General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-TH-8 239N

DEVELOPMENL bYX
UVALA FRUM TibL

v
- /
-
.
L
”
~
» —
L]
v
'
’
'

) LVALUA
ANALYS LS

SCIFTWARLE

LABOLKATUKY (NASA) /18 |

TING SCrIWAKE
OF CHANGES:

LNOGANEEDANG

A £
ue ACS/ME AQ1

LOow

ST oY
N .
j 4 \

vyl Gi/ul

i
’
-
-
.
-
.
¥
-

NB3=34ca53

unclas

2E471

SOFTWARE ENGINEERING LABORATORY SERIES SEL-82-008

EVALUATING SOFTWARE
DEVELOPMENT BY ANALYSIS OF
CHANGES: THE DATA FROM THE

SOFTWARE ENGINEERING LABORATORY

OECEMBER 1982

NALONAL AFrONAUNICS
) vt \
pace AQ ratic

Goddard Space Flicht Center
Lreenteit NMarylang 207 ™

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion, Goddard Space Flight Center (NASA/GSFC) and created
for the purpose of investigating the effectiveness of soft-
ware engineering technologies when applied to the develop-
ment of applications software. The SEL was created in 1977
and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Departmcnt)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (l) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and t":.. to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that includes this document. A version of this document was
also issued as University of Maryland Technical Report
TR-1236.

Contributors to this document are

Victor Basili (University of Maryland)
David Weiss (Naval Research Laboratory)

Single copies of this document can be obtained by writing to
Frank E. McGarry
Code 582.1

NASA/GSFC
Greenbelt, Maryland 20771

PRECEDING PAGE BLANK NOT ELLMED

iis i

8552

Technical Report TR-1236 December 1982
" NSG-5123
EVALUATING SOFTWARE DEVELOPMENT BY ANALYSIS

OF CHANGES: THE DATA FROM THE
SOFTWARE ENGINEERING LABORATORY *

Victor R. Basili
University of Maryland

David M. Weiss
Naval Research Laboratory

*Research supported in part by the National Aeronautics and Space Administration
N Grant NSG-5123. Computer support provided in part by the facilities of

: NASA/Goddard Space Flight Center and the Computer Science Center at the University
of Maryland.

ABSTRACT

A eftective data collection metbodology for evaluating software
developmant methodologies was applied to four different softwarve de
velopment projects, Goals of the data collection included charasters-
fzing changes and errovy, characteriszing projects and progzrammers,
fdencifying effective ervor detestion and correction techniques, and
Investigating vipple effects,

The data collected consisted of changes (including error corvrections)
made to the software after code was written and baselined, but before
testing began. Data collection and validation were concurrent with
sotftware development. Changes veported were verified by interviews with
progurammers., Analysis of the dats showed patterns that were used in
satisfying the goals of the data collection. Some of the results are
summarized in the following:

L. Breev corrections aside, the most frequent tvpe of change was an
unplanned desigs modilication.

2, Tho most common type of errvor was one made fn the design or
fmplementation of a single component of the system, Incorrect requirements
and misundersctandings of functional specdfications, intevfaces, support
software and havdware, and languages and compilers were generally not
significant sourcoes of ervorvs.

J. Despite a significant number of requirvements changes imposed on
some projects, there wag no corvesponding increase in frequency of
roquirvements misunderstandings.

9. More than 75% of all changes took a day or less to make,

5. Changes tended to be nanlocalilszed with vespect to individual
components but locallzed with vespeet to subswystems.

t. Relatively few changes vesulted in errors. Relatively few ervors
vegquived more than one attempt at corveation,

¢ Most ervovs wera detected by oxecuting the program. The cause of
most errovs was found by reading code. Support Facllities and techniques
such as traces, dumps, cross-refervence and attribute listings, and program
proving were ravely used,

Evaluating Software Development By Analysis Of Changes:
The Data From The Software Engineering Laboratory

Victor R, Basili
University of Maryland
and
David M, Weiss

Naval Research Laboratory

1. Introduction

In previous and companion papers [1,2,3,4] we have discussed how to
obtain valid data that may ba used to evaluate software develepment methodolo-
gles 1n a production environment. Briefly, the methodology consists of the fol-
lowing five elements.

(1) ldentify goals. The goals of the data collection effort are defined before any
data collection begins. We often relate thiem to how well the goals for a pro-
duct or process are met.

() Determune questions of interest from the goals. From the goals, specific
questions are derived. Answering the questions derlved from each goal
satisfles the goal.

{3) Develop a data collection form. The data collection form used is tailored to
the product or process being studied and to the questions of interest.

(4) Develop data collection procedures, Data collection is easiest when the
data coliection procedures are parl of normal configuration control pro-
cedures.

(5) Validate and analyze the data, Reviews and analyses of the data are con-
current, with software development. Validation includes examining com-
pleted data collection forms for completeness and consistency. Where
necessary, interviews with the person(s) supplying the data are conducted

The purpose of this paper is to present the results from such an evaluation.
The data presented here were collected as part of the studies conducted by
NASA’s Software Engineering Laboratory [5].

Overview of the Projects Studied

The methodology 2escribed in [1] was used to study five projects in two
different environmerts: a research group at the Naval Pesearch Laboratory
(NRL), and a NASA software production environment at Goddard 3pace Flight
Center (GSFC). The NRL studies have been previously presented [2,6,3,7) and
will not be further discussed here. A brief description of the NASA projects fol-
lows.

The Software Engincering Laboratory

The Software Engincering Laboratory (SEL) is a NASA sponsored project to
tnvestigate the sofltware development process, based at Goddard Space Flight
Cenler {GSFC). A number of different software development projects are being
studied as part of the SEL investigations {8,5]. Studies of chenges made to the
software as it is being developed constitute one part of those ir.vestigations.

Typical projects studied by the SEL are medium size FORTRAN programs
that compute the orientation (known as attitude) of urmanned spacecraft,
based on data obtained from on-board sensors. Attitude so.uions are displayed
to the user of the program interactively on CRT terminals, Fecause the basic
functions of these attitude determination programs tend to chaage slowly with
time, large amotunts of design and sometimes code are often re-used from one
program to the next. The programs range in size from about 20,000 teo about
120,000 lines of source code, They include subsystems to perform such furic-
tions as reading and decoding spacecraft telemetry data, filtering sensor data,
computing attitude solutions based én the sensor data, and providing an
(interactive) interface to the user.

Development {s done by contractor personne! in a "production” environ-
ment, and is often separated into two distinct stages. The first stage is a high-
level design stage. The system to be developed is organized into subsystems,
and then further subdivided. Each subsystem generally performs a major sys-
tem function, such as processing telemetry data. For the purpnses of the SEL,
each named entity in the aystem is called a component, The result of the first
stage is a tree chart showing the functional structure of the subsystem, in some
cases down to the subroutine level, a system functional specification describing,
in English, the functions of the system, and decisions as to what software may be
reused from other systems,

The second stage consists of completing the development of the system.
Different components are assigned to (teams of) programmers, who write,
debug, test, and integrate the software, Before delivery, the software must pass
a formal acceptance test. On some projects, programmers produce no inter-
mediate specifications between the functiona] specifications produced as part of
the first stage and the code. Some projects produce pseudo-code specifications
for individual subroutines before coding them in FORTRAN. During the period of
time that the SEL has been in existence, a structured FORTRAN preprocessor
has come into general use,

The principal design goal of the major SEL projects is to produce a working
systet; in time for a spacecraft launch, In addition, a continuing NASA goal is
introducing improved techniques into its software development process. Results
from SEL studies of three diflerent NASA projects, denoted 3EL1, SEL2, and
SEL3, are included here,

2. Application Of The Experimental Procedure

The goals, questions of interest, and data categorizaticns, as described in
[1], tor the SEL projects are shown in table 1 and lists 1 and 2, The SEL studies
represent a [ull-scale implementation of the data collection nrethodology in a
software production environment. Because the SEL environme:t is not pri-
marily devoted to developing and proving new methodologies, the emphasis is
more on investigating the software development environment than in a study
such as {3].

SEL Goals

Since the primary emphasis in SEL projects is not on developing and prov-
ing new methodologies, the data collection goals are generally methodology-
independent. Nevertheless, many of the projects do use recently-developed
software engineering technology with a view towards evaluating the technology
tn the NASA/GSFC environment. (An example is program detign language, used
in several SEL projects.) As a result, the goal "evaluate eflectiveness of metho-
dologies” is used, but is not based on specific claims for specific methodologies.

[N

N Q

10,
11,
12,

Characterize changes (especially in ways that permit comparisons across
projects and environments),

Characterize errors (especially in ways that permit comparisons across
projects and enviroiyments).

Evaluate effectiveness of methodologies in NASA/GSFC environment.,
Suggest ways of improving NASA/GSFC software develop ment practices.
Verify that concurrent data validation is needed. e)
Identify good measures of correctness.

Identify effective techniques for detecting errors,

Identify eflective techniques for obtaining the information needed to
correct errors.

Investigate the "ripple” effect, i.e. do most errors require more than one at-
tempt at correction or result in changes distributed over several different
components of the system?

Characterize projects,
Characterize programmers.

Find factors that have significant effects on types and dintributions of er-
rors.

Table 1. Data Collection Goals for the SEL Projects

What was the distribution of changes according to the rzason for the
change and the eflect of the change? Reasons were considered to be
one of the following:

a. achange in requirements or specifications,

b. change in design

¢. achange in hardware environment (e.g. 2 new piece of hardware
added to the system to be used by the program

d. achange in software environment (e.g. a r.ew version of the
FORTRAN compiler),

e. an optimization,

f. other,

Since a change to any of the items in the preceding list could affect oth-
ers on the list, the set of items that could be affected by a change were
as follows: ..

a. requirements or specifications,

b. design,

¢. the hardware environment,
d. the software environment, '
e. optimization algorithins and their implementation.

List 1. Questions of Interest

2a.
zbl

10,
11
12,
13.

14,
18.

18,

4

What was the distribution of changes across system compouents?

For each change, how many components have to be examined tn order
to make the change?

What was the distribution of time required to design changes? For error
corrections, the time required to design the change was assumed to be
the same as the time required to understand the error and propose a
correction.

What was the ratio of changes not made to correct an error to error
corrections as a function of time during the development cycle?

What was the distribution of errors according to the misunderstandings
that c):aused them (and what was the ratio of non-clerical to clerical er-
rors?) ? '

What was the distribution of effort required to correct errors?

What was the distribution of effort to correct errors across misunder-
standings causing errors?

How many errors were the result of a software change or modification (a
modification is a change made for some purpose other than correcting
an error)?

What was the distribution of errors acrous error detection techniques?
What was the distribution of errors across error correction techniques?
What was the number of attempted error corrections pe' error?

What was the distribution of error corrgctions across project phases?

What was the ratio of errors to various measures often associated with
with effort and productivity, These measures include

a. number of developers

b, number of lines of code

¢. number of machine instructions

d. number of memory words

e. number of person-hours ,
f. number of work assignments.

What was the distribution of errors per person according to the number
of people involved?

What was the number of errors for projects requiring memor~ overlays
compared to those not requiring overlays?

What was the distribution of errors according to programmer?

How often must reported change data be corrected as a result of the
data validation process?

