated ejector, not making allowance for duct and nozzle losses. Substantial reductions in velocity, temperature and noise of the lifting jet are assured due to mixing within the ejector - this lessens the severity of ground erosion and the thrust loss associated with reingestion. Consideration is also given to the effect of ground proximity, longitudinal aerodynamic characteristics, transition performance, and lateral stability. V.L.

A80-19307 * # Hybrid vortex method for lifting surfaces with free-vortex flow. O. A. Kandil, L.-C. Chu (Old Dominion University, Norfolk, Va.), and E. C. Yates, Jr. (NASA, Langley Research Center, Structures and Dynamics Div., Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0070. 16 p. 52 refs. Grant No. NsG-1560.

A Nonlinear Hybrid Vortex method (NHV-method) has been developed for predicting the aerodynamic characteristics of wings exhibiting leading- and side-edge separations. This method alleviates the drawbacks of the Nonlinear Discrete Vortex method (NDVmethod, also known as the multiple line vortex method.) The NHV-method combines continuous-vorticity and vortex-line representations of the wing and its separated free shear layers. Continuous vorticity is used in the near-field calculations, while discrete vortex-lines are used in the far-field calculations. The wing and its free shear layers are divided into quadrilateral vortex panels having second-order vorticity distributions. The aerodynamic boundary conditions and continuity of the vorticity distributions are satisfied at certain nodal points on the vortex panels. An iterative technique is used to satisfy these conditions in order to obtain the vorticity distribution and the wake shape. Distributed and total aerodynamic loads are then calculated. (Author)

A80-19308 * # Assessment of analytic methods for the prediction of aerodynamic characteristics of arbitrary bodies at supersonic speeds. E. J. Landrum and D. S. Miller (NASA, Langley Research Center, Supersonic Aerodynamics Branch, Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0071. 8 p. 17 refs.

Trends toward the automation of the design process for airplanes and missiles accentuate the need for analytic techniques for the prediction of aerodynamic characteristics. A number of computer codes have been developed or are under development which show promise of significantly improving the estimation of aerodynamic characteristics for arbitrarily-shaped bodies at supersonic speeds. The programs considered range in complexity from a simple linearized solution employing slender body theory to an exact finite difference solution of the Euler equations. The results from five computer codes are compared with experimental data to determine the accuracy, range of applicability, ease of use, and computer time and cost of the programs. The results provide a useful guide for selecting the appropriate method for treating bodies at the various levels of an automated design process. (Author)

A80-19311 # Mach 3 hydrogen external/base burning. D. H. Neale, Sr., J. E. Hubbartt, and W. C. Strahle (Georgia Institute of Technology, Atlanta, Ga.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0280. 9 p.

Experimental studies of base pressure manipulation for an axisymmetric model at Mach 3 with simulated and actual external/ base burning are described. Early work using contoured test section walls and cold gas base region injection is reviewed to demonstrate wake detail and length scale changes under the influence of simulated external/base burning. Tests with actual combustion of radially and axially injected hydrogen are then reported. Outstanding performance values with significant base drag reduction is shown for injection and burning directly in the near-wake (base burning). Current attempts at radial injection and burning in the free stream (external burning) have not yet succeeded. These tests, however, have defined an envelope within which external burning, if feasible, will presently be achieved. (Author)

A80-19316 # Optimization of turbine nozzle cooling by combining impingement and film injection. M. R. Ayache (SNECMA, Moissy-Cramayel, Seine-et-Marne, France), W. Tabakoff, and A. Hamed (Cincinnati, University, Cincinnati, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0299. 12 p. 15 refs.

An analytical approach of endwall cooling optimization is presented. The study is based on the use of existing computation programs, describing a step-by-step procedure for solving the combined impingement and film injection cooling optimization. Several configurations are considered and their results compared to determine the optimal one, corresponding to the maximum global thermal endwall cooling effectiveness. (Author)

A80-19374 # Aircraft aerodynamics - Dynamics of longitudinal and lateral motion (Aerodinamika samoleta - Dinamika prodol'nogo i bokovogo dvizheniia). G. S. Giushgens and R. V. Studnev. Moscow, Izdatel'stvo Mashinostroenie, 1979. 352 p. 107 refs.

The book deals with some aspects of the lateral-directional handling qualities of modern aircraft. A mathematical description of the piloting process and of pilot actions in performing single-channel stabilization tasks is given. The dynamics of directional motion, the equations of directional motion, and the stability and controllability at a constant flight velocity are studied, along with the lateral characteristics in perturbed and unperturbed motion. The influence of aircraft lateral motion parameters on the piloting characteristics is discussed. V.P.

A80-19412 # Thermal state of structural members of aircraft engines (Teplovoe sostaianie elementov konstruktsii aviatsion-

nykh dvigatelei). S. Z. Kopelev and S. V. Gurov. Moscow, Izdatel'stvo Mashinostroenie, 1978. 208 p. 74 refs. In Russian.

The book deals primarily with the cooling systems developed for heavy-duty elements of aircraft gas-turbine engines and with methods of calculating their thermal state. Theoretical and experimental methods of determining the value of fuel preheating in fuel supply lines are described and illustrated by examples. Some mechanical and aerodynamic aspects of turbine blade cooling are examined. V.P.

A80-19413 # The Omega radio navigation system (Radionavigatsionnaia sistema 'Omega'). V. I. Bykov. Moscow, Izdatel'stvo Transport, 1978. 88 p. 9 refs. In Russian.

The principles of operation of a differential Omega system are outlined, and the influence of phase variations in around-the-world propagation of radio waves on the accuracy of the system is examined. The optimum implementation of the Omega system in marine navigation is discussed, along with the influence of the ionosphere on position finding. Attention is given to the calculation of corrections for compensating for the diurnal phase difference of signals and corrections in the region of surface-wave propagation.

V.P.

A80-19414 # Designing light airplanes (Proektirovanie legkikh samoletov). A. A. Badiagin and F. A. Mukhamedov. Moscow, Izdatel'stvo Mashinostroenie, 1978. 208 p. 40 refs. In Russian.

The book deals with such aspects of light-airplane design as the development of light-weight, reliable and economical engines (including piston engines, and turboprop and turbofan engines); optimization of design solutions for greater efficiency and reliability; development of new wing profiles for high lift plus high L/D; decreasing fuselage drag; application of composites and plastics; and development of compact radio equipment and internal and external noise abatement systems. The principal design concepts are examined, and methods of calculating airplane mass and the aerodynamic and flight characteristics in the preliminary design stage are outlined. V.P.

A80-19579 AEROPP - Message and data switching systems for aeronautical operations. *The Controller*, vol. 18, Dec. 1979, p. 29-31.

AEROPP I and AEROPP II, the two categories of integrated hardware/software message and data switching systems by Philips. employ the latest of the DS-714 switching installation. A typical DS-714 installation for an AEROPP system comprises two control sections, generally referred to as processors X and Y, and an array of input/output equipment available for use by either processor. One of the two processors is normally handling traffic, while the other is in hot standby. The AEROPP system structure permits upgrading from the basic building block handling only the Aeronautical Fixed Telecommunications Network (AFTN) traffic to a multiuser center providing a full range of aeronautical communications services, e.g., operational METEO (OPMET), automatic air/ground interchange, Common ICAO Data Interchange Network (CIDIN), and automatic telex interface. A flexible range of communications multiplexers is available to provide interface and control facilities for changing combinations of line types, transmission speeds, and operating procedures as the center and the network evolve. V.L.

A80-19764 Code optimization for solving large 3D EMP problems. R. Holland, L. Simpson, and R. H. Saint John (Mission Research Corp., Albuquerque, N. Mex.). (IEEE, U.S. Defense Nuclear Agency, and Jet Propulsion Laboratory, Annual Conference on Nuclear and Space Radiation Effects, 16th, Santa Cruz, Calif., July 17-20, 1979.) IEEE Transactions on Nuclear Science, vol. NS:26, Dec. 1979, p. 4964-4969. 5 refs. Contract No. DNA001-78-C-0345.

This paper describes techniques for implementing and optimizing large (50x50x50) three-dimensional finite-difference EMP codes. A number of procedures for speeding execution and minimizing memory requirements are presented and evaluated. As an example, we illustrate numerical results obtained when a B52 is modeled within a 50x43x59 mesh and illuminated by a nominal EMP simulation. (Author)

A80-19868 # Damping capacity of plastic compressor blades (Dempfiruiushchaia sposobnost' lopatok kompressorov iz kompozitsionnykh materialov). N. D. Stepanenko (Kiubyshevskii Aviatsionnyi Institut, Kuibyshev, USSR). *Problemy Prochnosti*, Nov. 1979, p. 109-114. 11 refs. In Russian.

A resonance test stand was used to study the damping behavior of unidirectionally strengthened plastic blades and their dovetail roots at various normal modes. Particular attention was given to the energy dissipation in the blades. The energy dissipation coefficient is plotted for several types of excitation. The logarithmic decrement is studied as a function of the strain level for plane, flexural, and torsional mode shapes of vibration. V.P.

A80-19990 # Investigations of the optimal configuration of high-stability quartz oscillators for aircraft and missiles (Recherches de configuration optimale d'oscillateurs a quartz de haute stabilité pour avions et missiles). J. Beaussier (ONERA, Châtillon-sous-Bagneux, Hauts-de-Seine, France). La Recherche Aérospatiale, Nov.-Dec. 1979, p. 375-386. 12 refs. In French. Research supported by the Direction des Recherches, Etudes et Techniques.

Work done by ONERA on the optimal configuration of compact and easily startable quartz oscillators of stability close to that of atomic clocks for use in the time-frequency systems of aircraft and missiles is summarized. The stability requirements of a timefrequency standard are examined and the operating parameters of quartz oscillators and atomic clocks are compared. The configurations of oscillators developed are then discussed, taking into consideration problems encountered with the resonator and the electronic circuits associated with it and the specifications, operation, design and significance of the dual thermostats within the oscillators. The four 5-MHz and two 100-MHz oscillators realized are described, and results of test of long-, medium- and short-term frequency stability in nonperturbed environments and of acceleration and temperature sensitivity in simulated aircraft and missile environments are reported. It is found that the 5-MHz oscillators exhibit greater stability while the 100-MHz oscillators are smaller, and quartz oscillator stabilities surpassing those of rubidium standards are reported. A.L.W.

A80-20064 # A method of evaluation of gas turbine engines (Ob odnom metode otsenki sostoianiia gazoturbinnogo dvigatelia). G. N. Mendrul. *Problemy Tekhnicheskoi Elektrodinamiki*, no. 69, 1979, p. 99-102. In Russian.

The paper presents a classification method described by multiplicity of n-dimensional vectors in a definite type of condition - the test theory method. Engineering methodology of determining an object classification as an exact or inexact state is developed using a learning theory. A.T. A80-20076 # Technologies conceived for the utilization of ceramics in turboengines (Technologies conçues pour l'utilisation des céramiques dans les turboréacteurs). S. Boudigues (ONERA, Châtillon-sous-Bagneux, Hauts-de-Seine, France) and G. Fratacci (Direction des Recherches, Etudes et Techniques, Paris, France). (NATO, AGARD, Meeting on Ceramics for Turbine Engine Applications, Cologne, West Germany, Oct. 8-10, 1979.) ONERA, TP no. 1979-132, 1979. 14 p. In French.

As compared to refractory alloys, ceramics used as heavy-duty elements in a turboengine provide higher operational temperatures at much lower densities. They also are characterized by higher strength in compression than in tension. In the present paper two approaches to the problem of incorporating ceramic elements in turboengines are examined. One approach is based on adaptation of technologies developed for refractory alloys, the other on aerodynamics and turbine-technology concepts adapted to ceramics. Several concepts of integrating a turbine into a complete engine are proposed, and the aerodynamic loads, temperatures, stresses, as well as production techniques and root designs, are determined for the blades. V.P.

A80-20083 # Separation due to shock wave-turbulent boundary layer interaction (Décollement résultant d'une interaction onde de choc-couche limite turbulente). J. Délery and P. Le Diuzet (ONERA, Châtillon-sous-Bagneux, Hauts-de-Seine, France). (Association Aéronautique et Astronautique de France, Colloque d'Aérodynamique Appliquée, 16th, Lille, France, Nov. 13-15, 1979.) ONERA, TP no. 1979-146, 1979. 28 p. 25 refs. In French. Research supported by the Direction des Recherches, Etudes et Techniques.

Holographic interferometry and laser velocimetry have been jointly used for analyzing the flow resulting from the interaction between a shock wave and a turbulent boundary layer occurring in a two-dimensional transonic channel. The Mach number at the start of interaction is 1.37, and the local Reynolds number, calculated with the initial boundary layer thickness, is 85,000. The external flow has first been carefully explored in order to trace a precise chart of the nondissipative flow field. Laser velocimetry made it possible to characterize the organization of the dissipative layer, which includes a large separated zone. The following quantities have been measured: longitudinal and vertical components of the mean motion, the corresponding turbulence intensities and Reynolds stress. (Author)

A80-20086 # A phenomenological model of the dynamic stall of a helicopter blade profile (Modèle phénoménologique de décrochage dynamique sur profil de pale d'hélicoptère). R. Dat, C. T. Tran, and D. Petot (ONERA, Châtillon-sous-Bagneux, Hauts-de-Seine, France). (Association Aéronautique et Astronautique de France, Colloque d'Aérodynamique Appliquée, 16th, Lille, France, Nov. 13-15, 1979.) ONERA, TP no. 1979-149, 1979. 43 p. 7 refs. In French.

A phenomenological model developed for the prediction of helicopter blade stall is presented. The model uses a system of differential equations to relate the aerodynamic forces and the variables determining the velocity of the blade profile in order to simulate the effects of flow history. Wind tunnel measurements of the profile in a stationary regime and oscillating at a small amplitude are required for model identification, and the model is validated by lift and moment measurements on a helicopter blade profile at high incidence. Preliminary results of the application of the model have been found to be encouraging. A.L.W. A80-20088 # Experimental study of confluence with separation on an afterbody of revolution (Etude expérimentale de la confluence avec décollement sur un arrière-corps de révolution). J. L. Solignac. (Canadian Congress of Applied Mechanics, 7th, May 27-June 1, 1979, Sherbrooke, Quebec, Canada.) ONERA, TP no. 1979-151, 1979. 21 p. 8 refs. In French.

The confluence of internal and external flows at a trailing edge downstream of a separation region is investigated for an afterbody of revolution with a central jet. Aerodynamic data was obtained by means of pressure probes, hot-wire probes and laser velocimetry, as well as flow visualization at flow Reynolds numbers high enough to assure a turbulent boundary layer directly upstream of the separation points. The mean flow is found to include a separated flow region defined by a streamline extending from the separation point to the trailing edge, while turbulence is observed to be strongest in the vicinity of the separation point and in the extreme downstream portions of the separation zone in the internal and external flow mixing regions. The internal mixing layer also appears to be the source of strong quasi-sinusoidal low frequency fluctuations which are detectable in the potential regions of the central jet. A.L.W.

A80-20112 # Integrated circuit characteristics at 260 C for aircraft engine-control applications. L. J. Palkuti (ARACOR, Sunnyvale, Calif.), J. L. Prince (Clemson University, Clemson, S.C.), and A. S. Glista, Jr. (U.S. Navy, Naval Air Systems Command, Washington, D.C.). (Institute of Electrical and Electronics Engineers, Electrical Components Conference, 29th, Cherry Hill, N.J., May 14-16, 1979.) IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. CHMT-2, Dec. 1979, p. 405-412. 8 refs. Research supported by the U.S. Navy and U.S. Department of Energy.

Bipolar circuits with junction or dielectric isolation, other discrete devices, and integrated circuits (ICs) were examined from room temperature to 250 and 300 C as part of a Navy program for the design of uncooled solid-state electronics for aircraft engine control applications. Discrete silicon semiconductor devices of essentially all generic types functioned with modified but usable characteristics at junction temperatures up to at least 300 C, but first-order device parameter changes resulted from increased leakage, reduced mobility, and changes in the Fermi level in the bulk and at the surface. Both analog and digital ICs exhibited dc as well as useful dynamic characteristics up to near 250 C. For a variety of CMOS devices tested, a phph latchup mechanism between the p-channel transistor and the input protection network limited useful device operation to 260 C, while no fundamental barrier to 300 C functionality of ICs designed specifically for high-temperature application was found. J.P.B.

A80-20151 Jet engine combustion noise - Pressure, entropy and vorticity perturbations produced by unsteady combustion or heat addition. N. A. Cumpsty (Cambridge University, Cambridge, England). Journal of Sound and Vibration, vol. 66, Oct. 22, 1979, p. 527-544. 10 refs.

By idealizing combustion or heat addition processes to occur over a short distance in the flow direction it is possible to calculate the amplitude and phase of the disturbances corresponding to small amplitude fluctuations in the heat addition. The fluctuating heat input is assumed to vary sinusoidally with time and with distance along the direction normal to the flow. Pressure waves propagate away from the heat input region upstream and downstream, whilst on the downstream side waves of vorticity and entropy are convected away. Strong resonant peaks in the pressure and vorticity waves are present close to the cut-off condition of the pressure waves in two dimensions. Generally the wave amplitudes tend to be higher when the mean flow velocity into the region is close to sonic and to become smaller as the steady heat input is increased. For a simplified calculation in which the combustion chamber discharges directly into a multi-stage turbine the down-stream noise was predominantly due to the interaction of the entropy with the turbine (i.e., 'indirect' rather than 'direct' combustion noise). (Author)

A80-20153 Sound generation in a flow near a compliant wall. W. Möhring and S. Rahman (Max-Planck-Institut für Strömungsforschung, Göttingen, West Germany). Journal of Sound and Vibration, vol. 66, Oct. 22, 1979, p. 557-564. 11 refs. Research supported by the Deutsche Forschungsgemeinschaft.

The generation of sound near an infinite compliant wall is studied, with account taken of a uniform mean flow. Stable and unstable configurations are looked at. It is shown that a possible influence of the wall on the sound generation occurs only via a modification of the turbulence if hydrodynamic non-linearities are responsible for the levelling-off of the instabilities. Then no fundamentally more efficient sound sources are found. An increase of the radiated sound may be possible because of the mirror sources and because of their.possibly reduced compactness. (Author)

A80-20192 * Atmospheric effects on Martian ejecta emplacement. P. H. Schultz (Lunar and Planetary Institute, Houston, Tex.) and D. E. Gault (Murphys Center for Planetology, Murphys, Calif.). Journal of Geophysical Research, vol. 84, Dec. 10, 1979, p. 7669-7687. 53 refs. Contract No. NSR-09-051-001.

The paper presents analytical descriptions of crater growth and numerical calculations of aerodynamic drag to evaluate the possible effects of drag on impact crater ejecta emplacement on Mars. The critical particle size below which ejecta deposition is restricted in range increases with crater size; models of ejecta trajectories in the current Martian atmosphere under hydrostatic equilibrium reveal critical particle diameters ranging from 0.4 to 20 cm, noting that ejecta approaching the critical particle size may impact with crater radius of the excavation crater rim. Ejecta larger than the critical particle size are undecelerated and form secondary impact craters modified by the later arriving decelerated ejecta cloud; thus, ejecta emplacement will be multiphased, but the process depends on the ejecta size distribution. A.T.

A80-20214 The next supersonic transport. B. Sweetman. Flight International, vol. 116, Nov. 24, 1979, p. 1772-1774, 1779.

The article investigates future concepts for supersonic transports, noting that the concept is still viable because the efficiency of air travel is related to speed. In theory, the less time an aircraft has to be airborne, the less energy it will use, so faster aircraft should be more efficient. Discussion covers such areas as compromises in wing construction for take off and landing and supersonic cruise, and comparisons between delta and arrow wings. Similar problems in engine design are also considered such as the conflict between noise and supersonic performance. Weight factors are also investigated as regards the use of composites, as well as the use of hydrogen as a fuel. Finally, it is noted that the general consensus is that a future SST should be substantially larger than the Concorde (about 230 passengers) and have a non-stop Pacific range. M.E.P.

A80-20251 A light aircraft camera Pod - The Enviro-Pod. G. E. Howard, Jr. (U.S. Environmental Protection Agency, Environmental Photographic Interpretation Center, Warrenton, Va.). In: American Society of Photogrammetry, Fall Technical Meeting, Albuquerque, N. Mex., October 15-20, 1978, Proceedings.

Falls Church, Va., American Society of Photogrammetry, 1978, p. 283-295.

The paper deals with an airborne self-contained low-cost remote sensing system, called the Enviro-Pod (Pod), developed for monitoring the environment of the United-States territory to ensure the validity of environmental standards and assure legal compliance. The results of feasibility tests and demonstrations indicate that the camera-configured Pod will acquire cost effectively high-quality high-resolution imagery in routine monitoring of point targets, stream segments, and small areas of generally less than 25 square miles. In its current configuration, the Pod provides high-resolution panoramic imagery in both the oblique and vertical camera positions. At a typical flight altitude of 3000 ft. the resolution of panchromatic film at nadir is 18 cm. V.P.

A80-20626 Application of RCS guidelines to weight effective aircraft design. L. A. Irish and M. C. Vincent (Boeing Co., Seattle, Wash.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1270. 9 p. Contract No. F33615-78-C-3422.

The need for an organized, proven body of trade data and guidelines on the relationship of radar cross section to the familiar aircraft design parameters is emphasized. The approach to developing information consisting of many different activities is examined and some key activities including data base development, parametric study and guideline development are presented. Attention is given to explanations of the relationship between parameters of wing size, sweep, engine inlet and tailsize and radar cross section. C.F.W.

A80-20627 Application of finite element analysis to derivation of structural weight, J. G. Hutton and L. D. Richmond (Boeing Aerospace Co., Seattle, Wash.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1271, 29 p. 7 refs.

The paper presents application of finite element analysis to derive methodology for estimation of structural system weight. The study developed factoring logic and its testing, and the documentation of interdisciplinary interaction for model development. The numerical factors were composed of subfactors that accounted for modeling technique, construction method, material, and installation details. The F-15A was used as the known structural system for testing of the weight factor logic; a finite element model was developed for the wing box, and a simplified beam body and horizontal tail were included for simulation of the wing support and to provide balanced aircraft loads. The correlation of the factored finite element and as-built weights was good for the cover panels; the total cover weight compared within 3% with a plus or minus 10% spread among the individual panels.

A80-20628 Tilt rotor An effective V/STOL concept. J. DeTore (Bell Helicopter Textron, Fort Worth, Tex.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1273. 22 p. 6 refs.

The paper investigates how the tilt rotor V/STOL concept can be turned into an effective operational system and what such a mission-oriented tilt rotor aircraft is like. Attention is given to the variation of hover efficiency, speed capability, and previously determined weight empty ratios for various V/STOL concepts, such as the helicopter in comparison with the tilt rotor. A tilt rotor design aimed at satisfying Navy/Marine subsonic V/STOL needs is described. Results are presented which relate estimated performance capabilities during various modes of flight with useful mission elements. In conclusion, it is recommended that design investigations of operational tilt rotor V/STOL continue and that technology tasks involving experimental investigations with the XV-15 tilt-rotor research vehicle, laboratory test rigs, and models be undertaken.

M.E.P.

A80-20630 A method of simplifying weight and balance for small aircraft. E. I. Miller (Boeing Co., Seattle, Wash.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1278. 27 p. 5 refs.

This paper presents a nomographic method of figuring weight and balance (an alignment chart), similar to one used by many large aircraft operations because of its speed, simplicity and accuracy. Using a Basic Empty Weight Index, a simplified weight record (manifest), Loadlines and a C. G. Grid it can be easily adapted for use by light aircraft with a minimum of effort, no change in present methods, manual of F.A.A. Regulations, and does not require any special equipment. (Author)

A80-20631 Analog aircraft weight and balance computer. T. D. Boldt (Quik Trim, Egg Harbor City, N.J.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1283. 20 p.

An analog weight and balance computer was developed for single-engine aircraft in response to a need by general aviation pilots for this type of aid. A detailed background is given for the reasons for the author to develop the computer. The relative merits of the analog vs. the digital computer are explained and the reasons given for the use of the analog techniques. In this respect, the use by the pilot and his understanding of aircraft weight and balance and the factors affecting aircraft balance are considered. The construction and layout of the computer are explained and the influence of pilot feedback on the design are discussed. The extension of the computer for use in general aviation twins, cargo operations and heavy aircraft are discussed. The accuracy of weight and balance computations is analysed to determine the accuracy necessary in the subject computer. Appropriate examples are given for various aircraft categories. (Author)

A80-20632 Advanced materials and the Canadair Challenger. D. R. Turner (Canadair, Ltd., St. Laurent, Quebec, Canada). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1284.9 p.

The Canadair Challenger is a business jet with take-off weight of 34,500 lb, 7500 lb thrust and space of at least 100 cu ft per person. In order to avoid the inherent weight penalties in the wide-body aircraft, composite materials with high specific strength and good fracture toughness were used. The airframe primary structure is made of advanced aluminum alloys and the secondary structural components are made of two epoxy resin based systems, the first being reinforced with Kevlar aramid fibers and the second being based on the higher strength and modulus graphite fibers. For further reduction of both weight and manufacturing costs (36% and 82% respectively) the application of graphite and Kevlar/epoxy composites in the primary structural areas is considered.

A80-20636 The modular life cycle cost model - An overview. B. I. Rachowitz (Grumman Aerospace Corp., Bethpage, N.Y.) and N. Sternberger (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1290. 15 p.

An overview of the first subsystem level Life Cycle Cost Model (LCCM) for advanced aircraft is presented. The cost estimating relationships are based on design parameters which are available during conceptual and preliminary design phases of an advanced technology aircraft program. The modular LCCM was developed to provide design engineers with a tool and the capability to effectively conduct design/cost/performance trade studies of advanced fighter/ attack and cargo/transport aircraft, in determining the cost impact of design decision on life cycle cost at the major subsystem level. C.F.W.

A80-20637 * Application of parametric weight and cost estimating relationships to future transport aircraft. M. N. Beltramo, M. A. Morris (Science Applications, Inc., Los Angeles, Calif.), and J. L. Anderson (NASA, Ames Research Center, Moffett Field, Calif.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1292. 23 p.

A model comprised of system level weight and cost estimating relationships for transport aircraft is presented. In order to determine the production cost of future aircraft its weight is first estimated based on performance parameters, and then the cost is estimated as a function of weight. For initial evaluation CERs were applied to actual system weights of six aircraft (3 military and 3 commercial) with mean empty weights ranging from 30,000 to 300,000 lb. The resulting cost estimates were compared with actual costs. The average absolute error was only 4.3%. Then the model was applied to five aircraft still in the design phase (Boeing 757, 767 and 777, and BAC HS146-100 and HS146-200). While the estimates for the 757 and 767 are within 2 to 3 percent of their assumed break-even costs, it is recognized that these are very sensitive to the validity of the estimated weights, inflation factor, the amount assumed for nonrecurring costs, etc., and it is suggested that the model may be used in conjunction with other information such as RDT&E cost estimates and market forecasts. The model will help NASA evaluate new technologies and production costs of future aircraft. L.M.

A80-20638 Designing to life cycle cost in the Hornet program. R. D. Dighton (McDonnell Aircraft Co., St. Louis, Mo.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1293. 24 p.

A primary requirement in the Hornet program is significant reduction in life cycle cost from current Navy systems. In the present paper, the design and management techniques used to develop a new fighter/attack system at an affordable life cycle cost are described. V.P.

A80-20639 Small ship-based VTOL aircraft - A design exercise. J. W. Flaig (U.S. Naval Air Systems Command, Washington, D.C.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1296. 23 p.

Proposals for moderate performance VTOL aircraft, other than the AV-8, which could be based aboard small ships in the mid-to-late 1980's are examined. The vehicles were to have a takeoff gross weight of about 20,000 lb with minimal external stores, and to perform only vertical take-off and landings. Current high-bypass-ratio engines are studied as possible effective power plants. It is found that uprated versions of the Rolls Royce Pegasus-11 engine give the most reasonable solutions. Attention is also given to hauldown and securing problems inherent in basing aircraft aboard small ships. It is concluded that a lightly armed reconnaisance vehicle having a radius of approximately 300 nmi appears feasible, provided that the mission requirements remain simple. M.E.P.

A80-20640 Advanced technology effects on V/STOL propulsive system weight. R. S. Saint John (Vought Corp., Dallas, Tex.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1300. 23 p. The paper identifies the distribution of the propulsive system weight for a typical V/STOL concept and illustrates how advanced technology will affect the weight of the various propulsive system components. Individual technology assessments are given for the following propulsive system components: (1) core engine compressor section, (2) core engine high pressure turbine section, (3) core engine low pressure turbine section, (4) core engine combustor section, controls and accessories, (5) lift cruise fan weight, (6) transmission system, (7) exhaust system, and (8) engine section and nacelle. It is concluded that the propulsive system weight decrease due to technology is almost equally distributed between the core engines, fans and nacelles. M.E.P.

A80-20645 Preliminary weight estimation of engine section structure. A. H. Schmidt (Boeing Co., Seattle, Wash.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1311. 5 p.

The weight of the engine section is a part of the aircraft structural weight which has not been given much attention by weight methodology. This paper discusses a method of estimating the weight of the following engine section components-engine mounts, nacelles or cowlings, firewalls, and pylon support struts such as used on jet driven aircraft. Air intakes are not included. Parameters usually available from preliminary design three-view drawings and group weight statements are used. Factors for estimating the weight effects of propeller or jet drive are included along with factors for allowing for special features such as work platforms. A plot of calculated versus actual weight is included to show the accuracy of the method for a broad range of aircraft. (Author)

A80-20646 Weight Integrated Sizing Evaluation /WISE/-A tool for preliminary design. A. Gersch (Grumman Aerospace Corp., Bethpage, N.Y.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1312. 36 D.

Two computerized preliminary design synthetic programs, WISE-One and WISE-Two (Weight Integrated Sizing Evaluation), have been developed to facilitate the initial phases of preliminary design. WISE-One is intended to calculate the TOGW of a design concept in the very early stages of preliminary design; layouts, based on its output, are produced from a computer based design/drafting system. WISE-Two is used to optimize weight/cost of a preliminary design based on an existing layout to aid in producing a final three-view drawing. WISE-One uses empirical methods, while WISE-Two used analytical tools (structural/weight multistation analysis). Both programs operate with minimum input and maximum output and are characterized by a dynamic methodology base and multidiscipline interfaces. V.L.

A80-20647 A simple design synthesis method used to estimate aircraft gross weight. K. W. Higham (Vought Corp., Dallas, Tex.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1313. 17 p.

The paper presents a preliminary weight methodology specifically developed to augment synthesis techniques such as ASAP. Attention is given to two sample calculations, the first of which demonstrates a short method recommended only for aircraft with payloads in excess of twenty-five percent of the take-off weight. A sub-sonic transport is used in this example. The second sample calculation demonstrates an expanded method which provides greater accuracy and cen result in a complete group weight summary for balance calculations and improved cost analysis. An advanced jet trainer is used in this example and it is noted that the second method is best used when the payload is expected to be less than twenty-five percent of the take-off weight and is recommended for applications where time allows. M.E.P.

A80-20648 Problems associated with cargo airplanes having aft mounted engines. R. E. Stephens (Lockheed-Georgia Co., Marietta, Ga.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1314. 36 p.

The effects of engine location are examined by means of comparing a baseline configuration with four wing mounted engines with several arrangements. Initially the analysis makes some simplifying assumptions which allow the establishment of some trends. Three aircraft with engines mounted on the aft fuselage are examined, each with a different approach to the solution to the balance problems. Two of the configurations are analyzed further and a third configuration, with two wing mounted engines and one tail mounted engine is added for comparison purposes. It is concluded that the results indicate that if an aircraft is designed for use as a cargo aircraft, it should have wing mounted engines. M.E.P.

A80-20655 Navy V/STOL - A continuing initiative. R. G. Perkins, Jr. (U.S. Naval Air Systems Command, Washington, D.C.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1325, 26 p.

The progress of the project to develop a new subsonic multimission V/STOL aircraft initiated by the Navy in 1976 has been hampered by such problems as affordability, design complexity, and justification of the V/STOL concept. A decision as to the usefulness of the program will be based on the results of the Sea Based Air Master Study (SBAMS) which will provide a comparative analysis of sea based aircraft alternatives. If the SBAMS supports the project, the design definition phase will be founded on the outputs of SBAMS, initial industry studies and technology advancement efforts. A major aircraft development decision is not anticipated before 1982.

A80-20656 Weight impact of VTOL. S. Kalemaris and P. York (Grumman Aerospace Corp., Bethpage, N.Y.). Society of Allied Weight Engineers, Annual Conference, 38th, New York, N.Y., May 7-9, 1979, Paper 1326. 17 p.

This paper studies the weight increments associated with vertical takeoff and landing capability as compared to conventional (horizontal) takeoff and landing (CTOL). Weight increments for various physical and ground rule requirements that transform a CTOL aircraft into a VTOL aircraft are evaluated. In order to fully understand the weight increments, preliminary designs of comparable CTOL aircraft are examined, along with Grumman's VTOL designs. The 'VTOL weight penalty' for shipboard operation is further defined by a study of the weight penalty for carrier basing a CTOL aircraft. The total effect of VTOL on subsonic aircraft, with low thrust required for CTOL, is presumably different from the effect on high performance supersonic aircraft with mission demands close to the VTOL requirement, and this difference is addressed. Finally, consideration is given to possible additional mission requirements for CTOL aircraft that stem from the difference in operational capability. (Author)

A80-20690 # Unification of oils for aircraft gas-turbine engines (Unifikatsiia masel dlia aviatsionnykh gazoturbinnykh dvigatelei). G. T. Novosartov, V. A. Smeianov, A. V. Vilenkin, and A. I. Echin. *Khimiia i Tekhnologiia Topliv i Masel*, no. 11, 1979, p. 11-13. In Russian. The reasons for the continuous increase in brands of oil for aircraft gas-turbine engines are examined, and methods of unifying them are suggested. Some brands of oil are recommended for gas-turbine engines, depending on the temperature at which they operate.

A80-20866 Computer simulation of an air cargo small package sorting system. A. Hargrove (Hampton Institute, Hampton, Va.). In: Modeling and simulation. Volume 10 - Proceedings of the Tenth Annual Pittsburgh Conference, Pittsburgh, Pa., April 25-27, 1979. Part 2. Pittsburgh, Pa., Instrument Society of America, 1979, p. 333-340.

An automated baggage sorting system designed for use at the new Atlanta Midfield Airport is reviewed. Adaptation of the system to small air cargo packages is proposed. Computer simulation is used to analyze the system after reviewing results of manual simulation. This paper describes the simulation model, the parameters analyzed, the sensitivity of those parameters and a possible solution. (Author)

A80-20867 A survey of the stochastic filtering techniques for data processing in air-traffic control and surveillance systems. A. Farina and S. Pardini (Selenia S.p.A., Rome, Italy). In: Modeling and simulation. Volume 10 - Proceedings of the Tenth Annual Pittsburgh Conference, Pittsburgh, Pa., April 25-27, 1979. Part 2.

Pittsburgh, Pa., Instrument Society of America, 1979, p. 341-351. 23 refs.

The application of stochastic filtering techniques for air-traffic control and surveillance systems is examined. The structure of these systems, their operational requirements and the environment in which they work is studied. A review of various stochastic filters such as adaptive and nonlinear filters are reviewed with respect to their different environments. Attention is given to the typical structure of radar data processing and to the adaptivity of filtering algorithms to target maneuver. C.F.W.

A80-20868 Shipping by air - Is the value of your time worth it. A. H. Hagedoorn (Florida Technological University, Orlando, Fla.) and J. B. Crittenden (Virginia Polytechnic Institute and State University, Blacksburg, Va.). In: Modeling and simulation. Volume 10 - Proceedings of the Tenth Annual Pittsburgh Conference, Pittsburgh, Pa., April 25-27, 1979. Part 2.

Pittsburgh, Pa., Instrument Society of America, 1979, p. 391-396.

A cost comparison of cargo shipments by air, rail, and truck transportation is outlined. The economic model comparisons indicate which mode of transportation should be used under various circumstances. Nonconventional characteristics of the system models include a nonlinear cargo density function and a method for the calculation of the value of time. (Author)

A80-20869 Models for freight access to air terminals. W. A. Rabiega (Portland State University, Portland, Ore.). In: Modeling and simulation. Volume 10 - Proceedings of the Tenth Annual Pittsburgh Conference, Pittsburgh, Pa., April 25-27, 1979. Part 2. Pittsburgh, Pa., Instrument Society of America,

1979, p. 397-401. 16 refs.

Demand and traffic volume prediction are necessary to the modeling of freight access to air terminals. The 'abstract modes' approach may be an appropriate demand submodel. Sequential queue models can be used for the traffic submodel, but require modification to the technologies, terminal configurations, and operations of air freight. (Author) A80-20870 Air cargo container utilization optimization through modeling. R. M. Eastman (Missouri-Columbia, University, Columbia, Mo.). In: Modeling and simulation. Volume 10 - Proceedings of the Tenth Annual Pittsburgh Conference, Pittsburgh, Pa., April 25-27, 1979. Part 2. Pittsburgh, Pa., Instrument Society of America, 1979, p. 403-406. 5 refs. Armysupported research.

A dynamic programming model is used to solve the problem of optimal air cargo container utilization; other methods are examined but were found to be infeasible, too costly, or incapable of reaching an optimal solution. Practical obstacles to widespread application of the model are discussed and alternatives mentioned. Attention is given to the dynamic programming model which is used to optimize the problem using various constraints and it is determined that the model can be used to solve the problem of optimum air cargo container utilization. C.F.W.

A80-20879 A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design. J. R. Broussard and S. W. Gully (Analytic Sciences Corp., Reading, Mass.). In: Modeling and simulation. Volume 10 - Proceedings of the Tenth Annual Pittsburgh Conference, Pittsburgh, Pa., April 25-27, 1979. Part 2. Pittsburgh, Pa., Instrument Society of America, 1979, p. 599-609. 6 refs. Armysponsored research.

A80-20900 Infrared sensor system performance simulations. F. T. Wu (U.S. Naval Weapons Center, China Lake, Calif.). In: Modeling and simulation. Volume 10 - Proceedings of the Tenth Annual Pittsburgh Conference, Pittsburgh, Pa., April 25-27, 1979. Part 5. Pittsburgh, Pa., Instrument Society of America. 1979. p. 1755-1763.

This paper reports on a simulation technique used for surface target search and detection by airborne infrared sensor systems. The simulation provides a description of detection capability while the sensor is in high speed motion (relative to the target) towards the target area. The simulation also permits the scanning pattern and scanning rate to be input to the simulation, thus allowing different types of scans for different inputs. Hence an optimal scanning pattern and rate can be determined for different sensor altitudes and speeds. The simulation is designed for both automatic and manual search and detection. However, the current version of the simulation is used for the automatic mode only since the manual search algorithm is limited in its use to qualitative comparison of search patterns. In this paper, the results of runs for several scanning patterns are presented. For each scanning pattern, the scanning rate and fields-of-view have been varied. Some comparison of results is presented. (Author)

A80-20901 Verification of digital autopilot microprocessor hardware and software via hardware-in-the-loop simulation. W. V. Albanes, J. T. Bosley (Computer Sciences Corp., Defense Systems Div., Huntsville, Ala.), and J. B. Meadows (U.S. Army, Technology Laboratory, Redstone Arsenal, Ala.). In: Modeling and simulation. Volume 10 - Proceedings of the Tenth Annual Pittsburgh Conference, Pittsburgh, Pa., April 25-27, 1979. Part 5.

Pittsburgh; Pa., Instrument Society of America, 1979; p. 1815-1820. 8 refs.

Simulation permits the early detection of possible (and costly) errors in missile subsystem development. However, digital autopilot performance is difficult and expensive to verify in a six-degree-of-freedom digital simulation due to the small time steps required to simulate the digital effects of the microcomputer. To solve this problem, a microprocessor-based digital autopilot (DAP) is used as

the hardware in the loop in a hybrid computer facility to simulate real-time trajectories. In this way, both the real flight microprocessor hardware and software will be verified. This paper presents such a hardware-in-the-loop analysis for two DAPs designed for a tactical six-inch test missile fitted with a semiactive laser seeker guidance head, and compares their performance. (Author)

A80-20904 Navigation error using rate of change of signal time of arrival from space vehicles. D. Terris (Rockwell International Corp., Satellite Systems Div., Downey, Calif.). In: Modeling and simulation. Volume 10 - Proceedings of the Tenth Annual Pittsburgh Conference, Pittsburgh, Pa., April 25-27, 1979. Part 5.

Pittsburgh, Pa., Instrument Society of America, 1979, p. 1847-1852.

An error analysis model derived for a navigation concept using the measurement of rate of change of signal time of arrival (TOA dot) in addition to TOA is analyzed. An error equation for measurement of range in terms of TOA, error using TOA and TOA dot, and covariance error for TOA measurements only are discussed along with covariance error for TOA dot measurements and for both TOA and TOA dot measurements. Consideration is given to computer simulation. V.T.

A80-20907 Recent developments in flight simulation techniques. D. Raptis and M. McKinnon (CAE Electronics, Ltd., Saint Laurent, Montreal, Canada). In: Modeling and simulation. Volume 10 - Proceedings of the Tenth Annual Pittsburgh Conference, Pittsburgh, Pa., April 25-27, 1979. Part 5.

Pittsburgh, Pa., Instrument Society of America, 1979, p. 1901-1906. 5 refs.

This paper presents the main concepts in the control of the motion of the cabin of an aircraft simulator, by using a six degree of freedom electrohydraulic motion system controlled by a digital computer. The versatility and effectiveness of the cost function approach for solving this constrained problem are demonstrated. The main areas of active research as well as future trends are discussed.

(Author)

A80-20915 Covariance simulation of BCAS - An aircraft collision avoidance system. H. J. Rome and G. Andriotakis (Lowell, University, Lowell, Mass.). In: Modeling and simulation. Volume 10 -Proceedings of the Tenth Annual Pittsburgh Conference, Pittsburgh, Pa., April 25-27, 1979. Part 5. Pittsburgh, Pa., Instrument Society of America, 1979, p. 2049-2060. U.S. Department of Transportation Contract No. TS-14698.

This paper presents algorithms developed and results obtained for a covariance simulation of BCAS-an aircraft collision avoidance system. The simulation models the stochastic environment, aircraft state uncertainties, and the various types of measurements available. The basic algorithms for optimal covariance analysis and specialized techniques utilized to obtain parameters germane to collision avoidance are presented. Simulation results which demonstrate the effectiveness of the system and compare it to other collision avoidance systems are presented. (Author)

A80-20952 * # Assessment at full scale of exhaust nozzle-towing size on STOL-OTW acoustic characteristics. U. von Glahn and D. Groesbeck (NASA, Lewis Research Center, Cleveland, Ohio). Acoustical Society of America, Meeting, 98th, Salt Lake City, Utah, Nov. 26-30, 1979, Paper. 25 p. 5 refs.

On the basis of static zero/acoustic data obtained at model scale, the effect of exhaust nozzle size on flyover noise is evaluated at full scale for different STOL-OTW nozzle configurations. Three types of nozzles are evaluated; a circular/deflector nozzle mounted above the wing, a slot/deflector nozzle mounted on the wing, and a slot nozzle mounted on the wing. The nozzle exhaust plane location, measured from the wing leading edge was varied from 10 to 46 percent of the wing chord (flaps retracted). Flap angles of 20 deg (takeoff) and 60 deg (approach) are included in the study. Initially, perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots static EPNL values, defined as flyover relative noise levels, then are obtained as functions of nozzle size for equal aerodynamic performance (lift and thrust). On the basis of these calculations, the acoustic benefits attributable to nozzle size relative to a given wing chord size are assessed. (Author)

A80-20953 * # Dispersion of sound in a combustion duct by fuel droplets and soot particles. J. H. Miles (NASA, Lewis Research Center, Cleveland, Ohio) and D. D. Raftopoulos (Toledo, University, Toledo, Ohio). Acoustical Society of America, Meeting, 98th, Salt Lake City, Utah, Nov. 26-30, 1979, Paper. 27 p. 22 refs.

Dispersion and attenuation of acoustic plane wave disturbances propagating in a ducted combustion system are studied. The dispersion and attenuation are caused by fuel droplet and soot emissions from a jet engine combustor. The attenuation and dispersion are due to heat transfer and mass transfer and viscous drag forces between the emissions and the ambient gas. Theoretical calculations show sound propagation at speeds below the isentropic speed of sound at low frequencies. Experimental results are in good agreement with the theory. (Author)

A80-20964 * # Comparison of inlet suppressor data with approximate theory based on cutoff ratio. E. J. Rice and L. J. Heidelberg (NASA, Lewis Research Center, Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0100. 26 p. 21 refs.

This paper represents the initial quantitative comparison of inlet suppressor far-field directivity suppression with that predicted using an approximate liner design and evaluation method based upon mode cutoff ratio. The experimental data was obtained using a series of cylindrical point-reacting inlet liners on an Avco-Lycoming YF102 engine. The theoretical prediction program is based upon simplified sound propagation concepts derived from exact calculations. These indicate that all of the controlling phenomenon can be approximately correlated with mode cutoff ratio which itself is intimately related to the angles of propagation within the duct. The objective of the theory-data comparisons is to point out possible deficiencies in the approximate theory which may be corrected. After all theoretical refinements have been made, then empirical corrections can be applied. (Author)

A80-20965 * # Acoustic considerations of flight effects on jet noise suppressor nozzles. U. von Glahn (NASA, Lewis Research Center, Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0164. 24 p. 14 refs.

Insight into the inflight acoustic characteristics of high-velocity jet noise suppressor nozzles for supersonic cruise aircraft (SCA) is provided. Although the suppression of jet noise over the entire range of directivity angles is of interest, the suppression of the peak noise level in the rear quadrant is frequently of the most interest. Consequently, the paper is directed primarily to the inflight effects at the peak noise level. Both single and inverted-velocity-profile multistream suppressor nozzles are considered. The importance of static spectral shape on the noise reduction due to inflight effects is stressed. (Author) A80-20966 * # Summary of advanced methods for predicting high speed propeller performance. L. J. Bober and G. A. Mitchell (NASA, Lewis Research Center, Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0225. 12 p. 10 refs.

Three advanced analyses for predicting aircraft propeller performance at high subsonic speeds are described. Two of these analyses use a lifting line representation for the propeller blades and vortex filaments for the blade wakes but differ in the details of the solution. The third analysis is a finite difference solution of the unsteady, three-dimensional Euler equations for the flow between adjacent blades. Analysis results are compared to data for a high speed propeller having 8 swept blades integrally designed with the spinner and nacelle. These, analyses provide tools for the propeller designer ranging from a short running program for initial design studies to a very long running program for checking final configurations.

(Author)

A80-20968 * # Scale model performance test investigation of exhaust system mixers for an Energy Efficient Engine /E3/ propulsion system. A. P. Kuchar (General Electric Co., Cincinnati, Ohio) and R. Chamberlin (NASA, Lewis Research Center, Energy Conservative Engine Office, Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0229, 10 p.

A scale model performance test was conducted as part of the NASA Energy Efficient Engine (E3) Program, to investigate the geometric variables that influence the aerodynamic design of exhaust system mixers for high-bypass, mixed-flow engines. Mixer configuration variables included lobe number, penetration and perimeter, as well as several cutback mixer geometries. Mixing effectiveness and mixer pressure loss were determined using measured thrust and nozzle exit total pressure and temperature surveys. Results provide a data base to aid the analysis and design development of the E3 mixed-flow exhaust system. (Author)

A80-20969 * # Numerical simulation of supersonic inlets using a three-dimensional viscous flow analysis. B. H. Anderson and C. E. Towne (NASA, Lewis Research Center, Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0384. 15 p. 20 refs.

A three-dimensional fully viscous computer analysis, which retains the viscous nature of the Navier-Stokes equations, was evaluated to determine its usefulness in the design of supersonic inlets. This procedure takes advantage of physical approximations to limit the high computer time and storage associated with complete Navier-Stokes solutions. Computed results are presented for a Mach 3.0 supersonic inlet with bleed and a Mach 7.4 hypersonic inlet. Good agreement was obtained between theory and data for both inlets. Results of a mesh sensitivity study are also shown. (Author)

A80-20970 * # An analytical and experimental study of a short S-shaped subsonic diffuser of a supersonic inlet, H. E. Neumann, L. A. Povinelli, and R. E. Coltrin (NASA, Lewis Research Center, Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0386. 12 p.

An experimental investigation of a subscale HiMat forebody and inlet was conducted over a range of Mach numbers to 1.4. The inlet exhibited a transitory separation within the diffuser but steady state data indicated reattachment at the diffuser exit. A finite difference procedure for turbulent compressible flow in axisymmetric ducts was used to successfully model the HiMAT duct flow. The analysis technique was further used to estimate the initiation of separation and delineate the steady and unsteady flow regimes in similar S-shaped ducts. (Author) A80-20971 # Flight and wind tunnel test results of the mechanical jet noise suppressor nozzle. R. D. FitzSimmons, R. A. McKinnon, E. S. Johnson (Douglas Aircraft Co., Long Beach, Calif.), and J. R. Brooks (Rolls-Royce, Ltd., Derby, England). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan. 14-16, 1980, Paper 80-0165. 49 p. 21 refs.

Comprehensive acoustic and propulsion data are presented, based on flight and wind tunnel tests, of a mechanical jet noise suppressor designed to satisfy the requirements of an advanced supersonic transport (AST) under study by the McDonnell Douglas Corporation. The flight program was conducted jointly by MDC, Rolls-Royce Ltd., and the British Aerospace Corporation, using an HS-125 aircraft modified to accept an upgraded RR Viper 601 engine with conical reference and mechanical suppressor nozzles and an acoustically treated ejector. The nacelle, engine and nozzle configurations from the HS-125 were also tested in one of NASA's wind tunnels to obtain thrust performance at forward velocity and acoustic data. The acoustic flight test data, when scaled to an AST engine nozzle size and projected to a typical sideline distance, indicate reduction in effective perceived noise level of 16 EPNdB at the takeoff power setting. It is estimated that the in-flight thrust loss for a typical AST suppressor/ejector nozzle configuration (37.5 inch equivalent diameter) would be 5.4 percent at takeoff power settings and 6.6 percent at cutback power settings. VI

A80-20982 The Russian satellite navigation system. C. D. Wood and G. E. Perry. (Royal Society, Discussion on the Satellite Doppler Tracking and Its Geodetic Applications, London, England, Oct. 10, 11, 1978.) Royal Society (London), Philosophical Transactions, Series A. vol. 294. no. 1410, Jan. 14, 1980, p. 307-315.

Since 1972, systematic analysis of Cosmos satellites, having near-circular orbits and periods close to 105 min, has revealed that several groups have had the necessary orbital plane spacing give the global coverage suitable for satellite navigation systems. Replacements have been launched at regular intervals. The current systems comprise three satellites with 60 deg spacing, six with 30 deg spacing and three with 45 deg spacing. These satellites have been shown to transmit on frequencies close to 150 and 400 MHz. The modulation of the 150 MHz carrier frequencies is explained together with the techniques employed to decode Standard Moscow Time, the satellite's position in geocentric Cartesian coordinates with corresponding satellites forming the system. (Author)

A80-20992 The Global Positioning System. R. J. Anderle (U.S. Navy, Naval Surface Weapons Center, Dahlgren, Va.). (Royal Society, Discussion on the Satellite Doppler Tracking and Its Geodetic Applications, London; England, Oct. 10, 11, 1978.) Royal Society (London), Philosophical Transactions, Series A, vol. 294, no. 1410, Jan. 14, 1980, p. 395-405; Discussion, p. 405, 406.

The Global Positioning System is described. Consideration is given to the following aspects: the principle of operation; the experimental phase; alternatives for geodetic and geophysical applications; error budget for navigation applications; ephemeris accuracy; accuracy of absolute geodetic positions; the effect of ephemeris errors on relative station positions; and the Doppler approach. B.J.

STAR ENTRIES

N80-14017# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France).

ADVANCES IN GUIDANCE AND CONTROL SYSTEMS USING DIGITAL TECHNIQUES

Aug. 1979 357 p refs In ENGLISH and FRENCH Presented at the Guidance and Control Panel Symp., Ottawa, 8-11 May 1979

(AGARD-CP-272; ISBN-92-835-0247-7) Avail: NTIS HC A16/MF A01

The application of digital methods to guidance and control systems is considered. Functional design concepts, trends, and requirements, advances in analytical and design techniques, and advances in digital system design and architecture to assure high integrity are among the topics covered. Data processing and computation techniques, software design validation techniques, including simulation, and operational and system development experience are included.

N80-14018^{*}# Milco International, Inc., Huntington Beach, Calif. STATE OF THE ART FOR DIGITAL AVIONICS AND CONTROLS, 1978

Richard K. Smyth $\ \ ln$ AGARD Advan. in Guidance and Control Systems Using Digital Tech. Aug. 1979 20 p $\ refs$

(Contract NASw-2691)

Avail: NTIS HC A16/MF A01 CSCL 02A

A brief summary of a comprehensive state of the art survey is presented. The survey includes five broadly applicable technology areas: flight path management, aircraft control systems, crew station & human factors, integration & interfacing technology, and fundamental technology. In addition the survey included military technologies which have a technology transfer potential to the five broadly applicable technology areas. J.M.S.

N80-14019# Air Force Flight Dynamics Lab., Wright-Patterson AFB, Ohio. Flight Control Div.

A FLIGHT CONTROL SYSTEM USING THE DAIS ARCHITEC-TURE

A, P. DeThomas and R. A. Hendrix *In* AGARD Advan. in Guidance and Control Systems Using Digital Tech. Aug. 1979 9 p refs

Avail: NTIS HC A16/MF A01

The development of a digital flight control system simulation capability to examine advanced integrated control architectures, in order to increase system performance and availability, is described. Near term issues, such as multiplexing interfaces with other avionics functions and structuring of software, are covered. J.M.S.

N80-14020# Royal Aircraft Establishment, Farnborough (England). Flight Systems Dept.

TRENDS IN DIGITAL DATA PROCESSING AND SYSTEM ARCHITECTURE

A. A. Callaway *In* AGARD Advan, in Guidance and Control Systems Using Digital Tech. Aug. 1979 5 p

Avail: NTIS HC A16/MF A01

The utilization of airborne digital computers and methods for their integration into digital avionic systems are discussed. The architecture of two aircraft systems, one designed in the 1960s and one in the 1970s is described. The growth in complexity is discussed in terms of two factors: the total flow of data between the subsystems which form the elements of the system, and the total volume of the computing task in terms of the number of words of program required. Techniques which may assist in alleviating the growing complexity are then considered. These include: design management aids, such as requirement statement languages; architectural considerations, such as multiplex data busses and distributed processing; and software techniques, such as high level languages, MASCOT, and structured programming. J.M.S.

N80-14023# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany). Inst. fuer Flugfuehrung.

AN OBSERVER SYSTEM FOR SENSOR FAILURE DETEC-TION AND ISOLATION IN DIGITAL FLIGHT CONTROL SYSTEMS

Norbert Stuckenberg In AGARD Advan, in Guidance and Control Systems Using Digital Tech. Aug. 1979 11 p refs

Avail: NTIS HC A16/MF A01

For the sensor part of a flight control system a sensor failure detection and isolation concept is presented based on analytic redundancy. A conventional triplex sensor system is replaced by a duplex sensor system without loss of the fail-operational property. In the case of a sensor failure, deterministic Luenberger observers provide the information about which of the two sensors of the duplex system actually failed. The proposed concept is applied to a command and stability system of a flight control system. Author

N80-14024# Office National d'Etudes et de Recherches Aerospatiales, Toulouse (France).

AUTOMATIC RECOVERY AFTER SENSOR FAILURE ONBOARD

Marc Labarrere, Marc Pelegrin, and Marc Pircher *In* AGARD Advan. in Guidance and Control Systems Using Digital Tech. Aug. 1979 12 p refs

Avail: NTIS HC A16/MF A01

Two techniques are developed which provide reliable failure detection and isolation for a dual-redundant subset of sensors. A global procedure using a bank of stationary Kalman filters is described. Some difficulties of this technique lead to a sub-optimal procedure which is developed in order to give all the dynamic and static relationships between the measured outputs on the aircraft. These techniques are sucessfully applied to simulated sensor failure on a six degree of freedom aircraft simulation and are applying to sensor failures injected on flight data from the N262 aircraft.

N80-14025# Marconi Avionics Ltd., Rochester (England). Flight Automation Research Lab.

RECENT ADVANCES IN FIBRE OPTICS FOR HIGH INTEGRITY DIGITAL CONTROL SYSTEMS

R. P. G. Collinson In AGARD Advan. in Guidance and Control Systems Using Digital Tech. Aug. 1979 16 p

Avail: NTIS HC A16/MF A01

The methods for using fiber optic cables for interconnecting the elements of an active control system, and the advantages and disadvantages are discussed. The major factors in the use of fiber optics are practical ones, connectors, terminations, ruggedness, and environmental capability of cables. The techniques are described which were developed to make a fiber bundle a practical cable link. The use of multi-access optical highways, particularly for interfacing other systems with the flight control system, (e.g. Air Data and IN systems) is reviewed and principles of the candidate networks outlined. Finally, a new concept for a fiber optic multi-access network is presented which is fully compatible with the new data transmission specification. F.O.S.

N80-14026# General Dynamics/Fort Worth, Tex. REDUNDANCY MANAGEMENT CONSIDERATIONS FOR A CONTROL-CONFIGURED FIGHTER AIRCRAFT TRIPLEX DIGITAL FLY-BY-WIRE FLIGHT CONTROL SYSTEM

John H. Watson, William J. Yousey, and James M. Railey In AGARD Advan. In Guidance and Control Systems Using Digital

Tech. Aug. 1979 23 p ref

(Contract F33615-77-C-3036) Avail: NTIS HC A16/MF A01

To preclude the shut down of the flight control computers for control configured fighter aircraft, redundant (parallel) processing is used in conjunction with redundancy management concepts. Using reliability requirements and goals as expressed in loss-of-control per flight hour, a digital flight control system architecture is evolved with specific emphasis placed on the input, processor and output subsystems. The incorporation of an analog cross strapping of lower reliability sensors is shown to be an effective means of increasing system reliability by retaining sensor redundancy after a computer failure. A technique called control law reconfiguration is developed which insures system survival after a second like sensor failure. Computer contribution to loss-of-control is reduced by the addition of system monitors which increase the computer self-test confidence level. The resultant architecture is shown to have an inherent reliability which is relatively insensitive to the configuration of the actuator interface, thus allowing this interface to be designed based on hardware/software complexity tradeoffs. A.R.H.

N80-14027# Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (West Germany). Aircraft Div.

FAILURE DETECTION, ISOLATION AND INDICATION IN HIGHLY INTEGRATED DIGITAL GUIDANCE AND CONTROL SYSTEM

Wolfgang J. Kubbat *In* AGARD Advan. in Guidance and Control Systems Using Digital Tech. Aug. 1979 17 p

Avail: NTIS HC A16/MF A01

A broad spectrum of modern failure detection and isolation techniques is discussed and it is shown that the failure problem can be significantly reduced with technology and design. Several advanced methods such as vector redundancy, dissimilar redundancy, and methods applied to computers are described and some are backed up by practical examples. Data bus orientated guidance and control systems are considered. Based upon a practical realization example, guidelines are given for the use of MIL STD 1553 B in redundant applications. A.R.H.

N80-14028# Electronique Marcel Dassault, St. Cloud (France). THE INTEGRITY OF ONBOARD COMPUTER PROGRAMS: A SOLUTION [L'INTEGRITE DES LOGICIELS EMBARQUES: UNE SOLUTION]

G. Germain *In* AGARD Advan, in Guidance and Control Systems Using Digital Tech. Aug. 1979 8 p refs In FRENCH

Avail: NTIS HC A16/MF A01

A solution is provided for insuring the integrity of the operating system onboard aircraft and engines. The principle effect is to increase the security of the system so as to make it homogeneous with that of the material, which in the case considered, is very high. Interesting consequences are found in the level of reliability and maintainability of the system, as well as the costs of validation. The means used are the simplest and most economical possible. They are applied to the structure of the operating system and hardware of a computer well adapted for onboard applications. Emphasis is placed on mechanisms for controlling address, which prevents all untimely destruction of the software.

N80-14031# Defence Research Establishment, Ottawa. (Ontario). DEVELOPMENT OF AIDING GPS/STRAPDOWN INERTIAL NAVIGATION SYSTEM

D. F. Liang, D. B. Reid (Lapp (Philip A.) Ltd., Toronto), R. H. Johnson (S and S Software Ltd., Ottawa), and B. G. Fletcher *In* AGARD Advan. in Guidance and Control Systems Using Digital Tech. Aug. 1979 15 p refs

Avail: NTIS HC A16/MF A01

An overview is presented of the design and development of an integrated multisensor navigation system comprised of a NAVSTAR GPS receiver, an aiding strapdown inertial navigation

system (ASIN) and a number of auxiliary sensors, namely, air data and strapdown magnetic sensors. In the present phase, comprehensive software packages were developed to simulate all the subsystems used. A modular and computationally efficient Kalman filtering algorithm was designed and implemented for the integration of the GPS and ASIN. During the course of the development, two techniques were developed. An exact algorithm was derived to transform inertially referenced data into geographic coordinates. Also, a dual channel attitude algorithm was formulated which increases the bandwidth of the attitude computation in the strapdown navigator. Other routines developed include the baro-damping algorithm, auxiliary sensor processing and calibration routines. To provide a baseline level of performance, simulation results were obtained for future flight testing of the hardware. M.M.M.

N80-14034# Twente Univ. of Technology, Enschede (Netherlands). Dept. of Electrical Engineering.

METHODS FOR STRAP-DOWN ATTITUDE ESTIMATION AND NAVIGATION WITH ACCELEROMETERS

R. P. Offereins and M. J. L. Tiernego *In* AGARD Advan. in Guidance and Control Systems Using Digital Tech. Aug. 1979 20 p. refs

Avail: NTIS HC A16/MF A01

Methods are presented for calculating the attitude of a vehicle from the signals of three linear and three angular accelerometers which are rigidly attached to the vehicle. Also course, velocity and position measurements relative to some object can be used. Apart from the attitude, the velocity and position, with respect to this object, are also obtained as output signals. In fire control systems, filters for target position prediction and attitude determination can be combined in this way. M.M.M.

N80-14036# Lockheed-Georgia Co., Marietta.

AN ASSESSMENT OF AND APPROACH TO THE VALIDA-TION OF DIGITAL FLIGHT CONTROL SYSTEMS

D. B. Mulcare and W. G. Ness ${\it In}$ AGARD Advan in Guidance and Control Systems Using Digital Tech. Aug. 1979 12 p refs

Avail: NTIS HC A16/MF A01

Flight-critical digital flight control system functions are evaluated in the context of farther term implementations. The quality and safety associated with fault tolerant, highly integrated, control oriented system implementations are emphasized. Technology needs are addressed so that the verification and validation process for advanced digital flight control systems can be sufficiently developed and purposefully accomodated in system engineering methodologies. K.L.

N80-14037# Electronique Marcel Dassault, St. Cloud (France). THE AVIONICS COMPUTER PROGRAM: PRACTICAL EXPERIENCES WITH A METHODOLOGY [LOGICIEL AVIONIQUE: EXPERIENCES PRATIQUES D'UNE METHOD-OLOGIE]

J. Perin In AGARD Advan, in Guidance and Control Systems Using Digital Tech. Aug. 1979 17 $\rho\,$ In FRENCH

Avail: NTIS HC A16/MF A01

The organization and methodology used in the construction of operating systems in the principle computers of the Mirage F1 and Mirage 200 aircraft are described. Particular emphasis is placed on the definition phases and program validation.

Transl. by A.R.H.

N80-14038# Westland Helicopters Ltd., Yeovil (England). EXPERIENCE IN PRODUCING SOFTWARE FOR THE GROUND STATION OF A REMOTELY PILOTED HELICOP-TER SYSTEM J. P. Webby, P. L. Wescott, M. I. Tucker, and H. M. Smith In AGARD Advan. in Guidance and Control Systems Using Digital Tech. Aug. 1979 9 p

Avail: NTIS HC A16/MF A01

A computer system to control the aircraft, produce graphic displays, and handle data received from the aircraft was produced using the Modular Approach to System Construction, Operation, and Test, written in CORAL 66 language. The overall design of the software and the methods used to design, code, and test the software system are described in detail. K.L.

N80-14042# Litton Systems (Canada) Ltd., Rexdale, (Ontario). A HIGH ACCURACY FLIGHT PROFILE DETERMINING SYSTEM

Peter Roy Vousden and Peter Jonathon Gollop In AGARD Advan. in Guidance and Control Systems Using Digital Tech. Aug. 1979 16 p

Avail: NTIS HC A16/MF A01

The characteristics of a system that determines the flight profile of an aircraft in three orthogonal coordinates to an accuracy of a few feet are described. A standard commercial quality inertial navigation system provides the required aircraft dynamic and attitude data while a special infrared sensor provides periodic updates. A digital computer implements an 18 state Kalman filter for estimation of the inertial errors. Filter data is stored on magnetic tape for immediate reprocessing by a fixed interval Bryson-Frazier smoothing algorithm that further refines the system performance. The techniques, applied in real time, are controlled in a multitask environment by a software operating system. Applications for the systems capability are discussed with emphasis on the initial purpose of providing an accurate self contained trajectory measuring system for ILS and MLS flight checking. Other uses such as airborne surveying and weapon release determining systems are examined. AWH.

N80-14043# Air Force Flight Dynamics Lab., Wright-Patterson AFB, Ohio.

INTEGRATION OF FLIGHT AND FIRE CONTROL Robert K. Huber In AGARD Advan. in Guidance and Control Systems Using Digital Tech. Aug. 1979 9 p refs

Avail: NTIS HC A16/MF A01

An evaluation of an integrated flight and fire control (IFFC) system in modern fighter aircraft is described. The IFFC systems for air to air gunnery, air to ground gunnery, and bombing are outlined. The concept involves the coupling of fire control commands into the flight control system. The concept will be tested on a F-15B aircraft. Primary modifications to the F-15B aircraft include the addition of a digital computer for flight control and fire control signal processing, an electro-optical tracker, and a 1553A multiplex bus for communication between the F-15 central computer, the tracker, and the added digital computer. The IFFC concepts, the planned hardware implementation on the F-15B, and safety of flight considerations are discussed.

AWH

N80-14045*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

SONIC-BOOM WAVE-FRONT SHAPES AND CURVATURES ASSOCIATED WITH MANEUVERING FLIGHT

Raymond L. Barger Dec. 1979 30 p refs

(NASA-TP-1611; L-13339) Avail: NTIS HC A03/MF A01 CSCL 01A

Sonic-boom wave shapes and caustic lines generated by an airplane performing a general maneuver are studied. The equations are programmed for graphical output as a perspective view of the wave shape. This quasi three-dimensional presentation provides a qualitative insight into the effects of the maneuver on the wave shape and the caustic locations. For the special case of planar maneuvers, the principal curvatures of the wave front are derived. These curvatures are needed to calculate the sound field in the vicinity of a caustic. The results of the analysis

are applicable not only to sonic-boom studies but also to the calculation of noise generated by a supersonic rotor or propeller blade tin Author

N80-14047*# Nevada Univ., Las Vegas.

TWO DIMENSIONAL AERODYNAMIC INTERFERENCE EFFECTS ON OSCILLATING AIRFOILS WITH FLAPS IN VENTILATED SUBSONIC WIND TUNNELS

Joseph Fromme, Michael Golberg, and John Werth Washington NASA Dec 1979 150 p refs

(Grant NsG-2140)

(NASA-CR-3210) Avail: NTIS HC A07/MF A01 CSCL 01A The numerical computation of unsteady airloads acting upon thin airfoils with multiple leading and trailing-edge controls in two-dimensional ventilated subsonic wind tunnels is studied. The foundation of the computational method is strengthened with a new and more powerful mathematical existence and convergence theory for solving Cauchy singular integral equations of the first kind, and the method of convergence acceleration by extrapolation to the limit is introduced to analyze airfoils with flaps. New results are presented for steady and unsteady flow, including the effect of acoustic resonance between ventilated wind-tunnel walls and airfoils with oscillating flaps. The computer program TWODI is available for general use and a complete set of instructions is provided. Author

N80-14049*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Colif.

EFFECT OF TIP PLANFORM ON BLADE LOADING CHARAC-TERISTICS FOR A TWO-BLADED ROTOR IN HOVER

John D. Ballard, Kenneth L. Orloff, and Alan B. Luebs (Gates Lear Corp., Wichita, Kan.) Nov. 1979 89 p refs

(NASA-TM-78615; A-7939) Avail: NTIS HC A05/MF A01 CSCL 01A

A laser velocimeter was used to study the flow surrounding a 2.13 m diam. two-bladed, teetering model-scale helicopter rotor operating in the hover condition. The rotor system employed interchangeable blade tips over the outer 25% radius. A conventional rectangular planform and an experimental ogee tip shape were studied. The radial distribution of the blade circulation was obtained by measuring the velocity tangent to a closed rectangular contour around the airfoil section at a number of radial locations. A relationship between local circulation and bound vorticity was invoked to obtain the radial variations in the sectional lifting properties of the blade. The tip vortex-induced velocity was also measured immediately behind the generating blade and immediately before the encounter with the following blade. The mutual influence between blade loading, shed vorticity, and the structure of the encountered vortex are quantified by the results presented and are discussed comparatively for the rectangular and ogee planforms. The experimental loading for the rectangular tip is also compared with predictions of existing rotor analysis. Author

N80-14051*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. MODIFICATION OF AXIAL COMPRESSOR STREAMLINE

PROGRAM FOR ANALYSIS OF ENGINE TEST DATA Jeffrey G. Williams Nov. 1979 49 p refs

(NASA-TM-79312; E-268) Avail: NTIS HC A03/MF A01 CSCL 01A

An existing axial compressor streamline analysis computer program to allow input of measured radial pressure and temperature profiles obtained from engine or cascade data is described. The proposed modifications increase the input flexibility and are accomplished without changing the computer program's A.R.H. input format.

N80-14052^{*} # Kansas Univ. Center for Research, Inc., Lawrence. Flight Research Lab. THE QUASI-VORTEX-LATTICE METHOD FOR WINGS WITH

EDGE VORTEX SEPARATION Final Report

Jenn-Louh Pao and Edward Lan Jan. 1980 25 p refs (Grant NsG-1537)

(NASA-CR-162530; CRINC-FRL-385-1) Avail: NTIS HC A02/MF A01 CSCL 01A

The aerodynamic characteristics of wings with leading-edge vortex separation were predicted using a method based on a flow model with free vortex elements which are allowed to merge into a concentrated core. The calculated pressure distribution is more accurate than that predicted by methods with discrete vortex filaments alone. In addition, the computer time is reduced approximately by half.

N80-14053*# Old Dominion Univ. Research Foundation, Norfolk, Va.

THEORETICAL STUDY OF AERODYNAMIC CHARACTERIS-TICS OF WINGS HAVING VORTEX FLOW Report, 1 Feb. -31 Aug. 1978

C. Subba Reddy Nov. 1979 63 p refs

(Contract NAS1-14193)

(NASA-CR-159184) Avail: NTIS HC A04/MF A01 CSCL 01A

The aerodynamic characteristics of slender wings having separation induced vortex flows are investigated by employing three different computer codes--free vortex sheet, quasi vortex lattice, and suction analogy methods. Their capabilities and limitations are examined, and modifications are discussed. Flat wings of different configurations: arrow, delta, and diamond shapes, as well as cambered delta wings, are studied. The effect of notch ratio on the load distributions and the longitudinal characteristics of a family of arrow and diamond wings is explored. The sectional lift coefficients and the accumulated span loadings are determined for an arrow wing and are seen to be unusual in comparison with the attached flow results. The theoretically predicted results are compared with the existing experimental values. A.W.H.

N80-14054*# Old Dominion Univ. Research Foundation, Norfolk, Va.

OPTIMIZED AERODYNAMIC DESIGN PROCESS FOR SUBSONIC TRANSPORT WING FITTED WITH WINGLETS John M. Kuhiman Dec. 1979 184 p refs (Contract NsG-1357)

(NASA-CR-159180) Avail: NTIS HC A09/MF A01 CSCL 01A

The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction. Author

N80-14055*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

A COMPUTERIZED METHOD FOR CALCULATING FLUTTER CHARACTERISTICS OF A SYSTEM CHARACTERIZED BY TWO DEGREES OF FREEDOM

Winifred A. Stalnaker and William F. Hunter Nov. 1979 52 p ref

(NASA-TM-80153) Avail: NTIS HC A03/MF A01 CSCL 01A

A formulation is given for calculating flutter frequency and flutter speed for a problem with two degrees of freedom. Two different solutions for evaluating the flutter determinant are presented and the results for each method are compared. A program flow diagram, partial program listing, and a sample problem with input and output for the two different methods are included. Although the method was developed for computing flutter characteristics of a pylon installed in the NASA Langley VSTOL tunnel, it is sufficiently general to solve any flutter system that can be characterized by two degrees of freedom. A.R.H.

N80-14056*# Boeing Commercial Airplane Co., Seattle, Wash, AN INVESTIGATION OF SEVERAL FACTORS INVOLVED IN A FINITE DIFFERENCE PROCEDURE FOR ANALYZING THE TRANSONIC FLOW ABOUT HARMONICALLY OSCIL-LATING AIRFOILS AND WINGS

F. E. Ehlers, J. D. Sebastian, and W. H. Weatherill $May \ 1979 \ 89 \ p$ refs

(Contract NAS1-15128)

(NASA-CR-159143; D6-48852) Avail: NTIS HC A05/MF A01 CSCL 01A

Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution converence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential. Author

N80-14058# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Unternehmensbereich Flugzeuge. HIGH ANGLE OF ATTACK CHARACTERISTICS OF DIFFERENT FIGHTER CONFIGURATIONS

Helmut John and Kraus Werner 7 Sep. 1978 40 p refs Presented at Symp. on High Angle of Attack Aerodyn., Sandefjord, Norway, 4-6 Oct. 1978

(MBB-UFE-1443(O)) Avail: NTIS HC A03/MF A01

Basic aerodynamic characteristics of different fighter configerations at separated flow beyond maximum lift where the resultant derivatives are completely different from those associated with attached flow are reviewed. The change in trim conditions is primarily dependant on wing planform and overall aircraft configuration. Results are shown for the aerodynamic development of aircraft configurations which meet these requirements and, at the same time, minimize the resulting drag penalties in the conventional angle of attack regime. Furthermore, problem areas and deficiencies must be identified to allow the definition of concepts for stabilizing such configurations artificially by aid of a flight control system. It is shown that an auxiliary momentum generating system is necessary for controlling the aircraft at flight conditions where aerodynamic control power is not sufficient Author (ESA)

N80-14061# Aeronautical Systems Div., Wright-Patterson AFB, Ohio. Technical and Resources Management Div.

AERONAUTICAL SYSTEMS TECHNOLOGY NEEDS: ES-CAPE, RESCUE AND SURVIVAL Annual report for calendar year 1979

Donald C. Kittinger Aug. 1979 30 p refs Supersedes ASD-TR-78-21

(AD-A074906; ASD-TR-79-5038; ASD-TR-78-21) Avail: NTIS HC A03/MF A01 CSCL 06/7

This report is a part of a compilation of formalized Technology Needs TN covering Equipment Subsystems as identified in the Aeronautical Systems Division. They are based on development/ operational experience, systems studies and new concepts - all related to future system applications. Their presentation is to serve a threefold purpose, i.e., 1 guidance for technology program. 2 proven development potential, and 3 engineering data/ requirements essential for technology use in systems. The identified needs delineate progress desired in performance, control, design flexibility, safety and cost. GRA

N80-14063# Air Force Engineering and Services Center, Tyndall AFB, Fla. Directorate of Environmental Planning.

AN EVALUATION OF THE BIRD/AIRCRAFT STRIKE HAZARD AT BARKSDALE AIR FORCE BASE, LOUISIANA (SAC) Final Report

Jeffrey J. Short and James S. Kent Feb. 1979 68 p

(AD-A074390: AFESC-TM-2-79) Avail: NTIS HC A04/MF A01 CSCL 06/6

Barksdale Air Force Base was surveyed from 31 January to 9 February 1979 by the Air Force Engineering and Service Center's Bird/Aircraft Strike Hazard Team. During this period, operational and environmental factors which combine to create bird strike hazards were observed. Specific recommendations based on observations are provided to reduce the bird strike hazard. GRA

N80-14064# Lincoln Lab., Mass. Inst. of Tech., Lexington. AIR TRAFFIC DENSITY AND DISTRIBUTION MEASURE-MENTS

W. H. Harman 3 May 1979 63 p refs

(Contract DOT-FA77WAI-817; FAA Proj. 052-241-04)

(AD-A073229; FAA-RD-78-45; ATC-80) Avail: NTIS HC A04/MF A01 CSCL 01/2

The measurements made in 1976 to determine the peak air traffic density, the spatial distribution, and the variation with time for transponder equipped aircraft in the Los Angeles area and at several locations on the east coast are presented. The use of these measurements for the design and evaluation of the discrete address beacon system and the air traffic control radar beacon system is discussed. A.W.H.

N80-14065# Fondazione Ugo Bordoni, Rome (Italy). ON RADAR IN AIR TRAFFIC CONTROL Final Report [IL RADAR NEL CONTROLLO DEL TRAFFICO AEREO]

Jul. 1979 485 p refs In ITALIAN; ENGLISH summary Proc. of lectures at CNR Aiuti alla Navagazione e Controllo del Traffic Aereo, Rome 3-5 Jul. 1979

(FUB-11-1979) Avail: NTIS HCA21/MFA01

A collection of 41 papers is presented, grouped in the following main chapters: planning and operation of radar networks, automation in air traffic control, processing and visualization of radar data, developments in primary radar, radar antennas and wave propagation, and developments in secondary radar.

N80-14066# Aeronautica Militare Italiana, Rome. PROBLEMS RELATED TO THE DESIGN AND CONSTRUC-TION OF A RADAR NETWORK Final Report [PRO-BLEMATICHE NELL'IMPOSTAZIONE E REALIZZAZIONE DELLA RETE RADAR]

A. Tangorra In Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 14-23 In ITALIAN: ENGLISH summary

Avail: NTIS HC A21/MF A01

The radar planning for Italy, issued in 1976 by the Italian Air Force, is discussed. The more interesting features connected with the construction of a radar center are examined with special regard to operational availability, automation, and costs. Some of the problems of the execution phase are especially analyzed, including siting criteria, social and administrative problems, and coordination between various organizations involved.

