
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

!Y +^^AA! !'	 Y

PW EVALUATING SOF 'WARE
DWELOPMENT BY ANALYSIS OF
CHANGES: THE DATA FROM THE
TWARE ENGINEERING LABORATORY,.a

(NASA- .d-d5314)	 LVALUATI o	 _i , a ALi	 Nt33-ss^
uEVLLUYMi. Na b y ANA " Y615 OF UHANGE^, :	 a....
UAiA thud TdL SLk 7Wfi8k Lhki 1Nttbld(;
LA806A-lullf (NA:iA)	 Its p uL AL5 /M1' A01	 Uw.;

L6 *-.. uiti Gj/tj I	 1x471

NOK" AerorWA" st'd
Sows Adminmrsiton

Qo"wd Spew Caw
Greenbelt, Ma-oar;d 20771 	 , if

SOFTWARE ENGINEERING LABORATORY SERIES 	 SEL-82-008

EVALUATING SOFTWARE
DEVELOPMENT BY ANALYSIS OF
CHANGES: THE DATA FROM THE

SOFTWARE ENGINEERING LABORATORY

DECEMBER 1982

Goddard Space Flight Center

(University of Maryland)
(Naval Research Laboratory)

Victor Basili
David Weiss

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

nk	
sponsored by the National Aeronautics and Space Administra-

tion, Goddard Space Flight Center (NASA/GSFC) and created

for the purpose of investigating the effectiveness of soft-

ware engineering technologies when applied to the develop-

ment of applications software. The SEL was created in 1977

and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

"	 The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and t''. 	 to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that includes this document. A version of this document was

also issued as University of Maryland Technical Report

TR-1236.

Contributors to this document are

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 582.1
NASA/GSFC
Greenbelt, Maryland 20771

P-RE4CEDINQ PAGE BLANK ,NO.T

8552

Technical Report TR-1236	 December 1982
NSG-5123

EVALUATING SOFTWARE DEVELOPMENT BY ANALYSIS
OF CHANGES: THE DATA FROM THE
SOFTWARE ENGINEERING LABORATORY

Victor R. Basili
University of Maryland

David M. Weiss
Naval Research Laboratory

*Research supported in part by the National Aeronautics and Space Administration
Grant NSG-5123. Computer support provided in part by the facilities of
NASA/Goddard Space Flight Center and the Computer Science Center at the University
of 1-1aryland.

ABSTRACT

Aa effective data collection metbodolog y for evaluating software
development methodologios was applied to four different software do-
volopment projects, Goals of trite data collection WNW charamr-
Izing, changes and errors, charawrizing projects and prozrailullers,
identifying effective error detection and correction techniques, and
Investigating ripple effects.

The data collected consisted of changes (including error corrections)
made to the software after code was written and baselined, but before
testing began. Data collection and validation were concurrent with
software development. Changes reported were verified by interviews with
programmers, Analysis of the data showed patterns that were used in
satisfying the goals of the data collection. some of the results arcs
summarizod in the following:

I

1. Error corrections aside, the most frequent type of change was all
unplanned Usig" modification.

2. The most common type of error was one made in the design or
Implementation of a single component of the system. incorrect roquireme"ts
and misunderstandings of functional specification, interfacQs, support
software and hardware, and languages and compilers were generally not
significant sources of errors,

3. Despite a significant number of requirements changes imposed on
some projects, there was no corresponding increase in frequency of
requirements misunderstandings.

4. More than 75X of all changes took a day or loss to make.

V Changes tended to be oonlocalized with respect to individual
components but l

o
calized with respect to subsystems.

Oo Relatively few changes resulted in errors. Relatively few errors
req"ired more than one attempt a t corrontioa,	 W

7. Most errors were detected by oxecutlng the proyram. The cause of
MOSL errors was found by reading code. Support h3cilitLes and techniques
such as traces, dws, cross-reference and attribute listIngs, and program
proving were rarely used.

Rvaluating Software Ueveloptnent W Analysis Of Changes;
7'he: Data Mt-oni The Software kIngwincering Laboratory

Victor f . Bas°ili

University of Maryland

and

Dau.af M. Weiss

Naval Research Laboratory

S. Introduction
In previous and.companion papers (1, 2, 3, ,t) we have discussed haw to

obtain valid data that may be used to evaluate software development methodolo-
gies in a production environment. Briefly, the methodology consists of the fol-
lowing five elements.
(1) Identify goals. The goals of the data collection effort are defined before any

datacollection begins. We often relate them to how well the goals for a pro-
duct or process are met,

(2) Determine questions of interest from the goals From the goals, specific
questions are derived. Answering the questions derived from each goal
satisfies the goal.

(3) Develop a data collection form. The data collection form used is tailored to
the product or process being studied and to the questions of interest.

(4) Develop data collection procedures,Data collection is easiest when the
data collection procedures are part of normal configuration control pro-
cedures.

(5) Validate and analyze the data. Reviews and analyses of the data are con-
current, with software development, Validation includes examining com-
pleted data collection forms for completeness and consistency. Where
necessary, interviews with the person(s) supplying the data are conducted
The purpose of this paper is to present the results from such an evaluation.

The data presented here were collected as part of the studies conducted by
NASA's Software Engineering Laboratory (5].

Overview of the Project.: Studied
The methodology described in [1) was used to study flue projects in two

different environn?er4M a research group at the Naval 1'escat ch Laboratory
(NRL), and a NASA software production environment at Goddard apace Flight
Center (GSFC), The NRL studies have been previously presented (2, f, 3, 7) and
will not be further discussed here. A brief description of Lhe NAS A projects fol-
lows,

The Software B agincering Laboratory
The Software Engineering Laboratory (SFL) is a NASA sponsored project to

investigate the software development process, bated at Goddard Space Flight
Cantu (GSF'C). A number of difTerent software development projects are being
studied as part of the SEL tnvestigattons [d, 5]. Studies of cht^nge^s made to the
software as it is being developed constitute one part of those it.vestigations.

2

Typical projects ,itudied by the SEL are medium size FORTRAN programs
that compute the orientation (known as attitude) of unmanned spacecraft,
based on data obtained from on-board sensors, Attitude solu t ions are displayed
to the user of the program interactively on CRT terminals, Oecause the basic
functions of these attitude determination programs tend to change slowly with
time, large amounts of design and sometimes code are often re-used from one
program to the next, The programs range in size from about 20,000 to about
120,000 limes of source code. They include subsystems to perform such fur,ic-

• Lions as reading and decoding spacecraft telemetry data, filtering sensor data,
computing attitude solutions based fin the sensor data, and providing an
(interactive) interface to the user.

Development is done by contractor personne° in a "production" environ-
ment, and is often separated into two distinct stages. The first stage is a high-
level design stage. The system to be developed is organized into subsystems,
and then further subdivided, Each subsystem generally performs a major sys-
tem function, such as processing telemetry data, For the purposes of the SEL,
each named entity in the system is called a component, The result of the first
stage is a tree chart showing the functional structure of the subsystem, in some
cases down to the subroutine level, a system functional specification describing,
in English, the functions of the system, and decisions as to what software may be
reused from other systems.

The second stage consists of completing the development of the system.
Different components are assigned to (teams of) programmers, who write,
debug, test, and integrate the software, Before delivery, the software must pass
a formal acceptance test. On some projects, programmers produce no inter-
mediate specifications between the functional specifications produced as part of
the first stage and the code. Some projects produce pseudo code specifications
for individual subroutines before coding them in FORTRAN. Miring the period of
time that the SEL has been in existence, a structured FORTRru,N preprocessor
has come into general use.

The principal design goal of the major SEL projects is to produce a working
syster; in time for a spacecraft launch, In addition, a continuing NASA goal is
introducing improved techniques into its software development process. Results
from SEL studio; of three different NASA projects, denoted aEL1, SEL2, and
SEL3, are included here.

2. Application Of The I Fbcperimental Procedure
The goals, questions of interest, and data categorizaticns, as described in

[1], for the SEL projects are shown in table 1 and lists 1 and 2, The SEL studies
represent a full-scale implementation of the data collection methodology in a
software production environment, Because the SEL environment is not pri-
marily devoted to developing and proving new methodologies, the emphasis is
more on investigating the software development environment than in a study
such as [3],

SEL Goals
Since the primary emphasis in SEL projects is not on developing and prov-

ing new methodologies, the data collection goals are generall y methodology-
independent. Nevertheless, many of the projects do use recently-developed
software engineering technology with a view towards evaluating the technology
in the NASA/GSF'C environment. (An example is program de , ign language, used
in several SEL projects.) As a result, the goal "evaluate effectiveness of metho-
dologies" is used, but is not based on specific claims for specific Methodologies.

,r

1

F	 I

u

3

1. Characterize changes (especially in ways that permit comparisons across
projects and environments),

2. Characterize errors (especially in ways that permit comparisons across
projects and envirocments).

3. Evaluate effectiveness of methodologies in NASA/GSFC environment,
4. Suggest ways of imprPving NASA/GSFC software development practices.
5. Verify that concurrent data validation is needed,
B. Identify good measures of correctness.
7. Identify effective techniques for detecting errors,
B, Identify effective techniques for obtaining the Information needed to,

correct errors.
9. Investigate the "ripple" effect, Le. do most errors require more than one at .	y

tempt at correction or result in changes distributed over several different
components of the system?

10. Characterize projects,
11, Characterize programmers,
12, Find factors that have significant effects on types and distributions of er-

rors.

Table 1, Data Collection Goals for the SEL Projects

1, What was the distribution of changes according to the rsason for the
change and the effect of the change? Reasons were consieered to be
one of the following:

a. a change in requirements or specifications,
b, change in design
c. a change in hardware environment (e,g, a new iece of hardware

added to the system to be used by the programs
d. a change in software environment (e.g. a new version of the

FORTRAN compiler),
e. an optimization,
f. other,

Since a change to any of the items in the preceding list could affect oth-
ers on the list, the set of items that could be affected by a change were
as follows:

a. requirements or specifications,
b. design,
c, the hardware environment,
d, the software environment,
e, optimization algorithms and their implementation.

List 1. Questions of Interest

4

2a. What was the distribution of changes across system compouennts?
2b. For each change, how many components have to be examined in order

to make the change?
3. What was the distribution of time required to design changes? For error

corrections, the time required to design the change was assumed to be
the same as the time required to understand the error and propose a
correction,

4. What was the ratio of changes not made to correct an error to error
corrections as a function of time during the development cycle?

5. What was the distribution of errors according to the misunderstandings
that caused them (and what was the ratio of non-clerical to clerical er-
rors?) ?

B, What was the distribution of effort required to correct errors?
7. What was the distribution of effort to correct errors across misunder-

standings causing errors?
8. How many errors were the result of a software change or modification (a

modification is a change made for some purpose other than correcting
an error)?

