NASA CR-165487 RI/RD81-199

NASA

FINAL REPORT

LIQUID OXYGEN TURBOPUMP TECHNOLOGY

by C. E. Nielson

Rockwell International Rocketdyne Division

prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTREPION

NOVEMBER 1981

NASA-Lewis Research Center Contract NAS3-21356 Robert E. Connelly, Project Manager

. .

N82-11468

ł

(NASA-CH-165487) LIQUID OXYGEN TURBOFUMP TECHNOLOGY Final Report (Rocketdyne) 252 p HC A12/MF A01 CSCL 131

-

Unclas G3/37 08265

NASA CR-165487 RT/RD81-199

NASA

Į,

FINAL REPORT

LIQUID OXYGEN TURBOPUMP TECHNOLOGY

by C. E. Nielson

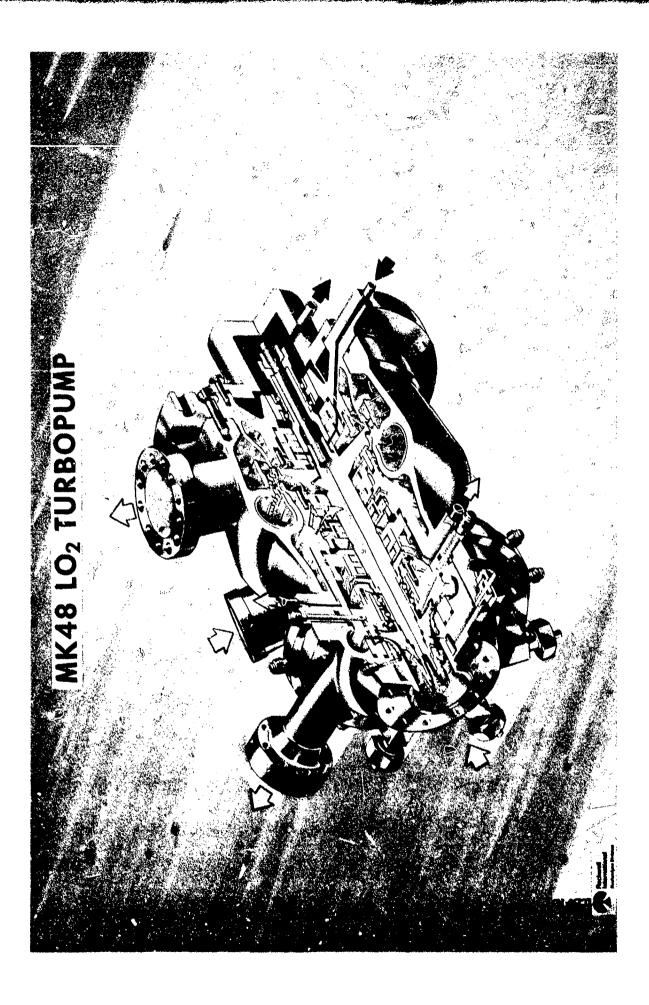
Rockwell International Rocketdyne Division

prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NOVEMBER 1981

NASA-Lewis Research Center Contract NAS3-21356 Robert E. Connelly, Project Managor

× •


un .

CR165487	2. Government Accession No.	3. Hecipient's Catalog No.
4. Title and Subtitle		5. Rojont Date November 1981
Edguid Oxygen Turbop	ump Technology - Final Report	6. Performing Organization Code
7. Author(s)		8. Petorming Organization Report No. R1/RD81~199
c. K. Nielson	19. 19 June - Martin Barry & Barry	10. Work Unit No.
9. Performing Organization Nam Rocketdyne Division Rockwell Internation		11, Contract or Grant No.
no 11 Canoga Avenue Canoga Park, CA 9130	14	NAS-3-21.350 13. Type of Report and Period Covered
2. Sponsoring Agency Nume a		Final August 1981
National Aeronautics Washington, D.C. 205	and Space Administration 940	14. Sponsoring Agency Code
16. Sepplementary Notes Project Nanager: Ko NASA-Lewia Kowcarch Cleveland, Chio Sai	Genter	
admission axial-impu	Sugal type with power to the pump supplies also turbine. Design conditions included	
Kg/a (30,21 1b/a), eliminate axial thro turbopump waw achier generally is propel at a design pressure	diacharge preasure of 2073 N/our (4118 ps The turbopump contains a self-compensati ust loads on the bearings during steady-s ved using a gaseous hydrogen high-pressur led by LOX/LH, combustion products, st 10 e ratio of 1.424. Test data obtained wit titelency performance, suction performance e, Mechanical performance of the turbopu	ng axial thrust balance platon to itate operation. The ting of the end to drive the turbine, which balk (1874 R) inlet temperature and h the turbopump are presented which e. balance platon performance and
Kg/a (30,21 1b/a), eliminate axial thro turbopump waw achier generally is propel at a design pressure	Author(d) (1797-1776) Author(d) (1897-1776) Author(d) (1997-1776) Author(d) (1997-1776) Author(d) (1997-1777) The content of the semiconder of the semi	ng axial thrust balance platon to itate operation. The sting of the end to drive the turbine, which balk (1874 R) inlet temperature and h the turbopump are presented which e. balance platon performance and
Kg/m (30.21 15/a), eliminate axial thri turbopump waw achier generalis is propel- at a design pressur- include head-tlow-e LOX weal performance 10X weal performance 17. New Words (Suggested by Turbopump Centrifugal Pump	Alacharge pressure of 207. Now Gotte ps The turbopump contains a self-compensational sector of the bearing a during steach a velocity of the pressure led by LON/LNs combenation products, still e ratio of 1.424. Test data obtained with titlefency performance, suction performance of the turbopute. Mechanical performance of the turbopute. Author(a) 18. Untrobotical performance Furbino 19. Untrobotical performance	An, and a poor from the factor to ing axial thrust helance platon to intate operation. Yigting of the below to drive the turbine, which bits (1874 R) inlet temperature and h the turbopump are presented which c, halance platon performance and mp is also discussed.
Kg/m (30.21 15/a), offininate axial thre turbopump was achiev generativ is propel- at a design pressure include head-flow-o LOX seal performance 10X seal performance 17. Ney Work (Suggested by Turbopump contribugal Pump	Alacharge pressure of 207. Now Corress The turbopump contains a self-compensational function on the bearing a during steach a voluming a gameous hydrogen high-pressure for by LON/LHs combenation products, at 10 eratio of 1.424. Test data obtained with tritefency performance, suction performance, suction performance, Mechanical performance of the furbopulation o	Tay, and a phage from the latence platen to itate operation. Yigting of the e flow to drive the turbine, which Aik (1874 R) inlet temperature and h the turbopump are presented which e, balance platen performance and ump is also discussed.

* For sale by the National Technical Information Service, Springhold, Vuginia 22151

NARA-CLINA (Nev. 8-71)

ě,

FOREWORD

and the second second

皆気素に

The work presented herein was conducted by the Advanced and Propulsion Engineering and Engineering Test Personnel of Rocketdyne, a division of Rockwell International, under Contract NAS3-21356 from April 1978 to July 1981. Mr. R. Connelly and Mr. D. Scheer, were NASA Project Managers. At Rocketdyne, Mr. H. Diem as Program Manager and Mr. A. Csomor and Mr. C. E. Nielson as Project Engineers were responsible for the technical direction of the program. Special recognition is given to Mr. J. McPherson of the Engineering Development Laboratory for his techncal expertise in rotor-balance, assembly and disassembly of the turbopump; Dr. E. D. Jackson and Mr. F. C. O'Hern of the Rotating Machinery Analysis Department for hydrodynamic analysis and technical expertise provided; and to Mr. J. Pulte of the Chemical and Advanced Component Test Unit providing direction as Test Engineer for the test programs conducted.

PRECEDING PAGE BLANK NOT FILMED

ν

CONTENTS

(P)

Ś

5

. ;

Ś

ſ

, i . .

~

.1

ی رو میرو

Summary .	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	2
Introduction	ı.	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	4
Disqueston											•	•	•	•	٠	•	٠	•	•	•	•	4
Turbopump	Des	crij	pti	on	and	Ba	ckg	rou	nd	•	•	٠	•	•	•	•	•	•	•	•	•	24
Analysis and	1 De	sig	n M	odi	fic	ati	.ວເາຣ	٠	•	•	•	٠	٠	•	•	٠	•	•	•	•	•	32
The section of the sec	C/M	02	_1	Acc.	omh	1 v	and	Te	at –				•	•	٠	•	•	•	•	•	•	61
Thereborn	Dee	tan	Ch	ana	00	and	l Pr	ocu	rem	ent			•	•	•	•	•	٠	٠	•	•	71
Turkenumn	C/M	03	<u>_</u> _	Ace	omh	lv	and	Te	st	•		•	•	٠	•	•	•	•	•	•	•	138
Summary Resi	ults						•	•	•	•	٠	•	٠	٠	٠	•	•	٠	٠	•	•	
References							•			•	•	•	•	•	•	•	٠	٠	•	٠	•	140
Appendix A	•	•	•	-	-																	
Mark 48-0x1	dize	r T	urt	opu	mp	Ass	semb	lie	8	•	•	•	•	•	•	•	•	•	•	•	•	141
Annendix B																					_	149
Mark 48-0xi	dize	r T	urt	opu	mp	0c1	cobe	r l	.978	3 Te	st	Dat	a	•	•	•	•	•	•	•	•	
Annendix C																						205
Mark 48-0xi	dize	r I	urt	opu	mp_	Apı	ri]	198	51 1	lest	s I	Jaca	••	•	•	•	•	•	•			243
Distributio	n Li	.st	101	: F1	nal	L Re	epor	τ.	•	•	•	•	•	•	•	•	•	•	•	•	•	

PRECEDING PAGE SLANK NOT FILMED

1.5

No. 3.

ent.

Concernation .

ILLUSTRATIONS

「「「「「「「「」」」」

- Developer and the second second

7

...

Κ.

	Mark 48-0 Turbopump	. 7	
1. 2.	Mark 48-0 Turbine Performance	9	
2. 3.	- Martin 10 O. Common and the Aftern Toeting	16	
3. 4.	MY AS LOY Pump Data and Predicted Head Rise Scaled to 70,000 ipm	. 18	
5.	Relative Head Rise as a Function of N_{SS} here 1977	. 18	
6.	Dump Hoad-Flow Curve Based on Composite Data from 1977		
0.	and 1978 Tests	. 20	
7.	and 1978 Tests . Mark 48-0 Pump Efficiency, Test Series 2 and 3	. 21	
8.	w i zo o ziłzane wanoskod Bolonno Piston Temperature Kise as		
••	a Function of Slinger Height	. 25	
9.	Mark 48 Oxidizer Expected Net Slinger Thrust as a Function of Slinger Height	. 25	
•••	Reportion of Slinger Height	. 25	
10.	Momb AS Avidigor Expected Kadius (), vapor interface on pace	. 26	
	of Slinger as a Function of Slinger Height	. 20	
11.	Encoded Sool Pressure as a Function of Slinger Height Assuming		
	the interaction of Dumood Fluid When Pressure Reaches vapor Pressure	. 28	
12.	tithe Off/Floating Ring Seal Installation	. 30	
13.	Must 19 0 control Groove LOX Scal Temperature Gradients · · ·	• 30	
14.	Numb 48-0 Spiral Groove LOX Seal Pressure Distribution		
15.	Monel Mating Ring and Graphite Seal Ring Deflection of	. 31	
	Capting Curface Radius vs Relative Microinches	. 33	
16.	Mark 48-0 Turbopump S/N 02-1 Configuration	. 34	
17.	S/N 02-1 Diametral Clearances and Fits	. 36	
18.	Mark 48-0 Turbopump Balance Piston	. 36	
19.	Mark 48-0 Turbopump rotor Load Travel Characteristics	. 37	
20.	LIMA Stand Schematic for Mark 48-0 Testing	. 41	
21.	Mark 48-0 Turbopump Instrumentation .	. 44	
22.	Primary LOX Seal Flow Measurement and Helium Seal Purge System .	. 46	
23.	Mark 48-0 Test 012 Speed Trace Turbopump Test 012 Data Correlation With Time	. 47	
24.	Mark 48-0 Turbopump S/N 02-1 Burn Pattern	. 49	
25.	Mark 48-0 Turbopump S/N 02-1 Burn ractern	. 49	
26.	Mark 48-0 Pump Performance, 1977 and 1978 Test Series .	. 50	
27.	Mark 48-0 Pump Performance, 1977 and 1978 Test Series	. 51	
28.	Mark 48-0 Pump Performance, October 1978 Test Series	. 52	
29.	Mark 48-0 Pump Performances, October 1978 Test Series	. 53	
30. 31.	or an at Assolonometer Data	. 55	
32.	Mark 48-0 Pump Performance, October 1978 Test Series	. 57	
33.	Mark 48-0 Turbopump Primary LOX Seal Leakage	. 58	
33. 34.	Mark 48-0 Turbopump Primary LOX Seal Leakage	. 59	
35.	Mark $48-0$ Turbopump	. 62	
36.	Partial Blade Pressure-Side Passage	, 66	
37.	Full Blade Pressure-Side Passage	. 66	,
38.	Impaller Blade Stress Analysis Summary	. 68	
39.	Most Agan Shaft Spin Test Setup	. 68	
40.	when Agen shaft sain Test Arbor, Redesigned	. 70	
41.	Mark 48-0 Turbopump S/N 03-0 Balance Assembly Runouts	. 72	ŀ
42.	Mark 48-0 Turbopump S/N 03-0 Bearing Diametral Clearances and	_	
		. 73	1

.

• •

	a the open provide the standard Clearances	
43.	Mark 48-0 Turbopump S/N 03-0 Pump Seal Diametral Clearances 74	
	and Pilot Fits	
44.	Mark 48-0 Turbopump S/N 03-0 Seal Diametral Ofenental	
45.	Mark 48-0 Turbopump S/N 03-0 Jurbine Component Diametral Mark 48-0 Turbopump S/N 03-0 Turbine Component Diametral	
	Clearances and Fits	
46.	Clearances and Fits 78 Mark 48-0 Turbopump Push-Pull Test, 24 February 1981 79	
47.	Mark 48-0 Turbopump Push-full Test, 24 Files, 27 Mark 48-0 Turbopump S/N 03-0 Assembly	
48.		
49.	Mark 48-0 Turbopump S/N 03-0 Installed in Test Stand	
50.	· · · · · · · · · · · · · · · · · · ·	
51.		
52.		
53.		
54.		
55.	Mark 48-0 Turbine Test Performance	
56.	Mark 48-0 Turbine Test Performance	
57.	n when the second function of Dimensionless Q/M	
58.	- n. 1 deservisiont ve inter Flow Operatione	
	(1981 Low-Speed Tests)	
59.	n used Flow Curve Scaled From 1901 high-speed rebe i	
60.	The second	ļ
	(noot Will Canad Toot)	
61.		
		•
62.		
63.		•
		5
64.	(1981 Low-Speed Tests) Pump Temperature Rise During 1981 Low-Speed Test	1
65.	Pump Temperature Rise During 1981 How-speed Test	3
66.	Pump Temperature Rise During 1961 High-speed fest	
67.	Pump Temperature Rise During Dol angulation Curve Pump Efficiency Based on Turbine Calibration Curve)
	Pump Efficiency Based on Turbine Current Construction 109 (High-Speed Test, 1981))
68.		
69.	Pump Input Horsepower Scaled From 1981 High-Speed Tests	3
70.	Pump Input Horsepower Scaled From 1961 High Speed Louise	
71.	Inducer Static Pressure Rise as a Function of flow bounds	4
	From 1981 Low-Speed Tests Inducer Static Pressure Rise as a Function of Flow Scaled 11	
72.		5
	Inducer Static Pressure Kist us a random surface for the static Pressure Kist us a random surface for the static s	
73.	Head Falloff Due to Cavitation and Succession operation , 11	
	(Test 6, 1981)	0
74.	Flow Schematic Representative of reactor	
75.	Pump Balance Piston Performance at Low Flow	3
	(During Test 6, 1981)	
76.	Balance Piston Performance Near Design Flow (During Test 6, 1981)	:4
	(During Test 6, 1981)	
77	Balance Piston Performance at High Flow (Decign Test 6, 1981)	
	(Design real of the part of t	
78.		32
79.	Rubbing at Turbine fip sear	

· Marine a second address

80.	Mark 48-0	Turbine	Tip	Rubbing		•		•	•	٠	٠	•	٠	•	•	. 133	2
0.1	M1- 60 0	muching	- R1 a.4	o Tin C	lear	rance	<u>،</u>				•		٠	•	٠	• 10-	•
00	Mamla / 9_0	Teducor	Tin	Rubbing	on	Inte	20.	•	•	•	•	•		•	•	•	•
02.	Mark 48-0 Mark 48-0	Potor C	andit	ton Aft	er '	l'est	Seri	ies	5	•		•	•	•	•	. 13	5
83.	Mark 48-0 Mark 48-0	RULUI C	Casl	Damage									•	•		. 13	5
84.	Mark 48-0	Turoine	Sear	. Damage	•	•	•••	•	•	-							

TABLES

.

.....

Ĭ.

The second s

4÷.,

۰.

	Liquid Oxygen Turbopump Nominal Design Condition		•		•	5
1.	Mark 48-0 Turbopump Testing			•		11
2.					•	14
3.	Mark 48-0 Turbopump Test Series No. 2 Summary					14
4.	Mark 48-0 Turbopump Test Series No. 3 Summary	•	•			34
5.	Mark 48-0 Configuration Summary	•	•	•		35
6.	Mark 40-0 lest rian, 5/N 02-1 recrormance	•	•	•	•	38
7,	Instrumentation List	•	•	•	•	43
8.	Mark 48-0 Turbopump, GH2 Drive Test Instrumentation .	•	•	•	•	
9.	Mark 48-0 Turbopump LO2 Turbopump Redlines, Ambient Hydrog	,en				43
	Turbino Drivo	•	•	•	•	44
10.	Mark 48-0 Turbopump Test Series No. 4 Summary, Turbopump S	57 N	02-	r	•	63
11.	Critical Pump End Hydrodynamic Measurements	٠	•	٠	•	
i2.	Major Component Parts Procurement	•	•	•	•	64
13.	Instrumentation List (Gaseous Hydrogen Turbine Drive)	٠	•	٠	•	81
14.	LO2 Turbopump Redlines, Ambient Hydrogen Turbine Drive,					01
T.4.	West Conton No. 5	٠	•	•	٠	86
15.	and a main the second and No. 5 Summary Turbonump S	5/N	03-	0	•	88
16.	N = $3141 \text{ rad/s} (30,000 \text{ rpm}) \cdot \cdot$	•		•	•	102
	and the second s	•		•		119
17.	and the state of t	•		•	•	122
18.	and the second second second for the second se					
19.	Predicted Balance Piston Flow and Akial Infuse Constor				•	122
	Recirculation Mode of Operation English Units			_		128
20.	Test 016-006 Labyrinth Sear reinformatice, one offer	•	•	•		129
21	Dynamic Seal Performance English Units	•	•	•	•	

SUMMARY

System studies of reusable vehicles for space manuevering missions require small high-pressure, staged-combustion-cycle engine turbomachinery of the Mark 48oxidizer turbopump size and type. These turbopumps have relatively low-flow, high-head capability and are physically smaller, which sets them apart from stateof-the-art turbomachinery.

Additional long-life requirements also are placed on the turbopump with operating requirements that encompass 300 starts and 10 hours of operation time-between-overhaul capability.

The Mark 48-O turbopump which was designed, fabricated, and tested under Contract NAS3-17800, uses a floating-ring, controlled-gap, circumferential-type primary LOX seal assembly which may have difficulty in meeting the life and cycle requirements of the turbopump. The feasibility of using a hydrodynamic or hydrostatic, fluid-film type liftoff seal had been demonstrated in previous NASA-Lewis seal tester activity.

The objectives of this program were to modify the Mark 48-0 turbopump to accommodate a spiral-grooved, lift-off type primary LOX seal and to conduct tests to evaluate the life characteristics and performance of the seal assembly in comparison to the circumferential floating-ring, controlled-gap seal presently in use on the turbopump. Other objectives were to demonstrate the pump suction performance capability of the turbopump with and without balance piston flow recirculation back to the inlet of the impeller.

The turbopump was assembled for the first test series using the controlled-gap, floating-ring primary LOX seal. A test plan was developed for the baseline tests with this configuration. The objectives were to characterize the seal leakage rates with the controlled-gap seal and slinger configuration. The slinger is a small pumping element adjacent to the primary LOX seal which reduces the pressure at the seal-to-shaft clearance by negative pumping such that vapor will exist at the clearance interface. Creating vaporized fluid at the gap greatly reduces leakage rates. Suction performance tests also were to be conducted during the testing.

The initial configuration was tested during October 1978 at LIMA test stand of Rocketdyne's Advanced Propulsion Test Facility (APTF). Five tests were conducted for a total test time of 174 seconds, and a maximum test speed of 7261 rad/s (69,340 rpm). Special instrumentation was used on the turbopump to measure the data required. On the third test, a successful suction performance test was made at a test speed of 7016 rad/s (67,000 rpm). A 5% pump head loss was achieved at a flowrate of 105% of nominal flow and at that point a suction specific speed of 84210 (rad/s) (m³/s) $1/2/(J/K_S)^{3/4}$ (24000 (rpm) (gpm) $1/2/(ft-1bf/1bm)^{3/4}$) was obtained. On the fifth test of the series, at a speed of 7261 rad/s (69,340 rpm), a pump failure occurred. The failure concluded in a fire which caused major damage to the pump portion of the turbopump. Before the incident, sufficient data were obtained to characterize the primary LOX seal leakage. A failure investigation followed immediately after the incident and it was concluded that the balance piston axial thrust margin was not sufficient which initiated a failure through the pump bearings or rubbing at the high-pressure balance piston orifice. This was caused in part by a negative impulse reaction occurring in the measured pressure data across the turbine wheel. A review of the data indicated an axial thrust correction should be made and also that it would be beneficial for a rerouting of the balance piston flow to eliminate all of it flowing through the bearings. Also, the addition of a labyrinth seal on the downstream side of the bearings would reduce the slinger-sump pressure to a level below 345 N/cm² (500 psia). This limit was considered to be the maximum pressure range for proper operation of the spiral-grooved liftoff seal to be incorporated in the design. The redesign included improved instrumentation capabilities to measure pressure at nine locations in the pump elements. The design was finalized and hardware was procured to replace that damaged by the fire.

Prior to assembly of the turbopump for test with the spiral-grooved liftoff seal, it had been found that technical problems with the spiral-grooved liftoff seal needed to be resolved before it could be incorporated without undue risk in the turbopump. These problems were found through testing of the spiral-grooved liftoff seal in a test rig and the tests indicated the seal could not be considered reliable. As a result, the turbopump was assembled using the original controlled gap seal. The test objectives were to demonstrate the capability of the redesigned balance piston axial thrust control and to complete the suction performance capability tests.

The assembled turbopump was installed in the LIMA test stand. The turbopump was tested for a total of six tests in April 1981 with a total operating time of 749 seconds. Of that time, 146 seconds was at 741 rad/s (30,000 rpm) and 35 seconds at 7228 rad/s (69,000 rpm). All other time was at speeds below 3141 rad/s (30,000 rpm) or in transient operation. The tests revealed that the balance piston was operating satisfactorily at all speeds and over a wide flow range. Suction performance tests were not accomplished due to a turbine tip seal rubbing problem which resulted in high rotor torque. This could not be resolved without removing the turbopump from the test facility. On the last test near design speed (7330 rad/s, 70,000 rpm) the data indicate a suction performance of only 52631 (rad/s) (m³/s)^{1/2}/(J/Kg)^{3/4}[15000 (rpm)(gpm)^{1/2}/(ft-lbf/lbm)^{3/4}] at a flowrate of 103% of design flow. This test was conducted with the balance piston flow being routed overboard and also recirculated back to the impeller eye. This indicates that balance piston recirculated back to the impeller design may be considered a potential problem.

The data of the last test scries indicate the mechanical operation of the turbopump was satisfactory with only minor mechanical problems that can be readily corrected. The newly incorporated design features function properly and will add to the integrity of the system.

2

ŗ.

ŗ

Ę)

*

INTRODUCTION

System studies of future DOD and NASA reusable vehicles for space manuevering missions have shown that high-pressure, staged-combustion-cycle engines offer significant benefit in terms of higher vehicle payload capability. These engines, which are in the 10,000- to 25,000-pound-thrust class, require relatively lowflow, high-head turbopumps which are physically smaller and fall outside the design state of the art of rocket turbomachinery. Additionally, and in contrast to past design requirements, the need for low leakage and reuse encompassing 300 starts and 10 hours time-between-overhaul is envisioned. Thus, the designers are confronted with both size and life time uncertainties.

52

日本のの

The Mark 48-0 turbopump, which was designed, fabricated, and tested under Contract NAS3-17800, uses a circumferential-type seal assembly which may have difficulty in meeting the life and cycle requirements of the turbopump. The NASA-Lewis Research Center had previously demonstrated the feasibility of hyrodynamic or hydrostatic fluid film-type seals which potentially can achieve the multiple starts and life requirements of the turbopump. This work was accomplished under Contract NAS3-1769, during which two types of fluid film face seals were tested for 11 hours and approximately 379 starts.

The initial objectives of the program were to use the technology gained in the NASA-LERC seals programs to design a fluid film seal for installation in the Mark 48-0 turbopump and test the configuration under actual turbopump operating conditions. The program plan called for baseline characterization testing of the existing controlled gap seal and slinger configuration to determine baseline seal performance and leakage rates. The parellel objectives were also that of defining pump noncavitating head-flow characteristics and suction performance with the modified impeller inlet. This was begun on the initial test series which was prematurely terminated due to a failure and ensuing fire which caused damage to the pump components of the turbopump.

The spiral groove lift-off seal design for incorporation into the Mark 48-0 turbopump was completed and the seals, as well as other pump components were fabricated. Subsequent testing of the spiral groove lift-off seal in a test rig revealed technical problems with the concept, which need to be resolved by additional component testing before the seal could be considered sufficiently reliable for liquid oxygen turbopump operation.

As a results, the program objectives were redirected to complete the measurement of the pump suction performance and to measure the rotor axial thrust capability. Hardware of the Mark 48-0 turbopump had been redesigned and fabricated to replace those components which were damaged in the test when a pump fire ensued. The objective was to demonstrate with the floating ring seal, the axial thrust control and to define pump suction capability.

DISCUSSION

TURBOPUMP DESCRIPTION AND BACKGROUND

A comprehensive discussion of the MK 48-0 turbopump design requirements, analysis results, and mechanical configuration are presented in Ref. 1 and 2. For convenience, a brief summary of the significant characteristics of the turbopump is included in the following.

Turbopump Requirements

A STATE

The performance requirements for the Mark 48-0 turbopump are listed in Table 1. The pump is required to deliver 16.4 kg/s (36.21 lb/sec) of liquid oxygen starting with an inlet pressure of 68.9 N/cm² (100 psia) provided by the low-pressure pump, to a discharge pressure of 2977 N/cm² (4318 psia). The propellant gas for the turbine is a mixture of free hydrogen and steam resulting from the combustion of liquid hydrogen and liquid oxygen. The gas is provided at a temperature of 1041 K (1874 R) and an inlet pressure of 2320 N/cm² (3366 psia). The total gas flowrate available is 1.34 kg/s (2.92 lb/sec). The horsepower requirement of the pump is matched by adjusting the pressure ratio across the turbine. Since turbine pressure ratio has a strong influence on the attainable engine combustion pressure in a sta? d combustion cycle, it is to be maintained at the lowest possible level. As noted in Table 1, the mechanical operating requirements included multiple starts with long-operating durations and potentially long-coast times between operations.

In the area of the pump, the combination of low flowrate and high discharge pressure imposed a difficult impeller fabrication task because of the relatively narrow passages required compared with the outer diameter. The desire for high efficiency, compact packaging, and light weight placed the rotor speed into the 6282 to 9423 rad/s (60,000- to 90,000-rpm) range, pushing bearing DN value to the 1.5×10^6 mm rpm limit (Ref. 1). The bearing operation at high DN values in a turbopump installation, as well as the dynamic behavior or the rotor at high speeds, needed to be demonstrated. Because of the high operating speed involved, the bearings would not be able to take an appreciable axial thrust load. This condition dictated that an axial thrust balance device be employed which, in liquid oxygen, would have to be of the nonrubbing type. The operating characteristics of such a device also required evaluation.

In the turbine, the low-pressure ratio (approximately 1.4) and low arc of admission (28%) presented a combination for which no empirical data were available. Performance predictions based on calculations needed to be validated or modified by measured performance data.

From a structural consideration, the requirement for 300 thermal cycles was significant in that it established low-cycle-fatigue criteria and eventually necessitated incorporating a liner in the turbine manifold to limit the maximum thermal gradients in structural walls.

TABLE 1. LIQUID OXYGEN TURBOPUMP NOMINAL DESIGN CONDITION

} **€** 1

5

the second se

1

1

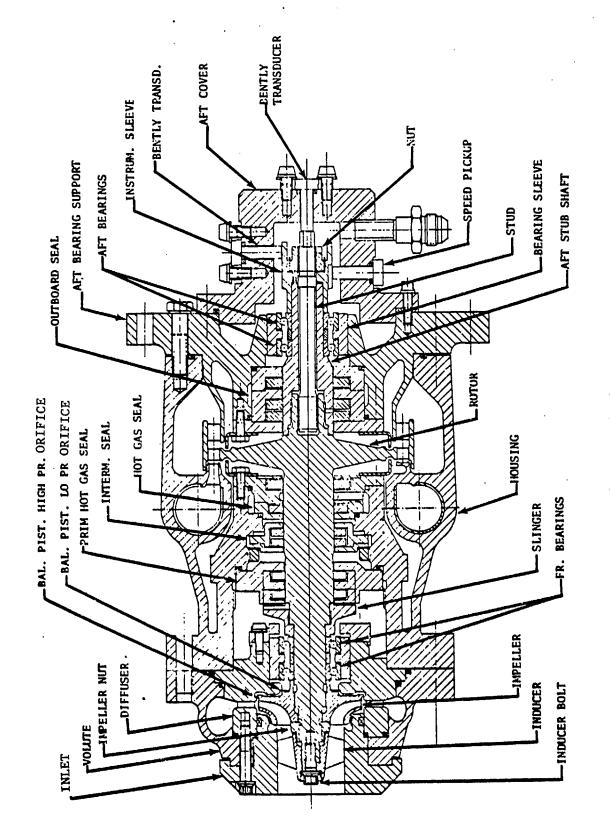
·	Netric Units	English Units
Turbopump		
Capable of operation at pumped-idle conditions (5 to 10 of full thrust)		
Off-design operation	±20% Q/N at full thrust down to 30% Q/N at 20% N	
Number of start-stop cycles	300	
Time between overhaul	10 hours	
Pump		
Туре	Centrifugal	
Propellant	Liquid oxygen	
iniet pressure	68.9 N/cm ²	100 psia
inlet témperature	90-95.5K	162 to 172 R
Discharge pressure	2977 N/cm ²	4318 psia
Nass flow	16.4 kg/s	36.21 1b/sec
Number of stages	One	
Turbine		
Working fluid	$H_2=0_2$ combustion products ($H_2 \times H_20$)	
iniet temperature	1041	1874 R
Inlat pressure	3220 N/cm ²	3366 psia
Pressure ratio	Ninimum necessary to develop pump horsepower requirements.	
Flowrate	1.34 kg/s	2.92 1b/sec
Number of stages	One	
Туре	Partial admission	
Service life between overhauls:	*300 Thermal cycles or 10 hours accumulated run time	
Service-free life	*60 Thermal cycles or 2 hours accumulated run time	
Maximum Single Run Duration:	2000 s	
Naximum time between firings during mission:	14 days	
Maximum time between firings during mission:	l minute	
Maximum storage time in orbit (dry):	52 weeks	
Thermal cycle defined as engine start	(to any thrust level) and shutd	own

• •

.

In addition to the performance criteria noted in Table 1, the contract work statement included certain ground rules (given in Ref. 1) relating primarily to the structural analysis and mechanical design of the turbopump.

Turbopump Description


The original mechanical configuration of the turbopump is illustrated in Fig. 1, with significant parts identified. The top assembly requirements are established on Rocketdyne drawing number RS009820E, which is included in Appendix A. The design was given the Rocketdyne internal designation of Mark 48-0. This configuration was used in all but the final test series with minor exceptions. In the last test series another configuration was used to improve the instrumentation, and the balance piston fluid routing. This configuration is shown in RS0014079, Appendix A.

Liquid oxygen is introduced to the pump through the axial-flow inlet of 4.214 cm (1.659 inch) diameter and passes through a four-bladed, constant-outer-diameter, tapered-hub inducer which raises the pressure to an intermediate level. From the inducer the liquid proceeds into a centrifugal impeller containing four partial and four full blades. Subsequently, it is diffused in a radial diffuser which incorporates 13 guide vanes. Down tream of the diffuser, liquid oxygen is collected, further diffused in a volute section, and delivered through a single 2.54 cm (1.00 inch) diameter duct.

Hot gas to the turbine is admitted through a scroll-shaped, constant-velocity inlet, lined with a 1.57 mm (0.062 inch) metal liner to maintain the thermal gradients across the structural walls at an acceptable level. The inlet duct diameter is 3.1 cm (1.22 inches). The active are of the partial-admission nozzle extends over 1.8 rad (103 degrees) or 28.6% of the circumference, and it includes seven flow passages. The gas is fully expanded through the nozzle after which it passes through a single row of unshrouded impulse-type blades (79 blades) of the rotor. The exhaust gas is directed through a row of stationary vanes which guide the gas toward a single radial exit duct of 3.81 cm (1.50 inches) diameter.

The pump shaft and the turbine disk are designed as an integral part. On the outboard end, a stub shaft is used with a stud and nut to extend the rotor. Two pairs of angular-contact, 20-mm ball bearings are used to support the rotor. The pump-end bearings are cooled by recirculating liquid oxygen through them. The outboard shaft seal is pressurized with liquid hydrogen, and the leakage toward the outboard side is used as bearing coolant. A small amount of liquid hydrogen is bypassed around the seal and introduced to the bearing directly as a redundant source of coolant. The bearings in each pair are axially preloaded against each other with Belville springs to prevent ball skidding. The turbine-end bearings are free of other axial loads. The outer-race sleeve of the pump-end bearings is axially retained so that the bearings absorb rotor axial thrust during transient periods when the balance piston does not control the rotor axial position.

Under conditions other than early transient stage during startup or at the end of shutdown, the rotor axial thrust is neutralized by a self-compensating balance piston. The rotating member of the piston is the rear shroud of the impeller.

版書にい

「「「「「「「「」」」

(: . .

Ξ,

Figure 1. Mark 48-0 Turbopump

To operate the piston, high-pressure liquid oxygen from the impeller discharge passes through a high-pressure orifice located at the outer diameter of the impeller into the balance cavity. From the cavity, the liquid passes through a low-pressure orifice near the impeller hub into the sump. From there the liquid oxygen is returned to the eye of the impeller through internal axial passages either in the diffuser vanes or around the volute and radial holes in the diffuser and inlet. Thrust-compensating effect is achieved by virtue of the fact that the high- and low-pressure orifice openings vary with the axial position of the rotor, and the pressure force on the rear shroud of the impeller varies correspondingly; e.g., an unbalanced load toward the pump inlet causes a reduction in the highpressure orifice gap and an increase in the low-pressure orifice gap. This, in turn, causes a reduction in the pressure force of the impeller rear shroud, introducing a compensating load change.

Because of the danger of explosion when rubbing in liquid oxygen, the balance piston orifices were designed as noncontacting type, formed by the axial proximity of close clearance, 0.038-mm (0.0015-inch) average, diametral, cylindrical surfaces.

To preclude mixing liquid oxygen from the pump with the combustion products from the turbine, the two regions are separated by three dynamic seals. All three seals are of the controlled-gap type, with two seal rings in each. The controlled-gap concept was selected for this application primarily because it has low-drag torque, a must for idle-mode starts. This concept also minimizes power absorption during steady-state operation, and permits very long service life. Pump fluid is contained by the primary LOX seal. The oxygen which flows past this seal is drained overboard from the cavity formed by the primary and intermediate seals. A slinger containing pumping ribs was included upstream of the primary LOX seal to reduce the pressure at the seal gap to a level that will vaporize the fluid. The objective was to reduce the mass flowrate through the seal with this technique.

On the turbine side, because of the high pressure involved, sealing and drainage was accomplished in two steps. An overboard drain was included downstream of the first ring, which reduces the pressure between the two rings to 79 N/cm² (115 psia). The small amount of turbine gas which leaks past the second ring is drained overboard with a drain cavity pressure of approximately 15 N/cm² (20 psia).

To provide separation of the pump and turbine fluids, an intermediate seal was incorporated between the two drain areas with a GHe purge which maintains the cavity between the two rings at a minimum of 35 N/cm² (50 psia).

Test History

<u>Turbine</u>. Calibration of the Mark 48-0 turbine, to establish its aerothermodynamic performance, was accomplished with ambient-temperature GN₂ as the propellant. The rotor speeds were maintained in the range of 523 to 1185 rad/s (5000 to 18,000 rpm) to simulate the operational wheel tip speed/gas spouting velicity ratios (U/C_0) .

The testing was performed at Wyle Laboratory, El Segundo, California, during February 4 through 9 1976. A total of 11 tests were made, with GN2 working fluid, at velocity ratio (U/C_o, total to static) ranging from 0.115 to 0.606, and turbine speeds from 523 to 1885 rad/s (5000 to 18,000 rpm). A plot of turbine efficiency is shown in Fig. 2. The efficiency was calculated with Lebow torquemeter torque and isentropic available energy (total-to-static) across the turbine. At a design velocity ratio of 0.343, the turbine total-to-static measured efficiency was 51%compared with a predicted value of 59.8%. Calculations show that with the measured performance the pressure ratio of the turbine would have to be increased from the design value of 1.424 to 1.54 to generate the required power level.

- States

Contraction of the second seco

é

あいてきないないないないい

STATES THE SALE IN

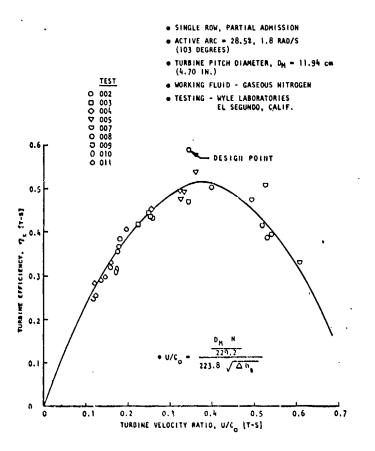


Figure 2. Mark 48-0 Turbine Performance

The combination of low-pressure ratio (1.42) and low are of admission (28.5% of circumference) placed this turbine in an operating region in which turbine technology had not been developed. Potential improvement in the performance may be realized by increasing the number of active nozzle passages and reducing the throat width to obtain the required total throat area. Depending on the engine installation, improvements in the exhaust manifolding may be possible to minimize the pressure losses charged to the turbine.

<u>Turbopump Testing.</u> A total of five test series have been run on the Mark 48-0 turbopump. Initial testing of Mark 48-0 turbopump P/N RS009820E, S/N 01-0, began in the Lima test stand of the Rocketdyne Propulsion Research Area (PRA) on 9 July 1976 and was concluded on 11 August 1976. A total of 18 turbopump tests for an accumulated duration of 266.8 seconds was accomplished on the turbopump assembly. The test effort was divided into two main categories: Performance mapping, using GH₂ as turbine drive media, with LN₂ and LOX as the pumped fluid; and integrity testing, using combustion products from a LOX/LH₂ gas generator as the turbine drive gas media, with LOX as the pumped fluid. Gas generator injector P/N RS005024-131, S/N 2, a coaxial five-element design, was used during the hotfire testing. A brief description of the tests performed during the initial series is presented in Table 2.

The second test series was run during July 1977 on turbopump S/N 01-1; five tests were conducted. These are described in Table 3. This series accumulated a total time of 158 seconds on the turbopump. The testing encompassed noncavitating headflow characterization of the pump. Critical NPSH was partially determined. The initial test series had indicated the impeller inlet area needed to be increased to improve performance and this was done prior to test series No. 2. Also, the balance piston and bearing coolant flow was routed overboard so it could be measured and controlled. These tests were run utilizing a gaseous hydrogen (GH₂) drive gas to power the turbine. During test 005 at 7006 rad/s (66,900 rpm), a pump fire occurred and damaged the pump hardware extensively. The origin of the problem was established as the primary LOX seal nut backing out of its installed . position and blocking the exit passage of the balance piston and bearing coolant fluid. Design changes were made to a second set of components and the primary seal nut locking feature was improved. Other modifications were completed to protect the pump-end bearing from the high pressure drop from all the balance piston flow passing through it and to reduce the high axial load caused by it. These modifications were to drill eight bypass holes of 2.18mm (0.086 inch) diameter through the bearing cartridge. This was to reduce the amount of the balance piston flow directly through the bearing and thereby decrease the pressure drop across the bearings extending their life and reducing the balance piston sump pressure. This improved the balance piston axial thrust range on the low sump pressure end. These modifications and test results are described in detail, in Ref. 2.

A third test series was conducted in May of 1978 on turbopump S/N 02-OB after the above-mentioned modifications were completed. In that test series, four tests were run with an accumulated time of 236 seconds. In these tests the head-flow characteristics were obtained at low speed 3142 rad/sec (30,000 rpm). A short time was obtained at 7330 rad/sec (70,000 rpm). A summary of these tests is given in Table 4. Posttest inspection after test 006 revealed high rotor torque caused by the turbine tip seal rubbing. The turbopump was removed from the test stand for disassembly and inspection.

TABLE 2. MARK 48-0 TURBOPUMP TESTING

544 S . F .

日本にない しゅう

244

And the grant of the second of

and the second second second

٠

÷

٠

(P/N RS009820, S/N 01-0)

		Test	Accum	Accumulated	
Test No.	Test Date	Duration, Seconds	Starts	Duration, Seconds	Remarks
110-910	9/-6-/	. 30	-	30	Initial test using LN2 as pumped fluid. Turbine drive mediaGH2. 30,800 rpm achieved satisfactorily.
016-012	7-13-76	5	~	6	Pumped fluid: LN2, turbine drive media: GH2 targeted rpm: 60,000. Premature cutoff by turbine radial accelerometer vibration safety cutoff system (VSC) exceeded 10 g rms. RPM attained: 45,979.
016-013	7-13-76	<i>v</i>	~	44	Pumped fluid: LN ₂ , turbine drive media: GH ₂ satisfactory rotordynamic test. Maximum turbopump rpm: 61,965.
410-91ů	7-16-76	2	3	* 	Pumped fluid: LOX, turbine drive media: GH2 planned H-Q at 30,000 and 60,000 rpm. H-Q obtained at 30,000 rpm. Turbine radial accelerometer VSC cutoff at 15 g rms at 52,500 rpm.
016-015	7-16-76	õ	Ś	44 5 E	Pumped fluid: LOX, turbine drive media: GH ₂ planned objective: H-Q mapping at 60,000 rpm. Some H-Q data obtained at 60,850 rpm, but test prematurely cut off by observer due to a fire in a facility system.
016-016	7-16-76	12	· v 9	156	Pumped fluid: LOX, turbine drive media: GH2 planned objective: H-Q at 60,000 rpm. Premature cutoff by turbine radial accelerometer VSC system at 52,000 rpm.
016-017	7-16-76	x	~	193	Pumped fluid: LOX. turbine drive media: GH ₂ planned objective: H-Q at 60,000 and 70,000 rpm. Achieved satisfactory H-Q data at 60,000 rpm. Attempted to increase turbopump speed to 70,000 rpm, but was prematurely cut off by turbine radial accelerometer VSC system at a speed of 64,000 rpm. This test con- cluded series 1 testing. The turbopump and facility system were modified for hot-fire testing with the gas generator system.

TABLE 2. (Continued)

2

1

;

		tect	Accum	Accumulated	
Test No.	Test Date	Duration, Seconds	Starts	Duration, Seconds	Remarks
016-018	8-3 <u>-</u> 76	0	Ø	193	Gas generator ignition not achieved. Cutoff by ignition detect system. Posttest analysis showed problem to be associated with exciter system. Exciter changed prior to next test. Scheduled 60,000 rpm.
610-510	8-3-76	2.81	с	195.81	Objective: 60,000 rpm. Satisfactory test. A turbopump rpm of 57,629 was achieved with a turbine inlet total pressure of 1837 psia at 1761 R (Note: turbine discharge orificing resulted in a turbine pressure ratio of 1.85.) Gas generator c [±] efficiency: 98.92
016-020	8-3-76	0.58	2	196.39	Objective: 60,000 rpm. Test prematurely terminated by turbine inlet overtemp. Maximum rpm achieved 58,378. Analysis revealed the fuel injection pressure lower than actual controller set pressure. Result: Higher GG mixture ratio with cutoff at 1960 k. Turbine inlet temperature controller readjusted using site data.
016-021	8-3-76	16.58	2	212.97	Objective: 60,000 rpm for test stand duration. Objective partially achieved. Maximum rpm achieved was 62,800, but the test was terminated prematurely by turbine inlet overtemp. Review of data shows main fuel valve position operating in high-flow gain region, only 2-1/23 open. For next test, the LH2 tank pressure will be reduced to force MFV further open. Gas generator c* efficiency; 99.33
016-022	8-9-76	0	12	212.97	Objective: 70,000 rpm for test stand duration (~50 seconds) Test prematurely terminated by turbine radial accelerometer VSC system. Test terminated during fuel-lead stage at 56,000 rpm and 15 g rms.
016-023	8-9-76	0.62	.i	213.59	Objective: 70,000 rpm for test stand duration (~50 seconds) Test prematurely terminated by turbine radial VSC system at 20 g rms. Maximum rpm achieved was 68,725.

,

4

TABLE 2. (Concluded)

1

Service of the service of

かいかい キロ

ş

「「「いい」」 「「」」

And a life and

11110

•

.

1

			Accumi	Accumulated	
Test No.	Test Date	Duration, Seconds	Starts	Duration. Seconds	Remarks
016-024	8-9-76	1.2	71	214.79	Objective: 70,000 rpm for test stand duration (~50 seconds) Test prematurely terainated by turbine radial accelerometer at 20 g rms. Maximum turbopump rpm: 69,157.
016-025	8 -9-76	2.39	5	217.18	Objective: 70,000 rpm for test stand duration (~50 seconds) Test prematurely terminated by turbine inlet overtemp. Fuel injection pressure again below controller set pressure resulting in high GG mixture ratio and overtemp. Maximum rpm: 68,199.
016-026	8-11-76	5.82	· 91	223.0	Objective: 70,000 rpm for test stand duration $(\sim 50 \text{ seconds})$ Test prematurely terminated by observer due to a fire in a facility system. Haximum rpm achieved: 74 ,191.
016-027	8-11-76	10. %	1	226.01	Objective: 70,000 rpm for test stand duration $(\sim 50 \text{ seconds})$ Test prematurely terminated by turbine inlet overtemp. Data analysis showed the fuel injection pressure controller to be lower than required by 69 N/cm^2 (100 psi). A site data correction was made for the next test. Maximum rpm achieved: 62,867.
016-028	8-11-76	4 0.79	<u>8</u>	266.8	Objective: H-Q excursion at 70,000 rpm, and test stand duration (~50 seconds) All objectives except duration were achieved. Manual control of turbopump discharge throttle valve achieved H-Q excursions. Maximum rpm achieved was 68,685. The test was autor matically terminated when the intermediate seal purge supply level decreased below 150 psig (redline). The gas generator ca efficiency during the test averaged 99.74.

		TEST	ACCU	MULATED	
TEST NO.	TEST DATE	DURATION, SECONDS	STARTS	DURATION. SECONDS	REMARKS
016-001	7-21-77	7	١	7	ACHIEVED SPEED OF 14,200 RPM. CUT OFF BY FAILED RADIAL ACCELEROMETER. BALANCE PISTON FLOW ROUTED OVERBOARD.
016-002	7-21-77	71	2	78	OBTAINED HEAD-FLOW DATA AT 29,300 RPM.
016-003	7-21-77	18	3	96	OBTAINED DATA AT 28,300 RPM. TEST CUT BY PUMP DISCHARGE PRESSURE REDLINE 3447 N/CM ² (5000 PSIG) AT 69,000 RPM.
016-004	7-21-77	33	4	129	OBTAINED HEAD-FLOW DATA AND BALANCE PISTON SHIFT AT 69,000 RPM. BALANCE PISTON FLOW ROUTED OVERBOARD.
016-005	7-26-77	32	5	161	SPEEDS TO 66,900 RPM. PUMP FIRE DAMAGED PUMP HARDWARE.

TABLE3.MARK48-0TURBOPUMPTESTSERIESNO. 2SUMMARY(TURBOPUMP S/N 01-1)

. . . .

TABLE 4. MARK 48-0 TUREOPUMP TEST SERIES NO. 3 SUMMARY TURBOPUMP S/N 02-0

		TEST	ACCUM	ULATED	
TEST NO.	TEST DATE	DURATION, SECONDS	STARTS	DURATION, SECONDS	REMARKS
016-003	5-19-78	31	1	31	TEST OBJECTIVE HEAD-FOW AT 30,000 RMP MAXIMUM SPEED 29,500 RPM. VIBRATION CUT ERRONEOUSLY - INSTRUMENTATION PROBLEM. BALANCE PISTON FLOW OVERBOARD.
016-004	5-23-78	124	2	155	OBTAINED HEAD-FOW MAPAT 30,000 RPM. FACILITY DURATION CUTOFF - LOW LH ₂ PRESSURE.
016-005	5-25-78		3	193	PLANNED HEAD-FLOW TEST AT 70,000 RPM. TURBINE PRESSURE RAMP SLOWED DOWN IN SECOND CRITICAL SPEED RANGE - VIBRATION CUTOFF AT 55,000 RPM - PUMP RADIAL ACCELEROMETER.
016-006	5-31-78	43	4	236	PLANNED HEAD-FOW TEST AT 70,000 RPM EIGHT (8) SECONDS AT 66,000 RPM, OTHER AT 30,000 RPM. TEST CUT FOR HIGH PUMP BEARING COOLANT TEMPERA- TURE. HIGH ROTOR TORQUE ON POSTTEST INSPECTION.

A STATE AND

ころうというというとうないないであるとうないとうとう

È.

<u>Mechanical Performance.</u> Testing of the LOX turbopump in test series No. 1 encompassed 18 starts, with a total accumulated time of 267 seconds. The three initial tests were conducted with LN₂ as the pump fluid; in subsequent tests, LOX was used. The first seven tests were performed using ambient-temperature GH₂ to drive the turbine; in the remainder of the tests, the combustion product of LH₂ and LOX at approximately design temperature was the turbine drive gas. The longest test durations conducted were 70 seconds with ambient GH₂ drive and 41 seconds with hot-gas drive. The operation covered a rotor speed range of 0 to 7768 rad/s (74,191 rpm), a maximum pump discharge pressure of 3175 N/cm² (4606 psia), and a maximum turbine inlet temperature of 1133 K (2040 R).

٤,

Ļ

A.1.7.

Several tests were terminated by the vibration sensor device monitoring the output of the accelerometers attached to the turbopump housing. This was caused by a combination of several factors. Normally on a new turbopump, several tests are required to establish its vibration signature and thus set the cutoff point at the appropriate levels. It appears that with the Mark 48-0 turbopump, this level is in the 20 to 25 g rms range in conjunction with a 2 KHz low-pass filter.

Some of the early runs were terminated because the cutoff redline was set too low. In addition, the manual GH₂ feed control system employed on the first seven runs frequently resulted in slow transition through critical speed zones, with attendant buildup in vibration levels.

Bently proximeter data and accelerometer data obtained from high-frequency tapes showed increased synchronous activity at 4115, 5026, and 5528 rad/s (39,300, 48,000, and 52,800 rpm). These compared favorably with the analytically predicted critical speeds of 4723 and 5482 rad/s (45,108 and 52,363 rpm, respectively). No evidence of subsynchronous vibration was present in the data.

The measured seal drain pressures, temperatures, and flowrates were, in general, in good agreement with predicted values, indicating proper functioning of the shaft seals. During chilldown of the pump on the LN_2 tests, it was noted that the secondary hot-gas drian line frosted over. This could occur as a result of heat transfer through conduction, but possibly also as a result of the pump fluid from the primary LOX seal drain cavity leaking across the intermediate seal. To prevent a potentially hazardous condition, the purge pressure level in the intermediate seal was raised to 138 N/cm² (200 psig). No problem was experienced at this pressure level with mixing of incompatible fluids. It is quite possible that the originally planned purge pressure of 41 N/cm² (60 psig) would be adequate. This could be established on future tests by sampling and analyzing the drain fluids during chilldown.

The turbopump was disassembled after the first test series to permit visual inspection of the components. Figure 3 shows the condition of the more significant parts. The condition of most of the components was excellent; only two discrepancies were apparent: The pump-end bearings showed evidence of overheating, and the chrome plating on the rotor under the primary hot-gas seal ring had flaked off.

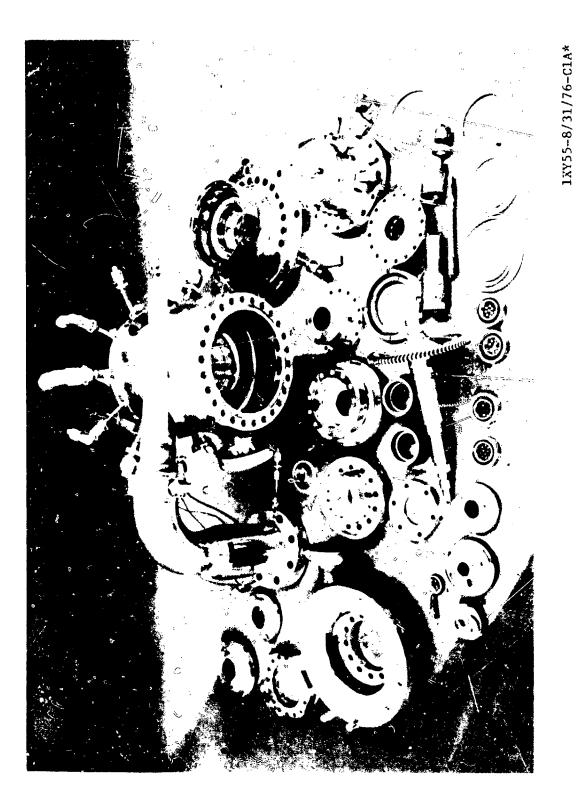
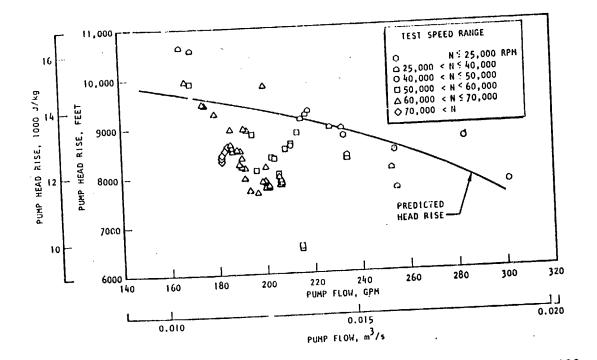


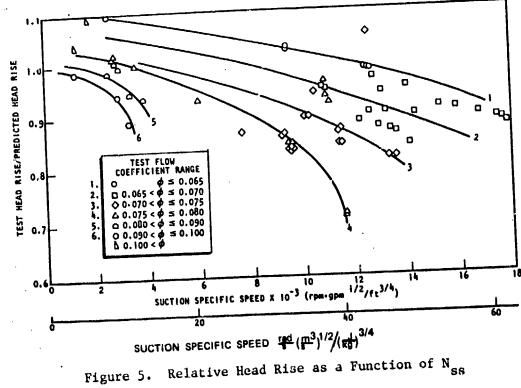
Figure 3. Nark 48-0 Components After Testing

OF POOR QUALITY

After test series No. 2, in which a fire damaged the pump-end hardware, evaluation on disassembly revealed the failure occurred due to the primary seal retaining nut backing out and restricted the balance piston overboard flow.


The damage to the hardware included the pump inlet, inducer, impeller, diffuser, and pump end bearings, with some burning evident in the balance piston return cavity. All the hardware aft of and including the primary LOX seal was in satisfactory condition with the exception of the turbine wheel where it had rubbed on the pump side hot gas shielding and its retaining bolts. Analysis of the axial thrust control range prior to the blockage of the balance piston drain indicated adequate margin.

The mechanical performance evaluation on test series No. 3 hardware revealed a continuing problems regarding the chrome plating on the primary hot-gas turbine seal. Chrome plating applied to the rotor shaft flaked off directly under the seal. This possibly contributed to the high torque observed after the last test. The cause of the flaking was thought to be due to the sharp corner of the shaft relief where the chrome plating terminated. This resulted in inadequate adherence and eventually led to chipping and flaking. For the next build, plating was extended over the corner to relieve the problem. The condition of both pump and turbine bearings were excellent after test series No. 3. Posttest analysis indicated adequate cooling and low-coolant pressure differential across the pump and bearing. The nominal and maximum axial and radial loads were acceptable, indicating the bearings were functioning properly.


The performance of all four shaft dynamic seals was excellent in all tests. Pressure levels in the drain systems were maintained at sufficiently low levels to preclude intermixing of the pump and turbine propellants. The primary LOX seal in particular has been proven a very reliable, rugged concept. In conjunction with the slinger, its measured leakage rate at design speed was approximately 0.068 kg/s (0.15 lb/sec).

<u>Fump Hydrodynamic Performance</u>. Figure 4 is a plot of the pump overall head rise as a function of flow, where both data and the predicted head are scaled to a speed of 7329 rad/s (70,000 rpm). For test series No. 1, the scaling was accomplished using the affinity laws which have been thoroughly substantiated as applicable for LOX and LN_2 . The data consist of 66 data points from 15 tests, with test speeds varying from 1628 to 7768 rad/s (15,550 to 74,190 rpm), and with pumped fluids of both LOX and LN_2 , primarily the former. The symbols used for the data points distinguish the different operating speed ranges tested. There was no indication that the results were dependent on the pumped fluid medium.

The low-speed data show fairly good agreement with the predicted head rise, but may be indicating a slightly steeper H-Q slope than predicted. However, as speed increases, the test data deviate more from the predicted curve, falling short of the curve at the higher flowrates. This type of deviation is typical of that experienced when cavitation is limiting the performance. To investigate this deviation, the ratio of the test head rise divided by the predicted head rise was calculated and plotted as a function of suction specific speed (N_{BB}) in Fig. 5. The initial plot tended to indicate a great deal of data scatter without clear trend. However, when different symbols were used to represent the different inlet

MK 48 LOX Pump Data and Predicted Head Rise Scaled to 70,000 rpm Figure 4.

18

flow coefficients (ϕ_{in}) tested, the data showed a clear trend. For all coefficients, there is a tendency of the head ratio to drop as N_{SS} increases. However, as flow coefficient increases, this dropoff occurs at successively lower values of N_{SS}. This trend again is strongly indicative of cavitation limitations, with the amount of cavitation increasing either with increasing N_{SS} or with increasing flow coefficient at a constant value of N_{SS}.

The cavitation appears to occur at much lower values of N_{ss} than would be expected from the design, considering it does have an inducer designed for good suction performance. This would indicate the more likely possibility that the impeller was cavitating rather than the inducer. This could be caused by:

- .1. A failure of the inducer to produce its design head rise, which is required to keep the impeller out of cavitation
- 2. An inadequate impeller design from a cavitation standpoint
- 3. Too much hot cryogenic being pumped into the impeller eye from the balance piston/bearing area

An independent computer analysis of the inducer to verify the head rise capability indicated the inducer head output to meet or exceed the originally predicted values. Analysis of the impeller inlet to determine the cause of the poor suction performance indicated that the through-flow area near the leading edge was restricted and could cause the poor suction performance. As a result the impeller eye diameter was increased from 4.19 to 4.44 cm (1.650 to 1.750 inches) and the impeller leading edge was cut back 0.52 radians (30 degrees) of wrap. Further analysis of the balance piston return flow effects on impeller inlet performance indicated the decreased impeller eye blockage would be beneficial to suction performance. Analysis revealed that balance piston fluid returned to the impeller eye did not vaporize, and modification to remove the impeller inlet blockage was necessary to improve suction performance.

Additional suction performance data were revealed on test series No. 2 test 005 when operation up to a suction specific speed of $85263 (rad/s (m^3/s)^{1/2}/(J/Kg)^{3/4} 24,300 rpm (gpm)^{1/2}/(ft lbf/lb⁻⁷⁴ was analyzed for a flow coefficient of 0.094 with no evidence of cavitation. The combined head-flow performance data of the 1977 tests and the 1978 tests are given in Fig. 6. A second order curve fit of all the data is also given, The data presented are at test speeds from 3141 to 7330 rad/s (30,000 to 70,000 rpm), scaled to 7330 rad/sec (70,000 rpm). These data show the slope to be greater than predicted but very close to predicted head at the design flow.$

The isentropic efficiency data for test series 2 and 3 are given in Fig. 7. The data scatter is caused by the low accuracy of the temperature rise measurement at the low operating speeds of 3142 rad/s (30,000 rpm). In general, most of the data lies slightly below the original prediction.

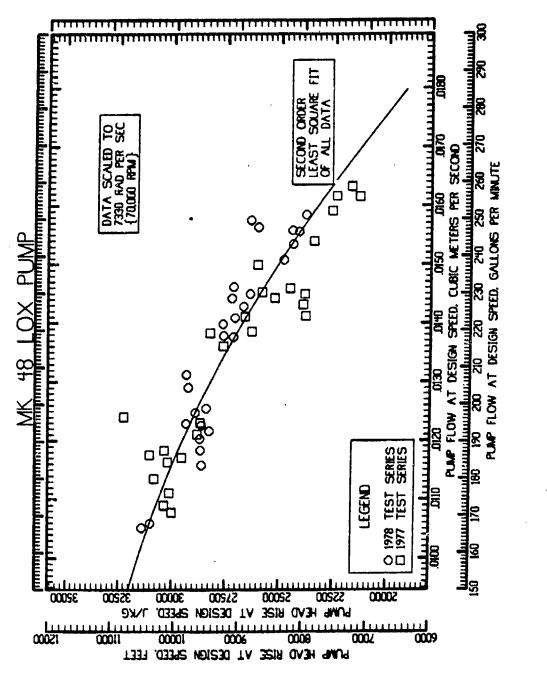
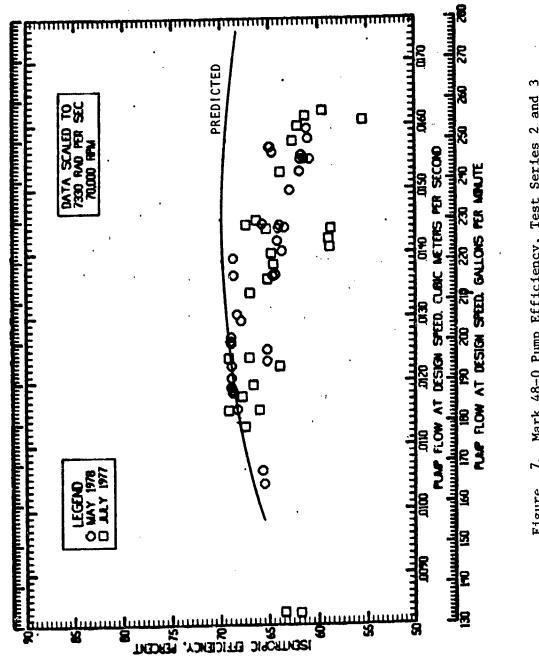



Figure 6. Pump Head-Flow Curve Based on Composite Data From 1977 and 1978 Tests

A service

ちょう

and Mark 48-0 Pump Efficiency, Test Series 2 2. Figure

<u>Axial Thrust Control</u>. Data from test series No. 1 showed the balance piston to be operating in a satisfactory manner, particularly on those tests where part of the flow was bled overboard and the return cavity pressure was, thereby, reduced. To improve the thrust margin in an internal recirculation mode, it was recommended the size of the return flow passages be enlarged.

After test series No. 2 in 1977, the measured static pressure distribution on the components was used to develop a thrust model. The axial thrust computer program model was used to predict the axial thrust balance piston performance of the test series No. 3, test 006. The complete results are presented in detail in Ref. 2. The results indicated the balance piston flow agreed well with the measured overboard drain values. The predicted sump pressures also showed good accuracy with the measured data. The data indicated the range of thrust of the balance piston was adequate. The ideal balance piston operating point would be in the midpoint of the thrust range for an ideal configuration. The analysis indicates that at the low speed of 3142/rad/s (30,000 rpm) the balance piston operated at a position where the axial thrust was only 16% of the thrust range. At the higher design speed of 7330 rad/s (70,000 rpm), the margin increased to 26 to 32% of the thrust range. The total axial balance piston travel, δ , is 0.25 mm (0.010 inch). The balance piston travels from the balance piston high pressure orifice full closed at x = o to the low pressure orifice full closed at $x = \delta$. For each position of the balance piston, there is a corresponding unique value of the balance cavity pressure and balance piston axial thrust. From the computer program thrust model, it was predicted that the balance piston position at the above presented axial thrust percentage range was at $x/\delta = 0.47$ at the low speed and at x/δ between 0.280 to 0.330 at the high speed operating points. An improvement in operating the pump closer to midrange of thrust and position could be achieved by a reduction in the balance piston sump pressure. This reduction reduces the balance cavity pressure at $x/\delta = o$ and increases the axial thrust range of the system. The operating condition found on test series No. 3 was an acceptable operating condition with sufficient margin for safe operation.

Bearing Coolant Flow. After the initial test series of the turbopump, examination of the pump-end bearings showed evidence of overheating. The first three tests of the series were in LN_2 operation. The total accumulated time on the tests with LN₂ was 44 seconds, with a maximum rotor speed of 6492 rad/s (62,000 rpm). These bearings had similar appearance to other bearings damaged in LN_2 operation. Total test time in LN₂ was held to a minimum because of concern for bearing damage. There was also evidence from the LOX tests that the bearing flow could be substantially less than desired and that coolant temperatures were higher than expected due to the higher back pressure at the balance piston sump caused by high downstream resistance. It was desirable to obtain bearing coolant flow temperatures of approximately 110 K (200 R). Data from initial tests of series No. 1 indicated temperatures up to 160 K (290 R) at speeds of 6282 rad/s (60,000 rpm). Temperatures were greatly improved when the balance piston downstream resistance was reduced by opening an instrumentation line and allowing some of the balance piston return flow to dump overboard. The results were that the coolant temperatures were reduced to a maximum of 130 K (235 R) at 7330 rad/s (70,000 rpm). This confirmed that an increased coolant rate would effectively reduce the bearing coolant temperature to acceptable levels.

During the 1977 test series No. 2, a direct measurement of the pressure drop was not available but calculations from the available instrumentation and the calculations of the slinger pressure gradient indicated a pressure drop across the bearings at 258 N/cm² (375 psi). The loads caused by the high pressure drop would shorten the bearing life considerably so it was decided to lower the resistance by drilling eight bypass holes of 2.18 mm (0.086 inch) diameter through the bearing cartridge. This was to reduce the pressure drop to apporixmately 62 N/cm² (90 psi) as this would improve bearing life considerably. Since all of the balance piston flow initially passed through the bearings, the reduction in downstream resistance would also improve the balance piston margin and range. Subsequent data from two pressure taps located upstream and downstream respectively, of the pump end bearings indicated pressure drop across the bearings of between 4 and 7 psi. These values are thought to be erroneous on the low side.

Seal Performance. In all of the first three test series, the same seal packages were used. These seals performed satisfactorily with two minor exceptions. During initial testing it was determined that an increased intermediate seal purge pressure level should be applied. This pressure was required to prevent frosting of the secondary hot-gas drain line, which indicated some pump fluid may be getting past the primary seal drain cavity and causing the chilldown of the secondary hotgas drain. All tests have been conducted with purge supply pressures above 104 N/cm² (150 psi) with no hazardous condition developed. It is expected that this pressure could be reduced further with no problem. The second problem is mechanical: the chrome flaking under the primary hot-gas seal ring. This was originally thought to have been due to inadequate plating but could also be due to a heating condition caused by tight clearance and lack of seal flow. This condition was found in subsequent tests which will be documented in test series No. 5 results.

ANALYSIS AND DESIGN MODIFICATIONS

The major objective of the program was to utilize previously gained fluid film seal technology to design a fluid film seal for installation in the Mark 48-0 turbopump, and to test the configuration under actual turbopump conditions. The NASA-Lewis Research Center had previously demonstrated the feasibility of using hydrodynamic or hydrostatic fluid film-type seals. These seals were considered to have the potential to achieve the multiple starts and life requirements of small turbopumps of this type. The first requirement was to obtain baseline pump and seal performance data with the existing primary LOX seal. Previous testing on the Mark 48-0 turbopump had been curtailed due to high torque on posttest inspection. The turbopump had been disassembled and the cause was traced to rubbing of the turbine tip. The turbine tip of the turbopump is unshrouded and operates at a relatively small diametral clearance in a housing which has a copper plated mating surface. The rubbing had been slight but caused the copper surface to restrict the smooth turning of the rotor. This was corrected by grinding the surface back to the required diameter and finish. It was also found that the chrome plating on the shaft had deteriorated under the primary hot-gas seal and this had also contributed to the rotor torque. This was thought to be due to the chrome plating extending only to the edge of a relief in the shaft and to inadequate adherence. To correct this situation the chrome plating was removed and replated. The plating was extended past the relief and the replating was done with tighter controls on the processes.

Another change to the turbopump from the original design was the increase in inducer tip diametial clearance to 0.41 mm (0.016 inch) from the value of 0.28 mm (0.011 inch) from the previous build. This was to reduce the level of rubbing of the inducer on the silver plated inlet tunnel found in previous builds.

Hydrodynamic Analysis

It was desirable to reduce the temperature rise of the balance piston and bearing coolant flow because the fluid is returned to the impeller eye. A lower temperature of the recirculated fluid would improve the suction performance. The greatest contributor to the heating of the fluid was found to be caused by the slinger. This heating can be reduced by reducing the slinger diameter. The height of the slinger must be sufficient to cause vaporization of the fluid before reaching the primary LOX seal radius. Liquid at the seal will increase the leakage rate which is undesirable.

The balance piston flow temperature rise as a function of slinger height is shown in Fig. 8. The decreasing slope of the temperature rise as the radius is increased is due to changes in fluid properties with temperature change. The effect of slinger height on the net slinger axial thrust is shown in Fig. 9. Figure 10 and 11 show the effects of slinger height on vaporization of the fluid and, therefore, sealing performance of the slinger. Figure 10 shows the radius at which the vapor pressure is reached as a function of slinger tip radius. It can be seen that for a slinger tip radius of approximately 24.8 mm (0.975 inch), vaporization occurs just at the seal radius. Slinger height below this radius will result in liquid at the seal with potential increase in seal leakage. Figure 11 shows the pressure expected at the seal as a function of the slinger height. The discontinuity in the curve is at the slinger height at which the predicted vapor pressure **is reached** at the seal radius.

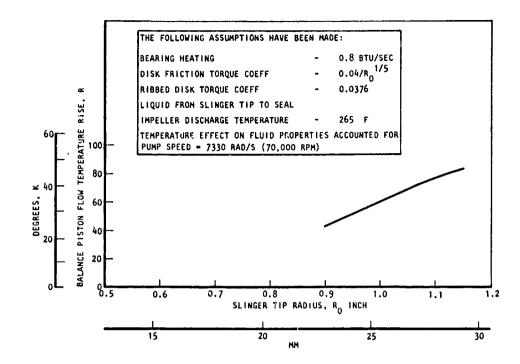


Figure 8. Mark 48 Oxidizer Expected Balance Piston Temperature Rise as a Function of Slinger Height

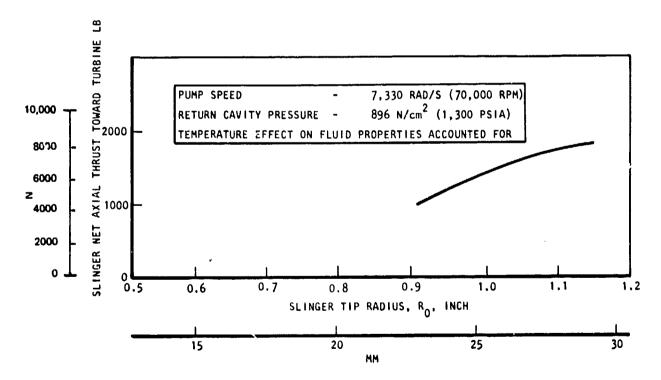


Figure 9. Mark 48 Oxidizer Expected Net Slinger Thrust as a Function of Slinger Height

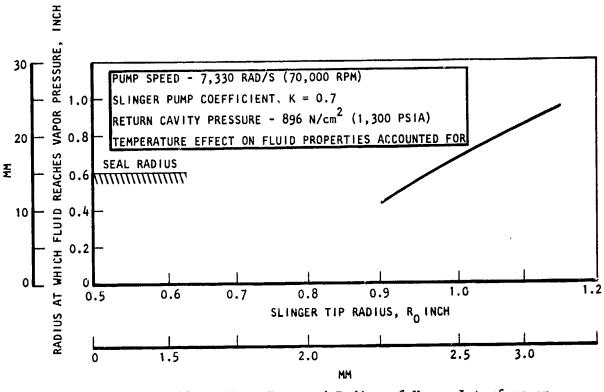


Figure 10. Mark 48 Oxidizer Expected Radius of Vapor Interface on Back of Slinger as a Function of Slinger Height

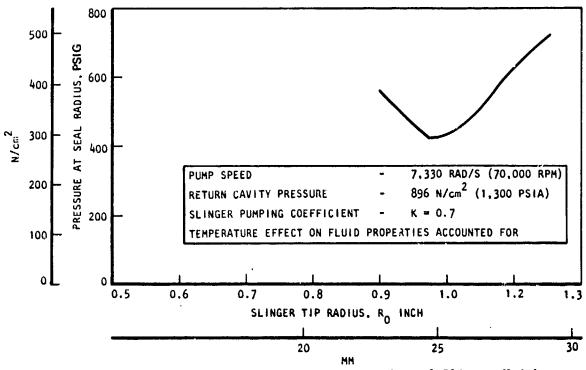


Figure 11. Expected Seal Pressure as a Function of Slinger Height Assuming Vaporization of Pumped Fluid When Pressure Reaches Vapor Pressure

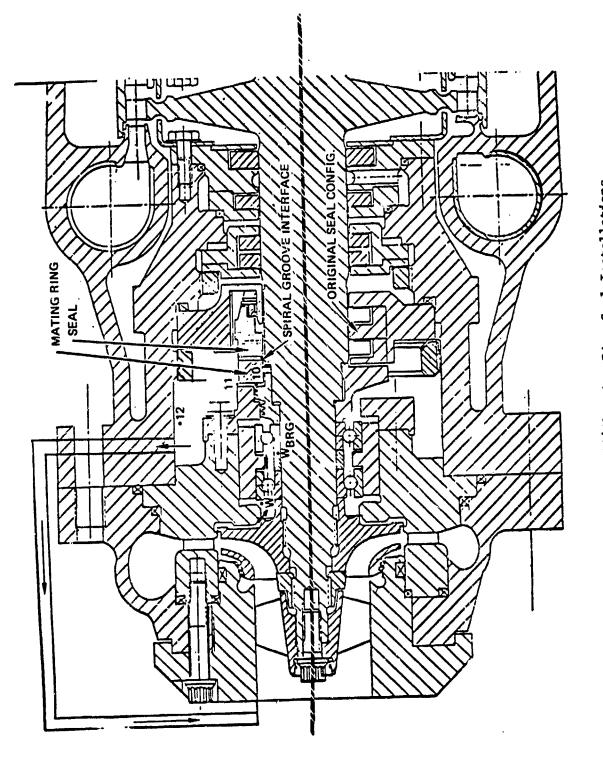
26

It was recommended that the slinger height not be reduced below 25.4 mm (1.00 inch) in order to maintain vapor at the seal radius, and this was the radius slinger height selected.

Axial Thrust Analysis

:

è.


Analysis of the axial thrust from data taken in test series No. 3, May 1978, indicated no changes need be made to the turbopump design. The analysis of the axial thrust was reported in Ref. 2 and indicated the thrust range of the balance piston was adequate and the thrust operating point had 16% thrust margin at 3142 rad/s (30,000 rpm) and between 26 to 32% thrust margin at 7330 rad/s (70,000 rpm). Reduction in the slinger diameter by 2.54 mm (0.100 inch) would, however, reduce axial thrust of the rotor assembly approximately 5% of the net thrust range. This would cause the margins quoted above to decrease by 5 points. No changes to the axial thrust balance piston were made for these tests except the tests were to be run with the balance piston flow dumped overboard and the balance piston flow return holes were plugged by inserting pins in the return holes. This was so balance piston flow could be controlled and measured.

Spiral Groove Lift-Off Seal Analysis

The spiral groove lift-off seal for incorporation into the turbopump was analyzed as to its specific operating characteristics, environmental requirements and compatibility with the turbopump design. The objective of the analysis was to use the technology gained in previous NASA research on hydrodynamic or hydrostatic fluid film-type seals. This technology would assist in a seal design which could be incorporated into the turbopump to replace the pump primary floating ring type seal. Two lift-off seals tested under NASA Contract NAS3-17769 for 11 hours and approximately 360 starts had demonstrated the feasibility of using this type of seal to achieve multiple start and long life requirements on the turbopump (Ref. 3). The major concern was that the conventional floating ring seal may have difficulty in meeting the life and cycle requirements of this type of turbopump. The installation of this seal is given in the upper half segment of Fig. 12. The configuration of the floating ring seal is shown below the centerline in the same figure.

The pressure level in the cavity upstream of the seal is approximately 938 N/cm² (1360 psia). Since current lift-off seal technology is limited to pressure differentials of less than 345 N/cm (500 psi), it was necessary to reduce the cavity pressure to that level to minimize operating risk. To accomplish this, a two-step labyrinth was added as a throttling device, immediately downstream of the bearings.

A hydrodynamic model of the balance piston fluid flow loop was generated to define the pressures and temperatures at significant points. The analysis performed with the model indicated that the pressure upstream of the seal can be maintained below the 345 N/cm (500 psi) level, which is compatible with existing lift-off seal technology. It also revealed that incorporating the labyrinth between the bearings and the seal cavity will not result in inadequate coolant flow through the bearings, and that the balance piston maintains a satisfactory thrust control.

The second

η.

10.74

A finite element stress analysis was performed, using the results of the hydrodynamic and thermal analysis, to establish the muting ring and seal ring operating deflections. The design goal was to maintain the sealing interface gap between the mating ring and seal ring from parallel to 50 microinches in convergence. A divergent gap across the seal face results in unstable seal operation. The mating ring deflection was controlled by adjusting the corner chamfer to vary the centrifugal loading.