Author (ESA)

N80-14067# Selenia S.p.A., Rome (Italy). Div. Radar e Sistemi Civili.

METHODOLOGY FOR THE EVALUATION OF A RADAR SITE Final Report [METODOLOGIA DI VALUTAZIONE DI UN SITO RADAR]

B. Labozzetta *In* Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 25-30 In ITALIAN; ENGLISH summary

Avail: NTIS HC A21/MF A01

The technical and economical factors involved in a radar site selection are described. The operation requirements are expressed as covered volume, and data flow rate. The macrositing and micrositing criteria are discussed jointly with the analysis of the factors that determine the radar performance for reducting the candidate sites. The fixed echoes, the angles, other signal interference, the overall visibility, and the impact on environment are examined as relevant to the procedure. The analysis is limited to implementation cost only. Running costs are deemed similarly structured. Author (ESA)

N80-14068# Selenia S.p.A., Rome (Italy).

PERFORMANCE EVALUATION METHODS OF A SECON-DARY RADAR NETWORK Final Report [METODI DI VALUTAZIONE DELLE PRESTAZIONI DI UNA RETE DI RADAR SECONDARI]

G. Fraschetti and U. Merlo (Fond. Ugo Bordoni, Rome) *In* Fond. Ugo Bordoni On radar in Air Traffic Control Jul. 1979 p 31-41 refs In ITALIAN; ENGLISH summary

Avail: NTIS HC A21/MF A01

Interference in secondary surveillance radar is evaluated. Analytical and simulation methods for the evaluation of the effects of sensor network and transponder spatial density on detection probability, azimuth measurement, and code identification are proposed. Some results obtained under a typical Italian air traffic condition, taking into account propagative effects, are reported. Extention of the proposed methods to the case of monopulse radar is also outlined. Author (ESA)

N80-14069# Compagnia Italiana Servizi Tecnici, Rome. ORGANIZATION OF AN INTEGRATED GLOBAL MAINTE-NANCE SERVICE Final Report [ORGANIZZAZIONE DI UN SERVIZIO INTEGRATO DI MANUTENZIONE GLOBALE]

R. Grazi *In* Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 43-54 In ITALIAN; ENGLISH summary

Avail: NTIS HC A21/MF A01

The development of integrated maintenance techniques is examined to better satisfy the requirements of a future comprehensive radar system. The present situation is described showing that the present organization for air traffic control is adequate for present and immediate future requirements. For the planned expansion of the radar network an automated, and centralized radar control is proposed. The details of the technical control centers and the organization of the new system are discussed. Author (ESA)

N80-14070# Consiglio Nazionale delle Ricerche, Rome (Italy). Centrol di Studi dei Sistemi di Controllo e Calcolo Automatici. AUTOMATION OF FLIGHT ON-LINE STRATEGIC CONTROL: THE CASE OF SPEED CONTROL ON PRE-ESTABLISHED ROUTES Final Report [L'AUTOMAZIONE DEL CONTROLLO STRATEGICO ON-LINE DELVOLI: IL CASO DEL CONT-ROLLO DI VELOCITA' SU ROTTE PRESTABILITE]

L. Bianco, M. Cini, and L. Grippo *In* Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979, p 58-68 refs In ITALIAN; ENGLISH summary

Avail: NTIS HC A21/MF A01

The problem of on-line strategic control is examined with reference to speed control on preassigned routes, and under the hypothesis that planning is performed for each flight on the basis of the first in, first out discipline. The control problem is formulated as a constrained mathematical programming problem. A real time working algorithm is proposed. Author (ESA)

N80-14071

N80-14071# Consiglio Nazionale delle Ricerche, Rome (Italy). Centro di Studi dei Sistemi di Controllo e Calcolo Automatici. RADAR DATA UTILIZATION IN AUTOMATING THE SEQUENCING OF AIRCRAFTS IN TERMINAL AREAS Final Report [L'UTILIZZAZIONE DEI DATA RADAR NEL-L'AUTOMAZIONE DEL SEQUENZIAMENTO DEGLI AEREI IN AREA TERMINALE]

L. Bianco, S. Ricciardelli, G. Rinaldi, and A. Sassano *In* Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 69-79 refs In ITALIAN: ENGLISH summary

Avail: NTIS HC A21/MF A01

A mathematical model for aircraft sequencing is presented, and an optimizing algorithm is proposed including some tests results. The algorithm finds the optimum by progressively restricting the set of admisable sequences, and evaluating each time preset value function related to the given objectives. As a programming language FORTRAN 5 was used on a Univac 1110/22 computer for the test method. The results show satisfactory operation of the algorithm in the tested interval, especially in relation to the problem of real time operation.

Author (ESA)

N80-14072# Consiglio Nazionale delle Ricerche, Rome (Italy). Ist. di Automatica.

TACTICAL ANALYSIS OF CONFLICTS IN AN AIR TRAFFIC CONTROL SYSTEM: DESIGN AND IMPLEMENTATION OF A PROVISIONAL MODEL Final Report [ANALISI DEI CONFLITTI IN UN SISTEMA ATC SU BASE TATTICA: COSTRUZIONE DI UN MODELLO DI PREVISIONE E SUA IMPLEMENTAZIONE]

P. Bertolazzi and M. Lucertini *In* Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 81-89 refs In ITALIAN; ENGLISH summary

Avail: NTIS HC A21/MF A01

An algorithm for the conflict alert automated function in an air traffic control system is described. The influence of radar errors is analyzed and the numerical results on computing time and on reliability are presented. The program conflict analysis was tested with artificial data and with experimental data from Rome and Genoa. The results show that no false alarms occurred, and that the average CPU time (Univac 1100/22) for a constant load of 30 artificial trajectories is in the order of one second.

Author (ESA)

N80-14073# Consiglio Nazionale delle Ricerche, Pisa (Italy). Ist. di Elaborazione dell'Informazione.

SIMULATION OF A SURVEILLANCE AND CONTROL SYSTEM OF SURFACE TRAFFIC IN AN AIRPORT Final Report [SIMULAZIONE DI UN SISTEMA DI SORVEGLIANZA E CONTROLLO DEL TRAFFICO SUPERFICIALE DI UN AEROPORTO]

M. Mercatanti, G. Bastianini, U. Ferri, and M. Saliba $\it In$ Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 91-101 refs. In ITALIAN

Avail: NTIS HC A21/MF A01

The main requirements of a program for the simulation of a surveillance and control system are examined for the case of a system using primary radar to control aircraft and service vehicles. Several complexity levels of the system are proposed corresponding to program modules. A minimum configuration of the program includes airfield definition data, simulation of radar signals from aircraft on the airport surface, recognition of the aircraft based upon radar signals and identification data given to the system at the landing stage, and representation on a video screen of the airport, and the aircraft identified by corresponding labels.

Author (ESA)

N80-14074# Selenia S.p.A., Rome (Italy).

TRACKING ALGORITHMS FOR MONO AND MULTIRADAR Final Report [ALGORITMI DI TRACKING MONO E MULTI RADAR]

S. Pardini, N. Del (Florence Univ.), and G. Zappa (Florence Univ.) In Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 111-122 refs In ITALIAN; ENGLISH summary

Avail: NTIS HC A21/MF A01

Some algorithms for target tracking by means of track-whilescan techniques are analyzed. Some models of target paths, matched to typical air traffic control trajectories, are shown. In the case of multiradar systems, additional causes of measurement error are discussed, and some ways to integrate information coming from different radars are compared. Author (ESA)

N80-14075# Selenia S.p.A., Rome (Italy). Div. Radar e Sistemi Civili.

A DISTRIBUTED PROCESSING SYSTEM FOR RADAR DATA PRESENTATION Final Report [SISTEMA DI PROCESSING E PRESENTAZIONE DATI RADAR A STRUTTURA DIS-TRIBUITA]

G. Barale In Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 123-134 In ITALIAN; ENGLISH summary

Avail: NTIS HC A21/MF A01

The main processing functions used for radar data handling in air traffic control automated systems are described using the example of a distributed processing system based on a minicomputer architecture in which all the system functions are performed. Another example consisting of recent studies on a multiprocessor systems for air traffic control is also given. Author (ESA)

N80-14076# Selenia S.p.A., Rome (Italy). Div. Radar e Sistemi Civili.

FILTERING OF SYNTHETIC RADAR DATA Final Report [FILTRAGGIO DELL'INFORMAZIONE RADAR SINTETICA] N. lafolla and R. Petrioli (Fond. Ugo Bordoni) /n Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 135-142 In ITALIAN; ENGLISH summary

Avail: NTIS HC A21/MF A01

Further processing of radar data coming out of the primary and secondary extractors is studied to reduce mistakes and noise level by using space and time correlations wider than those currently adopted in radar sensors and extractors. The most frequent anomalies of primary and secondary radar data are first reviewed. A detailed description of synthetic radar data filtering is presented, and then compared to a multiradar air traffic control system with distributed architecture. It includes the initial plot processing, the plot combination, the signature-plot association, the logic of signature characterization. and the multiradar combination and special processing. The aim is to simulate human operator data processing leading to a possibility of further automation of radar surveillance systems. Author (ESA)

N80-14077# Selenia S.p.A., Rome (Italy).

VISUAL DISPLAYS FOR AIR TRAFFIC CONTROL DATA Final Report [SISTEMI DI VISUALIZZAZIONE DEI DATI ATC]

Franco Odoardi *In* Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 143-153 In ITALIAN: ENGLISH summary

Avail: NTIS HC A21/MF A01

A review of visual displays for air traffic control data is presented. Topics discussed include: raw radar data and computer generated data mixed systems, maximum displayable load and readability of synthetic data in a very bright environment, dedicated displays and requirements, and color display and digital scan converter developments. Author (ESA)

N80-14086# Selenia S.p.A., Rome (Italy).

IMPLEMENTATION OF AIR TRAFFIC CONTROL RADAR RECEIVERS WITH FAST FOURIER TRANSFORM PROCES-SORS Final Report [INTEGRAZIONE COERENTE CON FFT NEI RICEVITORI RADAR PER ATC]

In Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 249-260 In ITALIAN; ENGLISH summary

Avail: NTIS HC A21/MF A01

The main radar problems concerning present and future air traffic control (ATC) radars are briefly reviewed with emphasis

on moving clutter. The equivalence between a fast Fourier transform (FFT) processor and a Doppler filter bank is shown. A video FFT receiver for an ATC radar is described. Results on the performance of the FFT receiver are compared to that of the moving window receiver. It is concluded that in a clutter free environment the FFT receiver has greater losses, while in moving clutter it shows relevant advantages. Author (ESA)

N80-14087# Segnalamento Marittimo ed Aereo S.p.A., Florence (Italv).

DEVELOPMENT TRENDS OF AIRPORT SURFACE TRAFFIC CONTROL RADAR Final Report [PREVEDIBILI SVILUPPI DEL RADAR PER IL CONTROLLO DEL TRAFFICO SULLA SUPERFICIE AEROPORTUALE]

S. Betini, M. Piattelli, and G. Defina In Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 261-267 In ITALIAN; ENGLISH summary

Avail: NTIS HC A21/MF A01

The systems in use, and development trends are examined, pointing out that surface traffic growth in airports makes economically attractive a generalized use of dedicated radar sensors. It is shown that trends at present are oriented towards the I and J band frequencies which are more reliable in rainfall, while some time ago the millimeter waves were studied because of their higher angular resolution. Some specific techniques. together with new electronic components suggest that it is possible to develop a fully operative, cost-effective device. Author (ESA)

N80-14088# Consiglio Nazionale delle Ricerche, Florence (Italy). Ist. di Ricerca sulle Onde Elettromagnetiche.

AN AIR TRAFFIC CHANNEL SIMULATION BY MEANS OF RAY-TRACING TECHNIQUES Final Report [LA SIMULAZ-IONE DEL CANALE AERONAUTICO PER MEZZO DI TECNICHE DI RAY-TRACING]

P. Beni, F. Bertini, and P. F. Pellegrini In Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 277-285 In ITALIAN: ENGLISH summary

Avail: NTIS HC A21/MF A01

A three-dimensional ray tracing procedure is described which was used for propagation studies on the secondary surveillance radar (SSR) RF aeronautical channels. This procedure is based on the numerical integration of the ray canonical equations originating from the geometric optics. Phenomena such as multipath (due to the specular reflections) and shadowing, can be investigated by means of this method of numerical computer simulation. The computed ray paths of the RF energy, utilizing an environment model (whichincludes a tridimensional true model of the ground surface and of the atmosphere, constructed from experimental data) can be compared with propagation data (measured) obtained in real situations. The theoretical formulation of ray tracing is summarized. A description is given of the procedure followed for modelling the ground surface, and an example of ray tracing is presented Author (ESA)

N80-14092# Consiglio Nazionale delle Ricerche, Florence (Italy). Ist. di Ricerca sulle Onde Elettromagnetiche.

L-BAND MEASUREMENTS IN THE AIR TRAFFIC CHANNEL TO CHARACTERIZE SECONDARY RADAR SYSTEMS Final Report [MISURE SUL CANALE AERONAUTICO IN BANDA L AI FINI DELLA CARATERRIZZAZIONE DI SISTEMI DI RADAR SECONDARI]

P. F. Pellegrini, R. Cappadona, R. Ruisi, M. Trambusti, and V. Venturi In Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 323-332 In ITALIAN; ENGLISH summary

Avail: NTIS HC A21/MF A01

The equipment used to characterize secondary radar propagation channels is described. The equipment includes a transmitting system, a receiving system, and a data processing system. Part of the apparatus was designed to be airborne, and part to be used on the ground independently, or with a radar system.

Author (ESA)

N80-14100# Selenia S.p.A., Rome (Italy).

ANTIREFLECTION TECHNIQUES FOR DETECTING FALSE TRACKS IN AIR TRAFFIC SURVEILLANCE WITH SECOND-ARY RADAR Final Report TECHNICHE ANTIRIFLES-SIONE PER LA INDIVIDUAZIONE DELLE FALSE TRACCE NELLA SORVEGLIANZA AEREA CON RADAR SECOND-ARI

G. Fraschetti, D. Giuli (Florence Univ.), and V. Sacco (Florence Univ.) In Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 415-424 refs In ITALIAN: ENGLISH summary

Avail: NTIS HC A21/MF A01

Algorithms are presented which allow the target reports to be processed for false target and false track detection in order to avoid the consequent problems in secondary surveillance radar systems. The procedure is based upon the following characteristics of false tracks due to reflections: (1) same codes for false and true reports, (2) same elevation, (3) larger distance for the false report, (4) corresponding azimuth of the false report with that of a fixed obstacle, and (5) correlation is kept between both reports of the same radar sweep. Experimental results are presented, showing that 2.74% of the reports were declared false, while 2.42% of those reports were correlated with a false track. Author (ESA)

N80-14104# Trieste Univ. (Italy). Ist. di Elettrotecnia ed Elettronica.

AUTOMATIC SYSTEMS FOR AIRPORT SURFACE MOBILE MEDIA SURVEILLANCE BASED ON THE USE OF SECOND-ARY MEDIA Final Report [SISTEMI AUTOMATICI PER LA SORVEGLIANZA DEI MEZZI MOBILI SU UNA SUPER-FICIE AEROPORTUALE BASATI SULL'USO DEL RADAR SECONDARIO]

E. Carli, T. Corzani, G. Falciasecca (Bologne Univ.), F. Ferdani (Fond. Ugo Bordoni), L. Mania, and F. Vatalaro In Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 467-476 refs In ITALIAN: ENGLISH summary

Avail: NTIS HC A21/MF A01

The studies carried out on airport surface surveillance systems suggest the use of secondary radar for a fully automated solution. Some techniques tried in other countries are first reviewed and then an original one is advanced. It is based on the combination of the hyperbolic/azimuth interrogation and the side lobe suppression technique. The system can be implemented with free space propagation, or by means of open waveguides. The open waveguide propagation is the more promising one but its feasibility is conditioned to the design of a suitable structure. Some significant results are presented. Author (ESA)

N80-14105# Politecnico di Torino (Italy). Ist. di Elettronica e Telecommunicazioni.

ONBOARD COLLISION AVOIDANCE SYSTEM: ENVIRON-MENTAL INFLUENCE ON THE TRACKING ALGORITHM **REQUIREMENTS Final Report [SISTEMI DI ANTICOL-**LISIONE DI BORDO: INFLUENZE DELL'AMBIENTE OPERATIVO SUI REQUISITI DEGLI ALGORITMI DI TRACKING

V. Castellani and M. Pent In Fond. Ugo Bordoni On Radar in Air Traffic Control Jul. 1979 p 477-486 refs In ITALIAN; ENGLISH summary

Avail: NTIS HC A21/MF A01

A simulation program was studied to assess the performance of an airborne secondary surveillance radar collision avoidance system. Some first qualitative results are given, and the implementation of tracking and prediction algorithms is discussed. The problem of preventing interference effects is discussed showing the need for the development of suitable algorithms to that effect. Author (ESA)

N80-14106# Arinc Research Corp., Santa Ana, Calif. AVIONICS INSTALLATION (AVSTALL) COST MODEL FOR USER EQUIPMENT OF NAVSTAR GLOBAL POSITIONING SYSTEM

W. Stewart, D. Allen, and P. Orth Jun. 1979 48 p (Contract F04701-78-C-0124)

Rept-1727-04-1-1959) (AD-A073681; NTIS Avail: HC A03/MF A01 CSCL 17/7

An avionics installation (AVSTALL) cost model developed for application to the NAVSTAR Global Positioning System (GPS) is described. The model determines the aircraft-peculiar costs of installing avionics equipment--for example. GPS user equipment-into military aircraft. It is based on cost estimating relationships (CERs) developed from an analysis of 51 previous Class V avionics modifications to Air Force aircraft. The development and application of these CERs are explained in this report. GRA

N80-14107* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

ACOUSTICALLY SWEPT ROTOR Patent

Fredric H. Schmitz, Donald A. Boxwell, and Rande Vause, inventors (to NASA) Issued 25 Sep. 1979 23 p Filed 8 Sep. 1977 Supersedes N77-31130 (15 - 22, p 2893)

(NASA-Case-ARC-11106-1; US-Patent-4,168,939;

US-Patent-Appl-SN-831633; US-Patent-Class-41.6-228;

US-Patent-Class-416-238; US-Patent-Class-415-199) Avail: US Patent and Trademark Office CSCL 01C

Impulsive noise reduction is provided in a rotor blade by acoustically sweeping the chord line from root to tip so that the acoustic radiation resulting from the summation of potential singularities used to model the flow about the blade tend to cancel for all times at an observation point in the acoustic far field Official Gazette of the U.S. Patent and Trademark Office

N80-14108* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

QUIET SHORT-HAUL RESEARCH AIRCRAFT FAMILIARIZA-TION DOCUMENT

Robert C. McCracken Nov. 1979 96 p

(NASA-TM-81149; A-7975) Avail: NASA. Ames Res. Center, Moffett Field, Calif. 94035 CSCL 01C

The design features and general characteristics of the NASA Quiet Short-Haul Research Aircraft are described. Aerodynamic characteristics and performance are discussed based on predictions and early flight-test data. Principle airplane systems, including the airborne data-acquisition system, are also described. The aircraft was designed and built to fulfill the need for a national research facility to explore the use of upper surface-blowing propulsive-lift technology in providing short takeoff and landing capability, and perform advanced experiments in various technical disciplines such as aerodynamics, propulsion, stability and control, handling qualities, avionics and flight-control systems, trailingvortex phenomena, acoustics, structure and loads, operating systems, human factors, and airworthiness/certification criteria. An unusually austere approach using experimental shop practices resulted in a low cost and high research capability. Author

N80-14109# Aerospace Engineering Test Establishment, Cold Lake (Alberta).

DETERMINATION OF THE REPEATABILITY OF PEC

R. D. Michas 23 Oct. 1979 37 p refs (AETE-PR-79/36; CF-5) Avail: NTIS HC A03/MF A01

Position error calibrations conducted on four CF-5A, six CF-5 A/R, and five CF-5D aircraft using the standard tower fly by and pacing methods are discussed. The variation in position error, between individual aircraft of each type is examined. Ammendments to the position error correction charts for the CF-5A and CF-5D Aircraft Operation Instruction and redesign of the correction cam are discussed. A.W.H.

N80-14111# Dreyfuss-Pellman Corp., Stamford, Conn. NON-CONTACTING ELECTRO-OPTICAL CONTOURING OF HELICOPTER ROTOR BLADES Final Report, Oct. 1977 Oct. 1978

Marc G. Dreyfus and Arnold Pellman 11 Dec. 1978 80 p

(Contract DAAK50-78-C-0008)

(AD-A070806: USAAVRADCOM-TR-79-30) Avail: NTIS HC A05/MF A01 CSCL 01/3

Non-contact contour measurements of helicopter rotor blades to accuracies of 0.0001 in, are possible via range finding by triangulation employing electro-optical techniques. A laboratory breadboard of such a system has been built and tested. The results of these tests indicate that the construction of a full prototype system is feasible and desirable. GRA

N80-14113*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DIGITAL SYSTEM FOR DYNAMIC TURBINE ENGINE BLADE DISPLACEMENT MEASUREMENTS

Louis J. Kiraly 13 Mar. 1979 13 p refs Proposed for presentation at 25th Ann. Intern. Gas Turbine Conf. and the 22d Ann. Fluids Engr. Conf., New Orleans, 9-13 Mar. 1980; sponsored by Am. Soc. of Mech. Engr.

(NASA-TM-81382; E-288) Avail: NTIS HC A02/MF A01 CSCL 21E

An instrumentation concept for measuring blade tip displacements which employs optical probes and an array of microcomputers is presented. The system represents a hitherto unknown instrumentation capability for the acquisition and direct digitization of deflection data concurrently from all of the blade tips of an operational engine rotor undergoing flutter or forced vibration. System measurements are made using optical transducers which are fixed to the case. Measurements made in this way are the equivalent of those obtained by placing three surface-normal displacement transducers at three positions on each blade of an operational rotor. M.M.M.

N80-14114*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

PRELIMINARY TEST RESULTS OF A FLIGHT MANAGE. MENT ALGORITHM FOR FUEL CONSERVATIVE DESCENTS IN A TIME BASED METERED TRAFFIC ENVIRONMENT Charles E. Knox and Dennis G. Cannon (Boeing Commercial Airplane Co., Seattle, Wash.) Nov. 1979 34 p refs (NASA-TM-80194) Avail: NTIS HC A03/MF A01 CSCL 01D

A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed. AWH

N80-14115*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

QUIET CLEAN SHORT HAUL EXPERIMENTAL ENGINE (QCSEE) ACOUSTIC AND AERODYNAMIC TESTS ON A SCALE MODEL OVER-THE-WING THRUST REVERSER AND FORWARD THRUST NOZZLE

D. L. Stimpert 18 Jan. 1978 85 p refs (Contract NAS3-18021)

(NASA-CR-135254; R75AEG504) Avail: NTIS HC A05/MF A01 CSCL 21E

An acoustic and aerodynamic test program was conducted on a 1/6.25 scale model of the Quiet, Clean, Short-Haul Experimental Engine (QCSEE) forward thrust over-the-wing (OTW) nozzle and OTW thrust reverser. In reverse thrust, the effect of reverser geometry was studied by parametric variations in blocker spacing, blocker height, lip angle, and lip length. Forward thrust nozzle tests determined the jet noise levels of the cruise and takeoff nozzles, the effect of opening side doors to achieve takeoff thrust, and scrubbing noise of the cruise and takeoff jet on a

simulated wing surface. Velocity profiles are presented for both forward and reverse thrust nozzles. An estimate of the reverse thrust was made utilizing the measured centerline turning angle. Author

N80-14116*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE). UNDER-THE-WING (UTW) ENGINE BOILERPLATE NACELLE TEST REPORT. VOLUME 2: AERODYNAMICS AND PERFORMANCE

31 Dec. 1977 61 p refs

(Contract NAS3-18021)

(NASA-CR-135250; R77AEG2122-Vol-2) Avail: NTIS HC A04/MF A01 CSCL 21E

The initial phase of testing of the under the wing engine and boilerplate nacelle components is discussed. The aerodynamics and performance are outlined. M.M.M.

N80-14117*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

QUIET, CLEAN, SHORT-HAUL, EXPERIMENTAL ENGINE (QCSEE) UNDER-THE-WING (UTW) ENGINE ACOUSTIC DESIGN

H. D. Sowers and W. E. Coward Jan. 1978 62 p refs (Contract NAS3-18021)

(NASA-CR-135267; R76AEG195) Avail: NTIS HC A04/MF A01 CSCL 21E

The acoustic considerations involved in the low source noise basic engine design and the design procedures followed in the development of the under-the-wing (UTW) engine boilerplate and composite nacelle acoustic treatment designs are presented. Laboratory experiments, component tests, and scale model and engine tests supporting the UTW engine acoustic design are referenced. Acoustic design features include a near-sonic inlet, low fan and core pressure ratios, low fan tip speed, high and low frequency stacked core treatment, multiple thickness treatment, and fan frame and stator vane treatment. R.E.S.

N80-14118*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

QUIET, CLEAN, SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) OVER-THE-WING (OTW) ENGINE ACOUSTIC DESIGN

H. D. Sowers and W. E. Coward Jun. 1978 58 p refs (Contract NAS3-18021)

(NASA-CR-135268; R76AEG228) Avail: NTIS HC A04/MF A01 CSCL 21E

The acoustic considerations involved in the low source noise basic engine design and the design procedures followed in the development of the over-the-wing (OTW) nacelle acoustic treatment design are presented. Laboratory experiments, component tests, and scale model and engine tests supporting the OTW engine acoustic design are referenced. Acoustic design features include a near-sonic inlet, low fan and core pressure ratios, low fan tip speed, high and low frequency stacked core treatment, multiple thickness treatment, and fan frame and stator Nane treatment. R.E.S.

N80-14119^{*}# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept. OUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE

QCSEE) UNDER-THE-WING (UTW) GRAPHITE/PMR COWL DEVELOPMENT

C. L. Ruggles Jul. 1978 75 p refs (Contract NAS3-18021)

(NASA-CR-135279; R78AEG206) Avail: NTIS HC A04/MF A01 CSCL 21E

The PMR process development, tooling concepts, testing conducted to generate materials properties data, and the fabrication of a subscale model of the inner cowl are presented. It was concluded that the materials, processes, and tooling concepts were satisfactory for making an inner cowl with adequate structural integrity. M.M.M. **N80-14120^{*}** General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) OVER-THE-WING (OTW) PROPULSION SYSTEM TEST REPORT. VOLUME 2: AERODYNAMICS AND PERFORMANCE

Jul. 1978 49 p refs

(Contract NAS3-18021)

(NASA-CR-135324: R77AEG474-Vol-2) Avail: NTIS HC A03/MF A01 CSCL 21E

The design and testing of the over the wing engine, a high bypass, geared turbofan engine, are discussed. The propulsion system performance is examined for uninstalled performance and installed performance. The fan aerodynamic performance and the D nozzle and reverser thrust performance are evaluated. A.W.H.

N80-14121*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

STATIC TEST-STAND PERFORMANCE OF THE YF-102 TURBOFAN ENGINE WITH SEVERAL EXHAUST CONFIG-URATIONS FOR THE QUIET SHORT-HAUL RESEARCH AIRCRAFT (QSRA)

Jack G. McArdle, Leonard Homyak, and Allan S. Moore Nov. 1979 62 $\ensuremath{\text{p}}$

(NASA-TP-1556; E-019) Avail: NTIS HC A04/MF A01 CSCL 21E

The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume. A.R.H.

N80-14122*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

FEASIBILITY OF SIC COMPOSITE STRUCTURES FOR 1644 K (2500 F) GAS TURBINE SEAL APPLICATION Final Report, 28 Apr. - 30 May 1979 R. Darolia Nov. 1979 120 p ref

(Contract NAS3-20082) (NASA-CR-159597; R79AEG625) Avail: NTIS HC A06/MF A01 CSCL 21E

The silicon carbide composites evaluated consisted of Si/SiC and sintered silicon carbide as substrates, both with attached surface layers containing BN as an additive. A total of twenty-eight candidates with variations in substrate type and density, and layer chemistry, density, microstructure, and thickness were evaluated for abradability, cold particle erosion resistance, static oxidation resistance, ballistic impact resistance, and fabricability. BN-free layers with variations in density and pore size were later added for evaluation. The most promising candidates were evaluated for Mach 1.0 gas oxidation/erosion resistance from 1477 K (2200 F) to 1644 K (2500 F). The as-fabricated rub layers did not perform satisfactorily in the gas oxidation/erosion tests. However, preoxidation was found to be beneficial in improving the hot gas erosion resistance. Overall, the laboratory and rig test evaluations show that material properties are suitable for 1477 K (2200 F) gas turbine seal applications. Further improvements are needed in hot gas erosion resistance and abradability to demonstrate feasibility to 1644 K (250 F). A.R.H.

N80-14123^{*}# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DYNAMIC RESPONSE OF A MACH 2.5 AXISYMMETRIC INLET AND TURBOJET ENGINE WITH A POPPET-VALUE CONTROLLED INLET STABILITY BYPASS SYSTEM WHEN SUBJECTED TO INTERNAL AND EXTERNAL AIRFLOW TRANSIENTS

Bobby W. Sanders Washington Jan. 1980 102 p refs (NASA-TP-1531; E-9467) Avail: NTIS HC A06/MF A01 CSCL 21E

The throat of a Mach 2.5 inlet that was attached to a turbojet engine was fitted with a poppet-valve-controlled stability bypass system that was designed to provide a large, stable airflow range. Propulsion system response and stability bypass performance were determined for several transient airflow disturbances, both internal and external. Internal airflow, power lever angle, and primary-nozzle area as well as compressor stall. For reference, data are also included for a conventional, fixed-exit bleed system. The poppet valves greatly increased inlet stability and had no adverse effects on propulsion system performance. Limited unstarted-inlet bleed performance data are presented.

N80-14124*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

TURBOJET-EXHAUST-NOZZLE SECONDARY-AIRFLOW PUMPING AS AN EXIT CONTROL OF AN INLET-STABILITY BYPASS SYSTEM FOR A MACH 2.5 AXISYMMETRIC MIXED-COMPRESSION INLET

Bobby W. Sanders Jan. 1980 82 p refs

(NASA-TP-1532; E-9468) Avail: NTIS HC A05/MF A01 CSCL 21E

The throat of a Mach 2.5 inlet that was attached to a turbojet engine was fitted with large, porous bleed areas to provide a stability bypass system that would allow a large, stable airflow range. Exhaust-nozzle, secondary-airflow pumping was used as the exit control for the stability bypass airflow. Propulsion system response and stability bypass performance were obtained for several transient airflow disturbances, both internal and external. Internal airflow disturbances included reductions in overboard bypass airflow, power lever angle, and primary-nozzle area, as well as compressor stall. Nozzle secondary pumping as a stability bypass exit control can provide the inlet with a large stability margin with no adverse effects on propulsion system performance.

N80-14125*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EFFECT OF DEGREE OF FUEL VAPORIZATION UPON EMISSIONS FOR A PREMIXED PARTIALLY VAPORIZED COMBUSTION SYSTEM

Larry P. Cooper Jan. 1980 25 p refs

(NASA-TP-1582; E-010) Avail: NTIS HC A02/MF A01 CSCL 21E

An experimental and analytical study of the combustion of partially vaporized fuel-air mixtures was performed to assess the

impact of the degree of fuel vaporization upon emissions for a premixing-prevaporizing flametube combustor. Data collected in this study showed near linear increases in nitric oxide emissions with decreasing vaporization at equivalence ratios of 0.6. For equivalence ratios of 0.72, the degree of vaporization had very little impact on nitric oxide emissions. A simple mechanism which accounts for the combustion of liquid droplets in partially vaporized mixtures was found to agree with the measured results with fair accuracy with respect to both trends and magnitudes.

Author

N80-14126*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

NASA BROAD-SPECIFICATION FUELS COMBUSTION TECHNOLOGY PROGRAM: STATUS AND DESCRIPTION James S. Fear 1979 14 p refs Presented at 25th Ann. Intern. Gas Turbine Conf., New Orleans, 9-13 Mar. 1980; sponsored by Am. Soc. of Mech. Engr.

(NASA-TM-79315; E-272) Avail: NTIS HC A02/MF A01 CSCL 21E

The program presented is a contracted effort to evolve and demonstrate the technology required to utilize broad-specification fuels in current and next generation commercial Conventional Takeoff and Landing aircraft engines, and to verify this technology in full-scale engine tests in 1983. The program consists of three phases: Combustor Concept Screening, Combustor Optimization Testing, and Engine Verification Testing. The development and screening of the combustion system designs for the CF6-80 engine and the JT9D-7 engine, respectively, in high-pressure sector test rigs are reported.

N80-14127^{*}# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

THE CF6 JET ENGINE PERFORMANCE IMPROVEMENT: NEW FRONT MOUNT

W. A. Fasching Dec. 1979 139 p refs (Contract NAS3-20629) (NASA-CR-159639; R79AEG366) Avail: NTIS HC A07/MF A01 CSCL 21E

The New Front Mount was evaluated ii. component tests including stress, deflection/distortion and fatigue tests. The test results demonstrated a performance improvement of 0.1% in cruise sfc, 16% in compressor stall margin and 10% in compressor stator angle margin. The New Front Mount hardware successfully completed 35,000 simulated flight cycles endurance testing.

Author

N80-14128*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

LASER-OPTICAL BLADE TIP CLEARANCE MEASUREMENT SYSTEM

John P. Barranger and M. John Ford (Pratt and Whitney Aircraft Group, West Palm Beach, Fla.) 13 Mar. 1979 10 p refs Proposed for presentation at 25th Ann. Intern. Gas Turbine Conf. and the 22d Ann. Fluids Engr. Conf., New Orleans, 9-13 Mar. 1980; sponsored by Am. Soc. of Mech. Engr.

(NASA-TM-81376) Avail: NTIS HC A02/MF A01 CSCL 21E

A laser-optical measurement system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in rotating component rigs and complete engines. The system is applicable to fan, compressor and turbine blade tip clearance measurements. The engine mounted probe is particularly suitable for operation in the extreme turbine environment. The measurement system consists of an optical subsystem, an electronic subsystem and a computing and graphic terminal. Bench tests and environmental tests were conducted to confirm operation at temperatures, pressures, and vibration levels typically encountered in an operating gas turbine engine. DOE

N80-14129^{*}# Detroit Diesel Allison, Indianapolis, Ind. STUDY OF TURBOPROP SYSTEMS RELIABILITY AND MAINTENANCE COSTS Final Report Jun. 1978 304 p refs

(Contract NAS3-20057) (NASA-CR-135192; EDR-9132) Avail: NTIS HC A14/MF A01 CSCL 21E

The overall reliability and maintenance costs (R&MC's) of past and current turboprop systems were examined. Maintenance cost drivers were found to be scheduled overhaul (40%), lack of modularity particularly in the propeller and reduction gearbox, and lack of inherent durability (reliability) of some parts. Comparisons were made between the 501-D13/54H60 turboprop system and the widely used JT8D turbofan. It was found that the total maintenance cost per flight hour of the turboprop was 75% higher than that of the JT8D turbofan. Part of this difference was due to propeller and gearbox costs being higher than those of the fan and reverser, but most of the difference was in the engine core where the older technology turboprop core maintenance costs were nearly 70 percent higher than for the turbofan. The estimated maintenance cost of both the advanced turboprop and advanced turbofan were less than the JT8D. The conclusion was that an advanced turboprop and an advanced turbofan, using similar cores, will have very competitive maintenance costs per flight hour. J.M.S.

N80-14130*# Avco Lycoming Div., Williamsport, Pa. EXHAUST EMISSION REDUCTION FOR INTERMITTENT COMBUSTION AIRCRAFT ENGINES

R. N. Moffett Oct. 1979 114 p

(Contract NAS3-19754)

(NASA-CR-159757) Avail: NTIS HC A06/MF A01 CSCL 21E

Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity. A.R.H.

N80-14131*# Universal Systems, Inc., Arlington, Va. OBLIQUE DETONATION WAVE RAMJET Richard B. Morrison Jan. 1980 87 p refs

(Contract NAS1-15344)

(NASA-CR-159192) Avail: NTIS HC A05/MF A01 CSCL 21E

Two conceptual designs of the oblique detonation wave ramjet are presented. The performance is evaluated for stoichiometric hydrogen-air equivalence ratios of phi = 1/3, 2/3 and 1 for a range of flight Mach numbers from 6 to 10. A.R.H.

N80-14132# Martin Marietta Aerospace, Denver, Colo.

PROPULSION OPTIONS FOR THE HI SPOT LONG ENDUR-ANCE DRONE AIRSHIP Final Report, Nov. 1978 - Aug. 1979

William L. Marcy and Ralph O. Hookway 15 Sep. 1979 55 p refs

(Contract N62269-79-C-0204)

(AD-A074595; MCR-79-632; NADC-78193-60) Avail: NTIS HC A04/MF A01 CSCL 21/5

Airbreathing, monofueled, stored-energy, and solarrechargeable propulsion systems have been studied for the HI SPOT Long Endurance Drone Airship, providing constant-level electrical power as well as variable aerodynamic thrust to maintain position in winds varying from 15 to 100 knots at high altitude. A hydrogen fueled airbreathing engine is optimum for mission lengths up to 30 days or more. GRA

N80-14133# Naval Postgraduate School, Monterey, Calif. AN ADAPTATION AND VALIDATION OF A PRIMITIVE VARIABLE MATHEMATICAL MODEL FOR PREDICTING THE FLOWS IN TURBOJET TEST CELLS AND SOLID FUEL RAMJETS M.S. Thesis

Charles Albert Stevenson Jun. 1979 75 p refs (AD-A074187) Avail: NTIS HC A04/MF A01 CSCL 21/5

An adaptation of a primitive variable, finite-difference computer program was accomplished in order to predict the non-reacting flow fields in turbojet test cells and the reacting flow fields in solid fuel ramjets. The study compares the predictions of the primitive variable computer model with an earlier computer model and empirical data. It was found that the new model reasonably predicted the flow fields in both geometries. In addition, the primitive variable model allowed simulation of test cell flows up to full engine throttle conditions and solid fuel ramjet flows which included an aft mixing chamber. GRA

N80-14134# ARO, Inc., Arnold Air Force Station, Tenn.

APPLICATION OF THE MULTISTAGE AXIAL-FLOW COMPRESSOR TIME-DEPENDENT MATHEMATICAL MODELING TECHNIQUE TO THE TF41-A-1 MODIFIED BLOCK 76 COMPRESSOR Final Report, Jan. 1978 - Mar. 1979

C. E. Chamblee AEDC Sep. 1979 99 p refs (AD-A074478; AEDC-TR-79-39) Avail: NTIS HC A05/MF A01 CSCL 21/5

A one-dimensional, steady-state TF41-A-1 compressor mathematical model for stability assessment with undisturbed flow, and a three-dimensional time-dependent TF41-A-1 compressor mathematical model for analysis of distorted inflows and transient and dynamic disturbances were developed. Example problems and comparisons to experimental results are presented for both models. The problems using the onedimensional, steady-state model consisted of determination of the steady-state stability limits (surge lines) with undisturbed flow for three distinct inlet guide vane schedules. Those problems using the three-dimensional, time-dependent model included determination of the stability limit (surge line) reduction caused by pure radial pressure inlet distortion, pure circumferential pressure, and pure circumferential temperature inlet distortion. The effects of rapid upward ramps of inlet temperature on compressor stability were also investigated. The TF41-A-1 compressor models computed the compressor stability limits with reasonable accuracy. GRA

N80-14135# Institut National des Sciences Appliquees, Lyon (France). Lab. de Mecanique de Structures.

ON THE USE OF VIBRATION SELF-DAMPING MATERIALS IN THE MANUFACTURE OF PARTS FOR ROTATING MACHINERY Final Report UTILISATION DES MATERIAUX AMORTISSANTS POUR LA REALISATION D'ELEMENTS DE MACHINE TOURNANTE

Michel Lalanne, Phillippe Trompette, David Jones, Johan DerHagopian, and Abdul Hommeida Oct. 1977 124 p refs In FRENCH

(Contract DGRST-75-7-0968)

Avail: NTIS HC A06/MF A01

The control of structural vibration in rotating pieces in the 400C to 600C temperature range by the utilization of damping materials was studied. The test facilities and measuring systems developed for this study are described, including the high temperature measurement of complex modes and frequencies. A computing method for rotating structures with structural damping which was developed in this study is presented, and applied to real cases, such as a stator vane (three dimensional behavior) and a motor element (axisymmetrical structure).

Author (ESA)

N80-14136*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. SIMULATOR STUDY OF STALL/POST-STALL CHARACTER-

ISTICS OF A FIGHTER AIRPLANE WITH RELAXED LONGITUDINAL STATIC STABILITY

Luat T. Nguyen, Marilyn E. Ogburn, William P. Gilbert, Kemper S. Kibler, Phillip W. Brown, and Perry L. Deal Washington Dec. 1979 226 p

(NASA-TP-1538; L-12854) Avail: NTIS HC A11/MF A01 CSCL 01C

A real-time simulation piloted was conducted to evaluate the high-angle-of-attack characteristics of a fighter configuration based on wind-tunnel testing of the F-16, with particular emphasis on the effects of various levels of relaxed longitudinal static stability. The aerodynamic data used in the simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative low-speed combat maneuvering. Results of the investigation show that the airplane with the basic control system was resistant to the classical yaw departure; however, it was susceptible to pitch departures induced by inertia coupling during rapid, large-amplitude rolls at low airspeed. The airplane also exhibited a deep-stall trim which could be flown into and from which it was difficult to recover. Control-system modifications were developed which greatly decreased the airplane susceptibility to the inertia-coupling departure and which provided a reliable means for recovering from the deep stall. Author

N80-14137^{*}# Boeing Commercial Airplane Co., Seattle, Wash. LINEAR SYSTEMS ANALYSIS PROGRAM, L224(QR). VOLUME 1: ENGINEERING AND USAGE Topical Report, Apr. 1978 - Oct. 1979

P. C. Shah and K. W. Heidergott Dec. 1979 180 p refs (Contract NAS1-15346; BCS-G0061)

(NASA-CR-2861) Avail: NTIS HC A09/MF A01 CSCL 09B The QR computer program is described as well as its use in classical control systems analysis and synthesis (root locus, time response, and frequency response). A.R.H.

N80-14138^{*}# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

PILOT CONTROL THROUGH THE TAFCOS AUTOMATIC FLIGHT CONTROL SYSTEM

William R. Wehrend, Jr. Dec. 1979 42 p refs

(NASA-TM-81152; A-7996) Avail: NTIS HC A03/MF A01 CSCL 01C

The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included. A.R.H.

N80-14139*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

ALTITUDE RESPONSE OF SEVERAL AIRPLANES DURING LANDING APPROACH

William H. Phillips Nov. 1979 39 p refs

(NASA-TM-80186) Avail: NTIS HC A03/MF A01 CSCL 01C

The response in altitude and pitching velocity of the shuttle and of four other airplanes during the landing approach is compared. The effects of airplane type, pitch damping, center-ofgravity location, lift coefficient, and cockpit position are presented. The reasons for the differences observed and the effects of these differences on control characteristics are discussed. A.R.H.

N80-14140# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Unternehmensbereich Flugzeuge. EXCITATION AND ANALYSIS TECHNIQUE FOR FLIGHT FLUTTER TESTS

G. Haidl and M. Steininger 8 Sep. 1978 27 p refs Presented at 47th SMP/AGARD Meeting, Florence, 24-29 Sep. 1978 (MBB-UF-1446(O)) Avail: NTIS HC A03/MF A01

Excitation methods applied recently for flight flutter testing are surveyed. Examples of excitation by frequency sweep, pseudo-random, harmonic oscillation, and control loop are given and their effectiveness and adaptation to digital processing is discussed. Experience gained in generating aerodynamic forces by control surfaces or additional vanes is reported. The digital analysis of flight flutter test data is then considered. Recommendations for selection of analysis parameters and how to avoid errors due to digital processing are given. For data evaluation in flight flutter tests the autopower spectrum as well as transfer and coherence functions are used. Errors and effects of digital blockwise computation with analysis procedures like block overlapping, windowing, averaging, or curve fitting are demonstrated. The filter correlation and the modal analysis technique are applied for mode separation and damping evaluation based on the above mentioned functions. Practical experience and examples from wind tunnel, flight, and laboratory tests are discussed. An online computer program is presented for realtime calculation of resonance frequencies and damping factors.

Author (ESA)

N80-14141# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Unternehmensbereich Flugzeuge.

STABILITY AND CONTROL ASPECTS OF THE CCV-F104G H. Beh, U. Korte, and G. Loebert Sep. 1978 33 p refs Presented at AGARD Flight Mech. Panel Meeting on Stability and Control, Ottawa, 25-28 Sept. 1978 (MBB-UFE-1447(O)) Avail: NTIS HC A03/MF A01

The CCV command system, its implementation, and the design of the control laws are described. The superior flight-mechanical performance of the CCV flight control system is compared with that of the basic F 104G on the basis of simulator results. The validity of these results is demonstrated by comparing the principal characteristics of longitudinal and lateral motion measured in

N80-14142# Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (West Germany).

Author (ESA)

flight with the corresponding predicted values.

INVESTIGATION OF THE OSCILLATORY AND FLIGHT BEHAVIOR OF ROTOR SYSTEMS IN RELATION WITH ATMOSPHERIC TURBULENCE [UNTERSUCHUNGEN ZUM SCHWINGUNGS- UND FLUGVERHALTEN VON HUBS-CHRAUBERN UNTER ATMOSPHAERISCHER TURBUL-ENZ]

H. Dahl and D. Weger 1979 72 p refs In GERMAN; ENGLISH summary Sponsored by Bundesmin. der Verteidigung (BMVG-FBWT-79-5) Avail: NTIS HC A04/MF A01; DOKZENTBw, Bonn DM 30

The effects of stochastic atmospheric disturbances on the performance of various helicopter rotor systems was investigated in order to determine their gust sensitivity. A statistical description of turbulent excitations which permits sufficiently accurate simulation of helicopter oscillatory behavior resulting from gust disturbances was developed. Results show that during low altitude flight and slow speed flight the gust vector distribution over the helicopter is very nonuniform. At any instant therefore, the individual rotor blades are affected by very different gust velocities which leads to different responses of the blades. In conclusion, the investigations pursue the important objective of elaborating and clarifying possibilities for improvement of the flight characteristics of the investigated rotor systems, in so far as the inclusion of special gust reduction systems on helicopters is possible and profitable Author (ESA)

N80-14143# European Space Agency, Paris (France). FLIGHT TESTING OF THE BUFFETING BEHAVIOR OF COMBAT AIRCRAFT

G. Redeker Feb. 1979 44 p refs Transl. into ENGLISH of "Flugversuche zum Buffeting-Verhalten von Kampfflugzeugen", Rep. DFVLR-FB-IB-151-78/6 DFVLR, Brunswick, 18 Dec. 1979

(ESA-TT-523; DFVLR-FB-IB-151-78/6) Avail: NTIS HC A03/MF A01

The flight testing of buffeting behavior in combat aircraft is reviewed. After a description of the buffeting phenomenon and its effects on the pilot and the performance of a combat aircraft, flight testing techniques from several American reports are discussed. Author (ESA)

N80-14144# Federal Aviation Administration, Washington, D. C. REFLECTION CRACKING OF BITUMINOUS OVERLAYS FOR AIRPORT PAVEMENTS: A STATE OF THE ART Final Report

Aston L. McLaughlin May 1979 91 p refs

(AD-A073484; FAA-RD-79-57; ARD-430) Avail: NTIS HC A05/MF A01 CSCL 13/2

Methods and practices pursued by various pavement authorities in an effort to reduce the incidence of reflection cracking of bituminous overlays are discussed. The theoretical, analytical and laboratory efforts in this connection are presented. The mechanics of reflection cracking and criteria for design of overlay systems which are resistant to reflection cracking are examined. A.W.H. N80-14147# Defence and Civil Inst. of Environmental Medicine. Downsview (Ontario).

INVESTIGATION OF NOISE HAZARDS IN THE ENGINE TEST CELL, CFB BADEN-SOELLINGEN

S. E. Forshaw Jun. 1979 22 p refs (AD-A074391; DCIEM-TR-79-X23 DCIEM-TR-79-X23) Avail: NTIS HC A02/MF A01 CSCL 21/5

Although the sound pressure levels occuring in the engine test cell, CFB Baden-Soellingen, are extremely intense (137 dBA) with a J79 engine running at military power, the attenuation provided by Canadian Forces standard-issue earmuffs is sufficient to reduce the noise at operators' ears to more tolerable levels (108 dBA). Moreover, the noise doses sustained during engine check-outs permit average work periods of up to 49 minutes per day in the test cell with engines running. GRA

N80-14199# Avco Systems Div., Wilmington, Mass. PROTECTIVE COATINGS FOR AIRCRAFT COMPOSITES IN NUCLEAR ENVIRONMENTS Final Report, 1 Jan. - 30 Nov. 1977

J. G. Alexander and P. J. Grady 1 Apr. 1978 168 p refs (Contract DNA001-77-C-0098)

(AD-A074889; AD-E300594; AVSD-0082-78-RR;

DNA-4735F) Avail: NTIS HC A08/MF A01 CSCL 11/3

This program selected and experimentally evaluated several classes of protective coatings for nuclear flash for application on graphite epoxy and quartz polyimide composite aircraft skins. An analytical/experimental assessment was also performed to demonstrate the increased tensile capability of the two composite materials with the application of selected coatings. GRA

N80-14256# Lockheed-Georgia Co., Marietta. AIRCRAFT FUEL SYSTEM SIMULATOR TESTS WITH ANTIMISTING KEROSENE (JET A FUEL WITH FM-9 ADDITIVE) Final Report, Oct. 1978 - May 1979 R. E. Pardue May 1979 50 p (Contract DOT-FA78WAI-925)

(AD-A073237; FAA-RD-79-52) Avail: NTIS HC A03/MF A01 CSCL 21/4

Tests were conducted on a full-scale C-141 aircraft fuel system simulator to evaluate system and component operation using antimisting kerosene fuels (Jet A fuel with FM-9 additive). A typical aircraft flight profile was simulated with the tank-toengine fuel feed system operating. Tests were also conducted to evaluate the tank quantity gaging system accuracy, tank refuel valve operation and fuel transfer ejector operation. Fuels tested included Jet A, .30% FM-9 AMK, .35% FM-9 AMK and .40% FM-9 AMK. Flammability tests were conducted on selected fuel samples to evaluate degradation caused by the above tests. Author

N80-14259# Naval Research Lab., Washington, D. C.

MICROBIAL DETERIORATION OF HYDROCARBON FUELS FROM OIL SHALE, COAL, AND PETROLEUM. 1: EXPLOR-ATORY EXPERIMENTS Interim Report

Marian E. May and Rex A. Neihof 20 Aug. 1979 28 p refs (ZF57571004)

(AD-A073761; AD-E000316; NRL-MR-4060) Avail: NTIS HC A03/MF A01 CSCL 21/4

As part of the Navy's program on alternative sources of hydrocarbon fuel, the susceptibility to microbial deterioration of JP-5 derived from oil shale and coal (referred to as synthetic fuels) was investigated and compared with that of petroleum JP-5. Six fungi, including three strains of Cladosporium resinae, a yeast (Candida) and a bacterium (Pseudomonas) which normally grow well in association with petroleum JP-5 were used as test organisms in two-phase systems containing fuel/aqueous media. Most of the test organisms were inhibited to various extents in the presence of the synthetic fuels. An exception was a Fusarium species (fungus) which grew equally well under all three fuels. In mixtures of 75% petroleum and 25% synthetic fuels, microbial

growth was generally equivalent to that in 100% petroleum JP-5. A search was made among samples of soil, creosoted wood and tree resins for microorganisms that could thrive in the presence of synthetic fuels. This endeavor produced a strain of C. resinae that grew as well with oil shale JP-5 as with petroleum JP-5. These exploratory experiments indicate that microorganisms adapted to growth with conventional petroleum fuel tend to be inhibited by synthetic fuels, but that organisms probably exist in nature which can readily adapt to and grow in the presence of synthetic fuels. GRA

N80-14303# Logicon, Inc., San Diego, Calif. Tactical and Training Systems Div.

VOCABULARY SPECIFICATION FOR AUTOMATIC SPEECH **RECOGNITION IN AIRCRAFT COCKPITS Final Report, Sep.** 1978 - Jun. 1979

Rohn J. Petersen, Nancey Lee, Catherine Meyn, Elaine Regelson, and William Satzer 31 Aug. 1979 92 p refs (Contract N00014-78-C-0692)

(AD-A073703) Avail: NTIS HC A05/MF A01 CSCL 17/2 The general focus of this research was to design a communication media (a vocabulary) that is advantageous to both machine recognition and human production of speech events. The problem was analyzed from a human factors perspective that centered upon the man-computer dialogue (interaction) required for cockpit application of ASR. The results indicated that phrase familiarity and stimulus familiarity had major impact on the learning and utilization of the phrases in the paired-associate task. Phrase length and meaningfulness did not appear to differentially affect either the learning or utilization of the paired associate. In addition, pretraining of stimulus familiarity did not seem to result in improved performance. Acoustic lexical confusability also was discussed in general methodological terms. The results of the study were interpreted in terms of a contextualist viewpoint with the necessity of a broader contextual manipulation being pointed out as a requirement for further research. GRA

N80-14325# Forschungsinstitut fuer Funk und Mathematik, Werthoven (West Germany).

TARGET TRACKING USING DOPPLER-INFORMATION IN SENSOR ORIENTED COORDINATES WITH A THREE DIMENSIONAL ARRAY RADAR

G. vanKeuk Aug. 1978 33 p refs in GERMAN; ENGLISH summarv

(Rept-270) Avail: NTIS HC A03/MF A01

Measurement statistics, expressed in three dimensional radar oriented coordinates, and the nonlinear equations of target motion are presented. An extended Kalman filter was developed to solve the problem of automatic target tracking. It consists of three decoupled filters, one of which processes Doppler information directly. Depending on target speed, distance, and flight direction of the object being tracked, the domain of applicability for the proposed method is derived. Doppler information is then used to improve the plot to track correlation. It is shown that this information is very sensitive for detecting target maneuvers in an adaptive tracing mechanism.

Author (ESA)

N80-14355*# Wisconsin Univ. - Milwaukee. UNSTEADY FLOW AND DYNAMIC RESPONSE ANALYSES FOR HELICOPTER ROTOR BLADES Final Progress Report, 2 Jan. 1971 - 30 Jun. 1979

Theodore Bratanow Nov. 1979 30 p refs

(Grant NGR-50-007-001)

(NASA-CR-159190) Avail: NTIS HC A03/MF A01 CSCL 02A

Research is presented on helicopter rotor blade vibration and on two and three dimensional analyses of unsteady incompressible viscous flow past oscillating helicopter rotor blades. A summary is presented of the two international research collaborations which resulted from the NASA project: the collaboration under the auspices of NATO between the University of Wisconsin-Milwaukee, University of Brussels, Belgium and the

N80-14359^{*}# Bionetics Corp., Hampton, Va. THE TRANSFER OF CARBON FIBERS THROUGH A COMMERCIAL AIRCRAFT WATER SEPARATOR AND AIR CLEANER

Jerome A. Meyers Nov. 1979 22 p refs (Contract NAS1-15238) (NASA-CR-159183) Avail: NTIS HC A02/MF A01

(NASA-CR-159183) Avail: NTIS HC A02/MF A01 CSCL 20D_

The fraction of carbon fibers passing through a water separator and an air filter was determined in order to estimate the proportion of fibers outside a closed aircraft that are transmitted to the electronics through the air conditioning system. When both devices were used together and only fibers 3 mm or larger were considered, a transfer function of .001 was obtained. K.L.

N80-14377# Army Test and Evaluation Command, Aberdeen Proving Ground, Md.

US ARMY TEST AND EVALUATION COMMAND TEST OPERATIONS PROCEDURES: PHOTOGRAPHIC AND VIDEO IMAGE SUPPORT AVIATION MATERIEL Final Report

17 Aug. 1979 16 p refs

(AD-A074883; TOP-7-3-519) Avail: NTIS HC A02/MF A01 CSCL 14/5

Photographic techniques can be utilized to obtain precise data in relation to time velocity, rates and characteristics of a developmental test event or simply to document a physical defect, deficiency or shortcoming in a human factors evaluation. This document provides requirements, suggestions and techniques for incorporating photographic coverage into the developmental test of aviation materiel. GRA

N80-14400*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, Tex.

SURFACE CONFORMING THERMAL/PRESSURE SEAL Patent Application

Martin L. Stevens, inventor (to NASA) (Fairchild Republic Co.) Filed 12 Dec. 1979 21 p Sponsored by NASA (NASA-Case-MSC-18422-1; US-Patent-Appl-SN-102593) Avail:

(NASA-Case-MSC-18422-1; US-Patent-Appi-SN-102593) Avail NTIS HC A02/MF A01 CSCL 11A

A sealing apparatus is described which serves both pressure and thermal sealing functions between adjacent and relatively movable elements of relatively large surfaces. The sealing apparatus has the flexibility required for large movable surfaces. and can accommodate moderate variations in the gap between such surfaces which may be affected by thermal distortion. Sealing is accomplished with a nonabrasive, low frictional material, creating as little resistance as possible to movement of control members and minimal wear and damage to surface coatings. NASA

N80-14417# AiResearch Mfg. Co., Phoenix, Ariz. CONTACT STRESS ANALYSIS OF CERAMIC-TO-METAL INTERFACES Final Report

David G. Finger 21 Sep. 1979 35 p refs (Contract N00014-78-C-0547)

(AD-A074491; AiResearch-21-3239) Avail: NTIS HC A03/MF A01 CSCL 14/2

The objective of this proposed 8-month program was to conduct analysis, specimen testing, and data correlation to provide an improved understanding of the local contact conditions that prevail at an interface between ceramic and metal components for gas turbine engines. The program was specifically directed to study contact stresses at the interface between inserted ceramic turbine blades (hot-pressed silicon nitride) and a metal rotor, but the method of analysis, results, and conclusions also provided a better understanding of contact stresses at ceramic-to-metal and ceramic-to-ceramic interfaces for static components. A finite-element stress analysis procedure and structural evaluation technique consistent with the statistical nature of ceramic materials was generated. Specimen testing was conducted to obtain validation of these techniques and provide insight as to possible modifications of stress simulation or fracture prediction criteria. The objective was to develop a design methodology, which will improve on current design methods, thus permitting the design of interface configurations in which strengths more indicative of the inherent strength of ceramic materials can be realized. GRA

N80-14422# Laboratorium fuer Betriebsfestigkeit, Darmstadt (West Germany).

REVIEW OF INVESTIGATIONS INTO AERONAUTICS RELATED FATIGUE FEDERAL REPUBLIC OF GERMANY Status Report, May 1977 - Apr. 1979

D. Schutz and O. Buxbaum 1979 166 p refs Presented at 16th Conf. of Intern. Comm. Aeron. Fatigue, Brussels, 1979 (LBF-S-142: ICAF-CONF-1979) Avail: NTIS HC A08/MF A01

Investigations into fatigue and fatigue related disciplines, as they regard aeronautics, are reviewed. Studies treated are limited to those carried out in the Federal Republic of Germany. Subjects include measurement and analysis of operational loads, fatigue behavior of joints and notched specimens, fatigue life prediction, cyclic stress-strain behavior, and low cycle fatigue. Also considered are 'crack propagation, fracture mechanics, and residual static strength. Fatigue of fiber reinforced plastics and hybrid structures as well as some investigations of general interest with and without relation to aircraft are reported on. Finally, a bibliography of fatigue related documents by German authors is given.

Author (ESA)

N80-14634*# Saint Cloud State Coll., Minn. METEOROLOGICAL INPUT TO GENERAL AVIATION PILOT TRAINING

John R. Colomy *In* Tennessee Univ. Space Inst. Proc., 3d Ann. Workshop on Meteorological and Environ. Inputs to Aviation Systems Apr. 1979 p 30-36

Avail: NTIS HC A09/MF A01 CSCL 04B

The meteorological education of general aviation pilots is discussed in terms of the definitions and concepts of learning and good educational procedures. The effectiveness of the metoeorological program in the training of general aviations pilots is questioned. It is suggested that flight instructors provide real experience during low ceilings and visibilities, and that every pilot receiving an instrument rating should experience real instrument flight.

N80-14636*# National Transportation Safety Board, Washington, D. C.

ACCIDENT INVESTIGATION

Alan I. Brunstein /n Tennessee Univ. Space Inst. Proc., 3d Ann. Workshop on Meteorological and Environ. Inputs to Aviation Systems Apr. 1979 p 46-57

Avail: NTIS HC A09/MF A01 CSCL 04B

Aircraft accident investigations are discussed with emphasis on those accidents that involved weather as a contributing factor. The organization of the accident investigation board for air carrier accidents is described along with the hearings, and formal report preparation. Statistical summaries of the investigations of general aviation accidents are provided. F.O.S.

N80-14638^{*}# Port Columbus International Airport, Ohio. EFFECT OF WEATHER CONDITIONS ON AIRPORT OPERATIONS

Daniel F. Ginty *In* Tennessee Univ. Space Inst. Proc., 3d Ann. Workshop on Meteorological and Environ. Inputs to Aviation Systems Apr. 1979 p 63-66

Avail: NTIS HC A09/MF A01 CSCL 04B

The effect of adverse weather on airport operations are discussed. The meteorological conditions discussed included rain and hyoroplaning, snow and slush, and icing. F.O.S.

N80-14639*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

EFFECT OF SPANWISE GUST VARIATIONS

John C. Houbolt *In* Tennessee Univ. Space Inst. Proc., 3d Ann. Workshop on Meteorological and Environ. Inputs to Aviation Systems Apr. 1979 p 72-79

Avail: NTIS HC A09/MF A01 CSCL 04B

The spanwise, vertical force, and rolling moment effects of random gusts encountered by aircraft are analyzed. Mathematical models are given for approximating atmospheric turbulence.

N80-14640*# South Dakota School of Mines and Technology, Rapid City.

THE T-28 THUNDER/HAILSTORM PENETRATION AIR-CRAFT

John Prodan *In* Tennessee Univ. Space Inst. Proc., 3d Ann. Workshop on Meteorological and Environ. Inputs to Aviation Systems Apr. 1979 p 80-97

Avail: NTIS HC A09/MF A01 - CSCL 048

Modifications to the T-28 Aircraft to make it safe for penetrating hailstorms to take scientific measurements are described. F.O.S.

N80-14651*# Tennessee Univ. Space Inst., Tullahoma. CURRENT RESEARCH ON AVIATION WEATHER (BIBLIOG-RAPHY), 1979

Barry S. Turkel and Walter Frost Jan. 1980 96 p refs (Contract NAS8-32692)

(NASA-CR-3214) Avail: NTIS HC A05/MF A01 CSCL 04B The titles, managers, supporting organizations, performing organizations, investigators and objectives of 127 current research projects in advanced meteorological instruments, forecasting, icing, lightning, visibility, low level wind shear, storm hazards/severe storms, and turbulence are tabulated and cross-referenced. A list of pertinent reference material produced through the above tabulated research activities is given. The acquired information is assembled in bibliography form to provide a readily available source of information in the area of aviation meteorology A.R.H.

N80-14853# Air Force Flight Dynamics Lab., Wright-Patterson AFB, Ohio.

THE ANALYSIS OF SOUND PROPAGATION IN JET ENGINE DUCTS USING THE FINITE DIFFERENCE METHOD Interim Report, Nov. 1975 - Nov. 1978

Dennis W. Quinn	Jun. 1979 60 p refs		
(AD-A074233;	AFFDL-TR-79-3063)	Avail:	NTIS
HC A04/MF A01	CSCL 20/1		

In this report, the author derives the partial differential equations which describe sound propagation in jet engine ducts and then presents a finite difference approach for solving these equations. Also included is a computer program listing, sample input and sample output. The program can handle uniform rectangular and cylindrical ducts with or without uniform flow. In addition, if a mapping function which maps a nonuniform duct to a uniform duct is specified, the program can determine sound fields in nonuniform ducts in the absence of flow. GRA

N80-14870*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. Aeroacoustics Branch. APPLICATIONS OF DIFFRACTION THEORY TO AEROA-COUSTICS

Donald L. Lansing, Chen-Huei Liu, and Thomas D. Norum *In* AGARD Special Course on Acoustic Wave Propagation Aug. 1979 12 p refs

Avail: NTIS HC A10/MF A01 CSCL 20A

The fundamentals of diffraction theory were reviewed and applied to several problems of aircraft noise generation, propagation, and measurement. The general acoustic diffraction problem is defined and the governing equations were set down. Diffraction phenomena are illustrated using the classical problem of the diffraction of a plane wave by a half-plane. Infinite series and geometric acoustic methods for solving diffraction problems are described. Four applications of diffraction theory are discussed: the selection of an appropriate shape for a microphone, the use of aircraft wings to shield the community from engine noise, the reflection of regine noise from an aircraft fuselage, and the radiation of trailing edge noise.

N80-14873*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. Inst. for Computer Application in Science and Engineering.

EXPERIMENTAL AND NUMERICAL RESULTS OF SOUND SCATTERING BY A BODY

L. Maestrello and A. Bayliss *In* AGARD Special Course on Acoustic Wave Propagation Aug. 1979 12 p refs

Avail: NTIS HC A10/MF A01 CSCL 20A

The interaction of aerodynamic noise with a fuselage shaped body is discussed. A numerical technique is presented which permits the computation of the scattering of an acoustic source by a body at rest for frequencies of aeroacoustic interest. A parallel experiment is described which confirms the results of the computations. A numerical study of varying the geometry of the scattering is presented. In addition, the effect of forward motion on the mean velocity and static pressure profiles in the wake of such a body with a jet exiting from it is simulated. Experimental results are presented and a similarity law is given. K.L.

N80-14876# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Berlin (West Germany). Inst. fuer Experimentelle Stroemungsmechanik.

AEROACOUSTIC MEASURING TECHNIQUES IN OR OUTSIDE TURBULENT FLOWS

Helmut V. Fuchs In AGARD Special Course on Acoustic Wave Propagation Aug. 1979 27 p refs

Avail: NTIS HC A10/MF A01

The motion of aerodynamic or acoustic sources relative to the fluid and/or the measuring instrument is discussed. Some practically important effects on the pressure and velocity fields in and outside the active source region are deduced from linearized wave equations with simple source functions. Limitations on fluctuating aerodynamic and acoustic pressure measuring techniques employing special microphone probes are discussed. Applications include: (1) the pressure pulsations induced in the near fields of jet, wake, and duct flows, and (2) the effects of source convection and forward speed on the far field radiation characteristics of jets or other aeroacoustic sources in motion.

K.L.

N80-15026# Department of Defence, Canberra (Australia). AERONAUTICAL RESEARCH LABORATORIES Annual Report, 1977 - 1978 1978 95 p refs

(RM78/30107) Avail: NTIS HC A05/MF A01

Research and development in the areas of aerodynamic configurations and aeronautical engineering for design purposes and/or operational aspects of aircrafts is presented. Wind tunnel tests, materials tests, engine tests, and aircraft structural analysis are discussed. A.W.H.

N80-15028*# National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Center, Edwards, Calif.

LANDING APPROACH AIRFRAME NOISE MEASURE-MENTS AND ANALYSIS

Paul L. Lasagna, Karen G. Mackall, Frank W. Burcham, Jr., and Terrill W. Putnam Jan. 1980 36 p refs (NASA-TP-1602) Avail: NTIS HC A03/MF A01 CSCL 20A

(NASA-TP-1602) Avail: NTIS HC A03/MF A01 CSCL 20A Flyover measurements of the airframe noise produced by the AeroCommander, JetStar, CV-990, and B-747 airplanes are presented for various landing approach configurations. Empirical and semiempirical techniques are presented to correlate the measured airframe noise with airplane design and aerodynamic parameters. Airframe noise for the jet-powered airplanes in the clean configuration (flaps and gear retracted) was found to be adequately represented by a function of airplane weight and the fifth power of airspeed. Results show the airframe noise for all four aircraft in the landing configuration (flaps extended and gear down) also varied with the fifth power of airspeed, but this noise level could not be represented by the addition of a constant to the equation for clean-configuration airframe noise. M G.

N80-15029# Boeing Aerospace Co., Seattle, Wash. FLEET HARDNESS VARIATION Final Report, Jan. - Sep. 1978

E. N. York and S. L. Strack 29 Sep. 1978 45 p refs (Contract DNA001-78-C-0138)

(AD-A074849; AD-E300588) Avail: NTIS HC A03/MF A01 CSCL 01/3

The variation of nuclear hardness in a fleet of aircraft is considered and the potential hardness degradation mechanisms identified. These include cracks, corrosion, paint deterioration, and aging of equipment. Methods are developed whereby the variation in hardness in a fleet could be estimated for each of these degradation mechanisms. GRA

N80-15030# Technology, Inc., Dayton, Ohio. Instruments and Controls Div.

APPLICATION OF THE SIRS CONCEPT TO NAVY HELICOP-TERS

1 Oct. 1979 112 p refs

(Contract N00019-77-C-0318) (AD-A074801; TI-0798-05-02) Avail: NTIS

HC A06/MF A01 CSCL 01/3

In an effort to determine the feasibility of applying the U.S. Army-developed SIRS recording system to U.S. Navy helicopters, a study was conducted into the specific application of SIRS on the RH-53D helicopter. A fatigue damage assessment model was formulated for nine fatigue-critical dynamic components of the RH-53D helicopter, and two possible flight condition monitoring systems were synthesized. Both systems were found to be technically acceptable, but only one was practical based on current recording technology. The resulting system was analyzed from a life-cycle cost viewpoint and found to be cost-effective. GRA

N80-15031*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

COMPUTER PROGRAM TO PREPARE AIRFOIL CHARAC-TERISTIC DATA FOR USE IN HELICOPTER PERFORMANCE CALCULATIONS

Henry E. Jones Dec. 1977 57 p

(DA Proj. 1L1-61102-AH-45)

(NASA-TM-78627; L-11608) Avail: NTIS HC A04/MF A01 CSCL 01A

A computer program developed to prepare wind tunnel generated airfoil data for input into helicopter performance prediction programs is described. The program provides for numerically cross plotting the data, plotting the data, and tabulating and punching the tabulated result into computer cards for use in the rotorcraft flight simulation model. A.W.H.

N80-15034*# National Advisory Committee for Aeronautics. Ames Aeronautical Lab., Moffett Field, Calif.

APPLICATIONS OF MODERN HYDRODYNAMICS TO AERONAUTICS. PART 1: FUNDAMENTAL CONCEPTS AND THE MOST IMPORTANT THEOREMS. PART 2: APPLICATIONS

L. Prandtl In NASA. Ames Res. Center Classical Aerodyn. Theory Dec. 1979 p 1-56 refs Transl. into ENGLISH of unidentified German document

(NACA-116) Avail: NTIS HC A14/MF A01 CSCL 01A

A discussion of the principles of hydrodynamics of nonviscous fluids in the case of motion of solid bodies in a fluid is presented. Formulae are derived to demonstrate the transition from the fluid surface to a corresponding 'control surface'. The external forces are compounded of the fluid pressures on the control surface and the forces which are exercised on the fluid by any solid bodies which may be inside of the control surfaces. Illustrations of these formulae as applied to the acquisition of transformations from a known simple flow to new types of flow for other boundaries are given. Theoretical and experimental investigations of models of airship bodies are presented. M.M.M.

N80-15036*# National Advisory Committee for Aeronautics. Ames Aeronautical Lab., Moffett Field, Calif.

PRESSURE DISTRIBUTION ON JOUKOWSKI WINGS

Otto Blumenthal /n NASA. Ames Res. Center Classical Aerodyn. Theory Dec. 1979 p 67-83 ref Transl. into ENGLISH from Z. fuer Flugtech. und Motorluftschiffahrt (Germany), 31 May 1913 16 p

(NACA-TM-336) Avail: NTIS HC A14/MF A01 CSCL 01A The hydrodynamics and mathematical models as applied to the potential flow about a Joukowski wing are presented.

M.M.M.

N80-15038*# National Advisory Committee for Aeronautics. Ames Aeronautical Lab., Moffett Field, Calif.

THE MINIMUM INDUCED DRAG OF AEROFOILS

Max M. Munk $\it In$ NASA. Ames Res. Center Classical Aerodyn. Theory Dec. 1979 p 95-110

(NACA-121) Avail: NTIS HC A14/MF A01 CSCL 01A

Equations are derived to demonstrate which distribution of lifting elements result in a minimum amount of aerodynamic drag. The lifting elements were arranged (1) in one line, (2) parallel lying in a transverse plane, and (3) in any direction in a transverse plane. It was shown that the distribution of lift which causes the least drag is reduced to the solution of the problem for systems of airfoils which are situated in a plane perpendicular to the direction of flight.

N80-15039*# National Advisory Committee for Aeronautics. Ames Aeronautical Lab., Moffett Field, Calif.

THE AERODYNAMIC FORCES ON AIRSHIP HULLS

Max M. Munk In NASA. Ames Res. Center Classical Aerodyn. Theory Dec. 1979 p 111-126 refs

(NACA-184) Avail: NTIS HC A14/MF A01 CSCL 01A

The new method for making computations in connection with the study of rigid airships, which was used in the investigation of Navy's ZR-1 by the special subcommittee of the National Advisory Committee for Aeronautics appointed for this purpose is presented. The general theory of the air forces on airship hulls of the type mentioned is described and an attempt was made to develop the results from the very fundamentals of mechanics.

N80-15040*# National Advisory Committee for Aeronautics. Ames Aeronautical Lab., Moffett Field, Calif.

ELEMENTS OF THE WING SECTION THEORY AND OF THE WING THEORY

Max M. Munk /n NASA. Ames Res. Center Classical Aerodyn. Theory Dec. 1979 p 127-149 refs

(NACA-191) Avail: NTIS HC A14/MF A01 CSCL 01A

Results are presented of the theory of wings and of wing sections which are of immediate practical value. They are proven and demonstrated by the use of the simple conceptions of kinetic energy and momentum only. - M.M.M.

N80-15046*# National Advisory Committee for Aeronautics. Langley Aeronautical Lab., Langley Field, Va. GENERAL POTENTIAL THEORY OF ARBITRARY WING

Theodore Theodorsen and I. E. Garrick *In* NASA. Ames Res.

Center Classical Aerodyn. Theory Dec. 1979 p 257-289 refs

(NACA-452) Avail: NTIS HC A14/MF A01 CSCL 01A

The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties. A.W.H.

N80-15047*# National Advisory Committee for Aeronautics. Langley Aeronautical Lab., Langley Field, Va.

GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF FLUTTER

Theodore Theodorsen In NASA. Ames Res. Center Classical Aerodyn. Theory Dec. 1979 p 291-311

(NACA-496) Avail: NTIS HC A14/MF A01 CSCL 01A

The aerodynamic forces on an oscillating airfoil or airfoilaileron combination of three independent degrees of freedom were determined. The problem resolves itself into the solution of certain definite integrals, which were identified as Bessel functions of the first and second kind, and of zero and first order. The theory, based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wind section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability was analyzed. An exact solution, involving potential flow and the adoption of the Kutta condition, was derived. The solution is of a simple form and is expressed by means of an auxiliary parameter k. The flutter velocity, treated as the unknown quantity, was determined as a function of a certain ratio of the frequencies in the separate degrees of freedom for any magnitudes and combinations of the airfoil-aileron parameters. AWH

N80-15050*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

A PARAMETRIC WING DESIGN STUDY FOR A MODERN LAMINAR FLOW WING

John A. Koegler, Jr. Dec. 1979 44 p refs

(NA SA-TM-80154) Avail: NTIS HC A03/MF A01 CSCL 01A

The results of a parametric wing design study using a modern laminar flow airfoil designed to exhibit desirable stall characteristics while maintaining high cruise performance are presented. It was found that little is sacrificed in cruise performance when satisfying the stall margin requirements if a taper ratio of 0.65 or greater is used. M.G.

N80-15051*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SUMMARY OF ADVANCED METHODS FOR PREDICTING HIGH SPEED PROPELLER PERFORMANCE

L. A. Bober 1980 14 p refs Presented at 18th Aerospace Sci. Meeting, Pasadena, Calif., 14-16 Jan. 1980; sponsored by AIAA

(NASA-TM-81409) Avail: NTIS HC A02/MF A01 CSCL 01A Three advanced analyses for predicting aircraft propeller performance at high subsonic speeds are described. Two of these analyses use a lifting line representation for the propeller blades and vortex filaments for the blade wakes but differ in the details of the solution. The third analysis is a finite difference solution of the unsteady, three dimensional Euler equations for the flow between adjacent blades. Analysis results are compared to data for a high speed propeller having eight swept blades integrally designed with the spinner and nacelle. Author

N80-15052*# Boeing Commercial Airplane Co., Seattle, Wash. A USERS GUIDE FOR A344: A PROGRAM USING A FINITE DIFFERENCE METHOD TO ANALYZE TRANSONIC FLOW OVER OSCILLATING AIRFOILS Final Report

Warren H. Weatherill and F. Edward Ehlers Nov. 1979 $\,$ 65 p refs

(Contract NAS1-15128)

(NASA-CR-159141: D6-48837) Avail: NTIS HC A04/MF A01 CSCL 01A

The design and usage of a pilot program for calculating the pressure distributions over harmonically oscillating airfoils in transonic flow are described. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equations for small disturbances. The steady velocity potential which must be obtained from some other program, was required for input. The unsteady equation, as solved, is linear with spatially varying coefficients. Since sinusoidal motion was assumed, time was not a variable. The numerical solution was obtained through a finite difference formulation and either a line relaxation or an out of core direct solution method. R.C.T.