List 1. Questions of Interest (continued),

SEL Questions of Interest

Since the software was produced tn a production environment with
stringent deadlines, it was desirable to minimize the overhead involved in
collecting and validaling data. Becuusa there were no design goals with
respect to the use of particular methodologies, questions relating to the suc-
cess of particular methodologles were generally not considered.

SEL Data Categories

Selection of the data categories was based on acquiring the data needed
to answer the questions of interest, on maintaining a reason\bly small set of
subcategories for convenience in collecting and interpreting the data, and
on subjective estimates of the uniformity of the data distributicn across the
subcategories.

The "catch-all" category "other" has been inserted for all changes that
will not fit one of the other categories. If the categories selected agree well
with the actual change distribution across the subcategories, few errors will
fall into the other subcategory. (The reverse situation is not necessarily a
sign of a poorly designed categorization scheme; the "other" changes may
provide the most insight into the development process.)

Data Collection, Validation, and Analysis

Formal procedures used for data collection and validaticn are described
in[1], as is the data collection form,

Answering Questions of Interest

The questions of interest are answered by presenting and analyzing the
data distribution(s) associated with each question. Because of space limita-
tions, answers to the individual questions, and most tables and histograms
used in the data analysis have been included in the Appendix.

Overview Of The Data

Tables 2 and 3 contain, for quick reference, an overview of the data col-
lected and a summary of information about the projects, Tables 4 through 7
contain values of parameters often thought to characterize software
development projects,

3. Interpretations

The research methodology permits at least one quite straightforward
way of interpreting the data: using the distributions to answer the questions
of interest, thereby satisfying the goals of the study. One may 2lso compare
distributions across different projects, where appropriate, and ‘ook for com-
mon characteristics. Both of these processes lead to new goals and ques-
tions, some of which may be answerable with the available data, and some
requiring new studies. Examples of both will be presented here.

List 3 shows, for each gecal, the corresponding questicns of interest.
Where the same question(s) are used to satisfy several goals, the goals are
listed together.

Il

i

T
*

o

4.

Efort to change Bubealegores

a one hour or less

b one hour to ene dav
¢ one day to three days
d more than three days

Cause of ehange and effect of ehange Causes of change s wera congidered
to be one of the following

a a change in requirements or specifications,

b a change in design, .
¢ a change tn hardware environment,

d a change i software enviropment,

¢ an aptimization,

{ other

Sinee a change W any of the ems in the preceding hist could affect
othoers on the bst, the set of items that could be affeeted by a change
were as follows

requirements or specifieations,
design
the hardware environment,
the software environment,
Coplimization algemthims and therr implementation

oo ocs

. Component changes This categemration shows, for vach component,

Lthe number of ehanges made to the component. There s,
accordingly, one subeategory for each component of the system A
sintar ealegomation s used for the number of times each
companent 1s exanuned. 1 e the number of changes that required
examination of the component.

Result of modification (for error corrections only) Subealegores

a Result of modification net to correet an error, for srrors resulling
from a program change other than an ervor correction,

b, Result of error correction. for errors reslling (rom a program
change made ta correct an arror {whether a prior correction attempt
for the same orror or & correction for xome other ervor),

¢ Not the result of a medifieation, for errors that are unrelated
to program changes

Tme Lo solate cause for errer corrections only) Subeategories
a one hoeur or lesy

b oone hour to one day
o mere than e day

List © Data Calegories

6. Causative musunderstaiiding. Subcategories:

aoop

e’
f

g.
h.
i
]

misunderstanding of requirements
misunderstanding of functional specifications
misunderstanding of other documentation
misunderstanding of design (excluding interface)
This subcategory was deemed sufficiently interesting to be
further subdivided into the following subcategories: »
misunderstanding of intended use of the erroneous
segment/proc/module, misunderstanding of the value or structure
of data, and other.
misunderstanding of interface
misunderstanding of programming language, further subdivic'ed into
syntax and semantics misunderstandings
misunderstanding of hardware environment
misunderstanding of software environment
clerical error
other

7. Development phase when error occurred. Subcategories:

- .

cooNUe

requirements

functional specifications

design

coding and test

other

can't tell, for situations where the person supplying the information
does not know the phase,

8. Method of detection. Subcategories:

XU rCpmopAn o

m.

test runs
code reading by programmer
code reading by other persen
reading documentation
proof technique
trace
dump
cross-reference
attribute list
special debug code
error messages, further subdivided into general error messages, and
project specific (i.e. coded especially for this project) error
messages
inspection of output
other

List 2, Data Categories (continued)

Number of Numberof Numbeor of
Changes Modifications Errors

Project
- SEL1 281 101 180
SEL2 Re9 110 119
SEL3 760 453 307

Table 2, Overview of Data Collected

Effort Numberof Linesof Dev, Lines Number of
Developers Code (K) of Code (K) Components

Project
SEL1 79.0 5 50.9 46,5 502
SEL2 39.6 4 75.4 311 490
SEL3 98.7 v 85.4 78.8 639
Table 3. Summary of Project Inlormation
Changes Per K Lines Errors Per K Lines Error To 1{od Ratio
Of Developed Code Of Developed Code (NonClericals Only)
! Project
SEL1L 6.0 3.9 1.8
SEL2 7.4 3.8 .82
SEL3 9.7 3.9 54

Table 4. Change and Error Densities

Erroneous Change Rate Errors Resulting Repeated Error Ratlo

(Ratio Of Changes From Change (Average Number
Reguilting In Errors (As Percentage Ot Corrections
To All Changes) Of NonClericals) Per Error)
Project
$EL1 025 5 1.02
SEL2 ,081 14 1.08*
SEL3 . 041 iR 1.06

* Upper bound. Exacﬁ number of repeated errors for SEL2 is unknown.
by conservative rneans, the ratio could be estimated as 1.04,

Table 5, Measures of Erroneous Change |

Number Of People Errors Per Person

Project
SEL2 4 25
SEL1 5 26
SEL3 7 44

Table 3. Errors Per Person By Number Of People

Effort. Errors Per Changes Per
(People-Months) Person-Month Person-Month
Project
3SEL2 39.8 2.4 .8
SEL1 79.0 1.7 3.6
SEL3 98.7 3.1 7.7

Table 7, Errors Per Effort By Effort

P

10

In the following sections each goal is satisfled by presenting conclusions
based on the answers to the questions corresponding to the goal. Sections con-
taiming discussions of goals are headed by short descriptions of goals.
Identifiers in parentheses following the goal descriptions are references to tne
goal, e.g. (G2) is a reference to goal 2. Not all goals are discussed here. Goal 5,
"verify that concurrent data validation is needed,” is discussed in a companion
paper [1].

Inspectlion of the change distributions shows that, despite vhie simllarities in
application, environment, and personnel, there are distinct differences among
SEL projects. Some projects, notably SEL3, seem to have considerably less trou-
ble tn the development phase than others. '

There are two possible explanations: (1) the SEL3 developers did a better
job in producing correct seftware, or (2) the SEL3 system was not subjected to a
thorough inspection for errors. The latter explanation could be tested by
analyzing the errors found in the projects during their use and maintenance.
Attempting to satisly this goal is beyond the scope of the research reported
here.

Goal: Characterize Modifications (G1)

All three projects operated in a stable environment, where there were few
changes to the support software and hardware; none of thern made many
changes for the purpose of adding or deleting debug code. The results support
the view that the SEL designers have organized their systems so that, for pur-
poses of redevelopment, most changes are conflned to a few subsystems.

One way that the projects clearly differ Is in their reasons for making un-
planned design changes. Some spend a great deal of time on optimization and
improving the services the system offered to its users, others on attempting to
improve the clarity of the code and its documentation. It is interesting to note
that SEL2 and SEL3, whose programmers had different reasons for making un-
planned design modifications, had the same task leader and some of the same
stafl

Coupled with the effort and the component-wise change analyses, these
results suggest that most unplanned design modifications are smal’ and only in-
volve one component of the system. Several explanations are possible; either
the programmers act as "fliters," rejecting unplanned modifications that are not
easy Lo make, or reasons for modifying the design are not characteristic of the
programmers, but rather of some external source.

Some conclusions concerning characterization of modifications

Although it t1s tempting to try to characterize a "typical” modification, there
1s too much vartability in the sources of modifications for the different projects
to do so safely. The sources for most modiflcations fall into one of a small
number of subcategories, such as requirements modifications, planned enhance-
ments, unprovements of clarity, improvements of user servicer, and optimiza-
tions. The distributions over these categories distinguishes one »roject from
anather.

The SEL projects are all similar with respect to the effert required to modi-
fy the programs; most thanges and meoedifications take a day or less to make.
Furthermore, although the changes tend to be nonlocalized with respect to indi-
vidual components (most components that are changed are only changed once
or twice), they are localized with respect to subsystem, i.e. the majority of
changes are made in one or two subsystems.

11

Goal:
Characterize changes.

Questions:
What was the distribution of modifications according to the reason for the
modification?

What was the distribution of changes across system components?
What was the distribution of effort required to design changes?

Goal: .
Characterize errors.

Questions:
What was the distribution of errors according to the misundersiandings that

caused them?
What was the distribution of effort required to correct errors?

What was the distribution of effort to correct errors across misunderstand-
ings causing errors?

How many errors were the result of a software change?

Goal:
Characterize projects,
Goal:
Cnaracterize programmers.
Goal:
Find factors that have significant effects on types and distributions of er-
rors. :
Goal:
Evaluate effectiveness of methodologies in NASA/GSFC environment.
Goal:
Suggest ways of improving NASA/GSFC software development practices.
Questions:
All questions are used in satisfying this goal. See list 1.
Goal:
Verily that concurrent data validation is needed,
Question:

How oftert must reported change data be corrected as a result of the data
validation process?

List 3. Relationship Between Goals and Questions

if

12

Goal:
Identify good measures of correc’ness

Questions:
What was the distribution of effort required to design enanges?

What was the ratio of changes not made to correct an error to error correc-
tions as a function of time during the development cycle?

What was the distribution of errors according to the misunderstandings that
caused them?

What was the distribution of effort required to correct errors?

What was the distribution of effort to ¢orrect errors across misunderstand-
ings causing errors?

How many errors were the result of a software change?
What was the distribution of errors across error detectjorn techniques?
What was the number of attempted error corrections per error?

What was the ratio of errors to various measures often associated with
effort and productivity?

What was the distribution of errors per person according to the number of
people involved?

What was the number of errors for projects requiring memory overlays
compared to those not requiring overlays? _
What was the distribution of errors according to programmer?

Goals:
Identify eflective techniques for detecting errors.

Question:
What was the distribution of errors across error detection techuiques?

Goal:
Identify eflective techniques for obtaining the information needed to
correct errors,

Question:
What was the distribution of errors acrous error correction techniques?

Goal:
Investigate the "ripple" eflect, i.e. do most errors require more than one at-
tempt at correction or result in changes distributed ove- zeveral different
components of the system?

Question:
What was the number of attempted error corrections per error?

