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PARABOLIZED NAVlER-STOKES SOLUTIONS 

of 

SEPARATION and TRAliING-EDGE FLOWS 

James L. Brown 
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SUMMARY 

A robust, iterative solution procedure is presented for the parabolized 
Nil'ier-51.okes or hjgher-order boundary-layer equations as applipd to ~ ; ub­

souie viscous-iDyiscid interaction flows. The robustness of the present pro­

cE'dure is duE' , in part, t.o an improyed algorithmic formulation. The pre "~'Dt 

form ulat ion is based on a re-int.erpret.ation of stability requirement fer 

this cla-s o ~ algorit.hms and requires only second-order-3ccurate ba,ck"ard 

or central differences for all streamwise deri,atiYes. rp~tream infim'D('e 

is proyjded for through the algorithmic formulation and iteratiy~ s"E"ep ~ 

in I . Thf primary contrihution to robustness, ho~ever } is the boundary­

(ondit ion t rea1 ment, whi ch imposes global constraints to control the (on­

vergence path. Di scussed are succe"sful calculations of subsonic, st rong: 

)'lsrom-inyi srid interact ions) induding separat ion , These results are con­

sist.ent wit h ?\ ayi er-Stokes sol ut ions and triple-deck the()ry. 



SYMBOLS 

C f skin friction coefficient, 2T / Peu~ 
C p pressure coefficient 

e total energy per unit mass, m2 jsec2 

m mass-flow rate, kg/sec 

p stat ic pressure, kg!m·sec2 

R radius of curvature, m 

ReL Reynolds number, uLj v 

u velocity, x-componeni, m/sec 

v velocity, y-component, m/sec 

x Carte. ian coordinate, ill 

y Car tesian coordinate, ill 

o· displacement t.hi ckness, ill 

1J transformed coordinate, fJ = 1J(x , y) 
J.l dynamic v iscosity . kg/m ·sec 

v kinematic v iscosity, m2 /sec 

( transformed coordinat.e. ( = x 

p den sity, kg/m 3 

-r sbpa" stre" " Ii !:l " / ::::" I ( ~ - v 1 "- .. '::'0] r U u '-- :1 

'II streamfunction , J pu 0 y 

Subscripts: 

CL wake cent erline \-alue 

e edge value 

grid index in x 

J grid index in y 

TE trailing-edge value 

w wall value 

Superscript : 

n iterat.ion level ind ex 
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INTRODUCTION 

Aerodynamic flows otten involve physical phenomena not properly ac­

counted for in first-order boundary-layer t.heory (ref. I), even when coupled 

to an outer inviscid solution. For strong viscous-inviscid regions, such as 

the trailing-edge of an airfoil, or in a shock/boundary-layer interaction, 

streamline curvature leads to a significant norma] pressure gradient op/oy 
within the boundary layer. Additionally, upstream effects may become im­

portant even within the thin viscous shear layer. Separation may also occur, 

further complicating the solution within these flow regions. 

Some coupled methods (refs. 2-4) modify the results of their boundary­

layer solutions within such regions in an attempt to correct for these deficien­

cies of first-order boundary-layer theory. However, the appropiateness of 

these corrections) valid only to first order, clouds related issues, such as tur­

bulence modeling, witrun these regions. To resort to t.he time-dependent 

Navier-St.okes approach for these regions seems a needlessly expensive ~ ay 

of accounting for the weak ellipticity of these flows . Problems with grid 

resoluti on are also encountered in the application of time-dependent 1\ aTier­

Stokes met hods owing to storage and CFL condition limitations, even for 

the implicit methods prevalent (ref. 5). The present work addresses this 

clear need for an efficient viscous-solution method, one that is intermediate 

between currently available first.-order boundary-layer and Nayier-St.okes 

techniques, is capable of treat.ing upstream influence and small-scale separa­

tion, and is suitable fOT viscous-inviscid coupling. 

Previous workers haye formulated sophisticated schemes with various 

regimes of applicability to solve viscous layers with higher-order effects. 

Here we concentrat.e on spatially marching schemes because of their implied 

promise of minimizing both storage requirements and convergencE' times 

while ret.aining t.he capability of treating complex geometries . Parabolized 

Navier-Stokes (PNS) methods ha"Ve demonstrated considerable success when 

applied to supersonic flow over complex bodies. The most p revalent P~S 

methods (refs. 6,7) currently are single-sweep, nonit.eratiw and are raste r 

than time-depEndent ~avier-Stokes solvers by orders of magnitude, thus 
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making three-dimensional computations quit.e practical. Such PNS methods 

effectively solve the continuity, x-momentum, y-moment.um , and energy 

equa.tions for p, pu , pv, and pe, respectively. Pressure is obtained from the 
equation of state. Currently, such PNS solvers are restricl,ed to supersomc 

flow s with thin subsomc regions. The treatment of the pressure terms wit.hin 

the su bsoruc regions is only approximate but is critical to obtain stable 

marching. For stable marching) a mimmum streamwise step LJX > LJ Xmin 

must. be taken. This minimum step size is roughly the height of the su bsonic 

region. Axial separation is not allowed. These PNS methods currently in­

volve only single sweeps in the x-direction and thus cannot proyide for 

upstream influence. 

Partially-parabolized Na¥ier-Stokes (PP~S) methods pro\ide solutions 

for large regions of subsonic and eyen reversed flow. In these methods (refs . 

8,9)" t he I- and y- momentum equations are spatially marched with the 

pressu e fieJd assumed known. The continuity equation is then used as a 

basis for corrections to the pressure fi eld . Some PPNS methods also soh--e 

an elliptic Poisson equation which aids in transmit.ting pressure inform at ion 

throughout the entire flow field , but also adds to the computational time 

and effo rt , The spec ificalion of u and 1, boundary conditions does not ea ily 

fit. into current coupling schemes . Upstream influence is possible with these 

met bod~ and mult.iple sweeps in the x-direct ion are neces arlo 

More suited to application in a yiscous-inviscid coupling scheme are 

P .l. ·5 methods that are essentially boundary-layer methods ,""ith incorpora­

t.ion of t.h e y-momentum equation. Incorporation of the y-momentum equa­

tion elevates the conventional first.-order bOU11dary-layer equat.ions into the 

PNS set of equations. Upstream infiuE'nce is provided t.hrough multiple­

sweeps in t be x-direct ion and t.hrough prop€r design of the algorit hm. 