N80-15055# ARO, Inc., Arnold Air Force Station, Tenn. EVALUATION OF THE AERODYNAMIC CHARACTERISTICS OF A 1/20-SCALE A-10 MODEL AT MACH NUMBERS FROM 0.30 TO 0.75 Final Report

Phillip L. Yeakley AEDC Sep. 1979 90 p refs (AF Proj. 329A)

(AD-A074867; AEDC-TR-78-66; AFATL-TR-78-103) Avail: NTIS HC A05/MF A01 CSCL 20/4

A 1/20-scale model of the A-10 aircraft was tested to determine the aerodynamic and control characteristics of the basic aircraft, evaluate the effect of external store configurations on the static stability and drag characteristics of the aircraft, and investigate the effects of Reynolds number, boundary layer transition grit, and aerodynamic hysteresis on the data. Data were obtained at angles of attack from -4 to 20 deg and at sideslip angles from -10 to 10 deg. The Mach number range was from 0.30 to 0.75, and the Reynolds number range was from 0.7 to 4.9 million per foot. GRA

N80-15058*# Dayton Univ. Research Inst., Ohio. A FIRST LOOK AT THE EFFECT OF SEVERE RAINFALL UPON AN AIRCRAFT Jan. 1980 34 p refs

(Grant NsG-6026)

(NASA-CR-162569) Avail: NTIS HC A03/MF A01 CSCL 01C

An aircraft penetrating heavy rain can be affected aerodynamically in at least four ways: (1) raindrops striking the fuselage and wings of the aircraft impart a downward momentum to the aircraft; (2) increased aircraft drag results from the aircraft striking the raindrops head on; (3) at any instant of time the aircraft will contain a thin layer of water over most of its surfaces which will give additional mass to the aircraft; and (4) the water on the airfoil will result in a roughened airfoil surface that could produce significant aerodynamic penalties. An order of magnitude calculation was made for the penalty associated with the factors one two and three. The roughness factor required detailed modeling and boundary layer calculations and was studied using the 'aerodynamic effects of frost model'. The results achieved on each of the penalty factors are described and the factors most likely to cause significant performance RES degradation are indicated.

N80-15059*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SIMULTANEOUS CABIN AND AMBIENT OZONE MEA-SUREMENTS ON TWO BOEING 747 AIRPLANES, VOLUME 1

Porter J. Perkins, J. D. Holdeman, and G. D. Nastrom (Control Data Corp., Minneapolis, Minn.) Jul. 1979 826 p refs (NASA-TM-79166; FAA-EE-79-05; E-196) Avail: NTIS HC A99/MF A01 CSCL 01C

Measurements of zone concentrations both outside and in the cabin of an airline operated Boeing 747SP and Boeing 747-100 airliner are presented. Plotted data and the corresponding tables of observations taken at altitude between the departure and destination airports of each flight are arranged chronologically for the two aircraft. Data were taken at five or ten minute intervals by automated instrumentation used in the NACA Global Atmospheric Sampling Program.

M.M.M.

N80-15060*# National Aeronautics and Space Administration, Washington, D. C.

NASA TECHNICAL ADVANCES IN AIRCRAFT OCCUPANT SAFETY

John H. Enders 1978 28 p refs Presented at the SAE Congr. and Exposition, Detroit, 27 Feb. - 3 Mar. 1978 (NASA-TM-80851; ISSN-0148-7191) Avail: NTIS HC A03/MF A01 CSCL 01C

NASA's aviation safety technology program examines specific safety problems associated with atmospheric hazards, crash-fire survival, control of aircraft on runways, human factors, terminal area operations hazards, and accident factors simulation. While aircraft occupants are ultimately affected by any of these hazards, their well-being is immediately impacted by three specific events: unexpected turbulence encounters, fire and its effects, and crash impact. NASA research in the application of laser technology to the problem of clear air turbulence detection, the development of fire resistant materials for aircraft construction, and to the improvement of seats and restraint systems to reduce crash injuries are reviewed. A.R.H.

N80-15061# General Accounting Office. Washington, D. C. Community and Economic Development Div.

AIRCRAFT DELAYS AT MAJOR US AIRPORTS CAN BE Reduced

4 Sep. 1979 36 p refs

(PB-299442/4; CED-79-102) Avail: NTIS HC A03/MF A01 CSCL 01E

In 1977, aircraft delays cost U.S. airlines over \$800 million; detained the traveling public over 60 million hours; and caused the airlines to use an additional 700 million gallons of fuel, over 8 percent of their total consumption. Generally, aircraft delays result from excessive air traffic and bad weather. Many major U.S. airports have peak, congested periods when air traffic exceeds runway capacity and aircraft delays occur. To reduce delays at major airports, the Congress and Secretary of Transportation should take actions to shift traffic from peak to off-peak periods or to other airports by amending the Airport and Airway Development Act of 1970. GRA

N80-15062*# Magnavox Government and Industrial Electronics Co., Torrance, Calif. Advanced Products Div.

DESIGN STUDY OF A LOW COST CIVIL AVIATION GPS RECEIVER SYSTEM Final Report

R. Chossen and G. Gilbert (GAC Assoc.) Dec. 1979 150 p refs

(Contract NAS1-15343)

-

(NASA-CR-159176; R-6132) Avail: NTIS HC A07/MF A01 CSCL 17G $\,$

A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified. R.CT.

N80-15063*# Ohio Univ., Athens. Avionics Engineering Center.

EXPERIMENTAL LOOP ANTENNAS FOR 60 KHz TO 200 KHz

Ralph W. Burhans Dec. 1979 9 p refs

(Grant NGR-36-009-017)

(NASA-CR-162729; TM-71) Avail: NTIS HC A02/MF A01 CSCL 17G

The design and design data for broadband loop antenna systems are presented. An investigation of some simple systems for possible Loran C receivers which require a bandwidth of greater than 20 KHz is discussed. Designs are presented for a 60 KHz WWVB antenna, several Loran C variations, and some 1750 meter band antennas. Signals received on all these, including one airborne experiment where a Loran C receiver gave the correct time difference reading within 1 microsecond while flying on a straightline course are examined. The phase reversal in the Loran C when the direction of travel changes 180 degrees is discussed and possible corrections are studied. A.W.H.

N80-15064*# Ohio Univ., Athens. Avionics Engineering Center.

DATA REDUCTION SOFTWARE FOR LORAN-C FLIGHT TEST EVALUATION

Joseph P. Fischer Dec. 1979 43 p refs

(Grant NGR-36-009-017)

(NASA-CR-162730; TM-72) Avail: NTIS HC A03/MF A01 CSCL 17G

A set of programs designed to be run on an IBM 370/ 158 computer to read the recorded time differences from the tape produced by the LORAN data collection system, convert them to latitude/longitude and produce various plotting input files are described. The programs were written so they may be tailored easily to meet the demands of a particular data reduction. job. The tape reader program is written in 370 assembler language and the remaining programs are written in standard IBM FORTRAN-IV language. The tape reader program is dependent upon the recording format used by the data collection system. and on the I/O macros used at the computing facility. The other programs are generally device-independent, although the plotting routines are dependent upon the plotting method used. The data reduction programs convert the recorded data to a more readily usable form: convert the time difference (TD) numbers to latitude/longitude (lat/long), to format a printed listing of the TDs, lat/long, reference times, and other information derived from the data, and produce data files which may be used for subsequent olotting. MMM

N80-15065*# Ohio Univ., Athens. Avionics Engineering Center.

LORAN DIGITAL PHASE-LOCKED LOOP AND RF FRONT-END SYSTEM ERROR ANALYSIS

Daryl L. McCall Dec. 1979 19 p

(Grant_NGR-39-009-017)

(NASA-CR-162731: TM-73) Avail: NTIS HC A02/MF A01 CSCL 17G

An analysis of the system performance of the digital phase locked loops (DPLL) and RF front end that are implemented in the MINI-L4 Loran receiver is presented. Three of the four experiments deal with the performance of the digital phase locked loops. The other experiment deals with the RF front end and DPLL system error which arise in the front end due to poor signal to noise ratios. The ability of the DPLLs to track the offsets is studied.

N80-15067*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

NASA/ARMY XV-15 TILT ROTOR RESEARCH AIRCRAFT WIND-TUNNEL TEST PROGRAM PLAN

James A. Weiberg and Martin D. Maisel (AVRADCOM Res. and Technol. Labs.) Mar. 1979 73 p refs

(NASA-TM-78562; A-7740; AVRADCOM-TR-79-7(AM)) Avail: NASA. Ames Research Center, Moffett Field, Calif. 94035 CSCL 01C

To ensure that the XV-15 tilt rotor research aircraft will meet the requirements of the program plan and the contract model specification and statement of work, one of the two aircraft will be tested in the Ames 40 x 80 foot wind tunnel to provide an initial assessment of the aerodynamic characteristics, structural loads, and rotor/pylon/wing dynamics in a simulated flight environment for correlation with estimated values. The tests will also serve to verify the functional operation of the aircraft systems and on-board instrumentation in a flight environment. The management structure, operational plan, support requirements and responsibilities, safety provisions and reporting requirements for conduct of the wind tunnel tests are defined and related to other phases of the program. A.R.H.

N80-15068*# National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Center, Edwards, Calif. LOADING TESTS OF A WING STRUCTURE FOR A

HYPERSONIC AIRCRAFT Roger A. Fields, Lawrence F. Reardon, and William H. Siegel Jan. 1980 72 p refs

(NASA-TP-1596; H-1046) Avail: NTIS HC A04/MF A01 CSCL 01C

Room-temperature loading tests were conducted on a wing structure designed with a beaded panel concept for a Mach 8 hypersonic research airplane. Strain, stress, and deflection data were compared with the results of three finite-element structural analysis computer programs and with design data. The test program data were used to evaluate the structural concept and the methods of analysis used in the design. A force stiffness technique was utilized in conjunction with load conditions which produced various combinations of panel shear and compression loading to determine the failure envelope of the buckling critical beaded panels. The force-stiffness data did not result in any predictions of buckling failure. It was, therefore, concluded that the panels were conservatively designed as a result of design constraints and assumptions of panel eccentricities. The analysis programs calculated strains and stresses competently. Comparisons between calculated and measured structural deflections showed good agreement. The test program offered a positive demonstration of the beaded panel concept subjected to room-temperature load conditions. Author

N80-15069*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

THE EFFECTS OF MOTION AND g-SEAT CUES ON PILOT SIMULATOR PERFORMANCE OF THREE PILOTING TASKS

Thomas W. Showalter and Benton L. Parris Jan. 1980 45 \ensuremath{p} refs

(NASA-TP-1601: A-7875) Avail: NTIS HC A03/MF A01 CSCL 01C

Data are presented that show the effects of motion system cues, g-seat cues, and pilot experience on pilot performance during takeoffs with engine failures, during in-flight precision turns, and during landings with wind shear. Eight groups of USAF pilots flew a simulated KC-135 using four different cueing systems. The basic cueing system was a fixed-base type (no-motion cueing) with visual cueing. The other three systems were produced by the presence of either a motion system or a g-seat, or both. Extensive statistical analysis of the data was performed and representative performance means were examined. These data show that the addition of motion system cueing results in significant improvement in pilot performance for all three tasks; however, the use of g-seat cueing, either alone or in conjunction with the motion system, provides little if any performance improvement for these tasks and for this aircraft type. Author

N80-15070*# Lockheed-Georgia Co., Marietta. EXPLORATORY STUDIES OF THE CRUISE PERFORMANCE OF UPPER SURFACE BLOWN CONFIGURATION: EXPER-IMENTAL PROGRAM, HIGH-SPEED FORCE TESTS

J. A. Braden, J. P. Hancock, K. P. Burdges, and J. E. Hackett Langley Res. Center, Hampton, Va. NASA Oct. 1979 231 ρ refs

(Contract NAS1-13871)

(NASA-CR-159134: LG77ER0028) Avail: NTIS HC A11/MF A01 CSCL 01C

The work to develop a wing-nacelle arrangement to accommodate a wide range of upper surface blown configuration is reported. Pertinent model and installation details are described. Data of the effects of a wide range of nozzle geometric variations are presented. Nozzle aspect ratio, boattail angle, and chordwise position are among the parameters investigated. Straight and swept wing configurations were tested across a range of nozzle pressure ratios, lift coefficients, and Mach numbers. F.O.S.

N80-15071*# Lockheed-Georgia Co., Marietta. EXPLORATORY STUDIES OF THE CRUISE PERFORMANCE OF UPPER SURFACE BLOWN CONFIGURATIONS: EXPERIMENTAL PROGRAM, HIGH-SPEED PRESSURE TESTS

J. A. Braden, J. P. Hancock, K. P. Burdges, and J. E. Hackett Langley Res. Center, Hampton, Va. NASA Oct. 1979 226 p refs

(Contract NAS1-13871) (NASA-CR-159135; LG77ER0028) Avail: NTIS HC A11/MF A01 CSCL 01C

Basic pressure data are presented which was obtained from an experimental study of upper-surface blown configurations at cruise. The high-speed (subsonic) experimental work, studying the aerodynamic effects of wing-nacelle geometric variations, was conducted around semi-span model configurations composed of diversified, interchangeable components. Power simulation was provided by high-pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Both 3-D force and 2-D pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first-order power effects. Results are also presented from a compatibility study in which a short-haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High-lift test data are used to substantiate the projected performance of the selected transport design. Author

N80-15072*# Lockheed-Georgia Co., Marietta.

EXPLORATORY STUDIES OF THE CRUISE PERFORMANCE OF UPPER SURFACE BLOWN CONFIGURATIONS: PROGRAM ANALYSIS AND CONCLUSIONS J. A. Braden, J. P. Hancock, J. E. Hackett, and V. Lyman Langley Res. Center, Hampton, Va. NASA Oct. 1979 349 p refs (Contract NAS1-13871)

(NASA-CR-159136; LG77ER0028) Avail: NTIS HC A15/MF A01 CSCL 01C

The experimental data encompassing surface pressure measurements, and wake surveys at static and wind-on conditions are analyzed. Cruise performance trends reflecting nacelle geometric variations, and nozzle operating conditions are presented. Details of the modeling process are included. F.O.S.

N80-15073*# Rockwell International Corp., El Segundo, Calif. ANALYSES AND TESTS OF THE B-1 AIRCRAFT STRUC-TURAL MODE CONTROL SYSTEM Final Report

John H. Wykes, Thomas R. Byar, Cary J. MacMiller, and David C. Greek Jan. 1980 268 p refs

(Contract NAS4-2519)

(NASA-CR-144887; H-1109; NA-79-405) Avail: NTIS HC A12/MF A01 CSCL 01C

Analyses and flight tests of the B-1 structural mode control system (SMCS) are presented. Improvements in the total dynamic response of a flexible aircraft and the benefits to ride qualities, handling qualities, crew efficiency, and reduced dynamic loads on the primary structures, were investigated. The effectiveness and the performance of the SMCS, which uses small aerodynamic surfaces at the vehicle nose to provide damping to the structural modes, were evaluated. R.E.S.

N80-15074*# Lockheed-California Co., Burbank.

HYPERSONIC CRUISE AIRCRAFT PROPULSION INTEGRA-TION STUDY, VOLUME 1 Final Report, Jun. 1978 - Sep. 1979

R. E. Morris and G. D. Brewer Sep. 1979 96 p ref (Contract NAS1-15057)

(NASA-CR-158926-Vol-1; LR-28651-Vol-1) Avail: NTIS HC A05/MF A01 CSCL 01C

A hypersonic cruise transport conceptual design is described. The integration of the subsonic, supersonic, and hypersonic propulsion systems with the aerodynamic design of the airframe is emphasized. An evaluation of various configurations of aircraft and propulsion integration concepts, and selection and refinement of a final design are given. This configuration was used as a baseline to compare two propulsion concepts - one using a fixed geometry dual combustion mode scramjet and the other a variable geometry ramjet engine. Both concepts used turbojet engines for takeoff, landing and acceleration to supersonic speed. R.CT.

N80-15075*# Lockheed-California Co., Burbank.

HYPERSONIC CRUISE AIRCRAFT PROPULSION INTEGRA-TION STUDY, VOLUME 2 Final Report, Jun. 1978 - Sep. 1979

R. E. Morris and G. D. Brewer Sep. 1979 244 p refs (Contract NAS1-15057)

(NASA-CR-158926-Vol-2; LR-28651-Vol-2) Avail: NTIS HC A11/MF A01 CSCL 01C

Conceptual vehicle configuration and propulsion approach for a Mach 6 transport aircraft capable of carring 200 passengers 9260 km was investigated. Wind tunnel test data for various hypersonic transport configurations were examined. Canidates for baseline reference vehicles were selected. An explanation of technical methods which were used and configuration details which were significant in the final vehicle concept are given. R.C.T.

N80-15076*# Rensselaer Polytechnic Inst., Troy, N. Y. COMPOSITE STRUCTURAL MATERIALS Semiannual Report, Apr. - Sep. 1979

George S. Ansell, Robert G. Loewy, and Stephen E. Wiberly Dec. 1979 107 p refs Sponsored in part by AFOSR (Grant NGL-33-018-003)

(NASA-CR-162578; SAR-37) Avail: NTIS HC A06/MF A01 CSCL 01C

A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly: (2) optimizing fiber orientation in the vicinity of heavily loaded joints: (3) failure mechanisms and delamination: (4) the construction of an ultralight sailplane: (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing: (8) physical properties of epoxy resins and composites: (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites. A.R.H.

N80-15077# Boeing Vertol Co., Philadelphia, Pa. CH-46 COMPOSITE ROTOR BLADE FLIGHT STRESS SURVEY DATA. VOLUME 3: PLOTTED FORWARD ROTOR BLADE CHORD, TORSION AND ABSOLUTE LOADS

R. Aiello and J. Bendo 1978 324 p refs

(Contract N00019-75-C-0396)

(AD-A075612; D210-11168-3-Vol-3) Avail: NTIS HC A14/MF A01 CSCL 01/3

Data plots are presented of flight stress tests performed on the CH-46 aircraft composite rotor blades. M.M.M.

N80-15078# Army Test and Evaluation Command, Aberdeen Proving Ground, Md.

AIRCRAFT ANTI-ICING/DE-ICING Final Report 31 Aug. 1979 21 p

(AD-A074128; TOP-7-3-528) Avail: NTIS HC A02/MF A01 CSCL 01/3

This document provides information, methodology and techniques necessary to plan, conduct and document a development test of an aircraft anti-icing/de-icing system. A development test of an aircraft anti-icing/de-icing system will determine the degree to which a subject system and its associated documentation, tools and auxiliary equipment meets the requirements of the Army Materiel Needs documents. GRA

N80-15079# Textron Bell Helicopter, Fort Worth, Tex. ANALYSIS OF LOW-SPEED HELICOPTER FLIGHT TEST DATA Final Report, Mar. 1977 - Mar. 1979

James L. Tangler Aug. 1979 145 p refs

(Contract DAAJ02-77-C-0022; DA Proj. 1L2-62209-AH-76)

(AD-A074141; BHT-699-099-103; USARTL-TR-79-19) Avail: NTIS HC A07/MF A01 CSCL 01/3

The purpose of this study was to investigate the aerodynamic behavior of a helicopter rotor operating in the low-speed flight regime, particularly in the nap-of-the-Earth (NOE) evasive mode. The effort consisted of reducing and analyzing existing AH-1G flight test response data acquired for simulated NOE flight under contract DAAJ02-73-C-0105. Specific areas of interest analyzed in this study include blade/vortex interaction at 50 knots and angle-of-attack data derived from hot-wire measurements taken in hover.

N80-15080# Naval Air Test Center, Patuxent River, Md. JA-6A CIRCULATION CONTROL WING CONTRACTOR FLIGHT DEMONSTRATION

R. W. Boyd 28 Aug. 1979 25 p refs (AD-A074888; NATC-TM-79-2-SA) Avail: NTIS HC A02/MF A01 CSCL 01/3

A Circulation Control Wing (CCW) Flight Demonstrator was designed and built by Grumman Aerospace Corporation (GAC) using a modified A-6A airplane. The design was a joint effort by David Taylor Naval Ship Research and Development Center (DTNSRDC) and GAC based on research originated by DTNSRDC. The airplane demonstrated significant STOL potential. Compared to the basic A-6A airplane, takeoff and landing roll distances were improved by 36% and 43%, respectively. Maximum CL was increased by 80%. Some Handling Qualities problems are discussed. The CCW concept was shown to be a viable, simple, and powerful STOL tool for use in future designs. GRA

N80-15081# Army Research and Technology Labs., Fort Eustis, Va.

MODEL 540 ROTOR BLADE CRACK PROPAGATION INVESTIGATION Final Report, Jan. - Feb. 1978

Danny E.	Good	Aug.	1979	35	р	refs	
(DA Proj.	1F2-6	2209-	AH-76)			

(AD-A074734; USARTL-TR-79-26) Avail: NTIS HC A03/MF A01 CSCL 01/3

The rate of crack propagation from an induced defect in a metal Bell Helicopter 540 main rotor blade was investigated. A controlled crack front was introduced into the top surface of the blade spar. Fatigue testing was conducted at maximum level flight loads and the crack growth was monitored. Experimental data was then compared with analytical predictions to measure the ability to predict crack growth characteristics. GRA

N80-15082# Naval Air Development Center, Warminster, Pa. Aircraft and Crew Systems Technology Directorate.

VISUAL ACCOMMODATION RESPONSES IN A VIRTUAL IMAGE ENVIRONMENT Phase Report

Gloria Twine Chisum and Phyllis E. Morway 1979 15 p refs (WR041010101)

(AD-A074415; NADC-79213-60) Avail: NTIS HC A02/MF A01 CSCL 05/5

The virtual images generated for helmet mounted displays and head-up displays are reflected by beam splitters to the eyes of a user. The influence of the beam splitters, with and without images reflected, on the accommodation responses of observers was measured utilizing an eyetracker which continuosly monitored the accommodation response. The results indicate that the presence of the beam splitter aids in maintaining accommodation at or near infinity. GRA

N80-15083*# General Electric Co., Washington, D. C. Aircraft Engine Group.

DEMONSTRATION OF SHORT HAUL AIRCRAFT AFT NOISE REDUCTION TECHNIQUES ON A TWENTY INCH (50.8 cm) DIAMETER FAN, VOLUME 1

D. L. Stimpert and R. A. McFalls May 1975 131 p refs 3 Vol.

(Contract NAS3-18021)

(NASA-CR-134849; R75AEG252-Vol-1) Avail: NTIS HC A07/MF A01 CSCL 21E

Tests of a 20 inch diameter, low tip speed, low pressure ratio fan which investigated aft fan noise reduction techniques are reported. These techniques included source noise reduction features of selection of vane-blade ratio to reduce second harmonic noise, spacing effects, and lowering the Mach number through a vane row. Aft suppression features investigated included porosity effects, variable depth treatment, and treatment regenerated flow noise. Initial results and selected comparisons are presented.

J.M.S.

N80-15084*# General Electric Co., Washington, D. C. Aircraft Engine Group.

DEMONSTRATION OF SHORT-HAUL AIRCRAFT AFT NOISE REDUCTION TECHNIQUES ON A TWENTY INCH (50.8) DIAMETER FAN, VOLUME 2

D. L. Stimpert Apr. 1975 307 p 3 Vol.

(Contract NAS3-18021)

(NASA-CR-134850; R75AEG252-Vol-2) Avail: NTIS HC A14/MF A01 CSCL 21E Avail: NTIS

Aft fan noise reduction techniques were investigated. The 1/3 octave band sound data were plotted with the following plots included: perceived noise level vs acoustic angle at 2 fan speeds; PWL vs frequency at 2 fan speeds; and sound pressure level vs frequency at 2 aft angles and 2 fan speeds. The source noise plots included: band pass filter sound pressure level vs acoustic angle at 2 fan speeds; and 2nd harmonic SPL acoustic angle at 2 fan speeds. R.C.T.

N80-15085*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

DEMONSTRATION OF SHORT HAUL AIRCRAFT AFT NOISE REDUCTION TECHNIQUES ON A TWENTY INCH (50.8 cm) DIAMETER FAN, VOLUME 3

D. L. Stimpert Apr. 1975 725 p 3 Vol. (Contract NAS3-18021) (NASA-CR-134851; R75AEG252-Vol-3) Avail: NTIS HC A99/MF A01 CSCL 21E Tests of a twenty inch diameter, low tip speed, low pressure ratio fan which investigated aft fan noise reduction techniques are reported. The 1/3 octave band sound data are presented for all the configurations tested. The model data are presented on 17 foot arc and extrapolated to 200 foot sideline. J.M.S.

N80-15086*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT HAUL EXPERIMENTAL ENGINE (QCSEE) OVER THE WING (OTW) DESIGN REPORT Final Report Jun. 1977 530 n

(Contract NAS3-18021) (NASA-CR-134848; R75AEG443) Avail: NTIS HC A23/MF A01 CSCL 21E

The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing is demonstrated. Composite structures and digital engine controls are among the topics included. R.C.T.

N80-15087*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE). AERODYNAMIC AND AEROMECHANICAL PERFORMANCE OF A 50.8 cm (20 INCH) DIAMETER 1.34 PR VARIABLE PITCH FAN WITH CORE FLOW

R. G. Giffin, R. A. McFalls, and B. F. Beacher $\ Aug.$ 1977 133 p $\ refs$

(Contract NAS3-18021)

(NASA-CR-135017; R75AEG445) Avail: NTIS HC A07/MF A01 CSCL 21E

The fan aerodynamic and aeromechanical performance tests of the quiet clean short haul experimental engine under the wing fan and inlet with a simulated core flow are described. Overall forward mode fan performance is presented at each rotor pitch angle setting with conventional flow pressure ratio efficiency fan maps, distinguishing the performance characteristics of the fan bypass and fan core regions. Effects of off design bypass ratio, hybrid inlet geometry, and tip radial inlet distortion on fan performance are determined. The nonaxisymmetric bypass OGV and pylon configuration is assessed relative to both total pressure loss and induced circumferential flow distortion. Reverse mode performance, obtained by resetting the rotor blades through both the stall pitch and flat pitch directions, is discussed in terms of the conventional flow pressure ratio relationship and its implications upon achievable reverse thrust. Core performance in reverse mode operation is presented in terms of overall recovery levels and radial profiles existing at the simulated core inlet plane. Observations of the starting phenomena associated with the initiation of stable rotor flow during acceleration in the reverse mode are briefly discussed. Aeromechanical response characteristics of the fan blades are presented as a separate appendix, along with a description of the vehicle instrumentation and method of data reduction. B.C.T

N80-15088*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) PRELIMINARY UNDER THE WING FLIGHT PROPULSION SYSTEM ANALYSIS REPORT

D. F. Howard Feb. 1976 261 p refs

(Contract NAS3-18021)

(NASA-CR-134868; R75AEG349) Avail: NTIS HC A12/MF A01 CSCL 21E Avail: NTIS

The preliminary design and installation of high bypass, geared turbofan engine with a composite nacelle forming the propulsion system for a short haul passenger aircraft are described. The technology required for externally blown flap aircraft with under the wing (UTW) propulsion system installations for introduction into passenger service in the mid 1980's is included. The design, fabrication, and testing of this UTW experimental engine containing the required technology items for low noise, fuel economy, with composite structure for reduced weight and digital engine control are provided.

N80-15089*# General Electric Co., Cincinnati, Ohio. Group Engineering Div.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE). THE AERODYNAMIC AND MECHANICAL DESIGN OF THE OCSEE OVER-THE-WING FAN

Apr. 1976 98 p

(Contract NAS3-18021)

(NASA-CR-134915) Avail: NTIS HC A05/MF A01 CSCL 21E

The aerodynamic and mechanical design of a fixed-pitch 1.36 pressure ratio fan for the over-the-wing (OTW) engine is presented. The fan has 28 blades. Aerodynamically, the fan blades were designed for a composite blade, but titanium blades were used in the experimental fan as a cost savings measure. R.E.S.

N80-15090*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept. QUIET CLEAN SHORT HAUL EXPERIMENTAL ENGINE

(QCSEE) UNDER-THE-WING ENGINE DIGITAL CONTROL SYSTEM DESIGN REPORT Jan. 1978 321 p refs

(Contract NAS3-18021)

(NASA-CR-134920; R75AEG483) NTIS Avail: HC A14/MF A01 CSCL 21E

A digital electronic control was combined with conventional hydromechanical components to operate the four controlled variables on the under-the-wing engine: fuel flow, fan blade pitch, fan exhaust area, and core compressor stator angles. The engine and control combination offers improvements in noise, pollution, thrust response, operational monitoring, and pilot workload relative to current engines. R.E.S.

N80-15091*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept. QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) UNDER-THE-WING ENGINE SIMULATION REPORT

Jul. 1977 103 p refs

(Contract NAS3-18021) (NASA-CR-134914; R75AEG444) NTIS Avail: HC A06/MF A01 CSCL 21E

Hybrid computer simulations of the under-the-wing engine were constructed to develop the dynamic design of the controls. The engine and control system includes a variable pitch fan and a digital electronic control. Simulation results for throttle bursts from 62 to 100 percent net thrust predict that the engine will accelerate 62 to 95 percent net thrust in one second. R.E.S.

N80-15092*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) OVER-THE-WING CONTROL SYSTEM DESIGN REPORT

Dec. 1977 249 p refs (Contract NAS3-18021) (NASA-CR-135337;

R77AEG664) Avail: NTIS HC A11/MF A01 CSCL 21E

A control system incorporating a digital electronic control was designed for the over-the-wing engine. The digital electronic control serves as the primary controlling element for engine fuel flow and core compressor stator position. It also includes data monitoring capability, a unique failure indication and corrective action feature, and optional provisions for operating with a new type of servovalve designed to operate in response to a digital-type signal and to fail with its output device hydraulically locked into position. R.E.S.

N80-15093*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

QUIET CLEAN SHORT HAUL EXPERIMENTAL ENGINE (QCSEE). CORE ENGINE NOISE MEASUREMENTS H. D. Sowers and (Contract NAS3-18021) (Contract 135160; R75AEG511) H. D. Sowers and W. E. Coward Dec. 1977 52 p ref NTIS Avail HC A04/MF A01 CSCL 21E

Noise measurements were taken on a turbofan engine which uses the same core, with minor modifications, employed on the quiet clean short-haul experimental engine (QCSEE) propulsion systems. Both nearfield and farfield noise measurements were taken in order to determine the core internally generated noise levels. The resulting noise measurements were compared to predicted combustor and turbine noise levels, to verify or improve the predicted QCSEE combustor and turbine noise levels. Author

N80-15094*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Engineering Div

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) UNDER-THE-WING (UTW) ENGINE COMPOSITE NACELLE TEST REPORT. VOLUME 1: SUMMARY, **AERODYNAMIC AND MECHANICAL PERFORMANCE**

Apr. 1979 214 p refs (Contract NAS3-18021)

(NASA-CR-159471; R78AEG573-Vol-1) Avail: NTIS HC A10/MF A01 CSCL 21E

The performance test results of the final under-the-wing engine configuration are presented. One hundred and six hours of engine operation were completed, including mechanical and performance checkout, baseline acoustic testing with a bellmouth inlet, reverse thrust testing, acoustic technology tests, and limited controls testing. The engine includes a variable pitch fan having advanced composite fan blades and using a ball-spline pitch actuation system. R.E.S.

N80-15095*# General Electric Co., Cincinnati, Ohio. Group Engineering Div.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE **(QCSEE) PRELIMINARY OVER-THE-WING FLIGHT PROPUL-**SION SYSTEM ANALYSIS REPORT

D. F. Howard Jun. 1977 174 p refs (Contract NAS3-18021) (NASA-CR-135296; R77AEG305) Avail: NTIS HC A08/MF A01 CSCL 21E

The preliminary design of the over-the-wing flight propulsion system installation and nacelle component and systems design features of a short-haul, powered lift aircraft are presented. Economic studies are also presented and show that high bypass, low pressure ratio turbofan engines have the potential of providing an economical propulsion system for achieving the very quiet aircraft noise level of 95 EPNdB on a 152.4 m sideline.

RES

N80-15096*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT HAUL EXPERIMENTAL ENGINE (QCSEE). UNDER-THE-WING (UTW) ENGINE BOILERPLATE NACELLE TEST REPORT, VOLUME 1 Summary Report 31 Dec. 1977 65 p 3 Vol.

(Contract NAS3-18021)

(NASA-CR-135249; R77AEG2121-Vol-1) Avail: NTIS HC A04/MF A01 CSCL 21E

The design and testing of high bypass geared turbofan engines with nacelles forming the propulsion systems for short haul passenger aircraft are considered. The test results demonstrate the technology required for externally blown flap aircraft for introduction into passenger service in the 1980's. The equipment tested is described along with the test facility and instrumentation. A chronological history of the test and a summary of results are given. J.M.S.

N80-15097*# General Electric Co., Cincinnati, Ohio. Advanced Engneering and Technology Programs Dept.

QUIET CLEAN SHORT HAUL EXPERIMENTAL ENGINE (QCSEE). UNDER-THE-WING (UTW) ENGINE BOILERPLATE NACELLE TEST REPORT. VOLUME 3: MECHANICAL PERFORMANCE

31 Dec. 1977 128 p refs 3 Vol. (Contract NAS3-18021) (NASA-CR-135251; R77AEG212-Vol-3) NTIS Avail: HC A07/MF A01 CSCL 21E

Results of initial tests of the under the wing experimental engine and boilerplate nacelle are presented. The mechanical performance of the engine is reported with emphasis on the advanced technology components. Technology elements of the propulsion system covered include: system dynamics, composite fan blades, reduction gear, lube and accessory drive system, fan frame, inlet, core cowl cooling, fan exhaust nozzle, and digital control system.

N80-15098*# General Electric Co., Cincinnati, Ohio.

QUIET CLEÄN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE). COMPOSITE FAN FRAME SUBSYSTEM TEST REPORT

C. L. Stotler, Jr. and J. H. Bowden Sep. 1977 71 p (Contract NAS3-18021) (NASA-CR-135010; R76AEG233) Avail: NTIS

HC A04/MF A01 CSCL 21E The element and subcomponent testing conducted to verify the composite fan frame design of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft is described. Emphasis is placed on the propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing, including technology in composite structures and digital engine controls. The element tests confirmed that the processes used in the frame design would produce the predicted mechanical properties. The subcomponent tests verified that the detail structural components of the frame had adequate structural integrity. J.M.S.

N80-15099*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) OVER-THE-WING (OTW) BOILERPLATE NACELLE DESIGN REPORT

May 1977 78 p

(Contract NAS3-18021)

(NASA-CR-135168; R77AEG300) Avail: NTIS HC A05/MF A01 CSCL 21E

A summary of the mechanical design of the boiler plate nacelle for the QCSEE over the wing (OTW) engine is presented. The nacelle, which features a D-shaped nozzle/thrust reverser and interchangeable hard wall and acoustic panels, is utilized in the engine testing to establish the aerodynamic and acoustic requirements for nozzles and reversers of this type. J.M.S.

N80-15100*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) UNDER-THE-WING (UTW) COMPOSITE NACELLE SUBSYSTEM TEST REPORT

C. L. Stotler, Jr., E. A. Johnston, and D. S. Freeman Jul. 1977 83 p. refs

(Contract NAS3-18021)

(NASA-CR-135075; R76AEG420) Avail: NTIS HC A05/MF A01 CSCL 21E

The element and subcomponent testing conducted to verify the under the wing composite nacelle design is reported. This composite nacelle consists of an inlet, outer cowl doors, inner cowl doors, and a variable fan nozzle. The element tests provided the mechanical properties used in the nacelle design. The subcomponent tests verified that the critical panel and joint areas of the nacelle had adequate structural integrity. J.M.S.

N80-15101*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE). BALL SPLINE PITCH CHANGE MECHANISM DESIGN REPORT

Apr. 1978 73 p refs (Contract NAS3-18021) (NASA-CR-134873; R7

(NASA-CR-134873; R77AEG327) Avail: NTIS HC A04/MF A01 CSCL 21E

Detailed design parameters are presented for a variable-pitch change mechanism. The mechanism is a mechanical system

containing a ball screw/spline driving two counteracting master bevel gears meshing pinion gears attached to each of 18 fan blades. R.E.S.

N80-15102*# General Electric Co., Cincinnati, Ohio. ACOUSTIC ANALYSIS OF AFT NOISE REDUCTION TECHNIQUES MEASURED ON A SUBSONIC TIP SPEED 50.8 cm (TWENTY INCH) DIAMETER FAN

D. L. Stimpert and A. Clemons Jan. 1977 149 p refs (Contract NAS3-18021) (NASA-CR-134891; R75AEG368) Avail: I

(NASA-CR-134891; R75AEG368) Avail: NTIS HC A07/MF A01 CSCL 21E

Sound data which were obtained during tests of a 50.8 cm diameter, subsonic tip speed, low pressure ratio fan were analyzed. The test matrix was divided into two major investigations: (1) source noise reduction techniques; and (2) aft duct noise reduction with acoustic treatment. Source noise reduction techniques were investigated which include minimizing second harmonic noise by varying vane/blade ratio, variation in spacing, and lowering the Mach number through the vane row to lower fan broadband noise. Treatment in the aft duct which includes flow noise effects, faceplate porosity, rotor OGV treatment, slant cell treatment, and splitter simulation with variable depth on the outer wall and constant thickness treatment on the inner wall was investigated. Variable boundary conditions such as variation in treatment panel thickness and orientation, and mixed porosity combined with variable thickness were examined. Significant results are reported. R.C.T.

N80-15103*# Curtiss-Wright Corp., Wood-Ridge, N.J. Power Systems.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) MAIN REDUCTION GEARS TEST PROGRAM Final Report

O. W. Misel Mar. 1977 220 p refs (Contract NAS3-18021)

(NASA-CR-134669; CW-WR-77-008) Avail: NTIS HC A10/MF A01 CSCL 21E

Sets of under the wing (UTW) engine reduction gears and sets of over the wing (OTW) engine reduction gears were fabricated for rig testing and subsequent installation in engines. The UTW engine reduction gears which have a ratio of 2.465:1 and a design rating of 9712 kW at 3157 rpm fan speed were operated at up to 105% s feed at 60% torque and 100% speed at 125% torque. The OTW engine reduction gears which have a ratio of 2.062:1 and a design rating of 12,615 kW at 3861 rpm fan speed were operated at up to 95% speed at 50% torque and 80% speed at 109% torque. Satisfactory operation was demonstrated at powers up to 12,172 kW, mechanical efficiency up to 99.1% UTW, and a maximum gear pitch line velocity of 112 m/s (22.300 fpm) with a corresponding star gear spherical roller bearing DN of 850,00 OTW. Oil and star gear bearing temperatures, oil churning, heat rejection, and vibratory characteristics were acceptable for engine installation. R.C.T

N80-15104*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT HAUL EXPERIMENTAL ENGINE (QCSEE) CLEAN COMBUSTOR TEST REPORT

Oct. 1975 66 p refs (Contract NAS3-18021)

(NASA-CR-134916: R75AEG449) Avail: NTIS HC A04/MF A01 CSCL 21E

A component pressure test was conducted on a F101 PFRT combustor to evaluate the emissions levels of this combustor design at selected under the wing and over the wing operating conditions for the quiet clean short haul experimental engine (QCSEE). Emissions reduction techniques were evaluated which included compressor discharge bleed and sector burning in the combustor. The results of this test were utilized to compare the expected QCSEE emissions levels with the emission goals of the QCSEE engine program. R.C.T.

N80-15105*# Curtiss-Wright Corp., Wood-Ridge, N.J. QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) MAIN REDUCTION GEARS BEARING DEVELOP-MENT PROGRAM Final Report

Dec. 1975 40 p (Contract NAS3-18021)

(NASA-CR-134890) Avail: NTIS HC A03/MF A01 CSCL 21E

The viability of proposed bearing designs to operate at application conditions is described. Heat rejection variables were defined for the test conditions. Results indicate that there is potential for satisfactory operation of spherical roller bearing in the QCSEE main reduction gear application. R.C.T.

N80-15106*# Curtiss-Wright Corp., Wood-Ridge, N.J. QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) MAIN REDUCTION GEARS DETAILED DESIGN REPORT Final Report

A. Defeo and M. Kulina Jul. 1977 221 p

(Contract NAS3-18021)

(NASA-CR-134872; CW-WR-77-024) Avail: NTIS HC A10/MF A01 CSCL 21E

Lightweight turbine engines with geared slower speed fans are considered. The design of two similar but different gear ratio, minimum weight, epicyclic star configuration main reduction gears for the under the wing (UTW) and over the wing (OTW) engines is discussed. The UTW engine reduction gear has a ratio of 2.465:1 and a 100% power design rating of 9885 kW (13.256 hp) at 3143 rpm fan speed. The OTW engine reduction gear has a ratio of 2.062:1 and a 100% power design rating of 12813 kW (17183 hp) at 3861 rpm fan speed. Details of configuration, stresses, deflections, and lubrication are presented. J.M.S.

N80-15107*# Hamilton Standard, Windsor Locks, Conn. Aircraft Systems Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE): HAMILTON STANDARD CAM/HARMONIC DRIVE VARIABLE PITCH FAN ACTUATION SYSTEM DETAIL DESIGN REPORT Mar. 1976 159 p (Contract NAS3-18021)

(NASA-CR-134852; HSER-7001) Avail: NTIS HC A08/MF A01 CSCL 21E

A variable pitch fan actuation system was designed which incorporates a remote nacelle-mounted blade angle regulator. The regulator drives a rotating fan-mounted mechanical actuator through a flexible shaft and differential gear train. The actuator incorporates a high ratio harmonic drive attached to a multitrack spherical cam which changes blade pitch through individual cam follower arms attached to each blade trunnion. Detail design parameters of the actuation system are presented. These include the following: design philosophies, operating limits, mechanical, hydraulic and thermal characteristics, mechanical efficiencies, materials, weights, lubrication, stress analyses, reliability and failure analyses. Author

N80-15108*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) UNDER-THE-WING ENGINE COMPOSITE FAN BLADE DESIGN REPORT Final Report

R. Ravenhall and C. T. Salemme Feb. 1977 61 p refs (Contract NAS3-18021)

(NASA-CR-135046; R77AEG177) Avail:

HC A04/MF A01 CSCL 21E A total of 38 quiet clean short haul experimental engine under the wing composite fan blades were manufactured for various component tests, process and tooling, checkout, and use in the OCSFE UTW engine. The component tests included

in the QCSEE UTW engine. The component tests included frequency characterization, strain distribution, bench fatigue, platform static load, whirligig high cycle fatigue, whirligig low cycle fatigue, whirligig strain distribution, and whirligig overspeed. All tests were successfully completed. All blades planned for use in the engine were subjected to and passed a whirligig proof spin test. R.C.T.

N80-15109*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE): THE AERODYNAMIC AND MECHANICAL DESIGN OF THE QCSEE UNDER-THE-WING FAN Mar. 1977 144 p (Contract NAS3-18021) (NASA-CR-135009; R75AEG484) Avail: NTIS HC A07/MF A01 CSCL 21E

The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The aerodynamic and mechanical design of a variable pitch 1.34 pressure ratio fan for the under the wing (UTW) engine are included. The UTW fan was designed to permit rotation of the 18 composite fan blades into the reverse thrust mode of operation through both flat pitch and stall pitch directions. R.C.T.

N80-15110*# General Electric Co., Cincinnati, Ohio. QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) COMPOSITE FAN FRAME DESIGN REPORT S. C. Mitchell Sep. 1978 97 p refs (Contract NAS3-18021) (NASA-CR-135278; R77AEG439) Avail: NTIS HC A04/MF A01 CSCL 21E An educated composite forms which is flictburicht and

An advanced composite frame which is flight-weight and integrates the functions of several structures was developed for the over the wing (OTW) engine and for the under the wing (UTW) engine. The composite material system selected as the basic material for the frame is Type AS graphite fiber in a Hercules 3501 epoxy resin matrix. The frame was analyzed using a finite element digital computer program. This program was used in an iterative fashion to arrive at practical thicknesses and ply orientations to achieve a final design that met all strength and stiffness requirements for critical conditions. Using this information, the detail design of each of the individual parts of the frame was completed and released. On the basis of these designs, the required tooling was designed to fabricate the various component parts of the frame. To verify the structural integrity of the critical joint areas, a full-scale test was conducted on the frame before engine testing. The testing of the frame established critical spring constants and subjected the frame to three critical load cases. The successful static load test was followed by 153 and 58 hours respectively of successful running on the UTW and OTW engines. J.M.S.

 N80-15111*# General Electric Co., Cincinnati, Ohio.
 Advanced

 Engineering and Technology Programs Dept.
 QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE

 QUET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE
 (QCSEE)

 (QCSEE) UTW FAN PRELIMINARY DESIGN
 Feb. 1975 107 p

 (Contract NAS3-18021)
 (NASA-CR-134842:
 R75AEG213)

 HC A06/MF A01 CSCL 21E
 History for actions
 History for actions

High bypass geared turbofan engines and propulsion systems designed for short-haul passenger aircraft are described. The propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing is emphasized. The aerodynamic and mechanical preliminary design of the QCSEE under the wing 1.34 pressure ratio fan with variable blade pitch is presented. Design information is given for two pitch change actuation systems which will provide reverse thrust. J.M.S.

N80-15112*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept. QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE): THE AERODYNAMIC AND PRELIMINARY MECHANICAL DESIGN OF THE QCSEE OTW FAN Feb. 1975 80 p (Contract NAS3-18021) (NASA-CR-134841: R75AEG381) Avait: NTIS HC A05/MF A01 CSCL 21E

NTIS

The aerodynamic and mechanical preliminary design of the QCSEE over the wing 1.36 pressure ratio fan is presented. Design information is given for both the experimental and flight designs. J.M.S.

N80-15113*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) UNDER-THE-WING ENGINE COMPOSITE FAN BLADE DESIGN

May 1975 57 p (Contract NAS3-18021)

(NASA-CR-134840; R75AEG278) Avail: NTIS HC A04/MF A01 CSCL 21E

The design and analysis of a composite fan blade for the under the wing (UTW) QCSEE is presented. The blade is designed for a variable pitch. 18 bladed rotor and is constructed from a hybrid composite combination of materials consisting of Kevlar-49, type AS graphite, boron, and S-glass fibers in a PR288 epoxy resin matrix. The blade has an attached platform which is constructed of AS-graphite. PR278 epoxy resin matrix and aluminum honeycomb. The blade is designed to satisfy aerostability and cyclic life and strength requirements with a light weight construction. The attached platform is designed for a fail-safe condition in that it is retainable by the blade, under centrifugal force loading, even in the event of blade to platform bond separation. Details of the blade design and the results of stress, vibration, and impact analysis are included. J.M.S.

N80-15114*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) OVER-THE-WING ENGINE AND CONTROL SIMULATION RESULTS Oct. 1978 107 p refs

(Contract NAS3-18021)

(NASA-CR-135049; R76AEG218) Avail: NTIS HC A06/MF A01 CSCL 21E

A hybrid-computer simulation of the over the wing turbofan engine was constructed to develop the dynamic design of the control. This engine and control system includes a full authority digital electronic control using compressor stator reset to achieve fast thrust response and a modified Kalman filter to correct for sensor failures. Fast thrust response for powered-lift operations and accurate, fast responding, steady state control of the engine is provided. Simulation results for throttle bursts from 62 to 100 percent takeoff thrust predict that the engine will accelerate from 62 to 95 percent takeoff thrust in one second. J.M.S.

N80-15115*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) BALL SPLINE PITCH-CHANGE MECHANISM

WHIRLIGIG TEST REPORT

Sep. 1978 64 p refs

(Contract NAS3-18021)

(NASA-CR-135354; R77AEG394) Avail: NTIS HC A04/MF A01 CSCL 21E

The component testing of a ball spline variable pitch mechanism is described including a whirligig test. The variable pitch actuator successfully completed all planned whirligig tests including a fifty cycle endurance test at actuation rates up to 125 deg per second at up to 102 percent fan speed (3400 rpm). J.M.S.

N80-15116*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) UNDER-THE-WING (UTW) BOILER PLATE NACELLE AND CORE EXHAUST NOZZLE DESIGN RE-PORT

Oct. 1976 104 p (Contract NAS3-18021) (NASA-CR-135008: R76AEG222) Avail: NTIS HC A06/MF A01 CSCL 21E The mechanical design of the boiler plate nacelle and core exhaust nozzle for the QCSEE under the wing engine is presented. The nacelle, which features interchangeable hard-wall and acoustic panels, is to be utilized in the initial engine testing to establish acoustic requirements for the subsequent composite nacelle as well as in the QCSEE over the wing engine configuration.J.M.S.

N80-15117*# Hamilton Standard, Windsor Locks, Conn. QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) WHIRL TEST OF CAM/HARMONIC PITCH CHANGE ACTUATION SYSTEM Contractor Report, 10 Nov. 1975 - 16 Feb. 1976 Apr. 1976 208 p refs

(Contract NAS3-18021) (NASA-CR-135140: HSER-7002) Avail: NTIS HC A10/MF A01 CSCL 21E

A variable pitch fan actuation system, which incorporates a remote nacelle mounted blade angle regulator, was tested. The regulator drives a rotating fan mounted mechanical actuator through a flexible shaft and differential gear train. The actuator incorporates a high ratio harmonic drive attached to a multitrack spherical cam which changes blade pitch through individual cam follower arms attached to each blade trunnion. Testing of the actuator on a whirl rig, is reported. Results of tests conducted to verify that the unit satisfied the design requirements and was structurally adequate for use in an engine test are presented. J.M.S.

N80-15118*# General Electric Co., Cincinnati, Ohio. QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) OVER-THE-WING (OTW) PROPULSION SYSTEMS TEST REPORT. VOLUME 4: ACOUSTIC PERFORMANCE D. L. Stimpert Feb. 1979 144 p refs (Contract NAS3-18021)

(NASA-CR-135326; R77AEG476-Vol-4) Avail: NTIS HC A07/MF A01 CSCL 21E

A series of acoustic tests were conducted on the over the wing engine. These tests evaluated the fully suppressed noise levels in forward and reverse thrust operation and provided insight into the component noise sources of the engine plus the suppression achieved by various components. System noise levels using the contract specified calculation procedure indicate that the in-flight noise level on a 152 m sideline at takeoff and approach are 97.2 and 94.6 EPNdB, respectively, compared to a goal of 95.0 EPNdB. In reverse thrust, the system noise level was 106.1 PNdB compared to a goal of 100 PNdB. Baseline source noise levels agreed very well with pretest predictions. Inlet-radiated noise suppression of 14 PNdB was demonstrated with the high throat Mach number inlet at 0.79 throat Mach number.

N80-15119*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) UNDER-THE-WING (UTW) COMPOSITE NACELLE Final Design Report

E. A. Johnston Aug. 1978 128 p (Contract NAS3-18021) (NASA-CR-135352; R77AEG588) HC A07/MF A01 CSCL 21E

Avail: NTIS

The detail design of the under the wing experimental composite nacelle components is summarized. Analysis of an inlet, fan bypass duct doors, core cowl doors, and variable fan nozzle are given. The required technology to meet propulsion system performance, weight, and operational characteristics is discussed. The materials, design, and fabrication technology for quiet propulsion systems which will yield installed thrust to weight ratios greater than 3.5 to 1 are described.

N80-15120*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) Final Report

William S. Willis Aug. 1979 408 p refs		
(Contract NAS3-18021)		
(NASA-CR-159473; R79AEG478)	Avail:	NTI
HC A18/MF A01 CSCL 21E		

The design, fabrication, and testing of two experimental propulsion systems for powered lift transport aircraft are given. The under the wing (UTW) engine was intended for installation in an externally blown flap configuration and the over the wing (OTW) engine for use in an upper surface blowing aircraft. The UTW engine included variable pitch composite fan blades, main reduction gear, composite fan frame and nacelle, and a digital control system. The OTW engine included a fixed pitch fan, composite fan frame, boilerplate nacelle, and a full authority digital control. Many acoustic, pollution, performance, and weight R.C.T. goals were demonstrated.

N80-15121*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT HAUL EXPERIMENTAL ENGINE (QCSEE). DOUBLE-ANNULAR CLEAN COMBUSTOR **TECHNOLOGY DEVELOPMENT REPORT**

D. W. Bahr, D. L. Burrus, and P. E. Sabla May 1979 - 149 p refs

(Contract NAS3-18021)

(NASA-CR-159483; R79AEG397) NTIS Avail: HC A07/MF A01 CSCL 21E

A sector combustor technology development program was conducted to define an advanced double annular dome combustor sized for use in the quiet clean short haul experimental engine (QCSEE). A design which meets the emission goals, and combustor performance goals of the QCSEE engine program was developed. Key design features were identified which resulted in substantial reduction in carbon monoxide and unburned hydrocarbon emission levels at ground idle operating conditions, in addition to very low nitric oxide emission levels at high power operating conditions. Their significant results are reported. R.C.T.

N80-15122*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

QUIET CLEAN SHORT HAUL EXPERIMENTAL ENGINE (QCSEE): ACOUSTIC TREATMENT DEVELOPMENT AND DESIGN

Art Clemons May 1979 353 p refs (Contract NAS3-18021)

(NASA-CR-135266; R76AEG379-1) NTIS Avail: HC A16/MF A01 CSCL 21E

Acoustic treatment designs for the quiet clean short-haul experimental engines are defined. The procedures used in the development of each noise-source suppressor device are presented and discussed in detail. A complete description of all treatment concepts considered and the test facilities utilized in obtaining background data used in treatment development are also described. Additional supporting investigations that are complementary to the treatment development work are presented. The expected suppression results for each treatment configuration are given in terms of delta SPL versus frequency and in terms of delta PNdB. R E S

N80-15123*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT HAUL EXPERIMENTAL ENGINE (QSCEE). PRELIMINARY ANALYSES AND DESIGN **REPORT, VOLUME 1** Oct. 1974 372 p

(Contract NAS3-18021) R74AEG479-Vol-1)

(NASA-CR-134838; NTIS Avail: HC A16/MF A01 CSCL 21E

The experimental propulsion systems to be built and tested in the 'quiet, clean, short-haul experimental engine' program are presented. The flight propulsion systems are also presented. The following areas are discussed: acoustic design; emissions control; engine cycle and performance; fan aerodynamic design; variablepitch actuation systems; fan rotor mechanical design; fan frame mechanical design; and reduction gear design. R.E.S.

N80-15124*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT HAUL EXPERIMENTAL ENGINE (OCSEE). PRELIMINARY ANALYSES AND DESIGN **REPORT, VOLUME 2**

Oct. 1974 330 p (Contract NAS3-18021)

S

(NASA-CR-134839; R74AEG479-Vol-2) NTIS Avail: HC A15/MF A01 CSCL 21E

The experimental and flight propulsion systems are presented. The following areas are discussed: engine core and low pressure turbine design; bearings and seals design; controls and accessories design; nacelle aerodynamic design; nacelle mechanical design; weight; and aircraft systems design. RES

N80-15125*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) OVER-THE-WING (OTW) PROPULSION SYSTEM TEST REPORT. VOLUME 1: SUMMARY REPORT Jan. 1978 67 p

(Contract NAS3-18021)

R77AEG473-Vol-1) (NASA-CR-135323; Avail: NTIS HC A04/MF A01 CSCL 21E

Sea level, static, ground testing of the over-the-wing engine and boilerplate nacelle components was performed. The equipment tested and the test facility are described. Summaries of the instrumentations, the chronological history of the tests, and the test results are presented. R.E.S.

N80-15126*# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) OVER-THE WING (OTW) PROPULSION SYSTEM TEST REPORT. VOLUME 3: MECHANICAL PERFOR-MANCE

Feb. 1978 121 p

(Contract NAS3-18021)

(NASA-CR-135325; R77AEG475-Vol-3) NTIS Avail: HC A06/MF A01 CSCL 21E

The mechanical performance of the over-the-wing engine is described with emphasis on the advanced technology components. The overall dynamic response of the engine was excellent.R.E.S.

N80-15127*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

QUIET POWERED-LIFT PROPULSION

1979 426 p refs Conf. held at Cleveland, Ohio, 14-15 Nov. 1978

(NASA-CP-2077; E-9906) Avail: NTIS HC A19/MF A01 CSCL 21E

Latest results of programs exploring new propulsion technology for powered-lift aircraft systems are presented. Topics discussed include results from the 'quiet clean short-haul experimental engine' program and progress reports on the 'quiet short-haul research aircraft' and 'tilt-rotor research aircraft' programs. In addition to these NASA programs, the Air Force AMST YC 14 and YC 15 programs were reviewed. R F S

N80-15128*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DIRECT INTEGRATION OF TRANSIENT ROTOR DYNAM-ICS

Albert F. Kascak Washington Jan. 1980 23 p refs

(NASA-TP-1597; AVRADCOM-TR-79-42; E-101) Avail: NTIS HC A02/MF A01 CSCL 21E

An implicit method was developed for integrating the equations of motion for a lumped mass model of a rotor dynamics system. As an aside, a closed form solution to the short bearing theory was also developed for a damper with arbitrary motion. The major conclusions are that the method is numerically stable and that the computation time is proportional to the number of elements in the rotor dynamics model rather than to the cube of the number. This computer code allowed the simulation of a complex rotor bearing system experiencing nonlinear transient

motion and displayed the vast amount of results in an easily understood motion picture format - a 10 minute, 16 millimeter, color, sound motion picture supplement. An example problem with 19 mass elements in the rotor dynamics model took 0.7 second of central processing unit time per time step on an IBM 360-67 computer in a time sharing mode. R.C.T.

N80-15129*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

EVALUATION OF APPROXIMATE METHODS FOR THE PREDICTION OF NOISE SHIELDING BY AIRFRAME COMPONENTS

Warren F. Ahtye and Geraldine McCulley (Informatics, Inc., Palo Alto, Calif.) Washington Jan. 1980 105 p refs (NASA-TP-1004; A-6961) Avail: NTIS HC A06/MF A01 CSCL

21E An evaluation of some approximate methods for the prediction of shielding of monochromatic sound and broadband noise by aircraft components is reported. Anechoic-chamber measurements of the shielding of a point source by various simple geometric shapes were made and the measured values compared with those calculated by the superposition of asymptotic closed-form solutions for the shielding by a semi-infinite plane barrier. The shields used in the measurements consisted of rectangular plates, a circular cylinder, and a rectangular plate attached to the cylinder to simulate a wing-body combination. The normalized frequency, defined as a product of the acoustic wave number and either the plate width or cylinder diameter, ranged from 4.6 to 114, Microphone traverses in front of the rectangular plates and cylinders generally showed a series of diffraction bands that matched those predicted by the approximate methods, except for differences in the magnitudes of the attenuation minima which can be attributed to experimental inaccuracies. The shielding of wing-body combinations was predicted by modifications of the approximations used for rectangular and cylindrical shielding. Although the approximations failed to predict diffraction patterns in certain regions, they did predict the average level of wing-body shielding with an average deviation of less than 3 dB. M.M.M.

N80-15132*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COMPUTER SIMULATION OF ENGINE SYSTEMS

L. H. Fishback 1980 26 p refs Presented at the 18th Aerospace Sci. Meeting, Pasadena, Calif., 14-16 Jan. 1980; sponsored by AIAA

(NASA-TM-79290; E-234) Avail: NTIS HC A03/MF A01 CSCL 21E

The use of computerized simulations of the steady state and transient performance of jet engines throughout the flight regime is discussed. In addition, installation effects on thrust and specific fuel consumption is accounted for as well as engine weight, dimensions and cost. The availability throughout the government and industry of analytical methods for calculating these quantities are pointed out. M.M.M.

N80-15133*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

IMPACT OF NEW INSTRUMENTATION ON ADVANCED TURBINE RESEARCH

Robert W. Graham Mar 1980 25 p refs Proposed for presentation at the 1980 Spring Ann. Meeting, New Orleans, 5-13 Mar. 1980; sponsored by ASME

(NASA-TM-79301; E-251) Avail: NTIS HC A02/MF A01 CSCL 21E

A description is presented of an orderly test program that progresses from the simplest stationary geometry to the more complex, three dimensional, rotating turbine stage. The instrumentation requirements for this evolution of testing are described. The heat transfer instrumentation is emphasized. Recent progress made in devising new measurement techniques has greatly improved the development and confirmation of more accurate analytical methods for the prediction of turbine performance and heat transfer. However, there remain challenging requirements for novel measurement techniques that could advance the future research to be done in rotating blade rows of turbomachines. MMM N80-15134*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio,

AN ANALYTICAL AND EXPERIMENTAL STUDY OF A SHORT S-SHAPED SUBSONIC DIFFUSER OF A SUPER-SONIC INLET

Harvey E. Neumann, Louis A. Povinelli, and Robert E. Coltrin 1980 14 p refs Presented at 18th Aerospace Sci. Meeting, Pasadena, Calif., 14-16 Jan 1980; sponsored by AIAA

(NASA-TM-81406; E-320) Avail: NTIS HC A02/MF A01 CSCL 21E

A subscale HiMAT forebody and inlet was investigated over a range of Mach numbers to 1.4. The inlet exhibited a transitory separation within the diffuser but steady state data indicated reattachment at the diffuser exit. A finite difference procedure for turbulent compressible flow in axisymmetric ducts was used to successfully model the HiMAT duct flow. The analysis technique was further used to estimate the initiation of separation and delineate the steady and unsteady flow regimes in similar S-shaped ducts. RCT

N80-15135# Boeing Aerospace Co., Seattle, Wash, AN EXTENSION OF ENGINE WEIGHT ESTIMATION TECHNIQUES TO COMPUTE ENGINE PRODUCTION COST **Final Report**

E. Onat and F. F. Tolle 31 Aug. 1979 38 p refs (Contract N62269-78-C-0286) (AD-A074454; NADC-78103-60) Avail: NTIS

HC A03/MF A01 CSCL 05/1

As a follow-on to previously developed engine weight estimation work, a preliminary design engine cost estimating code has been produced. The code relies on engine thermodynamic characteristics and weight as computed by earlier developed codes to select raw material types and quantities required to produce the engine. An existing Navy technique is then used to convert this data into engine cost. The code was used to predict the cost of three existing engines; errors ranged form 1 to 8% of actual costs as reported to NADC. GRA

N80-15136# Kentucky Univ., Lexington. Dept. of Engineering Mechanics.

THERMO-MECHANICAL STRESS ANALYSIS OF AD-VANCED TURBINE BLADE COOLING CONFIGURATION Final Report, 1 May 1975 - 15 Jul. 1979

F. J. Rizzo and D. J. Shippy Jul. 1974 68 p refs (Grant AF-AFOSR-2824-79; AF Proj. 2307)

(AD-A074098: UKY-TR111-79-EM17: AFOSR-79-0953TR) Avail: NTIS HC A04/MF A01 CSCL 20/11

A thermo-mechanical stress analysis capability, based on the Boundary Integral Equation Method (BIE) is developed and described. The capability is used to provide a thermoelastic analysis of stress in the vicinity of cooling holes in turbojet blades with transpiration or film cooling. Details involved in the formulation. numerical procedures, mathematical modelling, and data from solved problems are presented. GRA

N80-15137# TRW Equipment Labs., Cleveland, Ohio. Materials Technology Dept.

FRS COMPOSITES FOR ADVANCED GAS TURBINE ENGINE COMPONENTS Final Report D. M. Essock May 1979 46 p refs

(Contract N62269-77-C-0217: SF54592201)

(AD-A074287; ER-7969-F; NADC-77015-30) Avail: NTIS HC A03/MF A01 CSCL 20/5

A number of FRS design concepts involve use of varying volume fraction of fiber, varying fiber diameter, and cross-ply construction. Key properties of such composites were evaluated to determine whether there are any adverse effects. Based upon elevated temperature tensile, creep, and thermal fatigue testing, equivalent mechanical properties are obtained if placement of plies is varied in a symmetrical layup. GRA

N80-15138*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

EFFECTS OF PRIMARY ROTOR PARAMETERS ON FLAP-PING DYNAMICS

Robert T. N. Chen Jan. 1980 63 p refs

(NASA-TP-1431; A-7777) Avail: NTIS HC A04/MF A01 CSCL 01A

The effects of flapping dynamics of four main rotor design features that influence the agility, stability, and operational safety of helicopters are studied. The parameters include flapping hinge offset, flapping hinge restraint, pitch-flap coupling, and blade lock number. First, the flapping equations of motion are derived that explicitly contain the design parameters. The dynamic equations are then developed for the tip-path plane, and the influence of individual and combined variations in the design parameters determined. The steady state flapping response is examined with respect to control input and aircraft angular rate which leads to a feedforward control law for control decoupling through cross feed, and a feedback control law to decouple the steady state flapping response. The condition for achieving perfect decoupling of the flapping response due to aircraft pitch and roll rates without using feedback control is also found for the hover case. It is indicated that the frequency of the regressing flapping mode of the rotor system can become low enough to require consideration in the assessment of handling characteristics. J M S

N80-15139# Calspan Advanced Technology Center, Buffalo, N.Y.

DESIGN CRITERIA FOR OPTIMAL FLIGHT CONTROL SYSTEMS Final Report, Jan. - Nov. 1978

K. S. Govindara, E. G. Rynaski, and A. T. Fam. 7 Sep. 1979 95 p. refs. Prepared in cooperation with the State Univ. of New York at Buffalo

(Contract N00014-78-C-0155)

(AD-A074092; CALSPAN-6248-F-1; ONR-CR-215-259-1F) Avail: NTIS HC A05/MF A01 CSCL 01/3

Discussed is the application of linear optimal control to the design of a multicontroller feedback system to satisfy aircraft flying qualities criteria. The problem addressed is that of relating the performance index weighting matrices to the poles and zeros of the closed-loop transfer functions. Two sequential design procedures, one computing the Riccati solution from a set of linear equations and the other computing the closed-loop eigenvectors, are presented that determine, at each step, the pole-zero movements of the closed-loop transfer functions as the weighting matrix on the states is varied for a given weighting matrix on the controls. The performance index matrix constructed at each step to move the poles and zeros is added to get a final performance index matrix that moves the open-loop poles and zeros to more desirable locations. A control system design example with the X-22A V/STOL aircraft as the model, and using the first sequential design procedures, is presented. Two alternative design techniques are also presented. The first is based upon the Riccati equation solution and the control weighting matrix rather than on the weighting matrices on the states and control, and in the second design technique, the change in the pole-zero locations is determined under perturbations in the performance index matrices. GRA

N80-15140# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France).

TECHNICAL EVALUATION REPORT ON THE 28TH GUID-ANCE AND CONTROL PANEL SYMPOSIUM ON ADVANCES IN GUIDANCE AND CONTROL SYSTEMS USING DIGITAL TECHNIQUES

Morris A. Ostgaard (AFFDL, Wright-Patterson AFB, Ohio) Nov. 1979 14 p Symp. held at Ottawa, 8-11 May 1979 (AGARD-AR-148; ISBN-92-835-1314-X) Avail: NTIS HC A02/MF A01

A summary of the conclusions and recommendations resulting from audience comments and participation and technical assessment of the papers and the meeting is presented. Some of the conclusions are as follows: (1) there is a rapid emergence of digital processor application to guidance and control that represent integration opportunities heretofore unavailable in analog systems; (2) there appears to be a proliferation of microprocessor device application and architectures that, by themselves, limit potential for generalized application; (3) with the availability of more information from the data buss and the power of the computational capability, the multi-variable design techniques are offering significant potential for improving system performance and reducing equipment complexity; and (4) there is a strong need for fundamental studies in functional architecture that can employ microprocessors and still retain standards that permit the application of emerging electronic technology without restructuring the total system. R.E.S.

N80-15141# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France).

LOW COST AIRCRAFT FLUTTER CLEARANCE

Sep. 1979 110 p Papers presented at the 48th Meeting of the Structures and Mater. Panel, Williamsburg, Va., 4 Apr. 1979

(AGARD-CP-278; ISBN-92-835-0245-0) Avail: NTIS HC A06/MF A01

An evaluation of the usage of low cost aircraft flutter clearance procedures is presented. Some results occurring from such procedures (weight efficiency, safety, flight incidents, and overall costs) were discussed relative to those from methods using advanced state of the art. The relative technological-financial position of the small light weight aircraft manufacturer was also discussed.

N80-15142# Lockheed-Georgia Co., Marietta. COMPARISON OF INTERNATIONAL FLUTTER REQUIRE-MENTS AND FLUTTER FREEDOM SUBSTANTIATION OF LIGHT AIRCRAFT IN THE USA

H. F. Hunter and G. E. Goodblood (FAA) In AGARD Low Cost Aircraft Flutter Clearance Sep. 1979 10 p refs

Avail: NTIS HC A06/MF A01

A comparison of current flutter specification requirements for light aircraft produced by NATO and other free-world countries is presented as well as an overview of flutter substantiation procedures presently used in the USA by the Federal Aviation Administration. Current flutter assessment procedures for light aircraft parallel very nearly those for transport-type aircraft. Significant deviations could occur because specific requirements for follow-on flight verification are lacking. The lack of such requirements has not created a great problem, since certain elements of the flight structure call for flight demonstration, in most cases. The body of data acquired may be something less than that derived for a transport program. The attempt is made, however, to acquire sufficient data to validate the analysis from a safety standpoint. M.M.M.

N80-15143# Beech Aircraft Corp., Wichita, Kans. Structural Dynamics Dept.

THE STATE-OF-THE-ART OF FLUTTER SUBSTANTIATION PROCEDURES AMONG US GENERAL AVIATION MANU-FACTURERS

E. H. Hooper In AGARD Low Cost Aircraft Flutter Clearance Sep. 1979 19 p ref

Avail: NTIS HC A06/MF A01

An overview is presented of the state of the art of flutter substantiation procedures among U.S. general aviation manufacturers to serve as a guide to the small plane designer in the prevention of flutter, aileron reversal, and wing divergence. The material presented relies upon: (1) a statistical study of the geometric, inertia, and elastic properties of those airplanes which had experienced flutter in flight, and the methods used to eliminate the flutter; (2) limited wind-tunnel tests conducted with semi-rigid models. These were solid models of high rigidity with motion controlled at the root by springs to simulate wing bending and torsion. Springs at the control surface were used to simulate rotation; and (3) analytic studies based on the two dimensional study of a representative section of an airfoil. M.M.M. N80-15144# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Goettingen (West Germany).

AN EMPIRICAL APPROACH FOR CHECKING FLUTTER STABILITY OF GLIDERS AND LIGHT AIRCRAFT

F. Kiessling /n AGARD Low Cost Aircraft Flutter Clearance Sep. 1979 17 p refs

Avail: NTIS HC A06/MF A01

Data of flutter accidents and computations of gliders and light aircraft are presented, and the empirical rules of a simplified flutter investigation are applied. A procedure for checking the flutter stability of small airplanes is proposed, which takes into account the varying levels of knowledge with conventional and unconventional designs. M.M.M.

N80-15145# Office National d'Etudes et de Recherches Aerospatiales, Paris (France). DYNAMIC IDENTIFICATION OF LIGHT AIRCRAFT STRUC-

TURES AND THEIR FLUTTER CERTIFICATION

Gerard Piazzoli and Jean-Louis Meurzec In AGARD Low Cost Aircraft Flutter Clearance Sep. 1979 19 p refs In FRENCH; ENGLISH summary

Avail: NTIS HC A06/MF A01

Within the framework of the general orientation of the treatment of the light aircraft structures, and with a view to determining specifications for their aeroelastic certification, the following points are discussed: (1) application of fast identification methods and of technological means to be implemented during the tests; (2) exploitation of flutter onset calculations, coupled on the computer with the experimental data, making it possible, ' in most cases, to define in situ a remedy (such as a new mass balance of the control surface) and to check its efficiency: (3) development of mixed methods, based on the theoretical definition of the participation of the control surfaces in the structural modes revealed by the test, with a view to palliating the possible orthogonally defects of the experimental modal basis on which the definitive flutter prediction calculations are established; and (4) methods and techniques used during the aeroelastic flight test, carried out in the particular cases where flutter certification cannot be based only on the calculation file because of insufficient safety margins. MMM

N80-15146# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Goettingen (West Germany).

A SIMPLIFIED GROUND VIBRATION TEST PROCEDURE FOR SAILPLANES AND LIGHT AIRCRAFT

N. Niedbal In AGARD Low Cost Aircraft Flutter Clearance Sep. 1979 11 p refs

Avail: NTIS HC A06/MF A01

A test procedure to obtain all characteristic modal data for an aeroelastic analysis is presented. It is shown that by taking into consideration the beam-like structural behaviour of such aircraft, and the comparatively small bandwidth of the design variables, substantial simplifications are possible when the dynamic behavior of similar aircraft structures is known. The mechanical steering mechanism of the control surfaces causes high damping and nonlinear effects, which require a separate examination and analysis of the control surfaces. M.M.M.

N80-15147# Royal Aircraft Establishment, Farnborough (England). Structures Dept.

A FLUTTER SPEED FORMULA FOR WINGS OF HIGH ASPECT RATIO

LI. T. Niblett /n AGARD Low Cost Aircraft Flutter Clearance Sep. 1979 14 p refs

Avail: NTIS HC A06/MF A01

Flutter-speed formulae for unswept wings of high aspect ratio and not carrying concentrated masses are derived. A high aspect ratio wing was defined as one whose fundamental torsional frequency is well above its first overtone flexural frequency. Because of the comparative fewness of the factors governing the flutter of such wings, flutter-speed formulae aimed at giving a lower bound for the flutter speed is of simple form. M.M.M. N80-15148# British Aerospace Aircraft Group, Weybridge (England). Weybridge-Bristol Div. THE MINIMUM COST APPROACH TO FLUTTER CLEAR-

ANCE B. W. Payne and R. E. J. Brazier /n AGARD Low Cost Aircraft

Flutter Clearance Sep. 1979 11 p

Avail: NTIS HC A06/MF A01

Flutter prediction methods are assessed using criteria and simple flutter analyses. The difference in cost of these alternative approaches is no longer great, and the better data, available from the flutter analysis, answer far more of the questions which arise when obtaining a flutter clearance. Current regulations, although not making flutter calculations mandatory, do insist on ground and flight resonance testing. Data from a flutter analysis can allow a substantial saving in flight test time. It is concluded that flutter clearance of the orthodox design and the only route to flutter clearance of the orthodox design and the only route for the unorthodox. Author

N80-15149# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France).

AERODYNAMIC CHARACTERISTICS OF CONTROLS

Sep. 1979 510 p Presented at the Fluid Dyn. Panel Symp., Pozzuoli, Italy, 14-17 May 1979

(AGARD-CP-262; ISBN-92-835-0252-3) Avail: NTIS HC A22/MF A01

The rapidly expanding flight envelopes of aircraft, the growing applications of active control technology (ACT) and the associated development of control configured vehicles (CCV) are considered. Conventional and novel methods of control, prediction methods, experimental data derived from wind tunnel and flight measurements, and flight experience of ACT and CCV are included.

N80-15150# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany). Inst. for Design Aerodynamics.

THEORETICAL AERODYNAMIC METHODS FOR ACTIVE CONTROL DEVICES

Horst Koerner In AGARD Aerodyn. Characteristics of Controls Sep. 1979 28 p refs

Avail: NTIS HC A22/MF A01

The theoretical aerodynamic aspects of active control devices are surveyed. Various calculation methods for subsonic, transonic, and supersonic attached flow are reviewed followed by comments on separated flow. Typical correlations between theoretical and experimental results for steady and unsteady characteristics of control are presented along with the shortcomings of the theoretical approaches and some recommendations for future efforts. J.M.S.

N80-15151# Royal Aircraft Establishment, Farnborough (England).

A SURVEY OF EXPERIMENTAL DATA ON THE AERODY-NAMICS OF CONTROLS, IN THE LIGHT OF FUTURE NEEDS

A. Jean Ross and H. H. B. M. Thomas *In* AGARD Aerodyn. Characteristics of Controls Sep. 1979 48 p refs

Avail: NTIS HC A22/MF A01

Control data for current aircraft are used to provide material for discussion, principally to describe trends and to highlight gaps in knowledge. Both direct and indirect effects for a range of conventional and unconventional motivators are included. Maximum control power at the extremes of the flight envelope is particularly emphasized, since that available at high angle of attack and high subsonic speed is likely to be the critical design case. The indirect and coupling effects are also more marked at high angle of attack and/or high control deflection, and are of importance in the control system design. Hinge moment characteristics are described, although experimental data published generating required control powers for aircraft configurations made possible by Active Control Technology, and to the integration of the motivators in the control system. J.M.S.

N80-15152# McDonnell Aircraft Co., St. Louis, Mo. CORRELATION OF F-15 FLIGHT AND WIND TUNNEL TEST CONTROL EFFECTIVENESS

J. W. Agnew and J. F. Mello In AGARD Aerodyn. Characteristics of Controls Sep. 1979 11 p refs

Avail: NTIS HC A22/MF A01

The F-15 aerodynamic configuration and control system development relied on data obtained in an extensive wind tunnel test program. Subsequently, a large body of flight test data was obtained. Control surface effectiveness characteristics were derived from flight test data and were compared with the data obtained in the wind tunnel test program. Data correlations are available for the ailerons, rudders, and stabilators. The latter surfaces are deflected symmetrically for longitudinal control and are deflected differentially for roll control. Primary axis effectiveness is addressed for each of these control surfaces. Significant secondary axis contributions (e.g., yawing moments due to aileron deflection) are also addressed. In addition to the conventional control surfaces, the longitudinal control effectiveness of the F-15 movable inlet ramp is discussed. As a result of the excellent resistance to departure from controlled flight, the spin resistance and spin recovery characteristics of the F-15, it was possible to flight test and to obtain control effectiveness data to 90 deg angle of attack at low speeds and to approximately 40 deg at transonic speeds. Thus, the correlation of control effectiveness is addressed for a large range of conditions. J.M.S.

N80-15153# Royal Aircraft Establishment, Farnborough (England).

SOME WIND TUNNEL MEASUREMENTS OF THE EFFEC-TIVENESS AT LOW SPEEDS OF COMBINED LIFT AND ROLL CONTROLS

D. S. Woodward, R. F. A. Keating, and C. S. Barnes In AGARD Aerodyn. Characteristics of Controls Sep. 1979 36 p refs

Avail: NTIS HC A22/MF A01

Using a half-model technique, measurements were made, at low speeds, of the effectiveness of spoilers for direct lift or roll control, with high lift devices deployed. The wing planform was representative of that of a transport aircraft outboard of the trailing edge crank. Results are presented which show that appropriate venting beneath the leading edge of hinged plate spoilers, together with venting through the flap shroud, achieved acceptably linear spoiler characteristics. Similarly, linear characteristics were obtained for a vented spoiler formed by moving the rear of the flap shroud. No reversal of spoiler effectiveness was found at any test condition within the normal operating range of incidence. In the same way, measurements were made of the maximum lift and roll performance of a typical swing wing fighter aircraft, for which the design of the leading and trailing edge controls was totally determined by the need to maximize the maneuverability at high speed. The maximum lift performance is compared with that obtainable from conventional slate and slotted flaps. Somewhat surprisingly, it is found that adequate rolling moments can be obtained by using full-span plain flaps differentially about a basic drooped position of 30 deg. JMS

N80-15154# Boeing Military Airplane Development, Seattle, Wash. Flight Control Technology.

FLIGHT CONTROL AND CONFIGURATION DESIGN CONSIDERATIONS FOR HIGHLY MANEUVERABLE AIRCRAFT

William T. Kehrer In AGARD Aerodyn. Characteristics of Controls Sep. 1979 11 $\rm p$

Avail: NTIS HC A22/MF A01

Working within wing geometry and other design constraints, the controllable limits of instability and the maneuver capabilities of various design approaches were investigated. Preliminary studies conducted to evaluate competitive configuration arrangements indicate that an aft-tail controller concept will be superior to canard and tailless delta configurations. The latter configurations suffer controllability limitations that compromise the ability to achieve design goals for maneuverability and efficient supersonic cruise. Thrust vectoring was explored as a means of improving maneuver load factor capability. RES.