List 3. Relationship Between Goals and Questions (continued)

13

Goal: Characterize Errors (G2)

From the answers to the questions we may conclude that the SEL progra.m-
mers tend to spend their time finding and correcting many "small" errors rade
while designing or implementing single routines, rather than struggling with a
few "large'” errors, or trying te understand requirements or interfaces,

All the SEL projects handled changes with little trouble; relatively few er-
rors were the result of a change to the software, The SEL developers apparently
understand their requirements well enough that they can handle changes to
themn without much trouble. Interfaces, often considered to be a major source
of errors, do not seem especially troublesome, There is some indication that the
interface and requirements understandings that do occur are mo-e difficult to
correct than others, However, the small number of errors involved makes it
dangerous to draw such a conclusion,

We believe there are two factors that explain the shape of the error distri-
butions and their similarity across projects,

a. The SEL projects all have the same application. They are essentially
redevelopments, each using the same overall design and often much of the
same code as previous projects. Although new individual programmers may
be used from one project to the next, the same people do the top level
design. Having found a successfil design, they reuse it '

b. The SEL projects used programmers who were familiar w:th the language
they were using, and both were developed in a stable environment, ie.
there were few changes in support hardware or software,

Some conclusions concerning error characterization

Based on the foregoing analysis, one might characterize a “typical” error as
one that occurs in the design or implementation of a single component, is easy
to correct, and whose cause is easy to find.

Goal: Evaluate Effectiveness Of Methdologies In NASA/GSFC Environment (G3)
It was expected that various software engineering techniques would be tried in
the course of these studies. However, it was found to be extemely difficult to
characterize the different. techniques and the differences in the ways in which
the techniques were applied for the SEL projects reported here. Consequently,
this goal could not be satisfied.

?oa)l: Suggest Ways Of Improving NASA/GSFC Software Development Practices
G4

Previous analyses have shown tha! the most abundant source of errors lies
in the process of designing and implementing individual components of the SEL
projects. Improvements should come from the introduction of any techniques
that assist the individual programmer in preventing and detecting errors. A
number of techniques and tools have been suggested to help in this process. A
tew are listed in the following.

Program Design Language [9]

Code Reading and Inspections {10]

Program Proving [9, 11]

Programming By Stepwise Refinement [12]

Formal Specifications {13, 14]

Information Hiding [15

Laniguages that provide strong typing, such as Pascal [16]

NO ULk Qe

14

One would expect the introduction of some or all of these and other,
similar techniques to perturb the SEL environment initially. After the initial
learning period, if such techniques meet the claims made for them, a shift in
the error distributions could be expected.

Goal: Identify Good Measures .. Correctness (G6)

In addition to various single parameters, one may also consider a
number of different distributions as correctness measures. Candidates are
the sources of nonclerical errors, the effort to design error corrections, the
effort to isolate the error cause, the frequency distribution of errcr correc-
tions, error corrections according to the subsystem in wh ,ch they occur, and
errors according (o project phase,

Several of the preceding distributions serve to locate the most trouble-
some phases of the development process, and the most error-prone parts of
the system. Others may be used as indicators of average difficulty in
correcting errors,

Some conclusions concerning measures of correctness

It is not possible to identify from the data a single good parameter that
can be used to rmeasure correctness, Issues such as correctress relative to
the amount of work that had to be done, or to the number of changes that
had to be made, cannot easily be judged and cannot be discerned tro>m a sin-
gle parameter, Rather, a combination of parameters and distributions may
be used to discover what and where difficuities were encountered in produc-
ing a particular system. Attempting - define the precise set of distributions
and parameters to use is beyond the scope of this research, We do suggest
that some of the following be used,

a. Ratio of errors to modifications, to give an indication of how
the developers were spending their time;

b. Rate of erroneous changes, to give an indication of the
difficulty the developers had in making changes;

¢. Sources of changes and sources of errors, to give an indic'at.ion
of the kinds of problemns the developers had to handle, and the
kinds of difficuities they had;

d. Effort to make change, effort to isolate cause of error, and
eflort to design fix by source of error, to indicate difficulty
of correcting errors;

e. Phase of entry of errors into the system, to indicate whether
certain aspects of the development caused trouble, or whether
difficulties tended to be spread out over the entire development,

Goal: Identify Effective Error Detection Techniques (G7)

Executing the program was the most successful means for detecting er-
rors. The distributions show what might be called a traditional apprwach to
error detection: either test runs, or a programmer reading over her own
code.

16

Goal: ldentity Effective Error Correction Techniques (GB)

It is clear from the data that the programmers favored code reading as
an error correction technique. While this is not surprising, the lack of use of
other techniques is surprising. Although we cann»t determine if program
reading is popular because programmers are writing programs that are easy
to read, we can say that improving the readability of programs should im-
prove the error correction process,

Goal: Investigate The Ripple Effect (G9)

There is nothing in the data to suggest a ripple eflect of any
significance. The lack of such an effect may be the result of the SEL experi-
ence with the application, It may also be a result of monitoring the projects
primarily through the development phase. Continued monitoring throughout
the project lifetime might reveal such an eflect as the software undergoes
further change.

Goal: Characterize Projects (G10)

Examination of various parameters previously discussed shows that it is
risky to characterize a project with a single parameter or distribution.
Furthermore, it is difficult to predict the effect that a particular project
characteristic will have on any particular change distribution, We can note
variations in distributions that seem to distinguish some priajects from oth-
ers, and use the distitiguishing distributions as the basis for more detailed
experiments,

The proposed distinguishing distributions are listed in the following,
Change Distribution

The distribution of changes across modifications and nonclerical er-
rors clearly distinguishes SEL3 from the other SEL projects.

Sources Of Modiflcations

The sources of modifications distributions all show their strongest
peaks in the same places, but have secondary peaks in diflerent
places. These secondary peaks may be used to distinguish among
projects. SEL2 and SEL3 both show strong peaks ia requirements
changes. SEL! and SEL3 both show peaks in the planred enhance-
ment category. SEL1 has a much stronger peak in the design
category than either of the others,

Sources Of NonClerical Errors

All projects show a strong peak in the same place in the sources of
nonclerical errors distributions, SEL3 may be distinguished from
the other SEL projects by its secondary peak in the "Design Multi-
Comp" category. SEL1 shows a somewhat stronger peai in the "Fnl
Spec' category than the other projects,

Effort To Design Change

All SEL projects have design effort distributions of about the same
shape. The only variation is in the proportion of the distribution
contained in each category, SEL1 shows a considerably stronger
peak in the Easy category than any of the other projects.

Effort To Isolate Error Cause
The distributions showing the effort to isolate error causes ap-

ORIGINAL PAGE [§
16 OF POOR QUALITY

parently distinguish clearly between project SEL3 and the other SEL
projects. (Because of the relatively large number of errors in the
"Unknown" category in these distributions, the size o the distine-
tion may not be as large as it appears.)

Frequency Distribution Of Changes

The SEL] and SEL2 component change frequency distributions show
a generally similar shape except for the first category.

Characteristics Of The SEL Projeccts

By analyzing the foregoing distributions, the SEL projects may be
characterized as follows.

1. Software preductinn takes place in an environment stabie with
respect to hardwire and software support. '

2. Programs are produced by making many small changoes to & set of
initial code. A significant number %40% or more) of these
changes are error corrections. Most of the changes are not
planned in advance. Relatively few of them result in errors.

3. Most changes that are not error corrections are design changes
made for the purposes of optimization, improving the clarity and
maintainability of the code, improving the documentation
(including comments in the code), or improving the services
provided to the user by the program.

4, Most errors occur in the design or implementation of one
component of the system, and are easy to find and easy to
correct. Errors are usually corrected on the first try.

5. Although most changes are concentrated in two or three
subsystems, few individual components are changed more than
three or four times.

8. Although a project may have relatively many requirements
changes, these changes do not constitute a major source of
errors. Inlerface errors are also not especially troublesome,

Goal: Characterize Programmers (G11)

Because there are few commonalities in the distributions ol program-
mer errors, there is little that can be said to characterize the programmers
as a group. Most have little trouble with the language or other attributes of
the environment in which they program (e.g. the library systern or the
operating system). All of them seem to have the most problems in designing
and implementing the interna!l structure of individual routines.

Goal: Find Factors That Significantly Affect Distributions Of Errors (12)

It i1s not possible in these studies to isolate particular factors and exam-
ine their effect on the various error distributions. Nevertheless, it was ex-
pected that patterns of influence would be visible. One expected pattern was
that the distribution of sources of modifications would affect the distribution
of sources of errors, e.g. the greater the number of requirements changes,
the greater the number of requirements errors. This expectation was not

17

confirmed; the sources of errors seem to be rejatively independent of the
sources of modifications,

Other factors that were expected to contribute heavily as error sources,
"but apparently did not, include the software development environment, the
programming language used, misunderstandings of interfaces, project size,
and misunderstandings of specifications,

The error distributions for the SEL projects indicate that the sirgle
most important factor is the method used by the individual programmser in
designing and coding individual routines, More detailed studies of individual
programmer techniques in the SEL environment might indicate particular
methodological weaknesses.

Generalizal.on of these results to other environments may not be possi-
ble. In the SEL projects certain circumstances may have acted to decrease
the effects of certain factors, SEL experience with the application, and the
adaptation of previous designs in the development of new systems are in this
category. '

4, Conclusions and Summary

The SEL data collection projects showed that it was feasible to collect
and validate data on all changes concurrently with software development. (A
companion paper shows that it was necessary to perform validation by
means of developer interviews.) The data collected permit the following
characterization of the SEL environment, projects, and programmers.

1. Error correctinns aside, the mast frequent type of change is an
unplanned design modification. Such modifications are usually made
for one of the following reasons: '

a. to optimize the program,

b, toimprove the services the program offers to its ucers, or

¢. toimprove the clarity and maintainability of the program
and its documentation.

2. The most common type of error is one made in the design or
implementation of a single component of the system. Incorrect
requirements, and misunderstandings of functional specifications,
interfaces, support software and hardware, and languages and
compilers are generally not significant sources of errors,

3. Despite a significant number of requirements changes imposed on
some projects, there is no corresponding increase in frequency of
requirements misunderstandings. A possible explanatioa is that the
developers understand the application sufficiently well tnet their
design is easily adaptable to most requirements changes, i.c. they
know what kinds of changes to expect and have designed for them.

4, More than 75% of all changes take a day or less to correct. Most
prcgrammers apparently spend their time making many small changes
to their programs, rather than few large ones.

5. Changes tend to be nonlocalized with respect to individual components
(most components that are changed are only changed once or twice),
but localized with respect to subsystems (the majority of changes are

VT S

18

made in one or two subsystems),

8. Relatively few changes result in errors. Relatively few errors
require more than one attempt at correction.

7. Most errors are detected by executing the program. The cause of
most errors is found by reading code. Support facilities and
techniques such as traces, dumps (which were once so popular that

apers were published on how to read them e.g [17)].
§>. cross-reference and attribute listings, and program proving
are rarely used,

Opportunities Missed

The data presented here and in (3,2, 8] represent five years of data collec-
tion. During that time there was considerable and continuing consideration
given to the appropriate goals and questions of interest, Nonetheless, as data
were analyzed, it became clear that there was information that was never re-
quested but that would have been useful, An example is the length of time each
vrror remained in the system, Programmers correcting their own errors, which
was the usual case, could supply this data easily. One could then isolate errors
that were not easily susceptible to detection by program execution or code
reading. This example underscores the need for careful planning prior to the
start of data collection,

Comparing Environments

In most sciences, valuable information is gained from repeating experi-
ments, sometimes to confirrn new results, other times to refine them, We be-
lieve this should be the case in Computer Science, Although some interesting
patterns are exhibited in the SEL data, it would be useful to seek similar trends
in data from environments. Unfortunately, there exists little comparable data {
(4] is one exception). A primary reason for devising the data collection metho-
dology used here js to show how comparable data from different environments
may be collected. Common goals, questions of interest, ard data categoriza-
tions may be used to to ensure comparability.