9. What was the distribution of errors acroijs error detection techniques?
10. What was the distribution of errors across error correction techniques?
11. What was the number of attempted error corrections pe- error?
12. What was the distribution of error corrections across project phases?
13. What was the ratio of errors to various measures often associated with

with effort and productivity, These measures include
a. number of developers
b, number of lines of code
c, number of machine instructions
d, number of memory words
e, number of person-hours
f. number of work assignments.

14. What was the distribution of errors per person accordir4- to the number
of people involved?

15. What was the number of errors for projects requiring memor-i overlays
compared to those not requiring overlays?

16. What was the distribution of errors according to programmer?	 j
17. How often must reported change data be corrected as a result of the

data validation process?

List 1. Questions of Interest (continued) ,

5

SM. Questions of Interest
Since the software was produced in a production environment with

stringent deadlines, it was desirable to gftimize the ovorhood Involved In
collecting and validating data. Becausi a there were no design goals with
respect to the use of particular methodologies, questions relating to the suc-
cess of particular methodologies were generally not considered.

SEA. Data Categories
Selection of the data categories was based on acquiring the data needed

to answer the questions of interest, on maintaining a reason ably small set of
subcategories for convenience in collecting and interpreting the data, and
on subjective estimates of the uniformity of the data distribution across the
subcategories.

The "catch-all" category "other" has been Inserted for all changes that
will not fit one of the other categories. If the categories selected agree well
with the actual change distribution across the subcategories, few errors will
fall into the other subcategory. (The reverse situation is not necessarily a
sign of a poorly designed categorization scheme; the "other" changes may
provide the most insight into the development process.)

Data Collection., Validation, and Analysis
Formal procedures used for data collection and validation are described

in], as is the data collection form,

,Answering Questions of Interest
The questions of interest are answered by presenting and analyzing the

da l,a distribution(s) associated with each question. Because of space limita-
tions, answers to the individun i questions, and most tables and histograms
used In the data analysis have been included in the Appendix.

Overview Of The Data
Tables 2 and 3 contain, for quick reference, an overview of the data col-

lected and a summary of information about the projects. Tables 4 through 7
contain values of parameters often thought to chsract,erize software
developmentprojects.

3. Interpretations
The research methodology perrrdts at least one quite straightforward

way of interpreting the data ,, using the distributions to answer the questions
of interest, thereby satisfying the goals of the study. One may ^iso compare
distributions across different projects, where appropriate, and ook for com-
mon characteristics. Both of these processes lead to new goals and ques-
tions, some of which may be answerable with the available data, and some
requiring new studies. Examples of both will be presented here.

List 3 shows, for each goal, the corresponding questions of Interest.
Where the same questions) are used to satisfy several goal, the goals are
listed together.

11

a

t'iflort tt1 a' h,l1140 ^a ►ht',1t^' t^rttyS

t1 one hoalt' or tc'4s
b ally hour to t"llo tia
c one Vi aa= tv throo days
d mare Chian tllroti days

k. Cause of ellmigo and OrTOO' L o f ohatl vv C.`1uses of Oticing':s 11"cF re collsidvved
tc1 be Ono of the following

tt 11 +ch nnge illrcquirenictlts or spt'c'iflc`catit^tls,
b n change ill design.
C n chcat';e it1 htat' 1w1-%rt1 tna' irUi ttnletlt,
ti a Change ill tlCTttllwtare onvirontlle at,
t1 ail tlptiilll."Mion,

f other

Balm o a Mango to any of tho Items ill tho 11 ,.(weding list COVIld n TOOt

others on tho list, thet set of items that %vtOd bo .^ 10f.'Led 1?." a Olckt^t?
wwero as tollows

to	 or ;5E ► c"t`1Rt^`.^ti134,
b doyn
C tm., h rdwcarv , tilt+ lt'k t1t11tRtlt.
d the stool art' t'na'tl'C^ntl3eilt,
e t1phnu;'Fattt n illgt' &hnis and their ► illpl `nienUxti ltl

3, Component, c-hnngkc s This ctatogc: rt' Fttjota show-s. for vaQh ^^gilpon nt,
the nailllber of chanl,A os made to tho %`mlipolW tit . '11101*e 18,
accordingly, ant' SUbo aLVA10r y for mwh ctanlponent of WO sysLent A
sin'til:at'	 is Us t'd for the mimbt'r of Limos <' loh
component is ox atllined. ► el. the number of ehangos that retlallred
t?xamina tltatl o f the? L!oilil)ono tit .

4 Result, of Vital#ttICALWn ^fov error oorreot.mo s only) Subc at(gorles

a ReSUlt of llloduleaLi ill not, tee eot'roet all orrer, for Orl'Ort NSUP Ing
frtlnl .a prcagrami, ncany, ot.hor than an error vorrwttm

b	 Ul tôf
 ado 0

vorrev Own.
 c	

4 for
	 t^ y hetllclr

l
	r ► cmr cat i ^^r t Eanl lZl4	 p

t
t	 ^	 ^ot r ĉ * t cila ^ Vroj ^ ^	 ^	 t1e211 attcpt

for the tq aiilt' error or ,y oorr(wtton tot , some kl hor error),
e Not tho result of ,l t11+ <tl4tl^`^att^^41, for orrol S thAL aro Unrt' aLu"d

Lo program ehatvcois

6 l'i lle tit isrlaLo eAvis ` for error %'orrvt'UotA8 olll!`) k tlboatlgcmtm"

a Ono howl' or lt'Ss
b Clio hv.,vir to t)no 'day
t` rll "'rt' than o'le day

DA Pata C atogorws

-r

7

6. Causative nusundersta fling. Subcategories:

a. misunderstanding of requirements
b. misunderstanding of functional specifications
c, misunderstanding of other documentation
d, misunderstanding of design (excluding interface)

This subcategory was deemed sufficiently interesting to be
further subdivided into the following subcategories:
misunderstanding of intended use of the erroneous
segment/ proc/module, misunderstanding of the value or structure
of data, and other.

e. misunderstanding of interface
f. misunderstanding of programming language, further subdivided into

syntax and semantics misunderstandings
g, misunderstanding of hardware environment
h. misunderstanding of software environment
I. clerical error
J. other

7. Development phase when error occurred, Subcategories:

a, requirements
b, functional specifications
c. design
d.coding and test
e. other
f, can't tell, for situations where the person supplying the information

does not know the phase,

B. Method of detection. Subcategories:

a. test runs
b, code reading by programmer
c, code reading by other person
d, reading documentation
e, proof technique
f, trace
g, dump
h, cross-reference
I. attribute list
j. special debug code
k. error messages, further subdivided int^ general error messages, and

project specific (i,e, coded especially for this project) error
messages

1. inspection of output
m. other

List 2. Data Categories (continued)

A

f	
..

f

Changes Per K Lines Errors Per K Lines Error To Mod Ratio
Of Developed Code Of Developed Code (NonClericals Only)

Project

SELI 6,0 319 1.3
SEL2 7.4 318 92
SEL3 9,7 3.9 .54

Table 4, Change and Error Densities

8

r

Number of Number of Numbor of
Changes Modifications Errors

Project

SEW	 281 101 180

SEL2	 229 110 119
SEW	 760 453 307

Table 2, Overview of Data Collected

Effort Number of Lines of	 Dev, Lities	 Number of
Developers Code (K) of Code (K) Components

Project

SEL1	 79.0	 5	 50.9	 46,5	 502
SEL2	 39.6	 4	 75.4	 31,1	 490
SEW	 98.7	 7	 85,4	 78.6	 639

Table 3, Summary of Project Information

^r

9

Erroneous Change Rate Errors Resulting	 Repeated Error Ratio
(Ratio Of Changes From Change	 (Average Number

Rev^,ilting In Errors (As Percentage	 Of Corrections
To All Changes) Of NonClericals)	 Per Error)

Project

15EL1	 . 025 S	 1.02
SEL2	 .061 14	 1.08•
SEW	 .041 12	 1.05

• Upper hound. Exact number of repeated errors for SEL2 is unknown.
by conservative means, the ratio could he estimated as 1,04.

Table 5, Measures of Erroneous Change

I-

Number- Of People Errors Per Person
Project

SEL2	 4	 25
SE;L1	 5	 26
SEW	 7	 44

Table a. Errors Per Person By Number Of People

Effort Errors Per Changes PEr
(People-Months) Person-Month Person-Month

Project

w3EL2 39 .6 2.4 .8
SEL1 79.0 1.7 3,8
SEW 98 .7 3.1 7.7

Table 7, Errors Per Effort By Effort

A

to

In the following sections each goal is satisfied by presenting conclusions
based on the answers to the questions corresponding Co Elio goal. Sections con-
taining discussions of goals are headed by short descriptions of goals.
Identifiers in parentheses following the goal descriptions are references to tie
goal, e.g. (02) is a reference to goal 2. Not all goals are discussed here. Coal 5,
"verify that concurrent data validation is needed," is discussed In a companion
paper (1]•

Inspection of the change distributions shows that, despite Oic similarities in
application, environment, and personnel, there are distinct differences among
SEL projects. Some projects, notably SEW, seem to have considerably less trou-
ble in the development phase than others.

There are two possible explanations: (1) the SEL3 developers did a better
job in producing correct software, or (2) the SE'L3 system was not subjected to a
thorough inspection for errors, The latter explanation could be tested by
analyzing the errors found in the projects during their use and maintenance.
Attempting to satisfy this goal is beyond the scope of the research reported
here.

Good: Characterize Modifications (G1)
All three projects operated in a staale environment, where there were few

changes to the support software and hardware; none of them made many
changes for the purpose of adding or deleting debug code, The results suppnrt
the view that the SEL designers have organized their systems so that, for pur-
poses of redevelopment, most changes are confined to a fow subsystems.

One way that the projects clearly differ Is in their reasons for making un-
planned design changes. Some spend a great deal of time on optimization and
improving the services the system offered to its users, others on attempting to
Improve Li;e clarity of the code and its documentation, It is interesting to note
that SEL2 and SEL3, whose programmers had different reasons for making un-
planned design modifications, had the same task leader and some of the same
staff

Coupled with the effort and the component-wise change analyses, these
results suggest that most unplanned design modifications are smal' and only in-
volve one component of the system, Several explanations are possible; either
the programmers act as "filters," rejecting unplanned modifications that are not
easy to make, or reasons for modifying the design are not characteristic of the
programmers, but rather of some external source.

Some conclusions concerning characterization of modifications
Although it is tempting to try to characterize a "typical" modification, there

is too much variability in the sources of modifications for the different projects
to do so safely. The sources for most, modifications fall into one of a small
number of subcategories, such as requirements modifications, planned enhance-
ments, improvements of clarity, improvements of user service:, and optimiza-
tions The distributions over these categories distinguishes one oroject from
another.