Prim ary contributions to these method were made by Rubin (ref. 10), 

Lin and Rubin (ref. 11), 11aghoub and Bradsha" (ref. 12), and Cben and 

Bradshaw (ref. 13). These P~S methods effect.ively solve the continuity , 

x-momentu.m .. y-momentum and enerKv equat.ions for v, U , p, and pe respec­

t jvely . The equat ion of state is used to solve for p . For incompressibie fio"s, 

the yariab!e pe and the energy equation may be dropped. 

Rubin appli ed such a Pi\S/boundary-layer method to an incompre -
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E-itle separation probl~m. The method is implicit with the ~quat.ions coupled. 

Rubin emphasized forward-differencing of fJp/ fJx inconsistent with the differ­

~ncing treatment of the remaining streamwise derivatives as a requirement 

for stable marching. Extension to compressible flows was accompli shed by 

Lin and Rubin in a study of supersonic viscous flow oyer an inclined cone. 

This cla.ss of flows contains negligible upstream influence and is efficiently 

solved by the single-sweep PNS methods. Convergence of their multiple­

sweep P~S/boundary-Iayer method did OCClli, albeit slowly. Rubin a.nd 

Reddy (ref. 14) subsequently applied a nPJJtigrid technique to aid conver­

gence and fO bustness on fine grids. 

Chen and Bradshaw present.ed an efficient -viscous-inviscid coupling 

scheme based on the P~S/boundary-Iayer method of Maghoub and Brad­

shaw which includes the y-moment.um equation. Good agreement of the 

calculations with experimental Cp versus x was obtained for two airfoils 

at t ransonic speeds but at a small angle of attack. The boundary-layer 

equations are solved uncoupled, and it would appear that the technique, 

being based on the method of (' haracteristics, cannot calculate througb 

flow-rewrsal. Chen and Bradshaw concede that if fJ 2p/ 8xfJ y is significant 

their met hod may fail. 

Both of the abovE' higher-order boundar}-layer methods are ~ignificant 

contributions . Both of these methods, how ever, han' lim it ations as to ac­

curacy an d robustness . Accuracy is limited in both methods since forward­

difftren cing of 8p / ox is used in the x-momentum equation for stability 

and upstrea m influence, and bac h..--v;ard-differencing is used for all ot.her x­

deriYati\-es . As a model equation, even the differential form of the Bernoulli 

equat ion will be solved inaccurately. 

In thi s paper) t he requi rement of forward-differenc ing of 8P/ ax for 

stabil ity and upstream influence is r~moved. A consist.ent algorithm is for­

mulated; thereby improving the inherent. aCCUT3..('J of t his class of met.hods. 

Coarser grids are allowed which aids the convergence rate, a.nd the robust.­

ness of the current IDet hod is considerably enhanc hed relative to the pri or 

methods; a result of bot h the {}p / CI and bound ary- condi tion t.r e3tments. 

The method in till s paper is an implicit, finit.e-differenc e solution of th ,' 

P:\S or higher-order boundary-layer approximat ion of the :Kavief-Stokf ,; 
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equations . In addition to the cont inuity and x-momentum equati ons solved 

by first-order boundary-layer techniques , inclusion of the y-moment um equa­

tion is accomplished . Inclusion of the Y-IIlomentum equation allow s for solu­

tion with normal pressure gradient s but converts the parabolic fir st-order 

boundary-layer equations into an elliptic set. This is demonstrat ed by drop­

ping the viscous terms, thereby obtaining the Euler equations as a subset. 

An otherwi se parabolic spatially marching proeedure is rendered el1ipt ic b} 

providing for upstream propagation of information reJating to the pressure 

field . Second-order-accurate backward or central differences are used for 

the st reamwise derivatives, leading to an accurate and con sistent scheme. 

Physical insight allow s the x- and y- momentum equation~ to be written in a 

form so that the scheme is al so stable . It erative sweeps in the x-direction are 

required wi t.h global st.orage for only pressure being nerressary. T he only 

spec ial t.reatment required for separati on is to set Pv. ou jox = 0 in the x­

m oment um equat.ion. 

T he boundary condltiom of the method present.ed here are similar 

to those of conyent iona l fir st-order boundary-layer methods wit h either a 

di rec t edge-press ure, or an inverse mode. Effi cient algorithms ex ist. for 

coupling with an inv iscid code.. using either the direct or the inverse boun­

d a.ry condit ions. The boundary conditiom impl emented are thus well- sui ted 

for iDc o rpo rat ion of th e method into a coupled yi scous-inyi sc id proced ure. 

The p~uE:'d0di r e.c t boundary condit ion is act ually an adapt-i on of a proposed 

semi-inl'erse coupling procedure. For duct fl ow, wh ere mass flow rem ains 

cons t ant . t be present code can proceed t o a sol ut ion wit hout the necces­

sity of co upling . The influence of t he type of bound ary condi t ion u sed 

on convergence is ob served and disc ussed . To -v-alidate the met.hod) resul ts 

are presented for a vari ety of flow conditions. Comparisons are made wi t h 

avallable l\ a\'ier-Stokes soluti ons and triple-deck theory. 
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NUMERICAL FORMULATION 

The equations that are solved for incompressible, tv;o-dimensional flows 

are 
au + at' = 0 
ax ay 

au au ap a { au} 
cpu- + pv- = --+ - )/L-ax ay ax ay ~ ay 

ov av ap 
P'l1-+pv-=--ax ay ay 

where the FLARE approximation (ref. IS) is used 

c = 1 if u > 0 

= 0 if u < 0 

Boundar} conditions are discussed lat.e r. 