19 ORIGINAL PAGE 18
OF POOR QUALITY

Acknowledgments A

The authors thank the many people at NASA/GSFC and Computer Sciences
Corporation who filled out forms and submitted to interviews, especially Jean
Grondalski and Dr Gerald Page, and the librarians, especially Sam DePriest.

We thank Dr. John Gannun, Dr. Richard Meltzer, Frank VcGarry, Dr. Gerald
Page, Dr. David Parnas. Dr. John Shore, and Dr. Marvin Zelkowilz for thelr many
helpful suggestions.

Deserving of special mention is Frank McGarry, who had sufficient foresight
and confldence to sponsor much of this work and to offer his projects for study,

References

1, V., Basili and D. Weiss, ""A Methodolcgy For Collecting Valid Software En-
gineering Data," .

2. V. Basili and D. Weiss, ""Evaluation of a Software Requirements Document By
Analysis of Change Data,” Proc. Fifth nintl. Conf. Software Fngineering,
pp.314-323 (March 1981).

3. D. Weiss, ""Evaluating Software Development by Error Analyuis: The Data
from the Architecture Research TFacility,” J. Systems and Software 1,
pp.57-70 (1979).

4, D. Welss, ""A Comparison of Software Errors In Different Environments,"
NASA Saftware Enginerering Workshop (Novemnber 1981).

5. V. Basili, M, Zelkowitz, F'. McGarry, and others, '"The Software Engineering
Laboratory,” Report TR-535, University of Maryland (May 1977).

6. S Fryer and D Weiss, ""Evaluation of the A-7E Software Requiremeﬁts Docu-
ment By Analysis of Change Data: Two Years of Change Data," 15th Annual
Aw'lo)mar Conference On Circuils, Systems, and Computers (November
1981).

7. D, Weiss, "Evaluating Soltware Development By Analysis Of Change Data,”
TR-1120, University of Marylaind Computer Science Center, College Park
(November 1981),

8. J. Bailey and V. Basili, "A Meta~Model ['or Software Development Resource
Expenditures,"” Proc. Fifth Imtnii. Conf. Software Engineering, pp.107-116
(March 1981).

9. H. Mills, R. Linger, and B. Witt, Strueiured Programmaing Theory and Prac-
tice, Addison-Wesley, Reading (1979).

10, M. Fagan, '"Design and Code Inspection and Process Control in the Develop-
ment of Programs,'” TR 21.572, 1BM Syslem Developraent Division (De-
cember 1974).

i1 EE W. i)ljkstra. A Discipline of Programming, Prentice-Hall, Erglewood Chiffs

19786

t2. N, Wirth, ""Program Development by Stepwise Reflnement' Comm., ACM
14(4), pp.221-227 (April 1972).

3. D. L Parnas "A Techinique For Sofiware Module Specification With Exam-
ples,” Comm. ACH 15(5), pp.330-338 {May 1972).

14, J Guttag, "The Specification and Appiicalion to Programming of Abstract
Data Types." CSRG-59, Universily of Teronto Dept of Computer Science
Computer Systems Research Group {1975

w R

20

16, D L Parnas, '""On the criterta to be used in decomposing systems inte
modules,’ Comm. ACM 15(12), pp 1053-1058 (December 1972

16. K. Jensen and N Wirth, Pascal User Manual and Report Second fLdition,
Springer-Verlag, New York (1974).

17. D. Norris, "An Introduction To 0S/360 MVT Control Logic And Debugging
With)MV’I‘ Core Dumps,” [BM Technical Infarmation Exchange (January
1969).

ORIGINAL PAGE |
Appendix OF POOR QuUALITY

Answering Questions of Interest

The questions of interest are answered by presenting and analyzing the data
distribution(s) associated with each question, For each question there s a short
discussion of the associated distributions., The main purpose of the discussions
is to point out various features of the distributions that are of significance in
answering the questions. Table B shows the relation between the questios and
the distributions. Not all questions are discussed here. Question 17, "Hew often
must reported change data be corrected as a result of the data validation pro-
cess?” is discussed in a2 companion paper [1].

For some questions either there were insufficient data ‘o answer the ques-
tions, or the data were judged insufficiently reliable to prodice meaningful dis-
tributions., Interpretations of the questions as they relate to the goals of the
studies are given in a later section.

One purpose of this research is to provide a set of empirically-derived data
that others may use in constructing models and deriving hypotheses, The ¢ata
presented here may be so used. Most of the presentations are in the {orm of his-
tograms based on the data categorizations previously discussed. The following
sections are intended to help tlie reader understand the organization and con-
tent of the various histograms and tables,

Organization of Data Presentation

In general, the histograms are organized into figures, with each figure con-
taining corresponding histograms for sll projects. Examples are figure i, which
shows a broad view of all change data, and figure 3, which shown the sources of
nonclerical errors for all projects For some figures, nol all projects are
represented, since a particular set of data may not be relevant or available for
some projects.

Tables are used to show the relationshir between two different categoriza-
tions, such as effort to design modification according to source of modification
(table 9). Labels on the histograms and tables are generally mnemonic abbrevi-
ations of descriptions of data categories (e.g. PE means planned enhancement).
Keys, supplied for non-obvious labels, provide ihe complete name for each
mnemonic.

Data Categorization

During the data collection period, several improvements were made to the
forms One resull is that forrns for some of the projects contain more
categories than [for others. A second result is that there are occasional
differences in the names and meanings of similar subcategories for different
projects within a particular figure. Such differences in categorization are dis-
cussed in the next few sections.

Changes In Mcasurement Precision

Data categories for some of Lhe projects contain finer data quantifications
than others. An example 1s the SELI and SEL3 categortes shown in figure 0,
"Effort To Change NonClerical Errors.” The SEL3 figure has a larger set of
categories than the SEL! figure. After analyzing the results of our early data
collection efTorts, we realized it was possible to and of interes¢ to use a finer
measure of effort,

Lol S A

o

18,
17

ORIGINAL PAGE 1S
a% POOR QUALITY

A2

What was the distribution of modifications accord-
ing to the reason for the modification?

What was the distribution of changes across system
components”?

What was the distribution of eflort required to
design changes?

What was the ratio of changes not made to correct
an error to error corrections as a function of time
d:ring the development cycle?

What was the distribution of errors according to
the misunderstandings that caused them?

What was the distribution of effort required to
correct errors?

What was the distribution of effort to correct er-
rors across misunderstandings causing errors?
How many errors were the result of software
changes?

What was the distribution of errors across error
detection techniques?

What was the distribution of errors across error
correction techniques?

What was the number of attempted error correc-
tions per error?

What was the distribution of error corrections
across project phases?

What was the ratio of errors to various measures
often associated with effort and productivity?

What was the distribution of errors per person ac-
cording to the number of people involved?

What was the number of errors for projects requir-
ing memory overlays compare” to those not re-
quiring overlays?

What was the distribution of errors according to
programmer?

How often Liiust reported change data be corrected
as a result of the data validation process?

Figures B, 4

Figures 14, 16
Figures 8, 9, 10

Data not sufficiently
reliable to produce
meaningful distribu-
tion.

Figures 5, 6, 7
Figores 10, 11, 12,
13

Tables 11, 12, 13, 14,
15, 16

Table 5

Tables 17, 18, 19
Tables 20, 21, 22
Table §

Figure 18

Tables <, 5, 8, 7
Table 6

Insufficient data for
meaningful results.

Figure 19

Presented elsewhere

Table 8, Figuires/Tables used in Answering Questions

A-3 ORIGINAL PAGE IS
OF POOR QUALITY

Organization of Data Prescentation

In general, the histograms are organized into flgures, with each figure con-
taining corresponding histograms for all projects, Examples are figure 1, which
shows a broad view of all change data, and figure 3, which shows the sourges of
nonclerical errors for all projects, For some figures, not all projects are
represented, since a particular set of data may not be relevant i available for
some projects,

Tables are used to show the relationship between two different categoriza-
tions, such as effort to design medification according to source of modification
(table 9). Labels on the histograms and tables are generally mnemonic abbrevi-
ations of descriptions of data categories (e.g. PE means planned enhancement).
Keys, supplied for non-obvious labels, provide the complete name for each
mnemonic.

Data Categorization

During the data coliection period, several improvements were imade to the
forms. One result is that forms for some of the projects contain more
categories than for others. A second result is that there are occasional
differences in the names and meanings of similar subcategories for different
projects within a particular figure, Such diflerences in categorization are dis-
cussed in the next few sections.

Changes In Measurcment Precision

Data categories ior some of the projects contaln finer data quantifications
than others. An example is the SEL1 and SEL3 categories shown in figure 10,
"Effort To Change NonClerical Errors.” The SEL3 figure has a larger set of
categories than the SEL1 figure. After analyzing the results of our early data
collection efforts, we realized it was possible to and of interest to use a finer
measure of eflort.

Insufficient Subcategorization

As a result of inexperience, some data categories were too broad, and some
too narrow on the early versions of the data collection forms. As an example, a
design change category was included on the form at one time. So many changes
were repocted in this category that it was important to subcategorize further
(The next version of the form contained the new subcategories explicitly). Fig-
ure 3 shows the subcategories for all SEL projects. Conversely, environment
changes occurred sufliciently rarely so that it was unnecessary to distinguish
between hardware and software environment changes, These categories were
merged during data analysis.

The '*Unknown’'’ Category

Despite the intensive review and interview process used for validation, there
were still cases where it was not possible to categorize certain changes, This
occurred most often for the various effort categories when {orms were gen-
erated. These cases are categorized as unknown in the histograms where they
appear.

Fine Distinctions That Can Be Made

For much of the dala, the variety of data categorizations, the comments
supplied by the programmers, and the information gained from validation per-
mit certain fine distinctions to be drawn during analysis. An example is the dis-
tinction among errors affecting more than one component, design errors

ORIGINAL

A OF POOR F’AGE s

QUALITY

involving several components, and interface errory

Interface errors may be divided into 2 classes. The first class consists of
incorrect assumplions between modules and routines An example nvelved an
assumption about itialization The programimer of one modula assumed that it
was necessary Lo lnveke an initiahizalion routine from a second module each
time he used cortain routines from the second module, This assumption was
tncorrect. The second class consists of errors in using interfaces, where such
errors are not the result of incerreet assumptions. An example is a programs
mer forgetting to inelude a parameter in a calling sequence.

Design orrors involving several components are errors In the organization of
the software inlto components, mcluding the specifications that describe that
organization. Although this category ineludes maay interface wrrors, it also
includes errors that are not interfaca errors.

Errors affecting more than one component are errors whose corrections
require changes to be made th more than ona component. These errors may (1L
any of the categories of misunderstandings and are not necessarily intorface
errors.

Distinctions That Were Too Fine

For some categories, developers were asked to make fine distinetions in
supplying the data The metrie used for measuring diffleulty of fixing noncleri
cal errors (see figure 10) is an example. For SELL and SEL2, programmaers were
asked to separate the effort just to design the change from the effort Lo make
the change. This distinclion was too flne for the programmers reporting the
effort, and during SBL3 data collection just the total effort was requested.