ŝ

The Monel K-500 mating ring and the P-692 graphite seal ring were analyzed as two separate axisymmetric models. The temperature gradients, surface pressure distributions, and boundary conditions of the models are shown in Fig. 13 and 14. The mating ring is rotated at the shaft speed of 7330 rad/s (70,000 rpm). Axial deflections along the spiral groove surface were obtained for three mating ring assigns and one seal ring design. The three mating ring designs evaluated were a 1.91 mm (0.075 inch) and 1.27 mm (0.050 inch) chamfer at the opposite OD corner and a no-chamfer design.

The results indicate that sealing surface deflections of the Monel mating ring can be readily controlled by the corner chamfer. The relative axial deflection of the OD with respect to the ID is reduced from 955 to 303 micromillimeters (37.6 to 15.1 microinches) in the convergent direction by changing the corner chamfer from 1.91 to 1.27 mm (0.075 to 0.050 inch).

It reverses to 130 micromillimeters (5.1 microinches) in the divergent direction without a corner chamfer.

The carbon seal ring surface deflection is 508 micromillimeters (20 microinches) in the convergent direction. The total surface deflection between the mating ring with 1.27 mm (0.050 inch) chamfer and seal ring is 889 micromillimeters (35 microinches). The results of the finite element deflection analysis are given in Fig. 15.

Both the Monel K-500 mating ring and the P-692 graphite seal ring designs are structurally adequate. The factor of safety on yield is 2.2 and the factor of safety on ultimate is 3.2 for the mating ring. The factor of safety on ultimate is greater than 10 for the seal ring.

The effective stress levels in the three mating ring designs were about the same. The maximum effective stress was $32,128 \text{ N/cm}^2$ (46,600 psi). The yield strength of Monel K-500 used in the mating ring is 71.000 N/cm^2 (104,000 psi) and the ultimate strength is 105,000 N/cm² (152,000 psi) at 260 K (-200 F). Stresses and deflections of the graphite seal ring result from the external surface pressures and spring reaction. The maximum effective stress is 896 N/cm² (1300 psi). The ultimate compressive strength of Carbon P-692 is 25,165 N/cm² (36,500 psi) at -260 K (-200 F). Integration of the spiral groove lift-off seal assembly into the turbopump was completed and is shown in Fig. 12 and Drawing 9R0012300 of Appendix A.

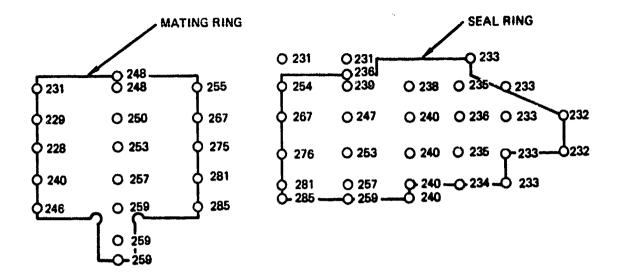


Figure 13. Mark 48-0 Spiral Groove LOX Seal Temperature Gradients (R, Used in Finite Element Models)

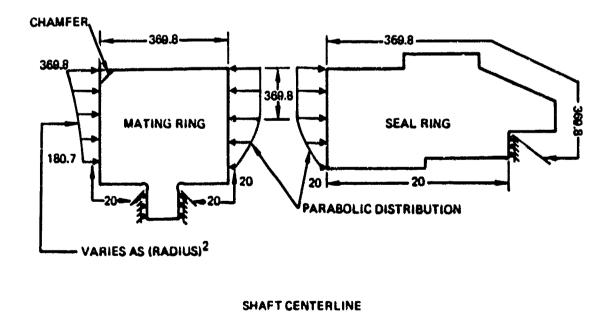
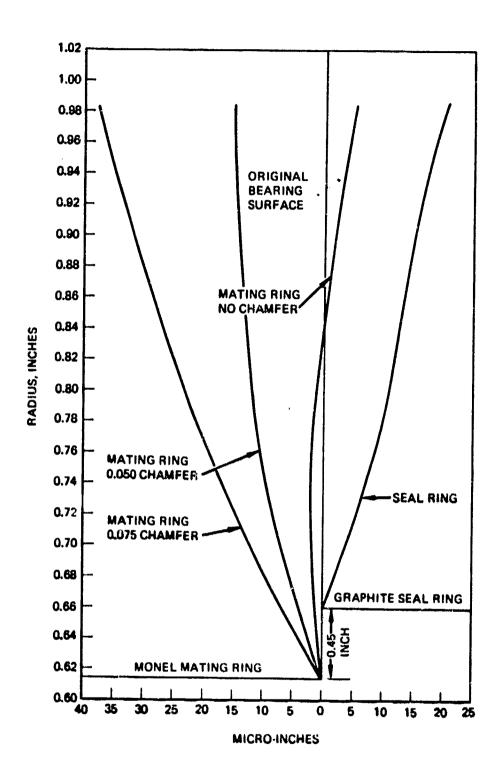



Figure 14. Mark 48-0 Spiral Groove LOX Seal Pressure Distribution (Psia Used in Finite Element Models)

Į.

のないというないであるのである

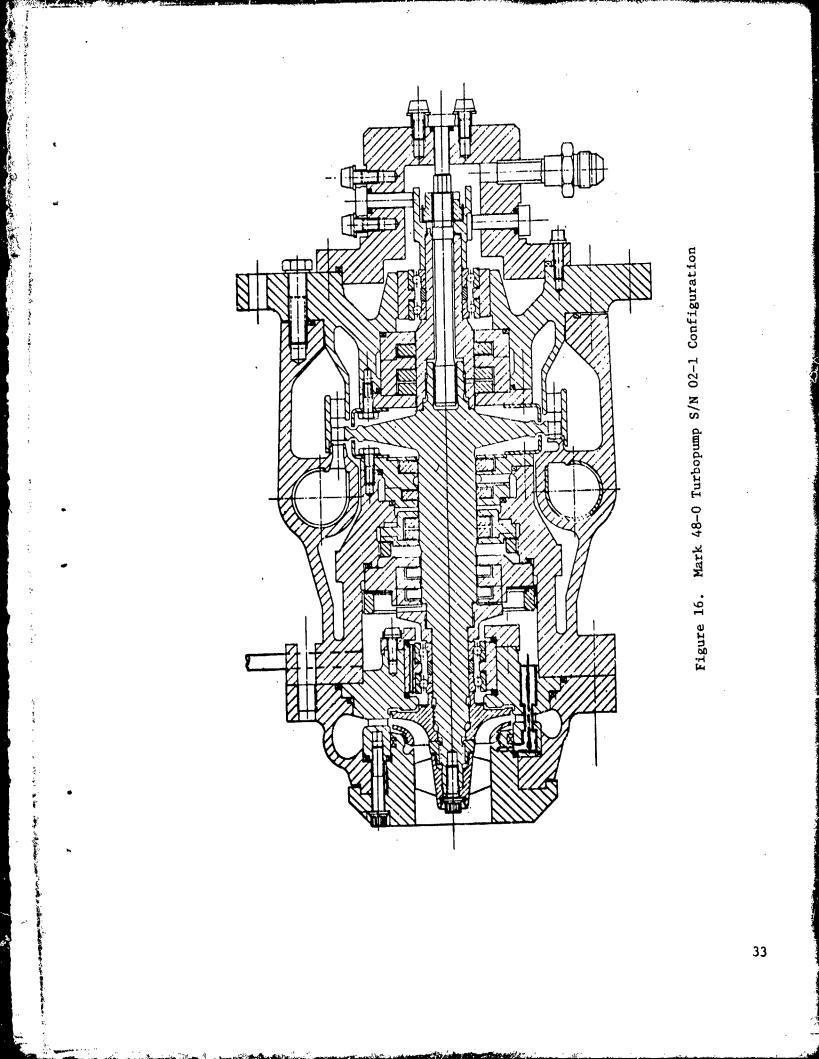
î

.

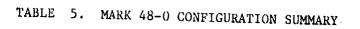
Figure 15. Monel Mating Ring and Graphite Seal Ring Deflection of Sealing Surface Radius vs Relative Microinches

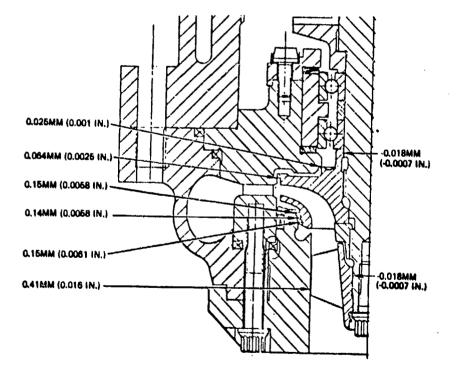
TURBOPUMP S/N 02-1 ASSEMBLY AND TEST

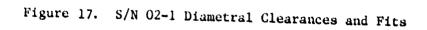
The specific objectives planned for the test program of turbopump S/N 02-1 were twofold. The first objective was to obtain baseline primary LOX seal performance data in preparation for test comparison and analysis of the spiral groove lift-off seal to be incorporated in the next turbopump tests. The second was to determine the critical NPSH of the turbopump with the balance piston fluid directed overboard and with the balance piston fluid recirculated back to the impeller inlet. Prior to this time only a partial indication of suction performance had been achieved. On the first test series the data indicated very low suction performance. This series No. 2 was measured at a noncavitating operation of up to 85263 [(rad/s) (m³/s)1/2 (J/Kg)³/4] {24,300 [RPM (gpm)1/2 (Ft-1bf/lbm)³/4} at a flow coefficient those tests. The scope of the program was expected to be completed in three full


Turbopump Assembly and Installation

The Mark 48-0 turbopump S/N 02-1 modifications were completed and the turbopump was assembled in August and September of 1978. The assembly configuration is that given in Fig. 16. Changes from the original configuration are summarized in Table 5. The few changes made to the turbopump and their rationale have been discussed previously. Dynamic balancing of the rotor assembly was accomplished on the Gisholt balancing machine with a capability of accurately detecting 6×10^{-4} mm (25 microinch) radial motion. For the Mark 48-0 rotor mass of 2.84 Kg (6.25 lb), of 7330 rad/s (70,000 rpm). The rotor was supported in the balance cradle by two pairs of turbopump bearings, each pair axially preloaded in the bearing cartridge


Balancing was initiated using the main rotor and the rear stub shaft assembly, and wax corrections were made in the plane of the turbine wheel and the stub shaft.


Subsequently, the slinger, impeller, inducer, and instrumentation sleeves were added, making wax corrections in the plane of each component before the next part was added. After the wax corrections were completed, several repeatability checks were made in which the rotor was disassembled and reassembled, and the change in residual imbalance was established, and the runouts at several stations were measured. Satisfactory repeatability was obtained. The permanent balance of the rotor was then accomplished by grinding material in designated areas of the component parts.


The assembly of turbopump S/N 02-1 was accomplished in similar fashion to previous turbopump builds, in accordance with the procedure described in Ref. 1. The front and rear bearing inner race thicknesses were selected to provide a minimum bearing preload of 245 N (55 lb), and to obtain a total bearing travel within each cart-ridge of approximately 0.23 mm (0.009 inch). Measurements were made during assembly of the turbopump to establish critical clearances and fits. Critical clearances in the pump area are given in Fig. 17.

CHANGES TO ORIGINAL DESIGN	01-1	02-0	02-1
	(1977)	(MAY 1978)	(SEPT 1978)
IMPELLER INLET AREA ENLARGED IMPELLER DISCHARGE-TO-INLET/BALANCE PISION RETURN CAVITY LEAK PATH ELIMINATED BALANCE PISTON INTERNAL RECIRCULATION PLUGGED BALANCE PISTON OVERBOARD BLEED PORT ADDED BALANCE PISTON EXTERNAL RECIRCULATION RETURN ADDED TO INLET HOUSING SLINGER CLEARANCE REDUCED TO 0.035 INCH INDUCER DISCHARGE PRESSURE PORT ADDED IMPELLER FRONT SHROUD PRESSURE PORT ADDED REDESIGNED PRIMARY SEAL NUT REDESIGNED PRIMARY SEAL NUT REDESIGNED PRIMARY SEAL NUT LOCK BYPASS HOLES AROUND BEARINGS SPRING ADDED TO FORWARD CARTRIDGE BALANCE PISTON OVERBOARD BLEED PORT ENLARGED MODIFIED SHAFT PLATING DESIGN INDUCER TIP CLEAR INCREASED (0.016 INCH) REDUCED SLINGER DIAMETER	x x x x x x x x x	(MAY 1978) X X X X X X X X X X X X X X X	(SEPT 1978) X X X X X X X X X X X X X

あっての日日

After the turbopump was assembled, a push-pull test was performed on the rotor to establish the external loads which the bearings support as a function of rotor position with respect to the balance piston orifice positions. The movement of the balance piston can be referred to the symbols h1 and h2 which define the balance piston high and low-pressure axial clearances, respectively as shown in Fig. 18. The results of the push-pull test which characterizes the load-travel response of the rotor within the spring loaded bearing package is given in Fig. 19. As indicated by the curve, the bearing stops were positioned so that the balance piston orifices axial clearances would overlap (i.e., h1 and h2 would be negative) by 0.102 mm (0.0040 inch) and 0.076 mm (0.0030 inch) respectively before a sizable load of 2002N (450 lb) would be imposed on the bearings.

After the turbopump assembly, a series of leak checks were performed to ensure the sealing requirements of the turbopump were achieved. The turbopump was installed into the Advanced Propulsion Test Facility (APTF) in the LIMA test stand. The necessary connecting ducting was fitted to the turbopump. A schematic of the major ducting in the test facility is given in Fig. 20. The balance piston overboard flow system included a single discharge line from the turbine housing flange draining from downstream of the bearings and out of the slinger-primary LOX seal cavity. This flow was to be dumped overboard or fed back to pump inlet after being measured using a pressure differential across an orifice in the exit line.

Test Series No. 4 (October 1978)

「「「「「「「「「」」」」」

「「「「「「「「「」」」」

The purpose of the test series was to define the baseline performance of the primary LOX seal for later comparison to the spiral groove lift-off seal test data to be generated in the next turbopump build and test series. In addition, suction performance tests were planned to define the suction performance of the turbopump with and without recirculation of the balance piston flow. The test plan called for three tests to accomplish the objectives. These planned tests and the operating requirements are given in Table 6. Turbopump instrumentation was similar to previous turbopumps tested. A detailed instrumentation list is given in Table 7 and specific turbopump instrumentation is illustrated in Fig. 21.

			CONDI	TIONS
TEST NO/DAY	OBJECTIVE	N, RPM	BALANCE PISTON FLOW	OPERATION
1/1	CHECKOUT AND SUCTION PERFORMANCE WITHOUT RECIRCULATION		1C0% 0/B	NPSH AT Q/N NOMINAL
2/2	SUCTION PERFORMANCE WITH RECIRCULATION	70K	100% RECIRCULATION	NPSH AT Q/N NOMINAL
3/3	SUCTION PERFORMANCE WITH	70K	100% RECIRCULATION	NPSH AT 70%, 130% Q/N NOMINAL

TABLE	6. MARK (48-0]	TEST 1	PLAN,	S/N	02-1	PERFORMANCE
	(75 SECON	NDS; 7	FURBI	NE PRO	PELL	ANT	GH ₂)

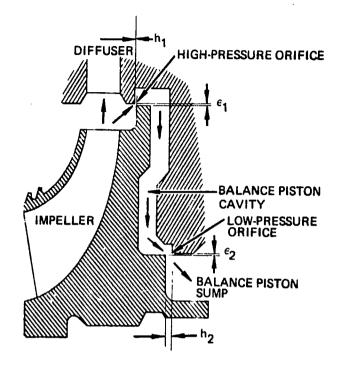


Figure 18. Mark 48-0 Turbopump Balance Piston

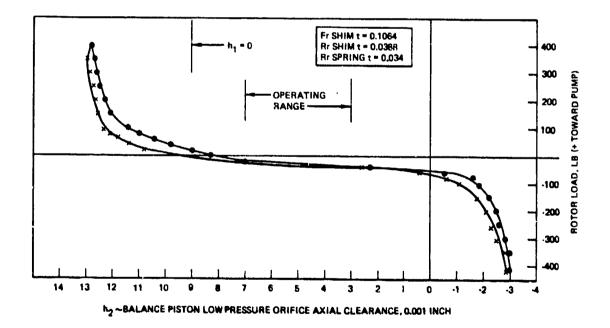
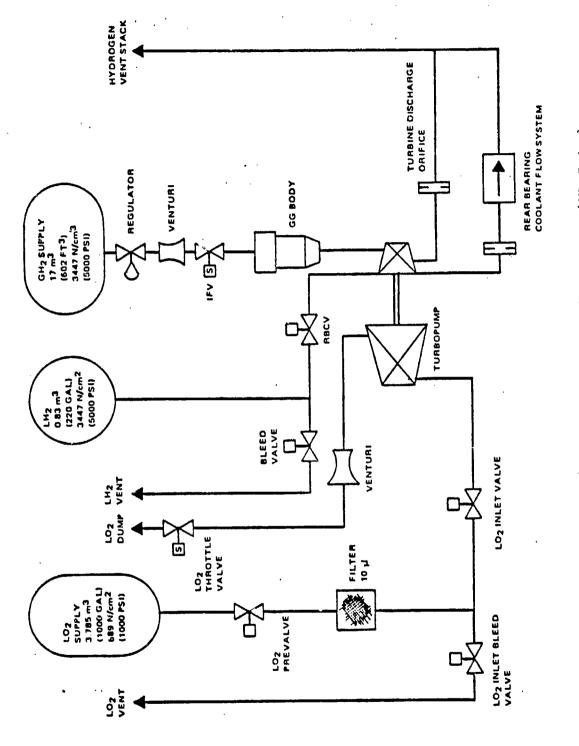



Figure 19. Mark 48-0 Turbopump Rotor Load Travel Characteristics (S/N 02-1)

「「日本のない」ので、「「「「「」」」という」という」という

「「「「「「「「」」」」

,

an and a Maria Mariana and a Carla Caranata a San an

ľ,

.

いっていい ふきんしき を見ていい ろうし

ţ

L

Figure 20. LIMA Stand Schematic for Mark 48-0 Testing (GH $_{\rm 2}$ Drive)

TABLE 7. INSTRUMENTATION LIST (GASEOUS HYDROGEN TURBINE DRIVE)

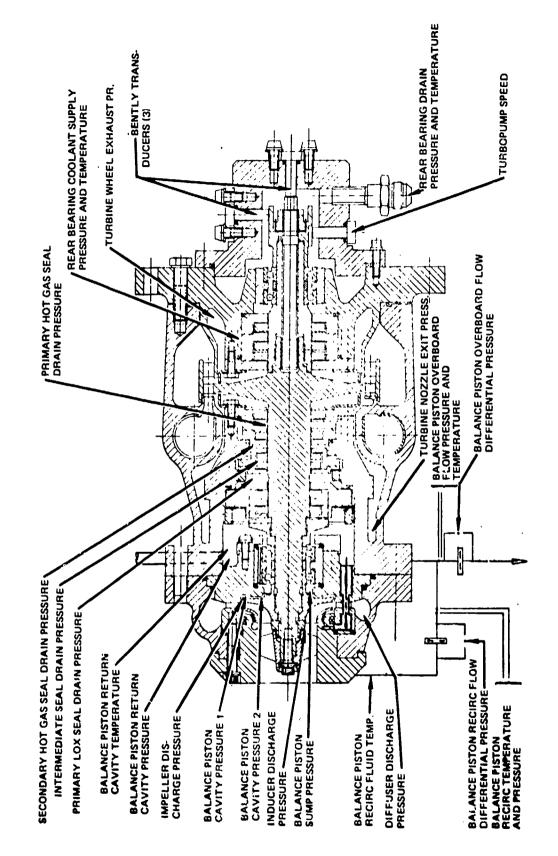
いていましたものです

с.,

SYSTEM	PARAMETER	9	QI.d.	RANGE	BEDFINE	BECIONVI	DICK	050	39AT MA	LOCATION	COMMENTS
GH,	REGULAR U/S PRESSURE	PGHR	062	5000 PSIG		×	×			FACILITY LINE	
2	VENTURI U/S PRESSURE	PGHV	071	5000 PSIG		×	×				YENTURI S/N 9731 P/N VP031200-5GR
	VENTURI U/S TEMPERATURE	TGHV	047	0 TO 200 F		×					THERMOCOUPLE
	VENTURI AP	PGHD	<u>0</u> 61	500 PSID		×	×				
	GN2 SPIN VALVE U/S PRESSURE	PSVI	082	5000 PSIG		×					
	GN, SPIN VALVE D/S PRESSURE	PSV2	074	5000 PSIG		×					
	GN ² SPIN VALVE POSITION	GHSV	055	TRACE		×		×			METER DISPLAY FOR DIGR REOUIREMENT
TURBOPUMP LOX	THROTTLE VALVE POSITION	TVP	057	TRACE		×		×			METER DISPLAY FOR DIGR
OULET CONIRUL	THROTTLE VALVE OUTLET PRESSURE	PDTP	100	5000 PSIG		×					
GENERAL	LH, HIGH PRESSURE, TANK PRESSURE PHT	PHT	087	5000 PSIG		×	×	-			
	FACILITY DUCT PRESSURE	PFX	690	500 PSIG		×					
	FACILITY DUCT TEMPERATURE	TFX	029	0 TO 2000 F		×				FACILITY LINE	THERMOCOUPLE
	AXIAL PROXIMITY INDICATOR	BAP	TAPE	TAPE FM	×			×	×		
	RADIAL PROXIMITY INDICATOR NO. 1	BAP	TAPE	TAPE FM	×		-	×	×		
	RADIAL PROXIMITY INDICATOR NO. 2	BTP	TAPE	TAPE FM				×	×		90 DEGREES FROM NO. 1
	PUMP AXIAL ACCELERATION	¥	TAPE	TAPE FM	×			×	×	•	
		PR	TAPE	TAPE FM	×			~	×		
	TURBINE RADIAL ACCELERATION	TR ₿	TAPE	TAPE FM	~			×	×		• •
	PUMP SPEED	M	Ξ	WAR 000,001	×	×	×	×	×		
	HELIUM SUPPLY PRESSURE	PHUS	ğ	0 TO 500 PSIG		×					
LOX PUMP	LOW PRESSURE, TANK PRESSURE	PØXT	068	500 PSIG		×	×			FACILITY LINE	
	INLET PRESSURE	MIN	860	200 PSIG	×	×	×	×			PIEZOMETER RING
	INLET TEMPERATURE	TOIN	5	-259 T0 -300 F	×	×	×			FACILITY LINE	RTB
	INDUCER DISCHARGE PRESSURE	DNIG		2000 PSIG		×					
	IMPELLER DISCHARGE PRESSURE	d01d	067	5000 PSIG		×	×				
	DIFFUSER DISCHARGE PRESSURE	POOP	84	5000 PSIG		×					
	PUMP DISCHARGE PRESSURE	PDP	680	5CD0 PSIG	×	×	×	×		FACILITY LINE	PIEZOMETER RING X-Y PLOTTER
	PUMP DISCHARGE TEMPERATURE	POT	045	-100 T0 -300 F		×					RTB
	BALANCE PISTON CAVITY PRESSURE 1	014 I	960	5000 PSIG	×	×	×				
	BALANCE PISTON CAVITY PRESSURE 2	E I		5000 PSIG		×					
	BALANCE PISTON SUMP PRESSURE	P12	986	5000 PSIG		×	×				
	BALANCE PISTON RETURN FLOW	P13 -	194	5000 PSIG		×					
	BALANCE PISTON RETURN FLOW	PBT	036	-250 T0 ~300 F	×	×	×			-	pump bearing rib supplied
	DSCH VENTURI U/S PRESSURE	puvp	08 8	5000 PSIG		×					VENTURI S/N 8877 P/N V321059-56R
•	DSCH VENTURI U/S TEMPERATURE	TUVP	046	-250 T0 -300 F		×					RTB
<u>.</u>	DSCH VENTURI AP	PVDP	063	350 PSID		×	×				X-Y PLOTTER

OF POOR QUALITY

TABLE 7. (Continued)


. . .

というないです。 こうしんしょう こうきょう ないしょう しょうしん ひょうしん しょうしん ひょうしょう ひょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう

SYSTEM	PARAMETER	9	PID		SEDLINE	BECKOWN			EN 4795		COMMENTS
TURBINE	INLET STATIC PRESSURE	PTIS	065	5000 PSIG		×	×	×			
	INLET TOTAL PRESSURE	PTIT	88	5000 PSIG		×				KIEL PROBI	KIEL PROBE SUPPLIED
	INLET TEMPERATURE NO. 1	CT-1	024	0 TO 2000 F		×				MALL + 0.150	150"
	INLET TEMPERATURE NO. 2	CT-2	025	0 TO 2000 F		×	×			CORE TEMPERATURE	ERATURE
	NOZZLE D/S PRESSURE	DND	077	5000 PSIG		×					
	TURBINE WHEEL EXHAUST PRESSURE	e de la		5000 SPIG		×					
	EXMAUST TOTAL PRESSURE	PTDT	079	5000 PSIG		×					
	EXHAUST STATIC PRESSURE	PTDS	070	5000 PSIG		×					
	EXHAUST TEMPERATURE	Ê	023	-100 T0 +2000 F		×				THERMOCOUPLE	PLE
SEALS AND BEARINGS	PRIMARY LOX SEAL DRAIN LIME PRESSURE	b14	180	100 PSIG	×	×	×				
	PRIMARY LOX SEAL DRAIM LINE TEMPERATURE	LSDT	110	-300 T0 +100 F		×	×			THERMOCOUPLE	PLE
	LOX SEAL DRAIN ORIFICE U/S PRESSURE	LSBP		100 PSIG		×					
	PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S PRESSURE	P15	102	100 PSIG		×					
	PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE	HGPT	028	0 T0 2000 F		×				THERMOCOUPLE	PLE
	SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE	91d	160	500 PSIG	×	×					
	SECCHDARY HOT GAS SEAL DRAIN LINE TEMPERATURE	HGST	026	0 TO 2000 F		×				THERMOCOUPLE	PLE
	SECONDARY HOT GAS SEAL DRAIN GRIFICE U/S PRESSURE	714	660	100 PSIG		×					
	SECONDARY HOT GAS SEAL DRAIN DRIFICE U/S TEMPERATURE	HGØT	027	0 TO 2000'F		×				THERMOCOUPLE	PLE
	INTEMNEDIATE SEAL ONIFICE U/S Pressure	P18	260	500 PSIG	×	×	×				
	INTERMEDIATE SEAL PURGE ORIFICE U/S TEMPERATURE	SPT	012	-100 T0 +100 F		×				THERMOCOUPLE	PLE
	REAR BEARING COOLANT SUPPLY PRESSURE	61d	665	5000 PSIG	×	×					
	REAR BEARING COOLANT SUPPLY TEMEPRATURE	TBC	035	-450 T0 -250 F		×				RTB	
	REAR BEARING COOLANT DRAIN PRESSURE	P20	103	1000 PSIG	×	×	×			500 PSIG	
	LOX SEAL ORIFICE U/S TEMPERATURE LSOT	LSOT		-300 TO +100 F		×	_			THERMOCOUPLE	PLE

(Concluded)
7.
TABLE

COMMENTS	THERMOCOUPLE	· · · · · · · · · · · · · · · · · · ·	THERMOCOUPLE				THERMOCOUPLE	THERMOCOUPLE			
LOCATION			•								
EN EV E								_			
0 2C											
ADIO	×	×	×		×	×	×	*			
BECIDINI	×	×	×	×	×	*	×	×	×	×	
REDLIKE	×						14.	4		-	
RANGE	-450 T0 -250 F	350 PSIG	-100 T0 +100 F	0 TO 350 PSIG	5000	5000	-300 T0 -100 F	-300 T0 ±100 F	0 TO 50 PSIG	0 TO 50 PSIG	
GId	TBCD 014	£60	TBCO 015								
Q	TBCD	P21	TBCO	P22	PBPR	Pap	TBP A	18PC	04840	09BPP	
PARMETER	REAR BEARING COOLANT DRAIN TEMPERATURE	REAR BEARING COOLANT ORIFICE PRESSURE	REAR BEARING COOLANT ORIFICE TEMPERATURE	REAR BEARING COOLANT ORIFICE D/S PRESSURE	BALANCE PISTON RECIRCULATING PRESSURE	BALANCE PISTON OVBC PRESSURE	RALANCE PISTON RECIRCULATION TEMPERATURE	BALANCE PISTON OVBD TEMPERATURE TBPC	BALANCE PISTON OVBD PRESSURE	BALANCE PISTON RECIRCULATION	INTERMEDIATE SEAL PURGE ORIFICE D/S PRESSURE
SYSTEM	SEALS AND BEARINGS	(CONTINUED)			SPECIAL						

*

¢

ç

, , ,

į

•

Facility instrumentation was similar to that previously used. The instrumentation capability of the test cell is given in Table 8 and was sufficient to record all the data required. As a safety precaution on all tests a set of redlines were provided which required the turbopump to operate within specified limits of speed, pressures, temperatures, and accelerometer levels. The redline parameters defined for the tests are given in Table 9. The redline limits, when exceeded, would cause the test to be terminated either by an automatic cutoff monitor or by an observer watching an instrument.

The balance piston overboard flow was measured by an orifice differential pressure and reference temperature as shown in Fig. 21. The flow could then be dumped overboard or recirculated back into the pump inlet behind the inducer at the impeller eye. Proximeter transducers measured axial and radial motion of the rotating shaft, and speed was also measured from an instrumentation cap at the aft end of the turbine bearings. The turbine bearings are cooled by liquid hydrogen supplied from an external source and the proximeters and speed probes are subjected to the LH2 environment.

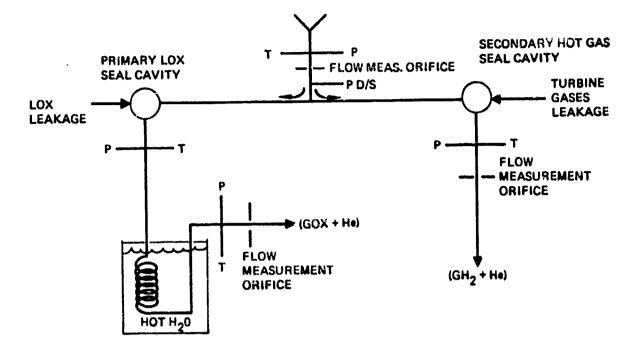
In order to measure the leakage on the primary LOX seal, the LOX seal drain line was run through a heat exchanger to insure a mixture of gaseous oxygen (GOX) and helium prior to passing through an orifice. A schematic of the intermediate seal purge, primary LOX seal cavity, and secondary hot gas seal cavity flow paths is given in Fig. 22. The pressure and temperature are measured upstream of the orifice with the downstream pressure being atmospheric. The flow is a measure of combined oxygen and helium but the helium purge flow was of such a low magnitude its effect can be neglected.

The tests on the turbopump were conducted in early October 1978. A total of five tests were made with a total duration of 174 seconds of operation. A summary of the test series is given in Table 10. The first test planned was that of checkout of the system at 524, 3142, and 7330 rad/s (5,000, 30,000 and 70,000 rpm) with a suction performance test to follow at a nominal flowrate and the balance piston flow not being recirculated back to the pump inlet. The first two test attempts failed to achieve the desired goals. Test 016-007 had problems with regulation of the GH₂ turbine supply pressure, which controls speed. The test was cut by an erroneous bearing coolant temperature reading caused by faulty instrumentation. The maximum speed achieved in the test was 1048 rad/s (10,000 rpm). The second test was terminated after a maximum speed of 838 rad/s (8,000 rpm) due to the GH₂ turbine supply pressure regulator malfunction.

Third test (016-009) of the series was a satisfactory test with a maximum speed of 7016 rad/s (67,000 rpm). A 5% pump head loss was accomplished in the suction performance portion of the test. The test was terminated when the facility minimum supply pressure limit on GH₂ drive gas pressure was encountered, which occurs when the turbine gaseous hydrogen throttle valve is fully open and the pressure supply does not allow the turbine to maintain speed. The fourth test (015-010)was scheduled to be a high-speed suction performance test at 7330 rad/s (70,000rpm) with the balance piston flow recirculated back to the pump inlet. The test duration was 28 seconds and was terminated because of low pressure differential across the balance piston flow measuring orifice. This indicated the balance piston flow was lower than desired for proper balance piston operation.

TABLE	8.	MARK 48-0 TURBOPUMP	GH2	DRIVE TEST	INSTRUMENTATION
-------	----	---------------------	-----	------------	-----------------

÷


「日本語」を見ていたので、

۲.

RECORDER	NUMBER OF CHANNELS
DIGITAL DATA ACQUISITION SYSTEM	64
CEC OSCILLOGRAPH	12
DIRECT INKING RECORDERS	27
HIGH FREQUENCY TAPE RECORDER	7
DIGITAL EVENT RECORDER	120
OSCILLOSCOPE (BENTLY AND ACCELS)	4 (MINIMUM)
MILLIKIN CAMERAS	2
TELEVISION (B&W WITH REPLAY CAPABILITY)	2

TABLE 9. MARK 48-0 TURBOPUMP LO2 TURBOPUMP REDLINES,AMBIENT HYDROGEN TURBINE DRIVE

CUTOFF MONITOR	REDLINE IDENTIFICATION	REDLINE LIMIT
OBSERVER	LOX INLET TEMPERATURE	176 R MAXIMUM
AUTOMATIC/OBSERVER	LOX PUMP INLET PRESSURE	92 PSIA MINIMUM
AUTOMATIC	TURBOPUMP SPEED	77,000 RPH MAXIMUM
OBSERVER	BALANCE PISTON RETURN FLOW TEMPERATURE	ΔT = 10 R MAXIMUM AFTER STABILIZATION
OBSERVER	REAR BEARING DRAIN TEMPERATURE	ΔT = 10 R MAXIMUM AFTER STABILIZATION
OBSERVER	BALANCE PISTON CAVITY PRESSURE	SPECIFIC RANGE EACH TEST
AUTOMATIC	LOX PUMP DISCHARGE PRESSURE	5000 PSIG MAXIMUM AND ΔP = 10%
AUTOMATIC/OBSERVER	PRIMARY LOX SEAL ORAIN LINE PRESSURE	30 PSIG MAXIMUN
AUTOMATIC	TURBINE SECONDARY SEAL DRAIN LINE PRESSURE	30 PSIG MAXIMUM
AUTOMATIC	INTERMEDIATE SEAL PURGE (HELIUM) PRESSURE	150 PSIG MINIMUM
AUTOMATIC	TURBOPUMP RADIAL ACCEL- LEROMETER*+ **	15 G RMS
OBSERVER	BALANCE PISTON RECIRCULA- Tion flow orifice delta Pressure	780
OBSERVER	BALANCE PISTON SUMP PRESSURE	FUNCTION OF TEST SPEED

and the second s

l

_

Figure 22. Primary LOX Seal Flow Measurement and Helium Seal Purge System

TABLE 10.	MARK 48-0	TURBOPUMP	TEST SERIES	NO.	4 SUMMARY,
		TURBOPUMP			

		TEST	ACCU	MULATED	
TEST NUMBER	TESI DATE	DURATION	STARTS	DURATION SECONDS	REMARKS
016-007	10-4-78	48	1	48	PLANNEC NPSH TEST AT 7330 RAD/S (70,000 RPM). PROBLEMS WITH TURBINE GH2 SUPPLY REGULATOR. CUT TEST, BEARING COOLANT TEMPERATURE. HIGH MAXIMUM TEST SPEEL 1045 RAD/S (10,000 RPM).
016-008	10-4-75	35	2	83	MAXIMUM TEST SPEED 838 RAD/S (8,000 RPM). TURBINE GAZ PRESSURE REGULATOR MALFUNCTION.
016-009	10-5-78	56	÷	136	SATISFACTORY NPSH TEST TO 7016 RAD/S (67.00% RPM; WITH BALANCE PISTON FLOW OVERBOARD. St HEAD DROP ON CAVITATION TEST.
016-010	10-0-78	28	*	167	PLANNED NPSH TEST AT 7330 RAD/S (70,000 RPM) WITH BALANCE PISTON FLOW RECINCULATED IN PUMP. REACHED SPEED OF 3141 RAD/S (30,000 RPM). CUT OFF FOR INSUFFICIENT BALANCE PISTON RECIRCULATING FLOW.
016-012	10-10-76	7	5	174	PLANNED NPSH TEST AT 7330 RAD/S (70,003 RPM) WITH BALANCE PISTON FLOW RECIRCULATED IN PUMP REACHED SPEED OF 7251 RAD/S (69,240 RPM) - STABILIZED. SUDDEN SHIFT IN PARAMETERS AND 2 SECONDS LATER PUMP DISCHARGE PRESSURE DROPS INITIATING TEST CUT; FIRE ENSUED, DAMAGING PUMP.

The maximum speed achieved was 3142 rad/s (30,000 rpm). After examination of the data, the flow orifice diameter for the balance piston was increased from 0.221 to 0.260 inch and the balance piston recirculation line size was increased from 12.7 to 25.4 mm (0.50 to 1.00 inch) to reduce the line resistance and increase balance piston flow. The primary LOX seal drain orifice size was also reduced after test 016-010 from 22.2 to 12.5 mm (0.875 to 0.500 inch) diameter to improve accuracy of the seal leakage flow measurement.

The next attempt to test was test 016-011 but was cut on startup due to the balance piston recirculation flow temperature indicating insufficient chill in the balance cavity sump area. No speed was achieved.

Test 016-012 was a planned suction performance test at 7261 rad/s (70,000 rpm) with the balance piston flow recirculated to pump inlet. In the test, the pump speed was increased to approximately 3142 rad/s (69,340 rpm) over a period of approximately 7 seconds. At this point the oxidizer pump sustained a failure which included a fire which caused major damage to the pump.

Incident Investigation, Test 012

Ś

;

2

5

The turbopump failure and attendant fire instigated an immediate investigation of the incident. The data and hardware from the test was reviewed in a failure mode analysis including the following:

Data Review Hardware Condition Hydrodynamic Performance Balance Piston Analysis Thermal Analysis Vibration Analysis Bearing Condition Evaluation

Data Review. A review of the data from test 016-012 incidated the pump exhibited normal behavior through the 3141 rad/s (30,000 rpm) operation and through the first 5 seconds of high speed operation near 7225 rad/s (69,000 rpm). The speed trace of the data is given in Fig. 23. At that point, a sudden shift occured in most turbopump parameters. Approximately 2 seconds later, pump discharge pressure dropped suddenly initiating a test termination. A review of the major parameters is illustrated in Fig. 24. The figure shows the shift in parameters at approximately 43.3 seconds. The shift indicates a decrease in pump speed combined with an increase in pump discharge pressure, impeller front shroud pressure, and balance piston cavity pressure along with flowrate measured in pump discharge line. The pressures that decreased were the balance piston sump pressure, all pressures in the balance piston return flow loop, with a decrease in flow in the balance piston line. These data indicate increased pressure in the pump zone and decreased pressure in the balance piston sump zone, which is indicative of impeller balance piston movement aft toward the turbine thus closing the low pressure orifice h2 of Fig. 18 or forward closing the high pressure orifice h1. The initial drop in balance piston cavity pressure would indicate first movement was forward.

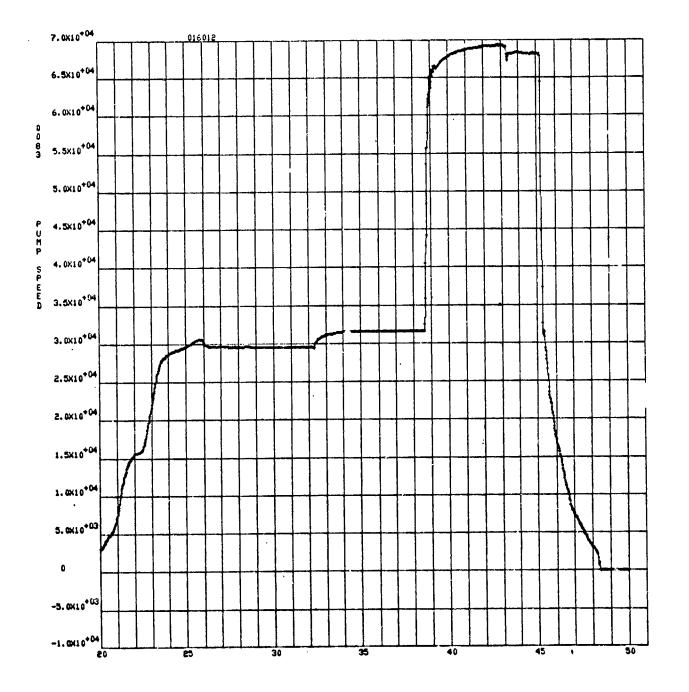
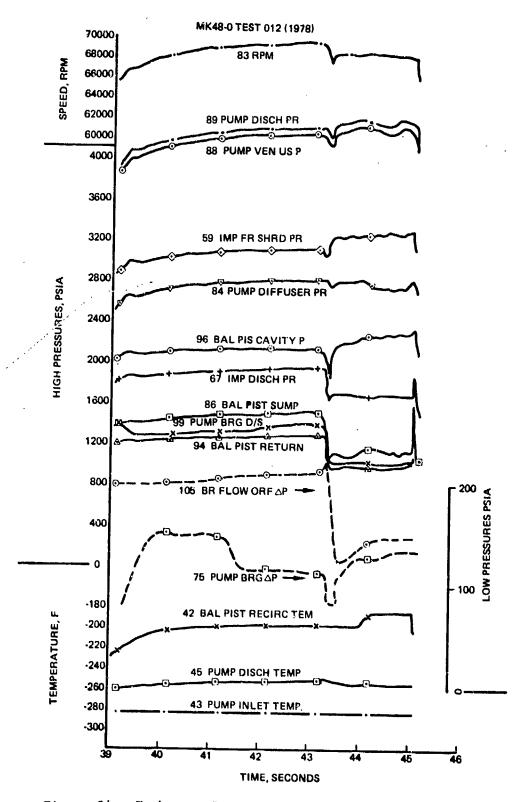


Figure 23. Mark 48-0 Test 012 Speed Trace (S/N 02-1, 1978)


46

4 1

ŝ

ļ,

i

「日本」の

「日本のないのである

2

3

1

K

111111

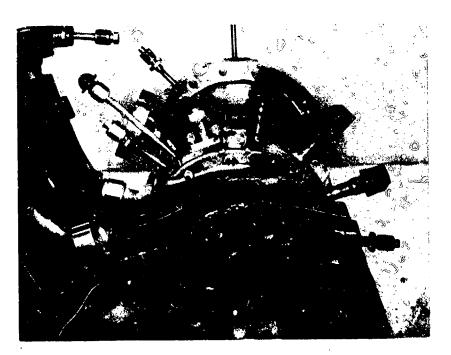
Figure 24. Turbopump Test 012 Data Correlation With Time

Hardware Analysis. The pump hardware was extensively damaged. The burn pattern was mainly limited to forward and included the impeller as shown in Fig. 25. Some minor burning was located in the return cavity but the slinger and primary LOX seal and seal retaining nut were in relatively good condition, indicating they were not the cause. The heaviest burning was concentrated at the inducer, impeller front shroud and impeller tip. Both impeller and inducer were burned to the hubs and large sections of the inlet, diffuser and volute were consumed. A major portion of the damage is shown in Fig. 26. The bearing closest to the impeller was intact but frozen with slag, and the inner race was cracked. The No. 2 bearing had failed with the cage fractured, the balls were eceased, and approximately one-quarter of the cage was located in bearing No. 1. No fire was evident in the bearing but the inner race was also cracked. All evidence pointed the fact that the rotor had shifted toward the pump end, including the turbine wheel which had a deep rub on the upstream (pump) side with no rubbing on the downstream side.

Data Analysis. A review of the pump and turbine hydrodynamic performance indicated that the turbine power was constant and normal and the pump head-flow performance was normal. The pump data prior to the shift were compared with the previous test series No. 2 and 3. The head-flow performance is presented in Fig. 27. There is no apparent change in performance indicated. The same is true for the isentropic efficiency given in Fig. 28 when compared with test series No. 3 data. A comparison of the head-flow performance before and after the shift is given in Fig. 29. It indicates there was a change in performance where the flow increased approximately 2% and the head increased 4.5%. This small shift would be caused by the reduction in net recirculation with an attendant decrease in the flow through the impeller, which would also increase the head rise. Thus, the pump performance is seen to be normal throughout the test including after the apparent rotor shift.

Balance Piston Analysis. The analysis of the balance piston performance was done using an analytical model refined by comparing the available measured pressure values to the predicted values. The preduction of the balance piston force range was then made for three values of sump pressure. This was compared to the summation of axial forces calculated by pressure data on the other component parts of the turbopump rotor assembly. The results are illustrated in Fig. 30. These data indicate that the balance piston operating point required for thrust margin was not centered in the balance piston force range but was marginal. Reduction in sump pressures to 690 N/cm² (1000 psi) indicates the margin would be improved but only slightly. The analysis also revealed that the measured recirculation flow was higher than predicted by the model, indicating a larger total gap from high to low pressure orifice or a possible bypass flow around the balance piston. Also, the measured balance piston cavity pressure could not be matched by the analytical program. This indicated that the measurement was either faulty or the pump was operating with a negative high pressure orifice clearance.

Thermal Analysis. The thermal analysis investigation based on the available temperature measurements inducated that the recirculation fluid was always in the liquid state. Furthermore, no increase in energy level of the recirculated fluid was apparent during the apparent rotor shift. These results show also that no heat addition occurred in the bearings indicating that no bearing failure was in progress.



Sec. Berto

記り

ş

Figure 25. Mark 48-0 Turbopump S/N 02-1 Burn Pattern

1HS55-10/13/78-C1C*

Figure 26. Pump Hardware Damage

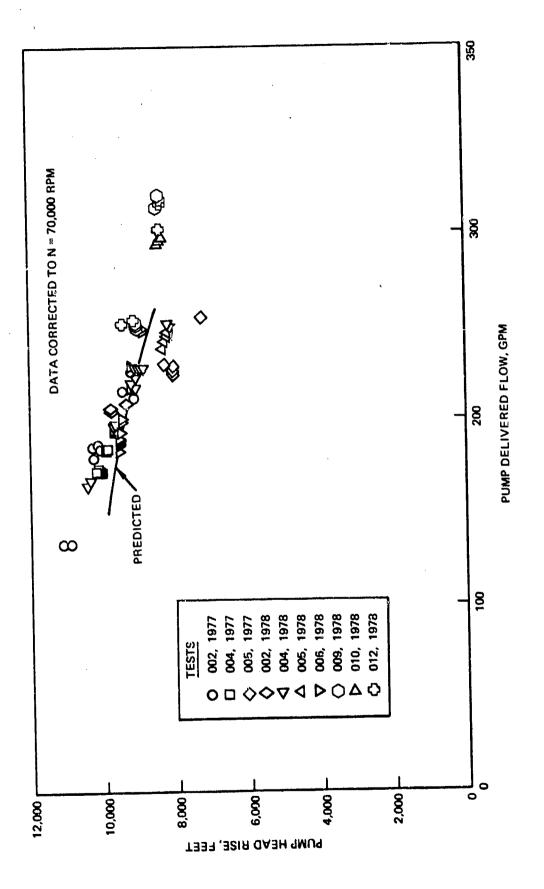
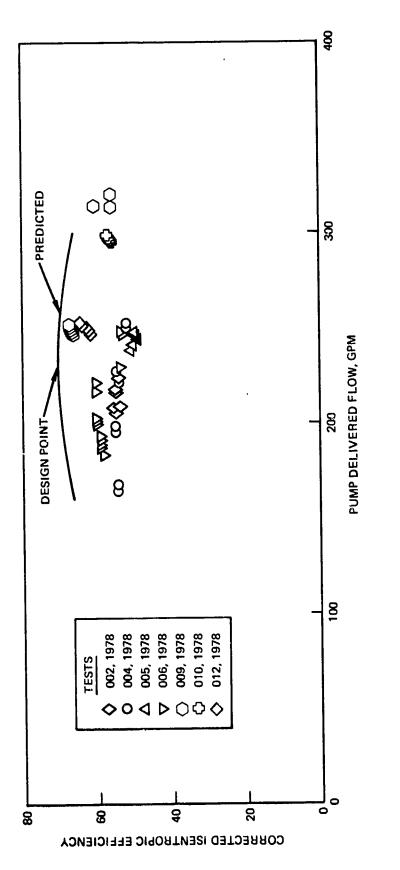



Figure 27. Mark 48-0 Pump Performance, 1977 and 1978 Test Series

50

「「「「「」」

•

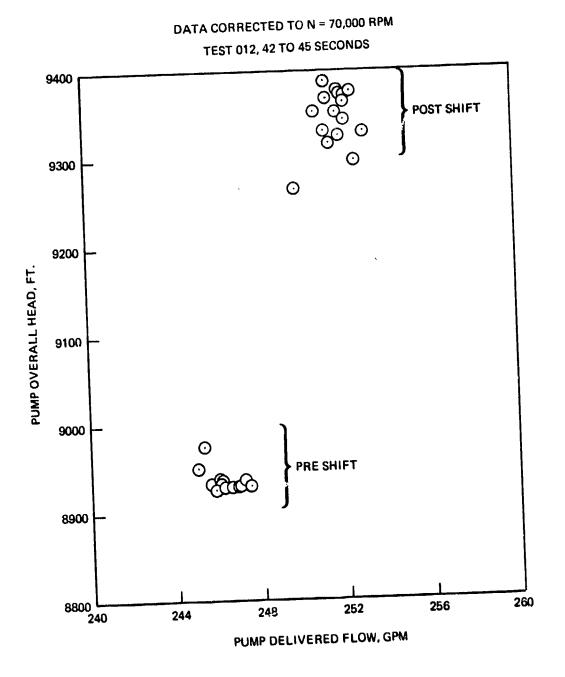


Figure 29. Mark 48-0 Pump Performance, October 1978 Test Series

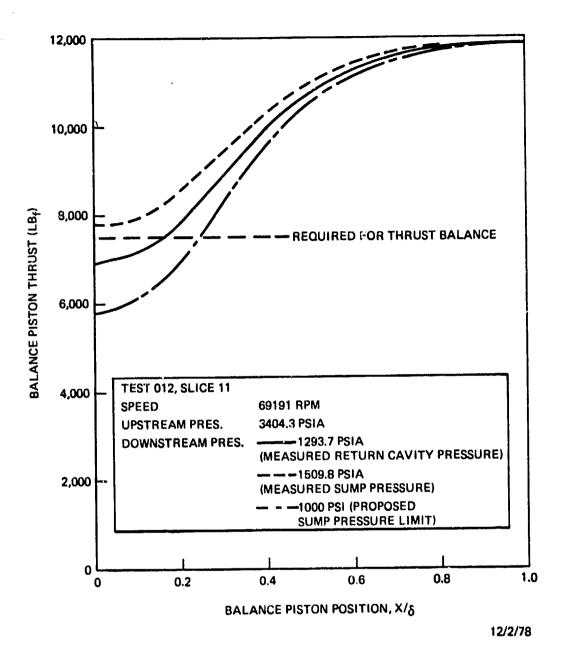
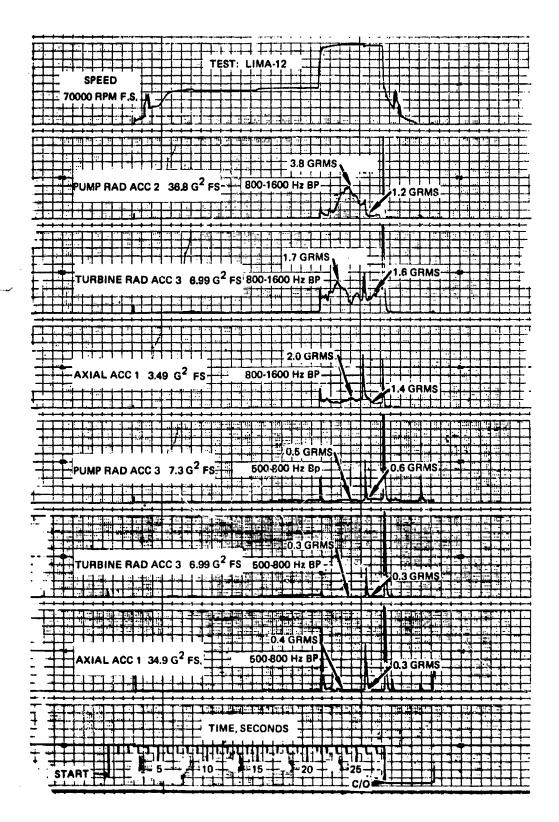


Figure 30. Mark 48-0 Pump Performances, October 1978 Test Series


<u>Vibration Analysis</u>. The vibration analysis indicated the levels of vibration were generally normal for tests 016-009 and 016-012 prior to the shift. The accelerometers recorded vibration levels of 1.7 to 3.7 g rms for test 009 and 012 before the shift. At the shift the maximum levels ran to 5 g rms. After the shift th data show 1.2 to 1.6 g rms. There was no subsynchronous whirl activity evident but some supersynchronous activity at 1800 Hz (1.55 times synchronous) occurred. This is a possible indication of rubbing within the turbopump. A summary of the accelerometer data is given in Fig. 31.

Bearing Analysis. Analysis of the pump and bearings condition indicated that the bearing No. 1 damage occurred just as rotation stopped. Bearing No. 2 operated normally until the balls stopped in the outer race by the slag produced by the fire. Bearing No. 1 was intact and showed no axial loads with cage loads that were excessive. Bearing No. 2 indicated an axial load in the order of 1557 N (350 1b) with no large radial loads. It was estimated that bearing life with the apparent loads would be 1.5 hours.

Conclusions and Corrective Action. Many failure modes were formulated and, in the process of investigation, were disqualified by the analysis of the data available. The most probable failure mode was inadequate axial thrust load control by the balance piston. This lead to failure of the No. 2 bearing under axial load with axial and radial rubbing of the high pressure orifice at the impeller tip and rubbing of the impeller front wear ring initiating heat and fire. It is also possible that the high pressure orifice rubbing occurred first, with subsequent blockage by debris of the low pressure rub ring, allowing the balance piston cavity pressure to go up while sump pressure was going down. Also advanced was the possibility that the pins in the internal recirculation path that were used to block the flow might have been injected into the impeller, or that a foreign object from the recirculation system caused debris, plugging the orifices and initiating failure. It became apparent from the detailed failure analysis that several modifications to the turbopump could reduce the risk of turbopump failure.

It was concluded that several design modifications were mandatory to avoid a recurrence of test 012 failure and to improve the general design of the pump. These design modifications included

- Elimin ce recirculation passages through diffuser vanes and eliminate any possibility of blockage pins entering into the pump inadvertantly
- 2. Increase the balance piston control margin by reduction in sump pressure. This could be done by separation of balance piston return flow and bearing coolant flow lines. This would facilitate a higher weight flow potential through the balance piston and reduce the bearing axial loads due to the high pressure drop and flow through the bearings.
- 3. Improve the centering of the balance piston position on the range of balance piston force. This could be done by changing the net axial force of the rest of the turbopump rotor assembly including the higher than predicted turbine wheel axial thrust.
- 4. Improve the accuracy of balance piston pressure measurements such that no pressure measurement transfer lines pass through flange interfaces. This also eliminates any possible leak paths in the balance piston system.

./

ł

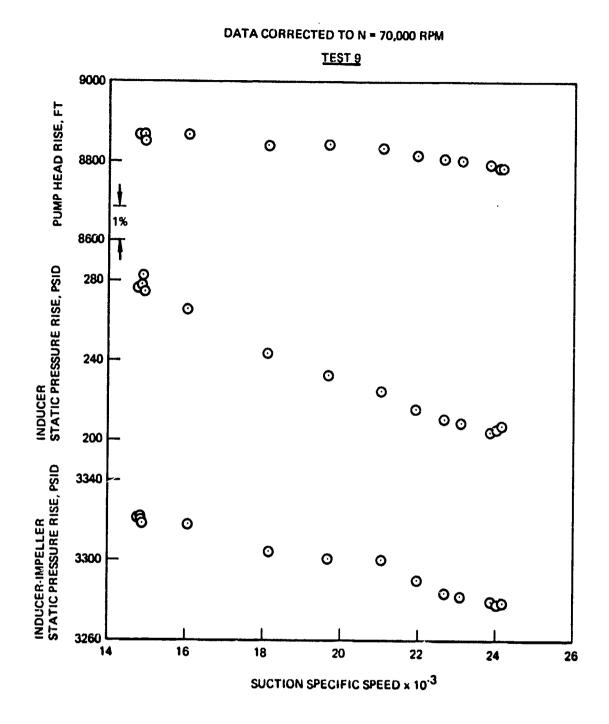
j

Figure 31. Summary of Accelerometer Data

COUNT PACE 19 C. POUR CUALITY

Other design changes were recommended to avoid problems not associated with the pump S/N 02-1 failure. These were the possible use of solid silver or Kel-F inducer tunnel and impeller wear rings and solid silver balance piston low and high pressure balance piston orifices. Recommendations were also given to consider the use of a bearing coolant source independent of the balance piston flow recirculation system.

Pump Hydrodynamic Performance


The pump hydrodynamic performance of test series No. 4 has been presented in part in the previous incident investigation section. Figure 27 and 28 give the beadflow performance and isentropic efficiency data. These data indicate the pump head-flow and efficiency are essentially the same as for previous tests. The isentropic efficiency for this build shows a slightly higher value than that of the series No. 3 test data. The results of pump suction performance test 009 were analyzed and are illustrated in Fig 32. These results indicate a suction specific speed of 84210 { (rad/s) $(m^3/sec)^{1/2}/(J/Kg)^{3/4}$ } [24,000 (rpm) $(gpm)^{1/2}/(ft-lbf/$ $lbm)^{3/4}$] with no indication of cavitation at inlet flow coefficient0.0883. This verified that the design improvements made for the pump are proper. Analysis indicated that the suction performance might be demonstrated up to a suction specific speed of 112280 { (rad/s) $(m^3/sec)^{1/2}/(J/Kg)^{3/4}$ } [32,000 (rpm) $(gpm)^{1/2}/(ft-lbf/lbm)^{3/4}$].

<u>Seal Leakage</u>. During the test series, special provisions were made to measure the leakage rate of the floating ring LOX primary seal to provide a basis of comparison with the performance of the hydrodynamic lift-off seal. Since the fluid emanating from the drain cavity is mixed phase, a heat exchanger was included in the drain line to convert it to gas before measurement. Flow was then established by recording the pressure drop across a sharp edge orifice. A minor complication was presented by the fact that part of the helium purge gas from the intermediate seal leaks into the primary LOX seal drain cavity; however, the amount of total purge flow into the intermediate seal was monitored, and its magnitude was so low (0.007 lb/sec) that its effect can, for all practical purposes, be neglected.

In order to improve the precision of the LOX primary seal leakage flowrate data for test 011 and 012, the flow measuring orifice was resized from 22.2 mm (0.875 inch) to 12.7 mm (0.500 inch) diameter. This increased the pressure at the flow measuring orifice inlet from approximately 5171 N/M³ (0.75 psig) to 172369 N/M³ (25 psig) and resulted in a more precise flow measurement. The primary LOX seal leakage measured was low and averaged 0.073 Kg/s (0.160 1b/s) at 3246 rad/s (31,000 rpm) and 0.078 Kg/s (0.172 1b/s) at 7226 rad/s (69,000 rpm). The data of test 012 is considered to be most accurate because of the orifice change. The flowrates recorded are presented in Fig. 33 as a function of the pressure levels recorded in the cavity upstream of the seal. The correlation between seal leakage and shaft rotational speed is indicated in Fig. 34.

Mechanical Performance

The mechanical performance of the turbopump during test series No. 4 could not be fully evaluated because of the damage created by the fire. The examination of the turbine end of the turbopump indicated the No. 3 and 4 turbine bearings were in

3

イ・ショントントマ み

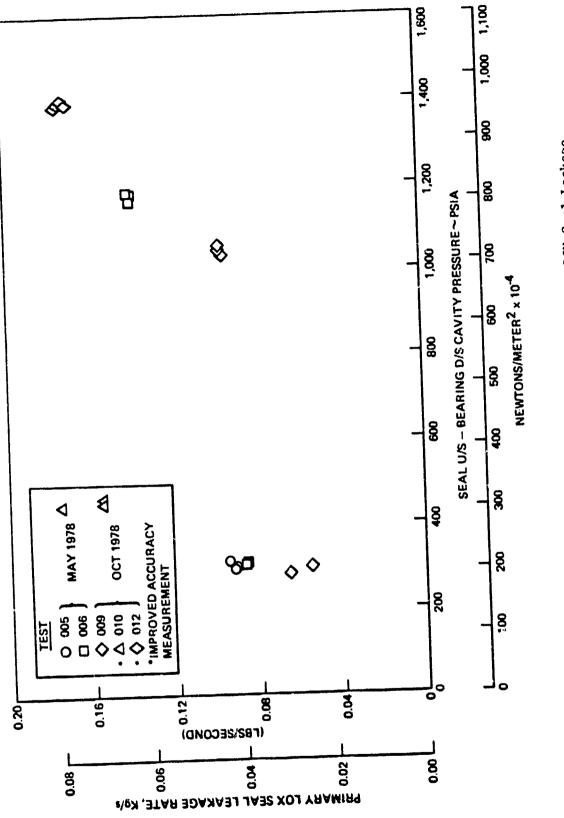
÷,

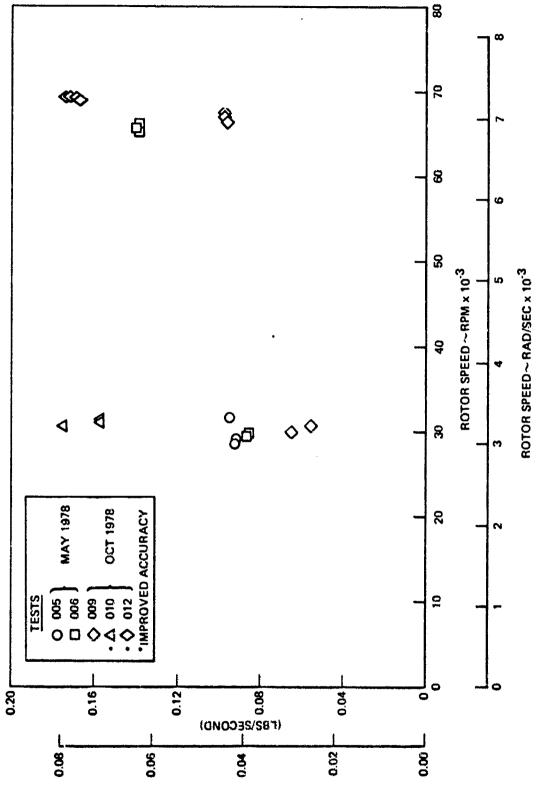
ちょうちんあきれたまし

į

*

Figure 32. Mark 48-0 Pump Performance, October 1978 Test Series




Figure 33. Mark 48-0 Turbopump Primary LOX Seal Leakage (1978 test series 3 and 4)

58

1.2.1

F,

i

And a second second

ŧ

. :

PRIMARY LOX SEAL LEAKAGE RATE, Kg/s

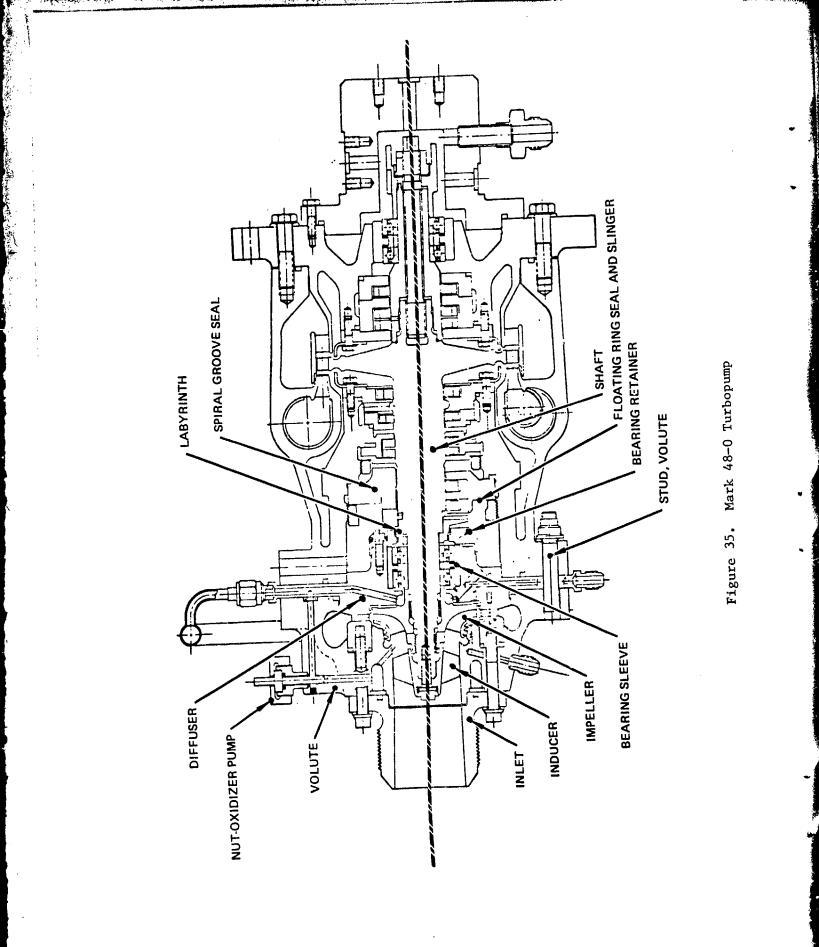
Figure 34. Mark 48-0 Turbopump Primary LOX Seal Leakage (1978 test series 3 and 4)

good condition. These bearings are designed to take radial loads only and no evidence of high radial loads existed. The No. 2 bearing on the pump end is the only bearing showing failure possibility from axial load. The turbine wheel was shifted toward the pump end and deep rub had occurred on the wheel from contact with the upstream side shield. The inducer drive key on the shaft was sheared off and the inducer hub had rotated 1.57 radians (90 degrees) around the original shaft position. The aft portion (turbine end) of the turbopump was not affected by the pump failure. The turbine housing was slightly damaged at the pump volute matching face. The return cavity contained slag which came from the diffuser axial holes originally used for balance piston recirculation. The seals, with the exception of the primary LOX seal which was slightly scorched, showed no evidence of damage. The chrome plating on the shaft under the seals was in good condition. The primary LOX seal nut was tightly in place and the slinger showed slight rubbing on the pump side but none on the seal side. The aft bearing support assembly which includes the aft stub shaft, outboard seal, instrumentation sleeve, rear bearing cap and the shaft stud was clean and in good condition. In summary, all hardware aft of the primary LOX seal was in good condition. The rotor and all hardware in front of the seal was damaged beyond repair.

「人有」「「「ないない」とない」とないないないないで、

TURBOPUMP DESIGN CHANGES AND PROCUREMENT

Operation of the turbopump within the LOX seal Demonstration Test Program revealed a problem in maintaining satisfactory rotor axial thrust control when the test series of October 1978 ended in a pump fire with damage to most of the pump hardware. The data analysis disclosed that the cause of the failure was excessive residual thrust toward the pump inlet, which eventually overloaded the No. 2 bearing and caused internal metal-to-metal rubbing and subsequent fire.


The large residual thrust was attributable to two factors. In the original configuration in which all of the balance piston fluid passed through the pump end bearing package, the sump pressure and consequently the operating range of the piston was constrained by the maximum flowrate which the bearings could accommodate before they would be distressed by high pressure differentials. Furthermore, pressure measurements indicated that the turbine wheel was subject to an axial thrust component which theoretical approaches do not readily predict, and which therefore was not included in the original axial thrust summation.

Accordingly, a MK 48 Oxidizer Turbopump Follow-on Work Plan (RI/RD79-115) was developed and presented to NASA-LeRC for review, evaluation and acceptance. The plan incorporated modifications to the turbopump which provided sufficient rotor axial thrust control capability and would allow safe completion of the demonstration tests with a spiral groove type lift-off primary LOX seal.

In the extension of the program, corrective design modifications were introduced to enlarge the range of the balance piston and reduce the turbine wheel thrust component. A new set of hardware was fabricated which replaced that damaged in the fire and which reflected an improved configuration for test evaluation and better performance.

Design Changes

Analysis of the pump modification requirements covered many possible configuration changes which were aimed at correcting the axial thrust balance and improving the measurement of the necessary parameters within the pump. It was also desirable to separate the pump bearing flow path out of the balance piston flow path. This design change was also required to reduce the pressure downstream of the bearings in order to incorporate the spiral groove lift-off seal into the turbopump. The finalized design is represented in Drawing 9R0012300, Appendix A. Subsequent to the turbopump testing, a decision was made to test without the use of the spiral groove lift-off seal. This decision was based on technical problems encountered in spiral groove lift-off seal testing on other technology programs. As a result, the spiral groove lift-off seal was replaced with the previously designed and tested floating ring, fixed gap seal and slinger. The design of the labyrinth seal between the bearings and the seal cavity was maintained by incorporating the labyrinth rings on the slinger hub. This design change was incorporated onto Drawing 9R0014079, Appendix A. Figure 35 presents a composite of the design with the upper half showing the lift-off seal and the lower half showing the original seal. The design incorporated an external flange for the diffuser which was used to provide a separate drain for the balance piston independent of the bearing flow.

This consisted of six radial holes equally spaced around the flange and connecting internal lines around the pump scroll to transport the balance piston flow back to the impeller inlet. These holes could be blocked by pins to allow flow to be dumped overboard or the external line could be sealed and the pins removed for internal flow recirculation.

In the design, the emphasis was placed on improving the quantity and quality of instrumentation measurements. Communication across interfaces closed out with doughnut seals was eliminated where possible with only one critical measurement out of nine now requiring a seal. That measurement is the downstream bearing pressure. Table 11 lists the nine critical parameters. Items 1 and 2 are taken out through the pump volute, items 3 through 8 are taken out of the new diffuser flange between balance piston flow lines, and 9 is from an existing measurement. This instrumentation fully maps the paths for:

- 1. Impeller front shroud flow
- 2. Balance piston flow
- 3. Pump end bearing flow

TABLE 11. CRITICAL PUMP END HYDRODYNAMIC MEASUREMENTS

- 1. BALANCE PISTON RETURN FLOW TO IMPELLER INLET PRESSURE
- 2. IMPELLER LABYRINTH SHROUD U/S PRESSURE
- 3. IMPELLER DISCHARGE PRESSURE
- 4. BALANCE PISTON HIGH PRESSURE ORIFICE D/S PRESSURE
- 5. BALANCE PISTON LOW PRESSURE ORIFICE U/S PRESSURE
- 6. BALANCE PISTON LOW PRESSURE ORIFICE D/S PRESSURE (SUMP PRESSURE)
- 7. PUMP END BEARING SET U/S PRESSURE
- 8. PUMP END BEARING SET D/S PRESSURE (SHAFT SEAL LABYRINTH U/S PRESSURE)
- 9. SHAFT SEAL LABYRINTH D/S PRESSURE

Methods to reduce the axial thrust component on the turbine wheel were analyzed. The previous test data contained static pressure measurements from the upstream and downstream sides of the turbine wheel. These data indicated a turbine axial thrust component toward the pump. The analyses concluded it was more predictable to compensate for the turbine component axial thrust than to modify the turbine to reduce it. This was done by decreasing the labyrinth diameter on the impeller front shroud and an increase in balance piston force range was also contemplated by reducing the balance piston sump pressures.

Hardware Procurement

23

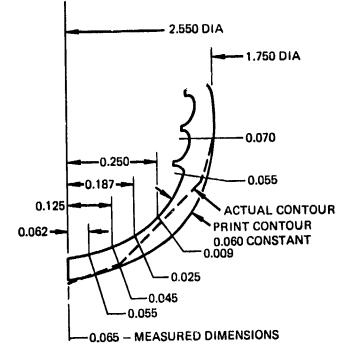
山意いはも

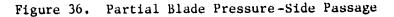
The design changes, coupled with the damaged hardware, required a large number of component parts to be fabricated. A list of the major parts required to be fabricated is given in Table 12, along with the vendor sources. Approximately 24 other small component parts were required such as special nuts, locks and seals. Parts were procured in most part from outside supplier sources in a standard procurement practice. Minor rework of the turbine housing was required to correct minor damage. The flange face was damaged and had to be resurfaced by machining.

NAME	PART NUMBER	VENDOR
SHAFT FORGING	7R0012029	ARCTURUS
SHAFT	RS009646E	CONTURA
INDUCER	RS009650E	CONTURA
SPIRAL GROOVE SEAL	R0011532X	CRANE
DIFFUSER	9R0012281	CONTURA
VOLUTE CASTING	9R0012282	MILLER CASTING
VOLUTE MACHINING	9R0012282	TRI MODELS
STUD, VOLUTE	9R0012283	TRI MODELS
BEARING SLEEVE	9R0012285	FINN TOOL
BEARING RETAINER	9R0012286	FINN TOOL
BEARING SPRING	9R009612E	ASSOCIATED SPRING
IMPELLER	9R0012287	CONTURA
LABYRINTH	9R0012288	TRI MODELS
LABYRINTH SLINGER	901018289	ROCKETDYNE
INLET	9R0012290	TRI MODELS
NUT, OXIDIZER PUMP	9R0012298	FINN TOOLS

TABLE 12.	MAJOR	COMPONENT	PARTS	PROCUREMENT
-----------	-------	-----------	-------	-------------

Fabrication Problems


の「「「「「「「」」」


Procurement of the various component parts from various vendors went smoothly with the exception of several items. A large number of schedule delays were encountered with the diffusers and impellers. An error in the process planning of the diffuser caused the parts to be finish machined to the high tolerance requirements specified prior to the required heat treatment. This roulted in part shrinkage at the critical diameters and warpage of the flange surfaces. Due to delays in supplier capability to correct the condition, the parts were reworked under Rocketdyne engineering direction at another outside source. This rework consisted of chrome plating the undersize diameters and regrinding to the dimensions required. The flange faces were reground to a high tolerance finish. Discrepancies in the tooling used in electrical discharge machining (EDM) of the impellers resulted in scrapping the first impellers fabricated. The second set were also found to have dimensional discrepancies when they were received. The major problems encountered in the impeller machining was the extremely small passages required to be machined. Previous procurement of these parts was also a problem in the first builds of the turbopump. The impellers were made successfully but with some difficulties and scrapping of the first parts attempted occurred on the first procurement also. This indicates that the present impeller design is pushing the state of the art in fabrication. Investment castings or some other high tolerance method of fabrication should be considered on any subsequent procurements.

Inspection and Hardware Proof Testing

As the parts were received they were inspected dimensionally and approved for use. The volute required a high pressure structural proof test as did the instrumentation line welds on the diffuser. As a result, the volute and diffuser were combined with a pressure test fixture and proof tested to pressure levels of 3958 \pm 79 N/cm² (5740 \pm 115 psi) in the high pressure zone of impeller discharge to volute discharge and in the inlet low pressure zone in front of the impeller front wear ring of 534 \pm 11 N/cm² (775 \pm 16 psi). The parts were cycled five times with no leakage or structural failures.

Molds were taken of the impeller passages to determine how smoothly the passages blended. The dimensional inspection revealed that the front shroud thickness requirements were not met. The drawing required a constant shroud thickness of 1.524 mm (0.060 inch). The minimum thickness distribution of the shroud was measured in each impeller passage. The shroud thickness was very consistent between passages. The minimum thickness found was 0.229 mm (0.009 inch) and was located in the pressure side passage of the partial blade adjacent to the partial leading edge. The passage located on the pressure side of the full blade indicated a minimum shroud thickness of 0.889 mm (0.035 inch). The shroud minimum thickness distribution for the two respective passages is compared to the print dimensions in Fig. 36 and 37. The blade thickness distribution developed in the analysis of inspection data indicated the minimum full blade thickness was averaging approximately 85% of the nominal print thickness from the leading edge back to approximately 35 degrees from the trailing edge. The areas near the trailing edge was indicated as being above nominal thickness. It should be noted that the fillet radius requirements for the blade are 1.524 mm (0.060 inch) all over.

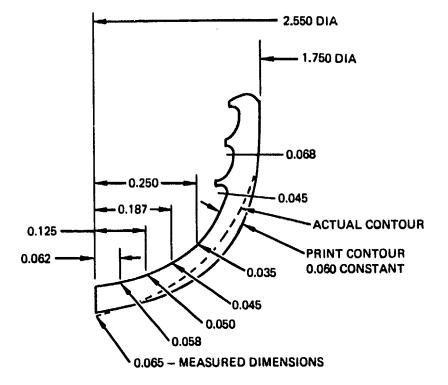


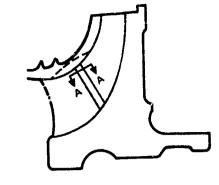
Figure 37. Full Blade Pressure-Side Passage

e tie i

66

.

This causes the fillet radius to cover all but 0.762 mm (0.030 inch) (20%) of the blade at the impeller discharge and approximately 70% of the blade at the leading edge. This adds considerably to the impeller blade shroud strength.


いた あたい ちょう いたい しんない ないぞう ちょうゆう

A stress analysis was performed to determine the acceptability of the parts. The analysis indicated that it was feasible to spin test the impellers as a way of proof testing their structural acceptability. Analytical evaluation would be difficult and time-consuming and required very detailed geometry input, which is not easily obtained in the smaller impeller passages. It was determined analytically that the stresses in the shroud and blade due to the centrifugal loading were large compared to the blade pressure loading stresses. It was, therefore, considered feasible to nearly duplicate operation of the impeller in the turbopump by using a high speed spin test to proof the shroud and blades as to their acceptability. The stress analysis summary is presented in Fig. 38.

An arbor for spin test of the impellers was designed and fabricated. The impellerarbor assembly was balanced and successfully spin-tested to a proof speed of 8210 rad/s (78,000 ±300 rpm). This proof-test speed was determined by accounting for the strength ratio of the impeller material between turbopump testing in liquid oxygen and proof testing in the ambient vacuum test facility. Posttest penetrant inspection revealed no cracks or damage from the proof test.

Rotor S/N 1 failed a proof spin test in the Rocketdyne spin test facility. Dimensional inspection of the rotor and shaft had indicated the parts were acceptable. Proof spin testing of the rotor was required to a speed of 9362 rad/s (89,400 rpm) in order to qualify it for operation at design point conditions on the turbopump. The test was conducted on shaft S/N 1 in the spin pit. The test fixture shown in Fig. 39 spins the shaft by hanging it on a small spindle in a free spin mode. Any appreciable loads developed would generally act on the spindle failing it, and the rotor would drop onto a nylon bushing to protect it from damange. The rotor balance was accomplished by attaching a balancing arbor on each end of the part and balancing the assembly. When the rotor reached a speed of 8021 rad/s (76,600 rpm), the small end of the shaft failed between the spline section and the threaded section as shown in Fig. 39. The failure launched an investigation into the cause of the failure and the possible loads involved.