N80-15155# Dornier-Werke G.m.b.H., Friedrichshafen (West Germany).

WIND TUNNEL MEASUREMENTS AND ANALYSIS OF SOME UNUSUAL CONTROL SURFACES ON TWO SWEPT WING FIGHTER CONFIGURATIONS

D. Welte and S. Ehekircher $\ /n$ AGARD Aerodyn. Characteristics of Controls Sep. 1979 10 p

Avail: NTIS HC A22/MF A01

Force measurements were made in a low speed and in a high speed wind tunnel with a 1:20 scale, 35 deg swept wing fighter configuration model. Surfaces which are deflected for longitudinal trim are: horizontal tail, leading- and trailing-edge flaps, a strake and a strake leading-edge flap. For lateral control the following surfaces are deflected: ailerons, tiperons, flaperons and a strake leading-edge flap. The main conclusions are: (1) trailing edge flaps are very useful to trim an unstable configuration and have minimum drag; (2) tiperons are very effective means for roll-yaw control up to very high angles of attack; and (3) differentially deflected leading edge flaps and a vortex fin, positioned on the wing upper surface, decrease the directional instability at high angles of attack. In addition, low speed tests were made with a new wing concept for a future fighter configuration, so called supersonic biplane, to investigate the effectiveness of the upper- and lower-wing trailing edge flaps. As supplement to the wind tunnel measurements some flight mechanical maneuver calculations were made to check the suitability and to compare the effectiveness of the different controls. R.E.S.

N80-15156# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt. Brunswick (West Germany). ROLL CONTROL BY DIGITALLY CONTROLLED SEGMENT SPOILERS

Klaus Jonas (Dornier-Werke G.m.b.H.), Horst Wuennenberg (Dornier-Werke G.m.b.H.), and Karl-Heinz Horstmann //n AGARD Aerodyn. Characteristics of Controls Sep. 1979 8 p refs

Avail: NTIS HC A22/MF A01

To realize total wing span flaps for improving the maneuvering and landing performances of a combat aircraft the roll control has to be realized by spoilers. To overcome the nonlinearity and control reversal problems at low deflections, the continuously deflected spoiler is replaced by a certain set of digitally controlled single spoilers, which provide only three discrete deflections. It was found by simulator tests that by a proper combination of these segment spoilers it is possible to provide a roll control, which is judged as continuous by the pilot, with a relatively low number of single spoilers. Wind tunnel programs were performed to investigate system efficiency and aerodynamic effectiveness. Several roll spoiler configurations were tested in two and three dimensional configurations with and without landing flaps at different spanwise positions, spoiler deflections and -spans. It is shown that the effectiveness related to the deflection is linear for flaps-up and highly nonlinear for flaps-down configurations. The spoiler span is of no more influence at a certain value and the optimum spanwise location is about 0.8 of the semispan. Furthermore the effectiveness and the influence on lift and pitching moment for a possible test aircraft are shown. The practical application within an intended flight test program is discussed. R.E.S.

N80-15157# Boeing Aerospace Co., Seattle, Wash. THE YC-14 UPPER SURFACE BLOWN FLAP: A UNIQUE CONTROL SURFACE

Alan H. Lee In AGARD Aerodyn. Characteristics of Controls Sep. 1979 8 p refs

Avail: NTIS HC A22/MF A01

The application of powered-lift technology applied to the Boeing YC-14 is assessed. The YC-14 can be controlled during short takeoff landings using conventional pilot techniques. That capability stems from the use of its upper surface blown (USB) flaps as control surfaces. The USB flaps are used to help control aircraft lift and airspeed. They are positioned automatically by the flight control system to eliminate undesired lift changes caused by thrust changes or external disturbances and to work with the autothrottle to attain and hold a selected airspeed. The aerodynamic and physical characteristics of USB flaps are described. R.E.S.

N80-15158# Northrop Corp., Los Angeles, Calif. FLAPERON CONTROL: THE VERSATILE SURFACE FOR FIGHTER AIRCRAFT

John F. Moynes and Wallace E. Nelson, Jr. In AGARD Aerodyn. Characteristics of Controls Sep. 1979 18 p refs

Avail: NTIS HC A22/MF A01

The versatility of a flaperon is presented for roll performance and for several longitudinal active control modes. Particular emphasis is given to the advantages of a segmented flaperon over a full span for a YF-17 type aircraft. The areas of ride smoothing, direct lift, pitch pointing, vertical flight path control and flight control system reconfiguration are addressed for the active longitudinal control modes. The effect of flaperon pitching moment on the implementation of these modes is discussed. Author

N80-15159# Air Force Flight Dynamics Lab., Wright-Patterson AFB, Ohio.

AFFDL EXPERIENCE IN ACTIVE CONTROL TECHNOLOGY Robert P. Johannes and Robert A. Whitmoyer In AGARD Aerodyn. Characteristics of Controls Sep. 1979 20 p refs

Avail: NTIS HC A22/MF A01

The evolution of active control technology (ACT) from the viewpoint of the Air Force Flight Dynamics Laboratory (AFFDL) is presented. Emphasis is placed on the aerodynamic control forces necessary to exploit ACT and in describing AFFDL development programs which merge these two disciplines and transition technology into operational flight equipment. Specific ACT programs (3) the SFCS F-4 program: (4) the CCV PACT F-4 programs: (5) the Variable Stability NT-33 program: (6) the CCV YF-16 program; (7) the A-7D Digital Multimode program. (8) the IFFC I/FIREFLY III program; and (9) the AFTI-16 program. Experiences indicating areas of need for extension of fluid dynamics technology are also discussed. M.M.M.

N80-15160*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

CONTROL CONSIDERATIONS FOR CCV FIGHTERS AT HIGH ANGLES OF ATTACK

Luat T. Nguyen, William P. Gilbert, and Sue B. Grafton *In* AGARD Aerodyn. Characteristics of Controls Sep. 1979 10 p ref

Avail: NTIS HC A22/MF A01 CSCL 01C

Wind tunnel and piloted simulation studies were conducted to investigate the potential high angle of attack control problems that are introduced by the use of the CCV concept of relaxed static pitch stability (RSS) on fighter aircraft. A conventional wing/aft tail design incorporating modest levels of static instability and a close-coupled canard/wing design exhibiting very high levels of instability was investigated. Two types of high angle of attack control problems can result from the use of RSS: pitch departures caused by coupling and deep stall trim. Avoidance of these problems requires that the airplane have sufficient nose-down pitch control at high angles of attack. The effectiveness of several pitch control configurations were investigated including conventional aft-mounted stabilators, wing-mounted elevators, canard-mounted flaps, and all-moveable canards. Varying the incidence of the canards was the most effective scheme; however, very large deflections may be required on highly unstable configurations to prevent pitch departure without sacrificing roll performance and to avoid deep stall trim. For situations where the high angle of attack pitch control requirement is not met, control laws were developed to inhibit the departure and to allow deep stall recovery. However, these schemes involve limiting airplane roll capability and therefore can potentially compromise maneuverability. M.M.M.

N80-15161# British Aerospace Aircraft Group, Brough (England). **FIN DESIGN WITH ACT IN THE PRESENCE OF STRAKES** D. J. Walker *In* AGARD Aerodyn: Characteristics of Controls Sep. 1979 6 p

Avail: NTIS HC A22/MF A01

Wind tunnel tests on a combat aircraft model are reported in which the effect of fin size and various types of fin controls were investigated. It was shown that a rudder (rather than an all moving fin) using active control technology is probably the best solution for incidences of up to about 50 deg. Also the use of such a system would allow a 20% reduction in the size of the basic fin. M.M.M.

N80-15162# McDonnell Aircraft Co., St. Louis, Mo. CONTROL INTEGRATION TECHNOLOGY IMPACT Charles A. Scolatti / n AGARD Aerodyn. Characteristics of Controls Sep. 1979 6 p refs

Avail: NTIS HC A22/MF A01

Some of the essential elements of an integrated technology development program are presented. The integrated flight and fire control system programs, called IFFC I/FIREFLY III, is used as an example. The operational relevance of the example is discussed. The major problems in air-to-ground attack, and the introduction of maneuvering weapon delivery (with IFFC mechanization required to achieve bombing solutions), are covered. The impact of this IFFC technology, and its extension on other areas of technology, such as aerodynamics, is indicated. M.M.M.

N80-15163# Dornier-Werke G.m.b.H., Friedrichshafen (West Germany).

DIRECT SIDE FORCE AND DRAG CONTROL WITH THE AID OF PYLON SPLIT FLAPS

Peter Esch and Horst Wuennenberg In AGARD Aerodyn. Characteristics of Controls Sep. 1979 9 p refs

Avail: NTIS HC A22/MF A01

Two configurations of split flaps are examined, a long one with small deflections and a short one with large deflections. The short one led to the same effectiveness at reduced values of hinge moments and cross coupling effects. Due to high interference effects it was not possible to get the effects of all flaps by superposition of the single flap results. The angle of attack, the landing flap setting and the lateral projection area of the external stores have a significant influence on the effectiveness whereas the Mach number is less important. The examination of the wind tunnel results led to the necessary control laws for the operation of the flaps and the compensation equipment. The flight test program with an Alpha Jet preproduction aircraft is expected to start in 1980. M.M.M.

N80-15164*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

CONTROL OF FOREBODY THREE-DIMENSIONAL FLOW SEPARATIONS

David J. Peake and F. Kevin Owen (Owen Intern., Inc., Palo Alto, Calif.) In AGARD Aerodyn. Characteristics of Controls Sep. 1979 49 p refs

Avail: NTIS HC A22/MF A01 CSCL 01C

The development of the turbulent symmetric and asymmetric vortex flow about the lee side of a 5 deg semiangle conical forebody at high relative incidence was investigated. The cone was immersed in a Mach 0.6 airstream at a Reynolds number of 13.5 x 10 to the 6th power based on the 1.4 m axial length of the cone. Small amounts of air injected normally or tangentially to the cone surface, but on one side of the leeward meridian

and beneath the vortex farthest from the wall, were effective in biasing the asymmetry. With this reorientation of the forebody vortices, the amplitude of the side force could be reduced to the point where its direction was reversed. This phenomenon was obtained either by changing the blowing rate at constant incidence or by changing incidence at constant blowing rate. Normal injection appeared more effective than tangential injection. The contrarotating vortices in the penetrating jet flow were of opposite hand to the rotational directions of the forebody vortices. A distinctively organized and stable flow structure emerged with the jet vortices positioned above the forebody vortices. K.L.

N80-15165# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany).

IN-FLIGHT MEASURED CHARACTERISTICS OF COM-BINED FLAP-SPOILER DIRECT LIFT CONTROLS

O. Rix and D. Hanke /n AGARD Aerodyn characteristics of Controls Sep. 1979 22 p refs

Avail: NTIS HC A22/MF A01

The influence of direct lift control on longitudinal aircraft dynamics and the requirements for the characteristics of direct lift controls for large transport aircraft in the landing approach phase are discussed. The characteristics of flaps, spoilers, and the influence of surface rate on aircraft behavior are also described. Flight tests were carried out with the DFVLR HFB 320 In-Flight Simulator to determine in-flight flap and spoiler characteristics and the characteristics of simultaneously deflected flaps and spoilers as a ULC device. The results show that flap and spoiler characteristics can be described by linear models for flap and spoiler inputs up to + or - 10 deg and + or - 30 deg, respectively, and relatively high surface rates of 10 deg/sec and 62 deg/sec. In addition, combined flap-spoiler deflections show no nonlinear or unsteady effects and the aircraft response is described by simple linear modelling. The spoiler derivatives valid for combined flap-spoiler deflections are identified. K.L.

N80-15166# Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (West Germany).

WIND TUNNEL INVESTIGATION OF CONTROLS FOR DF ON A FIGHTER TYPE CONFIGURATION OF HIGHER ANGLES OF ATTACK

Wolfgang Sonnleitner In AGARD Aerodyn. Characteristics of Controls Sep. 1979 11 p refs

Avail: NTIS HC A22/MF A01

Stability and control characteristics of a fighter-type model were investigated at incidences up to 40 deg. Isolated and combined effects of different control shapes and control in different positions were demonstrated.

N80-15167# Office National d'Etudes et de Recherches Aerospatiales, Paris (France).

PROBLEMS OF UNSTEADY AERODYNAMICS RAISED BY THE USE OF CONTROL SURFACES AS ACTIVE CONTROLS [PROBLEMES D'AERODYNAMIQUE INSTATIONNAIRE POSES PAR L'UTILISATION DES GOUVERNES DANS LE CONTROLE ACTIF]

Roger Destuynder In AGARD Aerodyn. Characteristics of Controls Sep. 1979 17 p refs In FRENCH; ENGLISH summary

Avail: NTIS HC A22/MF A01

The unsteady aerodynamic forces created by spoilers or auxiliary surfaces are investigated. Control problems concerning turbulence, gust control, and flutter phenomena are studied considering both subcritical and supercritical flows. Theoretical and mixed methods based on corrections defined after wind tunnel tests are applied. K.L.

N80-15168# Office National d'Etudes et de Recherches Aerospatiales, Paris (France).

UNSTEADY EFFECTS OF A CONTROL SURFACE IN TWO DIMENSIONAL SUBSONIC AND TRANSONIC FLOW

[EFFETS INSTATIONNAIRES D'UNE GOUVERNE EN ECOULEMENT BIDIMENSIONNEL SUBSONIQUE ET TRANSSONIQUE]

Richard Grenon, Andre Desopper, and Jacques Sides *In* AGARD Aerodyn. Characteristics of Controls Sep. 1979 14 p refs In FRENCH; ENGLISH summary

Avail: NTIS HC A22/MF A01

The unsteady effects of an oscillating surface are studied. The experimental results of steady and unsteady pressure measurements carried out in subsonic and transonic flow on a 16% relative thickness supercritical airfoil, equipped with a trailing edge flap, are compared with those obtained by various methods of steady and unsteady inviscid flow calculations. Calculation results are presented in which viscous effects have been taken into account, for both steady and unsteady flows. K.L.

N80-15169# Royal Aircraft Establishment, Bedford (England). Structures Dept.

AERODYNAMIC CHARACTERISTICS OF MOVING TRAIL-ING-EDGE CONTROLS AT SUBSONIC AND TRANSONIC SPEEDS

D. G. Mabey, D. M. McOwat, and B. L. Welsh // AGARD Aerodyn. Characteristics of Controls Sep. 1979 26 p refs

Avail: NTIS HC A22/MF A01

Oscillatory pressures calculated and measured at high subsonic speeds for a swept back wing of aspect ratio 6 with a part span trailing edge flap were compared. The flap was driven at frequencies of 1 Hz (quasi-steady) and 90 Hz at Mach numbers from 0.40 to 0.95 with both fixed and free transition over a range of Reynolds numbers from 1 million to 4 million. The measured oscillatory pressures depended strongly on the boundary layer displacement thickness at the hinge line. Extrapolation from model to full scale required great care. In subsonic flow, tests with free transition gave the thinnest turbulent boundary layer at the hinge line and come nearest to full scale. At transonic speeds, transition was fixed at a safe distance upstream of the most forward excursion of the shock wave to obtain results appropriate to higher Reynolds number. Tests with flap driven simultaneously at two frequencies (90 Hz and 131 Hz) at subsonic and transonic speeds produced the same oscillatory pressures at 131 Hz as when driven independently. The principle of superposition applies, at least for small amplitude motions with attached flows. R.C.T.

N80-15170# Queen Mary Coll., London (England). Dept. of Aeronautical Engineering.

UNSTEADY AERODYNAMICS OF TWO-DIMENSIONAL SPOILERS AT LOW SPEEDS

S. R. Siddalingappa and G. J. Hancock *In* AGARD Aerodynam. Characteristics of Controls Sep. 1979 13 p refs

Avail: NTIS HC A22/MF A01

Complementary aspects of spoiler behavior are reviewed. The emphasis is on the understanding of the local flow about a spoiler. A two dimensional spoiler on the floor of a small blower tunnel (solid floor, and side walls but open at the top) was investigated. Steady pressures were measured along the tunnel floor for various steady spoiler angles and gap sizes between the bottom of the spoiler and the tunnel floor. Transient pressures were recorded following sudden changes in spoiler angle and for oscillating spoilers. A two dimensional spoiler attached to a two dimensional airfoil was investigated. The manner in which the spoiler affects the overall pressure distribution on the airfoil plus spoiler combination was emphasized. Both the airfoil and the spoiler were pressure plotted. The results of steady pressures, transient pressures following rapid and slower ramp changes in spoiler angle, and transient pressures when the spoiler is moving in simple harmonic motion are included. R.C.T.

N80-15171# Rome Univ. (Italy). School of Aerospace Engineering.

TRAJECTORY BEHAVIOUR OF A CONTROL CONFIG-URATED AIRCRAFT SUBJECTED TO RANDOM DISTUR-BANCES Achille Danesi. Scott Smolka (Boston Univ.), and Francesco Borrini In AGARD Aerodyn. Characteristics of Controls Sep. 1979 17 p refs

Avail: NTIS HC A22/MF A01

The longitudinal behavior of a Boeing V-747 aircraft with some of its original aerodynamic effectors operating as active controllers in addition to the conventional elevators were studied The ailerons were collectively used as outboard active flaps and the inboard section of the high lift triple slotted flaps was employed as inboard active flaps. The flight control system structure was implemented as an optimal model following system in which the optimal feedback gains were computed to minimize the integral performance index. Errors in dynamical response, in wing root bending moment, and in aerodynamic drag computed as deviations from the same quantities related to a specified model responding satisfactorily to disturbances with zero increments in wing root bending moment and aerodynamic drag in flight maneuver at given load factor, were considered. At the same time the minimum effectors activity was included as a design objective. A lighter wing structure was realized as the result of wing loads reduction and further weight saving (reduced tail size) was obtained by taking advantage of the beneficial effect of the active controller activity in reducing the elevator deflections required in the pull up maneuver. R.C.T.

N80-15172# Northrop Corp., Hawthorne, Calif. Aircraft Group

FOREBODY VORTEX BLOWING: A NOVEL CONTROL CONCEPT TO ENHANCE DEPARTURE/SPIN RECOVERY CHARACTERISTICS OF FIGHTER AND TRAINER AIR-CRAFT

Andrew M. Skow, William A. Moore, and Dale J. Lorincz *In* AGARD Aerodyn. Characteristics of Controls Sep. 1979 17 p refs

Avail: NTIS HC A22/MF A01

Active blowing concepts which control the asymmetric orientation of the vortex system emanating from an aircraft forebody at high angles of attack are described. The side force generated by the asymmetric nature of the vortices was utilized. The choice between these two preferred positions was influenced strongly by very small geometric imperfections in an otherwise symmetric model and by small asymmetries in the upstream flow such as are caused by flow angularity or turbulent eddies in the free stream. The magnitude of the side force was very large due to the fluid amplification afforded by the vortex growth. The results of water tunnel flow visualization studies and a wind tunnel test program are presented which bear out this assumption and show that tangential blowing can effectively alter the forebody vortex system at angles of attack between 25 and 55 deg. and can generate yawing moments comparable to those produced by a conventional rudder at low angles of attack. The results of a six deg of freedom digital simulation are presented which show that this concept can substantially enhance departure recovery characteristics and could have potential as a departure inhibitor for some aircraft. The results of a preliminary system design indicate that such a system could be applied to aircraft. RCT

N80-15173# Neilsen Engineering and Research, Inc., Mountain View, Calif.

NONLINEAR AERODYNAMICS OF ALL-MOVABLE CONTROLS

Charles A. Smith and Jack N. Nielsen /n AGARD Aerodyn. Characteristics of Controls Sep. 1979 20 p refs

(Contract N00014-74-C-0050) Avail: NTIS HC A22/MF A01

The nonlinear effects and their consequences on control effectiveness are described. Both independent control effectiveness (e.g., pitch control) as well as control cross coupling (e.g., pitch control in the presence of yaw control) are discussed. It is shown that, at sufficiently high angles of attack, the presence of these nonlinearities can completely dominate control effectiveness. The current status of techniques to predict control effects using both analytical and data correlation techniques are reviewed. R.C.T.

N80-15174# Ruhr Univ., Bochum (West Germany). ON THE EFFECT OF WING WAKE ON TAIL CHARACTERIS-TICS

K. Gersten and D. Glueck In AGARD Aerodyn. Characteristics of Controls Sep. 1979 8 p refs

Avail: NTIS HC A22/MF A01

A nonlinear theory was developed to calculate lift and moment forces for airfoils in a two dimensional flow field. The oncoming velocity distribution is approximated by a series of step functions which results in a flow field composed of a number of potential flow fields. The potential flow fields are matched properly at several dividing streamlines where the total pressure changes discontinuously. The solution of the problem is determined by using vortex distributions on both the contour of the airfoil and the dividing streamlines. A special approach makes it possible to calculate the flow field when one of the dividing streamlines merges with the profile. A comparison between theoretical and experimental results for the aerodynamic characteristics of a tail unit placed in the wake of a wing is presented. A prediction method for the tail characteristics at high angles of attack (super stall) is discussed. AWH

N80-15175# Office National d'Etudes et de Recherches Aerospatiales, Paris (France).

AERODYNAMIC INTERACTION ON A CLOSE-COUPLED CANARD WING CONFIGURATION [INTERACTION AERODYNAMIQUE ENTRE UN CANARD PROCHE ET UNE VOILURE]

Yves Brocard and Volker Schmitt In AGARD Aerodyn. Characteristics of Controls Sep. 1979 11 p refs In FRENCH; ENGLISH summary

Avail: NTIS HC A22/MF A01

Half model tests performed on a close coupled canard wing configuration in a low speed, pressurized wind tunnel are discussed. Results are presented in terms of longitudinal aerodynamic characteristics and pressure distribution on the main

wing. The effects of canard deflection and of Reynolds number variation are investigated. Surface oil flow pattern on the wind tunnel model and water tunnel visualization on a smaller model are examined. Comparisons between the experimental results and theoretical predictions are presented. A.W.H.

N80-15176# Queen Mary Coll., London (England). Dept. of Aeronautical Engineering.

ON THE EFFECTS OF GAPS ON CONTROL SURFACE CHARACTERISTICS

C. Michael and G. J. Hancock In AGARD Aerodyn. Characteristics of Controls Sep. 1979 13 p ref

Avail: NTI'S HC A22/MF A01

A two dimensional airfoil comprising an elliptic nose, parallel section of 5% t/c ratio, and a 20% trailing edge control surface was investigated at low speeds. Three different geometries of the rear of the main airfoil were investigated. Gaps were created by moving the control surface aft of the main airfoil. Extensive pressure plotting is presented for the above range of gaps and control surface angular deflections up to 8 degrees and a range of measurements of mean boundary layer profiles in the neighborhood of the gap are discussed. The variations of the overall lift coefficient with control angle and gap size for the three geometries are reported.

N80-15178# Messerschmitt-Boelkow-Blohm G.m.b.H., Hamburg (West Germany). Commercial Aircraft Div.

SOME INVESTIGATIONS CONCERNING THE EFFECTS OF GAPS AND VORTEX GENERATORS ON ELEVATOR EFFICIENCY AND OF LANDING FLAP SWEEP ON AERODY-NAMIC CHARACTERISTICS

Herbert Neppert and Richard Sanderson In AGARD Aerodyn. Characteristics of Controls Sep. 1979 12 p refs

Avail: NTIS HC A22/MF A01

The effect of gaps and vortex generators on elevator effectiveness and drag is examined. The effect of single rudder deflection on the effectiveness of a split rudder is discussed. Wind tunnel results and proposals for improving the aerodynamic characteristics of a tailplane by means of a reduction in the sweep on the landing flap hinge line are described. A.W.H.

N80-15179*# National Aeronautics and Space Administration. John F. Kennedy Space Center, Cocoa Beach, Fla.

LOX/GOX MECHANICAL IMPACT TESTER ASSESSMENT J. W. Bransford (NASA, Marshall Space Flight Center), C. J. Bryan, G. W. Frye (NASA, Johnson Space Center), and S. L. Stohler (Rocketdyne, Canoga Park, Calif.) Feb. 1980 103 p refs

(NASA-TM-74106) Avail: NTIS HC A06/MF A01 CSCL 148

The performances of three existing high pressure oxygen mechanical impact test systems were tested at two different test sites. The systems from one test site were fabricated from the same design drawing, whereas the system tested at the other site was of different design. Energy delivered to the test sample for each test system was evaluated and compared. Results were compared to the reaction rates obtained. R.C.T.

N80-15180# Air Force Human Resources Lab., Brooks AFB, Tex.

EFFECTS OF VARYING VISUAL DISPLAY CHARACTERIS-TICS OF THE T-4G, A T-37 FLIGHT SIMULATOR Final Report, Aug. 1974 - Dec. 1977

Robert R. Woodruff Jun. 1979 17 p refs (AF Proj. 1123)

(AD-A071410) AFHRL-TR-79-17) NTIS Avail: HC A02/MF A01 CSCL 05/9

Two experiments were conducted using the T-4G, a T-37 flight simulator, to investigate the benefit to simulation of visual displays which have color or are collimated. Thirty-two Air Force undergraduate pilots learned approach and landing in the T-4G using either black and white or colored imagery. Thirty-eight instructor pilots performed approach and landing with visual displays that had collimation or reduced collimation. No statistically significant differences were found in either experiment. Power analysis shows that each of these experiments would have detected a practically significant difference, if one existed, with a probability of more than .75. There are no psychophysical reasons to use either color or collimation. User acceptance is another thing, and if color and collimation improve acceptance, they should be used. GRA

N80-15181# Army Test and Evaluation Command, Aberdeen Proving Ground, Md.

CLIMATIC CHAMBER TESTING AIRCRAFT, ENGINES ARMAMENT AND AVIONICS; TEST OPERATIONS PRO-**CEDURE** Final Report

31 Aug. 1979 35 p Supersedes MTP-7-3-521 (AD-A074049; TOP-7-3-521; MTP-7-3-521) Avail: NTIS HC A03/MF A01 CSCL 01/3

This document provides information, guidance and methodology for planning and conducting an environmental climatic chamber developmental test of aviation materiel. Environmental climatic chamber developmental testing in general, determines the degree to which aviation materiel meets the developmental requirements of the US Army Materiel Needs (MN) documents. when subjected to the environmental conditions developed in the climatic chamber. GRA

N80-15182# Avco-Everett Research Lab., Mass. DESIGN STUDY FOR ATA VACUUM SYSTEM APERTURE S. Hibbs 26 Jul. 1979 24 p refs (Contract W-7405-eng-48)

(UCRL-15050) Avail: NTIS HC A02/MF A01

A vacuum system aperture for the advanced test accelerator is analyzed. An axial aerowindow, a suction type aerowindow, and a combination suction/axial aerowindow are examined. The combination suction/axial aerowindow is recommended due to the estimated leakage rate and the projected cost. DOE

N80-15183# General Applied Science Labs., Inc., Westbury, N. Y.

CONCEPTUAL DESIGN AND PERFORMANCE ESTIMATES FOR A SUPERSONIC AERODYNAMIC WINDOW FOR THE ATA VACUUM SYSTEM APERTURE Final Report J. I. Erdos Jun. 1979 39 p refs

(Contract W-7405-eng-48)

(UCRL-15051) Avail: NTIS HC A03/MF A01

The design of an aerodynamic window for the aperture in a system of interconnecting cavities is discussed. Two types of windows are considered and evaluated for the system. They are a supersonic jet operating transverse to the aperture axis and a supersonic jet operating coaxially about the aperture. AWH

N80-15265# Southwest Research Inst., San Antonio, Tex Army Fuels and Lubricants Research Lab

THE PHYSICAL AND CHEMICAL CHARACTERIZATION OF TEN MILITARY TURBINE ENGINE LUBRICANTS Final Report, Jul. - Sep. 1979

Frank M. Newman and Leo L. Stavinoha Sep. 1979 32 p refs

(Contract DAAK70-79-C-0142)

(AD-A074073; AFLRL-115) Avail: NTIS HC A03/MF A01 CSCL 11/8

Four MIL-L-23699B and six MIL-L-7808G turbine engine lubricants have been characterized from the physical properties and chemical composition of their basestocks. The four MIL-L-23699 lubricants were found to be 100% polyol esters. Of the six MIL-L-7808 lubricants, four were mixtures of polyol esters and diesters, one was 100% polyol ester, and one was 100% diester. Correlation of the chemical data is made to some of the physical properties wherever possible. GRA

N80-15299*# Old Dominion Univ. Research Foundation, Norfolk, Va

SOIL ANALYSES AND EVALUATIONS AT THE IMPACT DYNAMICS RESEARCH FACILITY FOR TWO FULL-SCALE AIRCRAFT CRASH TESTS Final Report, 24 May - 31 Aug. 1977

Robert Y. K. Cheng Dec. 1977 36 p refs

(Contract NAS1-14193)

(NASA-CR-159199) Avail: NTIS HC A03/MF A01 CSCL 08M

The aircraft structural crash behavior and occupant survivability for aircraft crashes on a soil surface was studied. The results of placement, compaction, and maintenance of two soil test beds are presented. The crators formed by the aircraft after each test are described. J.M.S.

N80-15364*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. COMPUTATION OF THREE-DIMENSIONAL FLOW IN

TURBOFAN MIXERS AND COMPARISON WITH EXPERI-MENTAL DATA

L. A. Povinelli, B. H. Anderson, and W. Gerstenmaier Jan. 1980 12 p refs Presented at the AIAA Aerospace Sciences Meeting, Pasadena, Calif., 14-16 Jan. 1980

(NASA-TM-81410; E-324) Avail: NTIS HC A02/MF A01 CSCL 20D

A three dimensional, viscous computer code was used to calculate the mixing downstream of a typical turbofan mixer geometry. Experimental data obtained using pressure and temperature rakes at the lobe and nozzle exit stations were used to validate the computer results. The relative importance of turbulence in the mixing phenomenon as compared with the streamwise vorticity set up by the secondary flows was determined. The observations suggest that the generation of streamwise vorticity plays a significant role in determining the temperature distribution at the nozzle exit plane. K.L.

N80-15871*# Stanford Univ., Calif. Dept. of Aeronautics and Astronautics.

AN EXPERIMENTAL STUDY OF THE STRUCTURE AND ACOUSTIC FIELD OF A JET IN A CROSS STREAM

 Ivan
 Camelier
 and
 K. Karamcheti
 Jan.
 1976
 134 p
 refs

 (Grants
 NGL-05-020-526;
 NsG-2007)
 (NASA-CR-162464;
 SU-JIAA-TR-2)
 Avail:

(NASA-CR-162464; SU-JIAA-TR-2) Avail: NTIS HC A07/MF A01 CSCL 20A

The plane of symmetry of a high speed circular jet was surveyed to measure the mean and turbulent velocity fields by using constant temperature hot wire anemometry. The intensity of the noise radiated from the jet was determined in the tunnel test section by utilizing the cross-correlation at a particular time delay between the signals of two microphones suitably located along a given direction. Experimental results indicate that the turbulent intensity inside the crossflow jet increases by a factor of (1. + 1/2) as compared to the turbulent intensity of the same jet under free conditions, with r indicating the ratio of the iet velocity by the cross stream velocity. The peak observed in the turbulence spectra obtained inside the potential core of the jet has a frequency that increases by the same factor with respect to the corresponding frequency measured in the case of the free jet. The noise radiated by the jet becomes more intense as the crossflow velocity increases. The measured acoustic intensity of the crossflow jet is higher than the value which would be expected from the increase of the turbulent intensity only.

A.R.H.

N80-15874*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

A STUDY OF PARTIAL COHERENCE FOR IDENTIFYING INTERIOR NOISE SOURCES AND PATHS ON GENERAL AVIATION AIRCRAFT

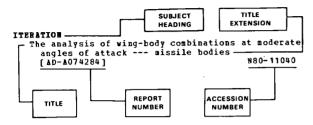
James T. Howlett Dec. 1979 17 p refs Presented at 98th Acoust. Soc. of Am. Meeting, Salt Lake City, 26-30 Nov. 1979 (NASA-TM-80197) Avail: NTIS HC A02/MF A01 CSCL 20A

The partial coherence analysis method for noise source/path determination is summarized and the application to a two input, single output system with coherence between the inputs is illustrated. The augmentation of the calculations on a digital computer interfaced with a two channel, real time analyzer is also discussed. The results indicate possible sources of error in the computations and suggest procedures for avoiding these errors. M.G.

 N80-15983#
 Army Missile Research and Development Command, Redstone Arsenal, Ala.
 Technology Lab.

 AERODYNAMIC DATA BASE USERS GUIDE
 George M. Landingham 5 Jun. 1979 27 p
 Avail:
 NTIS

 HC A074448;
 DRDMI-T-79-62)
 Avail:
 NTIS


A data base system has been developed for storage and interactive analysis of data. This report is intended as a description of the system and as a user's guide. The equipment on which the data base system is implemented is detailed. A description of the data base structure and detailed instructions for using the system are included.

SUBJECT INDEX

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Suppl. 121)

APRIL 1980

Typical Subject Index Listing

The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of the document content, a title extension is added, separated from the title by three hyphens. The NASA or AIAA accession number is included in each entry to assist the user in locating the abstract in the abstract section of this supplement. If applicable, a report number is also included as an aid in identifying the document.

Α

```
A-10 AIRCRAFT
    Practical method of fatigue crack growth analysis
   for damage to lorance assessment of aluminum
structure in fighter type aircraft
[AIAA PAPER 80-0405]
Evaluation of the aerodynamic characteristics of a
                                                                 A80-18346
       1/20-scale A-10 model at Mach numbers from 0.30
       to 0.75
[ AD-A074867]
                                                                 N80-15055
ACCELERATION (PHYSICS)
    The effects of motion and g-seat cues on pilot
simulator performance of three piloting tasks
[NASA-TP-1601] N80-
                                                                 N80-15069
ACCELEROMETERS
    Methods for strap-down attitude estimation and
navigation with accelerometers
                                                                 N80-14034
ACOUSTIC ATTENUATION
    Comparison of inlet suppressor data with
      approximate theory based on cutoff ratio
[AIAA PAPER 80-0100]
                                                                 A80-20964
    Evaluation of approximate methods for the
       prediction of noise shielding by airframe
       .
components
       [ NASA-TP-1004 ]
                                                                 N80-15129
ACOUSTIC FATIGUE
Sonic fatigue design data for bonded aluminum
       aircraft structures
[AIAA PAPER 80-0303]
                                                                 180-18304
ACOUSTIC MEASUREMENTS
    Aeroacoustic measuring techniques in or outside
       turbulent flows
                                                                 N80-14876
    An experimental study of the structure and
       acoustic field of a jet in a cross stream ---
Ames 7-ft by 10-ft wind tunnel tests
[NASA-CR-162464] N80-
                                                                  N80-15871
COUSTIC REFROITING
Quiet Clean Short-Haul Experimental Engine
       (QCSEE): Acoustic treatment development and
       design
       [NASA-CR-135266]
                                                                 N80-15122
ACOUSTIC SCATTERING
    Experimental and numerical results of sound
scattering by a body --- interaction of
aerodynamic noise and fuselage
                                                                 N80-14873
```

ACOUSTICS Quiet Clean Short-haul Experimental Fngine (QCSEE) Over-The-Wing (OTW) propulsion systems test report. Volume 4: Acoustic performance [NASA-CR-135326] N80-15118 ACTUATORS Quiet Clean Short-haul Experimental Engine (QCSEE). Ball spline pitch change mechanism design report [NASA-CR-134873] N80-15101 Quiet Clean Short-haul Experimental Engine (OCSEE) whirl test of cam/harmonic pitch change actuation system [NASA-CR-135140] N80-15117 ADAPTIVE CONTROL Adaptive allocation of decisionmaking responsibility between human and computer in multitask situations A80-18022 ADDITIVES Aircraft fuel system simulator tests with antimisting kerosene (jet A fuel with FM-9 additive) --- flammability tests additive) [AD-A073237] N80-14256 ADHESIVE BONDING Sonic fatigue design data for bonded aluminum aircraft structures [AIAA PAPER 80-0303] A80-18304 [AIMA PAPER 80-0305] joint Ã80-18306 AERIAL RUDDERS Fin design with ACT in the presence of strakes N80-15161 AEROACOUSTICS Estimation of noise source strengths in a gas turbine combustor [AIAN PAPER 80-0034] A80-18245 Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics A80-20952 Acoustic considerations of flight effects on jet noise suppressor nozzles [AIAA PAPER 80-0164] A80-20965 Acoustically swept rotor --- helicopter noise reduction [NASA-CASE-ARC-11106-1] N80-14107 Applications of diffraction theory to aeroacoustics --- aircraft noise N80-14870 Experimental and numerical results of sound scattering by a body --- interaction of aerodynamic noise and fuselage N80-14873 Aeroacoustic measuring techniques in or outside turbulent flows N80-14876 AERODYNAMIC CHARACTERISTICS Concerning the information efficiency of aerodynamic experiments A80-17671 Analytical investigation of aerodynamic characteristics of highly swept wings with separated flow A80-17697 Effects of the aerodynamic cross-coupling and lateral acceleration derivatives on airplane dynamic characteristics [AIAA PAPER 80-0170] A80-17699 Engine aerodynamic installation by numerical *simulation* [AIAA PAPER 80-0108] A80-18271 Experimental determination of pure rotary stability derivatives using curved and rolling flow wind tunnel A80-18308 [AIAA PAPER 80-0309]

AERODYNAMIC COEFFICIENTS

Studies of leading-edge thrust phenomena [AIAA PAPER 80-0325] A80-18315 Effects of non-planar strake-wing on the vortex lift characteristics of a twin-jet fighter configuration [ATAN PAPER 80-0329] A80-183 Correlation of predicted longitudinal aerodynamic characteristics with full-scale wind tunnel data A80-18318 on the ATLIT airplane [ATAA PAPER 80-0186] Hybrid vortex method for lifting surfaces with free-vortex flow 180-18356 [AIAA PAPER 80-0070] A80-19307 Assessment of analytic methods for the prediction of aerodynamic characteristics of arbitrary bodies at supersonic speeds [AIAA PAPER 80-0071] A8 A80-19308 Designing light airplanes --- Russian book 380-19818 Scale model performance test investigation of exhaust system mixers for an Energy Efficient Engine /23/ propulsion system [AINH PAPER 80-0229] A80-The quasi-vortex-lattice method for wings with A80-20968 edge vortex separation [NASA-CR-162530] N80-14052 Theoretical study of aerodynamic characteristics of wings having vortex flow [NASA-CR-159184] N80-14053 Quiet short-haul research aircraft familiarization document --- STOL [NASA-TH-81149] N80-14108 NB0-14 Applications of modern hydrodynamics to aeronautics. Part 1: Fundamental concepts and the most important theorems. Part 2: Applications [NACA-116] N80-15034 Quiet Clean Short-haul Experimental Engine QCSEE). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 PR variable pitch fan with core flow [NASA-CR-135017] N80-15087 Aerodynamic characteristics of controls --conferences [AG ARD-CP-262] N80-15149 In-flight measured characteristics of combined flap-spoiler direct lift controls N80-15165 Aerodynamic characteristics of moving trailing-edge controls at subsonic and transonic speeds ₩80-15169 Unsteady aerodynamics of two-dimensional spoilers at low speeds N80-15170 Aerodynamic interaction on a close-coupled canard wing configuration N80-15175 On the effects of gaps on control surface characteristics N80-15176 AERODYNAMIC COEFFICIENTS Estimation of the accuracy of dynamic flight-determined coefficients ILIGHT-GETERINED COEFICIENTS [AIAA PAPER 80-0171] A80-1 AERODYNAMIC CONFIGURATIONS Theoretical study of aerodynamic characteristics of Wings having vortex flow [NEL-CT-150020] A80-17700 ſNASA-ĆR-159184J N80-14053 Quiet Clean Short-haul Experimental Engine (QCSEE): The aerodynamic and mechanical design of the QCSEE under-the-wing fan [NASA-CR-135009] N80-15109 An analytical and experimental study of a short s-shaped subsonic diffuser of a supersonic inlet [NASA-TM-81406] N80-15134 Wind tunnel measurements and analysis of some unusual control surfaces on two swept wing fighter configurations №80-15155 Roll control by digitally controlled segment spoilers N80-15156 Wind tunnel investigation of controls for DF on a fighter-type configuration of higher angles of attack N80-15166

Nonlinear aerodynamics of all-movable controls N80-15173

SUBJECT INDEX

Conceptual design and performance estimates for a supersonic aerodynamic window for the ATA vacuum system aperture [UCRL-15051] N80-15183 ABRODYNAMIC DRAG The minimum induced drag of aerofoils [NACA-1211 N80-15038 ABRODYNAMIC PORCES The aerodynamic forces on airship hulls [NACA-184] N80-15039 Elements of the wing section theory and of the wing theory [NACA-191] N80-15040 General theory of aerodynamic instability and the mechanism of flutter [NACA-496] N80-15047 Exploratory studies of the cruise performance of upper surface blown configuration: Experimental program, high-speed force tests [NASA-CR-159134] N80-150 N80-15070 Exploratory studies of the cruise performance of upper surface blown configurations: Program analysis and conclusions [NASA-CR-159136] N80 AFFDL experience in active control technology N80-15072 N80-15159 Problems of unsteady aerodynamics raised by the use of control surfaces as active controls N80-15167 ABRODYNABIC INTERPERENCE Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels --- computational fluid dynamics [NASA-CR-3210] ABRODYNAMIC LOADS N80-14047 CH-46 composite rotor blade flight stress survey data. Volume 3: Plotted forward rotor blade chord, torsion and absolute loads [AD-A075612] N80-1 N80-15077 Analysis of low-speed helicopter flight test data [AD-A074141] N80-15079 ARRODYNAMIC NOISE Sound generation in a flow near a compliant wall A80-20153 Acoustically swept rotor --- helicopter noise reduction [NASA-CASE-ARC-11106-11 N80-14107 Experimental and numerical results of sound scattering by a body --- interaction of aerodynamic noise and fuselage N80-14873 ABRODYNAMIC STABILITY Formulation of coupled rotor/fuselage equations of motion 180-17717 Determination of the spin and recovery characteristics of a typical low-wing general aviation design [AIAA PAPER 80-0169] A80-10 Aircraft aerodynamics - Dynamics of longitudinal and lateral motion --- Russian book A80-18351 A80-19374 Dynamic response of a Mach 2.5 axisymmetric inlet and turbojet engine with a poppet-value controlled inlet stability bypass system when subjected to internal and external airflow transients [NASA-TP-1531] N80-14123 Plight testing of the buffeting behavior of combat aircraft [ES A-TT-523] N80-14143 General theory of aerodynamic instability and the mechanism of flutter [NACA-496] N80-15047 Control considerations for CCV fighters at high angles of attack N80-15160 Some investigations concerning the effects of gaps and vortex generators on elevator efficiency and of landing flap sweep on aerodynamic characteristics N80-15178 ABRODYNAHIC STALLING Reynolds number and compressibility effects on dynamic stall of a NACA 0012 airfoil [AIAA PAPER 80-0010] A80 A80-18238

SUBJECT INDEX

AIR TRAFFIC CONTROL

Determination of the spin and recovery characteristics of a typical low-wing general aviation design A80-18351 [AIAA PAPER 80-0169] Enhanced departure/spin recovery of fighter aircraft through control of the forebody vortex orientation 180-18352 FAIAA PAPER 80-0173] The effects of leading edge modifications on the post-stall characteristics of wings AIAA PAPER 80-01991 **A80-18375** phenomenological model of the dynamic stall of a helicopter blade profile [ONERA, TP NO. 1979-149] A80-20 High angle of attack characteristics of different A80-20086 fighter configurations [MBE-UFE-1443(0)] N Simulator study of stall/post-stall characteristics of a fighter airplane with N80-14058 relaxed longitudinal static stability --- P-16 [NASA-TP-1538] N80-14 N80-14136 A parametric wing design study for a modern laminar flow wing [NASA-TH-80154] N80-15050 ARRODYNAMICS. RODYNAMICS Experimental study of confluence with separation on an afterbody of revolution [ONERA, TP NO. 1979-151] A80-20 Modification of axial compressor streamline program for analysis of engine test data [NASA-TH-79312] N80-10 borecombined between the streamline 180-20088 N80-14051 Aeronautical Research Laboratories [RH78/30107] N80-15026 Theoretical aerodynamic methods for active control devices N80-15150 A survey of experimental data on the aerodynamics of controls, in the light of future needs N80-15151 ARROBLASTICITY Formulation of coupled rotor/fuselage equations of motion A80-17717 An empirical approach for checking flutter stability of gliders and light aircraft N80-15144 ABRONAUTICAL ENGINEERING APPOPP - Message and data switching systems for aeronautical operations A80-19579 Aeronautical Research Laboratories [RM78/30107] N80-15026 AFTERBODIES Experimental study of confluence with separation on an afterbody of revolution [ONFRA, TP NO. 1979-151] A80-20088 AIR CARGO Analog aircraft weight and balance computer ISARE PAPER 1283] A80-20631 Computer simulation of an air cargo small package sorting system A80-20866 Shipping by air - Is the value of your time worth it A80-20868 Models for freight access to air terminals 180-20869 Air cargo container utilization optimization through modeling A80-20870 AIR COOLING Optimization of turbine nozzle cooling by combining impingement and film injection [AIAA PAPER 80-0299] 180-19316 AIR DUCTS Experimental investigation of the characteristics of pneumatic transfer lines A80-19052 The analysis of sound propagation in jet engine ducts using the finite difference method [AD-A074233] N80-N80-14853 AIR FILTERS The transfer of carbon fibers through a commercial aircraft water separator and air cleaner [NASA-CR-159183] N80-14359

ATR PLON Turbojet-exhaust-nozzle secondary-airflow pumping as an exit control of an inlet-stability bypass system for a Mach 2.5 axisymmetric mixed-compression inlet --- Lewis 10- by 10-ft. supersonic wind tunnel test [NASA-TP-1532] N80-14124 AIR NAVIGATION Performance evaluation of image correlation techniques --- for aircraft inertial navigation systems A80-17534 A strapdown inertial reference system for commercial airline use in navigation and flight control 180-17558 Advances in Guidance and Control Systems Using Digital Techniques [AGARD-CP-272] N80-14017 AIR POLLUTION Ouiet Clean Short-haul Experimental Engine (OCSEE) clean combustor test report [NASA-CR-134916] N80-15104 AIR TO SURPACE HISSILES Control integration technology impact --- as a basis for improving the combat effectiveness of all tactical aircraft N80-15162 AIR TRAPPIC Air traffic density and distribution measurements [AD-A073229] N80-14064 ATE TRAFFIC CONTROL Automation and air traffic control A80-18722 The economics of air traffic control 180-18723 ATC and the airborne traffic-situation display A80-18724 A survey of the stochastic filtering techniques for data processing in air-traffic control and surveillance systems A80-20867 State of the art for digital avionics and controls, 1978 N80-14018 Air traffic density and distribution measurements N80-14064 [AD-A073229] N80-On radar in air traffic control --- conference, Rome, Jul. 19 [FUB-11-1979] 1979 N80-14065 Problems related to the design and construction of a radar network N80-14066 Methodology for the evaluation of a radar site N80-14067 Performance evaluation methods of a secondary radar network 180-14068 Organization of an integrated global maintenance service --- Radar Networks N80-14069 Automation of flight on-line strategic control: The case of speed control on pre-established routes N80-14070 Radar data utilization in automating the sequencing of aircrafts in terminal areas N80-14071 Tactical analysis of conflicts in an air traffic control system: Design and implementation of a provisional model N80-14072 Tracking algorithms for mono and multiradar N80-10070 A distributed processing system for radar data presentation N80-14075 Filtering of synthetic radar data ₩80-14076 Visual displays for air traffic control data N80-14077 Implementation of air traffic control radar receivers with fast Pourier transform processors N80-14086 An air traffic channel simulation by means of ray-tracing techniques N80-14088

AIR TRANSPORTATION

SUBJECT INDEX

L-band measurements in the air traffic channel to characterize secondary radar systems N80-14092 Antireflection techniques for detecting false tracks in air traffic surveillance with secondary radar N80-14100 Onboard collision avoidance system: Environmental influence on the tracking algorithm requirements Environmental N80-14105 Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment --flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time [NASA-TM-80194] N80-14114 AIR TRANSPORTATION Aircraft delays at major US airports can be reduced [PB-299442/4] N80-15061 AIRBORNE EQUIPMENT Wire obstacle warning system /WOWS/ - A real-time airborne sensor for automatic detection and recognition of wirelike objects A80-17402 ATC and the airborne traffic-situation display 18724 A light aircraft camera Pod - The Enviro-Pod A80-20251 Infrared sensor system performance simulations A80-20900 AIRBORNE/SPACEEORBE COMPUTERS Redundancy management considerations for a control-configured fighter aircraft triplex digital fly-by-wire flight control system N80-14026 The integrity of onboard computer programs: solution N80-14028 An assessment of and approach to the validation of digital flight control systems N80-14036 The avionics computer program: Practical experiences with a methodology --- Mirage P1 and Mirage 200 aircraft N80-14037 AIRCRAFT ACCIDENT INVESTIGATION Accident investigation N80-14636 A first look at the effect of severe rainfall upon an aircraft [NASA-CB-162569] N80-15058 AIRCRAFT COMMUNICATION AFROPP - Message and data switching systems for aeronautical operations 180-19579 AIRCRAFT COMPARTMENTS Simultaneous cabin and ambient ozone measurements on two Poeing 747 airplanes, volume 1 [NASA-TM-79166] N80-15059 A study of partial coherence for identifying interior noise sources and paths on general aviation aircraft [NASA-TH-801971 N80-15874 AIRCRAFT CONFIGURATIONS Application of a higher order panel method to realistic supersonic configurations [AIAA PAPER 79-0274] A8 A80-17696 Propulsion/airframe integration considerations for high altitude hypersonic cruise vehicles [AIAA PAPER 80-0111] A80-182' Small ship-based VTOL aircraft - A design exercise [SAWE PAPER 1296] A80-206 A80-18272 A80-20639 Altitude response of several airplanes during landing approach --- including space shuttle [NASA-TH-80186] N80 N80-14139 Exploratory studies of the cruise performance of upper surface blown configuration: Experimental program, high-speed force tests [NASA-CR-159134] N80-1! Exploratory studies of the cruise performance of N80-15070 upper surface blown configurations: Experimental program, high-speed pressure tests [NASA-CR-159135] N80-15 N80-15071 Hypersonic cruise aircraft propulsion integration study, volume 1 [NASA-CR-158926-VOL-1] N80-15074 Hypersonic cruise aircraft propulsion integration study, volume 2 [NASA-CR-158926-VOL-2] N80-15075

Flight control and configuration design considerations for highly maneuverable aircraft N80-15154 AIRCRAFT CONSTRUCTION MATERIALS Determination of the stress intensity factor of composite structural members **X80-17958** Advanced materials and the Canadair Challenger [SAWE PAPER 1284] A80-20632 Protective coatings for aircraft composites in nuclear environments [AD-A074889] N80-14199 Composite structural materials [NASA-CR-162578] N80-15076 Climatic chamber testing aircraft, engines armament and avionics; Test operations procedure --- environmental test chambers and facility for testing aircraft construction materials and engines [AD-A0740491 N80-15181 AIRCRAFT CONTROL Comment on 'Handling quality criterion for heading control! -180-17698 Estimation of the accuracy of dynamic flight-determined coefficients [ATAA PAPER 80-0171] Controllers for aircraft motion simulators A80-17700 [AIAA PAPER 80-0050] A80-18252 statistical method applied to pilot behavior A analysis in multiloop systems A80-18537 Constrained optimum trajectories with specified range A80-18538 Aircraft aerodynamics - Dynamics of longitudinal and lateral motion --- Russian book A80-19374 Recent developments in flight simulation techniques A80-20907 Advances in Guidance and Control Systems Using Digital Techniques [AGARD-CP-272] State of the art for digital avionics and N80-14017 controls, 1978 N80-14018 Analyses and tests of the B-1 aircraft structural mode control system [NASA-CR-144887] N80-15073 Aerodynamic characteristics of controls --conferences [AGARD-CP-262] N80-15149 Theoretical aerodynamic methods for active control devices N80-15150 A survey of experimental data on the aerodynamics of controls, in the light of future needs Correlation of P-15 flight and wind tonnel test N80-15151 control effectiveness N80-15152 Flight control and configuration design considerations for highly maneuverable aircraft N80-15154 Direct side force and drag control with the aid of pylon split flaps N80-15163 Wind tunnel investigation of controls for DF on a fighter-type configuration of higher angles of attack N80-15166 Problems of unsteady aerodynamics raised by the use of control surfaces as active controls N80-15167 A novel control concept Forebody vortex blowing: to enhance departure/spin recovery characteristics of fighter and trainer aircraft N80-15172 Nonlinear aerodynamics of all-movable controls N80-15173 AIRCRAFT DESIGN Analytical investigation of aerodynamic characteristics of highly swept wings with separated flow A80-17697 Computer simulation of engine systems --- for aircraft design [AIAA PAPER 80-0051] A80-18253

SUBJECT INDEX

AIRCEAFT MODELS

Development of a vortex-lift-design method and application to a slender maneuver-wing configuration
[AIAA PAPER 80-0327] A80-18316
An inverse transonic wing design method [AIAA PAPER 80-0330] A80-18319
Assessment of analytic methods for the prediction of aerodynamic characteristics of arbitrary
bodies at supersonic speeds
[AIAA PAPER 80-0071] A80-19308 Designing light airplanes Russian book
The next supersonic transport A80-19414
880-20214 Application of RCS guidelines to weight effective
aircraft design Fadar Cross Section
[SAWF PAPER 1270] A80-20626 Application of finite element analysis to
derivation of structural weight [SAWE PAPER 1271] A80-20627
Tilt rotor - An effective V/STOL concept
[SAWF PAPER 1273] A80-20628 Advanced materials and the Canadair Challenger
[SAWE PAPER 1284] A80-20632
Designing to life cycle cost in the Hornet program [SAWE PAPER 1293] A80-20638
Small ship-based VTCL aircraft - A design exercise
[SAWE PAPER 1296] A80-20639 Weight Integrated Sizing Evaluation /WISE/ - A
tool for preliminary design [SAWE PAPER 1312] A80-20646
A simple design synthesis method used to estimate
aircraft gross weight [SAWE PAPER 13131 ABO-20647
Navy V/STOL - A continuing initiative
[SAWE PAPER 1325] A80-20655 Weight impact of VTOL
[SAWE PAPER 1326] A80-20656
Quiet short-haul research aircraft familiarization document STOL
[NASA-TH-81149] N80-14108 Exploratory studies of the cruise performance of
upper surface blown configurations: Program
analysis and conclusions
analysis and conclusions [NASA-CR-159136] N80-15072 JA-6A circulation control wing contractor flight
analysis and conclusions [NASA-CR-159136] N80-15072
analysis and conclusions [NASA-CR-159136] N80-15072 JA-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES
analysis and conclusions [NASA-CR-159136] N80-15072 JA-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT BNGINES Preparing aircraft propulsion for a new era in energy and the environment
analysis and conclusions [NASA-CR-159136] N80-15072 JA-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in
analysis and conclusions [NASA-CR-159136] N80-15072 JA-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT BNGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT BNGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric
analysis and conclusions [NASA-CR-159136] N80-15072 JA-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines
analysis and conclusions [NASA-CR-159136] N80-15072 JA-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0302] A80-18303
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0302] A80-18303 Engine component improvement program - Performance improvement
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 HIRCHAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Fuel conservation benefits and critical
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0302] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Fuel conservation benefits and critical technologies of recuperative and advanced
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 IIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT BNGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0302] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Puel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft engines Russian bcck
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 IIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft engines Russian bcck A80-19412
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0223] A80-19300 Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft engines Russian bock A80-19412 Damping capacity of plastic compressor blades A80-19868
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 HIRCHAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Puel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft engines Russian bcck A80-19412 Damping capacity of plastic compressor blades Integrated circuit characteristics at 260 C for aircraft engine-centrol applications A80-20112 Advanced technology effects on V/STOL propulsive
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft engines Russian bcck A80-19412 Damping capacity of plastic compressor Flades Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 Advanced technology effects on V/STOL propulsive system weight [SAWE PAPER 1300] A80-20640
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-1833 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Puel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft engines Russian bcck A90-19412 Damping capacity of plastic compressor Hlades Integrated circuit characteristics at 260 C for aircraft engine-centrcl applications A80-19688 Integrated circuit characteristics at 260 C for aircraft engine-centrcl applications A80-19688 Integrated circuit characteristics at 260 C for aircraft engine-centrcl applications A80-19868 Integrated circuit characteristics at 260 C for aircraft engine-centrcl applications A80-20112 Advanced technology effects on V/STOL propulsive system weight [SAWE PAPER 13001 A80-20640 Preliminary weight estimation of engine section
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft engines Russian bcck A90-19412 Damping capacity of plastic compressor blades Integrated circuit characteristics at 260 C for aircraft engine-ccntrcl applications A80-20112 Advanced technology effects on V/STOL propulsive system weight [SAWE PAPER 1311] A80-20645
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 HIRCHAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Puel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft engines Russian bcck A90-19412 Damping capacity of plastic compressor blades Integrated circuit characteristics at 260 C for aircraft engine-centrol applications A80-19868 Integrated circuit characteristics at 260 C for aircraft engine-centrol applications A80-20112 Advanced technology effects on V/STOL propulsive system weight [SAWE PAPER 1310] A80-20640 Preliminary weight estimation of engine section structure [SAWE PAPER 1311] A80-20645 Problems associated with cargo airplanes having
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18257 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0223] A80-19300 Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft engines Russian bcck A90-19412 Damping capacity of plastic compressor blades Integrated circuit characteristics at 260 C for aircraft engine-centrol applications [Atwanced technology effects on V/STOL propulsive system weight [SAWE PAPER 1311] A80-20645 Problems associated with cargo airplanes having aft mounted engines [SAWE PAPER 1314] A80-20648
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0302] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft engines Russian bcck A80-19412 Damping capacity of plastic compressor blades A80-19868 Integrated circuit characteristics at 260 C for aircraft engine-centrol applications A80-20112 Advanced technology effects on V/STOL propulsive system weight [SAWE PAPER 1311] A80-20645 Problems associated with cargo airplanes having aft mounted engines
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 HIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft engines Russian bcck A90-19412 Damping capacity of plastic compressor blades Integrated circuit characteristics at 260 C for aircraft engine-centrol applications [SAWE PAPER 1301] A80-20640 Preliminary weight estimation of engine section structure [SAWE PAPER 1311] A80-20645 Problems associated with cargo airplanes having aft mounted engines [SAWE PAPER 1311] A80-20648 Unification of oils for aircraft gas-turbine engines [SAWE PAPER 1314] A80-20648 Unification of oils for aircraft gas-turbine engines [Sawe PAPER 1314] A80-20649 Exhaust emission reduction for intermittent
analysis and conclusions [NASA-CR-159136] N80-15072 JJ-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 AIRCRAFT ENGINES Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0108] A80-18303 Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 Thermal state of structural members of aircraft engines Russian bcck A80-19412 Damping capacity of plastic compressor blades A80-19868 Integrated circuit characteristics at 260 C for aircraft engine-centrol applications A80-20112 Advanced technology effects on V/STOL propulsive system weight [SAWE PAPER 1311] A80-20640 Preliminary weight estimation of engine section structure [SAWE PAPER 1314] A80-20648 Unification of oils for aircraft gas-turbine engines [SAWE PAPER 1314]

On the use of vibration self-damping materials in the manufacture of parts for rotating machinery N80-14135 Quiet Clean Short-haul Experimental Engine (QCSPE). Double-annular clean combustor technology development report [NASA-CR-159483] N80-15121 Computer simulation of engine systems [NASA-TH-79290] N80-15132 Climatic chamber testing aircraft, engines armament and avionics; Test operations procedure --- environmental test chambers and facility for testing aircraft construction materials and engines [AD-A074049] N80-15181 AIRCRAPT BQUIPMENT An overvoltage safety system for direct current aircraft generators A80-19051 Aircraft torque motors --- Russian book 180-19199 A high accuracy flight profile determining system --- systems analysis of inertial navigation system for aircraft position determination N80-14042 Aircraft anti-icing/de-icing [AD-A074128] N80-15078 AIRCRAFT FUEL SYSTEMS Aircraft fuel system simulator tests with antimisting kerosene (jet A fuel with FM-9 additive) --- flammability tests [AD-A073237] N80-14256 AIRCRAFT FUBLS Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment ---flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time [NASA-TH-80194] AIRCRAFT GUIDANCE N80-14114 Advances in Guidance and Control Systems Using **Digital Techniques** [AGARD-CP-272] N80-14017 AIRCRAPT HAZARDS An evaluation of the bird/aircraft strike hazard at Barksdale Air Force Base, Louisiana (SAC) [AD-A074390] N80-14063 Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes, volume 1 [NASA-TM-79166] N80-15059 AIRCRAFT INSTRUMENTS Some practical aspects of the calibration of air data systems A80-18865 Experimental investigation of the characteristics of pneumatic transfer lines A80-19052 Investigations of the optimal configuration of high-stability quartz oscillators for aircraft and missiles A80-19990 AIRCRAFT LANDING The loads at landing impact --- for aircraft A80- 17723 What brings us down tomorrow - Landing guidance systems for the 1980s A80-18725 Altitude response of several airplanes during landing approach --- including space shuttle [NASA-TM-80186] N80-14139 Landing approach airframe noise measurements and analysis [NASA-TP-1602] N80-15028 AIRCRAFT BAINTBNANCE Study of turboprop systems reliability and maintenance costs [NASA-CR-135192] N80-14129 Fleet hardness variation --- to determine aircraft survivability due to blast loads f AD-A0748491 N80-15029 AIRCRAFT HABBUVERS Sonic-boom wave-front shapes and curvatures associated with maneuvering flight [NASA-TP-1611] N80-14045 AIRCRAFT HODELS The criticality of engine exhaust simulations on VSTOL model-measured ground effects FAIAA PAPER 80-02301 A80-18276

AIRCRAFT NOISE

Quiet Clean Short-Haul Experimental Engine (QCSEE) acoustic and aerodynamic tests on a scale model over-the-wing thrust reverser and forward thrust nozzle [NASA-CR-135254] N80-14115 Evaluation of the aerodynamic characteristics of a 1/20-scale A-10 model at Mach numbers from 0.30 to 0.75 [AD-A074867] AIRCRAFT NOISE 180-15055 Rotational noise of helicopter rotors A80-17718 Airport noise, location rent, and the market for residential amenities A80-17720 Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics A80-20952 Comparison of inlet suppressor data with approximate theory based on cutoff ratio [AINA PAPER 80-0100] A80-20964 Applications of diffraction theory to aeroacoustics --- aircraft noise N80-14870 Landing approach airframe noise measurements and analysis [NASA-TP-1602] N80-15028 Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan --- guiet engine program [NASA-CR-134891] N80-15102 study of partial coherence for identifying interior noise sources and paths on general aviation aircraft [NASA-TM-80197] N80-15874 AIRCRAFT PERFORMANCE Plight certification of the Cessna TU206G amphibious floatplane A80-18186 Multiple tactical aircraft combat performance evaluation system [AIAA PAPER 80-0189] A80-18358 Tilt rotor - An effective V/STOL concept [SAWE PAPER 1273] A80-: Problems associated with cargo airplanes having 180-20628 aft mounted engines [SAWE PAPER 1314] A80-20648 Weight impact of VTOL SAWE PAPER 1326] A first look at the effect of severe rainfall upon A80-20656 an aircraft [NASA-CR-162569] N80-15059 AIRCRAFT RELIABILITY Designing to life cycle cost in the Hornet program [SAWE PAPER 1293] A80-20638 Automatic recovery after sensor failure onboard N80-14024 AIRCRAFT SAFETY Covariance simulation of BCAS - An aircraft collision avoidance system A80-20915 Effect of weather conditions on airport operations N80-14638 Current research on aviation weather (bibliography), 1979 [NASA-CR-3214] N80-14651 NASA technical advances in aircraft occupant safety --- clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TH-80851] N80-15060 AIRCRAPT SPECIFICATIONS Weight Integrated Sizing Evaluation /WISP/.- A tool for preliminary design [SAWE PAPER 1312] A80-A80-20646 Low cost aircraft flutter clearance --- conference N80-15141 [AGARD-CP-278] Comparison of international flutter requirements and flutter freedom substantiation of light aircraft in the USA N80-15142 The state-of-the-art of flutter substantiation procedures among OS general aviation manufacturers N80-15143 Dynamic identification of light aircraft structures and their flutter certification N80-15145 The minimum cost approach to flutter clearance N80-15148

SUBJECT INDEX

ATRCRAPT SPTN Determination of the spin and recovery characteristics of a typical low-wing general aviation design [AIAA PAPER 80-0169] A80-18351 AIRCRAFT STABILITY Comment on 'Handling quality criterion for heading . control' A80-17698 Effects of the aerodynamic cross-coupling and lateral acceleration derivatives on airplane dynamic characteristics [AIAA PAPER 80-0170] 180-17699 Estimation of the accuracy of dynamic flight-determined coefficients [AIAA PAPER 80-0171] A80-1770 Analysis of rotor-fuselage coupling and its effect A80-17700 on rotorcraft stability and response A80-17716 Enhanced departure/spin recovery of fighter aircraft through control of the forebody vortex orientation [AIAA PAPER 80-0173] Aircraft aerodynamics - Dynamics of longitudinal and lateral motion --- Russian book A80-18352 A80-19374 AIRCRAFT STRUCTURES Sonic fatigue design data for bonded aluminum aircraft structures [AIAA PAPER 80-0303] A80-18304 Tartical method of fatigue crack growth analysis for damage tolerance assessment of aluminum structure in fighter type aircraft [AIAA PAPER 80-0405] A80-18 A80-18346 Code optimization for solving large 3D EMP problems --- electromagnetic scattering by aircraft structures A80-19764 Preliminary weight estimation of engine section structure [SAWE PAPER 1311] A80-20 Review of investigations into aeronautics related fatigue Federal Republic of Germany A80-20645 [LBP-S-142] N80-14 Applications of modern hydrodynamics to aeronautics. Part 1: Fundamental concepts and the most important theorems. Part 2: NR0-10022 Applications N80-15034 [NACA-116] The aerodynamic forces on airship hulls [NACA-184] Evaluation of approximate methods for the N80-15039 prediction of noise shielding by airframe components [NASA-TP-1004] N80-15129 Dynamic identification of light aircraft structures and their flutter certification N80-15145 AIRCRAFT SURVIVABILITY Multiple tactical aircraft combat performance evaluation system [AIAA PAPER 80-0189] A80-18358 Protective coatings for aircraft composites in nuclear environments AD-A0748891 N80-14199 Pleet hardness variation --- to determine aircraft survivability due to blast loads N80-15029 [AD-A074849] AIRFIELD SUBFACE HOVENENTS Simulation of a surveillance and control system of surface traffic in an airport N80-14073 Effect of weather conditions on airport operations 880-14638 AIRFOIL PROFILES Experimental and computational study of transonic flow about swept wings [AIAA PAPER 80-0005] A80-18235 Conformal mapping analysis of multielement airfoils with boundary-layer corrections [AINA PAPER 80-0069] A80-18261 [AIAA PAPER 60-005] Studies of leading-edge thrust phenomena [AIAA PAPER 80-0325] A6 The rational design of an airfoil for a high performance jet trainer [AIAA PAPER 80-0328] A6 A80-18315 A80-18317 Αn inverse transonic wing design method [AIAA PAPER 80-0330] A80-18319

SUBJECT INDEX

Pressure distribution on Joukowski wings [NACA-TM-336]	TOO-15036
The minimum induced drag of aerofoils	N80-15036
[NACA-121]	N80-15038
AIRPOILS	
Reynolds number and compressibility effect: dynamic stall of a NACA 0012 airfoil	s on
[AIAA PAPER 80-0010]	A 80-18238
Analysis of transonic flow about harmonica	
oscillating airfoils and wings	
[AIAA PAPER 80-0149] An investigation of several factors involv	A80-18367
finite difference procedure for analyzin	
transonic flow about harmonically oscilla	
airfoils and wings	NOA 18456
[NASA-CR-159143] Computer program to prepare airfoil charac	N80-14056 teristic
data for use in helicopter performance	
calculations	
[NASA-TM-78627] The minimum induced drag of aerofoils	N80-15031
[NACA-121]	N80-15038
A users guide for A344: A program using a	finite
difference method to analyze transonic f	low over
oscillating airfoils [NASA-CR-159141]	N80-15052
AIRPRABES	NOC 19032
Landing approach airframe noise measurement	ts and
analysis {NASA-TP-1602]	N80-15028
AIRLINE OPERATIONS	100 15020
Shipping by air - Is the value of your time	
AIRPLANE PRODUCTION COSTS	A80-20868
Application of parametric weight and cost	
estimating relationships to future trans	port
aircraft [SAWE PAPER 1292]	A80-20637
AIRPORT PLANNING	A00-20037
An analytical method of testing pavement s	
Marseilles - Metamorphosis of an airport	A80-17998
nalsellies - necamorphosis of an altport	A80-17999
Computer simulation of an air cargo small p	package
sorting system	A80-20866
Methodology for the evaluation of a radar :	
	N80-14067
AIRPORT SURFACE DETECTION FQUIPMENT On radar in air traffic control confere	
Rome, Jul. 1979	ence,
[PUB-11-1979]	N80-14065
Simulation of a surveillance and control sy surface traffic in an airport	ystem of
Surface character in an arrout	N80-14073
Development trends of airport surface traff	fic
control radar	
Automatic systems for airport surface mobil	N80-14087 e media
surveillance based on the use of secondar	
3775074C	N80-14104
AIRPORTS Airport noise, location rent, and the marke	et for
residential amenities	
	A80- 17720
Centralized ground power systems conserve e	aso-18000
Models for freight access to air terminals	100 10000
la sector of the bird discussion of the line of the sector	N80-20869
An evaluation of the bird/aircraft strike h at Barksdale Air Force Base, Louisiana (S	
[AD-A074390]	N80-14063
Reflection cracking of bituminous overlays	for
airport pavements: A state of the art FAD-A0734841	N80-14144
Effect of weather conditions on airport ope	
	N80-14638
Aircraft delays at major US airports can be FPB-299442/41	e reduced N90-15061
AIRSHIPS	
Propulsion options for the HI STOT long end	urance
drone airship [AD-A074595]	N80-14132
The aerodynamic forces on airship hulls	
[NACA-184]	N80-15039
AIRSPACE	

Air traffic density and distribution measurements [AD-A073229] N80-14064

ATRSPRED A flutter-speed formula for wings of high aspect ratio N80-15147 ALGORITHES Automation of flight on-line strategic control: The case of speed control on pre-established rontes N80-14070 Radar data utilization in automating the sequencing of aircrafts in terminal areas N80-14071 Tactical analysis of conflicts in an air traffic control system: Design and implementation of a provisional model N80-14072 Tracking algorithms for mono and multiradar N80-1407a Antireflection techniques for detecting false tracks in air traffic surveillance with secondary radar N80-14100 Onboard collision avoidance system: Environmental influence on the tracking algorithm requirements N80-14105 Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment --flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time [NASA-TH-80194] N80-14114 ALL-WEATHER LANDING SYSTERS What brings us down tomorrow - Landing guidance systems for the 1980s A80-18725 ALPHA JET AIRCRAFT Poll control by digitally controlled segment spoilers N80-15156 mirect side force and drag control with the aid of pylon split flaps N80-15163 ALTITUDE CONTROL Altitude response of several airplanes during landing approach --- including space shuttle [NASA-TH-80186] N80-14139 ALUMIBUM ALLOYS Sonic fatigue design data for bonded aluminum aircraft structures [AIAA PAPER 80-0303] A80-18304 Practical method of fatigue crack growth analysis for damage tolerance assessment of aluminum structure in fighter type aircraft [AIAA PAPER 80-0405] A80-18 A80-18346 Advanced materials and the Canadair Challenger [SAWE PAPER 1284] A80 AMPHIBIOUS AIRCRAFT A80-20632 Plight certification of the Cessna TU206G amphibious floatplane A80-18186 ABALOG COMPUTERS Analog computer [SAWF PAPER 1283] ANECHOIC CHAMBERS 180-20631 Evaluation of approximate methods for the prediction of noise shielding by airframe components [NASA-TP-1004] N80-15129 ANGLE OF ATTACK Investigation of leading-edge devices for drag reduction of a 60-deg. delta wing at high angles of attack [AIAA PAPER 80-0310] A80-18309 High angle of attack characteristics of different fighter configurations [MBB-UFE-1443(0)] N80-Control considerations for CCV fighters at high N80-14058 angles of attack N80-15160 Wind tunnel investigation of controls for DP on a fighter-type configuration of higher angles of attack N80-15166 Nonlinear aerodynamics of all-movable controls N80-15173 ANTENNA DESIGN

Experimental loop antennas for 60 KHz to 200 KHz [NASA-CR-162729] N80-15063

ANTIICING ADDITIVES

ANTIICING ADDITIVES Aircraft anti-icing/de-icing [AD-A074128] N80-15078 APPROACH Altitude response of several airplanes during landing approach --- including space shuttle [NASA-TH-80186] N80-14139 APPROXIMATION Evaluation of approximate methods for the prediction of noise shielding by airframe components [NASA-TP-1004] ARCHITECTURE (COMPUTERS) N80-15129 A flight control system using the DAIS architecture N80-14019 Trends in digital data processing and system architecture --- avionics applications N80-14020 ARONATIC CONPOUNDS Rffect of naphthenic aromatic hydrocarbons on the oxidizability of hydrogenated jet fuel --- jet engine fuels A80-17675 ATLIT PROJECT Correlation of predicted longitudinal aerodynamic characteristics with full-scale wind tunnel data on the ATLIT airplane [AIAA PAPER 80-0186] 180-18356 [AIAA PAPER OUT 100] AND 100 ATHOSPHERIC EFFECTS Atmospheric effects on Martian ejecta emplacement 180-20192 ATTOSPHERIC TURBULENCE Effect of spanwise gust variations N80-14639 ATTITUDE INDICATORS Methods for strap-down attitude estimation and navigation with accelerometers N80-14034 AUTOBATIC CONTROL Aircraft aerodynamics - Dynamics of longitudinal and lateral motion --- Russian book A80-19374 Failure detection, isolation and indication in highly integrated digital guidance and control system N80-14027 Radar data utilization in automating the sequencing of aircrafts in terminal areas N80-14071 Automatic systems for airport surface mobile media surveillance based on the use of secondary media N80-14104 AUTOMATIC PLIGET CONTROL An assessment of and approach to the validation of digital flight control systems N80-14036 Pilot control through the TAFCOS automatic flight control system N80-14138 [NASA-TM-81152] AUTORATIC PILOTS Verification of digital autopilot microprocessor hardware and software via hardware-in-the-loop simulation A80-20901 Pilot control through the TAFCOS automatic flight control syste N80-14138 [NASA-TH-81152] AUTOMATION Automation and air traffic control A80-18722 AVIONICS Modular strapdown guidance unit with embedded microprocessors AIAA PAPER 78-12391 A80-18534 Advances in Guidance and Control Systems Using Digital Techniques [AGARD-CP-272] N80-14017 State of the art for digital avionics and controls, 1978 N80-14018 A flight control system using the DAIS architecture N80-14019 Trends in digital data processing and system architecture --- avionics applications N80-14020 The avionics computer program: Practical experiences with a methodology --- Mirage F1 and Mirage 200 aircraft N80-10037

SUBJECT INDEX

Avionics installation (AVSTALL) cost model user equipment of NAVSTAR global position	
system [AD-A073681]	N80-14106
AXISYBBETRIC BODIES Experimental study of confluence with sepa:	ration
on an afterbody of revolution [ONERA, TP NO. 1979-151]	A80-20088
AXISYMMETRIC PLOW Acoustic radiation from axisymmetric ducts	- A
comparison of theory and experiment [AIAA PAPER 80-0097]	A80-18268
Mach 3 hydrogen external/base burning [AIAA PAPER 80-0280]	A80-19311
В	

B-1 AIRCRAFT Analyses and tests of the B-1 aircraft structural mode control system [NASA-CR-144887] N80-15 N80-15073 BALANCE A method of simplifying weight and balance for small aircraft [SAWE PAPEP 1278] A80-20630 BASE FLOW Mach 3 hydrogen external/base burning [AIAA PAPER 80~0280] A80-19311 BEAT FREQUENCIES Evaluation of the intensity of beat-induced vibrations A80-17965 BIBL TOGRAPHIES Current research on aviation weather (bibliography), 1979 [NASA-CR-3214] N80-14651 BIRD-AIRCRAFT COLLISIONS An evaluation of the bird/aircraft strike hazard at Barksdale Air Force Base, Louisiana (SAC) [AD-A074390] N80-14063 BLADE TIPS Effect of tip planform on blade loading characteristics for a two-bladed rotor in hover [NASA-TM-78615] N80-14 N80-14049 Laser-optical blade tip clearance measurement system [NASA-TH-81376] N80-14128 BLAST LOADS Pleet hardness variation --- to determine aircraft survivability due to blast loads [AD-A074849] N80-15029 BODY-WING AND TAIL CONFIGURATIONS Large scale model tests of a new technology V/STOL concept [ATAM PAPER 80-0233] A80-193 Figh angle of attack characteristics of different fighter configurations A80-19303 [MBB-0FE-1443 (0)] N80-14058 On the effect of wing wake on tail characteristics N80-15174 BODY-WING CONFIGURATIONS Development of a vortex-lift-design method and application to a slender maneuver-wing configuration [AIAA PAPER 80-0327] A80-18316 Effects of non-planar strake-wing on the vortex lift characteristics of a twin-jet fighter configuration [AIAA PAPER 80-0329] A80-18318 Euler solutions for wing and wing-body combination at supersonic speeds with leading-edge separation [AIAA PAPER 80-0126] A80-1835 BOBING 747 AIRCRAFT A80-18359 Simultaneous cabin and ambient ozone measurements on two Eceing 747 airplanes, volume 1 [NASA-TH-79166] N80-15 N80-15059 BOILER PLATE Quiet Clean Short-Haul Experimental Engine (OCSEE). Under-the-wing (UTW) engine boilerplate Nacelle test report. Volume 2: Aerodynamics and performance [NASA-CR-135250] BORON REINFORCED MATERIALS N80-14116 Determination of the stress intensity factor of composite structural members A80-17958