.

Comparing Distributions - Arithmotic Considerations:

To convert raw data counts into measures that ceuld be used tc 2ompare
projects, percentage of changes in a particular categery is usually used. As an
example, in flgure 6, values in the distributions are shown as percentages of
nonclerical errors. Because lhere are generally large differences in values
within any distribution, the values are rounded to wholg percents. For vach dis-
tribution, any category that s nonempty is assigned a nonzero value. As a
result, somo categories that contain less than 5% of the distribulion are shown
as containing 1%. (Categories that contain no data do not appear in the distribu-
tions.) For no distribution does this make a difference of more than 1% in any
category. For soma distributtons, there is a resulting round-off error.

Answers To The Questions

In the following sections we discuss Lhe answors to Ltha questions of interaest.
For some questions, the data arae not suffictently cemplote or ascurate Lo pro-
vide meaningful or reliable answars. The reasons for this have been discussed in
previous sections; where necessary, they are elaborated. Sections are headed
by short deseriptions of questions. ldentiflers in parentheses following the ques-
tiun desertplions are references to the question number, e.g. (QR) is a reforense
to quastion 2.

Overview Of SEL Changes

There 15 no question that deals with all ehanges; moditications and errors
are characterized separately. Nevertheless, apalysis of the data showed that it
was of interest to look at the overall change distributions and compare them
across projects.

ORIGINAL PAGE IS
OF POOR QUALITY
AS

Figures | and 2 show some interesting differences among the three pro-
jects The proportion of both all errors and of nonclerical errors declines from
SELL (64% and 477% respectively) through SEL3 (407 and 327 rospectively). The
SEL3 developers also appear to have been considerably more occupied with
making modifications than with correcting nonelerical errors. Various parame-
ters that normalize number of changes and errors with respect to size in terms
of effort and lines of code show the same trend. From these distributions and
parameters it appears that there are distinct differences among SEL projects,
and thal, some projects seem to have considerably less trouble in the develop-
ment phase than othors '

What was the distribution of modiflcations according to the rcason for the
modification? (Q1)

Modification distributions are shown in figure 3. All projects show a strong
spike in Lhe design change subcategory. There is considerable variability n
several other categories. SEL2 and SEL3 both experienced relatively large
numbers of requirements changes. SEL1 and SELS both show considerable use
of planned enhancements.

Similarities in the distributions show that all three projects operated in a
stable environment, where there were few changes to the support software and
hardware, and that none of them made many changes for the purpose of adding
or deleting debug code.

Figure ¢ {s an analysis of design modifications only. Again, Jhere is consid-
erable variabtlity in the distributions. SEL1 prograimmmers were considerably
concerned with optimization, i.e. improving the efliciency of use of memory and
processor time, and improving the services the system offered to its users.

The SEL2 distribution, whose pattern is somewhat less clear because of the
large siza of the "unknown" category, also shows emphasis on optimization, and,
Lo a considerably lesser degree, on Improving user services and the clarity and
maintainability of the program and tts documentation. In SEL3, the emphasis is
reversed; there were relatively few attempls abt optimization, but many at
improving clarily, maintainability, and documentation. It 15 interesting Lo note
that SEL3 had the same task leader and some of the same star as SBL2.

What was the distribution of changes across system components? (Q2)

In other discussions of changes, we view a change as a logical unit, indepen-
dent of how much code or documentation, or how many components were
involved. For purposes of analyzing frequency distributions of changes, we con-
stder the number of changes made to each component. The number of changes
made to a component iz considered to be the number of change report forms on
which that component is named as being changed. Using this . efinition of
change, figure 14 shows the percentage of components that were changed once,
twice, ete. As an example, for SELL, 29% of the components were changed onca,
and 30X were changed twice.

The frequency distributions for all the SEL projects show the same pattern:
50% or more of the components that were changed were only changed once or
twice, and more than Y0% were changed 6 times or less. The pattern is even
more pronounced for fixes {figure 15): 70% or rmore of the fixed components
were only fixed onco or twice.

Figure L€ shows the patterns of subsystems thal are changed and fixed
most often (The distributions are ebtained by grouping the data for the com-
ponents into subsystems) 1L is clear from these disteibutions that at most 2 or
3 of the subsystems racetve the most attention

0w . B - T T T T

T A T TP

AG ORIGINAL PAGE IS
OF POOR QUALITY

What was Lthe distribution of effort required Lo design changes? (R3)

Change effort distributions are shown in figures 8 throuwgh 13, Examining
figure 8, which shows the effort for all changes excepl clerical arrors, one can
see that most (more than 76X of) changes fall inte the easy or medium
categories for all SEL projects. Figure 9, which is restricted to modiflcations
only, shows a sumilar, but not as strong, trend. The trend is most pronounced
for nonclerical arrors.

What was the distribution of errors according to the misunderstandings that
caused them? (Qb)

Inspection of the distributions showing sources of nonclerical errors (figure
§) shows noteworthy similarities across projects. The distributions all show
strong spikos in the same places; it 15 avident that the major source of errors is
in the destgn and implementation of single components.

Factors such as misunderstandings of requirements and speeifications are
minor sources of errors. (Note that figure 3 shows significant numbers of
requirameonts changes for projects SELZ and SEL3. The SEL developers
apparently understand their requirements well enough that they can handle
changes to them without much trouble) Interfaces are also a minor error
source (figure 7)

Further analysis of the orrors committed in design and tmplementation of
components is shown in figure 6. In the SEL environment, data errors (errors in
the value or structure of data) are either about evenly balanced with or predom-
inate errors in the intendad use of compnanets.

What was the distribution of effort required to correct errors? (Q6)

Effort distributions for correcting errors are shown in flgure 10. (Note that
there s a slight difference in the type of effort measured for SEL3 than for SELL
and SEL2) As shown by these distmbutions, most orror corrections take little
effort. For all projects, approximately 507% or more of the errors were corrected
in one hour or less, and more than 85X were corrected in one day or less.

As might be expected, the distributions for effort expended in finding error
causes (gures 11, 12, and 13) follow a similar pattern. From these results we
may conclude that the programmaers tend to spend their time finding and
correcting many "small" errors rather than few "large"” arrors.

What was the distribution of effort to correct errors across misunderstandings
causing crrors? (Q7)

Tables 11 through 16 support the view of mosl errors as being easy to find
and fix and as occurring in component dasign or implementation. Very few
errors take more than a day of effort to fx. Altheugh interface errors are often
cited as being particularly difficult to correct, table L3 shows that they follow
the same pattarn as other subeategories of errors.

The enly deviation vrom the pattern appears to occur in the effort to fix
requirements and spoeif. ation errors, where tho distribution between sasy and
medium rated errors is more balanced than {or the other subecalegories. These
results suggest that requiraments and specifieation errors are more diflicult to
correct than othors. However, the small number of errars in these sub-
catogories malkos 1L dangerous to draw such a conciusion

ORIGINAL PAGE Iy

AT OF POOR QUALITY

How many errors were the result of a zoftware change? (Q8)

Table 5 shows that the SEL projects handled changes with little trouble;
relatively few errors were the result of a change to the software,

What was the distribution of errors across error detection techniques? (Q9)

The relative frequency of use of various error detection techniques are
shown in tables 17 through 19 for the SEL projects, While examining the distri-
butions, one must recall that SEL change monitoring did not begin until code
was baselined and had already undergone debugging. Otherwise, ei'ror messages
might rank higher as a detection technique,

Executing the programi was the most successful means for detrcting errors,.
The distributions show what might be called a traditional approach to error
detection: either test runs, or a programmer reading over her own code,

What was the distribution of errors across error correction techniques? (Q10)

The relative [requency of use of various error correction techniques are
shown in tables 20 through 22. While it is not surprising that code reading by
the programmer dominates all other methods, the relative infrequency of tech-
niques such as traces, special debug code, test runs, and reading documentation
is somewhat surprising. Dumps, which were once so popular that papers were
published on how to read them (e.g. [17]), were rarely used.

What was the number of attempted error corrections per error? (Q11)

It any of the projects suffers from a ripple effect, we expect to see many
errors requiring repeated attempts at correction, and many changes each
resulting in several errors. As can be seen from table 5, both of these eflects
appear quite small. The worst case is about 6% of the changes resulting in
errors (SEL2). The errors resulting from change for the wors. case (SELR2)
comprised 147% of all errors. Finally, very few errors required more than one
attempt at correction (these are a subset of the errors resulting from change,
since each attempted correction is considered to be a change),

What was the distribution of error corrections across project phases? (Q12)

The distributions of errors according to the phase of the preject in which
the error entered the system are shown in figure 18. All projects show a strong
spike in the code and test phase. These distributions are somewhat less reliable
than others because programmers could not always decide exactly when a par-
ticular error occurred. The unknown subcategory comprises such cases,

What was the ratio of errors to various measures often associated with effort
and productivity? (Q13) -

What was the distribution of errors per person according to the number of peo-
ple involved? (Q14)
Because of their similarity, questions 13 and 14 are answered tcgether,

Tables 4 through 7 show a variety of ways of normalizing error rates to pro-
ductivity measures. Bach normalization may be used to rank the projects. For
the six different normalizations there are six different rankings.

What was the distribution of errors according to programmer? (Q16)

Distributions of errors for individual programmers are shown in figure 9 As
with the project error distributions (e.g. figure 5), the individual programmer

ORIGINAL PAGIL [,
A8 OF POOR QUALITY

error distributions all show peaks in the "Design Single Comp' category Both
the relative size of this peak and the variation over the remainder of the distri-
bution is considerably more variable among the different programmers than
among the different projects,

B ¥ aniad Ty [g et o e
. . A . L o e il Lo o R .