The SEL projects are all similar with respect to the effort required to modi-
fy the programs; most ohanges and modifications take a day or less to make.
Furthermore, although the changes tend to be nonlocalized with respect to indi-
vidual components (most components that are changed are only changed once
or twice), they are iocahzed with respect to subsystem, i.e. the majority of
changes are made in one or two subsystems.

4J	 1

11

Goal:
Characterize changes.

Questions:
What was the distribution of modifications according to the reason for the
modification?
What was the distribution of changes across system components?
What was the distribution of effort required to design changes?

Goal:
Characterize errors.

Questions:
What was the distribution of errors according to the misundcrsLandings that
caused them?
What was the distribution of effort required to correct errors?
What was the distribution of effort to correct errors across misunderstand-
ings causing errors?
How many errors were the result of a software change?

Goal:
Characterize projects.

Goal:
Characterize programmers..

Goal:
Find factors that have significant effects on types and distributions of er-
rors.

Goal:
Evaluate effectiveness of methodologies in Nr1SA/GSFC environment.

GWAI:
Suggest ways of improving NASA/GSFC software development practices,

Questions:
All questions are used in satisfying this goal. See list 1.

Goal
Verify that concurrent data validation is needed,

Question:
How often must reported change data be corrected as a result of the data
validation process?

List 3, Relationship Between Goals and Questions

12

Goal
Identity good treasures of eorrec'ness.

Questions!
What was the dirt. ibution of effort', required to design changes?
What was the ratio of changes not made to correct an error to error correc-
tions as a function of time during the development cycle?
What was the distribution of errors according to the misunderstandings that
caused them?
What was the distribution of effort required to correct errors?
What was the distribution of effort to correct errors across misunderstand-
ings causing errors?
How many errors were the result of a software change?
What was the distribution of errors across error detection techniques?
What was the number of attempted error corrections per error'?
What was the ratio of errors to various measures often associated with
effort and productivity?
What was the distribution of errors per person according to the number of
people involved?
What was the number of errors for projects requiring memory overlays
compared to those not requiring overlays'?
What was the distribution of errors accordir^„ to programmer?

Goals:
ldentlfy effective techniques for detecting errors,

Question:
What was the distribution of errors across error detection techniques?

Goal:
Identify effective techniques for obtaining the information needed to
correct errors,

Question:
What was the distribution of errors acro:as error correction techniques?

Goal;
Investigate the "ripple" effect, i.e. do most errors require more than one at-
tempt at correction or result in changes distributed over several different
components of the systern?

Question:
What was the number of attempted error corrections per error

Last 3. Relationship Between Goals and Questions (continued)

13

Goal: Characterize Errors (G2)
From the answers to the questions we may conclude that the SEL progrP m-

mers tend to spend their time finding and correcting many "small" errors made
while designing or implementing single routines, rather than struggling with a
few "large" errors, or trying to understand requirements or interfaces,

All the SEL projects handled changes with little trouble; relatively few er-
rors were the result of a change to the software, The SEL developers apparently
understand their requirements well enough that they can handle changes to
them without much trouble, Interfaces, often considered to be a major source
of errors, do not seem especially troublesome. There is some indication that the
interface and requirements understandings that do occur are mo.e difficult to
correct than others, However, the small number of errors involved makes it
dangerous to draw such a conclusion,

We believe there are two factors that explain the shape of the error distri-
butions and their similarity across projects,
a. The SEL projects all have the same application. They are essentially

redevelopments, each using the same overall design and often much of the
same code as previous projects. Although new individual programmers may
be used from one project to the next, the same people do the top level
design. Having found a successful design, they reuse it.

b. The SEL projects used programmers who were familiar vr.th the language
they were using, -and both were developed in a stable environment, Le,
there were few changes in support hardware or software,

Some conclusions concerning error characterization
Based on the foregoing analysis, one might characterize a "typical' error as

one that occurs in the design or implementation of a single component, is easy
to correct, and whose cause is easy to find.

Goal: Evaluate Effectiveness Of Methdologies In NASA/GSFC Environment (G3)
It was expected that various software engineering techniques would be tried in
the course of these studies. However, it was found to be ext-,emely difficult to
characterize the different, techniques and the differences in the ways in which
the techniques were applied for the SEL projects reported here. 'Consequently,
this goal could not be satisfied,

Goal: Suggest Ways Of Improving NASA/GSFC Software Development Practices
(G4)

Previous analyses have shown that the most abundant source of errors lies
in the process of designing and implementing individual components of the SEL
projects. Improvements should come from the introduction of any techniques
that assist the individual programmer in preventing and detecting errors. A
number of techniques and tools have been suggested to help in this process. A
few are listed in the following.

1. Program Design Language [9]
2. Gode Reading and Inspections [101
3. Program Proving [9, 111
4, Programming By Stepwise Refinement [12]
5. Formal Specifications 113,14]
6, Information Hiding [15^
7. Languages that provide strong typing, such as Pascal [16]

14

One would expect the introduction of some or all of these and other,
similar techniques to perturb the SEL environment initially. After the initial
learning period, it such techniques meet the claims made for them, a shift in
the error distributions could be expected.

Goal: Identify Good Measures ' Correctness (G6)
In addition to various single parameters, one may also consider a

number of different distributions as correctness measures, candidates are
the sources of nonclerical errors, the effort to design error corrections, the
effort to isolate the error cause, the frequency distribution of error correc-
tions, error corrections according to the subsystem in wh;ch they occur, and
errors according 10 project phase,

Several of the preceding distributions serve to locate the most trouble-
some phases of the development process, and the most error-prone parts of
the system. Others may be used as indicators of average difficulty in
correcting errors,

Some conclusions concerning measures of correctness
It is not possible to identify from the data a single goad parameter that

can be used to measure correctness. Issues such as correctness relative to
the amount of work that had to be done, or to the number of changes that
had to be made, cannot easily be judged and cannot be discerned tr-)m a sin-
gle parameter. Rather, a combination of parameters and distributions may
be used to discover what and where difficulties were encountered in produc-
ing a particular system. Attempting - define the precise set of distributions
and parameters to use is beyond the scope of this research. We do suggest
that some of the following be used,

a. Ratio of errors to modifications, to give an indication of how
the developers were spending their time;

b, Rate of erroneous changes, to give an indication of the
difficulty the developers had in making changes;

c. Sources of changes and sources of errors, to give an indication
of the kinds of problems the developers had to handle, and the
kinds of difficulties they had;

d. Effort to make change, effort to isolate cause of error, and
effort to design fix by source of error, to indicate difficulty
of correcting errors;

e. Phase of entry of errors into the system, to indicate whether
certain aspects of the development caused trouble, or whether
difficulties tended to be spread out over the entire development,

Goal: Identify Effective Error Detection Techniques (G7)
Executing the program was the most successful means for detecting er-

rors. The distributions show what might be called a traditional approach to
error detection: either test runs, or a programmer reading over her own
code.

rT

if

ib

Goal: Identify Effective Farrar Correction Techniques (G8)
It is clear from the data that the programmers favored code reading as

an error correction technique. While this is not surprising, the lack of use of
other techniques is surprising. Although we canna determine If program
reading is popular because programmers are writing programs that; are easy
to read, we can say that improving the readability of programs should im-
prove the error correction process.

r
Goal: Investigate The Ripple Mect (G9)

There is nothing in the data to suggest a ripple effect of any
significance. The lack of such an effect may be the result of the SEL experi-
ence with the application. It may also be a result of monitoring the projects
primarily through the development phase. Continued monitoring throughout
the project lifetime might reveal such an effect as the .software undergoes
further change,

Goal: Characterize Projects (G10)
Examination of various parameters previously discussed shows that it is

risky to characterize a project with a single parameter or distribution.
Furthermore, it is difficult to predict the effect that a particular project
characteristic will have on any particular change distribution, We can note
variations in distributions that seem to distinguish some projects from oth-
ers, and use the distinguishing distributions as the basis for more detailed
experiments.

The proposed distinguishing distributions are listed in the following,
Change Distribution

The distribution of changes across modifications and nonclerical er-
rors clearly distinguishes SEL3 from the other SEL projects,

Sources Of Modiflcations
The sources of modifications distributions all show their strongest
peaks in the same places, but have secondary peaks in different
places. These secondary peaks may be used to distinguish among
projects. SEL2 and SEL3 both show strong peaks to requirements
changes, SELL and SEL3 both show peaks in the planned enhance-
ment category. SEL1 has a much stronger peak in V-ie design
category than either of the others.

Sources Of NonClerical Errors
All projects show a strong peak in the same place in the sources of
nonclerical errors distributions,. SEL3 may be distinguished from
the other SEL projects by its secondary peak in the "Design Multi-
Comp" category. SEL1 shows a somewhat stronger peals in the "Fnl
Spec" category than the other projects,

Effort To Design Change
All SEL projects have design effort distributions of about the same
shape. The only variation is in the proportion of the distribution
contained in each category. 5EL1 shows a considerably stronger
peak in the Easy category than any of the other projects.

Effort To Isolate Error Cause
The distributions showing the effort to isolate error causes ap- 	 j

ORIGINAL PAGE IS

	

16	 OF POOR QUALITY

par•ently distinguish clearly between project SEW andthe other SEL
projects (Because of the relatively large number of errors In the
"Unknown" category In these distributions, the size o ► the distinc-
tion may not be as large as It appears.)

•	 Frequency Distribution Of Changes
The SELI and SEL2 component change frequency distributions show
a generally similar shape except for the first category,

Characteristics Of The SEL Projects
By analyzing the foregoing distributions, the SEL projects may be

characterized as follows.
1. Software prcducti „ n takes place in an environment stab i e with

respect to hardwe.re and software support,

2. Programs are produced by making any small changes to set of

	

initial code. A significant number (
	 P.

40 % or more) of these
changes are error corrections. Most of the changes are not
planned in advance. Relatively few of them result in errors.

3. Most changes that are not error corrections are design changes
made for the purposes of optimization, improving the clarity and
maintainability of the code, improving the documentation
(including comments in the code), or improving the services
provided to the user by the program.

4. Most errors occur In the design or implementation of one
component of the system, and are easy to find and easy to
correct. Errors are usually corrected on the first try.

5. Although most changes are concentrated in two or three
subsystems, few individual components are changed more than
three or four times.

S. Although a project may have relatively many regtArements
changes, these changes do not constitute a major source of
errors. Interface errors are also not especially troublesome.

Goal: Characterize Programmers (Gil.)
Because there are few commonalities in the distributions o ►” program-

mer errors, there is little that can be said to characterize the programmers
as a group. Most have l UI ,; trouble with the language or other attributes of
the environment in which they program (e.g. the library system or the
operating system). All of them seem to have the most problems in designing
and implementing the internal structure of individual routines.