The investigation determined the fracture to be intergranular caused by tension or bending. Further material analyses indicated an excessive grain size. The repeatability of the intergranular fracture (unusual for this material) and the large grain size was found by test of a small prolongation of the failed shaft left from the machining. The second shaft (S/N 2) prolongation showed transgranular fracture (normal fracture mode) and smaller grain size. All material still exhibited a high ultimate strength of 141,348 N/cm² (205,000 psi), a yield strength of 105,500 N/cm² (153,000 psi) and an elongation of 20.5%. It was concluded that rotor shaft S/N 2 properties were acceptable for use if the fatigue limit could be reduced by 20% and the number of cycles by one order of magnitude. Also, the static strength of the turbine end only should be reduced by 10% due to the high local grain size found.

1.0

 THINNEST SHROUD SECTION OCCURS APPROXIMATELY AT PARTIAL BLADE LEADING EDGE.

STRESS ANALYSIS OF PARTIAL BLADE LEADING EDGE AT SHROUD INDICATES AT 70000 RPM:

CENTRIFUGAL P/A = 4000 PSI CENTRIFUGAL BENDING = 50200 PSI PRESSURE BENDING = 2900 PSI

MOMENT AT SHROUD THIN SECTION DUE TO VANE BENDING MOMENT IS THEORETICALLY ZERO.

SHROUD STRESS AT THIN SECTION DUE TO VANE PRESSURE BENDING IS SMALL.

SHROUD HOOP STRESS WILL LOCALLY YIELD AT THIN SECTIONS AND REDISTRIBUTE LOAD INTO ADJACENT THICKER MATERIAL.

SINCE PRESSURE STRESS AT THE THIN SECTIONS IS LOW RELATIVE TO THE CENTRIFUGAL STRESS, A PROOF SPIN TEST ACCURATELY SIMULATES THE OPERATING STRESS DISTRIBUTION.

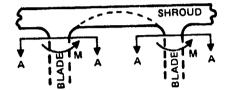


Figure 38. Impeller Blade Stress Analysis Summary

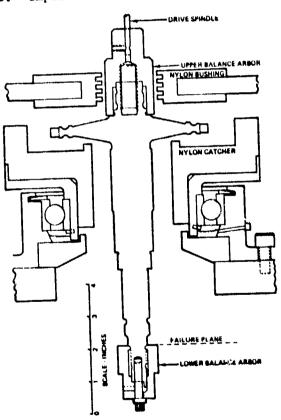


Figure 39. Mark 48-0 Shaft Spin Test Setup

The dynamic analysis of the shaft consisted of developing a dynamic model for determination of the critical speed characteristics and bending modes of the shaft with balance arbors attached. Further development of a dynamic response model was made to assess the possible loading caused by dynamic imbalance in a critical speed bending mode shape. The analysis resulted in the critical speed occurring at speeds which coincide with the speed at shaft failure. The range of critical speeds of 7540 to 8378 rad/s (72,000 to 80,000 rpm) was found by using three different cases of spin arbor attachments. The speed at which failure occurred was 76,600 rpm. The typical mode shape of shaft at the critical speed was determined but the bending stress developed for the shaft bending mode shape was found not to be sufficient to cause failure. Development of the response model allowed calculation of the effect of the weights used to balance the shaft and which are redistributed about the center of rotation by the critical speed bending mode. The analysis was taken over the full critical speed range with the balance weights located both angularly and radially as they were on the shaft spin test. The analysis was made for several joints or segments of the shaft. The data show the loads at locations near the failure plane are high at 7540 rad/s (72,000 rpm) and much reduced at 8378 rad/s (80,000 rpm). Similar results are seen at several other locations at those speeds. Conversion of the moment loads to stresses within the part indicate the maximum stress levels occur at the location of the failure. The results clearly showed the highest stresses occurred at the failure plane and that more than adequate stress levels had been reached to cause a bending failure mode.

This data quite conclusively showed the failure mode. The next effort planned was to design an arbor to place on the small end of the shaft which would stiffen the shaft and drive the critical speeds to well above the 9362 rad/s (89,400 rpm) proof test speed. The arbor was designed to put tension in the small end of the shaft by loading it with the impeller nut. This added stiffness drove the calculated critical speed up to 12,043 rad/s (115,000 rpm) which is well above the proof test speed required. The arbor mass was kept low to aid also in keeping the critical speed high. The arbor design is shown in Fig. 40.

Some material discrepancies have been indicated in the material evaluations of the shaft failure analysis. The discrepancy showed a large grain size in the material in the rotor wheel of the remaining shaft. Property reductions estimated due to the visibly large grain size reduce the calculated allowable shaft speed at hot turbine drive conditions to 7247 rad/s (69,200 rpm) and to 7938 rad/s (75,800 rpm) at ambient gaseous hydrogen drive conditions. The shaft was successfully tested at ambient test conditions to 8734 rad/s (83,400 rpm) to qualify it for maximum test speeds with a gaseous hydrogen drive of 7938 rad/s (75,800 rpm) or 8.3% above the planned maximum target speed of 7330 rad/s (70,000 rpm).

The problem encountered here is caused basically by the very high speed requirements of this small rotating assembly. It is interesting to note that two previous dimensionally similar shafts had been successfully proof tested on the early design balance arbor without incident. This incident does indicate the need for thorough dynamic analysis of proof spin assemblies at the high test speeds required of these turbopump designs. It is also interesting to note that the bending mode of the shaft and the imbalance response were such as to generate high bending loads within the shaft and not transmit enough load to fail the small 3.18 mm (0.125 inch) diameter drive spindle. This failure mode was very unusual and highly unpredictable.

50.5

1.

8

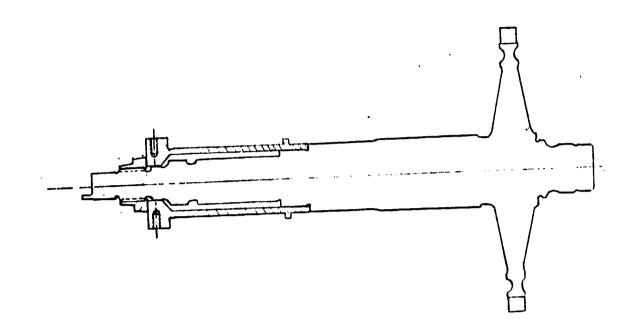


Figure 40. Mark 48-0 Shaft Spin Test Arbor, Redesigned

TURBOPUMP S/N 03-0 ASSEMBLY AND TEST

Specific objectives planned for turbopump S/N 03-0 test program included verification of the redesigned balance piston capability to provide adequate thrust control over a wide flow range and determination of the turbopump suction performance capability. The overall turbopump performance was to be evaluated as well using appropriate instrumentation. The previous objective to use the spiral groove, lift-off seal design and to determine its performance capability was deleted. Testing of a lift-off seal similar to that designed for the turbopump had encountered technical problems with the design concept. After test rig failures, it was determined that these problems required resolution by further component testing before the seal could be considered sufficiently reliable for turbopump operation. As a result, the turbopump program had been redirected to test the turbopump with the floating ring seal while verification of axial thrust control and suction performance definition was pursued.

Assembly and Installation

۹

.

Ł

きまくしい

Procurement of the hardware was completed and the necessary inspection and proof tests were completed. The rotor assembly was balanced on the Gisholt balance machine. The machine has a capability of detecting 6 x 10^{-4} mm (25 µ-inch) radial motion. The rotor mass of 2.84 Kg (6.25 lb) gives a machine accuracy of 6.18 gm-cm (0.07 gm-inch). This is equivalent to a radial load of 98 N (22 lb) at a speed of 7330 rad/s (70,000 rpm). The rotor was balanced by being supported in the balance cradle with two pairs of axially preloaded bearings, just as would occur in the turbopump assembly. The balancing was done by using the main rotor and rear stub shaft assembly first with wax corrections applied in the plane of the turbine wheel and stub shaft. This was followed by the slinger, impeller, inducer and instrumentation sleeves making wax corrections in the plane of each component before the next part was added. A relatively large imbalance was evidenced on the impellers. This slowed the balance due to a lack of available material in the shrouds for balancing. Several repeatability checks were made with the rotor disassembled and reassembled to satisfactory repeatability and runouts were taken on the assembly components. The final runout values are given in Fig. 41. Permanent balance was completed by grinding material in the required areas of the component parts.

The assembly of turbopump S/N 03-0 was accomplished in accordance with the procedure described in Ref. 1. The front and rear bearing inner race thicknesses were selected to provide a minimum bearing preload of 245 N (55 lb), and to obtain a total bearing travel within each cartridge of 0.23 mm (0.009 inch).

The measurements were made during the assembly of the turbopump to establish critical clearances and fits. The diametral fits obtained relative to the bearings are noted in Fig. 42. Critical clearances in the pump, shaft seals, and turbiue area are included in Fig. 43 through 45.

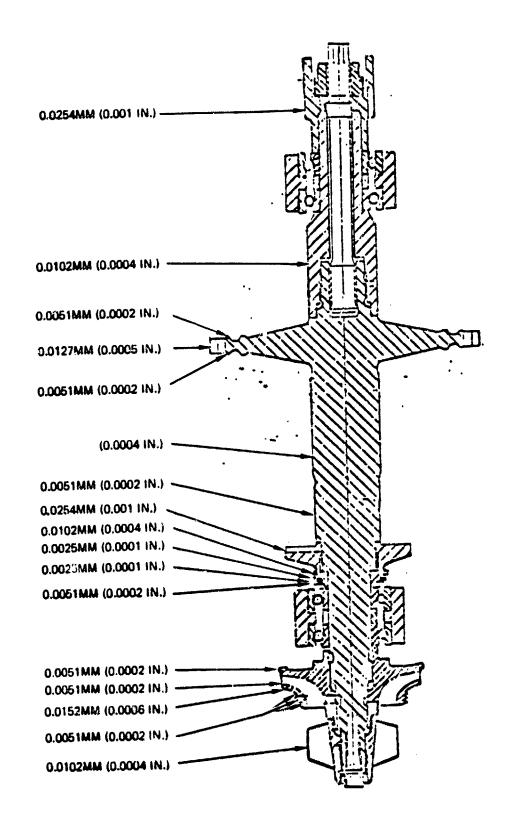
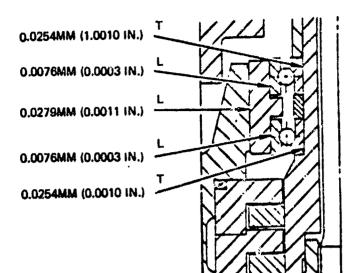
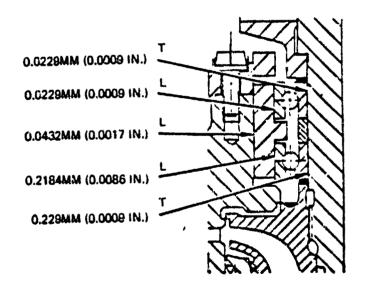
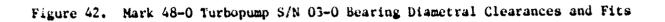
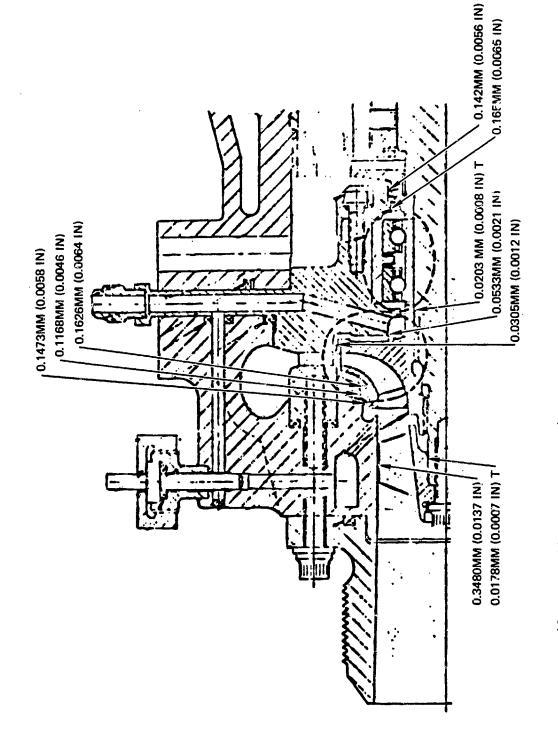



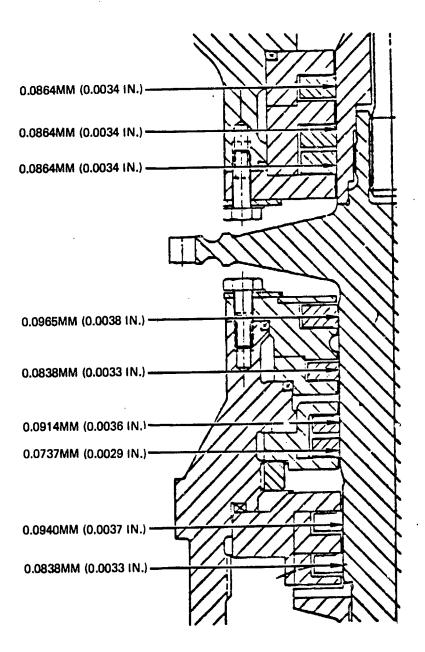
Figure 41. Mark 48-0 Turbopump S/N 03-0 Balance Assembly Runouts

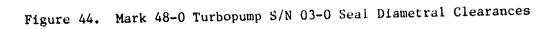

A. 4. 4405 4. 19. 1

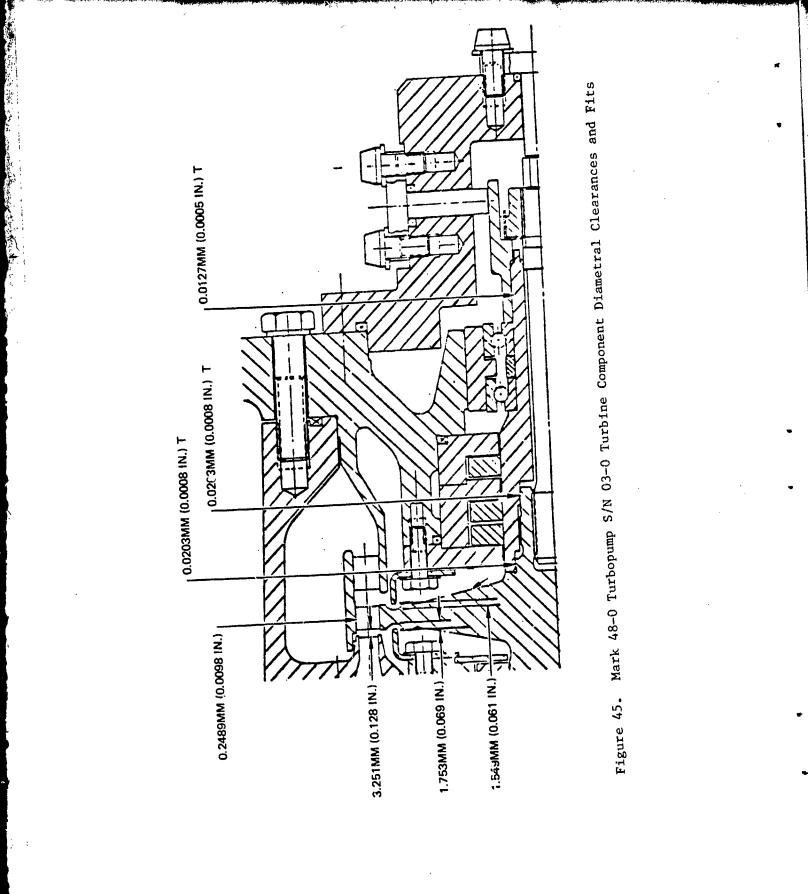



1000

X


and a state of



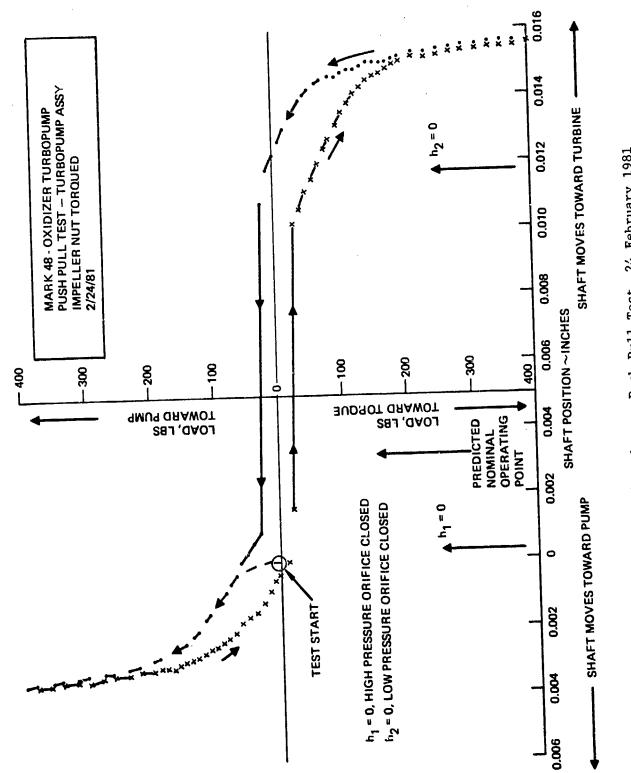


ý

5

. ;

٠.

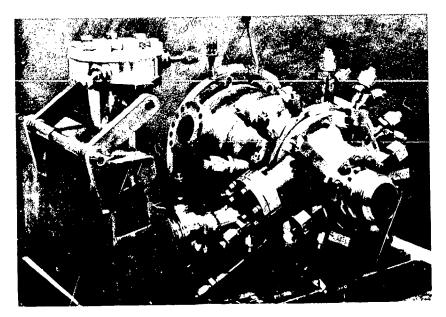

After the turbopump was assembled, a push-pull test was performed on the rotor to establish the external loads which the bearings support as a function of rotor position with respect to the balance piston orifice positions. The curve which was obtained is shown in Fig. 46. The symbols h_1 and h_2 refer to the balance piston high- and low-pressure orifice axial clearances, respectively. As indicated by the curve, the bearing stops were positioned such that the balance piston orifices would be well past totally closed before a sizeable load (1780 N) (400 lb) would be imposed on the bearings.

One problem area developed during the balancing of the assembly that had not been encountered on previous builds. An impeller nut failed during a disassembly which initiated an investigation into the cause. The failure was due to two factors. The torquing slot depth on the nut was found to be larger than print requirements, thus not allowing the tool to bottom properly, and the torque requirements were marginally high. Further analysis on the shaft indicated that the print torque requirements were excessive. This put a tensile load on the shaft greater than allowed for the previously reduced properties given for the shaft. The high torque requirements were a result of the large range of friction factors used in the calculations. The values used were necessary to ensure the impeller, bearings and slinger stackup carried enough compression to remain fixed through all operating conditions. A process of using strain gages attached to the impeller to ascertain the compressive load on the stackup was developed. The process was verified in a tensile machine including removal and LOX cleaning after the completed assembly. Analysis indicates the impeller nut torque could be reduced to acceptable levels with this method and allow assembly to proceed. A major activity during assembly was directed to developing the strain gaging process and running calibration tests of the strain gages to be used in final assembly. This was required to ensure proper preload could be applied to the impeller stackup without overloading the shaft with reduced properties. The final assembly was completed with good results from the strain gages and the procedures involved. The assembled turbopump is shown in Fig. 47 and 48.

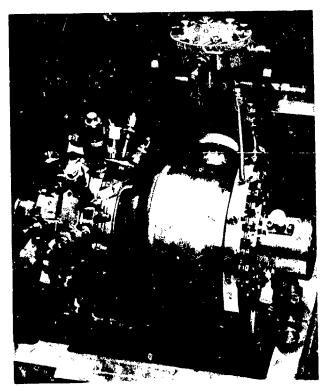
After initial turbopump assembly, it was found by helium leak check that the seals in the balance piston recirculation lines were leaking. The volute was removed from the turbopump and a combination of polishing the flange face and using liquid teflon on the seals eliminated the leakage. The assembled turbopump was installed in the LIMA test cell at the Advanced Propulsion Test Facility (APTF) of Rocketdyne's Santa Susana Field Laboratory. A simplified schematic of the facility has been shown in Fig. 20. The turbopump installation in the LIMA test cell is shown in Fig. 49 and 50.

Test Series No. 5, April 1981

The purposes of the test plan were to verify the turbopump balance piston axial thrust control capability and to determine the suction performance of the turbopump. The test plan called for a series of four tests. The plan called for driving the turbopump turbine with high pressure gaseous hydrogen. Instrumentation was similar to previous turbopump testing. A detailed instrumentation list is given in Table 13, with specific turbopump instrumentation illustrated in Fig. 51. The facility instrumentation was similar to that previously used and shown in Table 8 and allowed recording of all the required parameters necessary.



78


.

÷.

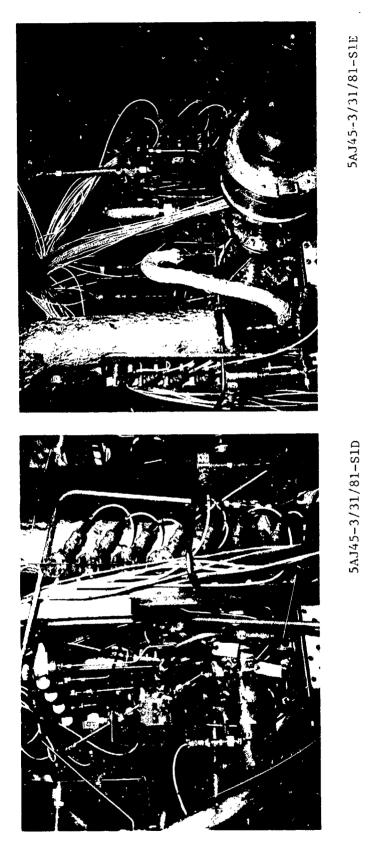

1XY52-5/18/81-C1A

Figure 47. Mark 48-0 Turbopump S/N 03-0 Assembly

1XY52-5/18/81-C1E

Figure 48. Mark 48-0 Turbopump S/N 03-0 Assembly

Mark 48-0 Turbopump S/N 03-0 Installed in Test Stand Figure 50.

Mark 48-9 Turbopump S/N 03-0

Installed in Test Stand Figure 49.

ORIGINAL PAGE IS OF POOR QUALITY

80

5 KY

まで言葉

TABLE 13. INSTRUMENTATION LIST

;

•

ļ

ţ

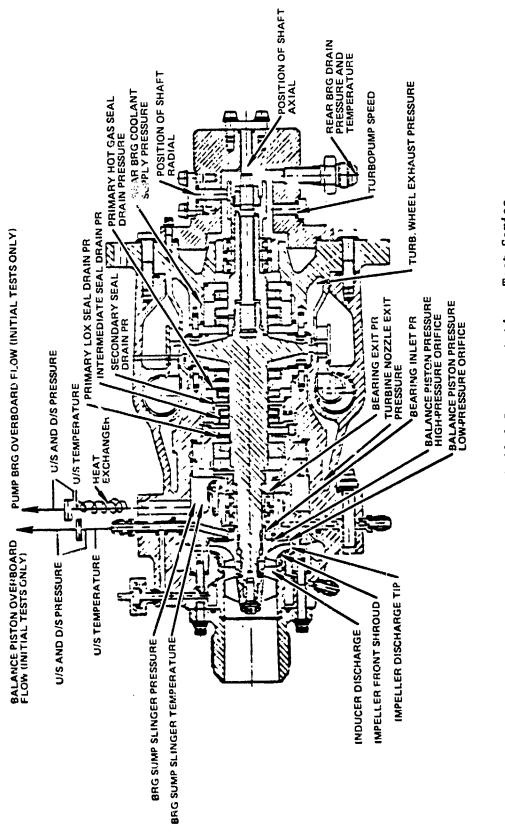
e K

÷.

r

w

(GASEOUS HYDROGEN TURBINE DRIVE)


(Continued)	
13.	
TABLE	

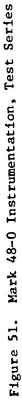

SYSTEM PARAMETER ID SYSTEM SYSTEM PARAMETER PBS LOK PUMP BEARING SUMP SLINGER PRESSURE PBS COMTIMUED) BEARING SUMP SLINGER PRESSURE PBS TURBINE INLET TOTAL PRESSURE PTI ILURBINE INLET TOTAL PRESSURE PTI ILURBINE INLET TOTAL PRESSURE PTI INDERINE DISCHARGE STATIC PTI PRESSURE DRAIN LINE PRESSURE PTI PRESSURE PTI PRESSURE DRAIN LINE PRESSURE PERERATURE PRESSURE DRAIN LINE PRESSURE PERERATURE PRESSURE PERERATION PRESSURE PERERATURE PRESSURE PRESSURE PRESSURE PERERATOR PRESSURE PERERATOR PRESSURE PERERATOR PRESSURE PERERATOR PRESSURE PERERATOR PRESSURE PRESSURE </th <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th>				_					
EN FARMETER ED) BEARING SUMP SLINGER PRESSURE BELARING SUMP SLINGER PRESSURE TUREINE INLET TOTAL PRESSURE INLET TOTAL PRESSURE INLET TOTAL PRESSURE INLED PRESSURE TURBINE WHELL EXHAUST PRESSURE TURBINE WHELL EXHAUST PRESSURE TURBINE UNESCHARGE STATIC PRESSURE TURBINE DISCHARGE STATIC PRESSURE PREMARY HOT GAS SEAL DRAIN PRESSURE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN PRESSURE PRESSURE PRESSURE PREMARY HOT GAS SEAL DRAIN PRESSURE PRESSURE PRESSURE PREMARY HOT GAS SEAL DRAIN PRESSURE <th></th> <th></th> <th></th> <th>INICI:</th> <th></th> <th></th> <th>39AT</th> <th></th> <th></th>				INICI:			39AT		
ED) BEARING SUMP SLINGER PRESSURE BEARING SUMP SLINGER PRESSURE INLET STATIC PRESSURE INLET STATIC PRESSURE INLET TOTAL PRESSURE NULET TOTAL PRESSURE TURBINE INLET TCMPERATURE POSCHARGE TCMPERATURE TURBINE DISCHARGE STATIC PRESSURE TURBINE DISCHARGE STATIC PRESSURE TURBINE DISCHARGE STATIC PRESSURE TURBINE DISCHARGE STATIC PRESSURE TURBINE DISCHARGE STATIC PRESSURE TURBINE DISCHARGE STATIC PRESSURE PRIMARY LOX SEAL DRAIN LINE PRESSURE PRIMARY LOX SEAL DRAIN LINE PRESSURE BEARING OVED FLOW ORIFICE U/S TEMPERATURE BEARING OVED FLOW ORIFICE U/S TEMPERATURE DISCHARGE U/S SEAL DRAIN ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE SECONDARY HOT GAS SEAL DRAIN ORIFICE U/S SEAL DRAIN	ID P	PID	RANGE		910	50	H	LOCATION	COMMENTS
 ED) BEARTING SUMP SLINGER THERERATURE INLET TOTAL PRESSURE INLET TOTAL PRESSURE INLET TOTAL PRESSURE INLET TOTAL PRESSURE TURBINE DISCHARGE TOTAL PRESSURE TURBINE DISCHARGE STATIC PRESSURE TURBINE DISCHARGE STATIC PRESSURE TURBINE DISCHARGE STATIC PRESSURE PREMARY LOX SEAL DRAIN LINE PREMARY LOX SEAL DRAIN LINE PRENATURE BEARING OVED FLOW ORIFICE U/S TEMPERATURE BEARING OVED FLOW ORIFICE U/S TEMPERATURE BEARING OVED FLOW ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN DRIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN DRIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE SECONDARY HOT GAS SEAL DRAIN DRAIN DRIFICE U/S TEMPERATURE DRIFICE U/S TEMPERATURE DRIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN DRIFICE U/S TEMPERATURE SECONDARY HOT GAS SEAL DRAIN 	PBSS 0	094 2	200 PSIG	×				HOUSING TAP	
TEMPERATURE INLET STATIC PRESSURE INLET TOTAL PRESSURE TURBINE INLET TCMPERATURE MOZZLE D/S PRESSURE TURBINE DISCHARGE TOTAL PRESSURE TURBINE DISCHARGE TOTAL PRESSURE TURBINE DISCHARGE TOTAL PRESSURE PRESSURE PRIMARY LOX SEAL DRAIN LINE PRESSURE PRIMARY LOX SEAL DRAIN LINE PRESSURE BEARING OVED FLOW ORIFICE U/S PRESSURE BEARING OVED FLOW ORIFICE U/S TEMPERATURE BEARING OVED FLOW ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE SECONDARY HOT GAS SEAL DRAIN CHIFTEE U/S TEMPERATURE SECONDARY HOT GAS SEAL DRAIN CHIFTEE U/S TEMPERATURE SECONDARY HOT GAS SEAL DRAIN		036 0	0 T0 -300 F	×××	×			HOUSING TAP	
INLET STATIC PRESSURE INLET TOTAL PRESSURE TURBINE INLET TCMPERATURE NOZZLE D/S PRESSURE TURBINE DISCHARGE TOTAL PRESSURE TURBINE DISCHARGE TOTAL PRESSURE TURBINE DISCHARGE TOTAL PRESSURE PRIMARY LOX SEAL DRAIN LINE PRESSURE PRIMARY LOX SEAL DRAIN LINE PRESSURE PRIMARY LOX SEAL DRAIN LINE REARING OVED FLOW ORIFICE U/S PRESSURE BEARING OVED FLOW ORIFICE U/S PRESSURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN CRIFTCE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE				, 	<u>`</u>	*		COMBINED BODY	
MILET TOTAL PRESSURE TUBBINE INLET TCMPERATURE MOZZLE D/S PRESSURE TURBINE MHELL EXMUNST PRESSURE TURBINE DISCHARGE TOTAL PRESSURE TURBINE DISCHARGE STATIC PRESSURE PRIMARY LOX SEAL DRAIN LINE PRIMARY LOX SEAL DRAIN LINE PRIMARY LOX SEAL DRAIN LINE PRIMARY LOX SEAL DRAIN LINE BEARING ONED FLOW ORIFICE U/S PRESSURE BEARING ONED FLOW ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE	PT15 0	065 5	5000 PSIG		<				KI FI PROBE SUPPLIED
TURBINE INLET TCMPERATURE NOZZLE D/S PRESSURE TURBINE WHELL EXHAUST PRESSURE TURBINE DISCHARGE TOTAL PRESSURE TURBINE DISCHARGE STATIC PRESSURE TURBINE DISCHARGE STATIC PRESSURE PRIMARY LOX SEAL DRAIN LINE PRESSURE PRIMARY LOX SEAL DRAIN LINE ERARING OVED FLOM ORIFICE U/S TEMPERATURE ERARING OVED FLOM ORIFICE U/S TEMPERATURE BEARING OVED FLOM ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN PRIMARY HOT GAS SEAL DRAIN PRIMARY HOT GAS SEAL DRAIN LINE PRESSURE SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE	PTIT 0	080	5000 PSIG	×					1911 - 0 160 TWCH
NOZZLE D/S PRESSURE TUBBINE WHELL EXHAUST PRESSURE TUBBINE DISCHARGE TOTAL PRESSURE TURBINE DISCHARGE STATIC PRESSURE TURBINE DISCHARGE STATIC PRESSURE PRIMARY LOX SEAL DRAIN LINE PREMARY LOX SEAL DRAIN LINE PREMARY LOX SEAL DRAIN LINE ERARING OVED FLOW ORIFICE U/S TEMPERATURE BECARING OVED FLOW ORIFICE U/S TEMPERATURE BECANDARY HOT GAS SEAL DRAIN PRIMARY HOT GAS SEAL DRAIN PRIMARY HOT GAS SEAL DRAIN LINE PRESSURE SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE	111	024 0	0 T0 100 F	~	×			Lan	
TURBINE MHEEL EXHAUST PRESSURE TURBINE DISCHARGE TOTAL PRESSURE TUBBINE DISCHARGE STATIC PRESSURE TURBINE DISCHARGE STATIC PRESSURE PREMARY LOX SEAL DRAIN LINE PRESSURE PREMARY LOX SEAL DRAIN LINE PRESSURE BEARING OVED FLOW ORIFICE U/S PRESSURE BEARING OVED FLOW ORIFICE U/S TEMPERATURE BEARING OVED FLOW ORIFICE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TERSUBE PRIMARY HOT GAS SEAL DRAIN CRIFICE U/S TERSUBE PRIMARY HOT GAS SEAL DRAIN CRIFICE U/S TERSUBE PRIMARY HOT GAS SEAL DRAIN LINE PRESSURE SECONDARY HOT GAS SEAL DRAIN	D GNd	0)1	3000 PSIG	×				TURBOPUMP	
TUPBINE DISCHARGE TOTAL PRESSURE TURBINE DISCHARGE STATIC PRESSURE TUBBINE DISCHARGE STATIC PRESSURE PREMARY LOX SEAL DRAIN LINE PRESSURE PREMARY LOX SEAL DRAIN LINE PRESSURE U/S PRESSURE U/S TEMPERATURE BEARING OVED FLOW ORIFICE U/S TEMPERATURE DRIMARY HOT GAS SEAL DRAIN PRIMARY HOT GAS SEAL DRAIN PRIMARY HOT GAS SEAL DRAIN CRIFTCE U/S TERSSURE PRIMARY HOT GAS SEAL DRAIN CRIFTCE U/S TERSSURE PRIMARY HOT GAS SEAL DRAIN LUNE PRESSURE SECONDARY HOT GAS SEAL DRAIN	2	076	3000 PSIG					TURBOPUMP SUPPORT	
PRESSURE TURBINE DISCHARGE STATIC PRESSURE TUBBINE DISCHARGE STATIC PREMARY LOX SEAL DRAIN LINE PRIMARY LOX SEAL DRAIN LINE PRIMARY LOX SEAL DRAIN LINE FEMERATURE BEARING OVED FLOW ORIFICE U/S PRESSURE BEARING OVED FLOW ORIFICE U/S PRESSURE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S PRESSUBE PRIMARY HOT GAS SEAL DRAIN ORIFICE U/S TERPERATURE SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE	PIDT	079	3000 PSIG		×			FACILITY LINE	
TURBINE DISCHARGE SIATIC PRESSURE TURBINE DISCHARGE TEMPERATURE PREMARY LOX SEAL DRAIN LINE PREMARY LOX SEAL DRAIN LINE FEMPERATURE BEARING OVED FLOW ORIFICE U/S PRESSURE BEARING OVED FLOW ORIFICE U/S TEMPERATURE PREMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE PREMARY HOT GAS SEAL DRAIN ORIFICE U/S TEMPERATURE SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE SECONDARY HOT GAS SEAL DRAIN	-	_			~			FACILITY LINE	
TUBBINE DISCHARGE TEMPERATURE PREMARY LOX SEAL DRAIN LINE PREMATURE ERENATURE: PREMATURE: REMPERATURE: U/S TEMPERATURE U/S TEMPERATURE PREMARY HOT GAS SEAL DRAIN PREMARY HOT GAS SEAL DRAIN PREMARY HOT GAS SEAL DRAIN PREMARY HOT GAS SEAL DRAIN PREMARY HOT GAS SEAL DRAIN CRETCE U/S TERSEARTURE PREMARY HOT GAS SEAL DRAIN LINE PRESSURE SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE	0 2	2/1							TUEDMOCOUPLE
PREMARY LOX SEAL DRAIN LINE PRESSURE PRIMARY LOX SEAL DRAIN LINE TEMPERATURE: DRAING OVED FLOW ORIFICE U/S TEMPERATURE BEANING OVED FLOM ORIFICE U/S TERSURE PRIMARY HOT GAS SEAL DRAIN PRIMARY HOT GAS SEAL DRAIN PRIMARY HOT GAS SEAL DRAIN PRIMARY HOT GAS SEAL DRAIN PRIMARY HOT GAS SEAL DRAIN LINE PRESSURE SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE	٩Ľ	023	-100 TU +200 F						CLASE COURTS TO TURBOPUMP
PRESSURE PRESSURE PRIMARY LOX SEAL DRAIN LINE TEMPERATURE BEARING OVED FLOW ORIFICE U/S TEMPERATURE U/S TEMPERATURE PRIMARY HOT GAS SEAL DRAIN PRIMARY HOT GAS SEAL DRAIN PRIMARY HOT GAS SEAL DRAIN CRIFICE U/S TESSERATURE SECONDARY HOT GAS SEAL DRAIN LINE PRESSURE SECONDARY HOT GAS SEAL DRAIN	F Id	ເຄ	100 PSIG	×	× 	×		TURBOPUMP	TURBOPUMP
Z Z	_		200110 100 002					EXTERNAL	THERMOCOUPLE
	11.50	10	-300 10 1005-					TURBOPUMP	CAUBICT TO ATM
	PPBOUS 109	601	100 PSIG		~	*		EXCHANGE	
 E E	TPROUS 022	022	-300 70 +100 F					L/S HEAT	THERMOCOUPLE
								EXCHANGE	CVHAUST TO ATM
2 2	P15	102	100 PSIG		×			TURBOPUNP	
	0.0	900	-300 TO +100 F		~			EXTERNAL	THERMOCOUPLE
		030		_				TURBOPUMP	
	P16	60	500 PSIG	×	×	×		TURBOPUMP	
	TSHGD	026	-300 TO +100 F		*			EXTERNAL TURBOPUMP	THERMOCOUPLE
	P17	260	100 PS16		×			EXTERNAL	EXHAUSE TO ATM
ORIFICE U/S PRESSURE			1					LUKBUPUTT EXTEDNAL	THERMOCOUPLE
	TSH600 027	027	-300 T0 +100 F		<		_	TURBOPUMP	
	TISP	012	-100 T0 +100 F		×				Inconcourter
INTERMEDIATE SEAL PURGE	BI 4	692	500 PSIG	×	×	×		FACILITY LINE	

TABLE 13. (Concluded)

Ŧ,

					INI 70	ECICHWW	801	N LYDE SC	NO.	COMMENTS
SVSTEN	PARMETER	8	8	RANGE	в	8				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
REAR BEARING	REAR BEARING COOLANT SUPPLY	614	360	5000 PSIG	×	×			FACILITY LINE INLE! LING	THEFT FINE
	PRESSURE REAR BEARING COOLANT SUPPLY	TBC	035	-450 T0 -250 F		ж	×		FACILITY LINE	RTB
	TEMPERATURE REAR BEARING COOLANT DRAIN	P20	103	1000 PSIG	×	×			FACILITY LINE	EXHAUST LINE
	PRESSURE REAR BEARING COOLANT DRAIN	TECD	91	-450 TO -250 F X	×	×			FACILITY LINE	THERMOCOUPLE
	TEMPERATURE REAR BEARING COOLANT OR:FICE	P22	066	500 PSIG		×	~		FACILITY LINE	
	_	PBFU	107	100 PSIG		×	×		FACILITY LINE	
	PRESSURE PUMP BEARING OVBD FLON U/S	TBFU	042	+100 T0 -300 F		×			FACILITY LINE	THERMOCOUPLE
	TEMPERATURE RALANCE PISTON OYBD FLOW	620 ST403	073	2000 PSIG		×	×		FACILITY LINE	
	U/S PRESSURE BALANCE PISTON OVBD FLOW	TEPBUS DA4	048	-100 TO -300 F X	*	×	×		FACILITY LINE	THERMOCOUPLE
	U/S TEMPERATURE Balance Pistom Oved Flow Delta Pressure	P8P00P 105	105	500 PSIG		×	×		FACILITY LINE	

•

A set of redlines was determined and used as a safety precaution, and required the turbopump and system to operate within specified ranges of speed, pressure, temperature and vibration levels. The redline parameters used for Series No. 5 testing are given in Table 14.

3

とうないというないとない

1

. ;

ł

Balance piston overboard flow was measured by an orifice differential pressure utilizing the same system as used for the balance piston and bearing coolant overboard flow on test series No. 4. The bearing coolant flow was measured by utilizing the primary LOX seal flow discharge line and heat exchanger used in the previous test series. This arrangement is shown schematically in Fig. 52. Shaft speed and radial movement were measured as in previous tests.

A total of six tests were conducted on the turbopump in April 1981 with a total operating time of 749 seconds. Of that time, 146 seconds was at 3141 rad/s (30,000 rpm) and 35 seconds near 7228 rad/s (69,000 rpm). A summary of the testing is given in Table 15. All other time was at speeds below 3141 rad/s (30,000 rpm) or in transient operation.

The first planned test was a head-flow test at 3141 rad/s (30,000 rpm). In test 016-001, a turbopump start was made to idle mode at 524 rad/s (5,000 rpm). At that point a check was made on instrumentation before proceeding. Several problems with controller instrumentation caused the test to be terminated. The second pump start was test 002 where the pump was brought to idle mode, then up to 3141 rad/s (30,000 rpm) for 27 seconds. At this point the flowrate and speed was adjusted manually to start a head-flow sweep. Upon switching to automatic speed control set point, the rapid response of the system caused the speed to shoot up to a 3874 rad/s (37,000 rpm) redline and an automatic cutoff was initiated. This was caused by starting at a lower than normal flow and the pump power absorption was lower than programmed.

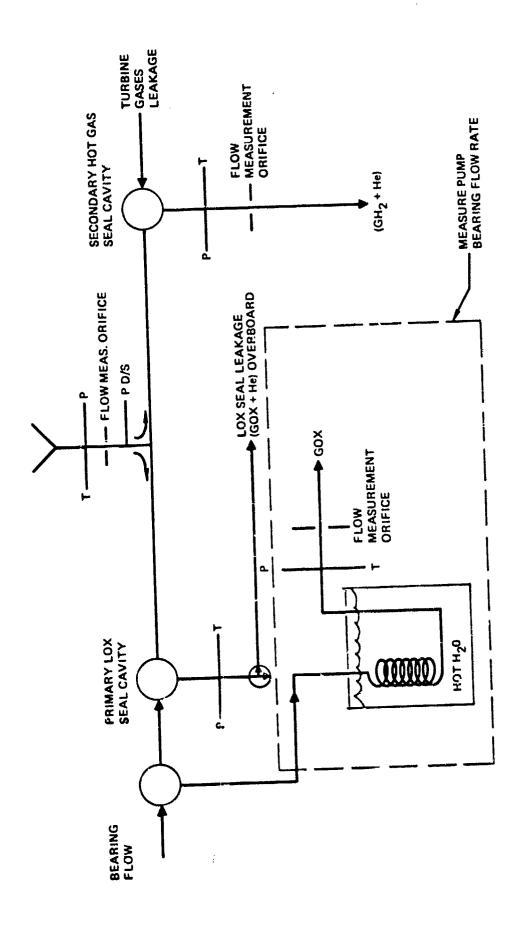

The next test, 003, was a successful head-flow test at 3141 rad/s (30,000 rpm) of 56 seconds duration and covered a flow range of 79 to 117% of design flow. For this test the balance piston flow was routed overboard. The test 004 was targeted for a high-speed head-flow test at 7016 rad/s (67,000 rpm). The speed was set at slightly under the design speed of 7330 rad/s (70,000 rpm) because the lower speed data indicated that at low flows the pump discharge pressure would exceed the pressure transducer limits of 3448 N/CM² (5000 psig), and the test would be automatically terminated by the redline limits. This high pressure would also overdrive the transducers and cause damage. The test speed on test 004 was brought up to the 3141 rad/s (30,000 rpm) operating point by the automatic control system which controls turbine drive pressure. At that speed it was found that the speed pickup on the turbopump had failed, and the test had to be terminated. The speed achieved was determined after the test by counting the frequency of the proximity probe signal changes which record one step per revolution. Also, during the test at speed, a segment of head-flow variation data from 100 and 119% of nominal flow was obtained. The speed probe was replaced after it was verified it shorted out at low temperatures while it operated satisfactorily at ambient conditions.

TABLE 14. LO₂ TURBOPUMP REDLINES, AMBIENT HYDROGEN TURBINE DRIVE, TEST SERIES 5

CUTOFF MONITOR	REDLINE IDENTIFICATION	REDLINE LIMIT			
AUTOMATIC	LOX INLET TEMPERATURE	180 R MAXIMUM			
AUTOMATIC/OBSERVER	LOX PUMP INLET PRESSURE	92 PSIA MINIMUM			
AUTOMATIC	TURBOPUMP SPEED	77,000 RPM MAXIMUM			
OBSERVER	PUMP BEARING OVBD FLOW TEMPERATURE	ΔT = 25 R MAXIMUM AFTER STABILIZATION			
OBSERVER	REAR BEARING DRAIN TEMPERATURE	ΔT = 25 R MAXIMUM AFTER STABILIZATION			
OBSERVER	BALANCE PISTON CAVITY PRESSURE	SPECIFIC RANGE EACH TEST			
AUTOMATIC	LOX PUMP DISCHARGE PRESSURE	5000 PSIG MAXIMUM			
AUTOMATIC	PRIMARY LOX SEAL DRAIN LINE PRESSURE	30 PSIG MAXIMUM***			
AUTOMATIC	TURBINE SECONDARY SEAL DRAIN LINE PRESSURE	30 PSIG MAXIMUM***			
AUTOMATIC	INTERMEDIATE SEAL PURGE (HELIUM) PRESSURE	150 PSIG MINIMUM			
OBSERVER	BENTLY TRANSDUCER RADIAL	0.010 INCH MAXIMUM DEFLECTION			
OBSERVER	BENTLY TRANSDUCER AXTAL	0.013 INCH MAXIMUM DEFLECTION			
AUTOMATIC	TURBOPUMP RADIAL ACCEL- LEROMETFR*, **	15 G RMS			
OBSERVER	BALANCE PISTON SUMP PRESSURE	SPECIFIC RANGE EACH TEST			
AUTOMATIC	REAR BEARING SUPPLY PRESSURE	3100 PSIG MINIMUM			
AUTOMATIC REAR BEARING DRAIN 500 PSIG MAXIMUM PRESSURE					
* 2 KHz LOW PASS ** VIBRATION SAFET *** CONDITION MUST	FILTER Y CUTOFF DEVICE EXIST FOR MORE THAN 2 SECONDS				

A SALANS ALL SALAS

(the second

. .

....

ē

3

87

たいまたろうちょう

TABLE 15. MARK 48-0 TURBOPUMP TEST SERIES NO. 5 SUMMARY, TURBOPUMP S/N 03-0

は、読んの

í,

ないというないとうないで、「ない」

	REMARKS	PLANNED HEAD FLOW TEST AT 3141 RAD/S (30,000 RPM) WITH BALANCE PISTON FLOW ROUTED OVERBOARD. DURATION OF TEST AT 524 RAD/S (5000 RPM). SEVERAL PROBLEMS WITH OBSERVER AND CONTROLLER INSTRUMENTATION CUT TEST.	PUMP START IN IDLE MODE 524 RAD/S (5000 RPM). RAN PUMP TO 3141 RAD/S (30,000 RPM) FOR 27 SECONDS. TEST CUT ON OVERSPEED REGULATOR WHEN SWITCHED OVER TO AUTOMATIC REGULATOR CONTROL.	BROUGHT SPEED UP TO 3141 RAD/S (30,000 RPM) FOR 56 SECONDS. HEAD FLOW TEST AT 3141 RAD/S (30,000 RPM) FROM 79 TO 117% DESIGN FLOW. BALANCE PISTON FLOW ROUTED OVERBOARD.	BROUGHT SPEED UP TO 3141 RAD/S (30,000 RPM) FOR 41 SECONDS, TARGET SPEED WAS 7016 RAD/S (67,000 RPM) FOR H-Q TEST. LOST SPEED SIGNAL - GOT HEAD-FLOW DATA POINTS AT 100% AND 119%.	TARGET SPEED 7016 RAD/S (67,000 RPM) FOR H-Q TEST. BROUGHT SPEED UP TO 3141 RAD/S (30,000 RPM) FOR 16 SECONDS. LOST ∆P SIGNAL USED FOR FLOW CONTROL. BALANCE PISTON FLOW OVERBOARD WITH REDUCED RESISTANCE IN ORIFICES.	TARGET SPEED 7016 RAD/S (67,000 RPM) H-Q TEST WITH BALANCE PISTON FLOW ROUTED TO COMBINED RECIRCULATION AND OVERBOARD DRAIN TO MINIMIZE SUMP PRESSURE. 35 SECONDS AT 7120 RAD/S (68,000 RPM) COMPLETE HEAD- FLOW TEST FROM 87% TO 112% DESIGN FLOW PUMP DISCHARGE PRESSURE REDLINE CUTOFF AT 524 RAD/S (5000 PSIG) AND 87% NOMINAL FLOW.
ACCUMULATED	DURATION SECONDS	246	383	455	560	68]	749
ACCUN	STARTS	-	N	m	4	പ	Q
TECT	DURATION	246	137	72	105	121 .	89
	TEST DATE	4-9-81	4-13-81	4-13-81	4-15-81	4-16-81	4-28-81
	TEST NUMBER	016-001	016-002	016-003	016-004	016-005	016-006

(.2

Analysis of the data at 3141 rad/s (30,000 rpm) had indicated the balance piston/ sump pressures were marginally too high. The balance piston overboard drain line consisted of six lines exiting the turbopump at the diffuser flange. These were manifolded together by 12.3 mm (0.50 inch) connecting lines. The resulting single 12.5 mm (0.50 inch) line then ran through a flow measuring orifice and then a flow control orifice before exiting into a 7.62 cm (3 inch) line which dumped overboar." A pressure and temperature measurement was taken upstream of the flow measurement orifice and a differential pressure was measured across it. This enabled the pressure to be monitored upstream of the flow control orifice. On the tests prior to test 005, the flow control orifice diameter was set at 6.15 mm (0.242 inch) and the flow measurement orifice diameter was set at 5.61 mm (0.221 inch). The data from test 004 indicated a small pressure drop occurring across the flow measurement orifice with high pressure losses downstream. This was an indication of choking downstream. In an attempt to reduce the balance piston sump pressure for test 005, the downstream flow control orifice was removed from the line.

「お湯き

The second

÷.

States and the second states

The test 005 objective was to operate at 7016 rad/s (67,000 rpm) for a head-flow test with the balance piston flow overboard. Test speed was brought to 3141 rad/s (30,000 rpm) when the signal of pressure differential across the pump flow venturi failed, thus losing monitoring capability of the pump flow rate. This caused the test to be terminated.

The low speed data from test 005 indicated that due to choking in the balance piston flow overboard drain line, it was impractical to attempt to reduce the sump pressure appreciably by reducing the drain line resistance since choking would still occur at some point in the line. Test 005 data indicated the choking point had moved to the flow measurement orifice. Therefore, the next step to reduce the resistance as low as possible was to allow recirculation to occur, as well as to allow overboard drain line flow. The recirculation blocking pins were removed to allow the balance piston flow to return to the impeller injet. The flow measurement orifice was set at 6.70 rpm (0.2636 inch) and the flow control orifice was set at 7.62 mm (0.300 inch).


Test 006 was run successfully to a target speed of 7016 rad/s (67,000 rpm) with the balance piston flow routed overboard and recirculated to minimize sump pressure. The turbopump operated for 35 seconds near 7120 rad/s (68,000 rpm) while a complete head-flow sweep was made from 112% derign to 87% design. At the low flow point, the pump discharge pressure reached 3448 N/cm² (5000 psig) and the test was terminated by exceeding the redline limit for that measurement.

At the conclusion of test 006, posttest torque checks on the rotor assembly indicated excessive torque on the shaft. Previous checks had indicated low magnitudes in the order of 14.12 N-cm (20 oz-in.) breakaway and 10.6 N-cm (15 oz-in.) running. The high torque levels were up to 9.03 to 11.30 N-m (80 to 100 in.-lb.) initially with the rotor essentially freezing up after several revolutions. Boroscope examination and audio checks at the turbine wheel tips clearly showed excessive rubbing. All attempts to reduce the torque, including simultaneously heating and chilling parts, failed. This left no choice but to remove the turbopump and disassemble it to correct the condition. Due to budget limitations, additional testing had to be terminated.

Removal and Disassembly

日本の日本のないというないであるというないであるというという

The turbopump was removed from the test stand and the facility was secured. The turbopump was shipped to the Rocketdyne Engineering Development Laboratory in Canoga Park for disassembly and hardware analysis. The turbopump was completely disassembled and inspected for evidence of wear or distress. A complete layout of the disassembled turbopump is shown in Fig. 53. On disassembly, dimensional checks were made on all components and recorded. A report of the mechanical condition and performance of the components is presented later in this report.

ISM55-5/28/81-CIA

Figure 53. Mark 48-0 Turbopump S/N 03-0 After Disassembly

Turblue Performance

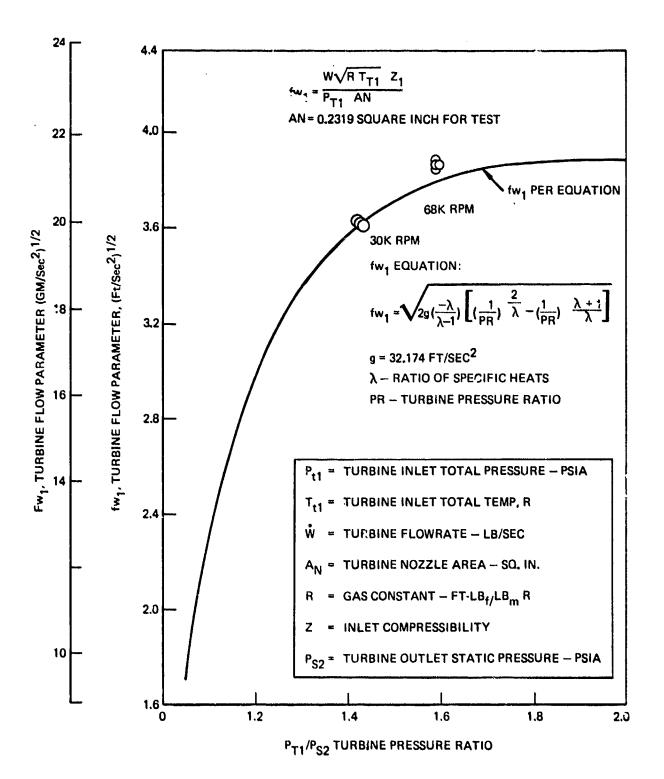
Six tests were run in test series 5 on the Mark 48-0 turbopump, using gaseous hydrogen as the turbine working thid and liquid oxygen in the pump. Only test 6 achieved high speed (7121 rad/s, 68,000 rpm) and was a pump head-tlow test.

Test 6 was studied for turbine performance at 3141 and 7121 rad/s (30,000 and 68,000 rpm).

Turbine test efficiency is shown in Fig. 54. Turbine efficiency was determined using a delivered power equal to the pump fluid power divided by the pump isentropic efficiency. Turbine available power was calculated from the turbine measured flowrate and the turbine available energy determined using NBS Technical Note 617 for gaseous hydrogen properties. Turbine predicted efficiency and calibration tests efficiency characteristics are shown in Fig. 54. For the 7121 rad/s (68,000 rpm) test points, the average efficiency was 59.0% at an average velocity ratio of 0.384. This compares well with the predicted efficiency of 61.5% at the same velocity ratio and is significantly higher than the performance indicated by the calibration tests of Ref. 1. The efficiency averaged 74% using the turbine temperature drop measurements. This is higher than expected, probably due to the seal purge and rotor coolant hydrogen flows reducing the turbine outlet temperature. The effect of these flows on turbine outlet temperature could be assessed if rear bearing supply flow were measured. Rear bearing coolant discharge flow is measured and the difference would be the flow into the turbine.

and the second

4


いい、「ないない」をあっていい

Turbine flow parameter data are shown in Fig. 55. Turbine flow parameter relates inlet flow, pressure, temperature, and nozzle area to turbine pressure ratio and the speed parameter. Previous tests have shown the turbine flow parameter to be relatively independent of turbine speed parameter for this partial admission turbine. The flow parameter equation in Fig. 55 is the standard nozzle flow equation. The test data at 7121 rad/s (68,000 rpm) show good agreement with the prediction being within 2.4% of the equation value.

Rotor upstream and downstream hub static pressure measurements indicate a pressure rise across the rotor of from 3 to 5% of the turbine pressure drop. This trend has been indicated in previous tests and possibly is caused by the rotor blade pumping in the inactive are with the nonsymmetrical rotor blades. In general, the performance of the turbine is as expected.

Figure 54. Mark 48-0 Turbine Test Performance

A CAL

Figure 55. Mark 48-0 Turbine Test Performance

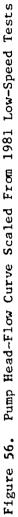
Pump Hydrodynamic Performance

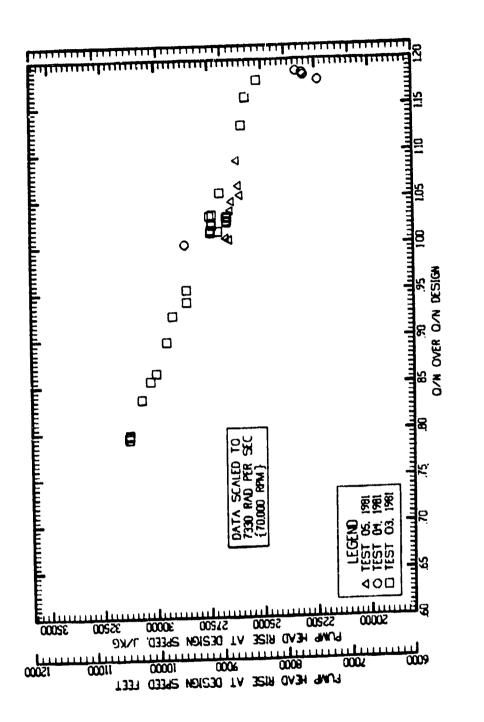
and and the state of the

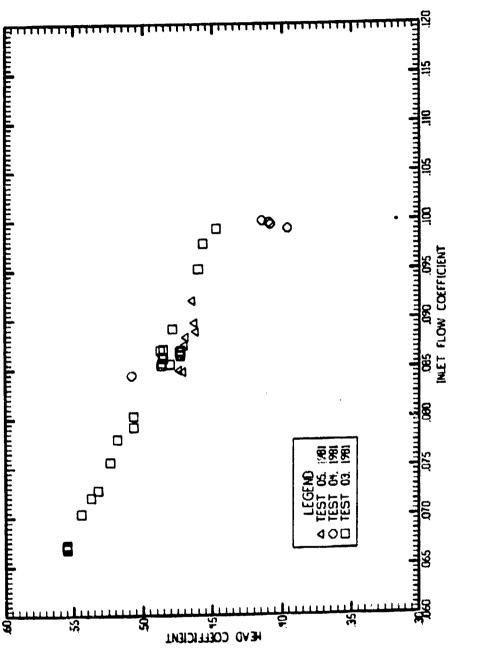
Pump Head Rise. The pump head rise was derived from the same basic measurements as used in previous test series, namely the pump inlet and discharge duct static pressures and the measured flow. There had been no design changes in the hydrodynamic passages through the primary pumping elements since the previous test series in May 1978, thus the results from this previous series (Ref. 2) would be expected to be repeated in the current series. However, it should be pointed out that the hardware being tested is new hardware that had not been previously tested. Also, the new hardware had experienced some machining discrepancies in the fabrication phase leading to thin sections of blades and shrouds on the impeller. The effect of these discrepancies on the blade angle distribution and the resultant impact on hydrodynamic performance was expected to be relatively minor, but this can only be verified via tests.

Figure 6 presents the head-flow characteristics derived from previous tests in 1977 and 1978. The data from both series appear to define a single characteristic and, using a least squares curve fit procedure, the equation shown on the curve was derived to represent these data. This characteristic provides a basis for comparison of the recent data. Figure 56 shows the H-Q data from test 3, 4, and 5 of the current test series and compares the data with the curve-fit characteristic. The data are scaled to 7330 rad/s (70,000 rpm), but the tests were actually run at approximately 3141 rad/s (30,000 rpm) All three tests show consistent trends, and the resulting H-Q characteristic is seen to be higher in head than in the previous series. The head is approximately 6% higher varying from approximately 4.5% at the lowest flow tested to 10% at the highest.

There is no obvious explanation for the higher head rise. The pumps are by design identical as far as the pumping elements are concerned. The flow through the balance piston could be different because of the changes made in the downstream flow system. However, to make the data consistent with the previous H-Q data, the flow through the balance piston in the current build would have to be approximately 1.26×10^{-3} M3/s (20 gpm) less at 7330 rad/s (70,000 rpm) than on the previous test series which represents approximately a 50% reduction, but the fact is that the balance piston flow is actually higher on the current system as measured and by design. Thus, this cannot explain the higher head. The only other potential explanation is that the new impeller has sufficient differences in actual blade layout to produce the higher head. The effective blade angle at the impeller discharge would have to be off by 0.07 radians (4 degrees) to account for this much head increase.


The design flowrate at 7330 rad/s (70,000 rpm) is 1.46 x $10^{-2}M^{3}/s$ (232 gpm) so the test data cover a range of flow from approximately 80 to 120% of design flow. This can be seen in Fig. 57, which shows the same head rise but as a function of the ratio of Q/N divided by the design value. The same data are also plotted in Fig. 58 as the dimensionless parameter of head coefficient (ψ) versus inlet flow coefficient (ϕ) where these coefficients have their normal definition.


Similar data analyses were performed for test 6 which included testing near 7330 rad/s (70,000). There were problems encountered with the transducers for test 6 in that drifts were encountered between the pre- and posttest calibrations.


• •

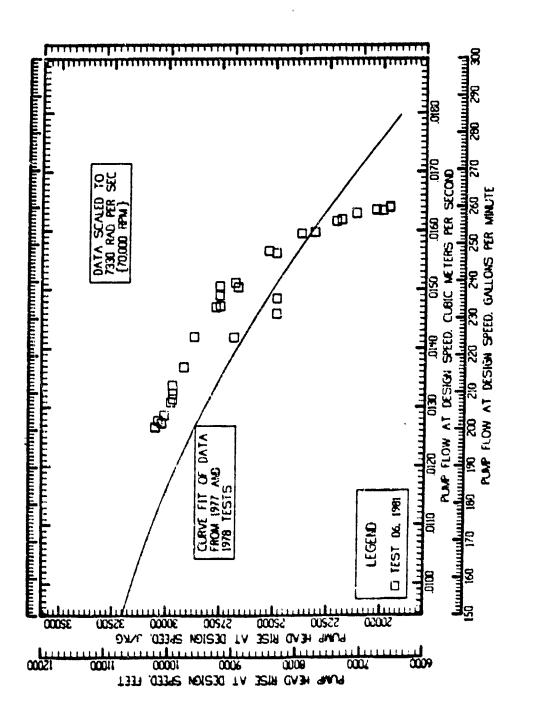
\$

Pump Head as a Function of Dimensionless Q/N (1981 Low-Speed Tests) Figure 57.

たいきょ

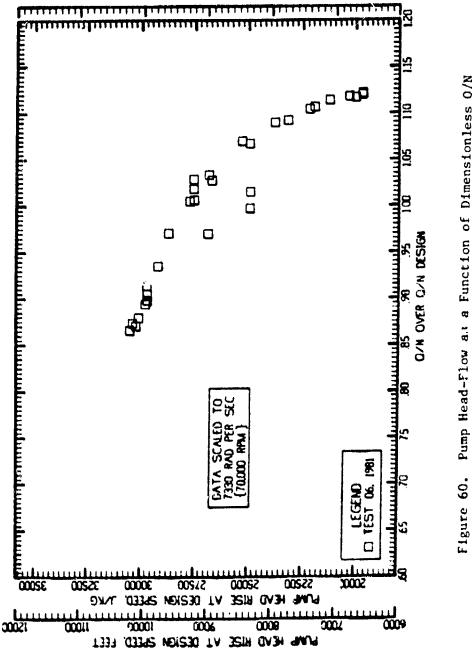
The data were reduced using both the precalibration and postcalibration signals, but neither resulted in consistent trends compared with test 3, 4, and 5. It was finally established that the best general agreement of the data for the four tests was achieved using a calibration signal that was the average of the pre- and postcalibration. The results were scaled to 7330 rad/s (70,000 rpm) and are plotted in Fig.59. There are several points of interest in these data. First, the data in the low flow region show reasonably good agreement with the data from tests 3, 4 and 5, as can be seen by comparing Fig. 59 and 56. This agreement appears to hold up to a flow of approximately 1.50×10^{-2} M/s (240 gpm) which is 3% above the design flow. The data at higher flows show a continual decrease in head until at the highest flow the head is actually 20% below its scaled value from tests 3, 4, and 5. This characteristic is typical of cavitation induced head loss, and these results are discussed further in the section below entitled Suction Performance.

A third point of interest in the data of Fig. 59 is the presence of three data points in the flow range of 1.45 to $1.52 \times 10^{-5} M^3/s$ (225 to 236 gpm) that are near or below the curve fit of the previous test series data. These three points were from the beginning of test 6 and were obtained at a test speed near 3141 rad/s (30,000 rpm). Figure 59 had shown that data from this speed range actually scaled to a higher head rise, and these 3 points reflect some of the inaccuracy associated with the calibration problems that occurred on this test. These data would agree with the results of tests 3, 4, and 5 if the flow were actually higher than the measured value. If the calibration problem has resulted in a flow error that is more prominent in the beginning of the test (when the 3141 rad/s (30,000 rpm) data and high flow data were obtained) but is essentially zero at the end of the test, the apparent cavitation fall off could actually by occurring at higher flows than the measured value shown in the figure. However, there is no way to verify this other than retesting.


Figure 60 and 61 present results for test 6 that compare with Fig. 57 and 58 for tests 3, 4 and 5. The same observations made with regard to Fig. 59 would, of course, also apply to these two figures.

In conclusion, the head rise of the tested pump is higher than the previous pump by about 6% as long as a noncavitating flow condition exists. However, the present pump appears to be more sensitive to cavitation. This will be discussed more fully below.

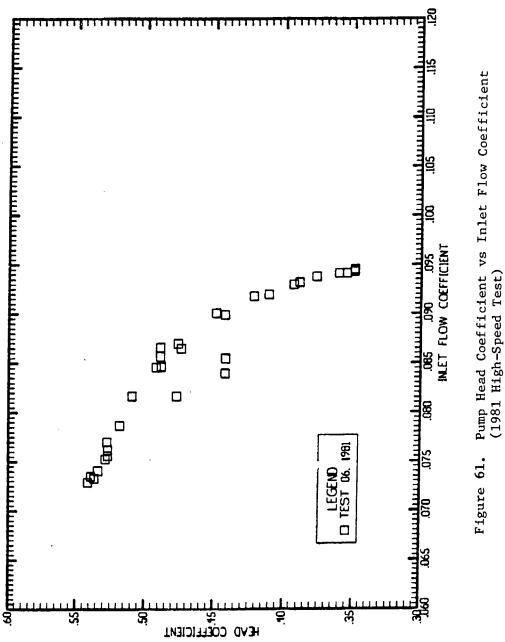
Pump Efficiency. The efficiency of the pump can be determined in two ways:


- Using the measured pressure and temperature at the pump inlet and discharges, the pump isentropic efficiency can be calculated
- 2. Using the calibration curve for the turbine efficiency and the turbine inlet available energy, the pump efficiency can be derived from the calculated input power and measured output power

Of the two approaches, the first has generally been shown to have less data scatter and to provide a more reliable measurement. Both approaches were used to reduce the data from the current tests, and both results are presented below.

į

Figure 59. Pump Head-Flow Curve Scaled From 1981 High-Speed Test



9.23

ł

いきょうけい

● そうかいたいからないが、 「「」」というないがない。 しいしていたいかい しょうしゅう しゅうしゅう しゅうしゅう しゅうかい しょうかい しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう

:

and the second s

.

6.

۲-

The isontropic efficiency for tests 3, 4, and 5 is shown in Fig. 62. Tests 3 and 4 show good agreement, both with each other and with the 3141 rad/s (30,000 rpm) data from the 1978 test series.

The efficiency for test 5 is clearly lower by approximately 5 points out of 63, or 8% lower. Before test 5, some orifice size changes made to the balance pistom flow overboard dump lines to purposely reduce the sump pressure and increase the axial thrust range of the balance piston. These changes also cause a substantial increase in the flowrate through the balance piston. Using the measured overhoard flow and the measured flow through the pump bearing from test 2, 4, and 5 (the bearing flow measurement was not correct on test 3), the ratio of balance piston flow to pump delivered flow can be calculated. The average values for these tests are shown in Table 10.

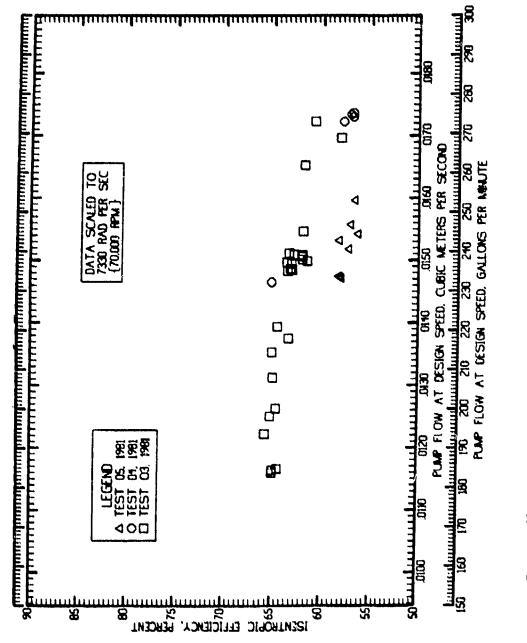
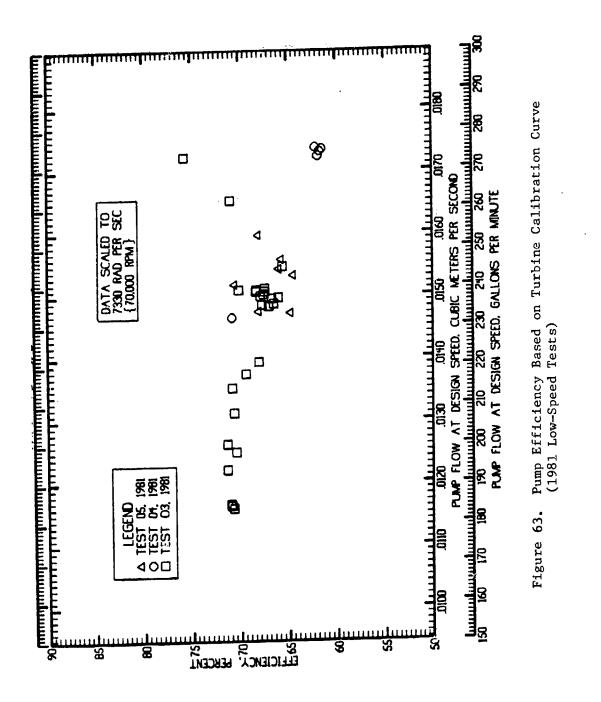

TEST	NO. SLICES	AVERAGE FLOW RATIO (%)
2	2	11.8
4	5	10.8
5	7	20.1

TABLE 16. AVERAGE PISTON BALANCE FLOW AS A PERCENT OF THROUGH FLOW N#3141 RAD/S (30,000 RPM)

The results show that the balance piston thow actually increased by 8 to 9% of the throughtlow for test 5. Because the balance piston flow is a parasitie flow loss, such an increase would result in an 8 to 9% loss in efficiency and, indeed, an 8% drop was experienced. It should also be noted that the magnitude of the flow ratio presented in Table 16 is large as compared with most rocket engine pumps which are generally much larger in size. One of the main reasons it is difficult to achieve the higher efficiencies for a small low-flow pump is that clearances between rotating seals cannot generally be scaled down proportional to the pump diameter and the leakage flows become a much larger percentage of the throughtlow.

Figure 63 presents the efficiency for the same three tests using the drive horsepower from the furbine based on turbine efficiency from calibration tests. The efficiency is seen to be higher for this approach but with more scatter and without a distinct difference between test 5 and the other two tests. (This is approach 2 presented above). It is believed that the calibration curve for the furbine is actually too low in efficiency, based on the test data from the curront test series which unduly penalizes the turbine and makes the pump look more efficient than it actually is.

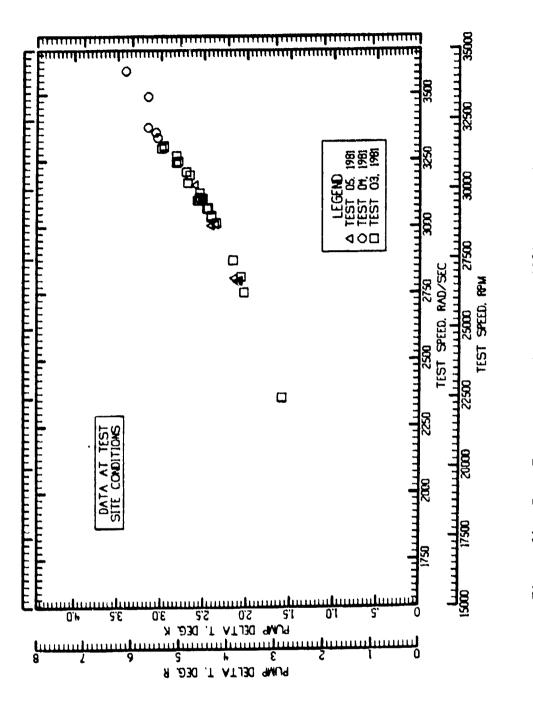
At low speeds, the temperature rise from the pump inlet to the pump exit is very small, as shown in Fig. 64. Any instrumentation errors in the temperature measurements will cause a large error in the isentropic horsepower calibration at low speed. Any instrumentation errors at high speed will cause less error in the isentropic horsepower calculation because of the higher temperature rise at those speeds.


「日本書」と言いいため、いけ

En alla

and the second

よいからの 気法を進き 変換する おうろ


Pump Isentropic Efficiency Based on 1981 Low-Speed Tests Figure 62.

ORIGINAL PAGE IS OF POOR QUALITY

ł

104

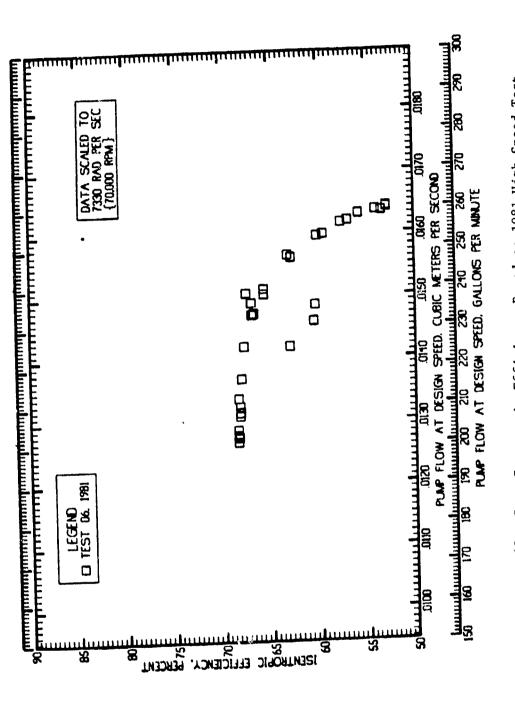
Carlos 184

į

Ì

Figure 64. Pump Temperature Rise During 1981 Low-Speed Tests

Therefore, more confidence can be placed upon the data at speeds near 7330 rad/s (70,000 rpm). The isentropic officiency calculated from the measured parameters at high speeds (test_6) are presented in Fig. 65. Note that the three points between 1.46 x 10^{-2} M³/s (226 gpm) and 1.518 x 10^{-2} M³/s (235 gpm) that are below the data trend are the three data points obtained at the beginning of the test near the 3141 rad/s (30,000 rpm) operating speed. The data at or below the design flow are consistent with the data previously obtained near 7330 rad/s (70,000 rpm), and the efficiencies achieved are considered to be very good for this size pump. The peak efficiency is over 68% at the lower flows, and the efficiency at the design point is over 67%. The design point efficiency had been predicted at 70% with the peak efficiency occurring at the design flow. However, previous tests had shown the same deviations from the predicted values as observed for the current test series. The data suggest that at least one element of the pump (i.e., either the inducer, impeller, vaned diffuser, or volute) is undersized so it matches better with the lower flow. Based on the loss coefficients for these elements (Ref. 1) the diffuser losses are predominant, making it more suspect as the cause of the lower design point efficiency. Also, the diffuser was designed structurally to withstand very large tensile stresses due to the high volute pressures attempting to separate the volute. Thus, the blade blockage for the diffuser is relatively large. However, more extensive studies would have to be conducted to try to identify the actual cause of the peak efficiency occurring at a lower flow.


The temperature rise through the pump for the higher speed operation is shown in Fig. 66. The temperature rise is approximately 6 times as high at the higher speed providing much better data accuracy such that the isentropic efficiency based on test 6 is believed to be a much more accurate value. The falloff of efficiency at the higher flows is due to the same phenomenon as caused the head falloff presented in previous figures. The efficiency for test 6 based on the turbine calibration is shown in Fig. 67. Again, the results are higher than for the isentropic efficiency and, in fact, are obviously too high, exceeding 84%. Thus, the isentropic efficiency is still believed to be a better value.

The head and efficiency data can be used to generate the power curve for the pump. The results are shown in Fig. 69 for tests 3, 4, and 5 and in Fig. 69 for test 6. This power is defined as the pump input horsepower

h_i, ≖ ∧H ŵ/(550 ŋ)

where AH is the head rise, $\dot{\omega}$ the weight flowrate, and η is the pump efficiency. The most representative results are the values from test 6 at or below design flow based on the accuracy arguments presented above.

Inducer Static Pressure Rise. One of the special parameters measured during the test series is the inducer discharge static pressure. The measurement is intended to provide an evaluation of inducer performance to permit identification of any potential inducer problem. It also identifies the downstream pressure boundary condition for analyzing the balance piston recirculating flow, because the balance piston flow that does not pass through the bearings is dumped back into the flowstream between the inducer discharge and impeller inlet. (even the bearing flow can be routed to return to this same dump location.)

2

ï

Pump Isentropic Efficiency Based on 1981 High-Speed Test Figure 65.

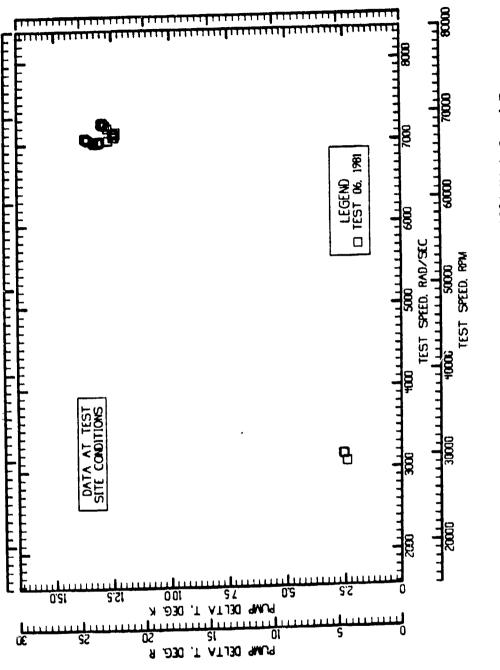
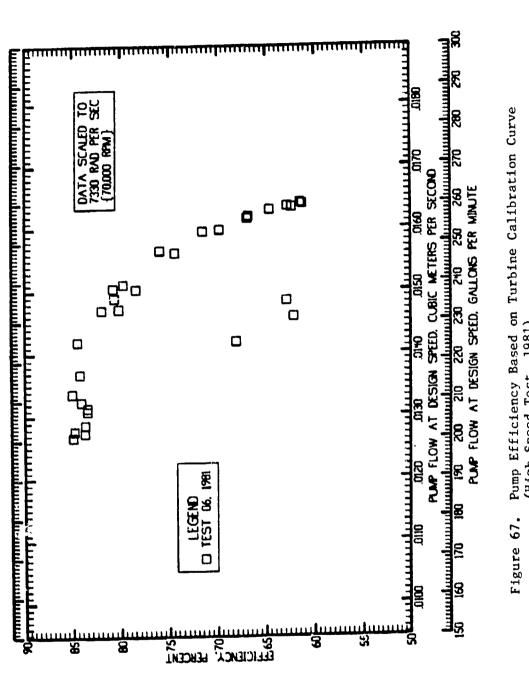



Figure 66. Pump Temperature Rise During 1981 High-Speed Test

108

こうちょうない たいていまい というちまち たいできょうない やちょうちょう

ŀ

「日本のないない」という ろうち の

1.2.1.2.1.