Req
Design
Debug
Env

PE
Unknown

Design
Debug
Env
PE
Req

Unknown

I T T T A B T T e s o e arnan

ORIGINAL PAGE IS
A9 OF POOR QUALITY

Easy Medium Hard Unknown
LE1 HR 1HrTo !l Day GT 1 Day
Req 1 2
Design a3 22 6 1
Debug 8 2
Env 1 1
PE 11 5 3 1
Other 3
SEL!
Easy Medium Hard Unknown
LE1HR 1HrTolDay GT1Day
Req 11 6 9 4
Design 21 19 8 4
Debug 3 1
Env 4
PE 4 3 4 1
Unknown 2
SEL2
Easy Medium Hard Formidatle
LE1 HR 1HrTo1lDay 1Dayto3Days GT 3 Days
4] 10 3 5
34 9 2 1
3 2 5
D
7 9 5 4
))
SEL3

Table 9, Effort To Modify By Source of Mod
(As Percentage of Total Mods)

Key
Modifications caused by changes in design

Modifications to insert or delete debug code

Modificaticns caused by changes in Lthe hardware or software environment

Planned Enhancements

Modifications caused by changes in requirements of functional specifications

Causes of these modifications are not known

L s R Nl

ORIGINAL. PAGE g
A0 OF POOR gringry

Easy Medium ~ Hard Unknown
LEIHR 1(HrtolDay GT1Day
Clarity 2 3 3
uUs 12 7 1 1
. Opt 16 11 2
Unknown 4 1
A SELL
Easy Medium Hard Unknown
LE1HR 1HrtolDay GT! Day
Clarity 6 4 1
US) 5
Opt 7 4 4 1
Other 1
Unknown 3 5 3
SEL2
~ Easy Medium Hard Formidable Unknown
LE1HR 1Hrtoi1Dey 1Dayto3Days GT3Days
Clarity 28 3 1 1
US 3.5 5 5 !
Opt 2 2 5
SEL3

Table 10. Effort to Modify By Source of Mod (Design Mods Only)
(As Percentage of Total Mods)

Key
Clarity Improvement of clarity, maintainability, or documentation
Opt Optimuzation of time/space/accuracy

Unknown Causes of these design changes are not kKnovn

Us Improvement of user services

e s ¢ e ——

B N~ AW

ey T

ORIGINAL PAGE IS
OF POOR QUALITY

A-11
Easy Medium Hard Unknown
LE1HR 1HrTolDay GT1 Day
Req 1 1
Fnl Spec 8 4 2
Design 5 2 1)
Multi-Comp
Design/Impl 45 18 2 1
Single Comp
Lang /Compiler 1
Env 2
Other 5 2 1
SELL
Easy Medium Hard Unknown
LE1HR 1HrTo1lDay GT1 Day
Req 2 2
Fnl Spec 1 2
Design < 1 1
Multi-Comp
Design/lmpl 41 26 2 9
Single Comp
Lang /Compiler 7 1 1
Env 1
Other 2 1
SEL2
Easy Medium Hard Formidable Unknown
LELtHR 1HrTolDay 1DayTo3Days GT3 Days
Re(2 3 1
Fnl Spec 2 3 -1
Design 9 12 2 1 1
Multi-Comp
Design/Impl 32 20 2 2
Single Comp
Lang/Compiler 1 2
Env 2 1 1
Other 1
SEL3

Table 11. Effort To Design Fix By Source Of Error
(As Percentage of NonClerical Errors)

Akt blanntn)

f e

Ll e

Design Multi-comp
Design/impl Single Comp
Env

Fnl Spec

Lang

Req

A2 ORIGINAL

R QuALITY
Key

Design error Involving several components

Error in the design or implementation of a single component
Misunderstanding of external environment, except langu.ge
Functional specifications incorrect or misinterproted

Error in use of programming language/compiler

Requirements incorrect or misinterprated

A-13 ORIGINAL PAGE G
OF POOR QUALITY

Easy Medium Hard Unknown
LE1HR 1HrTolDay GT1!Day
Intended Use 20 16 2 1
Data 29 5 1 1
Other 1
SEL1
Easy Medium Hard Unknown
LE1HR 1HrTolDay GT1Day
Intended Use 18 11 3 7
Data R8 18 2
SEL2
Easy Medium Hard Formidable
LE1HR 1HrTolDay 1DayTo3Days GT 3Days
intended Use 12 13 2
Data 29 18] 1
SEL3

Table 12. Eflort To Design Fix By Source Of Errov (Design Errors Only)
(As Percentage Of NonClerical Errors)

Key
Data Error in the use of data

Intended Use EBrror in intended function,
i.e. program behavior does
not correspond to the in-
tended use of the program

ORIGINAL PAGE IS

A4 OF POOR QUALITY
Easy Medium Hard Formidable Unknown
Projeet LE1HR 1HrToilDay GT1Day
SEL1 8 4 1
SEL2 5 2 2
SEL3 11 13 2 1

Table 13. Effort To Design Fix For Interface Errors
(As Percent Of NonClerical Errors)

Req

Fnl Spec

Design
Multi-Comp

Design/Impl
Single Comp

Lang/Compiler

Env

Other

Req

Fnl Spec

Design
Multi-Comp

Design/lmpl
Single Comp

Lang /Compiler

Env

Other

Req
Fnl Spec
Design
Multi-Comp
Design/Impl
Single Comp
Lang /Compiler
Env
Other

- D)

A-15
Medium
1 Hr To 1 Day
1

&
3

26

SEL1

Medium
1 Hr To 1 Day
1
P
32

2

SEL2

Medium
1 Hr T%l Day

2
8

17
2
1

SEL3

ORIGINAL PAGE |3
OF POOR QUALITY

Hard
GT { Day

Hard
GT 1 Day

Hard
GT 1 Day
1

1
1

NA Jnknown
5 3
2
R 5
1 1
7
NA Unknown
1
1 1
4 12
1 2
i 2
NA Unknown
1
|
4
4

Table 14, Effort To Isolate Cause By Source Of Ecror

(As Percentage Of NonClerical Errors)

A-16
CRIGINAL PAGE IS
OF POOR QUALITY
Key

Design Multi-Comp Design error involving several components

Design/Impl Single Comp Error in the design or implementation of a single component

Env Misunderstanding of external environment, except language
' Fnl Spec Functional specifications incorrect or misinterpreted

Lang Error in use of programming language/compiler

Req Requirements incorrect or misinterpreted

ORIGINAL PAGE IS
OF POOR QUALITY

A7
Easy Medium Hard NA Unknown
LE1HR 1HrTolDay GT! Day
Intended Use 17 17
Data 16 12 2 2 3
Other 1
SBL1
Basy Medium Hard NA Uuknown
LE1HR 1HrTolDay GT1 Day
Intended Use 9 13 1 4 10
Data 18 21 1 2
Other
SEL2
Easy Medium Hard NA Unknown
LE 1 HR 1HrTo1Day GT1Day
Intended Use 16 11 i 1
Data a2 13 2 5
SEL3

Table 15. Effort T Isolate Cause By Source Of Error {Design Brrors Only)
(As Percentage Of NonClerical Frrors)

Key
Data Error in the use of data

Intended Use Error in intended function,
i.e. program behavior does
not correspond to the in-
tended use of the program

ORIGINAL PAGE 15

A18 OF POOR QuALITY
Easy Medium Hard NA Unknown
Project LE1HR 1HrTolDay GT1 Day
SELL 5 4 1 3
SEL2 3 4 1 1
SEL3 14 9 1 2

Table 16, Effort Te lsolate Cause For Interface Errors
(As Percent Of NonClerical Errors)

: ¥
S

ORIGINAL Prefl 18
OF POOR QUALITY
A-19

Activities Used Brror First
For Detection Detected By

Tast Runs 120 93
Code Reading 59 40

By Programmar

Code Reading 21 '6
By Other Person

Reading Documantation 1 1

Proof Technique

Trace

Dump 1

Cross Refarence 5 1

Attribute List {

Special Debug o 3
Code

Genaral tror 3)\
Mossages

Project Specific
Error Messages

Inspaction Of 12 v
Output
Other 4 7

Table 17 SELI Frequancy Of Use Of Error Detection Techniques

‘ ORIGINAL PAGL 19
OF POOR oy

A20

Al

Activities Used Brror First
For Detection Detected By

Tast Runs B3 44

Code Reading, 73 18
By Programmer

Codo Reading b6 R
By Other Parson

Roading Documentation B!

Proot Technique

Trace 4

Dump b i

Cross Referenca t

Attribute List 2 |

3poctal Dabug, 4
Code

Gengral Irror 12)
Meassages

Projact Spoeifie 2 !

Error Mossages

Inspaction Of 40 33
Output

Other

Table 18 SEL2 Frequancey Of Usa Of Brror Detaction Techniques

ORIGINAL PAGE 13

A21 OF POOR QUALITY
Activities Used Activities Successful In
For Program Validation Detecting Error Symptoms
Pre-acceptance . 162 96
Test Runs
Acceptance Testing 27 21
Post Acceptance Use 9 8
Inspection Of 143 129
Output
Code Reading .188 ' 88
By Programmer
Code Reading 116 17
By Other Person
Talks With Other 7 9
Programmers
Special Debug Code 12 3
System Error 15 13
Messages
Project Specific 5 5
Error Messages
Reading Documentation 3 2
Trace
Dump 4 4
Cross Reference Or 6 6

Attribute List
Proof Technique °
Other 4 4

Table 19, SEL3 Frequency Of Use Of Zrror Detection Techniques

A2
Activities Tried
To Isolate Cause
Test Runs 13
Code Reading 134

by Programmer

Code Reading 24
by Other Person

Reading Documentation

Proot Technique

Trace

Dump

Cross Reference 3
Attribute List

Special Debug 4
Code

General Error
Messages

Project Specific 1
Error Messages

Inspection Of 9
Output
Other 1

ORIGINAL PAGE |5
OF POOR QUALITY

Activties Successful
In Isolating Cause

w

Table 20. SEL! Frequency Of Use Of Error Correction Techniques

ORIGINAL PAGE IS
OF POOR QUALITY
A23

Activities Tried Activities Successful
To Isolate Cause In Isolating Cause

Test Runs 9 5

Code Reading 71 69
By Programmer

Code Reading a8 34
By Other Person

Reading Documentation 3

Proof Technique

Trace

Dump 5 2

Cross Reference

Attribute List 1 1

Special Debug 1 4
Code

General Error 1 2
Messages

Project Specific 1
Erro- Messages

Inspection Of 11 8
Output

Other

Table 21, SELZ2 Frequency Of Use Of Error Correction Tecaniques

RS S 5.7 St B et aearin: & et At R

i} B L

Pra-acceptance
Test Runs

Acceptance Testing
Post Acceptance Use

Inspection Of
Output

Code Reading
By Programmer

Code Reading
By Other Person

Talks With Other
Programmers

Special Debug Code

System Error
Messages

Project Speciflc
Error Messages

Reading Documentation
Trace
Dump

Cross Reference Or
Attribute List

Proof Techmque

Other

A4

Activities Tried
To Find Cause

7

ORIGINAL PAGE |
3
F POOR QuALITY

Activities Juccessful In
Finding Cause

4

220
a8

20

Table 22. SEL3 Frequency Of Use Of Error Correction Techniques

2
E=
&
20T e
LGRS
3
ws ¥
Ay
P R
=2
L
o
% C
[y
L e
co
215
alty afewegy
S ussey Swae)
LT RET Y 1930.43) payy spyg
ﬁ D |
- —g - —
o
e
LY
h
119
e 119
"
~ - v

SADNVHD 1 AUNDI1d

[L1 A
- aat; aleny)
swang Surasy
1o ety 1920 23] pryy ‘i“u .
v "
14
o)
[4Y
"
\ s
-2 3
74
o~
G
aud&y abuey
S0y Bargig
1921380 1@t 23] pruyy s
\
"
[4]
4
"
e 10

[

kS

L)

wl

GC-v

AT R R T T e L

St

) (AAUNIOXH SUOMUA IVIIUNID) SUDNVID T Hundid

win
wdry <bumsg)
,!b..
921 sop pagy ‘e
S
J] 3
$9
L1l
B2 VY
i
& -
Wl D t2
& f
= g B
o Iy
m M/xw st 10
A |
-~ g
2o .
1)
=d O a
EQ ps o
) Numv J
& & iy .
<7 3
i 81, g 3
9
o8
74]
N
o
ik
(§79
edAg by
ada) abuey)
wmasay
w2 aef pryy sja1 N 001s)
[LETE TN 1Y) R
5 .-
b 3 k : <
s9 i S 3
mn "
e VYV un
i YRl
' T
T 'R
2 Ly}
40 e
g
" N]
1 "
131 - 11
T3 y 31 N Y
x) X1
P<Y . s
iy 1)
] H
?oa 44 o !
4

e
11

SNOTLVIOI4104OH 40 S3DUN0OS € JdnHl1d

< .
n
LA
o X
& =2
R
=5
=] G
Dl
20
P47
ety oburey)
sostagg) N ~ny berjq) Breq) Ly
1 38 »
pi
a
U4
K14 g
b
(43 S
L}
1