COLLISION AVOIDANCE

BOUNDARY LAYER CONTROL Enhanced departure/spin recovery of fighter aircraft through control of the forebody vortex orientaticn [AIAA PAPER 80-0173] A80-18352 Control of forebody three-dimensional flow separations N80-15164 BOUNDARY LAYER FLOW Conformal mapping analysis of multielement airfoils with boundary-layer corrections [AIAA PAPER 80-0069] A80-18261 The aerodynamic forces on airship hulls [NACA-184] N80-15 BOUNDARY LAYER SEPARATION A numerical approach to subsonic viscous-inviscid N80-15039 interaction A80-19070 Separation due to shock wave-turbulent boundary Layer interaction [ONERA, TP NO. 1979-146] BOUNDARY LAYER TRANSITION A80-20083 BOUNDARY LAYER TRANSITION Applications of modern hydrodynamics to aeronautics. Part 1: Fundamental concepts and the most important theorems. Part 2: Applications [NACA-116] BOUNDARY VALUE PROBLEMS Application of a higher order panel method to realistic supersonic configurations [AIAA PAPER 79-0274] BOURS (CONTAINERS) ABO-176 BOURS (CONTAINERS) N80-15034 A80-17696 BOIRS (CONTAINERS) Air cargo container utilization optimization through modeling A80-20870 BUFFETING Flight testing of the buffeting behavior of combat aircraft [ESA-TT-523] N80-14143 BYPASSES Passs Dynamic response of a Mach 2.5 axisymmetric inlet and turbojet engine with a poppet-value controlled inlet stability bypass system when subjected to internal and external airflow transients [NASA-TP-1531] N80-14123

С

C-15 MTRCRIPT

C-15 AIRCRAFT	
Quiet powered-lift propulsion	
[NASA-CP2077]	N80-15127
C-135 AIRCRAFT	
The effects of motion and g-seat cues on pi	lot
simulator performance of three piloting t	asks
[NASA-TP-1601]	N80-15069
CABINS	
Recent developments in flight simulation to	chniques A80-20907
CALIBRATING	
Some practical aspects of the calibration of	of air
data systems	
	A80-18865
Determination of the repeatability of PFC -	
flight tests for position error calibrati	ing
[AETE-PR-79/36]	N80-14109
CANARD CONFIGURATIONS	
Aerodynamic interaction on a close-coupled	canard
wing configuration	
	N80-15175
CARBON FIBERS	
The transfer of carbon fibers through a com	mercial
aircraft water separator and air cleaner	
[NASA-CR-1591831	N80-14359
CARGO AIBCRAFT	
Problems associated with cargo airplanes ha	ving
aft mounted engines	,
[SAWE PAPER 1314]	A80-20648
Air cargo container utilization optimizatio	םמ
through modeling	
chrodyn modorranj	A80-20870
CASCADE CONTROL	
A statistical method applied to pilot behav	ior
analysis in multiloor systems	
analysis in matchioop systems	A80-18537
CRLESTIAL REFERENCE SYSTERS	
Navigation error using rate of change of si	ana 1
time of arrival from space vehicles	- ynu z
time of allivat from shace ventures	190-2000

CENTER OF GRAVITY	
Problems associated with cargo airplanes ha	aving
aft mounted engines	
[SAWE PAPER 1314] CENTRIFUGAL COMPRESSORS	A80-20648
On the dynamics of compressor surge	
	A80-17900
CERAMIC COATINGS Thermal barrier coatings for aircraft gas t	urbines
[AIAA PAPER 80-0302]	A80-18303
CERABICS	
Technologies conceived for the utilization ceramics in turboengines	of
[ONERA, TP NO. 1979-132]	A80-20076
Contact stress analysis of ceramic-to-metal	L
interfaces in gas turbine engines [AD-A074491]	N80-14417
CERTIFICATION	100 14417
Flight certification of the Cessna TU206G	
amphibious floatplane	A80-18186
CESSNA AIRCRAFT	
Flight certification of the Cessna TU206G	
amphibious floatplane	A80-18186
CH-46 HELICOPTER	
CH-46 composite rotor blade flight stress s data. Volume 3: Plotted forward rotor b	survey
data. Volume 3: Plotted forward rotor f chord, torsion and absolute loads	lade
[AD-A075612]	N80-15077
CHANNEL FLOW	
Separation due to shock wave-turbulent bour layer interaction	ndary
[ONERA, TP NO. 1979-146]	A80-20083
CHANNELS (DATA TRANSMISSION)	-
An air traffic channel simulation by means ray-tracing techniques	of
• • •	N80-14088
L-band measurements in the air traffic char	nnel to
characterize secondary radar systems	N80-14092
CHEMICAL ATTACK	
Comparative resistance of Beta-Si3N4 solid	
solutions to molten silicon attack	
	A80-18062
CHEMICAL PROPERTIES	A80-18062
The physical and chemical characterization	
The physical and chemical characterization military turbine engine lubricants	of ten
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION	of ten N80-15265
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur	of ten N80-15265
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION	of ten N80-15265 rent
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCOIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION	of ten N80-15265 Trent A80-19051
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCOIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems	of ten N80-15265 Trent A80-19051
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCOIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION	of ten N80-15265 Trent A80-19051
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCOIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems	of ten N80-15265 rent A80-19051 5 for A80-19579 2 worth it
The physical and chemical characterization military turbine engine lubricants [AD-AO74073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time	of ten N80-15265 Trent A80-19051 5 for A80-19579 9 worth it A80-20868
The physical and chemical characterization military turbine engine lubricants [AD-AO74073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of	of ten N80-15265 Trent A80-19051 5 for A80-19579 9 worth it A80-20868
The physical and chemical characterization military turbine engine lubricants [AD-AO74073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation G receiver system [NASA-CR-159176]	of ten N80-15265 Trent A80-19051 5 for A80-19579 9 worth it A80-20868
The physical and chemical characterization military turbine engine lubricants [AD-AO74073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLEBAR ALE TURBULENCE	of ten N80-15265 Trent A80-19051 5 for A80-19579 9 worth it A80-20868 PS N80-15062
The physical and chemical characterization military turbine engine lubricants [AD-AO74073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION APROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLEAR AIE TUBBULENCE NASA technical advances in aircraft occupan	of ten N80-15265 Trent A80-19051 5 for A80-19579 9 worth it A80-20868 PS N80-15062
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION APROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLEAR AIR TUBBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness	of ten N80-15265 Trent A80-19051 5 for A80-19579 9 worth it A80-20868 PS N80-15062 at safety
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation G receiver system [NASA-CR-159176] CLEAR AIR TURBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TM-80851]	of ten N80-15265 Trent A80-19051 5 for A80-19579 9 worth it A80-20868 PS N80-15062
The physical and chemical characterization military turbine engine lubricants [AD-AO74073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION APROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLEAR AIR TURBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TN-80851] COAL	of ten N80-15265 rent A80-19051 s for A80-19579 worth it A80-20868 PS N80-15062 t safety N80-15060
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation G receiver system [NASA-CR-159176] CLEAR AIR TURBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TM-80851] CML Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl	of ten N80-15265 rent A80-19051 s for A80-19579 worth it A80-20868 PS N80-15062 t safety N80-15060
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION APROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLEAR AIR TURBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TM-80851] COAL Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl experiments	of ten N80-15265 rent A80-19051 s for A80-19579 worth it A80-20868 PS N80-15062 t safety N80-15060 s from oratory
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation G receiver system [NASA-CR-159176] CLEAR AIR TURBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TM-80851] CML Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl	of ten N80-15265 Trent A80-19051 5 for A80-19579 9 worth it A80-20868 PS N80-15062 A80-15060 S from
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLEAR AIR TURBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TH-80851] COAL Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl experiments [AD-A073761] COCKPITS Vocabulary specification for automatic spee	of ten N80-15265 rrent A80-19051 s for A80-19579 worth it A80-20868 SPS N80-15062 at safety N80-15060 s from oratory N80-14259
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION ARROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLEAR AIR TUBBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TM-80851] COAL Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl experiments [AD-A073761] COCKPITS Vocabulary specification for automatic spee recognition in aircraft cockpits	of ten N80-15265 rent A80-19051 s for A80-19579 worth it A80-20868 PS N80-15062 at safety N80-15060 s from coratory N80-14259 sch
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLEAR AIB TUBBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TM-80851] COAL Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl experiments [AD-A073761] COCKPITS Vocabulary specification for automatic spee recognition in aircraft cockpits	of ten N80-15265 rrent A80-19051 s for A80-19579 worth it A80-20868 SPS N80-15062 at safety N80-15060 s from oratory N80-14259
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION ARROPF - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLBAR AIR TUBBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TM-80851] COAL Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl experiments [AD-A073703] COHERENT ACOUSTIC RADIATION A study of partial coherence for identifyin	of ten N80-15265 rent A80-19051 s for A80-19579 worth it A80-20868 PS N80-15062 afor N80-15060 s from oratory N80-14259 ech N80-14303
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLEAR AIB TUBBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TN-80851] COAL Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl experiments [AD-A073761] COCKPITS Vocabulary specification for automatic spec recognition in aircraft cockpits [AD-A073703] COHERENT ACOUSTIC RADIATION A study of partial coherence for identifyin interior noise sources and paths on gener	of ten N80-15265 rent A80-19051 s for A80-19579 worth it A80-20868 PS N80-15062 afor N80-15060 s from oratory N80-14259 ech N80-14303
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION ARROPF - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLBAR AIR TUBBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TM-80851] COAL Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl experiments [AD-A073703] COHERENT ACOUSTIC RADIATION A study of partial coherence for identifyin	of ten N80-15265 rent A80-19051 s for A80-19579 worth it A80-20868 PS N80-15062 afor N80-15060 s from oratory N80-14259 ech N80-14303
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION APROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLEAR AIR TURBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TM-80851] COAL Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl experiments [AD-A073761] COCKPITS Vocabulary specification for automatic spec recognition in aircraft cockpits [AD-A073703] COHERENT ACOUSTIC RADIATION A study of partial coherence for identifyin interior noise sources and paths on gener aviation aircraft [NASA-TM-80197] COLLIGN AVOLDANCE	of ten N80-15265 rrent A80-19051 s for A80-19579 worth it A80-20868 SPS N80-15060 s from oratory N80-15060 s from oratory N80-14259 sch N80-14303 sg al N80-15874
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLERR AIE TURBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TN-80851] COAL Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl experiments [AD-A073761] COCKPITS Vocabulary specification for automatic spee recognition in aircraft cockpits [AD-A073703] COHERENT ACOUSTIC RADIATION A study of partial coherence for identifyin interior noise sources and paths on gener aviation aircraft [NASA-TN-80197] COLLISION AVOIDANCE Covariance simulation of BCAS - An aircraft	of ten N80-15265 rrent A80-19051 s for A80-19579 worth it A80-20868 SPS N80-15060 s from oratory N80-15060 s from oratory N80-14259 sch N80-14303 sg al N80-15874
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION APROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLEAR AIR TURBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TM-80851] COAL Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl experiments [AD-A073761] COCKPITS Vocabulary specification for automatic spec recognition in aircraft cockpits [AD-A073703] COHERENT ACOUSTIC RADIATION A study of partial coherence for identifyin interior noise sources and paths on gener aviation aircraft [NASA-TM-80197] COLLIGN AVOLDANCE	of ten N80-15265 rrent A80-19051 s for A80-19579 worth it A80-20868 SPS N80-15060 s from oratory N80-15060 s from oratory N80-14259 sch N80-14303 sg al N80-15874
The physical and chemical characterization military turbine engine lubricants [AD-A074073] CIRCUIT PROTECTION An overvoltage safety system for direct cur aircraft generators CIVIL AVIATION AFROPP - Message and data switching systems aeronautical operations Shipping by air - Is the value of your time Design study of a low cost civil aviation of receiver system [NASA-CR-159176] CLERR AIE TURBULENCE NASA technical advances in aircraft occupan clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TN-80851] COAL Microbial deterioration of hydrocarbon fuel oil shale, coal, and petroleum. 1: Expl experiments [AD-A073761] COCKPITS Vocabulary specification for automatic spee recognition in aircraft cockpits [AD-A073703] COHERENT ACOUSTIC RADIATION A study of partial coherence for identifyin interior noise sources and paths on gener aviation aircraft [NASA-TN-80197] COLLISION AVOIDANCE Covariance simulation of BCAS - An aircraft	of ten N80-15265 rrent A80-19051 s for A80-19579 worth it A80-20868 N80-15062 at safety N80-15060 s from oratory N80-14259 sch N80-14303 lg al N80-15874 A80-20915 nmental

A80-20904

CONBAT

CONBAT Hultiple tactical aircraft combat performance evaluation system [AIAA PAPER 80-0189] COMBUSTIBLE PLOW A80-18358 Mach 3 hydrogen external/base burning [ATAA PAPER 80-0280] A80-19 Dispersion of sound in a combustion duct by fuel droplets and soot particles 111 - 19311 A80-20953 CONBUSTION CHANEBERS Estimation of noise source strengths in a gas turbine combustor TAINA PAPEB 80-00341 A80-18245 Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized combustion system --- for gas turbine engines [NASA-TP-1582] N80-14125 Quiet Clean Short-haul Experimental Engine (QCSEE). Double-annular clean combustor technology development report [NASA-CR-159483] COBBUSTION PHYSICS N80-15121 Bach 3 hydrogen external/base burning [AIAA PAPER 80-0280] 880-19311 CONBUSTION PRODUCTS Quiet Clean Short-haul Experimental Engine (QCSEE) clean combustor test report [NASA-CR-134916] N850-151 N90-15104 COMMAND AND CONTROL A nonlinear cbserver/command generator tracker approach to the XM-97 helicopter gun turret control law design A80-20879 COMMERCIAL AIRCRAFT A strapdown inertial reference system for commercial airline use in navigation and flight COBTTO] A80-17558 The transfer of carbon fibers through a commercial aircraft water separator and air cleaner [NASA-CR-159183] N80-14359 Aircraft delays at major US airports can be reduced [PB-299442/4] N80-15061 COMMUNICATION CABLES Recent advances in fibre optics for high integrity digital control systems N80-14025 COMMUNICATION NETWORKS AEROPP - Message and data switching systems for aeronautical operations A80-19579 COMPARISON Implementation of air traffic control radar receivers with fast Fourier transform processors N80-14086 COMPLEX SYSTEMS A method of evaluation of gas turbine engines **380-2006** COMPONENT RELIABILITY The CP6 jet engine performance improvement: New front mount [NASA-CR-159639] N80-14127 COMPOSITE MATERIALS Damping capacity of plastic compressor blades A80-19868 Protective coatings for aircraft composites in nuclear environments [AD-A074889] N80-14199 Composite structural materials [WASA-CR-162578] N80-150 Quiet Clean Short-haul Experimental Engine (QCSE3) N80-15076 Under-The-Wing (UTW) composite macelle subsystem test report --- to verify strength of selected composite materials [NASA-CR-135075] N80-15100 Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle [NASA-CR-135352] N80-151 N80-15119 COMPOSITE STRUCTURES Peasibility of SiC composite structures for 1644 K (2500 F) gas turbine seal application [NASA-CR-159597] N80-141 N80-14122 Composite structural materials [NASA-CR-162578] N80-15076 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine composite fan blade design report [NASA-CR-1350461 N80-15108

COMPRESSIBILITY EFFECTS COMPRESSIBLE FLOW A80-18238 Reynolds number and compressibility effects on dynamic stall of a NACA 0012 airfoil [AIAA PAPER 80-0010] A80-COMPRESSON BLADES A80-18238 Damping capacity of plastic compressor blades 180-19868 COMPRESSOR EFFICIENCY On the influence of steady state temperature and pressure distortion on the flow characteristics in an installed multistage jet engine compressor A80-17724 Plow in transonic compressors [AIAA PAPER 80-0124] 180-18357 COMPUTATIONAL PLUID DYNAMICS Application of a higher order panel method to realistic supersonic configurations [AIAA PAPER 79-0274] A8 A80-17696 Euler solutions for wing and wing-body combination at supersonic speeds with leading-edge separation [AIAA PAPER 80-0126] A80-1835 Analysis of transonic flow about harmonically Å80-18359 oscillating airfoils and wings [AIAA PAPER 80-0149] A80-181 numerical approach to subsonic viscous-inviscid A80-18367 Α interaction A80-19070 Hybrid vortex method for lifting surfaces with free-vortex flow [AIAA PAPER 80-0070] A80 A80-19307 Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels --- computational fluid dynamics [NASA-CR-3210] N80-14047 COMPUTER DESIGN Analog aircraft weight and balance computer [SAWE PAPER 1283] A80-20631 COMPUTER INFORMATION SECURITY The integrity of onboard computer programs: A solution N80-14028 COMPUTER PROGRAMMING Tactical analysis of conflicts in an air traffic control system: Design and implementation of a Design and implementation of a provisional model N80-14072 COMPUTER PROGRAMS A computer code to model swept wings in an adaptive wall transonic wind tunnel [AIAA PAPER 80-0156] A80-19287 The integrity of onboard computer programs: A solution N80-14028 The avionics computer program: Practical experiences with a methodology --- Mirage F1 and Mirage 200 aircraft N80-14037 Modification of axial compressor streamline program for analysis of engine test data [NASA-TM-79312] N80-14051 computerized method for calculating flutter characteristics of a system characterized by two degrees of freedom [NASA-TM-80153] N80-14055 adaptation and validation of a primitive variable mathematical model for predicting the Δn flows in turbojet test cells and solid fuel ramjets [AD-A074187] N80-14133 Linear systems analysis program, L224(QR). Volume 1: Engineering and usage [NASA-CR-2861] N80-14 N80-14137 [nack-va-2001] N80-1412 Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TM-78627] N80-15031 Data reduction software for LORAN-C flight test evaluation [NASA-CR-162730] N80-15064 COMPUTER SYSTEMS DESIGN Modular strapdown guidance unit with embedded microprocessors [AIAA PAPER 78-1239] A80-18534

CONTROL SURFACES

Automation and air traffic control
A80-18722 Experience in producing software for the ground station of a remotely piloted helicopter system N80-14038
COMPUTER SYSTEMS PROGRAMS An assessment of and approach to the validation of
digital flight control systems N80-14036
COMPUTER TECHNIQUES Adaptive allocation of decisionmaking
responsibility between human and computer in multitask situations
180-18022 Recent developments in flight simulation techniques 880-20907
An extension of engine weight estimation techniques to compute engine production cost [AD-A074454] N80-15135
COMPUTERIZED DESIGN An analytical method of testing pavement strength
The rational design of an airfoil for a high
performance jet trainer [AIAA PAPER 80-0328] A80-18317
A pre-design code for predicting engine acquisition costs
[AĪAA PAPER 80-0055] A80-19269 Assessment of analytic methods for the prediction
of aerodynamic characteristics of arbitrary bodies at supersonic speeds
[AIAA PAPEB 80-0071] A80-19308 Weight Integrated Sizing Evaluation /WISE/ - A
tool for preliminary design [SAWE PAPER 1312] A90-20646
Optimized aerodynamic design precess for subsonic transport wing fitted with winglets wind
tunnel model [NASA-CR-159180] N80-14054
Composite structural materials [NASA-CR-162578] N80-15076 COMPUTERIZED SIBULATION
Computer simulation of engine systems for aircraft design
[ATAN PAPER 80-0051] A80-18253 Regression techniques applied to parametric
turbine engine simulations [AIAA PAPER 80-0053] A80-18255
Acoustic radiation from axisymmetric ducts - A comparison of theory and experiment
[AIÀA PAPER 80-0097] A80-18268 Correlation of predicted longitudinal aerodynamic
characteristics with full-scale wind tunnel data on the ATLIT airplane
[AIAN PAPER 80-0186] A80-18356 Bultiple tactical aircraft combat performance
evaluation system [AIAA PAPER 80-0189] A80-18358
Code optimization for solving large 3D PMP problems electromagnetic scattering by aircraft
structures A80-19764 A simple design synthesis method used to estimate
aircraft gross weight (SAWE PAPER 1313) A80-20647
Computer simulation of an air cargo small package sorting system
A80-20866 Covariance simulation of BCAS - An aircraft
collision avoidance system A80-20915
Numerical simulation of supersonic inlets using a three-dimensional viscous flow analysis
[AIAA PAPER 80-0384] A80-20969 Simulation of a surveillance and control system of
surface traffic in an airport N80-14073
An air traffic channel simulation by means of ray-tracing technigues N80-14088
Pilot control through the TAPCOS automatic flight control system
[NASA-TM-81152] N80-14138 Quiet Clean Short-haul Experimental Engine (QCSBE)
under-the-wing engine simulation report
under-the-wing engine simulation report f MASA-CR-134914] N80-15091 Computer simulation of engine systems

CONFERENCES	
Advances in Guidance and Control Systems U	sing
Digital Techniques [AGARD-CP-272]	N80-14017
On radar in air traffic control confer	
Rome, Jul. 1979	100 100CE
[FUB-11-1979] Quiet powered-lift propulsion	N80-14065
[NASA-CP-2077]	N80-15127
Technical evaluation report on the 28th Gu	idance
and Control Panel Symposium on Advances Guidance and Control Systems Using Digit	
Techniques	
[AGARD-AR-148] Low cost aircraft flutter clearance co	N80-15140
[AGARD-CP-278]	N80-15141
Aerodynamic characteristics of controls	-
conferences [AGARD-CP-262]	N80-15149
CONFIGURATION HANAGEBEBT	100 15145
Weight Integrated Sizing Evaluation /WISE/	- A
tool for preliminary design [SAWE PAPER 1312]	A80-20646
CONFORMAL MAPPING	A00 20040
Conformal mapping analysis of multielement	
airfoils with boundary-layer corrections [AIAA PAPER 80-0069]	A80-18261
CONTOURS	
Non-contacting electro-optical contouring	of
helicopter rotor blades [AD-A070806]	N80-14111
CONTROL	
Linear systems analysis program, L224(QR).	Volume
1: Engineering and usage [NASA-CR-2861]	N80-14137
Technical evaluation report on the 28th Gu	idance
and Control Panel Symposium on Advances : Guidance and Control Systems Using Digit;	
Techniques	1 L
[AG ARD-AR-148]	N80-15140
CONTROL CONFIGURED VEHICLES Redundancy management considerations for a	
control-configured fighter aircraft trip	lex
digital fly-by-wire flight control system	n
Control considerations for CCV fighters at	N80-14026 high
angles of attack	
Trajectory behaviour of a control configure	N80-15160
Trajectory behaviour of a control configura aircraft subjected to random disturbances	****
	ated 5
-	nted 5 180-15171
CONTROL EQUIPMENT	5
-	5
CONTROL EQUIPMENT Aircraft torgue motors Russian book CONTROL SINULATION	5 N80-15171 A80-19199
CONTROL EQUIPHENT Aircraft torgue motors Russian book CONTROL SIMULATION A statistical method applied to pilot behav	5 N80-15171 A80-19199
CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SIMULATION A statistical method applied to pilot behav analysis in multiloop systems	x80-15171 A80-19199 vior A80-18537
CONTROL EQUIPHENT Aircraft torgue motors Russian book CONTROL SIMULATION A statistical method applied to pilot behav	s N80-15171 A80-19199 Vior A80-18537 Lons
CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SIMULATION A statistical method applied to pilot behav analysis in multiloop systems	s N80-15171 A80-19199 Vior A80-18537 ions A80-20900
CONTROL EQUIPHENT Aircraft torque motors Russian book CONTROL SINULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulat: Verification of digital autopilot microprod hardware and software via hardware-in-the	x80-15171 A80-19199 vior A80-18537 ions A80-20900 cessor
CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SIMULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulat: Verification of digital autopilot microproc	5 N80-15171 A80-19199 Vior A80-18537 Lons A80-20900 Cessor E-loop
CONTROL EQUIPHENT Aircraft torque motors Russian book CONTROL SINULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulat: Verification of digital autopilot microprod hardware and software via hardware-in-the	x80-15171 A80-19199 Vior A80-18537 ions A80-20900 cessor e-loop A80-20901
CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SIMULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulat: Verification of digital autopilot microprove hardware and software via hardware-in-the simulation Pecent developments in flight simulation to	x80-15171 A80-19199 vior A80-18537 ions A80-20900 cessor e-loop A80-20901 echniques A80-20907
 CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SIMULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulation Verification of digital autopilot microprode hardware and software via hardware-in-the simulation 	x80-15171 A80-19199 Vior A80-18537 ions A80-20900 cessor e-loop A80-20901 echniques A80-20901 itecture
CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SIMULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulat: Verification of digital autopilot micropro- hardware and software via hardware-in-the simulation Pecent developments in flight simulation to A flight control system using the DAIS arch Ouiet Clean Short-haul Experimental Engine	5 N80-15171 A80-19199 vior A80-18537 ions A80-20900 cessor =-loop A80-20901 sechniques A80-20907 nitecture N80-14019 N80-14019
CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SIMULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulati Verification of digital autopilot microprod hardware and software via hardware-in-the simulation Pecent developments in flight simulation to A flight control system using the DAIS arcl Ouiet Clean Short-haul Experimental Engine over-the-wing engine and control simulation	5 N80-15171 A80-19199 vior A80-18537 ions A80-20900 cessor =-loop A80-20901 sechniques A80-20907 nitecture N80-14019 N80-14019
CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SIMULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulat: Verification of digital autopilot micropro- hardware and software via hardware-in-the simulation Pecent developments in flight simulation to A flight control system using the DAIS arch Ouiet Clean Short-haul Experimental Engine	5 N80-15171 A80-19199 vior A80-18537 ions A80-20900 cessor =-loop A80-20901 sechniques A80-20907 nitecture N80-14019 N80-14019
CONTROL EQUIPHENT Aircraft torque motors Russian book CONTROL SIMULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulati Verification of digital autopilot microprove hardware and software via hardware-in-the simulation Pecent developments in flight simulation to A flight control system using the DAIS arcl Ouiet Clean Short-haul Experimental Engine over-the-wing engine and control simulation [NASA-CR-135049] CONTROL SURFACES	x80-15171 A80-19199 yior A80-18537 ions A80-20900 ecssor e-loop A80-20901 echniques A80-20901 echniques A80-20901 (QCSEE) ion N80-15114
<pre>CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SINULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulatis Verification of digital autopilot microprod hardware and software via hardware-in-the simulation Pecent developments in flight simulation to A flight control system using the DAIS arcl Oulet Clean Short-haul Experimental Engine over-the-wing engine and control simulatis results [NASA-CR-135089] CONTROL SUPPACES Comment on 'Handling guality criterion for</pre>	x80-15171 A80-19199 yior A80-18537 ions A80-20900 ecssor e-loop A80-20901 echniques A80-20901 echniques A80-20901 (QCSEE) ion N80-15114
CONTROL EQUIPHENT Aircraft torque motors Russian book CONTROL SIMULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulatis Verification of digital autopilot microprove hardware and software via hardware-in-the simulation Pecent developments in flight simulation to A flight control system using the DAIS arcl Ouiet Clean Short-haul Experimental Engine over-the-wing engine and control simulatis results [NASA-CR-135049] CONTROL SURFACES Comment on 'Handling guality criterion for control'	x80-15171 A80-19199 vior A80-18537 ions A80-20900 cessor e-loop A80-20901 cchniques A80-20901 cchniques A80-20901 cchniques A80-20901 k80-14019 (QCSEE) ion N80-15114 heading A80-17698
CONTROL EQUIPHENT Aircraft torque motors Russian book CONTROL SIMULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulatis Verification of digital autopilot microprove hardware and software via hardware-in-the simulation Pecent developments in flight simulation to A flight control system using the DAIS arcl Ouiet Clean Short-haul Experimental Engine over-the-wing engine and control simulatis results [NASA-CR-135049] CONTROL SURFACES Comment on 'Handling guality criterion for control'	x80-15171 A80-19199 vior A80-18537 ions A80-20900 cessor e-loop A80-20901 cchniques A80-20901 cchniques A80-20901 cchniques A80-20901 k80-14019 (QCSEE) ion N80-15114 heading A80-17698
 CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SINULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulation Verification of digital autopilot microprode hardware and software via hardware-in-the simulation Recent developments in flight simulation to A flight control system using the DAIS arch Ouiet Clean Short-haul Experimental Engine over-the-wing engine and control simulation (NASA-CR-135049] COMTROL SURPACES Comment on 'Handling guality criterion for control' Applications of modern hydrodynamics to aeronautics. Part 1: Fundamental concept 	x80-15171 A80-19199 vior A80-18537 ions A80-20900 cessor e-loop A80-20901 cchniques A80-20901 cchniques A80-20901 cchniques A80-20901 k80-14019 (QCSEE) ion N80-15114 heading A80-17698
 CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SINULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulatis Verification of digital autopilot microprod hardware and software via hardware-in-the simulation Pecent developments in flight simulation to A flight control system using the DAIS arcol Ouiet Clean Short-haul Experimental Engine over-the-wing engine and control simulatis results [NASA-CR-135009] COMTROL SURPACES Comment on 'Handling guality criterion for control' Applications of modern hydrodynamics to aeronautics. Part 1: Pundamental concept the most important theorems. Part 2: Applications 	x 880-15171 A80-19199 A80-18537 ions A80-20900 cessor e-loop A80-20901 echniques A80-20901 echniques A80-20901 (QCSEE) ion N80-15114 beading A80-17698 ets and
<pre>CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SIMULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulation Verification of digital autopilot microprod hardware and software via hardware-in-the simulation Pecent developments in flight simulation to A flight control system using the DATS arcl Ouiet Clean Short-haul Experimental Engine over-the-wing engine and control simulation (NASA-CR-135049] CONTROL SUMPACES Comment on 'Handling guality criterion for control' Applications of modern hydrodynamics to aeronautics. Part 1: Fundamental concept the most important theorems. Part 2: Applications [NACA-116]</pre>	x80-15171 A80-19199 vior A80-18537 ions A80-20900 cessor e-loop A80-20901 cchniques A80-20901 cchniques A80-20901 cchniques A80-20901 k80-14019 (QCSEE) ion N80-15114 heading A80-17698
 CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SINULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulatis Verification of digital autopilot microprod hardware and software via hardware-in-the simulation Pecent developments in flight simulation to A flight control system using the DAIS arcol Ouiet Clean Short-haul Experimental Engine over-the-wing engine and control simulatis results [NASA-CR-135009] COMTROL SURPACES Comment on 'Handling guality criterion for control' Applications of modern hydrodynamics to aeronautics. Part 1: Pundamental concept the most important theorems. Part 2: Applications 	x 880-15171 A80-19199 A80-18537 ions A80-20900 cessor e-loop A80-20901 echniques A80-20901 echniques A80-20901 (QCSEE) ion N80-15114 beading A80-17698 ets and
<pre>CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SINULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulation Verification of digital autopilot microprod hardware and software via hardware-in-the simulation Pecent developments in flight simulation to A flight control system using the DATS arcl Ouiet Clean Short-haul Experimental Engine over-the-wing engine and control simulati results [NASA-CR-135049] CONTROL SUMPACES Comment on 'Handling guality criterion for control' Applications of modern hydrodynamics to aeronautics. Part 1: Pundamental concept the most important theorems. Part 2: Applications [NACA-116] Aerodynamic characteristics of controls conferences [AGARD-CP-262]</pre>	x80-15171 A80-19199 vior A80-18537 ions A80-20900 cessor =-loop A80-20901 cchiques A80-20907 hitecture N80-14019 (QCSEE) ion N80-15114 heading A80-15034 N80-15034 N80-15149
 CONTROL EQUIPMENT Aircraft torque motors Russian book CONTROL SINULATION A statistical method applied to pilot behave analysis in multiloop systems Infrared sensor system performance simulatis Verification of digital autopilot microprode hardware and software via hardware-in-the simulation Pecent developments in flight simulation to A flight control system using the DAIS arcol Ouiet Clean Short-haul Experimental Engine over-the-wing engine and control simulation [NASA-CR-135089] COMTROL SURPACES Comment on 'Handling guality criterion for control' Applications of modern hydrodynamics to aeronautics. Part 1: Fundamental concept the most important theorems. Part 2: Applications [NACA-116] Aerodynamic characteristics of controls conferences 	x80-15171 A80-19199 vior A80-18537 ions A80-20900 cessor =-loop A80-20901 cchiques A80-20907 hitecture N80-14019 (QCSEE) ion N80-15114 heading A80-15034 N80-15034 N80-15149

.

.

CONTROLLABILITY

SUBJECT INDEX

A survey of experimental data on the aerodynamics of controls, in the light of future needs N80-15151 Correlation of P-15 flight and wind tunnel test control effectiveness N80-15152 Wind tunnel measurements and analysis of some unusual control surfaces on two swept wing fighter configurations N80-15155 Problems of unsteady aerodynamics raised by the use of control surfaces as active controls N80-15167 On the effects of gaps on control surface characteristics N80-15176 CONTROLLABILITY Pilot control through the TAPCOS automatic flight control system [NASA-TM-81152] N80-14138 CONTROLLERS Controllers for aircraft motion simulators [AIAA PAPER 80-0050] A80-18252 COOLING SYSTEMS Thermal state of structural members of aircraft engines --- Pussian book A80-19412 CORE FLOW Effect of the relative area of the flow core on the performance of a hypersonic wind tunnel A80-17673 Quiet Clean Short-haul Experimental Engine (QCSEE). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 PR variable pitch fan with core flow [NASA-CR-135017] CORROSION TESTS N80-15087 Comparative resistance of Beta-Si3N4 solid solutions to molten silicon attack 180-18062 COSHOS SATELLITES The Russian satellite navigation system A80-20982 COST AWALYSTS Shipping by air - Is the value of your time worth it 180-20868 Problems related to the design and construction of a radar network N80-14066 Avionics installation (AVSTALL) cost model for user equipment of NAVSTAR global positioning system [AD-A073681] COST ESTINATES N80-14106 A pre-design code for predicting engine acquisition costs [AIAA PAPER 80-0055] 180-19269 The modular life cycle cost model - An overview [SAWE PAPER 1290] A80 Application of parametric weight and cost estimating relationships to future transport A80-20636 aircraft [SAWE PAPIR 1292] Study of turboprop systems reliability and maintenance costs [NASA-CR-135192] A80-20637 N80-14129 extension of engine weight estimation Αn techniques to compute engine production cost
[AD-A074454] N80 N80-15135 COST REDUCTION The modular life cycle cost model - An overview [SAWE PAPER 1290] 180-20636 COSTS An extension of engine weight estimation techniques to compute engine production cost [AD-A074454] N80 N80-15135 COUPLING Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response A80-17716 COVARIANCE Covariance simulation of BCAS - An aircraft collision avoidance system A80-20915 COWLINGS Quiet Clean Short-Haul Experimental Engine (QCSFE) Under-The-Wing (UTW) graphite/FER cowl development [NASA-CR-135279] N80-14119

CRACK PROPAGATION ICK PROPAGATION Practical method of fatigue crack growth analysis for damage tolerance assessment of aluminum structure in fighter type aircraft [ATAN PAPER 80-0405] Nodel 540 rotor blade crack propagation A80-18346 investigation [AD-A074734] N80-15081 CRACKING (FRACTORING) Reflection cracking of bituminous overlays for airport pavements: A state of the art [AD-A073484] CRASH LANDING N80-14144 Soil analyses and evaluations at the impact dynamics research facility for two full-scale aircraft crash tests [NASA-CR-159199] N80-15299 CRATERING Atmospheric effects on Martian ejecta emplacement A80-20192 Soil analyses and evaluations at the impact dynamics research facility for two full-scale aircraft crash tests [NASA-CR-159199] N80-15299 CROSS COBRELATION Guidance system position update by multiple subarea correlation A80-17518 CROSS COMPLING Effects of the aerodynamic cross-coupling and lateral acceleration derivatives on airplane dynamic characteristics [AIAA PAPER 80-0170] CROSS FLOW A80-17699 An experimental study of the structure and acoustic field of a jet in a cross stream ---Ames 7-ft by 10-ft wind tunnel tests [NASA-CR-162464] N80-N80-15871 CRUDEOIL Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 CRUISING FLIGHT Exploratory studies of the cruise performance of upper surface blown configuration: Experimental program, high-speed force tests [NASA-CR-159134] N80-150 N80-15070 Exploratory studies of the cruise performance of upper surface blown configurations: Experimental program, high-speed pressure tests [NASA-CR-159135] N80-15 N80-15071 Exploratory studies of the cruise performance of upper surface blown configurations: Program analysis and conclusions [NASA-CR-159136] N80-15072 CRYSTAL OSCILLATORS Investigations of the optimal configuration of high-stability guartz oscillators for aircraft and missiles A80-19990 CURVATURE Sonic-boom wave-front shapes and curvatures associated with maneuvering flight [NASA-TP-16111 N80-14045 D DASSAULT AIRCRAFT The avionics computer program: Practical experiences with a methodology --- Mirage F1 and Nirage 200 aircraft

N80-14037

A80-17671

N80-15079

N80-15983

N80-14075

A-12

DATA ACOUISITION

DATA PROCESSING

[AD-A074448]

presentation

Concerning the information efficiency of

Analysis of low-speed helicopter flight test data [AD-A074141] N80-15 DATA BASES

A distributed processing system for radar data

aerodynamic experiments

Aerodynamic data base users guide

DRAG REDUCTION

DATA PROCESSING TERMINALS AFROPP - Message and data switching systems for aeronautical operations A80-19579 DATA RECORDERS Application of the SIRS concept to Navy helicopters --- systems analysis of flight data recorders of flight conditons of helicopters for structural anaĺysis [AD-A074801] N80-15030 DATA REDUCTION Excitation and analysis technique for flight flutter tests [MBB-0F-1446(0)] N80-14140 Data reduction software for LORAN-C flight test evaluation [NASA-CR-162730] N80-15064 DATA STORAGE Aerodynamic data base users guide [AD-A074448] N80-15983 DATA SYSTEMS Some practical aspects of the calibraticn of air data systems 180-18865 DECISION MAKING Adaptive allocation of decisionmaking responsibility between human and computer in nultitask situations 180-18022 DEGREES OF FREEDOM A computerized method for calculating flutter characteristics of a system characterized by two degrees of freedom [NASA-TH-80153] N80-14055 DBICING Aircraft anti-icing/de-icing [AD-A074128] N80-15078 DELAY Aircraft delays at major US airports can be reduced [PB-299442/4] N80-1506 N80-15061 DELTA WINGS Analytical investigation of aerodynamic characteristics of highly swept wings with separated flow A80-17697 Investigation of leading-edge devices for drag reduction of a 60-deg. delta wing at high angles of attack FAIAA PAPPR 80-0310] A80-18309 Euler solutions for wing and wing-body combination at supersonic speeds with leading-edge separation [AINA PAPER 80-0126] Ã80-18359 Streamwise development of the flow over a delta wing [AIAA PAPER 80-0200] A80-18376 DENSITY MEASUREMENT Air traffic density and distribution measurements [AD-A073229] N80-14 N80-14064 DESIGN ANALYSIS Weight Integrated Sizing Evaluation /WISE/ - A tool for preliminary design [SAWE PAPER 1312] A80-2060 Problems related to the design and construction of A80-20646 a radar network N80-14066 Design study for ATA vacuum system aperture [UCRL-15050] N80-15182 DESTRUCTIVE TESTS Comparative resistance of Beta-Si3N4 solid solutions to molten silicon attack A80-18062 DETERIORATION Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 DETONATION WAVES Oblique detonation wave ramjet [NASA-CR-159192] ٩ N80-14131 DIFFUSERS An analytical and experimental study of a short S-shaped subsonic diffuser of a supersonic inlet [AIAA PAPER 80-0386] A80-209 A80-20970 DIGITAL COMMAND SYSTEMS Roll control by digitally controlled segment spoilers N80-15156

DIGITAL COMPUTERS An observer system for sensor failure detection and isolation in digital flight control systems N80-14023 DIGITAL FILTERS Filtering of synthetic radar data N80-14076 DIGITAL NAVIGATION Verification of digital autopilot microprocessor hardware and software via hardware-in-the-loop simulation 180-20901 DIGITAL SYSTEMS Redundancy management considerations for a control-configured fighter aircraft triplex digital fly-by-wire flight control system N80-14026 Pailure detection, isolation and indication in highly integrated digital guidance and control system N80-14027 An assessment of and approach to the validation of digital flight control systems N80-14036 Integration of flight and fire control --- systems analysis of digital controlled integrated flight and fire control systems N80-14043 Digital system for dynamic turbine engine blade displacement measurements [NASA-TM-81382] N80-14113 Loran digital phase-locked loop and RF front-end system error analysis NA SA-CR-162731] N80-15065 Quiet Clean Short-haul Experimental Pngine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-135337] N80-15092 DIGITAL TECHNIQUES Advances in Guidance and Control Systems Using Digital Techniques [AGARD-CP-272] N80-14017 State of the art for digital avionics and controls, 1978 N80-14018 A flight control system using the DAIS architecture N80-14019 Trends in digital data processing and system architecture --- avionics applications N80-14020 Recent advances in fibre optics for high integrity digital control systems N80-14025 Technical evaluation report on the 28th Guidance and Control Panel Symposium on Advances in Guidance and Control Systems Using Digital Techniques [AGARD-AR-148] DIRECT LIFT CONTROLS N80-15140 In-flight measured characteristics of combined flap-spoiler direct lift controls N80-15165 DISPLAY DRVICES ATC and the airborne traffic-situation display A80-18724 Infrared sensor system performance simulations A80-20900 Visual displays for air traffic control data N80-14077 Design study of a low cost civil aviation GPS receiver system [NASA-CR-159176] N80-15062 Effects of varying visual display characteristics of the T-4G, a T-37 flight simulator [AD-A071410] N80-15 N80-15180 DOPPLER RADAR Target tracking using Doppler-information in sensor oriented coordinates with a three dimensional array radar [REPT-270] N80-14325 DRAG BEDUCTION Propulsion/airframe integration considerations for high altitude hypersonic cruise vehicles [AIAA PAPER 80-0111] 180-18272

DRONE AIRCRAFT

Investigation of leading-edge devices for drag reduction of a 60-deg. delta wing at high angles of attack A80-18309 [AIAA PAPER 80-0310] The minimum induced drag of aerofoils 180-15038 N80-150 Direct side force and drag control with the aid of pylon split flaps N80-15163 DROBE AIRCRAFT Propulsion options for the HI SPOT long endurance drone airship [AD-A074595] N80-14132 DROPS (LIQUIDS) Dispersion of sound in a combustion duct by fuel droplets and soot particles 180-20953 DUCTED FAN ENGINES The analysis of sound propagation in jet engine ducts using the finite difference method N80-14853 [AD-A074233] DUCTED PANS Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan --- guiet engine program [NASA-CR-1348911 N80-15102 DUCTED PLOW Acoustic radiation from axisymmetric ducts - A comparison of theory and experiment [AIAA PAPER 80-0097] A80-1 Dispersion of sound in a combustion duct by fuel A80-18268 droplets and soot particles A80-20953 An analytical and experimental study of a short S-shaped subsonic diffuser of a supersonic inlet [AIAA PAPER 80-0386] 180-20970 DYNAMIC CHARACTERISTICS On the dynamics of contressor surge A80-17900 Dynamic identification of light aircraft structures and their flutter certification N80-15145 DYNAHIC CONTROL Theoretical aerodynamic methods for active control devices N80-15150 A survey of experimental data on the aerodynamics of controls, in the light of future needs N80-15151 AFFDL experience in active control technology N80-15159 Fin design with ACT in the presence of strakes N80-15161 Control integration technology impact --- as a basis for improving the combat effectiveness of all tactical aircraft N80-15162 DYNAMIC RESPONSE Linear systems analysis program, L224(QF). Volume 1: Engineering and usage [NASA-CR-2861] N80-14137 Unsteady flow and dynamic response analyses for helicopter rotor blades [NASA-CR-159190] 880-14355 DYNAMIC STRUCTURAL AMALYSIS Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response A80-17716 Gas turbine carcase and accessory vibration Problems of measurement and analysis A80-17730 ABU-17 Analyses and tests of the B-1 aircraft structural mode control system [NASA-CR-144887] N80-15 N80-15073 Ε

E-4A AIRCRAFT Trajectory behaviour of a control configur aircraft subjected to random disturbance	
ECONOMIC FACTORS The next supersonic transport	A80-20214
BCONOMICS The economics of air traffic control	A80-18723

SUBJECT INDER

EJECTORS Recent development of a jet-diffuser ejector
[AIAA PAPER 80-0231] A80-18277
ELASTIC PROPERTIES Determination of the stress intensity factor of
composite structural members
A80-17958
BLASTIC WAVES Jet engine combustion noise - Pressure, entropy
and vorticity perturbations produced by unsteady
combustion or heat addition A80-20151
ELECTRIC POWER SUPPLIES
Centralized ground power systems conserve energy
A80-18000 ELECTRICAL RESISTIVITY
Investigation of the wear debris content in oil by
measurements of the reluctance and eddy current loss in an electric circuit
A80-19053
ELECTRO-OPTICS
Non-contacting electro-optical contouring of helicopter rotor blades
[AD-A070806] N80-14111
ELECTROHAGBETIC INTERPERENCE
Performance evaluation methods of a secondary radar network
N80-14068
ELECTRONAGNETIC SCATTERING Code optimization for solving large 3D EMP problems
electromagnetic scattering by aircraft
structures
BLEVATORS (CONTROL SURFACES)
Some investigations concerning the effects of gaps
and wortex generators on elevator efficiency and
of landing flap sweep on aerodynamic characteristics
N80-15178
BNERGY CONSERVATION Centralized ground power systems conserve energy
A80-18000
NASA broad-specification fuels combustion
technology program. Status and description
technology program: Status and description [NASA-TH-79315] N80-14126
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine
[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TH-79301] N80-15133 BHERGY POLICY Microbial deterioration of hydrocarbon fuels from
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TH-79301] N80-15133 BHERGY POLICY Microbial deterioration of hydrocarbon fuels from - oil shale, coal, and petroleum. 1: Exploratory
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TH-79301] N80-15133 BHERGY POLICY Microbial deterioration of hydrocarbon fuels from - oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TH-79301] N80-15133 BNERGY POLICY Microbial deterioration of hydrocarbon fuels from - oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 ENGINE COMPROL
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TH-79301] N80-15133 BHERGY POLICY Microbial deterioration of hydrocarbon fuels from - oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TH-79301] N80-15133 BHERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 ENGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TH-79301] N80-15133 EMERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 ENGINE COMPROL Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 Quiet Clean Short-haul Experimental Engine (QCSEF)
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TH-79301] N80-15133 BHERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 ENGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 Quiet Clean Short-haul Experimental Engine (OCSEF) under-the-wing engine digital control system design report
[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 BMERGY POLICY Microbial deterioration of hydrocarbon fuels from - oil shale, coal, and petroleum. 1: Exploratory experiments [ND-A073761] N80-14259 ENGINE COMPROL Integrated circuit characteristics at 260 C for aircraft engine-control applications N80-20112 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090
[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 BHERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 ENGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 Quiet Clean Short-haul Experimental Engine (OCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report
[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 BMERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 BMGINE COMPROL Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 EHERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [ND-A073761] N80-14259 ENGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications N80-20112 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] Quiet Clean Short-haul Experimental Engine (QCSEE)
[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 BHERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 BMGINE COMTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 Quiet Clean Short-haul Prperimental Engine (OCSEF) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-135337] N80-15092
[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 EMERGY POLICY N80-15133 EMERGY POLICY State of the state o
<pre>[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 BHERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 ENGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 Quiet Clean Short-haul Prperimental Engine (QCSEF) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-13537] N80-15092 ENGINE DESIGN Preparing aircraft propulsion for a new era in energy and the environment</pre>
[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 EMERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [N-A073761] N80-14259 ENGINE COMTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-135337] N80-15092 ENGINE DESIGE Preparing aircraft propulsion for a new era in energy and the environment A80-17737
<pre>[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 BHERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 ENGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 Quiet Clean Short-haul Prperimental Engine (QCSEF) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-13537] N80-15092 ENGINE DESIGN Preparing aircraft propulsion for a new era in energy and the environment</pre>
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 EMERGY POLICY N80-15133 EMERGY POLICY Experiments [ND-A073761] N80-14259 ENGINE COMPROL Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing control system design report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing control system design report [NASA-CR-135337] N80-15092 ENGINE DESIGE Preparing aircraft propulsion for a new era in energy and the environment [NASA-17777 Computer simulation of engine systems for aircraft design [AIAA PAPER 80-0051] A80-18253
[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 EMERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 EMGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-135337] N80-15092 ENGINE DESIGN Preparing aircraft propulsion for a new era in energy and the environment [AIAA PAPER 80-0051] A80-18253 Bulti-variable cycle optimization by gradient
[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 EHERGY POLICY N80-15133 EHERGY POLICY N80-15133 EHERGY POLICY N80-15133 ENCOMPAGE CONTROL N80-14259 ENGINE CONTROL N80-14259 ENGINE CONTROL N80-14259 ENGINE CONTROL N80-14259 Under the wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing control system design report [NASA-CR-135337] N80-15092 ENGINE DESIGE Preparing aircraft propulsion for a new era in energy and the environment [AIAA PAPER 80-0051] A80-18253 Multi-variable cycle optimization by gradient methods for variable-cycle engines [AIAA PAPER 80-0052] A80-18254
<pre>[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 EMERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [N-N073761] N80-14259 EMGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications N80-20112 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-13537] N80-15092 ENGINE DESIGN Preparing aircraft propulsion for a new era in energy and the environment [AIAM PAPER 80-0051] A80-18253 Multi-variable cycle optimization by gradient methods for variable-cycle engines [AIAM PAPER 80-0052] A80-18254 Regression techniques applied to parametric</pre>
<pre>[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TH-79301] N80-15133 BHERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 EMGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 Quiet Clean Short-haul Experimental Engine (OCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-135337] N80-15092 ENGINE DESIGN Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Computer simulation of engine systems for aircraft design [AIAA PAPER 80-0051] A80-18253 Multi-variable cycle optimization by gradient methods for variable-cycle engines [AIAA PAPER 80-0052] A80-18254 Regression techniques applied to parametric turbine engine simulations</pre>
<pre>[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 EMERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [ND-N073761] N80-14259 EMGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications N80-20112 Quiet Clean Short-haul Pyperimental Engine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-13537] N80-15092 ENGINE DESIGM Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Computer simulation of engine systems for aircraft design [AIM PAPER 80-0051] A80-18253 Multi-variable cycle optimization by gradient methods for variable-cycle engines [AIM PAPER 80-0052] A80-18254 Regression techniques applied to parametric turbine engine simulations [AIM PAPER 80-0053] A80-18255 Flow in transonic compressors</pre>
<pre>[NASA-TH-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TH-79301] N80-15133 EMERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 EMGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications N80-20112 Quiet Clean Short-haul Experimental Engine (OCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing control system design report [NASA-CR-135337] N80-15092 ENGINE DESIGN Preparing aircraft propulsion for a new era in energy and the environment N80-17737 Computer simulation of engine systems for aircraft design [AIAA PAPER 80-0051] A80-18254 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Flow in transonic compressors [AIAA PAPER 80-0124] N80-18357</pre>
<pre>[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 EHERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [N-A073761] N80-14259 EMGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications N80-20112 Quiet Clean Short-haul Pxperimental Engine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing control system design report [NASA-CR-134914] N80-15092 Puiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-135337] N80-15092 Uniet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-135337] N80-15092 ENGINE DESIGN Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Computer simulation of engine systems for aircraft design [AIAM PAPER 80-0051] A80-18253 Multi-variable cycle optimization by gradient methods for variable-cycle engines [AIAM PAPER 80-0052] A80-18254 Regression techniques applied to parametric turbine engine simulations [AIAM PAPER 80-0053] A80-18255 Plow in transonic compressors [AIAM PAPER 80-0124] A80-18257 Technology of the Rolls-Royce RE211 engine A80-18864</pre>
<pre>[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 BHERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 BHGINE COWTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications N80-20112 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-13920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-13920] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing control system design report [NASA-CR-13937] N80-15092 Pugine DESIGB Preparing aircraft propulsion for a new era in energy and the environment aircraft design [AIAA PAPER 80-0051] A80-18253 Multi-variable cycle engines [AIAA PAPER 80-0052] A80-18254 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Plow in transonic compressors [AIAA PAPER 80-0024] A80-18255 Plow in transonic compressors [AIAA PAPER 80-0124] A80-18254 A80-18864 A pre-design code for predicting engine</pre>
<pre>[NASA-TM-79315] N80-14126 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 EHERGY POLICY Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [N-A073761] N80-14259 EMGINE CONTROL Integrated circuit characteristics at 260 C for aircraft engine-control applications N80-20112 Quiet Clean Short-haul Pxperimental Engine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-15091 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing control system design report [NASA-CR-134914] N80-15092 Puiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-135337] N80-15092 Uniet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report [NASA-CR-135337] N80-15092 ENGINE DESIGN Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Computer simulation of engine systems for aircraft design [AIAM PAPER 80-0051] A80-18253 Multi-variable cycle optimization by gradient methods for variable-cycle engines [AIAM PAPER 80-0052] A80-18254 Regression techniques applied to parametric turbine engine simulations [AIAM PAPER 80-0053] A80-18255 Plow in transonic compressors [AIAM PAPER 80-0124] A80-18257 Technology of the Rolls-Royce RE211 engine A80-18864</pre>

SUBJECT INDEX

ENGINE TESTS

Installation effects on cycle selection for small turbo-fan engines [AIAA PAPER 80-0106] A8 Technologies conceived for the utilization of A80-19280 ceramics in turboengines [ORERA, TP NO. 1979-132] A80 Quiet, Clean, Short-Haul, Experimental Engine (QCSEE) Under-The-Wing (UTW) engine acoustic A80-20076 design [NASĂ-CR-135267] N80-14117 Quiet, Clean, Short-Haul Experimental Engine (QCSEE) Over-The-Wing (CTW) engine acoustic design NASA-CR-135268] N80-14118 Quiet Clean Short-Haul Experimental Engine (QCSFE) Under-The-Wing (UTW) graphite/PMR cowl development [NASA-CR-135279] N80-14119 NASA broad-specification fuels combustion technology program: Status and description [NASA-TM-79315] Obligue detonation wave ramjet N80-10126 [NASA-CR- 159 192] N80-14131 Quiet Clean Short-haul Experimental Engine (QCSEE) Over The Wing (OTM) design report [N&SA-CR-138648] Quiet Clean Short-haul Experimental Engine N80-15086 (QCSEE). Core engine noise measurements (QCSEE). Core engine noise measurements [NASA-CR-135160] Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) engine composite nacelle test report. Volume 1: Summary, aerodynamic N80-15093 test report. Volume 1: Su and mechanical performance [NASA-CR-159471] N80-15094 Quiet Clean Short-haul Experimental Engine (QCSEE) preliminary over-the-wing flight propulsion system analysis report [NASA-CR-135296] N8 ₩80-15095 Quiet Clean Short-haul Experimental Engine (QCSEE). Composite fan frame subsystem test report [NASA-CR-135010] N80-15098 Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears test program [NASA-CR-134669] N80-15103 Quiet Clean Short-haul Experimental Engine (QCSEE) clean combustor test report Clean Compustor Cest Report [NASA-CR-134916] Quiet Clean Short-haul Experimental Engine (QCSEP) main reduction gears detailed design report [NASA-CR-134872] Neo-151 N80-15104 N80-15106 Quiet Clean Short-haul Experimental Engine (QCSEE): Hamilton Standard cam/harmonic drive variable pitch fan actuation system detail design report [NASA-CR-134852] N80-15107 Quiet Clean Short-haul Experimental Engine (QC SEE) : The aerodynamic and mechanical design of the QCSEE under-the-wing fan [NSSA-CR-135009] N80-151 Quiet Clean Short-haul Experimental Engine (QCSEE) N80-15109 Quiet Clean Short-haul Experimental Engine UTW fan preliminary design [N83A-CR-134842] Quiet Clean Short-haul Experimental Engine (QCSEE): The aerodynamic and preliminary N80-15111 mechanical design of the QCSEE OTW fan [NSD-CR-134841] N80-151 Quiet Clean Short-baul Experimental Engine (QCSEF) N80-15112 under-the-wing engine composite fan blade design [N83A-CR-130840] Quiet Clean Short-haul Experimental Engine (QCSEE) N80-15113 over-the-wing engine and control simulation results r NASA-CR-1350491 N80-15114 Quiet Clean Short-Haul Experimental Engine (QCSEE) ball spline pitch-change mechanism whirligig test report NASA-CR-135354] N80-15115 Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) boiler plate nacelle and core exhaust nozzle design report [NASA-CR-135008] N80-15116 Quiet Clean Short-haul Experimental Engine (QCSEE) whirl test of cam/harmonic pitch change actuation system [NASA-CR-135140] 180-15117 Quiet Clean Short-haul Experimental Engine (QCSEE). Double-annular clean combustor technology development report [NASA-CR-159483] N80-15121

(QSCEE). Preliminary analyses and design report, volume 1 [NASA-CR-134838] N80-15123 Quiet Clean Short-Haul Experimental Engine (QCSEE). Preliminary analyses and design report, volume 2 [NASA-CR-134839] Quiet Clean Short-Haul Experimental Engine (QCSEE) N80-15124 Over-The-Wing (OTW) propulsion system test report. Volume 1: Summary report [NASA-CR-135323] R N80-15125 [MASA-CK-135323] Quiet Clean Short-Haul Experimental Engine (QCSPE) Over-The Wing (OTW) propulsion system test report. Volume 3: Mechanical performance [NASA-CR-135325] N80-151 N80-15126 An extension of engine weight estimation techniques to compute engine production cost [AD-A074454] N80-15135 PRS composites for advanced gas turbine engine components [AD-A074287] N80-15137 ENGINE MONITORING INSTRUMENTS Experimental investigation of the characteristics of pneumatic transfer lines A80-19052 ENGINE NOISE Estimation of noise source strengths in a gas turbine combustor [AIAA PAPER 80-0034] Comparison of inlet suppressor data with A80-18245 approximate theory based on cutoff ratio [AIAA PAPER 80-0100] A80-20964 Quiet, Clean, Short-Haul, Experimental Engine (QCSEE) Under-The-Wing (UTW) engine acoustic design [NASÁ-CR-135267] N80-14117 Quiet, Clean, Short-Haul Experimental Engine (QCSEB) Over-The-Wing (OTW) engine acoustic design [NASA-CR-135268] N80-14118 Investigation of noise hazards in the engine test cell, CFB Baden-Soellingen [AD-A074391] N80-1414 Applications of diffraction theory to aeroacoustics N80-14147 aircraft noise N80-14870 Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-CR-135160] N80-15093 ENGINE PARTS Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Thermal state of structural members of aircraft engines --- Russian book A80-19412 Advanced technology effects on V/STOL propulsive system weight [SAWE PAPER 1300] A80-20640 Preliminary weight estimation of engine section structure SAWE PAPPR 1311] A80-20645 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine composite fan blade design report [NASA-CR-1350461 N80-15108 ENGINE TESTS Discontinuous registration of industrial correlation techniques A80-17521 Gas turbine carcase and accessory vibration Problems of measurement and analysis A80-17730 A method of evaluation of gas turbine engines A80-20064 Scale model performance test investigation of exhaust system mixers for an Energy Efficient Engine /E3/ propulsion system [AIAA PAPER 80-0229] A80-Modification of axial compressor streamline A80-20968 program for analysis of engine test data [NASA-TM-79312] N80-140 Quiet Clean Short-Haul Experimental Engine (QCSEE) N80-14051 Ver-The-Wing (OTW) propulsion system test report. Volume 2: Aerodynamics and performance --- engine performance tests to define propulsion system performance on turbofan engines [NASA-CR-135324] N80-14120

Quiet Clean Short-Haul Experimental Engine

A-15

ENTROPY

SUBJECT INDEX

Investigation of noise hazards in the engine test cell, CFB Faden-Soellingen [AD-A074391] N80-14147 Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) propulsion system test report. Volume 1: Summary report [NASA-CR-135323] N80-15125 ENTROPY Jet engine combustion ncise - Pressure, entropy and vorticity perturbations produced by unsteady combustion or heat addition A80-20151 ENVIRONMENT PROTECTION Preparing aircraft propulsion for a new era in energy and the environment 180-17737 PRVTRONMENTAL BONITORING A light aircraft camera Pod - The Enviro-Pod A80-20251 ENVIRONMENTAL TESTS Climatic chamber testing aircraft, engines armament and avionics; Test operations procedure --- environmental test chambers and facility for testing aircraft construction materials and engines [AD-A074049] FOUNTIONS OF HOTION N80-15181 Formulation of coupled rotor/fuselage equations of A80-17717 Hinged vehicle equations of motion [AIAA PAPER 80-0364] A80-18336 ERROR ANALYSIS Navigation error using rate of change of signal time of arrival from space vehicles A80-20904 Tactical analysis of conflicts in an air traffic control system: Design and implementation of a provisional model N80-14072 Antireflection techniques for detecting false tracks in air traffic surveillance with secondary radar N80-14100 Determination of the repeatability of PFC ---flight tests for position error calibrating [AETE-PR-79/36] N80-14109 Loran digital phase-locked loop and RF front-end system error analysis [NASA-CR-162731] N80-1 N80-15065 ERROR DETECTION CODES Pailure detection, isolation and indication in highly integrated digital guidance and control system N80-14027 ESCAPE SYSTEES Aeronautical systems technology needs: Escape, rescue and survival [AD-A074906] N80-14061 ESTIMATING A simple design synthesis method used to estimate aircraft gross weight [SAWE PAPER 1313] A80-200 EXHAUST DIFFUSERS A80-20647 Recent development of a jet-diffuser ejector [AIAA PAPEE 80-0231] EXHAUST EMISSION A80-18277 Exhaust emission reduction for intermittent combustion aircraft engines [NASA-CR-159757] N80-14130 BYHAUST FLOW SINULATION Scale model performance test investigation of exhaust system mixers for an Energy Efficient Engine /E3/ propulsion system [AIAA PAPEE 80-0229] A80-A80-20968 EXHAUST GASES An experimental model investigation of turbofan engine internal exhaust gas mixer configurations [AIAA PAPER 80-0228] A80-19 Dispersion of sound in a combustion duct by fuel droplets and soot particles A80-19302 A80-20953 Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized combustion system --- for gas turbine engines [NASA-TP-1582] N80-14125 Quiet Clean Short-haul Experimental Engine (QCSEE) clean combustor test report [NASA-CR-134916] N80-15104

Quiet Clean Short-haul Experimental Engine (QCSER) [NASA-CR-159473] 880-151 N80-15120 EXHAUST NOZZLES An experimental model investigation of turbofan engine internal exhaust gas mixer configurations [AIAA PAPER 80-0228] Assessment at full scale of exhaust nozzle-to-wing 180-19302 size on STOL-OTW acoustic characteristics A80-20952 Scale model performance test investigation of exhaust system mixers for an Pnergy Efficient Engine /E3/ propulsion system [ATAA PAPER 80-0229] A80-209 Turbojet-erhaust-nozzle secondary-airflow pumping 180-20968 as an exit control of an inlet-stability bypass system for a Mach 2.5 axisymmetric mixed-compression inlet --- Lewis 10- by 10-ft. supersonic wind tunnel test [NASA-TP-1532] N80-14124 Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) boiler plate nacelle and core exhaust nozzle design report [NASA-CR-135008] N80-15116 EXHAUST SYSTEMS Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Pesearch Aircraft (QSRA) [NASA-TP-1556] EXPERIMENTAL DESIGN N80-14121 Concerning the information efficiency of aerodynamic experiments A80-17671 An experimental model investigation of turbofan engine internal exhaust gas mixer configurations [AIAA PAPER 80-0228] A80-193 A80-19302 EXTERNALLY BLOWN PLAPS The YC-14 upper surface blown flap: A unique control surface N80-15157

F

P-15 AIRCRAFT Application of finite element analysis to derivation of structural weight [SAWE PAPER 1271] A80-Correlation of F-15 flight and wind tunnel test control effectiveness A80-20627 N80-15152 F-16 AIRCRAFT Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability --- F-16 [NASA-TP-1538] N80-14136 P-18 AIRCRAPT Designing to life cycle cost in the Hornet program [SAWE PAPER 1293] A80-206 **Å80-20638** F-104 AIRCRAFT Stability and control aspects of the CCV-F104G [MBB-UFE-1447(0)] N80 N80-14141 PAIL-SAFE SYSTERS Pailure detection, isolation and indication in highly integrated digital quidance and control system N80-14027 PAILURB Automatic recovery after sensor failure onboard N80-14024 PAR FIELDS Rotational noise of helicopter rotors A80-17718 Comparison of inlet suppressor data with approximate theory based on cutoff ratio [AIAA PAPER 80-0100] A80-20964 FATIGUE (MATERIALS) Review of investigations into aeronautics related fatigue Federal Republic of Germany [LBF-S-142] N80-14422 FATIGUE LIFE Fatigue life prediction of a bonded splice joint [AIAA PAPER 80-0305] A80-18306 Practical method of fatigue crack growth analysis for damage tolerance assessment of aluminum structure in fighter type aircraft [AIAA PAPER 80-0405] A80-18346

FLIGHT CONDITIONS

PATTONE TESTS Practical method of fatigue crack growth analysis for damage tolerance assessment of aluminum structure in fighter type aircraft [AIAA PAPER 80-0405] 880-18346 Model 540 rotor blade crack propagation investigation FAD-10747341 N80-15081 PEASIBILITY ANALYSIS Automatic systems for airport surface mobile media surveillance based on the use of secondary media N80-14104 FEEDBACK CONTROL Design criteria for optimal flight control systems --- study of optimal flight control systems engineering for feedback control [AD-A074092] N80-15139 FIBER CONPOSITES FRS composites for advanced gas turbine engine components [AD-A074287] N80-15137 FIBER OPTICS Recent advances in fibre optics for high integrity digital control systems N80-14025 FIGHTER AIRCEAFT Experimental determination of pure rotary stability derivatives using curved and rolling flow wind tunnel [AINA PAPER 80-0309] Bffects of non-planar strake-wing on the vortex lift characteristics of a twin-jet fighter A80-18308 configuration [AIAM PAPER 80-0329] A90-18 Enhanced departure/spin recovery of fighter aircraft through control of the forebody vortex 490-18318 orientation [AIAA PAPER 80-0173] A8 Bultiple tactical aircraft combat performance A80-18352 evaluation system [AIAA PAPER 80-0189] A80-18358 Redundancy management considerations for a control-configured fighter aircraft triplex digital fly-by-wire flight control system N80-14026 High angle of attack characteristics of different fighter configurations (MBB-UFE-1443 (0)] N80-14058 Flight testing of the buffeting behavior of combat aircraft [ESA-TT-523] N80-14143 Wind tunnel measurements and analysis of some unusual control surfaces on two swept wing fighter configurations N80-15155 Flaperon control: The versatile surface for fighter aircraft N80-15158 Control considerations for CCV fighters at high angles of attack N80-15160 Fin design with ACT in the presence of strakes N80-15161 Wind tunnel investigation of controls for DF on a fighter-type configuration of higher angles of attack N80-15166 Forebody vortex blowing: A novel control concept to enhance departure/spin recovery characteristics of fighter and trainer aircraft N80-15172 FILM COOLING Optimization of turbine nozzle cooling by combining impingement and film injection [ATAA PAPEB 80-0299] A80-19316 Thermo-mechanical stress analysis of advanced turbine blade cooling configuration [AD-A074098] N80-15136 FINITE DIFFERENCE THEORY Summary of advanced methods for predicting high speed propeller performance [AIAA PAPER 80-0225] A80-2 A80-20966 An investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings [NASA-CR-159143] N80-14056

The analysis of sound propagation in jet engine ducts using the finite difference method [AD-A074233] N80-N80-14853 NOU-140: A users guide for A344: A program using a finite difference method to analyze transonic flow over oscillating airfoils [NASA-CR-159141] N80-1509 PINITE BLEMENT METHOD Application of finite element analysis to docimention of structural weight N80-15052 derivation of structural weight [SAWE PAPER 1271] A80-20627 FINNED BODIES "in design with ACT in the presence of strakes N80-15161 FIRE CONTROL A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design 180-20879 Integration of flight and fire control --svstems analysis of digital controlled integrated flight and fire control systems N80-14043 Control integration technology impact --- as a basis for improving the combat effectiveness of all tactical aircraft N80-15162 FIREPROOFING NASA technical advances in aircraft occupant safety --- clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TM-80851] N80-15060 PLANBABILITY Aircraft fuel system simulator tests with antimisting kerosene (jet A fuel with PM-9 additive) --- flanmability tests [AD-A073237] N80-14256 PLAPPING HINGES Effects of primary rotor parameters on flapping dynamics [NASA-TP-1431] N80-151: FLAPS (CONTROL SURFACES) Direct side force and drag control with the aid of N80-15138 pylon split flaps N80-15163 In-flight measured characteristics of combined flap-spoiler direct lift controls N80-15165 Some investigations concerning the effects of gaps and vortex generators on elevator efficiency and of landing flap sweep on aerodynamic characteristics N80-15178 FLEXIBLE BODIES Surface conforming thermal/pressure seal --- for control devices in space vehicles [NASA-CASE-MSC-18422-1] N80-14400 PLEXIBLE WINGS Analyses and tests of the B-1 aircraft structural mode control system FNASA-CR-1448871 N80-15073 FLIGHT CHARACTERISTICS Designing light airplanes --- Russian book A80-19414 Acoustic considerations of flight effects on jet noise suppressor nozzles [AIAA PAPER 80-0164] A80-20965 Investigation of the oscillatory and flight behavior of rotor systems in relation with atmospheric turbulence [BNVG-PEWT-79-5] N80-14142 Comparison of international flutter requirements and flutter freedom substantiation of light aircraft in the USA N80-15142 Control integration technology impact --- as a basis for improving the combat effectiveness of all tactical aircraft N80-15162 FLIGHT CONDITIONS Application of the SIRS concept to Navy helicopters --- systems analysis of flight data recorders of flight conditons of helicopters for structural analysis [AD-A074801] N80-15030

FLIGET CONTROL

PLIGHT CONTROL A strapdown inertial reference system for commercial airline use in navigation and flight control A80-17558 An integrated strapdown guidance and control system for launch vehicle application A80-17559 Adaptive allocation of decisionmaking responsibility between human and computer in multitask situations A80-18022 Advances in Guidance and Control Systems Using Digital Techniques [AGARD-CP-272] N80-14017 State of the art for digital avionics and controls, 1978 N80-14018 A flight control system using the DAIS architecture N80-14019 An observer system for sensor failure detection and isolation in digital flight control systems N80-14023 Automatic recovery after sensor failure onboard N80-14024 Recent advances in fibre optics for high integrity digital control systems N80-14025 Integration of flight and fire control --- systems analysis of digital controlled integrated flight and fire control systems N80-14043 Design criteria for optimal flight control systems --- study of optimal flight control systems engineering for feedback control [AĎ-A07409Ź] N80-15139 Plight control and configuration design considerations for highly maneuverable aircraft N80-15154 FLIGET PATES Constrained optimum trajectories with specified range A80-18538 FLIGHT RECORDERS Application of the SIRS concept to Navy helicopters --- systems analysis of flight data recorders of flight conditons of helicopters for structural analysis [AD-A0748011 N80-15030 FLIGHT SAPETY An evaluation of the bird/aircraft strike hazard at Barksdale Air Force Base, Louisiana (SAC) FAD-A0743901 N80-14063 FLIGHT SINULATION Computer simulation of engine systems --- for aircraft design [AIAA PAPER 80-0051] A90-1825: Recent developments in flight simulation techniques A80-18253 A80-20907 Covariance simulation of ECAS - An aircraft collision avoidance system A80-20915 Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability --- P-16 [NRSA-TP-1538] N80-1 N80-14136 The effects of motion and g-seat cues on pilot simulator performance of three piloting tasks [NASA-TP-1601] N80-NPO-15069 PLIGHT SIMULATORS Controllers for aircraft motion simulators [AIAA PAPER 80-0050] Bffects of varying visual display characteristics of the T-4G, a T-37 flight simulator [AD-A071410] N80-15 180-18252 N80-15180 FLIGHT STABILITY TESTS Stability and control aspects of the CCV-F104G [NBE-UFE-1447(0)] N80-N80-14141 PLIGET TESTS Estimation of the accuracy of dynamic flight-determined coefficients [AIAA PAPER 80-0171] A80-17700 Flight certification of the Cessna TU206G amphibious floatplane A80-18186 Plight and wind tunnel test results of the mechanical jet noise suppressor nozzle [AIAA PAPEB 80-0165] A80-20971

SUBJECT INDEX

Determination of the repeatability of PEC ---flight tests for position error calibrating [AETE-PR-79/36] N80-14109 [hill=rr-r/7/30] Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment ----flight tests of an algorithm to minimize fuel compution of circuit termines. consumption of aircraft based on flight time [NASA-TH-80194] N80-14114 Flight testing of the buffeting behavior of combat aircraft [ESA-TT-523] N80-14143 Data reduction software for LORAN-C flight test evaluation [NASA-CR-162730] 880-15064 CH-46 composite rotor blade flight stress survey data. Volume 3: Plotted forward rotor blade chord, torsion and absolute loads [AD-A075612] N80-15077 Analysis of low-speed helicopter flight test data [AD-A074141] N80-15 N80-15079 JA-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 Correlation of P-15 flight and wind tunnel test control effectiveness N80-15152 FLIGHT TIME Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment --flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time [NASA-TM-80194] N80-14114 FLIGHT VEBICLES Hinged vehicle equations of motion [AIAA PAPER 80-0364] A80-18336 PLOW CHARACTERISTICS On the influence of steady state temperature and pressure distortion on the flow characteristics in an installed multistage jet engine compressor A80-17724 Separation due to shock wave-turbulent boundary layer interaction [CNERA, TP NO. 1979-146] A80-20083 PLOW DISTORTION On the influence of steady state temperature and pressure distortion on the flow characteristics in an installed multistage jet engine compressor A80-17724 FLOW DISTRIBUTION Improved numerical simulation of high speed inlets using the Navier-Stokes equations [AINA PAPER 80-0383] A80-1834 Plow in transonic compressors A80-18340 [AIAA PAPER 80-0124] A80-18357 Streamwise development of the flow over a delta wing [AIAA PAPER 80-0200] A80-18376 [AIAA PAPER 80-0200] Theoretical study of aerodynamic characteristics of wings having vortex flow [WASA-CR-159184] An adaptation and validation of a primitive variable mathematical model for predicting the flows in turbojet test cells and solid fuel reside N80-14053 ramiets [AD-A074187] N80-14133 Aerodynamic interaction on a close-coupled canard wing configuration N80-15175 On the effects of gaps on control surface characteristics N80-15176 FLOW GEOMETRY An analytical and experimental study of a short S-shaped subsonic diffuser of a supersonic inlet [ATAA PAPER 80-0386] Computation of three-dimensional flow in turbofan A80-20970 mixers and comparison with experimental data [NASA-TM-81410] N80-15364 FLOW BEASUREMENT Photon correlation laser velocimeter measurements in highly turbulent flow fields [AIAA PAPER 80-0344] 180-18328 Effect of tip planform on blade loading characteristics for a two-bladed rotor in hover [NASA-TH-78615] N80-14049 FLOW STABILITY Sound generation in a flow near a compliant wall A80-20153

PLOW VELOCITY Streamwise development of the flow over a delta win	nσ
[AIAA PAPES 80-0200] A80-183 FLUID DYNAMICS	
APPDL experience in active control technology #80-151	59
FLUTTER General theory of aerodynamic instability and the	
mechanism of flutter [NACA-496] N80-150	n 7
[NACA-496] Comparison of international flutter requirements and flutter freedom substantiation of light	• /
aircraft in the USA	
N80-151	42
FLUTTER ANALYSIS Evaluation of the intensity of beat-induced	
vibrations A80-179	65
A computerized method for calculating flutter	
characteristics of a system characterized by two	
degrees of freedom [NASA-TH-80153] N80-140	55
Excitation and analysis technique for flight	
flutter tests [MBB-NF-1446(0)] N80-1414	40
Low cost aircraft flutter clearance conference	
[AGARD-CP-278] N80-151 The state-of-the-art of flutter substantiation	41
procedures among US general aviation manufactures	
N80-1514	43
An empirical approach for checking flutter stability of gliders and light aircraft	
N80-1514	4
Dynamic identification of light aircraft structures and their flutter certification	
N80-151	45
A flutter-speed formula for wings of high aspect ratio	
N80-1514	47
The minimum cost approach to flutter clearance	h 0
PLY BY WIRE CONTROL N80-151	40
Redundancy management considerations for a	
control-configured fighter aircraft triplex digital fly-by-wire flight control system	
N80-1402	26
Stability and control aspects of the CCV-P104G FMBE-UFE-1447(0)] N80-1414	41
Plaperon control: The versatile surface for	• •
fighter aircraft N80-151!	58
FOREBODIES	
Enhanced departure/spin recovery of fighter aircraft through control of the forebody vortex	
orientation	
[AIAA PAPER 80-0173] A80-183 An analytical and experimental study of a short	52
S-shaped subsonic diffuser of a supersonic inlet	
TAINA PAPER 20-03261 A80-209	70
Porebody vortex blowing: A novel control concept to enhance departure/spin recovery	
characteristics of fighter and trainer aircraft	7 -
NO-151 FOURIER TRANSFORMATION	12
Map-matching techniques for terminal guidance	
using Fourier phase information A80-175	17
Implementation of air traffic control radar	• •
receivers with fast Fourier transform processors N80-1401	86
FRACTURE MECHANICS	
Determination of the stress intensity factor of composite structural members	
A80-179	58
Patigue life prediction of a bonded splice joint [AIAA PAPER 80-0305] A80-1830	06
PRANCE	
Marseilles - Metamorphosis of an airport	
300-1700	90
REE FLOW	99
FREB FLOW Hybrid vortex method for lifting surfaces with	99
FREE FLOW	
FREE FLOW Hybrid vortex method for lifting surfaces with free-vortex flow [AIAA PAPPE 80-0070] FREE JETS A90-1930	
FREE FLOW Hybrid vortex method for lifting surfaces with free-vortex flow [AIAA PAPER 80-0070] A90-1936	