(High-Speed Test, 1981)

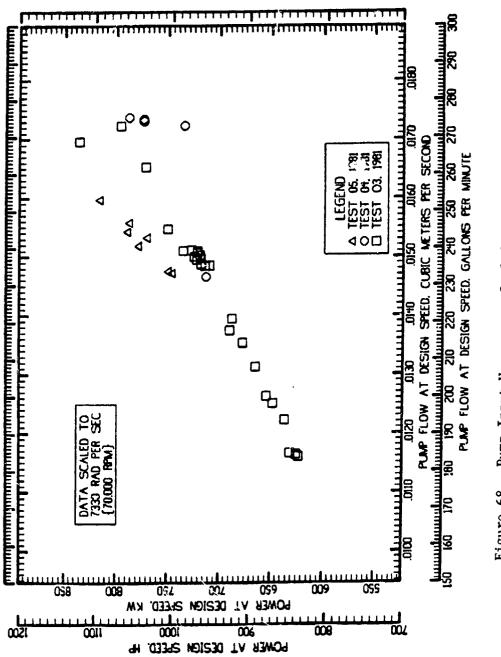
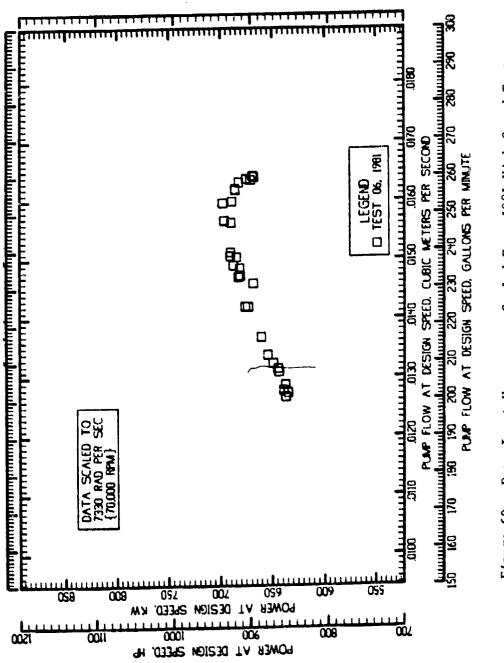


Figure 68. Pump Input Horsepower Scaled From 1981 Low-Speed Tests


110

ガリートたいたちのいい

North You

Ì

歐

f

÷.

Figure 69. Pump Input Horsepower Scaled From 1981 High-Speed Tests

During the 1977 and 1978 test series, this measurement was located flush with the wall at the tip of the inducer. Thus, it was intended to measure the tip static pressure at the inducer discharge. The test had shown this pressure to be significantly lower than the predicted value (Ref. 2). It was pointed out at the time that the low value could be due either to a faulty measurement of a hydrodynamic deficiency, and if the latter were the case, it could seriously affect the suction performance of the impeller.

In the current test series the measurement location was moved to the area where the front wear ring flow dumps into the impeller inlet as shown in the sketch of Fig. 70. This measurement position provides a more direct measurement of the dump pressure for the balance piston recirculating flow, but it is not as accurate for the inducer discharge pressure because any vortex gradient occurring in the fluid between the measurement and the inducer tip will result in a pressure differential between these two locations. ٩

The inducer static pressure rise for tests 3, 4, and 5 and for test 6 are shown in Fig. 71 and 72, respectively. In both cases the data have been scaled to 7330 rad/s (70,000 rpm) so they can be compared to each other. The pressure rise is defined as the measured discharge static pressure minus the measured pump inlet static pressure. In comparing the results of Fig. 71 with those of Fig. 72, it can be seen that the data are only in fair agreement with the higher speed data giving almost 9% higher pressure rise until the drop in pressure above design flow is experienced. This is caused in part by the recirculation of the balance piston flow on the high speed test. Comparison of the pressure rise from either Fig. 71 or 72 with the measurement from the 1978 test series (Ref. 1) shows that the current measurement is significantly higher. The 1978 series data indicated a pressure rise of only 2088 N/M^2 (303 psi) at design flow and 7380 rad/s (70,000 rpm) based on the high speed data and only 271 psi at the same conditions based on low speed data. The data from Fig. 71 and 72 show a pressure rise of 4.350 N/M² (631 psi) and 4.736 N/m² (687 psi), respectively, at the design flow and 7330 rad/s (70,000 rpm). In fact, the values presented in Fig. 71 and 72 actually exceed the design pressure rise which was 3.612 N/m^2 (524 psi) at design flow and 7330 rad/s (70,000 rpm). Thus, the existence of a pumping gradient between the measurement location and the inducer tip is certainly indicated as would be expected.

Assuming that the front wear ring flow has a tangential velocity that is 1/2the wheel speed and that this velocity relationship is preserved downstream of the wear ring, the pressure gradient between the measurement and inducer tip can be calculated. Using a LOX density of 1121 Kg/m³ (70 lb/ft³) and a speed of 7330 rad/s (70,000 rpm), this pressure gradient would actually have a magnitude of 2.00 N/m² (290 psi). Subtracting this value from the 4.74 N/m² (687 psi) measured pressure rise of Fig. 72 gives a resultant of 2.74 N/m^2 (397 psi). This latter value is closer to but higher than the previous measured values of the 1978 test series. If the fluid swirl in this region were at only 40% of wheel speed (K = 0.40), the pressure gradient would have a magnitude of only 1.28 N/m^2 (186 psi) and the resulting inducer static pressure rise would be 3.45 N/m^2 (501 psi) at design flow which is within approximately 4% of the design value. With the expected leakage flows of the front wear ring, a fluid swirl of only 40% of wheel speed, or even lower, is certainly possible as has been shown in numerous studies where the flow coefficient was increased for flow between a rotating and stationary disk.

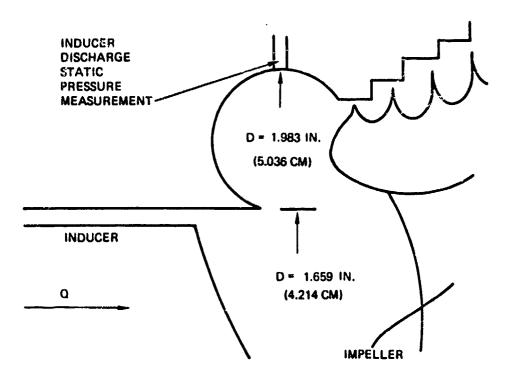
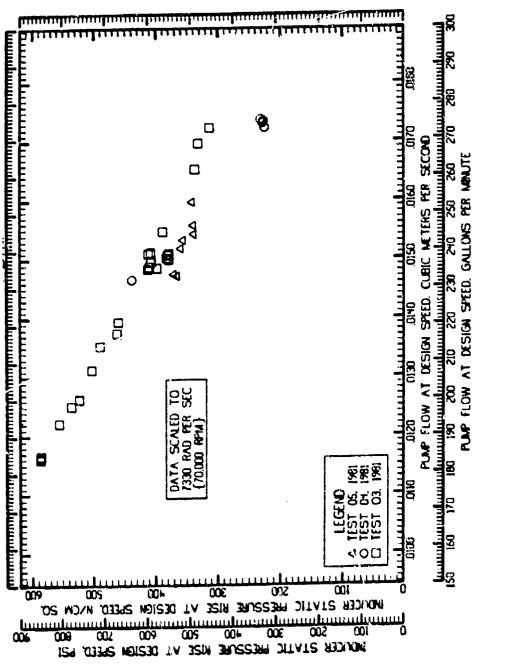
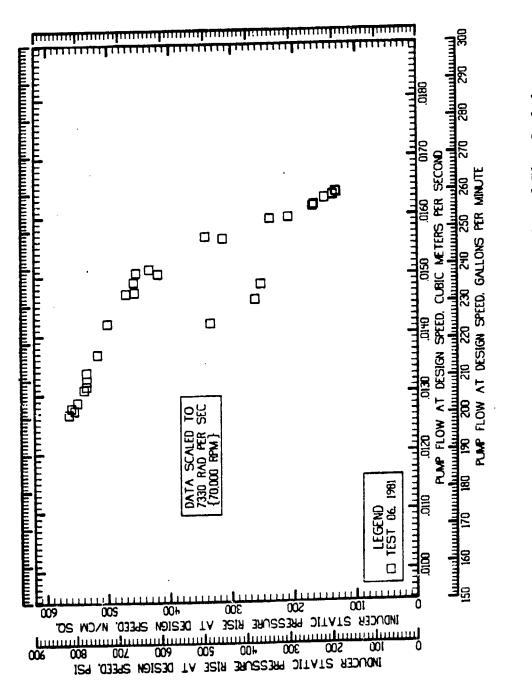



Figure 70. Inducer Discharge Static Pressure Measurement

Also, the test data during test 6 at high test speed show a minimum inducer static pressure rise at high flowrate of only 1.33 N/m^2 (193 psi) (scaled to 7330 rad/s (70,000 rpm). Thus, the pumping gradient is not likely to exceed this value unless a low density exists in this pocket. Thus, the current measurements indicate that the static pressure rise approaches and could very well agree with the predicted pressure rise value, but the exact magnitude of the pressure cannot be determined with the available data.

Another interesting observation from test 17 is that the inducer static pressure rise for test 5 is obviously lower than the data for tests 3 and 4. However, it was previously pointed out that the balance piston flow was higher for test 5 by some 1.26 x $10^{-3}m^3/s$ (20 gpm). Thus, the inducer flow is higher by that magnitude, but Fig. 71 and 72 are plotted as a function of delivered flow rather than inducer flow. If the test 5 data in Fig. 71 were moved horizontally to a flow that is $1.26 \times 10^{-3}m^3/s$ (20 gpm) higher they would show excellent agreement with the data for tests 3 and 4.


The data at high test speed from Fig. 72 show the same significant decrease in pressure rise at approximately 3% above design flow as was observed in both the overall pump head and efficiency. This is extremely important because if the falloff is due to cavitation, as it appears to be, it is important to know if the eavitation problem originates in the inducer or in the impeller. The data of Fig. 72 definitely show that something is occurring in the inducer.

Inducer Static Pressure Rise as a Function of Flow Scaled From 1981 Low-Speed Tests Figure 71.

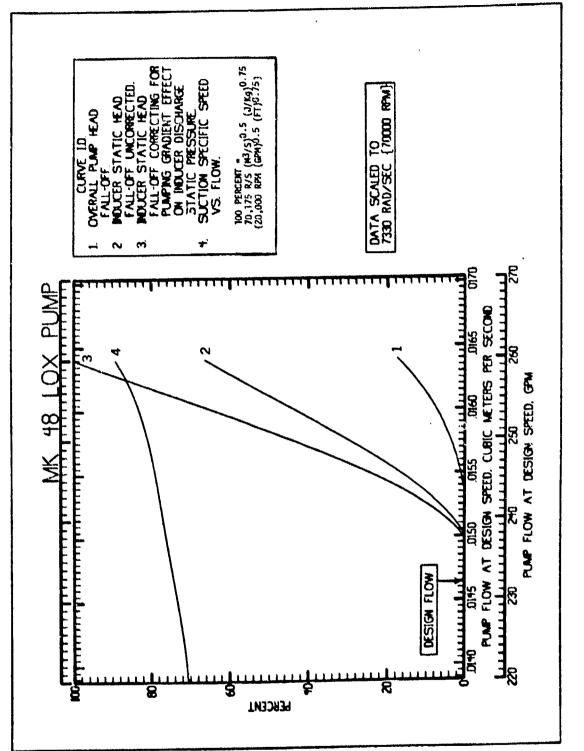
114

N. A.

Inducer Static Pressure Rise as a Function of Flow Scaled From 1981 High-Speed Test Figure 72.

Such a significant dropoff could certainly trigger impeller cavitation, but the inducer is at least experiencing its own problem. This problem is discussed further in the following section.

Suction Performance. It was intended for cavitation tests to be performed at selected flows during the current test series to quantitize the suction performance over the flow range. However, test time limitations did not permit these tests to be performed. Nevertheless, the data from the last test at high speed have shewn indications of head loss due to cavitation. This effect has been noticed and referred to with regard to Fig. 59, 60, 61, 65, 68, 69, and 72. It has been pointed out that the head falloff is occurring in both the inducer and overall pump. It is of interest to investigate the cavitation related data and attempt to identify the specific cause of the head falloff.


The data from the overall pump and for the inducer pressure rise have been analyzed to calculate the percent of head falloff as a function of flowrate. The results were very interesting and are shown in Fig. 73. The figure contains four curves which are identified as follows:

- The percent head falloff of the overall pump as a function of flow (curve 1)
- 2. The percent failoff of the static head rise of the inducer vs flow without any correction to the inducer discharge static pressure measurement (curve 2)
- 3. The percent falloff of the static head of the inducer vs flow using a correction of 1.28 N/m^2 (186 psi) (corresponding to k = 0.40 at 7330 rad/s (70,000 rpm)) to represent the pumping gradient between the inducer tip and the static pressure measurement downstream of the inducer.
- 4. Inducer suction specific speed based on inducer inlet pressure vs flow for the high speed test data portion of test 6.

The curves show that the inducer head starts to fall off at a lower flow than the overall pump. Secondly, assuming that the corrected curve 3 is the most representative of the inducer behavior, the inducer static head has fallen by 23% by the time the pump head falloff is 1%. (It should be pointed out that the inducer static head falloff will occur at a faster rate than the inducer total head falloft). Note also that at the highest flow, the inducer static head falloff is almost 100%. Thus, it is apparent that the inducer falloff is the first to occur, and it is probably the primary cause of the falloff of the pump head.

Examining the suction specific speed curve of Fig. 73 shows that the inducer head begins to falloff at a suction specific speed of approximately 15,000 for a flow about 3% above design flow. At the design flow, the predicted suction specific speed was approximately $105260 \{ rad/s(m^3/s) 1/2/(J/Kg) 3/4 \}$ (30,000 (rpm)(gpm) $1/2/(tt-lbt/lbm)^{3/4}$), and previous designs of large size have been able to achieve the higher suction performance.

116

Ņ

Head Falloff Due to Cavitation and Suction Specific Speed (Test 6, 1981) Figure 73.

The Mark 48 inducer is smaller ($D_t = 1.65$ in.) than previous designs and this could impact the suction performance because blockage due to fillets, boundary layers, etc. is much more severe percentage-wise. However, it is believed that a design exceeding 52,631 {(rad/s)(m³/s)^{1/2}/(J/Kg)^{3/4}}{15000 (rpm)(gpm)^{1/2}/(ft-lbf/lbm)^{3/4}} suction specific speed is achievable in this size range.

There is one other potential explanation of the head falloff. During test 6, a portion of the design flow was recirculated to the eye of the impeller. This flow has experienced some temperature increase in passing through the pump, the balance piston, and the recirculation line. If this flow is vaporizing, creating a twophase flow condition entering the eye of the impeller, it could impact both the pressure reading and the impeller cavitation characteristics. To attempt to verify one of these potential explanations as the cause of the problem, data from previous test series on the Mark 48 pump were examined, specifically data from the test series in 1977 and 1978. The 1978 test series never reached a suction specific speed as high as $52631\{(rad/s)(m^3/s)^{1/2}/(J/Kg)^{3/4}\}$ (15000 (rpm) $(gpm)^{1/2}/(ft-lbf/lbm)^{3/4})$, the maximum value being 47368 rad/s(m³/s)^{1/2}/(J/Kg)^{3/4} (13,500 (rpm)(gpm)^{1/2}/(ft-lbf/lbm)^{3/4} at a flow below the design flow. Test 4 of the 1977 series reached 54035 (rad/s)(m³/s)^{1/2}/(J/Kg)^{3/4}{15400 (rpm)(gpm)^{1/2}/ $(ft-lbf/lbm)^{3/4}$ suction specific speed but at a flow below the design flow, and it showed no indication of cavitation falloff. Test 5 of the 1977 test series was the one that experienced the LOX fire, but it did operate according to the data at high suction specific speed values (between 70175 and 84210 (rad/s) $(m^3/s)^{1/2}/(J/Kg)^{3/4}$ {20,000 and 24,000 (rpm)(gpm)^{1/2}/(ft-lbf/lbm)^{3/4}}. These data did indicate that head falloff was occurring but not as dramatically as for the current data. However, it is not clear what impact the fire incident had on the recorded data. Thus, examination of previous test data does not clarify the cause of the head falloff.

Balance Piston System Performance Evaluation

Balance Piston Performance. In 1979, the analytical model of the balance piston predicted balance piston operation to have large margins for flows at or below design flow but a margin of only 17% of the force range (13% with the high pressure orifice open) at a high flow coefficient (20% above design). These analyses are given in Table 17. To provide additional safety margin, it was decided to perform initial tests in the current series with an overboard bleed to help keep the sump pressure for the balance piston at a low value. The initial tests with the lower speed actually showed a much better axial thrust control using the measured pressures for impeller discharge, balance piston, and balance piston sump than had been predicted. However, it was also noted that the impeller discharge and inlet static pressures were much higher than had been used in the axial thrust model. The previous values used in the analytical model were based on pressure measurements from previous test series, but these measurements had been subject to error, particularly the impeller discharge pressure which read low due to leakage from the measurement transfer tube as it crossed flange interfaces.

TABLE 17. MARK 48 LOX PUMP PARAMETER STUDY SPIRAL GROOVE SEAL (70,000 RPM UNLESS NOTED) ENGLISH UNIT (SI UNITS)

. .

お大時日

н н f

.

••••

۲

.

÷

•

BYPASS DISCHARGE TEMPERATUE DEGREES, R (K)	207.8 (115.4)	207.5 (115.3)	207.4 (115.2)	207.5 (115.3)	207.7 (115.4)	207.4 (115.2)	207.5 (115.3)	207.7 (115.4)	207.8 (115.4)	207.7 (115.4)	182.8 (101.6)	221.3 (122.9)	212.4 (118.0)	216.4 (120.3)	207.8 (115.4)	207.1	209.1 (116.2)	206.0 (114.4)
BYPASS BYPASS DISCHARGE SPECIFIC WEIGHT, LB/FT3 (KG/M ³)	63.2 (1012)	63.3 (1014)	63.3 (1014)	63.3 (1014)	63.2 (1012)	63.3 (1014)	63.3 (1014)	63.2 (1012)	63.0 (1009)	63.8 (1022)	67.7 (1084)	60.2 (964 <u>)</u>	62.2 (996)	61.3 (982)	63.2 (1012)	63.4 (1016)	63.4 (1016)	63.3 (1014)
BYPASS BYPASS FLOM, LB/SEC (KG/SEC)	3.30 (1.50)	3.51 (1.59)	3.61 (1.64)	3.53 (1.60)	3.40 (1.54)	3.59 (1.63)	3.52 (1.60)	3.39 (1.54)	-3.58 (1.62)	2.66 (1.21)	0.61 (0.28)	3.31 (1.50)	3.31 (1.50)	3.30 (1.50)	3.01 (1.37)	3.00 (1.36)	3.75 (1.70)	2.61 (1.18)
FORCE BORCE MINIMUM BALANCE PISTON FOURCE POURDS (N)	4507 (20047)	4977 (22138)	5436 (24179)	5260 (23396)	4965 (22084)	5377 (23917)	5202 (23138)	4 908 (21831)	5004 (22257)	3078 (13691)	187 (832)	47 37 (21070)	4567 (20314)	4543 (20207)	4483 (19940)	3693 (16426)	6154 (27373)	2442 (10862)
BALANCE PISTON PERCENT FORCE RANGE	45.4 (45.4)	45.5 (45.5)	49.6 (49.6)	49.8 (49.8)	50.0 (50.0)	49.1 (49.1)	49.2 (49.2)	49.4 (49.4)	48.0 (48.0)	37.7 (37.7)	18.0 (18.0)	46.6 (46.6)	45.7 (45.7)	45.6 (45.6)	45.1 (45.1)	42.6 (42.6)	51.4 (51.4)	38.4 (38.4)
BALANCE PISTON PERCENT POSITION,	30.5 (30.5)	30.8 (30.8)	32.8 (32.8)	32.7 (32.7)	32.7 (32.7)	32.5 (32.5)	32.5 (32.5)	32.5 (32.5)	31.6 (31.6)	27.2 (27.2)	18.0 (18.0)	30.2 (30.2)	30.4 (30.4	30.6 (30.6)	30.7 (30.7)	29.3 (29.3)	33.4 (33.4)	27.0 (27.0)
BALANCE PISTON RANGE, POUNDS (N)	9931 (44173)	10950 (48706)	10950 (48706)	10568 (47006)	9931 (44173)	10950 (48706)	10568 (47006)	931 (44173)	10435 (46415)	8673 (38578)	1035 (4603)	10165 (45214)	9993 (44449)	9963 (44315)	9933 (44 182)	10660 (47416)	1197 4 (53260)	6365 (28311)
BEARING △P. PSI (N/CM ³)	39.9 (27.5)	41.2 (28.4)	41.8 (28.8)	41.3 (28.5)	4 0.5 (27.9)	4 1.7 (28.8)	41.2 (28.4)	40.4 (27.9)	32.9 (22.7)	53. 4 (36.8)	9.5 (6.6)	36.7 (25.3)	39.0 (26.9)	37.9 (26.1)	58.1 (40.1)	33. 4 (26.5)	4 6.7 (32.2)	24.3 (16.8)
BEARING U/S U/S SPECIFIC WEIGHT, LB/FT ³	63.3 (1014)	63.4 (1016)	63.4 (1016)	63.4 (1016)	63.3 (1014)	63.4 (1016)	63. 4 (1016)	63.3 (1014)	63.1 (1011)	63.8 (1022)	6 ⁷ .7 (1084)	60.3 (966)	62.3 (998)	61.4 (984)	63.2 (1012)	63.4 (1015)	63.2 (1012)	63.3 (1014)
BEARING U/S TEMPERATURE DEGREE. R (K)	208.0 (115.6)	207.7 (115.4)	267.5 (115.3)	207.6 (115.3)	207.8 (115.4)	207.6 (115.3)	207.7 (115.4)	207.8 (115.4)	208.0 (115.6)	207.9 (115.5)	182.8 (101.6)	221.6 (123.1)	212.6 (118.1)	216.8 (120.4)	208.0 (115.6)	207.3 (115.2)	209.3 (116.3)	206.2 (114.6)
BEARING U/S PRESSURE, PSIA (N/CM ²)	493 (340)	513 (354)	522 (360)	515 (355)	502 (346)	521 (359)	514 (354)	501 (345)	391 (270)	757 (522)	139 (96)	506 (349)	497 (343)	500 (345)	4 67 (322)	466 (321)	618 (426)	295 (203)
BCARING. FLON. LB/SEC (KG/SEC)	0.78 (0.35)	0.80 (0.36)	0.81 (0.37)	0.81 (0.37)	0.79 (0.36)	0.81 (0.37)	0.80 (0.36)	0.79 (0.36)	0.65 (0.29)	1.03 (0.47)	0.41 (0.19)	0.72 (0.33)	0.76 (0.34)	0.74 (0.34)	1.11 (0.50)	0.75		0.48 (0.22)
	(II) 5	(¥2)	(BA) UD	(6A)	(3A) UD	(9A) UC	(5A)	(2A) 00	(12N)	(N11) ((10A)	(15A)	(16A)	(12)	H (C8)	(010)	(t))	(כוה)
DESCRIPTION	BASELINE (BALANCE PISTON K = 0.3, FRONT SHROUD K = 0.1	BALANCE PISTON K = 0.1	BALANCE PISTON (BA) K = 0.1, FRONT SHROUD K = 0.1	BALANCE PISTON (6A) K = C.2, FRONT SHROUD K = 0.1	BALANCE PISTON K = 0.3, FRONT SHROUD K = 0.1	BALANCE PISTON K = 0.1, FRONT SHROUD K = 0.2	BALANCE PISTON K = 5.2, FRONT SHROUD K = 0.2	BALANCE PISTON K = 0.3, FRONT SHROUD K = 0.2	SUMP PRESSURE = 450 (12A) PSIA	SUMP PRESSURE = 750 (11A) PSIA	30,000 RPM, 120% Q/N, BALANCE PISTON K = 0.3	INCREASE BALANCE PISTON HEATING (4X)	INCREASED BALANCE PISTON HEATING (2X)	T ₁ INCREASE 10 R	INCREASED LABYRINTH CLOSURE 50%	IT HEAD LOSS. CAVITATION	Q/N = 0.7 DESIGN	Q/N = 120% DESIGN
CASE NO.	-	2	m	4	ۍ ۱	v	r.	۵ ೧	<u>о</u> ,	õ	7	12	13	2	15	91	17	18

Using the pressures as measured in the current test effort in the analytical model resulted in excellent agreement with the test data and a prediction of comfortable margins for axial thrust control at all flows at a speed of 3141 rad/s (30,000 rpm).

During the initial tests in this series, there was evidence that the overboard drain line was choking causing a high back pressure for the balance piston sump. Modifications were made to the overboard drain line to decrease the line resistance by enlarging the flow control orifice while retaining the flow measurement orifice. This was done to ensure that test 6, which ran to higher speeds, was performed with the flow from the balance piston free to flow either overboard or recirculate into the eye of the impeller. A schematic of this flow path is shown in Fig. 74. The measured parameters include the balance piston sump pressure, inducer discharge pressure, overboard flow (ω_3), and bearing flow ($\dot{\omega}_2$). These data together with the analytical model of Ref. 2 are sufficient to calculate the resistance and flow through the recirculation line ($\dot{\omega}_4$) which also permits calibration of the balance piston flow ($\dot{\omega}_1$).

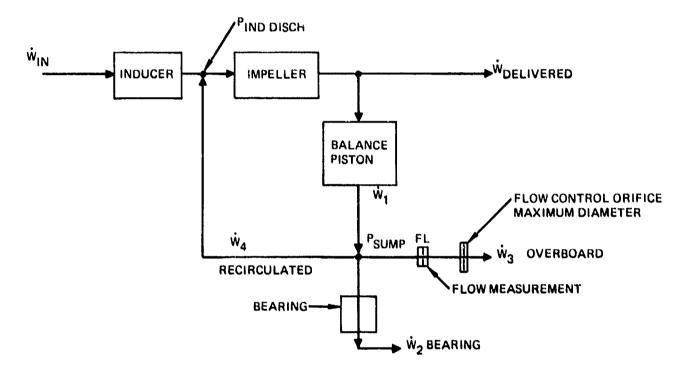


Figure 74. Flow Schematic Representative of Test 6

The model does not include a separate flow path for both overboard flow and recirculation flow. Therefore, the procedure used was as follows:

1. Permit the overboard flow (δ_3) and the bearing flow (δ_2) to both exit through the bearing flowpath by empirically decreasing the resistance in the analytical model until the calculated flow agrees with the sum of the test flows

2. Adjust the resistance in the recirculation line until the correct balance piston sump pressure occurs simultaneously with the correct flow through the bearing

Since there are two measured values being matched (sump pressure and $\dot{\omega}_2$ plus $\dot{\omega}_3$) and two resistances being adjusted, a unique solution can be obtained at each flow. This procedure was adopted for three data points from test 6, and an average resistance for the recirculation line was calculated. Table 18 shows the resulting values of the analytical model compared with the test data.

Having empirically anchored the analytical model, and particularly the recirculation line resistance, the model can be analyzed eliminating the overboard dump to simulate the mode of operation with recirculation of all of flow except that going through the bearing. For this calculation the resistance of flow passing through the bearing and overboard was returned to its original design value because this resistance was verified to be accurate by the data. The results of this analysis are shown in Table 19, along with the predicted balance piston axial thrust results.

Figure 75 to 77 show the axial thrust force curve for the three operating points of Tables 18 and 19. The figures each contain two curves; the solid curve representing the mode of operation as used on Test 6, and the dashed curve showing the recirculation-only mode. The point where the axial thrust is balanced is shown on each curve, and both the table data and the curves show a very satisfactory operation of the balance piston over the full range of flow tested.

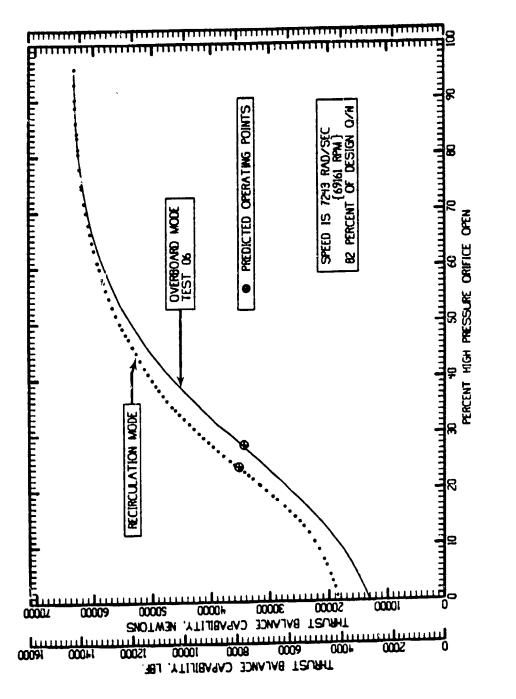
In fact, there is no indication that the balance piston ever approached its limits of axial thrust range during the test, nor would it with a recirculationonly mode. Figure 78 shows the primary pressure parameters that reflect the behavior of the balance piston, and even during the portion of the test when large pressure falloff was experienced due to cavitation, the pressures all responded in a relative manner that indicates only a small shift in the balance piston. To verify this the balance piston parameter Γ was calculated where:

$$\Gamma = (P_{BP-1} - P_{SUMP})/(P_{1MP} - P_{SUMP})$$

where P_{BP-1} is the number 1 balance piston pressure, P_{SUMP} is the sump pressure, and P_{IMP} is the impeller discharge static pressure. If Γ approaches zero, the high pressure orifice is approaching a closed position. Similarly, if Γ approaches a value of one, the low pressure orifice is approaching closed. The most desirable value would be Γ approximately equal to 0.5. During test 6, including the cavitating part of the operation, Γ only varied from a value of 0.40 to 0.365 from one extreme of flow to the other. This is strong evidence that the balance piston was fully operational and able to handle all of the imposed loads with margin to spare throughout the test. Evaluation of the bearings after test indicated no large axial loads had occurred on the bearings during turbopump operation.

TEST 006 BALANCE PISTON FLOW CALCULATIONS ENGLISH UNITS (S.I. UNITS) TABLE 18.

a F


ł

i

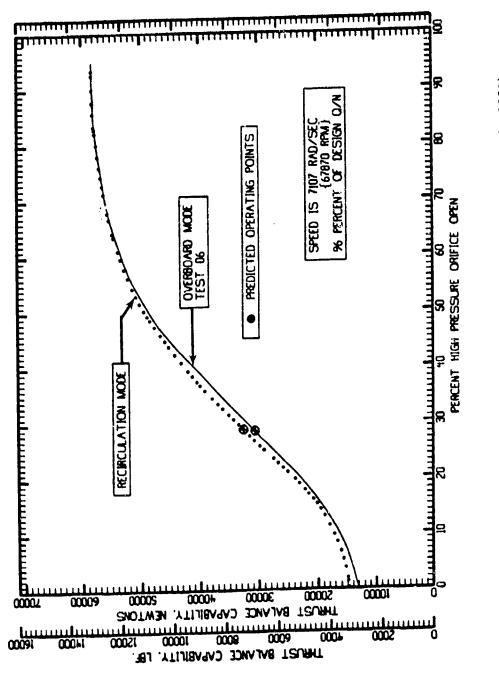
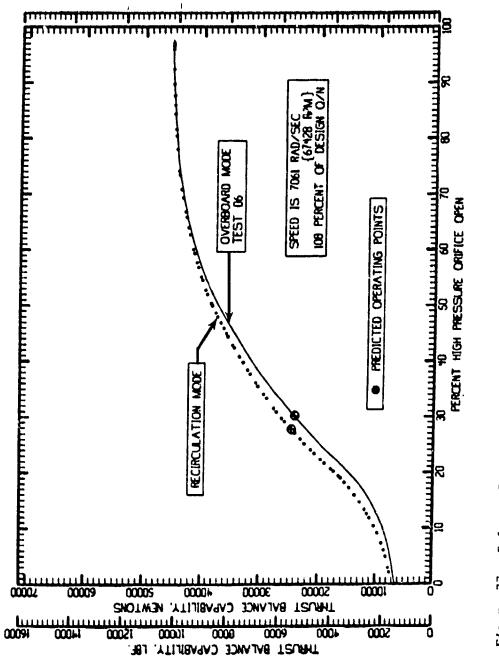

	·····		
RECIRCULATION FLOW. LB/SEC (KG/SEC)	0.17 (0.077)	0.70 (0.318)	1.73 (0.785)
^ښ 2 + شع LB/SEC (KG/SEC)	4.3 (1.950)	3.76 (1.706)	2.34 (1.061)
BALANCE PISTON FLOW, úl LB/SEC (KG/SEC)	4.4 7 (2.028)	4.46 (2.023)	4.07 (1.846)
SUMP PRESSURE, PSIA (N/CM ²)	971 (670)	768 (529)	4 18 (288)
ŵ2 + ŵ3, LB/SEC (KG/SEC)	4.3 (1.951)	3.78 (1.715)	2.42 (1.098)
BEARING FLOW, LB/SEC (KG/SEC)	0.713 (0.323)	0.741 (0.336)	0.600 (0.272)
OVBD FLOW. LB/SEC (KG/SEC)	3.588 (1.628)	3.04 (1.379)	1.82 (0.826)
SUMP SUMP PSIA (N/CM ²)	940 (648)	760 (524)	4 20 (290)
PERCENT DESIGN FLOW	82 (82)	96 (96)	108 (108)
DATA SLICE NO.	32	<u>م</u>	16

TABLE 19. PREDICTED BALANCE PISTON FLOW AND AXIALTHRUST CONTROL RECIRCULATION MODE OF OPERATIONENGLISH UNITS (S.I. UNITS)


		dWIS	dWI	REARING	RECTRUIT ATTON	BALANCE	BALANCE PISTON PERFORMANCE	ANCE
PERCENT DESIGN, Q/N	SPEED, RPM	PRESSURE, PSIA (N/CM ²)	PR)	FLOW, LB/SEC (KG/SEC)	FLOW, LB/SEC (KG/SEC)	FLOW, LB/SEC (KG/SEC)	HIGH PRESSURE ORIFICE OPEN, %	FORCE RANGE, %
82	69 ,1 60	1531	169	1.50	2.86	4.36	24.2	39.2
	(69,160)	(1056)	(117)	(0.680)	(1.297)	(1.977)	(24.2)	(39.2)
96	67 , 870	904	140	1.10	3.17	4.27	28.5	40.5
	(67.870)	(623)	(97)	(0.499)	(1.438)	(1.937)	(28.5)	(40.5)
108	67,430	646	117	0.87	2.89	3.76	27.6	44.8
	(67.430)	(445)	(81)	(0.395)	(1.311)	(1.706)	(27.6)	(44.8)

Balance Piston Performance Near Design Flow (During Test 6, 1981) Figure 76.

果たい ちょういちょうぶ

Balance Piston Performance at High Flow (During Test 6, 1981) Figure 77.

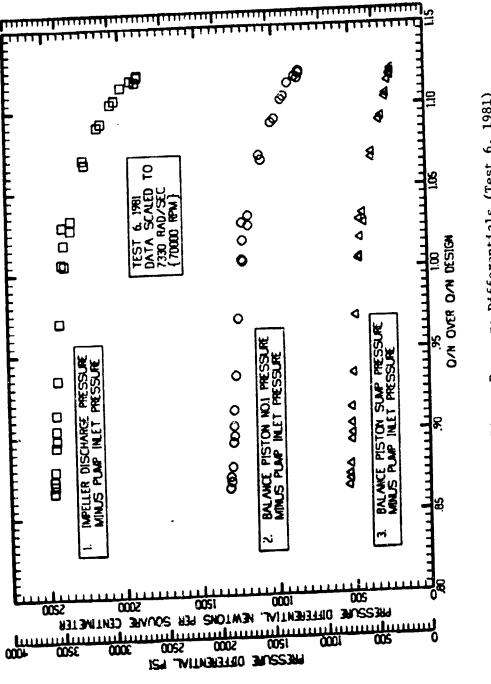


Figure 78. Balance Piston Pressure Differentials (Test 6, 1981)

Dynamic Seals Performance

Labyrinth Seals. The condition of the labyrinth seals on the impeller front shroud and slinger indicated satisfactory operation with slight wear-in showing on the silver plated lands. Pressure measurements across the impeller front wear ring were compared to determine the range of seal pressure drop. A correlation of test 6 data given in Table 20 show at speeds near 7120 rad/s (68,000 rpm) the pressure drop across the seal is as would be expected and the impeller front shroud labyrinth seal is operating satisfactorily.

The labyrinth seal on the slinger consists of a two land stepped static component with three labyrinth grooves for each land on the rotating slinger. The static clearances are shown in Fig. 43. The data from test 6 (Table 20) indicates a large pressure drop across the seal. The pressure drop data accounts for the radial pressure gradient from the slinger seal to the slinger sump pressure measurement assuming a radial pressure gradient as measured and reported in Ref.2. These measured pressure gradients were found to have very low pumping effectiveness at high speed with a K slinger pumping coefficient K of 0.05 at 6912 rad/s (66,000 rpm) and a K of 0.17 at 3141 rad/s (30,000 rpm).

As a result, the pressure drop across the labyrinth seal is very high which leaves a much lower pressure in the seal cavity. As a result it is possible that the slinger height could be reduced considerably. This would reduce the pumping losses of the rotating slinger. There is some heating associated with the slinger disc friction. The temperature measurements between bearing coolant flow, slinger sump temperature and balance piston flow temperature show a higher temperature by 1.11 K (2 R) for the balance piston flow. The accuracy of the thermocouple readings is well below what the isenthalpic temperature change and disc pumping would be, so a comparison cannot be made except to note that the temperature rise for the isenthalpic pressure drop across the labyrinth seal is 0.94 K (1.7 R) or very nearly the measured temperature difference.

The flow rate was estimated through the bearings and slinger labyrinth by combining the overboard bearing flow with the measured primary LOX seal flow of test series 3 and 4, which runs very nearly a constant 0.077 Kg/s (0.170 lb/ ε) at all speeds and cavity pressures measured. The net flow rate through the bearings is of the order of 2.2% of the pump flowrate.

Floating Ring Seals. The performance of the floating ring seals has shown good consistency throughout the several test series. The seal packages consist of three seals, having three drains and one helium purge supply section. The helium purge supply pressure has been maintained on test series 4 and 5 at 152 N/cm² (220 psia) at all test conditions at near ambient supply temperatures of 300 to 311 K (540 to 560 R). The primary LOX seal drain temperatures in test series 5 are considerably higher than on test series 6 (Table 21). This would indicate relatively less cold LOX leakage with more warm helium gas in the mixture probably caused by the reduced slinger sump pressures. The secondary hot gas seal drain shows little change between the two test series. The primary hot gas seal drain gas temperatures are affected by the amount of chill on the turbine bearing package for each test but the pressure levels are only slightly higher as are the measured flowrates for 3141 rad/s (30,000 rpm). TABLE 20. TEST 016-006 LABYRINTH SEAL PERFORMANCE, S.I. UNITS (ENGLISH UNITS)

いたいにはなっていたが、ここともの

- \ 4-

PRESSURE DROP N/CM2++ (PSI) LABYRINTH 603 (874) 199 616 (892) **364** (529) 725 (1051) 616 (893) LABYRINTH FLOW. KG/SEC* (LB/SEC) BEARING 0.238 (0.634) 0.390 (0.854) 0.413 0.349 (0.770) 0.400 (0.883) 0.359 (0.752) • SL INGER PRESSURE GRADIENT, N/CM² (PSI) 32 (47) 15 (22) 15 (22) 15 (21) 15 (22) 16 (23) SLINGER SUMP PRESSURE. N/CM² (PSIA) 35 (51) 92 (134) 98 (142) 76 (011) 94 (136) 108 (153) BEARING DOWNSTREAM PRESSURE, N/CM² (PSIA) 723 (1048) 266 (386) 716 (1038) **4**55 (660) (1051) 849 (1231) *ASSUMES 0.170 LB/SEC (0.077 KG/SEC) FLOW THROUGH PRIMARY LOX SEAL **ASSUMES SLINGER PRESSURE GRADIENT REPORTED FOR TEST SERIES №. 3 LABYRINTH PRESSURE DROP N/CM2 (PSIA) 1556 (2257) 309 (448) 1357 (1968) 1576 (2286) 1534 (2225) 1521 (2205) INDUCER DISCHARGE PRESSUBE, N/CM² (PSIA) 537 (779) 214 (311) 210 (304) 535 (776) 550 (798) 675 (979) FRONT SHROUD PRESSUBE, N/CM² (PSIA) IMPELLER (3036) 519 (752) (2279) 2071 (3003) 2251 (3265) (3001) 1571 2093 2067 100.6 (100.6) 102.8 (102.8) NOMINAL FLOW. 101.5 (112.1) 100.5 (100.5) 86.6) (86.6) ROTATING SPEED. RAD/S (RPM) 3085 (29462) 7136 (68144) 7242 (69161) 7125 68034) 7107 67870) 67428) 7061 SL 1CE n., Û w 9 3 ŝ

TABLE 21. DYNAMIC SEAL PERFORMANCE ENGLISH UNITS (S.I. UNITS)

こうしょう しょうしょう しょうしょう しょうしょう しょうしょう

0.033 (0.015) 0.089 T0 0.103 (0.040 T0 0.047) 0.076 T0 9.083 (0.034 T0 0.038) 0.052 (0.024) FLOW, LB/SEC (KG/SEC) 0.052 (0.024) 0.052 (0.024) 0.063 (0.029) 0.030 0.035 (0.016) PRIMARY HOT-GAS SEAL DRAIN TEMPERATURE, F (K) T0 227 T0 126) T0 244 T0 136) T0 220 T0 122) T0 401 T0 217) 213 T0 216 (118 T0 120) T0 185 T0 103) 257 143) 425 236) 274 (152) 356 T0 2 (198 T0 1 22 . 333 (185 372 (207 348 (193 345 (192 391 (217 257 (11.7 10 16 (11.7 10 11.0) (11.4 10 11.0) (12.4 10 11.7) (12.4 10 11.7) (12.4 10 11.7) PRESSURE, PSIA (N/CM²) 26 T0 29 (18 T0 20) 19 (13.1) 14.8 (10.2) 14.7 (10.1) 15.0 (10.3) 15.4 (10.6) T0 281 T0 156) T0 312 T0 173) TEMPERATURE, R (K) T0 322 T0 179) 390 T0 309 (217 T0 172) 462 (257) 418 TC 280 (232 TO 156) 363 TO 318 (202 TO 177) 355 TO 435 (197 TO 242) 422 234) SECONDARY HOT-GAS SEAL DRAIN 22 401 (223 434 (24) 411 (228 **412** (229 18 T0 19 (12.4 T0 13.1) 18 T0 19 (12.4 T0 13.1) 17 T0 18 (11.7 T0 12.4) 16 T0 21 (11 T0 14.5) PRESSURE, PSIA (N/CM²) 20 (13.8) 20 T0 32 (14 T0 22) 16.5 (11.4) TEMPERATURE, R (K) INTERMEDIATE SEAL PURGE SUPPLY 540 548 548 548 (304) 545 (303) 557 (303) 551 (306) 555 (311) 554 (307) 559 (311) 555 306) PRESSURE, PSIA (N/CM²) 225 (155) 218 (150) 216 (149) 214 (148) 217 (150) 227 (157) 222 (153) 219 (151) 230 (159) TEMPERATURE, R (K) 350 T0 307 (194 T0 171) 389 T0 365 (216 T0 202) T0 380 T0 211) T0 303 T0 168) 394 219) 152 T0 174 (84 T0 97) 157 T0 164 (87 T0 91) 164 T0 170 (91 T0 94) PRIMARY LOX SEAL DRAIN 157 (87) 65 399 (222 264 (147 316 (176 PRESSURE, PSIA (N/CM²) 14.6 (10.1) 14.5 (10.0) 14.4 (9.9) 14.4 (9.9) 24.7 (17.0) 40.0 (27.6) 14.5 (10.2) 15.5 (10.7) 41.0 (28.3) SPEED. RPM (RAD/S) 32,500 (3403) 28,500 (2985) 30,000 (3141) 68,000 (7121) 30,000 (3141) 29,900 (312) 31,000 (3246) 30,000 69,000 (7226) 1981 003 rest ND. 8 1978 909 012 005 900 900 010 012

Dynamic Performance

The dynamic data from tests 2 through 6 were processed and analyzed to determine what the dynamic characteristics of the turobpump were. The pump instrumentation consisted of radial accelerometers located on the volute inlet and turbine housing flange, and a pump axial accelerometer located on the volute inlet face. Two radial proximeter transducers were located at the turbine bearing instrumentation cap to measure shaft position and one axial proximeter transducer at the end of the shaft. All these data were recorded on FM tape for future processing. The data processing was done at the analog facility in the Rocketdyne Engineering Development Laboratory.

Maximum axial and radial acceleration levels measured for each of the four 3141 rad/s (30,000 rpm) tests were less than 1 g rms. All peak acceleration levels referred to are taken from Amplitude Mean Squared (AMS) traces filtered with a 0 to 2000 Hz low pass filter or a 200 to 2000 Hz band-pass filter. At the beginning of test 6 operation at 7121 rad/s (68,000 rpm), all of the accelerometer measurements were overdriven on FM tape. Using the best data retrieval methods available, the accelerometers show maximum amplitudes on the order of 7 G's rms. These levels are roughly twice the maximum accelerations observed on a 19/8 test (series 4) that was also conducted at 7121 rad/s (68,000 rpm).

Turbine end rubbing was indicated on every test by 2X and 3X synchronous speed frequencies. After test 6, the rotor experienced high torque. No explanation for this increased interference was found in the data. It is assumed that the higher speeds of test 6 aggravated the rubbing condition that had been noted since the first test of the series. Test 6 ramp down rate was not significantly different below 3141 rad/s (30,000 rpm) than that seen on previous tests. Similarly, its ramp down from 7121 rad/s (68,000 rpm) compares closely to the 1978 test mentioned above.

Spectrum data (isoplots) from tests 2 and 3 show anomalous frequencies at 3.2X and 3.6X speed. These frequencies do not appear on any later tests. They could be related to a ball spin frequency which is calculated to occur at 3.1X speed.

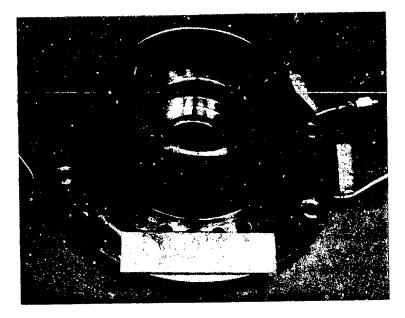
Two other anomalous frequencies, one at 1500 Hz and the other ranging from 2700 to 3100 Hz, appear in the data. During each test the frequencies remain constant, independent of rotor speed, and on some isoplots they appear before the test was begun. Consequently, they are believed to be unrelated to rotating irregularities and are most probably acoustic frequencies or noise.

A final anomalous frequency was seen on test 5. It is subsynchronous and because it appears most strongly on axial amplitude spectra, it is believed to be related to balance piston vibration.

Bently displacement data on all of the tests in this series were of dubious value. Time histories (Statos records) and isoplots were characteristically garbled with noise frequencies. In most instances spot face amplitudes could not be distinguished from rotor translational amplitudes. Peak displacement values were obtained by subtacting amplitudes attributable to noise from nominal amplitudes. Radial and axial displacements for the 3141 rad/s (30,000 rpm) tests were on the order of 0.762×10^{-2} mm (3.0 x 10^{-4} inch) peak to peak, while the displacements seen at 7121 rad/s (68,000 rpm) were on the order of 1.524 x 10^{-2} mm (6.0 x 10^{-4} inch) peak to peak.

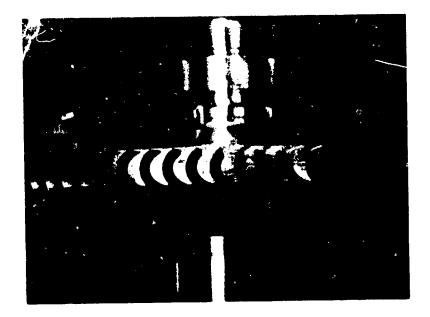
The conclusions reached for test series 5 dynamic analysis were that observed acceleration and displacement levels were consistently low. The operating speeds of 7121 rad/s (68,000 rpm) and 3141 rad/s (30,000 rpm) exceeded the 20% safety envelope around the rotors observed critical speed of 5655 rad/s (54,000 rpm).

Except for the Mark 48-0 turbine-end rubbing, none of the anomalies identified in the test data are deemed to be serious. Some improvement should be channeled into improving the readability of the Bently traces. Perhaps a different spotface or spotface-probe configuration should be employed because of the extremely small shaft diameter of the Mark 48-0.


Mechanical Performance

The condition of the component parts on disassembly were generally in excellent condition. The inspection revealed three areas where damage to the turbopump had been sustained during the testing. These areas were:

- 1. Turbine tip rubbing
- 2. Inducer tip rubbing
- 3. Distress of the chrome plating on the rotor shaft at the turbine seal


An evaluation of the specific hardware, causes for the condition and recommended solutions follow.

Turbine Tip Rubbing. It has been previously stated that the high torque exhibited on the rotor during posttest torque checks indicated the rotor torque to be 903 to 1130 N/cm (80 to 100 in.-1b). Attempts to free the rotor by turning only resulted in larger torque values. A combination of blowing ambient GN2 through the turbine while heating the turbine housing provided no reduction of the torque. As the rotor turned, it would at some points break loose for an arc of as much as 0.785 radius (45 degrees) but with added rotation would seize. A push-pull check was made at one point where the shaft rotated freely within the arc described. Measurements indicated an axial shaft travel of approximately 0.254 mm (0.010 inch) for only slight axial load. This indicates the rotor was operating within the acceptable axial travel band width of the balance piston. Disassembly was accomplished by pulling the bearing support housing off the turbopump. The support housing contains the turbine tip seal. The interference causing the high rotor torque was caused by the rubbing of the rotor tip and the galling of the copper plating on the seal diameter adjacent to the stator vanes. This is clearly shown by the condition of the copper plating in Fig. 79. The rotor also shows evidence of rubbing and some collection of copper on the blade tips in Fig. 80.

18M55-5/28/81-C1C

Figure 79. Rubbing at Turbine Tip Seal

18M55-5/28/81-CTE

Figure 80. Mark 48-0 Turbine Tip Rubbing

It will be necessary to strip and replate the copper before the support housing is useable. No other damage is apparent. The rotor blade tips will require cleanup by hand to remove the copper accumulation. The blade tip itself shows very little wear.

The cause for the rubbing condition was investigated and found to be due to the close tip clearances used in the build and the operating changes involved. The drawing stackup showed the radial clearance at assembly to be 0.051 to 0.102 mm (0.002 to 0.004 inch) as is given in Fig. 81. The actual measured radial clearance at assembly was 0.127 mm (0.005 in.). The clearance increases due to the effects of chilldown if housing and rotor temperatures remain the same temperature. When the turbine wheel speeds up, the wheel growth decreases the clearance and if the ambient GH₂ gas drive warms the components further, the clearance decreases further. At this point, the rubbing is highly likely. If the system was driven with hot gas at 922 K (1200 F), the housing growth would provide more than adequate clearance. It is recommended that with GH₂ drive, the turbine tip clearance be increased to avoid the rubbing condition.

Inducer Tip Rubbing. The disassembly revealed some slight rubbing of the inducer blade tip with the inlet wall. The rubbing traces are shown in Fig. 82. The duct surrounding the inducer tip is silver plated to a depth of 0.254 mm (0.010 inch). The measurements of the inlet duct indicate the depth of the rubbing is of the order of 0.051 mm (0.002 inch) maximum over a circumferential are of 1.57 radius (90 degrees). This slight rubbing has been reported on previous builds. The radial tip clearance at assembly was measured at 0.174 mm (0.0069 inch) with an inducer tip runout of 0.0102 mm (0.0004 inch). It is recommended that no inducer tip radial clearances tighter than 0.203 mm (0.008 inch) be run.

Shaft Distress at Turbine Seal. Examination of the shaft-rotor on the sealing surfaces reveals characteristic carbon tracks on the turbine end seal and primary LOX seal. The tracking of the primary LOX seal is shown at midspan on the shaft in Fig. 83. This condition is normal and not considered a problem. The turbine seal area which is nearest the rotor wheel on the pump side of the shaft showed serious distress in the chrome plating. This is easily recognized in Fig. 83. The seal used here uses two floating rings made of Amcormet. These rings are shown with the seal package in Fig. 84. The ring nearest the pump (left side in Fig. 84) lost its press fit and came loose from the retainer while the one nearest the rotor did not and is shown with its retainer ring. It is hypothesized that as the Amcermet operates at close clearances near the chrome, heat is generated. This heat causes expansion of the Amcermet and yielding of the retainer ring until the Amcermet ring press fit is lost. At this point the seal ring can wear on both the outside and inside diameter of the seal ring. The evidence of high heat in the chrome has been verified by hardness tests on the shaft both on and adjacent to the seal damaged area. The tests reveal high Rockwell C hardness adjacent to the distressed area but below scale hardness on the distressed area. Although the hardness test is not completely accurate for thin chrome plating, it does reveal that temperatures as high as 1033 K (1400 F) may have developed in order to soften the chrome plating in the distressed area.

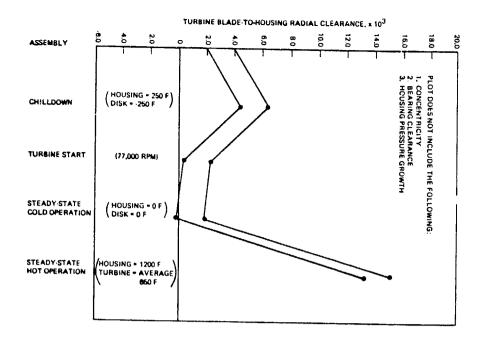
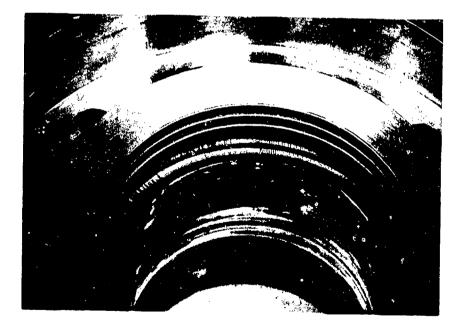
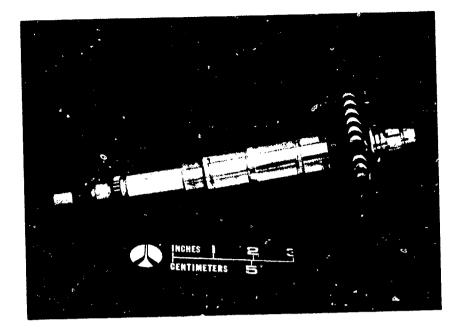
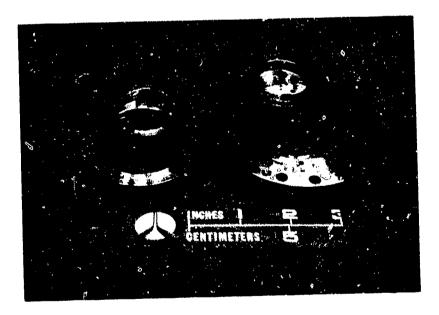




Figure 81. Mark 48-0 Turbine Blade Tip Clearance

1SM55-5/28/81-C1K

Figure 82. Mark 48-0 Inducer Tip Rubbing on Inlet


ï

and and a state of the state of

1SM55-5/28/81-C1D

Figure 83. Mark 48-0 Rotor Condition After Test Series 5

1SM55-5/28/81-C1G

Figure 84. Mark 48-0 Turbine Seal Damage

Test data on hard chrome plating indicate that when chrome plating is subjected to temperatures above 672 K (750 F) the hardness is reduced considerably.

Several small segments of the chrome plating are missing in the distressed area. The shaft does not reveal any permanent damage but the chrome will need to be stripped and replated before it can be acceptable for use. It is recommended that on subsequent builds the radial clearance on this seal ring be increased to avoid the problem. The condition seems to be caused by lack of film cooling existing across this seal segment since the one closest to the turbine wheel with more pressure drop across it seems to be undamaged with only slight rub markings. The problem could also be corrected on the testing with GH₂ turbine gas drive if the Amcermet seals were replaced with carbon seal rings.

Bearing Analysis. The bearings were analyzed after disassembly of the turbopump. During disassembly, the bearings were damaged by the static axial overload required to separate the pump components. The bearings were examined after six starts during which they accumulated a total of 580 seconds operating time. The pump was run at 524 rad/s (5000 rpm) for 326 seconds, 3141 rad/s (30,000 rpm) for 166 seconds and 7121 rad/s (68,000 rpm) for 35 seconds. The balance of the time was at transient speeds. The conclusions drawn from the bearing examination were:

- 1. The bearings would have continued to operate
- 2. The coolant for the turbine bearing set showed evidence of particulate contamination
- 3. All bearings were damaged by static axial overload during disassembly
- 4. The turbine end bearings were subjected to synchronous radial load

The ball surface was mostly roughened, accompanied with a dull band. Some balls show Brinnel marks and some have shallow spalls. One ball had a short crease.

The general condition of the bearings was not bad enough to preclude continued service, although the deterioration was evident and the rate would be expected to accelerate.

The high contact angle indicates that the inner race press fits may not be as tight as intended. The press fit on these bearings at ambient condition was measured at 0.0229 to 0.0254 mm (0.0009 to 0.0010 inch) tight.

The No. 3 bearing had experienced a radial synchronous load, as the inner raceway eccentric load path indicates. This could be due to a residual rotor imbalance of the turbine wheel. It is difficult to explain the lesser indications of synchronous radial loading in the No. 4 bearing, which is adjacent to the No. 3. A hypothetical combination of:

- (1) Axial hang up of the No. 3 and 4 bearing cartridge,
- (2) A shaft motion toward the No. 4 bearing, or
- (3) A looser fit between the outer race of the No. 4 bearing and the cartridge

could be responsible. Another contributing factor would be due to an anomaly in shaft alignment; any out-of-squareness of the shoulder where the rotor end is attached will magnify the runout at No. 3,4 bearing location. It was also noticed that about 20% of the No. 3 bearing OD was unsupported. Any combination of these factors might make the No. 4 bearing radially softer so that it experienced a lesser radial load.

The Property of i,

4

. .

The No. 1 and 4 bearings have Brinnel marks high on the shoulders, but Nos. 2 and 3 at the low angle shoulders. This will result during dismantling in which Nos. 1 and 2 outer rings were pulled out with the cartridge, leaving the No. 2 inner ring still on the rotor. Similarly, the force required to pull the No. 4 bearing inner race was applied through the bearing, brinnelling it. The No. 3 race was damaged as the balls were pulled over the low shoulder.

A localized fretting on the OD of the No. 4 bearing suggests a fixed radial load or misalignment of the bearing mounting bore.

It is recommended that the turbine bearing coolant system be reviewed for contamination and corrected. The shaft and bearing inner race fits should be reviewed to determine if they are too loose at operating conditions.

SUMMARY OF RESULTS

The objectives of the program have generally been completed with the conclusion of this test program. The specific objective of obtaining characterization of the primary LOX seal leakage flows and baseline pump performance data was achieved. The results indicate that the head-flow performance was as predicted at design flow for test series 4. In the subsequent test series (5) using newly fabricated component parts, the head rise averages 6% higher than measured on test series 4. No satisfactory explanation has been found for this difference except the newly fabricated impellers had some dimensional discrepancies of thin blades and shrouds which could contribute to the condition.

On test series 4, test 9, a noncavitating suction performance capability of 84210 $(rad/s) (m^3/s)^{1/2}/(J/Kg)^{3/4}$ [24,000 $(rpm) (gpm)^{1/2}/(ft-lbf/lbm)^{3/4}$] was demonstrated at a flow of 105% of design flow at a test speed of approximately 6964 rad/s (66,500 rpm). It was predicted at that time that the suction performance capability of the pump could be as high as 112,280 $(rad/s) (m^3/s)^{1/2}/(J/Kg)^{3/4}$ [32,000 $(rpm) (gpm)^{1/2}/(ft-lbf/lbm)^{3/4}$]. During test 6 of test series 5 with the newly fabricated components a cavitating suction specific speed of only 52,631 $(rad/s) (m^3/s)^{1/2}/(J/Kg)^{3/4}$ [15,000 $(rpm) (gpm)/(ft-lbf/lbm)^{3/4}$] was obtained at a flow rate of 103% of nominal and a speed of 7225 rad/s (69,000 rpm). A potential explanation of the poor suction performance exhibited is that recirculation of the balance piston flow back to the impeller eye may be the cause but examination of the limited data available does not clarify the cause. The efficiency of the pump was found to be the same as found in previous testing. The peak efficiency is 68% with the efficiency at the design flow at 67%. The originally predicted peak efficiency for this pump design was 70%.

The data from tests on the balance piston were correlated with the balance piston computer model to account for overboard balance piston flow. The results indicate the rotor operates in a range of 39.2 to 44.8% of the net force range of the balance piston over a respective flow range of 82 to 108% of nominal flow at near design speed [7121 rad/s (68,000 rpm)]. The balance piston exhibits a force range of 50262, 44925 and 39142 Newtons (11,300, 10,100 and 8800 lbs) force at flows of 82, 96 and 108% of design. This force range and piston position exhibits a very comfortable operating margin and therefore can be expected to perform reliably over the complete operating spectrum required.

The test program was curtailed due to high rotor torque at the conclusion of test 6. The high torque was traced to the rubbing of the turbine tip and the galling of the copper plating used as the tip sealing surface over the shroudless turbine blades. The cause was traced to reduced clearance during operation of the turbopump with an ambient drive gas such as gaseous hydrogen at 306 K (550 R) in place of the LOX/LH₂ combustion products operating at 1041 K (1874 R) inlet temperature. The result is a radial tip clearance increase of 0.356 mm (0.014 inch) when operating with hot drive gases. It is recommended that the tip clearance at the turbine be increased to avoid rubbing when using ambient gaseous hydrogen as the drive fluid.

A Day and The State

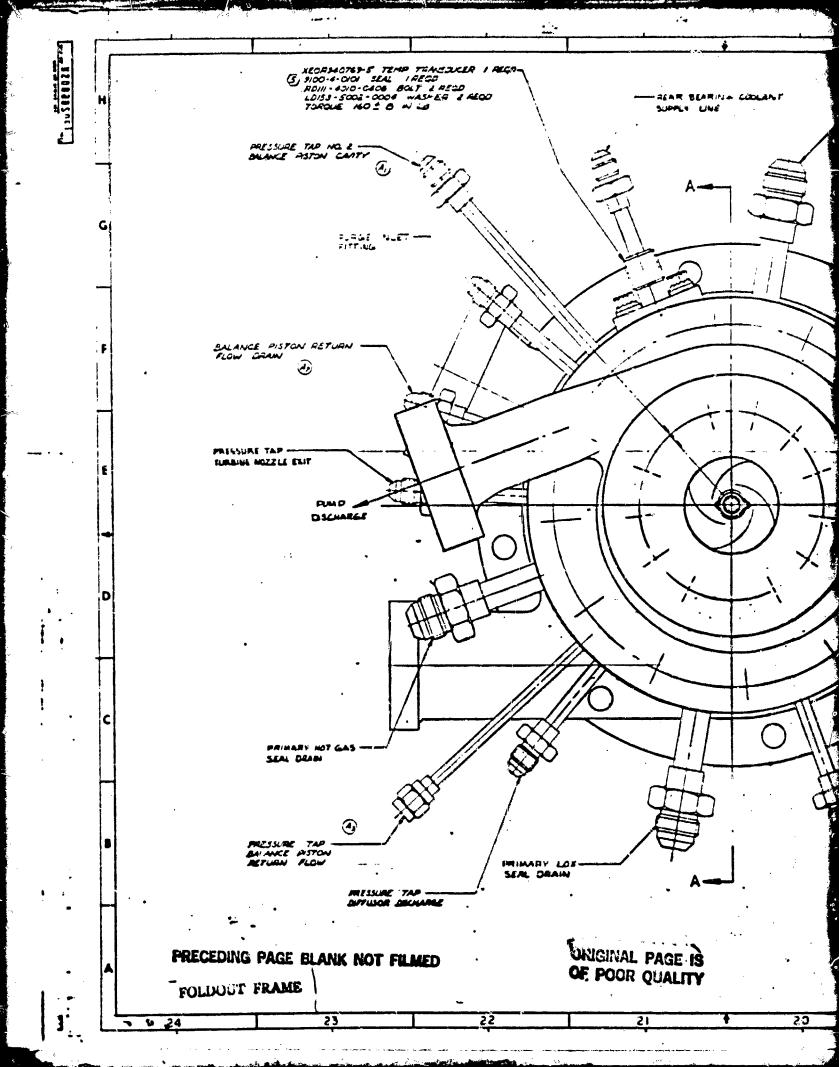
In general the mechanical performance of the turbopump was satisfactory with exception of the first test build where a failure resulting in fire damage occurred. The problem was traced to the balance piston range and axial thrust control capability which was indicated to be marginal. The results of the last test program, when correlated with computer modeling to account for the internal recirculation of balance piston flow, indicate very adequate axial thrust margin capability for the turbopump.

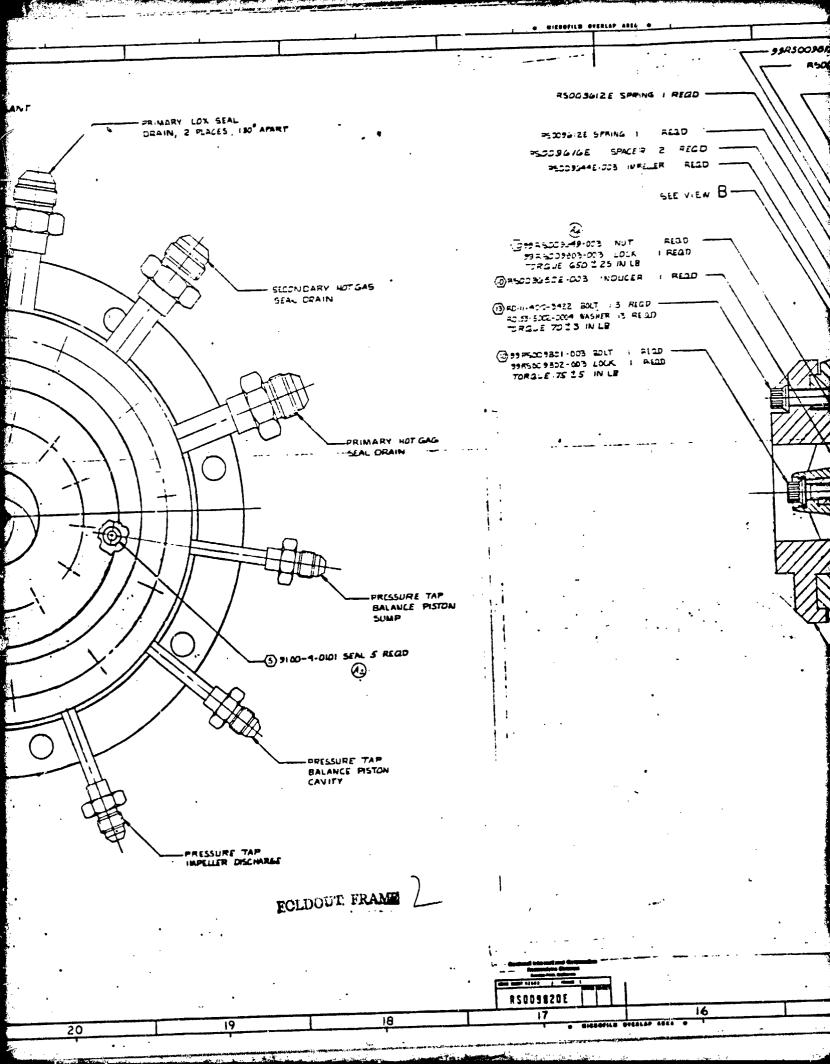
.

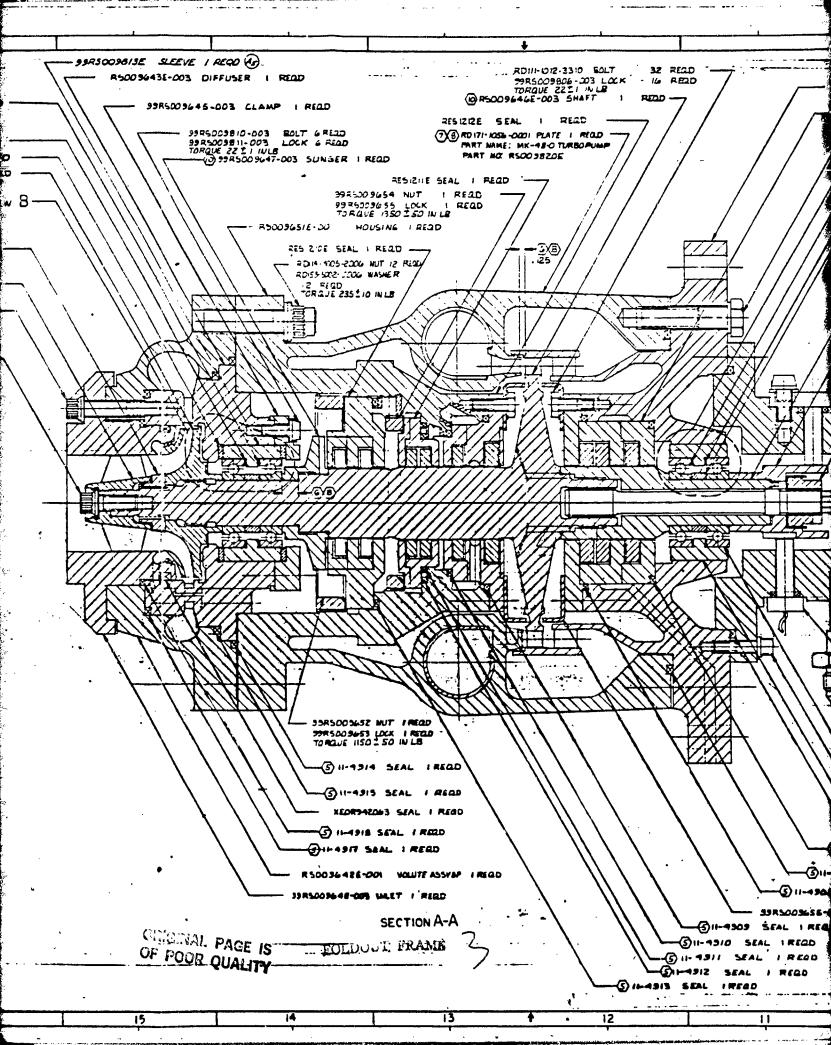
REFERENCES

- Csomor, A. and R. Sutton, <u>interim Report Small, High-Pressure Liquid Oxygen</u> <u>Turbopump</u>, NASA CR-135211, Rocketdyne Report, RI/RD76-178, Rocketdyne Division of Rockwell International, July 1977.
- Csomor, A, <u>Final Report Small High-Pressure Liquid Oxygen Turbopump</u>, NASA CR-159509, Rocketdyne Report, RI/RD78-278, Rocketdyne Division of Rockwell International, October 1978.
- Burcham, R. E. and J. L. Boynton, <u>Final Report Small High-Speed Self-</u> <u>Acting Shaft Seals for Liquid Rocket Engines</u>, NASA CR-135167, Rockerdyne Report, RI/RD77-195, Rocketdyne Division of Rockwell International, July 1977.
- 4. Young, W. E. and H. F. Dul, <u>Investigation of Pressure Prediction Methods for</u> <u>Low-Flow Radial Impellers</u>, Draft, PWA FR-1716, 13 January 1966.