- E-N-K

(¥
sd4y abuncyy
e A ~nag Sy Breay Lag
4"-” = _
e
114
174 124
i
19
NI -
g
19
174
1s
addy SOy
0 4] na) Goqay wbisqy b
] Ik T
e ot
%4 e
Jut
b
Y
1]
> - 9
+ 14

-

u
£
i

ORIGINAL PAGE 15
OF POOR QUALITY

[NTA
SUON NDISHU 40 SHDUNOS Y 4¥NHTA ety et i
it a1 Mg
r -
1]
- é i1t 1t
"
]
i
e
[l
i
]
1]
u
1}y b
- 7 ¢
"
d
Do
- Qo
Qe (339
“bresrgy sdigy 1 My LYy uﬂ..c.-._ :m.nl- FITEZ AN
a3 7Y =1y s ul At gy gy gy "n T LT
— . ﬁ|.lll tr
I — o
> <
a Fn 1"
0] BT
u 1
1 [
"]
N %
! —1r—]
] n
1]
']
. u RN - S]
n oy
1 N
“

ORIGINAL PAGE IS

OF POOR QUALITY

[

SHOUYd IV INA'IONON 40

b
m—se) gy oy

ohuee g shane y

ofase, IR
sy by «hreny Besay g <
~] 1§
“
T m 3
T !
A o
-1 pe 1
1
3
ol
o
w» U
1
1 L1
7T L3
Sl |
1
n: 4
o
3
L+ B |

21

sy gy a8
shoavy L |
athug, . aakg

g 24y ey obusy) oFacyy T bay <
T T *
~ .llﬂl..—.llan'l [
! !
H
H
ne 2
1
1
x n
n
s 11
]
L4 "
s
T
]
g }
o
]
214 YA |

SHOUNOS S JUNH1d

[R1 8
mevag gy edty
chon § dey
.hr..m upw ek
gt t] [l] bisy) Bisag [TT) beng)
v Y _|ﬂ|—||n.l.all
bt
14
124
"
»
s
i 3
hot
O]
15
meey gy B
e) than)
ohﬂv:m Ny 2245
b L H R | (L 1T L TRERY TP oY) [
LI ~
2 N "
131
W
b
”"»
“
L]
15
"
hal

- Cow

62~V

e b e Ao Ay St

PAGE 18
QUALITY

ORIGIMAL
OF POOR

SYOUYA NOLLVINANA'LIWI/NDISHT 40 SADUA0S 9 HHNd1d

msanp py >4y

b}]

“ et

1

13
1% 14

na

uHl
11
- 13
]
ui
0.
n

[%3

2IF
sy gy mkig

.I-.
LT o

« — * P .

[i}

LR 1
D}
9
11

TR

weer) iy 34y

LT
oY pepren

.24

LiK
W@as} o adag

4
baal 114

hd bl Pagerayeg

Hit
113
L]
Ty

i
w.d

s '}

LR
i
.
1]

4]

1Y)

0e-v

ORIGINAL PARE i$
OF POOR QUALIT

SyOYdd JDVAYIAIND [FdNO1d

1730dd

&M s Qs s o

14
- e - Yo

1 11
& Hu
33
13
Ju
M2
ad
H

02

24

Of

1e-v

SUOUNEH “IVOIUYID ANV SNOLLVOLATUON
AONVHD 0L Jd0d4d 8 S g

L PR T TS LTI R NN T S

[ot 1]

sde) ¢ A
sdo) £ qu ©g 4eyy g CRTN w3
1moupq) presg [-pag 4vo)
3 D> J s
= - |
; B | 3
s = 1] a
B2 d
E :
- v
£ oy _—
- 5 3
<Q
=0 o 2
& o o
[s i I 3T '
© o o
O
k]
3
u
[+ S
d
Lg
by Bisy) o) | 43) 216 sbueyy uliteay o) 404 1B
vy [EITE P
vl |
Awg g P wit N 4o § 19 o1]:...:
Rt 1} [it -pal S s 1] PN 1Pl 1
S
3 4
. i
- bt 4
T i
Y]
pr Y T4
)
y)
iy ot
0 e
[14
[
W " 3
]
113 }
Y]
59] iy
N
"3 rlluﬂllr-;

(A%l

o .

ORIGINAL PARE 1S
OF POUR QUALITY

gy Bicay o) iy 21E

1=
Aw) 2
A=l) 19 °1 Wi Wi n
samemapy) ren - pay den)
o1
[1]

ot b2
o A

,
o Y
16

SNOLLVOTA 140N
JONVID OL U044 6 JuND1d

dhusg) oyns oy g5t 4 1B

L S 1]]

shuy ¢ An) s
o) 4o o Wit N
P onpay dso}
4 . s
" [«
(]
1]
e
f]
g
—r—1 ot
[
]
3
| |
H]
3
13 s .
v
sbuey) rlramy o)) opid 108
B TE]
Ao) 3
4o 5 iS o Wiy wein
beanatd £ 1] | a1} -ipyg Aee)
s 1]
[1] 11§
0
1]
7 e
L .
/
[K
[} i "
n 14
- -
)] 113
u
- 4
o B

1 3]

13 3ad 4

. Y

LR I R T 1)

[R 13)
sdapaajy sdu) ooy oy sy
s e =y LR TRy Y e sse}
LTt F T 1]] ypiayy aplarg
¥
4:
e
g
Dy A
T ==
Z ¢ e
3<
L
~ i
Nl ﬁ« "
- =
=<2
=0 ™
@ o
[T -
oG
[14 w
obereg) abganyy Sp A=t 2in
[Rd T Y
Ay g
Ao oLy RN
hanatd 1] [2l 1] -y Asw g
3
[
9F o1
174
ot
SRR | Su——
iy
“
15
hiY
1V
7]

ST wewEmuwe.hn

-
-

bW Dw -

bR~ R N - T)

S30¥Yd IVO A IONON
JONVIID OL 140449 01 Hun»id

e TR VTR RV RN T B

V=)
sda) ¢ Av) g
sday g g 9 Ay Yl w o
oyl plo=y [e 1] =Py} new} .
Il.LI..'-II-' I
e
ot
Hg
<
112 '
)
Jot
Y]
sbue) Wbisa) 0y 1%034) 1\
[Rt TR
wh []]
A o] Wi 1]
119 —apat in

wmoupg) P~ s

it

174

.14 "

"w

)%

19

L3}
54

)

[11]
1]

ST cweE=L .

e-v

Rt

SHoHu3 ‘riv
ASNVH Yo¥U3 4LVI0S1 OL LHod4d 11 914

vigs
[TV
L T Y]
Aa) 1y % uy “l N
et 4 [Bagy LT Asw)
L ¢
L S
LI
* (]
u
©> : .
= 3
Eul .
(L] < [14 b,
< 2 b
g O
-1 P
g O "
Z90 :
G & 3
o TS
00 3
L£] 4
73
(473
ne
1=y}
[19553
oy o %) a8
- o P .:..w. poey Ay g g oma.”... LT
r oy ™ ¥ st wmupay “se)
[4
¢ s
¥
']
.9 I
o L1
2 u
3 2
.14 e
4
u L
12 m TR T
11} 5"
)
TS
o 119
i
£]

"

wETEZ oW

-
& -

. -~
- e T o e

Sg-v

SHOWYE "IV YT IIONON
dS0VY d0ddF 4LVIGST Ol 1H044d T1 JHNO14A

(415
[TT)
A%)
40 1 19) 4t 1 “urn
‘o) [S]] - Ase)
T
I..- m [ot
R I s
o< 14
A U | 174 vo
oo 3
1
M m un
0
29 3
m a. I 14
. Hl
e
OO0 04 mv
W w
o3
S
. - |
FITN) 09 RS
[ETYF . 15933
4m) g g0".._ s n h
iy gy . b o [t B I T I ST B T I O 1
a [T} -.piag Asv) tmoupy) wi u P -ipay dav}
T
- .
i "
m LA i s
i G—“ s 13
74 N 12 YU
1 !
un 14
¥H
3y 2 T
1) ')
']y -7 ¢ R3] W 1y
11 wa 19 » (13
”".. nd
n
s 1§
ug 3
i o

SHOU¥d Vo 1dAL)

ASHVY SHONYY ULVI0ST OL 130444 €1 340014

EiF,
[Rl V3]
e P
‘g o1 Aty a1
Py -.pny Zeny
— %.
4
" > .
— T
— LIS
1 3 ,
o e
< N
o o Hi
- ™ wn
< O 1)
= O s 13
& o I
1 n3
[+ TR e
o4
(o e .
7
Jﬂll«l =
" LY
k41 "s
3oy LITE I
" 4y g Aqy
any g1 LN "o L T LTSRN LT T
A aantd X 1) Py -upayy Lnlm Ry py) [T -y Ace) .
T 0
! _
] 3 A
1 . s g
144 14 [~
TSN 12
[}
g Wi "
IR ¢ Sa— '
i |)y
* un
Sh " ~
L A | (113 Y
"
“ (TN (L]
(1%]
1"
74 i
[1] - - .

[s

11
04
L]
LI]
tn
L1}
0
131

LE-V

oe

caliwrny) go sy

SAODNVIID 40 NOLINGIYLSIA AONINDAYA 1 2UNOT4

) st O o u oo 8 I 3 5 3 £ 1
.uuw ety te e e] _
B € s
- , .
u
]
2o ¢ |
t Y
-1 02 00
< O 4
mm 2 ui
m—.—l [{B]]
2 21
20 b
82 JISI BT}
31
113 a4
11}
w Y
H
3
P49 S ne
ot a0
BRI Ll lvh:c.: H) sopoyg
4t S8 »l o u 2 S 1 3 g 14 1
———— . a %2 u o & 1 8 § v € 1
e o _ | o7 |
¢ TR B E [
» _ s . s
h : , _
4]
JH]
ol . Yol
it na u
0o
o
&1 t¥3 ui .
[101]
)
)
Mo
¥ 0¢
LI ¥ |
n
2o T
1"
]

.34

113

LI}
(18]}
[|

us
i

S

"

8E~-V

53X {4 40 NOLLGR LS 1A

"

Semt)) sepeyy

114

ORIGINAL PAGE 18
OF POOR QUALITY

05

Lt ¥ IV TIRS Y]

€ L4

S

o

01

S — .._MLJI

[

b4 4

1]
iz 34
Ha
[}]
op 44
un
[} 18 |
3 1)
(L]
14

[1)

ADNANDIYE ST HUND 1

tik

S3up § ju sepmyy

_*
1;.'