Goal; Find Factors That Significantly Affect Distributions Of Errors (12)
It is not possible in these studies to isolate particular factors and exam-

ine their effect on the various error distributions. Nevertheless, it was ex-
pected that patterns of influence would be visible. One ax-pecteJ pattern was
that the distribution of sources of modifleations would affect the distribution
of sources of errors, e.g. the greater the number of requirements changes,
the greater the number of requirements errors. Tlus expectation was not

17

confirmed; the sources of errors seem to be relatively independent of the
sources of modifications,

Other factors that were expected to contribute hcavily as error sources,
'but apparently did not, include the software development environment, the
programming language used, misunderstandings of interfaces, project size,
and misunderstandings of specifications.

The error distributions for the SEL projects indicate that the single
most important factor is the method used by the individual programmer in
designing and coding individual routines, More detailed studies of individual
programmer techniques in the SEL environment might indicate particular
methodological weaknesses.

Generalizal:on of these results to other environments may not be possi-
ble. In the SEL projects certain circumstances may have acted to decrease
the effects of certain factors, SEL experience with the application, and the
adaptation of previous designs in the development of new systems are in this
category.

4. Conclusions and Summary
The SEL data collection projects showed that it was feasible to collect

and validate data on all changes concurrently with software development. (A
companion paper shows that it was necessary to perform validation by
means of developer interviews.) The data collected permit the following
characterization of the SEL environment, projects, and programmers.

1. Error corrections aside, the mnst frequent type of change is an
unplanned design modification, Such modifications are usually made
for one of the following reasons:

a, to optimize the program,
b, to improve the services the program offers to its users, or
c, to improve the clarity and maintainability of the prr,gram

and its documentation.

2, The most common type of error is one made in the design or
implementation of a single component of the system, Incorrect
requirements, and misunderstandings of functional specifications,
interfaces, support software and hardware, and languages and
compilers are generally not significant sources of errors,

3. Despite a significant number of requirements changes imposed on
some projects, there is no corresponding increase infrequency of
requirements misunderstandings. A possible explanatio z is that the
developers understand the application sufficiently well tile their
design is easily adaptable to most requirements changes, Lo, they
know what kinds of changes to expect and have designed for them.

4. More than 757. of all changes take a day or less to correct, Most
prcgrammers apparently spend their time making many small changes
to their programs, rather than few large ones.

5. Changes tend to be nonincalized with respect to individual components
(most components that are changed are only changed once or twice),
but localized with respect to subsystems (the majority of changes are

18

made in one or two subsystems),

6. Relatively few changes result in errors. Relatively few errors
require more than one attempt at correction.

7. Most errors are detected by executing the program. The cause of
most errors is found by reading code. Support facilities and
techniques such as traces, dumps (which were once so popular that

papers were published on how to read them; e.g (17).
cross-reference and attribute listings, and program proving

are rarely used,

Opportunities Missed
The data presented here and in (3, 2,6] represent five years of data collec-

tion, During that time there was considerable and continuing consideration
given to the appropriate goals and questions of interest, Nonetheless, as data
were analyzed, it became clear that there was information that was never re-
quested but that would have been useful, An example is the length of time each
error remained in the system, Programmers correcting their own errors, wrlch
was the usual case, could supply this data easily, One could then isolate errors
that were not easily susceptible to detection by program Execution or code
reading, This example underscores the need for careful planning prior to the
start of data collection,

Comparing Environments
In most sciences, valuable information is gained from repeating experi-

ments, sometimes to confirm new results, other times to refine them, We be-
lieve this should be the case in Computer Science, Although some interesting
patterns are exhibited in the SEL data, it would be useful to seek similer trends
in data from environments. Unfortunately, there exists little comparable data (
(4] is one exception). A primary reason for devising the data collection metho-
dology used here is to show how comparable data from different environments
may be collected, Common goals, questions of interest, and data categoriza-
tions may be used to to ensure comparability.

19	 ORIGINAL. PAG9 15
OF POOR QUALITY

Acknowledgments
The authors thank the many people at NASA/GSFC and Computer Sciences

Corporation who filled out forms and submitted to interviews, especially Jean
Grondalski and Dr Gerald Page, and the librarians, especially Sam DePrlest.

We thank Dr. John Ganni.m, Dr. Richard Meltzer, Frank VcGarry, Dr. Gerald
Page, Dr. David Parnas, Dr. John Shore, and Dr. Marvin. Zelkowitz for their many
helpful suggestions.

Deserving of special mention is Frank McGarry, who had sufficient foresight
and confidence to sponsor much of this work and to offer his projects for study.

References
1. V, Basili and D. Weiss, "A Methodology For Collecting Valid Software En-

gineering Data," .
2. V. BasUi and D. Weiss, "Evaluation of a Software Requirenierts Document By

Analysis of Change Data," Proc, Fhfth Intntl, Conf. Software Engineering,
pp.314-323 (March 1981).

3. D. Weiss, "Evaluating Software Development by Error Annalysis: The Data
from the Architecture Research Facility," J. Systems and Software 1,
pp.57-70 (1979).

4. D. Weiss, "A Comparison of Software Errors In Different Environments,"
NASA Softwwee E^nginererihq r'Yorkshop	 (November 1981).

5. V. Basili, M, ZelkowiLz, F. McGarry, and others, "The Software Engineering
Laboratory," Report TR-535, University of Maryland (May 1977).

6. S, Fryer and D Weiss, "Evaluation of the A-7E Software Requirements Docu-
ment By Analysis of Change Data: Two Years of Change Data," 15th Annual
As-Uom.ar Conference Gt. Circuits, Systems, and Computers (November
198?.).

7. D. Weiss, "Evaluating Software Development By Analysis Of C range Data,"
TR-1120, University of Maryland. Computer Science Center, College Park
(November 1981),

8. J. Bailey and V. Basili, "A Meta-Model For Software Development Resource
Expenditures," Proc. IP 11th Intnti. Conf. Software Engineering, pp, 107-116
(March 1981).

9. H. Mills, R. Linger, and B. Witt, Struve ured Program-ming 77ieory and Prac-
tice, Addison-Wesley, Reading (1979).

10. M. Fagan, "Design and Code Inspection and Process ConL°ro1 in the Develop-
ment of Programs," TR 21,572, IBM System Development Division (De-
cember 197,10.

11, E. W. Dijkstra, A 13isciplira of Programminrg, Prentice-Hall, Er.;;lewood Cliffs
(1976)

12, N. Wirth, "Program Development by Stepwise Refinement." Comm, ACM
14{4), pp.221-227 (April X9'7',).

13. D. L- Parnas "A Techaiqu.e For Software Module : poctfication. With Exam-
ples," COMM. AC41 15(5), pp.330-:338 (.May 1972).

14. J Guttag, "The Specification and %pp icaLion to Pro g ramming of AbstracL
Data Types," CSRG-59, University of Toronto Dept of Computer Science
Computer Systems Research Group ".975)

zO

15. D L Parnas, "On the criteria to be used In decomposing systems into
modules," Comm, ACU 15(12), pp 1053-1058 (December 1970

16. K. Jensen and N. Wirth, Pascal User Uanual and Report $ocond gdition,
Springer-Vcrlag, New York (1974).

17. D. Norris, "An Introduction To OS1360 N YT Control Logic And Debugging
WIth HVT Core Dumps," IBAI Technical Information Exrharxga (January
1989),

4

ORIGINAL PAGE IS

Appendix	 OF POOR QUALITY

Answering Questions of interest,
The questions of interest are answered by presenting and analyzing the data

distribution(s) associated with each question, For each question there is a short
discussion of the associated distributions. The main purpose of the discussions
is to point out various features of the distributions that are of significance In
answering the questions. Table B shows the relation between the questions and
the distributions. Not all questions are discussed here. Question r7, " fic. #Y often
must reported change data be corrected as a result of the data validation pro-
cess?" is discussed in a companion paper [1].

For some questions either there were Insufficient data 'o answer the ques-
tions, or the data were Judged insufficiently reliable to prod , ice meaningful dis-
tributions. Interpretations of the questions as they relate to the goals of the
studies are given in a later section.

One purpose of this research Is to provide a set of empirically-derived data
that others may use in constructing models and deriving hypotheses, The rata
presented here may be so used. Most of the presentations are in the form of his-
tograms based on the data categorizations previously discussed. The following
sections are intended to help the reader understand the organization and con-
tent of the various histograms and tables.

Organization of Data Presentation
In general, the histograms are organized Into figures, with each figure con-

taining corresponding histograms for all projects, Examples W-e figure 1, which
shows a broad view of all change data, and figure 3, which shown the sources of
nonclerical errors for all projects. For some figures, not all projects are
represented, since a particular set of data may not be relevant or available for
some projects.

Tables are used to show the relationshir between two different categoriza-
tions, such as effort to design modification accordir,^ to source of modification
(table 9). Labels on the histograms and tables are goiierally mnemonic abbrevi-
ations of descriptions of data categories (e.g. PE means planned enhancement).
Keys, supplied for non-obvious labels, provide i he complete name for each
mnemonic.

Data Categorization
During the data collection period, several improvements were made to the

forms. One result is that forms for some of the projects contain more
categories than for others. A second result is that there are occasional
differences in the names and meanings of similar subcategories for different
projects within a particular figure. Stich differences in categorization are dis-
cussed in the next few sections.

Changes In Measurement Precision
Data categories for some of the projects contain finer data quantifications

than others. An example is the SELL and SEL3 categories shown in figure '0,
"Effort To Change NonClencal Errors" The SEW figure has a larger set of
categories than the SELL figure. After anal yzing the results of our early data
collection efforts, we realized it was possible to and of interest to use a finer
measure of effort.

ORIGINAL PAGE is
F POOR QUALITY

A-2

What was the distribution of modif eaticns accord- Figures 8, 4
ing to the reason for the modification?

2. What was the distribution of changes across system Figures 14, 15
components?

3. What was the distribution of effort required to Figures 8, 9, 10
design changes?

4. What was the ratio of changes not made to correct Data not sufficiently
an error to error corrections as a function of time reliable to produce
d,,,,ring the development cycle? meaningful distribu-

tion.
5. What was the distribution of errors according to Figures 5, 6, 7

the misunderstandings that caused them?
6. What was the distribution of effort required to Figures	 10,	 11,	 12,

correct errors? 13
7. What was the distribution of effort to correct er- Tables 11, 12, 13, 14,

rors across misunderstandings causing errors? 15, 16
8. How many errors were the result of software Table 5

changes?
9. What was the distribution of errors across error Tables 17, 18, 19

detection techniques?
10. What was the distribution of errors across error Tables 20, 21, 22

correction techniques?
i 1. What waQ the ritunber of attempted error correc- Table 5

Lions per error?
12. What was	 the distribution of error corrections Figure 18

across project phases?
13, What was the ratio of errors to various measures Tables 4, 5, 6, 7

often associated with effort and productivity?
What was the distribution of errors per person ac- Table 6
cording to the number of people involved?

15. What was the number of errors for projects requir- Insufficient data for
ing memory overlays compare-' to those not re- meaningful results.
quiring overlays?

16. What was the distribution of errors according to Figure 19
programmer?

17, How often ti,.ust reported change data be corrected Presented elsewhere
as a result of the data validation process?

Table 8, Fishes/Tables used in Answering Questions

A-3 	 ORIGINAL PAGE IS
OF POOR QUALITY

Organization of Data Presentation
In general, the histograms are organized into figures, with each figure con-

taining corresponding histograms for all projects. Examples are figure 1, which
shows a broad view of all change data, and figure 3, which shows the sources of
nonclerical errors for all projects. For some figures, not all projects are
represented, since a particular set of data may not be relevant pir available for
some projects.

Tables are used to show the relationship between two d;fferent categoriza-
tions, such as effort to design modification according to sourcz of modification
(table 9). Labels on the histograms and tables are generally mnemonic abbrevi-
ations of descriptions of data categories (e,g. PE means planned enhancement).
Keys, supplied for non-obvious labels, provide the complete name for each
mnemonic.

Data Categorization
During the data collection period, several improvements were Made to the

forms. One result is that forms for some of the projects contain more
categories than for others. A second result is that there are occasional
differences in the names and meanings of similar subcategories for different
projects within a particular figure, Such differences in categorization are dis-
cussed in the next few sections.

Changes In Measurement Precision
Data categories Lor some of the projects contain finer data quantifications

than others. An example is the SEL,1 and SEW categories shown in figure 10,
"Effort To Change NonClerical Errors," The SEW figure has a larger set of
categories than the SEL1 figure, After analyzing the results of our early data
collection efforts, we realized it was possible to and of interest to use a finer
measure of effort.

Insufficient Subcategorization
As a result of inexperience, some data categories were too broad, and some

too narrow on the early versions of the data collection form. As an example, a
design chn,nge category was included on the form at one time. So Many changes
were reported in this category that it was important to subcategorize further.
(The next version of the form contained the new subcategories explicitly), Fig-
ure 3 shows the subcategories for all SEL projects. Conversely, environment
changes occurred sufficiently rarely so that it was unnecessary to distinguish
between hardware and software environment changes, These categories were
merged during data analysis.

The "Unknown" Category
Despite the intensive review and interview process used for validation, there

were still cases where it was not possible to categorize certain changes, This
occurred most often for the various effort categories when forms were gen-
erated, These cases are categorized as unknown in the histograms where they
appear.

Flne Distinctions That Can Be Made
For much of the data, the variety of data categorizations, the comments

supplied by the programmers, and the information gained from validation per-
mit certain fine distinctions to be drawn during analysis. An example is the dis-
tinction among errors affecting more than one component, design errors

A-1-	
01?1GINAL p,4 C1,C. IS

OF POOR QUAW-ry

involving several components, and inl.urfaco orrovs

Interface errors may bra into '21 classes The (IrsL class consists of
Incorrect assumptions between modules and routines Ali oxampla involved all
assumption abOUL ►nftlaliznLion The progranuner of one modulo assumed. 01 'a l IL

was necessary to invoke an initialization nouUvie from a second module each
Lima he used certain rouLlnos from the second module. This assumption was
incorrect. The second class consists of orrors in using interfaces, where such
errors are not, the re

sult of incorrect assuillpLions. Ali example Is a program-
mar forgetting Lo include a paramoter in a calling sequence.

Design. errors involving several componants are errors in Lhe organization of
the softwitre into components, including the speolflcn ions that describe LhnL
organization. Although

this
category ►neludes marly interface errors,

It
also

includes errors that are
not

interface orrors.

Errors affecting more than one component are errors whose corrections
require changes to

be
made in morn Wall, un,,) component. These errors may (It

any of the categories or misundorsLandings and are
not

necessarily Interface
errors.

MsLincUon-i That Were Too Mue

For some categories, developers were asked to make timer distinctions in

surplying Lhe daLa Thee nleLric usod for measuring difficulty of axing nonclart-
ca errors (see figure 10)

is
an example For SELI and SM12, programmers were

asked to separate the ofTor-L just to design the clicuig-o front Lhc affori, to make
the change. This distinction was too fine for the programmers reporting the
efforL,

and
during S> 1a3 data collection just the total afforL was requested.

Comparing DiaLribuUons - Arithmetic Considerations,

To convert raw data counts Into nioasures that could bee 	 to conipare
projects, perconLap',v of changes in a pw,ucular caLegary is usually used. As Lin
example, in fl,61LIVe 6, VaIL108 in Lhe distributions are shown as percentag es of
nonclerical errors. Becauso Lhevo ara generally large di(Yerences In values
within any distribution, the values, are rounded to whole percents. For each dis-
tribLiLton, any caLagory that Is nonompLy is assigned a nonzero value. As it
result, some categories that contain less than .6"' of thedistribution are shown
as containing (Categories LhaL contala no data do not appear to the disLribu-
Lions.) For no distribution does this make a diffarance of more than IN in ally
category. For soma distributions, there Is a re Rutting round-off error.

Answers To The Questions

In thee soettons we discuss the answers to the questions of LnteresL,

For some questions, the daLa arcs not sufTicionLly complete
or

acourai.o to pro-

vidt, meaningful or reliable answers. Tho reasons for this have been dISCUSSed in
previoussectIons; where nacemsary, Lhoy are elaboraLod. Sections are headed

by short doscripLions of LjuosLions. Idontiflers in parentheses following the quos-
tiun descriptions flare; rcreroace,4 to Lho quesUon number, e.g. (Q'2) is a reforonoe

to question '21,

overview or SE.1, Changes

Thore is no quoslioa th,,\L &,,ijs with llt ell-ililgios; inodiftaLlons and arrors
are characteriiod separaLojy. Novc)t ,tjjeje ,,^s,	 (it tlie daLx showed WaL it
was of interest to look

it
the overall	 disLribuLmns and comptive Weill

across projects,

ORIGINAL PAV" ^11)'

OF POOR QUAWY

Figures I and 1-21 show some interesting differences among the three, pro-
jects The proportion of both all errors and of nonclerical, errors declines from
SELA (641" and 47#-Q respectively) through SNL3 (407. and 321 respectively), The
SEW developers also appear to have been considerably more occupied with
making modiflcaLions than with correcting noticlarical errors. Various Warne-
tars

that
normalize number of changes and errors with respect to size in corms

of effort and lines of code show the same trend. From these distributions and
parameters

it
appears that there are distinct differences among SEL projects,

and that, some projects seem to have considerably less trouble
in

the develop-
ment phase than others

What was the distribution of modifications according to the t reason for tae
modification? (QQ

Modification distributions are shown in figure 3. All projects show a strong
spike in the design change subcategory. Thereia considerable variability in
several other categories. SEL2 and. SEE both experienced relatively large
:lumbers of requirements changes. SELd and S111,3 both show considerable use
of planned enhancements.

Similarities in the distributions show that all three projects operated In a
stable environment, where there were few changes to the support software and
hardware, and

that
none of them made many changl es for the purpose of adding

or deleting debug code.

Figure.. Is an analysis of design modifications only. Again, Lhere Is cons$d-
arable variability in the distributions. %1#1 prograi-Aimers were considerably
concerned with optimization, i.e. Improving tho efficiency of use of memory and
processor time'~, rand Improving the services the system offered to It s Users.

The SE L2 distribution, whose pattern is somewhat less clear because of the
Int-ge size of the "unknown" catego •y, also shows emphasis on optimization, and,
to a considerab ly lesser degree, on Improving US0V services kind the clarity and
maintainability of the program and its documentation, In

SE,13, the emphasis is
reversed; there were relatively few attempt.,, at optimization, but many at
Improving clarity, maintainability, and documentation. It is Interesting to note

ELtilL S,3 had
the

same task lender and some of the same staff` as SEL2.

What was the distribution of changes across system components? (Q2)

In other discussions of changes, we view a change as a logical unit, indepen-
dent of how much code

or
documentation, or how rilany components were

involved. For purposes (it analyzing frequency distributions of changes, we con-
Sider the number of changes made to each component, The number of changes
made to a component ts considered to be the number of ch,7mge report forms oil
which that component is named as being changed. Using, this . efiniLion of
change, figure 14 shows the percentage of compoaariLs

that
were changed once,

twice, aLc. As all example, for SMI, 29,3 of the components were changed once,
and 30%. were changed twice.

The frequency distributions for all the SEL, projects show the same pattern..
507. or more of the components that were changed were only changed once or
twice, and more than 00'O"d were changed 6 Limes or lQSSL The pattern is even,
more pronounced

for
Hates (figure 15): 7030 or snore of the fted components

were only fIxed once
or

twice.

Figure 1.6 shows the patterns Of Subsystems that are changed and (Ixed
most often (The distributions are obtained bv grouping the data for the com-
ponents into subsystems) It is clear from Lhe 'so distributions

that
at most 2 or

3 of the subsystems receive the most attention

A-6	
OF
	 PAGE 19

OF POOR QHAIITY

What was the distribution of effort required to design changes? (Q.3)
Change e(TorL distributions are shown in figures 8 through 13. Flxaniining

figure 8, which shows the efforL for all changes axeepL clerical eirrors, one; can
see LhaL most, (niore than 75.'v of) c liRujgcs fall into the easy or medium
categories for all SE'l, projects, F igure p , which is restricted to modiflcaLions
only, shows a sin ► ilar, but not as strong, trend. The Lrend is most pronounced
for nonclarical errors,

What was the distribution of errors according to the misunderstandings that
caused. them? (Q5)

Inspection of the distributions showing, sources of nonclerical errors (flgurca
5) shows noteworthy similcariLies across projects. 'Ilia distributions all show
strong spikes in the sarle places, It is evident that the mayor source of errors is
in the design and implemenLation of single components.

Factors suoh as misunderstandings of requirements and spoo fle^aLions are
minor sources of errors. (Note that figure 3 shows signifIcanL numbers of
requirements changes for projects Sl:;l. r3 and Slab. 'flee SEL developers
app4rently understand their reyuiren ariLs wall onough that, they can handle
changes to them without match Lrouble) Interfaces LAre also a minor error
source (figure 7)

Further aiaalysis of the errors commlLLed in design and implementation of
componctits is shown in figure 6. In the S1,11, environment, daL.a errors (errors in
the value or structure of data) are either about evenly balanced with or predorn-
inate errors in the interded use of c;ompnoneLs.

What was the distribution of effort: required to correct errors? (Q6)
Ef?ort distributions for correcting errors Cara shown In figure ; 0. (Note that

there.; is a slight difference In the type of of i-L measured for SFL3 than for SEL1
and Shit;) As shown by these distributions, most error corrections take little
efTorL For all projects, approximately 50'0"0 or more of the errors were corrected.
in one hour or less, and more than 65" were corrected in one day or less.