PREQUENCY STABILITY Investigations of the optimal configuration of high-stability guartz oscillators for aircraft and missiles A80-19990 FRICTION MEASUREment An improved sensing element for skin-friction balance measurements --- supersonic drag measuring instrument [AIAA PAPER 80-0049] A80-18251 Investigation of the wear debris content in oil by measurements of the reluctance and eddy current loss in an electric circuit A80-19053 FUEL CONBUSTION Jet engine combustion noise - Pressure, entropy and vorticity perturbations produced by unsteady combustion or heat addition A80-20151 NASA broad-specification fuels combustion technology program: Status and description [NASA-TH-79315] N8 Exhaust emission reduction for intermittent N80-14126 combustion aircraft engines [NASA-CR-159757] N80-14130 FUEL CONSUMPTION Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Technology of the Rolls-Poyce RB211 engine A80-18864 Engine component improvement program - Performance improvement FAIAA PAPER 80-02231 A80-19300 Puel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIA PAPER 80-0224] A80-19301 The next supersonic transport 380-20214 Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment --flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time [NASA-TM-80194] N80-N80-14114 FUEL CORROSION Effect of naphthenic aromatic hydrocarbons on the oxidizability of hydrogenated jet fuel --- jet engine fuels 180-17675 FUEL INJECTION Nach 3 hydrogen external/base burning [AINA PAPER 80-0280] 180-19311 FUEL-AIR RATIO Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized combustion system --- for gas turbine engines [NASA-TP-1582] PULL SCALE TESTS N80-14125 Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics 180-20952 PUSELAGES Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response A80-17716 Formulation of coupled rotor/fuselage equations of motion A80-17717 Experimental and numerical results of sound scattering by a body --- interaction of aerodynamic noise and fuselage N80-14873 G

GAPS

On the effects of gaps on control surface characteristics

N80-15176 Some investigations concerning the effects of gaps and vortex generators on elevator efficiency and of landing flap sweep on aerodynamic characteristics

N80-15178

GAS INJECTION

SUBJECT INDEX

GAS INJECTION Optimization of turbine nozzle cooling by combining impingement and film injection [AIAA PAPER 80-0299] N80-19316 GAS STATURES Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized combustion system --- for gas turbine engines [NASA-TP-1582] N80-GAS TURBINE BNGINES N80-14125 Gas turbine carcase and accessory vibration -Problems of measurement and analysis A80-17730 Evaluation of the intensity of beat-induced vibrations 180-17965 Estimation of noise source strengths in a gas turbine combustor TAIAA PAPER 80-00341 A80-18245 Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 Thermal barrier coatings for aircraft gas turbines [ATAN PAPER 80-0302] A80-Thermal state of structural members of aircraft engines --- Russian book A80-18303 A80-19412 A method of evaluation of gas turbine engines A80-20064 Unification of oils for aircraft gas-turbine engines A80-20690 Digital system for dynamic turbine engine blade displacement measurements [NASA-TH-81382] N30-14113 Effect of degree of fuel vaporization upon combustion system --- for gas turbine engines [NASA-TP-1582] N90-14125 NASA broad-specification fuels combustion technology program: Status and description [NASA-TM-79315] N8 N80-14126 Laser-optical blade tip clearance measurement system [NA SA-TH-81376] N80-14128 Contact stress analysis of ceramic-to-metal interfaces --- in gas turbine engines [AD-A074491] N80-14417 Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 Thermo-mechanical stress analysis of advanced turbine blade cocling configuration [AD-A074098] N80-15136 FRS composites for advanced gas turbine engine components FAD-A0742871 N80-15137 GAS TURBINES Peasibility of SiC composite structures for 1644 K (2500 P) gas turbine seal application [NASA-CR-159597] N80-1412 N80-14122 GASEOUS FUELS Jet engine combustion ncise - Pressure, entropy and vorticity perturbations produced by unsteady combustion or heat addition N80-20151 GEARS Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears test program [NASA-CR-134669] Quiet Clean Short-haul Experimental Engine N80-15103 (OCSEE) main reduction gears bearing development program [NASA-CR-134890] Quiet Clean Short-haul Experimental Engine (QCSEP) main reduction gears detailed design report N80-15105 [NASA-CR-134872] GENERAL AVIATION AIRCRAFT N80-15106 Determination of the spin and recovery characteristics of a typical low-wing general aviation design FAIAA PAPER 80-01691 A80-18351 Designing light airplanes --- Russian book 180-19414 Meteorological input to general aviation pilot training N80-14634 Accident investigation N80-14636 Design study of a low cost civil aviation GPS receiver system [NASA-CR-1591761 N80-15062

The state-of-the-art of flutter substantiation procedures among US general aviation manufacturers N80-15143 GLIDE PATES A comparison of first and second order techniques for computing optimal horizontal gliding trajectories --- for low level weapons delivery [AIAA PAPER 80-0061] A80-18260 GL TORRS Low cost aircraft flutter clearance --- conference [AGARD-CP-278] N80-15141 An empirical approach for checking flutter stability of gliders and light aircraft N80-15144 A simplified ground vibration test procedure for sailplanes and light aircraft N80-15146 GLOBAL ATHOSPHERIC RESEARCH PROGRAM Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes, volume 1 [NASA-TH-79166] N80-15059 GLOBAL POSITIONING SYSTEM Navigation error using rate of change of signal time of arrival from space vehicles A80-20904 The Global Positioning System A80-20992 Development of aiding GPS/strapdown inertial navigation system N80-14031 Avionics installation (AVSTALL) cost model for user equipment of NAVSTAR global positioning system [AD-A073681] N80-14106 Design study of a low cost civil aviation GPS receiver system [NASA-CR-159176] N80-15062 GRAPHITE-EPOXY CONPOSITE BATERIALS Quiet Clean Short-Haul Experimental Engine (QCSEP) Under-The-Wing (UTW) graphite/PMR cowl development [NASA-CR-135279] Quiet Clean Short-haul Experimental Engine (QCSEE). Composite fan frame subsystem test renort report [NASA-CR-135010] N80-150 Quiet Clean Short-haul Experimental Engine (QCSEE) composite fan frame design report [NASA-CR-135278] N80-151 GROUND EFFECT (AERODINAMICS) N80-15098 N80-15110 The criticality of engine exhaust simulations on VSTOL model-measured ground effects FAIAA PAPER 80-02301 A80-18276 GROUND HANDLING Computer simulation of an air cargo small package sorting system A80-20866 Models for freight access to air terminals A80-20869 Air cargo container utilization optimization through modeling A80-20870 GROUND STATIONS Experience in producing software for the ground station of a remotely piloted helicopter system N80-14038 GROUND TESTS A simplified ground vibration test procedure for sailplanes and light aircraft N80-15146 The minimum cost approach to flutter clearance N80-15148 GUIDANCE (MOTION) Technical evaluation report on the 28th Guidance and Control Panel Symposium on Advances in Guidance and Control Systems Using Digital Techniques [AGARD-AR-148] N80-15140 GUIDANCE SENSORS An observer system for sensor failure detection and isolation in digital flight control systems N80-14023 Automatic recovery after sensor failure onboard N80-14024 GUN TURRETS A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design A80-20879

GUST LOADS Effect of spanwise gust variations R80-14639 GUSTS Investigation of the oscillatory and flight behavior of rotor systems in relation with atmospheric turbulence [BNG-PEPT-79-5] GUROCOMPASSES N80-14142

- Development aspects of a dynamically tuned gyro for strapdown - AHRS --- Attitude and Reading Reference System 880-17553
- GYROSCOPIC STABILITY Development aspects of a dynamically tuned gyro for strapdown - AHRS --- Attitude and Heading Reference System 180-17553
 - A strapdown inertial reference system for commercial airline use in navigation and flight control
 - A80-17558 An integrated strapdown guidance and control system for launch vehicle application
 - A80-17559

Н

HAIL	
The T-28 thunder/hailstorm penetration aircraft	
N80-14640	
HARDNESS	
Fleet hardness variation to determine aircraft	
survivability due to blast loads	
[AD-A074849] N80-15029	
HARDNESS TESTS	
Fleet hardness variation to determine aircraft	
survivability due to blast loads	
HARBONIC EXCITATION	
Excitation and analysis technique for flight	
flutter tests	
[NBE-UP-1446 (O)] N80-14140	
HARHONIC OSCILLATION	
Analysis of transonic flow about harmonically	
oscillating airfoils and wings	
[ATAA PAPER 80-0149] A80-18367	
An investigation of several factors involved in a	
finite difference procedure for analyzing the	
transonic flow about harmonically oscillating	
airfoils and wings	
[NASA-CR-159143] N80-14056	
HAZARDS	
Investigation of noise hazards in the engine test	
cell, CFB Baden-Soellingen	
(
HEAT TRANSPER	
Impact of new instrumentation on advanced turbine	
Impact of new instrumentation on advanced turbine research	
Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133	
Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 HELICOFTER CONTROL	
Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 HELICOFTER CONTROL Analysis of rotor-fuselage coupling and its effect	
Impact of new instrumentation on advanced turbine research [NASA-TH-79301] N80-15133 HELICOFTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response	
Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 HELICOFTER CONTROL Analysis of rotor-fuselage coupling and its effect	
Impact of new instrumentation on advanced turbine research [NASA-TH-79301] N80-15133 HELICOFTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response	
Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response A80-17716 HELICOPTER DESIGN	
Impact of new instrumentation on advanced turbine research [N&A-TH-79301] N80-15133 HELICOFTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOFTER DESIGN A nonlinear observer/command generator tracker	
Impact of new instrumentation on advanced turbine research [NSA-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret	
Impact of new instrumentation on advanced turbine research [N&A-TH-79301] N80-15133 HELICOFTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOFTER DESIGN A nonlinear observer/command generator tracker	
Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design A80-20879	
Impact of new instrumentation on advanced turbine research [NSA-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response N80-17716 HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design HELICOPTER PERFORMANCE	
Impact of new instrumentation on advanced turbine research [NSA-TH-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response N80-17716 HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XN-97 helicopter gun turret control law design HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic	
Impact of new instrumentation on advanced turbine research [NSA-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design A80-20879 HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance	
Impact of new instrumentation on advanced turbine research [N&A-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations	
Impact of new instrumentation on advanced turbine research [NSA-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response N80-17716 HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design N80-20879 HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NSA-TM-78627] N80-15031	
Impact of new instrumentation on advanced turbine research [N8A-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOPTER DESIGN A80-17716 HELICOPTER DESIGN A80-20879 HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TM-78627] N80-15031 Effects of primary rotor parameters on flapping	
Impact of new instrumentation on advanced turbine research [NSA-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TM-78627] N90-15031 Effects of primary rotor parameters on flapping dynamics	
Impact of new instrumentation on advanced turbine research [NSA-TH-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response N80-17716 HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design N80-20879 HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TH-78627] N80-15031 Effects of primary rotor parameters on flapping dynamics [NASA-TF-1431] N80-15138	
Impact of new instrumentation on advanced turbine research [N&A-TH-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TM-78627] N80-15031 Effects of primary rotor parameters on flapping dynamics [NASA-TP-1431] N80-15138 HELICOPTER TAIL BOTORS	
Impact of new instrumentation on advanced turbine research [NSA-TH-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TM-78627] N80-15031 Effects of primary rotor parameters on flapping dynamics [NASA-TP-1431] N80-15138 HELICOPTER TAIL ROTORS Formulation of coupled rotor/fuselage equations of	
Impact of new instrumentation on advanced turbine research [NSA-TH-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response N80-17716 HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design N80-20879 HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TM-78627] N80-15031 Effects of primary rotor parameters on flapping dynamics [NASA-TH-1431] N80-15138 HELICOPTER TAIL BOTORS Formulation of coupled rotor/fuselage equations of motion	
Impact of new instrumentation on advanced turbine research [NSA-TH-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TM-78627] N80-15031 Effects of primary rotor parameters on flapping dynamics [NASA-TP-1431] N80-15138 HELICOPTER TAIL ROTORS Formulation of coupled rotor/fuselage equations of	
Impact of new instrumentation on advanced turbine research [N&A-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response N80-17716 HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design N80-20879 HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TM-78627] N80-15031 Effects of primary rotor parameters on flapping dynamics [NASA-TP-1431] N80-15138 HELICOPTER TAIL ROTORS Formulation of coupled rotor/fuselage equations of motion A80-17717 HELICOPTERS	
Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design N80-20879 HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TM-78627] N80-15031 Effects of primary rotor parameters on flapping dynamics [NASA-TM-1431] N80-15138 HELICOPTER TAIL BOTORS Pormulation of coupled rotor/fuselage equations of motion A80-17717 HELICOPTERS Rotational noise of helicopter rotors	
Impact of new instrumentation on advanced turbine research [N&A-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design M80-20879 HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TM-78627] N80-15031 Effects of primary rotor parameters on flapping dynamics [NASA-TM-7431] N80-15138 HELICOPTER TALL BOTORS Formulation of coupled rotor/fuselage equations of motion A80-17717 HELICOPTERS Rotational noise of helicopter rotors	
Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 HELICOPTER CONTROL Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response HELICOPTER DESIGN A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design N80-20879 HELICOPTER PERFORMANCE Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TM-78627] N80-15031 Effects of primary rotor parameters on flapping dynamics [NASA-TM-1431] N80-15138 HELICOPTER TAIL BOTORS Pormulation of coupled rotor/fuselage equations of motion A80-17717 HELICOPTERS Rotational noise of helicopter rotors	

For the second s

Experience in producing software for the ground station of a remotely piloted helicopter system N80-14038 Application of the SIRS concept to Navy helicopters --- systems analysis of flight data recorders of flight conditons of helicopters for structural analysis [AD-A074801] N80-15030 BIGH ALTITUDE ENVIRONMENTS Propulsion/airframe integration considerations for high altitude hypersonic cruise vehicles [AIAA PAPER 80-0111] HIGH ASPECT RATIO A80-18272 A flutter-speed formula for wings of high aspect ratio N80-15147 RIGH PRESSURE OFFICEN LOX/GOX mechanical impact tester assessment [NASA-TH-74106] N80-15179 HIGH THRPERATURE ENVIRONMENTS Feasibility of SiC composite structures for 1644 K (2500 F) gas turbine seal application [NASA-CR-159597] N80-1412 N80-14122 HINGES Hinged vehicle equations of motion [AIAA PAPER 80-0364] A80-18336 HISTORIES AFFDL experience in active control technology N80-15159 HORIZONTAL PLIGHT A comparison of first and second order techniques for computing optimal horizontal gliding trajectories --- for low level weapons delivery FAIAA PAPER 80-0061] A80-18260 HOVERING Effect of tip planform on blade loading characteristics for a two-bladed rotor in hower [NASA-TH-78615] N80-14049 HOVERING STABILITY Large scale model tests of a new technology V/STOL concept [AIAA PAPER 80-0233] A80-19303 HUBAN FACTORS ENGINEERING NASA technical advances in aircraft occupant safety --- clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TH-80851] HUHAN TOLERANCES N80-15060 Investigation of noise hazards in the engine test cell, CFB Baden-Soellingen [AD-A074391] N80-14147 HYDROCARBON FUELS Effect of naphthenic aromatic hydrocarbons on the oxidizability of hydrogenated jet fuel --- jet engine fuels A80-17675 HYDRODYDABICS Applications of modern hydrodynamics to aeronautics. Part 1: Fundamental concepts and the most important theorems. Part 2: Applications [NÀCA-116] N80-15034 Pressure distribution on Joukowski wings [NACA-TM-336] N80-15036 HIDROGEB FUELS Hach 3 hydrogen external/base burning [AIAA PAPER 80-0280] HIPERSONIC AIRCRAFT A80-19311 Propulsion/airframe integration considerations for high altitude hypersonic cruise vehicles [AIAA PAPER 80-0111] A80-182' Loading tests of a wing structure for a hypersonic A80-18272 aircraft [NASA-TP-1596] HYPERSONIC VEHICLES N80-15068 Hypersonic cruise aircraft propulsion integration study, volume 1 [NASA-CR-158926-VOL-1] N80-15074 Rypersonic cruise aircraft propulsion integration study, volume 2 [NASA-CR-158926-VOL-2] N80-15075 EXPERSONIC WIND TUNNELS Effect of the relative area of the flow core on the performance of a hypersonic wind tunnel A80-17673

IMAGE CORRELATORS

SUBJECT INDEX

THAGE CORRELATORS. Discontinuous registration of industrial radiographs using profile analysis and piecewise correlation techniques A80-17521 Performance evaluation of image correlation techniques --- for aircraft inertial navigation systems 180-17534 THAGE PROCESSING Wire obstacle warning system /WOWS/ - A real-time airborne sensor for automatic detection and recognition of wirelike objects A80-17402 Map-matching techniques for terminal guidance using Fourier phase information A80-17517 Guidance system position update by multiple subarea correlation A80-17518 IMAGE TUBES Visual displays for air traffic control data N80-14077 INAGES Visual accommodation responses in a virtual image environment [AD-A074415] N80-15082 IMPACT DAMAGE Atmospheric effects on Martian ejecta emplacement A80-20192 Soil analyses and evaluations at the impact dynamics research facility for two full-scale aircraft crash tests [NASA-CR-159199] N80-N80-15299 **INPACT LOADS** The loads at landing impact --- for aircraft A80-17723 IMPACT RESISTANCE NASA technical advances in aircraft occupant safety --- clear air turbulence detectors, fire resistant materials, and crashworthiness [NASA-TH-80851] N80-15060 IMPACT TESTING MACHINES LOX/GOX mechanical impact tester assessment [NASA-TM-74106] N80-15179 IN-PLIGHT MONITORING In-flight measured characteristics of combined flap-spoiler direct lift controls N80-15165 INDICATING INSTRUMENTS Some practical aspects of the calibration of air data systems A80-18865 TNERTIAL GUIDANCE Guidance system position update by multiple subarea correlation A80-17518 INERTIAL NAVIGATION Development aspects of a dynamically tuned gyro for strapdown - AHRS --- Attitude and Heading Reference System A80-17553 A strapdown inertial reference system for commercial airline use in navigation and flight control A80-17558 An integrated strapdown guidance and control system for launch vehicle application A80-17559 Development of aiding GPS/strapdown inertial navigation system N80-14031 Methods for strap-down attitude estimation and navigation with accelerometers N80-14034 A high accuracy flight profile determining system --- systems analysis of inertial navigation system for aircraft position determination N80-14042 INERTIAL REFERENCE SYSTEMS A strapdown inertial reference system for commercial airline use in navigation and flight control A80-17558 INFORMATION RETRIEVAL Aerodynamic data base users guide [AD-A074448] 180-15983 INPRARED SCANNERS Infrared sensor system performance simulations A80-20900 THLET FLOW Acoustic radiation from axisymmetric ducts - A comparison of theory and experiment [AIAA PAPER 80-0097] A80-18268 Improved numerical simulation of high speed inlets using the Navier-Stokes equations [AIAA PAPER 80-0383] A80-1830 A80-18340 Numerical simulation of supersonic inlets using a three-dimensional viscous flow analysis [AIAA PAPER 80-0384] A80-20969 An analytical and experimental study of a short S-shaped subsonic diffuser of a supersonic inlet [AIAA PAPER 80-0386] A80-20970 An analytical and experimental study of a short s-shaped subsonic diffuser of a supersonic inlet [NASA-TH-81406] N80-15134 INSTALLING Installation effects on cycle selection for small turbo-fan engines [AIAA PAPER 80-0106] INSTRUMENT LANDING SYSTEMS A80-19280 What brings us down tomorrow - Landing guidance systems for the 1980s A80-18725 INTEGRATED CIRCUITS Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 INVISCID FLOW A numerical approach to subsonic viscous-inviscid interaction A80-19070 ITALY On radar in air traffic control --- conference, Rome, Jul. 1979 FFUB-11-1979] N80-14065 Problems related to the design and construction of a radar network N80-14066 Organization of an integrated global maintenance service --- Radar Networks N80-14069

J

JET AIRCRAFT The rational design of an airfoil for a high performance jet trainer [AIAA PAPER 80-0328] A80-18317 Effects of non-planar strake-wing on the wortex lift characteristics of a twin-jet fighter configuration [AIAA PAPER 80-0329] A80-18318 JET AIRCRAFT NOISE Acoustic radiation from axisymmetric ducts - A comparison of theory and experiment [ATAA PAPER 80-0097] A80-18268 Jet engine combustion noise - Pressure, entropy and vorticity perturbations produced by unsteady combustion or heat addition A80-20151 Acoustic considerations of flight effects on jet noise suppressor nozzles [AIAA PAPER 80-0164] A80-20965 Quiet Clean Short-Haul Experimental Engine (QCSEF) acoustic and aerodynamic tests on a scale model over-the-wing thrust reverser and forward thrust nozzle [NASA-CR-135254] N80-14115 Quiet Clean Short-haul Experimental Engine (QCSEE) Over-The-Wing (OTW) propulsion systems test report. Volume 4: Acoustic performance [NASA-CR-135326] N80-15118 An experimental study of the structure and acoustic field of a jet in a cross stream ---Ames 7-ft by 10-ft wind tunnel tests [NASA-CR-162464] N80-N80-15871 JET ENGINE FUELS Effect of naphthenic aromatic hydrocarbons on the oxidizability of hydrogenated jet fuel --- jet engine fuels A80-17675

LOAD TESTS

Aircraft fuel system simulator tests with antimisting kerosene (jet A fuel with F additive) flammability tests	1-9
[AD-A073237]	N80-14256
JET ENGINES	
On the influence of steady state temperate	ire and
pressure distortion on the flow characte	
in an installed multistage jet engine co	mpressor
	180-17724
Acoustic radiation from axisymmetric ducts	5 - A
comparison of theory and experiment	
[AIAA PAPER 80-0097]	A80-18268
Computer simulation of engine systems	
[NASA-TH-792901	N80-15132
JET EXBAUST	
The criticality of engine exhaust simulati	ons on
VSTOL model-measured ground effects	
TAIAA PAPER 80-02301	A80-18276
JET BIXING PLOW	
Recent development of a jet-diffuser eject	or
FAIAA PAPEE 80-02311	A80-18277
Photon correlation laser velocimeter measu	rements
in highly turbulent flow fields	
TAIAA PAPER 80-03447	A80-18328
An experimental model investigation of tur	
engine internal exhaust gas mixer config	
TAIAA PAPER 80-02281	A80-19302
Scale model performance test investigation	
exhaust system mixers for an Energy Effi	
Engine /E3/ propulsion system	
TAIAA PAPER 80-02291	A80-20968
JOUKOWSKI TRANSFORMATION	
Pressure distribution on Joukowski wings	
[NACA-TH-336]	N80-15036
·	

Κ

KEROSENE

Aircraft fuel system simulator tests with antimisting kerosene (jet A fuel with PM- additive) flammability tests	- 9
[AD-A073237]	N80-14256
KINETIC THEORY	14250
Elements of the wing section theory and of	the
wing theory	
[NACA-191]	N80-15040

L

LAMINAR FLOW	
Reynolds number and compressibility effect	s on
dynamic stall of a NACA 0012 airfoil	
FAIAA PAPER 80-00101	A80-18238
LAMINAR FLOW AIRFOILS	
A parametric wing design study for a moder	n
laminar flcw wing	
[NASA-TE-80154]	N80-15050
LABIBATES	
Determination of the stress intensity fact	or of
composite structural members	
•	A80-17958
Advanced materials and the Canadair Challe	nger
SAWE PAPER 1284]	A80-20632
LANDING GEAR	
The loads at landing impact for aircra	ft
	A80-17723
LANDING LOADS	
The loads at landing impact for aircra	ft
	A80-17723
LASER APPLICATIONS	
Laser-optical blade tip clearance measurem	ent system
[NASA-TM-81376]	N80-14128
LASER DOPPLEE VELOCIMETERS	
Photon correlation laser velocimeter measu	rements
in highly turbulent flow fields	
FAIAA PAPER 80-0344]	A80-18328
LATERAL CONTROL	
Some wind tunnel measurements of the effec	tiveness
at low speeds of combined lift and roll	controls
•	N80-15153
Foll control by digitally controlled segme	nt
spoilers	
-	N80-15156
Plaperon control: The versatile surface f	or
fighter aircraft	
-	N80-15158
	-

LATERAL STABILITY Effects of the aerodynamic cross-coupling and lateral acceleration derivatives on airplane dynamic characteristics [AIAA PAPER 80-0170] Aircraft aerodynamics - Dynamics of longitudinal and lateral motion --- Russian book A80-17699 A80-19374 LATTICES (MATHEMATICS) The quasi-vortex-lattice method for wings with edge vorter separation [NASA-CR-162530] N80-14052 LAUNCH VEHICLES An integrated strapdown guidance and control system for launch vehicle application 180-17559 LEADING EDGES Investigation of leading-edge devices for drag reduction of a 60-deg. delta wing at high angles of attack [AIAA PAPER 80-0310] A80-18309 Studies of leading-edge thrust phenomena [AIAA PAPER 80-0325] A80-11 The effects of leading edge modifications on the post-stall characteristics of wings A80-18315 [AIAA PAPER 80-0199] A80-18375 Streamwise development of the flow over a delta wing [AIAA PAPER 80-0200] A800 The guasi-vortex-lattice method for wings with A80-18376 edge vortex separation [NASA-CR-162530] N80-14052 LIFE CICLE COSTS The modular life cycle cost model - An overview [SAWE PAPER 1290] A80-206 Designing to life cycle cost in the Hornet program [SAWE PAPER 1293] A80-206 A80-20636 A80-20638 LIFE SUPPORT SYSTEMS Aeronautical systems technology needs: Escape, rescue and survival [AD-A074906] N80 N80-14061 LIPT Development of a vortex-lift-design method and application to a slender maneuver-wing configuration [AIAA PAPER 80-0327] A80-18316 Some wind tunnel measurements of the effectiveness at low speeds of combined lift and roll controls N80-15153 LIGHT AIRCRAFT Designing light airplanes --- Russian book A80-19414 A light aircraft camera Pod - The Enviro-Pod A80-20251 A method of simplifying weight and balance for small aircraft SAWE PAPER 1278 A80-20630 Low cost aircraft flutter clearance --- conference [AGARD-CP-278] N80-15141 Comparison of international flutter requirements and flutter freedom substantiation of light aircraft in the USA N80-15142 The state-of-the-art of flutter substantiation procedures among US general aviation manufacturers N80-15143 An empirical approach for checking flutter stability of gliders and light aircraft N80-15144 Dynamic identification of light aircraft structures and their flutter certification N80-15145 A simplified ground vibration test procedure for sailplanes and light aircraft N80-15146 The minimum cost approach to flutter clearance N80-15148 LINEAR SYSTEMS Linear systems analysis program, L224(QR). Volume Engineering and usage 1: [NASA-CR-2961] N80-14137 LIQUID OXYGEN LOX/GOX mechanical impact tester assessment [NASA-TH-74106] N80-15179 LOAD TESTS Loading tests of a wing structure for a hypersonic aircraft [NASA-TP-1596] N80-15068

LONGITUDINAL STABILITY

SUBJECT INDEX

LONGTTUDINAL STABILITY Aircraft aerodynamics - Dynamics of longitudinal and lateral motion --- Russian book A80-19374 Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability --- P-16 N80-14136 F NA SA-TP-15381 LOOP ANTENNAS Experimental loop antennas for 60 KHz to 200 KHz N80-15063 [NASA-CR-162729] LOBAN Loran digital phase-locked loop and RF front-end system error analysis [NASA-CR-162731] N80-15065 LORAN C Experimental loop antennas for 60 KHz to 200 KHz N80-15063 [NASA-CR- 162729] Data reduction software for LORAN-C flight test evaluation [NASA-CR-162730] N80-15064 LOW ASPECT BATIO Low-aspect-ratio limit of the toroidal reactor -The sphercmak A80-17876 LOW COST The minimum cost approach to flutter clearance N80-15148 LOW SPEED Some wind tunnel measurements of the effectiveness at low speeds of combined lift and roll controls N80-15153 Unsteady aerodynamics of two-dimensional spoilers at low speeds N80-15170 LUBRICANTS LUBRICATING OILS N80-15265 Investigation of the wear debris content in oil by measurements of the reluctance and eddy current loss in an electric circuit A80-19053 Unification of oils for aircraft gas-turbine engines A80-20690 M HAGNETOHYDRODYNAMIC STABILITY Low-aspect-ratio limit of the toroidal reactor -The sphercuak 180-17876 MAINTENANCE Organization of an integrated global maintenance service --- Radar Networks N80-14069 MAN MACHINE SYSTEMS Adaptive allocation of decisionmaking responsibility between human and computer in multitask situations A80-18022 A statistical method applied to pilot behavior analysis in multilocr systems A80-18537 Automation and air traffic control A80-18722 Vocabulary specification for automatic speech recognition in aircraft cockpits FAD-A073703] N80-14303 MANUAL CONTROL Pilot control through the TAPCOS automatic flight control system N80-14138 [NASA-TH-81152] BANUFACTURING The state-of-the-art of flutter substantiation procedures among US general aviation manufacturers N80-15143 MAP MATCHING GUIDANCE Map-matching techniques for terminal guidance using Pourier phase information A80-17517 Guidance system position update by multiple subarea correlation A80-17518 MARKET RESEARCE Airport noise, location rent, and the market for residential amenities A80-17720

MARS ATMOSPHERE Atmospheric effects on Martian ejecta emplacement A80-20192 MARS SURFACE Atmospheric effects on Martian ejecta emplacement A80-20192 NATEENATICAL BODELS Models for freight access to air terminals A80-20869 Air cargo container utilization optimization through modeling 180-20870 Avionics installation (AVSTALL) cost model for user equipment of NAVSTAR global positioning svstem [AD-A073681] Application of the multistage axial-flow N80-14106 compressor time-dependent mathematical modeling technique to the TF41-A-1 modified block 76 compressor f AD-A0744781 N80-14134 Pressure distribution on Joukowski wings [NACA-TH-336] N80-1 A flutter-speed formula for wings of high aspect N80-15036 ratio N80-15147 MEASURING INSTRUMENTS An improved sensing element for skin-friction balance measurements --- supersonic drag measuring instrument [AIAA PAPER 80-0049] A80-18251 MECHANICAL PROPERTIES The physical and chemical characterization of ten military turbine engine lubricants [AD-A074073] N80-15265 HETAL PATIGUE Sonic fatigue design data for bonded aluminum aircraft structures [AIAA PAPPE 80-0303] A80-18304 Fatigue life prediction of a bonded splice joint [AIAA PAPER 80-0305] Ã80-18306 BETAL JOINTS Fatigue life prediction of a bonded splice joint [ATAA PAPER 80-0305] A80-1 HETAL MATRIX COMPOSITES Ã80-18306 FRS composites for advanced gas turbine engine components [AD-A074287] N80-15137 METAL PARTICLES Investigation of the wear debris content in oil by measurements of the reluctance and eddy current loss in an electric circuit A80-19053 METAL SURFACES Contact stress analysis of ceramic-to-metal interfaces --- in gas turbine engines [AD-A074491] N80-14417 METEOROLOGICAL INSTRUMENTS (bibliography), 1979 [NASA-CR-3214] N80-14651 METEOROLOGICAL RADAR Weather detection using airport surveillance radar A80-19129 BETEOROLOGY Meteorological input to general aviation pilot training N80-14634 **BICROORGANISHS** Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory . experiments [AD-A073761] N80-14259 BICROPROCESSORS Modular strapdown guidance unit with embedded microprocessors A80-18534 [AIAA PAPER 78-1239] Verification of digital autopilot microprocessor hardware and software via hardware-in-the-loop simulation A80-20901 BICROWAVE FREQUENCIES Development trends of airport surface traffic control radar N80-14087 MICROWAVE LANDING SYSTEMS. Phat brings us down tomorrow - Landing guidance systems for the 1980s A80-18725

SUBJECT INDEX

NOISE REDUCTION

MILITARY AIRCRAFT	
Application of RCS guidelines to weight eff	fective
aircraft design Fadar Cross Section	
[SAWE PAPER 1270]	A80-20626
The modular life cycle cost model - An over	view
[SAWE PAPER 1290]	A80-20636
AFFDL experience in active control technolo	
	N80-15159
MILITARY BELICOPTERS	
Analysis of low-speed helicopter flight tes	st data
[AD-A074141]	N80~15079
HILITARY TECHNOLOGY	
Navy V/STOL - A continuing initiative	
[SAWE PAPER 1325]	A80-20655
AFFDL experience in active control technolo	V PC
······································	N80-15159
Control integration technology impact a	is a
basis for improving the combat effective	less of
all tactical aircraft	
	N80-15162
MISSILE CONTROL	
Sodular strapdown guidance unit with embedd	leđ
microprocessors	
FAINA PAPER 78-12391	A80-18534
Verification of digital autopilot microproc	essor
hardware and software via hardware-in-the	-loop
simulation	
	A80-20901
MISSILE DESIGN	
Assessment of analytic methods for the pred	
of aerodynamic characteristics of arbitra	ry
bodies at superscnic speeds	
[AIAA PAPER 80-0071]	A80-19308
HODAL RESPONSE	_
Analyses and tests of the E-1 aircraft stru	lctural
mode control system	
[NASA-CR-144887]	N80-15073
EODELS	
Model 540 rotor blade crack propagation	
investigation	
[AD-A074734]	N80-15081
HONENTUR	
Elements of the wing section theory and of	the
wing theory	
[NACA-191]	N80-15040
HOTICH SINULATORS	
Controllers for aircraft motion simulators	100 40050
[AIAA PAPER 80-0050]	A80-18252
The effects of motion and g-seat cues on pi	
simulator performance of three piloting t	
[NASA-TP-1601]	N80-15059
BTBF Designing to life cycle cost in the Hornet	DFOGE3 B
vesioning to life cycle cost in the mornet	NFOATGE

[SAWE PAPER 1293]

Ν

- NACELLES Preliminary weight estimation of engine section structure [SAWE PAPER 1311] A80-20645 [SAWE PAPER 1311] A80-2064 Quiet Clean Short-haul Experimental Engine (QCSEE) preliminary under the wing flight propulsion system analysis report [NASA-CR-134468] N80-1506 Quiet Clean Short-haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine beilerplate nacelle test report, volume 1 [NASA-CR-135249] N80-1509 Quiet Clean Short-haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine beilerplate nacelle test report. Volume 3: Mechanical performance N80-15088 N80-15096
 - performance [NASA-CR-135251] N80-150 Quiet Clean Short-haul Experimental Engine (QCSEE) N80-15097
 - Over-The-Wing (OTW) beilerplate nacelle design report
 - report [NASA-CR-135168] N80-150 Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle subsystem test report --- to verify strength of selected composite materials [NASA-CR-135075] N80-151 Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) boiler plate nacelle and core exhaust nozzle design report [NASA-CR-135008] N80-151 N80-15099 N80-15100
 - N80-15116

Quiet Clean Short-haul Experimental Engine	(QCS EE)
Under-The-Wing (UTW) composite nacelle [NASA-CR-135352]	N80-15119
BASA PROGRAMS	
Engine component improvement program - Per: improvement	tormance
[AIAA PAPER 80-0223]	N80-19300
NASA broad-specification fuels combustion technology program: Status and descript	ion
[NASA-TM-79315]	N80-14126
NASA technical advances in aircraft occupa clear air turbulence detectors, fire	nt safety
clear air turbulence detectors, fire resistant materials, and crashworthiness	
[NASA-TH-80851]	N80-15060
Quiet powered-lift propulsion	
[NASA-CP-2077] HAVIER-STOKES EQUATION	N80-15127
Improved numerical simulation of high speed	d inlets
using the Navier-Stokes equations [AIAA PAPER 80-0383]	A80-18340
NAVIGATION AIDS	
Performance evaluation of image correlation	
techniques for aircraft inertial nav: systems	Igation
-	A80-17534
NAVIGATION SATELLITES	ianal
Navigation error using rate of change of s: time of arrival from space vehicles	ignai
-	A80-20904
HAVSTAR SATFLLITES The Global Positioning System	
The Global Positioning System	A80-20992
NEAR FIELDS	
Rotational noise of helicopter rotors	180-17718
BOISE GENERATORS	100 11710
Sound generation in a flow near a compliant	
An experimental study of the structure and	A80-20153
acoustic field of a jet in a cross stream Ames 7-ft by 10-ft wind tunnel tests	n
	N80-15871
[NASA-CR-162464] HOISE INTENSITY	100-10071
Estimation of noise source strengths in a g	jas
turbine combustor	
FATAA DADEE 80-00301	180-19245
[AIAA PAPER 80-0034] HOISE MEASUREMENT	A80-18245
NOISE REASUREMENT Estimation of noise source strengths in a q	
NOISE BEASUREMENT Estimation of noise source strengths in a g turbine combustor	jas
BOISE BEASUBERENT Estimation of noise source strengths in a q turbine combustor [ATAA PAPER 80-0034] Landing approach airframe noise measurement	jas 180-18245
BOISE BEASUBREENT Estimation of noise source strengths in a q turbine combustor [AIAA PAPER 80-0034] Landing approach airframe noise measurement analysis	Jas 180-18245 ts and
BOISE BEASUBERENT Estimation of noise source strengths in a q turbine combustor [ATAA PAPER 80-0034] Landing approach airframe noise measurement	jas 180-18245
<pre>BOISE BEASUBREENT Estimation of noise source strengths in a of turbine combustor [AIAA PAPER 80-0034] Landing approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements</pre>	yas A80-18245 ts and N80-15028
<pre>BOISE HEASUBERENT Estimation of noise source strengths in a g turbine combustor [AIAA PAPER 80-0034] Landing approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-CR-135160]</pre>	gas 180-18245 ts and 180-15028 180-15093
<pre>BOISE BEASUBREENT Estimation of noise source strengths in a of turbine combustor [AIAA PAPER 80-0034] Landing approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-CR-135160] A study of partial coherence for identifyin interior noise sources and paths on gener</pre>	yas A80-18245 ts and N80-15028 N80-15093
<pre>BOISE HEASUBERENT Estimation of noise source strengths in a g turbine combustor [AIAA PAPER 80-0034] Landing approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-CR-135160] A study of partial coherence for identifyin interior noise sources and paths on gener aviation aircraft</pre>	yas 180-18245 ts and N80-15028 N80-15093 19 cal
 NOISE MEASUBREMENT Estimation of noise source strengths in a question of noise source strengths in a question of the source of the s	yas A80-18245 IS and N80-15028 N80-15093 IG IG N80-15874
 NOISE HEASUBERENT Boinse source strengths in a generation of noise source strengths in a generation of noise source strengths in a generation of the source strengths in a generation of the source strengths in a generation of the source strength of the	yas A80-18245 IS and N80-15028 N80-15093 IG IG N80-15874
 NOISE MEASUBREMENT Estimation of noise source strengths in a question of noise source strengths in a question of the source of the s	yas A80-18245 IS and N80-15028 N80-15093 IG IG N80-15874
<pre>BOISE HEASUBERENT Estimation of noise source strengths in a g turbine combustor [AIAA PAPER 80-0034] Landing approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-CR-135160] A study of partial coherence for identifyin interior noise sources and paths on genen aviation aircraft [NASA-TH-80197] HOISE POLLUTION Airport noise, location rent, and the marke residential amenities HOISE PREDICTION (AIRCRAFT)</pre>	Jas A80-18245 is and N80-15028 N80-15093 ig al N80-15874 et for
 NOISE MEASUBERENT Estimation of noise source strengths in a queue truthine combustor [AIAA PAPER 80-0034] Landing approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-CR-135160] A study of partial coherence for identifyin interior noise sources and paths on genen aviation aircraft [NASA-TM-80197] NOISE POLLUTION Airport noise, location rent, and the marker residential amenities	Jas A80-18245 ts and N80-15028 N80-15093 19 a1 N80-15874 et for A80-17720
<pre>BOISE HEASUBERENT Estimation of noise source strengths in a g turbine combustor [AIAA PAPER 80-0034] Landing approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-CR-135160] A study of partial coherence for identifyin interior noise sources and paths on genen aviation aircraft [NASA-TH-80197] HOISE POLLUTION Airport noise, location rent, and the marke residential amenities HOISE PREDICTION (AIRCRAFT)</pre>	yas A80-18245 s and N80-15028 N80-15093 19 19 10 10 10 10 10 10 10 10 10 10
 NOISE REASUBERENT Estimation of noise source strengths in a generation of the study of the source of the source strength of t	Jas A80-18245 ts and N80-15028 N80-15093 19 a1 N80-15874 et for A80-17720 A80-17718 p jet
 NOISE MEASUBREMENT <pre>Estimation of noise source strengths in a g turbine combustor [AIAA PAPER 80-0034] Landing approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (CCSEE). Core engine noise measurements [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (CCSEE). Core engine noise measurements [NASA-CR-135160] A study of partial coherence for identifyin interior noise sources and paths on gener aviation aircraft [NASA-TM-80197] NOISE POLLUTION Airport noise, location rent, and the marker residential amenities BOISE PREDICTIOS (AIRCRAFT) Rotational noise of helicopter rotors Acoustic considerations of flight effects of noise suppressor nozzles [ATAA PAPER 80-0164]</pre>	yas A80-18245 s and N80-15028 N80-15093 19 19 10 10 10 10 10 10 10 10 10 10
 NOISE MEASUBREMENT Estimation of noise source strengths in a gaturbine combustor [ATAA PAPER 80-0034] Landing approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-CR-135160] A study of partial coherence for identifyin interior noise sources and paths on generaviation aircraft [NASA-TR-80197] NOISE POLLUTION Airport noise, location rent, and the marker residential amenities NOISE PREDICTIOS (AIRCRAFT) Rotational noise of helicopter rotors Acoustic considerations of flight effects of noise suppressor nozzles [ATAA PAPER 80-0164] NOISE PROPAGATIOB Comparison of inlet suppressor data with	Jas A80-18245 is and N80-15028 N80-15093 lg al N80-15874 et for A80-17720 A80-17718 p jet
 NOISE REASUBRERENT Estimation of noise source strengths in a gate transformer of the second strength of the second stre	yas A80-18245 s and N80-15028 N80-15093 19 19 10 10 10 10 10 10 10 10 10 10
 NOISE TRASUBREMENT Estimation of noise source strengths in a gate training approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (CCSEE). Core engine noise measurements [NASA-CR-135160] A study of partial coherence for identifyin interior noise sources and paths on gener aviation aircraft [NASA-TR-80197] NOISE POLLUTION Airport noise, location rent, and the market residential amenities NOISE PREDICTION (AIRCRAFT) Rotational noise of helicopter rotors Acoustic considerations of flight effects of noise suppressor nozzles [AIAA PAPER 80-0164] NOISE PROPAGATION Comparison of inlet suppressor data with approximate theory based on cutoff ratio [AIAA PAPER 80-0100] A study of partial coherence for identifyin 	yas A80-18245 s and N80-15028 N80-15093 g al N80-15874 et for A80-17720 A80-17718 jet A80-20965 A80-20964
 NOISE REASUBRERENT Estimation of noise source strengths in a gate transformer of the second strength of the second stre	yas A80-18245 s and N80-15028 N80-15093 g al N80-15874 et for A80-17720 A80-17718 jet A80-20965 A80-20964
 NOISE HEASUBERENT Estimation of noise source strengths in a gamma strength of noise source strengths in a gamma strength of noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-TR-135160] A study of partial coherence for identifyin interior noise sources and paths on generation aircraft [NASA-TH-80197] NOISE PREDICTION Airport noise, location rent, and the marker residential amenities NOISE PREDICTION (AIRCRAFT) Rotational noise of helicopter rotors Acoustic considerations of flight effects of noise suppressor nozzles [ATAA PAPER 80-0164] NOISE PROPAGATION Comparison of inlet suppressor data with approximate theory based on cutoff ratio [ATAA PAPER 80-0100] A study of partial coherence for identifyin interior noise sources and paths on generation aircraft 	yas A80-18245 s and N80-15028 N80-15093 g al N80-15874 et for A80-17720 A80-17718 jet A80-20965 A80-20964
 NOISE REASUBRERENT Estimation of noise source strengths in a gate transformer of the second strength of the second stre	A80-18245 s and N80-15028 N80-15023 19 19 10 10 10 10 10 10 10 10 10 10
 NOISE HEASUBERENT Estimation of noise source strengths in a gamma strength of noise source strengths in a gamma strength of noise measurement of analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-CR-135160] A study of partial coherence for identifyin interior noise sources and paths on generation aircraft [NASA-TH-80197] NOISE POLLUTION Airport noise, location rent, and the marker residential amenities NOISE PREDICTIOE (AIRCRAFT) Rotational noise of helicopter rotors Acoustic considerations of flight effects of noise suppressor nozzles [ATAA PAPER 80-0100] NoISE PROPAGATION Comparison of inlet suppressor data with approximate theory based on cutoff ratio [AIAA PAPER 80-0100] A study of partial coherence for identifyin interior noise sources and paths on generation aircraft [NASA-TH-80197] NOISE PROPAGATION Comparison of inlet suppressor data with approximate theory based on cutoff ratio [AIAA PAPER 80-0100] A study of partial coherence for identifyin interior noise sources and paths on generation aircraft [NASA-TH-80197] NOISE REDUCTION Structural parameters that influence the noise structural parameters that influence the noise	yas A80-18245 s and N80-15028 N80-15093 a N80-15093 a N80-15874 et for A80-17720 A80-17718 A80-20965 A80-20964 a N80-15874 bise
 NOISE TRASUBERENT Estimation of noise source strengths in a gamma structure combustor [ATAA PAPER 80-0034] Landing approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-CR-135160] A study of partial coherence for identifyin interior noise sources and paths on generation aircraft [NASA-TM-80197] NOISE POLLUTION Airport noise, location rent, and the marked residential amenities NOISE PREDICTION (AIRCRAFT) Rotational noise of helicopter rotors Acoustic considerations of flight effects of noise suppressor nozzles [ATAA PAPER 80-0164] NOISE PROPAGATION Comparison of inlet suppressor data with approximate theory based on cutoff ratio [ATAA PAPER 80-0100] A study of partial coherence for identifyin interior noise sources and paths on generation aircraft [NASA-TM-80197] NOISE REDUCTION Structural parameters that influence the nore aviation materials	yas A80-18245 s and N80-15028 N80-15093 a N80-15093 a N80-15874 et for A80-17720 A80-17718 A80-20965 A80-20964 a N80-15874 bise
 NOISE MEASUBERENT Bestimation of noise source strengths in a generation of noise source strengths in a generation of noise source strengths in a generation of noise measurements [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-TR-135160] A study of partial coherence for identifyin interior noise sources and paths on generation aircraft [NASA-TR-80197] NOISE POLLUTION Airport noise, location rent, and the marker residential amenities NOISE PREDICTION (AIRCRAFT) Rotational noise of helicopter rotors Acoustic considerations of flight effects of noise suppressor nozzles [ATAA PAPER 80-0164] NOISE PROPAGATION Comparison of inlet suppressor data with approximate theory based on cutoff ratio [AIAA PAPER 80-0100] A study of partial coherence for identifyin interior noise sources and paths on generation aircraft [NASA-TR-80197] NOISE REDUCTION Study of partial coherence for identifyin interior noise sources and paths on generation aircraft [NASA-TR-80197] NOISE REDUCTION Structural parameters that influence the nore reduction characteristics of typical generation aviation materials [ATAA PAPER 80-0038] 	yas A80-18245 s and N80-15028 N80-15093 a N80-15093 a N80-15874 et for A80-17720 A80-17718 A80-20965 A80-20964 a N80-15874 bise
 NOISE MEASUBERENT Estimation of noise source strengths in a queue training approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [NASA-CR-135160] A study of partial coherence for identifyin interior noise sources and paths on gener aviation aircraft [NASA-TR-80197] NOISE POLLUTION Airport noise, location rent, and the marked residential amenities NOISE PREDICTION (AIRCRAFT) Rotational noise of flight effects of noise supressor nozzles [ATAA PAPER 80-0164] NOISE PROPAGATION Comparison of inlet suppressor data with approximate theory based on cutoff ratio [ATAA PAPER 80-0100] A study of partial coherence for identifyin interior noise sources and paths on gener aviation aircraft [NISE PROPAGATION Structural parameters that influence the nor reduction characteristics of typical gene aviation materials [ATAA PAPER 80-0103] Comparison of inlet suppressor data with approximate theory based on cutoff ratio [ATAA PAPER 80-0100] A study of partial coherence for identifyin interior noise sources and paths on generation aircraft [NASA-TH-80197] BOISE REDUCTION Structural parameters that influence the nor reduction characteristics of typical generation interials [ATAA PAPER 80-0038] Comparison of inlet suppressor data with	yas A80-18245 s and N80-15028 N80-15093 a N80-15074 et for A80-17720 A80-17720 A80-20965 A80-20964 gal N80-15874 et al
 NOISE HEASUBERENT Estimation of noise source strengths in a gamma structure of the source strength in the source strength in the source strength structure of the source st	yas A80-18245 s and N80-15028 N80-15093 a N80-15093 a N80-15874 et for A80-17720 A80-17720 A80-20965 A80-20964 a N80-15874 bise eral A80-18248 A80-20964
 NOISE TRASUBERENT <pre>Estimation of noise source strengths in a g turbine combustor [AIA PAPER 80-0034] Landing approach airframe noise measurement analysis [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (CCSEE). Core engine noise measurements [NASA-TP-1602] Quiet Clean Short-haul Experimental Engine (CCSEE). Core engine noise measurements [NASA-CR-135160] A study of partial coherence for identifyin interior noise sources and paths on gener aviation aircraft [NASA-TM-80197] HOISE POLLUTION Airport noise, location rent, and the marker residential amenities HOISE PREDICTION (AIRCRAFT) Rotational noise of helicopter rotors Acoustic considerations of flight effects of noise suppressor nozzles [ATAA PAPER 80-0164] HOISE PROPAGATION Comparison of inlet suppressor data with approximate theory based on cutoff ratio [ATAA PAPER 80-0100] A study of partial coherence for identifyin interior noise sources and paths on genen aviation aircraft [NASA-TM-80197] HOISE REDUCTION Structural parameters that influence the no reduction characteristics of typical gene aviation materials [ATAA PAPER 80-038] Comparison of inlet suppressor data with approximate theory based on cutoff ratio </pre>	yas A80-18245 s and N80-15028 N80-15093 a N80-15093 a N80-15874 et for A80-17720 A80-17720 A80-20965 A80-20964 a N80-15874 bise eral A80-18248 A80-20964

BOHOGRAPHS

Plight and wind tunnel test results of the mechanical jet noise surpressor nozzle [AIAA PAPER 80-0165] A80-20971 Acoustically swept rotor --- helicopter noise reduction [NASA-CASE-ARC-11106-1] N80-14107 Quiet short-haul research aircraft familiarization document --- STOL [NASA-TH-81149] N80-14108 Demonstration of short-haul aircraft aft noise reduction techniques on a twenty inch (50.8 cm) diameter fan, volume 1 [NASA-CR-134849] N80 Demonstration of short-haul aircraft aft noise N80-15083 reduction techniques on a twenty inch (50.8) diameter fan, volume 2 [NASA-CR-134850] N80 N80-15084 Demonstration of short haul aircraft aft noise reduction techniques on a twenty inch (50.8 cm) diameter fan, volume 3 [NASA-CR-134851] N80-15 N80-15085 Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan --- quiet engine program NASA-CR-134891] N80-15102 Quiet Clean Short-Haul Experimental Engine (QCSEE): Acoustic treatment development and design [NASA-CR-135266] **N80-15122** valuation of approximate methods for the prediction of noise shielding by airframe components [NASA-TP-1004] N80-15129 NONOGRAPHS A method of simplifying weight and balance for small aircraft [SAWE PAPER 1278] NONDESTRUCTIVE TESTS A80-20630 Discontinuous registration of industrial radiographs using profile analysis and piecewise correlation techniques A80-17521 NOSE FINS Effects of non-planar strake-wing on the vortex lift characteristics cf a twin-jet fighter configuration [AIAA PAPER 80-0329] A80-18318 NOSES (FOREBODIES) Control of forebody three-dimensional flow separations N80-15164 NOZZLE DESIGN Acoustic considerations of flight effects on jet noise suppressor nozzles AIAA PAPER 80-0164] A80-20965 [AIAA PAPER 60-0104] Flight and wind tunnel test results of the mechanical jet noise suppressor nozzle [AIAA PAPER 80-0165] A80-20971 NOZZLE PLOW Photon correlation laser velocimeter measurements in highly turbulent flow fields [AIAA PAPER 80-0344] A80-18328 Computation of three-dimensional flow in turbofan mixers and comparison with experimental data [NASA-TH-81410] N80 N80-15364 NOZZLE GEOBETRY Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Aircraft (QSRA) [NASA-TP-1556] N80-14121 NUCLEAR EXPLOSICE EFFECT Protective coatings for aircraft composites in nuclear environments [AD-A0748891 N80-14199 NUMBRICAL ANALYSIS A comparison of first and second order techniques for computing optimal horizontal gliding trajectories --- for low level weapons delivery [ATAA PAPIR 80-0061] A80-18 A80- 18260 The minimum cost approach to flutter clearance N80-15148 BURRETCAL CONTROL Modular strapdown guidance unit with embedded microprocessors [AIAA PAPER 78-1239] A80-18534

BUBERICAL PLOW VISUALIZATION Reynolds number and compressibility effects on dynamic stall of a NACA 0012 airfoil [ATAA PAPER 80-0010] A80-18238 Pngine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-1827 Improved numerical simulation of high speed inlets A80-18271 using the Navier-Stokes equations -[AIAA PAPER 80-0383] A80-18: Numerical simulation of supersonic inlets using a three-dimensional viscous flow analysis 180-18340 FAIAA PAPER 80-0384] A80-20969 BUBERICAL INTEGRATION Direct integration of transient rotor dynamics [NASA-TP-1597] N80-N80-15128 Ο OBLIQUE SHOCK WAVES Oblique detonation wave ramjet [NASA-CR-159192] CHEGA NAVIGATION SYSTEM N80-14131 The Omega radio navigation system --- Russian book A80-19413 OPERATING SYSTEMS (COMPUTERS) The integrity of onboard computer programs: A solution N80-14028 The avionics computer program: Practical experiences with a methodology --- Mirage P1 and Mirage 200 aircraft N80-14037 OPTIMAL CONTROL Controllers for aircraft motion simulators [AIAA PAPER 80-0050] A80-18252 Constrained optimum trajectories with specified range A80-18538 A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design A80-20879 Design criteria for optimal flight control systems --- study of optimal flight control systems engineering for feedback control [AD-A074092] N80-15139 OPTIBIZATION Multi-variable cycle optimization by gradient methods --- for variable-cycle engines [AIAA PAPER 80-0052] A80-18254 Optimization of turbine nozzle cooling by combining impingement and film injection [ATAA PAPER 80-0299] A80-19316 Code optimization for solving large 3D EMP problems A80-19316 electromagnetic scattering by aircraft structures A80-19764 Advanced technology effects on V/STOL propulsive system weight [SAWE PAPER 1300] A80-20640 Air cargo container utilization optimization through modeling A80-20870 ORBITAL POSITION ESTIMATION The Russian satellite navigation system A80-20982 OXIDATION Effect of naphthenic aromatic hydrocarbons on the oxidizability of hydrogenated jet fuel --- jet engine fuels A80-17675 070NR Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes, volume 1 [NASA-TH-79166] N80-15059 Ρ PANORAHIC CAMERAS A light aircraft camera Pod - The Enviro-Pod A80-20251 PARTICLE SIZE DISTRIBUTION Investigation of the wear debris content in oil by measurements of the reluctance and eddy current loss in an electric circuit

A80-19053

SUBJECT INDEX

PASSENGERS NASA technical advances in aircraft occupant safety --- clear air turbulence detectors, fire resistant materials, and crashworthiness N80-15060 [NASA-TM-80851] PA7BEBATS An analytical method of testing pavement strength 17998 Reflection cracking of bituminous overlays for airport pavements: A state of the art [AD-A073484] N80 N80-14144 PENALTY FUNCTION A first look at the effect of severe rainfall upon an aircraft [NASA-CR-162569] N80-15058 PBRPORMAUCE PREDICTION Analytical investigation of aerodynamic characteristics of highly swept wings with separated flow 180-17697 Determination of the spin and recovery characteristics of a typical low-wing general aviation design aviation design [AIAA PAPER 80-0169] A8 Multiple tactical aircraft combat performance A80-18351 evaluation system [AINA PAPER 60-0189] A80-Problems associated with cargo airplanes having A80-18358 aft mounted engines [SAWE PAPER 1314] A80-20648 Infrared sensor system performance simulations A80-20900 Summary of advanced methods for predicting high speed propeller performance [AIAA PAPER 80-0225] A80-2 Summary of advanced methods for predicting high A80-20966 speed propeller performance [NASA-TH-81409] PERFORMANCE TESTS N80-15051 Effect of the relative area of the flow core on the performance of a hypersonic wind tunnel A80-17673 An experimental mell investigation of turbofan engine internal exhaust gas mixer configurations [AIAA PAPER 80-0228] A80-19302 Verification of digital autopilot microprocessor hardware and software via hardware-in-the-loop simulation A80-20901 Performance evaluation methods of a secondary radar network N80-14068 Quiet Clean Short-Haul Experimental Engine (QCEE) Over-The-Wing (OTW) propulsion system test report. Volume 2: Merodynamics and performance engine performance tests to define propulsion system performance on turbofan engines [NASA-CR-135324] N80-14120 The CF6 jet engine performance improvement: New front mount [NASA-CR- 159639] N80-14127 JA-6A circulation control wing contractor flight demonstration AD-A0748881 N80-15080 PERTURBATION Trajectory behaviour of a control configurated aircraft subjected to random disturbances N80-15171 PHASED ARRAYS Target tracking using Doppler-information in sensor oriented coordinates with a three dimensional array radar [REPT-270] N80-14325 PHOTOGRAPHIC RECORDING US Army Test and Evaluation Command test operations procedures: Photographic and video image support aviation materiel [AD-A074883] NSO-14377 PHYSIOLOGICAL RESPONSES Visual accommodation responses in a virtual image environment [AD-A074415] N80-15082 PILOT PERFORMANCE A statistical method applied to pilot behavior analysis in multilcor systems A80-18537 The effects of motion and g-seat cues on pilot simulator performance of three piloting tasks [NASA-TP-1601] N80-N80-15069 Effects of varying visual display characteristics of the T-4G, a T-37 flight simulator [AD-A071410] N80-15 PILOT TRAINING N80-15180 Meteorological input to general aviation pilot training N80-14634 PISTON ENGINES Experimental investigation of the characteristics of pneumatic transfer lines A80-19052 Exhaust emission reduction for intermittent combustion aircraft engines [NASA-CR-159757] N80-14130 PITCH (INCLIAITION) Quiet Clean Short-haul Experimental Engine (QCSEE). Ball spline pitch change mechanism design report [NASA-CR-134873] N80-15101 PLANFORMS Effect of tip planform on blade loading characteristics for a two-bladed rotor in hover [NASA-TH-78615] N80-14049 PLASHA CONTROL Low-aspect-ratio limit of the toroidal reactor -The spheromak A80-17876 PREUBATIC BOUIPHENT Experimental investigation of the characteristics of pneumatic transfer lines A80-19052 PREUNATICS On the dynamics of compressor surge A80-17900 FODS (EXTERNAL STORES) A light aircraft camera Pod - The Enviro-Pod A80-20251 POLLUTION CONTROL Quiet Clean Short-haul Experimental Engine (QCSEE) [NASA-CR-159473] N80-15120 POIYINIDE RESINS Quiet Clean Short-Haul Experimental Engine (QCSEE) [NASA-CR-135279] [UTW] graphite/PHR cowl development POLYNER MATRIX COMPOSITE MATERIALS Advanced materials and the Canadair Challenger [SAWE PAPER 1284] A80-A80-20632 POROUS WALLS Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels --- computational fluid dynamics. [NASA-CR-3210] POSITION (LOCATION) N80-14047 Guidance system position update by multiple subarea correlation A80-17518 Laser-optical blade tip clearance measurement system [NASA-TM-81376] N80-14128 POSITION ERRORS Determination of the repeatability of PEC ---flight tests for position error calibrating [AETE-PR-79/36] N80-14109 POSITION INDICATORS A bigh accuracy flight profile determining system
 --- systems analysis of inertial navigation
 system for aircraft position determination N80-14042 POTENTIAL FLOW General potential theory of arbitrary wing sections [NACA-452] N80-15046 POTENTIAL THEORY General potential theory of arbitrary wing sections [NACA-452] N80-1504 N80-15046 POWER SUPPLY CIRCUITS An overvoltage safety system for direct current aircraft generators A80-19051 POWERED LIFT AIRCRAFT Quiet Clean Short-haul Experimental Engine (QCSEB) [NASA-CR-159473] N80-15 N80-15120 Quiet powered-lift propulsion [NASA-CP-2077] N80-15127 The YC-14 upper surface blown flap: A unique control surface N80-15157

PREDICTION ANALYSIS TECHNIQUES

SUBJECT INDEX

PREDICTION ANALYSIS TPCHNIQUES A pre-design code for predicting engine acquisitics costs [AIAA PAPER 80-0055] A80-19269 An adaptation and validation of a primitive variable mathematical model for predicting the flows in turbojet test cells and solid fuel ramjets [AD-A074187] N90-10133 PRESSURE Surface conforming thermal/pressure seal --- for control devices in space vehicles [NASA-CASE-BSC-18422-1] N80-1 NR0-14400 PRESSURE DISTRIBUTION Pressure distribution on Joukowski wings [NACA-TM-336] N80-15036 The aerodynamic forces on airship hulls [NACA-184] Nusers guide for A344: A program using a finite N80-15039 difference method to analyze transonic flow over oscillating airfoils [NASA-CR-159141] N80-15052 Exploratory studies of the cruise performance of upper surface blown configurations: Experimental program, high-speed pressure tests [NASA-CR-159135] N80-15 N80-15071 PRESSURE MEASUREMENTS Aeroacoustic measuring techniques in or outside turbulent flows N80-14876 PRESSURE RECOVERY Effect of the relative area of the flow core on the performance of a hypersonic wind tunnel A80-17673 PROBLEM SOLVING A computerized method for calculating flutter characteristics of a system characterized by two degrees of freedom [NASA-TM-80153] N80-14055 PROFILONETERS Discontinuous registration of industrial radiographs using profile analysis and piecewise correlation techniques A80-17521 PROGRAM VERIFICATION (COMPUTYES) An assessment of and approach to the validation of digital flight control systems N80-14036 PROJECT PLANNING NASA/Army XV-15 tilt rotor research aircraft wind-tunnel test program plan --- Ames 40-ft by 80-ft wind tunnel tests [NASA-TH-78562] N80-15067 PROPELLER BLADES Summary of advanced methods for predicting high speed propeller performance [AIAA PAPER 80-0225] A80-20966 PROPELLER EFFICIENCY Summary of advanced methods for predicting high speed propeller performance [AIAA PAPER 80-0225] A80-2 Summary of advanced methods for predicting high A80-20966 speed propeller performance [NASA-TM-81409] PROPULSION SYSTEM CONFIGURATIONS N80-15051 Propulsion/airframe integration considerations for high altitude hypersonic cruise vehicles [AIAA PAPEF 80-0111] A80-18272 Advanced technology effects on V/STOL propulsive system weight [SAWE PAPER 1300] Oblique detonation wave ranjet [NASA-CR-159192] A80-20640 N80-14131 Propulsion options for the HI SPOT long endurance drone airship [AD-A074595] N80-14132 Hypersonic cruise aircraft propulsion integration study, volume 1 [NASA-CR-158926-VOL-1] N80-15074 [NASA-CR-158926-90L-1] N80-150 Hypersonic cruise aircraft propulsion integration study, volume 2 [NASA-CR-158926-90L-2] N80-150 Quiet Clean Short-haul Experimental Engine (QCSEE) Over The Wing (OTW) design report [NASA-CR-134848] N80-150 Driet Clean Short-haul Experimental Theory (CCSEE) Driet Clean Short-haul Experimental Theory (CCSEE) 80-15075 N80-15086 Quiet Clean Short-haul Experimental Engine (OCSEE) preliminary over-the-wing flight propulsion system analysis report [NASA-CR-135296] N80-15095

Quiet Clean Short-haul Experimental Engine (QCSEF) Over-The-Wing (OTW) boilerplate nacelle design report [NASA-CR-135168] N80-15099 Quiet Clean Short-haul Experimental Engine (QCSBE): The aerodynamic and mechanical design of the QCSEE under-the-wing fan [NASA-CR-135009] N80-15109 Quiet Clean Short-haul Experimental Engine (QCSEP) [NASA-CR-159473] N80-151 Quiet Clean Short-Maul Experimental Engine N80-15120 (QSCEE). Preliminary analyses and design report, volume 1 [NASA-CE-134838] Quiet Clean Short-Haul Experimental Engine N80-15123 (QCSPE). Preliminary analyses and design report, volume 2 [NASA-CR-134839] N80-15124 PROPULSION SYSTEM PERFORMANCE Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Multi-variable cycle optimization by gradient methods --- for variable-cycle engines [AIAA PAPER 80-0052] A80-182 Quiet Clean Short-Haul Experimental Engine (QCSEF) A80-18254 over-The-Wing (CTW) propulsion system test report. Volume 2: Aerodynamics and performance --- engine performance tests to define propulsion system performance on turbofan engines (NASA-CR-135324] N80-14120 Dynamic response of a Mach 2.5 axisymmetric inlet and turbojet engine with a poppet-value controlled inlet stability bypass system when subjected to internal and external airflow transients [NASA-TP-15311 N80-14123 Quiet Clean Short-haul Experimental Engine (QCSEE) preliminary under the wing flight propulsion system analysis report [NASA-CR-134868] N80-150 Quiet Clean Short-haul Experimental Engine (OCSEE) N80-15088 Under-The-Wing (UTW) engine composite nacelle test report. Volume 1: Summary, aerodynamic and mechanical performance [NBSA-CR-159471] N80-N80-15094 Quiet Clean Short-haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine boilerplate nacelle test report, volume 1 [NASA-CR-135249] N80-15096 Quiet Clean Short-haul Experimental Engine (QCSFE). Under-The-Wing (UTW) engine boilerplate nacelle test report. Volume 3: Mechanical performance [NASA-CR-135251] N80-15097 Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears bearing development program NASA-CR-134890] N80-15105 Quiet Clean Short-haul Experimental Pngine (QCSEE) main reduction gears detailed design report [NASA-CR-134872] N80-151 Quiet Clean Short-Haul Experimental Engine (QCSEE) N80-15106 Over-The-Wing (OTW) propulsion system test report. Volume 1: Summary report [NASA-CR-135323] Quiet Clean Short-Haul Experimental Engine (QCSEF) N80-15125 Over-The Wing (OTW) propulsion system test report. Volume 3: Mechanical performance [NASA-CR-135325] Ni N80-15126 PROPULSIVE EFFICIENCY Rngine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 Quiet Clean Short-Haul Experimental Engine (QCSEE). Under-the-wing (UTW) engine boilerplate Nacelle test report. Vol Volume 2: Aerodynamics and performance [NASA-CR-135250] N80-14116 PROTECTIVE COATINGS Protective coatings for aircraft composites in nuclear environments [AD-A074889] N80-14199 PTION NOUNTING Preliminary weight estimation of engine section structure [SAWE PAPER 1311] A80-20645 PILONS

Direct side force and drag control with the aid of pylon split flaps N80-15163

Ω

QUARTZ CRYSTALS

Investigations of the optimal configuration of high-stability quartz oscillators for aircraft and missiles

OUIET ENGINE PROGRAM

19990-19990

- Quiet Clean Short-Haul Experimental Engine (QCSEE) acoustic and aerodynamic tests on a scale model over-the-wing thrust reverser and forward thrust nozzle
- [NASA-CR-135254] Quiet Clean Short-Haul Experimental Engine N80-14115 (QCSEE). Under-the-wing (UTW) engine boilerplate Nacelle test report. Vol Volume 2: Aerodynamics and performance [NASA-CR-135250]
- N80-14116 Quiet, Clean, Short-Haul, Experimental Engine (QCSEE) Under-The-Wing (UTW) engine acoustic design
- [NASA-CR-1352671 N80-14117 Quiet, Clean, Short-Haul Experimental Engine (QCSER) Over-The-Wing (OTW) engine acoustic design
- [NASA-CR-135268] N80-14118 N80-141 Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research
- Aircraft (OSRA) [NASA-TP-1556] N80-Demonstration of short-haul aircraft aft noise N80-14121 reduction techniques on a twenty inch (50.8 cm)
- diameter fan, volume 1 [NASA-CR-134849] N80-15 Demonstration of short haul aircraft aft noise reduction techniques cn a twenty inch (50.8 cm) diameter fan, volume 3 [NASA-CR-134851] N80-15 N80-15083
- N80-15085 Quiet Clean Short-haul Experimental Engine (OCSE2) Over The Wing (OTM) design report [NASA-CR-134848] N80-150 Quiet Clean Short-haul Experimental Engine
- N80-15086 QUET CLEAN SHORT-HAUL Experimental Engine (QCSEE). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 PR variable pitch fan with core flow [NASA-CR-135017] N80-1508 Quiet Clean Short-Haul Experimental Engine (QCSEE)
- N80-15087 preliminary under the wing flight propulsion system analysis report [NASA-CR-134868] N80 N80-15088
- Quiet Clean Short-haul Experimental Engine (QCSEP). The aerodynamic and mechanical design of the QCSEP over-the-wing fan [NASA-CR-134915] N80-15089
- Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report [NASA-CR-134920] N80-15090
- Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report [NASA-CR-134914] N80-150 Quiet Clean Short-haul Experimental Engine (OCSEE) N80-15091
- over-the-wing control system design report [NASA-CR-135337] Quiet Clean Short-haul Experimental Engine N80-15092
- N80-15093
- Quiet Clean Snort-naul rxperimental rugine (QCSEE). Core engine noise measurements [NSA-CR-135160] N80-150 Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) engine composite nacelle test report. Volume 1: Summary, aerodynamic N80-15094 *
- and mechanical performance [NASA-CR-159471] Quiet Clean Short-haul Experimental Engine (QCSEE) preliminary over-the-wing flight propulsion system analysis report [NASA-CR-135296] Quiet Clean Short-haul Experimental Engine N80-15095
- (QCSEE). Under-The-Wing (UTW) engine boilerplate nacelle test report, volume 1 [NASA-CR-135249] N80-150 N80-15096

Quiet Clean Short-haul Experimental Engine (QCSEE). Under The-Wing (UTW) engine boilerplate nacelle test report. Volume 3: Mechanical performance NASA-CR-135251] N80-15097 Quiet Clean Short-haul Experimental Engine (QCSEB). Composite fan frame subsystem test report [NASA-CR-135010] N80-150 Quiet Clean Short-haul Experimental Engine (QCSEE) N80-15098 Over-The-Wing (OTW) boilerplate nacelle design report [NASA-CR-135168] N80-15099 Quiet Clean Short-haul Experimental Engine (QCSPE) Under-The-Wing (UTW) composite nacelle subsystem test report --- to verify strength of selected composite materials [NASA-CR-135075] N80-15100 Quiet Clean Short-haul Experimental Engine (QCSEE). Ball spline pitch change mechanism design report [NASA-CR-134873] N80-15101 Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan --- quiet engine program program [NASA-CR-134891] N80-151 Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears test program [NASA-CR-134669] N80-151 [NASA-CR-134669] Reperimental Engine (QCSEE) N80-15102 N80-15103 Quiet Clean Short-haul Experimental Pngine (QCSEE) clean combustor test report [NASA-CR-134916] Quiet Clean Short-haul Experimental Engine (QCSEE) N80-15104 main reduction gears bearing development program [NASA-CR-134890] N80-151 Quiet Clean Short-haul Experimental Engine (QCSPE) 180-15105 main reduction gears detailed design report [NASA-CR-134872] N8 Quiet Clean Short-haul Experimental Engine N80-15106 (QCSEE): Hamilton Standard cam/harmonic drive variable pitch fan actuation system detail design report NASA-CR-134852] N80-15107 Quiet Clean Short-haul Experimental Engine (OCSEE) under-the-wing engine composite fan blade design report NASA-CR-135046] N80-15108 (QCSEE): The aerodynamic and mechanical design of the QCSEE under-the-wing fan or the QCSE under-the-wing ran [NASA-CR-135009] N80-151 Ouiet Clean Short-haul Experimental Engine (QCSEE) composite fan frame design report [NASA-CR-135278] N80-151 N80-15109 N80-15110 Quiet Clean Short-haul Experimental Engine (OCSEE) UTW fan preliminary design [NASA-CR-134842] Quiet Clean Short-haul Experimental Engine N80-15111 (QCSER): The aerodynamic and preliminary mechanical design of the QCSEE OTW fan Mecnanical ucsign of the gradient of the second sec N80-15112 [NASA-CR-134640] N80-151 Quiet Clean Short-haul Experimental Engine (OCSEE) N80-15113 over-the-wing engine and control simulation results [NASA-CR-135049] Quiet Clean Short-Haul Experimental Engine (QCSEE) N80 - 15114ball spline pitch-change mechanism whirligig test report test report [NASA-CR-135354] N80-151 Quiet Clean Short-haul Experimental Fngine (QCSEE) Under-The-Wing (UTW) boiler plate nacelle and core exhaust nozzle design report 880-15115 [NASA-CR-135008] N80-15116 Quiet Clean Short-haul Experimental Engine (QCSEE) whirl test of cam/harmonic pitch change actuation system [NASA-CR-135140] N80-15117

- [NASA-CR-135140] N80-151 Quiet Clean Short-haul Experimental Engine (OCSEE) Over-The-Wing (OTW) propulsion systems test report. Volume 4: Acoustic performance [NASA-CR-135326] Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (OTW) composite nacelle [NASA-CP-135122] NAC-151 N80-15118
- [NASA-CR-135352] N80-15119

RADAR APPROACH CONTROL

SUBJECT INDEX

Quiet Clean Short-haul Experimental Engine (QCSEE) [NASA-CR-159473] Quiet Clean Short-haul Experimental Engine 180-15120 (QCSEP). Double-annular clean combustor technology development report [NASA-CR-159483] Quiet Clean Short-Haul Fxperimental Engine N80-15121 (QCSEE): Acoustic treatment development and design [NASA-CR-135266] Quiet Clean Short-Haul Experimental Engine N80-15122 (OSCEE). Preliminary analyses and design report, volume 1 [NASA-CR-134838] N80-15123 Quiet Clean Short-Haul Experimental Engine (QCSPE). Preliminary analyses and design report, volume 2 [NASA-CR-134839] N80-15124 Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) propulsion system test report. Volume 1: Summary report [NASA-CR-135323] N80-15125 Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-The Wing (OTW) propulsion system test report. Volume 3: Mechanical performance [NASA-CR-135325] N80-15126 Quiet powered-lift propulsion N80-15127 [NASA-CP-2077] R

RADAR APPROACH CONTROL What brings us down tcmorrow - Landing guidance systems for the 1980s A80-18725 RADAR BEACONS On radar in air traffic control --- conference, Rome, Jul. 1979 [PUP-11-1979] N80-N80-14065 RADAR CROSS SECTIONS Application of RCS guidelines to weight effective aircraft design --- Radar Cross Section [SAWE PAPER 1270] A80-27626 RADAR DATA Radar data utilization in automating the sequencing of aircrafts in terminal areas N80-14071 A distributed processing system for radar data presentation N80-14075 Filtering of synthetic radar data N80-14076 RADAR FILTERS A survey of the stochastic filtering techniques for data processing in air-traffic control and surveillance systems A80-20867 RADAR NETWORKS Problems related to the design and construction of a radar network N80-14066 Methodology for the evaluation of a radar site N80-14067 Organization of an integrated global maintenance service --- Radar Networks N80-14069 RADAR RECEIVERS Implementation of air traffic control radar receivers with fast Fourier transform processors N80-14086 · Design study of a low cost civil aviation GPS receiver system [NASA-CR-159176] N80-15062 RADAR SIGNATURES Filtering of synthetic radar data N80-14076 RADAR TRACKING Problems related to the design and construction of a radar network N80-14066 Methodology for the evaluation of a radar site N80-14067 Tactical analysis of conflicts in an air traffic control system: Design and implementation of a provisional model N80-14072 Tracking algorithms for mono and multiradar N80-14074

Onboard collision avoidance system: Environmental influence on the tracking algorithm requirements N80-14105 Target tracking using Doppler-information in sensor oriented coordinates with a three dimensional array radar [REPT-270] N80-14325 BADARSCOPES Visual displays for air traffic control data N80-14077 RADIO NAVIGATION The Omega radio navigation system --- Russian book A80-19913 RADIO TRANSMISSION The Omega radio navigation system --- Russian book A80-19413 BADIOGRAPHY Discontinuous registration of industrial radiographs using profile analysis and piecewise correlation techniques 180-17521 RATN A first look at the effect of severe rainfall upon an aircraft [NASA-CR-162569] N80-15058 BABJET ENGINES Propulsion/airframe integration considerations for [AIAA PAPER 80-0111] A80-18272 Oblique detonation wave ramjet [NASA-CR-159192] N80-14131 An adaptation and validation of a primitive flows in turbojet test cells and solid fuel ramjets [AD-A074187] N80-14133 RANGE FINDERS Non-contacting electro-optical contouring of helicopter rotor blades [AD-A070806] N80-14111 BAY TRACING An air traffic channel simulation by means of ray-tracing techniques N80-14088 REACTOR DESIGN Low-aspect-ratio limit of the toroidal reactor -The spheromak 180-17876 REAL TIME OPERATION Wire obstacle warning system /WOWS/ - A real-time airborne sensor for automatic detection and recognition of wirelike objects A80-17402 Automation of flight on-line strategic control: The case of speed control on pre-established routes N80-14070 RECTANGULAR PANELS Sonic fatigue design data for bonded aluminum aircraft structures TATAA PAPER 80-0303] A80-18304 RECTANGULAR WINGS The effects of leading edge modifications on the post-stall characteristics of wings A80-18375 ÎAIAA PAPER 80-01991 REDUNDANCY Redundancy management considerations for a control-configured fighter aircraft triplex digital fly-by-wire flight control system N80-14026. Failure detection, isolation and indication in highly integrated digital guidance and control system N80-14027 REGENERATORS Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIA PAPER 80-0224] [AIA PAPER 80-0224] REGERSSION ANALYSIS Regression techniques applied to parametric turbine engine simulations 101-19301 [AIAA PAPER 80-0053] A80-18255 REINFORCING FIBERS FRS composites for advanced gas turbine engine components

N80-15137

[AD-A074287]

