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PARABOLIZED NAVIER-STOKES SOLUTIONS
of

SEPARATION and TRAILING-EDGE FLOWS

James L. Brown

Ames Research Center

SUMMARY

A robust, iterative solution procedure is presented for the parabolized
Navier-Stokes or higher-order boundary-layer equations as applied to «ub-
sonic viscous-inviscid interaction flows. The robustness of the preseut pro-
cedure is due, in part, to an improved algorithmic formulation. The prezent
formulation is based on a re-interpretation of stability requirements for
this class of algorithms and requires only second-order-accurate backward
or centrai differences for all streamwise derivatives. Upstream influence
is provided for through the algorithmic formulation and iterative sweeps
in 7. The primary contribution to robustness, however, is the boundary-
condition treatment, which imposes global constraints to control the con-
vergence path. Discussed are successful calculations of subsonic, strong
viscous-inviscid interactions, including separation. These results are con-
sistent with Navier-Stokes solutions and triple-deck theory.
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SYMBOLS

skin friction coefficient, 27/p,u?
pressure coefficient

total energy per unit mass, m?/sec?
mass-flow rate, kg/sec

static pressure, kg/m-sec?

radius of curvature, m

Reynolds number, uL /v

velocity, z-component, m/sec
velocity, y-component, m/sec
Cartesian coordinate, m

Cartesian coordinate, m
displacement thickness, m
transformed coordinate, 5 = n(z, y)
dynamic viscosity. kg/m-sec
kinematic viscosity, m?/sec
transformed coordinate, § =z
density, kg/m®

shear stress, udu/8y
streamfunction, [ pudy

Subscripts:

wake centerline value
edge value

grid index in x

grid index in y
trailing-edge value
wall value

Superscript:
iteration level index




INTRODUCTION

Aerodynamic flows often involve physical phenomena not properly ac-
counted for in first-order boundary-layer theory (ref. 1), even when coupled
to an outer inviscid solution. For strong viscous-inviscid regions, such as
the trailing-edge of an airfoil, or in a shock/boundary-layer interaction,
streamline curvature leads to a significant normal pressure gradient dp/dy
within the boundary layer. Additionally, upstream effects may become im-
portant even within the thin viscous shear layer. Separation may also occur,
further complicating the solution within these flow regions.

Some coupled methods (refs. 2-4) modify the results of their boundary-
layer solutions within such regions in an attempt to correct for these deficien-
cies of first-order boundary-layer theory. However, the appropiateness of
these corrections, valid only to first order, clouds related issues, such as tur-
bulence modeling, within these regions. To resort to the time-dependent
Navier-Stokes approach for these regions seems a needlessly expensive way
of accounting for the weak ellipticity of these flows. Problems with grid
resolution are also encountered in the application of time-dependent Navier-
Stokes methods owing to storage and CFL condition limitations, even for
the implicit methods prevalent (ref. 5). The present work addresses this
clear need for an efficient viscous-solution method, one that is intermediate
between currently available first-order boundary-layer and Navier-Stokes
techniques, is capable of treating upstream influence and small-scale separa-
tion, and is suitable for viscous-inviscid coupling.

Previous workers have formulated sophisticated schemes with various
regimes of applicability to solve viscous layers with higher-order effects.
Here we concentrate on spatially marching schemes because of their im plied
promise of minimizing both storage requirements and convergence times
while retaining the capability of treating complex geometries. Parabolized
Navier-Stokes (PNS) methods have demonstrated considerable success when
applied to supersonic flow over complex bodies. The most prevalent PNS
methods (refs. 6,7) currently are single-sweep, noniterative and are faster

than time-dependent Navier-Stokes solvers by orders of magnitude, thus




making three-dimensional computations quite practical. Such PNS methods
effectively solve the continuity, r-momentum, y-momentum, and energy
equations for p, pu, pv, and pe, respectively. Pressure is obtained from the
equation of state. Currently, such PNS solvers are restricted to supersonic
flows with thin subsonic regions. The treatment of the pressure terms within
the subsonic regions is only approximate but is critical to obtain stable
marching. For stable marching, a minimum streamwise step Az > Az,
must be taken. This minimum step size is roughly the height of the subsonic
region. Axial separation is not allowed. These PINS methods currently in-
volve only single sweeps in the z-direction and thus cannot provide for
upstream influence.

Partially-parabolized Navier-Stokes (PPNS) methods provide solutions
for large regions of subsonic and even reversed flow. In these methods (refs.
8,9), the z- and y- momentum equations are spatially marched with the
pressure field assumed known. The continuity equation is then used as a
basis for corrections to the pressure field. Some PPNS methods also solve
an elliptic Poisson equation which aids in transmitting pressure information
throughout the entire flow field, but also adds to the computational time
and effort. The specification of u and « boundary conditions does not easily
fit into current coupling schemes. Upstream influence is possible with these
methods and multiple sweeps in the r-direction are necessary.

More suited to application in a viscous-inviscid coupling scheme are
PNS methods that are essentially boundary-layer methods with incorpora-
tion of the y-momentum equation. Incorporation of the y-momentum equa-
tion elevates the conventional first-order boundary-layer equations into the
PNS set of equations. Upstream influence is provided through multiple-
sweeps in the z-direction and through proper design of the algorithm.
Primary contributions to these methods were made by Rubin (ref. 10),
Lin and Rubin (ref. 11), Maghoub and Bradshaw (ref. 12), and Chen and
Bradshaw (ref. 13). These PNS methods effectively solve the continuity,
r-momentum, y-momentum and energy equations for v, u, p, and pe respec-
tively. The equation of state is used to solve for p. For incompressibie flows,
the variable pe and the energy equation may be dropped.