(1) 

FOT coupled systems of equat ions , a variable that is being solved for 

may be a.ssociated with a parti cular equation through diagonal dominance of 

the resultant matrix syst.em. As with ('ollYentionai fir st -order boundary­

layer terhnique. , the solution for t1 and t' is associated with the x-momentum 

and C' ont.inwty equations) respectiyely. The solution for pressure i~ as­

soc iated \fit h the v-mom entum equation. In contra . t ) PP:\ ~ m ethods solye 

for 11 aDd z fr om the x- and y- momentum equations .. respec tively. This 

difi'erfncE' is not just a subt.le point. ~ot onJy are simpler boundary condi· 

tion sperificatiom, requi red in the present formulati on: but also the press ure 

field is being solved in an implicit coupled fashion simultaneouJ} witb thE' 

velocity field. In PPNS methods, the pressure-field calculations are de­

coupled and are lagged relatiye to the veloci ty-field calculation s. Generally 

speaking . methods that are implicit and fully coupled are more robu, t and 

converge faster than methods that are not, 

One key idea in the present formulation is that in deriYing the finite­

difference representation of t.he above di fferential equati ons, no equation is 

written al the sa me location . By so d oing, stable marching is achieved ~hile 

al so a rriY in g at a sparse block-tridiagona l mat.rix system ~hi c h may be mort' 

ecoDomirally solyed . Figure 1 depirts the various nodes im;olved in writ.ing 

~ 
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t.he finite-difference equations. In figure 1, the equation is written formally 

at (i,;"-1/2) for continuity; (i,)') for x-momentum; and (i-I , )' + 1/2) for 

y-momentum. In marching the solution one streamt\ise step, the variables 

ti ar..d t ' are being solved for at Xi, and p is being solved for at 'Ji-I' The 

continuity and x-momentum equations use backward mtferences for the x­

derivatives. The backward-mfference expression for the op/ ox term wit h 

evenJy-spaced Llx is 

(2) 

The superscript n refers to the global it.eration level. Note that P~2,i 

has been solved for , p~ J ,i is being simultaneously solved for from th e y­

moment urn equation , and p~/ must be obtained from a previ ous global 

iterat ion . Upst. ream values of t ·n at Xi are involved in the y-moment um 

solut ion for p" at X~- l' lpstream influence is thus proyided for through t he 

(y-momentum and op/ {} x) pressure formul ation. Were the y-momentum 

equation to be written at x" not only would the upstream propagation of 

pressure informat ion be suppressed , but the sc heme would be unstable for 

SID all .:1 x . 

Th e met ric treatment used allows more general body shapes t han 

does a rectangul ar grid , whil e mini mizing the ro mpl xity inyolved during 

the early phases of rode deYelopm ent. Consider the rather simple metri c 

transformation 
x = (; y = y{( , ry) 

(=x; 1]=17(X , y)=j 

The x- and y- derivat.ives may be t\ritten as 

~= 8ry~+ ~ 
8x o'J o ry o ~ 

tJ 8 7} 0 
--

oy oy 8 17 

The term Dry/ox can be written for the above transformation as 

or; 
{}x 

8 ry ay 
---

ay o~ 

8 

(3) 

(4 ) 

(5 ) 



which leads t.o 

a _ a ay a. ay 
ax - 8~ - aE ay' aE 

Yi,j - Yi-i ,j 

E, - Ei-l 
(6) 

The x-derivatives in the differential system, equation 1, are then written 

using equation 6, and the y-derivatives are written as y-derivatives using 

higher-order-accurate numerical forms for variable grid spacing. The solu­

tion then actually occurs in a hybrid C y system. Metric treatments of the 

type presented by Steger (ref. 16) are contemplated for futur e incorpora­

tion; however, a quite wide range of problems with interesting geometries 

may be studied with the metric treatment described. 
l)sing the above metrics, second-order-accurate finite differenc es, and 

the finite-difference molecule depicted in figure 1, the differential syst.em 

given by equation 1 can be written in mat.rix form 

where 

j =l , j ma :r. refe rs t.o the jth differencing molerule{see fig.I) 

k refers to the equation: 

= 1, continuity 

=2 , I -moment urn 

=3, y-momentum 

171 refers to the variable: 

=1, (UdJ = ..d v ; ,j = Vi,j - Vi-l ,j 

=2, (U2 )j = ..dui,j = Ut,j - Ui-i,j 

=3, (U3 )j = Pi-i,J 

The interior elements for matrices A.,B,C, and D are given in the appendix. 

This matrix system is then soh-ed using a standard 3 x 3 block-tridiagonal 

matrix solYer rew ri tten to take advant.age of the matrix sparsity. The 

sparsity of the matrix syst.em is depicted in figure 2. The convec tive 

~oefficients , (pu)"j and (pv).,j, appearing in the x-moment.um equation 

involve Ullknowns being solved for. Iteration for t.hese coefficient s makes 

9 
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the finite-difference approximation to the differential system second-order­

accurate. Typically, three iterations are used with the values at (i-] , j) 

used in the first iteration. Extrapolation f-or these coefficients was tried; 
however, the converged solutions for separated flows -exhibited weak spatial 

oscillations. Note that the y-momentum equation is solved for at (i-I : j + 
1/2); therefore, these convective coefficients are known. 

A computer code written in FORTRAN implements the above al­

gorithm for two-dimensional steady, incompressible laminar flows. The 

code operates in either a PNS or a first-order boundary-layer (BL, where 

ap/ By _ 0 replaces the y-momentum equation) option. Such an ability 

to easily choose between the PNS and BL formulations allows accurat.e 

evaluation of the significance of the y-momentum equation for various flow 

condi tions . Several boundary-condition options are implemented. These 

are next described. 

The boundary condition:: for a solid surface are 

continuity at Xi: Vi, l = 0 at wall 

x-moment urn at Xi : Ui 1 = 0 at wall , 
au - = 0 at edge 
8y 

(8) 

An additional edge condit ion is required for the y-momentum equat ion 

on t.he pressure_ The t.reatment of t his additional edge condition l ead~ 

to four boundary-condition options: the direct mode, duct mode, inverse 

mode, and psuedodirect mode . 

Direct mode - The direct mode appli es an input pressure di stribut ion 

Pi,jmax versus Xi as an edge condition to t he y-momentum equation. This 

option is referred to as the PNS-Direct or the BL-Direct mode depending 

on whether the PNS or the BL option is in effec t . 

Duct mode - The duct mode applies a correction to the oyerall pressure 

leyel at Xi to maintain a constant mass flow , m, through t.he duct. The yalue 

of rh is obtained from the inlet profile at Xl ' \\Tith p'l.;l ) P~l. jma x ' and 

PC '!- l assumed known, t.he following FORTRAN assignment st at.ement · 

are used: 
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pn-l =p~-l + pen 
',J ',J , 

( used in the ~~ x-momentum equation term) (9) 

P?-'l,jmax =Pi--/,jmax + PC?-.l 
( used as the y-momentum equation edge condition) 

The pressure level correction, PC~, is found by iteration through 

a modified secant method relating mi to PC,:. Typically three or four 

iterations are required. This option is referred to as the PNS-Duct or BL­

Duct mode. 

Inverse mode - The inverse mode is similar to the duct mode except 

that the pressure correction being applied is adjusted so that an input edge 

streamfunrtion is obtained, wei yersus Xi where , 

l
Ye 

'lre,i - u6y 
Yc 

(10) 

This inverse mode is similar to the more conventional o· -specifi ed j nyerse 

mode. Note that we and o· are related by 

(1 I) 

This option is referred to as the P~S-IN\T or BL-INY mode. 

Psuedodirect mode - The psuedodirect mode is simi lar to t.he inverse 

mode except that the edge streamfunction distribution We,i versus Xi is 

adjusted every global iteration. The adjust ment is accomplished to give. 

upon convergence, a desired edge-velocity distribution; it is based on a 

coupling algorithm that is being explored. The algorithm used is 

(1 2) 

where 
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Since 00· /0 U e is not easily evaluated) this term is at present dropped and 

underrelaxation is used giving 

wn- 1 

~n = 1I1 n
- 1 + C_e -.6u 

e e n-l e ue 
(1 4) 

Here L1u e is the difference between the desired edge velocity at Xi 

and the edge velocity U~-l froID the last global iteration. The desired 

edge velocity can be either an input edge-velocity distribution) as with the 

present psuedodirect mode) or can be an edge-velocity distribution obtained 

from an inviscid solver) as in a viscous-inviscid coupling procedure. A 

similarity exists to Carter's 0* semi-inverse algorithm (ref. 17) 

(1 5) 

The psuedodirect option demonstrates the essential features of thf 

coupling algorithm and accelerates conyergence oyer the direct mode for 

the specified edge-velocity boundary condition. The psuedodirect mode is 

used only with the P~S option and is referred to as the PNS-PSD mode. 

The logi c for the P-;\S-PSD mode is demonstrat.ed in block form in figur e 

3. 

For tbe symmetric wake, t.he boundary condition for the x-mom entum 

equation differs at y = o. The symmetry of u about. y = 0 is made use of 

t.o evaluate the I-momentum equation at y = 0 as 

(16) 

The a/ax terms are expanded as before. The symmetric wake boundary 

condition abo"le is second-order accurate and gives a smoother represen·· 

tation of the inner wake than does the first-order au/Dy = 0 conditioD 

normally applied. 

12 
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RESULTS 

The method described in the previous sections was applied to severa) 

laminar flows that involve strong viscous-inviscid interactions. These flow s 

included the Briley laminar separation cases and the symmetric laminar 

wake of a flat plate. Much of the development work on the algorithm 

and boundary-condition treatments was accomplished while considering the 

Briley separation cases. 

Laminar Separation Results 

Briley (ref. 18) solved the time-dependent. N avier-Stokes equat.ions over 

a flat plate for a set of four linearly retarded flows. The edge velocity is 

prescribed at Yc = 3.81 X 10-3 m for t.hese four flow s as 

ue(m/sec) = 30.48(1 - 31') , X < Xc 

= C , x > Xc 
(17 ) 

The four Briley cases differ in the location 'Ie and velocity level C. Briley 

faired t.he curve at Xc to avoid a discontinuity in slope. The kinematic vis­

cosity is u = 1.4864 X 10-4 m2 /sec. The specification of these parameters 

by Briley was in English unit.s (the nondimensional Reynolds number being 

the import.ant constant) and ha,e been subsequently converted to met.ric 

for this st udy. Two of the four Briley cases (Briley-l and -2) are attached 

flows; the ot.her two (Briley-3 and -4) exhibit separation bubbles of differing 

extent. Elliptic or upstream effects are significant in these flows and, in 

cont rast, a pressure-prescribed first-order boundary-layer solution (Howarth 

flow) predicts separation for all fcur cases. Since the geometry of these cases 

is simple, and separation with up _ tream influence does occur, these flows 

have been used in various st.udies as st andard lest cases for validating and 

developing new numerical algorithms for calculations in fluid mec hanies. 

The initial efforts at solving the Briley cases made use of an algorithm 

quite similar to that of Rubin, in that forward-differenring of aplo'I an d 

backward-differencing of aul ox were implement.ed in the x-momentum 
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equations. Coarse-grid solutions inevitably did not separate since the ad­

verse pressure gradient was being relieved prematurely owing to the use of 

8 forward-differenced op/ox. Fine-grid solutions could be obtained with 

underrelaxation but the method lacked robustness. It was realized during 

these initial efforts that for these methods to be generally and routinely 

applicable for industrial and aerodynamic design purposes, developments 

had to be made to 

1. Eliminate the inconsistent use of forward-differenced op/ ox and 

backward-diIrerenced ()u/()x in the x-momentum equation 

2. Enhance accuracy on coarse grids 

3. Enhance robustness, particularly when applied to flows with seyere 

adverse pressure gradients 

4. Promote rapid convergence 

An important development was the realization, based partly on physi­

cal a.rgument s, that st.able marching of this class of algorithms requires thai 

the pressure variable solved for be the trailing pressure (with a dominant 

negative coefficient) in the ()p/ox term; Rubin's stability requirement of 

forward-differencing fer the op/ ()x term is unIieccessariIy restrictive . SolYing 

for the trail ing pressure leads to damping of error terms, whereas soh-jng 

for the leading pressure leads to error amplification and t.he associat.ed 

drparture solutions described by Lighthill (ref. 19). Subsequently, th e 

present. fully implicit. algorithm was formulated with second-order-accurat e 

back-ward-differenced a/ax used exclusively for t.he cont.inuity and the x­

momentum equations, and second-order-accurate central-differenced a / ox 
used for t.he y-momentum equation. Improyements in accuracy and robust­

ness were demonstrated by the elimination of the forward-differenced op/ ox. 
The convergence rate was, however. still fel t to be slower for the Briley flows 

t han one might reasonably expert. The development of a plot package 

depicting streamline and pressure contours revealed int.ermediat·e solution s 

with substantial streamline cnrvatUIe, which in some cases verged on being 

physically unrealistic . At this point, a deci sion was made to develop a t reat­

ment of t he boundary conditions that would more affirmatively control t.he 

convergence path of these int.ermediate solutions. This led to the PNS-L\\T 

and later to the PNS-PSD boundary-condition modes. 

14 
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The Briley-3 separated-flow case was selected for more int.ensive st udy 

instead of the Briley-4 case because of limitations of the PNS-Direct mode. 

Also) v-arious NaTier-Stokes methods give somewhat different solut ions fo r 

the Briley-4 case since significant viscous effects extend to the edge of 

the computational domain) and details of boundary-condit.ion t reatment 

acquire importance. Fully converged solutions for the Briley-4 case were 

obt.ained with the PNS-PSD mode) however. Thus) the attached Briley- l 

and the separated Briley-3 cases were chosen for use in the present. st.udy 

for validation purposes. Five modes of operation of the present code were 

applied to the Briley-3 and -1 cases: (1) PNS-Direct; (2) P KS-Th-V; (3) 

P NS-PSD; (4) BL-Direct; and (5) BL-:I:l\'V. Coarse- and fine- grid solut ions 

were obt ained. The Briley-3 case is di scussed first. 

Briley- oS case - Figure 4 depicts the edge-velocity dist ribution used for 

the Briley-3 case as the input boundary condition for the P~S-D i rect a.nd 

P~S-P SD modes . The position for separat ion as given by the Bril ey :;\ avi er­

St okes and by the fir st.-ord er boundary-layer (Howarth flow) solutions are 

marked ; reattachment as calcul ated by Briley is indicated as wel l. Murphy 

(ref. 20) demonstrat ed that the difference between the I\avi er-Stokes and 

fir st-ord er boundary-layer sep aration poin t. s is a function of t he R eynold s 

number of the flow ) wi t h agreement occurring at sufficiently high R eyno lds 

number. For the P:'\ S-INV and BL-IJ\\' modes the input boun da ry ron­

diti on used was the edge stream function calcul at.ed from the P:i\S-P SU 

mode. The output result for the inverse modes is a calculat ed edge-velocit.y 

dist ribut ion . The result ant edge-veloci ty di st ri but ion fr om the P\'"S-lJ';\! 

mode is identical with the input cli stribution to the PI\S-PSD mode) a~ 

one might reasonably expect. The BL-I'\'Y mode, however , gives an edge­

velocit.y distribut ion in which the great.est differences occur in t he region of 

the separation bubble , where ap j ay ¢ 0 effect s are most significant. 

The strea.mline and pre~sure contours obtained for t.he p~S_L\\r mode 

are combined in figure S. The PNS-PSD solution is essentially identical. 

The streamlines are not evenly spaced, being more tightly spaced close to 

the surface t o proyide more det ail. The press ure cont ours ar e evenly spaced 

in pressure. The I-spacing of the press ure contours giTes an indi cation of 

the strearrrwist' pressure gradient) and the slope of a particul ar pressure 
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contour is inversely related to the normal pressure gradient: ' 

(18) 

A fine-grid (36 x-stations) solution is shown. Minor clifferences in stream­

lines for the coarse-grid (18 x-stations) solution exist, but are not significant. 

For most purposes, the accuracy of the coarse-grid 10th iterat.ion solu­

tion would suffice. Thus, rapid convergence to an accurate solution is 

demonstrated on a coarse grid for the current algorithm with the PNS-IN-V 

boundary-condition mode. 

The combined streamline and pressure-contour plot makes it possible 

to gain insight into both t he flow being computed and the algorithm employ­

ed. One connection between the pressure fi eld and streamlines is through 

the y-momentum equation, rewritten here as 

8p 

8y 

1 a( v I u) 
R ax (19) 

where R is int.erpreted as the radius of curvature or the loc al streamline . 

" -e re R to b E" interpreted as the surface cur-vature, as in some boundary­

layer methods, the ellipticity of the present method would be suppressed. 

Note that close to the surface within 6* , even though the streamline cur­

yature is substantial , the normal pressure gradi ent is n early zero. This is) 

of course) because the pu2 term is quite smal l. Only in the inYl scid regi on 

and in the viscous region outside 0* d o strong ap/oy effec ts occur, being 

most significant for those x-stations in the ncinity of the separation bubble , 

w here streamline curvature is large . In the ncinity of the separation point, 

the streamline curvature and associated 8p/ ay effect s tend to relieve the 

surfaee- pressure graclient (8pl ox) relative to t.he edge-pressure gradient, 

thereby delaying separation relative to a first-order boundary-layer solution . 

The weak adverse pressure gradient is, bowe,er , prolonged at the surface, 

thereby dela}ing reattachm ent till well past the I-station where the edge­

pressure gradient is relieved. It is interest ing to note t.hat reatt ac hment 

occurs in the presence of a weak adYE: rse pressure gradient at the su rface . 

Reattachment is apparently accomplished by the shear-stress transport of 
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momentum from the outer regions predominating over the weak residual 

adverse pressure gradient. 

The considerable advantage in convergence rate of t.he P!'\S-D\' V mode 

over that of the PNS-Direct mode can best be underst.ood in terms of this 

interaction between the pressure field and the streamline ('ontours. With the 

edge streamline specified, the streamlines within the computational domain 

approximate fairly well the streamlines for the final converged solut.ion, even 

on the first global iteration. The ap/ ay field establishes itself rather quickly 

in the global iteration process. For the PNS-Direct mode, the streamlines 

within the computational domain are not so constrained, and, particularly 

for separated flows, the initial streamlines differ markedly from the finaJ 

converged solution,; there is slower establishment of the pressure field, wit h 

slower overall convergence . 

Figure 6 shows velocity profiles u versus y obtained using the PNS­

PSD mode. In the interest of clarity, not all I-locations are presented . It is 

obvious that the velocity levels in the reversed-flow region are quite sm all , 

thereby justif)ing t.he FLARE approximat.ion used in the present study. It 

is also apparent that the viscous regkm approaches but does not quite reac h 

the edge of the computational domain for this Briley-3 case. Also observe 

t.hat. the outflow profile is Blasius in shape, in agreement with Briley. As 

indicated in tigure ti, a stretched y-spacing is used , with 14 of 40 nodes 

adequate to resolve the inlet boundary layer. Solutions with eyen spacing 

in y give nearly the same result. 

Figure 7 presents the di5tribution of skin friction CJ versus .1 and dis­

placement thickness t/ versus x calculated by the PNS-J;\Y (identical to the 

PNS-PSD solution) and the BL-I1\~T modes. Also given are the correspond­

ing results from Briley 's calculations. The skin-friction results indicat.e that 

the PNS-L\ry mode and Briley calculat.ions agree identically with respect to 

reattachment location, wit.h the PNS-INV mode giving separation one-half 

grid point fart her do"\\nstream. The BL-~-V mode gives surprisingly good 

agreement with Briley's separation point) with reattachment occcurring two 

grid points upstream of the Briley calculation results . Good agreement for 

the 0* distribution exists for the PNS_]]\'"\T and the Briley solutions. The 

BL-IJ'\\! method once again demonstrat.es some differences for CJ and 0 • 
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in the region of significant opj8y. The BL-INV method used appears to 

be a particularly attractive calculation method in view of the single global 

sweep required. Pletcher (ref. 21) has reached similar conclusions concern­
ing an inverse BL} o·-prescribed) finite-difference method. A .. .n error in edge 

velocity in regions of significant apjoy inevitably occurs) ho\\"ever} with 

these inverse BL methods. 

For t he Briley-3 case] the PNS-PSD and PNS-INV modes give results 

quite comparable to the Navier-Stokes solutions by Briley. These methods 

converge rapidly} wit h about 20 gJobaJ iterations required for the fine-gri d 

PNS-II\'Y solution and 10 global iterations for the coarse-grid PNS-II\ry 

solution. The iterations required for the PNS-PSD mode depend on the 

initial \}I e distribution . Using an initial clistribution deduced from the 

Briley results, the fine-grid PNS-PSD converges in 40 global iterations. 

Here convergence is indicated when no significant changes occur in Gi l 

o·} or U e . The pressure residual for these two methods goes to essentiall} 

machine zero. The PNS-Direct mode was also applied to the Briley-3 casE' 

with results similar to those of the PNS-PSD mode. The conyergenc e 

characteristics are not as desirable, with the maximum pressure residu al 

leyeling off befo re reaching machine zero. For separat ed flo"\\" s: the PI\S­

PSD mode exhibits considerable advantage over the P~,-, -Direct mode wit h 

respect to t.he convergence rat e and robustness. 

Briley-l case - The BriJey-l at.tached-flow case was also calcul ated by 

t he P~S and BL methods. Figure 8 indicates the edge-velocity dist ri buti oD 

Ue versus 1 specified by Briley for this case. This U e distribution is ~imilar to 

that for t.he Briley-3 case but the ad-verse pressure gradient L not su_ t ained 

for as long. Nayier-Stokes solutions do not separate, even tbougb separa­

tion is indicated by first-order boundary-layer theory (Howarth solution l. 

Thu s, upst ream influence is significant for this flow. Tbe skin-fri ction and 

displacement thickness resuJb are sho\\"n in figure 9. Tbe P::\S-Direct) Pi\S­

Ir\\T] and P~S-PSD modes all give results in agreement with the !\ayier·· 

Stokes solutions of Briley. Once again} tbe BL-IN""\T mode giye~ quite accep­

table resulL \\"itb tbe greatest disc repancy occurring in regions of significant 

opj8y. AJso indicated are BL-Direct solutions for this case in the regi oIJ 

leading to separation. The separation point indicat.ed by the BL-Direc l 
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results is in good agreement with the Howarth separation point. It is in­

teresting to note that with the FLARE approximation being used, the BL­

Direct mode will march through separation and reattachment. The solu­

t.ions past separation are highly nonphysical, however, -with a tremendous 

ejection of material upward from the separation point (see the discussion of 

Landau and Lifshitz (ref. 22) regarding the singularity at separation of the 

first~order boundary-layer equations). The substantial streamline curvature 

in the BL-Direct solutions close to separation is at. considerable variance 

with the first-order boundary-layer theory assumption of 8p/8y O. 

Trailing Edge Results 

The laminar , fiat-plate trailing-edge provides a further example of 

the applira bility of the present P~S formulation to st rong yiscous-inyiscid 

interactions . In the absence of upstream influence) a simple discontinuity 

in boundary condition occurs for first-order boundary-layer theory at t he 

trailing-edge. Goldstein (ref. 23) pro-vides ~uch first-order boundary-layer 

solutions for the trailing-edge/near--wake problem. However , for the .:'{ayier­

Stokes e-quat.ions and equat.ion subsets which properly account for upstream 

infiuence, the laminar trailing-edge proble-m contains a ingu\arity at the 

trailing-edge. Stewartson (refs . 24 25) points out, based on the triple-deck 

subset of the ~a\ier-Stoke-s equations, that the skin friction has an in-rerse 

square-root singularity as the trailing-edge is approached. The displacement 

thickness will~ however) vary smoothly through the trailing-edge re-gion. 

Interat:'ting boundary-layer theory, where upstream influence is accounted 

for by the boundary-condition form u.l at ion, appears to adequat ely calculate 

this flow. :Melnik et al. (ref. 2) has demonstrated a similar t.heory for a 

t.u.rbulent trailing edge. To better underst.and the trailing-edge problem 

and as a test case invo}-ving strong viscous-inviscid interaction) calculations 

using the PNS and BL formulat.ions desc ribed earlier are presented below . 

Tht' comput.ation is for a flat plate, 1 ill long, wit.h ReL = 10~' . The 

computational domain is for the interval between x = 0.5 and x = 1..5 

ill , wi t h t he trailing edge iocated at x = 1. Two values for the edge of 
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the computational domain Ye are considered. Both of these remain outside 

the viscous layer. The inlet conditions are Blasius, but with 6* adjusted 

to account for the leading-edge interaction. The grid is unevenly spaced 

with 59 x-stations and 40 v-nodes, and is concentrated in tbe trailing­

edge region where ~x = 0.01. Veldman (ref. 26) has calculated the 

above problem earlier ~ith both interacting boundary-layer and tr iple-deck 

solution techniques. 

Several approaches are applied to thls problem. These include 

1. PNS-PSD, with lie = 0.12 ill and tie = 100 m/sec 

2. BL-Direct, with surface pressures from PNS-PSD(Ye = 0.12) 

3. BL-Direct, with 8p/8x - 0 and U e = 100 m/sec; this case rep­

resents noninteracting, first-order boundary-layer theory with a combined 

Blasius fiat-plate and Goldstein near-wake solution. 

Ini tial PNS calculations were made with the computational edge at 

Ye = 0.03, just out.side the viscous region .. Although the solution did exhibit 

upstream influence, this tendency appeared damped with unacceptable 

quali ty of agreeme nt with the t riple-deck solutions. Two possibilities wer 

explored in efforts to explain this disagreement. One involyed the incorpora­

t.i on of the remaining nscous term~ into t be algorithm (e.g. ) (flU:; )x , ( ,£17..'y )y~ 

and (fi'l.'lJr). Stable spat ial marching occ urred for the full Navier-St.ok s 

equat ions and tbe SDlutions actually prese nted are full ~aYier-St oke_ solu­

tion s. However, t.hese solutions showed only very minor changes from the 

P~S solut.ions and did not explain the disagreement above. ¥,' ith this ex­

tension to t he full Navier-Stokes equations, the organization of t.he present 

primitive-variable formul ation is similar to the streamfunction/vorticity for­

mulation of Murphy_ 

The reason behind this disagreement was found, however, to lie in 

the second possibility . Examination of t he pressure-contour plot for the 

P:\"S-PSD (Ye = 0.03) case (see fig. 10) revealed pressure contours that 

appeared to be constrained by the edge of the computational dom ain. To 

alleviate this constraint ; the computat.ional edge was moved outward in 

several stages t o Ye = 0.12. The extent of upstream infiuenc-e increJsed 

toward the tripl e-deck solution, aft.er which no furth er changes occur red . 

Figure 11 depicts the pressure cont-ours for the PNS-PSD (Ye = 0.12) case 
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and shouJd be contrasted with the data in figure 10. Note the diffe rent 

y-sc ales in figures 10 and 11 . We see that the distortion of the pressure 

field by the trailing-edge propogates nearly to the inlet boundary fo r the 

Ye = 0.12 rase. 

Except for a small range of x-stations very close to the trailing edge, 

much of the pressure-field adjustment occurs in the inviscid region and 

Bp/ oy ~ 0 within the liscous region. The relative success of interacting 

boundary-layer theory for the trailing-edge problem is traceable to the 

validity of t.he assumption of a zero norma] pressure gradient for much of 

the boundary-layer and wake viscous regions. To yerify this, the surface 

pressures from the PNS-PSD (Ye = 0.12) calculations were applied as the 

input to the BL-Direct mode. As "Will be seen, reasonable agreement "With 

Veldman' s results are obtained. 

Figures 12 and 13 show distributions of the skin-friction coefficient 

Cf versus x, and the displacement thickness o· versus I for t.he three 

cases. Figure 14 shows the distribution of the normalized wake centerline 

velocity UCL/ U{; -versus :r. Also included is the triple-deck- based solution of 

Veldman. The P~S-PSD (Ye = 0.1 2) case sho-w-s excellent agreement -w-ith 

Veldman's results, confirming that the present formulation is capable of 

correct ly accounting for both the viscous and inviscid regions of this st rong 

viscou . -inyiscid int.eraction flow . The results for the BL-Direct ("With P~S­

PSD surfa,ce pressure) case prove to be quit.e acceptable , "Wit.h differencE's 

occurring for 0* closest to the trailing edge; where the as sumption of a 

zero norm a1 pressure gradi ent is invalid. The skin-friction agreement is 

excellent, probably because the correct surface pressures are being appli ed . 

For the trailing-edge flow , the most significant effect of t.he viscous-inviscid 

interaction is to rorce the inyiscid r egion to adjust the pressure fi eld as 

applied to the viscous region. 

The source of this pressure-field readjustment is indicated in a com­

parison of figures 15 and 16, which depict the streamline pattern fo r the 

noninteract.ing BL-Direct mode (op/ox - 0) and the BL-Direct mode (-w-ith 

PNS-PSD surface pressure). The st.reamline patterns for the P:\,S-PSD 

calculations are quit.e similar to those in figure 16 . For the BL-Di rect 

(op/ax = 0) calculations, a discontinuity develops in the streamlines at 
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the trailing-edge. This streamline discontinuity is the resul t of t he sudden 

acceleration of the innermost portion of the viscous layer upon release of the 

no-slip condition) a discontinuous change in boundary condition. Consider 

that the y-momentum equation can be writ ten as 8P/8y = -p1..l.2 /R ; R 

is the radiu s of curvat ure of the local streamline. At t he trailing edge, t he 

discontinuity in streamlines implies that R t-+ 0 and 8P/8y t-+ cx). Thus, 

the streamline pattern generated by the BL-Direct (8p/ 8x = 0) calcula­

tion is in sharp contradiction with t he first-order boundary-layer theory 

assumption that 8p/8 y = O. If the y-momentum equation is incorporat ed 

or t he edge-pressure boundary condition is allowed to adjust to account for 

upstream influence, then the pressure fi eld will adapt to smooth out the 

streamline curvature until a consistent soluti on is obtained. 

CONCLUDING REMARKS 

Progress on the development of a parabolized Navier-Stokes solut.ion 

method suitable for application to strong viscous-invi scid int.eract ions ha s,. 

been de s(' ribed . An improved algorit.hm and boundary-condition treatm ent. 

which enhances rapid convergence to accurat.e solutions on coarse grid. 

while ret.aining stab le marching for small marching steps, is repo rted. To 

provide for proper upstream influence, the algorithmic formulation perform :; 

it.erative sweeps in the I-direction and requires global storage only for p res­

sure. The met hod has been validated t hrough the successful comput ation 

of two subsonic, strong yiscons-inviscid int.eractions, including a separation 

bubble and a t railing edge. Detailed comparison wi th l\avier- Stokes solu­

tions and tripl e-deck theory is made with excellent agreement indicated. 

The improved algorithm stems from a conceptual reinterpret.at ion of 

stability requirements presented earlier by Rubin . In the present work, this 

stability requirement for forward-differenci ng of 8p/ 8x is removed. Rather , 

t his paper demonst rat.es that stable, subsonic marching of the P::\S equa­

tions merely requi res t bat the pressure vari ab le being soh-ed for should be 

the trailing p ressure in the op/8x te rm . Thi~ idea is used to formulate the 

present algorithm; within each equation, consistent differencing is impJe-
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mented for all streamwise derivatives. 

Boundary conclition modes for external flows are clirect pressure , In­

verse edge-stream function, and psuedodirect modes. With these boundary 

conditions, the present code is well suited for coupling with an inyiscid 

code. For internal flows , global mass conservation is used. The boundary­

condition treatment proves crucial in enhancing rapid convergence. For 

these strong viscous-inviscid interactions, the global constraints imposed 

by the inverse and psuedodirect boundary conditions provide the improve­

ment in robustness o,er the direct boundary condition required t.o make 

this formulation a practical and useful approach. 

The computations for strong viscous-inviscid interactions demonstrates 

that the present PNS algorithm and boundary-condition formulation is 

a rapid, accurate, and robust approach which incorporates the essential 

features of elliptic upstream influence. For the trailing-edge flow , the PNS 

algorithm was extended t.o include the full Navier-~tokes terms with stable 

spatial marching acrueved . To this author's knowledge, this is t.he fir st 

successful spatially marched calculations of the full ~ayier-Stokes equations 

in primitive variable form for subsonic .. strong yiscous-inyiscid int eract ions. 

The inclusion of a zero- and a two-equation turbulence model. and the 

inco rporation of the compressible terms into the present code, recommen­

dat ions for fut ure work: have already been part iall} implement.ed . The 

combination of a turbulent compressible version of the present P~S code 

with an Euler soh'er in a coupling procedure should then be accomplished. 

The code would then serve as an efficient computational tool in turbulence 

modeling studies of strong viscous-inviscid int.eractions. 
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APPEND1X: MATRIX ELEMENTS 

The matrix system being solved is of the form 

where 
j =1, jmax refers to the jt.h differencing molecule 

k reters to the equation: 

=1, continuity 

=2, x-momentum i 

=3, y-momentum . . 
m refers to the variable: 

, =1, (Ud.i = LlVi,j = Vi,j - tli-l,,; 

=2, (U2),. = LlUi,j = Ui,j -, Ui-l,j 

=3, (Ush = Pi-I,i 
.. 

The interior elements for the continuity equation are 

flVj-l: (All)" = -1 ,,' 

Au,.-l: (A12h = 0.5· BXO· DY_X - DEX M 

Pi-l,j-l: (A1S); = 0 

flVj: (B11 )j = 1, 

fluj: (B12)j = 0.5· BXO· DYX + DE}/{ Al 

Pi-l,i: (B1s):i = 0' . 

6.Vj+l: (Gll)j = 0 

fltli+l ': (C12),; = 0: 

Pi-l,j+l: (CIa») = 0 

(Dt}j = -(t'~l,j - Vf..l,j-l) 

- (tl~l,j - U::1,j-d' DEX M 
+ 0.5· DY x,: B."\2· [(U~l,j + U~l,J'-l) 

- (ui-2,j + ui-2,j-l)] 
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The interior elements for the x-momentum equation are 

~tJj-l : 

~Uj-l : 

Pi-l,j-l : 

Pi-l,i: 

(...121 )j = 0 

(A22h = RX . CY M - DT M 

(A23)j . 0 

(~lh = 0 

(~2h = (pu)f,j' BXO + RX· 9YO 

~" + (DTP + DTM) 

(~3)j = BXl 

~Vj+l: (C21 }j = 0 

DaUj+l: (C22 }j = RX· CY P - DTP 

Pi-l,j+l: (C23 )j = 0 

(D2}J" = -(pU)':l .• B~"¥2· (U~2 '. 2 U~l .) 
I,) s ,J S- ,J 

- RX· (CY p. U::1,j+l + C1'O· t1~l:j 

+ CY l'J . U~l,j-l) 

+ DT P . (Ur..I,J+ 1 - U:: 1,J') 
+ DT Al . (Ur..l,j-l - U·1-1,j) 
- DEX· (CY p. p':l-.1+ 1 + CYO. p':l-.l 

. I,J ',J 

+ CY AI· P~j~l) 
- (BXO . p~./ + BX2 . P::2,j) 

Note that the (pu )~j and RX terms are found through iteration. 
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The interior elements for the v-momentum equation are 

AtJj-l: (AadJ' = 0 

AUj-l: ,(As2)j = 0 

Pi-I,j-I: '(ka)j = 0 

AVj: (Badj = -0.5· DY M . ex p. (pu)i-l,i 

JiUj: (B32»), = 0.5· DY M . ex p. (pv)f-1,i 

Pi-I,i: (B33)j = '-I .' 

.6.11j+1 :' (Cadj~ ~0.5· DY A{ . ex p. (pU)~l,j+l 

AUj+1 : . (C32)) = 0.5· DY .A{· ex p. (PV)?-l,~'+l 

Pi-l,i+l: (C33}j = 1 

(D2)j = -0.5· DY M . ex M . I(pv)i-l,i'ui-2,,- tJ~lIJ) 

+ (pv)?-l,i+l(Ui-2,J+l - U?-LJ+ll] 
+ 0.5· DY,,\[· C}('.H· [(pU)::1,j(t'~-2,j - r~l,j) 

+ (pU)?-1,j+l(Vi-2,i+l - V~lIJ+l)) 
+ 0.5· DEXP· [(pV)?-l,j + (pv);l;i+d 

.( Ui-l,J-t-1 - U~l,.i) 
- 0.5· DE_Y p. [(pU)i-l,j + (PU)i-I,j+l1 

. (V~l,j+l - vi-I,j) 

26 



where 

DX . x, - X,-1 

DX2R = (Xi - Xi-t}/(Xi - Xi-2) 

BXt = "7" (x. - Xi-2)/(Xi-l - Xi-2) 
BXO --.: - BXI/{l - DX2R . DX2R) 

BX2 = -(BXO + BXl) 

ex P = (X,-l - Xi-2)/[(Xi - Xi-2)(;rj - xi-d1 
C){ AI = -(Xi - Xi_1)/[(X, - Xi-2)(Xi-l - Xi-2») 

CXO -:- -(CX p + ex M) 

cy P = I (Yi,j - Vi,j-d/[(Vi,i+l - Vi,j)(Vi,j+l - Vi,j-l)] 

CY AI = . (Y;,i+1 - Yi,i)/[(Yi,i - Vi,j-:1 )(Vi,j+1 - Vi,i-])) 

CYO = -(CY P + CY M) 

VY X ~ (Vi,i - Yi,j-d/(Xi - xi-d 
DYAf =,(Vi-1,j+1 - Vi-I,i) 

VEX = -(Yi,j - Yi-l,j) 

VEX Af = -0.5· [(Yi,j - !/i,i-d 

- (Vi-l,i - Yi-l,j-dl/(Xi - Xi-l) 

DE); P = -0.5· [(Yi,i - Y;,i+l) 

- (Vi-2,i - Yi-2,.i-dJ/(Xi - X,-2) 

DT P ,D}[· (J.li,j+l + !-li,j) 
/[(Yi,i+l - Yi,j-d· (Yid+l - Yi,i)] 

DT"\! = DX . (Pi,i + Pi,j-d 

/{(Yi,j+ I - Yi,i-d . (Vid - Vi,i-l )] 

RX = (pv)i,j' DX + (pu)~j' DE .. Y 
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