PELIABILITY ANALYSIS Study of turboprop systems reliability and maintenance costs [NASA-CR-135192] N80-14129 RELIABILITY ENGINEERING US Army Test and Evaluation Command test operations procedures: Photographic and video image support aviation materiel [AD-A074883] N80-14377 REMOTE SENSORS Wire obstacle warning system /WOWS/ - A real-time airborne sensor for automatic detection and recognition of wirelike objects A80-17402 Infrared sensor system performance simulations A80-20900 REMOTELY PILOTED VEHICLES Experience in producing software for the ground station of a remotely piloted helicopter system N80-14038 RESEARCE Current research on aviation weather (bibliography), 1979 [NASA-CR-3214] N80-14651 RESEARCE AIRCRAPT Quiet short-haul research aircraft familiarization document --- STOL [NASA-TH-811491 N80-14108 The T-28 thunder/hailstorm penetration aircraft N80-14640 NASA/Army XV-15 tilt rotor research aircraft wind-tunnel test program plan --- Ames 40-ft by 80-ft wind tunnel tests [NASA-TH-78562] N80-150 N80-15067 RESEARCH PACILITIES Aeronautical Research Laboratories [RM78/30107] N80-15026 RESEARCH NANAGEMENT NASA broad-specification fuels combustion technology program: Status and description [NASA-TM-79315] N80-Unsteady flow and dynamic response analyses for N80-14126 helicopter rotor blades [NASA-CR-159190] N80-14355 **BESBARCH PROJECTS** Navy V/STOL - A continuing initiative [SAWE PAPER 1325] A80-20655 RESIDENTIAL ARPAS Airport noise, location rent, and the market for residential amenities A80-17720 REYNOLDS NUMEER Peynolds number and compressibility effects on dynamic stall of a NACA 0012 airfoil A80-18238 [AIAA PAPER 80-0010] RIGID ROTORS Effects of primary rotor parameters on flapping dynamics [NASA-TP-1431] N80-15138 ROLLER BEARINGS Quiet Clean Short-haul Experimental Engine (QCSFE) main reduction gears bearing development program [NASA-CR-134890] N80-15105 ROLLING BOBENTS Effect of spanwise gust variations N80-14639 ROTARY STABILITY Experimental determination of pure rotary stability derivatives using curved and rolling flow wind tunnel [AIAA PAPER 80-0309] A80-18308 ROTARY WINGS Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response 180-17716 Rotational noise of helicopter rotors A80-17718 Effect of tip planform on blade loading characteristics for a two-bladed rotor in hover [NASA-TH-786151 N80-14049 Acoustically swept rotor --- helicopter noise reduction [NASA-CASE-ARC-11106-1] N80-14107 Non-contacting electro-optical contouring of helicopter rotor blades [AD-A070806] N80-14111

Investigation of the oscillatory and flight Investigation of the oscillatory and flight behavior of rotor systems in relation with atmospheric turbulence [BNVG-FBWT-79-5] N80-Unsteady flow and dynamic response analyses for beliconter rotor blades N80-14142 helicopter rotor blades [NASA-CR-159190] N80-14355 CH-46 composite rotor blade flight stress survey data. Volume 3: Plotted forward rotor blade chord, torsion and absolute loads [AD-A075612] N80-1 N80-15077 Analysis of low-speed helicopter flight test data [AD-A074141] N80-15 N80-15079 Model 540 rotor blade crack propagation investigation [AD-A0747341 N80-15081 Fffects of primary rotor parameters on flapping dynamics [NASA-TP-1431] N80-15138 BOTATING BODIES On the use of vibration self-damping materials in the manufacture of parts for rotating machinery N80-14135 ROTATING SHAPTS Direct integration of transient rotor dynamics [NASA-TP-1597] N80-15128 BOTATING STALLS A phenomenological model of the dynamic stall of a helicopter blade profile [ONERA, TP NO. 1979-149] A80-2001 ROTOR AZRODYNANICS A80-20086 Evaluation of the intensity of beat-induced vibrations A80-17965 Flow in transonic compressors [AIAA PAPER 80-0124] A80-18357 phenomenological model of the dynamic stall of a helicopter blade profile [ONFRA, TP NO. 1979-149] N80-20 Ffect of tip planform on blade loading characteristics for a two-bladed rotor in hover 180-20086 [NASA-TM-78615] N80-14049 Acoustically swept rotor --- helicopter noise reduction [NASA-CASE-ARC-11106-1] N80-14107 Effects of primary rotor parameters on flapping dynamics [NASA-TP-1431] N80-15138 ROTORS Direct integration of transient rotor dynamics [NASA-TP-1597] N80 N80-15128 RUNWAYS Reflection cracking of bituminous overlays for airport pavements: A state of the art [AD-A073484] N80 N80-14144 Effect of weather conditions on airport operations N80-14638

S

SAFETY DEVICES An overvoltage safety system for direct current aircraft generators A80-19051 SATELLITE NAVIGATION SYSTEMS Navigation error using rate of change of signal time of arrival from space vehicles A80-20904 The Russian satellite navigation system A80-20982 The Global Positioning System A80-20992 SCALE BODELS Large scale model tests of a new technology V/STOL concept [ATAA PAPER 80-0233] A80-19303 Scale model performance test investigation of exhaust system mixers for an Energy Efficient Engine /E3/ propulsion system [AIAA PAPER 80-0229] A80-20968 SCHEDULTNG Aircraft delays at major US airports can be reduced [PB-299442/4] N80-15061 SEALS (STOPPERS) Peasibility of SiC composite structures for 1644 K (2500 F) gas turbine seal application [NASA-CR-159597] N80-141 N80-14122

SECONDARY BADAR

SUBJECT INDEX

Surface conforming thermal/pressure seal --- for control devices in space vehicles [NASA-CASE-BSC-18422-1] N80-14 N80-14400 SECONDARY RADAR Covariance simulation of ECAS - An aircraft collision avoidance system A80-20915 On radar in air traffic control --- conference, Rome, Jul. 1979 Rome, Jul. 195 [FUB-11-1979] N80-14065 Performance evaluation methods of a secondary radar network N80-14068 An air traffic channel simulation by means of ray-tracing techniques N80-14088 L-band measurements in the air traffic channel to characterize secondary radar systems N80-14092 Antireflection techniques for detecting false tracks in air traffic surveillance with secondary radar N80-14100 Automatic systems for airport surface mobile media surveillance based on the use of secondary media N80-14104 SELECTION Methodology for the evaluation of a radar site N80-14067 SELF OSCILLATION On the dynamics of compressor surge A80-17900 SEMICONDUCTOR DEVICES Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 SEPARATED FLOW Analytical investigation of aerodynamic characteristics of highly swept wings with separated flow A80-17697 Experimental study of confluence with separation on an afterbody of revolution [ONEPA, TP NO. 1979-151] A80 The guasi-vortex-lattice method for wings with A80-20088 edge vortex separation [NASA-CR-162530] N80-14052 Righ angle of attack characteristics of different fighter configurations [MBE-UFE-1443(0)] N80-14058 An analytical and experimental study of a short s-shaped subsonic diffuser of a supersonic inlet [NASA-TM-81406] N80-15134 Control of forebody three-dimensional flow separations N80-15164 SEQUENCING Radar data utilization in automating the sequencing of aircrafts in terminal areas N80-14071 SERVICE LIFE Technology of the Rolls-Royce RB211 engine A80-18864 SERVONOTORS Aircraft torque motors --- Russian book A80-19199 SHALR OTL Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 SHARP LEADING POGES Ruler solutions for wing and wing-body combination at supersonic speeds with leading-edge separation FAIAA PAPER 80-0126] A80-1835 A80-18359 SHIPS Small ship-based VTOL aircraft - A design exercise [SAWE PAPER 1296] A80-206 A80-20639 SHOCK WAVE CONTROL Turbojet-erhaust-nozzle secondary-airflow pumping as an exit control of an inlet-stability bypass system for a Mach 2.5 arisymmetric mired-compression inlet -- Lewis 10- by 10-ft. supersonic wind tunnel test [NASA-TP-1532] SHOCK WAVE INTERACTION N80-14124 Separation due to shock wave-turbulent boundary layer interaction [ONFRA, TP NO. 1979-146] A80-20083

Sonic-boom wave-front shapes and curvatures associated with maneuvering flight [NASA-TP-1611] N80-14045 SHORT HAUL AIRCRAPT Quiet Short-haul research aircraft familiarization document --- STOL [NASA-TH-81149] N80-141 N80-14108 Quiet Clean Short-Haul Experimental Engine (QCSEE) acoustic and aerodynamic tests on a scale model over-the-wing thrust reverser and forward thrust nozzle [NASA-CR-135254] Quiet Clean Short-Haul Pxperimental Engine (QCSEE). Under-the-wing (UTW) engine boilerplate Nacelle test report. Volume 380-14115 Volume 2: Aerodynamics and performance [NASA-CR-135250] NEO-14116 Quiet, Clean, Short-Haul, Experimental Engine (QCSEE) Under-The-Wing (UTW) engine acoustic design [NASA-CR-135267 1 N80-14117 Quiet, Clean, Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) engine acoustic design [NASA-CR-135268] N80-14118 Under-The-Wing (UTW) graphite/PMR cowl development [NASA-CR-135279] N80-14119 Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Aircraft (QSRA) [NASA-TP-1556] N80 Demonstration of short-haul aircraft aft noise N80-14121 reduction techniques on a twenty inch (50.8 cm) reduction techniques on a twenty inch (50.8 cm) diameter fan, volume 1 [NASA-CR-134849] N80-15 Demonstration of short-haul aircraft aft noise reduction techniques on a twenty inch (50.8) diameter fan, volume 2 [NASA-CR-134850] N80-15 Demonstration of short haul aircraft aft noise reduction techniques on a twenty inch (50.8 cm) diameter fan, volume 3 N80-15083 N80-15084 diameter fan, volume 3 [NASA-CR-134851] N80-150 Quiet Clean Short-haul Experimental Engine (QCSEE) N80-15085 Over The Wing (OTW) design report [NASA-CR-134848] N80-150 Quiet Clean Short-haul Experimental Engine (QCSEE). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 N80-15086 PR variable pitch fan with core flow [NASA-CR-135017] N80-150 Quiet Clean Short-haul Experimental Engine (QCSEE) preliminary under the wing flight propulsion N80-15087 system analysis report [NASA-CR-134868] Quiet Clean Short-haul Experimental Engine N80-15088 (QCSEB). The acrodynamic and mechanical design of the QCSEE over-the-wing fan [NASA-CR-134915] N80-150 Quiet Clean Short-haul Experimental Engine (QCSEE) N80-15089 under-the-wing engine digital control system design report [NASA-CR-134920] N80-150 Quiet Clean Short-haul Experimental Engine (QCSEE) N80-15090 over-the-wing control system design report [NASA-CR-135337] Quiet Clean Short-haul Experimental Engine N80-15092 Quiet Clean Short-haul Experimental rngine (QCSEP). Core engine noise measurements [NASA-CR-135160] Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) engine composite nacelle test report. Volume 1: Summary, aerodynamic and procharical professore. N80-15093 and mechanical performance [NASA-CR-159471] Quiet Clean Short-haul Experimental Engine (QCSEE) N80-15094 preliminary over-the-wing flight propulsion system analysis report [NASA-CR-135296] N8 N80-15095 Quiet Clean Short-haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine boilerplate nacelle test report, volume 1 [NASA-CR-135249] N80-150 N80-15096 Quiet Clean Short-haul Experimental Engine (QCSPB). Under-The-Wing (UTW) engine boilerplate nacelle test report. Volume 3: Mechanical performance NASA-CR-1352511 N80-15097

SOUND WAVES

Quiet Clean Short-haul Experimental Engine (QCSEP) Under-The-Wing (UTW) composite nacelle subsystem test report -- to verify strength of selected composite materials [NASA-CR-135075] N80-15100 Quiet Clean Short-haul Experimental Engine (QCSEE). Ball spline pitch change mechanism design report [NASA-CR-134873] N80-15101 Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan --- quiet engine program rNASA-CR-1348911 N80-15102 Quiet Clean Short-haul Experimental Engine (QCSEF) main reduction gears test program [NSA-CF-134669] N80-151 Quiet Clean Short-haul Experimental Engine (OCSEE) clean combustor test report NR0-15103 NASA-CR-1349161 N80-15104 Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears bearing development program [NASA-CR-134890] Quiet Clean Short-haul Experimental Engine N80-15105 (QCSEE): Hamilton Standard cam/harmonic drive variable pitch fan actuation system detail design report [NASA-CR-134952] Ouiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine composite fan blade design N80-15107 report [NASA-CR-135046] N80-15108 Quiet Clean Short-haul Experimental Engine (QCSEE): The aerodynamic and mechanical design of the QCSEE under-the-wing fan [NASA-CR-135009] N90-151 Quiet Clean Short-baul Experimental Engine (QCSEE) N80-15109 composite fan frame design report NASA-CR-135278] N80-15110 Quiet Clean Short-haul Experimental Engine (QCSEE) UTW fan preliminary design [NSA-CR-134842]
 Quiet Clean Short-haul Experimental Engine (QCSEE): The aerodynamic and preliminary mechanical design of the QCSEE OTW fan N80-15111 [NASA-CR-134841] N80-15112 Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine composite fan blade design [NASA-CR-134840] N80-15113 Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing engine and control simulation results [NASA-CR-135049] N80-151 Quiet Clean Short-Haul Experimental Engine (QCSEE) N80-15114 ball spline pitch-change mechanism whirligig test report [NASA-CR-135354] N80-15115 Quiet Clean Short-haul Experimental Engine (OCSEE) Under-The-Wing (UTW) boiler plate nacelle and core exhaust nozzle design report [NASA-CR-135008] N80-15116 Quiet Clean Short-haul Experimental Engine (QCSEE) whirl test of cam/harmonic pitch change actuation system [NASA-CR-135140] N80-15117 Quiet Clean Short-haul Experimental Engine (QCSEE) Over-The-Wing (OTM) propulsion systems test report. Volume 4: Acoustic performance [NASA-CR-135326] N80-151 N80-15118 Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle [NASA-CR-135352] N80-151 N80-15119 [WASA-CR-159473] Quiet Clean Short-haul Experimental Engine [WASA-CR-159473] Quiet Clean Short-haul Experimental Engine (QCSEE) N80-15120 (QCSEE). Double-annular clean combustor technology development report [NASA-CR-159483] Quiet Clean Short-Haul Experimental Engine N80-15121 (QCSEE): Acoustic treatment development and design [NASA-CR-135266] Quiet Clean Short-Haul Experimental Engine N80-15122 (QSCEE). Preliminary analyses and design report, volume 1 [NASA-CR-134838] N80-15123

Quiet Clean Short-Haul Experimental Engine (QCSEE). Preliminary analyses and design report, volume 2 [NASA-CR-134839] N80-15124 SHORT TAKEOFF AIRCRAFT Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics 180-20952 Quiet short-haul research aircraft familiarization document --- STOL [NASA-TH-81149] N80-14108 JA-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 Evaluation of approximate methods for the prediction of noise shielding by airframe components [NASA-TP-1004] N80-15129 The YC-14 upper surface blown flap: A unique control surface N80-15157 SIDESLIP Comment on 'Handling quality criterion for heading control A80-17698 SIGNAL RECEPTION Navigation error using rate of change of signal time of arrival from space vehicles A80-20904 SILICON CARBIDES Peasibility of SiC composite structures for 1644 K (2500 F) gas turbine seal application [NASA-CR-159597] N80-14122 SILICON NITRIDES Comparative resistance of Beta-Si3N4 solid solutions to molten silicon attack A80-18062 SINULATORS Aircraft fuel system simulator tests with antimisting kerosene (jet A fuel with FN-9 additive) --- flammability tests [AD-A073237] N80-14256 SITES Methodology for the evaluation of a radar site N80-14067 SKIN (STRUCTURAL MEMBER) Protective coatings for aircraft composites in nuclear environments [AD-A074889] N80-14199 SKIN PRICTION An improved sensing element for skin-friction balance measurements --- supersonic drag measuring instrument [AIAA PAPER 80-0049] 180-18251 SOIL MECHANICS Soil analyses and evaluations at the impact dynamics research facility for two full-scale aircraft crash tests [NASA-CR-159199] SOLUD SOLUTIONS N80-15299 Comparative resistance of Reta-Si3N4 solid solutions to molten silicon attack A80-18062 SOLID-SOLID INTERPACES Contact stress analysis of ceramic-to-metal interfaces --- in gas turbine engines [AD-A074491] SONIC BOONS N80-14417 Sonic-boom wave-front shapes and curvatures associated with maneuvering flight [NASA-TP-1611] N80-14045 5007 Dispersion of sound in a combustion duct by fuel droplets and soot particles A80-20953 SOUND PROPAGATION Dispersion of sound in a combustion duct by fuel droplets and soot particles 180-20953 The analysis of sound propagation in jet engine ducts using the finite difference method [AD-A074233] SOUND WAVES N80-14853 Applications of diffraction theory to aeroacoustics -- aircraft noise

₩80-14870

SPACE SHUTTLE ORBITERS

SUBJECT INDEX

SPACE SHUTTLE ORBITERS Altitude response of several airplanes during landing approach --- including space shuttle [NSA-TH-80186] N80 N80-14139 SPACECEAFT COMPONENTS Surface conforming thermal/pressure seal --- for control devices in space vehicles [NASA-CASE-BSC-18422-1] N80-1 880-14400 SPATIAL DISTRIBUTION Air traffic density and distribution measurements [AD-A073229] NSO-14 N80-14064 SPEECH RECOGNITION Vocabulary specification for automatic speech recognition in aircraft cockpits [AD-A073703] N8 NO-10303 SPEED CONTROL Automation of flight on-line strategic control: The case of speed control on pre-established routes N80-14070 SPOTLERS Roll control by digitally controlled segment spoilers N80-15156 In-flight measured characteristics of combined flap-spciler direct lift controls N80-15165 Unsteady aerodynamics of two-dimensional spoilers at low speeds N80-15170 SPOT WELDS Loading tests of a wing structure for a hypersonic aircraft [NASA-TP-1596] N80-15068 STABILITY DERIVATIVES Estimation of the accuracy of dynamic flight-determined coefficients [AIAA PAPER 80-0171] A80-17700 Experimental determination of pure rotary stability derivatives using curved and rolling flow wind tunnel [ATAA PAPER 80-0309] A80-1 A80-18308 Altitude response of several airplanes during landing approach --- including space shuttle [NASA-TH-80186] N80 STATIC AERODYNAMIC CHARACTERISTICS N80-14139 Evaluation of the aerodynamic characteristics of a 1/20-scale λ -10 model at Mach numbers from 0.30 to 0.75 [AD-A074867] N80-15055 STATIC PIBING Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Aircraft (QSRA) FNASA-TP-15561 N80-14121 STATIC PRESSORE Some practical aspects of the calibration of air data systems 180-18865 STATIC STABILITY Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability --- P-16 [NASA-TP-1538] N80-1 N80-14136 STATISTICAL AWALYSIS A statistical method applied to pilot behavior analysis in multilcop systems **N80-18537** A simple design synthesis method used to estimate aircraft gross weight [SAWE PAPER 1313] STOCHASTIC PROCESSES 380-20647 A survey of the stochastic filtering techniques for data processing in air-traffic control and surveillance systems 180-20867 STRAPDOWN INERTIAL GUIDANCE Development aspects of a dynamically tuned gyro for strapdown - NHRS --- Attitude and Heading Reference System A80-17553 A strapdown inertial reference system for commercial airline use in navigation and flight control A80-17558 An integrated strapdown guidance and control system for launch vehicle application 180-17559

Modular strapdown guidance unit with embedded microprocessors [ATAA PAPER 78-1239] Development of aiding GPS/strapdown inertial A80-18534 navigation system N80-14031 Methods for strap-down attitude estimation and navigation with accelerometers N90-10030 STRESS ANALYSIS Patigue life prediction of a bonded splice joint [AIAA PAPER 80-0305] A80-1 Ã80-18306 Contact stress analysis of ceramic-to-metal interfaces --- in gas turbine engines N80-14417 F 3D-10704911 Thermo-mechanical stress analysis of advanced turbine blade cooling configuration [AD-A074098] STRESS CONCENTRATION N80-15136 Determination of the stress intensity factor of composite structural members 180-17958 STRESS-STRETE DIRGRAMS Review of investigations into aeronautics related fatigue Pederal Republic of Germany N80-14422 [LBP-S-142] STRUCTURAL ANALYSIS Application of the SIRS concept to Navy helicopters --- systems analysis of flight data recorders of flight conditons of helicopters for structural anaĺysis [AD-A074801] N80-15030 Computer simulation of engine systems [NASA-TH-79290] STRUCTURAL DESIGN N80-15132 Sonic fatigue design data for bonded aluminum aircraft structures [AIAA PAPER 80-0303] A80-183 Assessment of analytic methods for the prediction A80-18304 of aerodynamic characteristics of arbitrary bodies at supersonic speeds [AIAA PAPER 80-0071] A80-19 Quiet Clean Short-haul Experimental Engine (QCSEE). The aerodynamic and mechanical design A80-19308 (NASA-CR-134915) N80-150 Quiet Clean Short-haul Experimental Engine (OCSEE) N80-15089 Over-The-Wing (OTW) boilerplate nacelle design report [NASA-CR-135168] STRUCTURAL DESIGN CRITERIA Computer simulation of engine systems N80-15099 [NASA-TN-79290] N80-151 Low cost aircraft flutter clearance --- conference [AGARE-CP-278] N80-1514 N80-15132 N80-15141 STRUCTURAL ENGINEERING Composite structural materials N80-15076 [NASA-CR-162578] N80-150 Ouiet Clean Short-haul Experimental Engine (QCSEF) Under-The-Wing (UTW) composite nacelle [NASA-CR-135352] N80-15119 STRUCTURAL PAILURE Sonic fatigue design data for bonded aluminum aircraft structures [AIAA PAPER 80-0303] STRUCTURAL INFLUENCE COEFFICIENTS A80-18304 Structural parameters that influence the noise reduction characteristics of typical general aviation materials [AIAA PAPER 80-0038] STRUCTURAL STABILITY A80-18248 An analytical method of testing pavement strength A80-17998 An empirical approach for checking flutter stability of gliders and light aircraft N80-15144 STRUCTURAL VIBRATION Gas turbine carcase and accessory vibration -Problems of measurement and analysis A80-17730 Evaluation of the intensity of beat-induced vibrations A80-17965 STRUCTURAL WRIGHT Application of finite element analysis to derivation of structural weight [SAWE PAPER 1271] A80-20627

SWEEP BFFECT

A method of simplifying weight and balance for small aircraft [SARE PAPER 1278] A80-20630 Application of parametric weight and cost estimating relationships to future transport aircraft A80-20637 [SAWE PAPER 1292] A simple design synthesis method used to estimate aircraft gross weight SAWE PAPER 1313] 190-20607 Weight impact of VTOL [SAWE PAPER 1326] N80-20656 SUBSOBIC PLON A numerical approach to subsonic viscous-inviscid interaction **N80-19070** Summary of advanced methods for predicting high speed propeller performance [AIAA PAPER 80-0225] A80-20966 Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels --- computational fluid dynamics [NASA-CR-3210] N80-14047 Summary of advanced methods for predicting high speed propeller performance [NASA-TM-81409] N80-15051 Unsteady effects of a control surface in two dimensional, subsonic and transonic flow N80-15168 SUBSONIC SPEED Optimized aerodynamic design process for subsonic transport wing fitted with winglets --- wind tunnel model [NASA-CR- 159180] N80-14054 Aerodynamic characteristics of moving trailing-edge controls at subsonic and transonic speeds N80-15169 SUPERSONIC AIRCRAFT Application of a higher order panel method to realistic superscnic configurations [ATAN PAPER 79-0274] AS(A80-17696 SUPERSONIC CRUISE AIRCRAFT RESEARCH Plight control and configuration design considerations for highly maneuverable aircraft N80-15154 SUPERSONIC DRAG An improved sensing element for skin-friction balance measurements --- supersonic drag measuring instrument [AIAA PAPER 80-0049] SUPERSONIC FLIGHT 180-18251 Investigation of leading-edge devices for drag reduction of a 60-deg. delta wing at high angles of attack [AIAA PAPER 80-0310] SUPERSONIC FLOW A80-18309 An improved sensing element for skin-friction balance measurements --- supersonic drag measuring instrument FAIAA PAPER 80-0049] A80-18251 Euler solutions for wing and wing-body combination at supersonic speeds with leading-edge separation [AIAA PAPER 80-0126] A80-18359 Mach 3 hydrogen external/tase burning [ATA PAPER 80-0280] A80-19 Numerical simulation of supersonic inlets using a three-dimensional viscous flow analysis A80-19311 [AIAA PAPER 80-0384] A80-20969 An analytical and experimental study of a short S-shaped subsonic diffuser of a supersonic inlet FAIAA PAPER 80-03861 A80-20970 Summary of advanced methods for predicting high speed propeller performance [NASA-TH-81409] N80-N80-15051 SUPERSONIC INLETS Improved numerical simulation of high speed inlets Implored numerical simulation of high speed infet using the Navier-Stokes equations [AIAA PAPER 80-0383] A80-18 Dynamic response of a Mach 2.5 axisymmetric inlet and turbojet engine with a poppet-value controlled inlet stability bypass system when subjected to internal and external airflow A80-18340 transients [NASA-TP-1531] N80-14123

Turbojet-exhaust-nozzle secondary-airflow pumping as an exit control of an inlet-stability bypass system for a Mach 2.5 axisymmetric mixed-compression inlet --- Lewis 10- by 10-ft. mited-compression inter --- Levis 10- by 10-ff. supersonic wind tunnel test [NASA-TP-1532] An analytical and experimental study of a short s-shaped subsonic diffuser of a supersonic inlet [NASA-TM-81006] 880-151 N80-14124 80-15134 SUPERSONIC JET FLOW Conceptual design and performance estimates for a supersonic aerodynamic window for the ATA vacuum system aperture [UCRL-15051] SUPERSONIC SPEEDS N80-15183 Assessment of analytic methods for the prediction of aerodynamic characteristics of arbitrary bodies at supersonic speeds [AIAA PAPER 80-0071] SUPERSOWIC TRANSPORTS A80-19308 The next supersonic transport A80-20214 Plight and wind tunnel test results of the mechanical jet noise suppressor nozzle [AIAA PAPER 80-0165] A80-20971 SUPPORTS The CF6 jet engine performance improvement: New front mount [NASA-CR-1596391 N80-14127 SURFACE NAVIGATION The Omega radio navigation system --- Russian book A80-19413 SURGES On the dynamics of compressor surge 180-17900 SURVEILLANCE RADAR Weather detection using airport surveillance radar A80-19129 A survey of the stochastic filtering techniques for data processing in air-traffic control and surveillance systems A80-20867 On radar in air traffic control --- conference, Rome, Jul. 1979 [FUE-11-1979] N80-14065 Problems related to the design and construction of a radar network N80-14066 Methodology for the evaluation of a radar site N80-14067 Performance evaluation methods of a secondary radar network N80-14068 Organization of an integrated global maintenance service --- Radar Networks 380-14069 Simulation of a surveillance and control system of surface traffic in an airport N80-14073 Tracking algorithms for mono and multiradar N80-14074 Filtering of synthetic radar data N80-14076 Implementation of air traffic control radar receivers with fast Pourier transform processors N80-14086 Development trends of airport surface traffic control radar N80-14087 An air traffic channel simulation by means of ray-tracing techniques N80-14088 Antireflection techniques for detecting false tracks in air traffic surveillance with secondary radar N80-14100 Automatic systems for airport surface mobile media surveillance based on the use of secondary media N80-14104 SURVIVAL BOUIPMENT Aeronautical systems technology needs: Escape, rescue and survival [AD-A074906] N80 N80-14061 SWEEP EFFECT Acoustically swept rotor --- helicopter noise reduction [NASA-CASE-ARC-11106-1] N80-14107

SWEPT WINGS

SUBJECT INDEX

SWEPT WINGS Analytical investigation of aerodynamic characteristics of highly swept wings with separated flow A80-17697 Experimental and computational study of transonic flow about swept wings [AIAA PAPER 80-0005] A80 Investigation of leading-edge devices for drag 180-18235 reduction of a 60-deg. delta wing at high angles of attack FAIAA PAPER 80-0310] A80-18309 A computer code to model swept wings in an adaptive wall transonic wind tunnel [AIAA PAPEB 80-0156] Hybrid vorter method for lifting surfaces with A80-19287 free-vortex flow TAIAA PAPER 80-0070] A80-19307 Wind tunnel measurements and analysis of some unusual control surfaces on two swept wing fighter configurations N80-15155 SWITCHING THEORY APROPP - Message and data switching systems for aeronautical operations 180-19579 SYSTER REPRCTIVERESS Concerning the information efficiency of aerodynamic experiments A80-17671 SYSTEM PATLURES Failure detection, isclation and indication in highly integrated digital guidance and control system N80-14027 SYSTEMS ANALYSIS A high accuracy flight profile determining system --- systems analysis of inertial navigation system for aircraft position determination N80-14042 Integration of flight and fire control --- systems analysis of digital controlled integrated flight and fire control systems N80-14043 A computerized method for calculating flutter characteristics of a system characterized by two degrees of freedom [NÁSA-TH-80153] N80-14055 Linear systems analysis program, L224(QR). Volume 1: Engineering and usage [NASA-CR-2861] N80-14137 Application of the SIRS concept to Navy helicopters --- systems analysis of flight data recorders of flight conditons of helicopters for structural anaĺysis [AD-A074801] N80-15030 Loran digital phase-locked loop and RF front-end system error analysis [NASA-CR-162731] N90-15065 Design study for ATA vacuum system aperture [UCRL-15050] N80-15182 SYSTERS ENGINEERING A distributed processing system for radar data presentation N80-14075 Development trends of airport surface traffic control radar N80-14087 Onboard collision avoidance system: Environmental influence on the tracking algorithm requirements N80-14105 Design study of a low cost civil aviation GPS receiver system [NASA-CR-159176] N80-15062 Aircraft anti-icing/de-icing [AD-A074128] N80-15078 Design criteria for optimal flight control systems --- study of optimal flight control systems engineering for feedback control FAD-A0740921 N80-15139 Т

T-28 AIRCRAFT

The T-28 thunder/hailstorm penetration aircraft N80-14640

T-37 ATRCRAPT Effects of varying visual display characteristics of the T-4G, a T-37 flight simulator [AD-A071410] N80-15 N80-15180 TAIL ASSEMBLIES On the effect of wing wake on tail characteristics N80-15174 TARGET ACQUISITION Infrared sensor system performance simulations A80-20900 TARGET RECOGNITION Wire obstacle warning system /WOWS/ - A real-time airborne sensor for automatic detection and recognition of wirelike objects 180-17402 TECHNOLOGICAL FORECASTING What brings us down tomorrow - Landing guidance systems for the 1980s 180-18725 The next supersonic transport A80-20214 Application of parametric weight and cost estimating relationships to future transport aircraft SAWE PAPER 12921 A80-20637 Aeronautical systems technology needs: Escape, rescue and survival [AD-A074906] N80 N80-14061 TECHNOLOGY ASSESSMENT Preparing aircraft propulsion for a new era in energy and the environment A80-17737 Technology of the Rolls-Royce RB211 engine A80-18864 Tilt rotor - An effective V/STOL concept [SAWE PAPER 1273] A80-206 Small ship-based VTOL aircraft - A design exercise A80-20628 [SAWE PAPER 1296] A80-20639 [SAWE PAPER 1325] A80-201 Review of investigations into aeronautics related A80-20655 fatigue Federal Republic of Germany [LBF-S-142] N80-14422 Technical evaluation report on the 28th Guidance and Control Panel Symposium on Advances in Guidance and Control Systems Using Digital Techniques [AGARD-AR-148] N80-15140 The YC-14 upper surface blown flap: A unique control surface N80-15157 TECHNOLOGY UTILIZATION Technologies conceived for the utilization of ceramics in turboengines [ONERA, TP NO. 1979-132] TEMPERATURE EFFECTS A80-20076 On the influence of steady state temperature and pressure distortion on the flow characteristics in an installed multistage jet engine compressor A80-17724 Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 TERNINAL FACILITIES Marseilles - Metamorphosis of an airport A80-17999 Centralized ground power systems conserve energy A80-18000 Computer simulation of an air cargo small package sorting system A80-20866 Models for freight access to air terminals A80-20869 TERMINAL GUIDANCE Map-matching techniques for terminal guidance using Fourier phase information A80-17517 TERBAIN ANALYSIS Performance evaluation of image correlation techniques --- for aircraft inertial navigation systems A80-17534 TEST CHABBERS Investigation of noise hazards in the engine test cell, CPB Baden-Soellingen [AD-A074391] N80-14 N80-14147

TRAJECTORY ANALYSIS

Climatic chamber testing aircraft, engines armament and avionics; Test operations procedure --- environmental test chambers and facility for testing aircraft construction materials and engines [AD-A074049] N80-15181 TEST BOUIPHENT Impact of new instrumentation on advanced turbine research N80-15133 [NASA-TH-79301] TEST PACILITIES Plight and wind tunnel test results of the mechanical jet noise suppressor nozzle [ATAA PAPEF 80-0165] A80-20971 Climatic chamber testing aircraft, engines armament and avionics; Test operations procedure --- environmental test chambers and facility for testing aircraft construction materials and engines { AD-A0740491 N80-15181 TESTS US Army Test and Evaluation Command test operations procedures: Photographic and video image support aviation materiel [AD-A074883] N80-14377 TF-41 BEGINE Application of the multistage axial-flow compressor time-dependent mathematical modeling technique to the TF41-A-1 modified block 76 compressor FAD-A0744781 N80-14134 LAD-A0744781 THER MAL CONTROL COATINGS Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0302] THER BAL BESISTABCE A80-18303 THER BAL #SJSIABCS Surface conforming thermal/pressure seal --- for control devices in space vehicles [NASA-CASE-MSC-18422-1] N80-1 THER MONYNAMIC CYCLES N80-14400 Installation effects on cycle selection for small turbo-fan engines [AIAA PAPER 80-0106] A80-19280 TAIAA PAPER 80-0106] Puel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] THER RODYNAMIC PEOPERTIES 180-19301 Thermal state of structural members of aircraft engines --- Russian book A80-19412 THERBOHECHANICAL TREATHERT Thermo-mechanical stress analysis of advanced turbine blade cooling configuration [AD-A074098] N80-15136 THIN AIRPOILS Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels --- computational fluid dynamics [NASA-CR-3210] THREE DIMENSIONAL BOUNDARY LAYER N80-14047 The minimum induced drag of aerofoils [NACA-121] N80-15038 THREE DINENSIONAL FLOW Numerical simulation of supersonic inlets using a three-dimensional viscous flow analysis TATAN PAPER 80-0384] A80-20969 Control of forebody three-dimensional flow separations N80-15164 Computation of three-dimensional flow in turbofan mixers and comparison with experimental data [NASA-TH-81410] N80 N80-15364 THEUST Studies of leading-edge thrust phenomena [AIAA PAPER 80-0325] THRUST AUGHENTATION A80-18315 Recent development of a jet-diffuser ejector [AIAA PAPER 80-0231] A80-18277 Large scale model tests of a new technology V/STOL concept [AINA PAPER 80-0233] A80-19303 THRUST REVERSAL Quiet Clean Short-Haul Experimental Engine (QCSEE) acoustic and aerodynamic tests on a scale model over-the-wing thrust reverser and forward thrust nozzle N80-14115 [NASA-CR-135254]

TILT BOTOB AIRCRAFT Tilt rotor - An effective V/STOL concept (SAWE PAPER 1273) NASA/Army XV-15 tilt rotor research aircraft A80-20628 NASA/AFMY XV-15 tilt fotor research aircraft wind-tunnel test program plan --- Ames 40-ft by 80-ft wind tunnel tests [NASA-TM-78562] N80-150 Quiet powered-lift propulsion [NASA-CP-2077] N80-15 N80-15067 N80-15127 TIBE DEPENDENCE Application of the multistage axial-flow compressor time-dependent mathematical modeling technique to the TF41-A-1 modified block 76 compressor [AD-A074478] N80-14134 TIME MEASURING INSTRUMENTS Investigations of the optimal configuration of high-stability guartz oscillators for aircraft and missiles A80-19990 TIME SERIES ANALYSIS Excitation and analysis technique for flight flutter tests [NBB-UF-1446(0)] N80-14140 TOKANAK DEVICES Low-aspect-ratio limit of the toroidal reactor -The spheromak A80-17876 TOLERANCES (MECHANICS) Discontinuous registration of industrial radiographs using profile analysis and piecewise correlation techniques A80-17521 TOROIDAL PLASMAS Low-aspect-ratio limit of the toroidal reactor -The spheromak A80-17876 TOROUE MOTORS Aircraft torque motors --- Russian book A80-19199 TORSTONAL STRESS CE-46 composite rotor blade flight stress survey data. Volume 3: Plotted forward rotor blade chord, torsion and absolute loads [AD-A075612] N80-1 N80-15077 TRACKING (POSITION) Some practical aspects of the calibration of air data systems A80-18865 A nonlinear observer/command generator tracker approach to the XM-97 helicopter gun turret control law design 180-20879 TRACKING FILTERS A survey of the stochastic filtering techniques for data processing in air-traffic control and surveillance systems A80-20867 TRAILING EDGES Experimental study of confluence with separation on an afterbody of revolution [ONFRA, TP NO. 1979-151] A80-27 The guasi-vortex-lattice method for wings with A80-20088 edge vortex separation [NASA-CR-162530] N80-14052 TRAILING-EDGE PLAPS Unsteady effects of a control surface in two dimensional, subsonic and transonic flow N80-15168 Aerodynamic characteristics of moving trailing-edge controls at subsonic and transonic speeds N80-15169 TRAIBING AIRCRAPT The rational design of an airfoil for a high performance jet trainer [AIAA PAPER 80-0328] A80-18317 Forebody vortex blowing: A novel control concept to enhance departure/spin recovery characteristics of fighter and trainer aircraft N80-15172 TRAJECTORY ABALYSIS Trajectory behaviour of a control configurated aircraft subjected to random disturbances N80-1517,1

TRAJECTORY BEASUREMENT

TRAJECTORY BRASUREBENT A survey of the stochastic filtering techniques for data processing in air-traffic control and surveillance systems A80-20867 TRAJECTORY OPTIMIZATION A comparison of first and second order techniques for computing optimal horizontal gliding trajectories --- for low level weapons delivery [ATAN PAPER 80-0061] A80-18: A80-18260 Constrained optimum trajectories with specified range A80-18538 TRANSFER FUNCTIONS The transfer of carbon fibers through a commercial aircraft water separator and air cleaner [NASA-CR-159183] N80-14359 TRANSONIC COMPRESSORS Flow in transonic compressors [AIAA PAPER 80-0124] TRANSONIC FLOW A80-18357 Experimental and computational study of transonic flow about swept wings [AIAA PAPER 80-0005] , 480-18235 Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] 180-18271 [AIAA PAPER 80-0106] An inverse transonic wing design method [AIAA PAPER 80-0330] Analysis of transonic flow about harmonically oscillating airfoils and wings [AIAA PAPER 80-0149] 88 A80-18319 A80-18367 A computer code to model swept wings in an adaptive wall transcnic wind tunnel [ATAA PAPER 80-0156] 880-Separation due to shock wave-turbulent houndary layer interaction A80-19287 [ONERA, TP NO. 1979-146] A80-20 n investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating A80-20083 Αn airfoils and wings [NASA-CR-159143] A users guide for A344: A program using a finite difference method to analyze transonic flow over N80-14056 oscillating airfoils [NaSA-CR-159141] Ni Unsteady effects of a control surface in two N80-15052 dimensional, subsonic and transonic flow N80-15168 TRANSONIC SPEED Aerodynamic characteristics of moving trailing-edge controls at subsonic and transonic speeds N80-15169 TRANSONIC WIND TUNNELS A computer code to model swept wings in an adaptive wall transonic wind tunnel [AIAA PAPER 80-0156] TRANSPORT AIBCRAFT **N80-19287** Application of parametric weight and cost estimating relationships to future transport aircraft [SAWE PAPER 1292] A80-20637 Optimized aerodynamic design process for subsonic transport wing fitted with winglets --- wind tunnel model [NASA-CR-159180] N80-14054 Accident investigation N80-14636 TRANSPORTATION NETWORKS Shipping by air - Is the value of your time worth it 180-20868 TRENDS Development trends of airport surface traffic control radar N80-14087 TURBINE BLADES Discontinuous registration of industrial correlation techniques 180-17521 Optimization of turbine nczzle cooling by combining impingement and film injection A80-19316 [AIAA PAPER 80-0299] Digital system for dynamic turbine engine blade displacement measurements N80-14113 [NASA-TM-81382]

SUBJECT INDEX

Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine composite fan blade design report [NASA-CR-135046] N80-15108 Thermo-mechanical stress analysis of advanced turbine blade cooling configuration F AD-A074098] N80-15136 TURBINE ENGINES The physical and chemical characterization of ten military turbine engine lubricants [AD-A074073] N80-15 N80-15265 TURBOCOMPRESSORS On the influence of steady state temperature and pressure distortion on the flow characteristics in an installed multistage jet engine compressor 180-17724 Damping capacity of plastic compressor blades 180-19868 Nodification of axial compressor streamline program for analysis of engine test data [NASA-TH-79312] N80-14051 Application of the multistage axial-flow compressor time-dependent mathematical modeling technique to the TF41-A-1 modified block 76 compressor F AD-A0744781 N80-14134 TURBOPAN BNGINES Technology of the Rolls-Royce RB211 engine 180-18860 Installation effects on cycle selection for small turbo-fan engines [AIAA PAPER 80-0106] A80-19280 An experimental model investigation of turbofan engine internal exhaust gas mixer configurations [AIAA PAPER 80-0228] A80-193 A80-19302 [AIAA FARE 60-0226] Scale model performance test investigation of exhaust system mixers for an Energy Efficient Engine /E3/ propulsion system [AIAA PAPER 80-0229] A80-A80-20968 Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) propulsion system test report. Volume 2: Aerodynamics and performance --- engine performance tests to define propulsion system performance on turbofan engines [NASA-CR-135324] N80-14120 Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Configurations for the years time Aircraft (QSRA) [NASA-TP-1556] N80-14 The CP6 jet engine performance improvement: New front mount [NASA-CR-159639] N80-14 Configurations of the years time [NASA-CR-159639] N80-14 [NASA-CR-15963 180-14121 N80-14127 Study of turboprop systems reliability and maintenance costs [NASA-CR-135192] N80-14129 Quiet Clean Short-haul Experimental Engine (QCSEE) Over The Wing (OTW) design report [NASA-CR-134848] Quiet Clean Short-haul Experimental Engine (QCSEE) N80-15086 preliminary under the wing flight propulsion system analysis report [NASA-CR-134868] N80-15088 Computation of three-dimensional flow in turbofan mixers and comparison with experimental data [NASA-TM-81410] N80 N80-15364 TUBBOPANS Demonstration of short-haul aircraft aft noise reduction techniques on a twenty inch (50.8 cm) diameter fan, volume 1 [NASA-CR-134849] N80-15083 Demonstration of short-haul aircraft aft noise reduction techniques on a twenty inch (50.8) diameter fan, volume 2 [NRSA-CR-134850] N80 N80-15084 Demonstration of short haul aircraft aft noise reduction techniques on a twenty inch (50.8 cm) diameter fan, volume 3 [NASA-CR-134851] N80-15085 Quiet Clean Short-haul Experimental Engine (QCSEE). The aerodynamic and mechanical design of the QCSEE over-the-wing fan [NASA-CR-134915] Quiet Clean Short-haul Experimental Engine N80-15089 (QCSEE). Composite fan frame subsystem test report [NASA-CR-135010] N80-15098

VARIABLE GEOMETRY STRUCTURES

Quiet Clean Short-haul Experimental Engine (QCSEB): Hamilton Standard cam/harmonic drive variable pitch fan actuation system detail design report [NASA-CR-134052] Quiet Clean Short-haul Experimental Engine (QCSEE) composite fan frame design report N80-15107 composite fan frame design report [NASA-CR-135278] N80-151 Quiet Clean Short-haul Experimental Engine (OCSEE) UTW fan preliminary design [NASA-CR-138642] N80-151 Quiet Clean Short-haul Experimental Engine (QCSEE): The aerodynamic and preliminary mechanical design of the QCSEE OTW fan [NE0-151] N80-15110 N80-15111 [NASA-CR-134841] N80-15112 Quiet Clean Short-haul Experimental Engine (QCS2E) under-the-wing engine composite fan blade design [NASA-CE-134840] N80-15113 Quiet Clean Short-haul Experimental Engine (QCSBE) whirl test of cam/harmonic pitch change actuation system [NASA-CR-135140] N80-15117 TURBOJET ENGINES Technologies conceived for the utilization of ceramics in turboengines [ONERA, TP NO. 1979-132] A84 A80-20076 [UDERA, IF NO. 1979-132] Bynamic response of a Mach 2.5 axisymmetric inlet and turbojet engine with a poppet-value controlled inlet stability bypass system when subjected to internal and external airflow transients [NASA-TP-1531] N80-14123 Turbojet-exhaust-nozzle secondary-airflow pumping as an exit control of an inlet-stability bypass system for a Mach 2.5 axisymmetric mixed-compression inlet --- Lewis 10- by 10-ft. mixed-compression inlet --- Levis 10- by 10-rt. supersonic vind tunnel test [NASA-TP-1532] An adaptation and validation of a primitive variable mathematical model for predicting the flows in turbojet test cells and solid fuel N80-14124 ramjets [AD-A074187] N80-14133 An extension of engine weight estimation techniques to compute engine production cost [AD-A074454] #80 N80-15135 TURBONACHINE BLADES Impact of new instrumentation on advanced turbine research [NASA-TM-79301] N80-15133 TURBOPROP ENGINES Study of turbopror systems reliability and maintenance costs [NASA-CR-135192] N80-14129 TURBOSHAFTS Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPEF 80-0224] A80-19301 TURBULENT BOUNDARY LAYER Separation due to shock wave-turbulent boundary layer interaction fONERA, TP NO. 1979-146] 180-20083 Applications of modern hydrodynamics to aeronautics. Part 1: Fundamental concepts and the most important theorems. Part 2: Applications [NACA-116] N80-15034 TURBULENT PLON Aeroacoustic measuring techniques in or outside turbulent flows N80-14876 On the effect of wing wake on tail characteristics N80-15174 TURBULENT JETS Photon correlation laser velocimeter measurements in highly turbulent flow fields [AIAA PAPER 80-0344] A80-18 A80-18328 TURBULENT MINING Computation of three-dimensional flow in turbofan mixers and comparison with experimental data [NASA-TH-81410] N90-15 N80-15364 TWO DIMENSIONAL PLOW Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] A80-18271 Improved numerical simulation of high speed inlets using the Navier-Stokes equations [AIAA PAPER 80-0383] A80-18340

 Separation due to shok wave-turbulent boundary layer interaction [ONERA, TP NO. 1979-146]
 A80-2008;

 General potential theory of arbitrary wing sections [NaCA-452]
 N80-15046

 Unsteady effects of a control surface in two
 Sections
 A80-20083 N80-15046 dimensional, subsonic and transonic flow N80-15168 U ULTRABIGH PREQUENCIES L-band measurements in the air traffic channel to characterize secondary radar systems N80-14092 UNSTEADY PLOW Unsteady flow and dynamic response analyses for helicopter rotor blades [NASA-CR-159190] N80-14355 Unsteady effects of a control surface in two dimensional, subsonic and transonic flow N80-15168 UNSWEPT WINGS A flutter-speed formula for wings of high aspect ratio N80-15147 UPPER SURFACE BLOWN FLAPS Furtheratory studies of the cruise performance of upper surface blown configuration: Experimental program, high-speed force tests [NASA-CR-159134] N80-15070 Exploratory studies of the cruise performance of upper surface blown configurations: Experimental program, high-speed pressure tests [NASA-CR-159135] N80-15 N80-15071 Exploratory studies of the cruise performance of upper surface blown configurations: Program analysis and conclusions [NASA-CR-159136] N80-15072 URBAN RESPARCH Airport noise, location rent, and the market for residential amenities A80-17720 USER REODIREBENTS A pre-design code for predicting engine acquisition costs [AIAA PAPER 80-0055] A80-19269 Tilt rotor - An effective V/STOL concept [SAWE PAPER 1273] A80-20628

Separation due to shock wave-turbulent boundary

V

V/STOL AIRCRAFT The criticality of engine exhaust simulations on VSTOL model-measured ground effects [AIAA PAPER 80-0230] A80-18276 Large scale model tests of a new technology V/STOL concept [AIAA PAPER 80-0233] Tilt rotor - An effective V/STOL concept A80-19303 [SAWE PAPER 1273] A80-20628 Advanced technology effects on V/STOL propulsive system weight System weight [SANE PAPER 1300] Navy V/STOL - A continuing initiative [SANE PAPER 1325] A80-20640 A80-20655 VACUUM SYSTEMS Design study for ATA vacuum system aperture [UCRL-15050] N80-15182 Conceptual design and performance estimates for a supersonic aerodynamic window for the ATA vacuum system aperture [UCRL-15051] N80-15183 VAPORIZING Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized combustion system --- for gas turbine engines [NASA-TP-1582] N80--N80-14125 VARIABLE CYCLE ENGINES VARIABLE CYCLE SNGINES Multi-variable cycle optimization by gradient methods --- for variable-cycle engines [AIAA PAPER 80-0052] A80 VARIABLE GEOMETRY STRUCTURES Hinged vehicle equations of motion [AIAA PAPER 20-0364] A80 A80-18254 [AIAA PAPER 80-0364] A80-18336

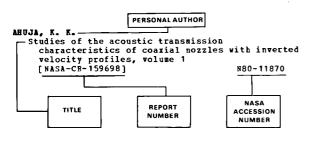
VARIABLE PITCH PROPELLERS

VARIABLE PITCE PROPELLERS Quiet Clean Short-haul Experimental Engine Unlet Clean Short-haul Experimental Engine (QCSEE). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 PR variable pitch fan with core flow [NASA-CR-135017] N80-1501 VELOCITY DISTRIBUTION N80-15087 Sffect of tip planform on blade loading characteristics for a two-bladed rotor in hover N80-14049 [NASA-TH-78615] VERTICAL TAKEOFF AIRCRAFT Small ship-based VTOL aircraft - A design exercise [SAWE PAPER 1296] A80-206 A80-20639 Weight impact of VTOL [SAWE PAPER 1326] A80-20656 VERY HIGH PREQUENCY RADIO FQUIPHENT The Omega radio navigation system --- Russian book A80-19413 VIBRATION DAMPING Damping capacity of plastic compressor blades A80-19868 On the use of vibration self-damping materials in the manufacture of parts for rotating machinery N80-14135 VIBRATION MEASUREMENT Gas turbine carcase and accessory vibration -Problems of measurement and analysis A80-17730 Digital system for dynamic turbine engine blade displacement measurements [NASA-TH-81382] N80-N80-14113 VIBRATION TESTS Fxcitation and analysis technique for flight flutter tests [MBB-UP-1446(0)] N80-14140 Flight testing of the buffeting behavior of combat aircraft [ESA-TT-523] N80-14143 A simplified ground vibration test procedure for sailplanes and light aircraft NB0-15146 VIDEO BOUIPHENT US Army Test and Evaluation Command test operations procedures: Photographic and video image support aviation materiel [AD-A074883] N80-12 N80-14377 VISCOUS PLON A numerical approach to subsonic viscous-inviscid interaction A80-19070 Numerical simulation of supersonic inlets using a three-dimensional viscous flow analysis [AIAA PAPER 80-0384] A80-20 A80-20969 VISUAL FIELDS Visual accommodation responses in a virtual image environment [AD-A074415] N80-15082 VISUAL PERCEPTION Visual accommodation responses in a virtual image environment [AD-A074415] N80-15082 VOICE COMBUNICATION Vocabulary specification for automatic speech recognition in aircraft cockpits [AD-A073703] N80-14303 VOLTAGE REGULATORS An overvoltage safety system for direct current aircraft generators 180-19051 VORTEX GENERATORS Streamwise development of the flow over a delta wing [AIAA PAPES 80-0200] A80-18376 Some investigations concerning the effects of gaps and vortex generators on elevator efficiency and of landing flap sweep on aerodynamic characteristics N80-15178 VORTEX STREETS Hybrid vortex method for lifting surfaces with free-vortex flow [AIBA PAPER 80-0070] A80 A80-19307 VORTICES Development of a vortex-lift-design method and application to a slender maneuver-wing configuration A80-18316 [AIAA PAPER 80-0327]

SUBJECT INDEX

Enhanced departure/spin recovery of fighter		
aircraft through control of the forebody	vortex	
orientation [AIAA PAPER 80-0,173]	A80-18352	
Summary of advanced methods for predicting	high	
speed propeller performance	180-20966	
[AIAA PAPER 80-0225] The quasi-vortex-lattice method for wings w		
edge vortex separation		
[NASA-CR-162530]	N80-14052	
Theoretical study of aerodynamic characteri of wings having vortex flow	30103	
[NASA-CR-159184]	N80-14053	
Porebody vortex blowing: A novel control c to enhance departure/spin recovery	concept	
characteristics of fighter and trainer ai	rcraft	
	N80-15172	
VORTICITY Jet engine combustion noise - Pressure, ent	TODA	
and vorticity perturbations produced by u combustion or heat addition	insteady	
combustion or heat addition	A80-20151	
W		
WARES		
On the effect of wing wake on tail characte	ristics	
WALL FLOW	N80-15174	
· A computer code to model swept wings in an		
• A computer code to model swept wings in an adaptive wall transonic wind tunnel	100 10007	
[AIÀA PAPER 80-0156] Sound generation in a flow near a compliant	A80-19287	
Sound generation in a rior hear a complete	A80-20153	
WARNING SYSTERS Wire obstacle warning system /WOWS/ - A rea	1_time	
airborne sensor for automatic detection a		
recognition of wirelike objects		
Tactical analysis of conflicts in an air t	17402 A80-17402	
control system: Design and implementation	on of a	
provisional model	N80-14072	
WAVE DIFFRACTION	NOU- 14072	
Applications of diffraction theory to aeroa	acoustics	
aircraft noise	N80-14870	
WAVE PRONTS		
Sonic-boom wave-front shapes and curvatures	5	
associated with maneuvering flight [NASA-TP-1611]	N80-14045	
WAVE REPLECTION	_	
Antireflection techniques for detecting fa tracks in air traffic surveillance with	lse	
secondary radar		
	N80-14100	
WEAPON SYSTEMS The modular life cycle cost model - An over		
[SAWE PAPER 1290]	A80-20636	
WEAPONS DELIVERY A comparison of first and second order tec	hniques	
for computing optimal horizontal gliding		
trajectories for low level weapons d [AIAA PAPER 80-0061]	elivery A80-18260	
WEATHER	NOC 10200	
Accident investigation	N80-14636	
Effect of weather conditions on airport op		
	N80-14638	
WEATHER FORECASTING Weather detection using airport surveillan	ce radar	
	A80-19129	
Current research on aviation weather		
(bibliography), 1979 [NASA-CR-3214]	N80-14651	
WEATHER RECONNAISSANCE AIRCRAFT	<i>c</i> .	
The T-28 thunder/hailstorm penetration air	craft N80-14640	
WEIGHT ANALYSIS		
Analog aircraft weight and balance compute		
[SAWE PAPER 1283] Preliminary weight estimation of engine se	A80-20631 ction	
structure		
[SAWE PAPER 1311] Neight Integrated Siging Preluction (MISE)	A80-20645	
Weight Integrated Sizing Evaluation /WISE/ tool for preliminary design	- R	
[SAWE PAPER 1312]	A80-20646	

a simple design symbolic method youd to optimate
A simple design synthesis method used to estimate aircraft gross weight
[SAWE PAPER 1313] A80-20647
Problems associated with cargo airplanes having
aft mounted engines [SAWE PAPER 1314] A80-20648
[SAWE PAPER 1314] A80-20648
Weight impact of VTOL [SAWE PAPER 1326] A80-20656
WEIGET REDUCTION
Application of RCS guidelines to weight effective
aircraft design Radar Cross Section
[SAWE PAPER 1270] A80-20676
Advanced materials and the Canadair Challenger [SAWE PAPER 1284] A80-20632
[SAWE PAPER 1284] A80-20632 Advanced technology effects on V/STOL propulsive
system weight
[SAWE PAPER 1300] A80-20640
WIND TURNEL HODELS
Optimized aerodynamic design process for subsonic
transport wing fitted with winglets wind tunnel model
[NASA-CR-159180] N80-14054
Wind tunnel investigation of controls for DF on a
fighter-type configuration of higher angles of
attack
N80-15166
WIND TUNNEL STABILITY TESTS Experimental determination of pure rotary
stability derivatives using curved and rolling flow wind tunnel
[AIAA PAPER 80-0309] A80-18308
WIND TUNNEL TESTS
Effect of the relative area of the flow core on the performance of a hypersonic wind tunnel
A80-17673
Effects of non-planar strake-wing on the vortex
lift characteristics of a twin-jet fighter
configuration
[AIAA PAPER 80-0329] A80-18318
Correlation of predicted longitudinal aerodynamic characteristics with full-scale wind tunnel data
on the ATLIT airplane
[AIAA PAPER 80-0186] A80-18356
Large scale model tests of a new technology V/STOL
concept
[AIAA PAPER 80-0233] A80-19303
Flight and wind tunnel test results of the mechanical jet noise suppressor nozzle
[AINA PAPER 80-0165] A80-20971
Two dimensional aerodynamic interference effects
on oscillating airfoils with flaps in ventilated
subsonic wind tunnels computational fluid
dynamics [NASA-CR-3210] N80-14047
Turbojet-exhaust-nozzle secondary-airflow pumping
as an exit control of an inlet-stability bypass
as an exit control of an inlet-stability bypass system for a Mach 2.5 axisymmetric
mixed-compression inlet Lewis 10- by 10-ft.
supersonic wind tunnel test [NASA-TP-1532] N80-14124
[NASA-TP-1532] N80-14124 NASA/Army XV-15 tilt rotor research aircraft
wind-tunnel test program plan Ames 40-ft by
80-ft wind tunnel tests
[NASA-TM-78562] N80-15067
Correlation of F-15 flight and wind tunnel test
control effectiveness N80-15152
Some wind tunnel measurements of the effectiveness
at low speeds of combined lift and roll controls
N80-15153
Fin design with ACT in the presence of strakes
N80-15161
An experimental study of the structure and acoustic field of a jet in a cross stream
Ames 7-ft by 10-ft wind tunnel tests
[NASA-CR-162464] N80-15871
WINDOWS (APERTURES)
Design study for ATA vacuum system aperture
[7CRL-15050] N80-15182 Conceptual design and performance estimates for a
supersonic aerodynamic window for the ATA vacuum
system aperture
[UCRL-15051] N80-15183
VING CAMBER
Development of a vortex-lift-design method and
application to a slender maneuver-wing
configuration [ATAA PAPER 80-0327] A80-18316


```
WINGS
```

WING FLAPS Plaperon control: The versatile surface for fighter aircraft N80-15158 WING FLOW METHOD TESTS Experimental and computational study of transonic flow about swept wings [AINA PAPER 80-0005] A80-18235 The effects of leading edge modifications on the post-stall characteristics of wings (AIAA PAPER 80-0199] A80-18375 Streamwise development of the flow over a delta wing [AIAA PAPER 80-0200] A80-18376 WING LOADING Application of finite element analysis to derivation of structural weight [SAWE PAPER 1271] WING WACPLLE CONFIGURATIONS A80-20627 Quiet Clean Short-Haul Experimental Engine (QCSEE). Under-the-wing (TTW) engine boilerplate Nacelle test report. Volume 2: Aerodynamics and performance [NA SA-CR-135250] N80-14116 WING OSCILLATIONS Analysis of transonic flow about harmonically oscillating airfoils and wings [AIAN PAPER 80-0149] A80 A80-18367 An investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings [NASA-CR-159143] N80-14056 WING PAWELS Application of finite element analysis to derivation of structural weight [SAWE PAPER 1271] A80-20627 Elements of the wing section theory and of the wing theory [NACA-191] N80-15040 Loading tests of a wing structure for a hypersonic aircraft [NA SA-TP-1596] N80-15068 WING PLANFORMS The effects of leading edge modifications on the post-stall characteristics of wings [AIAA PAPER 80-0199] A80-18375 WING PROFILES Theoretical study of aerodynamic characteristics of wings having vortex flow [NASA-CR-159184] N80-10 N80-14053 General potential theory of arbitrary wing sections [NACA-452] N80-15046 N80-15046 General theory of aerodynamic instability and the mechanism of flutter INACA-496] N80-15047 WING SLOTS Some investigations concerning the effects of gaps and vortex generators on elevator efficiency and of landing flap sweep on aerodynamic characterístics N80-15178 WINGLETS Optimized aerodynamic design process for subsonic transport wing fitted with winglets --- wind tunnel model [NASA-CR-159180] N80-14054 WINGS An inverse transonic wing design method [AIAA PAPER 80-0330] A80-18319 Optimized aerodynamic design process for subsonic transport wing fitted with winglets --- wind tunnel model [NASA-CR-159180] N80-14054 Elements of the wing section theory and of the wing theory [NACA-191] N80-15040 parametric wing design study for a modern laminar flow wing [NASA-TM-80154] N80-1 JA-6A circulation control wing contractor flight N80-15050 demonstration [AD-A074888] N80-15080 Aerodynamic interaction on a close-coupled canard wing configuration N80-15175

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Suppl. 121)

APRIL 1980

Typical Personal Author Index Listing

Listings in this index are arranged alphabetically by personal author. The title of the document provides the user with a brief description of the subject matter. The report number helps to indicate the type of document cited (e.g., NASA report, translation, NASA contractor report). The accession number is located beneath and to the right of the title, e.g. N80-11870. Under any one author's where one proposed i with the IAA accession

name the accession numbers are arranged in sequence with the IAA numbers appearing first.	4 accession
Α	
ABZUG, E. J. Hinged vehicle equations cf motion [AIAA PAPER 80-0364] APANASEV, A. IU.	A80-18336
Aircraft torgue motors	A80-19199
AGNEW, J. W. Correlation of P-15 flight and wind tunnel control effectiveness	test
AHTYE, W. F.	N80-15152
Buffls, W. F. Evaluation of approximate methods for the prediction of noise shielding by airframe components	9
[NASA-TP-1004]	N80-15129
AIELLO, R. CH-46 composite rotor blade flight stress a data. Volume 3: Plotted forward rotor b chord, torsion and absolute loads	survey blade
[AD-A075612]	N80-15077
ALBANES, W. V. Verification of digital autopilot microproc hardware and software via hardware-in-the simulation	
	A80-20901
ALEXANDER, C. A. Comparative resistance of Beta-Si3N4 solid solutions to molten silicon attack	
·	A80-18062
ALEXANDER, J. G. Protective coatings for aircraft composites nuclear environments	s in
[AD-A074889]	N80-14199
ALLEN, D. Avionics installation (AVSTALL) cost model user equipment of NAVSTAR global position	
system [AD-A073681]	N80-14106
ALLER, J. M. An improved sensing element for skin-fricti	lon
balance measurements [AINA PAPER 80-0049] ALPRRIM. M.	A80-18251

ALPERIN, H. Recent development of a jet-diffuser ejector [AIAA PAPER 80-0231] A80-18277 ANDERLE, R. J. The Global Positioning System

A80-20992

ANDERSON, E. H.	
Numerical simulation of supersonic inlets	using a
three-dimensional viscous flow analysis	-
[AIAA PAPER 80-0384]	A80-20969
Computation of three-dimensional flow in t	urbofan
mixers and comparison with experimental	data
[NASA-TH-81410]	N80-15364
ANDERSON, J. D., JR.	
The effects of leading edge modifications	on the
post-stall characteristics of wings	
[AIAA PAPER 80-0199]	A80-18375
ANDERSON, J. L.	
Application of parametric weight and cost	
estimating relationships to future trans	port
aircraft	
[SAWE PAPER 1292]	A80-20637
ABDRIOTAKIS, G.	
Covariance simulation of ECAS - An aircraf	t
collision avoidance system	
	A80-20915
ANSELL, G. S.	
Composite structural materials	
[NASA-CR-162578]	N80-15076
AYACHE, N. B.	
Optimization of turbine nozzle cooling by	
combining impingement and film injection	
[AINA PAPER 80-0299]	A80-19316
AZUMA, A.	
Rotational noise of helicopter rotors	A80-17718
	AOU-1//18

Β

Designing light airplanes	
	A80-19414
BAHR, D. W.	
Quiet Clean Short-haul Experimental Engine	
(QCSEE). Double-annular clean combustor	
technology development report	
	N80-15121
BALLARD, J. D.	
Effect of tip planform on blade loading	
characteristics for a two-bladed rotor in	
	N80-14049
BARALB, G.	
A distributed processing system for radar da	ata
presentation	
	N80-14075
BARGER, R. L.	
Sonic-boom wave-front shapes and curvatures	
associated with maneuvering flight	
	N80-14045
BARLOW, J. B.	
Determination of the spin and recovery	•
characteristics of a typical low-wing gene	eral
aviation design	
	A80-18351
The effects of leading edge modifications or	n the 👘
post-stall characteristics of wings	
	180-18375
BARNES, C. S.	
Some wind tunnel measurements of the effecti	
at low speeds of combined lift and roll co	
	N80-15153
BARRANGER, J. P.	
Laser-optical blade tip clearance measuremen	
	980-14128
BASTIANINI, G.	
Simulation of a surveillance and control sys	stem of
surface traffic in an airport	
ľ	180-14073

BAYLISS, A.

PERSONAL AUTHOR INDEX

BAYLISS, A. Experimental and numerical results of sound scattering by a body N80-14873 BEACHER, B. F. Quiet Clean Short-haul Experimental Engine (QCSEE). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 PR variable pitch fan with core flow [NASA-CR-135017] N80-1508 N80-15087 BEAUSSIER, J. Investigations of the optimal configuration of high-stability guartz oscillators for aircraft and missiles 180-19990 BEECKEN, G. An analytical method of testing pavement strength A80-17998 BEH. H. Stability and control aspects of the CCV-P104G [MBB-UFE-1447(0)] N80-14141 · BELTRANO, N. N. Application of parametric weight and cost estimating relationships to future transport aircraft [SAWE PAPER 1292] A80-20637 N80-15077 BENI, P. An air traffic channel simulation by means of ray-tracing techniques N80-14088 BERGMANN, M. Y. Experimental and computational study of transonic flow about swept wings TATAN PAPER 80-00051 · A80-18235 BERTELRUD, A. BERTELRUD, A. Brperimental and computational study of transonic flow about swept wings [AIAA PAPER 80-0005] A80-18: A80-18235 BERTINI. P. An air traffic channel simulation by means of ray-tracing techniques N80-14088 BERTOLAZZI, P. Tactical analysis of conflicts in an air traffic control system: Design and implementation of a provisional model N80-14072 BETINI, S. Development trends of airport surface traffic N80-14087 BEZMENOV, V. IA. Effect of the relative area of the flow core on the performance of a hypersonic wind tunnel A80-17673 BIANCO, L. Automation of flight on-line strategic control: The case of speed control on pre-established routes **N80-14070** Radar data utilization in automating the sequencing of aircrafts in terminal areas N80-14071 BLUBENTHAL, A. F. Map-matching techniques for terminal guidance using Fourier phase information 180-17517 BLOHENTHAL, C. Pressure distribution on Joukowski wings [NACA-TM-336] N80-15036 BOBER, L. A. Summary of advanced methods for predicting high speed propeller performance [NASA-TH-81409] N80-N80-15051 BOBER, L. J. Summary of advanced methods for predicting high speed propeller performance [AIAA PAPER 80-0225] 880-2 A80-20966 BOLDT, T. D. Analog aircraft weight and balance computer [SAWE PAPER 1283] A80-20631

BORRIBI. P. Trajectory behaviour of a control configurated aircraft subjected to random disturbances N80-15171 BOSLEY, J. T. Verification of digital autopilot microprocessor hardware and software via hardware-in-the-loop simulation 180-20901 BOUDIGUES, S. Technologies conceived for the utilization of Ceramics in turboengines [ONERA, TP NO. 1979-132] BOWDEH, J. H. A80-20076 Quiet Clean Short-haul Experimental Engine (QCSEE). Composite fan frame subsystem test report [NASA-CR-135010] N80-15098 BOIWBLL, D. A. Acoustically swept rotor [NASA-CASE-ARC-11106-1] N80-14107 JA-6A circulation control wing contractor flight demonstration [AD-A074888] N80-15080 BRADEN, J. A. Exploratory studies of the cruise performance of upper surface blown configuration: Experimental program, high-speed force tests [NASA-CR-159134] N80-150 N80-15070 [NASA-CR-159134] Bxploratory studies of the cruise performance of upper surface blown configurations: Experimental program, high-speed pressure tests [NASA-CR-159135] N80-15 N80-15071 Exploratory studies of the cruise performance of upper surface blown configurations: Program analysis and conclusions [NASA-CR-159136] N80-1 N80-15072 BRANSFORD, J. W. LOI/GOI mechanical impact tester assessment [NASA-TM-74106] N80-15179 BRATABON, T. Unsteady flow and dynamic response analyses for helicopter rotor blades [NASA-CR-159190] N80-14355 BRAZIER, R. E. J. The minimum cost approach to flutter clearance N80-15148 BREWER, G. D. Hypersonic cruise aircraft propulsion integration study, volume 1 [NASA-CR-158926-VOL-1] N80-15074 Rypersonic cruise aircraft propulsion integration study, volume 2 [NASA-CR-158926-VOL-2] N80-15075 BROCARD, Y. Aerodynamic interaction on a close-coupled canard N80-15175 BROOKS, J. R. Flight and wind tunnel test results of the mechanical jet noise suppressor nozzle [AIAA PAPER 80-0165] A80-20971 BROUSSARD, J. R. A nonlinear observer/command generator tracker approach to the NH-97 helicopter gun turret control law design A80-20879 BROWN, H. Multi-variable cycle optimization by gradient methods [AIAA PAPER 80-0052] A80-18254 BROWN, P. W. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability [NASA-TP-1538] BRUNSTEIN, A. I. Accident investigation N80-14136 N80-14636 BRYAN, C. J. LOX/GOX mechanical impact tester assessment [NASA-TH-74106] N80-15179 BURCHAM, F. W., JR. Landing approach airframe noise measurements and analysis [NA SA-TP-1602] N80-15028

BURDGES, K. P. Exploratory studies of the cruise performance of upper surface blown configuration: Experimental program, high-speed force tests [NASA-CR-159134] N80-1507 N80-15070 Exploratory studies of the cruise performance of upper surface blown configurations: [NASA-CR-159135] N80-15 N80-15071 BURHANS, R. W. Experimental loop antennas for 60 KHz to 200 KHz [NASA-CR-162729] R80-15 N80-15063 BURRUS, D. L. Quiet Clean Short-haul Experimental Engine (QCSEB). Double-annular clean combustor technology development report [WASA-CR-159483] N80-15121 BUSSAC, H. N. Low-aspect-ratio limit of the toroidal reactor -The spheromak A80-17876 BUXBAUN, O. Review of investigations into aeronautics related fatigue Federal Pepublic of Germany [LBF-S-142] N80-14422 BYAR, T. R. Analyses and tests of the E-1 aircraft structural mode control system [NASA-CR-144887] N80-15073 BYKOV, V. I. The Omega radio navigation system

С

A80-19413

0	
CALLAWAY, A. A. Trends in digital data processing and syste	en
architecture	
	N80-14020
CAMBLIER, I.	
An experimental study of the structure and	
acoustic field of a jet in a cross stream	0
[NASA-CR-162464]	N80-15871
CANNON, D. G.	
Preliminary test results of a flight manage	
Fleithindly test lesuits of a flight manage	edent
algorithm for fuel conservative descents	in a
time based metered traffic environment	
[NASA-TM-80194]	N80-14114
CAPPADONA, R.	
L-band measurements in the air traffic char	nel to
characterize secondary radar systems	
characterize secondary radar systems	
	N80-14092
CARLI, E.	
Automatic systems for airport surface mobil	le media
surveillance based on the use of secondar	y media
	N80-14104
CARLSON, H. W.	
Studies of leading-edge thrust phenomena	
Studies of leading-edge thrust phenomena	
[AIAA PAPER 80-0325]	A80-18315
CASTELLANI, V.	
Onboard collision avoidance system: Enviro	
influence on the tracking algorithm requi	rements
,,,,	N80-14105
CATALANO, C. D.	100 14105
Photon correlation laser velocimeter measur	
	ements
in highly turbulent flow fields	
(AIAA PAPER 80-0344]	A80-18328
CERRULO, A.	
Photon correlation laser velocimeter measure	ements
in highly turbulent flow fields	
TALAA PAPER 80-03441	A80-18328
CHAIR, C. B.	100-10020
	1
Comment on 'Handling quality criterion for	neading
control [®]	
	A80-17698
CHAMBERLIN, R.	
Scale model performance test investigation	of
exhaust system mixers for an Energy Effic	
Pagine /E3/ propulsion system	2.040
TAIAA PAPER 80-02291	100 20060
	A80-20968
CRAMBLEB, C. E.	
Application of the multistage axial-flow	
compressor time-dependent mathematical mo	deling
technique to the TF41-A-1 modified block	76
compressor	
[AD-A074478]	NOA_ 10138
[10-10/44/0]	N80-14134

COWARD, W. E.

CHEN, R. T. H. Effects of primary rotor parameters on flapping dynamics [NASA-TP-1431] [BASA-TP-1431] CBBBG, R. Y. K. Soil analyses and evaluations at the impact N80-15138 dynamics research facility for two full-scale aircraft crash tests [NASA-CR-159199] N80-15299 CHISUN, G. T. Visual accommodation responses in a virtual image environment [AD-A074415] N80-15082 CHU, i.-c. Hybrid vortex method for lifting surfaces with free-vortex flow [AIAA PAPER 80-0070] A80-19307 CHU, Y.-Y. Adaptive allocation of decisionmaking responsibility between human and computer in multitask situations A80-18022 CIBI, M. Automation of flight on-line strategic control: The case of speed control on pre-established routes N80-14070 CLARK, R. E. Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 CLEHONS, A. Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan [NASA-CR-134891] N80-151 N80-15102 Quiet Clean Short-Haul Experimental Engine (QCSEE): Acoustic treatment development and design [NASA-CR-135266] N80-15122 CHOSSEN, R. Design study of a low cost civil aviation GPS receiver system [NASA-CR-159176] N80-15062 COAKLEY, T. J. Experimental and computational study of transonic flow about swept wings [AIAA PAPER 80-0005] A80-182 A80-18235 COLLINSON, R. P. G. Recent advances in fibre optics for high integrity digital control systems N80-14025 COLOBY, J. R. Meteorological input to general aviation pilot training N80-14634 COLTRIN. R. R. An analytical and experimental study of a short S-shaped subsonic diffuser of a supersonic inlet [AIAA PAPER 80-0386] A80-20970 An analytical and experimental study of a short s-shaped subsonic diffuser of a supersonic inlet [NASA-TH-81406] N80-15134 COOPER, L. P. Bffect of degree of fuel vaporization upon emissions for a premixed partially vaporized combustion system [NASA-TP-1582] N80-14125 COPLIN, J. F. Technology of the Rolls-Royce RB211 engine A80-18864 CORZANI, T. Automatic systems for airport surface mobile media surveillance based on the use of secondary media N80-14104 COTTER, L. B. A strapdown inertial reference system for commercial airline use in navigation and flight control A80-17558 COWARD, W. B. Quiet, Clean, Short-Haul, Experimental Engine (QCSPE) Under-The-Wing (UTW) engine acoustic design [NASA-CR-135267] N80-14117 (QCSEE) Over-The-Wing (OTW) engine acoustic design [NASA-CR-135268] N80-14118

.

CRITTENDEN, J. B.