いたりまたのでものためにある


APPENDIX A

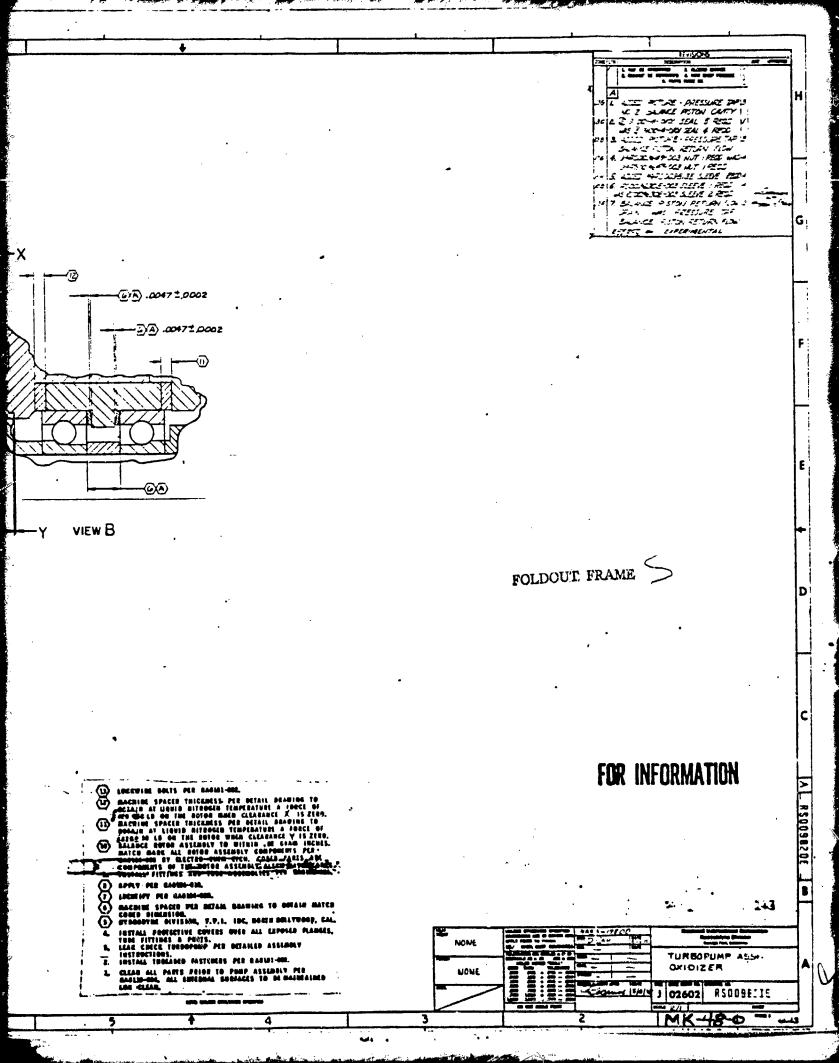

MARK 48-OXIDIZER TURBOPUMP ASSEMBLIES

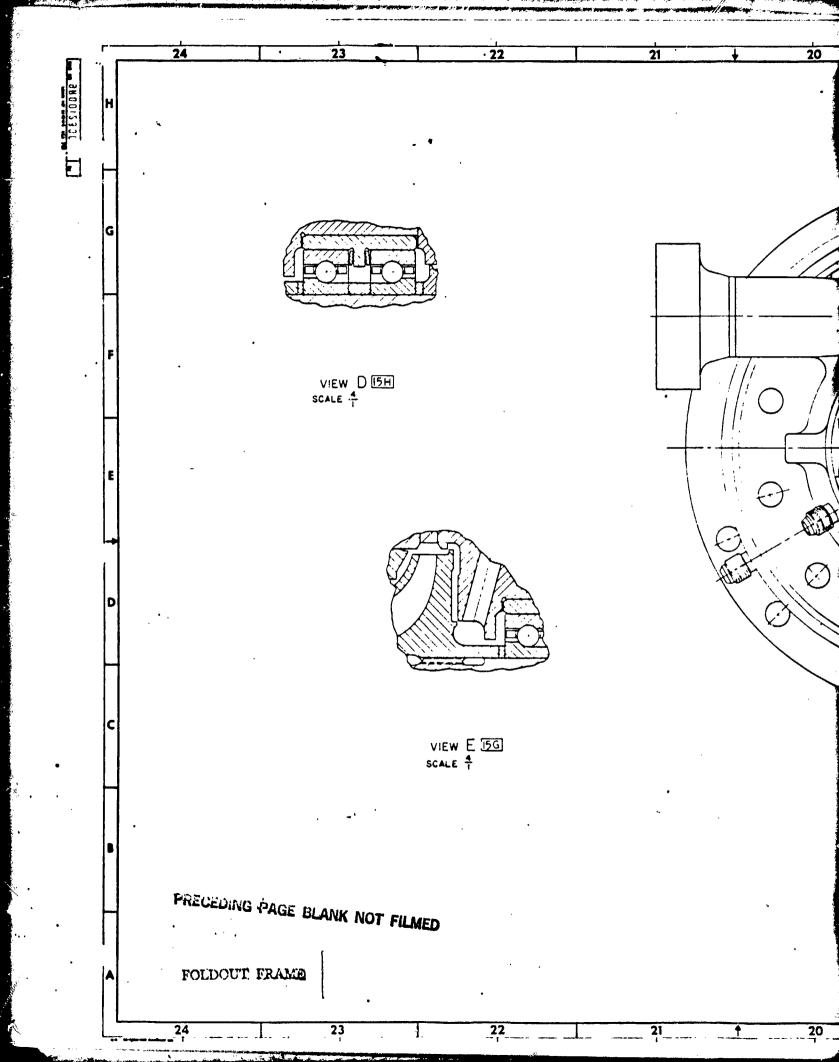

- RS009820E Original Configuration Test Series No. 4
- 9R0012300 Turbopump Incorporating Spiral Groove Liftoff Seal
- 9R0014079 Test Configuration Test Series No. 5

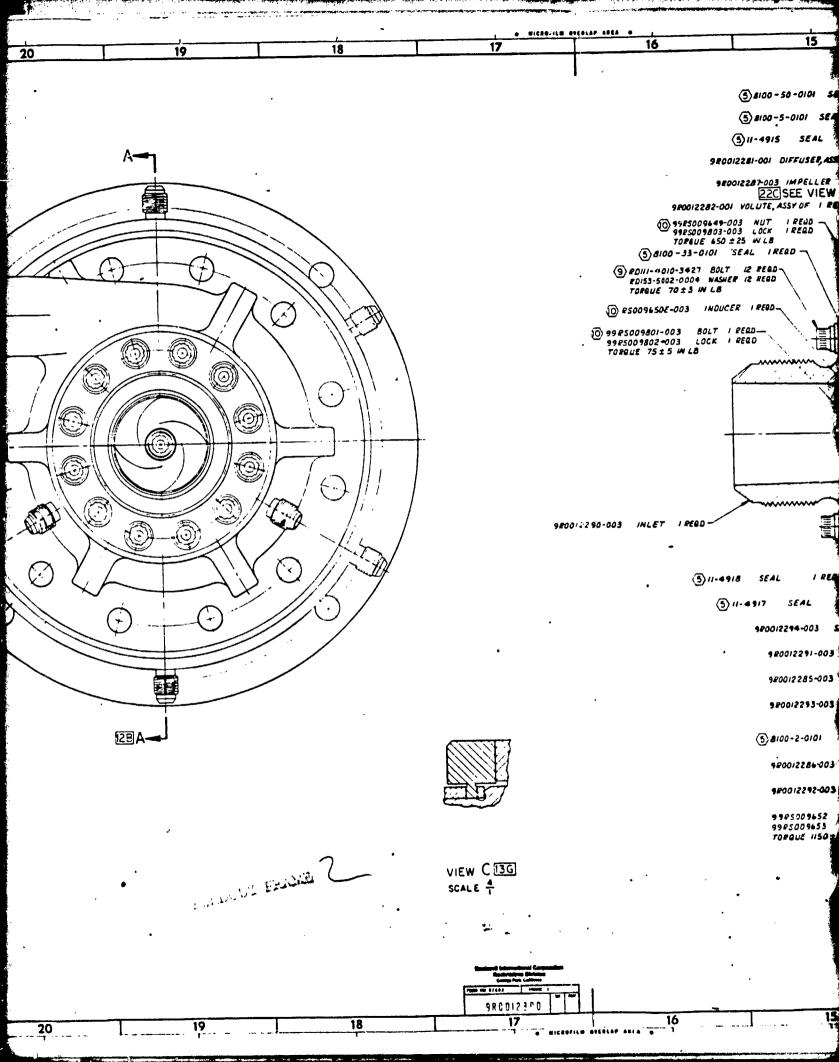
ģ

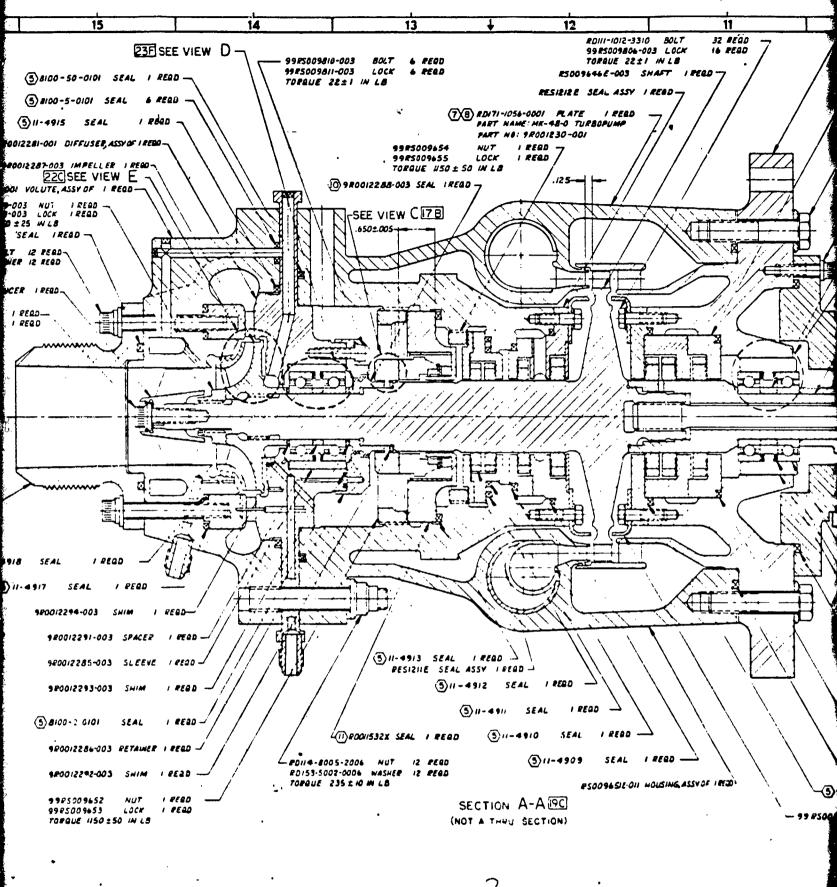
~

and the second second

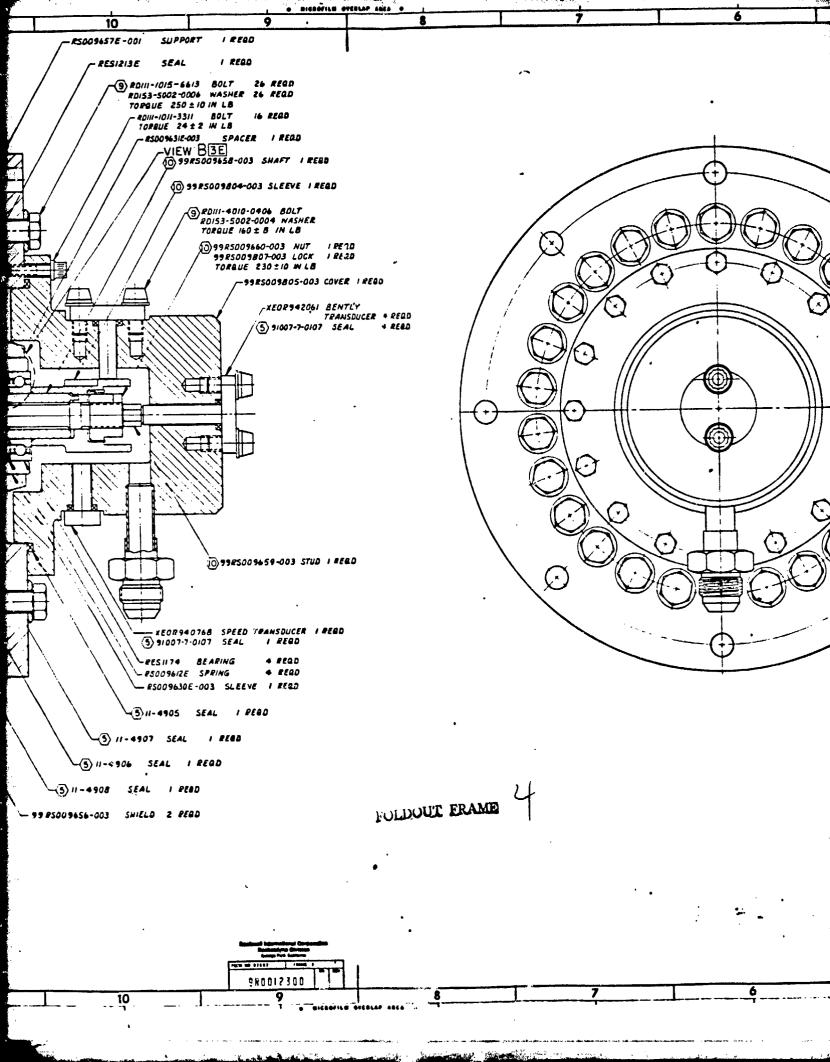

. £., -..... ••• 1 1 RS009657E-001 SUPPORT I REED RESIZISE SEAL I REOD (3) RD111 - 1015 - 6613 BOLT 26 READ RD153 - 5002 - 0006 WASHER 26 READ TORQUE 250 110 IN LE - PSOOPLIZE SPRING I READ RS009612E SPRING 1 READ R5009631E-003 SPACER & READ 10 99 R500 3658-003 SHAFT / READ 1 938500 9304-003 5LEEVE I REOD - 398500 9805-003 COVER I READ 5000,± r + 00. (3) -600.0047±.0002 - XEOR942001 BENTLY TRANSDUCER 4 READ 60 VIEW C l 10 29 RS003659-003 STUD (READ XEOR940768 SPEED TRANSDUCER I REDD 5 91007-7-0407 SEAL 5 READ RESIITA BEARING 4 READ R0111-1011-3311 BOLT 16 REED TORQUE 2412 JN LE FOLDOUT FRAME RS009630E-003 SLEEVE I READ (3) 1-4305 SEAL) REDO - CHI-4907 SEAL IREAD -SI-4908 SEAL IREAD R5003656-003 SHIELD 2 READ EAL I READ . • • • • • IRIAD IREAD READ RS009820E ~ + 10 8 6 DISEOTING STERIAT ALLA

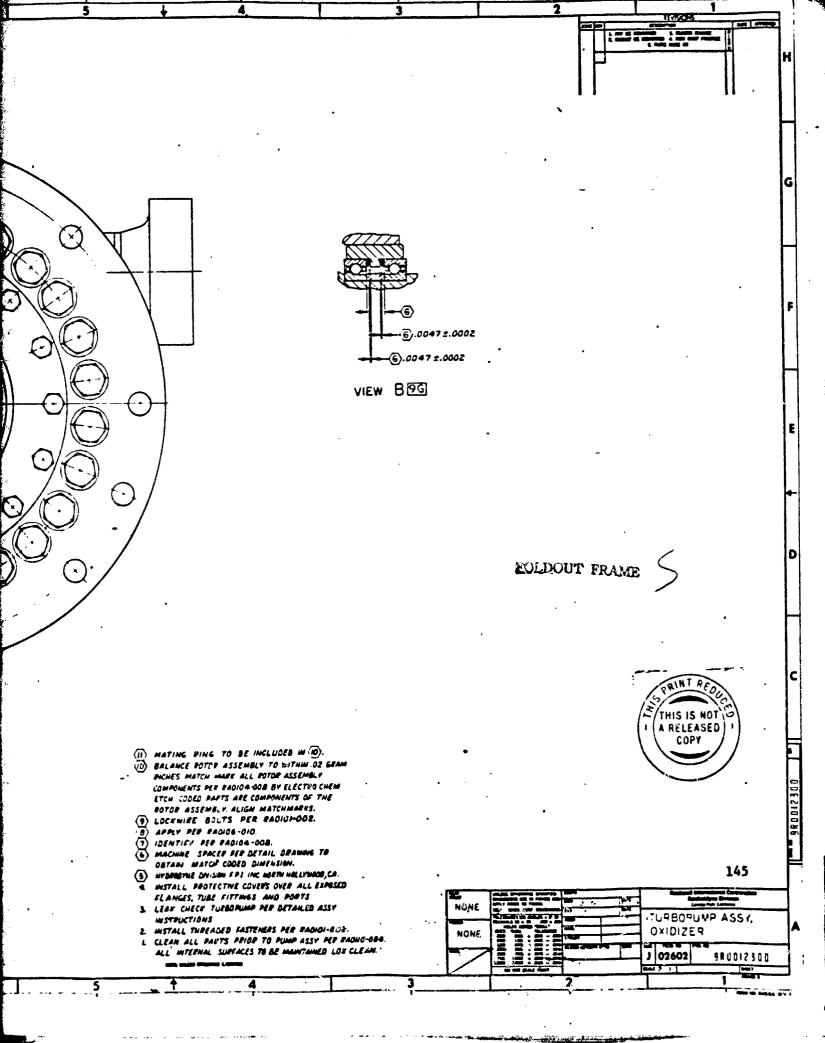

. . .

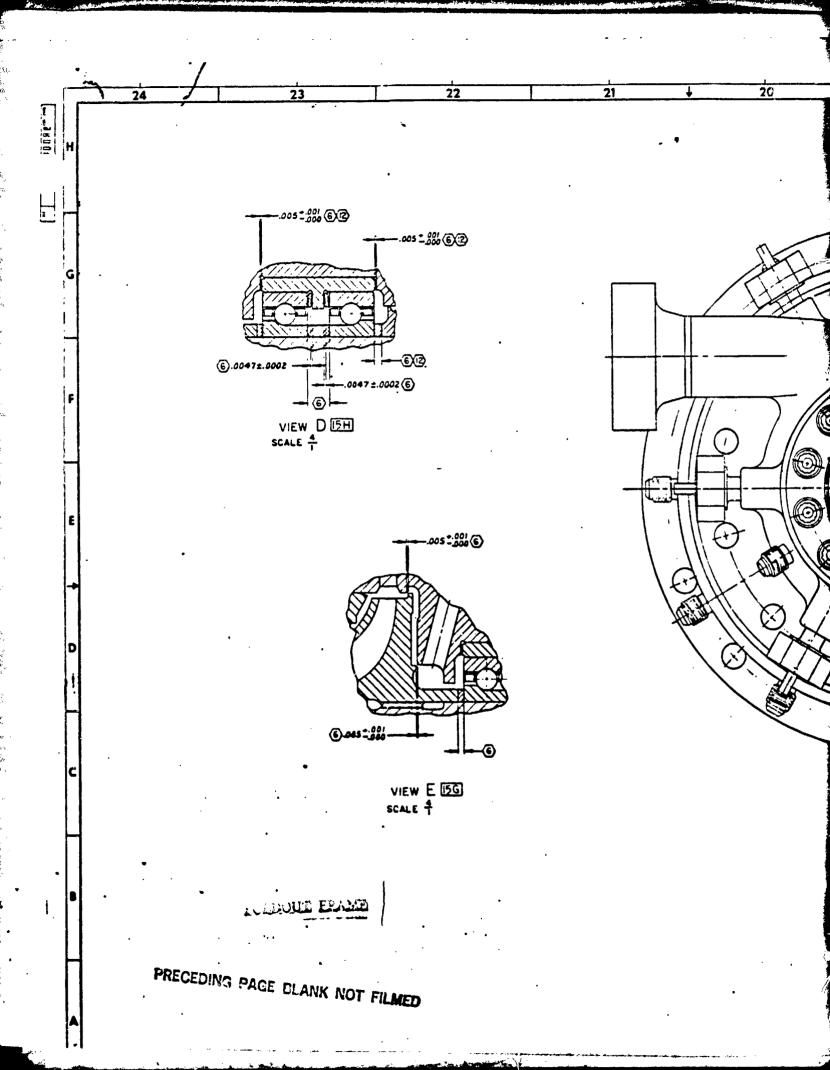

.


ية دي

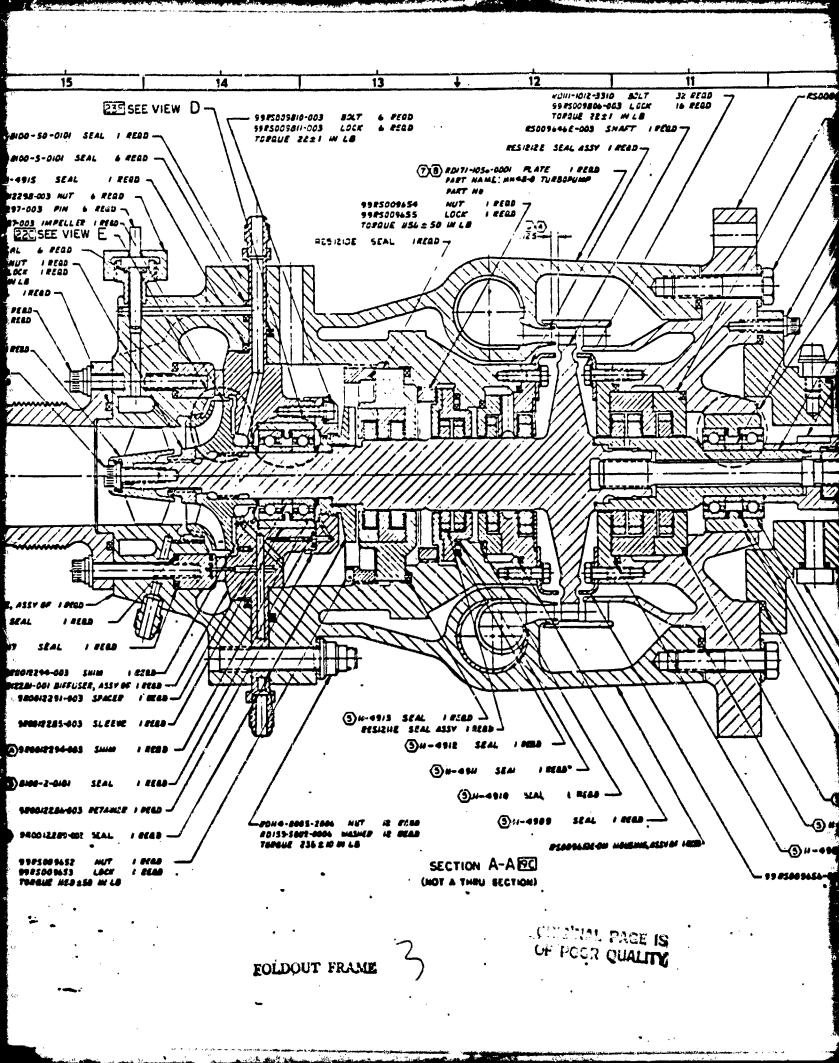
- -

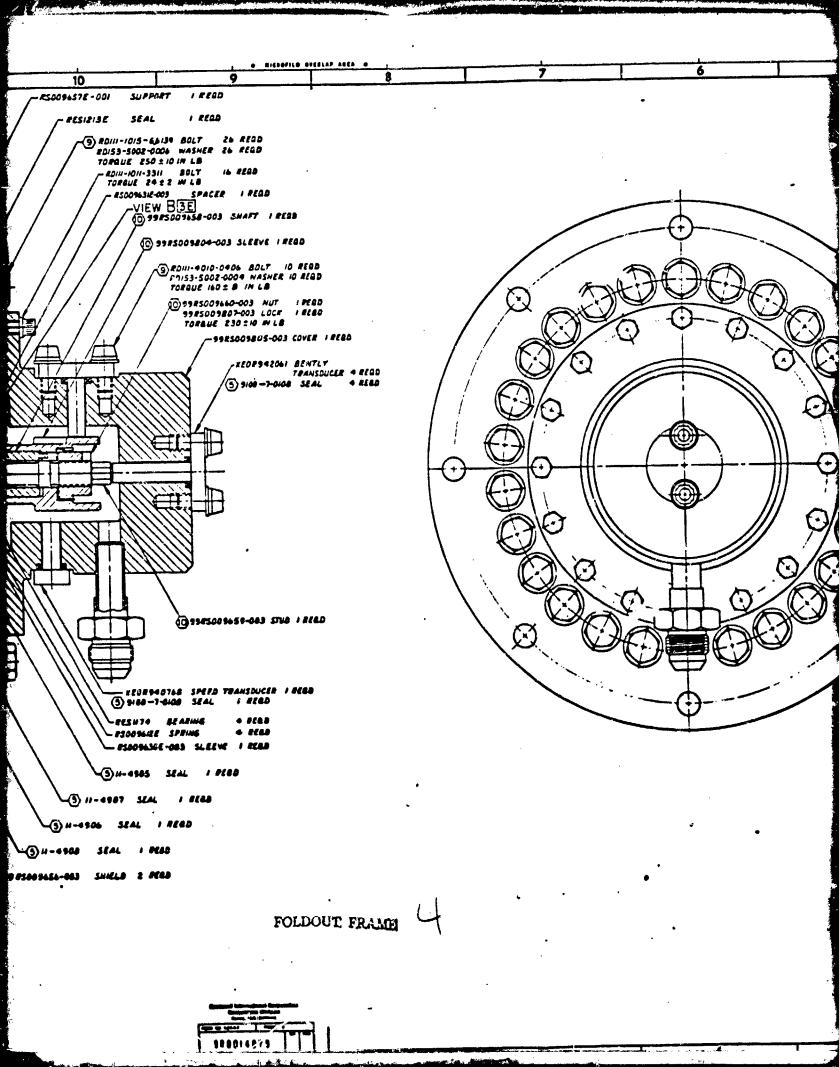


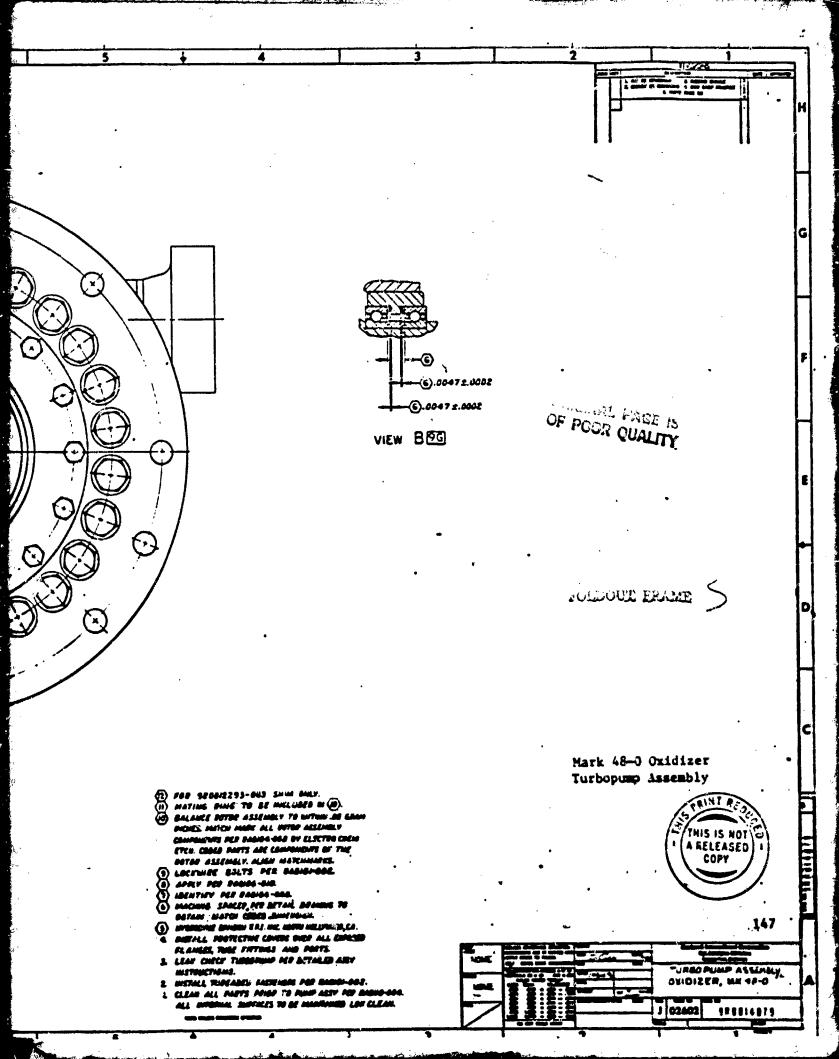



FOLDOUT FRAME

و بعبر و در در السور و


Server Street Street West




9 18 17	• BICSOFILB BEESLAF ALES • 1 16
	ł
	(3) #100 - 50 -
• · · · · ·	. (5) #100-5-0
	- (5)11-4915
A 	920012298-003 920012297-003
7	9200/2287-003 /M. 220/SE
	(3) 8100-5-010; SEAL 6 8 (0) 9985009649-003 NUT I R
$\Theta \times / NO / \cdot$	(3)8100-33-0101 SEAL IREAD
	(9, PDHI-4010-3427 BOLT 12 FEED RDIS3-5402-0000 WASHER IZ REED TOPEUE 70 ± 3 W LB
	@ #5007650E-003 INDUCEE I PERD
	0 99 # 500 9801-003 - 80LT / FEAD
	TO BOLE 75 ± 5 W LB
	950012290-003 INLET 1 5660-
$\Delta \otimes \mathcal{O} ///\mathcal{A}$	980012282-001 VOLUTE, ASSY 6
	(3)H-4918 SEAL
	(3)#- 4917 SEA
	580012294- 58001228-001
	1406/22
	5 76 0/2 2.
	(D) 70075
	-
د	5000/22
	(@ 9400)2J
•	9 1 7 5 60 91 8 5 60
· 7	TOPELE
OLDOUT FRAME	•
•	•••• •

una managan serang per serang dapanggapa menangkan serang serang serang serang serang serang serang serang ser

1.

ないかいとう

新

Ja.

Armateli adam and

. . . .

-

*

0.2.1

MARK 48-OXIDIZER TURBOPUMP OCTOBER 1978 TEST DATA

PRECEDING PAGE BLANK NOT FILMED

Selection of the selection of the selection of the

. with

A. A. Star

Se 8.

nalifati ng na katala n katalan katala	and a second second		
	*		
	LICUID CXY	YGEN TURBERUMP ASSEMBLY	9. BAGE . 3.
RUN NUMBER	16-05-78		PRDCESSING DATE 1J-J6-70 TEST DURATION+ SFC 55+0J
	COPMENTS	AALANCE PISTON FALLID ROUTED OVERBOARD.	JARD.
	CASELO FOR TURB ELON.		
	AMBIENT PRESSURE		13-8cuc
	VE		
P	P/N V160248-5GR S/N 8871	UPSTREAM CLAVETER Throat claveter Threat cd	0.95/L 0.248C 0.9650
	GH2 VENTURI (TURB)		
חוכ	N/A	UPSTREAM DIAMETER	- 300C
g p/	TELG N/S	_	
AGE	1 H3 VENTIAL 1655		END)
BL	P/N	LPSTREAM DIAVETER	1.689C 571C
АЙК		THREAT CC	0.9765
NC	LOX VENTURI (PUMP DISCH)	· ·	
DT F	P/N V3ZIU55-5GR		<u>1.6690</u> 1.0500
"ILN	S/N BEIT	THRUAL LIAMETER	0.5820
IED "		Id	OF 0272
		ST CV8C	6150 6150
	•	EFFECT1	0R (
		TY HOUSE LEAT	222
		H.G. CRAIN ORIFICE BRG CCCLANT URIFICE	00
51		MECTATE SEAL PU	0.1260

North Control of

Run Numers Liquid Davget Nederur Nage Test cuantion, scc 50.00 Run Numers Licota Tenetorie Test cuantion, scc 50.00 Fist Date Licota Tenetorie Test cuantion, scc 50.00 Fist Date Licota Tenetorie Run Numers Fist cuantion, scc 50.00 Fist Date Time Test cuantion, scc 50.00 Str Fist Cuantion, scc 50.00 Run List Fist Date Fist Cuantion Str Fist Cuantion, scc 50.00 Run List Fist Cuantion Fist Cuantion Fist Cuantion, scc 50.00 Run List Fist Cuantion Fist Cuantion Fist Cuantion, scc 50.00 Run List Fist Cuantion Fis					N.	, , \			-	~~	1
TUMBER FEST DURATION. SEC SEC FURATION. SEC SEC 75 7<	**			"	YGEN	PUMP A	SEMBLY		PAC	0	61
101 1		~~ J						PRI TE		1)- J (- SEC 56	. ~
75 <		SASEOU	O A H S	1		INE	RIV	AR	ETER		
F. #BECIN FROM FROM <td></td> <td></td> <td></td> <td>8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.</td> <td>•</td> <td></td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td>				8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	•		•		•		
CE TIME TIME TUS DELTA MALVE VALVE VALVE VALVE VALVE VALVE CAL 15EC1 15EC1 15EC1 10EG R1 15ES101 15S101 118/5101	- pe	1 > A=ENO	- VENTUR	I VENTURI	VENTURI	SPIN	SPIN	SPIN	TURB	SPEED	
(35C) (35C) (55C)	ш	HIL	5/1 余道	U/S	CELTA	VALVE	V ALVE	VALVE	. 6H2 .		
46.029 41:545 42:545 42:31.3 54:4.3 0.55 41:00 42:54.5 55:505 59:331 3 55:020 55:516 45:00 42:54.5 0.55 41:00 41:4.5 3:535.020 5:9331 3 3:05:54.5 100 41:4.5 3:05:54.7 0:9331 3 3:05:55 5:44.8 0.55 4:000 0:9331 3:05:55 5:44.8 0:9345 5:44.8 0:9345 5:44.8 0:9345 5:44.8 0:9345 5:44.8 0:9345 5:44.8 0:9345 5:44.8 0:9345 5:44.8 0:9345 5:44.8 0:9345 5:44.8 0:925 5:44.8 0:925 5:44.8 0:925 5:44.9 0:9345 5:44.8 0:925 5:44.9 0:9345 0:925 5:44.9 0:9345 0:9265 0:926 0:926	, I	1351	(DSIA)	11	(6510)	LON	(PSIA)	(PSID)	(LE/SEC)	(RPM)	•
46.029 41.545 424.4 0.55 4100 4118.3 302.628 6.09665 55.520 55.536 4100 4118.3 302.628 6.09331 7<0.033			1997 1997 1997					•	Gar ito		
5:200 5:5:54 412:8 544:5 0.55 4.100 4118:3 5902.028 0.934521 0.93452 0.		272 77	- 1207		- 1 -	3 400	9	3635-020	1 2 40KAS	056	i
c : 0.02 c : 0.02 c : 0.03 c : 0.04 c : 0.03 c : 0.04 c : 0.03 c : 0.04 c : 0.0	2				• •	• • • • • • •	18	3502.628	C.93341	30609.	
61.023 61.538 74.54.8 15.45 35.286 36.4.013 4.26625 715.003 715.54 5343.4 15.91 39.130 3707.5 503.195 4.26625 76.013 71.554 5331.1 543.3 16.53 49.413 349.01 307.095 4.26625 76.014 76.557 3531.1 540.4 16.61 50.903 3449.1 207.095 4.22693 711.005 715.567 3341.7 550.91 3449.1 272.3612 4.22695 711.005 715.567 3341.7 550.93 3449.1 272.3612 4.229466 710.005 715.567 3341.0 16.615 50.909 3449.1 272.3612 4.22946 710.015 81.501 81.617 594.0 16.615 591.40 16.70 51.16 223.612 4.12604 810.005 81.501 81.502 5331.6 16.77 5334.0 16.77 3236.3 14.417 81.005 81.605 331.6 16.77 533.20 14.51 10.647 16.79 81.00	20			4		4.108	4.)34.9	3418-790	0.93452	30662.	
710.033 712.55 53147.11 543.4 15.91 391.01 4.26520 710.033 773.56 552.11 443.475 3591.4 394.917 4.26629 710.01 76.55 535.11 16.52 43.475 394.917 4.26629 710.01 76.55 55.59 43.471 540.4 16.67 59.99 44.31 2.26669 710.01 715.56 735.48.17 540.4 16.67 59.399 3447.1 27864 710.015 715.56 78.540.3 16.67 55.595 337.6 252246 4.21548 710.015 81.561 334.7 599.6 16.67 59.396.1 16.57 4.21548 81.001 81.561 334.7 599.6 16.77 59.36.3 14.2677 81.001 81.561 334.7 599.6 16.79 51.16 57.2286 81.001 81.561 334.7 599.4 16.79 51.24 326.7 4.15677 81.001 81.561 16.79 51.101 27.529 27.2286 4.15677		3 67.	38		i 💌	35.288	3822.6	624.913	4.26224	67067.	
76.014 76.525 36.32.1 16.52 43.415 3598.01 307.003 4.2306 76.014 76.525 355111 540.0 16.61 53.990 3491.0 207.095 4.22364 71.005 75.540 3461.7 540.0 16.61 53.990 3491.6 2723.61 4.22364 790.035 75.540 16.61 53.990 3497.6 2523.305 4.22546 790.015 80.531 337.5 538.7 16.778 53.990 3497.0 14.2040 80.015 80.531 337.5 538.7 16.778 53.940.0 18.679 4.1254 81.0105 81.541 334.6 7.5574 334.7 181.667 4.1857 82.025 81.541 7.5754 334.0 181.667 4.1857 81.0105 81.541 7.555 334.0 181.667 4.1857 84.0105 84.016 7.555 310.1 117.675 4.10647 81.0105 81.542 317.1 2598.6 129.998 4.10645 81.0105 81.542	15 1 TO 03	3 . A.TC. 54	4 19 7 19 7 19 7 19 7 19 7 19 7 19 7 19	43 e		39.130	3707.2	503.975	•	67324.	
76.014 715.525 5351.11 540.0 10.055 543.1 201.005 4.23586 11.005 715.505 534.61 534.00 344.11 201.005 4.23586 11.005 75.560 534.66 534.60 16.67 53.190 344.11 210.005 4.22586 11.005 81.561 3341.2 530.00 3441.1 200.12 4.21548 10.005 81.561 3344.2 539.6 16.75 55.595 3371.6 252.305 4.22586 10.005 81.561 3344.0 16.77 16.79 81.065 31.561 4.16477 81.005 81.561 3376.1 16.79 81.052 3376.1 4.16477 81.005 81.565 3176.4 16.71 71.576 3206.3 4.16477 81.005 81.565 3176.4 16.78 71.576 329.53 4.16477 81.605 81.565 3176.4 16.779 320.51 16.771 329.53 4.16477 81.025 81.555 3176.4 16.765 5316.4	6 F#13.00	3 7. 73.56	5363	.2.		43.475	3593.4	398.917	• 1	67257.	
77.055 71.055 71.057 71.057 71.055 71.057 71.055 71.056 71.056 71.056 71.056 71.057 71.057 71.056	1. 76.01	4 .76.52		•		48.817	248U.U	501.1050 570 572	•	01114. 27126	
79.025 75.540 2415.4 539.6 16.76 55.595 3371.6 223.612 4.21546 80.015 80.5540 3375.2 5535.2 16.79 58.149 3338.1 200.581 4.20440 81.004 81.561 3374.0 5336.7 16.79 58.149 3338.1 200.581 4.20440 81.004 81.561 3375.1 16.79 61.086 3304.3 181.567 4.16477 82.025 83.541 3276.2 537.3 16.79 61.719 32264.3 16579 83.025 83.541 3276.2 16.78 71.557 3230.3 144.559 4.16477 83.025 81.615 16.78 16.79 61.719 3230.3 144.559 4.10461 87.026 81.612 16.74 16.77 5330.3 1327.1 103.318 4.006151 87.026 81.612.4 536.4 16.64 80.390 3137.1 103.318 4.006151 87.026 81.612.4 536.4 16.64 80.390 3137.1 103.318 4.006151		4 4 11.30 A 4 7 7 5 5	ち とうち たい		10.01	53.190		252.305	4.22286	67159.	
90.015 6C.53C 3375.2 5355.2 16.79 58.149 3338.1 4.20440 81.004 81.561 3344.0 7.538.7 16.79 58.149 3338.1 4.1657 81.004 81.561 3344.0 7.538.7 16.79 51.086 3304.2 181.867 4.16577 82.025 82.51 3275.1 538.2 16.79 67.719 3236.3 144.559 4.15077 82.005 64.613 25.762 3204.4 16.78 71.526 3232.9 129.908 4.126077 85.005 64.512 7536.4 16.78 71.526 3232.9 129.908 4.12607 87.025 61.512 536.4 16.64 80.390 3170.1 117.623 4.10467 87.026 61.542 3173.4 16.64 0.74 2.171 2568.6 2295.548 0.706151 87.026 61.542 3173.4 0.74 2.171 2568.6 2.955.548 0.70643 87.026 81.056 61.64 0.74 -2.171 2568.6 2.955.548 0.76653	0.67	<u>+5-21 - 5</u>	1.3413	39.	16.76	55.595	3371-6	223.612	j 🗣 .	67037.	i i
*81.004 81.561 3344.0 *,538.7 16.79 61.086 3304.0 161.867 4.18534 6681 82.025 82.551 3275.7 *,538.2 16.78 64.757 3256.0 164.79 6601 83.015 64.55 82.601 162.78 544.559 4.15077 6657 83.015 64.51 7516 537.3 16.78 71.526 3236.3 144.559 4.15077 6657 84.015 64.57 536.4 16.78 71.526 3232.9 129.308 6647 87.025 55.562 317.3 16.78 71.526 3232.2 4.10767 6657 87.026 516.65 530.4 16.79 3137.1 103.318 4.00151 6631 66.77 65.36.4 16.64 80.390 3137.1 103.318 4.001511 6631 66.75 81.65 536.4 0.74 -2.171 2568.6 2295.548 0.76643 2751 87.025 81.54 0.74 -2.171 2568.6 2295.548 0.76643 2751 </td <td>11 20.01</td> <td>5 - ec.53</td> <td>-3375.</td> <td>35.</td> <td>16.79</td> <td>58.149</td> <td>3338.1</td> <td>200.581</td> <td>4 • 2 0 4 4 0</td> <td>66961.</td> <td></td>	11 20.01	5 - ec.53	-3375.	35.	16.79	58.149	3338.1	200.581	4 • 2 0 4 4 0	66961.	
82.025 82.551 3365.7 538.2 10.18 64.259 4.15077 6657 83.025 83.541 3216.79 5596.31 16.79 61771 3236.3 144.559 4.15077 6657 87.015 85.56 16.79 61771 7516 3232.9 15077 6657 87.025 85.56 16.71 7516 3232.9 4.12607 6657 87.025 85.56.4 16.71 7516 3232.9 4.12677 6657 87.026 81.572 3236.4 16.74 80.390 3137.1 103.318 4.08151 6657 87.026 81.542 536.4 0.74 -2.171 2568.6 2295.548 0.76643 2751	81-0	4 81.56	3344.	38.		61.086	3304.0	181.867	4.18534	66612.	i
83.025 64.51 22.76.5 531.3 16.78 71.526 32.22.9 129.908 4.12880 6657 87.015 64.521 22.42 536.6 16.71 15.759 3170.1 117.623 4.10467 6647 64.72 65.64 16.61 15.759 3170.1 117.623 4.10467 6647 66.036 61.57 536.4 16.64 80.390 3137.1 103.318 4.00451 6631 66.036 61.542 536.4 0.74 -2.171 2568.6 2295.548 0.76643 2751 87.026 81.542 3173.1 103.318 4.00451 6631 87.026 81.542 3173.4 536.4 0.74 -2.171 2568.6 2295.548 0.76643 2751			30.5			162-40	3268.U	176-201	4.104//	00041. 66570	
85.005 55.562 3209.7 536.6 16.71 15.759 3170.1 117.623 4.10467 6647 66.036 62.5562 3176.5 536.4 16.64 80.390 3137.1 103.318 4.06151 6647 81.026 61.552 3176.5 536.4 0.74 -2.171 2568.6 2295.548 0.76643 2751	3.0		212	101		-	6.0626		4-12880	- 1-	
6.C36 E1.542 3176.5 536.4 16.64 80.390 3137.1 103.318 4.0E151 6631 87.026 E1.542 3173.4 536.4 0.74 -2.171 2568.6 2295.548 0.76643 2751		2	1 N	36.	• *•	i in	3170.1		19401-4		i
87.026 E1.542 3112.4 536.4 0.74 -2.171 2568.6 2295.548 '0.76643 2751		6 66.55	3176.	36.	¢٠	0	3137.1	n.	.0815	-4	
	87.0	6 87.54	317	36.	-		2568.6	95.5	.7664	751	- ·
		•	•	•							
				• • 1				•			
								••• •			
		ł	¥. ¥	and the second				• •	ч . ч		
				1							ł
			•	• •							
				•							1

でなる。他になるなないです。

1

しいですがみ

	TURB DSCH ORIFICE DELTA P (PSID)	382.6 398.9 400.5 1941.7 1943.5 1936.5	1925.¢ 1923.5 1914.1 1910.0 1910.0 1864.5 1864.9 1866.4 1866.4 1842.4 293.6	ORIGINAL PACE IS OF POUR CUALTY
PAGE	TURB EXH TGT TEMP (DEG R)	421.5 441.3 441.3 445.3 479.4 479.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
PROCESS ING TEST CURAT	TURB EXF TCT PR (PS IA)	403.7 415.8 415.8 451.2 1985.5 1981.1	970. 9555. 99555. 99555. 99555. 921. 905. 316. 316.	
	TURB EXH STAT PR (PSIA)	392.0 409.2 409.7 1957.2 1959.0	1540.7 1936.4 1530.5 1920.9 1920.9 1920.9 1981.3 1881.3 1881.3 1881.3 1881.3 1881.3 1881.3 1881.3 1868.9 1868.9	
ASSE4BLY	TUR8 NOZZ D/S PR (PSIA)	392.2 413.4 411.4 411.0 1941.4 1941.6 1933.9	922 917 917 911 902 902 902 883 883 883 883 883 8851 159 159	-
TURBCPUMP	TURB INLET TCT TEMP (DEG R)	556.8 558.8 558.3 547.8 545.5 545.1	543.0 542.4 542.4 541.4 541.4 540.0 540.0 539.8 538.9 538.9 538.9 538.9	
	TUR8 101 PR 101 PR	581.1 607.9 608.2 3145.9 3151.3	OMSPRANKSAND	9 9
	TURB TURB STAT PR (PSTA)		3147.2 3134.3 3126.4 3126.4 3058.6 3065.3 3065.3 3025.7 2025.7 212.8	
	SPEED *		61114. 61154. 61159. 61159. 61159. 61037. 6105. 6105. 6105. 6105. 6105. 6105. 6105. 61	
	TIME (SEC)	un un un un un un		
	SEGIN STIME	-46-C29 -55-020 -67-C23 -67-C23 -710-033		153

÷

, í

;

an an Inning a particular to the south

•	1							•	(
						•			
					<u>MK48-C</u> Tueénoumb ASS	ACC FMRI Y		PAGE	.
•	<i>š</i> .			IU LATGEN	- 1		DBOLESSING	INC PATE	10-06-78
RUN NUMBER	ER 1 C-05	8L-1			• .	۰۰ ۲۰۰۰ میل ۲۰۰۰ م	TEST CUR		C 56. UU
. 1			URB I-N	P R	AMETERS	CCNT INUED			
54	·				BUD	TORDUF	U/C	EFF	
ASLICE	SP EE C		PR V	CALIB)	(DELTA T)	(FT-LB)	(1-5)	(1-2)	IN TOT P (PSIA)
Q.	K D.H	(LB/SEC)		7111		-			
	10005	0-5067	1.4528	1.22.		17.04	0.1951	38.35	565.4 505.4
· 1 · 7	-20642		1.4560	102.0	550.4	17 49	0.1588	38.89 38.89	596.1
	36662.	C*5345		102.2	541.4	59.15	0.3942	51.55	3083.0
* \$	67667.	4.2622	2010-1	756.4	478.4	58.58	± 0.3958	51.53	3088.3
2	61324. 67257.	4.2607	1.5755	152.2	1479-5	58.71		51.53	3057.7
-	67114.	4.2436	1.5756	746.6	1460.4		50	51.52	3051.5
8		4.2355	2010-1-1-2	741.9	1454.5	58.00	3964	51.52	3042.2
6	- 6 1 1 2 4	23122 4 - 2125	1,5758	740.0	1449.6	£ 57.95	0.3955	51:53	2022-2
		4.2044	1512.1.2	. 137.3	1441.6	* 190 101 *	0.3950	51.54	3010.0
12	6681ž •	4.1853	1.5153	728.9	1426.7	57.43	0.3942	51.55	2994.2
ET	66641.	8051-7		. 726.0	1429.2	57.26	0.3940	51.56 61 66	2563.5
1 1	66575.		1.5753	721.7	1426.7	56.91 56.63	1.52.0	51.56	2943.8
91 -	Ū.	4.1047	1.5752	11 1.0	1424.2	56.41		1.	2925.1
81 - 13 21 - 13	66310. 27512.	0.7664	5.7679	168.5	400.	32.15	0.0978	•	6•N26
						÷	- 3° 		
			• • •	"· ·					
		•							
			T.		•	•			
 	•				- - - - - - - - - - - - - - - - - - -	-	· · · · · · · · · · · · · · · · · · ·	!	
	(• •		•			
							•	~ #	

ILIGULD CXYGEN TUBALTUMP ASSEMULY PRECESSING EL ILIGULD CXYGEN TUBALTUMP ASSEMULY PRECE ILIGULD CXYGEN TUBALTUMP ASSEMULY PRECE ILIGULUP ASSEMULY PRECE ILIGULD CXYGEN TUBALTUMP ASSEMULY PRECE ILIGULUP ASSEMULY PRECE ILIGULD CXYGEN TUBALTUMP ASSEMULY PRECE ILIGULUP ASSEMULY PRECE ILIGULUP ASSEMULY PRECE ILIGULUP ASSEMULY PRECE ILIGULUP ASSEMULY PRECE ILIGULP ASSEMULY		••		u L				
PAGCESS IN TEST EUKA QUID CXYGEN TURBLEWME ASSEMBLY PRCCESS IN TEST EUKA N E P A R A M E T E R S (CGNTINUED) RE P A R A M E T E R S (CGNTINUED) GAVPA CP CP A R A M E T E R S (CGNTINUED) CapPa PARA- PARA- PARA- PARA- S393 CP A R A M E T E R S (CGNTINUED) CP PARA- P						•		
P R M E T E S CCNTINUED P A R A F F S CCNTINUED A CP S S S S S S A CP S S S S S S S A CP S S S S S S S B CP S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S <td< td=""><td>D</td><td></td><td>QUID CXY</td><td>EN TURACEUMP</td><td>SS</td><td></td><td>4</td><td>PAGE 3.</td></td<>	D		QUID CXY	EN TURACEUMP	SS		4	PAGE 3.
P A R A M E T E R S (CGNTINUED) A CP SPEEC FLOW A CP SPEEC FLOW BTL/LEP-R) PARA- PARA- BTL/LEP-R) PARA- PARA- BTL/LEP-R) PARA- PARA- PARA- 215-9 215-9 0-0 PARA- PARA- PARA- PARA- PARA- PARA- PARA- PARA- PARA- PARA- 215-9 0-0 PARA- PARA- 215-9		-05-78 the second				PROC TES1	CESS ING DATE CURATION,	E 10-36-78 SEC 56. UI
A CP SPEEC FLOH TUR BTL/LEH-R) METER METER PARA- B 3.5585 215.1 4.4873 0.0 B 3.5585 219.9 4.4189 0.0 B 3.5585 219.9 4.4189 0.0 B 3.5585 219.9 4.44873 0.0 B 3.5584 28642 0.0 0.0 B 3.5584 28642 0.0 0.0 B 3.5584 28642 0.0 0.0 B 3.65713 488.9 3.8621 0.0 C 3.65713 488.9 3.8621 0.0 C 3.6522 488.9 3.8651 0.0 C 3.6523 488.9 3.8651 0.0 C 3.6523 488.6 3.8652 0.0 C 3.6522 486.6 3.8652 0.0 C 2.6523 48			<u>BINE</u> PA	AMETE	S	JED)		
(BTL/LEP-R) METER PARA- PARA- PARA- 65 3.5585 215.1 4.4873 0.0 8 3.5585 215.2 4.4873 0.0 8 3.5585 219.9 4.4189 0.0 8 3.5585 219.9 4.4243 0.0 8 3.5584 220.2 486.4 0.0 7 3.6455 486.4 3.8642 0.0 7 3.6513 488.9 3.8642 0.0 6 3.65513 488.9 3.8617 0.0 6 3.6552 488.9 3.8612 0.0 6 3.6552 489.6 3.8652 0.0 3.6552 489.6 3.8652 0.0 0.0 3.6552 488.7 3.8658 0.0 0.0 3.6552 488.7 3.8658 0.0 0.0 3.6552 488.7 3.8658 0.0 0.0 3.6552 488.7 3.8658 0.0 0.0 3.6552 486.0 3.8658 0.0			- CAWA	6.0	SPEEC	FLOW	TOROLE	NHEE.
(BTL/LEP-R) METER METER METER 5 3.5585 219.9 4.4873 0.0 8 3.5585 219.9 4.4189 0.0 8 3.5585 219.9 4.4189 0.0 8 3.5585 219.9 4.4189 0.0 8 3.5585 219.9 4.4189 0.0 8 3.5584 220.2 4.8643 0.0 7 3.6455 486.4 3.8642 0.0 7 3.6508 486.9 3.8617 0.0 6 3.6513 489.9 3.8612 0.0 6 3.6525 487.7 3.8612 0.0 6 3.6525 487.7 3.8612 0.0 5 3.6525 486.7 3.8658 0.0 6 3.6525 486.7 3.8658 0.0 6 3.6525 486.7 3.8658 0.0 6 3.6525 486.6 3.8658 0.0 6 3.6525 486.7 3.8658 0.0 6 3.6525 486.0 3.8658 0.0 6 3.6525 486.6 3.8658 0.0 6 3.6525 <td></td> <td>ENERGY(T-S)</td> <td></td> <td>5</td> <td>PARA-</td> <td>PARA-</td> <td>PARA-</td> <td>EXH PPESS</td>		ENERGY(T-S)		5	PARA-	PARA-	PARA-	EXH PPESS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10 KC (ETL /LB)	بر بر	11.64	METER	METER	METER	- PSIA
08 3.5585 219.9 4.4189 0.0 98 3.6455 486.4 3.8642 0.0 97 3.6455 486.4 3.8642 0.0 97 3.6455 486.4 3.8642 0.0 97 3.6487 488.9 3.8647 0.0 96 3.6513 488.9 3.8617 0.0 96 3.6513 489.6 3.8610 0.0 96 3.6513 489.6 3.8621 0.0 96 3.6522 489.6 3.8620 0.0 96 3.6523 486.7 3.8656 0.0 95 3.65528 486.7 3.8656 0.0 96 3.65528 486.7 3.8656 0.0 97 3.65528 486.7 3.8656 0.0 96 3.65528 486.0 3.8656 0.0 96 3.8656 3.8656 0.0 0.0 96 3.8656 3.8658 0.0 0.0 97 3.86530 2.15.9 2.1501				3.55 85	215.1	4.4873	0.0275	353.7
08 3.5584 220.2 4.4243 0.0 98 3.6456 486.4 3.8642 0.0 97 3.6473 486.4 3.8642 0.0 97 3.6473 486.4 3.8642 0.0 96 3.6473 488.9 3.8617 0.0 96 3.6508 488.9 3.8610 0.0 96 3.6517 489.6 3.8594 0.0 96 3.6528 488.9 3.8594 0.0 96 3.6526 488.7 3.8594 0.0 95 3.6528 486.7 3.8612 0.0 95 3.6528 486.3 3.8612 0.0 95 3.6528 486.3 3.8612 0.0 95 3.6531 486.5 3.8658 0.0 95 3.6531 486.0 3.8658 0.0 96 3.6531 486.0 3.8658 0.0 96 3.6531 486.0 3.8658 0.0 96 3.8658 0.0 0.0 0	19.7	158.51 m	2	3 • 55 85	219.9	4.4189	U.0265	469.7
97 3.6473 488.8 3.8617 0.0 96 3.6508 488.9 3.8617 0.0 96 3.6517 488.9 3.8617 0.0 96 3.6517 489.6 3.8594 0.0 96 3.6517 489.6 3.8594 0.0 96 3.6517 489.6 3.8594 0.0 96 3.6517 489.6 3.8594 0.0 95 3.6522 489.6 3.8594 0.0 95 3.6522 489.7 3.8594 0.0 95 3.6525 487.7 3.8502 0.0 95 3.6531 486.3 3.8628 0.0 95 3.6531 486.0 3.8658 0.0 95 3.6531 486.0 3.8658 0.0 95 3.6531 486.0 3.8658 0.0 96 5.0531 486.0 3.8658 0.0 96 5.0 3.8658 0.0 0.0 96 5.0 3.8658 0.0 0.0 96 5.0 3.8658 0.0 0.0 96 5.0 2.1501 0.0		Grife	2008 2019 - 3908	3.5584 2.6656	220.2	4 • 4243 3 • 8642	0.C265 0.0176	410.6 1955.3
97 3.6487 488.9 3.8617 0.0 96 3.6513 489.5 3.8610 0.0 96 3.6513 489.5 3.8513 0.0 96 3.6517 489.5 3.8593 0.0 96 3.6522 489.6 3.8594 0.0 95 3.6525 489.1 3.8594 0.0 95 3.6525 489.1 3.8594 0.0 95 3.6525 489.1 3.8594 0.0 95 3.6525 486.1 3.8502 0.0 95 3.6531 486.5 3.8612 0.0 95 3.6531 486.6 3.8658 0.0 95 3.6531 486.0 3.8658 0.0 96882 2.6531 486.0 3.8658 0.0 96882 2.15.9 2.1501 0.0 0.0 96882 2.15.9 2.1501 0.0 0.0 96882 2.15.9 2.1501 0.0 0.0			1665 12	3.6473	488.8	3.8594	0.0175	1956.8
96 3.65C8 488.9 3.8621 0.0 96 3.6513 489.5 3.8610 0.0 96 3.6517 489.6 3.8594 0.0 96 3.6522 489.0 3.8594 0.0 95 3.6525 489.1 3.8594 0.0 95 3.6526 488.7 3.8594 0.0 95 3.6525 488.7 3.8594 0.0 95 3.6526 488.7 3.8612 0.0 95 3.6528 486.3 3.8658 0.0 95 3.6528 486.6 3.8658 0.0 95 3.6531 486.6 3.8658 0.0 95 3.6531 486.6 3.8658 0.0 96882 2.15.9 2.1501 0.0 96882 2.15.9 2.1501 0.0	3	1 × 1 × 1	12252.14	3.6487	488.9	3.8617	0.0175	
96 3.6513 489.6 3.6610 0.0 96 3.6517 489.6 3.8593 0.0 96 3.6522 488.7 3.8594 0.0 95 3.6526 488.7 3.8594 0.0 95 3.6526 488.7 3.8594 0.0 95 3.6526 488.7 3.8612 0.0 95 3.6528 486.7 3.8612 0.0 95 3.6528 486.3 3.8612 0.0 95 3.6528 486.1 3.8658 0.0 95 3.6531 486.0 3.8658 0.0 95 3.6531 486.0 3.8658 0.0 9682 2.15.9 2.1501 0.0 9682 215.9 2.1501 0.0			965E. E 1	3.65C8	488.9	3.8621	0.0175	1977.8
96 3.6517 489.6 3.8594 0.0 95 3.6522 488.7 3.8594 0.0 95 3.6526 488.7 3.8612 0.0 95 3.6525 487.7 3.8612 0.0 95 3.6526 486.7 3.8612 0.0 95 3.6528 486.3 3.8628 0.0 95 3.6528 486.6 3.8658 0.0 11 3.6531 486.6 3.8658 0.0 12 6530 485.0 3.8658 0.0 12 6530 485.0 3.8658 0.0 12 6530 485.0 3.8658 0.0 12 6530 485.0 3.8658 0.0 2 6530 2.15.9 2.1501 0.0			266E	3.6513	689.5	3.8610	0.0175	1972.7
96 3.6522 489.0 3.8594 0.0 95 3.6526 488.7 3.8612 0.0 95 3.6525 487.7 3.8612 0.0 95 3.6526 486.7 3.8602 0.0 95 3.6528 486.7 3.8602 0.0 95 3.6528 486.3 3.8658 0.0 95 3.6531 486.6 3.8658 0.0 95 3.86531 486.0 3.8658 0.0 9682 215.9 2.1501 0.0 0.0	ŝ.		9666	3.6517	489.6	3.8593	0.0175	1966.1
95 3.6525 488.1 3.8612 0.0 95 3.6525 487.7 3.8612 0.0 95 3.6525 486.7 3.8612 0.0 95 3.6531 486.3 3.8625 0.0 95 3.6531 486.6 3.8658 0.0 95 3.6531 485.0 3.8658 0.0 95 3.6531 485.0 3.8658 0.0 95 3.6530 485.0 3.8672 0.0 96882 215.9 2.1501 0.0 0.0			- 366E	3.6522	489.0	3.8594	0.0175	1961-9
3.6528 486.7 3.8602 0.0 3.6530 486.3 3.8636 0.0 3.6530 486.0 3.8658 0.0 486.0 3.8658 0.0 0.0 3.6530 485.0 3.8658 0.0 485.0 3.8658 0.0 0.0 3.6530 485.0 3.8658 0.0 4.85.0 3.8658 0.0 0.0 3.6682 215.9 2.1501 0.0 4.85.0 2.1501 0.0 0.0				2.07C0 2.27 2.27	1.884	2.8612	0.0176	•
486.3 3.8626 0.0 486.6 3.8636 0.0 486.0 3.8658 0.0 486.0 3.8672 0.0 215.9 2.1501 0.0			2002 A 1		486.7	3.8602	0.076	1936.9
486.6 3.8636 0.0 486.0 3.8658 0.0 485.0 3.8658 0.0 215.9 2.1501 0.0			A STATES A	2.3.6528	486.3	3.8626	0.0176	29.
486.0 3.8658 0.0 485.0 3.8672 0.0 215.9 2.1501 0.0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		486.6	3.8636	C.C176	
215.9 2.1501 0.0				23.6530	486.0	3.8658	0.0177	
				20,00,20 21,6882	485.U	2.1501	0.0320	
155					, 1 2 3			
155	, , ,							0 <i>R</i> , <i>A</i>
155					a de la compañía de l			IGINI COR
55							VUAL,	AL PAG
	55						19	19 A
							1	

Ĩ

Rist Numer Lioutio Gaveen Viene-Curr PARCEESING EAFE 1		(
WURER S AL AN DE A T A N DE A T DE <thde< th=""> DE A T DE<!--</th--><th>e </th><th></th><th></th><th></th><th>LIQUI</th><th>OXYGEN</th><th>48-C URBCPUMP A</th><th>S</th><th></th><th>- - -</th><th>¢</th><th>•</th></thde<>	e 				LIQUI	OXYGEN	48-C URBCPUMP A	S		- - -	¢	•
101 5 E a L a N 0 E A L b C S C F S C F	R UN T ES T										CATE 1 IGN, SEC	<u>- J - 7</u> 56.
WFW LUX FRIM LUX FRIM LG		156		i i	A L	N D B	ARIA	ĀT				
(IIS:1A) (DEG R1) (FSIA) (DEG R1) (EEG R1) (1 22	PRIM SEAL TEM	1/5 Purge Pr	1 W	12.	PRIM EAL C L/S T	C R C	SEC EAL PR	A P	SEC HG EAL ORI V/ 5 PR	jr φμ,
16.49 148.47 27.1.72 557.29 15.07 232.18 0.0343 20.9 314.44 14.23 330. 16.49 148.13 215.13 555.29 14.98 239.10 0.0343 20.9 306.57 14.23 330. 16.40 148.23 215.13 555.29 14.98 239.10 0.0343 20.9 306.57 14.23 330. 18.51 165.10 221.75 555.24 35.64 422.15 0.1017 30.7 439.46 14.69 422.13 18.51 165.15 221.50 555.14 35.64 443.16 0.1017 30.7 439.46 14.67 428.45 18.60 164.13 221.50 555.14 35.64 443.45 14.67 440.46	 	[#] 5d)	(DEG R)	(PSIA)	ζ α	5 I A	C E C	6/5EC	PS IA	DEG		1. 1
16.45 146.45 146.45 14.08 239.10 0.01345 20.09 346.72 14.425 339.47 394.75 0.0092 299.4 418.04 14.465 384.77 394.75 0.0093 299.4 418.04 14.465 384.77 384.77 394.75 0.0093 299.4 418.04 14.465 384.77 384.77 394.75 0.0093 299.4 418.04 14.667 434.65 414.65 446.65 384.77 384.77 394.75 0.0093 299.9 418.04 14.667 446.65 414.65 446.65 <t< td=""><td>-</td><td>16.58</td><td>• •</td><td>•</td><td>v.</td><td>0.</td><td>32.</td><td>.036</td><td>0</td><td>14.4</td><td></td><td></td></t<>	-	16.58	• •	•	v.	0.	32.	.036	0	14.4		
18-71 194-15 220.06 558.28 34.77 394.75 0.0017 31.4 434.64 14.65 384. 18-77 166.05 528.18 36.61 422.15 0.1017 31.4 434.64 14.65 384. 18-77 166.05 528.16 538.18 36.61 433.45 0.1017 31.4 434.64 14.65 442.64 14.65 444.65	2	16.49	48.2	~ 4	NU	6 0	39. 41.	•034 •133		C8.5 05.0		
18-77 16C.c5 721.15 555.14 36.461 432.45 67.47 422.45 446.67 422.45 18-63 162.15 555.14 36.46 433.46 433.46 434.46 434.46 18-70 165.15 521.15 555.14 36.46 433.46 434.46 146.67 422.46 146.67 18-70 165.15 521.16 555.14 36.41 36.41 146.67 433.46 434.46 146.67 436.44 440.46 <td>י 4'ח</td> <td>18.81</td> <td>1 0 0 1 7 0 7 5 7 0 1</td> <td></td> <td>N</td> <td>• '•• • `•</td> <td>94</td> <td>.099</td> <td>9</td> <td>18.0</td> <td>•</td> <td></td>	י 4'ח	18.81	1 0 0 1 7 0 7 5 7 0 1		N	• '•• • `•	94	.099	9	18.0	•	
Is.cz Itz.11 $zz1.41$ 36.486 430.08 30.11 427.46 440.23 444.26 446.24 144.65 436.64 444.76 144.65 436.64 444.76 144.66 436.64 444.76 144.66 436.64 444.76 144.66 444.76 144.66 444.76 144.66 444.76 144.66 444.76 144.66 444.76 144.66 444.76 144.66 444.76 144.66 444.76 144.66 144	5	18.57	6C.C			- 0 -	22.	.101		40	•	
18.00 151.15 251.95 557.97 36.19 434.40 0.0961 29.7 444.03 14.64 439 18.00 166.13 221.50 557.97 36.00 435.49 0.0961 29.7 444.03 14.64 439 18.00 167.28 221.50 557.95 35.81 431.29 0.0961 29.7 444.05 14.64 440 18.09 166.05 221.01 557.95 35.81 431.99 0.0961 29.5 445.16 14.64 442.56 18.69 166.05 221.01 557.95 35.39 431.99 0.0961 29.5 446.17 14.64 442.56 18.69 166.05 221.01 557.95 35.39 431.89 0.9961 29.5 446.17 14.64 442.56 18.66 165.68 557.95 34.65 0.445.20 14.47.20 14.42.56 445.56 18.66 17.11 12.61 557.95 34.65 0.9932 28.7 447.20 14.45.56 445.56 17.10 114.45 213.61	د	18-62	•	~	556.14	80	30.	101		429.40	•1+	
18.69 166.13 221.50 557.97 36.00 435.48 0.1981 29.7 444.03 14.64 439. 18.70 161.78 221.130 557.95 35.81 436.29 0.0994 29.5 446.17 14.64 440 18.69 166.05 221.01 557.95 35.86 431.99 0.0964 29.5 446.17 14.64 442 18.69 166.05 221.01 557.95 35.15 438.89 0.09948 29.2 446.17 14.64 442 18.68 165.06 537.95 35.15 438.83 0.09948 29.1 447.20 14.56 444 18.68 176.61 26.17 438.83 0.0932 28.7 446.120 14.56 445 18.68 176.61 260.7 537.55 34.45 438.83 0.0932 28.7 446.88 445.56 445.56 445.55 446.55 445.55 445.55 445.55 445.55 445.55 445.55 445.55 445.55 445.55 445.55 445.55 445.55 445.55	~ «	18-05	5 U)	, n , i	556°14	• -		.098	50	443.38	• •	36.
18.70 167.28 221.30 557.95 35.81 436.29 0.0974 29.8 444.17 14.64 440.17 18.70 161.68 221.11 557.95 35.60 437.19 0.0954 29.2 440.17 14.61 442. 18.68 166.69 221.01 557.95 35.15 436.39 0.0954 29.2 440.17 14.61 443.5 18.68 165.33 221.01 557.95 35.15 438.83 0.0954 29.2 440.17 14.55 443.5 18.68 165.61 220.96 557.95 34.64 438.81 0.09948 29.1 447.20 14.56 445.5 18.66 171.17 210.61 557.95 34.36 438.81 0.0932 28.7 447.20 14.56 445.5 18.66 171.17 210.61 557.95 34.36 0.0932 28.7 447.20 14.56 445.56 445.56 18.66 117.10 114.45 213.61 557.95 14.77 445.60 14.55 445.60 145.66 145.66	•	18.69	166.13	•	557.97	••	35.	96 (.	6	50° 575	٠	3 CC 2 CC
18.69 166.05 221.01 557.55 35.38 437.39 00954 29.5 446.17 14.61 18.69 1666.61 220.46 557.55 35.15 438.39 00954 29.1 447.20 14.56 443 18.68 1666.61 220.46 557.55 35.15 438.81 00954 29.1 447.20 14.56 443 18.68 1656.61 220.46 557.65 34.33 438.81 00948 29.1 447.20 14.56 445.56 18.68 116.61 220.45 34.33 438.81 0.0.932 28.77 447.20 14.56 445.56 18.66 171.17 26.86 557.55 34.33 438.41 0.0.932 28.77 445.60 14.56 445.56 17.10 114.65 213.67 557.55 14.777 445.60 13.92 445.60 17.10 114.65 14.777 436.43 00932 28.77 445.60 13.92 446.65	101	10.70	167.28	•	557.95	8 • •	5 C 7 C	7 6 0 °	ን ወ	444.10	• •	
18-58 168-50 220.96 557.95 35.15 438.39 0.0954 29.2 446.65 14.55 18-68 165.33 220.85 557.95 34.53 438.82 0.0948 29.1 447.20 14.55 18-68 165.33 220.85 557.95 34.64 438.82 0.0948 29.1 447.20 14.55 18-68 165.16 557.95 34.64 438.81 0.0932 28.8 447.20 14.55 18-68 171.61 220.76 34.64 33.94 438.62 0.0932 28.8 447.20 14.55 18-66 171.17 210.17 250.45 14.55 445.60 13.92 446.65 111.10 114.65 213.61 557.55 14.77 436.43 0.1232 17.0 445.60 13.92 446.		18.69	• •	• •	557.55	• •	94.	6 0.	5	446.17	•	
4 18.64 165.33 220.85 557.55 34.53 438.82 0.0948 29.1 447.20 14.56 5 18.68 165.86 257.95 34.64 438.83 0.1944 28.6 447.23 14.56 6 18.68 170.61 220.85 557.95 34.64 438.81 0.0943 28.6 447.20 14.56 7 18.68 170.61 220.85 557.95 34.64 438.61 0.0921 28.7 446.88 14.56 7 18.06 557.55 34.64 38.64 0.0921 28.7 446.88 14.56 8 17.10 174.65 213.67 557.55 14.77 436.43 0.12332 17.0 445.60 13.92 446. 8 17.10 174.65 557.55 14.77 436.43 0.12332 17.0 445.60 13.92 446.) (00)		1.	557.95	-	38.	<u>•</u> 0•	0	46.6	•	43 •
5 18.68 165.66 557.95 34.64 438.83 0.0932 28.7 441.25 14.55 7 18.68 17.10 17.117 220.86 557.55 34.64 0.0932 28.7 441.20 1455 7 18.68 17.10 17.117 220.86 557.55 34.64 0.0932 28.7 445.60 14.55 445.6 8 17.10 114.45 213.67 557.55 14.77 436.43 0.12322 17.0 445.60 13.92 445.6		18.68	•	•	557.55	5	38.	•00	o :	47.2	٠	
18-68 176-61 220-76 557-55 34-33 438.81 0.0932 28.7 446.88 14-56 445- 18-66 111.17 226.86 557-55 33.54 438.62 0.0921 28.7 446.88 14-56 445- 17.10 114-65 213.67 557-55 14.77 436.43 0.02321 28.7 445.60 13.92 446-		18.68	\$	ώ)	ς. •	ن ق •	9 0 9 0	50.0	Σ,α		Ň	• • • •
	10	18.68		~ (ທີ່	mi c •	38.85	70. 70.	α	7•14 7•37	n ur	
	7 1			ν. •	×	× ~	лс•о 36•4		• ~	45.6		46.
				-								•
	 - '			•	: ; ;				•	•		•
									•			•
												;
			•	•		·	•		•	·		
							/					
										*		

		e.		•					
			LIGLID OXY	₩K4. <i>)</i> Ygen turecfump) UMP ASSEMBL			PAGE	a. 7
TEST CA	NUMBER 9 Cate 1C-C5-78	78					PRUCESSING DATE TEST CURATION.	10-0 SEC	é- 76 56. ľu
1 		S. E A L	A A D B	EĀRIN	G D A T A	A LCCNT INUED	(•	•
SLICE SLICE	SEC FG SEAL CR	RR BRG COOLANT	RR BRG CCLANT	RR BRG Dràin	RR BRG Erain		RR ERG Cool Jor IF	RR BRG COCLANT	1
DN	U MI	SLPPL.PR [PSIA]	SUPPL, TEMP (DEG R)	PR (PSIA)	TEMP (DEG R)	U/S PR (PSIA)	U/S TEMP [DEG R]	FLCH [[LB/SEC]	
							1		~
	0.0	500	81.13 £3.25	206.8	84.35 84.35	13.8	460.00 460.00		
ŝ		510.			• 🔶	13.8	6.0	0.0	
•	0.0	525	67.61	-	~	13.8	460-00	0.0	
IN I	0-0 0	528	68.63 or ac	100 2	•		460.00	00	
0		272	50°56		93.46	13.8	460.00	0.0	•
• 00	0.0	432	51.13	95.	19	12.8	4 60 .00	0-0	
0	0.0		52.19	195.9	•	8 • C • C • C • C • C • C • C • C • C •	460.00		
01		いつう	52.44	4 • 46 T	40°07		460.00))))	
12	0.0	よい	53.00	•	n i	13.8	4 60 .00	0.0	ļ
13	0.0	292	18-25	: •	92.73	13.8	460.00	0•0	
14		227	52 . 56	167 1	91.55 00.44	80 a 71 - 6 71 - 7	460.00 460.00	0.0	
61	0.0	2 4	• •	184.8	• •		460.00	0.0	
17	0.0	30.		•	7.0	12.8	46u•00	0.0	
18	0.0	6 83.	-	119.2	16.40		4 60 • 00	•	•
								·	04
			-			1 • •			CONA CONA
								197	(PAG
157								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1	r * * *	-		•	,	1	-		1

PAGE 74. 3	VG DATE LJ-16-74 ATION, SEC 56-01									·								
	PROCESSING DATE TEST CURATION. (CONTINUED)	LCX SEAL DRAIN FLOWRATE (18/SEC)	0.065	0.059 0.055	0.130	0.097	0.097	260.0	0.097	0.007	0.096	0.096	0.096	0.096	0,005	0.080		
NTURACPU P ASSEMBLY	ARING DATA	LGX SEAL CRAIN DRIF U/S TEMP DEG R	533.56	531.57 532.10	531.35	530.91 530.80	530.83	530.78	530.78 520.78	77	530.76	530.78	530.80	530.80	530.79	530.83		
LIGUID CXYGEN	SEAL AND BE	LCX SEAL DRAIN CRIF L/S PRESS PSIA	14.2	14•1 14•1	14.6	14.6		14.6	14.6	14.0	9-91	14.6	14.6	14.6	9•9¶	14.3		1 - - - -
	NT-10-05-78	SLICE SLICE NO			n 4				ري (ا	10	11	u ()	51	¥ 1	16	81	ORIGINA OF POOL	L PAGE IS QUALITY

を進行

ULD CXY	LIQUID CXYG LIQUID CXYG P U M P DISCH DIFL DISCH DISC PR PR PR PR PR PR PR PR PR PR PR PR PR
C	x
	(PSIA) 522.0 553.8 553.8 1733.5
l i	Nimm
	- m m m
	5
	23.
	1716-1
	1765.4
	69.1
	60.1 37 1
242	1.10
	6 (1) 7 (1) 7 (1)
!	• • •
	16(7.5
	519.8

159

ł

;

!

and the strength of the strength os strength of the strength os strength of the strength os strength o

1

t F

N NUMBER	•	LITUU LANGEN OU				01-5
EST DATE 1C-05-78	5 -78			PROCESSING TEST CURATI	SSING CATE IC- CURATION, SEC	-06-78 56-00
•	PUMP P	ESSURES AN	O FEMPER	ATURES		
	SPEED	INDUCER	PUPP BRG	BAI PIST	DIMP	
SLICE		DISCH	0/5	RECIRC	BRG	
ON		PRESS	PRESS	TEMF	CELTA P	
	N D N	PSIA	PS IA	DEGR	P 5 1D	
-4	25505.	274.1	285.5	445.16	75.48	
•••	30609.	276.5	295.5	45.05		
(() () () () () () () () () () () () ()	36662.	276.0	296.8	445.16		
	67667.	418.8	998.9	444 485		
•	61324.	413.5	1044.1	4512	246.46	
0	¢ (251.	416.4	1081.2	445415	217.86	
- 6	e /114.	414.5	1078.1	2	· .	
	67164 . Aliec	391.4	1075.5		•	
			1000.1	10°444	12.	
	• • • • • • • • • • • • • • • • • • •		1.026		13.	
12	FF812.	0,000			• '	
<u> </u>		• 1	1001	1	181.0	
	66573.	285.9	1142.2		162.51	
15	66579.	279.7	1037.7		1 0 4 • C 7 1 A 6 - L 7	
1 ¢		278.4	1037.0	445.08	י ו י	
17		278.5	1031.1	445.14		
16	27512.	257.2	468.6	445.15		
				۲ د		
		•	:			
				.(>		
						!
•						
]				3 		

TEST CATE 1C-C5-78		0110 <i>1</i> 1	CXYGEN	K46 TURBCPUMP ASSEMBLY		PAGE	E /9•12
					PR 16	PROCESSING CATE TEST CURATION, S	10-06-78 SEC 56.00
	4 H D	PRES.	SURE SA	NOTEMP	ERATURE		•
		PLAP	BAL PIST	PUMP	PUMP	PUMP	dH
SLICE INLET NO TEMP		D I SCH TEMP	RE TURN TFMP	DISCH	C ISCH VENT	D ISCH VENT	(TEMP)
· · ·				U/S TEMP	U/S PR	CELTA PR	
060	R) (DEG	((DEG R)	(CEG R)	(P S [A]	{ S }	
115.	28 T 83	.36	460-03	44.[8]	4°866	16.61	96.89
		. 53	460.00	180.55	975.2	16.69	101.90
		BC.56	460.00	180.59	976.7	16.70	102.59
		197.52	46J.J.	193.46	3976.0	51.28	741.81
.: 1		•52	460.60	193.48	3998.0	51.35	744 • 58
		. 00	460.00	194.00	266	50.93	751.26
		54.60	46	194.JJ	3977.4	50.37	745.48
		54.00	460.00	194.30	3968.6	50.13	744.50
	78 L94	154.CO		194.00	3937.6	40°54	734.12
	196	54.00		194.00	3913.4	49.17	732.50
•1.1	751	3.		194.00	3893.1	48.99	731.35
		54. CO		194-00	3863.5	46.35	725.61
115	1 54	. 00		194.JU	3835.8	48.23	722.83
	104	54.00		194 . UC	3822.8	47.72	115.17
112	154	24.66		194 •00	3817.6	47.67	718.57
	1 164	-00		194.00	3841.1	47.473	718.05
17 175.	561	00.		194.10	81	47.39	714.08
G • 1 1 4 8 9	21 154		460.00	194.00	984.9	16*5	207.21
			•			۲ ۱ ۱	
					·		
					•		