Rubin applied such a PNS/boundary-layer method to an incompres-




sible separation problem. The method is implicit with the equations coupled.
Rubin emphasized forward-differencing of 8p/0z inconsistent with the differ-
encing treatment of the remaining streamwise derivatives as a requirement
for stable marching. Extension to compressible flows was accomplished by
Lin and Rubin in a study of supersonic viscous flow over an inclined cone.
This class of flows contains negligible upstream influence and is efficiently
solved by the single-sweep PNS methods. Convergence of their multiple-
sweep PNS/boundary-layer method did occur, albeit slowly. Rubin and
Reddy (ref. 14) subsequently applied a mnltigrid technique to aid conver-
gence and robustness on fine grids.

Chen and Bradshaw presented an efficient viscous-inviscid coupling
scheme based on the PNS/boundary-layer method of Maghoub and Brad-
shaw which includes the y-momentum equation. Good agreement of the
calculations with experimental C, versus r was obtained for two airfoils
at transonic speeds but at a small angle of attack. The boundary-layer
equations are solved uncoupled, and it would appear that the technique,
being based on the method of characteristics, cannot calculate through
flow-reversal. Chen and Bradshaw concede that if 8%p/828y is significant
their method may fail.

Both of the above higher-order boundary-layer methods are significant
contributions. Both of these methods, however, have limitations as to ac-
curacy and robustness. Accuracy is limited in both methods since forward-
differencing of dp/dzr is used in the z-momentum equation for stability
and upstream influence, and backward-differencing is used for all other z-
derivatives. As a model equation, even the differential form of the Bernoulli
equation will be solved inaccurately.

In this paper, the requirement of forward-differencing of &p/dz for
stability and upstream influence is removed. A consistent algorithm is for-
mulated. thereby improving the inherent accuracy of this class of methods.
Coarser grids are allowed which aids the convergence rate, and the robust-
ness of the current method is considerably enhanched relative to the prior
wethods, a result of both the 3p/f8z and boundary-condition treatments.

The method in this paper is an implicit, finite-difference solution of the
PNS or higher-order boundary-layer approximation of the Navier-Stokes
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equations. In addition to the continuity and z-momentum equations solved
by first-order boundary-layer techniques, inclusion of the y-momentum equa-
tion is accomplished. Inclusion of the y-momentum equation allows for solu-
tion with normal pressure gradients but converts the parabolic first-order
boundary-layer equations into an elliptic set. This is demonstrated by drop-
ping the viscous terms, thereby obtaining the Euler equations as a subset.
An otherwise parabolic spatially marching procedure is rendered elliptic by
providing for upstream propagation of information relating to the pressure
field. Second-order-accurate backward or central differences are used for
the streamwise derivatives, leading to an accurate and consistent scheme.
Physical insight allows the z- and y- momentum equations to be written in a
form so that the scheme is also stable. Iterative sweeps in the z-direction are
required with global storage for only pressure being neccessary. The only
special treatment required for separation is to set pudu/dz = 0 in the z.
momentum equation.

The boundary conditions of the method presented here are similar
to those of conventional first-order boundary-layer methods with either a
direct edge-pressure, or an inverse mode. Efficient algorithms exist for
coupling with an inviscid code, using either the direct or the inverse boun-
dary conditions. The boundary conditions implemented are thus well-suited
for incorporation of the method into a coupled viscous-inviscid procedure.
The psuedodirect boundary condition is actually an adaption of a proposed
semi-inverse coupling procedure. For duct flow, where mass flow remains
constant. the present code can proceed to a solution without the necces-
sity of coupling. The influence of the type of boundary condition used
on convergence is observed and discussed. To validate the method, results
are presented for a variety of flow conditions. Comparisons are made with
available Navier-Stokes solutions and triple-deck theory.



NUMERICAL FORMULATION

The equations that are solved for incompressible, two-dimensional flows
are

v
i Mol AN
+6y
Bu du dp 8 [ Ou
e el e e L 1
Cpu +pvay B 1 ayl/‘ay} ()
6 Jv dp
pu_+m55—_%

where the FLARE approximation (ref. 15) is used

e=1 1fu >0
=0 afu<0

Boundary conditions are discussed later.

For coupled systems of equations, a variable that is being soived for
may be associated with a particular equation through diagonal dominance of
the resultant matrix system. As with conventional first-order boundary-
layer techniques, the solution for u and v is associated with the z-momentumn
and continuity equations, respectively. The solution for pressure is as-
sociated with the y-momentum equation. In contrast, PPNS methods solve
for 4 and + from the z- and y- momentum equations, respectively. This
difference is not just a subtle point. Not only are simpler boundary condi
tion specifications required in the present formulation. but also the pressure
field is being solved in an implicit coupled fashion simultaneously with the
velocity field. In PPNS methods, the pressure-field calculations are de-
coupled and are lagged relative to the velocity-field calculations. Generally
speaking. methods that are implicit and fully coupled are more robust and
converge faster than methods that are not.

Orne key idea in the present formulation is that in deriving the finite-
difference representation of the above differential equations, no equation is
written at the same location. By so doing, stable marching is achieved while
also arriving at a sparse block-tridiagonal matrix system which may be more
econpomically solved. Figure 1 depicts the various nodes involved in writing
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the finite-difference equations. In figure 1, the equation is written formally
at (4,7-1/2) for continuity; (7, ) for z-momentum; and (:-1,7 + 1/2) for
y-momentum. In marching the solution one streamwise step, the variables
u and v are being solved for at z,, and p is being solved for at z,.;. The
continuity and z-momentum equations use backward differences for the z-
derivatives. The backward-difference expression for the dp/dz term with
evenly-spaced Az is

Op i _ 3005 = Wiy P,
dz ' 2Az

(2)

The superscript n refers to the global iteration level. Note that Pi2,j
has been solved for, Py j is being simultaneously solved for from the y-
momentum equation, and p{f}l must be obtained from a previous global
iteration. Upstream values of +™ at z, are involved in the y-momentum
solution for p™ at z,-;. Upstream influence is thus provided for through the
(y-momentum and Op/8z) pressure formulation. Were the y-momentum
equation to be written at z,, not only would the upstream propagation of
pressure information be suppressed, but the scheme would be unstable for
small Az.