PERSONAL AUTHOR INDEX

Quiet Clean Short-haul Experimental Engine (QCSEE). Core engine noise measurements [WASA-CR-135160] N80-15093 CRITEBUBR, J. B. Shipping by air - Is the value of your time worth it A80-20868 CUMPSTY, N. A. Jet engine combustion noise - Pressure, entropy and vorticity perturbations produced by unsteady combustion or heat addition A80-20151 CYRUS, J. A pre-design code for predicting engine acquisition costs [AIAA PAPER 80-0055] A80-19269 CYRUS, J. D. Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] 180-19301 D DAHL, H. Investigation of the oscillatory and flight behavior of rotor systems in relation with atmospheric turbulence [BNVG-PEWT-79-5] N80-14142 DANESÌ, A. Trajectory behaviour of a control configurated aircraft subjected to random disturbances N80-15171 DANIEL, B. R. Acoustic radiation from axisymmetric ducts - A comparison of theory and experiment [AIAA PAPER 80-0097] A80-180-18268 DAROLIA, R-Feasihility of SiC composite structures for 1644 % (2500 F) gas turbine seal application [NASA-CR-159597] N80-1412 N80-14122 DAT. R. DAT, R. A phenomenological model of the dynamic stall of a helicopter blade profile [ONERA, TP NO. 1979-149] N80-2009 DAVIES, D. L. Discontinuous registration of industrial 180-20086 radiographs using profile analysis and piecewise correlation techniques A80-17521 DEAL, P. L. (I), F. L. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability (NSA-TP-1538)

- (NASA-TP-15381 N80-14136 DBFEO, A. Ouiet Clean Short-haul Experimental Engine (OCSEE) main reduction gears detailed design report [NASA-CP-134872] N80-15106 DEFINA, G. Development trends of airport surface traffic
- control radar N80-14087 PBL, N. Tracking algorithms for mono and multiradar N80-14074 DELERY, J. Separation due to shock wave-turbulent boundary
- layer interaction FONERA, TP NO. 1979-146] DERHAGOPIAN, J. On the use of vibration self-damping materials in the manufacture of parts for rotating machinery N80-14135 DESOPPER. A.
- Unsteady effects of a control surface in two dimensional, subsonic and transonic flow NRD-15168
- DESTUTNDER, R. Problems of unsteady aerodynamics raised by the use of control surfaces as active controls #80-15167
- DETHOMAS, A. P. A flight control system using the DAIS architecture N80-14019
- DETORE, J. Tilt rotor - An effective V/STOL concept [SAWE PAPER 1273] A80-20628

DIGHTON, R. D. Designing to life cycle cost in the Hornet program [SAWE PAPER 1293] A80-206 180-20638 DONOGHUE, P. J. A strapdown inertial reference system for connercial airline use in navigation and flight control A80-17558 An integrated strapdown guidance and control system for launch vehicle application A80-17559 DREYFUS, H. G. Non-contacting electro-optical contouring of helicopter rotor blades [AD-A070806] N80-14111 DUTOUQUET, L. Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] 180-18271 Ε BASTHAN, R. M. Air cargo container utilization optimization through modeling A80-20870 BCHIN, A. I. Unification of oils for aircraft gas-turbine engines A80-20690 EREKIRCHER. S. Wind tunnel measurements and analysis of some unusual control surfaces on two swept wing fighter configurations N80-15155 BBLERS, P. E. Analysis of transonic flow about harmonically oscillating airfoils and wings [AIRA PAPEP 80-0149] A80 A80-18367 investigation of several factors involved in a Αn finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings [NASA-CP-159143] N80-14 A users guide for A344: A program using a finite N80-14056 difference method to analyze transonic flow over oscillating airfoils N80-15052 [NASA-CR-159141] ENDERS, J. H. NASA technical advances in aircraft occupant safety [NASA-TM-80851] N80-15060 ENGLIN, B. A. "Ffect of naphthenic aromatic hydrocarbons on the oxidizability of hydrogenated jet fuel 180-17675 ERDOS. J. I. Conceptual design and performance estimates for a supersonic aerodynamic window for the ATA vacuum system aperture [UCRL-15051] N80-15183 EFICKSON, G. E. Fffects of non-planar strake-wing on the vortex lift characteristics of a twin-jet fighter configuration AIAA PAPER 80-0329] A80-18318 BRZBERGER, H. Constrained optimum trajectories with specified range A80-18538 ESCH, P. Direct side force and drag control with the aid of pylon split flaps N80-15163 ESSOCK, D. H. FRS composites for advanced gas turbine engine components [AD-A074287] N80-15137

F

- FALCIASECCA, G. Automatic systems for airport surface mobile media surveillance based on the use of secondary media N80-14104
- PAN, A. T. Design criteria for optimal flight control systems (AD-A074092) N80-15139

FARINA, A. A survey of the stochastic filtering techniques for data processing in air-traffic control and surveillance systems A80-20867 PASCHING, W. A. The C?6 jet engine performance improvement: New front mount [NASA-CR-159639] N80-14127 FRAR. NR, J. S. NASA broad-specification fuels combustion [NASA-TH-79315] N8 N80-14126 FEILER, C. E. Preparing aircraft propulsion for a new era in energy and the environment 180-17737 FERDANI, F. Automatic systems for airport surface mobile media surveillance based on the use of secondary media N80-14104 FERRI, U. Simulation of a surveillance and control system of surface traffic in an airport N80-14073 FIELDS. R. A. Loading tests of a wing structure for a hypersonic aircraft F NA SA-TP-15961 N80-15068 FINGER, D. G. Contact stress analysis of ceramic-to-metal interfaces FAD-A0744911 N80-14417 PISCHBR, J. P. Data reduction software for LORAN-C flight test evaluation [NASA-CR-162730] NR0-15064 FISHBACH, L. H. Computer simulation of engine systems [AIAA PAPER 80-0051] 180-18253 FISHBACK, L. H. Computer simulation of engine systems [NASA-TM-79290] ▶80-15132 FITZSIMMONS, B. D. Flight and wind tunnel test results of the mechanical jet noise suppressor nozzle [AIAA PAPEE 80-0165] A80-20971 FLAIG, J. W. Small ship-based VTOL aircraft - A design exercise [SAWE PAPER 1296] A80-20639 FLETCHER, B. G. Development of aiding GPS/strapdown inertial navigation system N80-14031 PORD, H. J. Laser-optical blade tip clearance measurement system [NASA-TM-81376] N80-14128 FORD. R. L. ATC and the airborne traffic-situation display A80-18724 FORMANIAK, J. Investigation of the wear debris content in oil by measurements of the reluctance and eddy current loss in an electric circuit A80-19053 PORSHAW, S. B. Investigation of noise hazards in the engine test [AD-A074391] N80-14147 PRANTZ, R. L. NTZ, N. L. Centralized ground power systems conserve energy A80-18000 FRASCHETTI, G. Performance evaluation methods of a secondary radar network **N80-14068** Antireflection techniques for detecting false tracks in air traffic surveillance with secondary radar N80-14100 FRATACCI, G. Technologies conceived for the utilization of ceramics in turboengines [ONFRA, TP NO. 1979-132] A80-20076 PREPRAY, D. S. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (DTW) composite nacelle subsystem test report [NASA-CR-135075] N80-15100

GILBERT, W. P.

```
FREEMAN, L. S.
    Application of a higher order panel method to
      realistic supersonic configurations
[AIAA PAPER 79-0274]
                                                         A80-17696
PRIEDBAND, P.
    Formulation of coupled rotor/fuselage equations of
      motion
                                                         AP0-17717
TROMME, J.
Two dimensional aerodynamic interference effects
on oscillating airfoils with flaps in ventilated
subsonic wind tunnels
N80-1404
N80-1404
                                                         N80-14047
FROST, W.
Current research on aviation weather
      (bibliography), 1979
[NASA-CR-3214]
                                                         N80-14651
FRYE. G. W.
    LOX/GOX mechanical impact tester assessment
      [ NASA-TH-741061
                                                         N80-15179
FUCHS, H. V.
    Aeroacoustic measuring techniques in or outside
      turbulent flows
                                                         N80-14876
PUJII, K.
    A numerical approach to subsonic viscous-inviscid
      interaction
                                                         A80-19070
FURTH. H. P.
    Low-aspect-ratio limit of the toroidal reactor -
      The spheromak
                                                         A80-17876
```

G

GALEEV, SH. S. Aircraft torgue motors A80-19199 GARRICK, I. E. General potential theory of arbitrary wing sections [NACA-452] N80-1504 N80-15046 GAULT, D. B. Atmospheric effects on Martian ejecta emplacement A80-20192 GELLER, E. W. A computer code to model swept wings in an adaptive wall transonic wind tunnel [AIAA PAPER 80-0156] 180-19287 GERMAIN, G. The integrity of onboard computer programs: A solution N80-14028 GEROS, J. M. Performance evaluation of image correlation techniques A80-17534 GERSCH, A. Weight Integrated Sizing Evaluation /WISE/ - A tool for preliminary design [SAWE PAPER 1312] A80 A80-20646 GERSON, G. Guidance system position update by multiple subarea correlation A80-17518 GERSTEN, K. On the effect of wing wake on tail characteristics N80-15174 GERSTENSAIER, W. Computation of three-dimensional flow in turbofan mixers and comparison with experimental data [NASA-TM-81410] N80-15364 GIFFID, R. G. Quiet Clean Short-haul Experimental Engine (QCSEE). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 PR variable pitch fan with core flow [NASA-CR-135017] N80-15087 GILBERT, G. Design study of a low cost civil aviation GPS receiver system [NASA-CR-159176] N80-15062 GILBERT, W. P. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability [NA SA-TP-1538] N80-14136 Control considerations for CCV fighters at high angles of attack N80-15160

GILMORE, J. P.

PERSONAL AUTHOR INDEX

GILBORE, J. P. Modular strapdown guidance unit with embedded microprocessors [AIAA PAPER 78-12391 A80-18534 GINTY, D. P. Effect of weather conditions on airport operations N80-14638 GIULI, D. Antireflection techniques for detecting false tracks in air traffic surveillance with secondary radar N80-14100 GIUSHGENS, G. S. Aircraft aerodynamics - Dynamics of longitudinal and lateral motion A80-19374 GLISTA, A. S., JR. Integrated circuit characteristics at 260 C for aircraft engine-control applications **A80-20112** GLUBCK, D. On the effect of wing wake on tail characteristics N80-15174 GOLBERG. N. Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels [NASA-CR-3210] N80-140 880-14047 GOLLOP, P. J. A high accuracy flight profile determining system N80-14042 GOOD. D. E. Hodel 540 rotor blade crack propagation investigation [AD-A074734] N80-15081 GOODBLOOD, G. E. Comparison of international flutter requirements and flutter freedom substantiation of light aircraft in the USA P80-15142 GOODSON, R. What brings us down tomorrow - Landing guidance systems for the 1980s 180-18725 GOODWIN, J. Automation and air traffic control A80-18722 GOTO, N. A statistical method applied to pilot behavior analysis in multiloop systems A80-18537 GOVINDARA, K. S. Design criteria for optimal flight control systems [AD-A074092] N80-15139 GRADY, P. J. Protective coatings for aircraft composites in nuclear environments [AD-A074889] N80-14199 GRAFTON, S. B. Control considerations for CCV fighters at high angles of attack N80-15160 GRAHAN, R. W. Impact of new instrumentation on advanced turbine research [NASA-TH-79301] 880-15133 GRAZI, R. Organization of an integrated global maintenance service N80-10069 GRBER, D. C. Analyses and tests of the B-1 aircraft structural mode control system [NASA-CR-144887] N80-15073 GRENON, R. Unsteady effects of a control surface in two dimensional, subsonic and transonic flow N80-15168 GRIPPO, L. Automation of flight on-line strategic control: The case of speed control on pre-established routes N80-14070 GRISHIN, V. I. Determination of the stress intensity factor of composite structural members A80-17958 GRISWOLD, M. Correlation of predicted longitudinal aerodynamic characteristics with full-scale wind tunnel data on the ATLIT airplane [AIAA PAPER 80-0186] A80-18356 GROBBAN, J. S. Preparing aircraft propulsion for a new era in energy and the environment A80-17737 GRODZOVSKII, G. L. Concerning the information efficiency of aerodynamic experiments A80-17671 GROESBECK. D. Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics A80-20952 GROSVELD, P. Structural parameters that influence the noise reduction characteristics of typical general aviation materials [AIAA PAPER 80-0038] A80-18248 GBUBE, K. Practical method of fatigue crack growth analysis for damage tolerance assessment of aluminum structure in fighter type aircraft A80-18 180-18346 [AIAA PAPER 80-0405] GULLY, S. W. A nonlinear observer/command generator tracker approach to the XN-97 helicopter gun turret control law design A80-20879 GUROV, S. V. Thermal state of structural members of aircraft engines

н

A80-19412

HACKETT, J. B. Exploratory studies of the cruise performance of upper surface blown configuration: Experimental program, high-speed force tests [NSA-CR-159134] N80-150 Exploratory studies of the cruise performance of N80-15070 upper surface blown configurations: Experimental program, high-speed pressure tests [NASA-CR-159135] N80-150 Exploratory studies of the cruise performance of N80-15071 upper surface blown configurations: Program analysis and conclusions [NASA-CR-159136] N80-15072 HAGEDOORN, A. H. Shipping by air - Is the value of your time worth it A80-20868 HAGUE, D. S. Bultiple tactical aircraft combat performance evaluation system [AIAA PAPER 80-0189] A80-18358 HAIDL, G. Excitation and analysis technique for flight flutter tests [MBB-0F-1446(0)] N80-14140 HALSBY, N. D. Conformal mapping analysis of multielement airfoils with boundary-layer corrections TATAA PAPER 80-00691 A80-18261 HABED, A. Optimization of turbine nozzle cooling by combining impingement and film injection [AIAA PAPER 80-0299] A80-19316 HANCOCK, G. J. Unsteady aerodynamics of two-dimensional spoilers at low speeds 100-15 N80-15170 On the effects of gaps on control surface characteristics N80-15176 HANCOCK, J. P. Exploratory studies of the cruise performance of upper surface blown configuration: Experimental program, high-speed force tests [NASA-CR-159134] N80-150 N80-15070 Exploratory studies of the cruise performance of upper surface blown configurations: Experimental program, high-speed pressure tests [NASA-CR-159135] N80-15 N80-15071

JOHNSON, P. T.

Exploratory studies of the cruise performance of upper surface blown configurations: Program analysis and conclusions [NASA-CR-159136] N80-15072 HANKE, D. In-flight measured characteristics of combined flap-spoiler direct lift controls N80-15165 HARDY. J. M. Engine aerodynamic installation by numerical simulation [AIAA PAPER 80-0108] 180-18271 HARGROVE, A. Computer simulation of an air cargo small package sorting system 180-20866 HARMAN, W. H. Air traffic density and distribution measurements [AD-A073229] N80-14064 HAYBS, D. D. Weather detection using airport surveillance radar A80-19129 HEIDELBERG, L. J. Comparison of inlet suppressor data with approximate theory based on cutoff ratio [AINA PAPER 80-0100] 180-20964 HEIDERGOTT, K. W. Linear systems analysis program, L224(QR). Volume 1: Engineering and usage [NASA-CR-2861] N80-14137 HELLER, R. A. Patigue life prediction of a bonded splice joint [NINA PAPER 80-0305] A80-15 A80-18306 A flight control system using the DAIS architecture N80-14019 HENNE, P. A. An inverse transonic wing design method [AIAA PAPER 80-0330] A80-18319 HIBBS, S. Design study for ATA vacuum system aperture [UCRL-15050] N80-15 HIGHAH, K. W. A simple design synthesis method used to estimate N80-15182 aircraft gross weight [SAWE PAPER 1313] A80-20647 HISLOP, A. The economics of air traffic control ABO-18723 HOLDEMAN, J. D. Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes, volume 1 [NASA-TH-79166] N80-15059 HOLLAND, R. Code optimization for solving large 3D EMP problems A80-19764 HOLME, A. H. B. Gas turbine carcase and accessory vibration -Problems of measurement and analysis A80-17730 HOMMEIDA, A. On the use of vibration self-damping materials in the manufacture of parts for rotating machinery N80-14135 **HONTAK, L.** Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Aircraft (OSRA) [NASA-TP-1556] N80-14121 HOOKWAY, R. C. Propulsion options for the HI SPOT long endurance drone airship [AD-A074595] N80-14132 HOOPER, E. H. The state-of-the-art of flutter substantiation procedures among US general aviation manufacturers N80-15143 HORSTMANN. K. H. Roll control by digitally controlled segment spoilers N80-15156 HOUBOLT, J. C. Effect of spanwise gust variations N80-14639

HOWARD, D. P.	
Quiet Clean Short-haul Experimental Engine	(OCSEE)
preliminary under the wing flight propul	sion
system analysis report	
[NASA-CR-1348681	N80-15088
Quiet Clean Short-haul Experimental Engine	10CS PR)
preliminary over-the-wing flight propuls	(QCSEE)
system analysis report	101
[NASA-CR-135296]	NOA 15005
HOWARD, G. B., JR.	N80-15095
A light aircraft camera Pod - The Enviro-P	
A light allelait camera Pou - The Enviro-P	
	A80-20251
HOWLETT, J. T.	
A study of partial coherence for identifyi	ng
interior noise sources and paths on gene	cal
aviation aircraft	
[NASA-TH-80197]	N80-15874
HUBBARTT, J. B.	
Mach 3 hydrogen external/base burning	
[AIAA PAPER 80-0280]	A80-19311
HUBER, R. K.	
Integration of flight and fire control	
	N80-14043
HUNT, J.	
Wire obstacle warning system /WOWS/ - A rea	al-time
airborne sensor for automatic detection	and .
recognition of wirelike objects	
	A80-17402
HUNTER, H. P.	100 11402
Comparison of international flutter require	monte
and flutter freedom substantiation of light	
aircraft in the USA	JIIC
ultolult in the osh	N80-15142
HUNTER, W. P.	NOU-15142
A computerized method for calculating flut	
characteristics of a system characterized	ι by τωο
degrees of freedom	
[NASA-TH-80153]	N80-14055
HUTTON, J. G.	
Application of finite element analysis to	
derivation of structural weight	
[SAWE PAPER 1271]	A80-20627
-	
1	
I	
IAFOLLA, N.	
IAFOLLA, N. Filtering of synthetic- r adar data	
	N80-14076

ILIPP, K. W.	
Estimation of the accuracy of dynamic	
flight-determined coefficients	
[AIAA PAPER 80-0171]	A80-17700
IRISH, L. A.	
Application of RCS guidelines to weight	effective
aircraft design	
[SAWE PAPER 1270]	A80-20626

J

JACOBSON, H. J. Sonic fatigue design data for bonded aluminum aircraft structures FAIAA PAPER 80-03031 A80-18304 JAMESON, A. A computer code to model swept wings in an adaptive wall transonic wind tunnel FAIAA PAPER 80-01561 A80-19287 JANUSZEWSKI, W. An overvoltage safety system for direct current aircraft generators A80-19051 JOHANNES, R. P. AFFDL experience in active control technology Ň80-15159 JOHN. H. High angle of attack characteristics of different fighter configurations [MBB-UFE-1443 (0)] N80-14058 JOHNSON, E. S. Flight and wind tunnel test results of the mechanical jet noise suppressor nozzle [AIAA PAPER 80-0165] A80-20971 JOHNSON, F. T. Application of a higher order panel method to realistic supersonic configurations A80-17696 [AIAA PAPER 79-0274]

JOHNSON, M. L.

JOHNSON, M. L. A computer code to model swept wings in an adaptive wall transonic wind tunnel [AIAA PAPER 80-0156] A80-19287 JOHNSON, R. H. Development of aiding GPS/strapdown inertial navigation system N80-14031 JORNSON, T. D., JR. Investigation of leading-edge devices for drag reduction of a 60-deg. delta wing at high angles of attack [AIAA PAPER 80-0310] 180-18309 JOHNSTON, D. E. Effects of the aerodynamic cross-coupling and lateral acceleration derivatives on airplane dynamic characteristics [AIAA PAPER 80-0170] A80-17699 JOHNSTOP, E. A. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle subsystem test report [NASA-CR-135075] N80-15100 Quiet Clean Short-haul Experimental Engine (QCSEE) Inder-The-Wing (UTW) composite nacelle [NASA-CR-135352] 980-15119 JONAS, K. Roll control by digitally controlled segment spoilers N80-15156 JONES, D. On the use of vibration self-damping materials in N80-14135 JONES, E. The effects of leading edge modifications on the post-stall characteristics of wings [AIAA PAPER 80-0199] A80-18375 JONES, H. E. Computer program to prepare airfoil characteristic data for use in helicopter performance calculations [NASA-TH-78627] N80-15031

Κ

KALBHARIS, S. Weight impact of VTOL [SAWE PAPER 1326] A80-20656 KANDIL, O. A. Hybrid vortex method for lifting surfaces with free-vortex flow [AIAA PAPER 80-0070] **A**80-19307 N80-15871 KARASHIBA, K. A numerical approach to subsonic viscous-inviscid interaction A80-19070 KASCAK, A. P. Direct integration of transient rotor dynamics [NASA-TP-1597] N80-N80-15128 KBATING, R. F. A. Some wind tunnel measurements of the effectiveness at low speeds of combined lift and roll controls N80-15153 KEBRER, W. T. Flight control and configuration design considerations for highly maneuverable aircraft N80-15154 KENT, J. S. An evaluation of the bird/aircraft strike hazard at Barksdale Air Porce Base, Louisiana (SAC) [AD-A074390] N80-14063 KERKAN, B. F. Installation effects on cycle selection for small turbo-fan engines TAIAA PAPER 80-01067 A80-19280 KERREBROCK, J. L. Flow in transonic compressors [AIAA PAPER 80-0124] 180-18357 KIBLER, K. S. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability [NASA-TP-15381 N80-14136

PERSONAL AUTHOR INDEX

RIESSLING, P. An empirical approach for checking flutter stability of gliders and light aircraft N80-15144 KIRALY, L. J. Digital system for dynamic turbine engine blade displacement measurements [NASA-TH-81382] N80-10113 RIRIANOVA, A. A. Effect of naphthenic aromatic hydrocarbons on the oxidizability of hydrogenated jet fuel here 12. A80-17675 KIRK, C. W. An integrated strapdown guidance and control system for launch vehicle application A80-17559 KITTINGEB, D. C. Aeronautical systems technology needs: Escape, rescue and survival [AD-A074906] N80 N80-14061 KLEEBABBER, R. Wire obstacle warning system /WOWS/ - A real-time airborne sensor for automatic detection and recognition of wirelike objects A80-17402 KLBIDBR, A. Wire obstacle warning system /WOWS/ - A real-time airborne sensor for automatic detection and recognition of wirelike objects A80-17 A80-17402 KLOPPER, G. H. Euler solutions for wing and wing-body combination at supersonic speeds with leading-edge separation [AIAA PAPER 80-0126] A80-1835 180-18359 KNIGHT, D. D. Improved numerical simulation of high speed inlets using the Navier-Stokes equations [AIAA PAPER 80-0383] A80-1834 A80-18340 KBOX, C. B. Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment [NASA-TH-80194] N80-14114 KOEGLER, J. A., JR. A parametric wing design study for a modern laminar flow wing [NASA-TH-80154] N80-15050 KOENIG, D. G. Large scale model tests of a new technology V/STOL concept [AIAA PAPER 80-0233] A80-19303 KOENIG, K. The loads at landing impact A80-17723 KOERNER, H. Theoretical aerodynamic methods for active control devices N80-15150 KOOLB, R. C. An analytical method of testing pavement strength A80-17998 ROPELEV, S. Z. Thermal state of structural members of aircraft engines A80-19412 KORTE, U. Stability and control aspects of the CCV-F104G [MBE-0FE-1447 (0)] N80-14141 KUBBAT, W. J. Failure detection, isolation and indication in highly integrated digital guidance and control system N80-14027

 KUCHAR, A. P.

 Scale model performance test investigation of exhaust system mixers for an Energy Efficient Engine /EJ/ propulsion system [AIAA PAPER 80-0229]

 A80-20968 RUBHKLEB, B. On the influence of steady state temperature and pressure distortion on the flow characteristics in an installed multistage jet engine compressor 180-17724 KUGLIN, C. D. Map-matching techniques for terminal guidance using Fourier phase information A80-17517

MARCY, W. L.

KUHLMAN, J. H. Optimized aerodynamic design process for subsonic transport wing fitted with winglets [NASA-CR-159180] N80-140 N80-14054 KULINA, M. Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears detailed design report [NASA-CR-134872] N80-151 N80-15106 Practical method of fatigue crack growth analysis for damage tolerance assessment of aluminum structure in fighter type aircraft [AIAA PAPER 80-0405] A80-18346 LABABRERE, E. Automatic recovery after sensor failure onboard 880-14024 LABOZZETTA, B. Methodology for the evaluation of a radar site N80-14067 LALANNE, M. On the use of vibration self-damping materials in the manufacture of parts for rotating machinery N80-14135 LAMAR. J. R. Development of a vortex-lift-design method and application to a slender maneuver-wing configuration [AIAA PAPER 80-0327] A80-18316 LAN, B. The quasi-vortex-lattice method for wings with edge vortex separation [NASA-CR-162530] N80-14052 LANDINGHAN, G. H. Aerodynamic data base users guide [AD-A074448] N80-15983 LANDRUN, E. J. Assessment of analytic methods for the prediction of aerodynamic characteristics of arbitrary bodies at supersonic speeds [AIAA PAPER 80-0071] A80-19308 LANSING, D. L. Applications of diffraction theory to aeroacoustics N80-14870 LASAGNA. P. L. Landing approach airframe noise measurements and analysis [NASA-TP-1602] N80-15028 LAZARICK, R. T. Fuel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 LE DIUZET, P. Separation due to shock wave-turbulent boundary layer interaction [ONBRA, TP NO. 1979-146] A80-20083 , A. H. The YC-14 upper surface blown flap: A unique LEE, control surface N80-15157 LEE, H. Constrained optimum trajectories with specified range A80-18538 LEE, N. Vocabulary specification for automatic speech recognition in aircraft cockpits [AD-A073703] N80-14303 LEVINE, S. R. Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0302] A80-18303 LEVY, Π. Practical method of fatigue crack growth analysis for damage tolerance assessment of aluminum structure in fighter type aircraft [AIAA PAPER 80-0405] A LIANG, D. P. Development of aiding GPS/strapdown inertial A80-18346 navigation system N80-14031 LIU, C. H. Applications of diffraction theory to aeroacoustics N80-14870 LIU, C. T. Patique life prediction of a bonded splice joint [AINA PAPER 80-0305] Ã80-18306

LIUTERBOZA, J. P. Discontinuous registration of industrial radiographs using profile analysis and piecewise correlation techniques A80-17521 LO, T. K. Guidance system position update by multiple subarea correlation A80-17518 LOEBERT, G. Stability and control aspects of the CCV-F104G [MBB-UPE-1447(0)] N80-N80-14141 LOBWY, R. G. Composite structural materials [NASA-CR-162578] N80-15076 LORIBCZ, D. J. Enhanced departure/spin recovery of fighter aircraft through control of the forebody vortex orientation [AIAA PAPER 80-0173] 180-18352 Porebody wortex blowing: A novel control concept to enhance departure/spin recovery characteristics of fighter and trainer aircraft N80-15172 LUCBRTINI, M. Tactical analysis of conflicts in an air traffic control system: Design and implementation of a provisional model N80-14072 LUEBS, A. B. Effect of tip planform on blade loading characteristics for a two-bladed rotor in hover [NASA-TH-78615] N80-140 N80-14049 LUMMUS, J. R. The criticality of engine exhaust simulations on VSTOL model-measured ground effects [AIAA PAPER 80-0230] A80-18276 LUTZE, F. H. Experimental determination of pure rotary Stability derivatives using curved and rolling flow wind tunnel [AINA PAPER 80-0309] A80-1 A80-18308 LYBAN, V. Exploratory studies of the cruise performance of upper surface blown configurations: Program analysis and conclusions N80-15072 [NASA-CR-159136] Μ MABEY, D. G. Aerodynamic characteristics of moving trailing-edge controls at subsonic and transonic sneeds

speeds	
	N80-15169
BACK, R. J.	
Studies of leading-edge thrust phenomena	
TAIAA PAPER 80-03251	A80-18315
MACKALL, K. G.	
Landing approach airframe noise measuremen	ts and
analysis	
[NASA-TP-1602]	N80-15028
MACHILLER, C. J.	
Analyses and tests of the B-1 aircraft str	uctural
mode control system	
[NASA-CR-144887]	N80-15073
HAESTRELLO, L.	
Experimental and numerical results of soun	đ
scattering by a body	
· · · · · · · · · · · · · · · · ·	N80-14873
MAINE, R. E.	
Estimation of the accuracy of dynamic	
flight-determined coefficients	
TAIAA PAPER 80-01711	NBO-17700
HAISBL, H. D.	•
NASA/Army XV-15 tilt rotor research aircra	ft.
wind-tunnel test program plan	
[NASA-TH-78562]	N80-15067
BABIA, L.	
Automatic systems for airport surface mobi	le media
surveillance based on the use of seconda	ry media
	N80-14104
BARCY, W. L.	
Propulsion options for the HI SPOT long en	durance
drone airship	

Propulsion options for the HI SPOT long endurance drone airship [AD-A074595] N80-14132 HAY. H. E.

HAY, N. E. Hicrobial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. 1: Exploratory experiments [AD-A073761] N80-14259 MCARDLE, J. G. Static test-stand performance of the YP-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Aircraft (QSRA) [NASA-TP-15561 880-14121 ECAULAY, J. E. Engine component improvement program - Performance improvement [AIAA PAPER 80-0223] A80-19300 ECCALL, D. L. Loran digital phase-locked loop and RF front-end system error analysis [NASA-CR-162731] N80-15065 HCCBACKEN, R. C. Quiet short-haul research aircraft familiarization document [NASA-TH-81149] N80-14108 HCCULLEY, G. Evaluation of approximate methods for the prediction of noise shielding by airframe components [NASA-TP-1004] N80-15129 HCFALLS, B. A. Demonstration of short-haul aircraft aft noise reduction techniques on a twenty inch (50.8 cm) diameter fan, volume 1 [NASA-CR-134849] Quiet Clean Short-haul Experimental Engine (QCSEP). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 N80-15083 PR variable pitch fan with core flow [NASA-CR-135017] N80-15087 RCKINHON, B. Recent developments in flight simulation techniques A80-20907 ECKINNON, R. A. Plight and wind tunnel test results of the mechanical jet noise suppressor nozzle [AIAA PAPER 80-0165] A80-20971 ECLARTY, T. T. Analysis of rotor-fuselage coupling and its effect on rotorcraft stability and response A80-17716 BCLAUGHLIN, A. L. Reflection cracking of bituminous overlays for airport pavements: A state of the art [AD-A073484] N80-14144 HCOWAT, D. H. Aerodynamic characteristics of moving trailing-edge controls at subsonic and transonic speeds N80-15169 HBADOWS, J. B. Verification of digital autopilot microprocessor hardware and software via hardware-in-the-loop simulation A80-20901 MEDVEDEV, B. H. Determination of the stress intensity factor of composite structural members A80-17958 HELLO, J. P. Correlation of F-15 flight and wind tunnel test control effectiveness N80-15152 HENDRUL, G. N. A method of evaluation of gas turbine engines 180-20064 MERCATANTI, H. Simulation of a surveillance and control system of surface traffic in an airport N80-14073 MERCER. J. E. A computer code to model swept wings in an adaptive wall transonic wind tunnel TATAA PAPER 80-01561 A80-19287 HERLO, U. Performance evaluation methods of a secondary radar network N80-14068 PERSONAL AUTHOR INDEX

BEURZEC, J. L. Dynamic identification of light aircraft structures and their flutter certification N80-15145 MEYER, W. L. Acoustic radiation from axisymmetric ducts - A comparison of theory and experiment [AIAA PAPER 80~0097] A80-18268 BEYERS, J. A. The transfer of carbon fibers through a commercial aircraft water separator and air cleaner [NASA-CR-159183] N80-1433 N80-14359 BEYN, c. Vocabulary specification for automatic speech recognition in aircraft cockpits [AD-A073703] N80-14303 BICHAEL, C. On the effects of gaps on control surface characteristics N80-15176 MICHAS, R. D. Determination of the repeatability of PEC [AFTE-PR-79/36] N80-14109 HILBS, J. H. Dispersion of sound in a combustion duct by fuel droplets and soot particles A80-20953 MILLER, D. S. Assessment of analytic methods for the prediction of aerodynamic characteristics of arbitrary bodies at supersonic speeds [AIAA PAPER 80-0071] A80-19308 HILLER, E. I. A method of simplifying weight and balance for small aircraft [SAWE PAPER 1278] A80-20630 AILLER, R. A. Thermal barrier coatings for aircraft gas turbines (AIAA PAPER 80-0302) A80-18303 MISEL O. W. Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears test program [NASA-CR-134669] N80-15103 BITCHBLL, D. G. Bffects of the aerodynamic cross-coupling and lateral acceleration derivatives on airplane dynamic characteristics aynamic characteristics [ATAA PAPER 80-0170] A80-' BITCHELL, G. A. Summary of advanced methods for predicting high speed propeller performance [ATAA PAPER 80-0225] A80-2 A80-17699 A80-20966 MITCHELL, S. C. Quiet Clean Short-haul Experimental Engine (QCSEE) composite fan frame design report [NASA-CR-135278] N80-15110 MOBHRING, W. Sound generation in a flow near a compliant wall &80-2 A80-20153 BOFFETT, R. N. Exhaust emission reduction for intermittent combustion aircraft engines [NASA-CR-159757] N80-14130 BOORE, A. S. Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Pesearch Aircraft (QSRA) [NASA-TP-1556] N80-14121 BOORE, W. A. Enhanced departure/spin recovery of fighter aircraft through control of the forebody vortex orientation FAIAA PAPER 80-01731 A80-18352 Forebody vortex blowing: A novel control concept to enhance departure/spin recovery characteristics of fighter and trainer aircraft N80-15172 HORRIS. H. A. Application of parametric weight and cost estimating relationships to future transport aircraft [SAWE PAPER 1292] A80-20637 HORRIS, R. E. Hypersonic cruise aircraft propulsion integration study, volume 1 [NASA-CR-158926-VOL-1] N80-15074

Bypersonic cruise aircraft propulsion integr study, volume 2	cation
[NASA-CR-158926-VOL-2]	N80-15075
MORRISON, R. B.	
Oblique detonation wave ramjet	
	N80-14131
HORWAY, P. B.	
Visual accommodation responses in a virtual	image
environment	
[AD+A074415]	N80-15082
MOYNES, J. P.	
Plaperon control: The versatile surface for	5
fighter aircraft	
1	80-15158
HUKHANBDOV, P. A.	
Designing light airplanes	
1	A80-19414
HULCARE, D. B.	
An assessment of and approach to the validat	tion of
digital flight control systems	
	980-14036
BUNK, N. H.	
The minimum induced drag of aerofoils	
	80-15038
The aerodynamic forces on airship hulls	
	80-15039
Elements of the wing section theory and of t	
wing theory	
[NACA-191]	180-15040
HUTHUKRISHNAN, M.	
Estimation of noise source strengths in a ga	s
turbine combustor	
[AIAA PAPER 80-0034]	180-18245

Ν

Rotational noise of helicopter rotors	
	A80-17718
NASTRON, G. D.	
Simultaneous cabin and ambient ozone measu	cements
on two Boeing 747 airplanes, volume 1	
[NASA-TH-79166]	N80-15059
NBALE, D. H.	100 10000
Estimation of noise source strengths in a (
turbine combustor	yas
TAINA PAPER 80-0034]	A80-18245
WEALE, D. H., SR.	AOV- 10245
Mach 3 hydrogen external/base burning	
[AIAA PAPER 80-0280]	A80-19311
BEIHOF, R. A.	
Microbial deterioration of hydrocarbon fue	ls from
oil shale, coal, and petroleum. 1: Exp	loratory
experiments	
[AD-A073761]	N80-14259
NELSON, J. P.	
Airport noise, location rent, and the marke	et for
residential amenities	
	N80- 17720
NELSON, W. B., JR.	
Flaperon control: The versatile surface for	or.
fighter aircraft	
	N80-15158
BEPPERT, H.	
Some investigations concerning the effects	of gans
Some investigations concerning the effects	
and vortex generators on elevator efficie	
and vortex generators on elevator efficient of landing flap sweep on aerodynamic	
and vortex generators on elevator efficie	encyand
and vortex generators on elevator efficie of landing flap sweep on aerodynamic characteristics	
and vortex generators on elevator efficie of landing flap sweep on aerodynamic characteristics NESS, W. G.	ency and
and vortex generators on elevator efficient of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valida	ency and
and vortex generators on elevator efficie of landing flap sweep on aerodynamic characteristics NESS, W. G.	N80-15178 NSO- of
and vortex generators on elevator efficient of landing flap sweep on aerodynamic characteristics NBSS, W. G. An assessment of and approach to the validat digital flight control systems	≥ncy and N80-15178
and vortex generators on elevator efficient of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valide digital flight control systems MECHANN, H. E.	ency and N80-15178 Ation of N80-14036
and vortex generators on elevator efficient of landing flap sweep on aerodynamic characteristics NBSS, W. G. An assessment of and approach to the valida digital flight control systems BECHANN, H. E. Ar analytical and experimental study of a s	ency and N80-15178 Ation of N80-14036 Short
and vortex generators on elevator efficient of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the validat digital flight control systems BEUHANN, H. E. Ar analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni	ency and N80-15178 Ation of N80-14036 Short
and vortex generators on elevator efficient of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valida digital flight control systems EEUHANN, H. E. Ar analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni [AIAA PAPER 80-0386]	ency and N80-15178 Ation of N80-14036 Short LC inlet A80-20970
and vortex generators on elevator efficient of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valida digital flight control systems EEUHANN, H. E. Ar analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni [AIAA PAPER 80-0386]	ency and N80-15178 Ation of N80-14036 Short LC inlet A80-20970
and vortex generators on elevator efficient of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valida digital flight control systems EEUHANN, H. E. An analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni [AIAA PAPER 80-0386] An analytical and experimental study of a s	NBO-15178 Ation of NBO-14036 short ic inlet ABO-20970 short
and vortex generators on elevator efficient of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valida digital flight control systems UEUMANN, H. E. Ar analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni [AIAA PAPER 80-0386] An analytical and experimental study of a s s-shaped subsonic diffuser of a supersoni	NBO-15178 Ation of NBO-14036 Short ic inlet ABO-20970 Short ic inlet
and vortex generators on elevator efficient of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the validat digital flight control systems BEUHANN, H. E. An analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni [AIAA PAPER 80-0386] An analytical and experimental study of a s s-shaped subsonic diffuser of a supersoni [NASA-TM-81406]	NBO-15178 Ation of NBO-14036 short ic inlet ABO-20970 short
and vortex generators on elevator efficie of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valida digital flight control systems WEUHAWN, H. E. Ar analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni [AIA PAPER 80-0386] An analytical and experimental study of a s s-shaped subsonic diffuser of a supersoni [NASA-TM-81406] BEWHAW, F. H.	NBO-15178 Ation of NBO-14036 short ic inlet ABO-20970 short ic inlet NBO-15134
and vortex generators on elevator efficie of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valida digital flight control systems EUMANN, H. E. Ar analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni [AIAA PAPER 80-0386] An analytical and experimental study of a s s-shaped subsonic diffuser of a supersoni [NASA-TH-81406] EEWANN, P. H. The physical and chemical characterization	NBO-15178 Ation of NBO-14036 short ic inlet ABO-20970 short ic inlet NBO-15134
 and vortex generators on elevator efficients of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the validation digital flight control systems BEUHANN, H. E. Ar analytical and experimental study of a software subsonic diffuser of a supersoni [AIAA PAPER 80-0386] An analytical and experimental study of a software subsonic diffuser of a supersoni [NASA-TM-81406] BEUHAN, F. H. The physical and chemical characterization military turbine engine lubricants 	ency and N80-15178 Ation of N80-14036 short c inlet A80-20970 short c inlet N80-15134 of ten
and vortex generators on elevator efficie of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valida digital flight control systems EEUHANN, H. E. Ar analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni [AIA PAPER 80-0386] An analytical and experimental study of a s s-shaped subsonic diffuser of a supersoni [NASA-TM-81406] BEVMAN, F. H. The physical and chemical characterization military turbine engine lubricants [AD-A074073]	NBO-15178 Ation of NBO-14036 short ic inlet ABO-20970 short ic inlet NBO-15134
and vortex generators on elevator efficie of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valida digital flight control systems EBUHANN, H. E. Ar analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni [NIAM PAPER 80-0386] An analytical and experimental study of a s s-shaped subsonic diffuser of a supersoni [NASA-TM-81406] HEWHAN, F. H. The physical and chemical characterization military turbine engine lubricants [AD-A074073] NEGUREN, L. T.	ency and N80-15178 Ation of N80-14036 short c inlet A80-20970 short c inlet N80-15134 of ten
and vortex generators on elevator efficie of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valida digital flight control systems BEUHANN, H. E. Aw analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni [AIAA PAPER 80-0386] An analytical and experimental study of a s s-shaped subsonic diffuser of a supersoni [NASA-TM-81406] BEWHAN, F. H. The physical and chemical characterization military turbine engine lubricants [AD-A074073] NGUIEN, L. T. Simulator study of stall/post-stall	ency and N80-15178 Ation of N80-14036 short ic inlet A80-20970 short ic inlet N80-15134 of ten N80-15265
and vortex generators on elevator efficie of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valida digital flight control systems EEUHANN, H. E. An analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni [AIA PAPER 80-0386] An analytical and experimental study of a s s-shaped subsonic diffuser of a supersoni [NASA-TM-81406] EEUHAN, F. H. The physical and chemical characterization military turbine engine lubricants [AD-A074073] NGUIEN, L. T. Simulator study of stall/post-stall characteristics of a fighter airplane wit	ency and N80-15178 Ation of N80-14036 short ic inlet A80-20970 short ic inlet N80-15134 of ten N80-15265
and vortex generators on elevator efficie of landing flap sweep on aerodynamic characteristics NESS, W. G. An assessment of and approach to the valida digital flight control systems BEUHANN, H. E. Aw analytical and experimental study of a s S-shaped subsonic diffuser of a supersoni [AIAA PAPER 80-0386] An analytical and experimental study of a s s-shaped subsonic diffuser of a supersoni [NASA-TM-81406] BEWHAN, F. H. The physical and chemical characterization military turbine engine lubricants [AD-A074073] NGUIEN, L. T. Simulator study of stall/post-stall	ency and N80-15178 Ation of N80-14036 short ic inlet A80-20970 short ic inlet N80-15134 of ten N80-15265

OWER, 1	P. K.
---------	-------

Control considerations for CCV fighters at high angles of attack N80-15160 NIBLETT, L. T. A flutter-speed formula for wings of high aspect ratio N80-15147 NIEDBAL, N. A simplified ground vibration test procedure for sailplanes and light aircraft N80-15146 NIEDZIALEK, B. Experimental investigation of the characteristics of pneumatic transfer lines A80-19052 NIELSEN, J. N. Euler solutions for wing and wing-body combination at supersonic speeds with leading-edge separation [AIAA PAPER 80-0126] A80-1835 [AIAA PAPER 80-0126] A80-1835 A80-18359 Nonlinear aerodynamics of all-movable controls N80-15173 **BIESZ. D. B.** Comparative resistance of Beta-Si3N4 solid solutions to molten silicon attack A80-18062 BORED, D. L. Preparing aircraft propulsion for a new era in energy and the environment A80-17737 BORUM, T. D. Applications of diffraction theory to aeroacoustics

NOVOSARTOV, G. T. Unification of oils for aircraft gas-turbine engines A80-20690

0

ODOARDI, F. Visual displays for air traffic control data N N80-14077 OFFEREISS, R. P. Methods for strap-down attitude estimation and navigation with accelerometers N80-18038 OGBURN, H. E. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability [NASA-TP-1538] N80-14136 OGDEN, J. S. Comparative resistance of Beta-Si3N4 solid solutions to molten silicon attack A80-18062 OKABAYASHI, M. Low-aspect-ratio limit of the toroidal reactor -The spheromak A80-17876 ONAT, B. A pre-design code for predicting engine acquisition costs [AINA PAPER 80-0055] A80-19269 An extension of engine weight estimation techniques to compute engine production cost [AD-1074454] N80-15135 ORLOFF, K. L. Pffect of tip planform on blade loading characteristics for a two-bladed rotor in hover [NASA-TH-78615] N80-14 N80-14049 ORTH, Р. Avionics installation (AVSTALL) cost model for user equipment of NAVSTAR global positioning system F AD-A073681] N80-14106 **OSTGALED, H. A.** Technical evaluation report on the 28th Guidance and Control Panel Symposium on Advances in Guidance and Control Systems Using Digital Techniques [AGARD-AR-148] N80-15140 OWEN, F. K. Control of forebody three-dimensional flow separations N80-15164

PALKUTI, L. J.

PERSONAL AUTHOR INDEX

Ρ PALKUTI, L. J. Integrated circuit characteristics at 260 C for aircraft engine-control applications N80-20112 PAO, J. L. The guasi-vortex-lattice method for wings with edge wortex separation N80-14052 [NASA-CR-162530] PARDINI, S. A survey of the stochastic filtering techniques for data processing in air-traffic control and surveillance systems A80-20867 Tracking algorithms for mono and multiradar N80-14074 PARDUE, R. E. Aircraft fuel system simulator tests with antimisting kerosene (jet A fuel with PM-9 addit ive) TAD-A0732371 N80-14256 PARRIS, B. L. The effects of motion and g-seat cues on pilot simulator performance of three piloting tasks [NASA-TP-1601] N80-N80-15069 PAINE, B. W. The minimum cost approach to flutter clearance N80-15148 PBAKE, D. J. Control of forebody three-dimensional flow separations N80-15164 PEARSON, D. S. Gas turbine carcase and accessory vibration -Problems of measurement and analysis A80-17730 PEARSON, J. J. Map-matching techniques for terminal guidance using Pourier phase information A80-17517 PELEGEIN, B. Automatic recovery after sensor failure onboard N80-14024 PRLLEGRINT, P. P. An air traffic channel simulation by means of ray-tracing techniques N80-14088 L-band measurements in the air traffic channel to characterize secondary radar systems N80-14092 PELLMAN, A. Non-contacting electro-optical contouring of helicopter rotor blades [AD-A070806] N80-14111 PENT. . . Onboard collision avoidance system: Environmental influence on the tracking algorithm requirements N80-14105 PERIN, J. The avionics computer program: Practical experiences with a methodology N80-14037 PERKINS. P. J. Simultaneous cabin and ambient ozone measurements on two Foeing 747 airplanes, volume 1 [NASA-TM-79166] N80-15059 PERKINS, R. G., JR. Navy V/STOL - A continuing initiative [SAWE PAPER 1325] A80-20655 PERRY, G. E. The Russian satellite navigation system A80-20982 PETERSEN, R. J. Vocabulary specification for automatic speech recognition in aircraft cockpits [AD-A073703] N8 N80-14303 PRTOT, D.
 A phenomenological model of the dynamic stall of a helicopter blade profile
 [ONERA, TP NO. 1979-189]
 A80-2001
 PETRASH, D. A.
 Preparing aircraft propulsion for a new era in
 concrus and the environment A80-20086 energy and the environment A80-17737 PETRICLI. R. Filtering of synthetic radar data N80-14076 PHILLIPS. W. H. Altitude response of several airplanes during landing approach [NASA-TH-80186] N80-14139 PIATTELLI, E. Development trends of airport surface traffic control radar N80-14087 PIAZZOLI, G. Dynamic identification of light aircraft structures and their flutter certification N80-15145 PIRCHER, E. Automatic recovery after sensor failure onboard N80-14024 PISCOPO, P. P. Puel conservation benefits and critical technologies of recuperative and advanced conventional cycle turboshaft engines [AIAA PAPER 80-0224] A80-19301 POVINELLI, L. A. An analytical and experimental study of a short S-shaped subsonic diffuser of a supersonic inlet [AIAA PAPER 80-0386] A80-209 An analytical and experimental study of a short s-shaped subsonic diffuser of a supersonic inlet A80-20970 [NASA-TM-81406] N80-15134 Computation of three-dimensional flow in turbofan mixers and comparison with experimental data [NASA-TH-81410] N80-15364 POWBRS, S. A. The rational design of an airfoil for a high performance jet trainer [NIAN PAPER 80-0328] A80-18317 PRANDTL, L. Applications of modern hydrodynamics to aeronautics. Part 1: Fundamental concepts and the most important theorems. Part 2: Applications N80-15034 F NACA-1161 PRINCE, J. L. Integrated circuit characteristics at 260 C for aircraft engine-control applications A80-20112 PRODAN, J. The T-28 thunder/hailstorm penetration aircraft N80-14640 PUTNAR, T. W.

Landing approach airframe noise measurements and analysis N80-15028 [NASA-TP-1602]

Q

QUINH, D. W. The analysis of sound propagation in jet engine ducts using the finite difference method N80-14853 FAD-A0742331

R RABIEGA, W. A. Models for freight access to air terminals A80-20869 RACHOWITZ, B. I. The modular life cycle cost model - An overview [SAWE PAPER 1290] A80-A80-20636 RADCHEBKO, B. D. Fffect of naphthenic aromatic hydrocarbons on the oxidizability of hydrogenated jet fuel A80-17675 RAFTOPOULOS, D. D. Dispersion of sound in a combustion duct by fuel droplets and soot particles A80-20953 RAHMAN, S. Sound generation in a flow near a compliant wall A80-20153 RAILEY, J. M. Redundancy management considerations for a control-configured fighter aircraft triplex digital fly-by-wire flight control system N80-14026 RAO, D. M. Investigation of leading-edge devices for drag reduction of a 60-deg. delta wing at high angles of attack [AIAA PAPER 80-0310] A80-18309 RAPTIS, D. Recent developments in flight simulation techniques 180-20907 RAVENHALL, R. Quiet Clean Short-haul Experimental Engine (QCSER) under-the-wing engine composite fan blade design report [NASA-CR-135046] N80-15108 **RBARDON, L. P.** Loading tests of a wing structure for a hypersonic aircraft [NASA-TP-1596] N80-15068 REDDY, C. S. Analytical investigation of aerodynamic characteristics of highly swept wings with separated flow A80-17697 Development of a vortex-lift-design method and application to a slender maneuver-wing configuration [AIAA PAPER 80-0327] A80-18316 Theoretical study of aerodynamic characteristics of wings having vortex flow NASA-CR-159184] N80-14053 REDEKER, G. Flight testing of the buffeting behavior of combat aircraft [ESA-TT-523] N80-14143 REGELSON, E. Vocabulary specification for automatic speech recognition in aircraft cockpits [AD-A0737031 N80-14303 REID, D. B. Development of aiding GFS/strapdown inertial navigation system N80-14031 RICCIARDELLI, S. Radar data utilization in automating the sequencing of aircrafts in terminal areas N80-14071 RICE, B. J. Comparison of inlet suppressor data with approximate theory based on cutoff ratio [AIAA PAPER 80-0100] A80-20964 RICE, R. K. Flight certification of the Cessna TU206G amphibious floatplane A80-18186 RICHMOND, L. D. Application of finite element analysis to derivation of structural weight [SAWE PAPER 1271] A80-20627 RIWALDI, G. Radar data utilization in automating the sequencing of aircrafts in terminal areas N80-14071 RIX, O. In-flight measured characteristics of combined flap-spoiler direct lift controls N80-15165 RIZZO, P. J. Thermo-mechanical stress analysis of advanced turbine blade cooling configuration [AD-A074098] N80-15136 ROGERS, H. Photon correlation laser velocimeter measurements in highly turbulent flow fields [AIAA PAPER 80-0344] 180-18328 ROME, H. J. Covariance simulation of BCAS - An aircraft collision avoidance system A80-20915 ROSEBBLUTE, N. N. Low-aspect-ratio limit of the toroidal reactor -The sphercmak A80-17876 ROSKAN, J. Structural parameters that influence the noise reduction characteristics of typical general aviation materials FAINA PAPER 80-00381 180-18248 Correlation of predicted longitudinal aerodynamic characteristics with full-scale wind tunnel data on the ATLIT airplane [AIAA PAPER 80-0186] A80-18356 ROSS, A. J. A survey of experimental data on the aerodynamics

A survey of experimental data on the aerodynamics of controls, in the light of future needs N80-15151 SATZER, W.

ROUSE, W. B. Adaptive allocation of decisionmaking responsibility between human and computer in multitask situations A80-18022 RUBLE, J. R. Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 BUGGLES, C. L. Quiet Clean Short-Haul Experimental Engine (QCSFF) [NASA-CR-135279] [UTW] graphite/PMR cowl development [NASA-CR-135279] RUISI, R. L-band measurements in the air traffic channel to characterize secondary radar systems N80-14092 RINASKI, E. G. Design criteria for optimal flight control systems [AD-A074092] N80-151 N80-15139 S SABLA, P. E. Quiet Clean Short-haul Experimental Engine (QCSEE). Double-annular clean combustor technology development report [NASA-CR-159483] N80-15121 SACCO, V. Antireflection techniques for detecting false tracks in air traffic surveillance with secondary radar 1 N80-14100 SAINI, J. K. The effects of leading edge modifications on the post-stall characteristics of wings [AIAA PAPER 80-0199] A80-1837 [NT JOHN, R. H. Code optimization for solving large 3D FMP problems A80-18375 SAINT . 80-19764 SAINT JOHN, R. S. Advanced technology effects on V/STOL propulsive system weight [SAVE PAPER 1300] SALEMAE, C. T. Quiet Clean Short-haul Experimental Engine (QCSEE) A80-20640 under-the-wing engine composite fan blade design report T NASA-CR-1350461 N80-15108 SALIBÀ, H. Simulation of a surveillance and control system of surface traffic in an airport N80-14073 SANDERS, B. W. Dynamic response of a Mach 2.5 axisymmetric inlet and turbojet engine with a poppet-value controlled inlet stability bypass system when subjected to internal and external airflow transients [NASA-TP-1531] N80-14123 Turbojet-exhaust-nozzle secondary-airflow pumping as an exit control of an inlet-stability bypass system for a Mach 2.5 axisymmetric mixed-compression inlet [NASA-TP-1532] N80-14124 SANDERSON, R. Some investigations concerning the effects of gaps and wortex generators on elevator efficiency and of landing flap sweep on aerodynamic characteristics N80-15178 SANKAR, N. L. Reynolds number and compressibility effects on dynamic stall of a NACA 0012 airfoil [AIAA PAPER 80-0010] A80-18238 SASSAWO, A. Radar data utilization in automating the sequencing of aircrafts in terminal areas N80-14071 SATTLER, D. P. The rational design of an airfoil for a high performance jet trainer [AIAA PAPER 80-0328] A80-18317 SATZER, W. Vocabulary specification for automatic speech recognition in aircraft cockpits [AD-A073703] N80-14303

SCHEMENSKY, R. T.

PERSONAL AUTHOR INDEX

SCHEMENSKY, B. T. Development of a vortex-lift-design method and application to a slender maneuver-wing configuration [AIAN PAPER 80-0327] 180-18316 SCHNIDT, A. H. Preliminary weight estimation of engine section structure **FSAWE PAPER 1311]** 180-20605 SCHNITT, V. Aerodynamic interaction on a close-coupled canard wing configuration N80-15175 SCHHITZ, P. H. Acoustically swept rotor [NASA-CASE-ARC-11106-1] N80-14107 SCHULTZ, P. H. Atmospheric effects on Martian ejecta emplacement A80-20192 SCHUTZ. D. Review of investigations into aeronautics related fatigue Federal Republic of Germany fLBF-S-142] N80-14422 SCOLATTI, C. A. Control integration technology impact ₦80-15162 SEBASTIAN, J. D. An investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings [NASA-CR-159143] N80-14056 SEKERCIOGLU, I. Comparative resistance of Beta-Si3N4 solid solutions to molten silicon attack A80-18062 SFORZA, P. H. Streamwise development of the flow over a delta wing [AIAA PAPER 80-0200] 180-18376 SHAH, P. C. Linear systems analysis program, L224(QR). Volume 1: Engineering and usage [NASA-CR-2861] N80-14137 SHIPPY, D. J. Thermo-mechanical stress analysis of advanced turbine blade cooling configuration [AD-A074098] ¥80-15136 SHORT, J. J. An evaluation of the bird/aircraft strike hazard at Barksdale Air Force Base, Louisiana (SAC) FAD-A0743907 N80-14063 SHOWALTER, T. W. The effects of motion and g-seat cues on pilot simulator performance of three piloting tasks [NASA-TP-1601] N80-N80-15069 SHUMPERT, P. K. An experimental model investigation of turbofan engine internal exhaust gas mixer configurations [AIAA PAPEB 80-0228] A80-19302 SIDDALINGAPPA, S. R. Unsteady aerodynamics of two-dimensional spoilers at low speeds N80-15170 STDES. J. Unsteady effects of a control surface in two dimensional, subsonic and transonic flow N80-15168 SIDORENKO, H. K. Evaluation of the intensity of beat-induced vibrations A80-17965 SIEGEL, W. H. Loading tests of a wing structure for a hypersonic aircraft [NASA-TP-1596] N80-15068 SIGHIRADZKI, I. An overvoltage safety system for direct current aircraft generators A80-19051 SIMPSON. L. Code optimization for sclving large 3D EMP problems 180-19764 SKOW. A. H. Enhanced departure/spin recovery of fighter aircraft through control of the forebody vortex orientation [AIAA PAPER 80-0173] A80-18352

Forebody vortex blowing: A novel control concept to enhance departure/spin recovery characteristics of fighter and trainer aircraft N80-15172 SHEIAHOV, V. A. Unification of oils for aircraft gas-turbine engines A80-20690 SHITH, C. A. Nonlinear aerodynamics of all-movable controls N80-15173 SHITH, H. H. Properience in producing software for the ground station of a remotely piloted helicopter system N80-14038 SHITH, P. H. Discontinuous registration of industrial radiographs using profile analysis and piecewise correlation techniques A80-17521 SHOLKA, S. Trajectory behaviour of a control configurated aircraft subjected to random disturbances N80-15171 SHORTO, M. J. Streamwise development of the flow over a delta wing [ATAA PAPER 80-0200] A80-18376 SMYTH, R. K. State of the art for digital avionics and controls, 1978 N80-14018 SOHST, H. Development aspects of a dynamically tuned gyro for strapdown - AHRS A80-17553 SOLIGNAC, J. L. Experimental study of confluence with separation on an afterbody of revolution [ONERA, TP NO. 1979-151] A80-2 SONBLETTER, W. A80-20088 Wind tunnel investigation of controls for DF on a fighter-type configuration of higher angles of attack N80-15166 SOWERS, H. D. Quiet, Clean, Short-Haul, Experimental Engine (QCSEE) Mnder-The-Wing (UTW) engine acoustic design [NASÁ-CR-135267] N80-14117 Quiet, Clean, Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) engine acoustic design NASA-CR-135268] N80-14118 Quiet Clean Short-haul Experimental Engine {QCSEE}. Core engine noise measurements NASA-CR-1351601 N80-15093 STALDAREP, W. A. A computerized method for calculating flutter characteristics of a system characterized by two degrees of freedom [NASA-TH-80153] N80-14055 TAVINONA, L. L. The physical and chemical characterization of ten military turbine engine lubricants [AD-A074073] N80-15 N80-15265 STECURA, S. Thermal barrier coatings for aircraft gas turbines [AIAA PAPER 80-0302] A80-18303 STELUINGER, E. Bxcitation and analysis technique for flight flutter tests [MBB-UF-1446(0)] N80-14140 STEPABERKO, B. D. Damping capacity of plastic compressor blades A80-19868 STEPHENS, R. E. Problems associated with cargo airplanes having aft mounted engines [SAWE PAPER 1314] A80-20648 STERNBERGER, N. The modular life cycle cost model - An overview [SAWE PAPER 1290] A80-20636 STEVENS, M. L. Surface conforming thermal/pressure seal [NASA-CASE-MSC-18422-1] N80-14400 STEVENSON, C. ۸. An adaptation and validation of a primitive variable mathematical model for predicting the flows in turbojet test cells and solid fuel ramjets [AD-A074187] N80-14133

STEWART, W. Avionics installation (AVSTALL) cost model for user equipment of NAVSTAR global positioning system N80-14106 [AD-A073681] STEWART, W. L. Preparing aircraft propulsion for a new era in energy and the environment 180-17737 STIMPERT, D. L. Quiet Clean Short-Haul Experimental Engine (QCSEE) acoustic and aerodynamic tests on a scale model over-the-wing thrust reverser and forward thrust nozzle [NASA-CR-135254] N80-14115 Demonstration of short-haul aircraft aft noise reduction techniques on a twenty inch (50.8 cm) diameter fan, volume 1 [NASA-CR-134849] N80-15 N80-15083 Demonstration of short-haul aircraft aft noise reduction techniques on a twenty inch (50.8) diameter fan, volume 2 [NASA-CR-134850] N80-15 Demonstration of short haul aircraft aft noise reduction techniques on a twenty inch (50.8 cm) diameter fan, volume 3 N80-15084 [NASA-CR-134851] N80-15085 [NASA-CR-134851] N80-150 Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan [NASA-CR-134891] N80-1510 Quiet Clean Short-haul Experimental Engine (QCSEE) Over-The-Wing (OTW) propulsion systems test report. Volume 4: Acoustic performance [NaCa-1510] N80-15102 [NASA-CR-135326] 380-15118 STOHLER, S. L. LOX/GOX mechanical impact tester assessment [NASA-TM-74106] N80-15179 STOLOV, L. I. Aircraft torque motors A80-19199 STOTLER, C. L., JR. Quiet Clean Short-haul Experimental Engine (QCSEE). Composite fan frame subsystem test report [NASA-CR-135010] N80-15098 Quiet Clean Short-baul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle subsystem test report [NASA-CR-135075] N80-15100 STRACK, S. L. Fleet hardness variation [AD-A074849] N80-15029 STRABLE, W. C. Estimation of noise source strengths in a gas turbine combustor [AIAA PAPER 80-0034] A80-18245 Nach 3 hydrogen external/base burning [AIAA PAPER 80-0280] A80-STUCKENBERG, N. An observer system for sensor failure detection A80-19311 and isolation in digital flight control systems N80-14023 STUDNEY, R. V. Aircraft aerodynamics - Dynamics of longitudinal 180-19374 STURGEON, W. R. Controllers for aircraft motion simulators 180-18252 [AIAA PAPER 80-0050] SULKOSKE, R. A. Regression techniques applied to parametric turbine engine simulations [AIAA PAPER 80-0053] A80-18255 SWEETHAN, B. The next supersonic transport A80-20214

TABAKOFF, W. Optimization of turbine nozzle cooling by combining impingement and film injection [AIAA PAPER 80-0299] A80-19316 TANGLER, J. L.

Analysis of low-speed helicopter flight test data fAD-A0741411 #80-15079

TANGORRA, A. Problems related to the design and construction of a radar network N80-14066 TASSA, Y. Reynolds number and compressibility effects on dynamic stall of a NACA 0012 airfoil [AIAA PAPER 80-0010] A80-18238 TERRIS, D. Navigation error using rate of change of signal time of arrival from space vehicles 180-20904 THEODORSEN, T. General potential theory of arbitrary wing sections [NACA-452] N80-15046 N80-15046 General theory of aerodynamic instability and the mechanism of flutter T NACA-496] N80-15047 THOMAS, H. H. B. H. A survey of experimental data on the aerodynamics of controls, in the light of future needs N80-15151 TIERNEGO, M. J. L. Methods for strap-down attitude estimation and navigation with accelerometers N80-14034 TINOCO, E. N. Application of a higher order panel method to realistic supersonic configurations [AIAA PAPER 79-0274] A80 A80-17696 TISCHLER, H. B. Determination of the spin and recovery characteristics of a typical low-wing general aviation design [AIAA PAPER 80-0169] A80-18351 TODD, A. H. H. Low-aspect-ratio limit of the toroidal reactor -The spheromak A80-17876 TOLLE, P. P. In extension of engine weight estimation techniques to compute engine production cost [AD-A074454] N80 N80-15135 TONDL, A. On the dynamics of compressor surge A80-17900 TONSKOTTER, H. On the influence of steady state temperature and pressure distortion on the flow characteristics in an installed multistage jet engine compressor A80-17724 TOWNE, C. E. Numerical simulation of supersonic inlets using a three-dimensional viscous flow analysis (AIAA PAPER 80-0384) A80-20969 TRAMBUSTI, N. L-band measurements in the air traffic channel to characterize secondary radar systems N80-14092 TRAN, C. T. A phenomenological model of the dynamic stall of a helicopter blade profile [ONERA, TP NO. 1979-149] A80-200 TROMPETER, P. A80-20086 On the use of vibration self-damping materials in the manufacture of parts for rotating machinery N80-14135 TUCKER, H. I. Experience in producing software for the ground station of a remotely piloted helicopter system N80-14038 TURKEL, B. S. Current research on aviation weather (bibliography), 1979 [NASA-CR-32141 N80-14651 TURNER, D. R. Advanced materials and the Canadair Challenger [SAWE PAPER 1284] A80 A80-20632 ν VAN DAH, C. P. G. Correlation of predicted longitudinal aerodynamic characteristics with full-scale wind tunnel data

on the ATLIT airplane FAIAA PAPER 80-01861 A80-18356

VANKEUK, G.

PERSONAL AUTHOR INDEX

VANKEUK, G. Target tracking using Doppler-information in sensor oriented coordinates with a three dimensional array radar N80-14325 [REPT-270] VATALARO, F. Automatic systems for airport surface mobile media surveillance based on the use of secondary media 80-14104 VAUSE, R. Acoustically swept rotor [NASA-CASE-ARC-11106-1] N80-14107 VENTURI, V. L-band measurements in the air traffic channel to characterize secondary radar systems N80-14092 VESELIANSKAIA, V. M. Effect of naphthenic aromatic hydrocarbons on the oridizability of hydrogenated jet fuel N80-17675 VILEBRIN, A. V. Unification of oils for aircraft gas-turbine engines A80-20690 VINCENT, M. C. Application of RCS guidelines to weight effective aircraft design **ESAWE PAPER 12701** A80-20626 VISSER. W. An analytical method of testing pavement strength 180-17998 VON GLAHN. U. Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics A80-20952 Acoustic considerations of flight effects on jet noise suppressor nozzles [AIAA PAPER 80-0164] A80-20965 VOUSDEN, P. R. A high accuracy flight profile determining system N80-14042

W

WALKER, D. J.	
Fin design with ACT in the presence of stra	kes
, , , , , , , , , , , , , , , , , , ,	N80-15161
WARNBRODT, W.	100 10101
Formulation of coupled rotor/fuselage equat	2 e
	Tons of
motion	
	A80-17717
WATSON, J. H.	
Redundancy management considerations for a	
control-configured fighter aircraft trip]	- W
digital fly-by-wire flight control system	
	N80-14026
WATTS, P. R.	
Gas turbine carcase and accessory vibration	-
Problems of measurement and analysis	
FLODIENS OF medsurement and duarysis	
	A80-17730
WEATBERILL, W. H.	
Analysis of transonic flow about harmonical	.1y
oscillating airfoils and wings	-
TAIAA PAPER 80-0149]	A90-18367
An investigation of several factors involve	
finite difference procedure for analyzing	
transonic flow about harmonically oscilla	ting
airfoils and wings	
[NASA-CR-159143]	N80-14056
A users guide for A344: A program using a	
A USELS GUIDE LOL AS44. A PLOGIAM USING A	rintfe
difference method to analyze transonic fl	ow over
oscillating airfoils	
[NASA-CR-159141]	N80-15052
WEBBY, J. P.	
Experience in producing software for the gr	ound
station of a remotely piloted helicopter	
station of a femotery proted nericopter	N80-14038
	N80-14038
WEGER, D.	
Investigation of the oscillatory and flight	
behavior of rotor systems in relation wit	h
atmospheric turbulence	
[BNVG-PBWT-79-5]	N80-14142
WEHREND, W. R., JR.	100-14142
Pilot control through the TAFCOS automatic	tlight
control system	
[NASA-TM-81152]	N80-14138
WEIBERG, J. A.	
NASE/Army YV-15 tilt rator receased sincest	+
NASA/Army XV-15 tilt rotor research aircraf	t.
wind-tunnel test program plan	•
	t. N80-15067

WEIDNER, J. P. Propulsion/airframe integration considerations for high altitude hypersonic cruise vehicles [AIAA PAPER 80-0111] A80-18272 WELSH. B. L. Aerodynamic characteristics of moving trailing-edge controls at subsonic and transonic speeds N80-15169 WELTE, D. Find tunnel measurements and analysis of some unusual control surfaces on two swept wing fighter configurations N80-15155 WERNER, K. High angle of attack characteristics of different fighter configurations [MBE-UFE-1443 (0)] N80-14058 WERTH, J. Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels [NASA-CR-3210] N80-14047 BSCOTT, P. L. Experience in producing software for the ground station of a remotely piloted helicopter system N80-14038 WHITHOYBR, R. A. APPDL experience in active control technology N80-15159 WRITTLEY, D. C. Large scale model tests of a new technology V/STOL concept FAIAA PAPER 80-02331 A80-19303 WIBERLY, S. E. Composite structural materials [NASA-CR-162578] N80-15076 MULTIANS, J. G. Modification of axial compressor streamline program for analysis of engine test data [NAŚA-TM-79312] N80-14051 WILLIARSON, W. S., JR. A comparison of first and second order techniques for computing optimal horizontal gliding trajectories [AIAA PAPER 80-0061] WILLIS, W. S. A80-18260 Quiet Clean Short-haul Experimental Engine (QCSEE) [NASA-CR-159473] N80-15120 WILLS, R. R. Comparative resistance of Beta-Si3N4 solid solutions to molten silicon attack A80-18062 WIFKELFAND, A. B. The effects of leading edge modifications on the post-stall characteristics of wings Î MI A A PAPER 80-01991 A80-18375 WITSHBER, A. J. Performance evaluation of image correlation techniques A80-17534 WOOD, C. D. The Russian satellite navigation system A80-20982 WOODRUFF, R. R. ?ffects of varying visual display characteristics of the T-4G, a T-37 flight simulator [AD-A071410] N80-15 N80-15180 WOODWARD, D. S. Some wind tunnel measurements of the effectiveness at low speeds of combined lift and roll controls N80-15153 WRIGHT, H. B. Photon correlation laser velocimeter measurements in highly turbulent flow fields [AIAA PAPER 80-0344] WU, F. T. A80-18328 Infrared sensor system performance simulations A80-20900 WU, J. J Recent development of a jet-diffuser ejector [AIAA PAPER 80-0231] A80-18277 WUEBNENBERG, H. Roll control by digitally controlled segment spoilers N80-15156 Direct side force and drag control with the aid of pylon split flaps N80-15163

Y

•			
YATBS, B. C., JR.			
Hybrid vortex method for lifting surfaces with			
free-vortex flow			
[AIAA PAPER 80-0070]	A80-19307		
YBARLEY, P. L.			
Evaluation of the aerodynamic characterist			
1/20-scale A-10 model at Mach numbers fr	om 0.30		
to 0.75			
[AD-A074867]	N80-15055		
YEN, J. G.			
Analysis of rotor-fuselage coupling and its effect			
on rotorcraft stability and response			
	N80-17716		
YORK, E. N.			
Fleet hardness variation			
[AD-A074849]	N80-15029		
YORK, P.			
Weight impact of VTOL			
[SAWE PAPER 1326]	A80-20656		
YOUSEY, W. J.			
Redundancy management considerations for a			
control-configured fighter aircraft triplex			
digital fly-by-wire flight control syste			
	N80-14026		

Ζ

ZAPPA, G. Tracking algorithms for mono and multiradar N80-14074 ZINN, B. T. Acoustic radiation from axisymmetric ducts - A comparison of theory and experiment rAIAA PAPER 80-0097] X80-18268 ZIKOV, B. N. Aircraft torgue motors N80-19199

B-17

0

CONTRACT NUMBER INDEX

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Suppl. 121)

APRIL 1980

Typical Contract Number Index Listing

Listings in this index are arranged alphanumerically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order with the *IAA* accession numbers appearing first. The accession number denotes the number by which the citation is identified in either the *IAA* or *STAR* section.

AF PROJ. 329A	F33615-78-C-3008
N80-15055	A80-18340
AF PROJ. 1123	F33615-78-C-3422
	-
N80-15180	A80-20626
AF PROJ. 2307	F33615-78-C-3604
N80-15136	A80-17699
AF PROJECT 14710130	F40600-79-C-001
-	
A80-18304	A80-19287
AF-AFOSR-2824-79	F49620-77-C-0066
N80-15136	A80-18268
BCS-G0061 N80-14137	NASW-2691 N80-14018
	NAS1-13175-16
N80-15081	A80-18308
DA PROJ. 1L1-61102-AH-45	NAS1-13871 N80-15070
N80-15031	N80-15071
DA PROJ. 112-62209-AH-76	
	N80-15072
N80-15079	NAS 1-14193 N80-14053
DAAB07-77-C-2167	N80-15299
A80-17402	NAS1-14193-48
DAAJ02-77-C-0022	A80-17697
N80-15079	NAS1-15057 N80-15074
DAAK40-76-C-1193	N80-15075
A80-17517	NAS1-15128 A80-18367
DAAK50-78-C-0008	N80-14056
N80-14111	N80-15052
DAAK70-79-C-0142	NAS1-15238 N80-14359
N80-15265	NAS1-15343 N80-15062
DFG-SFB-83 A80-17724	NAS1-15344 N80-14131
DGRST-75-7-0968	NAS1-15346 N80-14137
N80-14135	NAS3-18021 N80-14115
DNA001-77-C-0098	N80-14116
N80-14199	N80-14117
DNA001-78-C-0138	N80-14118
N80-15029	N80-14119
DNA001-78-C-0345	N80-14120
A80-19764	N80-15083
DOT-FA-77WA-4077	
	N80-15084
A80-18245	N80-15085
DOT-FA77WAI-817	N80-15086
N80-14064	N80-15087
DOT-FA78WAI-925	
	N80-15088
N80-14256	N80-15089
DOT-TS-14698 A80-20915	N80-15090
E(11-1)-3237 A80-17876	N80-15091
EY-76-C-02-3073	N80-15092
A80-17876	
	N80-15093
FAA PROJ. 052-241-04	N80-15094
N80-14064	N80-15095
F04701-78-C-0124	N80-15096
N80-14106	N80-15097
F08635-76-C-0306	N80-15098
A80-18534	N80-15099
F30602-77-C-0049	N80-15100
A80-17518	N80-15101
F33615-75-C-3016	N80-15102
A80-18304	N80-15103
F33615-75-C-3144	N80-15104
A80-18304	N80-15105
F33615-76-C-1300	
	N80-15106
A80-17534	N80-15107
F33615-76-C-3072	N80-15108
A80-17699	N80-15109
P33615-77-C-3036	N80-15110
N80-14026	N80-15111
F33615-78-C-3000	N80-15112
A80-18358	N80-15113

	N80-15114
	N80-15115
	N80-15116 N80-15117
	N80-15118 N80-15119
	N80-15120
	N80-15121 N80-15122
	180-15123
	N80-15124 N80-15125
	N80-15126
NAS3-19754 NAS3-20057	N80-14130 N80-14129
NAS3-20082 NAS3-20629	₩80-14122
NAS4-2519	N80-14127 N80-15073
NAS7-100 NAS8-32692	A80-18062 N80-14651
NGL-05-020-5	26
NGL-33-018-0	N80-15871 03
NGR-36-009-0	N80→15076
.GR 30-009=0	N80-15063
NGR-39-009-0	N80-15064 17
NGR-50-007-0	N80-15065
	N80-14355
NSG-1357 NSG-1537	N80-14054 N80-14052
NSG-1560	A80-19307
NSG-1570	A80-18351 A80-18375
NSG-1578	A80-17717
NSG-2007 NSG-2119	N80-15871 A80-18022
NSG-2140 NSG-6026	A80-18022 N80-14047
NSR-09-051-0	N80-15058 01
N00014-74-C-	A80-20192 0050
N00014-78-C-	N80-15173
N00014-78-C-	N80-15139
N00014-78-C-	N80-14417
	N80-14303
N00019-75-C-	N80-15077
N00019-77-C-	N80-15030
N62269-77-C-	0217 N80-15137
N62269-78-C-	0286 N80-15135
N 622 69-79-C-	
SF54592201 W-7405-ENG-4	N80-14132 N80-15137
	N80-15182
WR041010101	N80-15183 N80-15082
ZF57571004	N80-14259
505-02-54 505-03	N80-15068 N80-14125
505-03 505-04	N80-14124
505-06-31	N80-15128 N80-14047
505-06-31 505-06-63-03	N80-14136
505-09-41 505-10-23-03 505-33-53-03 505-34-33-02	N80-15069 N80-15031
505-33-53-03	N80-15874
513-52-01-16	N80-14139 N80-14114
535-03-14 744-01-01	N80-15028 N80-15067
769-02	N80-15067 N80-14121

1. Report No. NASA SP-7037 (121)	2. Government Access	ion No.	3. Recipient's Catalog	No.
4. Title and Subtitle			5. Report Date April 1980	
AERONAUTICAL ENGINEERING A Continuing Bibliography	(Supplement	121)	6. Performing Organiz	ation Code
7. Author(s)			8. Performing Organiza	ation Report No.
9. Performing Organization Name and Address	·····		10. Work Unit No.	
National Aeronautics and Washington, D. C. 20546		tration	11. Contract or Grant	No.
12. Sponsoring Agency Name and Address			13. Type of Report an	d Period Covered
			14. Sponsoring Agency	Code
15. Supplementary Notes	<u> </u>	L.	····	
16. Abstract			<u> </u>	
This bibliography lis introduced into the system in March 1980.	NASA scientifi	s, articles, and c and technical	l other docum information	ents
17. Key Words (Suggested by Author(s)) Aerodynamics Aeronautical Engineering Aeronautics Bibliographies		18. Distribution Statement Unclassified		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (Unclassifi		21. No. of Pages 134	22, Price* \$5.00 HC

*For sale by the National Technical Information Service, Springfield, Virginia 22161

PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC

NASA distributes its technical documents and bibliographic tools to eleven special libraries located in the organizations listed below. Each library is prepared to furnish the public such services as reference assistance, interlibrary loans, photocopy service, and assistance in obtaining copies of NASA

CALIFORNIA

University of California, Berkeley COLORADO University of Colorado, Boulder DISTRICT OF COLUMBIA Library of Congress GEORGIA Georgia Institute of Technology, Atlanta ILLINOIS The John Crerar Library, Chicago

MASSACHUSETTS Massachusetts Institute of Technology, Cambridge MISSOURI Linda Hall Library, Kansas City NEW YORK Columbia University, New York OKLAHOMA University of Oklahoma, Bizzell Library PENNSYLVANIA Carnegie Library of Pittsburgh WASHINGTON University of Washington, Seattle

NASA publications (those indicated by an "*" following the accession number) are also received by the following public and free libraries:

CALIFORNIA

Los Angeles Public Library San Diego Public Library COLORADO Denver Public Library CONNECTICUT Hartford Public Library MARYLAND Enoch Pratt Free Library, Baltimore MASSACHUSETTS **Boston Public Library** MICHIGAN Detroit Public Library MINNESOTA Minneapolis Public Library MISSOURI Kansas City Public Library St. Louis Public Library **NEW JERSEY**

Trenton Public Library

NEW YORK Brooklyn Public Library Buffalo and Erie County Public Library Rochester Public Library New York Public Library OHIO Akron Public Library Cincinnati Public Library Cleveland Public Library Dayton Public Library Toledo Public Library TENNESSEE Memphis Public Library TEXAS Dallas Public Library Fort Worth Public Library WASHINGTON Seattle Public Library WISCONSIN Milwaukee Public Library

An extensive collection of NASA and NASA-sponsored documents and aerospace publications available to the public for reference purposes is maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 555 West 57th Street, 12th Floor, New York, New York 10019

EUROPEAN

An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. By virtue of arrangements other than with NASA, the British Library Lending Division also has available many of the non-NASA publications cited in STAR. European requesters may purchase facsimile copy of microfiche of NASA and NASA-sponsored documents, those identified by both the symbols "#" and "*", from. ESA Information Retrieval Service, European Space Agency, 8-10 rue Mario-Nikis, 75738 Paris CEDEX 15, France.

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 Postage and Fees Paid National Aeronautics and Space Administration NASA-451

NASA

POSTMASTER: If Undeliverable (Section 158 Postal Manual) Do Not Return

NASA CONTINUING BIBLIOGRAPHY SERIES

NUMBER	TITLE	FREQUENCY
NASA SP-7011	AEROSPACE MEDICINE AND BIOLOGY Aviation medicine, space medicine, and space biology	Monthly
NASA SP-7037	AERONAUTICAL ENGINEERING Engineering, design, and operation of aircraft and aircraft components	Monthly
NASA SP-7039	NASA PATENT ABSTRACTS BIBLIOGRAPHY NASA patents and applications for patent	Semiannually
NASA SP-7041	EARTH RESOURCES Remote sensing of earth resources by aircraft and spacecraft	Quarterly
NASA SP-7043	ENERGY Energy sources, solar energy, energy conversion, transport, and storage	Quarterly
NASA SP-7500	MANAGEMENT Program, contract, and personnel management, and management techniques	Annually

Details on the availability of these publications may be obtained from: SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546