B R M E E S FLUIC TURB E F I		2				urke.	:			PAGE	ί
Contract Contract File File <th></th> <th></th> <th></th> <th>L1</th> <th>CXYG</th> <th>h.</th> <th>455</th> <th>۲۷</th> <th>1</th> <th></th> <th></th>				L1	CXYG	h.	455	۲۷	1		
Test Test Turk Test Turk Test Turk Test 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NUNUN	18ER 10-05	- F							л С	26.40
CE FEST FUID FESS FUID FESS FUID FESS FUID FESS FUID FESS F		· .	<u> </u>	<u>LCLLA</u>	0	C N	ARA	ETER	: : : :		
TEST TIM PUM HEAD RESS FUIC TUP LT RESS 256-05 116-95 21.0664 117.25 21.1204 1005.0 61.6 102.00 60.24 60.24 266-05 117.25 21.1204 11605.4 755.36 715.5 61.2 60.24 60.24 206-07 117.25 21.1204 11605.5 755.36 755.36 755.36 755.36 21601 239.25 31.31246 1005.5 309.0 556.36 756.36 74.45 21011 239.25 31.31246 1005.5 309.3 556.36 77.46 77.49 21011 239.25 31.31246 0105.5 389.7 556.36 77.49 74.45 21015 239.53 304.40 556.36 77.46 77.46 77.49 74.45 21015 239.54 77.41 77.46 77.46 77.49 77.49 21015		. 1									SDECIERC
CE FIC FLO R15.6 FP			anil a	PLHP	HEAD	FRESS	FLUIC	TURB			SPEED
(RPH) (GP) (LB/SEL) 113.5 56.4 97.01 60.24 60 75005 117.25 21.1205 14009 755.9 61.6 102.10 60.45 60 76505 117.25 21.1205 14009 755.9 61.6 102.10 60.45 60 76507 117.25 21.1205 716099 755.9 61.8 102.10 60.45 60 76507 239.25 31.3427 760919 755.9 61.3 152.60 60 60 71512 239.25 31.3427 3898.7 556.0 755.18 73.55 74 75 74 75 7	u U U U		FLCh	FLON	ľ	RISE	10 10]	(+P)	(1)		
29:01 20:24 97:01 60:24 97:01 60:24 60 20:05 127:25 21:12:06 75:9 21:12:00 60.24 60 61:6 102:00 60.24 60 20:05 127:25 21:12:06 75:12 21:12:00 60.24 60 61:6 102:00 60.45 60 20:05 137:25 21:12:04 75:19 75:29 75:29 75:15 75:11 75:11 75:11 75:11 75:11 75:11 75:15 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:16 75:17 75:	0	(RPM)				ITC.I		-	•	•	
294.0 116.9 21.0664 17.55 <								07.07		(m	1433
17.54 21.1206 0.1000.1 755.9 0.10 102.16 00.15 17.6061 177.54 51.1206 0.1010.15 555.0 755.68 735.13 17.61 239.55 311316 0.1011.15 555.0 755.16 735.11 17.61 217.55 311316 0.1011 555.0 755.16 735.13 17.61 3661.5 373.45 756.13 8119.7 3596.1 555.66 73.13 17.11 217.12 36.6613 8119.7 3596.1 555.66 73.13 73.13 17.11 215.11 36.6613 383.5 547.1 744.62 73.13 17.11 36.6613 313.5 388.5 547.1 744.62 73.13 17.11 36.6614 313.5 388.5 547.1 744.92 73.13 17.11 36.6614 383.5 547.1 744.92 73.13 72.13 1816.7 236.50 388.5 524.3 388.7 73.60 72.13 72.16 72.13 1816.1 224.5 310.5<	_	755		1.666	أم	715.5	+ 00			60.50	1414.
30666 137.25 21.126 21.126 21.126 21.126 73.11 75 67061 239.25 31.3178 10.02139.5 3596.7 756.36 73.11 671251 239.25 31.3178 10.02139.5 3596.7 756.36 73.51 671251 239.25 31.1767 68179.7 3996.7 552.3 73.55 73.55 67114 237.25 37.6768 6195.3 3896.7 547.1 744.62 73.55 67115 237.25 37.6768 6195.3 3896.7 547.1 744.62 73.48 73.55 67115 235.15 36.5569 3898.6 547.1 744.62 73.48 73.55 67037 236.51 36.5569 388.3 542.6 73.66 73.72 73.72 73.72 73.72 73.46 73.56 73.66 73.56 73.66 73.56 73.56 73.56 73.56 73.66 73.56 73.66 73.56 73.66 73.66 73.56 73.66 73.66 73.66 73.66 73.66 73.66 73.66		20	2.0	1.1206	That	133.8			e (6 0. 28	1414.
67(6)1. 299.26 31.3178 904.0 556.0 756.38 73.53 73.54 61757. 239.25 31.3457 598.7 552.9 756.15 73.54 73.54 61764. 236.7 31.1767 61.619.7 389.6.7 556.0 756.16 73.54 61164. 236.7 36.665 61.97.7 389.6.5 547.1 744.62 73.54 61164. 235.6 36.666 819.6.5 388.3.5 547.1 744.62 73.48 61164. 235.61 36.566 8109.2 387.56 54.2.8 73.48 73.48 61157. 235.66 36.566 8109.2 387.56 54.2.8 73.72 72.65 72.67 61051. 235.66 8109.2 382.4.9 524.3 73.72 72.67 72.6		96	1.2.1	1.1264			01•0 657.3	າ ທີ່	i m	74.45	1211.
67324. 239.55 31.3452.79 3996.7 552.9 752.15 75.54 75 61164. 277.25 31.767 8159.5 3683.5 547.1 766.64 75.36 73 61164. 270.55 31.666 8159.3 3883.5 547.1 746.64 73.36 73 61164. 270.75 36.666 8130.5 3875.6 542.8 741.02 73 73 61017. 234.15 36.666 8130.5 3875.6 538.3 740.00 72.77 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 72 72 73 73 72 72 73 73 74 73 72 72 73 73 73 74 73 73 73 73 74 73 72 72 72 73 72 72 72 73 72 72 72 74 74 76 76 76 72 72 72		2	511	1.3178	5		. 556.0 -	5.0	- m	74.67	1210.
61114. 237.25 547.7 746.64 75.38 73 61114. 237.25 34.6653 8159.3 3688.6 547.1 744.62 73.48 73 61154. 235.56 35.5669 8130.5 3875.6 542.8 741.92 73.48 73 61154. 234.56 36.5669 8130.5 3875.6 542.8 741.92 73.48 73 61154. 234.50 36.5669 8130.5 3875.6 542.8 741.92 73.48 73 61561. 234.50 36.5669 8130.5 3824.0 535.4 737.27 73.48 73.43 73.56 73 73 73 73 73.48 73.43 73.56 73 73 73.43 72.65 73 73 74.4.52 73.48 72.65 73 73.56 73 73.56 73 72.65 72.65 72.65 72.65 72.65 72.65 72.65 72.65 72.65 72.65 72.67 72.67 72.67 72.67 72.67 72.67 72.67 72.67 72.61		67324.	o	1.3492			552.9	ŝ		73.60	1208.
$ \begin{array}{c} 61114, & 237.45 \\ 67114, & 235.45 \\ 67037, & 235.45 \\ 67037, & 235.45 \\ 67037, & 235.45 \\ 67037, & 235.45 \\ 67037, & 235.45 \\ 67037, & 235.45 \\ 67037, & 235.45 \\ 67037, & 235.45 \\ 67037, & 235.45 \\ 66661, & 235.75 \\ 66661, & 235.71 \\ 66661, & 235.71 \\ 66661, & 235.71 \\ 666641, & 235.71 \\ 666641, & 235.71 \\ 666641, & 235.71 \\ 666641, & 235.71 \\ 666641, & 235.71 \\ 666641, & 235.71 \\ 666641, & 235.71 \\ 66661, & 235.71 \\ 66661, & 235.71 \\ 66661, & 235.71 \\ 66661, & 235.71 \\ 73565, & 580.3 \\ 7556, & 7581.7 \\ 7800.3 \\ 526.3 \\ 7560, & 7554. \\ 7556, & 7587.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.6 \\ 7554.7 \\ 712.53 \\ 72.67 \\ 71.66 \\ 72.67 \\ 71.66 \\ 72.61 \\ 72.67 $	4	253	6) i		7 6	28.2		46		73.43	
61164. 220.11 3615.5 3675.6 542.8 741.92 73.18 73 67155. 235.56 36.5669 8109.2 3662.6 538.3 740.00 72.71 73 67155. 235.56 36.5669 8109.2 3662.6 538.3 740.00 72.71 73 64561. 224.12 36.4570 8010.2 3824.9 3824.9 740.00 72.71 73 64561. 225.71 35.2165 8136.5 3724.9 524.3 728.94 71.56 72 66811. 225.11 31.255 7381.7 3800.0 524.3 726.03 71.66 72.65 72 66575. 231.11 35.52.0 7556.3 726.03 72.65 72.65 72.65 72.65 72.65 65575. 231.14 35.67.2 377.1.6 72.65 72.65 72.66 72.66 72.65 72.65 72.65 72.65 72.65 72.65 72.65 72.65 72.65 72.65 72.65 72.65 72.65 72.67 72.61 72.67	~	~ }			-	88		13	m.	73.49	4071
61155 61051 234.50 538.3 740.00 72.51 73 66812 234.12 36.5669 8109.2 3869.1 535.4 737.27 72.65 73 66812 224.12 36.4370 8081.9 3849.1 535.4 737.27 72.65 73 66812 224.11 35.566 8131.9 3824.9 528.7 733.27 728.94 712.65 72 66812 225.11 35.566 8131.9 3824.9 528.7 733.51 728.94 72.65 72 66812 221.11 35.56412 7556.9 370.0 520.2 731.67 72	8				8136.5	75	2	3		13.45	
1031. 234.4370 8001.9 3849.1 535.4 737.27 72.65 736.7 737.27 72.65 736.7 732.38 72.65 726.34 71.56 726.34 71.56 726.34 71.56 726.34 71.56 726.34 <	0	int i Pe i		5 4 5 4 7 4	A109.2	362.	38	3		55.57	1021
$\begin{array}{c} 66501 \\ 66641 \\ 65641 \\ 255.11 \\ 66641 \\ 255.11 \\ 65641 \\ 255.10 \\ 66641 \\ 255.10 \\ 86641 \\ 255.10 \\ 86641 \\ 255.10 \\ 86641 \\ 255.10 \\ 86641 \\ 255.10 \\ 8661 \\ 7566 \\ 7596 \\ 710 \\$	0	20			6 1908	40°	35.	m	<u>,</u>	12.51	1 201
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	5.0			8.131.9	324 -	8.	u)	N,	10+71	1 203
1000 1000 520.2 726.03 71.00 1000 1000 1000 520.2 720.3 71.00 1000 1000 1000 1000 1000 72.03 72.03 1000 1000 1000 1000 1000 72.03 72.03 72.03 1000 1000 1000 1000 1000 72.03 72.03 72.03 1000 1000 1000 1000 1000 1000 72.03 72.03 72.03 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1735.3 808.7 49.00 168.46 29.39.39 72.03 72.03 72.03 72.03 72.03 72.03 72.03 72.03 72.01 72.01 72.03 72.0	2	5355	- F 		7581.7	800.	24.	728 .94	٦,		1001
66576 62167 731.67 731.67 721.67 72.1.67 64577 231.15 35.5266 7524.8 3781.4 517.6 716.99 72.61 64577 231.15 35.5266 7524.2 3771.4 517.6 716.99 72.61 64577 231.15 35.5266 7524.2 3771.4 517.6 716.99 72.61 64516 230.43 35.8124 1883.2 3752.4 513.3 712.53 72.67 73 64516 230.43 35.8124 1883.2 3752.4 513.3 712.53 72.67 73 264316 230.43 15.5240 1735.3 808.7 49.0 168.46 29.09 21512 104.43 15.5240 1735.3 808.7 49.0 168.46 29.09 21512 104.43 15.5240 1735.3 808.7 49.0 29.09 29.09 21512 21516 1135.3 808.7 49.0 168.46 29.09 21512 21516 21516 213.16 212.67 217.7 </td <td>e)</td> <td>000</td> <td>•</td> <td></td> <td>7459.5</td> <td>790</td> <td>2</td> <td>726.03</td> <td>•</td> <td>07•7)</td> <td>1 261</td>	e)	000	•		7459.5	790	2	726.03	•	07•7)	1 261
16.99 12.51 16.99 12.51 112.53 12.53 12.53 12.53 12.53 12.53 12.53 12.53 12.53 12.53 12.51 104.43 15.5240 1735.3 808.7 49.0 166.46 29.09 23 12.51 12.53 12.51 12.53 12.51 12.53 12.51 12.53 12.524 112.53 12.524 12.524 1135.3 808.7 49.0 166.46 29.09 23.12.6 12.516 12.516 12.517	-	. في	•		7554.8	787	61	721.67	.	57•71	1004
6:416. 2:10.1 3::01.1 3::01.2 3::01.2 3::01.2 3::01.2 3::01.2 3::01.2 12::53 72::01 2::01.2 2::01.1	5	- 	7 • • •		225	771.	17.	716.99	•		1 205
	6				AA3	752.	13.	2 •5	ບຸ •	11.60	1001
163	* •	151	****	425°5	135	838.	• 6 •	శా శు	.	20°2	5
16											
16.							•			•	
16.	,	:			6 L L		1 • •				
16.											
16.	ł										
	163		4 1 1 1	• •	i ,						

î۳

. 1

l

ł

i

1

ちょうきょうきょう

+ · · · ·

ş

			6				
			LI CUID	CXYGEN TURBC	K48-C TURBCPUMP ASSEMBLY	JLY	PAGE
TEST CATE	10-05	5 - 78					PROCESSING CATE 10-06-78 TEST CURATION, SEC 56.0
164		CAL	<u>c u l a t e</u>	0 6 1 4 2	PARA	METERS	
TIME SLICE NO	TEST SPEEC	NP SF	SUCTICN SPECIFIC SPEED	INLET FLC6 COEFF	FEAC CCEFF	PUMP CELTA T (DEG R)	1 C/N) OVER (Q/N) CES
						Va	
	- 50552 - 5050	5 • 3 • 8	3544.27	0.11639 0.11397	U • 44 54U U • 44534		י הא נ י הא נ
u m	n a		3661.7	0.11381	0.44502	5.06	1.0774
4	67667.	266.55	14879.37	0.09038 0.09038	0.46946	• •	1,0729
N 4	67257.	• •	-	0.09015	0.46996	•	1.C702
) r -	111		14767.26	U. 08985 U. 08958	0.47412 0.47007	L8 - 43	1.00534 1.0634
œ (67164. 47155	ດ ເ ນ ທ	16101.22	C.C8916		•	1.0584
10	61031.		S.	0.08891	0.46897	18.56	1.0549
11	- - -	را میل با		U.U8881 0.08853	0.46763	• •	1.0505
12	6681 Zzzz 1	• •		0.08860	0.46710		5
51	66576.	• •T		0.08826		٠	1.0478 · · · · · · · · · · · · · · · · · · ·
51	66575.	8°3	m (0.08820	0.46658	18.59	- 01
			24167.69	0.08833	0.46595	1 11	1.0465
81	23512	:16.33		0 • 09647	. 5958	18.42	1.1452
	OI OI				1	1	
	rign Po						
	14L 17 (
	Pagi Qual					•	•
	e is .ity						•
	J	۳		•			

「「ないない」

San Prairie States

-

		LICUID C	CXYGEN TURBCPUMP	ASSEMBLY	· en · en	PAGE	• 15
TEST CATE	5 1C-C5-78				PROCESSI TEST CUR	SSING DATE 1J-J6-7 CURATION, SEC 56.	76
		SCALED TC	TARGET SPEEC =	70000	RFE		
T IME	FLOW	FLCN	+ EAD	PRESS RISF	HOR SE POWER	NP SH	
NO	(<u>Ch</u> M)	(1/260)	(FT)	(I S d)	(846)	(FT)	
F	32.1.26	15515-54	8359.97	3920.27	1242.61	2500.52	• i
• ~	313.67	48.30138	4	•	1218-80		
~ 	313.44	48.23078	62.0958	٥Ņ	843.47	ы. Э.С.	
<u>م</u> مار	248.91	28.83394	8851.16	4220-56	836.96	310.45	
•0	248.28	38. 65317	8860.63	1	846.95	* 0	
~	247.46	38.55780	8863.71 2042 83	4224•69 4223-91	846.29 842.83	313•80 280-85	
50 CZ	245.55	28-24670	2 0	4		•	
	244.67	38.12266	0		5 • -		
1	244.74	38.05280	8832.15	4206.45	835.51	194°42	
12	243.82	21.53428	0010 - L		<u>`</u>		i
	10°447 10°447	27.79518			80	1.0	
	257676	37.771.77		4186.67	ŝ		
	242.20	37.83886	ŝ	4182.28	ju L	÷	
0 17	243.25	27.80555	8785.13	181.6	84	160.89	<u>ر</u>
18	65.6	5.4515	11233+08 /	00**070			
					·	*** ? Q	۹r.
•			•			PACAL I	
		•				やう	
•	•					8	i
1							
				' 1	•		
16	; ; ;					·	
5 							

			(2		American a standard for a standard to standard a standard a standard a standard a standard a standard a standar
		רוכרוס	DXYGEN TURECPU	ASSEMBLY		PAGE
RUN NUMBER	5 10-05-78				PROCESS TEST CL	SSING DATE 10-UG-78 CURATION, SEC 56.UD
186		SCALED	TC DESIGN SPEEC	= 70.000.	R M	
1 INE	FLON	FLCh	FEAD	PRESS	+DRSE	HSAN
SL ICE NO	(GP M)	(#/SEC)	(FT)	KISE (PSI)	(8HP)	(FT)
	•		0	3924.27	1242.61	2500.52 2373 40
N M	ີ່		- 8390.55 8390.55	3939.65	1210.71	2358.54
	2.0	36.55010 38.83356	8867.1J	4227.21	843。47 836_96	310-45
n 10	• [•			4223.21	846.59	311.44
	•		8863 • 7 1 8 5 4 2 - 8 2		846°25 842.83	313 . 86 260.85
20	• •		6839.55		831.30	238.02
0:			8841.98 8827.15	4211.63 42U6.45	834 •00 835 •51	212 . 67 194.42
12	• •			4198.70	834.53	163.66
13	•		8806 • 7 4 9440 - 70	4193. J 9	837.74 834.85	175.86
		• •	- 1	4166.67	835.56	1 M
9:		37.83886		4162.28	838 -54 840 - 06	2.0
18	v v	6127	- 0		13.8) 🕻 🐠 –
۹ معر ا				· · · · · · · · · · · · · · · · · · ·		
					-	
					•	
1						
	·					
	*		•			-

•

Market Llouid Cryder Turadoeuw Asseneuv Processing Date Processing Date Carte I.Corte I.Corte Frictessing Date Processing Date Processing ScaleD I.Corte Frictessing Processing Processing ScaleD I.Corte Processing Processing Processing Volute No Volute Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing Processing	and a second sec		PK4	
Conte I conte I conte PROCESSING parte 100 ScaleD I conte I conte I conte 10 ScaleD I conte I conte I conte 11 I conte I conte I conte I conte 11 I conte I conte I conte I conte 11 I conte I conte I conte I conte 11 I conte I conte I conte I conte 12 I conte I conte I conte I conte 13 I conte I conte I conte I conte 14 I conte I conte I conte I conte 15 I conte I conte I conte I conte 16 I conte I conte I conte I conte I conte 16 I conte I conte <td< th=""><th>UN NUMBER</th><th>2</th><th>TURBOPUMP</th><th>PAGE 9.18</th></td<>	UN NUMBER	2	TURBOPUMP	PAGE 9.18
ScaleD TC Desich Speed = 10,000. RFN INC VCLUTE Stati PR Stati PR Palso Palso Palso Stati PR Palso Palso	H	1 (-25-7		SSING DAT CURATION.
ME VCLTE RISE VCLTE RISE RISE RISE <th>168</th> <th></th> <th>TC CESIGN SPEED =</th> <th></th>	168		TC CESIGN SPEED =	
Stat PR Stat PR Stige Stige Pstige Rise	T IM E	INC		
151.00 656.35 162.26 728.05 162.24 728.05 217.37 163.05 217.37 1630.05 217.37 1630.05 217.37 1630.05 217.37 1630.05 217.37 1630.05 215.94 1610.01 215.94 1611.01 215.94 1611.01 215.45 1611.01 215.45 1611.01 215.45 1611.01 215.45 1611.01 215.45 1611.01 215.45 1611.01 215.45 1612.12 215.45 1612.12 205.45 1612.12 205.45 1612.12 205.45 1612.12 455.47 1351.20	L ICE NO	STAT PR RISE PSID	RIS PSI	• • • • • • • • • • • • • • • • • • • •
162.26 128.03 167.15 157.15 211.37 163.06 211.37 163.06 211.37 163.06 211.37 163.06 211.37 163.06 211.37 163.06 211.37 163.06 211.31 1617.01 213.16 167.01 24.15 167.14 24.13 167.14 24.13 167.24 211.31 1612.71 211.31 1612.71 211.31 1612.71 211.31 1612.74 211.31 1612.74 211.31 1612.74 211.31 1612.74 211.31 1612.74 205.65 1621.61 452.47 1351.20		151.00	656.35	
231-03 125.75 215-01 1616.64 215-01 1616.48 215-05 1616.48 215-10 1616.48 215-11 1616.48 215-12 1616.48 215-13 1616.48 215-14 1616.48 2344.15 1617.01 244.15 1612.01 234.11 1645.80 216.12 1627.24 216.12 1627.24 216.12 1627.24 216.12 1627.24 216.12 1627.24 216.12 1627.24 216.12 1627.24 216.12 1627.24 216.161 1627.24 205.47 1521.20 452.47 1351.20	~	162.26	728. 63	· · · · · · · · · · · · · · · · · · ·
217.391 1630.66 217.31 1630.76 215.94 1616.46 245.19 1616.46 245.11 1651.45 245.12 1651.45 245.11 1651.45 245.12 1651.24 215.11 1657.24 215.12 1612.14 216.12 1612.14 216.13 1612.14 216.14 1612.12 216.15 1612.12 216.15 1621.61 205.65 1621.61 205.61 1351.20 452.41 1351.20	• •	281.93	125.75	
215.95 1638.76 265.96 1671.04 265.96 1671.01 233.15 1657.28 233.16 1650.22 233.11 1650.22 233.12 1657.24 211.11 16450.22 213.11 1655.21 214.12 1657.24 213.11 1662.43 214.12 1662.43 213.11 1662.43 233.12 1663.63 265.45 1663.161 265.45 1621.61 265.45 1621.61 265.45 1621.61 265.45 1351.20	n 4	16:12	1636.66	
265-96 1671 244.15 244.15 233-16 233-16 233-16 216-12 216-12 216-12 216-12 216-12 216-12 216-12 216-12 201-73 205-65 205-65 1621 1612 1612 1612 1622 1621 1612 1621 1622 1621 1612 1622 1621 1612 1622 1621 1612 1622 1621 1612 1621 1612 1612 1612 1612 1612 1612 1612 1612 1612 1612 1612 1612 1612 1612 1621 1612 1621 16	5	215.90	1636.76 1676.48	
244.15 233.16 224.11 216.12 216.12 211.31 238.77 205.65 205.65 205.65 205.65	 	26 - 39		
224-71 216-12 211-31 219-77 205-65 205-65 205-65 205-65	10	244.15 233.16	1657.45 1860 22	
616-12 611-31 219-77 205-30 205-55 205-65 207-77 452-47		11.422	1645.80	
205.65 205.65 205.65 205.65 207.73 1632. 452.47 1351.	13	216.12 211 21	1627.24	
205.47 1603. 207.73 1603. 452.47 1351.		714.77		
205.65 1621.6 267.73 1632.6 452.47 1351.2	15	2C5.3C	ייי איט ער	
26.7.1 15.1. 1351.	6	205.65	21.6	
	4 60	6 5 ° 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
			•	
			· · ·	

· ·

		MK48-13 MYZEN THEROPHING ACCOUNTS	PAGE 12.
PUN NIMBER TEST DATE			1
	COMMENTS		
	OBJECTIVE SUCTION PERFORMANCE	WITH B.P. FLUID RECIRCULATED TO	O INP. INLET
	AMBIENT PRESSURE		
i	Ľ		
		UPSTREAM DIAMETER THRMAT DIAMETER	0*6570
	1		0~2480
	CH2 VENTURI (TURB) P/N VP031200-SGR	UPSTREAN DIAMETER	
•	1679 N/S		1.3085
	-	THROAT CD	1
	LH2 VENTUR [(GG) P/N V320471-5GR S/N 8073	UPSTREAM DIAMETER	
		ł.	са стана с с с с с с с с с с с с с с с с с с
	3		(
	P/N V321 059-5GR	-	1-6890
		THROAT DIAMETER Throat CD	1.059 0.9820 C.9820
		PIST	
		LCX SEAL DRAIN ORLFICE Turbing fefettive abea	AG 0005-0
	·	EXHAUST OR	
		-	•
16		SCG+ M+G+ UKAIN URIFICE REAR BRG COOLANT ORIFICE	0~000 0~1800
9	· ·	INTERMEDIATE SEAL PURGE ORIFICE	-

•;

LIGUID DXYGEN TURBOPUNP LIGUID DXYGEN TURBOPUNP LYS DG E N T U R B I N E V/S TEMP VALVE PR 051.1 V/S TEMP PR 05101 V/S 054.6 V/S 054.6 V/S 054.6 V/S 054.6 V/S 054.6 V/S 055.6 V/S 056.6 V/S 056.6	Image Mark LIGUID DXVGEN TURBUPUNP SEMBLY I U S H <y< td=""> P R C P P I U S H<y< td=""> D R G E N T V S P II VENTURI VEN</y<></y<>
LIGUIID DXYGEN TURBUPUNP 6 H Y D R D G E N T U R B I N E U/S U/S U/S DELTA VALVE U/S U/S U/S DELTA VALVE U/S U/S DELTA VALVE U/S U/S DELTA VALVE 055.6 9 055.6 9 056.9 541.6 15.0 9 056.9 541.6 15.0 9 056.9 541.6 15.0 9 057.6 15.1 33.143 057.6 15.1 33.143 057.6 15.1 33.143 057.6 15.1 33.143 057.6 15.1 33.143 057.6 15.1 33.143 057.6 541.6 15.1 33.143 057.6 541.6 15.1 33.269 005.0 541.6 15.2 33.3.50 005.0 541.6 15.2 23.3.3.50 005.0 541.6 15.2 23.3.3.50 0	LIGUID QXYGEN TURBOPUNP 5 LO-10-78 12 10-12-10-78 1 S E Q U S H Y D R G G E N T U R B I N E END U/S U/S DELTA VENTURI SPIN TIME U/S U/S DELTA VENTURI SPIN TIME U/S DELTA PALVE PR PR P
LIGUID DXYG H Y D R D G E N U/S U/S U/S U/S U/S U/S PR TGMP PR 7541.7 667.1 541.7 667.1 541.7 667.1 541.6 671.0 541.7 667.1 541.6 671.7 541.6 604.5 541.6 604.5 541.6 604.5 541.6 614.5 541.6 614.5 541.6 613.8 541.6 613.8 541.6 613.8 541.6 613.8 541.6 613.8 541.6 613.8 541.6 613.8 541.6 613.8 541.6 541.4 541.4 541.4 541.4 541.4 541.4 541.4 541.4 541.4 541.4 541.4 541.6 541.4 541.6 541.4 541.6 541.4 541.655555555	LIQUID OXYG 12 0-10-78 15 E O U S H Y D R G G E N TIME VENTURI VENTURI V 15 E O U S H Y D R G G E N 15 E O U S H Y D R G G E N 15 E O U S H Y D R G G E N 15 E O U S H Y D R G G E N 16 E N 17 PS 15 15 E O U S H Y D R G G E N 10 C S 1 10 C S 1
H Y 0 H Y 0 P 5 14 U 75 P 5 14 U 75 P 5 14 P 5	12 12 12 12 13 10 14 10 15 10 16 10 17 10 17 10 16 10 17 10 17 10 17 10 17 10 16 10 17
	0-10-78 12 12 11 11 12 12 12 12 12 12

	12. 3	11-15-78 C 25-00				DELTA P		1951.2	1951.5	1952.9			1952.6	1953.2	1 7 3 3 • 2	1952.8	- 1772. U	1954.3	1954.5	1957.6	1959.6	1957.9	1958.9	1959.1	1960.0	1960.4	1960.1	1960.3	1959.6	1929.0	1 700.5	1940 - 5	1940.5		
• • •	PAGE	DA TE			F XH	TOT TEMP	:	477.8	477.8	477.8	477.8	477-8						1-114	477.7	477.8	478.3	478.8	4 79.0	٠	478.9		478.8	9 / Q= Q		•		•			4-28-7
		PROCESSING TEST DURAT			EXH	TOT PR		1991.1	1991.4	1992.8	1992.7	1990.8	1992.5 1003	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1000 7	1992.8		1 4				6*1 66I	2 • 6 6 6 I	2.4441	1.0005	9*0002	2000.3		1000 0	• 7			2000.8	2000.9	2000.8
• • •				Tuea	EXH	STAT PR (PSIA)		53.			1965.7	1903./ 1046 7	1946 7	1966-8	1965.7	1966-4	1967.4	1967.5	1967.6	1970.3	1972.5	1970.3	1971 0		VĮ r		1973.6	A	1972.5	Jer	9 ⁷ - 0 ∖. 6 7) (. (*)	1972.9	1972.0
	AS SEMBLY		ETERS	TURB		D/S PR		3.	1.2461	n e	n e			1944.5	5		: •		946.2	1954.8		• •			067 4		956.7	5 10	> 4	956.7	956.8	956.4	956.8	956.7	926.6
-	URBORNHP		X X	TURB	I NI ET	TOT TEMP (DEG R)		202.00				58	509.8	509.8	509.9	60	509.8	509.6	509.8	8-605			•	500.5	509.6			509.6	509.5	509.4	60	509.4 1	509.4	509.4	509.4 1
	OXYGEN TURBOPUMP		R R D	TURB	INLET	(PSIA)	3166 0			•	15.5				3161.3	3151.8	9163.8	3163.I	102.4	1.101.	161.1	5	163		166-5	9 9	166-1	16	154	166.5	15	164.8	165.8	66.	164.0
	LIQUID	1	T U R B I	TURB	NET	(PSIA)	31 80. K	1 83.	8	3187.4	3182.6	1.99.15		3190.1	1200.1	1.1025	3201.1	91.98.8 2201		3197.6	3194.7	0		-	3195.6 3	07011	32.01.1 3	•••		ç		11 95. 6 3	¢ _	, <u></u>	E 1•1020
ORIGINAL POOR	PAGE QUALI	IS TY		SPEED		(KPM)	69169.	92.03	9746	250.	92.52.	9263.	• 10 E 6	340.	324 •	Ç					. 11	A2 26.	337.	8410.	9390.	83 i 6 .	•	3238.	8214.	B 1 73.	8124.	202.	52 77.		• () () 0
•	•	12 0-10-79		END		(250)	42.131	i i	۳.	2.4	2.5	2.0	2	2. 2.				51.327		ŝ	•	3.74		5	4.02	•15	4	4.35	4 • • •	4 • 5 V	494 494			966 . 4 4	
	: المر	NIJMBER DATE 1		BEGIN		(SEC)	2.02	2.1	2.27		2 - 48	\$ \$	e i N e		•	2 C • C • C					*					÷	÷.	4.25	16.4		* . r . * *				
		RUN I		T INF				~	**) ۍ	r,	÷	~ 0	E O	- <u>-</u>			1	14	15	15	1	1.9		22		< 2	2	5 u \					1 (F	

:

		LIQUID	OXYGEN	HKAN TURBOPUMP AS S	SEMBLY	: : :	PAGE	12.
<u>ت</u> ح	12		2 1 2 2			PROCES! TEST DU	SSING DATE DURATION, S	11-15-78 SEC 25-00
		4 8 1 8 E	≪ ≪ €		(CONT INUED)	10	•	
SP EED	FLOW	- E .	BHP	E	TORQUE	0/0	EFF	TURB NOT
	(18/860)	(1- S)	(CALIE) (HP)		[FT-LB]	15-11	(1-5)	L)
4			652.7	658.3	49.55	0-4188	50.93	3092.8
69203.	3.9525	5	652.3	560.1	64.64	4	•	3093.9
46.		s.	53.	659.7	49.51	0.4192	6 (
50.	• 95 B	r,	m.	662,7		*	•	
252.	56.	1.5752	- 13	0.		. 5414°0	16°00	2.000 E
• •	•	1.5759 1.5753	6.4.4 5 5 5 5 5	004.00				• •
	1.0556		. 52 . 6	641.9	14.94		20	3098.5
		5	654.4	663.1	49.56	4	10.02	3098.1
340.		1.5757	654.8	665.0	69_58	•	50.90	3098.5
340.	•	1.5759	655.8	671.9	•	+	20: 40	100.
*	3.9569	1.5755	653.4	665.7		4	.	3099.8
.	۰.	1.5750		667.7		•		- 660
894.		1. 5723	654.5	663.3	9 . 0	0.4119		3061.5
76.	.976	1.5723	656.1	655.6			21-16	
69171. 69776	3.9624 2.0760	1.5723	0.5.0	1.040 A 20.4			51.10	3099.8
•0•	•	1.5776					0.1	3100.5
68410-	3.9711	1.5726	654.7		50.25	1	51.06	3101.6
	971	1.5729	655.2	:∧ .⊀	50.30		٠	3103.2
5	3.9743	1.5727	655.6	7	50.38	14.	م	3102.9
09.	. 967	1.5722	653.9	639.6	50.25	4	51.05	3102.8
39.	968	1.5779	655.0	641.0		4	-	3100.5
14.			654.3	-	•	. + 1	-	3100.8
73.	3.9741		655.6	36.	0	0.4136		3103.2
24.		1.5726	656.1	<pre>m</pre>		• 4 13	•• •	, Interes
02.	3.9663	1.5723	654.0	633.5	50.34	0.4139		3101.5
-	.97	1.5721	655.1	634.9	50.37	0 4 144	1.0	
		1.5729	655.9	637.2	50.48	0.4137	51.10	3103.2
1)	•	ŀ.)) 	ŧ

•

• •

10- 10- 160 160 160 160 160 160 160 160 160 160	12 10-78 T U R B AVAIL. ENERGV(T-S) (BTU/LR) 229.030 229.03 200000000000000000000000000000000000	I N E P A GAMMA GAMMA La 3985 La 3985 La 3985 La 3985 La 3985 La 3985 La 3985	R A H E T E R (BTU/LBM-R) 3.6990 3.6989 3.6989 3.6988 3.6988 3.6988	S CON S FEE PARI 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20	PARA PARA PARA PARA PARA PARA PARA PARA		SEC 25.00 SEC 25.00 TURB MHEL ESIA PSIA 2001.0 2001.0 2001.0 2001.1 1999.6 2001.0 2001.0
СГ 29169 69269 69263 69263 69263 69263 69263	T U R AVAIL. NERGV(T-S) (DTU/LN) 229.03 229.03 229.03 229.03 229.03 229.03 229.03 229.03 229.03 229.03 229.03	N E GANNA GANNA La 3985 La 3985 La 3985 La 3985 La 3985 La 3985 La 3985	ω (∞		TORQUE PARA- METER 0.0147 0.0147 0.0147 0.0147	TURB MHEEL E 201 PRESS 2001.0 2001.0 2001.0 2001.0 2001.0 2001.0 2001.0
59 EED 69160 69250 69250 69253 69301	S	GAMMA GAMMA La 3985 La 3985 La 3985 La 3985 La 3985 La 3985 La 3985	CP (BTU/LBM-R) 3.6990 3.6989 3.6989 3.6989 3.6988	SPEED PARA- METER 520.0 520.6 520.6 520.6 520.6 521.0 521.0		TORQUE PARA- METER 0.0147 0.0147 0.0147 0.0147	TURB MHEEL
5 P E E O 6 9 1 6 0 6 9 2 0 5 0 6 9 2 6 3 0 6 9 3 0 1 6 9 3 0 1 7 0 0 1 7	v	L. 3985 L. 3985 L. 3985 L. 3985 L. 3985 L. 3985 L. 3985 L. 3985	(BTU/L5M-R) 3.6990 3.6989 3.6989 3.6989 3.6985 3.6985	PARA- METER 520.0 520.5 520.6 520.6 520.6 521.3		METER 0.0147 0.0147 0.0147 0.0147 0.0147	PSIA 2000-6 20.0-2 2001-0 2001-1 1999-6 2001-0 2001-0 2001-0
RPM 69160 69250 69250 69250 69250 69250		0.00000000	(BTU/LBM-R) 3.6990 3.6990 3.6989 3.6989 3.6985 3.6985	METER 520.0 520.0 520.6 520.6 521.3 521.3		0=0147 0=0147 0=0147 0=0147 0=0147	2000-5 2001-0 2001-0 2001-1 2001-1 2001-0 2001-0 2001-0
69160 69250 69250 69250 69250 69301	228.94 279.03 229.09 229.07 229.07 229.07 229.08 229.08 229.08 229.18	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.6990 3.6989 3.6989 3.6989 3.6985 3.6985 3.6985	520.0 520.0 520.6 520.6 520.6 521.3		0.0147 0.0147 0.0147 0.0147 0.0147	2000-5 20.0-2 2001-0 2001-1 2001-1 2001-0 2001-0 2001-1
69160 69160 69261 69250 69253 69301 69301	228.94 279.03 229.09 229.07 229.07 229.07 229.08 229.08 229.11	0 0 0 0 0 0 0 0 0 0	3.6989 3.6989 3.6989 3.6989 3.6985 3.6985	520.3 520.6 520.6 520.6 521.0 521.3		0.0147 0.0147 0.0147 0.0147 0.0147	26.00.2 2001-0 2001-1 1999-6 2001-0 2001-0
69201 69250 69250 69250 69253 69301 69301	229.03 229.09 229.07 229.07 229.24 229.08 229.08 229.18 229.18	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		520.6 520.6 520.6 521.3		0-0147 0-0147 0-0147 0-0147	2001.0 2001.1 1999.6 2001.0 2001.1
	229.09 229.05 229.07 229.24 229.08 229.08 229.18	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		520.6 520.6 521.0 521.3		0.0147 0.0147 0.0147	2001.1 1999.6 2001.0 2001.1
	229.05 229.07 229.24 229.08 229.08 229.31	, , , , , , , , , , , , , , , , , , ,		520.6 520.7 521.0 521.3	· • • • •	0.0147	2001.0
	229.02 229.24 229.06 229.08 229.18	1. 3985 1. 3985 1. 3985	3.6988	520.7 521.0 521.3		0.014	
	229.24 229.06 229.08 229.18	1. 3985	3 6985	521.3			
	229.08 229.08 229.11	1.1985		521.3	4	1410-0	1 1000
	229.15		20484				5 1002 1 1002
	229.11		3.6987	521.1	3.4484		L' 1002
693		1 2025	1 . 6989	521.3	3.4524	0=014 (
ה	*622		•	521.2	3.4543		C.COC
•			• •	520.0			
12 69175.			•	517.5	ſ	-	2008-6
6584			h (510.4		0410-0	
Cr.		1 2086	1.6989	512.9	.457		2007.6
ſ	922	1.2985	•	51245	-		2008-4
		1. 1985	•	512.9	•		2009.5
17 68220.	9077 966	1.3985	3.6991			010-0	2009.5
		6	3 6992	1			2010-8
19 68410s.	19072	1.3986	3.6992	• •	•		2010.4
	2 2 8 2 8 2 V	398	÷.	- 		410	2010-5
		398	•	513-0			2009-0
	228-228-	995	٠	1.510		10	2010-1
7167	777.9	398		5.21C			2010-1
1	228.1	0	•	2164		i .	2010-6
92199	226	6	3.6496		¦ ₫	4.0	2004.8
	228-0	õ	٠	J 🖗	•	010	2010-1
277	227.9	ō				0.0149	2010-1
66208	228	1.3985	0640°6		3.4489	0.0149	5002

1 4 X

)			LIQUI	D OXYGEN TU	ADPUNP AS	SEMOLY			PAGE	12. 6
RUN I	NIMAER	0-10-78	1	1					PROCESSIN	G DATE 11- TION, SEC	1-15-78
174			S		202	9 2 2 2	OATA				•
		PRIML		1/5	•	N IN	PRIM HG	SEC HG	SEC HG	AL OR LE	SEC NG SEAL ORIF
	EAL D Pr (PSTA			ີ	U/S PE U/S PE (PSIA)	10 5 1 5 M		ise)	TENP (DEG R)	UZS PR	U/S TEM (DEG R)
					75 26		0-004	d	426-54	14.74	395.40
		166-34			15.63		0.1000	30.8	24	14.76	1.
•		68. 1	0.7	+	35.74		0.1001	eri i	428.65	14.80	3 98. 27
		5	ċ	\$	35.83	411.71	0.1002	0-16	429.51		
ن ب	2.2	56.1	0.1	÷ .	35.85		2001-0		431.05		401 . 72
•) (36.10	d e	0.1005		431.77	14.77	403.00
- •	9	67.7			36.23		0.1007	31.2	Ň	14.82	80 • V04
: 0			8.01		5-2		0-1000	31.3		14.78	CZ - CD6
C)	1.2	67.5	0.0	2			8001*0	.	•		104
11	1.0	57.	9-01	1	36.40	•	8001-0				•
12	~ . C	6 7 e 4	5.6	جي ا		4	010100	-{ C	2 6		100-20
.	ċ	÷,	•		30.75	86.924) (Ö	; 4	•
ب س	ŝ	5.				626.29	0-1027	IN	436.58	14.65	
					 	424.39	0.1030	-	436.15	+	
		5.7	0.0		1.3	- 🏕	0.1029		435.97	14.69	412.75
		69	8.06	5	37,35		0.1029	32.3	435-54	14.07	
			10.1	-	37,39	•	1601-0	32.2	435.25	14.82	413.97
0		69.	30.5	6.6	-	4	0.1030	32.7	435.11	14.90	
1	5	10.	10.4	- 9 - 9	-	5	0-1026		435.09	14.91	415.22
	5.9	70.	30.5	4.6	37.26		0.1026		+	14.91	
	5.4	71.	10.4		37.29	5	0.1027	32.7	\$	14.93	
36	0.4	71.	30.5	÷.	37.31	425.59	0.1027	32.4	ie In:	14.85	
5	4	72.	30.4		17.28	\$	0.1026	32.7	435.23	14.87	9
25			30.5	4	37.24	•	0.1025	32.9	r (
27	5.7	-	30.4	54.6	37.27	•	0*1025		4) 1) 1)	14-86	
5		÷	0	34.	37.20	426.50	0.1023	33.1		26 • 1	îv (
66	Č ~	73.5	10.1	554.60	37.11		1201.0	33.4			
•	, }										

	PAGE 12. 7	TE 11-15-78 • SEC 25-0	***************************************		CODLANT			0.0			0.0	- •	0.0		0.0	0.0	0.0			0.0	0.0			0.0	0.0	0-0	0.0			0.0	0.0	•
	- - - - - -	PROCESSING DA Test ouration	: : :	RR ARC -		(DEG R)			; c	20	460.00	460.00	460-00 460-00	460.00	460.00	460.00	460.00		460.00	460.00	460.00		460.00	440.00		•	460-00	440-00	460.00	460.00	460.00 460.00	>
: {			(CONT INUED)	RR BRG		(PS [A)	•		•	13.6	13.8	13.0	13.8	13.6			13.6	ا ا	3	m (13.8	13.8		9°E1		• •		13.6	13.8 13.8	
·	PUMP ASSEMBLY		G D A T A	RR BRG	DRAL N TENP	(DEG R)	96.07) -		1	70. 10			-	96.15	98.76	74.69	99.16	99. 5 L	99-66	99.54	99.27		66°66	00.001	-00		100.04	~ (100°09	
	OXYGEN TURBOPUMP		EARIN	RR BRG	DRAIN PR	(PS1A)	199.4	00	00.	200.8	200-7	200-7	200.6	200.7	200.8	0-102		-	202.7	202.5	202.4	202.3	201.9	1.20%		202.2	• •	202.2	202.5	N (D (202.2	
	LIQUID OX		8) 0 7 7	RR BRG		(DEG R)	88.19	88.39	58. 61	69.13 • • • • •	89.00	N .	<u>د</u>	•	84. 31 80 6.0	<u> </u>					89.00					0	9.5	9°9	69.63 60.00	; c	69. 75	
			SEAL	RR BRG	r • •		3492.6	3492.4	e (0 - 2646 3 4 9 1 0 0	3493.3		3493.6	2443.2 2401 2	3493.1	3494.	3493.6	3493.1	3497.5	5492.6	3492.6	3493.3	3402.4	3493. 3	3493.1	1493. C	3493. 3	3493.7		404	3494. 0	
)	-01-01		SEC HG	-1⊂ ⊌		0.0			0.0	0.0			0.0	0.0	Q+0	0.0		0.0	0.0	0.0		0.0	0.0	0.1		c. c		0.0	0.0		
GINAL		G RUN NUMBER S IEST DATE		T T T T T T T T T T T T T T T T T T T	C X				ۍ ۱	· ur	ب	- c	r 0	[3	11	C i (51	55	16		5	: ۲	14	22	51	24	(×			75 E	2	

\$ ₩ ₩

ŧ

, 75

I-OI NUMBER 1551 DATE 10-1 126		LEQUED	OXYGEN	TURBOPUNP ASSEMBLY	~	
	12 0- 78				PROCESSING TEST DURAT	SSING DATE 11-15-78 DURATION, SEC 25.00
	L S	A L A N D	4 12 12	8 I N G O A T A	A (CONT INUED)	
TIME		SEAL	DRAI N	LOX SEAL DRAIN	LOX SEAL DRAIN FLOWRATE	
A ICE	۳ ۲		6 6 U K	056.1	11 0/560 1	
•		0.01		501-01	0.175	
			and the second sec	10.102	• 0 • 17 •	
		39.7		501.09	0.174	
		38.6		501.25		
•		33.4				
		39.3				
	-	36.1		20107	0.171	
- 1				• •	0-171	
				502.28	0.170	<u></u>
	~ _			502.33	0.170	
	_	37.2		502.40	0.169	
		37.		502.55	0 . 168	
• =	1			502.70	0.166	
•		36.6		502.81	0.167	
	æ	36.2		503.02		
• •••						
	F	9 - C C			0.161	
		5.3			0.159	
		: "		503.61	0.157	
				503.65	0.155	
	; 🕶	~			0 • 153	
		32.3		503.92	161.0	
		-		504.01	0.150	
		31.5		504.05	ì	
	•	31.1		504-14		
		30.7			: :	
•	0	5		504.45	0.143	
~	0	10-0		204-04		

)	anal Carlo	110010	OXVGEN	RADPUNP AS	SEMBLY		- 4GE	
PLIN NU	NIJYBFR 13-11	12 - 73	• • •				PRICESSING TEST DURAT	SSING DATE DURATION . SE	11-15-78 EC 25.00
			6		E S S U B				
114F St. ICE	SUPPL Y TANK	P UMP I NLE T	IMPELLFR DI SCH	DIFFUSER	PIJNP DISCH	BAL PIST Cav		BAL PIST RETURN	FRONT
CN	28 (25 1 2 1	P4 [P5[A]	PR (PSIA)	PR (PS [A]	(PSIA)	PR 61.	PR (PS 14)	PR (PSIA)	24000 FA (PSIA)
-	0,126		0.440	2812-0	4294-6	2148-4	150 6-4	1292.4	1 .
- ~	263.1	1 50. 4	50.0	2812.4	5	2148.2	0	1	
(*	763.1	1 80. 6		2816.9	4301.2	2145.3	-	1295-6	3129.2
.	261.1	1 79. 6	1952.1	2 820- 7	4302.5	2146.8	-	1 - 462 1	3129.2
ن ،	263.1	140.1	1952 . 7 1066 *	2822.3	4305.3	2145-0	1516.5	1 295. 9	3132.2
0	263.1	6 6 1 1	1956.5	2822.7	4307.9	2145.7	ເອົາ	1295.6	3132.1
e e	2.6.1.2	180.2	1956. 0	2826.3	4310.7	2145.6	-11	1 295.9	3133.6
0	263.2	1 10. 3	1959.8	2826.5	4312 4	2146.6		1295.4	
<u> </u>	263.1	1 70 6	1958.9 1054.0	2824.3	4312 • C	0-0-17	1519-6	1296.9	3137.3
	267.1	150.9		2818.7	0.4064	2131.6	-	1291.7	3123.9
	261.1	1.101	1949.4	2838.2	4292.3	2096.2	08.	1,297.6	3113.3
*	263.2	163.5	1754.1	2753.3	4290.5	2017.2		1033.8	3196.3
5	263.2	178.3	1665.7	2777.7	4350.6	2160.6			3747.0
<u>د</u> ب	263.2	197.1	1000	0-011 C	4371.57 4367.1	7.0175		985.9	3233.0
	2 · · · · · · · · · · · · · · · · · · ·		1668.7	2789.4	4380.1	2221.9		995.7	3246.3
6	263.2		1674.7	2798.6	4394.3	2232.2	14	998 , 5 .	3258.5
23	263.2	1 75.9	1672.0	2602.8	4396.3	2254.3	1164.8		3257.2
2	263.2	179.5	1674.7	P	1.0964	2274.0	1107.3	0.000	7.72
~~	263.2	177.9	1675.9	2779.7	4387.2	2277-0	1167.5		1 1 C 0 7 C 0
2	761.1	1 75.4	1676.7		4383.5	2280.4	n (- 2
	263.1	177.6	1673.3	2112.0	4383.9	2285.2	1158.7	996-2	ai d
(;	2034 - COS		•	÷.	- ۴	2289.7	9	988.2	
1		1 7 6 1				2283.2	5	982.9	*
77 : f			1676.3	2799.2	1.1964	2287.9	60.	Ó	3262.8
			•						1

-

いきい ちょういい しょういち かたち たいちょうかん * : **(**

Ì

ž

	-	LIQUID OXYGEN TURROPUMP	OPUNP AS SEMBLY	• • • •	PAGE 12.10
RUN NUMBER	12 10-78			PROCESSING TEST DURAT	SSING DATE 11-15-78 DURATION. SEC 25-00
178	PURP PRE	SSURES AN	Q T E M P E R	ATURES	
	CDCCA	INNICER	PUMP BRG	BAL PIST	- CNP
SLICE	37 L (L)	22	- U	RECIRC TENP AT PUMP IN	BRG Del ta P
ON	2. d. 2.	PSIA	NI 54	DEGR	• 510
•	07 107	AB0_4	1 39 6 - 8	253.05	115.34
•					
مو ن	• •	-	1390.5	e n 1	
•	69250.	-	1 39 0.6	" 1 111 -	
. 16 .	69252	-			
9	69263.	O i	1394.2	224.42	
•	.10193	.	1396.9	"	
C	~	691.6	399.	• •	• (
0	o (b 6		1))~
2:		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		255.05	
	50175			255.14	
54	68847	0	1394.2	255.20	
	67894.	677.6	1.19 7 . 2	ř, (D6*22
15	682 26 ·	636.1	1038.9	•	
16	69171.	-	1032.4		40°C11
11	682.26 .	÷ (1020-		2
18			1033-1	\	i n
<u>6</u> ģ	604100 66300	- 3	1040-3	254.42	-
	n. ef	645.3	1039.4	5.6	125-55
	n e		1025.4	ب	134.44
	1		1018.1	260.13	
	. •	e C	1015.2	-	139.42
		3.8	1016.2	5	N (
	68124.	· - 639.1	1017.5		
	68202.	616.2	1017.2	1 + 7	139.07
	68277.	636.8	\$		Ν.
	- 68208.	÷.	2	•	

「「「「「「「」」」」

Mar Star

٠,

١

Ż

ł

.

: :

:

:

ł

Ng -

.

- Q

		LI 9UI D	ULD DXYGEN TURBOPUMP	AS SEMBLY	· · ·	PAGE 12.11
RUN NUMBER TEST DATE	10-10-78	1			PROCESSING DATE TEST DURATION,	E 11-15-78 SEC 25-00
	4 ¥ 7) 4	PRFSSUR	E S AND TEM	PERATURE	S (CONTINUED)	
		RAL PIST	BAL PIST	BAL PIST	BAL PIST	BAL PIST
SI ICE	_	RC .	2 L	RECICR	FLOW	TEMP BISE
QN	-	DR LF PR P SL A	UKIT TEAF DEG R	•	LB/SEC	DEG A
		i ur	261 - 8	205.76	-62	5
~ ~			. <u> </u>	205.63	-62	56.12
~ ~				205.87		20°20
•		ŝ	262.3	205.72		56.45
ſ			262.5	2012-000	61	
ю Р		1238.2	262.5	205.66	3.615	56.45
~ 0		. 86		205.29	3.611	56.39
o 0		241 -	262.6	205 464	3-614	
10		- 5		205.93	3.610	56.50
11		ē i	262.8	11-002	3-617	56.54
12		1235.3	0-142	213.91	3.681	56.77
1 5 1			263.1	147.27	3.016	56+02
	-	957.1	266.5	~	2.137	- 26 - 19
191		956.8	269.2	125.63	2*710	64.03
11			270.2	129.13		66.03
18		961.5	510.4	772 21	2.782	66.21
19		•	2 10° 5	00°CC1	2.818	66.10
202		407.55 200 2	7 0 2 6	140.70	2.853	8 10 10
12		960.5	270-2	141.00	2.851	65.33
5 C			270.0	142.40	2.873	67. 1U .
24		947.9	269.9	145.09	و ا	.
52		948.1	269-9	145.86	2.971	69.69
% 17		949.9	269.6	147-55	.6.	6+.61
		945.4	269-5	146.47		64.54
6 C			69	146.37	2-941	
			240.4	14 C 27	•	

. . .

!

. 1 .

こと、こので、ここと、「「「」」」であっていた。 ちんこう しんてい しょうまま あまれた かんたい かんしゅう しょうしょう しょうしょう

.

.

S		110	HK4 LIQUID OXYGEN TUR	TURBOPUNP ASSEMBLY	-	PAGE	E 12.12
RUN NUMBER TEST DATE	R 12 10-10-78				PR TE	PROCESSING DATE TEST DURATION.	11-15-78 SEC 25.00
180	2	Р Р Я Е С	s u r e s	N D T E P C	ERATURE		
TIME		P UMP	BAL PIST	PUMP	dWnd	P UNP	£
SL ICE MD	E INET TEND	D 1 SCH TEMP	RETURN SF #P	DISCH	DISCH	DISCH	
2	(DEG R)	(DEG R)		U/S TEMP (DEG R)	U/S PR	DELTA PR (PSI)	
	175.61	205.86	602 .09	204-23	4229-4	- 51.92	1024-04
• •		1	•	204.37	4234.0	2.3	
		205.92	•	204.52	4237.1	- 52.06	1057.04
\$	175.61	\mathbf{n}	•	204.53	4238.5	52.20	1060-19
ŝ	<u> </u>	~	N.	204.54	4239 • 5	52402	1029-16
9		206.05	٠	204.50	4242.6	52.49	1064.26
•	175.61	_	٠	204.54	4242.6	52.57	
60	\$	206.19		204-17	4246 °0	21-94	•
0		296.18	٠	204-15		•	CO. 1001
10		206.27	٠	204.95	0°9424	04-24	1004.24
11		206.27	•	Ŋ.	1-0424		1000-22
12	س	296.27	•	204.55	1-224		1056-34
. :	ň.,	206.71	•	C 2* 407	7 0CC7	•	
* v	I 7 7 4 1	204-56	492.09	205-34		53.14	ai a
		204.38		205.22	4 290 . 2	52.58	1009-10
		م د (205.38	4293.9	52a70	1013.28
1.9	175.60	204.38	492.09	204.58	4311.3	53.58	1022-55
61	175.61	204.39		00.402	4324.6	-	
02	175.61	204-40		203.74	4328.3	53,56	
21	175.61	204-60		203.58	4320-8	53.14	
22	175.60	204.91	492.09	203.47	4318.8	52.73	
23	175.58	204.93		203.43	6314.9	m.	•
24	175.56	204.95	4 92 . 09	203.55	4315.4	53.14	
25	175.57	204.95	۰	203.70	4309.6	53.09	
26	175.55	6 *	٠	203.78	4306,1		
27	175.56	204.95	•	203.52	4307.9	53.11	1036.98
5 2	ŝ,		492.09		4322.6	52.85	-
62	175.59	4		204.73	43.70 . 3	A 1 A	1011 46
•	•		•	•		•	

ŕ,

No.

12.1	11-15-78 EC 25.00	• •	SPEC IF IC SPEED	1195		1196.		11970	1198.		1194.	1198.	1191	1189.		1175.	1171.		1168-		1166.	1166.	1169.	1167.	1167.	1167.	1168.	11070	
PAGE	SSING DATE DURATION, SE			185	5	56.00		• •		. 55.79	55.81			Ň		59.35	0	10.90 87 08	• 6		•	0.6	A.9	8.8	80 80	8 . 7	58.76		
	PROCESSI TEST DUR	•	EFF 	(T) cn_49		90.69	90 00		91.21		٠	Ċ,	90.00 C0.00			-	92.10		82 - E0	93.75	•			, 93.33		N.	N (n n	
		ETERS	TURB NP	1441 452 48	52.2	53.0	553 23 461 40	••	3	N.	54.3		673-81	655.78	654.50	656.08	653 .64	675 (3 254 45	654.72	655.22	655.62	653-89	654.99	- S	5	56.	m u		- -
A NOR AS SEMONA		A A A A A A A A A A A A A A A A A A A	FUID	(AH)	m	592.0	593, 2 803 6	595.5	596.0	592.7	592 . 5		544° 5	•	586.9	604.6	" ,		610-2	614.1	610.9	608.5	611.5	610.4	609 . I	608.7	609°3		
HKI		а ж Э	PRESS RISE	- 1152)	1		4122.8	4127.2	- F -i		4132.1	4132 .1	4133. r			4172.4	177.	800	2 5	4217.4	212	.60	4205.0	05.	199.	96.		~ ~	
UID CXYGEN		T E D	HEAD	. F.J. 720.	2	734.	8740.0	00	752	756	8759.7	22	8768•3 8741 2	582	1	829.	837.	5 0 0 6 0 6 0	913.	920.	806	8906.3	99.	8900.3	997.	888 0. 8	er c	> 0	1 イドーナビ
LIQUI		רכערש	FLOW	1L B/ 2EL) 37_2339	394	.27	37.3283 37 2447			.223	N	1605.16		88.	• •		٠	4][]<.]{	• •	•		•	61.	. 71			50	•	1
	12 10-78	-	PUMP FLOK	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		÷	1 1 1 1	244.64	14 B	6 3.3	fu , • • • •		242.10	41 e	£2.	46.	<u>о</u> і			46.7	5	44.	46.	45.7	÷.	4 . •	245, 75 246 16		
	10		TEST SPEED	(1771) 69160-	9203	26	69250. 40752	< N	69301.	4	en 6	m -	69175.	• 60	67894.	N	68171.	5 F V 7 V 7	2.3	12	8316	~	2	82	17	812	α (67671.	
VAL PAG	RUN NUMBER		T THE St ICE		•	۴,	4 4	. •		œ	(* (14	15	16		0	0.	- 12	22	٤c		25	76.	1	81 8 9	

and a stand of the second stand and the second stand of the second stand stand stand stand stand stand stand st

· · · · · ·

うちしょうち おおや あちが ちちかちちちち あんちちちか さろうれ ししょう たいしょう マンボ

ţ

and a second

1

÷

こうち えいかい

A loss of the second seco

• ,

	•		LIQUID	OXYGEN	TURBORUMP ASSEM	EMBLY		
RUN NUMBER	BFR 10-10	12 78					PROCESSING DATE TEST DURATION. SE	11-15-78 EC 25.00
182		U 1	LCULATE		4 4 7	METERS		
ME 15 E	TEST SPEED	HS dN	SUC TI ON SPEC IF IC	I NLET FLCM	HEAD COEFF	PUMP DELTA T	(n/n) Dver	
0 N	(KPM)	(FT)	SPEED	COEFE		(DEG R)	(0/N)DES	
:	69160.	332.86	13840.04	:0	4424	30.25	1.0611	
	203	13.1	670-	0.08974	•	30.27	1.0652	
_	69240°	333,48	13849.82	D C	0.47341 0.47366		1-0613	
		90.	946	88			1.0611	
	AL F	and and a	929.	80	1143		1.0657	
	69340.		13866.72	D C	2 96 7 4 • 0 5 65 7 4 • 0	30. 48	1.0591	
	3		•	1680	1614.		1.0586	
		33.	13897.63	8	0.47351	30.66	1.0644	
	69340.		13925.69 01 77 751	0.08936	0.47396	30.67 30.44		
	68847.			50	8 C9 2 4 . 0	30.66	1.0575	
	5	38.8		S		31.49	1.0768	
۲.	68226.	28.2	13882.10	160	0.69300	26.95		
	68171.	331.84	15722.50	0.09132	0 - 4941 9 0 - 4945 7	28. fb 28. 82		
	1 🖱	27.4		160		20.75	1.0908	
- - - -	. 📣	30.	13832.70	160	•	28.78	1.0628	
	839	29.		160	• 4956	28.78	1.0525	
	60. (60. (►.	13808.55	4160	0.49607		1,0855	
	682380	378.65	13870.99	0- 091 70	0-49669	46.05	1_0886	
	821	26.9	9.08.	160	•	29.40	1-0870	
	A17	30.9	171.6	160	•		1.0873	
	812	29.3	814.2	160		29.40	1.0885	
27	929		001.	6	0.49673		60 (
•	2 / 2 E	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	142°0	2160	E9.64 *			
	64230	327218				06 ° 62		

104.02

-

		LIQUED	OXYGEN TURNOPUMP	AS SEMBLY		PAGE 12015
RIJA NIJABER TEST DATE	12-10-78	· · · · · · · · · · · · · · · · · · ·			PROCESS TEST DU	SSING DATE 11-15-78 DURATION, SEC 25.00
•		SCALED T	TO TARGET SPEED =	70000 RPH		
3141 P.	FL OH	FLOK	HEAD	PRESS	HORS E	NP SH
C.	(CPM)	(1/560)	(FT)	(i Sd)		(FT)
-	246.17	31.68627	8933.76	+214.02	1092.92	341-02
2		7-8	6931.33	6	1096.06	4 G • B
، مع	46.2	ŝ	8925 . 74	0.	96° 1601	† 0 •
t v	246.60		8930.47	\$212.64 4215 84	1095.02	336.61
~~			8936.89	-	1098 -58	339.07
•	16.7.91	7.83		-	1098.65	339.05
æ	45.			0	1093 •03	339.06
6	\$	37.56516		m.	1093.01	
6	246.95	~ `		• • •••	•	
	246.99	37.66175	8935.08 8050.82	4214-82	11.7901	338.14
1	245.35	37.50651	8976.14	10		50.4
7 Î	749.87		9264.82	•		60
		д. Я.	9295.05		1100.11	45.
5 - -	251.51 251.07	38.45747 38 43760	9317.52	4404.55 1104.55	1092.52	349.89
- 60	253.07		9327_30	44.044		
61	251.21		9333.19	! ~	i n	5
		8.7	9344.93	4418.28	1100 .32	345.50
		8.6	9353+05	4421+42 ·····		47.
22	٠	8•5		4420.36	1109.46	
5	252.55	8°.7	364.5	.	119	.
57	•	3. 705 22,	9372.39	6424°93	11 20 . 90	-
	47 4767	30. (U437 20 73050	9376 67	09-1244	1121.491	
18	252.23		365	• •	1121.16	• •
	46.122	8.5	36.8	++27.86	1115.97	1
29	51.	9.530	387.		17.2	343.68
30	251.91	30 LJJL5				

このないないないで、これのないできたいできたから、これでいたいで、

¢.

.

\$2 | 5 | 4

ΰ

マービール・シュート・・ 「「「「「「「「「「「」」」」」、「「」」」、

State of the state of the state

.

d,

s.

.

¥

¥

RUN NIJWA FR		LI QUID D	DXYGEN TURSOPUNP	P AS SEMBLY		PAGE 12.16
DATE	12 19-10-78	1 1 1 1 1 1 1			PROCESSING TEST DURATI	SSING DATE 11-15-78 DURATION SEC 25-00
		SCALED T	TO DESIGN SPEED	= 70,000. RPN		
			MEAD	PRESS	HORSE	HS dN
	(66 H)	(#/SEC)	(FT)	R I S E (P S I)	PONER (BHP)	(FT)
	•	27 20237	8011.76	4214-82	1092 .42	
- 1	2400-11	7.875	166	5	1096 +06	340° 59°
.	741014	37.68309	5	4210.89	1001 .96	
n 4	246-60	37.13273	030.40	4212-64	1095 • 02	
r v		37,66733	8936e82	4215-84	1093 409	339.07
	247.24	7-827	936.	44°C124		339.05
•	247.31	7.834	8 929 . 59	4 2 L 1 . 07 4 2 L 0 . 6 2	50° 260 1	339.06
æ	245.71	7.5 G			1093.01	339.29
¢		1496.	•	4211.23	1100 .08	340.01
01	2	(a) • 1	8036.08	4214-82	1097.411	338.14
11	ç ^ı	37.463021	8950.62	4221.99		
12			8976.14		5	
13		• -	9264.82	1	1161.75	
		C	9295.05	4 392.17	1100.11	
r 1				4404.55	1092.52	
			9324.65	4 40 7 . 44	04 • 401	• •
: 5 80	i "	5	27.			
• •	5	39.52818				
-	•	38. 753 73	9344.93	•		
			9353.05	4421.42	90* 601 1	• _
~ *			9353.04	0		•
	20.00		9364.59	SC 1		
N (` -		9372.38	60	1120 .90	
N (36 236	•	9370.03	4427.60	1121-47	
N 1			9376.57	4430.60	1124.75	
5 9		•	10	4425.30	1121.16	-
	•	2 V •	99	4427.86	1115.97	4 3 e 7
6 () 8 ()			> ~	•	1117.27	m.
29	02.162	24	. •	-	1119.55	344.38

		LI QUI D DYYGEN THRBODHIND AS SEMANA	PAGE 12.17
RUN NUMBER TEST DATE	12 10-10-78		PROCESSING DATE 11-15-78 TEST DURATION, SEC 25.00
T IME SL ICE	- 7 at	VOLUTE STAT PR	
	P 1 SE P 5 []	R I SE P SI D	
-		1516.01	
~ ~	521.87	520.	
\ -P -H	523.13 523.13	••• •••	7
	272el3	15.2	1
c ►	522.07	1515.29	
•0 C	521,19	N	,
10	521.66	151 5. 94	
11-	523.61	1516.33	
13	524-13 524-13	1520.97	
14		1623.43	
15	0 , 1		
17	689.73	1661.82 1665.40	
	484.89	1668.99	
19	485.97	1670.75	
2	483.08	1669. 39 1487 02	
22	489.64	1688.08	
23	497.16	1699. 65	
1 U	453.25 4 83 38	1696.92	
26	•	1669.74 1600 47	
	484.73		
185	5°1,	683.	
	486.14	1666.5A	

)		LIQUID DXYGEN	HEAD TURBOPUMP ASSEMBLY	PAGE 12.10
RUN NIJMBFR	10-10-18			PROCESSING ON TE 11-15-76 TEST DURATION, SEC 25-00
186		SCALED TO DES	DESIGN SPEED = 70,000. RPM	
T IME SLICE ND	IND STAT PR RISE PSID	VOLUTE STAT PR RISE PSID		
	521.56 521.87 522.24	1516.81 1520.16 1516.82		
n 4, 10	522.13	1514-04		
۵ ۲ «	521.80 522.07 521.19			
:• 0	n ei	000		
=25	524.26 524.26 524.13			
222;	525.28 481.95	m		
91	489.73 484.89	1666.49 1667.99		• .
<u>6</u>		1670. 75 1669. 39		
£ 7		1687.03		
<u>د ۲</u>	489.64	168%• UH		
		1696.92 1689.74		
9 20 20		1690.47		
	484.73 481.61			
56	9	1666.58		

が一般の

内容 かられる とうちょうちょう あまま ちょうちょう

PK48-C Ligulu Cxygen TupbCPump Assembly	PROCESSING TEST CURATI		SLCTICN PERFCRMANCE MITH B.P. FLUID RECIRCULATEC TO IMP. INLET	5 SLK Ł 13.8000	NTLKI (GC) VI6U24E-56F EETI EETI THRUAT CLAMETER 0.5E50 0.5E50	NTLKI (TLRB) VPU312uG-SCK LPSTREAM CLAMETER 7312uG-SCK THRGAT CLAMETER 1.3685 THRCAT CG 0.5673	NTUPT (CG) V32U471-SGR UPSTREAM DIAMETER V32U471-SGR UPSTREAM DIAMETER J471U Threat ciameter 0.9765	NTULF (PLMP UISCH) V221J55-SUR UPSTREAM CIAPETER 1.6890 LPSTREAM CIAPETER 1.0590 EE77 THRCAT CIAPETER 0.9820	WAL PIST RECIRC GRIFICE0.2600UCX SEA! URAIN ORIFICE0.5000UCREINE EFFECTIVE AREA0.5319URBINE EXHALST URIFICE0.6600PRIPARY P.G. CRAIN URIFICE0.6550VALASEC. H.G. DRAIN ORIFICE0.6550
	12 10-10-78	CUPPENTS	GBJECTIVE SUCTIC	AND LENT PRCSCRE	LOZ VENTLAL (GC) P/N V160246-56 S/N EE71	GH2 VENTUKI P/N VPU31 5/N 5731	LF2 VENTUPT P/n V3204 S/n 8673	LOX VENTUFI P/N V321J S/N 6677	

*: 5

1

.

12. 2	
PAGL	
1	
	ACCENEL V
	01

PROCESSING DATE 10-11-78 TEST CURATION, SEC 25-00

[...,

ì

,

•

?

: ;

LIQUID CXYGEN TURECPUMP ASSEMBLY T K

;

ş

;

10-10-78 71 RUN NUYBER

J

RAMETERS < ٥. w K L V د u Z TUR HYURCGEN 2 1 2 2 2 2 2 2

	1				1	•	•					i				
	SPEED	(RPM)	15674.	28887.	29619.	29496.	31511.		515450	65561.	805	68647.	65191.	923		
	TURB GH2 FLOW	(LO/SEC)	0.26935	0.70148	0.69196	0.65402	0.77948	0.73673		0 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.X6786		2.95583		3.97.049	
	SPIN VALVE Deita P	(bs 10)	4079 .078	3760.919	194-491	3710.188	2412 450	121 1095	2271.012	17007015		10000000	000-000	740 175	19	
		(PSIA)	4320-0	6.9064	4287.6	2262				0 • C O 7 •					244200	0.0046
i	SPIN	1121	1 -125	2 000	2010	0110 0	114.0			5 - 0 U G	21.15	106.42	260°16	•	176-76	33.110
; ; -	VENTURI DELTA	(PSID)					0.54	0.00		0.50	14.55	40°41	14.67	14.92	15.12	15.25
		1EM9 (UEG R)			アカの	2 • 2 • 2 • 2	2.0.42	140-5	54).5	540.6	540.9	541.4	2.1.2	541.7	541.6	541.4
	VENTLRI L/S	PR (PSIA)		5 2 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4312.0	4250.2	4267.0	4227.5	4216.3	4266.5	4177.5	5*1515	4104.1	406E.2	4031.2	3555°4
	ENC TIME	(SEC)		662.22	24.272	27.263	いい・フトク	34.756	31.346	38.543	39.265	40.275	41.306	42.256	43.266	44.236
	BEGIN Time	(SEC)	,	¿¿.025	24.004	210.75	20.521	24.522	31.038	38.275	29.017	40.007	41.078	42.028	43.C18	810.44
188	T INE St ICE	NC		-1	2	-	4	- v r) ~~	- 19	0	1 U		21	1

i

÷

,

;

:

I

I

1

• ,

•

:

1

1

1

ţ

ł

;

· ,

•

12. 3	10-11-76 C 25. UJ		TURB DSCH ORIFICE DELTA P		161.7	351.1	355.9	353.2	396.6	396.5	396.6	1863.5	1914.3	1941.7	1951.7	1954.0	1960.1	
P AGE	PROCESSING DATE 10-11-78 TEST CUKATION, SEC 25. U		EXH T TE	(DEG K)	230.9	393.4	424.3	430.2	441.9	442.9	443.1	C-18%	478.2	478.0	477.8	477.6	478.6	
	PROCESS1 TEST CUK		TURB EXF TCT PF	(bs Ia)	115.6	365.0	369.6	367.2	410.6	410.5	3	1838.3	•		1991.5			1
	, !		TURB EXH STAT PR	(VISd)	169.7	357.1	250.4	35.A. 7	7.11.4	10107	401-4	1978.2	1926.4	1955.1		1967.2		Ji.
ASSEMBLY	1	ETERS	: -	(v I Sd)	167.5						206.5			1034 5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	10245		L'OCAT
PK48-C CXYGEN TURBCFUMP		ARAFE	TURB Inlet TCT TEMP	(DEG R)	0 617												9 · FOG	202.00
		R F	TURE Inlet TCT PR	(b SI A)		6 • 9 T 7	8°516	526.5	523.0	C • 26G	1.122	1.146	2560.0	30.30.2	3146.4	3157.1	3163.U	3165.8
LICUID		ILR B I	TLKB INLET STAT PR	(PSIA)		2.255	526.J	5	ŝ	t)	552.5	(*)	-	с .	۱ ۱	\$	5	Ś
			SPEEU	(KPM)							2151¢.	11505		66033	66647	15153		
	12 1 C- 1 O- 7 8		ENU TIME	(SEC)		62.253	24.272	21.253	30.789	34.750	37.366	38.543	35.215	40.215	41.506	42-256	42.266	64.276
			066 lh T IME	(SEC)		čiU.ij	24.004	21,015	30.521	34.522	37.036	38.275	110.96	100.02	41.038	42.028	4 1 B	44-00H
	RUN NUMBER Test cate		T INE SL ICE	J		-	• ~) •1	•	5	•	-	6	0	FO.) (21 0 en

ĥ

•

「「「「

÷ Ĵ

いたので、

÷.

6 1

F - 75

.

,

• .

> 4 1

> > :

OF D'INAL PAGE IS

Courses of

and a second a state of

, ł

ļ

. ۴ -

i

.

ļ

Ì,

÷

1

ł

ł

,

!

. ;

.

.

12. 4	E 10-11-78 SEC 25-00		TURB NUL IN TOT P (PSIA)	1.215	509.4	516.0		519.9	579.9	928.2	1028-4	4.110	0.4.0	3197.5					4		
PAI	N.		EFF TURB IN 11 (1-5) (PS		39.45							•		26-92				•			
	TEST		u/C (T-S)	•	0.1384	J.2074	0.2079	0.2185	0.2183	V= 2012-V	0.4135	4114		•						•	
ASSEMBLY	· · · · · · · · · · · · · · · · · · ·	(CCNT INUED)	TORQUE (FT-LE)			11.86	11.13	12.55	12.56			14.64	69.53	89°64	26.06			•			
TURBCPUMP ASSE		M E T E R S	CHP (DELTA V) (HP)			371.6	219.2	204.8	203.4	203.2	٠	613.7 447.41	659-7	668.5	640.9					•	
FKA FKGEN TU		P A R A	внр (саців) (нр)		12.4	66.l 44.c			75.4		638.L	636.l		655.2							:
11011		, R B L N E	PR 8.411C 1.1-51	•	1.2455	1.4265				6+++	1.5556	1.5720	1.2740	1.5753	1.5726		·				
	- 1 - 2	1 C	FLON		293		5 4 4 5 4 4				.551	. £6]	5.5	. .							
)	еек 1.0-78 Те 1.0-10-78		SPEE C		15674-	24687.	29615.	244C -	51511	31545.	65961.	68052.	£8847.	69191.	66313.						
J	RUN NUMEER 1651 cate	190	T IME SLICÉ	2		•~•	~	•	.	0 ~	- 10	. •	11		7 7						

RUN NUMBER Test Cate		•	רוסתוה כאו	PK48-G CXYGEN TURBCPUMP ASSEMBLY	SSEMBLY		ΡA	PAGE 12.
	1 0- 1	12 1J-78				TEST	PROCESSING CATE TEST CURATION,	E 10-11-78 SEC 25-00
		1 L K B	A JUL	A R A M E T E R	S (CONT INUED)	UED)		• ;
T IME	SP EEC		GAMMA	СР	SPEED	FLOW	TCROUE	TURB WHEET
LICE NO	RPM	ENERGY(1-5) (81L/Lb)		(8Tu/LEM-R)	PARA- METER	PARA- METER	PARA- METER	EXH PK SS
-4	15674.	167.71	1.3813	3 . 55 eu	118.7	398	u_0180	163.8
2	28687.	68.7	1.3834	3.6208	220.0	3.6653	0.0216	353.8
m ,	25615.	71•2 , , , ,	1.3834	3.6222		3.5664	0.0211	356.5
4 1	21611	69°C	1.3633	3.6223	224.9	3.3925	0199	354.9
o د	-11010 	1 75 .05	1 - 3640	2.0256 2.4365	240+2	3,3866	0.0198	399 •5
1	31505.	14	1.3841	3.6242	239.9	3.3876	0.6156	399.65
Ø	65961.	5	1.3563	3.7025	498.3	3.6273	0.0159	1915.3
6	68U5ž.	5	1.3984		512.2	3.4394	0.0149	1962.6
2	66647.	2 B • 4	1.35d5	3.6989	517.7	3.4431	0.0147	1991.2
	בי	0.63	1.3945	•	520.2	3.4472	0147	2000.6
77	ά, γ	1 • 6	58	3.6588	520.5	3.4513	14	2002.4
1	• 7 7 5 8 0	8T•077	C8-76 • 1	3• 6953		449	0*0149	2010.1
				·	,			•
				-				
	:	ORIGI		· · · · · · · · · · · · · · · · · · ·				
		WAL						
	,	A					•	

f

ALTER 12 S.E.A.L. A.D. B.E.A.L. A.D.				r I gula	CXYGEN	TURECPURP AS	ASSEMBLY			PAGE	/ 12. 0
5 E AL A D B E R H C A T A 6 F AL C H C S L H G S E F S S L G F S S L G F S S L G F S S L G F S S C F S S C F S S C F S S C F S S C F S S C F S S C F S S C F S S C F S S C F S S S S		<u></u> ບ							PRLCESS IN	CATE CN, SE	0-11-76 25.00
HIM LOR PRIM LOD 11/5 17.5 PRIM HG SEL PRIM HG SEL PRIM HG SEL FG S				.	ee D	4 1 8 7 7	T V			د ۱ ۱	
R.M. GR Stat. DR Pucke And Units 05111 DECERT PS1A1 DECERT PS1A1 DECERT PS1A1 DECERT PS1A1 05111 DECERT PS1A1 DECERT PS1A1 DECERT PS1A1 DECERT PS1A1 DECERT DECERT DS1A1	2	PRIM LC	5/1	5/1			99		SEC HG	SEC HG	SEC
31.4 157.55 254.69 0.0238 17.3 223.65 40.50 151.15 554.69 0.0238 17.3 353.65 40.50 151.15 554.69 0.0336 20.7 353.65 41.101 151.15 554.69 0.0336 20.7 353.65 41.101 154.16 154.17 253.35 14.19 438.16 41.101 154.16 154.16 154.16 154.16 154.16 154.16 154.16 154.16 154.16 154.16 154.16 154.16 154.16 154.16 154.16 154	EAL PH (PSI		PLKGE PR (PSIA)	CRCF Fr Fr Fr Fr Fr Fr	S			CC 144	TEMP (CEG R)	U/S PP	U/S_1 (DEG
$ \begin{array}{c} 1.47 \\ 117.45 \\ 727.45 \\ 727.45 \\ 727.45 \\ 727.45 \\ 727.45 \\ 727.45 \\ 727.45 \\ 727.45 \\ 727.75$		1			•	366 40	200	17.3	2.57	5	68.
0.0101 0.0101	36.47	157.		17 J	-	10.00C	0.0234	20.7	5	14.19	438.16
00100 260.05	36.32	161.		1 u 1 u		269.79	0.0336	20.3	37	<u>14.18</u>	396.56
0.111 1.1111 1.1111 <				ר עד ער ו			U.0336	20.0	26	4	370.60
Curcinal Discrete Special Constraints (Constraints) (Const	10.16	1560		• 47 • 40	11.51	263.26	u .U346	20.8	3	4	350.70
Culcinal back is the construction of the const	01010 70				15.08	258.61	6.0342	20.7	4	4	345. 21
11.1.1 288.45 0.0893 23.5 355.41 14.125 11.1.48 11.1.54 385.49 31.1.6 355.41 14.125 11.1.48 11.1.54 385.49 31.1.6 355.41 14.125 11.1.48 11.1.54 355.64 447.72 14.70 385.69 11.1.48 11.1.54 355.64 447.72 14.70 385.65 11.1.54 355.64 14.712 0.0035 21.2 14.70 385.65 11.1.54 355.64 14.772 14.70 385.65 14.70 385.65 11.1.54 357.64 357.64 14.70 355.64 14.70 385.65 11.1000 31.04 427.28 14.70 355.64 14.70 355.64 11.1000 357.64 0.0037 357.64 0.0037 355.64 14.70 365.64 11.1000 31.04 427.28 14.70 355.64 14.70 365.64 11.1000 31.04 427.28 14.70 366.64 14.70 366.64 11.1010 31.04		- L J I		1	15.05	257.78	9660.0	20 .7	2		340.57
CRIGINAL PAGE IS		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			27.01	268.09	0.0893	23.6	55	-	346.87
0 0				1	31.54	. 347.73	u.0955	27.3	55		365. 67
ORIGINAL PAGE IS		101			34.68	385.85	0.0982	29.6	5	4	382369
001-0 001-0 001-0 01-0	34.05			1.11	35.50	447-72	5660.0	30.6	27	14.7	396.56
	42.63	* 00 m			20.00	421.38	0.1009	31.4	3	14.8	60
ORIGINAL PAGE IS	40-84 26-34	161-5		1.41		425 II		32.9	(n) (17)	14.9	Ś
original page is										:	
ginal page is						an ann	ł				
PAGE IS								-	'n	 	
.ge is											
IS											
						1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2	L		-	

RUN NUMBER TEST CATE TIME SLICE SE	12 1 C-10-78			CXYGEN TURBCPUMP	UMP ASSEMBLY	۲۷		•	
		30			:	· · · ·	PRUCESSING DATE TEST CURATION.	10-1 SEC	1-78
		SEAL	A N D B	EARIN	G D A T	A (CCNT INUED)	•		
	SEC FC Seal Cr	RR BKG COCLANT		RK BRG Drain	RR BRG DRAIN	:ai •	RR ERG COCL ORIF	RR BRG COOLANT	
	FLÜN (LB/SEC)	SLPPL •PR (PSIA)	SLFFL,TEMP (DEG R)	FK (PSIA)	LEAN (CEG R)	(FSIA)		(LB/SEC)	:
-	0.0	3460.2	56.19	204.9	95.73	13.8	460.00	0.0	.v
	C•O	479.	•	209.3	94 • 28	13.8	4 60 • 00	0.0	,
m 4	0.0	3482°5	53.5J	210-5	92.91		00-094	0.0	
			10	211.8	92.33	13.8	460.30	0.0	
• •	0.0	475	65.63	211.2	91.38	13.8	460.00	<u>0.0</u>	
		1-24-25	69.56 20.25	210.2	90.67		460.00 660.00		
		5 • 1 0 4 c	.	158.2	94.82	13.8	460.00	0.0	
		2491.6	88.94	199.2	10.06	13.8	460-00	0-0	
	0.0	54	. m	199.9	97.14	13.8	460.00	0.0	
	0.0	45	"	201.0	4	13.8	46000	0.0	
13	ũ•ũ	5 • 25 • 2	89.19	202.2	6 6 - 2 5	2° 2			
	·	·	÷						
1		OF							
		GINAL							
19	۲ ^۰	PAGE		:					

)

	TURECPUMP ASSEMBLY	PR.	ARING DATA (CENTINUED)	LOX SEAL DRAIN LCX SEAL DRAIN ORIF U/S TEMP FLOWRATE CEG R (LB/SEC)		510.11 0.151 504 77 0.160		.69	500.40 0.163 0.163	62		501.02 0.175					
	LICUID CXYGEA		SEAL AND BE	LCX SEAL UKAIN ORIF L/S PRESS PSIA	21•5	- J - - - - - - - - - - - - - - - - - - -	רי אין אין אין אין אין אין אין אין אין אי	- UN - 1 - 0 - 10 - 1 - 10 - 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1		36.5	ר שיו שיו פר		13.6			
•)	PUN NUMBER 12 Test cate 10-13-78		TIME SLICE NO	-	. 0	m 4	• •	4 0 F	- 33		01	11				

,

12.9	0-11-78 25.00
PAGE	PRUCESSING CATE 10-11-78 Test curation, sec 25.00
MK46-C Lijulu CXYCEN Turbcfump Assembly	

しまた あんしょうれい しいがく いっという 書きる 見いいた へんがくけんしゃ たいきこうしゃ

ì

こうち 日本のないないのでも、男からてん、そうし、 やいましたとうち

12 1 C- 10- 78 kun number Test cate SURES S ω ¥ ð ٥. っ っ エ

407.9 347.6 500.0 500.0 875.9 616.2 465.3 397.6 726.9 943.4 643.8 466.1 414.5 726.9 939.2 638.5 486.1 414.5 756.0 939.2 658.5 486.1 414.5 829.0 939.2 652.8 516.7 441.5 829.0 1044.5 692.8 519.6 441.5 829.6 1044.5 692.6 519.0 1214.7 2946.9 1044.5 2036.2 1401.0 1214.7 2904.1 2944.7 2036.2 1460.4 1228.5 3146.9 4261.8 2142.1 1490.4 1291.3 3100.6 4261.8 2142.1 1490.4 1293.7 3125.1 4297.1 2148.5 1509.8 1293.7 3125.1 4297.2 2137.2 1509.8 1293.7 3125.1 4297.4 2142.5 1564.5 994.2 3261.2	•
616.2 465.3 397.6 643.8 486.1 414.5 658.5 486.1 414.5 658.5 486.1 414.5 692.8 516.7 441.5 692.4 519.6 441.5 692.4 519.6 441.5 690.8 519.0 1214.7 2036.2 1401.0 1214.7 2111.6 1450.0 1258.5 214.5.1 1490.4 1281.3 2148.5 1516.4 1293.7 2137.2 1516.4 1293.7 2137.2 1516.4 1293.7	
643.8 486.1 414.5 638.5 486.1 414.5 692.8 516.7 441.5 692.8 519.6 441.5 692.8 519.6 441.5 690.8 519.6 441.5 690.8 519.0 1214.7 2036.2 1401.0 1214.7 2111.6 1456.0 1258.5 2142.1 1490.4 1281.3 2148.5 1509.8 1293.7 2137.2 1516.4 1293.7 2137.2 1516.4 994.2	
638.5 486.1 414.1 692.8 516.7 441.5 692.4 519.6 441.5 690.8 519.0 1214.7 2036.2 1401.0 1214.7 2142.1 1490.4 1281.3 2148.5 1509.8 1293.7 2137.2 1516.4 1293.7 2137.2 1516.4 1293.7	768.3
692.8 516.7 441.5 692.4 519.6 441.5 690.8 519.0 440.6 2036.2 1401.0 1214.7 2111.6 1456.0 1214.7 2142.1 1490.4 1281.3 2148.5 1509.8 1293.7 2137.2 1516.4 1293.7 2137.2 1516.4 1293.7	
692.4 519.6 441.5 690.8 519.0 440.6 2036.2 1401.0 1214.7 2111.6 1456.0 1218.5 2142.1 1490.4 1281.3 2142.1 1490.4 1281.3 2142.1 1509.8 1293.7 2137.2 1516.4 1293.7 2272.9 1164.5 994.2	
690.8 519.0 440.6 2036.2 1401.0 1214.7 2111.6 1456.0 1258.5 2142.1 1490.4 1281.3 2148.5 1509.8 1293.7 2137.2 1516.4 1293.7 2272.9 1164.5 994.2	775.9 1(
2036.2 1401.0 1214.7 2111.6 1456.0 1258.5 2142.1 1490.4 1281.3 2148.5 1509.8 1293.7 2137.2 1516.4 1293.7 2272.9 1164.5 994.2	ç
2111.6 1456.J 1258.5 2142.1 1490.4 1281.3 2148.5 1509.8 1293.7 2137.2 1516.4 1293.7 2272.9 1164.5 994.2	
2142.1 1490.4 1281.3 2148.5 1509.8 1293.7 2137.2 1516.4 1293.7 2272.9 1164.5 994.2	2734.7 41
2148.5 1509.8 1293.7 2137.5 1516.4 1293.7 2272.9 1164.5 994.2	
2137.2 2272.9 1164.5 994.2	14
• 2137.9 1164.5 994.2 • 2272.9 1164.5 994.2	n
•4 2272.9 1164.5 994.2 J	2
	2785.3 4

こ.