As might be: expeeLed, the distributions for a(TorL expended in tlnd ► ng error
causes (Agaires 11, 10, and 13) follow a similar pattern. From those results we
may conclude that the programmers Land to spend their time finding, and
correct nq many "stnall" errors rather than few "large" errors.

What was the distribution of effort to correct errors across misunderstandings
causing orrors? (Q7)

Tablas l t through 16 support the viesw 	 mof most errors as being easy to find
and (lx and as occurring in component design or implamenLaUoti. Very few
orrors take more than a day of afTorL to flx, Although interface errors are often
cited as being particularly difficuiL to correct, tablet L3 shows that they follow
the same pattern as other subcategories of errors.

The Only deviation ;rom the pattern appears to occur In Lho afXort to ft
requirements and specie,. ztion errors, where the distribution between easy and
medium rcaLrd errors is vriore± balanced than for the other sutacaLegories,, Those
results sugg esL that. requirements and speeiflcatloti errors care more diflicult Lo
correct than others. However, the small number o! errors it) these sub-
caLogorio.s makes it, dangerous to draw such is uonealkusion

ORIQINAL, PAC.. IS

A7	
OF POOR QUALITY

How many errors were the result of a ooftware change? (Q6)
Table 5 shows that the SEL projects handled changes with 'little trouble;

relatively few errors were the result of a change to the software,

What was the distribution of etrom across error detection techniques? (Q9)
The relative frequency of use of various error detection techniques are

shown in tables 17 through 19 for the SEL projects. While examining the distri-
butions, one must recall that SEL change monitoring did nat begin until code
was baselined and had already undergone debugging. Otherwise, error messages
might rank higher as a detection technique,

Executing the program was the most successful means for detecting errors,
The distributions show what might be called a traditional approach to error
detection; either test runs, or a programmer reading over her own code,

What was the distribution of errors across error correction techniques? (Q10)
The relative frequency of use of various error correction techniques are

shown in tables 20 through 22. While it is not surprising that code reading by
the programmer dominates all other methods, the relative infrequency of tech-
niques such as traces, special debug code, test runs, and reading documentation
is somewhat surprising. Dumps, which were once so popular that papers were
published on how to read them (e,g. [17)), were rarely used.

What was the number of attempted error corrections per error? (Q11)
If any of the projects suffers from a ripple effect, we expect to see many

errors requiring repeated attempts at correction, and many changes each
resulting in several errors, As can be seen from table 5, both of these effects
appear quite small. The worst case is about 6% of the changes resulting in
errors (SEL2). The errors resulting from change for the worst case (SE12)
comprised 14% of all errors. Finally, very few errors required more than one
attempt, at correction (these are a subset of the errors resulting from change,
since each attempted correction is considered to be a change),

What was the distribution of error corrections across project phases? (Q12)
The distributions of errors according to the phase of the project in which

the error entered the system are shown in figure 16. All projects show a strong
spike in the code and test phase. These distributions are somewhat less reliable
than others because programmers could not always decide exactly when a par-
ticular error occurred. The unknown subcategory comprises such cases.

What was the ratio of errors to various measures often associated with effort
and productivity? (Q13)

What was the distribution of errors per person according to the number of peo-
ple involved? (Q14)

Because of their similarity, questions 13 and 14 are answered together.
Tables 4 through 7 show a variety of ways of normalizing error rates to pro-

ductivity measures. Each normalization may be used to rank the projects. For
the six different normalizations there are six different rankings.

What was the distribution of errors according to programmer? (Q16)
Distributions of errors for individual programmers are shown in figure 9 As

with the project error distributions (e.g. figure 5), the individual programmer

M

ORIGINAL Mi.:
A-6	 OF POOR QUALITY

error distributions all show peaks in the "Design Single Comp" category Both
the relative size of this peak and the variation over the remainder of the distri-
bution is considerably more variable among the different programmers than
among the different projects,

A

ORIGINAL PAGE IS
A-9	 OF POOR QUALITY

Easy Medium Hard Unknown
LE 1 HR 1Hr To 1 Day GT 1 Day

Req 1 2
Design 33 22 6 1
Debug 8 2
Env 1 1
PE 11 5 3 1
Other 3

SEL1

Easy Medium Hard Unknoim
LE 1 HR 1 Hr To 1 Day GT 1 Day

Req 11 6 9 4
Design 21 19 8 4
Debug 3 1
Env 4
PE 4 3 4 1
Unknown 2

SEL2

Easy Medium	 Hard	 '	 Formidable	 Unknown
LE 1 HR 1 Hr To 1 Day	 1 Day to 3 Days	 GT 3 Days

Req 6 10	 3	 5	 1
Design 34 9	 2	 1	 ,5
Debug 3 2	 15	 1
Env .5
PE 7 9	 5	 4	 ,5
Unknown 5	 .5

SEW

Table 9, Effort To Modify By Source of Mod
(As Percentage of Total Mods)

Key

Design	 Modifications caused by changes in design

Debug	 Modifications to insert or delete debug code

Env	 Modifications caused by changes in the hardware or software environment

PE	 Planned Enhancements

Req	 Modifications caused by changes in requirements of functional specifications

Unknown Causes of these modifications are not known

}
F
i

ORIGINAL ^ c,!;	 fcj-
A 10 OF POOR Q1 JPaI_ITY

Easy Medium Hard Unknown
LEIHI 1HrtolDay G'I'1Day

Clarity 2 3 3
us 12 7 1 1
Opt 15 11 2
Vnknown 4 1

SEL1

Easy Medium Hard Unknown
LEIHR 1HrtoIDay GTIDay

Clarity 6 4 1.
US 5 5
Opt 7 4 4 1
Other 1
Unknown 3 5 3

SE12

Easy Medium Hard Formidable	 Unknown
LE 1 HR 1 Hr to 1 Day 1 Day to 3 Days OT 3 Days

Clarity	 28 3 1 1
US	 3.5 5 5 1.
Opt	 2 2 .5

SEW

Table 10. Effort to ,Modify By Source of Mod (Design Mods Only)
(As Percentage of Total Mods)

Key

Clarity	 Improvement of clarity, ;Maintainability, or documentaLlon

Opt	 Opticruzation of tinie Ispace /accuracy

Unknown Causes of these design changes are not know n

L;S	 Improvement of user services

i

ORIGINAL PAGE Is

A-1 1 	
OF POOR QUALITY

Easy	 Medium	 Hard Unknown.
LEI HR	 1 Hr To 1 Day	 GT 1 Day

Req 1	 1
Fnl Spec B	 4	 2
Design 5	 2 1

Multi-Comp
Design/Impl 45	 16	 2 1

Single Camp
Lang/Compiler 1
Env 2
Other 5	 2 1

SELL

Easy	 Medium	 Hard Unknown
LE 1 HR	 1 Hr To 1 Day	 GT 1 Day

Req 2	 2
Fnl Spec 1 2
Design 2	 1	 1

Multi-Comp
Design/lmpl 41	 26	 2 9

Single Comp
Lang /Compiler 7	 1 1
Env 1
Other 2	 1

SEL2

Easy Medium	 Hard Formidable	 Unknown
LEI HR 1 Hr To 1 Day	 1 Day To 3 Days GT 3 Days

Re y	 2 3	 1
Fn1 Spec	 2 3	 1
Design	 9 12	 2 1	 1

Multi-Comp
Design/Impl	 32 20	 2 2

Single Comp
Lang/Compiler	 1 2
Env	 2 1 1
Other	 1

SEW

Table 11, Effort To Design Fix By Source Of Error
(As Percentage of NonClerical Errors)

A-12 	 Of?IGINAL PAM. ISOF F'OOR QUALITY

Key

Design Multi-comp	 Design error involving several. components

Design/lmpl Single Camp Error in the design or implementation of a single component

Env	 Misunderstanding of external environment, except language

Fhl, Spec	 Functional spacifications Incorrect or misinterpreted

Lang	 Error to use of programming language/compiler

Req	 Requirements incorrect or misinterpreted

A

	

A-13 	 ORIGINAL PAGE 6
OF POOR QUALITY

Easy	 Medium	 Hard	 Unknown
LE 1 HR 1 Hr To 1 Day GT 1 Day

Intended Use	 20	 16	 2	 1
Data	 29	 5	 1	 1
Other	 1

SEL1

Easy	 Medium	 Hard	 Unknown
LE1HR 1HrTo1Day GT1Day

Intended Use	 16	 11	 3	 7
Data	 28	 16	 2

SEL2

Easy	 Medium	 Hard	 Formidable
LE 1 HR 1 Hr To 1 Day 1 Day To 3 Days GT 3 Days

Intended Use	 12	 13	 2
Data	 29	 18	 2	 1

SEL3

Table 12, Effort To Design Fix By Source Of Errov (Design Errors Only)
(As Percentage Of NonClerical Errors)

Key

Data	 Error in the use of data

Intended Use Error in intended function,
Le, program behavior does
not correspond to the in-
tended use of the program

R

ORIGINAL PAGE" 15
A-14 	 QP POOR QUALITY

Easy	 Medium	 Hard	 Formidable unknown
Project LE 1 hilt 1 Hr To 1 Day CT 1 Day

SEL1	 6	 4	 1

SEL2	 5	 2	 2

SEW	 11	 13	 2	 1

Table 13. Effort To Design Fix For Interface Errors
(As Percent Of NonClerical Errors)

a

rt
yh

4

w.^

ORIGINAL PAGE 13
A-15	 OF POOR QUALITY

R

Easy Medium Hard NA Jnknown
LE I HR 1 Hr To 1 Day GT 1 Day

Req 1 i
Fn1 Spec 2 IT 5 3
Design 2 3 2

Multi-Comp
Design/Impl 31 26 2 2 5

Single Comp
Lang/Compiler 1
Env 1 1
Other 1 7

SEL1

Easy Medium Hard NA Unknown
LE 1 HR 1 Hr To 1 Day GT 1 Day

Req 3 1
Fnl Spec 1 1 1
Design 1 2 1

Multi-Comp
Design/Impl 27 32 1 4 12

Single Comp
Lang/Compiler 3 2 1 1 2'
Env 1
Other 1 2

SEL2

Easy Medium Hard NA Unknown
LE 1 HR 1 Hr To 1 Day GT 1 Day

Req 2 3 1 1
Fnl Spec 2 2 1
Design 13 a 1 4

Multi-Comp
Design/Impl 35 17 1 4

Single Comp
Lang/Compiler 2 2
Env 1 1 1

Other 1

SEW

Table 14, Effort To Isolate Cause By Source Of E; ror
(As Percentage Of NonClerical Errors)

t

M

l	 ,

A-16
ORIGINAL. PAGE jij-
OF POOR QUALITY

Key

Design Multi-Comp	 Design error Involving several components

DesignAmpl Single Camp Error to the design or implementation of a single component

Env	 Misunderstanding of external envirownent, except language

F'nl Spec	 Functional specifications incorrect or misinterpreted

Lang	 Error in use of programming language/ compiler

Req	 Requirements incorrect or misinterpreted

4

ry

ORIGINAL PAGE. IS
OF POOR QUALITY

A17

Easy Medium Hard	 NA Unknown
LE 1 HR 1 Hr To 1 Day GT 1 Day

Intended Use	 17 17
Data	 16 12 2	 2 3
Other 1

SEL1

Easy	 Medium	 Hard	 NA Ut►known
LE 1 HR 1 Hr To 1 Day GT 1 Day

Intended Use	 9	 13	 1	 4	 10
Data	 19	 21	 1	 2
Other

SEL2

Easy	 Medium	 Hard	 NA Unknown
LE 1 HR 1 Hr To 1 Day GT 1 Day

Intended Use	 16	 11	 1	 1
Data	 32	 13	 2	 5

SEW

Table 15, Effort To Isolate Cause By Source Of Error, (Design Errors Only)
(As Percentage Of NonClerical Erroa s)

Key

Datd	 Error in the use of data

Intended Use Error in intended function,
i.e. program behavior does
not Correspond to the in-
tended use of the program

^i

d

A

ORIGINAL PA(;E 18
OF POOR QUALITY

NA Unknown

A18

Easy Medium Hard
Project LE i HR 1 Hr To 1 Day oT 1 pay

SEL1 5 4

SEL2 3 4 1

SEL3 14 9 1

1	 3

1

2

Table 16, Effort To Isolate Cause For Interface Errors
(As Percent Of NonClerical Errors)

4

6
011101IN A!-	 is

OF POOR QUAHTY

A-19

ActiviLtes Used F •SL
For DoLection Detected By

'rest Runs, 120 93

Code Reading 69 40
By Programmer

Code Reading 21 16
By OLhar Person

Reading DocumetiLation I I

Proof Teelinique

Waco

Dump I

Cross Refaronce 6 1

AttribuLe List I

Special Debug 3
Code

General Nwror 3 1
messages,

Project Specifle
Error Messages

11131.)oQUall Of 12 7
Output

Other Al. 7

4

Table 17, 5E.1.1 hactueticy Of Use Of Eirt-or DeLacLioaTechniques

Of PO"i'll 	I

A-2.0

ACLIVILIVS VSod
For DoLviAlon DOLOeLed Py

TOA 141115 8111 46

Code Rending 73 to

By Progi-ammor

Code Reading 66 2.1

By Wier Isar-sots

Heading NounionLaLton .1

Proof Toclinique

Tr a a e 41

MMIP b

Cross Nerommico v

AU,rib iLe last. 2

Special Debug 4
Code

General !^,',rror 12

Messages

ProjeoL Spoeiflt` 2

f,'xror Mvsst%ges

InspocLion Of 40 33

Output

Other

Table 16 SE12, ProclLivney Of Use Of VIrrot, MI LOOLIL)II Ttschtiiqwos

is

Fz

ORIGINAL. PACE IS

.
A-21

OF POOR QUALITY

Activities Used Activities Successful In
For Program Validation Detecting Error Symptoms

Pre-acceptance 162 96
Test Runs

Acceptance Testing 27 21

Post Acceptance Use 9 8

Inspection Of 143 129
Output

Code Reading .188 88
By Programmer

Code Reading 115 17
By Other Person

Talks With Other 7 9
Programmers

Special Debug Code 12 3

System Error 15 13
Messages

Project Speciflc 5 5
Error Messages

Reading Documentation 3 2

Trace

Dump 4 4

Cross Reference Or 6 6
Attribute List

Proof Technique

Other 4 4

It

A

Table 19, SEL3 Frequency Of Use Of Error Detection Techniques

0

ORIGINAL PAGE IS
A-22 OI= POOR QUALITY

Activities Tried Activties Successful
To Isolate Cause In Isolating Cause

Test Runs 13 6

Code Reading 134 129
by Programmer

Code Reading 24 22
by Other Person

Reading Documentation

Proof Technique

Trace

Dump

Cross Reference 3 3

Attribute List

Special Debug 4 2
Code

General Error
Messages

Project Specific 1
Error Messages

Inspection Of 9 1
Output

Other 1 1

Table 20, SEL1 Frequency Of Use Of Error Correction Techniques

ORIGINAL PACE IS
OF POOR QUALITY

A-23

Activities Tried	 Activities Successful
To Isolate Cause In Isolating Cause

Test Runs 9 5

Code Reading 71 69
By Programmer

Code Reading 38 34
By Other Person

Reading Documentation 3

Proof Technique

Trace

Dump 5 2

Cross Reference

Attribute List 1 1

Special Debug 1 4
Code

General Error 1 2
Messages

Project Specific 1
Erro^ Messages

Inspection Of 11 8
Output

Other

I

Table 21, SE12 Frequency Of Use Of Error Correction Techniques

ORIGINAL PAGe IS

	

A-24-	 IF POOR QUALITY

Activities Triod AcLIVILICS aUccessful In
To and Cause	 Mriding Cause

	

7	 4Pry,)-accepLance
Test Runs

Acceptance Testing

Post Acceptance Use

Inspection OfOutput

Code Reading
By Programmer

Code Reading,
By Other Pat-son

Talks With Other
Programmers

Special Debug Code

System Error
Messages

Project Specific
Error Messages

Reading Documentation

Trace

Dump

Cross Reference Or
Attribute List

Proof Technique

Other

65 39

224 220,

42 08

23 20

5 3

3	 1

13	 9

1	 1

3	 3

2

4

Table 22, SP,13 Frequency Of Use Of Error Correction Techniques

S Z-v

Ica Ppwq

4

i	 Y
• S

sa

^- a

N

_w

L

L - = - r=	 C r	 U' W 0

i •	 ,

=a

^y

A

w
ti
C
U

L

Al
wt 3 0

x

t

r

U W

u

4

nJ

ALL

F..

/.1

h

1

x
LL

N

^y
S t ^^C

` G
V

^ N

t %woo

L•'
V

T
r j

N

C
L

emu¢ -vcty.
i..0 CC f.

YL

L

9Z-v

i
u ^

i

f 13̀f

•	 o-	 JI.LI"i b	 od -40i
9a? q ' \^',^^^s^c1

GF POOR

uxu., ud. ¢_uc. m
L 1^=t. u;Z	 06 L—CS (D 6d

i
r

Y

g^
i

h

t.

4Jt'nu re:'J11?Yfbr R .f t. • w wi.9

OF movi U,-,LiY'Y

GlJ
Z
0

G
U
r^

t1.i

Q

C
i

^i.

Ci

fJ^

U
CC

ts:

L
ts.

Z. =coin

i

M

r	 t

.i

d

r

ti
a

0

4

s

w

c

b

P	 t

X

i

d

!f.

F-7, i
y

L

S

N

e	 w

S

r

V:

CL

v

w

Ci.

W
V

v
C

v

a

. r	 = r = = = V

i

^	 Y

n

Y

r

F

i

C

ORIGINAL PACE IS
OF POOR QUALV

8Z —v

ORIGINAL PAGE i5
OF POOR QUAUTY

s

i

r

^	 a

^. Y w

r

"r

r

r r ^ a. .. ^	 .. r	 r .• r. r	 S r r	 !^

r
i

e^= pp

y^ E^
r	 t

F

J ^

t

J

b	 3^	 i	 x	 {

c

r

c

lit•

I
••	 Z	 S 	 i	 N	 r

r Q V r .r.	 ^ r ^ r r. r ♦ r^ r r• r.

t
Y

F

r•

r ^^
t
i

^r t^
•:r

^yy

	 +

`L

t
J

. r 2 .. ^. C r	 r r II^ r r. r r G r.

6Z-V

Y.x
a

C
wI

A
C

,OV•
wVN
v
^L

V
V
(L

A

s

a

•	 r

1	 7

4
r

7

t Y

Y f

S

n

VL

it
Y	

e

w

f

zti
EF

i-^Z

;ss
r^

s

V;
ts:

ry

G

U

v

0
C!7

(i

v_

(L
4

^	 r	 ^	 r	 ^	 1	 —

s

f

"s	 x

h

t
ti ►

^ a .. W s—	 r,n

•

e

s

L1
L

OBI pl^o
OOR QUALITY

ORIGINAL PAPP I
OF POOR QUALM`

Li C J W'I

N

^	 ^ N

WWJ

N

Z.. d	 LJ J W

^c
c
oc

{Li

v

F-z

L
W

r

TE—V

ORIGINAL PACT IS
OF POOR QUALITY

C

F C
s R:

- L
2 .=
G

/ " M

r

L
C

ts:	 cnz

I	 t
y

,p S

— i

J
"	 o

L

^ C
	

~

ti y

A

t

r

P;

—- 6-- L	 y —= C— N W 0

S — — C — C " — — C _ — W Ifs

L W C W W S — C6 W= C w w W o

4
i

a
9 ^+

i

W ^

7 MA
	 w

' —	 0

a

W y

i

1

L1

W

7C?	

.t

i^^	 Lr

'^	 s

a

c

%'	 Iry y

L W W W W Z- C ► COCO

d

r

a

^ !r

s
^a^	

e

Z
^i

t^

O: C

Lt+ .n9161&

Ls:

w

^rCrr^	 06	 =Co

r
y

MIGINAL MGM VS

	

! j

	
OF POOR QUALITY

_L

E

C

	

i ss	 y

	

"	 e

i

	

C	 `

	

r'. W	 Ar

G G ' V

_

>
1

S .^
_L

J ^ 1

i
nC

®c aC ^N ^ . ^^ t '^
OF POOR, (y ,),^ a a.TV

" • i

r
•1

1. t_
—

Y
C G ^

°

f

^t

>

^ C

- Z A 	w

j ^	
LY

'-	 o

6

:'	 C

t^

e-

Nil

i

/ J	 e

a^	 P

L •.^C V v. ^. _	 C_	 _-	 L-uC-L G-P

-C - - =	 =6 =m=6-rC -w c - °'t
	 L uCUr+C	 Cr. t O.Ld-rC -V C-N

L:]
^.r

z
C

v V:
C

ri v

F Ls:

G ._
LL. C
^• U

OC
O Ls:

U
fs: Zz C
= z
c;
Y_

c-

w

C

C
t (^

r
C

2 - ow C

C C_

F .=
t^ O

w
r

w- C

(i

A

ORIGINAL PAGE IS
OF POOR QUALITY

. - CC - .=	 C1. -Cw06N

a-_L

6

{J
^J

6•

i

V

1

9E-d

6 b 0 w u S- O y 	 0 0 0 0 N

H

Ti

-7

•^ b

A^

= = = ^ : . = : - Q - 0	 1

ORIGI14AL PAGE 18

OF POOR QUALITY

L 0 = W ^ : C- W 9 - 0
1 f.	 -	 6.