The metric treatment used allows more general body shapes than
does a rectangular grid, while minimizing the complexity involved during
the early phases of code development. Consider the rather simple metric

transformation
=§ y=y&n) ()
E=z; n=1n(z,y)=] |
The z- and y- derivatives may be written as
8 _9nd o}
Oz 6{ on  0¢ (4)
& 0Oy o
dy Oy any
The term 97/0zx can be written for the above transformation as
an dn Ay (5)
P S N AR o
0z Jy 0¢&




which leads to

i d dy O ) dy oey¥ig — Ys-1,5

5z BE 08€0y 0f & — & (6)

The z-derivatives in the differential system, equation 1, are then written
using equation 6, and the y-derivatives are written as y-derivatives using
higher-order-accurate numerical forms for variable grid spacing. The solu-
tion then actually occurs in a hybrid ¢,y system. Metric treatments of the
type presented by Steger (ref. 16) are contemplated for future incorpora-
tion; however, a quite wide range of problems with interesting geometries
may be studied with the metric treatment described.

Using the above metrics, second-order-accurate finite differences, and

the finite-difference molecule depicted in figure 1, the differential system
given by equation 1 can be written in matrix form

(Ak,m)j(Um)j-l + (Bk,m)j(Um)] + (Ck,m)j(Um)jﬁ—l - (Dk)j (T)

where

j =1, jmaz refers to the jth differencing molecule(see fig.1)
k  refers to the equation:
=1, continuity
=2, r-momentum
=3, y-momentum
m refers to the variable:
=1, (U1);
=2, (V2),
=3, (Us); = pr1,y

Avj j = Vi, — Vi1,5

AUi‘j - u‘v] - u!_l)j

The interior elements for matrices A,B,C, and D are given in the appendix.
This matrix system is then solved using a standard 3 x 3 block-tridiagonal
matrix solver rewritten to take advantage of the matrix sparsity. The
sparsity of the matrix system is depicted in figure 2. The convective
coefficients, (pu);; and (pv)i,, appearing in the z-momentum equation
involve unknowns being solved for. Iteration for these coefficients makes



the finite-difference approximation to the differential system second-order-
accurate. Typically, three iterations are used with the values at (i-1, )
used in the first iteration. Extrapolation for these coefficients was tried;
however, the converged solutions for separated flows exhibited weak spatial
oscillations. Note that the y-momentum equation is solved for at (-1, 7 +
1/2); therefore, these convective coefficients are known.

A computer code written in FORTRAN implements the above al-
gorithm for two-dimensional steady, incompressible laminar flows. The
code operates in either a PNS or a first-order boundary-layer (BL, where
dp/0y = 0 replaces the y-momentum equation) option. Such an ability
to easily choose between the PNS and BL formulations allows accurate
evaluation of the significance of the y-momentum equation for various flow
conditions. Several boundary-condition options are implemented. These
are next described.

The boundary conditions for a solid surface are

continuity at z; : v;,; = 0 at wall

z-momentum at z;: u; ; = 0 at wall

_6_11 = 0 at edge
dy

An additional edge condition is required for the y-momentum equation
on the pressure. The treatment of this additional edge condition leads
to four boundary-condition options: the direct mode, duct mode, inverse
mode, and psuedodirect mode.

Direct mode — The direct mode applies an input pressure distribution
Di,jmaz Versus z,; as an edge condition to the y-momentum equation. This
option is referred to as the PNS-Direct or the BL-Direct mode depending
on whether the PNS or the BL option is in effect.

Duct mode — The duct mode applies a correction to the overall pressure
level at z; to maintain a constant mass flow, 771, through the duct. The value
of 7h is obtained from the inlet profile at z;. With pl'Jt, pl, ..o,
PCY., assumed known, the following FORTRAN assignment statements
are used:

and
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Py =rly! 4+ PCT

: 0 ,
( used in the 0_p z-momentum equation term)
z
-1
p?—l,jmaz =pgl,jmaz + PC?—I

( used as the y-momentum equation edge condition)

(9)

The pressure level correction, PC7, is found by iteration through
a modified secant method relating r1; to PC?. Typically three or four
iterations are required. This option is referred to as the PNS-Duct or BL-
Duct mode.

Inverse mode — The inverse mode is similar to the duct mode except
that the pressure correction being applied is adjusted so that an input edge
streamfunction is obtained, ¥ ; versus z, where

Ve
Wi = udy (10)
Ve
This inverse mode is similar to the more conventional ¢ -specified inverse
mode. Note that W, and & are related by
¥, = ue(yc— Yw — ‘5‘) (11)
This option is referred to as the PNS-INV or BL-INV mode.

Psuedodirect mode — The psuedodirect mode is similar to the inverse
mode except that the edge streamfunction distribution ¥, , versus z, is
adjusted every global iteration. The adjustment is accomplished to give,
upon convergence, a desired edge-velocity distribution; it is based on a
coupling algorithm that is being explored. The algorithm used is

0w,

W= 9rl 4 - Ay, (12)
Ou,
where
oW, . 66°  wnl 66"
— — Yy — O ) — —_— e 13
TP (ve = v ) ueéu6 Tl “Su, L
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Since 66 /8u, is not easily evaluated, this term is at present dropped and
underrelaxation is used giving

\I,n-l

V=¥ 4+ 0 —S—Au, (14)

g
Here Au, is the difference between the desired edge velocity at z,
and the edge velocity u?! from the last global iteration. The desired
edge velocity can be either an input edge-velocity distribution, as with the
present psuedodirect mode, or can be an edge-velocity distribution obtained
from an inviscid solver, as in a viscous-inviscid coupling procedure. A
similarity exists to Carter’s §° semi-inverse algorithm (ref. 17)
n-1
5% o L SV (15)
u?,_t%u'iscid
The psuedodirect option demonstrates the essential features of the
coupling algorithm and accelerates convergence over the direct mode for
the specified edge-velocity boundary condition. The psuedodirect mode is
used only with the PNS option and is referred to as the PNS-PSD mode.
The logic for the PNS-PSD mode is demonstrated in block form in figure
3.
For the symmetric wake, the boundary condition for the z-momentum
equation differs at y = 0. The symmetry of u about y = 0 is made use of
to evaluate the z-momentum equation at y = 0 as

(Y0 — i1 )

The 8/8z1 terms are expanded as before. The symmetric wake boundary

. OU . op . " .
(pu)t,l'é—l'lz,lz -a_x|s',1+2ﬂ¢,x+1/2 (16)

condition above is second-order accurate and gives a smoother represen-
tation of the inner wake than does the first-order du/dy = 0 condition
normally applied.
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RESULTS

The method described in the previous sections was applied to several
laminar flows that involve strong viscous-inviscid interactions. These flows
included the Briley laminar separation cases and the symmetric laminar
wake of a flat plate. Much of the development work on the algorithm
and boundary-condition treatments was accomplished while considering the
Briley separation cases. ’

Laminar Separation Results

Briley (ref. 18) solved the time-dependent Navier-Stokes equations over
a flat plate for a set of four linearly retarded flows. The edge velocity is
prescribed at y, = 3.81 x 10—2 m for these four flows as

u(m/sec) = 30.48(1 — 3z), z < =z,

[
= C e . (17

The four Briley cases differ in the location z, and velocity level C. Briley
faired the curve at z, to avoid a discontinuity in slope. The kinematic vis-
cosity is 1/ = 1.4864 X 10— * m?/sec. The specification of these parameters
by Briley was in English units (the nondimensional Reynolds number being
the important constant) and have been subsequently converted to metric
for this study. Two of the four Briley cases (Briley-1 and -2) are attached
flows; the other two (Briley-3 and -4) exhibit separation bubbles of differing
extent. Elliptic or upstream effects are significant in these flows and, in
contrast, a pressure-prescribed first-order boundary-layer solution (Howarth
flow) predicts separation for all fcur cases. Since the geometry of these cases
is simple, and separation with upstream influence does occur, these flows
have been used in various studies as standard test cases for validating and
developing new numerical algorithms for calculations in fluid mechanics.
The initial efforts at solving the Briley cases made use of an algorithm
quite similar to that of Rubin, in that forward-differencing of dp/Jr and
backward-differencing of du/Jdz were implemented in the z-momentum
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equations. Coarse-grid solutions inevitably did not separate since the ad-
verse pressure gradient was being relieved prematurely owing to the use of
a forward-differenced dp/8z. Fine-grid solutions could be obtained with
underrelaxation but the method lacked robustness. It was realized during
these initial efforts that for these methods to be generally and routinely
applicable for industrial and aerodynamic design purposes, developments
had to be made to

1. Eliminate the inconsistent use of forward-differenced dp/8z and
backward-differenced du/8z in the z-momentum equation

2. Enhance accuracy on coarse grids

3. Enhance robustness, particularly when applied to flows with severe
adverse pressure gradients

4. Promote rapid convergence

An important development was the realization, based partly on physi-
cal arguments, that stable marching of this class of algorithms requires that
the pressure variable solved for be the trailing pressure (with a dominant
negative coefficient) in the 8p/dz term; Rubin’s stability requirement of
forward-differencing for the dp/8z term is unneccessarily restrictive. Solving
for the trailing pressure leads to damping of error terms, whereas solving
for the leading pressure leads to error amplification and the associated
departure solutions described by Lighthill (ref. 19). Subsequently, the
present fully implicit algorithm was formulated with second-order-accurate
backward-differenced 8 /8z used exclusively for the continuity and the z-
momentum equations, and second-order-accurate central-differenced 8 /dx
used for the y-momentum equation. Improvements in accuracy and robust-
ness were demonstrated by the elimination of the forward-differenced dp/dx.
The convergence rate was, however, still felt to be slower for the Briley flows
than one might reasonably expect. The development of a plot package
depicting streamline and pressure contours revealed intermediate solutions
with substantial streamline curvature, which in some cases verged on being
physically unrealistic. At this point, a decision was made to develop a treat-
ment of the boundary conditions that would more afirmatively control the
convergence path of these intermediate solutions. This led to the PNS-INV
and later to the PNS-PSD boundary-condition modes.
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The Briley-3 separated-flow case was selected for more intensive study
instead of the Briley-4 case because of limitations of the PNS-Direct mode.
Also, various Navier-Stokes methods give somewhat different solutions for
the Briley-4 case since significant viscous effects extend to the edge of
the computational domain, and details of boundary-condition treatment
acquire importance. Fully converged solutions for the Briley-4 case were
obtained with the PNS-PSD mode, however. Thus, the attached Briley-1
and the separated Briley-3 cases were chosen for use in the present study
for validation purposes. Five modes of operation of the present code were
applied to the Briley-3 and -1 cases: (1) PNS-Direct; (2) PNS-INV; (3)
PNS-PSD; (4) BL-Direct; and (5) BL-INV. Coarse- and fine-grid solutions
were obtained. The Briley-3 case is discussed first.

Briley-8 case — Figure 4 depicts the edge-velocity distribution used for
the Briley-3 case as the input boundary condition for the PNS-Direct and
PNS-PSD modes. The position for separation as given by the Briley Navier-
Stokes and by the first-order boundary-laver (Howarth flow) solutions are
marked; reattachment as calculated by Briley is indicated as well. Murphy
(ref. 20) demonstrated that the difference between the Navier-Stokes and
first-order boundary-layer separation points is a function of the Reynolds
number of the flow, with agreement occurring at sufficiently high Reynolds
number. For the PNS-INV and BL-INV modes the input boundary con-
dition used was the edge streamfunction calculated from the PNS-PSD
mode. The output result for the inverse modes is a calculated edge-velocity
distribution. The resultant edge-velocity distribution from the PNS-INV
mode is identical with the input distribution to the PNS-PSD mode, as
one might reasonably expect. The BL-INV mode, however, gives an edge-
velocity distribution in which the greatest differences occur in the region of
the separation bubble, where dp/8y # 0 effects are most significant.

The streamline and pressure contours obtained for the PNS-INV mode
are combined in figure 5. The PNS-PSD solution is essentially identical.
The streamlines are not evenly spaced, being more tightly spaced close to
the surface to provide more detail. The pressure contours are evenly spaced
in pressure. The z-spacing of the pressure contours gives an indication of
the streamwise pressure gradient, and the slope of a particular pressure

15



contour is inversely related to the normal pressure gradient:

op,  Op dy
L=, [ 2, (18)

A fine-grid (36 z-stations) solution is shown. Minor differences in stream-
lines for the coarse-grid (18 z-stations) solution exist, but are not significant.
For most purposes, the accuracy of the coarse-grid 10th iteration solu-
tion would suffice. Thus, rapid convergence to an accurate solution is
demonstrated on a coarse grid for the curreut aigorithm with the PNS-INV
boundary-condition mode.

The combined streamline and pressure-contour plot makes it possible
to gain insight into both the flow being computed and the algorithm em ploy-
ed. One connection between the pressure field and streamlines is through
the y-momentum equation, rewritten here as

8p _  pu* 1 _ 8(v/u)

8y R’ R dr

il

(19)

where I is interpreted as the radius of curvature of the local streamline.
Were R to be interpreted as the surface curvature, as in some boundary-
layer methods, the ellipticity of the present method would be suppressed.
Note that close to the surface within é°, even though the streamline cur-
vature is substantial, the normal pressure gradient is nearly zero. This is,
of course, because the pu? term is quite small. Only in the inviscid region
and in the viscous region outside 6 do strong dp/0y effects occur, being
most significant for those z-stations in the vicinity of the separation bubble,
where streamline curvature is large. In the vicinity of the separation point,
the streamline curvature and associated dp/dy effects tend to relieve the
surface-pressure gradient {(Op/0z) relative to the edge-pressure gradient,
thereby delaying separation relative to a first-order boundary-layer solution.
The weak adverse pressure gradient is, however, prolonged at the surface,
thereby delaying reattachment till well past the z-station where the edge-
pressure gradient is relieved. It is interesting to note that reattachment
occurs in the presence of a weak adverse pressure gradient at the surface
Reattachment is apparently accomplished by the shear-stress transport of
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momentum from the outer regions predominating over the weak residual
adverse pressure gradient. ‘

The considerable advantage in convergence rate of the PNS-INV mode
over that of the PNS-Direct mode can best be understood in terms of this
interaction between the pressure field and the streamline contours. With the
edge streamline specified, the streamlines within the computational domain
approximate fairly well the streamlines for the final converged solution, even
on the first global iteration. The 8p/dy field establishes itself rather quickly
in the global iteration process. For the PNS-Direct mode, the streamlines
within the computational domain are not so constrained, and, particularly
for separated flows, the initial streamlines differ markedly from the final
converged solution; there is slower establishment of the pressure field, with
slower overall convergence.

Figure 6 shows velocity profiles u versus y obtained using the PNS-
PSD mode. In the interest of clarity, not all z-locations are presented. It is
obvious that the velocity levels in the reversed-flow region are quite small,
thereby justifying the FLARE approximation used in the present study. It
is also apparent that the viscous region approaches but does not quite reach
the edge of the computational domain for this Briley-3 case. Also observe
that the outflow profile is Blasius in shape, in agreement with Briley. As
indicated in figure 6, a stretched y-spacing is used, with 14 of 40 nodes
adequate to resolve the inlet boundary layer. Solutions with even spacing
in y give nearly the same result.

Figure 7 presents the distribution of skin friction C; versus z and dis-
placement thickness 6" versus z calculated by the PNS-INV (identical to the
PNS-PSD solution) and the BL-INV modes. Also given are the correspond-
ing results from Briley’s calculations. The skin-friction results indicate that
the PNS-INV mode and Briley calculations agree identically with respect to
reattachment location, with the PNS-INV mode giving separation one-half
grid point farther downstream. The BL-INV mode gives surprisingly good
agreement with Briley's separation point, with reattachment occcurring two
grid points upstream of the Briley calculation results. Good agreement for
the 6° distribution exists for the PNS-INV and the Briley solutions. The
BL-INV method once again demonstrates some differences for Cy and 5"
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in the region of significant 8p/3y. The BL-INV method used appears to
be a particularly attractive calculation method in view of the single global
sweep required. Pletcher (ref. 21) has reached similar conclusions concern-
ing an inverse BL, §"-preseribed, finite-difference method. An error in edge
velocity in regions of significant dp/dy inevitably occurs, however, with
these inverse BL methods.

For the Briley-3 case, the PNS-PSD and PNS-INV modes give results
quite comparable to the Navier-Stokes solutions by Briley. These methods
converge rapidly, with about 20 global iterations required for the fine-grid
PNS-INV solution and 10 global iterations for the coarse-grid PNS-INV
solution. The iterations required for the PNS-PSD mode depend on the
initial W, distribution. Using an initial distribution deduced from the
Briley results, the fine-grid PNS-PSD converges in 40 global iteraticns.
Here convergence is indicated when no significant changes occur in C,
6%, or u,. The pressure residual for these two methods goes to essentially
machine zero. The PNS-Direct mode was also applied to the Briley-3 case
with results similar to those of the PNS-PSD mode. The convergence
characteristics are not as desirable, with the maximum pressure residual
leveling off before reaching machine zero. For separated flows, the PNS-
PSD mode exhibits considerable advantage over the PNS-Direct mode with
respect to the convergence rate and robustness.

Briley-1 case — The Briley-1 attached-flow case was also calculated by
the PNS and BL methods. Figure 8 indicates the edge-velocity distribution
ue versus r specified by Briley for this case. This u. distribution is similar to
that for the Briley-3 case but the adverse pressure gradient is not sustained
for as long. Navier-Stokes solutions do not separate, even though separa-
tion is indicated by first-order boundary-layer theory (Howarth solutionj.
Thus, upstream influence is significant for this low. The skin-friction and
displacement thickness results are shown in figure 9. The PNS-Direct, PNS-
INV, and PNS-PSD modes all give results in agreement with the Navier
Stokes solutions of Briley. Once again, the BL-INV mode gives quite accep-
table results with the greatest discrepancy occurring in regions of significant
Op/dy. Also indicated are BL-Direct solutions for this case in the regior
leading to separation. The separation point indicated by the BL-Direc!
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results is in good agreement with the Howarth separation point. It is in-
teresting to note that with the FLARE approximation being used, the BL-
Direct mode will march through separation and reattachment. The solu-
tions past separation are highly nonphysical, however, with a tremendous
ejection of material upward from the separation point (see the discussion of
Landau and Lifshitz (ref. 22) regarding the singularity at separation of the
first-order boundary-layer equations). The substantial streamline curvature
in the BL-Direct solutions close to separation is at considerable variance
with the first-order boundary-layer theory assumption of 9p/dy = 0.

Trailing Edge Results

The laminar, flat-plate trailing-edge provides a further example of
the applicability of the present PNS formulation to strong viscous-inviseid
interactions. In the absence of upstream influence, a simple discontinuity
in boundary condition occurs for first-order boundary-layer theory at the
trailing-edge. Goldstein (ref. 23) provides such first-order boundary-layer
solutions for the trailing-edge/near-wake preblem. However, for the Navier-
Stokes equations and equation subsets which properly account for upstream
influence, the laminar trailing-edge problem contains a singularity at the
trailing-edge. Stewartson (refs. 24,25) points out, based on the triple-deck
subset of the Navier-Stokes equations, that the skin friction has an inverse
square-root singularity as the trailing-edge is approached. The displacement
thickness will, however, vary smoothly through the trailing-edge region.
Interacting boundary-layer theory, where upstream influence is accounted
for by the boundary-condition formulation, appears to adequately calculate
this flow. Melnik et al. (ref. 2) has demonstrated a similar theory for a
turbulent trailing edge. To better understand the trailing-edge problem
and as a test case involving strong viscous-inviscid interaction, calculations
using the PNS and BL formulations described earlier are presented below.

The computation is for a flat plate, 1 m long, with Re; = 10°. The
computational domain is for the interval between z = 0.5 and z = 1.5
m, with the trailing edge located at z = 1. Two values for the edge of
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the computational domain y, are considered. Both of these remain outside
the viscous layer. The inlet conditions are Blasius, but with 6° adjusted
to account for the leading-edge interaction. The grid is unevenly spaced
with 59 z-stations and 40 y-nodes, and is concentrated in the trailing-
edge region where Az = 0.01. Veldman (ref. 26) has calculated the
above problem earlier with both interacting boundary-layer and triple-deck
solution techniques.

Several approaches are applied to this problem. These include

1. PNS-PSD, with y. = 0.12 m and u, = 100 m/sec

2. BL-Direct, with surface pressures from PNS-PSD(y, = 0.12)

3. BL-Direct, with p/8z = 0 and u, = 100 m/sec; this case rep-
resents noninteracting, first-order boundary-layer theory with a combined
Blasius flat-plate and Goldstein near-wake solution.

Initial PNS calculations were made with the computational edge at
ye = 0.03, just outside the viscous region. Although the solution did exhibit
upstream influence, this tendency appeared damped with unacceptable
quality of agreement with the triple-deck solutions. Two possibilities were
explored in efforts to explain this disagreement. One involved the incorpora-
tion of the remaining viscous terms into the algorithm(e.g., (pu,),, (uvy)y.
and (u1,)z). Stable spatial marching occurred for the full Navier-Stakes
equations and the solutions actually presented are full Navier-Stokes solu-
tions. However, these solutions showed only very minor changes from the
PNS solutions and did not explain the disagreement above. With this ex-
tension to the full Navier-Stokes equations, the organization of the present
primitive-variable formulation is similar to the streamfunction/vorticity for-
mulation of Murphy.

The reason behind this disagreement was found, however, to lie in
the second possibility. Examination of the pressure-contour plot for the
PNS-PSD (ye = 0.03) case (see fig. 10) revealed pressure contours that
appeared to be constrained by the edge of the computational domain. To
alleviate this constraint, the computational edge was moved outward in
several stages to y. = 0.12. The extent of upstream infiuence increased
toward the triple-deck solution, after which no further changes occurred.
Figure 11 depicts the pressure contours for the PNS-PSD (y, = 0.12) case
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and should be contrasted with the data in figure 10. Note the different
y-scales in figures 10 and 11. We see that the distortion of the pressure
field by the trailing-edge propogates nearly to the inlet boundary for the
Y. = 0.12 case,

Except for a small range of z-stations very close to the trailing edge,
much of the pressure-field adjustment occurs in the inviscid region and
8p/B8y ~ 0 within the viscous region. The relative success of interacting
boundary-layer theory for the trailing-edge problem is traceable to the
validity of the assumption of a zero normal pressure gradient for much of
the boundary-layer and wake viscous regions. To verify this, the surface
pressures from the PNS-PSD (y, = 0.12) calculations were applied as the
input to the BL-Direct mode. As will be seen, reasonable agreement with
Veldman's results are obtained.

Figures 12 and 13 show distributions of the skin-friction coefficient
Cy versus z, and the displacement thickness 6" versus r for the three
cases. Figure 14 shows the distribution of the normalized wake centerline
velocity ucy /ue versus z. Also included is the triple-deck-based solution of
Veldman. The PNS-PSD (y. = 0.12) case shows excellent agreement with
Veldman's results, confirming that the present formulation is capable of
correctly accounting for both the viscous and inviscid regions of this strong
viscous-inviscid interaction flow. The results for the BL-Direct (with PNS-
PSD surface pressure) case prove to be quite acceptable, with differences
occurring for &  closest to the trailing edge, where the assumption of a
zero normal pressure gradient is invalid. The skin-friction agreement is
excellent, probably because the correct surface pressures are being applied.
For the trailing-edge flow, the most significant effect of the viscous-inviscid
interaction is to force the inviscid region to adjust the pressure field as
applied to the viscous region.

The source of this pressure-field readjustment is indicated in a com-
parison of figures 15 and 16, which depict the streamline pattern for the
noninteracting BL-Direct mode (8p/83z = 0) and the BL-Direct mode (with
PNS-PSD surface pressure). The streamline patterns for the PNS-PSD
calculations are quite similar to those in figure 16. For the BL-Direct
(8p/8z = 0) calculations, a discontinuity develops in the streamlines at
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the trailing-edge. This streamline discontinuity is the result of the sudden
acceleration of the innermost portion of the viscous layer upon release of the
no-slip condition, a discontinuous change in boundary condition. Consider
that the y-momentum equation can be written as dp/dy = —pu®/R; R
is the radius of curvature of the local streamline. At the trailing edge, the
discontinuity in streamlines implies that R — 0 and dp/dy — oc. Thus,
the streamline pattern generated by the BL-Direct (8p/dz = 0) calcula-
tion is in sharp contradiction with the first-order boundary-layer theory
assumption that dp/0y = 0. If the y-momentum equation is incorporated
or the edge-pressure boundary condition is allowed to adjust to account for
upstream influence, then the pressure field will adapt to smooth out the
streamline curvature until a consistent solution is obtained.

CONCLUDING REMARKS

Progress on the development of a parabolized Navier-Stokes solution
method suitable for application to strong viscous-inviscid interactions has
been described. An improved algorithm and boundary-coundition treatment,
which enhances rapid convergence to accurate solutions on coarse grids
while retaining stable marching for small marching steps, is reported. fo
provide for proper upstream influence, the algorithmic formulation performs
iterative sweeps in the z-direction and requires global storage only for pres-
sure. The method has been validated through the successful computation
of two subsonic, strong viscous-inviscid interactions, including a separation
bubble and a trailing edge. Detailed comparison with Navier-Stokes solu-
tions and triple-deck theory is made with excellent agreement indicated.

The improved algorithm stems from a conceptual reinterpretation of
stability requirements presented earlier by Rubin. In the present work, this
stability requirement for forward-differencing of p/dz is removed. Rather,
this paper demonstrates that stable, subsonic marching of the PNS equa-
tions merely requires that the pressure variable being solved for should be
the trailing pressure in the 3p/dz term. This idea is used to formulate the
present algorithm; within each equation, consistent differencing is imple-
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mented for all streamwise derivatives.

Boundary condition modes for external flows are direct pressure, in-
verse edge-streamfunction, and psuedodirect modes. With these boundary
conditions, the present code is well suited for coupling with an inviscid
code. For internal flows, global mass conservation is used. The boundary-
condition treatment proves crucial in enhancing rapid convergence. For
these strong viscous-inviscid interactions, the global constraints imposed
by the inverse and psuedodirect boundary conditions provide the improve-
ment in robustness over the direct boundary condition required to make
this formulation a practical and useful approach.

The computations for strong viscous-inviscid interactions demonstrates
that the present PNS algorithm and boundary-condition formulation is
a rapid, accurate, and robust approach which incorporates the essential
features of elliptic upstream influence. For the trailing-edge flow, the PNS
algorithm was extended to include the full Navier-Stokes terms with stable
spatial marching achieved. To this author’s knowledge, this is the first
successful spatially marched calculations of the full Navier-Stokes equations
in primitive variable form for subsonic, strong viscous-inviscid interactions.

The inclusion of a zero- and a two-equation turbulence model. and the
incorporation of the compressible terms into the present code, recommen-
dations for future work, have already been partially implemented. The
combination of a turbulent compressible version of the present PNS code
with an Euler solver in a coupling procedure should then be accomplished.
The code would then serve as an efficient computational tool in turbulence
modeling studies of strong viscous-inviscid interactions.
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- APPENDIX: MATRIX ELEMENTS

The mat’rix system béing solved is of the form

(Ak,m)g'(ém)j-l + (Bk,m)J{Um)j + (_Ck,m)j(Um)j-i-l = (Dk)J (Al)

where ) . N o
J =1, jmaz refers to the jth differencing molecule

k refers to the equation:
=1, continuity
=2, z-momentum '
==3, y-momentum

m refers to the variable: '
=1, (Ul)j = Avy,j = Ui 5 — Vi-1,5
=2, (Uz)j = Aug ;= uy;— Ui-1,5
=3, (Us); = pi1,5

The interior elements for the contiﬁuit-y equation are

Avjy: (An); =—1 :
Aujy: (Ara); = 0.5- BX0-DYX — DEXM
Pi-1,5-1: (Az); =0

Av;: (Bp)j=1
Au;: (B2); =05-BX0-DYX +DEXM
pir-1,5 ¢ (Bis); =0
- (A2)
Avipr: (Cu)j=0
Aty (012)3" =0
Pi-1,j41: (Ci3); =0 |
(D1); = —(vEy,; — Vi1 1)
— (udy,;— ugy j) DEXM
+05-DYX - BX2-[(ud, ; + iy 1)

— (uly;+ uils 1)l
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The interior elements for the z-momentum equation are

Avj-l : (‘4221)]' =0
Aujy: (Ag)j=RX-CYM — DT M
Pi-1,5-1 (Aza)y =0

Avyy: (BQI)J =0 o
Auj: (Ba); = (pu)};- BXO+ RX -CYO
| +(DTP + DT M)
P15 (Bas)y = BX1

Avjpr: (Ca); =0
Aujyy: (Co2)j=RX-CYP— DTP (A3)
Pi-1,41: (Cas)j =0

(D2); = —(pu)? ;- BX2- (ufip; = u, ;)
— RX .(CYP. Uty jq41 +CY0-ul
+CYM-ul, ;)
4 DTP-(uly g — k)
L+ DTM-(u} oy —uly )
— DEX -(CYP-p{i4, +CY0- p}
+CYM-pit)
—(BX0-p{t + BX2-p}y )

1.9

Note that the (pu)}, and RX terms are found through iteration.
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The interior elements for the y-momentum equation are

(Aa1); =

A‘Uj-l :
Aty : (As2)j =
Dé-1,5-1 ¢ (A’ss)j =
A'Uj : '(Bal)j =
AUJ' (332)_7" =
Pi-,5 ¢ (Baa)j =
Avjqy - (Car)j =
Auj+1 : .(032)3' =
Pir1,5+1: (Ca3)j =
(D2)j =

0
0
0

~0.5-DYM - CXP- (pu)}.,

05-DYM.-CXP- (pv);-‘_l’j

=0.5-DYM -CXP-(pu)l; j+1
0.5-DYM - CXP-(pv)iy ;g1
] , . A

—0.5-DYM - CXM - [(pv)i, f(ully; — uly ;)
-+ (pz))}‘_]’J-+1(u:-'_2,j+1 - u?—l,;‘-}-l)]
40.5-DYM-CXM-[(pu)}, (v7g, — 2y )
+ (pu)i1, j1 (Vo g1 — Vi 1))
+0.5- DEXP - [(pv)iey,; + (Pv)21j44]
"(U?-I,J—rl - “?—1.3')
— 0.5-DEXP - [(pu); ; + (p)E) j41]

(U g — i)
‘ (A44;
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where

DX = Zy— Ty
DX2R = (z; — 2i-1)/(2i — 2i-2)
BX1 = —(z; — zi-2)/{25-1 — 2:2)
BX0= ~BX1/(1~ DX2R - DX2R)
BX2 = —(BX0+ BX1)
CXP= (241 — z:2)f|(zs — xi-Z)(xi — Ti-1)}
CXM = —(z;— zi-1)/[(2i — Zi2)(Zie1 — 2i-2))
CX0=—(CXP+CXM)
CYP =, (4i;— ¥ij-1)/¥is+1— ¥i, i) ¥ij+1 — ¥s,5-1)]
CYM =" (¥ij41 — ¥i )/ (¥i; — i1 541 — ¥i5-1))
CY0=—(CYP -+ CYM)
DY X = (yij — yij-1)/(2i — %i-1)
DY M = (¥i-1,j41 — Yi-1,5)
DEX = —(yi,; — ¥i-1,5)
DEXM = —0.5[(yi,j — ¥i,5-1)
— (Ys1,5 — Yir1,5-01/(2i — 7401)
DEXP = —0.5"[(yi; — ¥i,j+1)
— (¥i-2,5 — Yie2,5-1 N/ (i — Ti-2)
DTP = DX - (#i,j41 + Hi;) ,
' / [(?Jx',j+1 — Yi,j-1)  (Yi 41 — ¥i,5))
DTM = DX - (pi5 + pij-1)
I(¥ii+1 — vi,51) - (93,5 — vi,5-1)]
X = (pv)}; - DX + (pu)}, - DEX
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Figure 14. — Wake centerline velocity distributions for trailing-edge

interaction.
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Figure 15. - Streamline contours for trailing-edge interaction:

BL-Direct with dp/dr = 0.
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Figure 16. — Streamline contours for trailing-edge interaction:

BL-Direct with PNS wall pressures.
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