ŧ

195

:

Į

÷

ļ

ţ

)	LIG.	LIQUID LYYGEN TURBCP	TURBCPUMP ASSEMBLY		PAGE 12.10
ИОЛ ЧОМ НЕК 10-10-78 1551 сате 10-10-78	1 c J-78			PRUCESSIMG DATE TEST CUKATION.	VG DATE 1U-11-76 ATION, SEC 25.00
196	PUMP PKES	S L R E S A N L	C TEMPER	etures	
T IME SL ICE MG	SPEED	I NDUCER DI SCH DRF 45	FUMP BRG D/S PRESS	EAL PIST RECIRC TEMP AT PUMP IN	PUMP Brg Del TA P
2	M d a	PSIA	PSIA	DEGR	PS ID
	15674.	248.7	282.5	227.95	21.66
· u •	2668j. 3641e	304.6	419.0	220-07	42.30 50.41
19 J	25456.	315.5	430.L	209.55	26.03
· •	:111:	325.1	458.6	202-53	56.48 57 12
•0 1 •	31516.	325.7	460.3	201.70	50 • 13 54 22
- 3	21515. 4 F C F 1	524•3 531.0	1408-7	201.60	-11.75
.	66052.	667.7	1296.6	236.57	151-74
10	£6647.	6 83 . l	L334.J	249.11	149.95
11	61	690.2	1389.2	253.26	116.34
12	65239.	653.2	1399.8	255.14	112.08
13	£E313.	644 ª 6	1032.9	256.82	129.05
					•
					·
		•			
				, , , ,	
					· · · · · · · · · · · · · · · · · · ·
		:			

·. . ٠,

Fun Aumera Liquib CAYGEA TURECUUMP ASSEMBLY PAGE 12.1 Fun Aumera Liquib CAYGEA TURECUUMP ASSEMBLY PRECESSING GATE Lo-11-76 PU M P P.K. E.S. S.L. R.E.S. A. D. T.E.M.P. R.A.T. U.R.E.S. TOWATICN, SEC. 25.0 PRECESSING GATE Lo-11-76 PU M P P.K.E.S. S.L.R.E.S. A. D. T.E.M.P. R.A.T. U.R.E.S. CONTINUED PAGE Z5.0 PU M P P.K.E.S. GAT East PIST BAL PIST BAL PIST PU M P P.K.E.S. GAT D.T.E.M.P. R.E.C. D.T.E.M.P. R.E.C. D.T.E.M.P. R.E.C. PU M P P.K.E.S. GAT D.T.E.M.P. R.E.C. D.T.E	ILGUID LAYGEN TUREEPUNP ASSEMULY PR.CCESSING DATE TO TEST DUKATION, SEC IU-IG-FR P. K. S. S. K. K. S. A. D. T. E. M. P. K. A. T. U. R. S. (CONTINUED) P. U. M. P. K. E. S. L. K. S. L. K. S. L. K. S. (CONTINUED) P. U. M. P. K. E. S. L. K. S. A. D. T. E. M. P. K. A. T. U. R. S. (CONTINUED) P. U. M. P. K. E. S. L. K. S. A. D. T. E. M. P. K. T. U. R. S. (CONTINUED) P. U. M. P. K. E. S. L. K. S. L. K. S. L. K. S. (CONTINUED) P. U. M. P. K. E. S. L. K. S. L. K. S. (CONTINUED) P. U. M. P. K. S. L. K. S. L. K. S. L. K. S. (CONTINUED) P. U. M. P. K. S. L. K. S. L. K. S. L. K. S. (CONTINUED) P. M. P. K. S. L. K. S. L. K. S. L. K. S. (CONTINUED) P. L. K. S. L. K. S. L. K. S. L. K. S. (CONTINUED) P. L. K. S. L. K. S. L. K. S. L. K. S. (CONTINUED) P. L. K. S. L. K. S. L. K. S. L. K. S. (CONTINUED) P. L. K. S. L. K. S. L. K. S. L. K. S.	10-10-78 P U M P CE			ASSEMBLY P E R A T U R E BAL PIST RECICR DELTA P PSI 15.90	PRECESSING D TEST DURATIC (CONTINUEC) BAL PIST FLOW LB/SEC	
IU-IL2 PPGCESSING GATE ID-I IU-IL2 FEG EXING GATE ID-I PUMP PKESSCRESTING GATE ID-I FEG EXING GATE ID-I FUMP PKESSCRESTING GATE ID-I FEG EXING GATE ID-I FUMP PKESSCRESTING GATE ID-I FEAL FIST BAL PIST FAL FIST BAL PIST BAL PIST BAL PIST BAL PIST <	10-10-12 FBCCESSING GATE LOATION, SEC 10-10-18 TBCCESSING GATE LOATION, SEC PUMP PRESSERS ADD TEMPERATURES (CONTINUED) 043 PUMP PRESSERS 043 PUMP PRESSERS 043 PUMP PRESSERS 044 PSIA 104 PSIA 1579 PSIA 1590 PSIA 166 PSIA	10-10-78 P U M P E CE	د د د د د د د د د د د د د د د د د د د د	A N D T E 6.4 EAL FIST RECIRC U/S CRIF TEMP DEG R 213.5	P E R A T U R E Bal PIST Recicr PSI PSI	-	10-1 SEC BAL P
PUMP P.K.E.S.S.L.K.E.S.A.D.T.E.M.P.K.A.T.U.R.E.S.CUMTINUEC) FEST DUKATION, SEC BAL PIST EAL PIST EAL PIST BAL PIST BAL PIST FECINC U/S REL PIST BAL PIST BAL PIST FECINC U/S REL PIST BAL PIST BAL PIST REL PIST BAL PIST BAL PIST BAL PIST RECIRC U/S REL PIST BAL PIST RECIRC U/S REL PIST BAL PIST BAL PIST RECIS REL PIST BAL PIST BAL PIST RECIS 215.1 34.71 1.054 RALE 236.3 200.31 1.749 RALE 236.3 200.31 1.749 RALE 236.3 200.31	P U M P P K E S S L K E S A N D T E M P R A T U R E S (CONTINUEC) C THE BAL PIS1 EA FAS BAL PIS1 EA FAS FAS A N D T E M P R A T U R E S (CONTINUEC) C THE BAL PIS1 BAL PIS1 BAL PIS1 BAL PIS1 RECIRC U/S RECIRC U/S RECIRC U/S RECIRC U/S RECIRC U/S P S1A D G R R A T U R E S (CONTINUEC) D M P FA P S1A D G R R A T U R E S (CONTINUEC) D M P FA P S1A D G R R A T U R E S (CONTINUEC) D M P FA P S1A D G R R A T U R E S (CONTINUEC) D M P FA P S1A D G R R A T U R E S (CONTINUEC) D M P FA P S1A D G R R A T U R E S (CONTINUEC) D M P FA P S1A D G R R A T U R E S (CONTINUEC) D M P FA P S1A D D G R R A T U R E S (CONTINUEC) D M P FA P S1A D D G R R A T U R E S (CONTINUEC) D M P FA P S1A D D C R R A T U R E S (CONTINUEC) D M P FA P S1A D D C R D M P FA D M P FA P S1A D D C R D M P FA D M P FA P S1A D M P FA D M P FA P S1A D M P FA D	د ۲ ۲	с с к 151 151 151 151 151 151 151 151 151 15	A N D T E C.A.D EAL FIST RECIRC U/S CRIF TEMP DEG R 213.5 213.5	P E R A T U R E BAL PIST RECICR DELTA P PSI 15-90	-	SEC DAA
C73 C44 Fish Fat Fish Fat Fish Fat Fish Fat Fish Bat Pist Fat Fish Fat Fish Fat Fish Fat Fish Fat Fish Bat Pish Recire U/S Recire U/S Recire U/S Fat Fish Fat Fish Psia D66 R Psia D617 P Psi Fish Fat Fish Psia D66 R Psia D617 P Psi Fish Fat Fish Psia D66 R Psia D511 P Psia Eacre Psia 213.5 D617 A Psia D094 Psia 212.1 Psia D1.094 D1.094 Psia 211.5 Psia D1.094 D1.094 Psia 201.40 D1.40 D1.748 Psia 205.8 D0.31 D1.748 Psia 203.3 203.3 D1.40 Psia 203.3 2	THE CT3 CM SLICE Ball PIST EAL FIST EAL FIST DEC RECIECUS BAL PIST EAL FIST DEC RECIECUS BAL PIST EAL FIST DEC RECIECUS BAL PIST EAL FIST DEC RECIECUS BALT EAL FIST DEC RECIECUS BALT EAL FIST PELIA DEC RECIECUS EAL FIST PELIA DEC RECIECUS EAL FIST PELIA PELIA PELIA EAL FIST PELIA PELIA PELIA PELIA PELIA PELIA <t< th=""><th></th><th>W LIST S LIST S LIST</th><th>CAL EAL FIST RECIRC U/S CRIF TEMP DEG R 213.5</th><th>IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST I</th><th></th><th>044 -04</th></t<>		W LIST S LIST S LIST	CAL EAL FIST RECIRC U/S CRIF TEMP DEG R 213.5	IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST IST I		044 -04
BAL PIST BAL PIST RECIRC U/S BAL PIST RECIRC U/S BAL PIST RECIRC U/S DEG R DEG R DELTA P PSIA DELTA P LB/SEC PSIA DESC 213.5 215.6 213.5 15.90 212.1 34.71 1.609 447.6 205.8 39.41 447.6 205.8 39.41 1204.9 205.8 39.33 1204.9 205.8 30.33 1204.9 205.8 205.3 1224.5 205.3 205.77 1224.5 205.3 205.77 1234.9 205.3 205.77 1234.9 205.3 205.77 1234.9 205.3 205.77 1234.9 205.3 205.77 1234.9 205.3 205.77 1234.9 205.3 205.77 1234.	The Bal Pist Lat Pist Bal Pist Bal Pist Bal Pist NICE RECIRC U/S RECIRC U/S RECIRC U/S RECIRC U/S RECIRC U/S PSIA DEC R PSIA DEC R PSIA DEC R PSIA RECIRC U/S PSIA DEC R RECIRC U/S RECIRC U/S PSIA DEC R PSIA R PSIA PSIA PSIA PSIA R PSIA PSIA PSIA PSIA PSIA PSIA PSIA PSIA PSIA			EAL FIST RECIRC U/S CRIF TEMP DEG R 213.5	RECICR RECICR DELTA P PSI 15.90	BAL PIST FLOM LB/SEC	BAL PIST
RECIRC U/S RECIRC	NICE RECIRC U/S		0.4	RECIRCU/S CRIFIEMP DEGR 213.5	BAL PIST RECICR DELTA P PSI 15.90	BAL PIST FLOW LB/SEC	BAL PIST
Okir Pk Ckir Tewp Psia Dick R Ckir Tewp Flow Psia Dis E R E	Okfic Pk Ckir Teke Oktic Pk Ckir Teke PSIA DEG R DEG R DEI LUS PSIA DEG R DEG R PSIA DEG R <t< td=""><td></td><td>0</td><td>CRIF TEMP DEG R 213.5</td><td>DELTA P PSI 15.90</td><td>FLOW LB/SEC</td><td></td></t<>		0	CRIF TEMP DEG R 213.5	DELTA P PSI 15.90	FLOW LB/SEC	
756.8 75.90 15.90 1004 756.1 275.6 212.5 15.90 1004 756.1 212.5 15.90 1004 424.6 212.5 212.5 37.00 1004 425.3 207.8 212.5 37.27 10654 426.6 207.8 200.31 37.00 10654 447.6 205.7 39.91 1.749 447.6 205.7 39.91 1.749 1156.7 205.7 39.92 1.749 1205.9 205.1 39.93 1.749 1205.9 205.1 39.93 1.749 1205.9 205.1 200.31 3.796 1205.9 205.3 201.40 1.749 1205.9 205.3 200.31 3.796 1205.9 205.17 3.603 3.620 1205.9 205.3 2.055 3.618 1205.9 205.3 2.618 2.636 1205.9 205.3 2.618 2.636 1205.9 2.05.3 2.618 2.636 1205.9 2.05.3 2.618 2.636 558.1 2.05.3 2.618 2.636 558.1 2.05.3<	13.6 15.6 15.1 15.6 15.1 275.6 213.5 15.0 15.0 1.094 476.2 2112.1 34.71 1.624 476.4 201.8 37.0 1.624 476.5 201.8 37.0 1.624 476.5 201.8 37.0 1.624 476.5 205.7 39.39 1.779 446.5 205.7 39.39 1.779 446.5 205.7 200.31 3.799 446.5 205.7 200.31 3.799 156.6 205.7 200.31 3.799 156.9 201.91 1.776 3.799 1202.9 205.7 205.31 3.799 1202.9 205.31 205.31 3.620 1256.9 205.37 2.05.31 3.623 1256.9 205.31 2.05.31 3.625 1256.9 205.31 2.05.31 3.625 1256.9 205.31 2.05.31 2.65.4 1256.9 205.31 2.05.31 2.65.4 1256.9 205.31 2.05.31 2.65.3 1256.9 205.31 2.05.31 2.65.4 1256.9 2.05.31 2.65.3<			DEG R 213.5 213.5	PSI 15-90	LB/SEC	FLOW
215.6 213.5 215.1 213.5 424.8 211.5 424.8 211.5 424.8 201.4 425.3 207.8 426.3 207.8 426.3 207.8 426.3 207.8 426.3 207.8 441.6 205.8 441.6 205.8 205.8 39.91 1156.7 205.8 205.8 205.8 204.3 204.3 1254.6 205.9 2256.0 201.40 1254.5 200.31 2256.0 205.77 2256.0 205.77 2256.0 205.77 2256.1 205.77 2256.3 205.77 256.3 205.37 256.3 205.37 256.3 205.37 256.3 205.37 256.3 205.37 256.3 205.37 256.3 205.37 256.3 205.37 256.4 205.37 </td <td>275.6 213.5 15.90 406.2 406.2 211.5 406.4 200.4 34.71 406.5 200.4 37.00 446.5 200.4 37.00 446.5 205.7 39.91 446.5 205.7 39.91 446.5 205.7 39.93 446.5 205.7 39.93 446.5 205.7 39.93 1156.7 29.93 1.749 1156.7 29.93 1.749 1156.7 200.31 39.53 1220.5 200.31 3.623 1220.5 200.31 3.623 1220.5 200.31 3.623 1220.5 200.31 3.623 1220.5 200.31 3.623 1220.5 205.77 3.618 1220.5 1.40.64 2.618 1220.5 205.77 3.612 1220.5 205.77 3.618 1220.5 205.77 3.618 1220.5 205.76 3.618 </td> <td> ~</td> <td>•••• ••••• ••••</td> <td>213.5</td> <td>15.90</td> <td></td> <td>DEG R</td>	275.6 213.5 15.90 406.2 406.2 211.5 406.4 200.4 34.71 406.5 200.4 37.00 446.5 200.4 37.00 446.5 205.7 39.91 446.5 205.7 39.91 446.5 205.7 39.93 446.5 205.7 39.93 446.5 205.7 39.93 1156.7 29.93 1.749 1156.7 29.93 1.749 1156.7 200.31 39.53 1220.5 200.31 3.623 1220.5 200.31 3.623 1220.5 200.31 3.623 1220.5 200.31 3.623 1220.5 200.31 3.623 1220.5 205.77 3.618 1220.5 1.40.64 2.618 1220.5 205.77 3.612 1220.5 205.77 3.618 1220.5 205.77 3.618 1220.5 205.76 3.618	~	•••• ••••• ••••	213.5	15.90		DEG R
4471 15.90 424.8 212.1 425.3 207.4 442.5 207.4 440.5 205.6 440.5 205.6 440.5 205.6 440.5 205.6 440.5 205.6 440.5 205.6 205.6 39.91 1156.7 39.33 1156.7 39.33 1206.9 39.33 1215.6 200.33 1224.6 200.31 1224.6 200.31 1224.6 200.31 1224.6 200.31 1224.6 200.31 1224.6 205.77 1236.9 140.64 261.3 205.77 1236.9 205.77 1236.9 205.77 260.3 205.47 260.3 205.47 260.3 205.47 260.3 205.47 260.3 205.47 260.3 205.46 260.3 205.45 260.3 206.47	4 4	2	••• •••	C13.2	15.90		
424.8 2011.5 54.71 1.627 426.3 206.6 39.91 1.667 446.3 205.7 39.91 1.667 446.5 205.7 39.91 1.679 446.5 205.7 39.93 1.746 446.5 205.7 39.93 1.749 446.5 205.7 39.93 1.749 156.6 39.33 1.749 1.749 1205.7 234.3 200.31 39.610 1205.6 234.5 201.40 3.620 1205.7 201.40 3.620 3.620 1235.6 261.9 205.77 3.658 1235.6 265.8 205.37 2.658 1235.9 205.38 2.056.37 3.652 1235.9 265.3 2.658.4 2.658 258.1 2.055.77 3.658 2.658 258.1 2.055.77 3.658 2.658 258.1 2.056.37 2.658 2.658	424.8 2010 34.71 1.624 424.8 2010 34.71 1.657 447.6 205.8 39.31 10.79 447.6 205.8 39.31 10.79 447.6 205.8 39.33 10.79 447.6 205.8 39.33 10.79 1156.7 255.8 201.3 203.33 1226.9 201.3 200.3 1.749 1226.9 201.4 201.40 201.40 1226.9 201.40 201.40 201.40 1226.9 201.40 201.40 205.37 1226.9 205.77 3.653 1226.9 205.77 3.653 1226.9 205.77 3.653 1226.9 205.77 3.653 1226.9 205.77 3.653 1226.9 205.77 3.651 1226.9 205.77 3.651 1226.9 205.77 3.651 1226.9 205.77 3.651 120.1 1.40.64 2.653 1326.9 2.65.77 2.651 1326.9 2.65.77 2.651 140.64 2.656.90 2.656.90)))			47.001	34.41
4.72.3 4.72.3 4.5.27 4.95.27 4.46.3 206.6 37.40 1.689 4.46.5 205.7 39.33 1.749 4.46.5 205.7 39.33 1.749 4.47.6 205.7 39.33 1.749 158.7 235.0 200.31 39.33 1202.9 205.3 200.31 39.33 1202.9 205.37 200.31 3.799 1224.6 260.3 203.91 1.749 1224.6 260.3 203.91 3.620 1235.6 266.3 205.37 2.658 558.1 270.3 205.37 2.658 558.1 270.3 1.40.64 2.658	4 4 5 <td></td> <td>24.</td> <td>211 6</td> <td>11.40</td> <td>1.624</td> <td>28-02</td>		24.	211 6	11.40	1.624	28-02
446.3 37.40 1.689 446.3 446.3 39.91 446.5 205.7 39.99 447.6 205.7 39.33 447.6 205.7 39.33 11205.9 204.31 1.749 234.3 200.31 1.749 234.3 200.31 1.749 1205.9 256.0 201.40 1224.6 260.3 201.40 1235.9 261.9 205.77 256.0 201.40 3.620 1235.9 205.77 3.652 258.1 270.3 1.40.64 258.1 270.3 2.656.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\$) ()	C 11.5	45.27	1.857	27.33
448.5 205.7 39.391 1.759 447.6 205.7 39.33 1.749 1156.7 205.7 39.33 1.749 1202.9 234.3 200.31 3.799 1202.9 234.3 200.31 3.799 1205.7 2356.0 201.40 3.620 1224.6 260.3 201.40 3.620 1236.9 261.9 205.77 3.622 258.1 205.77 3.622 2.618 258.1 205.77 3.622 3.622 258.1 270.3 2.05.37 3.625 258.1 270.3 2.05.37 3.625 258.1 2.05.77 3.625 3.625 258.1 2.05.77 3.655 3.655	441.5 205.7 39.39 1.759 447.6 205.7 39.39 1.749 1156.7 39.33 1.749 1205.8 205.7 39.33 1205.9 205.7 39.33 1205.1 205.7 39.33 11 224.3 200.31 1224.6 205.1 201.40 1224.6 261.9 203.51 1224.6 261.9 205.77 1224.6 261.9 205.77 1224.6 205.77 3.622 1224.6 206.37 2.632 1224.6 206.37 2.622 1224.6 206.37 2.622 1224.6 2.00.31 2.053.45 1224.6 2.00.31 2.05.77 1224.6 2.00.3 2.05.77 1224.6 2.00.3 2.05.77 1224.6 2.00.3 2.05.77 1224.6 2.00.3 2.05.77 1224.6 2.05.77 2.65.8 1224.6 2.05.77 2.65.8 1224.6 2.05.77 2.65.8 1224.6 2.00.3 2.05.77 1224.6 2.00.3 2.00.3 1224.6 2.00.3 2.00.3 <	۰ د.	446.3	206.5	37.00	1.689	24.55
447.6 205.7 39.33 1.749 1156.7 234.3 200.31 1.749 1205.9 256.0 201.40 3.639 1205.9 200.31 201.40 3.636 1234.9 200.31 203.91 3.620 1234.9 205.8 205.31 3.620 1234.9 205.3 201.40 3.620 1234.9 205.3 205.37 3.620 1234.9 205.3 205.37 3.622 258.1 270.3 140.64 2.854	447.6 205.7 39.33 1.749 9 1156.7 294.3 39.33 1.749 10 1224.6 256.0 201.3 3.73 11 1224.6 260.3 201.40 3.636 12 1236.9 201.40 3.650 12 1236.9 201.40 3.652 12 1236.9 205.77 3.652 13 558.1 270.3 1.40.64 258.1 270.3 1.40.64 2.658 13 270.3 1.40.64 2.656	ч Ф	3,	205.8	39°91	1.759	23.30
1156.7 234.3 234.3 234.3 1202.9 256.0 201.31 3.799 1224.6 260.3 201.340 3.636 1224.6 260.3 201.340 3.636 1224.6 260.3 201.340 3.636 1224.6 260.3 201.340 3.636 1236.9 265.8 205.77 3.6520 1236.9 270.3 206.37 3.6520 258.1 270.3 140.64 2.6548 258.1 270.3 2.6554 3.6520 258.1 270.3 2.655.8 2.6554 258.1 270.3 140.64 2.6548	1156.7 234.3 234.3 234.3 10 1205.9 256.0 256.0 201.40 11 1205.44 261.9 201.40 2.03.91 12 1236.9 261.9 203.91 3.620 12 1236.9 262.8 206.37 3.620 12 1236.9 206.37 2.651.8 2.650.6 12 1236.9 270.3 1.748 258.1 270.3 1.40.64 2.653.4 258.1 270.3 1.40.64 2.654.4	- 3	(~ . 9	205.7	20.50	1.749	22.67
1202.9 256.0 1224.6 256.0 1224.6 201.40 1224.6 201.40 1224.6 201.40 1224.6 201.40 1224.9 205.77 261.9 205.77 1224.9 205.77 261.9 205.77 261.9 205.77 261.9 205.77 261.9 205.77 261.9 205.77 261.9 205.77 261.9 205.77 261.9 205.77 261.9 205.77 261.9 261.8 270.3 261.8 270.3 261.8 270.3 261.8 270.3 261.8 270.3 261.8 270.3 261.8 270.3 261.8 261.8 2.65.8 261.8 2.65.8 261.8 2.65.8 270.3 2.65.8 28.9 2.66.8 29.8 2.70.3 29.8 2.8 </td <td>10 1224.6 256.0 201.40 2.636 11 1224.6 2.60.3 201.40 2.636 12 1236.5 2.61.9 2.636 2.636 12 1236.5 2.65.8 2.636 2.636 12 1236.5 2.65.8 2.05.37 2.636 12 1236.9 2.05.37 2.636 2.636 12 1236.9 2.05.37 2.622 2.622 13 2.70.3 2.65.8 2.05.37 2.618 2.618 558.1 2.70.3 140.64 2.618 2.618 2.656</td> <td></td> <td>1156.7</td> <td>234.3</td> <td>66°66 15,005</td> <td>1.748</td> <td>22.69</td>	10 1224.6 256.0 201.40 2.636 11 1224.6 2.60.3 201.40 2.636 12 1236.5 2.61.9 2.636 2.636 12 1236.5 2.65.8 2.636 2.636 12 1236.5 2.65.8 2.05.37 2.636 12 1236.9 2.05.37 2.636 2.636 12 1236.9 2.05.37 2.622 2.622 13 2.70.3 2.65.8 2.05.37 2.618 2.618 558.1 2.70.3 140.64 2.618 2.618 2.656		1156.7	234.3	66°66 15,005	1.748	22.69
260.3 260.3 203.91 1236.5 261.9 205.77 3.620 1236.5 205.77 3.620 3.620 1236.9 265.8 205.37 3.620 260.3 266.37 2.612 3.620 1236.9 265.8 205.37 3.620 260.1 270.3 1.40.64 2.6554	11 1236.5 260.3 203.91 306.20 1236.5 262.8 205.77 3.620 1236.9 262.8 205.77 3.620 1236.9 262.8 206.37 3.620 1236.9 262.8 206.37 3.620 1236.9 1.40.64 2.654		1202.9	256.0	201.40		35.68
1236.9 261.9 205.77 3.622 558.1 270.3 140.64 2.654 258.1 270.3 140.64 2.854	12 1236.9 205.77 3.622 13 558.1 270.3 206.37 3.622 261.9 206.37 3.622 2.618 2.66.37 3.622 2.658 3.622 2.		1224 C	260.3	203.91		15.25
558.1 200.3 206.37 <u>2.654</u> 14J.64 2.618			1236.9	261.9	205.77	3-622	
			558.1	202.8	206.37	3.618	56.54
					1 4J • 64	2.654	65.63
	1						
	1						
	1				-		
					·		
]		
					· · · · · · · · · · · · · · · · · · ·	• • •	

時にいたまたいという

The second se

:

E 10 SEC	(TENP)	29.32 132.79 140.33 127.44 137.44 137.44 133.90 861.30 861.30 1045.04 1045.04 1063.J7 1029.15	
PAGE. PRÚCESSING DATE TEST CURATIÓN. S E S	PUMP DISCH VENT CELTA PR (PSI)	9.59 15.69 15.63 15.63 16.39 16.35 52.63 52.63 52.63 52.63	
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PUMP LISGH VENT U/S PR (PSIA)	394.9 855.7 921.2 917.1 917.1 1021.9 1021.9 1021.9 1021.9 4120.2 4120.2 4120.2 4120.2	
EN TURBEFUMP ASSEMBLY	PLMP CISCH VENT L/S TEMP (DEG R)	178.43 182.57 183.84 183.22 183.25 183.99 182.91 192.41 203.24 203.59 203.59	
CXYG R ĕ	BAL PIST Return Temp (deg r)	00000000000000000000000000000000000000	
LIQUIC F K E S S L	FLMP DISCH Temp (DEG K)	L76.72 L64.12 L64.04 L65.04 L65.26 L65.26 L65.02 L65.02 205.29 205.27 205.27 205.27 205.27 205.27 205.27 205.27	
12 16-16-78 P U M F	4 <u>1</u> 4	116.28 176.01 175.60 175.60 175.64 175.64 175.64 175.64 175.64 175.64 175.64 175.64 175.64	
UMBER CATe	B I I ND I ND I ND I ND I ND I ND I ND I	しこうかうらておうししこう	ORIGINAL PAGE IS OF POOR QUALITY

) • *

UNVER Latt Latter Latter Latter Fast curation fest curation. CALLLLATE FLULLATE FLUE PLAR FST curation. CALLLLATE FLUE PLAR FSS feurin FF FSS feurin FIST FUND FLUE FSS feurin FF FSS feurin FIST FUND FLUE FSS feurin FF FSS feurin SFEE FLOR FLOR FSS feurin FF FSS fer ISST FLOR FF FSS fer FF FSS fer ISST FLOR FSS fer FSS fer FF FSS fer ISST FSS fer FSS fer FSS fer FF FSS fer ISST FSS fer FSS fer FSS fer FF FSS fer ISST FSS fer FSS fer FSS fer FF FSS fer ISST FSS fer FSS fer FSS fer FSS fer FSS fer ISST FSS fer FSS fer FSS fer FSS fer FSS fer ISST FSS fer FSS fer FSS fer FSS fer FSS fer ISST FSS fer FSS fer FSS fer FSS fer FSS fer ISST FSS fer					I TOLIG LANGER	PK48-U Fr Thrafpump	UMP ASSEMBLY	1TA	•	PAGE	12.13
C.A.L.C.L.A.T.E.U. F.L.M.P.P.M.R.T.E.R.S. FLUID TUPE EFF EFF TEST PUMP PLMP FEAD FEAD FEAD EFF EFF TEST PUMP FLUE FEAD FLUID TUPE EFF EFF LENT PLMP FEAD FLUE FEAD FLUE FEAD EFF EFF LENT PLMP FLUE FLUE FLUE FLUE FLUE FLUE FFF EFF	KUN RU TEST D	-	12)-78						PKGCESS TEST CU		E 10-11-78 SEC 25•00
TEST PUMP FUMP FUMP FEAE PEAE FLUTD TUPE EFF SPEEC FLCh FLCh FT RISE PHD FLUTD TUPE EFF SPEEC FLCh FT RISE PSES FLUTD TUPE EFF IS671: 104-26 IS55560 322.77 144-77 9-4 12.44 19 IS671: 124-46 IS55233 144-77 9-4 12.44 170.20 IS601: 124-45 206.11 502.33 680.11 54.34 100.20 IS601: 124-45 216.62 140.10 114.70 64.34 175.21 IS601: 124-45 216.62 140.10 170.20 64.4 175.21 IS601: 124-45 140.30 64.4 170.20 64.4 175.21 IS601: 124-45 140.30 1376.45 64.4 175.32 64.4 175.32 64.4 175.32 IS101: 136.42 216.64 64.4 175.64 64.4 175.64 64.4				ר ר ר ר כ ר	<u>כ</u>	ع ر	ARA	е Т Е .R			
Spect FLCk RISE HP HP (WPH) GPR (FLCk FT (PSI) (HP) (HP) (WPH) GPR (FLCk FT (PSI) (HP) (HP) (HP) 15674. 104.47 322.71 144.77 9.4 12.44 75.19 29615. 134.28 62.455 66.97 76.10 76.10 29615. 134.28 62.455 66.90 82.44 29615. 134.28 62.455 66.90 82.44 29615. 134.28 62.455 66.90 82.44 29615. 136.47 1470.3 686.1 75.44 21511. 136.42 20.66.50 69.44 75.41 21511. 136.42 20.66.50 69.44 75.41 21511. 136.42 116.65 590.0 64.43 75.41 21511. 136.42 116.66 590.0 64.43 75.44 21511. 238.64 575.0 64.3 75.44 85.45 21512. 216.65 137.65 40.10 64.3 75.44 69191. 244.64 311.617 75.44 65.45 69191. 243.	T IME		PUMP	PLMP	لنا	PRESS	FLUID	TURB	É F F		SPECIFIC
1567 104.46 15.5560 32.26 14.47 26607 124.46 15.5560 32.26 14.47 25946 124.46 15.5560 132.26 14.47 25946 124.46 55.27 66.07 75.16 25946 124.47 2(1.5561 132.27 14.47 25946 124.47 2(1.5561 132.27 14.47 21511 124.48 5(1.556) 680.11 55.27 66.07 21511 126.42 2(1.556) 1440.13 680.11 57.49 67.43 21512 1254.42 2(1.556) 149.11 75.44 87.43 75.24 87.43 21502 216.625 169.11 79.44 64.44 75.44 87.43 2150.5 216.625 169.11 79.44 64.44 75.24 87.43 244.66 31.5157 245.64 610.14 64.44 75.44 87.43 244.66 31.611.66 630.16 636.16 91.19 87.43 244.66 31.611.66 640.16 64.4	SL ICE ND	u a	FL CH	FLCM LB/SEC	FT	RI SE (PSI)	нр (нр)	нр) (нр)	(2)	675 (%)	SPEED
2415 124.06 215.55 124.16 25.55 154.16 2415 124.56 215.55 154.16 25.51 26.01 26.01 21515 124.56 215.55 154.16 25.51 26.01 26.55 21515 125.55 154.16 55.52 56.01 26.55 26.55 21515 125.65 21.655 174.4 75.55 25.43 26.55 21515 21.555 21.155 25.51 590.0 66.01 86.43 21515 21.655 21.1515 25.51 991.0 94.02 94.02 21015 21.555 21.1515 67.04 40.011 591.0 67.16 91.10 21015 21.15157 21.15157 67.04 40.101 591.0 67.10 91.10 21015 21.15157 21.15157 67.04 64.3 91.10 91.10 21015 21.15157 21.1557 61.01 65.16 91.10 91.20 21015 21.152 110.55 21.155 65.516 91.10	-	1 2 3 3		2 C C L	1.002	44.2	4.0	4	<u>س</u>	1.9	2102
2445 15.2 60.94 82.49 25456 152.17 26.94 82.49 25456 1511 156.42 26.594 82.49 21511 156.12 156.14 54.45 56.594 82.49 21511 156.12 156.15 66.94 62.51 67.02 21512 156.12 156.15 1695.1 79.45 64.43 75.41 85.58 21505 126.25 1697.1 794.6 175.15 64.43 75.24 85.58 21505 126.25 1697.1 794.26 64.43 75.24 85.53 21505 126.25 140.66 591.0 64.16 85.38 91.19 68947 244.06 31.5157 655.182 91.19 64.45 75.24 85.38 91.19 68947 244.06 31.5157 655.182 91.19 64.45 75.24 85.38 91.19 69115 244.05 810.16 610.4 64.4 75.64 91.19 69115 244.06 31.5163 810.50	-4 0		194.80		1342 8	624-5	50.3	66.07		37.67	1512
25456. 122.37 26.6641 54.4 52.51 86.1 54.4 62.51 21511. 126.42 26.6264 1694.1 74.4 75.35 65.43 31515. 136.5 27.6661 1694.1 74.4 64.3 75.35 65.34 31515. 136.5 27.6651 1694.1 794.4 64.3 75.35 65.34 31505. 136.5 27.6651 1694.1 794.4 64.3 75.35 65.34 31505. 236.15 27.6651 1694.1 794.4 64.3 75.35 65.34 6884.7 244.4 31.6157 74.44 57.24 89.02 610.4 649.191 243.65 31.6154 67.24 65.16 91.10 65.25 649.111. 245.65 31.1656 610.4 654.80 91.10 91.10 652.15 245.65 31.6151 657.16 657.16 91.10 91.10 652.15 245.65 31.1651 630.16 654.80 91.10 652.15 245.65 610.5	. .	5 - 1 - 5 5 - 1 - 5 5 - 5			1470.5	689.8	55 . 2	66 •9u	٠	39.31	1441
31511. 156.42 20.662.4 1657.8 194.4 64.3 75.43 31516. 136.42 20.662.4 1657.8 194.4 64.3 75.43 31516. 136.42 20.662.4 1657.8 194.4 64.3 75.44 31516. 136.42 20.662.4 1657.8 794.5 64.3 75.44 68037. 238.05 31.612.7 758.4 535.9 638.08 84.02 68037. 244.46 31.1612.6 592.11 592.15 64.7.96 91.10 69191. 243.46 31.1615.6 592.11 652.82 91.33 64313. 245.51 31.615.8 591.0 652.82 91.33 65335. 245.51 31.651.8 572.82 91.33 91.33 66313. 245.51 31.651.8 591.0 654.80 91.33 65335. 245.51 31.651.8 591.0 654.80 91.33 65335. 245.51 654.80 91.33 91.33 91.33 663313. 245.51 31.651.8 64.90.9 </td <td>4</td> <td>3545</td> <td>123.37</td> <td>C . 36</td> <td>1460.3</td> <td>686.l</td> <td>54.4</td> <td>62.51 75 35</td> <td>•</td> <td>10.24</td> <td></td>	4	3545	123.37	C . 36	1460.3	686.l	54.4	62.51 75 35	•	10.24	
31511. 136.45 5.4.4.4. 31.5.24 84.02 31512. 136.45 5.4.4.4. 31.6.15 84.02 68057. 244.4.9 31.6.15 6.38.08 84.02 69191. 236.15 31.6.15 6.38.08 84.02 69191. 236.15 13.6.15 6.38.08 84.02 6315. 244.66 31.5157 6.50.4 6101.6 655.18 6315. 243.51 37.6513 8901.0 643.8 91.19 6315. 243.51 37.6513 8901.0 643.8 91.19 652.16 6311.5 245.51 37.6513 8901.0 655.16 91.33 68315. 245.51 37.6513 37.6513 655.16 91.33 68315. 245.51 37.6513 8901.0 655.16 91.33 68315. 245.51 37.6513 91.66 91.33 91.356 68315. 245.51 8901.0 655.16 91.33 91.356 69115. 655.16 655.16 655.16 91.33 91.356 <td>S</td> <td>1151</td> <td>126.42</td> <td>C.EE2</td> <td>1654.8</td> <td>794.4</td> <td>04•3 44 4</td> <td>[2.5]</td> <td>• •</td> <td>47.43</td> <td>1393.</td>	S	1151	126.42	C.EE 2	1654.8	794.4	04•3 44 4	[2.5]	• •	47.43	1393.
68051 238.05 638.08 84.02 68051 238.05 638.08 84.02 68051 244.66 31.657 638.08 84.02 68051 243.18 7530.1 3758.4 535.9 638.08 84.02 68051 243.18 743.16 740.16.6 592.01 647.90 91.19 57.9 68051 243.18 743.16 7416.6 592.01 647.90 91.19 57.9 680151 243.18 743.16 7416.6 592.10 691.10 57.9 611.10 57.9 682352 245.51 31.16513 8907.6 4210.5 610.4 654.80 91.10 55.16 643131 245.51 31.6513 8907.6 4210.5 610.4 654.80 91.10 55.16 654.80 631.12 245.51 31.6513 8907.6 654.80 91.10 55.26 59.26 59.26 59.26 59.26 59.26 59.26 59.26 59.26 59.26 59.26 59.26 59.26 59.26 59.26 59.26	. و	1516	130-42	0.00 0.00 0.00 0.00	1 40404	704 - 3		75.24	•	48.00	1393
6835: 244.40 31.643 636.15 91.10 68471: 244.66 31.5157 6650.4 4081.6 90.10 68471: 244.66 31.5157 6650.4 4081.6 90.10 647.96 91.10 69191: 243.18 31.156.8 592.0 647.96 91.10 552.82 91.10 744.65 31.5157 669.16 655.182 92.116 655.182 91.10 743.18 31.156.8 549.19 4210.6 655.182 91.10 554.80 91.10 643113: 243.518 31.6416.6 655.182 91.10 655.430 91.10 643113: 243.518 31.156.8 610.4 655.480 93.26 91.10 643113: 245.51 31.642.6 610.4 655.480 95.66 91.10 643113: 245.51 643.440 91.06 91.06 91.06 91.06 643.51 643.610 654.80 637.90 91.06 91.06 91.06 91.06 91.06 645.61 641.66 655.85 6	- 0	2067	110 - CC	1.000 1.45 1.45	7530.7	2758.4	535.9	638.08	• •	62.22	1211
68841. 244.66 31:515 69191. 243.42 31:3157 610.4 4081.6 592.1 647.96 91.10 647.96 9	no si	1050	17 776	1 - 1 C J - 1 C - 1 - 2 C - 1 - 2	- 400- 4	4-00-12 1 - 00-12	519.9	636.15			1205.
6313. 243.42 90.74 59. 6313. 243.41 610.4 654.80 90.74 6313. 245.51 37.326 670.33 59.33 6313. 245.51 37.326 670.33 59.33 6313. 245.51 37.456.8 59.66 99.33 55 6313. 245.51 37.456.8 59.66 99.33 55 6313. 245.51 37.6513 8907.6 654.80 99.33 55 6313. 245.51 37.6513 8907.6 4210.5 654.80 99.33 55 6313. 245.51 37.6513 8907.6 4210.5 654.80 99.35 55 6313. 245.51 37.6513 89.01.6 654.80 69.33 55 640.4 4210.5 610.4 654.80 69.33 55 640.4 610.4 610.4 610.4 610.4 610.4 640.4 610.4 610.4 610.4 610.4 610.4 640.4 610.4 610.4 610.4 610.4<	- -	2 2 2 2 2	5 4 4 - 4 4 7 7 4 4 - 4 4 7	1	665J.4	4061.6	590.0	647.96			1201
	2:		200122	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E726.2	4116.6	592.1	652.82	-	56.02	1611
		1 1 1 1 1 1 1 1 1 1 1 1	943 - 1H	7.166	£ 749.7	4126.8	591.6	55	m	•	1193
		8313	245.51	159.6	8507.6	210	610.4	5	3.2	0	1168
											:
		•									
			!								
				·				•	• - - - - - - -		
							•				
			ļ								
	1 39							: : : : : :	: : :		
)						•				`.

•

・ こ・4 章 ふくと

4

OWER L2 CALCULATED FUEP PARANETERS CALCULATED FUED FUEST FURATION.SEC TIST SECTION MET FLA TIST NEF SECTION MET FLA SEEC WEIT SECTION MET FLA COMMANNA SPEEC SECTION MET FLA COMMANNA FLA SPEEC SPEEC CEFF DEWF CCMM FLA SPEEC SPEEC CEFF DEWF CCMM FLA SPEEC SPEEC CEFF DEWF CCFF DEWF CCFF SPEEC SPEEC CEFF DEWF CCFFF DEWF CCFFF SPEEC SPEEC CEFF DEUT DEUT <thdeut< th=""><th>ノ</th><th>ì</th><th></th><th>r I gu I b</th><th>UXYGEN TURBCFUMP</th><th>GPUMP ASSEMBLY</th><th>LY .</th><th>ē.</th><th></th></thdeut<>	ノ	ì		r I gu I b	UXYGEN TURBCFUMP	GPUMP ASSEMBLY	LY .	ē.	
CALCULATED FURP PARAFIERS CALCULATED FURP PARAFIERS TEST SPEEC SPEEC SPEEC GEFF	IN NUME	-	2 - 18				* . * *	PHUCESSING CA TEST CURATION	1. J-1 SEC
TLST NPSt SLCTICA IALET FEAD PUHF SPEEC SPEEC CCEFF GEFF DELTA T SPEEC SPEEC CCEFF GEFF DELTA T SPEEC GEFF SPEEC CCEFF DELTA T SPEEC GEFF GEFF CCEFF DELTA T SPEEC GEFF GEFF CCEFF DELTA T SPEEC GEFF SPEEC GEFF DELTA T SPEEC GEFF DELTA D DELTA T D SPEEC GEFF D	20		CA	CLLAT	0 7 2	A R A	ETER	• •	
(404) (11) (11) (11) (11) (11) (11) (11) (1	ر د د به	T E ST SP E E C	45 AN	SLC TICN SPECIFIC SPEED	INLET Flch Coeff	HEAD CCEFF	PUMF DELTA T	(C/N) UVEK (g/n)des	
1567 0.11861 0.11861 25450 461.45 5340.67 0.11861 25450 461.45 0.41822 6.08 25450 461.45 0.11861 0.41822 25450 461.45 0.11861 0.41822 25450 461.45 0.11861 0.41822 25450 461.45 0.11942 0.41822 25450 261100 0.41852 0.41852 26191 261100 0.41852 0.41852 26191 261100 0.11962 0.41852 26191 261731 0.11902 0.44335 26191 231516 126813 0.44332 26191 231516 1.26813 0.44332 26191 231516 1.26813 0.44332 26191 231516 1.26813 0.44332 26191 2311.55 1.26813 0.44332 26192 231.56 1.26813 0.44332 26192 21.51543 0.44434 0.46643 2615543 0.46903 0.444434 0.46643	_	(MAA)	FT					•	-
24661: 24615:		56.3	467.56	541		0.34135	2.44 8.08	2.3070	
25456. 25456. 25456. 25111.	~	364	55°555	346 104 103		0.43746	8.36	1.3710	
31511: 4(3) (5)501: 4(4)50 (5)501: 4(4)50 (5)501: 12 781.10 (5)502: 12 781.10 (5)502	n y		466.61	362	-	0.43860	7.52	1.3642 1.3643	
31516. 464.06 3641.37 0.010595 27.950 31516. 465.57 3641.37 0.010595 27.956 31516. 12611.13 0.010595 0.44372 22.966 31516. 13615.14 0.05128 0.44372 22.96 31516. 13615.15 0.041372 22.96 1.4355 31516. 13615.47 0.041372 0.44355 0.44355 31516. 13615.47 0.041372 0.44355 0.44355 31516. 13615.47 0.041372 0.44355 0.44355 521.35 13615.47 0.041372 0.44355 0.44355 521.35 13615.47 0.04137 0.44355 0.44355 521.35 13615.47 0.04137 0.44372 0.44372 521.35 13615.41 0.04137 0.44372 0.44372 521.35 13615.41 0.04137 0.44372 0.44372 521.35 13615.41 0.44372 0.44372 0.44372 521.35 13615.41 0.44372 0.44372 0.44372 521.35 <td>- LT</td> <td>151</td> <td>462.13</td> <td>E E E</td> <td>C.11004</td> <td>0.44351</td> <td>7.51</td> <td>1.3061</td> <td></td>	- LT	151	462.13	E E E	C.11004	0.44351	7.51	1.3061	
CHOINAL PAGE IS CHOINAL PAGE IS CONCLUSTED CONCLUST	J.	5	466.06 ///		0.10555	0.44359	7.38	1.3052	
CUNCINAL PAGE 10 CONSULT CON	~ 1		12.245	2 7 8 1	0.05173	0.41372	22.96	1.0889	
0.4961. 291.02 291.0		SC	332.56	3618	u.05128	0.47525	21.92		
2010 2010		99	236.78	366	C.09032	0-4/430	30.27	1.0633	
		5	331.55	155	100010	0.47433	30.66	1.0557	
ORIGINAL PAGE IS	75	2 10	221.25 221.25	351	, ,	0.496J7	29.10	1 -0846	
	•	1						:	
_	25	81							
	 						•		
	ور مر م م	NAL						•	
		PAGE 18				1 4 1			

2	
a	
C C F M B I	
J	
ີ 4	
ON HO	•
2	

LIGUIS UXYGEN TURBCPUMP ASSEMBLY

12 10-10-78

RUN NUMBER Test cate

12.15 PAG.

1

4

PECCESSING DATE 1.0-11-78 TEST CURATION, SEC 25.00

RFM
70),].
SPEEC =
TARGET
L L
SCALEU

	HCKSE NPSH	(BhP) (FT)	2611.71 9733.01	59	38	17J3.25 2639.17	. 76	.8ć	2283.	_	.25 353.	941.9	0	50 338.	0 343.
= 70,J,J.	PRESS	K15E (P51)	2465.13		3852.69	3863.86	16.9195	3519.86	3921.49	4232.75	4252.43	4219.45	4213.52	4218.02	4421.04
TARGET SPEEC	HEAD	(FT)	6435 . 78	1685.23	8257.34	6269.37	8363.19	6361.60	8363.55	8931.60	6960.43	8442 . 5.1	8331 .5 4	8543.05	5353.02
SCALEU TC	FLCH	(N SEC)	11.37.51	49.51612	46.56350	4 c. 3 3 6 5 7	46.36667	46.28136	46.36132	35.44122	28.7414S	56.14353	<i><u>ï</u></i> 1.757uu	37.5556	36.62214
	FLON	(CPM)	465 .64	326.65	318.67	316.50	303.05	10.506	302.81	252.63	251.40	248.76	246.66	245.65	251.63
ONIGINA OF POC		-r 15		2	ጣ	\$	ŝ	9	7	Œ	•	10	11	12	13

12.16 PAGE

25.03

PROCESSING DATE 10-11-78 TEST CURATION, SEC 25-U-3

- |

The second s

the same of the second

LIQUID CXYGEN TURBCPUMP ASSEMBLY

1 C- 10- 78 RUN GUMPEN TEST CATE

)

RFM SCALED IC DESIGN SPEED = 70,000.

											1 !				
	NPSH	(FT)	9733.01	2733.41	2625.28	2639.17	4	2289.27	2283.61	385.80	-			338.99	343.72
E	HORSE	(84P)	2611.71	1889.55	1852.38	1703.25	1503.76	1486.82	1468.61	1029.39	1091.25	1058.42		1098.50	1107.3J
) = 70,000. RFM	PRESS	(PSI)	2865.13	3667.29	3852.69	3863.86	3919.97	3919.86	3921.49	4232.75	4232.43	4219.45	4213.52	4218.02	40° 1244
IC DESIGN SPEED	HEAD	(FT)	6435 . 78	7885.23	e257.34	8269.37	8363.19	8361.BU	83¢3•55	8931.60	8560.43	8942.54	8931.54	8543.05	9353 . ú2
SCALEU 1	FLüh	(1/ SEC)	11.37651	Ur	.	-	~	•	46.36132		w.	2	~	31 . 555C9	<u>.</u>
	FLUN	(GPM)	5 2 ° 5 3 5	326.65	318.07	316.5J	30° E0E	10.502	342.61	252.63	251.40	248.76	246.68	245.65	251.63
202	TIME CLICE	ac 1 c c A C		~3	m	*	S	S	~	Q	o •	10	11	12	13

ORIGINAL PAGE IS OF POOR OUALITY

:;;;

1 1 1

i

i

I

11:

7

1 1

ł

ł ł 1

:

;

	12.17	10-11-78 C 25. JU						
•	PAGL	PROCESSING LATE 10- TEST CURATION, SEC						
•	PK48 Liulij Cryger Turbcpump Assemāly		SCALEJ TC TAPLET SPEED = 70000. FFM	VCLLTE 51AT PR MISE P510	09.15 559.56 13.43 322.57	1:36.39 4325.66 1237.42 1534.11 1551.23 1516.25	519-54 526-26 684-24	
•		12 10-10-78		IND STAT PR R ISE P S IJ		368.75 366.13 367.13 37		
•	-	RUN NUMBER TEST GATE 10-		T IME SCICE NG				203

, I

. . .

「「「「「「ないない」」」となったなるななないのであった

· · · · · · · · ·

ストー・スート かちょく しょう ちょうちょう ちょうちょう ちょうちょう かいしょう かいしょう しょうしょう しょうしょう

ه ښه

PAG 12.18	PRCCESSING DATE 10-11-78 TEST CURATION, SEC 25.00				
LIQUID CXYGEN TURBCPUMP ASSEMBLY	· · · · · · · · · · · · · · · · · · ·	SCALEJ TË DESIGN SFEEU = 70,030. RFM	VCLLIE STAT PR KISE PSID	1305.15 1255.55 1255.55 1255.55 1325.66 1325.66 1325.66 1325.65 1251.23 1551.23 1515.55 1515.24 1515.24 1520.26 1515.24	ORIGINAL
	12 • C- 1C- 78		IND STAT PR R 156 P 510	「ちちちろうの」で、「ちちのちょう」で、「ちちのちょう」で、「ちちのちょう」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	ORIGINAL PAGE IS OF POOR QUALITY
)	RUN NUMEER Test Cate	204	T IME 5L ICE NU	ー メタチタ 0 ~ 3) J ~ 2 m	

APPENDIX C

MARK 48-OXIDIZER TURBOPUMP APRIL 1981 TEST DATA

	PAGE	1 1 1 1	Corres				A	PPENDIX C TEST 3			
		PROCESSING DATE TEST DURATION.			13-4000	0.9570 0.2480 0.2480	2.3000 1.3085 0.9873	1. 6890 0.4710 0.9765	1. 639 0 1. 639 0 8.9828		0.6000
•	YGEN TURBOPUNP ASS BHALY			RPH. F DESIGN FLOM.		UPSTREAN DIANETER THROAT DIANETER THROAT CO	UPSTREAM DIAMET BR Throat diameter Throat cd	UPSTREAN DIAMETER - Throat - Diameter Throat CD	UPSTREAM DIAMET ER THROAT DIAMET ER THROAT CD	CONF 0 001 0 001 0 001 0010	SEC. H.G. DRAIN ORIFICE REAR BAG COOLANT ORIFICE INTERNEDIATE SEAL MAGE DRIFICE
-		3 4-13-81	COMMENTS	BALANGE PESTON OVERBOARD	ANDIENT PRESSURE	LO2 VENTURI 466) P /N V160248-56R S/N 8871	GHZ VENTURI (TUKB) P /N VPG31200-56R S/N 9731	LH2 VENTURI (GG) P.M. V320471-56R S.M. 8873	LOX VENTURI (PUNP DISCH) P/N V321059-SGR S/N 8877		
	~)	RUN NUMBER Test date					Ginal Pag Poor Quai				207

いまくしている

~	•								•									ł		•							
e F	4-15-81 SEC 74.00		SPEED			26852.	2 6291 .	2 96.09.		2 8768.	2 9961	2 92 85.	2 9 6 5 1 .	3.0497.	3 0609.				96676		3 021 7.	29662	2 9684 .	29590.		29875	2.7072.
PAGE	ESSING DATE DURATION.		Tura CH2	10/201	0.54300	0-54810	16652.0	0. 65586	بو	0.65086		2	0.46476			Š		1	0.66692	0.65695			-	.	•	ē	
	PROCE	! ≪'	SP IN NI 92	(PSID)	504.	341.454	3461.193	3369.135		3341.405	301.		3267.750	3252.288	3234.160			101-2716		3145.947	3131.95 8	- 	3100.519	3066.741	072r	3.	
ASS EMBLY		U	SPIN		3934.0	3919.4	3002.4	3676.6			3015.2	3.0006	3784.2	3766=4	3754.3	3738.1		202	3677.6	3663.2	9647 .9	- 3632.7	3617.4	m.		m (
dia na		2	SPIN	1004		4.962	5.038	5.782		267.5	5.670	5.930	5 °934	5.976		6 4057		6-126		6.158	6.174	· 6. 230 ·	6.248	6.253	- 9 *266	6.301	6.313
UN S	•		VENTURI	84 (01 Se)	0.26	0.27					84.0			÷.	0 - 41	•			Ţ	0.41			•	7	9 • 42	0.42	
LI QUID OKY		U C C C	VENTURI U/S	TEMP (DEG R)	531.0		ė i	4-165			• •	531.1			531.1	531.1	1.155	531.0		530.9	530.9	30.	Ĩŧ.	30.	30.	530.9	
		N U R	VENTURI U/S	PR (PSI A)	3928.3	3913.0	3 885. 7	3471.7	3155.3	3840.2	3809.2	379.4	3779.2	3762.3	3747.0	3732.8	3716.5		3671.0	3656.0	3641.5	3626.5	3611.2	3596.0	3581.6	3567.0	252
	-13-81	S E O U S	END 11%E	(3%)	59.743	62-259	61.249	69.724	- 72=240 -	74.756	79-746	82.221		2	. 72	ا ک	94.759	052.00	-102.225		107.256		112.247	4	7.23	119.754	200
	NUMBER F DATE	V 9	BEGIN T INE	(36C)	59.475		66.981	69.497	11.972	74.488 74.943	79.478	61.994	84.469	¢,	83.459	91.975	164*46	90.480 90.482		104-472	66.	109.463	11.97	64-41	16.97		29-10
	RUN NI TEST	208	T IME Su ICE	ł	0	01	11	61	+	12	170	18	19	20	21	22	23	1 C	26	27	28	29					

d K N	P A R A M E T E R S -TURE TURE TURE TURE TURE DSCM- TURE NOZZ EXH EXH EXH EXH OMFICE TUT TEMP D/S PR STAT PR TOT PR TOT TEMP DELTA P 10EG RJ - (PS IA)	.0 294.1 292.9 21.1 26 .5 296.2 293.2 426.7 26 .1 299.1 294.5 432.7 29 .0 302.0 295.6 29	340.9 347.9 343.6 340.7 347.3 343.6 340.2 347.3 342.3 340.5 354.2 350.0 348.4 355.5 350.6 348.4 355.5 350.6		347.6 355.4 356.6 446.6 2 348.7 355.4 356.6 446.6 2 348.7 355.5 356.6 446.7 1 347.6 355.5 350.6 446.5 1 347.6 355.5 350.6 446.5
CI 6	T U R B E TURB INLET Stat Pr (PSLA)	+25.2 +22.6 +22.6 +22.6 +25.0 503.5		519.6 520.4 520.6 520.6 520.9	•
ORIGINAL PAGE IS		-27439. 26852. 22516. 26291. 29609.	29431 26768 25301 29285 29851 30697	30968. 31199. 31461. 31530. 31550.	30217. 29662. 29594. 29590. 29629.
• • • • • • • • • • • • • • • • • • •	- 640 TINE (560)	59, 743 - 59, 743 - 62, 259 64, 733 64, 733 69, 724 69, 724	77.230 79.746 82.221 84.737 84.737 84.737		70 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
) NUMBER (BEGIN TINE (SEC)	59.475 61.991 64.465 66.981 69.497 71.972	- 4 0 0 - 4 0 4 - 4 0		06-98 09-46 11-97 14-49 16-97 19-48
RUN N	TIME SL ICE ND	• • • • • • • • • •	2209846		

			LI QUI D	DKYGEN H	MK48-0 Turbopunp ASS			PAGE	*
RUN NUMBER TEST DATE	BER TE +13-						PROCES TEST D	SSING DATE DURATION, SI	+15-81 SEC 74-94
210			C R B I N E	4		(CONT INUED)			
T IME Su TCF	SPEED	FLOW		BHP	BHP LOELT A T	TORQUE	mc	5	
	M	(10/560)	(1-5)	E			(5{)		101 11
	27439.	9- 5430	1.4183	51.7	333.9			12.23	2 2 2 2
	26652.	R.	1.4103	51.0	318.9	96.6	0-1 846	36.96	20.5
	22516.		1.4055		306.4	10.41	n.	32.09	\$20°4
	20271. 20609.		1 - 4043 7 - 4043	50°4	312.4		0. 1.616		1000
	29037.	0.6516	1.4289	- in	331.1			36.67	
	28972.		1.4288	65.0	329.8				
	28768.	0. 6509	•		333.3	11.76	0.1952	38.35	5-66V
	-10E62		٠	66 • 6	332.7	11.93	1161-0	38.69	505.8
	29285. 20061.		1.4249	67.1	335 .0	··· 12.03		11.11	
	30497.		1.4240	6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1.466		C102*0	39.17	
•	- 306 95	-0-6624			333.3		10000 0	23 - 25	
	30988.		1.4294	6.69	334.7	11.04	0-2088	40.07	, W
	31199.	•	٠	69.7	332.0	11.73	6.2 103	40.25	506.1
	31461.		•	69.9	3 31.6		6.2125		
	31530.	1699-0	1.4294	70.3	331.6	11.70	0.2125	40.52	508.2
	-02016		٠	4-07	330.3	11.72	0.2123	4649	603.0
	20447	•		•)h (2.100
	29586	0.6403	Ż		224-0	11.02			
	29590-) ī			9.0				
	962	0-4573		i (3) a			
	962) 	326-2	29		P 9	
	29672	. (• •	2.26.7				

)

)

5

)		LI QUID OX	MK48-J DXYGEN TURBOPUMP	ASS ENGLY	_		2	PAGE (3.
TEST DA	RUN NUMBER TEST DATE 4-13-	3					PROCE TEST	ESSING DATE	re 4-15-61
		T C P	6 1 A E P	ARAHETE	5	(CONT INUED)	!	· · · · · ·	
TIME SUITE	SP EED	AWIL	банна	СР	SPEED		FLOW	TDRQ UE	TURD INEEL
	X 4			(BTU/LBM-R)	- NETER	•	NETER	NE TER	
	27439.	1.8024	1 - 3 8 8 3	3-5642	199.			0-0215	
0	26852.	177.76	1.3664	3.5632	195.		• 6 30 5	0.0217	234.1
-	22516.	. 176.17	.388		163.		.4087	0. 02 27	2.96.7
2	26291.	175.91	•	•	191.	N.	6368	0° 0210	
m ,	29609.	82.	•	3.5662	215.		•	20	9*1 *6
•	29037.	164.76	٠	.5660	0	N P	C 2C0 -	8120 °0	346.0
r d	28768-	1 82.47		3.5657			.6728	0-0218	
. ~	29301.			5664		, m		0.0216	362.0
8	29285.	63.	1.3891	5663	IAI	0.3.	0 5 9 9	C. 0217	
•	29851.	184.23	۰	5664			.6139.	0. 0216	353.4
0	30497.		1.3891		••• •A		- 670-	0.0215	353.5
	30609.		•	5665	GE				
.	21120	1.84.79	1.28001	3.5667	IS		-6325	0-0212	353.6
•	31461.	i		5667		•	8469.	0.0211	358.6
5	31530.	184.87	1.3890	3.5667	229.	•	.6354	0.0211	353, 5
•	31550.	185.48	•		229.		.6262	0.0211	353.7
~	30960.	Ĵ	•389	3.5667	525.2		6002	8	
•	30217.	134.05	4		219.	m	• 4 3 2 4	9-0214	1.63
•	29662,	.	ŗ.	۰	-	e.	.6356	0. 02 16	
0	29584.	j	.389	۰	i hin		96199	8	
	29590.	183.84	.389	3.5669	215.	ų.	- 606 5	0. 02 14	352.9
32	29629.	83.	60	3.5669	215.		.6087	0.0214	353.1
3	29679.	1 34.98	1.3890	•	216-				
•						(

•

<u>کر</u> ا

· 3		0 1 1 0	RING DAT		BEARING DAT		EAL AND BEARING DAT
					PRIN HG PRIN HG PRIN HG	I/S I/S PRIM HG PRIM HG PRIM HG	IN LOX 1/S 1/S PRIM HG PRIM HG PRIM HG
					U/S PR U/S TENP 2400	U/S PR U/S TENP 2400	We PR. TEMP U/S PR. U/S TEMP 2444
ŝ	2	Lavsec) (PS	avsec) (Ps	4) (10/5EC) (PS	SIA) (DEG R) (LA/SEC) (PS	IA) (DEG R) (PSIA) (DEG R) (L R/SEC) (PS) (PSIA) (DEG R) (PSIA) (DEG R) (L N/SEC) (PS
	Ť	.0507 13	0.0507 15	7.72 333.41 0.0507 19	39.00 17.72 333.41 0.0507 19	+5 539.00 17.72 333.41 0.0507 19	55.58 222.45 539.00 17.72 333.41 0.0507 19
-		115	0.0475	6.83 303.54 0.0475	8.59 16.83 303.54 0.0475	33 538.59 16.83 303.54 0.0475	.07 222.33 538.59 16.83 303.54 0.0475
			11 6650°0	7.49 264.74 0.0533 17	.56 17.49 264.74 0.0533 17	56 538.58 17.49 284.74 0.0533 17	.16 220.66 538.58 17.49 264.74 0.0533 17
	17.	•0532 17	0.0532 17	7.29 273.15 0.0532 17	00 17.29 273.15 0.0532 17	28 539•00 17•29 273•15 0•0532 17	27 220.28 539.00 17.29 273.15 0.0532 17
Y	17.	.0513 17	0.0513 17		20 16.90 264.05 0.0513 17	74 539.20 16.90 264.05 0.0513 17	11 225.74 539.20 16.90 264.05 0.0513 17
र गण		-0491 17		6446 Z9fe00 94046f 21 6.44 251.04 0.0491 17	52 10•45 25f.a00 m · ₩4040f· m ±fi .30 16.66 251.06 0.0491 17	13 599∘32 16∘48 25f.e00 ···· ⊎e04ef- ···· ±f. 74 539.39 14.44 251.04 0.0491 17	•89 -224•83 539•32 26•48 251 •00 ··· ₩•84•67· ···· ±f .sq 227.74 539_39 14.44 251.04 0.0491 17
		.0496 16	0.0496 16	6.44 245.16 0.0496 16	49 16.44 245.16 0.0496 16	51 539.49 16.44 245.16 0.0496 16	.73 228.51 539.49 16.44 245.16 0.0496 16
		-0488 17	0.0488 17		73 16.29 240.10 0.0488 17	34 539.73 16.29 240.10 0.04 38 1 7	11 229.34 539.73 16.29 240.10 0.0488 17
				6•21 229•23 4•0472 11 6•29 229-97 0 <u>-0499 17</u>	. 10 10.27 239.297 0.0499 17	70 539.81 16.29 229.97 0.0499 17	.51 229,90 339,13 10,21 239,23 9,00 0,0490 17 .40 230,70 539,81 16,29 229,97 0,04,0490 17
<u>المر</u>		27 ····· 6640*	0.0493 17	6.17 225-59 0-0493 27	16 16.17 224.98 - 0.0493 17	15 540.16 16.17 224.98 0.0493 17	73 231.65 540.16 16.17 224.98 0.0493 17
_	17.9	17	0-0498 17	6.17 220.53 0.0496 17	.16 16.17 220.53 0.0496 17	89 540.16 16.17 220.53 0.0496 17	.87 230.89 540.16 16.17 220.53 0.0498 17
_	16.0	.0488 18	0-0488 16	6.01 216.62 0.0488 18	.98 16.01 216.62 0.0488 18	53 539.98 16.01 216.62 0.0488 18	.89 229.63 539.98 16.01 216.62 0.0488 18
323.		.0503 18.1 -	0.0503 16.1	6.13 212.86 0.0503 18.1	.86 16.13 212.86 0.0503 18.1	22 539.86 16.13 212.86 0.0503 18.1	26 228•22 539•86 16•13 212•86 0•0503 18•1
316.		-0511 18.1	0.0511 18.1	6.17 209.41 0.0511 18.1	14 16.17 209.41 0.0511 18.1	87 540.14 16.17 209.41 0.0511 18.1	04 226.87 540.14 16.17 209.41 0.0511 18.1
	• •••	.0507 16.1	0.0507 16.1			71 540.16 16.09 206.03 0.0507 16.1	
	• •••	.0507 16.1	0.0507 16.1	6.09 206.03 0.0507 16.1		71 540.16 16.09 206.03 0.0507 16.1	
	18.1	0507	0.0511	6.17 209.41 0.0511 6.09 206.03 0.0507	16 16.17 209.41 0.0511 16 16.03 206.03 0.0507	87 540-14 16-17 209-41 0-0511 71 540-16 16-09 206-03 0-0507	04 226.87 540.14 16.17 209.41 0.0511
				.17 220.53 0.0496 17 .01 216.62 0.0488 18 .13 212.46 0.0593 18	16 16.17 220.53 0.0496 17 96 16.01 216.62 0.0488 18 96 16.13 212.86 0.0503 18	9 540.16 16.17 220.53 0.0496 17 3 539.96 16.13 216.62 0.0488 18 2 539.96 16.13 212.86 0.0593 18 7 540.14 16.17 200.61 0.0593 18	7 230.89 540.16 16.17 220.53 0.0496 17 9 229.63 539.96 16.13 216.62 0.0488 18 5 228.22 539.96 16.13 212.46 0.0593 18 5 228.22 539.96 16.13 212.46 0.0593 18

)			MK48-0 D OXYGEN TURBOPUMP	REQPURE ASS	ENGLY		PAGE)
RUN NU	NUMBER 3 1 DATE 4-13-0	3 91			•	· · ·	PROCE	SSING DATE DURATION.	+-15-81 EC 74.00
		S E A		8 E A R	1 U 9 V 1	A T A (CONTINUED)	NUEDI		
TIME CLICE	SEC HG	AR BRG	R BRG	RR BRG	RR BRG	RR BRG CDDL _DRIF	RA BAG COOL OR IF	RR BRG COOL-OAIF	RE BRG CODLANT
				NP PR	TENP (DEG R)	(VISd)		(FIS)	1
a		3446.7		224-7	125.03	224.7	119.09	103.6	0-1130
0	0	3446.0	0.0	225.6	•	225.6	116.75	103.7	0.1130
		3444.6		226.8	123 .51	226.0			
12	0*0	3445.4		226.2	123 •06	220.2		10201	
<u> </u>		3445.5		222	122 KG	2 7 2 2			
• •				223.5		223.5	115.95	102.5	0-11+4
9		14	0.0	220.3	118 .96	220.3	112 .32	101.1	0,1150
~	0.0	3	0.0	220.0	117.79				
81	0•0	3442.3	0*0	219.2		219.2	110.65	100.3	
5	0-0	3441.9	0.0	218.5	117 .24	216.5			
02		- in-							0-1161
				21007	00° 011	216.4	107 49	6.86	0-1141
N				215.5			3		
				(116.35	215.5	106.63	91.3	0.11 43
				DR	116.52	215.2	106.25	96.1	0-1144
				iG	-116.61	214.7	105.35	9366	
		3441.9		IN	116.95	215.1	105.97	99	0-1146
	0			AL	117.41	215.5	105.11	98.1	6-1179
) 0	0*0			Ρ	118 a22	215.8			
	0.0	÷ 🖷		212.0 AU	116.45	215.0	105.42	91.6	0-1171
) ur	0.0	3457.7		GΕ	118.77	213.9	104.27	97.3	0.1172
32	0.0	•		15	•				
5	0.0	3450.8		5	119.73	214.0	103.64		
					¢				•

ため、「「「「「「「」」」」」」」

たちに

ĸ

1

.

1

والمعاقبة والمعاقبة فالمعالية والمتعالية والمعالية والمحافظ والمعالية والمعالية والمعالية والمعالية والمعالية

しまったいであるとない いちのう かいちょういん

LI GULD GKYGEN TURGDUNP ASS ENALY LI GULD GKYGEN TURGDUNP ASS ENALY S E A L A N D B E A R I N C D A T A (CONT BRUED) NI MANY LDX EEAL DANIN	PROCESSING DATE 4-15-01	TEST DURATI	IS TENP ING FLOWANE	83 0.1923 A. 2027			12 C. C. 3717 D. 4260			11				• • • • • • • • • • • • • • • • • • •			0.5	-					62 0.544L	
LI GUID DXY LI GUID DXY SEAL DAAIN B SEAL DAAIN B SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA	ASS EN	D A T A (CONT BUL	U/S PR CR	9.6	1.2 ······										0 1		9 (M)				• • • • • • • • • • • • • • • • • • •		162 5.	
	× ×	N D D E A R I N	7.00 1.01	0.0	0.0	0.0		0.0	0.0			• •	0.0	0.0	0	0.0	0.0	0-0	0.0			. 0.0	0-0	·
	-	L Se Al	ORIF U/S {DEG R}	55.	346.16	345.27	- 69 - [4 5	342.59	340.73	337.57	334.40		327.69	326.26	325.04	323.62	320.63	318.01	313.74	311.12	309.46	308.65	307.79	
-	WIN NDY	214 ST	rine Slice NO	6	23	21	n 4	15	91		6	02	22	23	24	c 2	27	28	5.0	06	32		36	

١	HODU A	iginal P Foor C	MK48-0 DXYGEN TURBOPUMP	SA	S BIOL Y)
NUMBER T DATE 4-1	13-81	AGE IS		· · ·		PROCE	SSING DATE DURATION.	+15-61 EC 74.60
			е 9. 1	ESSUR	· · ·	÷	• • • •	
A Teldis		INPELLER	BAL PIST	PUND	DAL PIST	BAL PIST	BAL PIST	I WE LLER
TANK	INLE T	DI SCH		DISCH	CAV		re turn	FRUNT
(PSIA)	(PSIA)	(PSIA)	SI	(PS IA)	5			(VISA)
•	243.7	765.7	-	859.4	533.2	355.0	3 63.3	696.3
59.	244.5	UN.	•	52	527.4	321.6	343.9	676.5
5	250.7	602.7	440-6	674 °4	- +25ª+ -		· · · 342+3 ···	555e2
•	246.8	137.6	511.4	854	526.7	323.7	364.2	672.0
¢ (242.6	867.4	Pin 4		592.2 670 0	371.5	414.7	0.081
	243-2	838. E	t C	992.6	577.9	260.3	465.0	759.4
	243.5	031.4	556.7	982.9	575.6	36.0	463.0	755.2
5	242.5	852.2	567.3	1011.3	586.6		+12·+	
259.4	242.4	5	566.5	1009 .5	585.3	0 • • • • •	613°3	1/3.1
259.5	243.9	• •		1075.6	£*019	376.2		
> 0 > 0	245.1		604.5 615.0		63943	396.9	460.4	
259.6	244.5	952.6	631.2	1199.6	657.9	408.2	472.6	•
5	247.3	945.1	640.B	1226.6	0-844	413.4	+ 18"+	
259.9	240.3	984.3	653.9	1263.8	8	421.3	489.1	696.3
60.	248.2	987.4	654.6	1268.5	683°3		490.5	4-10£
9	•		• • • • • • • • • • • • • • • • • • •	1269-8				
50	245.7	947.4	627.3		1.450			
59.	242.7	1-106	6	500	618.1			
59.	240.3	۰ 🕑	2	1017-2				
59.	239.3	ñ.				•		
59.		854.1	65	001			8-224	
	3		545.7	1003.1				
20			0	ō (2•696		2.624	
	•		4					

1

10 × 11 × 1

2

.....

ŝ

* .