0

w
V.

W u7

cr.

Z

We

rr

9E-v

h

1

L

41

f

L

(Z:
L

N

C^
E— C:
C ^

L' U
^w n

- C - u C - W
S W=,dr_	 pw

rLN
Ls.

i
4

y

a
^a
3-

c s

A

i

k

Y_—su
N

r

i

ORIGINAL PAGE is
OF POOR QUALITY

ORIGINAL PAGE 6S
OF POOR QUALITY

645

8G—V

V:
L•'

z

V
L•
C

z
0
►.r
'r

C

F
cr:

c
v
z

w
Q7

c^
GL

L
H
^S.

ti

't

^i

ti	 ^}

R

4	

^!
I,
t

N

_ N

o

P

•

N
'̂s

O

Y

h

r

h

N

{

0

f

N _

^s

Z

v+	 -

r.

n

2

0

Y^
O	 f

N ^

r

N

n

^+^ CtDU	 ^ CL^ u_ to

i

R
1

Li

IF=

z
_c
LL

N_

VI

V

N

r^ XwC	
•

w0C&C.'"r--W
L wCWwC -^ Cr

P

ORIGINAL
OF POOF

e

r.

Y

^	 N

Id

C

P

r

0 s

1

n

h

Lr%•• ^ ..CCSC	 rry^
L w C L r^	 - r

6E-d

e
ti

P

O

r

r Z

P

O

r

r

`e

sZ

c

ti

-
-

N

A

w

IŴ

cm

V5

L'
C:
2
C

U

LJ
C

L:
r.
LL,

A

C

s

N
C

m	 ^

r

f
O	 ^

•
{

L

L

4

C ► C v ► ,:	 04 U= Cc OW M

0^—v

r

e -
c

L'

{

ORICnM L 1'
Ci QUALITYOF pooR

_. — = — — = - 0 _ — — X — v

. % - — =	 C- ► — K wIR

r

i

v

C	
^;	 r

L	 Y

^	 y

N	

r

QRIGINAL PAGE 13
OF POOH QUALn*y

d w C V- Z	 O Y. r — X- N
Y

n

}

0

= C

v	 i

u	 "i	 T

•	 .Q

N

C	 J1	 G'
•

t

A

G

G

C

G
-	 e

^c Y— ^ r

yG . ^
•

Li

s

A

1
7

T 7-d

C7

e

J
^N

t

Y
J

h- r

..	 =- - C C D C N

i

r
V ^ Y

C C

C

A
N	 ^'
r

a

^r
r ^,

..rCrr ^^ =- wmw=.G W

ORIQWAL PARE is
OF POOR QUALITY

96wcuwC	 Cr .JCCCCUI

r O

Y

C

r i Cir L
b

C

f

d

3C

Z'/—v

L

m

V

1

L

c

i

X

CY
r

C

I.

ORIGINAL. PAGE IS
OF POOR QUALITY

^i

r
s

a

a

&Wwww c - Or wwwagif

£^—d

a^̂c

R
A, r

r

_ A y	 r

r ^ r

G

L C .±C.0 -	 N yCC 0C: N

0
N
Gt:
a
c;
w

r r r ^. r r C r r	 r

N
rV.

r ^

O

e
w
s
w

r

V

r

r ^

r

^C	 w

^ in i

r
C
C

i

L C L^ C r C V'	 S G C V'
r r r V r^ C_ r _ r

ORIGINAL PAGE Is
OF POOR QUALITY

G COIDCCCCuC - P w+CCCCN
LrCU.iC. C Liu Cr.

wi..r. ^

is r

w	 w
(^ ww	 L

i

rc	
c

v	 =

r
e
e

^I

V/ _V

a ^.

iNy w

` E

s

G

7-7 v

^4!

i

i	 -

^ 	 ^	 w

G
I	 ^

^	 ^	 C

I

ORIGINAL PAGE IS
OF POOR QUALITY

L C O C C C c	 C N
L r C 6J	 - C L7 v	 ^..

d'r=

C
{i.

Z
L

^^N z
r

CNN	 "' e
=` w

Cr

s

C
e

i

9' -

tS

Y

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

veering Laboratory (SEL) during its research and development

activities. Thie second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-Originated Documents

SEL-76-001, Proceedings . From the First Summer Software
Engineering Workshop, ,August 1976

SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

SEL-77-002, Proceedings From the Second
Engineering_ Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
and D. S. Wilson, September 977

SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and. C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module_Descriptions, E. M. O'Neill,
S. R. Waligora, and C.'E. Goorevich, February 1978

t SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill,, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-102 1 FORTRAN Static Source Code Anal yzer Program
LSAP) User's Gui a (Revision), W. J. Decker and
W. A. Taylor, September 1982

SEL-73-003 1 Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

T This document superseded by revised document.

B-1

^_	 8552

SEL-78-004, 8 tructured FORTRAN Pre rocess :,SF^)
PDP-11/70 User's Guide, D. S. Wilson and	 u,	 ptember
Is n-70

SEL-78-005, Proceeding s From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Eng ineering Research Requirements
Analysis Study, P. A. Sche fer and C. E. Velez, November 1978

SEL-78-007, _Applicability of the Ra lei h Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-79-001 1 SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Rela-
tionr;",hip Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR)_ System
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL--79-004 1 Evaluation of the Caine, Farber, and Gordon
Program Design _Langu_age (PDL) in the Goddard Space Flight
Center (GSFC) Code 580 Software Design Envi o ment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Wore, op, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Cron ^g^ion Analysis Tool ;,'CAT), F. K. Banks,
A. L.Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) Svstem Evaluation, W. J. Decker
and c. E. Goore

SEL-80-003, Mul
Software Svstem

P. Lisbertz, May 1980

3ular Spacecraft Ground Support
State-of-the-Art Computer
, T. Welden, M. McClellan, and

SEL-80-004, System Description and User's Guide for Code 580
Configuration Analysis Tool ((---AT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-005 1 A Study of the Musa Reliability Model,
A. M. Miller, November 1980

B-2

8552

SEL-80-006,
Engineering

SEL-80-007,

r

oceedings From the Fifth Annual Software
rkshop, November 1980	 r

source Estimation
, J. F. COOK a
	

F. E. McGarry,

t SEL -81-001, Guide to Data Collection, v,. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-002, Software Eng ineering Laboratory (SEL) Data Base
Organization and User's Guide, D. C. Wyckoff, G. Page, and
F. E. McGarry, September 1981

SEL-81-003 1 Software Engineering Laboratory_ (SEL) Data Base
Maintenance System (DBAM) User's Guide and System De-
scription, D. N. Card, D. C. Wyckoff, and G. Page l S9ptember

t SEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104 1 The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et ate., February 1

t SEL-81-005, StAndard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 3.981

SEL-81-105, Recommended Approach to Software Development,
S. Eslinger, F. E. McGarry, and G. Page, May 1982

SEL-81-006 1 Software En ineerin LCborator (SEL) Document
Library_ (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

'SEL-81-007, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al., February 1981

SEL-81-107 1 Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

This document superseded by revised document.

B-3

i

8552

SEL-81-008, Cost and Reliabilitx Estimation Models (CAREM)
User's Guide,cook and E. Edwards,, February

SEL-81-009, Software Engineering Laboratory . Programmer
Workbench Phase 1 Evaluation, W. J. Decker and
F. E. McGarry, March 1981

SEL-81-010, Performance and Evaluation of an Independent
Software Verificat n and Integration Process, G. Page and
F. E. McGarry, May 1981

SEL-81-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort
Distribution Over the Life of Medium Scale Software Systems
G. 0. Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014 1 Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-002, FORTRAN Static Source Code Analyzer Program
(SAP) System Description, W. A. Taylor and W. J. Decker,
August 1982

SEL-82-003, Software Engineering Laborator
Reporting Software User's Guide and System
P. Lo, September 1982

(SEL) Data Base
escription,

SEL-82-004, Collected Software Engineering Papers: 	
A

Volume 1, July 1982

SEL-82-005, Glossary of Software Engineering Laboratory
Terms, M. G. Rohleder, December 1982

SEL-82-006,	 not
	

d Bibliography of Software Engineerin
Laboratory	 erature, D. N. Card, November 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engir,9ering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. We ss, December 1982

B-4

8552

SEL-Related Literature

ttBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of
the Fifth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

ttBasili, V. R., "Models and Metrics for Software Management
and Engineerinr,," ASME Advancers in Computer Technology,
January 1980, vol. 1.

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80=008)

ttBasili, V. R., and J. Beane, "Can the Parr Curve Help With
Manpower Distribution and Resource Estimation Problems?",
Journal of Systems and Software, February 1901, vol. 2,
no. 1

ttBasili, V. R., and K. Freburger, "Programming Measurement
and Estimation Li the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2,
no. 1

Basili, V. R., and B. T. Perricone, Software Errors and
Complexity: An Empirical Investigation, University of
Maryland, Technical Report TR-1195, August 1982

ttSasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop:
Quality Metrics, March 1981

t^ This article also a ppears in SEL,-82-004, Collected Software
Engineering PaNQrs	 Volume 1, July 1982.

B-5

8552

I

Basili, V. R., R. W. Selby, and T. Phillips, Metric Analysis
and Data Validation Across FORTRAN Projects, University of
Maryland, Technical Report, November 1982

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexi Y
and Cost, October 1979

Basili, V.R., and D. M. Weiss, A Methodology for Collecting
Valid Software Engineering Data, University of Maryland,
Technical Report TR-1235, December 1982

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

ttBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

ttBasili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"
Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York:
Computer Societies Press, 1978

ttBasili, V. R., and M. V. Zelkowitz, "The Software
Engineering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Com puter Personnel Research,
August 1977

Card, D. N., "Early Estimation of Resource Expenditures and
Program Size," Computer Sciences Corporation, Technical
Memorandum, June 1982

Card, D. N., "Comparison of Regression Modeling Techniques
for Resource Estimation," Computer Sciences Corporation,
Technical Memorandum, November 1982

Card, D. N., and M. G. Rohleder, "Report of Data Expansion
Efforts," Computer Sciences Corporation, Technical Memo-
randum, September 1982

ttThis article also appears in SEL-82-004, Collected Software
Enaineerincz Papers: Volume 1, July 1982.

B-6

8552

ttChen, E., and N. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings
of the Fifth International Conference on SoftwareEngineer-
.in . New York: Computer Societies Press, 1981

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9 1 A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

H,islop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), March
1980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

tt This article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1, July 1982.

B-7

8552

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi=
cation, April 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

ttZelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Stat stics and Computer Science. New York:
Computer Societies Press, 1979

Zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations
for Computer and Information Science (proceedings), November
1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 197

r This article also appears in SEL-82-004, Collected Software 	 .
Engineering rapers: Volume 1, July 1982.

B-8

8552

	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf

