"Made available under NASA sponsorship in the interest of early and wide dis. semination of Earth Resources Survey Program information and without liability for any use made there ot."

GEOLOGIC APPLICATIONS OF THERMAL-INERTIA MAPPING FROM SATELLITE

CT -144818

EROS Data Center....
Sioux Falls, Sa.

July 1981
Final Report - HCMM Investigation S-40256-B

```
Submitted by: Kennetl، Watson
Susanne Hummer-Miller
Terry W. Offield - Principal Investigator
U.S. Geological Survey
MS 964, Box 25046, DFC
Denver, CO }8022
```


TaEkMAL-iNEKaLA NAEELNG IK CM SATTELILE
Final refold (Guolojicai survey) tOy

Prepared for: GODDARD SPACE FLIGHT CENTER
HCMM Investigations
Greenbelt, MD 20771
RECEIVED

$$
\begin{aligned}
& \text { Aus:i 1981 } \\
& \text { म } 912.0 \\
& \text { HCM-C27 } \\
& 7,4 \text { III } 7 \text { al }
\end{aligned}
$$

technical report standard title pace

T. Moponno ${ }^{\text {2 }}$ Covernment Arrocion N_{0}	J hecipionti Cololog ${ }^{\text {co }}$
7. Tirle and subrite Geologic applicstions of thermal-inertia mapping from satellite	5Wepoti Dero July 1981 C Portorming Oigonitotion Code
7. Author(o) Kenneth Watson, Susante Hummer-Niller, Terry W. offield	- Pirtorming Oiganitotion Report No
9. Pertorming Ügenirafion Nome and Addiesi U.S. Geological Survey Box 25046 Federal Center Stop 964 Denver, Colorado 80225	10 Wort Unit Na_{0} 11. Conlioct at Giant No $\mathrm{S}-40256-\mathrm{B}$ 13 Fype al Repoll and Pulled Covered
12 Sponieting Apency lame ond Addions James C. Broderick HCRN investigative Support Goddard Space Flight Center, Code 902-6 Greenbelt, Maryland 20771	Type Ill, Finas Klowrt 12/77 to $1 / 81$ Ti Sponioning Apency Code
15. Supplementer Notes	

Thie etudy io an evaluation of BCray (Beat Capacity mapping Miesion) eatullite data so detect end mp eoologic featuree for energy-resource and moeral-deposit laveatigations. Io the Pouder Ruar Rasio, Wyo., merrow geologic undte having thermal inertias which contrant with their ourrounding can be diacriadiated in optimal fenges. A fev aubile but mppable chermal-inertia anomalieb colacide witb areas of hellua leakage believed to be asoociated with deep oil and gas concentrations. Siallar chaget vere not found in areas of uranium depoaita posilbly due to thear minor and diacontinuous mature at eatelilte resolution.

The coit laportant resulta involved delineation of tectonic framevork elements some of which vere not previously recognized. Thernal and thermal-inertia lmages also peralt apping of seomorphic testural domans. A theral lineament not on existiog geologic maps or decected on hadeat fages appeare to reveal a batement diecontiaulty wich involves the fanous Rosestake Mine in the Black Hill, a zone of Tertiary igneous actioity and facien control in oil-producing borizons.

Applicatione of these data to the cabeza Prieta, Ariz., area illuatrate their potential for igneous rock-type diacriadnation. Exteneion to fellowatone Nutional Park resulted in the decection of additional atructural information tut eurface hydrotheral festurea could not be distinguished with any confldence.
advancer to modeling and lage analyola included the development of a dev thermalinertis mpplag algorithm, fast and accurate inge-registration rechnique, and an efficient sopographic-siope and elevation-corraction method.

[^0]
1.0 PREFACE

1.1 OBJECTIVES

- The principal objective of this study was to investigate applications of HCMM (Heat Capacity Mapping Mission) satellite data in detecting and mapping geologic features for energy-resource and mineral-deposit studies. Other, related objectives invelved the development of new techniques and approactes in thermal modeling and image processing.

1.2 SCOPE

The analysis was somewhat restricted by the limited number of sequential day/night image pairs free of major atmospheric/weather problems. For the Powder River Basin, Wyo. area, a aingle thermal-inertia image was formed using 20 August 1978 data. Four additional nighttime scenes were used to examine geologic formation boundarses and thermal lineaments. The analysis of the Cabeza Prieta, Ariz., area was done using a thermal-inertia image constructed from data acquired April 3 and 4, 1979. No successful U-2 aircraf data acquisition flights were conducted over these two sites so that comparison of different resolution thermal data was only conducted using USGS aircraft data. Despite all thes limitations, significant geologic information was derived in this study, and the results suggest the importance of a follow-on thermal satellite experiment for improved mineral and energy resource exploration.

1.3 CONCLUSIONS

Despite liaited data, investigations in the Powder River Besin area of castern Wyoming and adjacent States clearl showed that geologic units as narrow as two or three resolution elements, but of moderate to high thermalInertia contrast against surroundings, can be discriminated in optimal images. It appears likely that subtle facies differences in sedimentary basin-fill units can be delineated and mapped using satellite thermal-inerta images, especially if sequential images can be obtained during a drying cycle after rain or anos. A few subtle but mappable thermal-inertia anomalies coincide with areas of anomalous helium in soll gas believed to indicate ieakage from deep oil and gas concentrations; the presence of thermal-inertia anomalies suggests that gas leakage has produced chemical changes and cementation at the surface. Such changes also are known to be associated with shallow uranium deposits and changes were looked for but not found in the thermalInertia images; it is thought that the surface changes in this area are too minor and discontinuous to be detected from satellite.

The most consistently practical and important results involve delineation of tectonic framework elements such as lineaments bounding apparent structural blocks. These commonly can be seen even in less-than-optimal data. One pair of major thermal lineaments in the southern Powder River Basin seems to define structures not previciusly recognized but consistent with, and adding importantly to, an emerging story of basement-block movements and their direct Influence on sedimentation, which in part controls the occurrence of large oil and gas resources. One of these lineaments matches up with aeromagnetic map data and appears to reveal basement discontinaly which underlies the famous

Honestake Mine in the Black Hills and a zone of Tartiary igneous activity. Along with the newly identified lineaments, the thermal leages also permit apping of geomorphic textural domains. The gar agic aignificance of these is not yet understood, but it seers likely th they connote structural and lithologic conditions which affect or control local ground-water reyimes. Similar applications of HCMM data to the Cabeza Prieta, Ariz., area illustrate the potential of using themal-inertia data for discrimination between extrusive and intrusive rocks and for detecting differences in the mafic content of volcanics. Other results included detection of differences among surficial units - tentatively ascribed to changes in soll-molsture retention, dissovery of discrepancies in existing geologic maps, and possible application of the thermal-inertia technique to mapping buried pediments.

Extension from beyond the originally proposed study areas to Yellowstone National Park was made to examine the usefulness of HCMM data in geothermal studies. Although we found that the night-thermal dats could not be used with any confidence to distinguish surface hydrothermal features, we did detect additional structural information concerning the outline of the caldera which is the source of the volcanic heat. This reinforces our conclusion that a major utility of these data is in providing information about local-area or regional tectonic framework.

We have also made significant advances in modeling analysis and imageregistration techniques. A thermal-inertia mapping algorithm has been developed based on new method tic derive the regional meteorologic parameters solely from the satellite data. An algorithou for detemining the sensibleheat flux from ground-station data was also constructed. Simple forms for

Lour of the atmospheric fling terns were constructed fron fleld masurements eade during circumstances when satellite data are likely to be most useful. These forms elisinate the need for extensive continuous ground etation data. Aso, method to correct thermal and thermal-inertia data for elevation variations in sky and solar flux was detergined. In addition, we have devised a East topographic adfustment algorithm which can be used in conjunition. with digital terrain data to correct the chermal-inertia image for simple topographic slope effects. Finally, fast image registration technique was developed that proved to be considerably more accurate than the NASA registered products.

Our analysis of the HCMM data has resulted in the recognition of features which suggest the existence of previousiy unmapped and unknown geologic structures. Their relationship to other geophysical and geochemical data provides important information for a basic resource-exploration strategy. Additionally, substantial progress has been made in modeling and image-processing techniques. This report covers new areas and represents significant advances In the processing and interpretation of thermal satellite data and in the integration of thermal-infrared data in regional geliogic exploration.

1.4 RECOMMENDATIONS

From our experience to date, we would recommend that serious consideration be given to follow-on thermal satellite mission with these general characteristics.

1. The current $N E \Delta T$ of $H C M M$ seems adequate for most regional studies. Higher thermal resolution does not appear necessary.
2. Some increase in ground resolution (posisibly 100-200 m) would be useful; however, there are tradeoffe to consider nere. The 500-m resolution from hCMM has proven very useful for regional structures - it does not appear promsing for detecting alteration.
3. Some increase in the repeat tmes over a site is desirable. The HCMM data we have seen have often baffled us because of changing weteorologic effects. The increased repeat time would enhance the chances of "stableclear" conditions and also provide coverage of regions under several meteorological and soil moisture conditions. The repeat time involves the orbit parameter selection; a 5-10 day repeat of coverage would be desirable.
4. The curren: overfight times of HCMM appear appropriate for geologic analyais. It should also be noted that the daytime maximum represents an optimum time to acquire multispectral thermal measurements as well.
5. Our analysis of $H C M M$ data requires registration of day and night images and subsequent registration to a topographic base. The registered data provided by NASA often contained large registration errors. An essential requirement for analysis of these data is that the clear scene images be registered (day/night images) to a pixel, and to digital terrain data, if this registration accuracy cannot be achieved routinely, it is recommended that registered products not be provided to users.

CONTENTS

Page
1.0 PREFACE 1
7.1 OBJECTIVES. 1
1.2 SCOFE 1
1.3 CONCLUSIONS 2
1.4 RECOMMENDATIONS 4
2.0 INTRODUCTION. 10
2.1 GEOLOGIC SETTING. 11
2.2 APPROACH. 12
2.3 RESULTS 14
2.3.1 Thermal-inertia mapping for discrimination of
geologic features" 14
2.3.1.1 Delineation and subdivision of geologic units. 14
2.3.1.2 Geomorphic domains and linear features 37
2.3.2 Application to resource studies. 48
2.3.2.1 Oil anc gas. 48
2.3.2.2 Uranium. 51
2.3.2.3 Geothermal flux. 53
2.3.2.4 Mapping geologic unite in an arid desert environment 56
3.0 MODEL DEVELOPMENT 63
4.0 DIGITAL IMAGE PROCESSING. 66
5.0 REFERENCES. 70
5.1 APPENDIXES. 73
5.2 REFERENCE MATERIAL. (7

ILLUSTRATIONS

Figure

Page

1. Night thermal iage, July 30,1978 , of the Powder River Lasin, Wyowing, delineating the fold nose in the Meaverde Formation and the Frontier formation iniler. The standard convention of dark for low values and light for high values is employed on all Lmages in chis report. 15
2. Fold nose of the Mesaverde Formation as expressed on the July 30, 1978, nightime HCMM image. Boundaries are from the state 8eologic map .16
3. Inlier of the Frontier Formation as expressed on the July 30, 1978, nighttime HCMM image.18
4. Night thermal image, September 5, 1978, of the Powder River Basin, Wyoming, howing the discrimination of the Pumpkin Buttes19
5. Day thermal image, August 20, 1978, of the Powder River Basin, Wyoming, showing thermal boindaries. 21
6. Night thermal image, August 20, 1978, of the Powder River Basin, Wyoming, showing cunspicuously warm areas. The unlabeled ines are profiles $A-A^{\prime}$ (north line) and $B-B^{\prime}$ (south line). 22
7. Thermal-inertia image, August 20, 1978, of the Powder River Basin, Wyoming24

8a. Base map of the Powder River Basin, Wyoming, showing the location of the clinkers with respect to the warm areas which have high thermal inertias26
8b. Comparison between proflles of cotal count gama ray and theanomalously wart areas $2 k$
9. Thermal-inertia profile of line $A-A$ ' 29

- 10. Elevation profile of line $A-A^{\prime}$ 31

11. Topographic-gradient profile of line A-A'. $3:$
12. Thermal-inertia proflle of line B-B' 3.4
13. Elevation profi': of line B-B' 35
14. Topographic-gradient profile of ifne B-B'. 36
15. Night thermal image, Septewber 27, 1978, of the Powder River Basin, Wyoming, showing the lineament 39
16a. Landsat image of the Powder River Basin area, Wyoming. Themosalc line is present roughly 100 km west of the Black Hillsand run north-south.41
16b. Illuminated (0930 hrs, molar decilnation - -7. 8°) toposraphyimage of the Powder River Basin, Wyoming, showing the dividewhich is coincident with the thermal ineament
16. Total intensity magnetic field formine map, central PowderRiver Basin. 4318. Ground-water temperatures in the Madison Limestone and equiva-lent rocks44
17. Location of the HCMM thermal lineament with respect to thestructural lineaments.45
18. Location of helium anomalies, uranium fields, and oil-gas fields in the Powder River Basin, Wyoming 40
19. Mayor therasi and Landsat ilneamente transecting the outhern part of the Powder Rivar Rasin, and boundaries of sopographic- temperature domins. 5 52
20. Areas of underground coal flreb wewr Sheridan, Wyn., as seen on HCMM and aircraft thermal data 5:
23a. N1ghttime thermal image of Yellowstone Park with the caldera outlines 55
23h. Location of hydrotheral featurc: within Yellowstone Park with the caldera outlined 55
24a. Nighttae temperatures of known hydrothermal features. 57
24b. Ranking of thermal night anomalie 57
25a. Landsat image of Yellowstone Park with the caldera outlined. 58
25b. Gravity map of Yellowstone Park with the caldera outilned. 58
21. Thermal-ffertia 1mage, April 3-4, 1979, of Cabeza Prieta,
Arizona 60
22. Flow chart of the image processing procedure $6:$
23. Estimates of thermal inertia of various geologic materials . . .b)

2.0 INTRODUCTION

The BCMM data thich we have examined have provided us with unique geologis information which is both coaplex to amaze and difficult to explain. in Bone casek we are astonished to see subtle distinctions of atructure and geologic materials that are not found on detalled geologic maps. In other cases we are unable to differentiate widely disaimilar geologic aterials or Identify features which are clearly described on regional geologic waps or Landsat images. Commonly, geologic features are clearly displayed on a angle 1aage or part of an laage and not on others. Further complicating the analysis of these data has been the experimental nature of the satellite misaion, Which has introdiced both significant time lags between data acquisition and interpretarion, and unique constraints in image registration and data calibration.

This report comprises pieces to a puzzle-a puzzie with tantalizing new Information lut sufficient gaps to preclude a complete overall assessment. We have examined the geologic implications of the HCMM data in the Powder River Basin of Wyoming and subsequently extended the analysis to the Cabeza Prieta area in Arizona. Enhanced nigittime images, thermal-inertia images based on our new algorithm, and several profiles of various data across the basin are presented in our analysis and subsequently compared with other map data (geologic, magnetic field, known areas of 0il, gas, and uranium occurrence, helium anomalles, and ground water). Of equal importance with the geologic interpretation has been progress in modeling, We provide several new algorithms: thermal-snertia mapping, estimation of regional meteorological information from the fundamental remote sensing data, registration of satellite day-night

1eages, elevation correction of thermal and thermal-inertia data, and determimation of censible-hat $\{$ lux. The concluding section of chid raport addresmes our laage procese:" techniques together with a listing of the computer prosrans used.

2.1 GEOLOGIC SETTING

The study areas are the Powder River Basin and environs in astern Wyom Eing-Montan and the adjacent Dakotas and the Cabeza Prieta Range in outhwest Arizona. The Powder Ruer Basin (lat. $42^{\circ}-45^{\circ} \mathrm{N}$, , long. $103^{\circ}-107^{\circ} \mathrm{W}$) has large potential for coal, ofl and gas, and uranium, and accordingly is now the target of several mar geologic, water-resource, and land-use mepping prom jecta. Covering an area of bout $250 \times 400 \mathrm{~km}$, it is aemi-arid region of rolling low hille typically with thin to moderate grass and age cover. Tertiary rock units (Fort Union and Wasatch Formations) In the central area of the basin, where the energy resources are known to occur, are exposed on scales afficient for ratellite measurements. The lower part of the fort Union is sandstone exposed in belts 4 to 10 km wide; the upper Fort Union part 1: siltstone with major cosl beds exposed in belts 10 to 30 km wide; and the Wasatch is siltstone and claystone covering areas 30 to 60 km wide.

The Cabeza Prieta Range in Arizona (lat. $32^{\circ}-33^{\circ} \mathrm{N} .$, long. $112^{\circ}-115^{\circ} \mathrm{W}$.) Is a proposed Wilderness area, and the USGS has begun a program to define the gnology and ainer_l-resource potential of this virtually unmapped area. The State seologic eap show the area to contain granite, shift, eafic voleanic rocke, and alluvium. It lies very mear the major mineral district at Ajo, Ariz., and contains old prospect developments in hydrothermaly altered
ground. Because the area has been withdrawn from public access aince World Wor II, the geology and aineral potential are barely known and thus the area is considered relatively important for modern study.

2.2. APPROACH

Initial data interpretation was performed by visual pattern recognition of areas significantly different than their surroundings. Several 1:1,000,000-scale photographic enlargements were made of the NASA thermal and reflectance images to match them to many of the other existing dsta map products (geologic, geophysical, topographic, Landsat lineaments, and so on). Because of the $X-Y$ distortion and the large pagnification, this methot was not entirely satisfactory for detailed stady. We then generated film products from the computer-compatible tapes (CCT's) and used a zoom transferscope with X-Y stretch capability to register the projected images onto a stream-network map. In most local areas, this permitted plotting of features to within one to three pixels of their true ground position. Few of the interpretations based on the temperature boundaries or on other features are significantly affected by this degree of mislocation.

During this stage of the investigation, we also discovered that the NASAsupplied ΔT and thermal-inertia images contained artifacts, such as double drainage, indicating misregistration in parts of these images of severil to many pixels. Consequently we developed a registration algorithm (Watson and others, 1981 b) which regieters data to within two pixels. Also as part of the investigatira, we developed a new thermal-inertia algorithm (Watson, 198la) which was employed during the remainder of our analysis. Correlation of these
registered laze products with the other geologic-geophysical data was performed priantily by using opilcally enlarged projections of the data on diglcally enlarged fage product at acale of approxiwately 1:200,000. Thin Encbled us to examine subtle features at the pixel level and also to employ our full profiling and hiatogram capability at the full dynamic range and resolution of the digital iage data. We have thus been able to quantify many of the ecene differences which had been observed on varlous lame products.

We also examined the use of color-coded images for enhancing subtleties In the sene contrast. Generally this provided are obvious demonstration of differences but did not appear to add any new information. Toward the end of our study, however, a color-coded thermal-inertia image was produced which provided a new - if unexplained - perspective of the ocene. A north-nothaést-trending rectangular pattern of ground, eurrounding the Black Hills and roughly corresponding with major changes in the drainages of the Yellowstone and Missouri Rivers was observed In retrospect, this feature can now also be seen on the black and white products. The color-coding of the image was also very useful tool for quickly determining the numerical range of values. With an approprinte color-acale and uilng a high-powered magnification lens, it was posible to determine the thermal-inertia ranges of many geologic units quickly. In both these respects the color-coding can be regarded as a useful but not escential element in the analysis.

2.3 RESULTS

2.3.1 Thermal-inertia mpping for discrimination of geologic features

2.j.1.1 Delineation and subdivision of geologic units

Discrimination studies have been somewhat limited by the lack of sequential day-aight image pairs free of major atmospheric/weather problems, but the 20 August 1978 set of day (AMO116-20010-1,2 and AAO116-20020-1,2) and night (M0116-09040-3) scenes and our constructed temperature-difference (ΔT) and thermal-inertia images show several geologically significant feetures. Other good nightime data from 30 July 1978 (AA0095-09170-3), 5 September 1978 (AA0132-09050-3), 27 September 1978 (AAO154-09190-3), and 10 June 1979 (AN0410-08450-3) passes have been used for delineation of several geologic boridaries, including some not within the area of, or not identified $i n$, the 20 August 1978 data set.

A measure of discrimination capability, using optimal images anc selection of geologic units which contrast well with their surroundings, is the clear delineation of the Mesaverde Formation. South of the Bighorn Mountains, In the vicinity of the towns of Midwest and Edgerton Wyo., the Mesaverde - a relatively massive sandstone - crops out between the Fox Hills Sandstone and the Cody Shale. On the night image (fig. 1) for 30 July 1978, all three units are relatively warix; however, the Mesaverde can be traced as a distinctly varmer unit ($1 / 4^{\circ}-1 / 2^{\circ} \mathrm{C}$), along at least 40 km of strike length in which a fold nose is clearly defined (fig. 2). The Mesaverde outcrop here is $1-2 \mathrm{~km}$ wide or $2-4$ resolution elements (pixels).

10 K

0	10

Figure

Southwest of that area, south of the town of Powder River, within a large area of Cody Shale, is a sandstone inlier of Frontier Formation surrounding older shale and sandstone of the Cloverly and Morrison Formations. In the 30 July iaage, the frontier is clearly a warm annulus around a cool center of the other unics (fig. 1 and 3). The unite in the cool central area are about 5 ka wide and the warm Frontier annulus is 3.5 km wide. What is additionally interesting in this area is the apparently clear definition of aimilar but smaller such feature to the northwest which does not match the shape of the contacts on the most recent geologic map (Love and others, compilers, 1955). This feature has not been field checked.

Another measure of discrimination is found in the area of the Pumpkin Buttes. These are very sharply defined in the 5 September 1978 night image (fig. 4). North Butte is about 3 km wide, and the combined topographic/geologic prominence of Middle and South Buttes measures about 4 by 8 km . These are warmer than their surroundings, as is expected of tuffaczous sandstones of the White River Cormation, dense and resistant enough to form buttes where erosional remnants lie upon the softer sandstones and mudstones of the Wasatch Formation. Once again, when the geologic map was projected onto this HCMM scene, differences were observed. Unfortunately, on our only thermal-inertia image, clouds were present over the Butces preventing the observation of the expected thermal-inertia contrast.

Definition of geologic features is highly variable from pass to pass and Within eingle passes. The 30 July image (fig. l) is excellent for the north half of the Powder River Basin and the areas west and southwest of the Basin. The image appears virtually washed out in the south half of the Basin,

ауо
Wyo . . showing

Figure 4.-- Night thermal image, September 5, 1978, of the Powder River Basin.
Wyo., showing the descrimination of the Pumpkin Buttes.

100 Km 0
 -

$$
107^{\circ}
$$

105°
showing high temperatures in an area conspicuously cool in all the other 1amges. Because the image was examined long after it was acquired, it was not. possible to obtain detalled field eeteorological data. This is generic problem in dealing with transient and local phenomena that comonly affect thermal surveys. Air temperature and precipitation data how fairly similar conditions at the 28 weather stations throughout the scene. From these data, the intrascene variations cannot readily be ascribed to local weather/woisture changes; however, the NOM and DMSP (Defense Meteorological Satellite P:ogram) Satellite data show that a jor weather front had recently passed through the basin. Such intrascene differences are less pronounced or even absent in other passes, but none of the others expresses quite the same degree of geologic feature definition as the good portions of the 30 July image.

The multiple data sets of 20 August contain considerable geologie information, especially in comparing patterns seen variously in the day theral, night thermal, $\triangle T$, and thermal-inertia images. The day thermal image (fig. 5) shows large areas of warm ground north and east of the Black Hills. These do not correspond to lithologic subdivisions on any available geologic maps, nor to any patterns of wather across the scene during the previous few days. Small individual features of interest in the image are cool areas around the Tongue River and in a belt of small patches trending north-south up the center of the southern part of the basin. The very warm drainage area west of the Black Hilis and the warm area south of the Black Hills are also noteworthy. The aight image (fig. 6) offers busier patterns of finer scale definition, dominantly related to the topographic character of local areas. Much, but not all of the high ground between streams, is conspicuously warm. The long,

Figure 5.-- Day thermal image, August 20. 1978, of the Powder River Basin. Wyo.. showing thermal boundaries.

Figure 6.- Night thermal image, August 20, 1978, of tha Powder River Basin. Wyo.. showing the conspicuously warm aress. The unlabeled lines are profiles $A-A^{\prime}$ (north line) and B-B' (south line).

etralght Pouder River eeparates warn ground on its east flank from cooler ground on its west flank. This le not just on effect of east- ve. wesi-facing elopes, because most other stream areas do not show the same effect. The north-south belt in the southern part of the Basin shows as very warm patches of ground. Very warm areas ring the east flank of the Black Hills and occur Just to the north throughout the Bear Lodge Mountains, but these do not correspond to the mapped seology, Other contrast stretches were tried including color silcing but the correlations of temperature areas with geology did not Improve. What does appear to be true, however, is that within the Powder River Basin, conspicuously warm areas are much more abundant in the north half. For the most part, this is a result of grater dissection of the terrain and more exposure of bedrock, as compared with few outcrops and abuntant windblow sand veneer in the south hali.

Analysis of the thermal-inertia images, derived from our registration and modeling algorithms, showed that the Tongue River areas of cold ground in daytime are, in fact, areac of high thermal inertia (2000 Thermal inertia units (IIU); 1 TIU $=1 \mathrm{~W} \sec ^{1 / 2} \mathrm{~m}^{-2}$). These areas (fig. 7) correspond quite well to areas mapped by Raines (Ralnes and others, 1978), using computer enhancements of landsat images. They were mapped as the coarsest, sandiest lithofacies unit in the basin, which are relatively indurated and resistant and should crop out best and, depending on molsture conditions, should have the highest thermal inertia of the subunits in the Wasatch and Fort Union Formations. Other such correlations exist for several areas of this facies southeastward toward the Black Hills. Areas of the Wasatch and Fort Union, sampled from various parts of the hasin and which appear to be representative

ORICINAL PACE IS OF POOR QUALITY

Figure 7.- Thermal-inertia image, August 20, 1978, of the Powder River Besin. Wyo.

of larger surfounding areas have therma-inertias of 1525 TIU and 1450 TIU, respectively. However, the therad-inertia of thesc two undts varlea conaiderably throughout the basin and in some cases values for thece ewo units are statistically inseparable. A possible explanation ia that these units generally form low or flat topography where windblown sand obscures the underlylng geology in extremely irregular (and unapped) patterns. Another reason is that these units retain moisture differently and longer than sandier facies, and thus may have great irregularitien in both thermal-inertia valuen and wind cooling patterns. If they are slightly wet, and not cooled by surface winds, their thermal inertia will be higher.

The north-south belt of high thermal inertia (fig. 7) was initially thought to correspond to burned ground over ancient natural coal fires. The night siermal image (fig, 4) was carefully regintered to base map and a composite map was made showing the areas of clinkers (as determined from a color ratio composite Landsat image) and the warm areas on the HCMM amage (fig. 8a). We then examined the thermal-inertia image and determined that the clinker areas in fact have an intermediate thermal inertia ($1300 \mathrm{Tl} \mathrm{J}_{\text {) and }}$ ane $\mathrm{N}-\mathrm{S}$ belt of warm ground in the night image fust east of the clinker hills has a higher thermal inertia (1500 TIU). This north-south belt has been mapped in detall and the surface, ology frovides no clue as to why these areas have high thermal inertia. This dous not conform with conditions produced where windblown and accumulates in the lee of topographic highs. It is suspected that the highly fractured clinker hills are readily drained of their nearsurface moisture and this ground water tends to pond just eastward in the direction of firmal drainage, causing an increase in thermal inertia. This

Figure Ba.- Bese map of the Powder River Bacin, Wyo.. -howing the looation of the olinkers with respeot to the warm erese which have high thermel tnertias.
hypothesis in given credence by an examination of the NURE saman-ray profiles In chia area. These areas coincide with lows in the total gamaray meanurueent (fig. 8b) an would be expected for arean of higher molature content.

A rough order of magnitude estimate from thear data in that the anomalous arean are anociafed with a 20 percent increane in thermal inertia and ab to 10 percent decrease in the total count values. The thermal inertia of solls increases rapidly with increasing moll molsture content and the effect can be entimated for low mointure contents by considering only that fucreaso due (o) density and apecific heat capacity. The ratio of the fractional change in thermal inertia to density is just one half the ratio of the apecific heat capacity of water to moll or approximately 2.5. Thus a 20 parcent increabu fil chermal lnertia could be producod by a soll molsture change which increases the density by 8 percent iond decrenses the total conat by an equivalent percent).

To examine the basin further, two northwest-southeast profilem across the 20 August image (fig. 6, profilos A-d', $B-B^{\prime}$) were constructed. Thesc prufiles onabled us to look in detall (pixel level) at varlations in thermalm Inertia values and to examine relationships between temperatura or thermal. Inertia patterns mind topography. Topographic data were taken from $1: 2$ hu, (lid USGS base maps with a contour intervad of 200 fect. Figures 9 through la show profiles of chermal-inertia, elevation, and topographie gradient along limes $A-A^{\prime}$ and $B-B^{\prime}$.

The proflles on $A-A^{\prime}$ have several literesting features. The line beflas In the Wasatch Formation at the northwest end, and thermal-inertia values (fig. 9) decline into n broad low, about colncident with the Powder River

Figure bb.-- Comparison between profile of total count gamma ray and the anomalously warm ares. The etralght lines indicate the geographic poettion of the profiles.

Figura 9.-- Thermal-inertie profile for line A-A'.
dralnage ween so clearly in the topographic profile (fig. 10, 11), and then rise. This low approximately marka the basin axis, and the adjacent slopes of the thermal-inertia profile show the character of the upper part of the Wasatch on either side of that axis. The topography itself is somewhat different on opposite flanks of the Powder River drainage, and this probably explains the previous observation that the night-temperature image showed the two flanks differently, even though the themal-inertia image indicated the two flanks to be underlain by aimilar material. The flanks have different slopes and bed dips, and the western flank generally is dissected more sharply and deeply than the eastern flank. At the next large drainage east of the Powder River, the thermal-inertia profile breaks sharply, suggesting either a previously unmapped lower unit of the Wasatch or a sharp change to the somewhat finer grained facies which has been noted in the lower part of the formation. Along thig profile the Fort Union Formation has a roughly estimated average value of 1425 TIU , as compared with an equally rough, general average of the Wasatch of 1625 TIU. This difference is about what would be expected from the compositions of the two formations, although they are rather nonuniform on the scale of the whole basin. The "typical" areas of Fort Union and Wasatch that were sampled gave values of 1450 TIU and 1525 TIU , respective1y. A sharp break in the thermal-inertia profile occurs between the two formations, but it falls 4 to 5 km west of the contact as shown on the gevlogic map. A break or dip also occurs in the profile at the contact of the upper (Lebo Shale) and lower (Tullock) members of the Fort Union, but overall the members have about the same thermal inertia. The elevation profile shows a marked change in character of topography from Wasatch to Fort Union, as does

Figure 10.-- Elevation profile for line R-R'.

Figure 11.-- Topographic-gradient profile for line
the topographic-gradient profile. The wara north-south zone is narrow but prominent theraal-inertia spike in the lower part of the lebo Shale Member of the Fort Union. The Pierre Shale has the lowest thernal-inertia of any units along the profile (about 1330 TIU), in huge contrast with the adjacent spikes which mark Keyhole Reservoir.

Line $B-B^{\prime}$ presents a rather different character in the profiles. The Wasatch thermal inertia ($£ 1 \mathrm{~g}$. 12) is not at all like that on line A-in'; most of its width on line $B-B^{\prime}$ is an area of unexplainedly low values which mark a very distinctive and nonrepresentative area within the widespread formation. Wasatch with relatively normal-appearing thermal-inertia image character appears next to the cloud area at the northwest end of the line; there its estimated average thermal inertia is 1550 TIU , only 5 percent different from that seen on line A-A'. The area of low values does not appear to be related to microclimatic factors, nor to any geologic feature cf which we are aware. For example, neither here nor elsewhere in the image area do thermal-inertia values closely and consistently correspond with the inferred lithofacies areas delineated in Landsat images. On this line, the Lebo Shale Member of the Fort Uaion has a roughly estimated thermal inertia of 1750 TIU, higher than the representative Wasatch values. Most of this is in the broadest part of the north-south warm zone, however, so the values almost certalnly do not represent normal character. The Tullock Member of the Fort Union is estimated at 1300 TIU, almost 10 percent lower than the Fort Union of line A-A'. Such a change is believed to be both real and aignificant in terms of the geology, but no data are available as to possible lithologic changes of the unit between the two profile areas. The Pierre Shale has a thermal inertia of 1260

Figure 12.-- Thermal_inertia profile for line B-B'.

Figure 13.-- Elevation profile for line B-B'.

TIU, about 5 percent less than observed on line A-A', and agaln the lowest values of any seologic unite on the profile. High and highly variable thermal Inertia is ceen in the Blact Hills portion of the profile as expected in an area of alternating high vegetation density and bare rock exposures.

From this analysia, it appeare that thermel data, especially when coupled with topographic information, can aid materially in discrialnating geologic formation and eaber differences, even (as in the Powder River Basin) where units are so variable and exposures so poor that seologints have had real problems or have been unsuccessful in uuch efforts. It appears that thermalInertia differences of perhaps as little as 5 percent, and certainly 10-15 percent, can be delineated and used in aupping, probably in terme of both rock units and generalized soils chara-teristics. So far, patterns seen in ther-mal-inertia inages do not math with vegetation patterns seen in landsat images and believed to correspond to abtle facies differences. This problem needs further investigation; it may relace to difference in resolution of the two satellites and to differences in depths "seen" by thermal-inertia measurements and vegetation root systems.

2.3.1.2 Geomorphic domains and linear features

An interesting and important aspect of using thermal-inertia images is that erroneous impressions gained from temperature patterns are corrected and a truer picture of surface properties obtained. Thie is particularly true of alght thermal data. For example, the very warm zone around the Black Hills in the night laage (fig. 6) disappears in the thermal-itertia image (fig. 7), and a whole new pattern emerges. The contrast of opposite flanks of the Powder

River aleo disappears, indicating no besic diffarence in geologic materials acrose the river. Thus we can use theral, albedo, and thereal-inertia data In concert to eaparate physical properties differences (integrated over the top decimeter of the eoil or rock profile) from those effects due to such parameters as slopa, altitude, and eurface reflectance.

For the units underiying most of the Powder River Basin, presently avallable theraal data and derived producte show many unexplained patterns, some of which probably were due to transient (and now untrackable) atmospheric events. Others, however, are belleved to reveal real diffarences in the seologic materials, but current map in general do not offer a sufficiently decalled base for correlation. Certainly some correlations are found with Landsat-mapped lithofacies, but more day-night pairs covering varying moisture cycles would have been necessary to see through such "noise" as windblown sand, surfacewind cooling patterns, and local moisture variations.

Linear features, of ten long reaches of streams that appear straight at HCMM resolution, are readily defined in the night images. Many of these coincide with breaks or trends in contoured aeromagnetic data, suggesting that basement tectonic elements have printed through the thick sedimentary sequence to control stream courses. This implies that during sedimentation at earlier times, such features effected some control of sedimentary depositional patterns a conclusion recently elaborated for the Powder River Besin (Slack, 1981).

The most remarkable, previously unrecognized, linear feature appears prominently on the night lage of 5 and 27 September (figs. 4 and 15) and also 20 August (fig. 6). Although it is not recognizable as a discrete linear

feature on Landeat lmages (fig. 16a), topographic data (fig. 16b) show this ilneasent as abtle dralnage divide trending about $N 55^{\circ} E$. On the thermal Leages the gouthward-facing eide is cooler by 3° or $4^{\circ} \mathrm{C}$, and on the 20 August thermal-inertis image (fig. 7), the south side has a 17 percent lower thermal inertia (1215 TIU) than the north side (1460 TIU). Thus, the feature correlates with a subdued drainage divide but it cannot appear due to the slope effect and must represent - at least in part - a physical property difference across the divide. There is no explanation in exieting geologic maps (at scales fro's $1: 24,000$ to $1: 500,000$) for this feature or why it separates temperature and topographic domains. The divide is parallel to the prevailing wind direction from the west-south-west as shown in colian deposits south of the divide. Moreover, the divide also marks a change in direction of wind deposition; deposits to the north are laid down by winds from the northnorthwest. It is possible that the relatively common eolian sand cover south of the divide has controlled drainage habit creating the distinctive topographic texture, and the sandy veneer might possibly cause the domain to have lower thermal inertia due to lower moisture retention. It is not likely, however, that the divide lineament itself is wind related. Extended to the northeast, it continues through the linear gap (of the same strike) between the Black Hills and the Bear Lodge Mountains. More important, it directly overlies one of the most significant breaks (fig. 17) in the aeromagnetic-map pattern (U.S. Dept. of Energy, 1979 a, b, and c) of the whole area, it is parallel to and roughly coincident with an inflection in the ground-water temperatures of the Madison Limestone (fig. 18), and its trend passes through several Tertiary intrucives (fig. 19) and possibly even through Lead, South

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

Figure 16b.--Illuminated topography image of the Powder River Basin, Wyo., showing the drafnage divide which is coincident with the thermal lineament. The image was computed with a solar decilnation of -7.8 degrees and local time of 0930 hrs.

Figure 17.- Total intensity magnetic field formitne map, central Powder River Basin, Wyo. (U.S.Dept of Energy, 1979a-d). The heavy black line shows the position of the thermal lineament.

Figure 18.-- Ground water temperatures in the Madison Limestone and equivalent rocks (Head and others, 1978). Heavy black line indicates position of the thermal lineament.

\therefore Tertiary intrusive rocks

STRUCTURAL LINEAMENTS
－ーーーー－HCMM LJNEAMENT

HYDROCARBON PRODUCTION

Lamatis Upper pert of Muddy Sandetone
－＿．Lower pert of Muddy Sendetone 0 50KM

Figure 19．－－Location of the thermal lineament with respect to etructural linaments （Slack，1981）in the Powder River Basin． Wyo．

Dakota location of the Homestake Mine. In addition, stress measurements at Lead (Aggson and Hooker, 1980) imply that the preferred direction for normal faulting would be $N 50^{\circ} \mathrm{E}$, virtually colncident with the orientation of the thermal ilneament. Together these pleces of information provide permisfive evidence for structural contzol relating to this feature. A recently pub11shed paper (Slack, 1981) presents abstantial corroboration for the control. Using subsurface data, Slack proposes that a series of northeasttrending structural lineaments (fig. 19), which he calls the Belle Fourche Arch, have controlled sedimentation in this area and played an important role in determining hydrocarbon accumulation in the southern Powder River Basin. One of his lineaments, Gose Butte, is coincident with part of the thermal feature (fig. 19). Additional supportive evidence for gtructural control is reflected in the shape of the hydrocarbon producing horizons of the upper and lower parts of the Muddy Sandstone of Cretaceous age (fig. 19).

There is further corroborative satellite evidence for our explanation of the primary cause of the thermal lineament as a thermal-inertia contrast between dissimilar materials. The feature can be seen on two daytime Defense Meteorological Satellite Program (DMSP) thermal satellite images (near noon) and cannot be seen on a nightime NOAA-5 thermal satellite image (near 9 $\mathrm{pm})$. This latter image $i s$ acquired near the time when thermal data should largely be insensitive to thermal-inertia differences because it occurs near the crossing times of the diurnal curves.

We also examined USGS aircraft data across the lineament. Aithough we had not previously recognized the feature on these data, a very subtle therma: contrast could be observed in the vicinity of the lineament. Largely because
of the sifght temperature difference and the regional extent of the feature, it was not recognized on the aircraft data, and this reault illustrates convincingly the potential power of regional thermal watellite data over aircraft data for structural-tectonic analysis.

A second, parallel lineament, not atream divide but separating surfacetextural domains, occurs 30 km to the south (figs. 4 and 15) and also overlies an obvious aeromagnetic break. These features appear to mark fundamental structural elements of the southern Powder River Basin and are newly recognized in $H C M M$ data. To the north, parallel inneaments are marked in the images by the Belle Fourche and Little Missouri Rivers.

Information other than on geologic units per se can be gained from these images, most particularly in the demarcation of geomorphic (topographictemperature) domains and in the digcrimination of linear features. Night images are particularly useful in this regard. The 20 August 1978 image (fig. 6) provides very clear definition of major areas of distinctive topography, commonly linked with distinctive temperature patterns. The north and south halves of the basin are distinctly different; the areas east and northeast of the Black Hills differ from each other and from the domains of the basin. Other finer-scale units also are evident. These do not match the mapped geology and, like many geomorphic provinces, are products of a complex development history tied to more factors than the underlying bedrock. We believe that important information can be gained in this aspect of the HCMM images, especially in understanding surface processes during Tertiary and later time. Such information also may lead an understanding of near-surface groundwater hydrology across large, diverse areas. We have examined the domains
froe the peinte of view of mapped geology, ground-water chealstry, aineral and hydrocarbon resources, and tectonic framework, and correspondences are not readily apparent. This is an asect of the aiseion data that we did not Originally anticipate. However, Schneider and others (1979) showed that the NOAA (National Oceanic and Aeronautics Administration) satelilte VHRR (Very High Resolution Radiometer) data with 900 -w resolution permitted the defining of geomorphic domains very clearly. This work and our present observations suggest that careful consideration of satellite thermal image data by gesmorphologists and hydrologists should be undertaken.

2.3.2 Application to resource studies

2.3.2.1 011 and gas

It was hypothesized that a few oil and gas fields of the Powder River Basin had enough leakage of gas, probably mostly CO_{2}, that calcite cementation would have occurred near the surface to make the bedrock more resistant, possibly to form local topographic highs. A few fields do indeed underlie local topographic highs, but this could be fortuitous, and no evidence of Leakage and cementation has been cited in the literature. However, a reconnaissance survey of soil-gas helium shows 37 significant helium anomalies within the Wyoming portion of the basin (fig. 20), where most of the oil and gas occurs. The reconnaissance scale of helium sampling does not permit an accurate comparison with individual occurrences of 011 and gas except for the largest fields, but it can be said that all but five of the helium anomalies occur over oil and gas fields, and those five are near producing fields. Many

Figure 20.-- Location of helium anomalies, uranium fields, and oll-ges fields in the Powder River Basin. Wyo.

011 and gas flelds do not have overlying helium anomalies, and the iaplication Is considered to be that some flelds leak gases upward and many more do not. Perhape 15-20 percent of oll or gas fields adght be considered to have leaked hellum, although that number alght easily prove twice as large $1 f$ more decalled sampling were done. The percentage of fields where gaser may have produced cementation, especially enough to cause detectable changes in sur-face-temperature character, clearly would be expected to be small. Thus, it is encouraging to note chat visual discrimination suggests thermal-inertia anomalies (20 August image, fig. 7) for 9 out of the 37 areas with anomalous helium values (fig. 20). These areas have consistently and noticeably higher values than the surgounding areas, in keeping with expectations if cementation is locally increased. Most of the areas do not have noticeably different topography than their curroundings. Two of the helium-thermal-inertia areas do not overlie known oll or gas fields but both are surrounded by fields and have several dry holes within the areas. The dry holes may have had only subeconomic shows of oll or gas, in which case ieakage to the surface may still have occurred; or perhaps holes simply have not been drilled in the right places. The two areally largest hellum anomalies, one over a giant gas field and the other in one over the "barren" areas just described, are marked by fairly distinct oval rings in the thermal-inertia pattern.

Helium anomalies are numerous and areally large in the Montana portion of the basin. They occur in a roughly defined ring which corresponds to the perimeter of roughly circular area of distinctive topography 75 km wide and approximately bisected by the Powder River. This area is virtually without 01?-gas production and few wells are shown on avallable source aps. But the
hedlum anomiles correspond to the ring of very warm areas seen in the night 20 August image. We know of no reason to expect euch heliu anomalies in this region except in association wich oll and gas, and the warn areas are nosty areas of outcrop, perheps where cementation is increased. Information has not yet been found on facies in the subsurface rocks that alght contaln oil and 8as. If the facies are not truly favorable, uneconomic amounts of oil and gas aight have been present and leakage could have occurred. If the facies are favorable, the area deserves a closer look for exploration.

An additional point of interest is the possible relationship of HCMS IIneaments and oll-gas occurrence. The major thermal ilneaments transecting the southern part of the basin (fig. 21) define a block that contains most of the significant helium anomalies. Trends in the helium anomalies as contoured from present data commonly parallel HCMM lineaments. The two largest fields, Fiddler Creek and Clareton, are long and narrow and parallel in trend (and between) the basin-tranecting thermal inneaments. The west end of the Clareton field ends in prominent fork, with the southern one of the main ineaments passing through the fork junction.

2.3.2.2 Uranium

The uranium districts of the Powder River Basin (fig. 20) have local areas of arface alteration as large as 5 by 7 km . These, however, are exposed discontinuousiy, and differ only sightiy in lithologic character and thermal properties relative to the surrounding unaltered ground. If the bedrock were cotally exposed, an increase in thermal inertia of perhaps 10 percent might make the altered ground detectable. In any case, the only

Figure 21.-- Major thermal and Lendeat (Mere and Raines,1891) lineaments transecting the southern part of the Powder River Basin. Wyo. and boundaries of the topographic-temperature domaine.
thermal-inertia data cet does not cover the an uranium areas; the 20 August data end east of the districts or have clouds over the fringe areas where uranium ground occure. We have examined low-altitude afreraft th ral data for the altered ground, and so far "nolse" (soll cover, windblown and, local topography, and molsture varlatione) seems to completely overwhelm "elgnal" related to the discrimination problem.

2.3.2.3 Gusthermal flux

Another aspect of our study is to examine the utility of HCMM data for geothermal fiux mapping. We found that the underground coal fires now burning north of Sheridan, Wyo., are detectable (barely) on nighttime HCMM thermal images. Comparison with mosalc of aircraft thermal images of this area (fig. 22) 1llustrates the scale effects on the appearance of amall geothermal anomalies. On the alrcraft data the anomalies have a sharpo clearly defined pattern, whereas the satelife data show an indistinct pattern which is not distinguishable from geologic and topographic effects. Also, the satellite appearance of drainage features is distinctly different from the aircraft data. From nighttime aircraft data, the Tongue River appears as a sharp warm anomaly with cooler surroundings. The satellite image, because of its coarser resolution, does not discriminate the narrow water channel, and, thus, the drainage appears entirely as a cool zone.

To examine the expression of geothermal anomalies more fully, HCMM scenes of Yellowstone National Park were analyzed. The region has a classic expreseion of wost of the typical hydrothermal features of a vapor-dominated system. A careful comparison between nighttime image (fig. 23a) and a detailed

Fires

Figure 22.-- Areas of underground coal fires near Sheridan, Wyo., aseon on HCMM and alroraft thermal data.

map of the hydrothermal features (Seith and Chrimtiansen, 1980) (íg. 23b) was made using a zoom transfer acope. The hydrothermal features comonly were not expreseed cs warm anomalies (fig. 24a), and most of the warm anomalies on the lages are not hydrothermal-associated features (fig. 24b). These results demonstrate that nighttime satelifte images at this sale are unlikely to be useful for detecting similar features elsewhere of greater geologic interest was the correlation between the caldera outline, ome thermal anomaly lows, and in particular the anomaly bounded by a sharp edge (fig. 23a) which coincides with that part of the gravity field map outining the southwest ide of the caldera (fig. 25b). Although this latter amaly is a feature with no direct counterpart in Landsat images (fig. 25a), it may provide additional information on the volcanic-tectonic setting. From these brief observations we conclude that the $H C M M$ data can be useful in understanding the regional structural setting of geothermal fields but are not likely to be useful for mapping hydrothermal features.

2.3.2.4 Mapping geologic units in an arid desert environment

The Cabeza Prieta area in Arizona is an arid desert enviroment with geologic units exposed at acale suitable for discrimination in HCMM satellite images. The area lies very near the inajor copper district at Ajo and contsins old prospect developments in hydrothermally altered ground. No detailed seologic mapping has been previously done of this area as it contains a proposed Wilderness site. The main objective of our investigation has been to extend the interpretation techniques developed in our Powder River Basin study.

$$
\text { Figure } 25 \text { a. -- Landsat imago of Yellowstone National Park with the caldera and }
$$

A theraal-inertia lage (fig. 26) was constructed using the April 3 and 4. 1979 scenes (AMO342-09150-3; MA0343-20230-1, 2) with 36-h separation between the day and night acquisition times. The image was then compared to the Ajo geologic map (Kahle and others, compilers, 1978) and an estimaie was made of the thermal-inertia values of various geologic materials (table 1). Among the sedimentary deposit materials, a wide range of thermal-inertia values was found. From highest to lowest values these included a wet coal-mine dump near Ajo (1890 TIU), active pediment areas (1360 TIU), stablilized dunes (1065-1300 TIU), and active dunes (830-1065 TIU). The most probable explanation for this ranking is due to the strong effect of moisture content on thermal inertia. Generally, active dunes should have the lowest thermal inertia, as observed, owing to their low density and low capacity to retain woisture.

A somewhat surprising result was that the thermal inertias of the various igneous rock units were measurably different, indicating a firer discrimination capability than previous laboratory data in the literature would suggest (Watson, 1979, 1981a). The literature values of thermal-inertias of igneous rocks show no orrelation with either composition or grain size and are indistinguishable from each other. In Cabeza Prieta, however, we found that the felsic intrusives (together with gneiss and schist) had the highest thermal inertias (>2200 TIU), that extrusive rocks of mafic composition had intermediate thermal inertias (approximately 2000 TIU) and that extrusive rocks of less mafic composition had the lowest thermal inertia ($<1900 \mathrm{TIU}$). We believe that the felsic intrusives have the highest thermal inertias because of their high quartz content and high surface density and that the differences among extrusive rocks occur because of density differences associated with the amount of

Table d. - Estimates of thermal inertia of various geologic materials

Geologic Material	Thermal Inertiz (TiU)	
mean	range	
Active Dunes	945	$(830-1065)$
Partially stabilized dunes	1240	
Cluster dunes	1180	$(1065-1300)$
Active pediment slope	1360	$(1300-1475)$
Wet mine dump (Ajo)	1890	$(1975-2525)$
Granite, gneiss, schist	2200	$(17550-1950)$
Mixed intermediate to mafic	1950	$(1700-2200)$

volatiles present during their formation and their mafic content. Although these values are suggestive of the posibility of diacriainating among the various units, the large overicp in the range of values (hiatograms) indicates that classification based solely on thermal inertia differences may not be feasible. The overlap between the units can be attributed to several ceuses. These units are exposed in the most rugged terrain of the region and thus topographic effects are most pronounced in these parts of the image. The ground that is "sensed" by the technique is a weighted average over the diurnal thermal wavelength (approximately 1 m), with the primary contribution coming from the rock and rock fragments of the upper decimeter. Thus differences in the effects of weathering processes on the various rock types in this environment can produce some degree of thermal-inertia differences.

Because the Powder River Basin was relatively flat terrain the topographic effects were not sufficiently important to be considered. In the Cabeza Prieta area, however, slopes in excess of 20° can be found. To examine the contribution of topography, the thermal inertia measured from remote observations we considered the aspects of elevation and slope separately. The elevation factor due to changes in the solar and sky radiation, has been examined and used to predict the equivalent change in the effective thermal inertia (i.e., that derived from remote rather than in situ measurement) as a function of elevation (Hummer-Miller, 1981b). The effective thermal-inertia gradient under clear-sky conditions should be roughly 100 TIU per kilometer. In Cabeza Prieta, where the maximum relief is 700 m , this maximum correction is only 70 TIU and the factor is additive for increasing elevation (i.e., rocks at higher elevations will appear in the image to have lower thermal inertias).

The slope factor was evaluated by using an algorithm recently developed (Watson, 1981b). The turn has an azimuthal va:iation proportional to cos(; 37.60) where 18 the diraction of slope messured counterclockwise from north, and thus ridges with an axial orientation of roughly $N 40 \%$ will display a minimal topographic effect. The most consistent topographic grain in the Cabeza Prieta area is northwest-southeast and thus generally satisfies this constraint. The correction can amount to several hundred TIU's for slopes in excess of ten degrees and orientations orthogonal to $\mathrm{N} 40^{\circ} \mathrm{W}$ (1.e., $\mathrm{N} 50^{\circ} \mathrm{E}$).

The pidaary intent of this study area was to examine correlations between thermal-inertia values and a variety of common rock types exposed in an arid area. In the process of this analysis we also observed, on the night thermal image, a number of linear features associated with known major faults (San Andreas fault, Garlock fault) and the absence of lineaments in an area near Gila Bend which is noted for the absence of structural features (Gila gap). We also were able to determine a measure of the satellite's spatial frequency response (and thus its ability to detect high-contrast linear features) by the observation that Interstate-10 from Gila Bend to Yuma was observable.

3.0 MODEL DEVELOPMENT

Several advances have been made in the development of techniques to analyze thermal-infrared data. An algorithm to determine the sensible-heat flux from simple field measurements (wind speed, air and ground temperatures) has been develuped. It provides a direct solution, in parametric form, that can be displayed graphically or tabularly. This method has an advantage over the previous iterative solution in that the computation is both very fast and

It also provides a clearer understanding of the drag coefficient, with itg variation and response to different conditions. At low uind epeeds the drag coefficient cannot be treated as a constant. Both the computational speed and amiysis of the drag coefficient can be importent for remote-sensing applications involving thermal ecanner data (Watson, 1980).

A substantial advance was the development of a method, based soltiy on remote-sensing data, to estmate those meteorological effects which mubt be known for thermal-inertia mapping. It assumes that the atmospheric fluxes art spatially invariant and that the solar, sky, and sensible heat fluxes can be approximated by a simple mathematical form. Coefficients are determined from a least-squares method by fitting observational data to our thermal model. A comparison between field measurements and the model-derived flux shows that good agreement can be achieved. An analysis of the ilmitations of the method was also made (Watson and Hummer-Miller, 1981a).

This new method of estimating atmospheric parameters was the basis for a revised thermal-inertis algorithm (Watson, 1981a). The new form is:

$$
\left.P_{i j}=\overline{(P} \cdot \Delta \bar{V}+C(\cdot, \ell) \quad\left(\bar{A}-A_{i j}\right)\right) / \Delta V_{1 j}
$$

where $A_{i j}$ and $\Delta V_{i j}$ are the corresponding albedo and temperature difference of the ith pixel and jth line. \bar{A} and \bar{V} are the mean values for the area in question, and $\overline{\mathrm{P}}$ is a select value for the mean thermal inertia (generally dsuu TIU). $C(\lambda, \delta)$ is function of the site latitude, λ, and the solar deciination, δ. The advantage of this algorithm lies in the fact that we are dealing with albedo and thermal differences rather than absolute values. Thus, the computed thermil inertia is less sensitive to offsets caused by calibration
ertors or atmospheric backscattering and transaiseion effects.

Other modeling etudies centered eround developing an algorithm for elevation correction of temperature and thermal-inertia images iHummer-Miller, 1981b). They are based on application of the linearized Fourier series method (Watson, 1975; Wotson, 1979) to slmple forms of the solar flux (Hummer-Miller, 1981a) derived from a representative set of field observations. It was found that flux varlations with elevation can cause changes in the mean diurnal temperature gradient from -4° to - $4^{\circ} \mathrm{C}$ per km (evaluated at 2000 m). Changes In the temperature-difference gradieni of $10^{0}-2^{0}$ per km are also produced and these are equivilent to effective thermal-inertia gradient of 100 TIU per km。

In addition, a simple topographic slope correction method has been developed using the linearized thermal model and assuming slopes less than about 200. The correction can be used to analyze individual thermal images or composite products such as temperature difference or thermal inertia. Simple curves were determined for latituder of 30° and 50° (Watson, 1981b). The form is easily adapted for analysis of HCMM lmases using the DMA (Defense Mapping Agency) digital terrain data (Watson, 198lb).

A major concern in this investigation has been the accurate registration of day and night images. We have developed an image-registration algorithm which appears to be ubstantially better than the current registration producte provided by NASA (Watson and others, 1981). The initial test of this algorithm used the 20 August 1978 data of the Powder River Basin. A small number, less than ten, of very clearly delineated features, generally the water-dam interfaces of reservoirs, were selected as control. Subsequently,
an affine transformation was deteralned by best fitting these points. Our flrst test indicates a residual error of < 2 pixels. The NASA product for the same ecene displays errors of any pixels resulting in "double drainage" - ffects and an offset of several kilometers.

During the initial stages of our experimentation with control pointa, we expected that the drainage pattern in the Powder River Besin was substantial enough to prol de extenaive control for registration. We discovered, however, that drainages are often unreliable identification features and the resulting control points were too inaccurate to provide the transformation coordinates. We also experimented with cross-correlation techniques in the Cabeza Prieta area but were unsuccessful owing to the strong topographic grain. The affine trancformarion which we employed has the additional advantage that it can be adapted to very fast computer processing schemes (Braccini and Marino, 1980).
4.0 DIGITAL IMAGE PROCESSING

This section presents an outilne of the image processing techniques used in this study. Figure 27 is a simplified flow diagram of the basic processing steps; the computer programs referenced in this diagram are included in Appendix A. The initial processing, involves obtaining the HCMM computercompatible tapes (CCT) and altering the data format to be consistent with our computer software. Sometimes the area of interest spans two scenes and, consequently, u ust be appended into a single file. To produce enhanced images of these products, the appropriate area of the image is statistically sampled to form a histogram and to derive the mean, median, mode, variance, standard

Figure 27.- Flow chert of the image proceseing procedure.
deviation, and cumulative fiequencies. With thest atatistice a decision is ade as to how the scene contrast should be enhanced using an appropriate transformation of the scene brightness. From our experience a 1 or at most 2 - percent linear stretch of the data produces a good starting point. Thus the 1 or 2 percent and 98 or 99 percent points are transformed ilnearly to the extremes of a 256 -step gray scale (() and 255) and the center density value (D_{n}) of the distribution is transformed linearly to the center of the gray scale (127 Dn). Other useful products include linear stretches on paper where a ingle print character is assigned for each $D n$ value and color-coding on f13is.

The next processing operation is performed to register the night-thermal file to the day files. This operation, including a oiscussion of the general considerations, are detailed in Watson and others (1981). Control features are selected from the positive transparency images produced from the CCI and locations are measured to one pixel accuracy. These values are then used to determine the affine coefficients for a best-fit transformation (REGALG). This transformation provides a rotation correction for the inclined satelife orbital tracks, an origin shift, and scale changes both along and across the scan line. The actual registration of the night file is then performed using the affine transformation coefficients in the GEOMX4 computer program. This program assigns radiometric values to the newly registered image employing a nearest-neighbor method.

At this stage the data are in the appropriate format for thermal-tnertia and temperature-difference mapping. The algorithms which we use (Watson, 1981a) employ average scene values of albedo, day temperature, and night
temperature. The portion of the scene from which chese values are determined is based on the assumption of atmospheric invariance and thus, as ainimum constraint muet be cloud-firee on both images. The progiam RAPFIT is then used to compute the appropriate coefficients for this agorithm, and the program HCMTIDT is employed to construct both temperature-difference and thermal Inertia files. The resulting files are then processed using these techniques described in the beginning paragraph of 4.0 .

Another analysis technique used in this study is to construct profiles across the image data. The end points of particular profiles are chosen and digital values along the line are obtained for all products: day reflectance, day thermal, registered night thermal, and thermal inertia using a nearestneicrbor algorithm. The corresponding elevation profile is obtained by digitizing the appropriate portion of a $1: 250,000$ topographic map and adjusting it to match the satellite data. This task is made easier if the profiles cross distinct features such as reservoifs and rivers. After the elevation data are registered to the satellite data, the fogram PROFLE is used to plot the profiles and cross plot pairs of data values. The profiles can be plotted at various scales and thus directly overlaid on any base material for comparison. The cross-plotting option is valuable for examining correlations (for example, we obseived that the day thermal versus elevation data fit the adis. batic lapse rate).

5.0 REFERENCES

Aggson, J. R., and Hooker, V. E., 1980, In-situ rock strese determination: techniques and applications, in Underground Mining Handbook: Society of

- Mining Engineers of AIME, New York in prese.

Braccini, C., and Marino, G., 1980, Fast Geometrical Manipulations of Digital Images: Computer Graphics and Image Processing, v. 13, no. 4, p. 127141.

Head, W. J., Kilty, K. T., Knotteh, R. K., 1978, Maps showing formation temperatures and configurations of the tops of the Minnelusa Formation and the Madison Limestone, Powder River Basin, Wyomi:ig, Montana, and adjacent areas: U.S. Geological Survey Open-File, 78-90!, 10 p.

Humer-Miller, 198la, Diurnal variation of four flux parameters fit to field observations: Submitted to Journal of Geophysical Résearch.

Hummer-Miller, 1981b, Estimation of surface temperature variations due to changes in sky and solar flux with elevation: Geophysical Research Letters (in press).

Kahle, Katherine, Conway, D., and Haxel, G., compilers, 1978, Compilation geologic map of the Ajo 1° by 2° quadrangle, Arizona: Washington D. C., U.S. Geological Survey, 2 sheets, $1: 250,000$.

Love, J. D., Weitz, J. L., and Hose, R. K., compilers, 1955, Geologic map of Wyoming: Washington, D. C., U.S. Geological Survey, 1 sheet, $1: 500,000$.

Marrs, R. W., and Raines, C. L., 1981, Tectonics of the Powder River Basin, Wyoming and Montana interpreted from Landsat imagery (abs): Sedimentary Tectonics: Principles and Appilcations, Laramie, Wyoming, May 3-5, 1981, Summaries, p. :9.

Miller, S. H., Watson, K., and Kipfinger, R., 1980, Ground support data from July 10 to Juiy 29, 1978, For HCMM thermal satellite data of the Powder River Basin, Wyoming: U.S. Geological Survey Open-File, 80-469, 43 p. Raines, G. L., Offield, T. W., and Santos, E. S., 1978, Remote-sensing and subsurface definition of facies and structure related to uranium deposits, Powder River Basin, Wyomíng: Economic Geology, v. 73, p. 1706-1723. Schneider, S. R., McGinnis, Jr., D. F., and Pritchard, J. A., 1979, Use of satellite infrared data for geomorphology studies: Remote Sensing of Environment, v. 8, p. 313-330.

Slact, P. B., 1981, Paleotectonics and hydrocarbon accumulation, Powder River Basin, Wyoming: American Association of Petroleum Geologists, p. 730743.

Smith, R. B., and Christiansen, R. L., 1980, Yellowstone Park as a window on the earth's interior: Scientific American, v. 242, p. 104-117.
U.S. Department of Energy, 1979a, Aerial gamma ray and magnetic survey, Powder River Il Project, Torrington Quadrangle, Wyoming and Nebraska: Report GJBX-158.

1979b, Aerial gamma ray and magnetic survey, Fowder River II Project, Gillette Quarrangle, Wyoming: Report GJBX-82. 1979c, Aerial gamma ray and magnetic survey, Powder River II Projcct, Newcastle Quadrangle, Wyoming: Report GJBX-82. 1979d, Aerial gamma ray and magnetic survey, Powder River Il Project, Ekalaka Quadrangle, Montana: Report GJBX-82.

Watson, K., 1975, Geologic applications of thermal infrared images: Proceedings IEEE, v. 63, p. 128-137.

Watson, K., 1979, Thermal phenomene and energy exchange in the environment, in Mathematicel and Physical Principies of Remote Sensing Centre National D'Etudec Spatiales, Toulouse, France, p. 104-174. 1980, Direc: computation of the sensible heat flux: Geophysical Research Letters, v. 7, no. B, p. 616-61B. 1981a, Regional thermal-inertia mapping from an experimental satellite: Geophysics (in press). 1981b, Topographic slope correction for analysis of thermal-infrared 1mages: NTIS (in press).

Watson, K., and Humer-Miller, S., 198la, A simple algorithm to estimate the effective regional atmospheric parameters for chermal-inertia maping: Remote Sensing of the Environment (in press).

Watson, K., Hummer-Mille\%, S., and Sawatzky, D. L., 1981b, Registration of Heat Capacity Mapping Mission day and night images: Photogrammetric Engineering (in press).

5.1 APUENDIXES

listings of the following computer programs described in section 4.0 fnllow:

REGALG

RAPFIT
GEOM: 4

HCMI IDT

PROFLE

* INTEGER Jipsinter

```

```

100), Pad(4), Lxd(4)
So PRINTER 15 10
gu Llifur "do you wisn to read an anput lide y o: entes values manually N",Anzs
100 IF AnzS="Y" THEN GOTO 130
110 LlNPUT "DO you wash to store an inpus tile y or N",Anys
120 If AnyS="N" THEN GOTO 350
dj0 LiNPuT "Encer filename for Day(new) points*,falleds
140 IF Anys="y" THEN CREATE Filels,d0
jso LiNPUT "Eriter falename for Naze(old) points",filezs
160 If Anys" "Y" then Create filezs.10
j7U iF ARYs-*'* THEN GOTD 350
180 ASSIGN il TO FalelS
190 READ 1J:N
200 Nnur=N
210 KEEIM Counter(N)
220 READ IliGS I lmplies a title which 15 ignored
230 FOK I=\ TO N
240 READ (1;Yriew(1),xnew(1)
25u Cotnter(1)=1
260 NEXT \
270 ASS!GN il TO Filels
260 ASSICN Il TO Filezs
290 READ il:jmax
300 READ Il:GS l lgnored catle
310 FOR I=1 TO N
320 READ id:YOLO(J),XOLO(I)
330 NEXT 1
340 COTO 530
INfut "Enter numder of control poant quacruples",N
REDIM Xolo(N),YOId(N),Xnew(N),Ynew(N),Xt(N),Yt(N),Counter(N)
Pranter=16
PRINTER IS Pranter I For debugging
LINPUT "Enter a descriptive name < 50 char for this reyistration",Names
INPuT "Enter tne maximum lines and pixels from old amage",Lmax,pmax
print page
PRINT LIN(IO),SPA(5)."TO enter control points use the format:*
PRINT : Day(new) Night(old)*
PRINT " scan no,pixel no . scan no,fixel no"
FOR I=J TO N
| NOTE:Scan=line
PRINT LIN(9),SPA(20)." Control point:":VALS(1)
INPuT "Scan_new,pixel_new,Scan_old, Pixel_old", ynew(I),xnew(I),yoid(I), Xold(I)
counter(1)-I
PRINT PAGE
NEXT 1
Entes: PRINTER IS le
PF:NT PAGE
PRINT LIN(10),5PA(15)," DATA CHECK*
PRINT "Control no NEm OLD*
PRINT " line Pixel Line Pixel"
FOR 1=1 TO N.
PRINT USING 590;Counter(1),Ynew(1), Xnew(1), yolo(1), xold(1)

```
```

540
60
610
620 1F Ans\$\},j)="Y" THEN GOTO Cont
630. INPUT "DO yOU \#isn to oelete values YES O\& NO ?",AqS
640 IF AqS|\,l|<>"Y* THEN COTO 840
650 INPUT "How many conrsols to delete 7",Numers
6 6 0 DIM Creck(50)
6 7 0
660
6 9 0
7 0 0
7 1 0
720
730
740
750
760
70
780
700
800
810
820
60
640
650
860
870
80
890
9 0 0
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
2040
1050
1060
2070
108
109
1200
1210 Px.(1)=S(2)-R(2)
PxJ(2)=S(2)*Pmax-R(2)
1220 PxI(3)=S(2)*Pmax-R(2)*Lmax
1130 Pxd(4)=S(2)-R(2)*Lmax
1140 LxI(1)=R(1)-S(1)
1150 Lx](2)=R(1)-S(1)*Pmax
1160 Lxl(3)=R(d)*Lmax-S ()) Pmax
1)70 LxI(4)=R(1)*Lmax-S(1)
1180 MAT LxI=LxI+(Ded13)

```
```

1200 MAT Lx\=L^d/(Dedlz)
1200 MAT PxIOPxI+(De1zj)
1210 MAT PxI=Pxd/(Ded12)
2220 MAT SEARCH Pad(0),MAX;PMmax
1230 MAT SCARCH PEI(*),MIN:PMmin
1240 MAT SCARCH LxJ(`),MAX:Lxmax
\$250 MAT SEARCH LXd('),MINILXmAn
1260 DP\&х=Pxாax-Pxm\&n+1
\$270 Djın=Lxmax-Lxmin+1
1280 Alpha=R(1)*(P\timesm.2n-1)+R(2)*(Lxm\&n-1)+R(3)
2290 Beta-5(d)*(Pxman-d)*S(2)*(Lxm\&n-1)+S(3)
1300 C2=Alpha*S(2)-Beta*R(2)
j310 C3=Adpna*S(1)-BCta*R(1)
1320 Pax_old_mean=SUM(xold)/N
1330 Pax_new_mean=SUM(Xnew)/N
1340 Lan-newmean=SUM(Ynew)/N
j?50 L2n_olammenaSUM(yold)/N
1360 Del=DelJ2
1370 Pax_otf=S(2)/Del*Pix old_mean-R(2)/Ded*Lin_old_mean-C2;Del-Pix new_mean

```

```

1390 Costneta=(R(2)+S(2))/2
1400 San-tneta=(5(1)-R(2))/2
1410
1420 Theta=ATN(Sin theta/Cos_theta)
1430 Mag x=SuR(R(1T* 2+S(1):2T
1440 Magy=SpF(R(2)* 2+S(2)'2)
1450 PKIÑT "SOLUTION FOR:*
1400 FRINT NameS
1470 PR1NT
1480 PRINT "Oifiginal jmage is ";priax;" pixels by ":Lmax;" lines."
1490 PRINT
15vO PRINT
1510 STANDARD
1520 PR1:N'R "R=";R(1):R(2);AlFna
1530 PEINT
1540 PFINT "S*":S(1);S(2);Beta
1550 PRINT (3)
j560 PKINT "EK MOG:R(3)= ";R(3):" S(3)=";S(3)
1570 PRINT

```

```

1590 PRINT
1600 PKINT - P=R(1)-Pixel+R(2)*Line+R(3)"
1610 PFINT " L=S(1)*Paxed+S(2)"Lane+S(3)"
1620 PRINT (NT N
1630 PFINz " Nem :mage size: ":Dpıx;" pixels by ";Dlin;" lines."
1640 PRINT
1650 PFINT "Mean rotation angle :";Theta
1660 PKINT " Magnification :-X";Mag_xi" - Y ";Mag_y
1670 PRINT
16a0 PfiNT C Ofiset: Pixels ";Pzx_ofi
1090 PRINT * Lines ":Lan_Off
1700 PRINTEK 1S Printer
1710 Ploteing: CALL Plot("Initial controls:",xold(*),Yold(*), Xnew(*),Ynew(*),N,Names,Ccuriter(")
1720 Resiouval=0
1730 PRINTER IS O
1740 Max ressdual=0
1750 PRIÑT
2760 PRINT " control no. yt
yt xt
Residual"
1770 Del=Del12
1780 C2= Del23

```
```

1790 C3-DE113
1000 FOR I-1 TO N
1810 xe(1)=(xold(1)-s(2)-YO\d(8)*R(2)-E2)/Ded
1820 Ye(1)=-(xolo(1)*S(1)-Y0\d(1)*R(I)-C3)/DCl
1030. Max rede(xt(1)-xnew(1))}2+(y{(1)-ynew(1))*

```


```

$60 Max_:essoval=max(max_red,max_residual)
d@70 If Max_residual=max_iea THEN Imex_reseCounter(I)
1880 NEXT 1
j490 Miax resesOR(max sessoual)
1900 Resiauad=sur(Reszaual/(|-1))
1910 FIXED 2
1920 PRINTER IS O
1930 PKINT
1940 PRINT
1950 FIXED 2
jy60 PRINT " Mean resioual vector lengen "*;Resadual:" pixels"
1970 PRINT " Max tesidual vector length =";Max_res;" pixels";" at point "ilmax_res
198U PRINT
1990 CALL Plot("Transformea contrjls:",Xt(*),Y&(*),Xnew(*),Ynew(*),N,Names,Counter(*))
2000 cor'O Enter 1
2010 END
2020 SUB Bilinear(X(*),Y(*),2(*),M(*),N)
 2030
 2040
 2050
 2060
 2060
 2060 KEDINS(N,3),TEANSFOSE(3,N),Inverse(N,N),Dum(N,N),2J(N,J)
 2060 S(1, 1)=x(1)
 2040 s(1,2)=Y(1)
 2100 5(1,3)=1
 2)100 2)(1,1)=2(1)
 2120 NEXT I
 2130 MAT Transpose=TRN(S)
 2140 MAT DumeTranspose*S
 2150 MAT InverseriNV(Dum)
 2160 MAT Dum=Inverse*Transpose
 2170 MAT MI=DUm:21
 2180 FOR J=1 TO 3
 2190 M(J)=M1(J,1)
 2200 NEXT J
 2210 SUBEND
 2220 SUB Plot(Plot_title$, xnew(*),ynew(*), xold(*),Yold(*),N,Names,Counter(*))
2230 OPTION EASE J-
22:0 INTEGER I
2250 STANDARD
2260 PLOTTER IS 13."GFAPHICS*
2270 GRAPHICS
2280 lOCATE 5,150,5,95
2290 MOVE 10.97
2300 LABEL Plot titles6" "sNameS
2310 MAT SEARCH-Xnew,MAX;Xmax
2320 MAT SEARCH XOld,MAX;Xmaxl
2330 Xmax=max(Xmax,xmaxi)
2340 MAT SEARCH YOId,MAX;Ymaxl
2350 MAT SEARCH YNEW,MAX;Ymax
2360 Ymax =MAX(Ymax,Ymaxl)
2370 MAT SEARCH YnEw,MIN;Ymin
2380 MAT SEARCH YOId,MIN;Yminl

```
```

2390 Yminumin(Ymin,Yminl)
2400 MAT SEARCH KOId,MINIXMA nl
2410 MAT SEARCH XnEw,MIN;XmIn
2420. XminamiN(Xmin, xmin))
2430`SHOw Xmin-25,Xmax+25,ymax+25,yminn-25
2440 LINE TYPE 1
2450 Frame
2460 LORG 2
2470 CSI2E2.5
2480 FOR 1=1 TO N
2490 MOVE XOId(I),YOId(I)
2500 DRAM Xnew(1), ynew(1)
2510 Xx=xnew(l)-xold(I)
2520 Yy=ynew(I)-Yolo(1)
2530 IF Yy=0 THEN COTO 2550
2540 LDIR XX,YY
2550 MOVE Xnev(I), Ynew(I)
2560 if Xx>=0 THEN LABEL ","\&VALS(COUnter(I))
2570 if Xx>=0 THEN COTO 2620
2580 LORE 8
2590 LDIR -XX,-Yy
260) LABEL VALS(Counter(I))6***
2610 LORG 2
2620 NEXT I
2630 SETGU
2640 LDIR O
2650 CSI2E 3.3
2660 MOVE 69.3
2670 LORG 5
2680 LAEEL "CONT to continue;DUMP GRAPHICS for hard copy*
2690 PAUSE
2700 EXIT GFAPHICS
2710 SUAEND
2720 END

```
```

10
20
30
S0
6 0
7 0
80
90
100
110
120
130
140
150
160
170
160
190
200
210
220
230
240
ASSIGH |l TO "Phi_m"
250 lNfut Enter the Este latatude(Degrees) E.Latatude
260 lNFuT "Enter tne sodar decidnation(Degreef) ,solar_oec
270 OUTPUT 9:'R'*
280 LhTEK 9;TS
290
300 W1=F1/(12.3600)
310 S0.1360
320 S\j\pia=5.67E-8
330 1
340 Eramesvaty=l
350 SJCpem
360 Azamuerim
370 Flux_asfiuse=0
38u difuT "Lriter the mean oay Tenf (LEGK) from scene caca*,Tdayo
3yv lifur "Enter tne mean nate Terp (DLG K) fiom scene cata",Tnateo
400 Cl=CCS(Latitude)*COS(SOLa!_oce)
4du SJ=Sll(Latituoe)*SdN(Solar_oec)
420 Cesz(d)=Cl+S1
430 FOF. K=2 TO 24
440 Cosz(k)=C1*COS({k-1)*15)+51
450 lf Ccsz(K)<0 THEN Cosz (K)=0
460 NEAT K
40 Cz)=SIN(Slope)"SIN(Azimuth) cos(Sclar_dec)

```

```

490 Cz%=Cz%*COS(SOLar_dec)
500 C23.Slif(Latalvoe)}\mp@subsup{}{}{7
510 Cz3=Cz30S\N(Sclar oec)
S20 INPUT "Encer mean-A: ann*,Albedo
530 Inertia=1500
540 veva|(ioniz=)0000
53u Cons2=1nertia/Pacons
560 1 LOOP PARAMETERS.
570 PKINTER IS O
5s0 PRINT "TSky";"Sky factor"." Deviation*
590 Return: PrimTER 15 I6

```
```

60
610
620
630
640
60
60
670 ken: FOR 1sky-Tkky_min tO TBky_max steP Disky

```

```

690 flux sky-sigma*Tsky*A
700 FOR Eky_factor-5ky_tactor_min TO Sky_lactor_max STEP DEky_factor
710 OUTFUT F; "R"
720 ENIER SIMONEn,Day,HOUR,Manute,Second
730 PEItit TAB(20):"Sky_factor=";Sky_Iactor,Hour;":";Minute
740 rdux datectesoo(d-5xy_sector)
750 FORT=| TO 24
760 x=(1-1).js
770 Cos2]=Cos2(1)
780 IF Coszicu thEN Coszi=0

```

```

000 NEAT I
610 Sur=0
420 FOR l=\ }502
830 Suミ-Fluxd(d)+Sum
*4U NEXT 1
iso Suti=sum./M
d60 Vo=(Sun/(Emissivizyost(ma|))`.25
870 Alfria=3-Emisgivily*S mma*VO"3
*ou Ccns=consi/Alpna
Byu Consj=Alpha*4/3
guJ FOR 1=1 TO 24
910 Flux(I)=Fluxd(I) +Alpha*vo
920 NEKT 1
930 FOR 1=1 TO 24
940 FOK k=1 TO 24
g5j L=1-k+1
960 IF L<J THEN L=L+24
y7v Dedak=0
ysu IF I=K THEN Delik=1
990 P5(I,N)*Oris2*Pn!(L)+Consl* Le11K
1000 NEXT K
IUNU NEXT I
1020 MAT PI=INV(P5)
1030 ! FORM TETNF
1040 MAT TETF=P1*FIUX
105j I RE:AEMEER TETF(K) is at time K-1 nours. (reagured from noon)
1060 Toay=(Temp(2)+Ter,p(3))*.5
d070 Tnate=(TEMF(14)+TEmp(d5)):.5
1000 11=(Tsky-Tsky_midn)/DEsky+1
10S0 J2=(Sky_factoz

```

```

1110 DevmanmmiN(Dev_man,Dev(1),J1))
il2J 1F D̈ev(11,J1)=Dēv_man THEN TEky oft=Tsky
1230 IF Dev(11, j1)=Dev_min THEN Sky_factor_optesky_iactor
1140 PRINTER IS 0
11SO PKINT Tsky,Sky_iaEtor,Dev(11,J1):Il;J1
1160 PRINTER IS 16
1170 NEXT Skyfactor
1180 NEAT TSky
1190 BEEP

```

```

1210 GOTL Reruen

```

```

1230 Tbayo-3)0•(10-1):ju

```

```

12'bJ 1 WOP PARAMETESS. secono loop

```


```

jicev flua bayisigna•tsay"

```




```

d330 Flux calectesco.b*()-sky_factor)
jJ4U FOKTEJTC 24
1350 $x=(1-1)=15$
1300 Ccsz)=Ccsz(1)
1370 If Coszi<0 THER, Ccszl=0

```

```

$13 y 0$ loExt 1
lauu surmo
jado ron lad TO 24
1420 Sur=rduxd(1)-Sun!
j430 licxt 1
1440 SuTESur/m

```


```

d47J Consecoris:/hdfna
j\&bu Corisi=Alfrial4/3
1490 FOK J=1 TO 24

```

```

1510 mext 1
1520 FOR IM TO 24
1530 FCK K. 1 TO 24
1540 L=j-h+1
1550 If Lくd THEFi LEL\$24
1560 Dedan=0
1570 IF I-K THEN Delikel

```

```

1590 NEXTK
1600 NEXT 1
1610 MAT PI=INV(P5)
1620 : FOAN Temp
103 J mat temfepleflux

```

```

Jesu tcay"(Terf(2)+Tenf(3)):.5

```

```

167 v 11=(Tsky-2ju)/5+1
1660 Jjesky idctor $/ .05+1$

```

```

1700 PRINT TEKY, SKy_iactor, Dev (11, 2j)
1710 NLXT SKy_dactor
1720 NEXT IsKy
1730 Mindevajels
1740 FOR $1=1$ TO 5
1750 FOR J=1 TO 6
1700 Man_oev=midR(M, n_dev, $\operatorname{Dev}(1,3))$
1770 IF \bar{L} ev(l, J)=fidn_dev THEN 10:1
1780 NEXT J

```

1790 NLXT 1
jsu0 Tsay= 万shyo+(10-3) - 1
j6iv Sxy tactoteSxy_isectorot(Jo-3)..0j
152 StOF
1030 END
-
```

C......
C..... REMOTE EENSING ARTIAY PROCESEING FROCEDURES
C..... U. S. OECHOCICAL SLIFVEY. IGIJVER, COLGFANO
C..... ERANCH OF FETKOF'HYSICE AHJU hEMOTE SENSINO
C..... DON L. SAWATZKY
C.....

```

```

c
GEOMXA GENEKRATES A KECTIFIED IHIARE FILE FRTIM A DISTORTED IMAGE
FILE ANI FROM COEFFICIEIITS FUR FECTIFICATION. R AND S, DETEFIIINED FUR AN
C AFFINE TKANEFGRMATITNN CHF THE LISTCKIEN FILE.
C INPUT FILE ETRUCTURE CCINSIETE GIF A HEADER FECSIRD CONTAINING TWO
C INTECEFS FCIF LINE LENSTH, LEIJEEC, IH PIXELSS AND NLIIEER OF LIPJES.
C NORECS. HOFECS PLIMEEF GF LUTA RECGNLIE FULLOW, EACH RECORLI CCINTAINIMG LEIJFEL
C EYTES CIF 6-EIT DATA. CLITFUT FILE MEALIEK RECCNLI GONTAINS TWO INTECERS OF LIML
C LENGTH, NFXOLTT, ANII NLHIBEF OF FECORIDE. LHAX. INPIIT PAFAMMETERE, JFIXIN AND IHPI
C XIN, ALLOW TAIIING A SLIESET CF THE IINFITT FILE. DUITFLT FARAMETERS LMAX, rINPIX
C - AND MXPIX AFE SELECTELI ON THE LIDE LENGTH OF THE INFLIT FILE GND LIEGFEE
C OF FIOTATICIN FECIUIIED FCR RECTIFICATICIN. EECTIGNE OF THE OISTFLIT FILE CIF LENGTH
C LMAX ANS CONTAINING, PIXELE. MNFIX TG MXFIX AFE GENEFATED EY ONE CIR MDRE ITER
C ATIGINS CIF THIS FRLGGIAM. SECTICNS GRE CONCATENATED IN SULGECILENT FROCESSING.
C SECTIONING THE OUTPUT FILE IS DONE IN RESPONEE TO IHE MESEAGE: "INELIF ARRAY
c TGO SMALL."
C
C.....DECLARATIONS
REAL R(3),S(3)
LOGICAL I INSUF(200000), OUTEUF(3000)
INTEGER FCEIN(ES),FCBOUT(35)
C.....
C.....SET F'AFAAMETERS
MRITE(6.97)
99.FGRMIAT(IX.'ENTER PIXEL/LINE COEFFICIENTS !:)
KEAD(E,96) R.S
WFITE(6,90)
98 FOTMAT(1X,'ENTER IFIFUT F RST FIXEL, NO. FIXELS')
REAU(5,96) IPIXIN,NFIXII
WRITE(6.97)
77 FGKMAT(1X.'ENTER MAX. OITFUT LINES.MIN/MAX PIXEL ':)
REA[I(S,96)' LMAX,MISIX,F (PIX
96 FOFMAT (G16.0)
C.....
C.....OPEN DATA FILE TO TH:NTSFONM
REAIL(E) LENREC,NOKECS
C.....SETUP WORK ARRAY
NRECS=MIN(200000/LENREC.NOFECS)
MXLINSE=NRECS
MNLINE=1
JI=LENREC\&MCID(1, NFECS) +1
J2=\12+LENREC-{
DO 90 1=1,NKECS
90 READ(S) (INBUF(J),J=\1.J2)
C.....
C.....OFEN OLITFUT DATA FILE
NPXOLIT=MXPIX-11NPIX+1
IF(PJFXOUT.LE.SUOC.ANII.NFIXIN.LE.SOCO)GO TO 110
100 STGP - FDATA FILES EXCEED FUFFEF WIDTH..
110 WRITE(9) NFXOUT.LMAX
C.\because...,REAIH/WRITE LGOP
DO 210 LITJE=1.LMAX
DO 200 IPX=HINPIX,HIXPIX

```
```

 INPX=R(1)O(IFX) & R(2)O(LINE) & R(3)
 IFIJNRX.LT.I.ON.IIPX.GT.NPIXIN) THEN
 OUT[UFF(|FX-MNPIX+I)m.FALSE.
 ELSE
 INLJNL=S(I)0(IFX) + E(2)0(LINE) + S(3)
 IFIINLINE.LT.I.DN.INLINE.GIT.NORECSI THEN
 OUTEUF:(IFX-MHPIX+1)=,F\OmegaLSE.
 ELSE
 C.....CHECK LIST FOR ECANLINE IN WORK: ARKAY
IFIINLINE.C.E,MNLINE.ANL.IHLINE.LE,MXLINE) GOTOI2O
C.....ELSE REAL' SCANLINE INIO LIST ARUS WCIKIF GKRAY
IFIJNLINE.LT.MN:LINE) EIOJP'INBUF AKFiAY TUÜ EIANLL!!`
DO 115 I*FIXLINE+I.INLINE
IREC=MNU(1,NRECE)-LEINKEC
115. REAL(E,F,EC={NLINE) (INHUF(J),J=INEC+1,IREC\&NPXIN)
MXLINE=INLINE
MINLIPNE = MXLINE-NHECS+1

```

```

 ENDIF
 ENDIF
 200 CONTINUE
210 WFITE(9) (INTEUF(J),J=1.NPXOUT)
c.....
C.....FINIS
300 STOP
END

```
```

 FRCII.RAM N:MTIT
 C THIS FFIGIFAM PGMFIITES A RELATIVE THEKMAL INEFTIA ANLI TEMF [IFF
IMNISE FILES FRCIN HCMM [IATA.

```






```

 INTE.GEROZ 1T(Ent(!r!)
 C
GFEN NGIGN THEFMAL FILE
WFITE(E,FMT='(\cdots GIFEN LIAY THERIMRIL FILE",)')
GALL [ISP:IO (0,12,1E1.11)
C
C CIFEIN NIOHT THEFMAL FILE
WFITE(E.,FMT ='| GNEN NIGHT THEFMMAL FILE"')')
GALL DIS'IO (0,13,1E*,12)
:
:
GIFEN NOUNTN ALEEIM FILE"
WK!TE(S,FMTE'(") (IFEN NSICIN ALEELICI FILE"')')
CALL [ISHIIG (!,14,IR?,13)
E
C
GFEN THEFMMAL INEFTIA OMITFUT FILE
WFITE(E,FMT=','GFEN THEFMAL INEFTIA (I|ITFIIT FILEM')')
W=!1(2)
Y=1:(2)
Y=13(2)
WI=11(%)
X1=1こ(こ)
Y1=1こ(こ)
MAXF=AMINJ (H,X,Y)
MAYLL=AMINJ(WI,XI,YI)
14(こ)=MAXP
14(5)=MAXL
CALL [1JEt:10 (0,15,0,14)
C
G CIFEN TEMF IIJF CIMTFIIT FILE
WF:ITE(G,FMT='(" CIFEN TEMF IIIFF SMTFLIT FILE"')')
1E(2)=MAXP
1E(こ)=MAXL
CALL [1]SY:]O (0,16,0,15)
F
LIFEN LUIMMY FILE
WFITE(G,FMT='(", CIFEN IMMMM FILE'")')
1\&(こ)=MAXP
1t.(3)=MAXL
CALL [HEKIO ((),17,0,1t)
C
INFIIT AVERAIEE FAFIMS

```
```

WRITE (E,FMT='(" ENTEF AVEFAIGE VALIIES A,T[I,TN"')')

```
WRITE (E,FMT='(" ENTEF AVEFAIGE VALIIES A,T[I,TN"')')
AGCEPT , AAVE,ATR,ATN
AGCEPT , AAVE,ATR,ATN
TYFE * , AAVE, ATL,ATN
```

TYFE * , AAVE, ATL,ATN

```


```

 AOCEFT - .XLAM, CELLTA
 TYFE - XLAM,IELTA
 XLAM=YLAM*',01745E%
 \ELTA=\ELTG-G.O!TAE:
 [EG=1./(CrOS._,AM-[EE(PA))
    ```


```

 EH(ATI-ATNI*IENSI-CPARVE
 TYFE .Din
 TYFE . .C
 TYFE , E
    ```

```

r.

- fCMFLITE TEMF ANI ALE 'ALIERATIGIN filES
Z
IC1こV=1,20゙\&
ALE(R)=(ti-1: *',M%%2157
:1=14421.5:7
G%12E1.15%1
5=-11\&.51き78
INO 1% Lr:=1,256
TEMF(LF:)=C:/(ALP!R(C1/(LI:-1-CE!)+1))
C
C
MAIN FEAL/WFITE LGOGF
INO = 1=1,MAXL
CALL [1GF!(O (*,12,IE1,11)
(ALL IHNFACH:(1E1,11(2))
GAlL (IIS1O (G,1%,1E2,12)
:ALL UNIFA!'11E*,12(こ))
\&AILL [15r:10 (0,14,1E3,13)
GALL LNEACH(1EF,1%(2)!
E
[GI 4 I:=1, MAXF
N(MM=1R1(R:)+1
NLME=1E2(!)+1
NLMS=1E3(R)+1
TLI=TEMF (NUMI)
TN=TEMIF (NIIME)
AA=ALE (N!N2%)
15Nm(k)=255
S=TD-TN
X=(AA-AAVE): 100
Y=ATLI-TTI
IF (X.GE.2.ANI.Y.GE.1E) OOITCI 21
IF (TN.LE.2人E) GO TO 21
Z=-S
IF (S.LE.G.ANI.Z.LE.1O) DO TO 22
IF (S.LE.O) GO TO 21
1T(K)=(E+C*AG)/S
10T(k)=S
IF (IT(Fi).EO.S5S(1) 1T(Fi)=3560
IF (IT(K).EQ,1000) IT(K)=POO
col }10
1T(1:)-1000
1517(K)=E゙55
10UM(K)=0
ra) TO 4
22 IT(P:)=3550
ILT
101M(K)=25s
CONTINLIE
CALL [1EFIO (10.15.1T,14)

```
```

 CALL PAC:T(1ETT,15(2))
 CALL [1!\'10 (10,1&,1DT,15)
 :ALL FACH.11GIMM.16(2))
 PALL [|SH:1C1 (10,17,1[HMM,16)
 CPINTINHE
 CHOISE FILES

```

```

 AALL [1!EVIO (6,13,0,12)
 GALL [1]E1]C1 (E,\14,(1,13)
 GALL JISKIO (6,15.0.14)
 CALL [1]St1G1 (E,14,0(1,J5)
    ```

```

 ETCIP
 ENLI
    ```
```

10 I Phofle Piotaliny routanes. 1/2/8
f\&Oy!am danyuayt is extenued DasdE.
I pioyram widtlen by a.matson
OHTION BASE:

```

```

,Dt(ISUU), TOPOiJSUU).Mean(ISOU)

```

```

 INIECEN DN(4UUU)
 FRIN'SER IS 16
 kjev corr=0 l lnitialize elevation cortection inazcator
 Ensoltso I Indsialdze tor fioidile plotidng
 |mput Elnter frctide de. A, B", ProtaleS(d,d)
 P!OLddebEPrOLideSbPIOLadeSb""*
 liruyd chnter ared name ie.PRB",Ascas
 fide_gfj=AreaS6P&Otade$(2.1)
 Funcidon keys: 1
OU-KEY 10 GOIO 2opo_gen
ON KEY Il GOTO lrmge gen
ON heY <2 EOTO PrOs plot
Oi' KEY i }3\mathrm{ GOjO rpatüre
ON KEY t4 GOTO Fide edit
ON NEY \& GOTO CIOSE_COI
C:: KEY }16\mathrm{ GOTO Cross plot snyl
ON AEY % GOTO CrOSs_plot_h,it
Oiv ner i G GOTO Topo Tesamp̄le
ON KEY \&9 GOTO Elev cogrect
UN KEY IO GOTO REFORt_PIOT

```

```

 HIASS STORAGE}15 ':C*****
 EXIT GFAPHICS
 PRINT FAGL
 PRIIIT * KEY fo Generate topo binary tide from PERKIN output*
 PRItir * KEY |l Generace irage banary file"
 .PHIHT " KEY & Plot a proiide*
 PRItit * KEY f3 Select a feature for matcning profiles*
 PRItiT * KEY &4 File edit*
 PRJHT " KEY IS Cross corgelate two images*
 FRItiT * KEY f6 Cross plot two data &dles(report)*
 PRINT " KEY }7\mathrm{ Cross plot inultiple data files*
 PRINT " KEY & Resample the topo data to match images"
 PKINT " KEY %9 Determine elevataon correction to term data"
 PRINT * KEY \lU Profile plotting(report)"
 PRIHT - MASS STORAGE SET m :C"
 UISP ESelect option*
 GOTO 430
 l
    ```

```

 l
 Topo_gen: l to generate topo binary file from oigitized records.
 OVERLAP
 BUFFER I
 PRIidT PAGE
 INPUT "Enter number of input tiles from DIGIND*,M
    ```

```

 LljP Gerierating lopo file."
 3=0
 FCR N=1 TO M
 ON END 11 GOTO 640
 ASE:GN ll TO FileS
    ```
```

590 READ 11:K
600 REDIMR(K)
6i0 READ ilicurves
620 READ 11;xiower,xupper
630 READ 11:R(%)
640 ASSIGN IJ TO.
630 FOR L=1 TO K
660 2(L+I+2)=R(L)*120.0254 1 Convert from ft to m.
670 HEXT L
600 I= % +K
690 NEXT N
700 REWIND *:T15*
710 REDIM 2(1+2)
720 2(1)=1
730 2(2)=.15875 1 km . Assumes 1/40 - spacing on 1:250,000 map
740 FileOuts="TOPC"tProfiles(1,2)
750 FCREATE Fileouts,52
760 FPRINT Fideoues,Z(*)
70 Disp ©Fanished*
70
790
80
810
820
830
840 1mage
850 OVERLAP
660 EUHFER |
B70 PRINT PAGE
880
890
900 Llliput "Enter {ile type ie Tday,Tnite,Refl*,Filexs
910 Disp "Generatang imaye tale."
920 XS=Prosiles(1,d)6":T15*
930 1F FilexSm"Tday" THEN FS="TD"bx\$
940 JF Filex$="Tnite" THEN F$="TN"tx\$
950 1F FilexS="FEfl" THEN FS="RD"bxs
960 INpuT EEnter starting pixel and line",ps,ls
970 INPuT EEnter ending pixel and line*,pn, in
980 INPUT "Enter number of aats blocks *,No_blocks
990 Cl=(Ls-Ln)/(Ps-Pn)
1000 J=1 I Pro\&sle ejement counter
1010 1=1 \& Block no
1020 FOR I=1 TO NO ElOCKS I INSERT FAST ALGORITHM HERE.
1030 CAT TO AS(*);FSGVALS(I)
1040 IF LEN(AS(1))<>O THEN GOTO 1090
1050 REWIND *:Td5*
j060 PRINT "F$6VAL$(1) not on tape.Insert corsect tape and CONT"
2070 P\USE
1080 GOTO 1030
1090 ASSIGN 11 TO FSGVALS(I) 1
1)00 READ 11;SS
1110 N=POS(SS, Lines*)
1120 Lines=VAL(SS(N+5,N+71)
1i30 M=POS(SS,"Pixelis*)
ij40 PixelsuVAL(S5(M+6,M+8!)
1150 PRINT *Lines,Pixeds=*;Lines,Pixels
1160 REDIM Dn(Pixelselines)
1170 READ (1;DN(*)
1180 FOR K=1 TO Paxels

```
```

12yO yy-CI*(k-j)+1
1200 L)=1NT(Yy)
1210 IF YY-LJ>.S THEN Ll=Ll +l
1220 2(J)-Dn((LJ-d)-Pixeds+K)
7230 I PRINZ J,2(J) I Usefor edjting.
1240 J=J+1 i inerement profile counter
l250 NLXT K _1 TO.
1270 NEXT J
1200 RENIND ":TlS"
129u J=J-1 1 Reset pixed counter
130O REDIM 2(J)
1310 KJ-j4421.587 | Temp calib Dn to Temp
1320 K2"1251.1591
1330 K3--120.21376
1340 Dist=SUR((Pn-Ps)`24(Ln-Ls)" 2)*.477]7/J
1350 RE:DIM \&(J),X(J)
1360 IF (Filexs="TOAy*) OR (Filexs="Tnite") THEN GOTO Temp_cal
1370 If Fidexs="resj" THEN GOTO Retl_cal
1360 Temp cal: FOR I=1 TO J
1390 2(IT=K2/LOG(K1/(2(1)-K3)+1)
1400 IF 2(1)<260 THEN 2(I)=260
1410 NEXT 1
1420 GOTO Binstore
1430 Reil_cal: FOR I=1 TO J
1440 2(15=2(1)/255.100 1 1 refl
1450 NEXT 1
1460 GOSUB Bin_store
1470 GOTO Function_keys
1480 Banstore: I
3490 DISTP "Banary store*
j500 Dun(j)=J ! No_values
j510 Dum(2)=Dist i D\overline{x}}\mathrm{ increnent in km.
1520 FOK I=3 TO J+2
1530 Dum(1)=2(1-2) \& Normal statement.
1540 NEXT I
1550 REDIM DUm(J+2)
156U Filenares=Filex\$(1,4)6Profiles(1,2)
1570 FCREATE Filenames,52
1580 FFRINT Filenames,Dum(*)
1590 PRINT PAGE
1600 DisP "Finishec*
1610 SERIAL
1620 RETURN
1630 I
1640 1
1650 1
1650 Psof plot: 1 On CRT or at 1:1,000,000 on 98725.
1670 INPUT "select plotter option: O CRT . 1 9872S",Plotter
1680 PRINT PAGE
1690 GOSUB Filu read
1700 GOSIJB File-plot
1710 IF PIOtter=0 THEN EXIT GRAPHICS
1720 1F}V=1 THEN GOTD 1690
1730 (iOTO Function keys
1740 File read: IHPÜT EEnter tile type ie Tday,Tnjle,Refl,Elev,Derv,Dt,inert,Hean",rijes
1750 REDINi X(1500),Y(1500),2(1500)
1760 FilenamesmFiles(l,4|fpsofiles(1,2)
1770 if (FileS="TOAy") OR (Files="Tnile") ThEN GOTO 2080
1780 dF (Files""Reİ") OR (Files="Elev") THEN GOTO 2080

```
```

1790
1F rales="derv* THEN COTO 208N
IF Falese"Hean" THEN WTO db20
IF (FIDES="DE") OR (FADESE*INEIE*) THCH COTO Dt_form

```

```

 J=x(1)
 0.s(-x(2)
 FKCAD "Tnit*bProsale$(1,2),Y(0)
 RCDIH X(J+2),Y(J+2),2(J+2)
 If (Fales="DR") OR (FAlesa"Inerl") TH[H MAT z:X-Y
 if Fides="mean" THEN MAT 2=x+y
 |F Fales="mean" THEN MAT 2=2"(.5)
 If (Fadcs="D(") OR (files="fean") THEN GOTO 2110
 InCrifurm: FREAD "RE&j"bProlides(1, 2), x(0)
 IF AITES="PKB" THEN COTO 1950
 PFINT "Neeo to ceget alpna,Deta conit at inert_form"
 PALSE
 Alpnasj2263.8 & Powcer Raver Basan Parameters.
 Bcca=-63744
 FifT }X=x*(.01) & Convest to (ractions
 FOR L=2 TJ J+2
 1F 2(L)>0 THEN GOTO 2020
 2(L)=2550
 goto 2060
 z(L)=(Adpha+zera*x(L))/2(L)
 1F 2(L)<500 THEN 2(L)=450
 1F 2(L)>3000 THER 2(L)=3000
 DLT(2)-Dist I Dx incsement di km.
 NEET L
 cOTO 2110
 FKLAD FIdenames,z(*)
 J=2(1)
 D:E:=2{2}
 FORI=1 TO J
 2(1)=2(1+2)
 X(I)=(I-I)*Dist
 NEET I
 KEDIM X(J),2(J)
 KETURN
 !
 !
 File plot: SERIAL I If V=l THEN REfEAT
 IF Enable=1 THEN GOTO File cont
 If PlotresuO THEN PLOTTERIS 13,"GRAPHICS"
 IF Plotter=0 THEN GRAPHICS
 IF plotter=0 THEN COTO Filecont
 IF V=0 THEN PLOTTER IS %,5, T9872A* | FIrst time
 file cont: BEEP
 Dz=5
 IF (Files(1,)]=*E*) OR (Files(1,2)=*T0") THEN 0z=100
 IF Files(1,2)="De" THEN :'O-10
 IF Files(2,2!="1n" THEN Dz=500
 ys=rajes
 2320 IF (YS|l, |)=*T*) OR (Y$(1,1)="0") THEN YS=YS6"(K)*
2330 1F YS(1,d)="M" THEN YS="miean temp(K)"
2340 \F YS|\.d)="E" THEN YS=YS&"(m)"
2350 IF Y$\1,1j=-R" THEN Y5-YS\&*(I)*
2360 1F YS (1,2)="de" THEN YS="Gradient(m/km)"
2370 1F YS(1,2f="Dt" THEN YS="TEmP d\ff(K)"

```

2610 MOVE X1-.9*25.4*100/285,(Y14Y2)*.5
2620 LABEL XS
2630 LDIR O
2640 LOCATE X1,X2,Y又,Y2
2650 FFAME
2660 LORG 5
2670 SCALE O,X(J),2\pi.2n,2max
2680 OUTFUT 705;"VS2%*
2690 MOVE O, 2max
27UO DRAW X(J).2m.ax
2710 DRAN X(J),2m& n
2720 AXES 10,Dz,0.2m1n,10.2
2730 FOR I=1 TO J
2740 IF I=1 THEN MOVE X(1).2(1)
2750 DRAW X(I),2(I)
2760 NEXT I
2770 OUTPUT 705;"VN;*
2780 CSJ2E 2
2790 LORG 
2800 FOR Ys=2min TO 2max STEP Dz
2610 MOVE -DXS,Ys
2820 LABEL VALS(YS)
2830 NEXT YS
2840 LORG 6
2850 FOR h=0 TO X(J) STEP 20
2860 MOVE W, 2min-Dzs
2870 LABEL VALS (W)
2880 NEXT W
2890 LORG 5
2900 MOVE X (J)*.5,2max-Dzs* 2
2910 LABEL "Profide"bProflles(1,2|b"""b" "bAreast" Area"
2920 IF Plotterm0 ThEN LABEL "CONT to continue"
2930 IF Plotrerm0 THEN PAUSE
2940 PEN O
2950 1F PlOtter=0 THEN EXIT GRAPHICS
2960 1F Plotrer=0 THEN COTO 2990
2970 IF X(J)*25.4>7 THEN OUTPUT 705;*AF;"
2980 1F X(J)*25.4<=7 THEN OUTPUT 705;"AH;*
```

```
299U INPUT "Enter O EO LND end d to plot enotner protide*,V
3000 IF VEJ THLN RETURN
30>0 if PJotser=0 THEN COLO ENDI
3020 if X(J)*25.4>7 THEN OUTPUT 705:*AF;"
303U If X(J)*25.t<07 THEH OUTPUT 705:"AH:"
-3040 cnud: coro runction_weys
30 5u
3000
3070
3000 Feasure: COSUB rale iead
jugo reat: liffut "enter Teature and appiox faxed value",ks,jp
3@0 Jj=J&-12
3JJO If Jj<d THEN J/=\
312v 320\f+12
3j30 if J2)J THEM Jiav
3140 SF=し
3)SO INPuT "JsecOl.T to d25t unad to plot".sp
310N IF 5f=0 TnEN COTO Lase
3170 RLDAF: ג2(J2-J141),DUR(J2-J14)!
3)6u L=0
3)yU fOR najl TO J2
320U L=L+1
3210 x2(L)=K
3220 DLT:(L)=2(A)
3230 AEXTK 1
3240 Lrax=L
3250 MAT SEARCh Eurim(*),MAX;Fmax
3200 NAT SEAREH DUTI(*),MIN:RMAn
3270 Dr=&nax-Rmin
32ev Feature plot: PLOTTER IS : \."GRAFHICE"
3290 GKAFnJČS
3300 LCEATE JU,J00,20,90
3310 SCALE JJ,J2,F\piIn,Frax
```



```
333U FOR L=] TO Lr.ax
3340 IF L=3 THEN HNVE X2(L),Dum(L)
3350 DRAN X2(L).DLM(L)
33uU NEXT L
3370 LORG }
330\ FOK L=1 TO LTAX SIEP 2
3390 NOUE X2(L),Fran-(RTax-Rman)*.05
3400 LABEL VALS(X2(L))
3410 NEXT L
3420 LORG 4
343J MCVE (JJ&J2)*.5,R\pi1ת-.04*DR
3440 LAEEL FINES
345U MOVE JF,RFAXX+Dr*.02
3460 LABEL KS
3470 LOKG 1
3480}\mathrm{ NOVE x.2(1),Fmax+Dr*.02
3490 LABEL "CONT to continue"
3SuO PAUSE
3510 PEN O
3520 EXIT GRHPHICS
3530 COTO 3630
3540 List: PRINI SPA(10),"Feature *:KS
3550 fiin=1599
3560 FOR I=J\ TO J2
3570 MinmmiN(z(I),Min)
3580 NEXT 1
```

```
3500
3000 if &(1)<)MAN THEN PABNT 1.2(1)
```



```
3G1u if T=0 TH&| GOTO Febsure
30SO if T=1 THLN GOTO iuncrion_xey:
3060 1
3070 I
3000 1
josu cross_cos: I PROFL3 To cioss cosielare profiding data lor amazes.
3700 I meinod: snite neans to 0 and variances to d
3710 I form crose correl sun for varyiny velaye.
3720 l jame oata an lu0 paxel sets( see amax)
3730 fablit fage
374u diffut center iunctiond de Tuay,Tnite, fefl ....".xs
3750 dif(J', "Enter iunctionz ie Tuay,Tndte,kefl ....".ys
370U DISP "Esoss cosellation."
377U FKEAD Y&(1,4)6P&OLideS(1, 2),R(*)
3700 ir (A2(1)=h(1)) AND (x2(2)=R(2)) THEN GOTO 3830
37夕J Pratit "fides are not sarie cype - recneca"
```



```
30ju dMFJ, "DO you wisn to conkinue anyway ?",Anzs
302U JF AR2S|J.j|="N" THEN STOP
J030 J=x2(1)
3040 Pactax<(%)
3&50 1 dx: hradx=j DIV dOC
joou jelue
3u7u FmlidTEh dS O
3000 f-1/17
```



```
jjuO FRIN:
jylu FOR Ne\ TU mrax
3y<u 11=(h-1):juv+j
3y3J 12N11+j-j
jy4u \overline{FKINT "fror flxed "bvaLs(Il)6" to "bVALS(12)}
39su 10% 1=1] TO 12
3900 x(1-j j+j)=人己( (I+2)
3970 i(1-1)+1)=R(1+2)
3you NEST 1
399u FEDIM \lambda(J),Y(J),DUT(J),2(J,
quu0 Neanx=Sun(x)/J I Transicsm to Mean=0 Dev=l
4010 rieanymsura(y)/J
4020 MA's X=(-Mtanx)+X
403v MAI Y}=(-Meany)+
4ugo miar Dur=x.x
405u var=Sua(Dum)/J
400U Mat x=(]/Ser(var))"x
4070 MAS DUT=Y.Y
400j var=sun(Dum.)/J
$090 NAT Y=(1/SWR(Var)):Y
4l00 PRINT
4110 PRINT - DCIay ":XS:*.*:Y5
4120 FOR Delay=-5 TO 5
4130 Sund=0
4)40 FOR I=6 TO J-5
4150 D=I+Delay
4100 Suñ=AES (x(1)*y(D))+Sums
4170 NExt: NEXT 1
4180 PRINT E;DEIay,Sum\
```

| 4180 | NLAT Deday |
| :---: | :---: |
| 4200 | NLXT K |
| 4210 | PRINJ'LR IS 16 |
| 4225 | coio runceson_keys |
| 430 | 1) |
| -4240 | |
| 4250 | 1 |
| 1260 | Ciosspplot sindi 1 |
| 4270 | Plot-counted |
| 1200 | |
| 1290 | difPuj eselect plotwr option: O CRT, 1 98725*,plottes |
| 4300 | |
| 4310 | |
| 432 J | IF Piceteiel then limit 0,400,0,285 |
| 4335 | |
| 4340 | |
| 4350 | Fxs-x\$(1, 21 |
| 4360 | Fy\$ $=$ Y\{ $(1,2)$ |
| 4370 | |
| 4380 | |
| 4390 | |
| 4400 | |
| 1410 | |
| 4420 | |
| 4430 | |
| 4440 | |
| 4450 | |
| 4460 | |
| 4470 | |
| $44 \overline{\text { ® }}$ | |
| 4490 | |
| 1500 | COTO plottang_etup |
| 4310 | Inert_reat 1 |
| 4580 | Adfrás52285.8 $\quad 1$ Powder RJver basin farameters. |
| 4530 | Eecae-61744 |
| 4540 | |
| 4550 | FREAD "Tnat"bysosjles(1, $21.2(0)$ |
| 4500 | |
| 4270 | KEDIM DUM(ROn(2) |
| 4500 | MKT Durmbure (.01) I Convert Reid to a fraction |
| 4590 | N:AL $\times 2=\mathrm{x} 2-2$ |
| 4 ¢U0 | MAT X2*x2'(Eeca) |
| 4610 | |
| 4020 | MAT $\times 2=\times 2 / D{ }^{\text {m }}$ |
| 4630 | FOR 1=1 TO ROn($\times 2$) |
| 4640 | IF $\times 2$ (1) 11000 THEN $\times 2(1)=1000$ |
| 4650 | $15 \times 2(1)>3000$ THEN X2 (1) $=3000$ |
| 4660 | |
| 4670 | IF EYS="In" THEN MAT $\mathrm{Y}=\mathrm{XZ}$ |
| 1680 | G070 4400 |
| 4690 | |
| 4700 | |
| 4710 | |
| 4773 | |
| 4730 | |
| 4740 | |
| 4750 | |
| 4760 | COTO 4 6 |
| 4770 | |
| 4700 | |


```
Guvo if rxi="|e" TnEN J=6(1)
```



```
4.20
4030
440
405v
4000
4070
4 0 6 0
4090
```



```
4ydu if Y&(1.d)="E" IHE:N DY=1U0
4520
4530
4y&D iF (XS|{,2j="Tn") OR (x$(1,2)="DE") THEN DX=5
4ssu af xS(J,2)="pre" JhEN Dx=5
```



```
4970 IF YS|,0̇|="A,8" THEN DYE5
4you IF X*11,2)="R" TAEN DX=5
4yyu di y&(d.d)="R" THEN DYES
Suco if plotlermo then locate 2u,10u,10,90
Sulo COSUD foint_flot
Su2u CSI2E 2
503J LORÓ 5
SU4U MOVE (xmax+Nman)*is,ymax
5060 IF Pdottermu TiEN COTO 52dO
SOTU INPU'S "Enter O - E END and l to continue plots",Sz
50BU 1F 5zm THEN cOTO 5160
50yu IF Plot_count=4 ThEN GOTO Reset_plot
5100 pJot_coüntuplot_count+1 I incrëment plot counter
5110 GOTC-Cross_cont
51<0 Reset_plot: OOUTPUT 705;"AH;"! Next page
5130 OUTPUT 705:"AH;"
5140 Cross_plot=1
5 1 5 0 ~ G O ' S O ~ C ̌ O S S \& c o n e ~
5160 OUTPU'' 705; "AH:"
517U OUTPUT 705;"AH;"
S100 DISP "FINISHED."
S190 FENO
5ivo GOTO Function_xeys
5210 LORG }
522u MOVE xmin,ymax+yr
523u LAEEL "CONT to continue;DUNP GRAPHICS to cOPY*
5240 PAUSE
5250 PEN O
526U EXIT GFAFHICS
5270 INPUT "Enter 0 to continue and l to DIGitize plotted points",28
5200゙ IF 26=U THEN GOTO Function_keys
5290 GFAPHICS -
530U PÖINTER (Xminn+Xmax)*.5,(Ymin+Ymax)*.5,2
5310 DIGITILE XC,Yd l Posicion cursor
5320 MAT i=x-xd
5330 MAT 2=2.2
5340 MAT X2=Y-Y0
5350 MA' 
5360 nAAT 2=2+x2
5370 MAT SEARCH 2(*),HIN;2m.in
538v HAT SEARCH 2(*),LOC}(2(K)=2min);
```



```
S4dU FAUSE
S4U cCRO 520U
|
SS4u
5450 1
Satu Cross_plot_mudt: I
    HRIINA PASL
    lupuz Sedect plotcer uptzon: U CRT, d 98725*.plotcer
S40u lopur Sedect ploterer uptzon: U C
SSuO GUSUB Mude_tide_reau
55lv GOTO Cune-mudt
5:<u fult_idle resu: !
5530 F%=#̌OL2I*$11,2)
5ड4J dF AEEOS*"PRE" THEN GOTO 5570
```



```
5000 PALSE
5570 Pcoeri: Adfha=522d5.6 l Powier River Basin Parameters.
5000 dets=-bJ744
559U FKLAD "IOAy"&PS,TGay(*)
56U0 FKEAU "ELev"bPS,TOPO(*)
5010 FKEAL "Tnit"bP$,Tnite(*)
5020 FREAU "DETV*bPS,DESV(*)
5630 FFEAU "REId"tP$,Refl(*)
5640 D2St= IO:U(2)
505U J=TOpO(1)
5660 FOR L=1 TO J
5070 X(L)=(L-1)"02st
56d0 r'cay(L) =raay(L+2)
50yu Tnste(L)=Tndre(L+2)
57U0 TOFO(L)=ropo(L+2)
5710 Derv(L)=[erv(L+2)
5720 Dt(L) = 「ady(L)-Tndte(L)
5730 Nean(L)=(TCay(L)+Tndte(L))/2
5740 fetl(L)=feid(L+Z)*.0l I Convert to tractaons
5750 Inert(L)=(AlpratBeta*Refl(L))/Dt(L)
5760 IF Inert(L)>2500 THEN Inere(L)=2950
5770 1F Jnert(L)<lOUU THEN Inert(L)=550
5780 IF Refl(L)>.2 THEN Refle.245
5790 IF Derv(L)>30 THEN Derv(L)=35
5800 IF DE!V(L)<-30 THEN DEIV(L)=-35
5810 NEXT &
5020 REDIM Tóay(J),Tn\te(J),Topo(J),X(J),Y(J),Derv(J),Dt(J),Inert(J),Refl(J),M\inan(J)
5830 RETURN
5840 Cont mule: l
5850 IF Plotter=0 THEN PLOTTER 1S 13,"GRAPHICS"
5860 IF PIOttez=1 THEN PLOTTER IS 7,5,"9872A"
587U GRAPHICS
5880 FOR K=1 TO 20
5890 IF K HOD 4=1 THEN LOCATE 10,50,60,90
5900 IF K MOD 4=2 THEN LOCATE 10,50,10.40
5910 IF K NOD 4=3 THEN LOCATE 70,110,60,90
5920 IF K MOD 4=0 THEN LOEATE 70,i10:10,40
5930 ON K COSUB P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,P16,P17,P18,P19,P20
5940 1F (K MOD 4=0) AND (PlOtter=0) THEN PLOTTER IS 13,"GRAPHICS*
5950 IF (K MOD 4=0) AND (PlotterEI) THEN OUTPUT 705;"EC;" l Enable cutter
5960 IF (K MOD 4=0) AND (Plotter=1) THEN OU,"PUT 705;"AF;" I Adv and Cut
5970 NEXT K
5960 IF Plottez=1 THEN OUTPUT 705;"AH;" I Adv andecut
```

```
5930 PLR O
6000 EXIT GRAPHICS
GUIO DISP "FINISHED."
620 coto runcison_keys
-GU30 Pl: mat ketopo' I Today vi Elev
GU40 mat yefdey
guso XS="TOFO"
GU60 yb="TOAy"
6070 Dx=100
guou Dyes
6090 GOTO Cont
Gl00 p2: mAt xaderv l tday ve derv
6110 MAT y-TOAY
6120 x$="Derv"
6130 y5="Toay"
6140 Dx=10
6150 Dy=5
blou GOTO Cont
6)70 P3:MAT XGRELI I TdAY vs RELI
```



```
62y0 x$="Hefl"
6200 ys="T0ay"
0210 Dx=.05
6220 Dy=5
6 2 3 0 ~ c o r o ~ c o n l : ~
6240 PO: Nat X=DEIV I Tnale ve Derv
6250 N:RT YeTnate
6360 x5="Derv"
627U Y5="Tnite*
0200 Dx=10
6290 Dy-5
6 3 0 0 ~ G O T O ~ C o n e ~
6310 PS: HAT A.SOPE I THIte ve TMPO
6320 MA's Yo7nsce
0330 x>="торо"
6340 y5="Tnste"
6350 Dx=100
6300 Dy-5
O370 GOTC Cont
O30J P7: NA, A=kes, l tnate vs Reld
0390 mat y=rnate
6avo xs="Refl"
6410 Y5=*Tnate"
6420 Dx=.05
0430 Dy=5
6440 GOTO cont
6450 P9: NIAT X-TOPO ! Refl vs TOPU
64bU MAT Y=Reil
6470 X$="торо"
6480 Y5="RE1J"
6090 Dx=100
    6500 Dy=.05
    6510 GOTO Cont
    0520 P11: MAT i=Inert l Refl vs Inert
    6530 MAAT Y=Feil
    6540 X5=nineri"
    6550 y$="resl"
    6560 Dx=500
    0570 Dy=.05
    650 GOTO Cont
```

```
GSyU PJU: mAT xacerv 1 Resd vs Derv
-cuo mal' y=keil
6610 xt="Derv"
-6dN yje"kesl"
*ij0 Dx=ju
6640 Dy=.0S
65v COTO EOnt
6600 pis: Har xade l lnere ve Dt
G670 mAj y=Inert
6600 x$="DE"
66yU y%="InErl"
-700 Dx=5
6710 Dy=500
6 7 2 0 ~ G O T O ~ C o n t ~
6730 PJ3: NHT X=Topo! Inert vs topo
6740 Nat y=1nert
6750 x$="यоро"
6700 ys="lnertid"
6 7 7 0 ~ D x = 1 0 0
6700 Dy=500
6 7 9 0 ~ G O T O ~ C o n t ~
ǵBUO fj4: NAT X=Dervi inert vs Derv
oodo MAT y=lrert
6820 A5="Derv"
0830 y5="Inertaa"
684J Dx=10
66ju Dy=500
006U GOTO Cont
6870 PJ7.: MAS X-TOgO: Dt vS Elev
\sigmadBU PAAT Y=Dt
6890 X$="Elev*
6900 YS="Dt"
6910 [x=500
6920 DY=5
6 9 3 u ~ G O T O ~ C o n t ~
6940 Plo: NAT X=DERVI DE VE Der:
O950 MAT Y=Dt
6y6u x5="Cerv"
0970 Y5="Dt"
6y80 Cx=10
6990 Dy=j
70v0 GOTO Cont
7010 Pl9: MAT X=Tnite! Toay vs Tnite
7020 mAT y=TOAY
7030 x5="Tnsce*
7040 y$="Ta`y"
705u Dx=5
7 0 6 0 ~ D y = 1 0
7 0 7 0 ~ G O T O ~ C o n t ~
7080 E4: 1 LAEEL
7090 Pd: !
7100 \mu12: 1
7110 P16: 1
7120 P20: GOTO Plot_label
7130 Cont: 1
7140 poine plot: 1
7150 NiAT SEARCH X(*),MAX; Xmax
7160 MAT SEARCH Y(*),MAX;Ymax
7170 MAT SEARCH X(*),NIN;Xmin
7160 MAT SEARCH Y(*),NIN:Ym2n
```

```
7100
7200
280
7 2 2 0
2230
7240
7250
7260
727
72d! if Pici_cOunt=1 THEL, COTO Plt d
72: if Pdel count-2 THEN coto Pdt-2
7300 if PlOt-cOUNESJ THLN COTO PIE-3
7310 P1t 4: K5e8=3.5*25.4
7320 x\=xset409.85
7330 x2=x)+3.75-25.4
7340 yJ=154.75
7350 y2=254
7300 GOTO 7520
737U P1t d: KJ=69.65
?300 人2=103.1
73su yl=3a.1
7400 y2=133.35
7430 GOTO 7520
7420 P1t_2: xj=69.05
7439 <2#105.1
7440 y)=150.75
7450 Y2=254
740U GOTO 7520
747UP1t_3: Xset=8.5:25.4
7400 xJ=xset+69.85
74yu x2=xset+165.1
75jo yJ=36.1
7510 y2=133.35
7525 22=100/(1)*25.4)
753U LOCATE Al*<2,X2*22,Y1*&2,YZ*&2
7540 SCALL Xman,xf.ax,Yr.in,ymax
7550 AXES Dx,Dy,xmin,ymin
7560 LORG 6
757J MOVE (xrin+xmax)/2,ymin-y %%..5
750U FOR R=1 'O 2
7590 IF R=1 THEN 25=xS
7000 IF R=2 CAEN 2$=Y$
7610 IF 2S(1, 1)="H" THEN 2S="nean temp(K)"
7620 1F 2S(1,1)="T" THEN 25=256"(К)"
7030 jF <$(1,2j="DE" THEIv 25="Terp difi(k)"
7640 IF 25(1,2)="DE" THEN 2$="Gradient(m/km)"
7o50 IF 2S(1,2)="E]" THEN 25="Elevation(m)"
7660 IF 2$(1,2)="In" THEN 2S="Inertia(TIU)"
7070 If 25(1, 2)="RR" THEN 2S="RE{1(&)"
7680 1F RuJ THEN XS=<$
7690 IF R=2 THEN Y $=25
770:) HEXT R
7710 LAEEL X:
7720 DEG
7730 LDIR 90
770 LORG 
7750 MOVE Xmin-Xs*3.5,(ymin+Ymax)/2
7760 LABEL y$
7770 1DIFO
7780 IOR I=1 TO J
```

7790
7800
7620
7620
7830
7640 FOR $x=x m a n$ TJ xmax step $O x$
7850 MOVE $x, y m i n-y t * 3$
$786 J$ LaEEL VALS (X)
7670 neat x
7680 LOAG 8
7690 FOF Ya=Ymin TO Ymax STEP Dy
7500 piour xman-xre.5.ya
7910 LAELL VALS(Ya)
7920 NEXT Ya
7930 CSIZE 3.3
7940 RETURN
7953 plas laded: 1
796u SCALE 0.1,0.d
7970 LORG 1
798U MOVE. $2 . .75$
7990 if hiease"pri" then Label "powder Raver basin Area"
6000 df Arease"Cp" ThEN LABEL "Cabeza fideta Area"
BUJO MOVE.5..5
HO20 If Arease"prb" Then Label "ang 20,1978"
3030 1F Areas="CP" THEN LABEL "Apr 3-4.2979"
0040 MOVE .5..25
8050 LiAEL "proidie"sprofiles
6060 IF PJottermo THEF DUMP CRAPHICS
8070 RETURN
00801
6090
BJ00 1
6110 Toforesample: 1 To spline-smooth topo data ano restore as Edev tinary.
Bl20 : año Derv Einary.
Bj30 : Special correction to Dist and for topo jreterp.
BJ40 PRINT PAGE
Bdso DISP "Topo resample."
8 60 EREAD "Toay"\&Protides(2, 2),Tday(*)

8160 J=Tcay(1)
8190 Distmetcy 2 (2)
$0200 \mathrm{~K}=\mathrm{TCPx}(1)$
8210 Distz=T0px(2)
$8=20$ FOR I=1 TO J
$8230 x(1)=(1-3)=0 i s t \quad 1$ lmage ifile
8240 NEXT 1
8250 FOR $1=1$ TO K
8260 TOpx(1) $=\operatorname{TOp} \times(1+2)$
$8270 \times 2(1)=(1-2 i=025 t 2$
8200 NEXT 1
8290 : TO interpolate topo data
8300 DIM Xb(4, 3), Xbern(3,4), Durx (3, 3), Inv(3,3),F(4,1), Rum(3, 1), G(3, 1)
8310 MAT XE=(1)
$8320 \times \mathrm{X}(1,1)=((0=\mathrm{Xb}(1,2))=\mathrm{xb}(1,3))$
$330 \times 6(3,1)=4$
$8340 \times b(3,2)=2$
$6350 \times \operatorname{X}(4,1)=9$
$8360 \times 6(4,2)=3$
8370 MAT XbEEn= PRN(Xb)
8380 MAT DUmX=XbEEn*xb

```
$30
410 Le
34v 8meneINT(0istz*K/Dist)
C40 IF J>Imex THEN JEImax
440 FOK 102 TO J-\
C45
4460
470
e460 Interp: F(l, ,d) =Topx(L-d)
Cyu ((2,1)mTopx(L)
800 F(J,1)=Topx (L+1)
6510 F(4,1)=TOPx(L+2)
420 MAT RUT= XOEEN*E
\30 FiAT G*Inv*Rum
*540 20= (I-1)*2*1)el-(L-2)
```



```
-56u Defv(1)=2*G(1.1)=2b+G(2,1)
870 Nexc): NEXT &
e500 Dum(1)=ropx(1) I End points
-590 Dun(J) eTofx(J)
dovu Derv(2)=(TOpx(2)-TOFx(1))/Distz
Gol0 Desv(J)=(TOFx(J)-TOFx(J-1))/Distz
d620 KECIFi Dun(J),Derv(J),2(J)
0030 PAT z=Lum
```



```
OOSJ EOK IEJ TO\ STEP -1
0000 TOpO(1+2)=Dum(1)
oú7u DEIv(I+2)=DEIv(I)
$60 liExT I
4690 TC;O(1)m
0700 Eerv(1) m
-710 TOpo(2)=Dist
472v Derv(2)=Dist
6730 Ke'DIN TOFO(J+2),DEEV(J+2)
8740 DISP Estoriny dinary idies."
$750 FCFEATE EElev"&PrOId]e$(1, 2).52
a70U FCFFATE DETV"&Proilie5(1,2),52
6770 FPRIWT EELEV fPrO{ile5(1, 2).TOPO(*)
6700 EPRINT "DErv"&PIOİLE5(1, 2], DEEV(*)
8790 DISP FINISHED*
6800 SOTO Function_keys
B810 l
8820 1
8830 1
8840 file eoit:! To eoit binary ildes.
6650 PRIÑT PAUE
060 iNPUT Enter File to be mdited ie, Tday,Tnite,Reid,TOpo.., ", Fileins
$870 FilenaresnFileins(1,4)6profiles(1,2)
O000 REDIM DUr.(1500)
* 890 FFEAC FidenameS,Dum(*)
&900 J=Dum(d)
6910 Dist=Dum(2)
Ey20 PRINT FilenameS.* J=*:J.* Dist=*;Dist
0930 PRINT LIN(d)
4940 ERINI "Dum(3)=";Dum(3)."Dum("&VALS(J+2)6")=";Dum(J+2)
1950 Eoit teatuce: PRINT "PAUSE AT Edit_ieature"
860 PAUSEE
```



```
880 Dum(2)=.508
```

```
890
900
8010
920
830
5040
050
860
807U
90dU FCRLiATE Filenarco,52
guyU FPRIlot Fidenancs,0um(*)
givu cOTu furiceson_keys
y)10 !
9120
9130
Ol4u Eiev corgect: DISP Elevation coriection.*
9150 FRLED "Tuay*bProidie{(1,2),Toay(*)
9100 FREAU "TnitMbPIOIdies(J,2),Tnite(*)
y170 YREAD EELev*&PrCidlu$(1,2),TO&O(*)
9200 J=TOFC(1)
y90 Dast=TCFO(2)
y20u Leu
9ziu lNPut Enter starting ano ending ojstances ior elev corie1",Dl,02
y220 1d=D1/Cjsz+1
\zeta230 12mL゙/DLSt+1
y=$0 tOR I=11+2 TO 12+2
9250 L=L+1
9260 x(L)=Tcay(1)
9270 Y(L)= rofo(I)
9zd0 Z(L)=\tilde{nndce(I)}
32y0 x2(L)=(TCay(I)+Inite(I))/2
930U NEASI
9310 KiCDIM X(L),Y(L),2(L), X2(L)
9320 CALL Lanear(Y(*),X(*),L,Alpna_oay,Beta_oay,Dev_oay)
$33u CALL Linear(Y(*),2(*),L,Olfna-nite,oetā_nite,Dēvnnite)
```



```
S350 PKINJLR IS O
9300 FIXED 4
```



```
94LIN PRINT
G410 STAIIUARD
Si2O PRItNEE IS 16
943u PNINT LIN(b)
9440 PRINT NUSE CJNT to tename raay ano rnit as tat ano tne o
945u fRINT "ano stcre elevacion correction values in roay ano Tnit."
946U FRUSE
9470 RENAME TOAY"spsofiles(1, 2) TO moy"bprofije$(1, 2)
g&00 REI,A!iE "Tndi"tProidiles(1, 2) TO "Tns"&frofijesij,2j
g4yu fCFEAFE Toay"bprotilesid,2j,52
9500 FCHEALE "Tnit"tProfileS(1,2).52
951: Elev_corral l set elevation correction inoicator
5520 Alpna=Alpna mean
9530 FOR I=1 TO J
9540 Tuay(1+2) Taay(I+2)-Alpna* (Topo(I+2)-1400)
9550 Tnite(1+2)=Tnite(1+2)-A1fna(topo(1+2)-1+00)
9560 NEXT I
5570 FPRINT TOay*&PRO&ides(1, 2), Toay(*)
9S80 EPRINT -Tnit"&Proíiles(l,2),Tnste(*)
```

```
$34U FRIHRLLK 15 O
guv pklat
010 PRINT G'O EBEture oate tides;"
O2U PKINT PONGE TUEY.. INEGALGE Tdy.. TO TdEy.."
```



```
40
850 PRINTER 1S 26
0660 DJSP FINISHED."
967U GOTO Punction_neys
030 1
8&0
900 1
710 Report plot: 1
8%0 DISP Repor: plotting."
y%3N SERIAL
840 PLOTTER 1S 7.5,"9672A"
950 COSUS ifult tide read
9 7 6 0 ~ H A R ~ R E I d e k E t \ : ( I O U ) ~ I ~ C o n v e r t ~ b a c a ~ t o ~ s ~
870 Dx=25
9780 x$="0istance(nm)"
9790 MAT SEARCH X(*),MAX;Xmax
9800 xmanou
y610 ixse(xm.ax-xmin)*.225/6
9820 IDEG
9&30 JOR I=1 TO 41 FOur srieets
9040 IF l=1 THEN GOTO P1ORS\
9650 IF da2 THEN GOTC PIOts2
986U 1F I=3 THEN SOTC PlOts3
9670 IF I=4 THEN GOTO PlOtS4
9080 Plotsi: MAT %=ToAy
```



```
9900 Dy=S
9910 Sps=" - Day."
y920 MAT Dun=Tnite
9930 DS="Temp(K)*
y940 Day=5
9950 Sc25=* - Niynt.*
9460 GOTC 10230
9970 Plots2: MAT Y=TOpo
g9du y$=*Edevition(m)*
99!u Dy=100
1000U 5FS=**
1UOIO MAI UuE.,=DErv
10\2U DS= "Gracisent (m/km)"
1U030 SF2さ=い*
10040 Day=10
10050 GOTO 10230
10ULU Plcts3:riAT Y=Dt
1007U y$*"temp(K)"
10060 Dy=5
10050 SpS=* - Termp oitz."
10100 fint dunmmean
10110 DS=Y5
10120 5p2$=" - Temp mesn.*
10130 Doy=Dy
10140 coto 10230
10150 plots4:inht y=REIL
10160 Y5="Refl(8)"
1017U Dy=5
1018U 5pS=0.
```

```
10180 p.ad vuneinest
1020U Duyesou
du2ju Use"Invi&as(TaU)*
10220 6P25***
102JU FOR tel TO 2
$0240 LIrilT U.4Uu.U,deS
102SN LCRGS
10260 C51&5 2.75
1027U &FY=1 THEN ad*(2026.4-12.510,0.0/2e5
10200 if K=2 T'uEN XJ=Ad*e.5025.4*106/405
1v29u <2=xi+5.5020.4* Juv/2us
10300 8de(2* 25.44)4) \ \uv/2*S
```



```
IUJ3U LAUCL X*
10340 LDIK YN
```



```
IU36u if fad rnL| yboDs
1037U LALEL Y&
IUJOU LOIFU
Ju3yv Lu'ha'L x \, <2,y , y2
juGuv rMAiE
JUGdU LÜR心 S
IUGdU if PE& IALN rA't Y=DUR.
Judju if p=d TrE| Ey=Duy
```



```
JU^DU I,AM' SEANC'H Y(*), MiAA;Ymax
JUGOU liAd bkmiCCn Y(*),HIN;YF.dn
```



```
dOwou y,iax=(IN'i(Yifax/Dy)+1)*Dy
```



```
jOSUU SCALE xmi\n,Amiax, Yifidn, y,mix
lublO AxLS \x,Dy, N|2n,ym,& n,4,2
10S<u Ouz're 705;"v52:"
lub30 nove xinin,ymax
IUS4U CRAH Xmax,ymax
1055S DRA.d xriax,yman
10SOU FOR IC=\ TO J I Draw curve
\US7U IF IC=\ THEN FiOVE X(IC),Y(IC;
10SOU CRAN A(Ic),Y(Ic)
105yU NLXT IC
```



```
OO
J0e30 fOR yseyman TO ymax STEP DY
100dO HOVE Xman-Dxs,ys
10650 LABEL VALS (YS)
JUOGO NEXT YS
10470 LORG }
10000 FOR xs=xman TO \lambdamax STEP Dx
1069U MOVE XE,Yn.2n-DYS
107v0 LABEL VAL$(Xs)
10710 NEAT XS
10720 LORC }
10730 HOVE (xmin+xmax)*.5,ynax-Dys*2
```



```
10754 P&゙N U
10760 NLXT P
10779 OUTFUJ 7US;"AH;"
107&0 ULTPUT 1US:"AH;"
```

```
107%U HEXT I
juavo Outfut 7US:"Ami*
20610 coto function_nefs
10&21,1
-10030
10040 1
jobsu suy binear(x(0),r(*),L,Alpna,De(a,Dev)
dused I fit Y - Adfne*x + Deta */- Dev
j007v OPTIOM wasej
```



```
juesu RED|| AJ(L,d),YJ(L,J),AEEnE(I,L)
dObul FON I=\ IO L
10y10 ad(1,d)na(1)
dos20 y)(1,d)es(1)
JUSJL luLal :
du94L xnean=5u.acb:j/L
JuySu smeelleSufi(yd)/L
zurcu finf a)mad-(amean)
1097u t.h7 yJ=\)-(buean)
Juybu f.AT Atengerali(x)
Juyyu Pad Ceatrna*xJ
1)OU0 N,AT helwv(D)
dlulo Pat D=xt!ns*yl
110.U PAS FOA-D
1103u hdfna=F(l,d)
1)0&U Beconyreon-Alfnc**arman
jossu i,Al al=xl+(aneall)
JluLO f.RT Y)=y)+(Ymean)
3j07L l:ar aj=xj"(Alfne)
d)U0U par al=al+(deta)
|10yv NAT Xl=Al-y]
IlJuv |AI al=al.xj
1)110 Dev=SuR(Sull(al)/(L-d))
1112U SULLND
```



```
djacu l Cut;uc=as NIII,\lambdaiaa
11150 OPIION OASE 1
111ou nEDIM x(L)
d)d7u Rudu=s泣(x)/L DIV UA`Dx
```



```
dizuU fiax_starco:mat SLARCH x(*),LN( (SXmax);N
j):1U if T-AUpier<l*.06 Them man
1)22U A.̈̈x-ama^tDa
1)23u =0%0 diax searen
11240 M1D:IMAT SEAREN X(*),LOC(.<-xJOwer):NJOwer
11250 גп\n=arian-Dx
11<00 m1n_searcn:AAT SEARE# X(0),LOC(<ANIn):N
jJ"7U if A
11%ov Aminmxnim-Dx
j)2y0 coro iain_searcu
d1s00 fariasn:sübedu
11310 END
```


5.2 REFERENCE MATERIAL

[^0]: - For asie by the Clearicghouse for Federal Sciencific and Technical Information, Spingfield, Virginia 22lab,