š

ļ

	•				SSA MALIA	EN BLY			
							444	: 3 1	-15-61
RUN NUMBER Test Date		- 10			•				
21			PRESSL	URES A	N O T E N	PERAT			
6									
	COLLA	INDICER	DUG ANDA	PUNP BRG			_		SLENGER
		ND2 10	5/0	0/5	DELTA			Sum - FENS	
		FRE SS	PRESS	PRESS			P 51A		PSIA
Ľ	RPR	PSEA	P IS	VIG				i	
							52.1	1 84.07	42.4
ć		112.6	363.3	379.5	3 .876				43.3
			5	359.1	4.741				
			5.01	296.8	5"212			3 2	
	-9162			140.0	4.170	196.01			
	6291.	20026			296" 5	106.23			
~	9609.			401.4	+ -93+	62-061			
				1.99	5.581	191.04	1.12		
N	<u>م</u>			397.6	5.439	192.20	2.52		
	6768.	-		407.4	1.91	- 193 400			
~	-1066			404	3.606	193.78	2		
~	9285.				1.904	194.32	57.6		
~	9851.	36361		4.62.4					
1	.141.	2-44			2.880	195.46	٠		
C C	10809.					195.88	61°0		
R					21	. 194°36	61.9	24941	
G P	1199.	401.2				196.29	42.5		
(†) 0(31441.	419.8	489.1			ë	62. 7	191.29	
i l Dr	1530.	420-7	490 - 5						
. 1	1 550.	421.l	491.0			2		191.34	41.4
թգ Ե!		193.4	471.3	468 ° 7			2.04		61.0
\G JA			445.9	443 . 1	2.109			1.90-57	
E Ll'		243.0	426.5	423.6	2.767				63. A
is N			422.5	418.3	4-134				62° 8
			422.8	416.8	140°4				-9-2-9-
	P (2,	6 - 1 6 7 7 5 7 - 2	0-24	3.154 -				22 D
	Ø.	•			1.472	195.17			
		•		١)			

775 H

.

۲

) •,

-

LI GUID OCVGEN TURBOPUNP ASSEMBLY P. R. E. S. U. R. E. S. L. N. D. T. E. N. P. S. T. U. N. E. S. T. CONTINUED) P. R. E. S. U. R. E. S. U. R. E. S. T. U. N. E. S. T. CONTINUED) P. R. S. U. R. E. S. U. R. E. S. T. U. N. E. S. T. CONTINUED) P. R. S. U. R. E. S. U. R. E. S. T. U. N. E. S. T. CONTINUED) P. S. L. PIST P. S. U. R. E. S. U. R. E. S. T. U. R. E. S. T. CONTINUED) P. S. L. PIST P. S. U. R. E. S. U. R. E. S. T. U. R. E. S. T. CONTINUED) P. S. L. P. S. L. P. S.	66 3.11 6 4-15-01 86 74.00	BAL PIST FLOW Rend Al SC DBC R		- 7.07 - 7.05 - 7.52 -		
P. R. E. S. U. R. E. S.	PROCE TEST (CONTI	LO/SEC	1.467 1.393 1.193 1.193 1.293 1.393 1.393 1.393			1.519 1.519 1.519 1.519 1.519 1.519
LI QUID OXYGEN TURBUNNP LI QUID OXYGEN TURBUNNP P. K. E. S. U. K. E. S. M. D. T. E. M. BAL PIST BAL PI	ASSENDEY PERATURE	AL PIST RECICR PSI PSI		2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25	99.49 60.18 62.62 63.68 65.42 65.73	62.00 57.38 53.47 52.99 52.99
P. R. S. S. C.	OKYGEN TURBOPUNP S A N D T E M	BAL PIST Recirc U/S Orif Temp Deg R	179.7 179.6 179.8 179.3 181.0	180.6 180.6 180.6 180.9 181.1		
	אי א ש	BAL PI ST RECIRC U/ ORIF PR	286.2 272.9 216.7 264.5 314.6	306.1 305.7 302.6 307.9 310.0		

t,

もいたして

S S U R E S A N D T E N P E R A T U R E FAOCE SSIME DATE B.M. PIST D.M. PIST PUNP B.M. PIST PUNP PUNP TETURN VEHE PUNP TEMP U/S TENP U/S PN D.O 176.51 PUNP RETURN VEHE VEHE D.O 176.53 PUNP RETURN VEHE VEHE D.O 176.54 775.3 D.O 176.55 PUNP D.O 177.53 PUNP D.O 177.53 PUNP D.O 177.54 PUNP <td< th=""></td<>
5 U R E S N O T E N E R A T U R E S 6 AL PIST PUNP 7 753 PUNT 7 753 PUNT 7 753 PUNT 7 753 PUNP 7 7 753 PUNP
A. PIST Pump A. PIST PIST A. PIST PIST O. PIST PIST PIST PIST PIST O. PIST PIST O. PIST PIST O. PIST PIST O. PIST PIST PIST PIST
Return DISCH DISCH DISCH TEHP V/S TBP V/S TBP VEME VEME VEME VEME VEME VEME VEME VEME VEME VEME VEME VEME VEME VEME VEME VISS TENP U/S NEL TA PR VEME VEME 0.0 U/S TBP.46 T733 L023 VEME 0.0 U/S TBP.46 T733 L023 VEME VEME 0.0 U/S TBP.46 T733 L023 VEME VEME 0.0 U/S T7437 0.0.0.1 053 V57 053 0.0 U/T T7437 0.0.0.1 053
U/S TENP U/S PA
0.000 1.75.35 1.75.35 1.75.35 1.75.35 1.75.35 1.75.35 1.75.35 1.77.13 1.77.13 1.015.7 1.77.13 1.015.7 1.77.35 1.77.55 1.77.
.0 177.57 980.7 8.0 .0 177.54 966.3 .0 177.45 991.0 9.4
• 0 114 ···· • • • • • • • • • • • • • • • • •
.0 177.70 1117.7 7
0 176.46 1245.3 6.
•0 • • • 178.49 • • • • • • • • • • • • • • • • • • •
.0 178.52 1256.8 6.
177.67 986

.

đ

3.13	4-1 5-61 C 74-80		SECIFIC SPEED	1114	1260.	1284.		1154.	1158.	di i		1145.	1.027	1 043 -	1 020	977.	956.		-616	918.		1069.	1157.		1175.	1177.	
PAGE	ING DATE 4		156		61.87	56.18	62+90	42.90	1					÷ (65.21			64.96				63.10	62.03	61°34	62.08	
	PROCESSING		EFF	16 AT	70.95) 🖗		10°01	61.43				•		20.63	10.41	71.33	10.98	70.41	70. 68	71.32	69.41	67.71		67.65	68.3 6	
L.Y.	· · · · · · · · · · · · · · · · · · ·		TCAR		50.96		50°50	24"99	45.44		64.45	19-99				06.69	69.72	69-8 7	- Á	10.41		10.11	67.5 7	67.19	66.58	46.71	
UNP ASS ENGLY	•					21.7	33.0	6.94	1.44		42.5					5. 64	1.64	49 °6	1 . C 1	2.04	····	47.2	45.7	15 .3	55 .2	45.6	
MK48-0 OKYGEN TURBOPUNP	,	L I I L	PRESS RISE (PS I)		608 .D	53		50	752.5		739.4	766.6	0 1		9	953.3	979.3	5	0	-	942 .3	652.8	776.9	740.8		764.2	744.0
LI QUID OXYGI		1 6 0	HE AD F T		1277.4	691.3		1643.6	1574.7	1567.4	1547.2	1608-2			1.0.7 2		2034.1	2111.9	-		å	ė		1593.2		1600.3	8-09T
11		LCULA	PUNP Flow (LD/SEC)		15-5620) M	-	5	ň		in .	15.2676		1220-01		13.6339	m	Ň	12.9126	12.8797	Å	14.5914	•		5	30	1049-51
	6	V U	PUR PUR	2			2	101.21				98.42				67.80	86.36		63.13	82.92	86.54	80 ***	71. 76	100.98		101.07	100. 95
)	1681 - 13- 01 176 - 13- 01		TE ST SPEED (RPN)		26852.	251	779	29609.	903	24972.	28768.	29301.	29283.	10407.	30605	30988.	31199.	31461.	31530.	31550.	30960.	30217.	29662.	29584.	29590.	962	•
,	RUN NUMBER TEST DATE		T INE SL ICE NO	¢		11	12	61	14	15	16	17			21	22	23	24	5	26	27	20	r	30	31	32	55

With the second s

λų.

Į

Ers Barr

diversity of

.

٩

219

1

ł

;

Ļ

C U L A T E D P L SUETION INLE SPECIFIC COEF SPECIFIC COEF SPECIFIC COEF 2956-97 2956-97 2956-97 2956-97 2956-97 2956-97 2952-96 2977-94 2977-94 2977-94 2977-94 2952-96 2994-79 2952-96 2994-79 2952-96 2994-79 2952-86 2994-79 2952-86 2994-79 2952-86 2994-79 2952-86 2952-86 2952-86 2952-86 2952-86 2954-65 2954-60 2954-60 2954-60 2954-60 2954-60 2954-79 200-000 20000 200000 20000000000000000		*			2 1 • C
+13-81 C A L C U L A T E D C A L C U L A T E D SPECIFIC SPEED SPECIFIC SPECIFIC SPECIFIC<			PROCESSIN TEST DURA	SSING DATE 4- DUAATION. SEC	-15-81 74.00
NP SH SUE TI ON NP SH SUE TI ON SPECIFIC SPECIFIC SPECIFIC<					
(F1) SPECIFIC 57661FIC SPECIFIC 57670FIC SPECIFIC 57670FIC SPECIFIC 57670FIC SPECIFIC 57670FIC SPECIFIC 5700FIC	HEAD	PUNP		BAL PIST F	A SARD
<pre>(FT)</pre>	COEFF		ta MIDES		
+53.21 2890.16 +54.44 2734.54 +56.18 2087.27 +51.41 2946.29 +51.41 2956.97 +51.41 2956.97 +51.41 2956.97 +51.41 2956.97 +51.41 2956.97 +51.41 2956.97 +51.40 2956.97 +51.40 2956.97 +51.40 2956.97 +51.40 2952.86 +52.45 2952.86 +54.97 2952.96 +54.97 2953.96 +54.99 2953.96 +54.99 2953.96 +54.99 2953.96 +54.99 2953.96 +54.99 2953.56 +54.99 2953.52 +54.90 2953.52 +54.90 2953.52 +54.90 2953.52 +54.90 2953.52 +54.90 2954.55 +54.50 2954.55 +54.50 2954.52 +45.60 3054.65 +45.60 3054.65 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
+53.21 2890.16 +54.44 2734.54 +56.18 2037.27 +58.44 2037.27 +51.411 2956.97 +51.411 2975.69 +51.411 2975.69 +51.411 2975.69 +51.411 2975.69 +51.411 2975.69 +51.411 2975.69 +51.411 2975.60 +51.411 2975.60 +51.411 2975.60 +51.40 2975.60 +51.41 2975.60 +54.59 2975.60 +54.59 2952.90 +54.59 2952.60 +54.59 2952.00 +54.59 2954.50 +54.59 2954.50 +54.50 2963.50 +54.50 2980.51 +54.50 2956.52 +54.50 2956.52 +54.50 2956.52 +54.50 2956.52 +54.50 2956.52 +54.50 2956.52 +54.50 2956.52 +54.50 <td< td=""><td>¢</td><td>3.90</td><td>1.1771</td><td>0-1901</td><td>D. 6007</td></td<>	¢	3.90	1.1771	0-1901	D. 6007
49.4.018 2087.27 456.118 2087.29 451.41 2956.29 451.41 2956.97 451.41 2956.97 451.41 2956.69 451.41 2956.69 451.49 2956.69 451.49 2956.69 451.40 29296.69 451.60 2975.66 454.59 2971.66 454.59 2971.66 454.59 2971.66 454.59 2952.66 454.59 2952.66 454.59 2952.66 454.67 2963.96 454.61 2951.56 456.01 2958.56 456.02 2958.56 456.01 2958.56 456.01 2958.56 456.02 2958.52 456.01 2958.56 456.01 2958.56 445.61 2958.56 445.61 2958.56				0.2053	
+66.18 2087.27 +58.44 2546.29 +51.11 2956.97 +51.11 2956.97 +51.11 2929.69 +51.41 2929.69 +51.41 2929.69 +51.41 2929.69 +51.41 2929.69 +51.41 2979.69 +51.41 2979.69 +51.49 2975.66 +51.49 2971.94 +51.49 2971.94 +51.60 2971.94 +54.59 2952.86 +54.59 2952.96 +54.59 2953.96 +54.59 2953.96 +54.50 2953.56 +54.50 2958.52 +56.06 2958.52 +56.01 2958.52 +56.01 2958.52 +45.61 2958.52 +45.61 2958.52 +45.61 2958.52 +45.61 2958.65 +45.61 2958.65			1621.	L a	0-6096
458.44 25546.29 451.41 2956.97 451.40 2956.97 451.40 2975.66 449.68 2975.66 449.68 2975.66 452.59 2998.23 451.71 2991.96 454.61 27 2981.96 459.41 2921.95 459.41 2981.96 459.41 2981.96	0.47	3.67	1.0567	0.2027	0.6068
451.41 2956.97 451.40 2956.97 451.40 2956.97 451.94 2975.66 449.91 2975.66 449.61 2977.94 454.59 2952.86 454.69 2951.96 454.61 27 2981.96 450.61 2051.56 450.61 2051.66 445.61 3054.65 445.61 3054.65		4.60		0.1911	
451.411 2929.69 451.40 2929.69 451.40 2975.66 451.40 2975.66 452.40 2975.66 454.59 2952.86 454.59 2952.66 454.59 2952.66 454.59 2952.66 454.59 2952.66 454.59 2952.66 454.59 2954.56 454.59 2954.56 454.59 2954.56 454.59 2954.56 454.59 2954.56 456.06 2934.56 456.06 2954.56 456.06 2954.56 456.06 2954.56 456.06 2954.56 456.06 2954.56 456.06 2954.65 455.61 3054.65 445.61 2954.65	500° 0		175081	0.1974	
49140 297565 49140 297565 49761 297565 49763 297194 49763 297194 49761 295295 45467 295295 45467 296396 45467 296396 45467 296396 45461 293422 45461 293422 45461 293422 45461 293422 45661 295854 46122 298854 44561 307433			1.0227	0.2043	X. 6006
449.01 2975.66 449.01 2977.94 452.01 2952.06 454.97 2953.96 454.97 2953.96 454.97 2953.96 459.46 2921.56 459.46 2921.56 461.27 2889.54 461.27 2889.54 451.22 2928.82 453.61 3074.33			1.0134		
449.68 2977.94 452.69 2952.86 454.97 2963.96 454.97 2963.96 459.44 2921.56 461.27 2881.96 461.27 2881.96 461.22 2886.64 461.22 2952.22 456.06 2958.82 455.61 3054.65					
+52.68 2952.86 +54.69 2994.79 +54.87 2963.96 +54.87 2963.96 +54.87 2963.96 +54.87 2963.96 +54.87 2963.96 +54.87 2963.96 +54.87 2921.56 +59.46 2921.56 +61.27 2889.54 +61.22 2889.54 +61.22 2889.54 +61.22 2989.54 +61.22 2989.54 +50.20 2952.22 +45.61 3054.65 +45.61 3054.65	o c	4.59	0.9525	0.2099	5.9916
454.59 2994.79 454.97 2963.96 457.71 2951.56 459.44 2921.56 461.27 2881.96 461.22 2889.54 460.97 2889.54 460.20 2952.22 450.20 2998.82 445.61 3054.65 445.61 3074.33		Ŵ	٩.		106091
454.97 2963.96 457.71 2934.22 459.44 2921.56 461.27 2881.96 461.22 2889.54 461.22 2952.22 456.06 2952.22 450.20 2998.82 445.61 3054.65		4.87		191200	E.5810
457°1°11 2934°22 459°44 2921°56 461°27 2881°96 460°97 2889°54 461°22 2886°64 456°06 2952°22 450°20 2998°82 443°60 3074°33	0.537	5.04		4 N 6 1	5815-0
461.27 2881.96 461.27 2881.96 460.97 2889.54 461.22 2886.64 456.06 2952.22 456.06 2958.82 445.61 3054.65 443.60 3074.33	446.0			75220	- M A
461.27 2681.70 461.22 2886.64 461.22 2886.64 456.06 2952.22 456.06 2998.82 445.61 3054.65 443.60 3074.33	0	5.39		0.2302	B. 582
445.61 3074.33		5.34	•		10. 30 F
461.22 2952.22 456.06 2952.22 445.61 3054.65 443.60 3074.33	2 * 0			0.2263	6
443.60 3074.33	0.532			0.2054	
450.20 2374.65 445.61 3054.65 443.60 3074.33	0		1.0147	0.1999 -	9996°
443.60 3074.33	0 490		0240	0.2068	X. 5936
	0.473			0.1974	0.5919
	0.473		•		
	24=0···		1 . 0263		0.5857
9629 . 442.6 0 2000.00 0	0 .473		1	0.2018	£.5 H
	.84 0.47277	3.4			
9672. 442.42 303414.2					

T	PAGE 3.15	0.47E 4-15-81 3N, 2EC 74-00		3	(FT)	541.76	567. 23	596.93	462.33	481.52 484.00	84 - 164	471.62	457.20	194.94	437. 06 436. 96	424×01	419.42	417.33	428.22	443.75	455+81	455.85	453×63	451.48	452.04
•	· · · · ·	PROCESSING DATE TEST DURATION.				.00		00.21 70.17		76.25	15.06	75.41 ·····	72.63	71.056	70.24		69.49	20° 12	59.1 0	72.87		74.47	76-21	75.94	76.18
	ASS EN BLY		30000. APH	MESS	(PS1)	735.99		791.15	806.19		04.07	- 805.92	840.19		969.64	693.48 805.47	923.37	923.71		840.59	14.71	782.37	782 48	782.64	781.82
•	NK4 2 d Ygen Turbopun p		TARGET SPEED =	HEAD	(FT)	1549_54	1594.43	1582.23	1637.27	1680.84	1681 •02 1682 •51	1685.78	1683.86 1744.08	1794.49	1812.88	1860.11 1984.52	1920.26	1920.97		1754.66	1563.21	1638.35	1639.20	1638.71	1637.22
	11 ONI D 0X		SCALED TO	FLON	(0/SEC)	18_13761		10.7	10°28071 15°91384	15.92295	15.75197 15.77162	15.63168	15.66855 14 48555	14.27735	13.64835	13.19922	12-31224	12.28610	- 12.24702	14-48639		15.85964	15.78964	15.85285 16 21824	15.88903
•		3 4 1 3 81		FLOW	(60%)	5V 111	112.24	115.25	102.55	102-65	101.55 1 A1 - 69	100.76	101-01	91.95	61.68	85.00	7 9-27	79.69		03-60	100. 19			102+33	102.50
)	RUN NUMBER TEST DATE 4		TINE	9 . ICE NO	c	7 C		12		15	11		14	21	22	23	52 52	26	12	29 6	30	1 E	32	n 4 N

۰.

.

			MK48-0 OKYGEN TURBOPUMP	P ASS EMARY		PAGE 3.16
TEST DATE 4-13-	3		:		PROCE SS TEST DU	SSING DATE 4-15-81 DLATION. EC 74.00
		SCALED 1	TO DESIGN SPEED	- 79.000. APH	£	
	FLOW	FLOW	HEAD	PRE53	HORSE Prince	54
SL ICE NO	Ę	(1/56C)		(151)	(949)	(F1)
'		42.32110	8436.41	4001-07	1067.12	2040-57
10	261.90	40.56774	•	4132.01		
11	2 65.9 1 245.15	38.00186	125			3249.96
	239.28	37.13228				2621.59
4 4	23.9.52	37,45550 34,75461	52	4374.69	91.95	2635.13
	237,28	36.80046	160			2675. CC
	235.12	36.47392	9178-11	4387.74	963 . 39	2569.10
9 I G	235.055	34°28018	550		922,72	24.00.10
20	214.54	33.31381	9770.02	10.63.09	909.13	2395.05
21	208.11	32.31262	9570.14	4734.69	892 . 34	23 75. 20
22	198.33	30.79819	10127-24	- 26-698		2312.27
23	193.76	30.09915	10260-24	5 27.24	647.25	2243.49
24		2 80 12 077 2 8 4 4 7 6 4	10458-64			2272.13
		764526	10456.83	50 28.49	826.36	2270.47
52	200-23	31.05868	10034.70	4817.31	877.89	2331.45
28	217.94	33.80157	9553.17	4576.55	*	
5	235.41	36.502%	N	4326.73		79-1947
30	238.74	37.00582	16.0168	4259.56		
31	237.68	36.84250	1	0		9470-47
32	230.77	37.01338	6932.1 5	20°2024	700 • 21 044 . 75	2454.12
	238.10	36.90927		n i		

)	·	LI QUI D'AYGEN	HK48-0 TURBOPUNP ASS	PAGE (
RUN NUMBER TEST DATE	3 +-13-81	• • •		PROCESSING DATE 4-15-61 TEST DURATION. SEC 74-
	· ·	SCALED TO TARGET	* 0396	30000. RPH
TIME SL ICE NO	IND STAT PR RISE PSID	VOLUTE Stat PR RISE PSID		
6	83 . 54 89 . 89	0.0	:	
11	88.44 103.39	0.0		
14	109.61			
15	108.61			
17 18	109.75	0.0		
61	122.43	0		
20 21		000		
23	142.58	0	:	
540	155.95			
26 26	156.27	0°0	No. office and a second structure of the second struct	
27	139.10	0.0		
8 N N	1.05.85			
90	101.19	0.0	•	
16	100.82	0.0		
	101-38		·	
	100-77			
223				

シント いい なままないないないないまたので、そうちゃくないのである

the second s

THE PACE STATE	-13-81			PAGE	3.16
224	18-61-			PROCESSING DATE	4-15-81 ·
24					
T		SCALED TO	0 06516N SPEED - 70.000. PM		
I	•				
IME	GWI	VOLUTE			
SL ICE	STAT PR	STAT PR		•	
0		RI 5E PSI0	•		
		2	• .		
Q	464. P3	0-0			
	489.37	50			
11	481.52	0.0			
12	562.92	0-0			
	16 .165	0.0			
16	589.98	0.0	•		
17	597.55	0.0			
	204-43				
19	708-04				
21	727.58	0 0			
22	776.24	0•0			
23	804.77	00			
24 24				•	
26.	850° 79	0.0			
27	757.31	0.0			
28	668.85	0.0			
29	576.53	0.0	•		
30	550° 94	6 0 0			
31	546.89				
32	551.97 Ees an				
	222878				
•					
,	•				

TEST DATE	k 6 4- 28-91 COMMENTS			PROCESSING DATE TEST BURATION,	ATE 5-22-81 DN, SEC 69.0
	O	PISTUN DRAIN OVERBUARD Piston flom Voi Grifici Of Pre and Post Calibr	WITH RECIRCULATION AT TARGET E actual Dia=0.3 IN. Aticns for Pid 063, Pump Ventur	67000 RPM.	
	AMB [ENT	PRE SSURE		13.8000	
	P/N S/N	VENTURI (GG) V160248-56R 8871	UPSTREAM DIAMETER Throat diameter Throat cd	0.9570 0.2480 0.9850	
	GH2 VENTLRI P/N VP031 S/N 9731	NTLRT (TLRB) VP 0312 00- 56R 9731	UPSTREAM DIAMETER Throat diameter Thrcat CD	2.3000 1.3085 0.9873	,
	LH2 W P/N S/N	VENTURI (GG) V320471-5GR 8873	UPSTREAM DIAPETER Throat diameter Throat cd	1.6890 0.4710 0.9765	APPENDIX TEST 6
Binal Pagi Poor Quai	LDX W P/N S/N	VENTURI (PUMP DISCH) V321059-SGR 8877	LPSTREAM DIAMETER Thkoat diameter Thrcat co	1.6890 1.0590 0.9820	C †
			RAL PIST OVBE CENTROL ORIFICE BAL PIST EVBD DRIFICE BAG FLEW DFAIN CRIFICE TURRINE EFFECT IVE AREA TURRINE EXHAUST CRIFICE PRIMARY H.G. ORAIN ORIFICE SEC. H.G. DRAIN ORIFICE REAR BRG CCOLANT ORIFICE INTERVEDIATE SEAL PURGE ORIFICE	0.3000 0.2636 0.7500 0.2319 0.6600 0.6550 0.1260 0.1260	

RIN NUMBER IFSI DATE -2 272 GAS 972 GAS 10 CAS 10	4-26-81 A S E G U S END TIME (SEC) 64-241 51-253	н С У К	R B C C	•			PRO	ESSING DA	5-22-61 SEC 69- 00
۹	E C U END FINE (SEC) 64. 241 51.253	0 >	Ξ́IJ C				TEST	ST DUKATION.)
<u>z</u> _ 1				T U.R B		0 R I V E	Y Y Y		
1 C	5.5 5.5 1.2 2.2 2.2 2.2	VENTURI	VENTUR	VENTURI	VId S	SPIN	SPEN	TURB	SPEED
Ĵ	SEC 550	U/S	1/5	DELTA	VALVE Dran		VALVE Delta P	6HZ FLOW	,
	2	(PSIA)	(DEG R)			LPS LAD	(0154)	(LB/SEC)	(R P M.
	,	4 JEA 2	546.4		5.275	4755.4	9	6369.	30293.
		4 701 - 7	547.4			706	193.	9	29462.
:5		4567.1	548.9	0**0	5.6	4571.7	-	.6735	30376.
S.	N	446C.2	550.3	، النغ ا		4-4644	1264.950		- 4 190 - 7 1 4 9 -
.465	~	301.	549.9	•		4210.8			67270-
.560	126.225	4147.5	248.4 648.4			• •		. 7564	67554.
	v N	E-0104	548.2	• •	•	N	ň	•	2
12.5		4045.6	548.0		N '	4018.4	enti (67096.
	130.229	4012-5	547.9		~ (•	•	6665U.
	131.260	3978.4	547.4	13.89	33°090	391665 7918.7		3.75897	67201.
5 t 7 c a 2	042-261	2012.0	546.9	. 0		3866.4	797.374		67328.
	134-230	3880.6	546.8	, 	34-643	3852.	•	•	67428.
663	135.261	3847.6	546.3	•	35,440	3820.	•	- <u>7665</u>	67962
	136.251	3815.5	546.2	٠	35.991	3787.	066.969		
.572	137.241	3783.4	545.7	ŝ	811 · 05		004 - L L L	- 101 - - 7637 -	A7196.
137.542	138.230	3711.4		14.50		i	608-513	3.75742	67583.
	124.250	3687-6	54425	•	34.025	3658 -	419-612	.7619	•
	141.241	3656-8	544.4	•	39.745	3628.	548.261	1091 -	68607+
96	142.231	3625.5	543.9		.71	3594		. 1544	68916.
455	143.221	3594.0	-	15.05	41.858	3563		.7634	69272.
.554	4	3562.3	543.2	15.13	n.	353	59.48	2651-	0 1 7 6 0
4.5.74	145.242	3532.7		•	4 - 1 9	502-	27-94		
\$ 3 5 •		3503.4		٠	4 - 78	4			
U *	- T	3473.7	542.0	15.04	.			20112	
• 5 5 5	ė	3444.5		ë (
Ĵ	. 4	3416.1	2.142						

.

	5-22-61 C 69.0		TURE DS	ONIFIC	(PSID)	330. 0	336.5	Ş	1923.9	Č١							1678.2	1879.8	1.000.1				y P	1872.4	1.071.4	1.672. 6	•	ID (9(C C C C C C C C C C C C C C C C C C C	
PAGe	NG DATE ATION, SE	;	-	EXH		452.1		469.1	502.6	2	;;	2000			499.5		498.8	498.3	498.1	497.5		• (496.0		495.0	494.7	4.464	494.1	493 . 5	403.4	1.244	
4 1	PROCESSI TEST DUR	•	TURB	EXH	(PSIA)		-64	-	56	925.	1913.9	116		4-9161	1909.5	910	Ò	116	5	 ``			1905.0	903.	1902-2	106	1900.5	900	892.			
r 1			TURB	EXH	STAT PR (PSIA)		53.		1934.1	Ô.	Ö (568				692	ŝ	89	692	Đ:	Ň C			995	1003.4	999	991.	8		854-		÷.
ISSEMBLY		TERS	LUR	NO.2	O/S PR	3	0		23	891.	878	77.	819			1876.9	874	1876.9	876.		876.		1871.6	869.	868.	869 .	866.	867-	58.	1840.6		
TURBCPUMP A		FARAME	TURB	INLE	TCT TEMP (DEG R)	554.4	9	1	555.7			• • •	ñi			N	52=	21.	551.3	551.1	- 0 2 2	C • D C C	• •	5	8	8	-	547.5	÷0+	÷.	÷.	7.01.0
LA CXYGEN		ш «	TLRE		ICT FR (PSIA)	_	12	1.0	66	3111.9	3091.1	å.	680	3096.6	- 0		_		3084.9	N (3082.7		3076.4	3072.7	3070.4	3074.9	3068.4		à.	3023.7	995 .	0.2222
010011		1 U R B I	TURB	I NIET	STAT PR (PSIA)	514-1	502.5	552.9	3137.5		3069e9	3064.3	3068.9	3072.05	3055.4	3066.9	3062.5	3066.9	3060.5	3061.7	3064.9	5 070 C	3057.6	3057.4	3049.6	3058.9		3052.0		3003.2	29 72.4	
			SPEED		(RPM)	10201	29462	30376.	68144.		67870.	67554.	67216.	67096. 44850		67201.						6/1/40. 6 7 6 6 3		68607	68916		6921		69134.	69106.	68997.	-21069
	6 4-28-81		END	TIME	(SEC)	94.241	-		17.23	21.73	26.22	5	28.24	29•23 20 22	5 6	132.250	E	ň	-	136.251	137.241	136.230	140-251	141-241	142.231	143.221	144.252		46.23	41.22	2 8 8	¢
	RUN NUMREK TESE CATE 4-		BFGIN	T IME	(350)			-	9	-	С. 4	S.	5 ' - '	128.511 120 cti	• •	131.562		133.562	134.593	292.261	136.572		130-011	5.		42.55	40.4	•	"	65°9	1.5F	148.515
	RUN N TESI		TMF	SLICE	Q	-	· ~	: 61	Ĵ	2	œ	J	01:			51	15	16	17	เเ	61			:~	24	56	26	11	28	50	00	

「ない」」というないないできるという

1.1.1

ŕ.

ş

ORIGINAL PAGE IS OF POOR OUALITY

			LIQUID LAVGEN	XYGEN TURBOPUMP AS	S EMBL Y			•
RUN NUMBEP TEST DATE 4-	6 - 28-Al					PROCES TEST D	SSING DATE DURATION, 1	5-22-01 SEC 69-00
228	-	N 1 2 2 7	В В В В В	ANETER	S (CONT INJED)			
TIME SPFED Stice	D FLOW	9 9 9 1	BHP	d H D	rorque	U/C	EFF	
* 7 *	(135/81)	(1-5)	t Ï -	(HP)	(FT-18)	(2-1)	12-11	IN TOT P
~ ~ ·	- -	1,4338	61.9	Ű, Ő	11-11	0- 1999	10,00	
r c	• 0.635	.4220	65.5		11.60	196		502.1
			71.4	Ē	2	.201	39.10	535.0
			6.417	ء ۾	55. OB	5		3103.1
5	3-760	•	1.870 2.02			m (-	3049.7
5	. 3.756	1.5476	5°5699	100	53.65 53.65	0.3913		3029.3
£7216			693.5		23062	189	51461	3024.6
70-	. 3.774	165	695. I) ب				9*1206
559	•	1.5965	9.198	1029.9	54.31		71.03 7.1 4.4	
688	• •	1.5562	691.0	32	1 4		7 7 7 7 7 7	2010
\mathbb{N}	. 3.759	l-5966	4 .069	1033.8	m	388	-	
- 1		1. 5971	68 5 • ≨	30		•		3010-5
67613	• 3•761	- 597 -	690.6		m	0.3697	4 -4	3022.0
		165.	691.2	1033.4	m.	0•3900	1.6	3023.2
	•	1966-1		1038.9	54.00	0°3070		3021.0
719		961 •	1 1 1 1	.	+	0.3875	51.63	3021.1
~		1.5970	487 V	1.0201	n i	0.3889	8 - 6	3017.2
F C 3	•	1.5971		ñ . 4 d	40		5	-
τ	• 3.		686.0	7				3014.9
68915	. 3.7	S.		1 17			06.10	3011.5
69272	 3.75 	1.5377) 🚽				3007.0
ŝ	. 3.75	1.5979	_	. 61				3013.4
5	. 3.7	1.5975	683,3	Ē				
m . (- 3.74	¢.	680.R			0.4011	51.42	6 - 200 C
	217.	1.5477	673.8	1015.9	51.19	401	51.42	6 . 5 2 6
トノンドビッ	089.	L. 5969	666.9	0		400	51.64	
J	0410-0	17 66 - 1	665.9	1015.9	50.61	2	51.43	2932.2
	~ ~ ~ · ·				•			

ÿ

¥

¥

•

: !

•

のからいですく

21

A STATE OF A

S) GANNA	CP (BTU/LBM-R) 3.5502 3.5582 3.5589 3.6388 3.63888 3.63888 3.63888 3.63888 3.63888 3.63888 3.63888 3.63888 3.63888 3.63888 3.63888 3.63888 3.63888 3.63888 3.63888 3.64888 3.64888 3.64888 3.648888 3.648888 3.648888 3.64888888888888888888888888888888888888	SPEED PARA- METER 216.5 216.5 216.5 490.5 487.1 487.1 482.8 482.8 482.8 482.8 487.2 487.2	FLDM PARA- METER 3.5961 3.5961 3.4789 3.4989 3.4989 3.4989 3.4913 3.4913	⊡≪આ ગાંક વ્યવ્યવ્ય વ્યવ્ય વ્યવયવ્ય વ્યવ્ય વ્યવ્યવ્ય વ્યવ્યવ્ય વ્યવ્યવ્યવ્યવ્યવ્યવ્યવ્યવ્યવ્યવ્યવ્યવ્યવ
	3,5502 3,5562 3,55482 3,55482 3,5482 3,5482 3,5482 3,5482 3,5483 3,5483 3,5483 3,5483 3,5483 3,5483 3,5483 3,5483 3,5483 3,5483 3,5483 3,5548 3,554823 3,55482	216.4 216.5 216.5 490.5 487.5 487.1 487.2 487.2 487.2		0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
1,3907	3.5489 3.5489 3.6369 3.6369 3.6389 3.63999 3.63999 3.63999 3.63999 3.6399999 3.639999999999	210 -1 216 - 5 490 -6 489 - 3 484 - 7 487 - 1 482 -8 487 - 2 487 - 2		
1166.1	3.6370 3.6361 3.6369 3.6373 3.6383 3.6383 3.6383 3.6383	490 • 6 480 • 7 480 • 7 484 • 7 484 • 7 484 • 7 487 • 5 487 • 2 487 • 2	*******	
•	3.6369 3.6379 3.6383 3.6386 3.6385 3.6386 3.6386 3.6386 3.6386 3.6538 3.655888 3.655888 3.655888 3.655888 3.655888 3.655888 3.655888 3.655888 3.655888 3.655888 3.655888 3.655888 3.655888 3.655888 3.6558888 3.65588888888 3.65588888888888888888888888888888888888	480 ° 4 487 • 1 484 • 1 484 • 1 487 • 2 487 • 2 487 • 2		
1.3998 1.3998	3.6370 3.6370 3.6383 3.6383 3.6383 3.6383	484 - 1 484 - 7 484 - 7 484 - 1 482 - 8 487 - 2 487 - 2		
1,3998	3.6373 3.6380 3.6383 3.6383 3.6383 3.6383 3.6383	484.7 464.1 482.5 482.8 487.2 487.2	3. 4939 3. 4939 3. 4905 3. 4905 3. 4913	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
1.3998	3.6383 3.6383 3.6383 3.6383	484.1 482.5 482.8 485.3 487.2	3.4913 3.4913 3.4913	0-016 0-016 0-016 0-016 0-016
1.3998	3.6383 3.6383 3.6388	482.8 485.3 485.3 487.2	3.4961	0-010 0-010 0-010
1.3998	3.6368 2.4302	485.3 486.4 487.2		6.016 0.016 0.016
1.3998		486.4		
1,3998	2 4306		3.4868	•
1997	3.6401	487.6	3.4933	0, 116
1.999.1	3.6404	484.7		
1995 1		484°3	3.4947	
1997.	3.6417	489.2	3.4908	
1.3997	9	492.5	3.4934	
1.3997	3 • 6425	497.0	•	0.0160
٠	3.6430	** 66 †	3.4894	0*0159
1.3997	3.6432	502.1	3.4923	
1.3997	3.6440	502.0	E64 *	-015
1.3997	3.6441	501.9	3.4932	0-0150
		501.6	.496	
9446.1	3.6447			-015
1.3995	S ()	8.100	54	
L.3995 L.3995 L.3995 . L.3995	4 4		55	510

「たちまま」とないのとうないのというというないないできますが、たちまである」 しょうしょう

¥.

.

~ しんとう くちまう しょうまた

5

1.1.1.1.1.1

AND PARTY AND

٠

¥

•	22-61	•	1	NL ON	(DEG R)	414=28	41.		16.126	397.57		401° 10	407.57	407.95	10.01	409.87	410.61	410.86	410.41	410.91	42 ° 114		I N) Ň	411.62	411.70	411.80	411.92	412.17	112-62		
PAGE	G DATE 5- TION, SEC		SEC MG		(PSIA)	0.4	۲	A.0	6.0	•	N -	-		۰.		•	15.02		15.05	15-06	•	14.95	Ē		14-02	14.78	14.79	14.76	14.75			
	PROCESSING TEST DURAT	1 	SEC HG	EAL Tem	(DEG A)	390-14	- 1	- ŤH	5	N (*** 0 · ·			20	420.51	421.87	~	422.61	422.47			62 3. 78	2	22		ě,	+22.33	N.	422.52	NIF	Ŵ f	
·		•	SEC HG	ž	(PSIA)	18.5				30.9	1.14		37.1				•	35.0	35.4		n 4	3355		•	32.3	31.6	31.7	.	31.1		5 6	
S EMBL Y		ATAO	9H	EAL DR	(L& SEC)	0.0560	-062	0-0688	-084		40 i		679	9	.077	0	.077	.0.77	0				078	0.78	0.78		070	0.76	078	0		
48-C URBCPUMF AS	1 - - - 	ARIAG	PRIM	2 2 2 2 2 2 2 2 2 2 2 2 2 2	2		*	Ñ	01.3	•				ě	•	-			398.77	> (90.004 401 104	401.20		0 • •		5	4	9 • 9 • • 0	÷	D 4		50-E1-E2E
OXYGEN		N 0 B 6	PRIP	ר איר		18.97	18.97	18.85	25.75	29.18	28-58 28-58		27.37	-	26.68		6 - 9	5 . 8	26.46	n .	0 .		1	1	27.06	Pm	27.06	. .	: ,	27.00.	• •	27.06
419110		4 L A		ы	(DEG R)	ŝ	51.2	557.98	57.9	557.73 557.47			ŝ				557.68	-	557.61			5 7	57.	51.	57.	Å.	2		.,			558.33
		S	C	5	(PSIA)	17.	16.	13.	.	217.41		14.	18.	17.	10.	10.	.	. 8-	18	<u> </u>	ġ	6	6	.61	ġ	o.	20					220.58
	6 28-81		PRIM LOX	TENP	(DEG R)	264.55	287.13	302.99	316.73	33/• 39 16 2, 60		357.35	359.63	361.90	364.34	366. 80	360.69	111.02	373.22		19-915	3.80.22	361.60	383.09	384.38	385.60	386.71	367-67		391.50	391-08	396.19
-	NUMBER F CATE &		PRIM LOX		(PSIA)	14.39	ς.	4 '	47 - 1 - 1	14°44				4	-	\$	÷	\$		• • •	r v	-	-		14.49	14.50	14.51			• •		5
		230	I ME			-1	•1	<u>ر</u> م	د،		: 0	10			-	4	5	5	\ . 			21	22	~	50	\$ 2 1	25			5		3.2

いんぞう

	4	5-22-81 EC 69-00		RR BRG		(19 / 25C)	6.1406	0-1430	0.1454		0.1359	0.1340	C*1363	0-1341		0-1360	0.1365	0. 1363	0-1365		0,1364	V6261-0	0-1340	0-1354	0.1357		0.1353	0.1350	0.1341	Wite -	6-13M
	PAGE	SING DATE	8 8 9 8 9	RA BAG	COOL -CRIF	1	112.6	111.6	83	5	104-2	10	Õ			104-4	N B		104.1			1 ° •	03+	103+3		7) (1 2) (2	el T	60	2	3	101
		PROCES TEST D	IUED)	986	سيبيز 🔹	K	99.26	Ĵ	Ň		97.41 07.10	1.0	1.0	97.53	<u>ه</u> ۱	Äď			ē (96.74			Ŏ.	÷.	ŭ.		07.78	7.7			14.44
	EMBLY		T A CONTINUED	BAG	U/S PR	(1513)	247.1	246.1		r,) m		(Å)	235.6	23	233.9	-	m (.		¥ m	32	Ē	20				31.	S	
٠	-0 BORUHP ASS		V C D V	8	CRAEA TEMP	IDEG KI	05.	102.24	-	•	100.96		•	• 00	٠	101.30	100.53			<u> </u>				100.62	•				•	5	
•	PK48		BEAP	30	DRAIN PR	(FSIA)	247.1	246.1	4	-	234.0		36.	÷.	m 1	236.2		34	m	•		ጉ 🕋		31	12.	-16			31.	Ň	228.0
	0 IND IT	9	LAND	RR BRG	C MOLANT Supple JEMP	2																~ *									0.0
original of poor	QUALT		S C A	RA BRG	CODLANT Suppl.ph	(> ! > ! > !	3488.1	3488.1			3506.4			3510.6	3511.2	3511.1	3512.2	3512.7	3512.7	3512.6	2012.0	3515.2	3515.6	3516.0	3516.5	-0-1	n . 4		462.	044	
4		AER 6 1E 4-2 0 -81		SEC +6	SEAL PR FLOW	(1 8 / SEC)	0.0	c.0	0.00	0.0			0.0	0.0	 .			0.0	0.0	0 •C			0.0	0.0	0.0	C•0			• • •	0-0	
		PUN NUMBER Tési date		T INE	SL ICE NC		~	2	.	ا ئ	~ 1	: 0	10	11	17		r	2	17	រា		2.4	22	23	75		200		; 6	0	231

		r 1 gut 0	CXYGEN	K48-0 Turbedunp Assem uly		
RICH NUMBER	96k 6 IT 4-2 8-81		•		PROCESSING TEST DURAT	ING ON TE 5-22-01 ATION: SEC 69.00
23		SEAL AND	0 6 6 A R [A G C A T A TC	T A CONTINUED)	
-	ALINA	ARY LOX SFAL DRAIN	1 1 1 2		P BRG QVBO DRAIN	• • • • •
r Ine SL ICE NU	GRIF L/S PR (PSIA)	ORIF U/S TEMP (DEG R)	FLCHRATE (UB/SEC)	CRIF U/S PR [PSIA]	CATE U/S TENP (DEG B)	NG FLOMATE
-	-		0.0	33.3	390.95	0.3042
i ni		1.1	0.0		327.58	0.4639
4.	14.5	02.9	C*0	. 43+5	317.10	0.5153
ب ۱		16.7	0.0	٠,	261.07	
► 3		337.19			212-82	0° 63 00
: 7			0.0	66.4	265.97	0.725
01		51.3	0.0		269.39	0.7054
	4 • 4 H	9 . 62	0°0	0-24	272.74	0-6073
				0.7.0 5.6.7	279-05	0.6455
		66.0	0.0		2	0.6279
		•	0.0		286.37	0.6114
	14.3	1.0	0.0	. • ·	289.60	
- *		373.22		50.5 50.2		0.5843
		76.6	0.0		298.64	
50	14.4	- M A	0.0	51.3	300.66	0.5040
21		3A0.22	0.0	54.2	02.	0.6048
	-	81.6	0°Ū	57.0	4	2
	٠.	93.0	0.0		303-63	0.6455
	-	÷ • • •	0.0	4 I		0.6678
	-	85°5	0.0			0.6812
		-92	0.0		301.24	0.6973
	÷.	8 /• C	0.0	2.17		29
					•	
2.5	s (201.01	0.7148
][93.0				
	1					

			11 211	CXVGEN	-0 BCPUMP	A TRUS S E		PAGE	
RUIA NUMMER TEST DATE	4	6 2 8-8 1			•		PROCES TEST D	SING DATE	5-22-81 SEC 69.00
			<u>e</u>	а ч О та О	e s s u m			1 • •	
T I ME	SUPPLY	PUMP	IMPELLER	BAL PIST	PUNP	BAL PIST	BAL PIST	BAL PIST	UJ1136W1
SI ICE	I ANK	IMET			ŝ	CAV	SUMP	RETURN	FRONT
UN	PR (1514)	PR (PSIA)	PR (PSIA)	PR #2 (PSLA)	LAISA)	FR 61	PR (PSIA)	PR (PSIA)	(PSIA)
	ိမ္	240.9		571.8	1046.5	585.7	341.5	397.0	\$00.2
	04	38.	A2 8. 8	538.4	5	. 546.6	316.2	377.4	152.2
	0	236.0		55	96.	546.7	322.0		102. 0
	257.7	54.	1428.2	1743.5	4340.9		176.8	0 (3030-5
	£57.3	3		35	4307.3	- (0 (0-1001	D-1106
	557.3	ż	169.	200	4305.5	8	113.7		7-1005
	£91.53				÷.				
	1.702	-		C*A8C1	2616-0			766.5	ŚĊ
		0 • / C 1	2863.2	1341.3	4 14) ()	491.0	715.9	2490.5
				. 60	3195.9	- M		642.5	2406.7
	256	32.	2707.6	1232.3	3063-3	1280.2	445.8	456.0	2334.5
÷	256.2	131.3		1199.5	2996.8	1245.6	433.5	637.4	2279.2
ç	256.2	130.3	2656.7	1203.9	3003.4	1244.7	434.2	638.4 	2278.5
17	256.2	1 30.1	-	-	3057.4	1263.0	439.0	٥ì	2306.9
	£56.2	33.	2834.5	، `م ا	9 i	6° 61 61	et (
0	¿56.2		2991.8	N I	ġ,	472641		Ë s	
20	256.3		3140.1	en 1	9.		NI		2 (7 00 3
			5 - 10 - 1 5 - 20 - 5	1.1001	ñ W			1040-5	
22					3.46	1902	643.9	1102.6	3100.0
			1579.5	5		1951			3163.3
	258.4		3642.7	Ū.	19		911.7	1175.2	
	259.2			Ğ	4855.2	1998.9	912.5	1175.0	3223.6
~	259.7	1		0	4850.4		908.2		3219.6
	260.1	1 73. 4	÷.	Ô.	4859.2	2001.8	914.8	-	
-	260.6		3641.5	-	4909.3	2016.5	05626	1192.7	321125
2:	261.1	1 78. 4	3645.3		6.8164	•	9-866	1196.2	3 296-2
33	761.5		3662.3	Ň	\$ 55.2	- V 07	9+2+6	1206.3	-1679F

ORIGINAL PAGE IS OF POOR QUALITY

. . . ÷ je

. *

.

. .

÷

9,1

٩.

B

, **1**

-

		rt dri D	CXYGEN	-0 BCPUMP	ASSEMBLY	·	L'AGE	01 ••
RUN NUMBER VEST CATE 4-21	6 2 8- 81	• .				PROCES	SSING DATE 5- DURATION - SEC	- 22- 81 69.00
	9 2 2	PRESSI	URES A	N 0 1 6 N		URE S	2	
SP EEO	INDUCER DISCH	PUMP BRG U/S	FUMP BRG D/S	PUMP BRG Delta P	PUMP BAG	PUMP OR S CVBD	PUMP BRG SLINGER	
RPM	PRESS	PRESS	11110	01 S d	T ENP DEG R	PRESS	SUMP. TEMP. Deg r	PSIA PS
10253-	331.9	397.0	0	-6.417	140.71	42.8	104.62	43.9
9462	303.6			-8.219	185.87	50 . 6 5 . 6	187.49	50-5
-91505 19175	301.9	587.9 1035.9	1048.4	6 4 • •	Ü, Ö	69.7	205.99	1.33.7
18		057	1077.7	20.		109.9	214.11	148. I
5	776.1	1026.7	1038.0			96.4	213-68	14201
63554.	714.8	975.5 872 8	C ur	-10°485		6-06	. m	130.4
÷υ 	• •	166.5	784.0			67.0	21119	123.0
665		715.9	. پې	-51		0+-0	õ (110.6
66A87.			699.8	1.	198 .06	80 ° 3	36 C	
~ ^	317.0	0.90°0	014-0 467 4	-10.026	196.15	75.1	207.27	110.2
61120. 67428.	7 -01E		629.7			1.67		110.1
67462.	316.7	646.5	4	-20-096		1.11	4	1101
C3	357.6		725 °7	• • • •				
59	451-0	187.9	~ 0		194.67	1.57	99	123.5
	716.2	977.8	0.000	1 2 2	195.70	76.3	208-94	129.8
8034	798.1		- 3	-10.252	140.84	0	1210-35	136.0
£ 86C7 .	858.3	1 32.	12	-9.855	198.03	84.9	211262	142.5
Q.	691.4	1137.4	~		199.47	89.1		145.7
6 5 Z 7 Z •	929.3		85	÷	200 .60	N (191.9
521	929.4	75.	8	•		92.9		1214
£5187.	928.5	171.	81	•	202 .34	6°16		
216	934.2	11 78.2	C, (10.79	202 . 75	0.66		
С.	952.7	6	202+	E1-01	27.2 02		rï v	
13583	958.8	36 .	20		24-202		2120 12	

こうちょう かんていたい たいちょう たいちょう たいちょう しんちょう しんしん ちょう

PAGE 6.11	E 5-22-81 SEC 69-	BAL PIST	FLON TENP RISE	DEG R	-4.70		- 36 76	- 39.05				- 35-00	; 3	-36.59				- 36• 72 - 36 - 96		- 36.72	- 39.41	- 40. 55	•	-41.92				3		-42.34
į		(CONT [NUED]		LB/SEC	1.756	1.609	- i &	3-121	-		2.554	2.100	1.912	1.848	1.809	1.017	1.835	1.974	C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.016	3.165	3.318	3.401	3.485	3.463	3.470 2 2 2 2 2	• •	34542	5	3.588
ASSEMBLY		PERATURES An Dist	. 🖬 🖌	PS1	34.97	29.35	30 - 15	120.74	121.07		0		50.03		40.55	40.96	41.76		0 14 40	~ N	124.20	۰.	144.05	۰	151.40			154.57	154.57	160.75
ID CXYGEN TURBCPUMP	; ; ;	E S AND TEN	- じ *	DEG #	179.8			211.8 211 A		211.5	210.9	210-0	209 6	2005	209.4	209.5	209.6	209.6	8.602	211.5	212.2	213.3	213.9	214.7	214.8	and a	-	214.9	i	215.2
119610		PRESSUR		ĩ 🕊 🗌	225-1	207.3	210.6	535.6	533.4	2.964	401.0	322.6	293.3	246.1	259.8	260.1	263.4	287.3	339.8	41 8° 8	542.8	585.1	608.1	633.2	633.5	632.1	636.0	651.1	658.1	665.4
	RUN NUMBËR LEST CATE 4-28-81	8. 27 6.	SL ICE	n N	, 	- 2	U'	•0 F	•• 60	0 0	01	11	12	- 1 - 1	5	. 16	17	18	61	02			26	25	26	27	2.8	62 CE		32

: I . . .

Old IF: Contracting intermentation, site Contracting intermentation, site <t< th=""><th></th><th></th><th>517</th><th>LI GUID CXYGEN TU</th><th>TURBOPUMP ASSEMBLY</th><th></th><th></th><th></th></t<>			517	LI GUID CXYGEN TU	TURBOPUMP ASSEMBLY			
P U P R E A T E A T E A T E H	UN NUMBER Est date	4				PR	ESSING DATE	-22-01 69.
Inter Pure Pure <t< th=""><th>236</th><th>2</th><th>تنا د</th><th>5 2</th><th>C C</th><th>RATURE</th><th></th><th></th></t<>	236	2	تنا د	5 2	C C	RATURE		
Mainter Fisch <	1				PUNP	ANU	PUNP	đ
Mot Ten Ven Ven Ven Ven 113.11 117.66 0.0 173.73 922.3 0.46 73.25 113.11 117.66 0.0 173.73 922.3 0.46 73.25 113.11 117.67 0.0 173.75 965.7 0.46 73.25 113.11 177.67 0.0 177.75 965.7 0.45 73.25 113.12 177.67 0.0 177.75 965.7 0.46 94.45 113.17 177.77 965.7 0.0 177.75 965.7 0.46 94.45 113.17 177.61 0.0 194.45 965.7 0.46 94.45 117.75 195.01 0.0 194.45 960.20 0.0 194.45 117.75 195.01 0.0 194.45 960.20 0.0 194.45 117.76 195.01 0.0 194.45 960.20 0.0 194.45 1172.60 196.46 0.0			DISCH	: 65	C ISCH	DISCH	D1SCH	
(DEC (DEC <th(dec< th=""> (DEC (DEC <th(< td=""><td></td><td></td><td>TENP</td><td>TEMP</td><td>5</td><td>-</td><td>VENT DE</td><td></td></th(<></th(dec<>			TENP	TEMP	5	-	VENT DE	
1 1					<u>ت</u>		[15]	
113.11 117.27 95.2 95.3 95.4 95.4 117.17 197.17 95.2 95.5 95.5 95.5 95.5 117.17 197.17 197.2 95.2 95.5 95.5 95.5 117.17 197.17 197.17 197.17 95.2 95.5 95.5 117.17 197.17 197.17 197.17 197.17 95.7 95.7 117.17 197.17 197.17 197.17 197.17 95.7 96.7 117.17 197.17 197.17 197.17 197.17 197.17 117.17 197.17 197.17 197.17 197.17 197.17 117.17 197.17 197.17 197.17 197.17 197.17 117.17 197.17 197.17 197.17 197.18 197.14 117.17 197.17 197.17 197.17 197.14 197.14 117.17 197.17 197.17 197.16 197.14 197.14	•	K						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				с с		029-		73.24
No. No. <thno.< th=""> <thno.< th=""> <thno.< th=""></thno.<></thno.<></thno.<>	ent (•			3 P~	922.		•
	2		- 1		177.75	965.5	8.99	73.29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. .		- 4	0.0		265	44°84	854.55
172.77 172.78 100.19 100.11<	o †			0-0	4.4		46.99	840.27
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- (- 14		0-0	1.1	4225.6	45.68	632°0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	- 4		0.0	4	4048-0	47.33	822°27
11 172.91 196.38 0.0 195.39 3236.4 52.20 914.19 12 172.90 196.48 0.0 196.59 3236.4 52.20 914.19 13 172.69 196.78 3239.4 52.68 791.69 14 172.68 197.31 0.0 196.69 3298.4 52.61 791.69 15 172.68 197.31 0.0 196.69 2995.6 54.57 901.69 17 172.69 197.49 0.0 196.69 2995.6 54.57 901.69 17 172.67 197.47 0.0 196.59 2895.6 54.57 901.69 17 172.67 196.37 0.0 196.54 350.6 797.69 797.69 17 172.66 197.47 0.0 197.62 270.73 902.74 902.74 21 172.77 195.62 0.0 195.61 477.77 935.76 902.74 22 172.77 195.62 0.0 195.62 4797.6 459.76 960.77	ۍ د •		•	0-0	8.4	3716.1	50.30	619.41
12 172-90 196.48 0.0 195.65 3236.4 32.61 790.61 14 172.86 197.18 0.0 196.69 3993.4 54.97 801.69 15 172.86 197.18 0.0 196.69 2900.4 54.97 801.69 17 172.86 197.21 2900.4 54.97 802.18 17 172.81 196.87 3504.5 54.97 802.18 17 172.81 196.87 3504.5 55.16 802.45 17 195.87 0.0 196.56 57.45 802.45 17 195.48 3775.6 57.17 802.19 802.45 172.81 195.61 407.72 3504.5 57.60 813.26 172.78 195.61 4555.6 4707.6 57.77 832.73 172.78 195.61 0.0 195.56 4767.2 36.77 816.77 25 172.78 195.61 457.62 470.76 35.70 846.07 25 172.78 195.66 4779.6 36.77<		× .	196.38	0.0		3419.6	52.20	61-418
1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>			196.48	0.0	195.85	3238.4	52.61	61 · 108
172.86 197.15 0.0 196.91 2981.7 54.97 90.44 15 172.86 197.33 0.0 196.91 2991.4 54.97 90.44 16 172.86 197.47 0.0 196.91 3204.5 54.97 90.44 17 172.86 197.47 0.0 196.91 3204.5 54.57 90.45 17 172.86 196.97 3504.5 51.73 918.95 54.57 90.45 17 172.86 196.97 3504.5 3504.5 51.73 918.95 21 172.06 195.26 0.0 196.96 57.47 918.95 21 172.06 195.26 0.0 195.26 457.07 93.26 22 172.78 195.26 457.06 457.77 93.76 94.67 22 172.78 195.26 457.66 457.77 93.76 94.66 97.77 23 172.78 195.07 195.07 457.66 457.47 93.77 94.66 97.07 24 172.78 <t< td=""><td>-</td><td></td><td>196.75</td><td>0.0</td><td>196.09</td><td>3095.4</td><td>ei i</td><td>•</td></t<>	-		196.75	0.0	196.09	3095.4	ei i	•
172.88 197.37 0.0 196.99 2900.4 54.97 002.45 172.86 197.48 0.0 196.98 2900.4 54.97 004.18 172.86 197.48 0.0 196.91 3220.3 54.97 004.18 172.87 196.37 0.0 196.54 3504.5 51.73 918.95 172.87 195.62 0.0 196.54 3504.5 51.73 918.95 172.80 195.62 0.0 196.54 3504.5 51.73 918.95 172.78 195.23 0.0 195.60 4775.6 50.42 820.35 172.77 195.23 0.0 195.60 4577.2 50.42 810.75 172.77 195.78 0.0 195.66 4577.2 50.78 810.77 172.77 195.77 195.66 4577.2 50.77 810.77 810.77 172.78 195.07 195.06 4577.2 50.78 810.77 810.77 172.78 195.07 195.09 4577.2 4776.6 57.78 810.77 <			197.18	0.0	196.53	2981.7		
172.86 197.39 0.0 196.98 2900.4 95.57 90.6 17 172.87 196.82 0.0 197.21 2954.8 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.47 95.42 95.45 95.47				0-0	196.89	2893.4	•	
17 172.87 197.61 297.61 297.61 295.61 19 172.87 196.82 0.0 196.54 3504.5 51.73 19 172.86 196.82 0.0 196.54 3504.5 51.73 91.8 21 172.86 195.62 0.0 195.64 50.47 91.4 91.4 21 172.86 195.62 0.0 195.64 377.6 57.4 91.8 21 172.78 195.62 0.0 195.64 457.2 91.4 91.4 22 172.78 195.61 4075.0 47.77 91.8 23 172.78 195.61 457.2 457.2 457.2 24 172.77 195.61 457.2 457.2 457.2 25 172.77 195.61 457.2 457.2 457.2 27 172.77 195.61 457.2 457.2 4657.2 457.2 26 172.77 195.62 4779.6 36.73 97.7 97.7 27 172.77 195.62 4				0.0	Ġ, '	2906.	•	
172.87 196.62 0.0 196.91 3504.5 51.73 172.76 195.62 0.0 196.54 3504.5 51.73 833 172.76 195.62 0.0 195.61 47.77 833 172.77 195.62 0.0 195.51 47.77 833 172.77 195.62 0.0 195.56 45.97 840 172.77 195.61 455.91 47.77 833 846.9 172.77 195.61 455.60 45280.6 455.97 840.9 172.77 195.78 195.60 4577.2 4796.6 4577.2 336.73 172.77 195.78 195.60 4577.2 4796.6 337.78 846.9 172.77 196.02 0.0 195.95 47795.6 47795.6 337.778 846.9 172.78 196.02 0.0 195.95 47795.6 336.75 845.9 172.85 196.03 195.96 4795.6 4795.6 336.75 825.6 172.85 196.03 195.97 195.96 4796		. 🖷	197.45	0.0		R=462	•	
196.37 0.0 196.37 0.0 196.37 20.0		172.87	196.82	0.0	ייס	3220-3	•	
7.7 195.62 0.0 195.62 0.0 21 172.7 195.61 4075.0 457.2 21 172.7 195.61 4075.0 457.2 22 172.7 195.61 4075.0 457.2 23 172.7 195.61 4075.0 457.2 23 172.7 195.60 457.2 457.2 23 172.7 195.60 457.2 45.70 23 172.7 195.60 457.2 45.70 24 172.7 195.60 457.2 45.70 25 172.7 195.07 195.60 45.72 26 172.7 195.07 195.07 38.73 27 196.02 0.0 195.60 47.84 27 196.07 195.95 47.94 38.73 27 172.7 195.09 195.09 38.73 27 195.09 195.09 47.94 38.73 27 195.09 195.09 484.6 38.73 28 172.7 195.09		172.86	196.32	0.0	196.54		•	02.40
21 172.77 195.23 0.0 195.23 45.97 22 172.77 195.61 0.0 195.23 40.99 23 172.77 195.61 457.2 40.99 24 172.77 195.61 457.2 40.99 25 172.77 195.61 457.2 40.99 24 172.77 195.78 40.99 457.4 25 172.77 195.78 40.99 457.4 26 172.77 195.07 195.97 479.4 27 172.77 195.09 4657.2 38.73 26 172.77 195.09 4799.8 37.78 27 172.77 195.09 4799.8 37.78 27 172.78 196.00 195.99 4793.5 27 172.78 196.00 195.96 36.16 27 172.78 196.00 196.00 36.73 27 172.78 196.02 0.0 195.97 29 172.78 196.02 0.0 195.96 29 172.85 196.00 4857.2 36.45 29 172.85 196.00 4857.2 35.46 29 196.02<		172.65	195.62	0.0	89.661	0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		833.26
22 172.79 195.23 0.0 195.60 4525.6 43.70 23 172.78 195.61 0.0 195.66 43.70 95.3 24 172.77 195.72 40.99 40.99 40.99 25 172.77 195.72 40.99 40.99 26 172.77 195.06 4796.6 4796.6 27 172.77 195.95 47796.6 38.73 26 172.77 195.95 47796.6 38.73 27 172.77 195.95 47795.6 38.73 27 172.77 195.95 47795.6 38.73 27 172.77 195.95 47795.6 38.73 27 172.77 195.95 47795.6 38.73 27 172.77 195.95 4795.6 38.73 27 172.77 195.95 4795.6 4795.6 27 172.77 195.95 4795.6 38.73 27 172.77 195.96 4795.6 38.73 27 172.78 196.07 </td <td>2</td> <td>172.78</td> <td>155.19</td> <td>u•0</td> <td>•</td> <td></td> <td></td> <td>840-74</td>	2	172.78	155.19	u •0	•			840-74
172.78 195.61 0.0 195.65 40.99 846. 172.77 195.72 4796.65 4796.65 33.73 846. 172.77 195.72 0.0 195.95 4796.65 37.0 99 172.77 196.02 0.0 195.95 4796.65 37.78 38.73 877 172.77 196.02 0.0 195.95 4794.6 38.73 877 172.77 196.02 0.0 195.95 4793.5 37.78 83.15 172.77 196.07 0.0 195.96 4793.5 35.67 85.96 172.85 196.07 0.0 195.99 4857.2 35.67 85.96 172.85 196.07 0.0 195.09 4857.2 35.96 85.96 172.85 196.07 0.0 195.09 4857.2 35.96 85.96 172.85 196.07 0.0 195.09 4857.2 35.96 85.96 172.85 196.07 0.0 196.09 4857.2 35.96 85.96 172.85 196	N	172.79	195.23		•	4001 • D	41.70	653-95
112.77 195.78 0.0 195.95 4796.6 37.60 172.75 196.02 0.0 195.95 4796.6 37.78 37.73 172.77 196.02 0.0 195.95 4796.6 38.73 37.78 172.77 196.02 0.0 195.95 4793.6 38.73 37.78 172.77 196.02 0.0 195.92 4793.5 37.78 38.15 172.77 196.03 0.0 195.92 4793.5 37.78 35.67 172.85 196.03 0.0 195.98 4857.2 35.67 623.78 172.85 196.03 0.0 196.09 4857.2 35.67 623.78 172.85 196.02 0.0 196.09 4857.2 35.67 67.46	23	172.78	195.61	0.0	•		40 00	846-07
172.73 196.02 0.0 195.95 4789.6 38.73 647 172.75 196.02 0.0 195.95 4784.6 38.16 633.13 172.77 196.02 0.0 195.95 4793.5 37.78 631.47 172.77 196.01 0.0 195.92 4793.5 37.78 631.47 172.77 196.03 0.0 195.98 4793.5 37.78 631.47 172.78 196.03 0.0 195.98 4793.5 36.52 623.14 172.85 196.03 0.0 196.09 4857.2 35.67 623.14 172.85 196.02 0.0 196.09 4857.2 35.96 624.05	24	112.77	195.78	0.0	•	•	•	
172.75 196.02 0.0 195.95 4784.6 38.16 635. 172.77 196.01 0.0 195.92 4793.5 37.78 631. 172.77 196.01 0.0 195.92 4793.5 37.78 631. 172.76 195.98 6.0 195.98 4793.5 37.78 631. 172.76 195.98 0.0 195.98 4793.5 37.78 631. 172.85 196.07 0.0 195.09 4846.9 36.52 623. 172.85 196.07 0.0 196.09 4857.2 35.67 67. 172.81 196.07 0.0 196.09 4857.2 35.96 624.	25	172.78	196.02	0.0	P _ (
172.77 196.01 195.92 4793.5 37.78 631. 172.78 195.94 0.0 195.98 4793.5 37.78 631. 172.78 195.94 0.0 195.98 4793.5 37.78 631. 172.85 196.07 196.09 4846.9 36.52 623. 172.85 196.07 0.0 196.09 4857.2 35.67 624. 172.81 196.02 0.0 196.09 4894.0 35.96 624.	1	172.75	196.02	0.0	•	•	•	835. 38
172.76 195.94 0.0 195.98 75.95 52 623. 172.85 196.02 0.0 196.09 4857.2 35.67 -66. 172.85 196.02 0.0 196.09 4857.2 35.67 -66. 172.81 196.08 0.0 196.09 4894.0 35.96 624.	27	72	196.CL	0.0	•	•	•	121 - D1
172.86 196.03 0.0 196.09 4857.2 35.67 46. 172.81 196.02 0.0 196.09 4894.0 35.96 624.	8	172.70	Ç,	0.0	195.98	•	•	823.40
172.85 196.07 0.0 196.09 4857.2 35.96 824.0 172.81 196.08 0.0 196.09 4894.0 35.96 824.0	50		•	0.0	60*961	•	•	
			96.	0.0	196.09	٠	0 9 †	
	-	~	96.0	0.0	196.09	•	r 4	

i) N

6. 13	5-22-01 C 69.00		SPECIFIC			1137.	1231.	1220-				1241.	1348.	1401.	1453.	1505.		1521.	1414.	1321.	1250.				1024.		1015.	1011-			
PAGE	NG DATE 5 ATION, SEC		I SEN	EFF (I)		63.06	٠	٠	67.20	÷.,		- •			. 55. 69	54.09	22092	53.45		60.23	63-26			- 6	68-39	- A	-	Ņ	68.42	69.34	
	PROCESSING TEST DURAT	· · · · · · · · · · · · · · · · · · ·	EFF	(2)		6 8. 05	2.0	6 2.19	•		•	74.20	69.81		9	•	61.30		9	. 🔴	5	4	-	•		• 📌		3.4	63.64		
*		ETERS	TURB	÷ 9		61.89	ŝ	••	714.91	698.73	693•52	074.40		691.60	10-169		1.2	501-169	690.53	690.00	¥0°689	667.18	687.59	060.00	- 25°-26	683-86	83.3	-	673.79	16.444	61°67
UPP ASSEMBLY		P R R N	FLUTD	HP.		46.2	i •			m -			-	10201	446.5	433.6	122.5	0-024		ų 🔹						• (•		563.4		564.0
FK48-C En Turbopupp	•	9 1 1 1 1	PRESS	RISE			H •	N	86	15	5	83.	100 100	3311-0	3062.0	2951.2	2865 .6	2873.0	232103	3456.0	3716.7	\$005.1 -	202	435	4559.1	4 7 4 7 8 7	678.	685.	13	740.	
LIQUED CXYGEN		1 E 0	IIC AD		-	1684.3		5.7	73	9	657	5.0	9 7 9 9 7 9 9 7	577	- 4	269	0		677. 775.	72.82.1	1.9971	369	8760.9	9225.8	9468.7	0.1614	97 07.9	9716.0	9807.1	82	9892.C
		LCULA	PUMP	FLOH	רטי זכר	15,0819	5.341		6. J		m	φ, (37.4410	37.8366	38.0398		38.2118	36.0809	27.2532	36.8715	35.9724	35.3445	34.5041	33.4458	37.6340	20 61 9 72	32,1261		1.228	
	6 B1	C A	PLMP	FLOW				100.38	232.27	226.91	226.25	229.98	237.71	242.82	10-112	248.90	249.91	250.59	249.05	20 12 172	238.19	231.33	226.53	220.60	213+50	204.19		204-86	201.38	199.03	
	BER 6 TF 4-28-81		1651	SPEED		1763		0120	4	£7860.	67870 .	61554 .	67216.	67096.		67201.	67328.	61428.	29	2	£7156.	67563.	68024.	£86C7.	£8916.	(5272.	C 7 2 10 .	- 71C1	- 21 CP -	68557.	5072
·	RUN NUMBER TEST DATF		T M F	SLICE	N	-	- ~	• •	ۍ د	1	8	3	10		71		15	91	17	0 U		21	22	23	24	25 2'	02		50	OF	16

「いた」のないないで、このないというないというないないないないで、

5

Ķ

1.11

1

Contraction of the second states -

•1.•	5-22-81 5-22-81		FR SURD	0* 5950		0.5752	5	0.5749	1 5 1	0.5757	5	ň			12	0.5685	2	~ 1	0.5750	2	2		À	0.5833					
PAGE	SSING DATE 5- DURATION, SEC		BAL PIST K	•	.131			5		0-1528			2	_	9 0 9 1	4	- -	2	- 1		56	16	5	201	203	22	202		
	PROCESS TEST DU		(9/N) OVER (9/N IDES	0.9697	410			500	027	1.0670	` 0		Le1175		ni e	1.1064	0	9	1.0328	20		0-9136	+06*	.897	+68-			0.6727	
ATONS			PUNP DELTA T (DEG R)	4.57	4.37		22-20			22.76									2.		÷.,,				23.20	- Ni		23.27	ň
P ASS		<	FEAD CCEFF	4770	.4420	.4423	8 4	4984	4741	4425	C4114-0	3770	3008	0.34955	0.34944		0.42209	0.44893	0.47624	6165.	70C v		526	5267	.528	TEE2.	19851	538	
FK48-C CXYGEN TURBCPUM		6 a 0 1 0 1	I NLET FLCM CCEFF		0.85	.CR39	0.08664 0.08574	0.847	0	.0858	0, 00102 0, 00102	9690.		•0.94	• . .		·/ ·		•	ີ່	.	0.07494	1920		0753	.0740	÷0733	0735	.0729
LIQUID		C L L A T E	suc ti ch spec i fi c spee D	272	043.7	185.1	15042.37	4.7.7. 8.7.7.	1 52 99. 08	973.	16713.14	17187.77	17531.68	17686.24	17841.88	17846.43	112230.5R	16009-83	15400,86	14863.71	14303.61	13862-17	13467.01	12272.18	13128.30	12792.99	12626.04	12589.77	12410.35
·		CAL	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			436.82	283.24	201102	20	20	ლ. ლ.	15		83	98) در ج	57			41	32	9		 		10	11	. 69	~
,er	16k 6 16 4-28-81		TEST SPEED (RPM)		3462 . 29462 .	0376	19	1860	61810+ 61554		£7(96.	66650. 44997	61261 -	67328.	61428.	£ 14£2 .	61029.	- 71 C C		6E034.	CC,	di i	2126	64210.	r v	106	8957	: 72	a
	RUN NUMBER Test date	238	T IME SL ICE NO	•	- ~	1 6	س ا	• :	2 J	10	11	71	4	151	16	17	1.8		21	22	23	24	5.0	5		50	01	16	

PAGE 4-1:	SSING DATE 5-22-01 DURATION, SEC 69.00		32	(F1)	2368.05	2493.42	2319.70	299.69	298.96	291.97	262.74	267.68	263.85	257,55	254.92		261.92	274.09	282.32	290.45 296.97	307.44	312.71	319.37	24.3	322.61		
	PROCESSI TEST DU		MOR SE BOUEB		903.72	69*816	896, 63 225 30	922.31	913.53	.	929-50		915.63	904-09	696.71	89/481 900-44	920.38		•	925.90	907.02	666.56	2	~ !	865.17 		٩
ASSEMBLY		70000 RPM	PRESS	(154)	19.1064		3984 <u>.13</u>	80.9144	4416.01	4277.53	3974°70		- M - M - M	3202.18	3097.51	5040+34 2151,68	3469.98	•	4033.32	4 296. 74 4 448.51		-		4769.19	4789.15 / 403 63	•	
CXYGEN TURBOPUMP		TARGET SPEED =	HEAD	(FT)	8993.61	A333.94	8340.82	9217.20	9209.69	8938.88	8344.51 7755 42				6590.42	6701.00	7343.39	7958.22	R464.19	87.4.08 97.74 .69	9604.19	9768.83		1 8 -	9932.16 004/7 00		
riguro (SCALED TC	FLOW	(#/SEC)	34.85107	٠	35.63430		36.42179	37.13334	34- 04144	39.36332	39.59558	39,62414	39.62373	39,51360	39.33479	38.94435	38.41013	36.36611	35.20459	33.97167	13.24049	32.89884	32.66662 22 57868	2 . 0632	
	6 4- 28- 81		FLOW	(694)	224.98	235.41	231.32	236.L3	233. 35	238.31	253,33	256.20	258, 39	259.27	259.82	259.04	256.68	252.89	248.13	233.08	225.08	216.86	211.95	209.79	208. 31 207- 43	•	•
	RUN NUMBER TEST CATE		1 1 1 1 F	0N	-	~ 1	<u>к</u> ч) ~	æ	с (12	13	14	15	17	8 1	51	20	22	23	24	25	26		20	7

4

Ŧ

THE ROOM

F

.

;

	E 5-22-61 SEC 69-00		H	*	.05	-42		299.69	.96		12e 74 -		.05	.55	-92	22411	92	e09	-32	() , () ,		. (F	ei.				K	
PAGE	SSING DATE DURATION.		HE SH	. (FT	2388	2493-42		299	298	291	282	292	263	- 251	254	202	261	274	282	062	106	312	319	374	322		755	
	PROCESSING TEST DURATI		HOR SE PONER	(903.72	213=03	876.53 624.30	922.31	613.53	918.55	925.50	919.87	915.63	906.09	696.71		920-38) a i	934.34	925.90	907-02	Ň	878.19	671.06			852212	
P ASSEMBLY		- 70.000. RPN	PRESS Bice	(154)	4301.61	3970.23	20 4 ,13	80°0'164	4416.01	4277.53	3974.70	3670.50	353.		3097.51	3096,34	80°1616	3776.93	4033.32	4296.74	÷ (5	4790.38	4789.19	4789.15	D - 1	102224	
PK48-0 CXYGEN TURBCPUMP	1 1 1	TO DESIGN SPEED	HEAD	(FT)	8993.61	833,94	A340.82	92 18 .99	- 🏠	8938.88		7755.62	71.08.67	• •	6590.42	6588.30	00°10/9		. 4	8979 - 08	60°5176	9768.83	9937.2I	9932.95	9932.16	9960.	10062.40	
riguto c		SCALED. T	FLON	(#/SEC)	34-851 67	4515	ŝ	.3027	36.42179	1333	.3752	190.	34 . 36352 20 40558	• •	39.62373	39.66911	39.51360	38.94435	38.41013	31.25906	3661	33.97167	33.24649	898	3? • 66662	52.86	0032	1 200 · 1 C
	6 4- 2 9- 81	i	FLOW	4 H4 9 V	224. QR	235.41	231.32	236.60	230°13 723_35	236.31	247, 56	253.33	256.20 359 30	70°07	259.62	260,15	259.04	250.00	248.13	239.60	233,08	22.25° U8 21.6_ A6	211-95	209.79	208.31	-	203.99	Ν.
	RUN NUMPEK Zest date	240	1145	NU ICE	-	- 2	5	، ق	~ 0	- 0	CI	11	21	* *	5 5	1	11	8 1		21	22	55	75	26	21	28	5.5	50

		riguid c	(WK48-D CXYGEN TURBDPUMP A	AS S EMBLY	PAGE 6.17
RUM NUMBER TEST CATE	2 6 4-28-81	· · ·			PROCESSING DATE 5-22-61 Test Duration, Sec. 69.00
	 	SCALED TC	TARGET SPEED =	70000 . RPM	
T IME SL TGE NU	IND STAT PR RISE PSID	VCLUTE STAT PR RISF PSID			
•	P V				
- ~	1. 1. 1.				
ن م	381.73	0.0			
. ~	663.86	0.0			
€C (0.0			
• =	60c - 44 456. 71	0.0			
11		0.0	•		
	٠	0.0			
رد ال مر الم	200-02				
51	9	0.0			
91		0*0		-	
	244.23				
' 0r					
IG	-15	0.0			
	٠	0-0			
۱L	ER1.07	0.0			
۲ P/	725.52	C 0			<i>.</i>
١G	0 、 7 7				
с У Е (773.97				
IS					
26		0.0			
	795.84	0-0		n ar sans a dan sansa wa sugaran dan ar sa sa sa	and a sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-
241	ec3.23	0.0	•		
	10.	0.0			
32	614 A7				

<u>,</u>

÷.

and a second second

ł

A. Shang the approximation of the state of

				and the second
Ν.		I I GUI & CXYG	MK48-Û ien turbcpump Assem bly	PAGE 6.18
RUN NUMBER Test date	6 4-28-81		PROCESSING DATE TEST DURATION.	SSING DATE 5-22-01 DURATION, SEC 69.00
242 ,	I	SCALED TC DI	DESIGN SPEED = 70,000. RPM	
r IME SL ICE ND	[ND STAT PR R I SE PS[D	VCLUTE STAT PR RISE PSID		
- ~ ~	485.74 368.46	000		
۰ م ۰	201.57 252 252			
- 60	661.54	0.0		-
6 0 1	6C6.94 456.71	0.0		
	204.69	0.0		
12	241.35 220.00	c.0		
	200.64	0.0		
	194.34			
	200-85			
	347.69			
12	£27.90		·	
22	601°07	0.0	· · · · · · · · · · · · ·	•
5	725.52	0.0		
5 SC	14590 <u>6</u>			
26	19.611	0.0		
27	714.57	0.0		
87	10.011	0.0		
•	603+	0.0		
	E10+34	0.0		
	29-93	0.0	and the second se	•