(R} A

sari) Wy speyy

124

L

py S
L1

[1}}]
LU]
s, 32

(LI}
1d

6L~V

ui

| 24

by S
n

i
<

5 1
un
01
3

ni
1d

)

QUALITY

ORIGINAL PAGE 13
OF POOR

NALSASANS A9 SAONVHO 91 2UND14

[31

(B} S
(oo qill Y - 0) wepetogpe;

[] | 1] S ui 19 & i bV) Jt

(S409y) iU - 8) wajedspg
~ — St

L w [¥} ul 114 []] [1] n dl w uj .
s _ —
7 2 ’ .
ug a
] a
v a
pe M ot
3
4
4 I Fi]
. 1
ld..clcv (1]
F]
3
u
39 3
Jd 114
ue

oy-v

ax»
w o
L
< 2
oo
- X
= O
Z0
ad
T w
&GO
had baat N RSV IT S
Lo 41l LU ~ 8) =ajedecps;
hd 19 m wl .- = o dt

L1 Jundl1d

2ppl A Srcr g B

sry
w w u) no W » 1] w
= ;

- S
| I
x
[}
M
]
0

9
11§ i
"
w)
3
']
2
ps d

u9

Si

- X o

3T

C -

&9

Al e -

2]

wesdsqpg 4 S8 1 IBS

(S434)} LU = §) =ssheyg

£ w

wi

15 o gl e] d1

st

J1

9=V

AHLNA HOUdd 40 dSVHd 81 ddNdid

[¥]
e i
sswyy —-'-P-':‘— N .A,
1Sh ns
[T] M s M .17}
H ﬁ . - l'm AR T o
, S
R
2] o
2 [, ©
—_— 4
| 1\ g ']
% <L 2
= 2
ey L 4
[1 ~ 0
-1 O
< m w o,
8% :
= 3
bs 2
S8 ;
2 >
]
.44 9 o +
[N
oz
D16 e
stue)) puambijace) asmiyy Juamdu) g}
1S 1 1L, 1S3 ne
inna ML [EA TN 1 1" b nuMn * 1D msn ‘i
T T
¥
I3 S
ol & v B u
0 [U [}]
H u
24 pe ‘o
3]
K, L]
o & u
» TUSY
1] n
b 1
15] s]
u 143 1]
3 \]
9 9
53

&t

b
P

.

UARNVAIAD A0 500U 61 N1

BT
o!hl-.b
e -] 2 [g 3 a] v
S
L4 w & S
0
w3 - ‘
O < Y4 2w
<D r 44
ao !
-1 O 3
<O]
=0
m P Ry 1
(v T "
o Ne) 3
s) .
o
p |
3 4
T
S
174 w
]
iR 15
smaw du s
‘ 4 1>wne Bu oy
* - 3 o) 1"
T T R em e x 2 " 9 " 0
q L, |
L. 5 1 «
A N
. L1} o
1)
") 0
bz oy 3¢ u
u
24 1]
i ! 2 .44 19 1
Q0 4}
» i
(113 vl
n I
3
]
b) ICR
M u
]
i
¥) ol "y -4
- <3 ~ E
g ﬁ: v | ishasnans

anth

2t TP RTF YRV IRYTYY

BiNd taaas}
YT Tt}
fran SEM.. Lk
I TTE SRS} 5 DN} BT 1 D1 L 113 an LTI TRY]

1§ -

ORIGINAL PAGE IS

OF POOR QUALITY

S -

»n

wEECR RN

el pe

sy
COm

m
[1Y (L]
nl
LRV ET]
ul
854

NS

Saeapsl 2 uMBABRPIMLY

RiEy e mp
NIt} 83
itan TEANS Siié

adix 1221 IGIL B L el L 1] FRIL)

e

N emm—
w

R

vt O

flan

uo

114]
s9

i
ju
il
0y
b ua
ui
1.4
1

"

it

s

0T JHNO14

SLITIRRIRTY IR TTETY])

ML U
48] Jd83
nmn k111139
L1 T4 (11} s n s [TR TRV
1
H 4
HJ
1]
i1
LY
LI
1
us
s
uy
SHAIY G M assRRENL)
FYSIRTIZIR]
481
REITIEN
[£13] s [} 1
k1t
R
4
[-24 1
b
",
L4

=4

1]
ui
uo

a9

-

R
0
t
il
LT}
(1}
Jd
u
H

y-v

(U4NN LLNOD) 0T 2NO1d

LASRALD [UBLIARRMY

SRt Ranend

FTI 413
313 1] 1 273N (917
s N s n 1 1T [YIYET! o
@ > .
E ——
w u
G < oy U
A = i
o "
-l — p2 !
< O T 114 mM
=0
5o -
O be U1
[eall TR W
(o Nel w1
1
e vy
]
a4
a
" u
5 d
QEMMI O YBIMMEIML
QaaRil | HEMIN
I3 R
- »m F11]
Litl WaRkEE Biait 3unils
....."". ..“""_.v - LTS IS oM ___wup
1015 1} el Y] Y vt 1
.- i _.- i
<
u
_ pp 1
1 'y
o . wn H
s v { st I
174 3
%9
v 14
g B
14
u1
a
0 i Y
IS "
a.
i ok
Sy

3

ps 2

a
Hi
uo

$9

M
in
ul
i)
vl
1
QW]
0

G-V

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two qroups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-Originated Documznts

SEL~76~- 001, Proceedings From the First Summer Software
Engineering Workshop, August 1976

SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May

1977

SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, Septerber 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C., E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. O'Neill,
S. R. Waligora, and C. E. Goorevich, February 1978

TSEL-?B-OOZ, FORTRAN Static Source Codz Analyzer (SAP)

User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-~102, FORTRAN Statlc Source Code Analyzer Program
(SAP) User's Gulde (Revision 1), W. J. Decker and
W. A. Taylor, September 1982

SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

Tphis document superseded by revised document.

8552

SEL-78-004, Sitructured FORTRAN Preprocessc.’
PDP-11/70 User s Gulide, D. S. Wilson an u, Septemher
1978

SEL-78-005, Prozeedings From the Third 8ummer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. scheffer and C. E. Veiez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Rela-
tionship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) Systein
Descr;pfion and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL~79-004, Evaluation of the Calne, Farber, and Gordon
Program Design Language (PDL) 1in the Goddard Space Flight
Center (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL=-79-005, Proceedings From the Fourth Summer Software
quineeringﬁWo;ﬂshog, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool {CAT), F. K. Banks,

A. L. Green, and C. E. Goorevich, February 1980

SEL-80~-002, Multi-Level _Expr ression Design Lanquage-~
Requirement Level (MEDL-R) Svystem Evaluation, W. J. Decker
and C. E. Georevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Comguter
Systems/Compatibility study, T. Welden, M. McCle.ilan, and
P. Lizbertz, May 1980

SEL-80-004, System Description and User's Guide for Code 580
Confiquration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

8552

SEL-80-006, Proceedings From the Fifth Annual Software
Engineering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resgurce Estimation
Models for Software Systems, J. F. Cook and F. E. McGarry,
December 1980

*SEL-Sl-OOl, Guide to Data Cellection, v. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81~002, Software Engineering Laboratory (SEL) Data Base
Organization and User's Guide, D. C. Wyckoft, G. Pagde, and

F. E. McGarry, September 1981

SEL-81-003, Software Engineering Laboratory (SEL) Data Base

Maintenance System (DBAM) User's Guide an System De-
scription, D. N. Card, D. C. Wyckoff, and G. Page, September

1981

*SEL 81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The Software Egg*neerzn Laboratory, D. N, Carad,
F. E. McGarry, G. Page, et ai., February 1982

~l'SEL 81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

SEL-81-105, Recommended Approach to Software Development,
S. Eslinger, F. E. McGarry, and G. Page, May 1982

SEL-81-006, Software Engineering Lecboratory (SEL) Document
Library (DOCLIB) Sz stem Description and User's Gulde,
W. Taylor and W. J. Decker, December 1981

SEL 81-007, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A, L. Green,
et al., February 1981

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February ry 1982

"This document superseded by revised document.

B-3

8552

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. ¥, Cook and E. Edwards, February 1981

SEL-81~009, Software Engineering Laboratory Programmer
Workbench Fhase 1 Evaluation, W. J. Decker and
F, E. McGarry, March 1981

SEL-81-010, gerformance and Evaluation of an Independent
Software Verification and Integration Process, G. Page and
F. E. McGarry, May 1981

SEL-81-011, Evaluating Software Development bv Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Ravyleigh Curve As a Model for Effort
Distribution Over the Life of Medium Scale Software Systems,
G. O. Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-~
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L, Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82~-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-002, FORTRAN Static Source Code Analyzer Program
(SAP) System Description, W. A. Taylor and W. J. Decker,
August 1982

SEL-82-003, Software Engineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers:
Volume 1, July 1982

SEL-82-005, Glossary of Software Engineering Laboratorv
Terms, M. G. Rohleder, December 1982

SEL-82-006, Annotated Bibliography of Software Engineering
Laboratory (SEL) Literature, D. N. Card, November 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engirzering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analvsis of
Changes: The Data From the Software Engineering Laboratory,
V. R, Basili and D. M. We!lss, December 1982

B-4
8552

SEL-Related Literature

f*Bailey, J. W., and V. R. Basili, "A Meta~Model for Soft~-
ware Development Resource Expenditures," Proceedings of
the Fifth International Conference on Software Engineering.
New York: Computer Societies Fress, 1981

Banks, ¥. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

*fBasili, V. R., "Models and Metrics for Software Management
and Engineerinc," ASME Advancss in Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Soclieties
Press, 1980 (also designated SEL=-80-008)

**Basili, V. R., and J. Beane, "Can the Parr Curve Help With
Manpower Distribution and Resource Estimation Problems?",
Journal of Systems and Software, February 1981, vel. 2,

no. 1

H.Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation ia the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2,

no. 1

Basili, V. R., and B. T. Perricone, Software Errors and
Complexity: An Empirical Investigation, University of
Maryland, Technical Report TR-1195, Bugust 1982

1TBa5111, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop:
Quality Metrics, March 1981

$TThis article also appears in SEL-82-004, Collected Software

Engineering Papers: Volume 1, July 1982,

8552

e s e el

Basili, V. R., P. W. Selby, and T. Phillips, Metric Analysis
and Data Validation Across FORTRAN Projects, University of
Maryland, Technical Report, November 1982

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas~-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979 '

Basil{, V.R., and D. M. Weiss, A Methodology for Collecting
Valid Software Engineering Data, University of Maryland,
Technical Report TR-1235, December 1982

Basili, V. R., and M, V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

fTBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

H.Basili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"
Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York:
Computer Societies Press, 1978

1M"Basili, V. R., and M. V. Zelkowitz, "The Software
Engineering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Card, D. N., "Early Estimation of Resource Expenditures and
Program Size," Computer Sciences Corporation, Technical
Memorandum, June 1982

Card, D. N., "Comparison ¢f Regression Modeling Technigques
for Resource Estimation,”" Computer Sciences Corporation,
Technical Memorandum, November 1982

Card, D. N., and M. G. Rohleder, "Report of Data Expansion
Efforts," Computer Sciences Corporation, Technical Memo-
randum, September 1982

?+This article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1, July 1982.

B-6

8552

*TChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings
of the Fifth International Conference on Software Engineer-

~t

ing. New York: Computer Societies Press, 1981

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryiand, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, Septembher 1977 (also
designated SEL-77-~005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), March
1980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E, Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-~
tion, Technical Memorandum, September 19877

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

TfThis article also appears in SEL-82-004, Collected Scoftware
Engineering Papers: Volume 1, July 1982.

B=-7
8552

e AR A T AT B

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

f+Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects,” Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer science. New York:
Computer Societies Press, 1979

Zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations

for Computer and Information Science (proceedings), November
1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

TTThis article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1, July 1982.

B-8

8552

	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf

