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FOREWORD

This final report is submitted in accordance with “Scope of Wourk, Exhibit D” for Contract NAS8-33979.
The study was directed from the Guidance Systems Division (GSD) of the Allied Bendix Corporation. The
enginecring manager at this location was Mr. Joel Levinthal. Most of the analytical effort in support of this
project was provided by Dr. Frederick Chichester, who wrote all sections of this report. Most of the algebraic
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software package on the same computer. The guidance of Dr. Henry B. Waites and Mr. Stan Carruil of
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ABSTRACT

The problem of applyiag modular attitude control to a rigid body - fexible suspension model of a flexible
spacecrall with some state variables inaccvesible was addressed by developing a sequence of single-axis models
and generating a series of reduced stase linvsr observers of minimum order to reconstruct those scalar state
variables that were inaccessible. The specific singi+ axis modals treated consisted of two, three, four and fve
rigid bodies, respectively, interconnected by a flexible shalt passing through the mase centers of the bodies.
Reduced state linear observers of all orders up to sne less than the total mumber of scalar state variables were
generated for each of the four single-axis models cited. Each of the single-axis models was then transformed
to a corresponding modal model to which modal damping was added. Each of the damped modal models
was written in state variable form. With the assumption that at least one of the scalar modal : ite varables
was accessible, ruduced state linear observers were developed for sythesising the inaccessible modal state
variables for each modal model.
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INTRODUCTION

This report is submitted in compliance with the Scope of Work wmder contract NAS8-33978. The
period of performance covered by the contract is from October 1, 1983 to August 31, 1984, The submission
and approval of this report constitute the successful completion of the “Exihibit D* portion of the contract.

This report is a sequel to five others, two of them previously submitted under a different contract
paml-er. The two prior reports, nnder a different contract number, references (1-1) and (1-2), were submitted
'in October 1978 and September, 1979 and covered the periods from July 27, 1977 to July 27, 1978 and from
August 26, 1978 to August 26, 1979, respectively, in compliance with "Exhibit A” of contract NAS8~-33660.
Three prior final reports were prepared under contract NAS-33979. Reference (1-3) was submitted on March
8, 1982 and covered the period from August 15, 1980 to October 15, 1981 in compliance with “Exhibit A"
of the contract. Refcrence {1-4) was submitted on March 18, 1983 and covered the period from October 16,
1981 to October 31, 1982 in compliance with “Exhibit B”. Reference (1-5) was submitted on January 24,
1984 and covered the period from November 1, 1982 to September 30, 1983 in compliance with “Exhibit C”.

1.1 OBJECTIVE

The sections that follow summarize the effort expended on the Modular Design Attitude Control System
Study contrac: from October 1, 1983 to Augest 31, 1984. In prior applications of modular attitude control
to rigid body—flexible suspension approximations of the rotational dynamics of prototype flexible spacecraft,
it was assumed that all of the scalar state variables of the linearized models were accessible for measurement
and/or control. Actual spacecraft to be controlled almost never satisfy such a broad condition. Therefore,
the priucipal objective of the development of modular attitude control, completed August 31, 1984, was the
generation of a series of linear observers to support the application of control to state variable models of
flexible spacecraft with damping for which one or more state variables are inaccessible.

1.3 8SCOPX

Study effort was concentrated in four main areas:

A. Development of a series of single axis state variable models of fexib.e spacecraft with damping to
be utilized in the comparison of different approaches to the development of modular attitude control
systems. These models consisted of two, three, four or five rigid bodies serially connected by a Hexible
suspension in such a way that motion was restricted to rotation about a common axis through the
mass centers of the bodies.

B. Generaiion of reduced state linear observers for each damped single axis model developed in Task
A corresponding to variovs numbers wnd distributions of inaccessible state variables following the
approaches presented in Luenberger (1-6), (1-7), (1-8), and Sage (1-9).

C. Transformation of the undamped versions of the single axis models developed in Task A to their
corresponding modal models with modal damping following the approach presented in Thomson (1-
10).

D. Generation of reduced state linear observers for each modal model developed in Task C with various
numbers of inaccessible modal state variables utilising direct matrix products as described in Lancaster
(1-11).

13 GENERAL

This report is comprised of seven sections. Sections 3 through § describe the development of the two-,
three-, four.- and five-body single-axis state variable models, respectively, of a prototype flexible spacecraft
with damping and the generation of the minimmm order reduced state linear observers for the reconstruction
of inaccessible scalar state variables of these models. Section 6 begins with the transiormation of the single-
axis models of Sections 2 through 5 to modal forms to which modal damping is added and concludes with
the development of reduced state linear observers for these models when one or more modal state variables
are inaccessible. Section 7 lists a number of conclusions and recommendations drawn from generation of
linear observers for the series of single-axis state variable models described above. References are listed at
the end of each section.



The originai RFQ rvquested that the Internaiic:al System of wnits (designated as SI) be used in ths
program and in any reporting. Torques, morneats, angular momenium, moments of inertia and distances,
however, are stated in English units since this wac the system of units used in presenting all of the vebicle
data ia the RFQ.
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JECTION 3

DEVELOPMENT OF TWO-BODY SINGLE-AXIS MODEL AND 178
REDUCED STATE LINEAR OBSTRVERS

3.1 ORIGINAL DAMPED MODEL

The rotational dynarnics of the two-body single-axis model of a fexible spacecralt with damping shown
in Fig. 2-1 may be represented by the following set of equations:

L, = =iy =b3) = ks (0 ~02) + 1 (3-1)
hiy= c(by =b3)+ k(0 =05) + 0 (a-9)

I; = rotational inertia of body 1; t = 1,2

6; = angular displacemnent of body ¢

6; = angular rate of body ¢

¢; = torqae applied to body ¢

k; = rotational spring coefficient at the interface between the bodies
¢ = rotational damping coefficicnt at the interface between the bodies

3.3 STATE VARIABLE MODEL

The state variable form of the two-body single-axis model of a flexible spacecrait with damping shown
in Fig. 2-1 may be expressed as follows:

% = Ax+3u _ (2-3)
x, = Cx (2-4)
where:
x =[8 6, 8, 6:)T=[z1 22 21 2z4]T =[x xT|T = state vector
X. == m-veitor of accessible scalar states
X; == p-vector of inaccesmbie scalar states
. @17
T |+ — -
u = CTRETY [11 I ] control vactor
A = 4 4 state vector coefficient matrix
B =4 x r control vector coefficient matrix (r = 1 or 2)
C = m x 4 measurswaent or observation matrix
0 1 0 0
- | =33t —02sm1 G2 a2 .
A e o0 o0 1 (2-3)
a41 G4171  ~a41  —O41N
(4] .
-l -8
n k (3-6)
& ,
on =7 (2-7)
1
k
s =7 (2-8)
2
0 0
10 . .
B = 0 0 for rm3 (2-9)
01
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FIGURE 2-1

TWO-BODY SINGI *- 4 XIS MODEL WITH DAMPING



The block diagram corresponding to this modal is depicted in Fig. 2-3. ORIGINAL P2, \J

3.3 REDUCED STATE LINEAR OBSERVERS OF POOR QUAL:;"
3.3.1 Introdurtion

The mirimum order (nmmber of scalar state variables) of a reduced state linear observer required to
reconstruct the 4-m inaccessible scalar states of the two-body single-axis model represented by equations
(3-8) through (3-9) is p = 4 — m. This reconstruction was accomplished for a given state variable model in
‘thumn'nm

1) Synthesizing a linear obeerver of minimwim required order (p).

3) Defining 2 synthesised variable corresponding to each of the inaccessible state variables of the given
state variable model.

8) Expressing each synthesized variable as a fanction of the state variables of the reduced state observer
and the accessible state variables of the given state variable model.

The relationship between the single axis model and its corresponding reduced state observer is depicted in
Fig. 2-3.

The equations for the reduced state observers corresponding to the state variable model of equations
(2-3) through (2-9) are the following:

i = Ds + Eu+ Gy (2-10)
s = Tx (2-12)
E=TB (2—12)

where:
D = p X p observer cocRecient matiix (mumed diagonal)
E = p X r observer control vector coefficient matrix
G = p X m observer vector of observed states coefficient matrix
T = p X 4 observer weighting matrix

The corresponding block diagram appears in Fig. 2—4.
3.3.2 Obsarver Synthesis Equations

The equations for synthesizing the reduced state linear observers, based on those appearing in Luen-
berger (1-1), (1-2), (1-3) and Sage (1-4), were written in the following form.

TA-DT =F (2-13)
F=GC (2-14)
For
iy tia tig e
T=|: : : : (2-15)
tp1 tp3 tpa Lpa
(fi1 ha hs [
Fo=|: = : (2-10)
 Ion Sp3 Do Spu
'du 0
D = ] {(2-17)
L o dy,p
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State anid Observation Equations:

X = Ax + Bu

X, = Cx

FIGURE 2-2

BLOCK DIAGRAM OF THE STATE VARIABLE MODEL
OF A FLEXIBLE SPACECRAFT
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u Vehicle b9\
Model
2 A A
— Observer  jf——t X = X1 (2, X3, T)

T

u = vector of scalar inputs to vehicle model

X, = vector of accessible scalar states of model

2 = vector of scalar states of observer

T = observer weighting matrix

21 = vector of reconstructed scalar states of model

.7\
R = |----| = reconstructed vector of all scalar state variables of

X1 vehicle model

FIGURE 2-3

BLOCK DIAGRAM OF SPACECRAFT MODEL
AND ITS REDUCED STATE LINEAR OBSERVER
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Observer Equations:
z=Dz+ GEEA*EE.

Since Gx, = GCx = Fx,

'z =Dz + Fx + Eu

FIGURE 2+4

BLOCK DIAGRAM OF LINEAR OBSERVER
FOR STATE VARIABLE MODEL OF FIGURE 2-2
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and the form of the A matrix given in equation (3-5) the obeerver synthesis equations reduce to the following

general forme.
tn = dintis —aurnitic+ fia t=1,2,...,p
tis = —asgritis +diiatia + fia

[Tr @ _peanm ] [i2] = [ duta]

where:
diiy = ager1 + i
diiz = aqr +di
o =14nd;
Aj; = (a3 + &%) (aupr + &) - ag38410?
= d%(s2sp1 + aupr +d%)

(aapr + &%) (fir + dii fia) + aarpr (fia + dii f.4)

lig =~ A 1=1,2,...,p
(}]
Ch = (fir + dii fia) + (a2spy + dF) (Jia + dii fia)
' Al
d.. aq1 + (393 + 841 )1 di; + &2, .
ti [ - A ik J (fir +diifia) + fia + X,d" ——(fia + dii fis)
i i
,md“ di; [ﬂca + (@23 + aq)ridi; + 4%

tig = (Lr+dﬁﬂ+ “(fia + dii fis) + fia

Aiz

2.3.3 Comparison of T Matrices for Damped and Undamped Models

If damping is removed from the model, r; — 0, di;; — dy;, diig — dii, p1 — 1 and
A}y — d%;(azs +aq +d) = Ais.

(aa1 + d?,-n._fn + dii fia) + @a1(fia + dii fia)

tia ™ s=1,2,...,p
‘. ass(fir +dii fia) + (a3 + d%;)(fia + dii fia)
"o Aiz
di [(801 +48)(fn + i) = aasfia + dicfia)
tipn = Jfiz— y o
d;; [daa(/n +dii fia) = (vas + d%) (fia + d.'.'fu)l
tia = fis— 2 .

Companson of the corresponding equations for generating the elements of the T matrix, ¢,; ({ =1,2,.

(2-18)
(2-19)

(3-20)

(2-21)
(2-22)
(2-23)

(2-24)
(2-25)

(2-26)

(2-27)

(2-28)

(2-29)

(3-30)

(2-31)

(2-32)

< P

J =1,2,3, 4) revealed that the addition of damping at the interface between the two bodies had the followmg

effects:

10
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1. In the equations expressing ¢;3 and ¢;4, the elsments of the even columns of the T matrix as a function
dﬁtl.j,thdmdthcrm,thfomohuhoqun’onmthumnndu- addition
of damping with aysp) and agp; bmnhhtutodforudlwdarm and a,; appearing in the
correspoading equations for the undamped two body model.

3. In the equation expressing ti;, the elements of the first columm of the T matrix as a function of
the fij, the elements of the ¥ matrix, the form of the equation remains the same under addition of
damping except that the expression, a1p1 + azsr1dii, appears in the place of ay; in the coethcient of
gt:-l-d;d.:z) in the numerator and asepr and a41p1 appear in the plice of ags and ay; respectively in

r.

3. In the equation expressing ¢;s, the elemnents of the third columm of the T matrix as a functinon of
the [ij, the elements of the P matrix, the form of the equation remains the same under addition of
damping except that the expression, ag3p; + 34171di;. appears in the place of 233 in the coefficient of
(fis + diifis) in the numerator and aszsp; and aq1p1 appear in the place of az3 and aq;, recpectively,
in the denominator.

3.4 SOLUTION FOR SYNTHESIZED STATE VARIABLES

2.4.1 Introduction

Inaccessibility of a state variable in the model equations (2-3), (2-4) is reflected by a corresponding
nall column in the observation matrix, C, and a corresponding null column in the F matrix as implied
by equation (2-14). For the generation of reduced order observers for the two body model the number of
inaccessible state variables can be 1, 2 or 3.

3.4.3 First Order Observers (p = 1)

A first order linear observer corresponds to inaccessibility of one of the four scalar state variables of
the two body model. The observer equation then reduces to:

i = ds + Bu+ Gy, (2-33)

the P and T matrices reduce to:
F=(/i i fa Ji (2-34)
T =[t1 t; t3 t4) (2-35)

and the observer synthesis equatiors reduce to the following forms:
_(sapr + P (N1 +df3) + aaspy (fa + dfa)

ta Al (2-36)
b, = 2P (f1 +df) + (:Za_m +d%)(fa +dfs) (2-37)
6 =-Sound “”'f,:' Ah+da) g, "‘—‘d(fa +dfa) (2-38)
ty = _gz_ai(j +df)+ d(a13p1 + duﬂAdl-l- J’)Lfa +¢VJ (2-39)
n =1+ '14 (2-40)
A} = d(azspr +aap +d%) (2-41)

Since this case corresponds to inaccessibility of one state variable, one of the f; (i =1,2,3,4) = 0.

11
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Exaople
smuoﬁnndﬂmmmmlnmofbodyzhipucoﬁbh.Thonisilmmd
1 000
C = [o 10 o] (349)
0 010
. for which:
Pulfi o [ 0] (343)

and T is of the form shown in equation (2-35).
From equations (3-14), (3-42) and (3-43),

G =[fi / fa) (2—44)
and from equations (2-9}, (2-12) and (2-35)
E o=[t; t (2-48)

This equation corresponds to r = 2, control torques applied to both bodies. For control troque applied only
to body 1,

E =]t 0] - . (2-46)
and for control torque applied only to body 2,

E =[0 ] (2-47)
The equations for determining the elements of the T matrix reduce to the following forms:

¢, = loupr+ )i +dh) +aupm/s

A, (2-48)
t = 20 (/1 +fz):;(023?1 +&)/f (249)
¢ - “d@um +¢23nd'+d°)g1 + dfa) +/ +2’lf"fa (2-50)
& A
ty = _asad(fy +dfs) +4(427m +oand+d)/s (3-51)
Al
From equations (2-11) and (2-35),
3 = 4131 -Fta3g +laze +1ady (2-52)
waere 2, = (he synthesized z,.
Solving for £¢ yields:
1 3
By = K(' - tiz) (2-53)

i=1

12
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Fuwda;,q or a;, the equations for determining ¢;, (3-36) through (2-39) are appropriately
3.4.3 Second Order Observers (p=13)
The oquation for a linear observer of order two corresponds to two of the four scalar state variables

being inaccessible. It is represented here as equation (2-10). If the observer coefficient matrix is assumed to
be diagonal in this case it appears as follows:
- dy 0
D [ o d,,] . (2-54)
Since the observer is of order two,
s = [z,5]T (2-53)
= |/ S1a S1s fra
¥ fa Sz fas fu] (3-56)
and,
N ISRt T T
T [fn tag 233 tu] (2-57)

The specific forms of the equations for generating the elements of T depend upon which two of the scalar

states are inaccesni's. For each inaccessible state the corresponding columns in the C and P matrices are
mall.

Example

Corresponding to the angular position and rate, respectively, of body 2, suppose that the scalar states
23 and z, are inaccessible. Then the equations for generating the elements of the T matrix assume the
following forms.

tig = -k%ﬁd(fn + dsi fia) 1=1,2 {2-58)
i
tiag = __a;m (fi1 4~ dii fia) (2-39)
7]
tl'l o _d“(a4lp‘ +Z:'1d"'.)i£?‘l(f“ +dnf12) +/'2 ‘ (2-60)
tis a’ d" (fu +dii fia) (2-61)

where p; and A}, are defined in equations (3-23) and (2-24).
From equation (2-11),

[tu tu] [:z] - [fx—tu@x-tnza] (2-62)

TR I -tz =i

where 23 and 2, are synthesized state variakies.

Let A; = tiz fi14g
tag tag

= t1gtgq = Li4log % 0

where:
{43);; = A without elements of ith row and jth column

13
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h - (B9) 4 (3 = ti1m —t1289) = (A4), 1 (33 ~taim =t3a8)

A

iy

- ‘(A’)ll('l =ta -‘ula) + (AI)QA!LIS -i318) -~ ‘”l’)

A

For 23 and 2, inaccessible, it is assumed that:

c=[o1% 3]

- |1
¥ Ja

From F = GC,

[ 11
G = | /a1

From E = TB,
(212
E | t22

E - [
[ t22

[0 t14
[0 t24

fuoo]
Jaz 0 0

fu]
faa

:;:] for r = 2 (control torques applied to both bodies)

0] for control restricted to body 1

for control restricted to body 2

3.4.4 Third Order Observers (p = 3)
The equation for the linear observer of order one less than the system’s dimension corresponds to three

of the four scalar state variables being inaccessible. It is represented here as equation (2-10).
If the observer coefficient matrix is assumed to be diagonal in this case it appears as follows,

[dn

D = E

oo]
4, 0

o dan

Since the observer is of order 3,

5 = [5,1,5]7

[ 111
F =|/n
| fa1
and, ]
t
T = |ty
Ltil

faa Jas fa

Nia S fu]
fazs Jas Jaa

tia tia tie
22 tas a4

tga t3g g4

(3-e3)

(2-04)

(2-88)

(2-00)

(2-67)

{2-68)
(2-69)

(2-70)

-
(2-71)

(2-m3)

(3-73)

(2-74)

The specific forms of :he equations for generating the elements of T depend upon which three of the scalar
states are inaccessible. For each inaccessible state the corresponding columns in th C and F matrices are

aull.

14
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Example

Suppose the scalar states, 39, 33 and 24, representing the angular rate of body 1 and the angular
position and rate of body 2, are inaccessible. Then the equations for generating the elements of the T
matrix assume the following form since f;; = fi3 = f;q = 0 for i = 1,3,8.

b --L‘-ﬂ%',:'—a.dftn im1,3,3 (3-75)
anpL

big = -

» o ™ (2-7e)

w = -dltntand +8), @)

_ _andii

e = -2y, (2-78)

where p; and A/; are defined in equations (2-23) and (2-24).
From equation (2-11),

tia tis tie| |23 5=ty
ta3 tas faa| |Za]| = |;—tnz (2-79)
taz tas tsa] [ 24] 233 —t121

- where 2;, 23 and 2, are synthesized state variables.

t1a t13 tie
Let Ag = [t33 t33 34|90
tag taz t34
where,

(A3);; = As without elements of ith row and jth column

3
g(-lyﬁ(m)u(‘i ~-z)

For 23, 23 and 2, inaccessible, it is assumed that:

C =10 0 0] (2-81)

(/11 0 0 0
F =|f; 000
_f" 00 0]

From F = GC,

(3-82)

[ fu
G = fm] (2-83)
| /a1
FromE = TB,

[t12 tie
B = |i; t“] for r = 2 (control torques applied to both bodies) (2-84)

[ 32 lag

15



GE @
ORIGINAL PR
OF POOR QUALITY

2~1 Luenberger, D.G., “Determining the State of a Linear System with Obeervers of Low Dynamic Order”,
FLD. dissertation. Stanford University, 1963.
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SECTION 3
DEVELOPMENT OF THE THREE-BODY SINGLE-AXIS MODEL
AND IT8 REDUCED STAIE LINEAR OBSEKVERS
3.1 ORIGINAL DAMPED MODEL

The rotational dynsmics of the three-body single-axis model of a fexible spacecraft with damping
shown in Fig. 3-1 may be reprevented by the following set of equations:

D, = ey — ) = by (0, - 02) +1 (3-1)
Ify = cy(fy =63) + hy (61 = 03) +ca(fs ~da) + ha (82 — 02) + 0 (3-2)
Isfy = =cs(fis = b2) = ha(fs = 0;) + g3 (3-3)

I; = rotational inertia of body ¢; 1= 1,2,3

§; = angular disipacement of body i

0; = angular rate. of body s

¢ ™= torque apylied to body ¢

kj = rotational spring coefficient at interface 5; y = 1,2
¢; = rotational dampoing coefficient at interface 5

8.3 STATE VARIABLE MODEL

The. state variable form of the three-body single-axis model of a flexible : pacecraft shown in Fig. 3-1
may be expressed as follows:

% = Ax+Bu (3-4)
x, = Cx (3-5)
where:
X -[31 23 - ﬂlr-[ﬂl 0.1 A 0.2 02 é.]r-[xf x,T]T-statevector

X, = m-vector of accessible scalar states

X, == p-vector of inaccessible scalar states
olu e Tl =)7L
u [ u, ] [Ix A (r=1,20r3)
C = observation matrix of diraensions m x 6, m = 1,2,...,5 (Minimum dimer~ion of reduced order
observer required = 6 — m).
Partitioning of this model by rigid body results in the following forms for its coefficient matrices.

[ 0 1 0 0 0 0 1
—a33 —u3gfy 633 GasM) 0 0
A= 0 0 0 1 0 0 (3-8)
G4) G417 843 OG44 48 34872
0 0 0 0 0 1
L 0 0 des Ge3r3 —dg3 =063 J

17
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FIGURE $-1

THREE-BODY SINGLE-AXIS MODEL WITH DAMPING
AT BOTH INTERFACES

18
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oy = A (3-7)
L
6 = —(aq +3a)
au = —{aarn +aur)
-
L
& .
o= 1=12 (3-8)
/]
0 0 017
1 0 0
0 0 0 . .
B = 0 1 0 for r = 3 (control torques applied to all three bodies) (3-9)
0 0 0
no . o ld

The block diagram corresponding to this medel is shown in Fig. 2-2.

3.3 REDUCED STATE LINEAR OBSERVERS
3.3.1 Introduction

For the three-body single-axis model represenied by equations {3-4) through (3-9), the minimuwm order of a
reduced state linear observer required to generate the inaccessible statesis p=6 —m (m = 1,2,...,5). All
of the reduced state linear observers for the three body model may be written in the form represented by
equations (2-10) and (2-11) where, in this case, the observer coefficient matrix, D, is assumed to be diagonal
and of dimensions p X p. The corresponding observer weighting matrix is of the following form:

ftu ... tie
T =|: : (3-10)

Ip1 oo lpe
From equations {2-12), (3-9) and (3-10).
[t13 tie  bi6 ]
E=]: . : | for r = 3 {control torques applied to all 3 bodies) (3-11)

tp2 lp4 Cpsd

[ fi1 .. fi68]
R : (3-12)

l.f;'l f;.s.

The corresponding observer block diagram appears in Fig 2-4.

19
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From Lussburger (3-1), (3-3), (3-3) and Sage (3-4) the equations for synthesising the reduced state
linear observers for the three-Dody single-axis model represented by equations (3-4) through (3-9) are given
by equations (2-13) and (2-14). With coeficient matriiies of the forms listed in 3.3.1 this set of observer
synthesis equations reduces to the following forms:

(A|')l 1(.,11 +d|‘n’f|2) (A 3)3 ,(fu +dufu) + (A a); 1(}:5 +dnf|6)
"~ ap
i [(qm +d%)(aesps + &) + asspadl; ]
Al
aum [(Geam + d%)(fis + dii fia) + asspa(fis + d.'.'f-'e)] ]
+ A:-, H s1=1,2,...,p

(Ais)y 3 (fir +dii fia) = (Alp)y 5 (fia + dii fia) + (A)3), z(fn& + dii fie)
&l
= 82301 (eapa +d3 ) (fir +diifia) + (s39m + %) (asapn + &%) (fis + dii fia)
&,
aespa (aaspy + d%) (fis + dii Jie)
A

(fir +dii fi3)

(3-13)

bia =

+ (3-14)

t'e (A 3)1 3(!:1 +dnf|2) (A a)m(f.a'i-dnfu)'i-(A 3)3 3(./15 +dnfle)
' Al
o asumipa(fin +dii fia) + 64spa (231 + dF) (fia + dii fid)
Aly
N [(«mm +d%)(agsps +4%) + aumd?.-] (fis +dii fie)
Ay

(3-15)

dii {[(a«m +d%) (aeqps + &%) + auspadl ]
&l

) =

aasr1dii [(aes -+ ass)en + }
Al

N a1 di; [(Gam +d%)(fis + dii Jia) + aespa(fis + d.'.'f.'e)]

af,

+ (fir + dii fia) + fia

(3-18)
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_ ond [—md.-.'(rx ~ ) + (deaps +4?.-)] p

¢ -(fi i
is a, Jin + dii fia)
dii [(oam +d%)(aesp3 + &%) + aq1r1dii(aespy + oY)
+ 7
al
aqsradic(ag0p: + J.‘.)]
+ 2l (Via+ diifia) + fia
s
seadii |aadii(r1 — ) + (a2ap1 + df;)
+ [ — ,3 ] {fis +diiJie) (3-17)
4j;
‘ Gasdii [tmm (fir +dii fia) + (a2apr +d%) (Jia + d.'.'fu)J
= &,
dii {ﬂea"zdii [(ana +aa)m + tp,,]
+ 7
A4,
[(aaam +d%)(aesps + %) + anmd?.-] }
+ A {(fis +diifie) + fia (3-18)
i3
where:
r; = -:j-; I=1,2 . (3-8)
]
p; = 1+ridi; i=12 (3-19)
diiy = aggry + di; (3-20)
diiz = Gqr1 + adasra +di; (3-21)
di;a = agsry + di; (3-22)
~(aaspr +4d%) aup 0 '
2 = 823p1 —(a1p1 + daspz +d2) aeap2
0 G4sPa —(aeaps +47;)
= —(azapr +d%;)(A]3),, —a2ep1(A}a)s,,
= -4 [(Gzadu + 833063 + 641 Ge3)p192
+ (323p1 + Gaip1 + auspr + Geapa)dl; + dn‘.] (3-23)

3.3.3 Comparison of T Matrices for Damping at Various Interfaces

The observer synthesis equations for the three-body single-axis model with damping were compared
with those for the same model without damping. A general form was developed for these equations that
encompassed the synthesis of the elexnents of the observer T matrix for the following conditions with respect
to damping in the model.

1. No damping;
2. Damping only at the interface between bodies 1 and 2;

21
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3. Damping oaly at the interface between bodies 3 and 3; OF POOR QUALITY
4. Damping at both interfaces.
Mddﬂqﬁn‘uimcﬁccjofthomodelcomspondnomﬁngrj-Ondpj-linthceqntiom

for generating the elements of the T matrix with damping present at both interfaces, equations (3-13) through
(8-33). If all damping is removed from the three body model, r; —oo,pi-*l,dm ~ dijg ~ di;a — di;j and

A:-.-t-#.-[mm+¢mu+mm+(¢n+m +a4 +ags)d; + Y| = Ais.

Al 3 ;
tiz = ‘&H‘ 4’('.“;‘4) +¢ud?.] (fir + dii fia)

aas [ (0 + ) (fia + dii fis) + aealfis + dii fie)|
+
A
ty = a33(aes + af) (fir +diifia) + (823 + &%) (aes +d?;-)(f.'a +dii fia)
' A3
+W(m +dii fie) (3-25)

i=1,2,...,p (3-24)

o W0asfin +dii fia) +aes(aas + &) (fia + dii fia)

tis An

[ﬂaada-i- (338 + aa1 +64s) 4%, +d
+ v (fis + dii fi6) (3-26)

dii[(00: + &) (0ea + &) +ass ]
= Ais
N aq1di; [(aoz +d%)(fia + dii fis) + aea(fis + d.'-'f.'e)]
A3

tig = Ma—dﬁ(gf'tpﬁ)'(fu +diifis) + dii{aza + di'.'_)a(a“ + ) (fia +diifia) + Jia

+ Sandilnnt &)y it | (3-28)

(fir +diifia) + Jia

(3-27)

aqsdi; [dza(ln +diifis) + (aas + &%) (fis + d.'.'fu)]
Ais 7

di[(@20 + &) (45 +8) + anrd?] /
+ ™ (fis + dii fie) + fie (3-29)

tig =

The elements, ¢;; throught;g (i=1,...,p), of the T matrix of the linear observer of order p corresponding
to this model with one or more inaccessible states were found to be affected by the addition of damping at
the interface between bodies 1 and 2 as follows.

1. The scalars, a33 and a4;, were modified to agzp; and a4 py, respectively, in the equations for generating
tigs tias tis and tig and in the denominators of the equations for generating ¢;; and t,3 where p; was
defined in equation (3-19).
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3. In the mumerator of the equation for gemerating ¢;;, (3-16), the following changes occurred.
s The term, aasr1d;(aes + aes + ;) was added to the coeflicient of f;, where v; is defined in
equatioa (3-8).
b. The scalar, ay;, in the coeflicient of f;; was changed to aq;p;.
3. In the numerator of the equation for generating ¢,3, (3-17), the following changes occurred.
a. The term, as3a.sn1 47, was subtracted from the coefficient of (/i1 + dii fia)-
b. The term, aqyrid%(aes + &), was added to the coeficient of f:3.
¢. Each ag3 in the coeficients of f;3, _f“ and fi¢ was mdified to ag3p;.
d. The term, q;mnc}‘,-, was added to the coeflicient of U,‘; +d.'.'f.'3).
Addition of damping at the interface between bodies 2 and 3 had the following effects.
1. The scalars, ays and ag3, were modified to asp; and agaps, respectively, in the equations for generating
ti1, ti3, tiq and ¢;¢ and the denominators of the equations for generating ¢;3 and t;5 where p; was defined
in equation {3-19).
3. In the numerator of the equation for generating t,3, (3-17), the following changes occurred.
a. The term, aj3a45r2d7;, was added to the coeficient of (/i) +d;; fi2) where r; is defined in equation
(3-8).
b. Each aez in the coeficients of f,;, f:2 and f;3 was modified to agaps.
c. The term, aysrad? (333 + 4%), was added to the coefficient of /3.
d. Tle term, a418637r2d?;, was subtracted from the coefficient of (fis + diifig)-
3. In the numerator of the equation for t,5, (3-18}, the following changes occurred
a. The term, aeafﬂe'-(aga + aq; +d?,-), was added to the coefficient of f;5.
b. The sczlar, ags, in the coefficient of fi5 was changed to assp;.

Addition of damping at both the interface between bodies 1 and 2 and the interface between bodies 2 and
3 had the following effects.

1. The scalars, a33, 41, 345 and ag3, were modified to azapy, a41p1, G4sp3 and agarg respectively, in the
equations for generating ¢,3, ;4 and t;¢ and in the denominators of the equations for generating ¢,
ti3 and t;5 where p; are defined in equation (3-19).

2. In the numerator of the equation for generating ¢;;, (3-16), the following changes occurred.

a. The term, aggﬂd?,-[(m + ae3)pa +d,’,] , was added to the coefficient of fij, where r; is defined
in equation (3-8) and p; is defined in equation (3-19).
b. The remaining scalars, ay), a5 and agg, were modified to aq1p;, G45p; and deaps, respectively,
with the exception of the a4; commeon to the coeflicients of f,4 through f;s.
3. In the numerator of the equation for gene. ~ting ¢;3, (3-17), the following changes occurred.
a. The term, 633445&?,-(72 - n), was added to the coeficient of (f.'l +d;.‘f.'3).
b. The terms, aq1r1d7; (desps + &) and a4sr2d?; (Gaapy + &%), were added to the coefficient of /3.
c. The term, a41a¢3d?% (r1 — r3), was added to the coeficient of (/f;5 + di; fis)-
d. The remaining scalars, a3 and ae3, were modified to az3p; and ae3pa, respectively.
4. In the numerator of the equation for generating ¢;5, (3-18), the following changes occurred.

a. The term, agsrad’; [(dga +aq)m +d?,-] , was added to the coefficient of fi5.

b. The remaining scalars, 333, 641, 245 and agz were modified tc a33py, 84191, G4s57 aRd 2e3p3
respectively with the exception of the a4s common to the coefficients of f;1, fi2, fia and fi4.
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) - 3 STATE VARIABLES OF POOR QUALITY
3.4.1 Introduction
Inaccessihility of a scalar state variable in equation set (3-1), (3-2) is reflacted by a corresponding il
columa in the observation matrix, C and, as implied by equation {3-11), in the I’ matrix for the generation
of reduced order obeervers for the three-body model. The number of inaccessible scalar states can be 1, 2,
3, 40r8.
$.4.3 First Order Observers (p =1)
A first order observer is required when any one of the six scalar state variables of the three body model
is inaccessible. The first order form of the linear obssrver equation is:
i = ds+Eu+GCy (3-30)

The F and T matrices associated with a first order observer for the three body model then reduce to the
following row forms.

P =(fi r fs Is s JaIf (3-31)
T =[t; t3 t3 t4 5 te]r (3-32)
The observer synthesis equations are then given by equation (3-13) through equation (3-23) with ¢ = 1.

Since a first order observer corresponds to one of the scalar state variables being inaccessible, one of the
Ji ("‘ 1121394v51°) = 0.

Exﬂle .

Suppose that the scalar state representing the angular rate of body 3, zg, is inaccessible. Then fg = 0 and
the observer synthesis equations reduce to the following forms.

[(Gnm -+ d%)(aesps +4%) +¢45md’] (/i +df3)
Ay
aap [(Gcsm +d?)(fa +d f4) + agapafs
* a

. 201 (eapa + ) (/1 +d f3) + (32891 + &) (sgams + %) (s +d /o)
Ag

g =

(3-33)

s

aeapa(aaspy + 4°) /s
A

to = sasdespi a1 +dfa) + %zam +d?)asspa(fs+dfs)

+ (3-34)

[(tmm +&)(assp +4%) + aumﬂ
* n . "

(3-35)

d{ [(aum + d?)(aeapa + &) +a4md’] + agarid [(m + ags)ps + d’]}
t = (f1+df2)+f2\

!
8

aud[(aesm +&8)(fa+dfe) + aeam/sl
¥ &

(3-36)
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fg = 0 (S1+d/f3)

. d[(onsp + @) (assp + ) + mr;d"(aum + &) + agerzd(arsm +2)] Vst dfo+1s

d -r)+ 2

L. [aadirs :: (3231 + )] A (3-57)
. oud[mm (h+d/2) + (a2spy + @) (/s +d f4)
s Ay

| d{aurad[(m +aa)p +d°] + [(aaam + &) (64502 + &%) + anmd’] }

+ - /s (3-38)

A}
where:
i = % (3-8)
pji =1+r;d (3-39)
Ay =& [(azatm + 33063 + G410¢3) P12
+ (a23p1 + a1 + a4spy +aeapa)d® + d‘] (3-10)

From equation (2-11) the synthesized scalar state, g, is expressed in terms of the observer state variable,
2, and the accessible scalar state variables as follows,

1 ]
2q = ;[z—zt,-z;]

i=1

In this case, it is assumed that:

3

il

where Iy = § x 5 identity matrix.

From F = GC,

G =|{f

From E = TB,

E =t
E =t
E =t
E =t

fa fa Jo [s)

t4 tg] for r = 3 (control torques applied to all three bodies)
t4 0] for control applied to bodies ! and 2

0 0] for control applied to body 1

0 tg] for control applied to bodies 1 and 3

25

(3-41)

(3-42)

(3-43)

(3-44)
(2-45)
(3-46)
(3-47)

[T TR
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8.4.3 Observers of Intermediate Order (p =13, 3 or &)

In the cases in which an intermediate namber of the six scalar states of the three-body single-axis
model is insccessible the minimum order of the reduced state linear observer required t» reconstruct these
maccessible states is given by p. In each case the number of nuil columns in the measurement or observation
matrix, C, and the P matrix also is equal to p. The general forms of the E, F and T n:atrices are given
in equations (3-10), (3-11) and (3-13) for p = 3, 3 or 4 where p represents the nuxber of inaccessible state
variables of the model.

, Example .

Suppose the scalar states, 25 and ag, corresponding to the angular position and rate, respectively, of body
3, are inaccessible. Then fig = fig = 0 for i = 1, 2 and the observer synthesis equations reduce to the form
of equations (3-13) through (3-28) with fis = f; = 0. From equation (2-11) the synthesized scalar states,
#¢ and 2¢, are expressed in terms of the observer variables, 5, and 13, and the accessible state variables as
follows,

4 4
(B2), (51 = Y_trj25) = (Aa)g, (2 = _Z‘?.i’j)
iy = =1 ™ 2= (3—48)

. s
-{4g); 5(n ~ Z‘U"J’ )+ (Aa)y5(e - E“li’i)

a j=1 s=t
3-49
fs = ™ (349)
where,
tis he '
4 =‘m te =t5t96 —tiglas % 0 (3-50)

and (A3); ; = Ay without the elements of the i* row and j** column.
For 25 and z¢ inaccessibis, it is assumed that:

| 0 0]
C=|q | i (3-81)
[ 00 '
where I, = 4 x 4 identity matrix.
From ¥ = G‘C:
= |1t 3 f1s fu] 3-52
G [fm fia fas Jaa =)
From E = TB,
L = |f17 f14 ‘10] for r = 3 (control torques applied to all three bodies) (3-83)
(22 tae P26
L o= |03 f14 0] for control applied to hodies 1 and 2. (3-54)
[t33 34 O
L =20 "’] for control applied to bodies ! and 3. (3-85)
[t22 0 f26
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5 -[:: ; g] for control restricted to body 1. (3-5)

$.4.4 Fifth Order Obearvers (p = 5)

An obeerver of at least order five is required when any five of the six scalar state variables of the three
body modaels are inaccessible. The observer synthesis equations are given in equations (3-13) through (3-33)
with § = 1,2,...,5. Since a Afth order observer corresponds to five of the six scalar states being inaccessible,
Jis = 0 for five of the six values of the subscript, J.

 Example

Suppose that the scalar states, 25, 33, 24, 25 and zg, representing the angular rate of body 1 and the
angular displacements and rates of bodies 3 and 3 are inaccessible. Then fi3 = f;3 = fiy = fiz = f;g = 0 for
t=1,2,...,5 and the observer synthesis equations reduce to the form of equations (3~13) through (3-23)
with only f;; % 0. The synthesized scalar state variables, 25, 23, 34, 25 and s are expressed in terms of the
observer «calar variables, z;,13,...,25, and the accessible state variables, using equation (2-11) as follows:

[
(=) Ag), plm =t z)

ipy = = v k=1,2,...,5 (3-57)

tia tiz tie tis tie
ta2 : : : tie
Ay = tas E ; : tae
tgo ¢ . L 77
tga tsa lse fes lee
= tu(A‘)l.l “‘ﬁﬁ(AG)z,l +‘32(A5)a,1 ‘tﬂ(AB)m +‘52(A5)5.1 (3‘58)
where (Ag); ; = Ag without the elements of the i** row and ;** colurmn.
For only z; accessible, it is assumed that:

C=[1000 0 0 (3-59)
From FP=GC,
" /i1
fa . '
G = | fa; (3-89)
Ja
LS51
FromE=TB,
[t12 ti4 t1s
E=]: : | forr=3 (control torques applied to all three bodies). (3-61)
Ltsz lsq lss e
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DREVELOPMENT OF THE FOUR-BODY SINGLE-AXIS MODEL
AND ITS REDUCED STATE LINEAR OBSERVIR
41 ORIGINAL DAMPED MODEL

The rotational dynamics of the four-body single-axis model of a fexible spacecraft with damping shown
in Fig. 4-1 may be represented by the following set of equations.

56y = =y (fy =03) = (61 —03) + 0 (+1)
Ly = ¢y (6y —ba) + b (61 =02) + c3(fs = b2) + bs (05 = 02) + @2 (+2)
Iedy = cy(6s —63) + ba (02 = O) + ca(ds — O3) + by (00 = 05) + @ (4-3)
Ly = —ca(fy — ) = ko (64 —03) + a4 (4~4)
where:

I, = rotational inertia of body 3; +1=1,2,8,4

0; = angular qisplace'nent of body i

§; = angular rate of body i

@ = torque applied to body ¢

k; = rotational spring coefficient at interface j5; /=123

¢; == rotational damping coefficiert at interface ;

4.3 STATE VARIABLE MODEL

The state variable form of the four-body single-axis model of a flexible spacecraft depicted in Fig. 4-1
was written in the folowing form.

% = Ax+Bu (+-9)
x, = Cx (4-9)
where:
T ; ; ; i 1T T xI'|T
b 4 ‘[31 3l] -[01 61 8; 8y 83 03 6, 94] -[xA x,] = state vector

X, = p vector of accessible scalar states
x, = m vector of inaccessible scalar states

a - T
u m[yy - ,,']T..[ﬁ ;_:} (r=1,2,3 or 4)

C =m x 8 measurement or observation matrix
Partitioning of this model by rigid body yields the following forms for its coefficient matrices:

" 0 1 0 1] 0 0 (1] 0 A
—ag3 —0337) G323 Gasry 0 0 0 0
0 0 0 1 0 0 0 0
64 Gurn G4y Ggy G4  G4573 0 0
A = . (4+7)
0 0 0 0 0 1 0 0
0 0 Ges Gesr3 Ges Ges Gg7 G477
0 0 0 0 0 0 0 1
[ O 0 0 0 ass 68673 —ags —Gg573
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FIGURE 41

FOUR-BODY SINGLE-AXIS MODEL WITH DAMPING AT ALL
THREE INTERFACES
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The corresponding block diagram appears in Fig. 2-2.
4.3 REDUCKD STATE LINEAR OBSERVERS

4.3.1 Introcduction

a4 = ~(aq +aqs),

Ggg = —(“8 +467)9

ORIGINA! Pr.07 (9
OF POOR QUALITY

(+8)

G4 = ~(aar1 +a472)
(+9)

ags = —(agsrs +ae7"3)
(4-10)

The minimmm order of a reduced state linear observer required to reconstruct the 8 — m inaccessible
scalar state variables of the four body single axis model of a Hexible spacecraft represented by equations
(4-5) through (4-10) is p = 8 — m where m = 1,2,3,4,5,6 or 7. All of the reduced state linear observers
for this four body model may be written in the form of equations (2-10) and (2-11) under the assumption
that the observer coefficient matrix, D, is diagonal and of dimensions p X p. The corresponding observer

weighting matrix is of the following form.
tiy ... 18
T = :
tp1 .. tps
From equations (2-13), (4-8) and (4-11).
Ft1a tis tie tis ]

wipa tpe Pre Py

[ fiv ... s

bl;ll see /’.v.

(4-11)

(+12)

(4-13)
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432 Observer Synthesis Equations

From Lussberger (4-1), (4-3), (4-3) 2=i Suge (4—4) the equations for synthesising the reduced state
linear observers for the four-body single-axis modul represented by equations (4-8) through (4-10) are given
by equations (3-13) and (3-14). With coefficient matrices of the form listed in 4.3.1 this set of observer
synthesis equations reduces to the following.

- (Ak)mr(fn +diifia) - (Ah)wfu +di.fi) 4 (Aﬁ).ai/u +dii f:4)

_ (Ah)&x (for +diifis)
Al
{ aqsdesr] (ansps + d;)
Alq
(oars +auzn +8) (oespn + &) onspn + ) +aarpad] | s + i 1)
Al

c.mj(ucm +d%)(aespr +47;) + dom‘.’J (fis + dii fid)
- ' Al 7

8410639193 [(Guﬂa + &) Jis + dii Sis) + anspa(fiv + d-‘ifiﬂ
) | ai,

tia

t=1,2,...,7 (4-14)

- (A% Uir +diifia) = (Al4)a5fia + diiJia) + (Ais)a 3 Uis +diiSis)
ai

tia
+ (A:‘_)QL(i':' +dii Jis)
i
[(asspr + d2) (@ssps + 42) + asread?] [assm (i + i ia) + (a2 + &8) fia + e S|
-1 s _
(3221 + d%)aesps [(aupa +d%)(fis + dii Jia) + aespa(/ir + dh’fit)l
- Al

(4-18)

tie (A;.)B(Iil + du'a fr’?) - (A:.)g,a(/a'z + dv'ifu) + (A;C)L’ (fll + d.'.'f;g)
[ e A:
_ (Af)y Uer + diifin) ‘
al,
oups(assps + d7) [dnm (fir +diifia) + (oaupr + &) fis + i fid)
B | al,
[(tmm +dY;)(asspa +d%) + Nlmd?;] [(aum +d%)(fis + diiJis)

Al

sasps(fir + dn‘/u)]
+ ,

arn (4-16)
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(A% o Uis +ditis) = (Afg)g Uin +duifia) + (Bla) s fis + i ia)

a
+ (A:MZ +diiJin) ‘
S40eTPIPY [mm (lﬁ + diifi3) + (sr0p1 + 03 ) fis + du.fu)],
Al
derPe [(mm +d})(assps + 4 +¢4m¢?.-] (fu+difs)
ai,
{6?; [«m (aesps + aerps + &) +r-cm4?;]
LA
(82sp1 + &%) (awsps + &) (aerpe + 47)) +ar.aaummd?.-}(fn +4ifa)

+ , —_—
A,

G =

ﬂ(%m +dii)(oaspa +d7;) + aud.-.-) [(asam +d%)(assps + d%)
Az
a«mﬂ.] ~ aqsaeapd (asspe + d?;)}(f-‘x + dii fia)
+ ar, +Jia
aurds { [(0oaps + &%) onspn + 40) + sarpsdt] (i + difa)
A:‘
oeap3(assps + 4], ) (fis + diifie) + aeaasspaps(fir + d.'ifii)-l
al,

tyy = -

+

ass { [cm(n -ry) - d.'.'] [(aem + d%)(assps + d%;) + ae7pad] ]
Al
a4sdespa(aesps + a7 (r1 ~ '2)}(1.‘1 +dif:a)
x,
{[(mm +d})(assrs + dii) + a4 rxd?.-] [(a«um - d;)(arsps + o)
Al
’lcmd?.'] ~ dqsaespars(azapy + d) (assps + ~-)}(fu +diifia)

tig ™=

+ + fia

(4-17)

(4+-18)

aeadi [dum +aadii{ri = r) + d,’.] [(dum + d%)(fis + dii Jie) +asspa(fi7 + dufd

* a,
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aesdii [aun +agrdii(ry — r2) + 4.‘.] [amn (fn +dii fi3) + (assm + &%) (fis + dii f "4)1

big =
al,
dsi {(mm + d}.)(asspr + &) (aespr + aerradic +d%)
+ . ) A’
it
dii [('ml’l +aaup +dF)assrs + aam d-'.'] (aesps + &%) + aerrad?; }(f.'s + dii fie)
- x +/fis
ia
aesdii { dii [mmm (r2 = 1) + aas(rs = ra)(aa1py +d2%) - aumd'-.-]
+ ' : -
Ay
(assm + d7)(caspa + d2) }(!w +diifis)
- &, -
ae7dii {a«m [azam (fir + dii fia) + (a2spr + ) (fia + d.'.‘fu)]
e &
[(azam +d%)(aesp2 +d%) + aupm d?.] (fis + d.'if.'s)l
+ 7
Al
d.'.'{ [(Ge'ma +agsradii + d;)(a23p1 + 42) (04503 + &2) -
+ 7
Ay
3418876851 Psfad-'-'] +d;; [aaaassplm + a4186391 03
* al,
24168679103 + (aa1n1 +aeam)d?.'] }(f 7 +diifis)
+ — +fis (4-21)
it :
where: ‘
r; = f,: i=1,2,3 | (4-22)
p; = 1l+ridy, i=1,2,...,p I=1,23 (4-23)
diiy = agary +di; (4-24)
diiz = a1 + aesry + dyi (4-25)
diia = ae3ara + agrra + di; (4-26)
diia = Ggsrs + dii (4-27)
—(a3sp1 +d%) aup 0 0
' - s2sp1 —(3ap1 +agwps +d7) de3ps 0
i 0 G492 ~(aesps + ae7py +d?) agsp3
| 0 0 ae7P3 —(asspa + d%)
= d% [(ana«ao.- + 639045385 + d73863885 + 641663385 )P1P2Ps
+ (828845p1 P2 + 2a20a63p1 P2 + 2823067p1 P2 + 203288501 P3 + 264136301 P2
+ ‘iﬂqaevmm + 26418850173 + G4506395 + 2345C67P1P3 + 20483859203
+ agzagspaps)d’; + 2(323p1 + 64191 + auspy + aespa + Gerps + aespa)dl + 2d?.'] (4-28)

4.3.3 Comparison of T Matrices For Elimination of Damping at Various Interfaces
Elimination of damping at interface ; of the model corresponds to setting r; = 0 and p; = 1 in the
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equations for gemerating the clements of the T matrix, equatiocns (4-14) through (4-28). The following
damping conditions have been treated for this set of equations.

1. Damping eliminated at the interface between bodies 1 and 3;

7. Damping eliminated at the interface between bodies 2 und 3;

3. Damping sliminated at the interface between bodies 3 and 4;

4. Damping diminated at the interfaces between bodies 2, 3 and 4;

8. Damping eliminated at the interfaces between bodies 1 and 2, and 3 and 4.
8. Damping eliminated at the interfaces between bodies 1, 2 and 3;

7. Damping eliminated from all interfaces.

Example: All interface damping eliminated.

If damping is removed from all three interfaces of the four body model, r; =0, p; — 1,di;1 — i, diiz — dis,
diia = di, diiq = dii and

A, —~d [4230«667 + 82304585 + 633662085 + 041863385
+ (a23a4s + 2623063 + 2a33a67 + 2633085 + 2041463 + 241367
+ 2841085 + 645863 + 2246457 + 2345845 + G63645) 0,
+2(a35 - - 641 + a4s + aea + as7 + ass)d; + df’.] = Ay

{a«saea(ass +d%) - (641 + ags +d2) [(dea +d%)(ags + %) + ae?ff?}] }(/ﬂ + dii fia)
Qg
aat |03 + ) (06 + ) + ardh] (i + ki fia)
T Ay
a41Ge3 [(Gss +d%) fis + diifie) + ass(fin + d.‘if.’s)]

- ™ , i=1,2...,p (4-29)

tig =

[(Goa +d3)(ae: + 43 ) + de7ﬂ-.-] [daa(fu +dii fia) + (833 + d%) (fia + di-‘fu)J

tia = =7 '
Ay
_ (328 + 4% )aes [(Gcs +d%)(fis + dii fis) + aas(fir + dﬁl-‘a)l (-30)
Ais
t aqs(aes + d7;) [aza(fu + diifia) + (azs + &) (fia + d.'ifuﬂ
e == AM 7
_ [(023 + d%) (a4 + 47} + a1 d?) + Guff,-] [(dss + &) Sis + diifie) +asslfir + d.'.'fis)] (+-31)

Ais
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Gesder [Gn(fn +diifia) + (asa + &) (fis + dﬁ!«)]
Ais

oe7 [(tm +d N o +d%) +aa d.’.] (fis + diifia)
T Aig

{d?.-[ux(cu+¢o1+d?,-) +¢ud?,-]

A
(028 + &} ) (ass + &%) (ae7 + &) + Mamﬂ(ﬁv +diifis)
Ais

tisg =~

(4-32)

+

{toas + o0+ ) [(oes + 1) ons + ) + 2]
s A
a45063(ass + d?,-)}(fu +dii fia)
- +fia
Ais
0414.'-'{ [(aea +d¥%)(aes +d%) + 0674?;] (fiz +dii fid)
- AM
ag3(ass + d%) (fis + diifie) + assass(fir + dii f ;s)}
Ais

tihn = —

+ (4-33)

823dii I(dea +d7;)(aes + %) + ae7d?.-] (fir + dii Sia)
Ay
i (a2a + %) [(aes + %) (ans + %) + aerd?| fia + diifi)
- Ay
aeadii(a2a + d7}) [(ass + &) fis + dii fie) + ass(fi7 + d.';f-'s)]
+ Ais

tig = —

i4

(4-34)



ORIGINAL PAGE 13
OF POOR QUALITY

&sdi;(aes + &) [m(fn +diifis) + (sss + &) (fis + dnl‘uﬂ
' . ¥ o
d; [(m + 4 )(aes + ;) (005 + 7)) - aard;(aes + d?-')l (fis + diifi)
+ A + i
_ aesdii [Gn#.- + (ags + &) (aes +d?.-)] (frr+diifis)
Aie 7

(4-35)

agrdii {M [m(fu +diifia) + (83a + &) (fis + d-'.'f-at,‘]
Ais
[(a,. +d%)(aes + d2) +and?.-1 (fis+7.:fie) }
Ay
di{ (ors + 82) ous + &) (oar + )
Aig

tiy =

+

+

dii [onm + @41863 + dq1067 + (Ga1 + aea)«.,'}] }(fn +2;i fis)
’ A4y

+ +/is (4-36)

4.4 SOLUTION FOR SYNTHESIZED STATE VARIABLES
4.4.1 Introduction

Inaccessibility of a scalar state variable in the model equations (4-5), (4 .) is reflected by a corre-
sponding null column in the C and F matrices as implied in equation (2-14). For the generation of reduced
state observers for the four body model the number of inaccessible state variables, p, can be 1, 2. 3, 4, 5, 6
or7.

4.4.3 First Order Observers (p =1,

An observer of order at least ne is required when only one of the eight scalar state variables of the
four body model is inaccessible. The first order form of the linear observer equation is as follows:

§mds +Eu+ Gy (4-37)
The P and T matrices associated with a first ord.r observer for the four body model then reduce to the
following row forms. i

r -[fl fa ... fg] (4—38)
T ={t; t3 ... tg} (4-39)

The observer synthesis equations are then of the form of equations (4-14) through (4-28) with ¢ = 1.
Since a first order observer corresponds to oae of the scalar state variables being inaccessible, one of the
Ji (v=1,2,...,8)=0.

Example
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Suppose the scalar state representing the angular rate of body 4, zs is inaccessible. Then fg = 0 and
the observer synthesis equations reduce to the form of equations (4-14) through (4-28) with f;s = 0 and
i = 1. From equation (2-11), the synthesised scalar state, 5, is expressed in terms of the scalar observer
variabls, :.udthcmsdbhnﬂnnaembluufoﬂwu.

iy = -[z - Et.z.] (4-40)
=1
' For 24 inaccessible, it is assumed that:
)
| 0
where Iy = 7 x 7 identity matrix.
From F=GC,
G=[h fa fa fo [s Je fr] (+-42)
From E =TB,
E =[iy t, tg tg] for r =4 (control torques on all 4 bodies) (4—43)

4.4.3 Observers of Intermediate Order (p =2,3,4,5 or 6)

For those cases in which an intermediate number of the eight scalar states of the four-body single-axis
model is inaccessible, the minimum order of the reduced state linear observer required to reconstruct these
inaccessibie states is given by p. In each case the number of nuil columns in the measurement or observation
matrix, C, and the F matrix also is equal to p. The general forms of the E, F and T matrices are given
in equations (4-11), (4-12) and (4-13) for p =2, 3, 4, 5 or 6 where p represents the number of inaccessible
scalar state variables of the model.

Example

Suppose the scalar states, zy and zg, which represent the angular position and rate of body 4, are inaccessible.
Then f;7 = fig = 0 for 5 =1, 2 and the observer synthesis equations reduce to the form of equations (4-14)
through (4-28) with the preceding conditions. From equation (2-11) the synthesized scalar states, 27 and
Zg, are expressed in terms of the scalar observer variahles, z and z; and the accessiable scalar state variables
as follows.

E(-l)'ﬂ (A'l).,l (= - z: tija;)

—— ™ (4-44)
E("l)'“(Ai).,z(‘- E‘tﬂ))
2y = 2 = (4-45)
for
4 = :;: :;: =¢17t2s —tiglay # 0 (4-48)
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where (A3); ; = Ag without the elements of the ** row and j** column.
For 2y and 24 inaccessible, it is assumed that:

| 0o
C=l & | i: (4-47)
| oo
where Iy = 6 x 8 identity matrix.
Since F' = GC,
fu fis he ha Jis fm]
G =
I fia fis Jaa Sas Jae (4-48)
From E = TB,
= 012 tie tis t1s - . . N
E [t 22 tze 26 t“] for r = 4 (control torques applied to all four bodies) {4-49)
- lf12 t1s tie O - . . .
E [t” tae tue 0] for r = 3 (control torques applied to bodies 1, 2 and 3) (4-50)
E = fia e 00 for r =2 (control torques applied to bodies 1 and 2) (+-51)
tag t34 0 O Fques apphe v
E =iz 0000 (control torque applied to body 1) (4-52)
tgg 0 0 O que app y

4.4.4 Seventh Order Observers (p = 7)

When any seven of the eight scalar state variables of the four body model are inaccessible, a linear
observer of at least order seven is required. The observer synthesis equations are as presented in equations
(4-14) through (4-28) with 1= 1,2,...,7. Since a seventh order observer corresponds to seven of the scalar
states being inaccessible, f1; = f3; = ... = f7; = 0 for seven of the eight values of the subscript, ;.

Example

Suppose only the scalar state variable representing the angular position of body 1, z,, is accessible. Then
the remaining scalar states, z3,23,...,2zg are inaccessible, fi; = fia = ... = fi3 =0 for 1+ =1, 2, 3, ¢, 5,
6 and 7 and the observer synthesis equations reduce to the form of equations {4-14) through {4-28) with
Jia = fig= ., = figm0ands=12..,7 The synthesized scalar state variables, Z; through s, are
expressed in terms of the observer variables, z; through 27, and the accessible state variable, z,, by utilizing
equation (2-11) in the following form.

Yo (=) (Ar); (3 = tirz)

tpp = =L r k=1,2,...,7 (4-53)

tia - tis
Ay = : .

trg -+ g
= t13(A7),,1 =t22(87);,1 +ta3(A7)5,, — taa(Ar)y,
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+'s3(A7),y —tes(Ar)g, +tr2{Ar)r,

where (A7), ; = Ay, without the elements of the ** row and the ;** colram.
For only 2; accesaible, it is assumed that:

C=[100000 0 0
From F=GC,
Ju
G=|:
In
From E = TB,

tie tie tie ls
E=]: { : | forr=4 (control torques applied to all four bodies)
tra lrq l7g 18
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DEVELOPMENT OF THE FIVE-BODY SINGLE-AXIS MODEL AND ITS

REDUCED STATE LINEAR OBSERVERS

§.1 ORIGINAL DAMPED MODEL

In earlier work, Guidance Systems Division (5-1), it was shown that one axis of the three-axis five-body
approximation of a prototype ficxible spacecralt can be decoupled from the uther two axes. The four-body
single-axis models of a flexible spacecrafit developed in the previous section were therefore extended to

corresponding five body models to represent the decoupled axis of the three-axis five-body model.

The rotational dynamics of the five-body single-axis model of a flexible spacecraft with damping shown

in Fig. 5~1 may be represented by the following set of equations.

-~

I8y = —cy (61 = 62) = ky (61 = 82) + @1
Ifs = (6, -éz) + b1 (01 —82) + ca(fs —62) + k(02 -83)+ ¢
Isbs = c3(f3 = 63) + ko (B3 — 83) + c3(6a — ) + ks (64 — 03) + g5
Lfy = c3(fs —0s) + ka(0a — 04) +ca(fs = 64) + ke(Bs —04) + g4
Isfs = cq(64 —65) + ka(0s —05) + gs

[; = rotational inertia of body s, i=1,2,...,5

6; = angular displacement of body ¢

6; = angular rate of body i’

g = torque applied to body ¢

k; = rotational spring coefficient at interface ; s =1,2,3,4
¢j = rotational damping coefficient at interface 5

5.3 STATE VARIABLE MODEL

(5-1)
(5-2)
(5-3)
(5-4)
(5-9)

The state variable form of the five-body single-axis model of a fexible spacecraft depicted in Fig. 5-1

was written in the following form.

x = Ax+Bu (5-9)
where:
x =[z; - z10)T =[xT xT|T=[0, 6, 0; 6, 05 65 8, 6, 05 §5|T = state vector

x. == m vector of accessible scalar states

X; = p vector of inaccessible scalar states

g a7
u -[ul con u']T-[i .. i] f-1,2,.o-'5

C =m x 10 measurement or observation matrix.
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FIGURE 5-1

FIVE.BODY SINGLE-AXIS MODEL WITH DAMPING AT ALL
FOUR INTERFACES
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9 0 0 0 0

0 0 0 0 0

0 0 0 0 0
845 GasT2 0 0 0

0 1 0 0 0
Geg des aer ag7rs 0

0 0 0 1 0
ass Gss’s as7 Gss aso

0 0 0 0 0

0 0 810,7 810,774 =a10,7

a4s = —(a41 + 04s),
ags = ~(aea + ae7),

agr = —(ass + as0),

forr=5

5.5 REDUCED STATEL LINEAR OBSERVERS
5.3.1 Introdustion

The minimun order of a reduced state linear observer required to reconstruct the 10 ~ m inaccessible
scalar state variables of the five-body single-axis model of a flexible spacecraft represented by equations (5-6)

42
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[

0
agors

1

—a&10,774 |

G4q = —(aqr1 + a4sr3)

age = —(agary + derta)

agg = —(agsr3 + agory)

(5-8)

(5-9)

(6-10)

(5—11)
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through (5-10) is p = 10 — m where m = 1,3,3,4,5,6,7,8 or 9. All of the reduced state linear observers
for this five body model may be written in the form of equations (3-10) and (3-11) under the assumption
that the observer coefficiont matrix, D, is diagonal and of dimemsions p X p. The corresponding observer
weighting masrix is of the following form
tia -t t10
Tm=|: : (6-13)
tp1 - tp10 -
From equations (3-13), (3-10) and (5-11),

(t1s tia tis tis ti:0

B=|: i i i (6-13)
Lina tha lpe L3 tpu0

(a0 fie

F=]: : (5-14)
.!’.1 b j’.lo

The corresponding block diagram appears in Fig. 24.

§.3.23 Observer Synthesis Equations

From Luenberger (5-2), (5-3) and (5-4) and Sage (5-5) the equations for synthesizing the reduced state
linear observers for the five-body single-axis model represented by equations (5-8) through (5-10) zre given
by equations (2-13) and (2-14). With coefficient matrices of the form listed in 5.3.1 this set of equations for
generating the elements of the T matrix reduces to the following.

{[muﬂesmm + 418670193 + G4s067P2P2 + (64191 + B4sP2 + ceaps +aerpa)dl; + d}..]

t: . Al
i = aaatu;p;ﬁA:-s ( 15)1,3

ae783593 (34191 + aasp3 + 45;) (G10,794 + 'f.".)}
- N (fir +dii fia)
is
(aeaps + aerps + d?,-)(Aj-,)l‘a _ ae7085P1 P4 (610,794 + %)
a93845P24 Al

+ a4 ] (fd +dil‘f€4)

ances(Aig)ys |
+m“(fas +dii fis) S

G41 38368501 7208

+
Al

[(alo,m. +d%)(fir + dii fis) + aro,7p4(fio + d.-.'lnc)]; i=12,...,p (5-15)

N (as3ps + ae7pa + d7;) (Als)1 5 aevaup’(am 7pa +d%)
" 823848919285

+ d7;)aea (4
x [dzam (fir + dii fiz) + (s23p1 + &) (fia + d-'.'fu)] + (a“man“s)::\(:s g (fis + dii Jis)
+ a“a“mpz(?”m +4) [(am.'mq +d%)(fir + dii fis) + 310,704 (Si0 + d.'.'fno)] (5-18)
s
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tg = _(Au)u'-[mn (Jn +dicfia) + (asspr +d%)(Jin +‘“,“)]

U217 4] A:‘;
(Bf)o(Als)ss
833045045610,7P1PaPePad} |
(A%s)s.s
810,77441;

fis + difia)

+ [(610.7?4 + ) (v + dii Jis) + 0r0,704(f10 + dc;fm)] (6-17)

tis = m&&zﬂ‘_ﬁd [Gnm (Jir +diifia) + (azapr + &) (fis + dii/u)]

+ “67(A:'s)s,a (a10,7p4 + d%;)
88310, 79447

+ (aespa + aerps + &) (Als)5 _ (a3sp1 + dF;)assasar)
a85010,7P2P4 Ay Al

(fis +dii Jis)

x [(als,nn + @) fir + dii fia) + ar0,794(fio + d.‘.'fno)] (5-18)

Nsuvacopzmtﬂaam (fir +dii fia) + (a2sp1 +d%)(fis + d.'.'fu)J

tilp = o
A
+ MU&; +dii fie)
agsd10,74
+ agp [ a.sameA:" - A:; (fl7 +duf|8,
[Geaaumpa + aeaae0p3p4 + a67080P3P4 + (aeaps + Ga7Ps + assps + dsops)dd + d:J n
' G45G10,7P8Pa (g 68,3
azap1 + d7;)assasspd (ansps + 2e0ps + d%)
- - Al ' - (fio +dii firo) (5-19)
s

d.'il(dum + d%)(seaps + ae7ps + d%) + aqspa(asrps + J,‘,)l
= 333045P1 P24

o [somndl + (ours + ) aem + )] | )
+ 622045P1P2 8 | i

_“w“pg(am’,p‘ +d%) B, (aupl:-l a4spa +d%) + agsr1 (aespr + d?.)]] (fir +diifia)
i5
a41dii

+lat 8330421924

{ [(ﬂaapa +ae7p3 + d?.')(A:'s)l,a
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~ G184 8aTo0eP1 P2P] (810,704 + df;)] (fia + dii fid) oy
+0aapa(A%)y 3 (fis +dicfis)

+01384s008 34571 P3 Py [(410.7?4 + &) (i + dii fis) + ar0,794(fi0 + d-'.'/no)] } (8-20)

{ [sater =) + ] ear + ) + swsade b,
““Pl?iA;l

tis =~

+

3306788893 (310,794 +d7) [ﬁcs(ﬂ -r3) - di.‘]
- ar (fir +dii fia)

{(um +d) [(amx + &) {2srs + i) + mnd?.-]
+ G304 P2Q);

assdiira(azapy +aaridi +43) }(Afs)m

+
. B3Py

N A

ag708573 (810,7P4 + 47;) [(dzam + d};)(aesra + dii) + aurltff,-] ]
- (fia + dv'l'ft'd)

aead;i [lmm +a4dii(r1 —r3) + d?.'] (A%s)y,3

+/fiet+ PR (fis + diiiie}
agsPay2 [«mm (a4sra +dis) + d.’-,-d.'.'zJ ra(Als)s s
+ %63 Al - G10,7P4 Q)
x [(am_nu +d)(fir + diitis) + a10,704(fio + d.‘.'f-'xo)] (5-21)
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e - { [‘" “"("’°")](All)i-0 Ca‘o?‘uzl!“u,m %) z-'o[}

sy,

x [mn (I + dis Jia) + (asepr + 45 ) (Jia + «'ﬁfn)]
_ [(“ﬂ'l +d};)aesra(8);), 5 - diis (8%s)1,0(A%s)s.0

anmdl, 039845043310,7P1 PaPePadly

+ aqrre (310,794 +d%;)(Afs)s s

a1e, TPQA ] (fol +d‘ fn.) +f00

[d.t + aga(ra - "t)] (Ats)s ¥ a«aqacum(ﬂnm +d¥)(ra — ra)
G10,7P8P4 8 Ais

x [(Gw,nu - d%)(fir + diifis) + a10,794(/i0 +d.'-'fuo)} (5-22)

ra(Aj5),; 3PP E’n‘dﬁi +ay10,704 (assrs + d.-ﬂ
tiy = —aer —= 4 -

x [azm (fir + diifiz) + (s2ap1 + &%) (fia + dﬁfu)]

[dm 7P4 = dsodii(rs — re) + d’] (Ais)s,a

+ ae7d;; (fis +diifis)
a8010,7P3P4 A5
(asapa + 47)) [(aufa +dii)(a107P4 + ) + acontff.-l
+ Gudm.mmA:'s

ae7pydii (810,7p4 + asoradii +d%) (&%)
+ i
8e5310,7P3P4 A5 B3

(a2ap1 + d?.-)audeapﬂﬂ,- dii4 + a10,7p4(asss + d.ﬂ

A:-‘ U“." +d|'l'j€i)+fii

+ { [cu(ﬁum + %) (re = ra) ~ (aesps + aerpr + d.".-)d-'-'] (Als)s.a

asspnadig
_ (a33p + “?;)‘““"“‘Z;” 3 [a" fro—ra) + dﬁ} } (fio + dis fir0) (8-23)
13
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asodii
Cuﬂlo'mp‘A:_‘

+(asm + ) (fis + dh‘fa’l)] + ae7ps(Bis)s 5 (fis + dii fie)

{a«aomsaw.mﬂm [amn (for +dii fia)

+ [(Gum + ag7ps + df;)(Alg)s s — (a28m +d?.-)m¢oa¢u¢|o,wgpam] (for + i f.‘s)}

. [{ diis [aeaa-mm + ag3as0p104 + Ge7a0PsP4 + (362P2 + GeTPs + Gesps + Gsopa )47 + d.‘.]

agsa10,7P3P4 A
Ge0p4310,774(0esP2 + de7ps + &) (;: )
ag5410,7P3p4 A5 8188
N (a2sm1 +d7%;)04606303 |as0P4810,774 — diis (asspa + asops + d'.’.ﬂ
Alg
X (fio + dii fi,10) + fi10 (5-24)
where:
no=d i=12,34 (5-10)
iy
p; =1+rdi; $=1,2,...,p 71=1,2,3,4 (5-25)
diiy = agary +dii (5-28)
Gii3 = G471 + G4pr3 + dij (5-27)
d:iz = agary + ag7ra + dii (5-28)
diis = agsra + agors + dii (5-29)
diis = Gy0,774 + dis (5-30)
—(a23p1 + d%.) a4101 0 0 0
a3 ~(aupr + aespr + &%) Ge3aP3 0 0
s = 0 G452 —(aeaps + aerpa + d%) dss7a 0
0 0 agrra —(assps + asops + &%) 210,704
0 0 u LETY N < (310,704 +¢

= —(azap1 + d7;)(Als)y,1 ~ 31591 (A5)s,
= ~(a33p1 + ‘ei)(A:'s)x,l - 82991 (4i5)1,3 (6-31)

8.3.3 Elimination of Damping From Model Interfaces

Elimination of damping at interface ; (j = 1,2,3,4 for the five body model) corresponds to setting
r; = 0 and p; = 1 in the equations for generating the elements of the T matrix, equations (5-16) through
(5-31).
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Example All Interface Damping Eliminated

If damping is removed from all four interfaces of the five body model, r; — 0, p; — 1, diiy — dii,
diiz ~ diiy dijs — diiy diig — diiy dijy — di; and Afy — As.

(Bighs

. {[maoa+auao7 +d4s0e7 + (341 + 645 + Ges +aov)d?.-+d.-‘.-]
i3 =

633084545
Zortes(ous+ o 2o )R (14 s
Ais
(aes +ae7+d%)(Ais)1 3 aerass(are,r + d2) o

+aa [ 33848 Ais - Ais (fiz + dii fia)

Gum(Ais), 3, Tt
+ W(LS +dn/16)
+ a‘-——lza“ [(“10,7 + &) fir + dii fis) + aro,7(fi0 + d.'.‘fuo)]: i=12,...,p (6-32)

o = (263 + aer + 4 )(Ais), _ 8e76us(aro 7+ %)
" - a33a4545 Ais

{23 + % )aea(Ais), 5
83384545

x [aaa(fn +diifia) + (@33 + &%) (fiz + d.'if-'4)] + {fis + dii fis)

aeaags (323 + 42)
A

+ [(010,7 + @) fir +diifis) + aro,7(fie + d.'f.f.'w)] (5-33)

As
tie = (;%‘3 [ana(fu +dii fia) + (823 + %) (fis + d.'.'fu)]
(Ais)x,e(A-‘S)s,a ) Ot
333645085310,7 A5 (fis +dii fis)
(A-'G)s

+ dm,_d—7 Ao [(410.7 + &) (fir + dii fie) + ar0,7(fio + d;.’fuo)] (5-34)

tig = 4“667(2?7 +4) [ana(fn +d:i fia) + (328 + &%) (fis + dafu)]

ag7(Ais)g 3 (a10,7+ d%)
+
a85G10,745

(aea +ae7 + 4% )(Ais)s s (as + 2 )assces
+ -
agsd10,7i5 As

(fis + dii fi6)

x [(aw,? + &) (fir + dii fia) +a10,7(fi0 + dﬁfa'lo)] (5-35)
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aerase(Ais)ss 0 o OF POOR (/170
+ m"(ﬁs +¢nflﬂ)
(aes +aer +d2)(Ais)ss (033 + &% )assaes
w0 [ as610,74:8 - Ads (fir +diifis)

[aoaau + aeaaeo + ae76e0 + (363 + ae7 + ags + aso)dl; + d,‘,]
+ (Ail)s.a

aes810,74i8

(223 + d%;)assaes(ass + aso + 47}
- v (fio + dsi fir0)

[{ [(041 + d%)(aea + ae7 + d%) + a4s{aer + d,’,)]
ti1 =Gy

7 83384545 H(&is)
aerass(810,7 + d%) (641 + aus + %)
- Ais (fir + dii fia)
a41

83384545
+ ag3(Ais)y 3(fis + dii fie)

+633345663345 [(410,7 + &) (Jiz + i fis) +ar0,7(fi0 + diifilo)] }l + fia

s = —dy (aea + ae7 +d%)(Ais), 5 _ 822067085 (d10,7 +d?)
e ' a46is Ais

](fn + dii fi3)

[(ass + d2) (007 + ) + ass(asa + )] (Ais)y 5
1 82304525

LG«vﬂu(azs + %) (ar0,7 + d%)
N A

_ aea(a3a + d%)(Ais), 5
a338458i5

} (fia + dii fia)

(fis + dii fie)

ae3 55 {323 +
Ais

B
ul [(810,7 +d%)(fir + dii fis) + ar0.7(fio + di:’filo)]]] + fis
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tis =dy { —"- [dsa(fu +difis) + (eas + &) (fia + dii fia)

(Acl)l.: (Aol)m
Ogadumdlo.'lAu

(fis + dii fia)

+-——:ﬁ';:k: [(cm,y ~d%) (f.v +disfis) +o10,7(fi0 + d-'-'fno)] } +/is (8-39)

toy = —dy mm£:2:+4?a) [an(fu +diifia) + (25 + &) (fis + d.'-'.fu)]

ag7(a10,7 +d%)(Ais)s 3, _
- assarorii 23 (fis +dii fie)
+d%) (a5 + &) + aaa+ B )asses |
~ (a10,7+ d%) { L“" ag)sa:os1A.s aﬂ] (Ais)g,a ~ (232 +£fs) 3763 } (f7+diifis)
[(a“ ks a‘;:ﬁ JBislys | (o2a + d'?"i‘::‘m"””] (fio + d.-.-f.-m)ll +fa  (5-40)

tio =d;; [a“a‘::: 2n {hsacvaesdlo, [das(fu + dii fia)

+ (@23 + %) (fis + d-'.'fM)] + ae7{Qis)s 3 (fis + dii Sie)

+ [(aea +ae7 + #.-)(Ajs);,a - (a2s + d?.-)dqsaeaauamﬂ] (fir + dii fis) }

N { [aeaau + aggasg + de7as9 + (des + ae7 + ags + aso)d’; + d,‘,] (Ais)s,a

agsa10,7445

(828 + a7 )asasa(ass + aso +d%;)
B (fio+ diifi10) § + fis1o (5-41)

8.4 SOLUTION FOR SYNTHESIZED STATE VARIABLES
5.4.1 Introduction

Inaccessibility of a scalar state variable in equations (5-8) and (5-7) is reflected by a corresponding
null column in the C and F matrices as implied in equation (2-14). For the gencration of reduced state
observe:s for the five body model, the number of inaccessible states can vary between one and nine.

5.4.3 First Order Observers (p = 1)

An observer of order at least one is required when any one of the ten scalar state variables of the five
body model is inaccessible. The first order form of the linear observer equation is as follows:

i=ds+ELu+ Gy (6—42)
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The ¥ and T matrices associaied with a frst order observer for the five body model then reduce to the
following row forms:

Puifi fo - Lol . (6-43)
T =|t; t; - t)o] (5~44)

The observer synthesis equations are then of the form of equations (5-15) through (5-31) with 7 = 1.
Since a first order observer corresponds to one of the scalar state variables being inaccessible, one of the f;
($=1,2,...,10) =0.

Example

Suppose the scalar state representing the angular rate of body 5, 210, is inaccessible. Then f;¢ = 0 and the
obgerver synthesis equations reduce to the form of equations (5-15) through (5-31) with the subscript, 3,
omitted and fip = 0. From equation {2-11), the synthesized scalar state, 2,9, is expressed in terms of the
scalar observer state variable z, and the accessible model scalar state variables as follows.

9
210 = t_ll; [3 - gt.‘z-'] (5-45)
For 219 inaccessible, it is assumed that:
| 0
C=l b |: : (5-46)
] o
where Ip = 9 x 9 identity matrix.
From F=GC,
G =[fi fa - [o] (6-47)
From E =TB,
E ={t; ty te tg tjo]forr =3 (control torques applied to all 5 bodies) (5—48)

5.4.3 Observers of Order Greater Than One (1 < p < 10)

For those cases in which more than one of the ter scalar states of the five-body single-axis model are
inaccessible, the minimum order of the reduced state linear observer required to reconstruct these inaccessible
states is given by p. Tu each case the number of null columns in the measurement or observation matrix, C,
and the F matrix also is equal to p. The general forms of the E, F and T matrices are given in equations
(6-12) through (5-14) for p =2, 3, 4,5,6,7,8 or 9.

Example

Suppose the scalar states, zg and z,¢ , which represent the angular position and rate of body 5, are inacces-
sible. Then f;p = f; 10 = 0 for ¢ =1, 2 and the observer synthesis equations reduce to the form of equations
(5—14) through (5—3‘) with s =1,2 and fio = j.,m = 0. From equation (2-11) the synthesized scalar states,
Zo and 29, are expressed in terms of the scaiar observer states, z; and 3; and the accessible model scalar
state variables as follows.

2 8
S (=1 Ag);y (5 = Y _tij25)
=1 =1

Ag

(6-49)
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j=1

A}
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810 =
for

Ag =

tio 1,10
t20 t3,10

As

I = t19t3.00 ~1,10020 % 0

Where (A3), ; = Ag without the elements of the i** row and ;** column.

For 2p and 3,0 inaccessible, it is assmmed that:
| oo
C=l 1 |::
| 0

where Ig is an 8 x 8 identity matrix.
Since ¥ = GC,

2
G |/

From E = TB,

E = 19
KT

E = 413
[ ¢23

)

tia
24

the
34

tis
e

tie
t26
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SECTION 6
APPLICATION OF MODAL MODELING AND
DIRECT MATRIX PRODUCTS

6.1 INTRODUCTION

In the development of reduced state observers for the class of single-axis models of a flexible spacecraft
presented in sections 2 through 5 of this report, it was assumed that the state vector coefficient matrix of the
observer model was diagonal in order to reduce the amount of computation involved n solving the observer
synthesis equation,

TA-DT = F, (6-1)
for the elements of the T matrix as a function of the elements of the F matrix where

F =GC (6-2)

Despite this rather arbitrary assumption, the computational effort involved in this solution grew with alarm-
ing rapidity as the number of flexibly connected rigid bodies incorporated in the single-axis model was
increased. Furthermore, especiallly for the models incorporating both larger numbers of rigid bodies and
damping, the assumption of a diagonal D matrix seemed a rather noor approximation in view of the con-
siderable departure from diagonal form of the state vector coefficient matrices (A matrices) of these models.
In view of these problems, Dr. Henry Waites (6-1) of Marshall Space Flight Center suggested that a more
fruitful approach to synthesizing observers for this class of single-axis models of a flexible spacecraft treated
in the preceding sections of this report would be based upon the following sequence of steps.

1. Recast the state variable forms of each undamped single-axis model into modal form.
2. Add modai damping to each modal model.
3. Racast the observer synthesis equation in terms of direct matrix products.

The advantages cited for this approach include the following.

1. The state vector coefficient matrix, A, in each modal single-axis model appears in 2 x 2 block
diagonal form implying that the state vector coefficient matrix, D, of the corresponding observer
requived to accurately symthesize the inaccessible states would be no less sparse than 2 x 2 block
diagonal.

2. The modal model is more amenable to truncation of less significant oscillatory modes.
3. The coefficient of damping associated with each vibrational mode can be specified at the outset of
the analysis.
8.3 TRANSFORMATION OF THE TWO-BODY SINGLE-AXIS MODEL TO MODAL
TORM

The approach utilized in transforming the undamped two-body single-axis model of Section 2 to damped
modal form follows that presented in Thomson (6~2). It consists of the following steps.

1. Write original single-axis model in undamped form.

2. Write undamped single-axis model in terms of inertia and stiffness matrices.

3. Solve extended eigenvalue problem for eigenvalues and corresponding eigenvectors.

4. Normalize the eigenvectors.

§. Construct the modal matrix from the normalized eigenvectors.

¢. Transform the model to principal coordinates (modal form) utilizing the modal matrix.
7. Add modal damping to the model in modal form.
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8. Write the modal model with dumping in state variable form.
6.3.1 Original Undamped Two-Body Single-Axis Modal
The undamped form of equations (2-1) and (3-2) is the following.

L = <kl + k0, = g (6-3)
I38y wm ~lyly 4+ b0 = g (6-4)

where the coefficients and variables appearing in this set of equations are defined in Fig. 2-1.
8.3.2 Undamped Two-Body Modal In Terms of Inertia and Stiffness Matrices
R+Kx =q {6-5)
where:
x 3191 92]1.-[21 22]1.

I = [I‘; 107] = rotational inertia matrix

K =k [_11 '1‘] = rotational stiffnes matrix

q =[a &l

6.2.3 Detarmination of Eigenvalues and Eigenvectors

The eigenvalues for equation (6-5) are obtained by solving the extended eigenvalue problem which
is eanivalent to solving the following equation for A.

Alx = Kx (¢-8)

An equivalent form of the above equation is:
PI~Kjx = 0 (6-7)
A non-trivial solution of the extended eigenvalue problem exists if the following holds with the expanded

forms of the rotational inertia and stiffness matrices for the two-body model expressed iinmediately following
equation (6-5)

YT
AL~ K| ’ Mk

- (A -mth) o (6-8)
Ll

The solutions for this extended eigenvalue problem are:

kX (6-9)
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here ¢ The edgenvectors corresponding to A; are obtained by solving equations of the following form for v;
T L (AT =Klv; = 0 (6-10)
The cigenvectors are normalised by solving the following equation for ¢; (f = 1,2

viv, =1 (6-11)
The cigenvalues, eigenvectors and normalised eigenvector coefficients are displayed in Table 6-1

6.3.4 Construction of the Modal Matrix

1ON

r 1/3
! ( l)
Ig

6.2.5 Transformation to Prineipal Coordinates

P -[V1 l Vg]-ﬂ

y =pTx (6-13)
yi =z +c123 mc1by +a1y (6-14)
I -1/2 I 1/2 I -l,/7 'I 1/2
o) a (B e e ) e
d =p’q (6-16)
g =eaq +aqp (6-17)
L\~ L\
& =cr (f;-) Qe (;:T) @ (6-18)
Model in Principal Coordinates (Modal Model)
i =q (6-19)
ja =—win+d {6-20)
b R\
W = (Il <+ Ig) (6—21)

6.3.6 Two Body Modal Model With Damping

Modal damping is added to the modal model described by equations (6-19) and (6-20) by adding a
damping term to the equation with which the modal frequency, w,, is associated. The two body model with
damping in modal form then may be written as follows.

h o =q (6-22)
J2 = —2wi¥1-wiva + @ (8-23)

where ¢, is the damping ratio associated with ;.
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Table 6-1 OF POOR QUALITY

Eigenvalues and Eigenvectors for Each
Mode of “wo Body Modal

Normalized
Mode No. Eigenvalue Eigenvector Eigenvector
A= wf v; Coeflicient, ¢;
1 -1/3
1 0 e, +(I + 1))
1 ,
' L -1/3
2 L + I “ -h “ (Il)

6.2.7 State Variable form of the Two-Body Modal Model with Damping

The subscript on y; has been changed to “3” so that the following relationships can be used in
constructing the state variable form of the modal model.

v = (6-24)
Y4 =y (6-26)
State Variable Modal Model
¥1 01 0 0 N 00
va 00 0 0 v2 1 0 q{
- + {6-20)
vs 00 0 1 s 0 0 {4
ﬁ4 00 —Wi —2{1\4)1 Vs 01

6.3 TRANSFORMATION OF THREL-BODY SINGLE-AXIS MODEL TO MODAL FORM
6.3.1 Original Undamped Three-Body Single- Axis Model
The undamped form of equations (3-1) through (3-3) is the following.

L6y, = —kydy + kb3 + 1 (6-27)
Ly = 8y + (b + k)83 + kab3 + 25 (6-28)
Isfs = kyby — kals + g5 (6-29)

where the coefficients and varirbles appearing in this set of equations are defined in Fig. 3-1.
6.3.3 Undamped Three-Body Model in Terms of Inertia and Stiffness Matrices
 Ik+Kx=gq (6-30)
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x =[0 & 0.]"-[3; 23 lg]r OF P

'L 0 0

1

I =m]|0 I3 0] = rotational inertia matrix
(0 0 I

'bl -y 0

K m|<l b+h =—h| = rotational stifiess matrix
Ly - o

Qe =[a a alf

6.3.3 Determination of Eigenvalues and Modal Frequencies

Corresponding to equation (6-30) an extended eisenvalue problem can be defined which consists of solving
the following equation for \.

AIx = Kx (6-31)
This is equivalent to setting the following determinant equal to zero
Ay — &y X 0
AI-K| =| K Mz = (ky + k3) ks
] ks Ay — iy
ki kt+hy lla) kiks  kks ki)
- a_{(L . 2rrThm % -

BB (1l LA AR A L 7 Al oy A v Rl (6-32)

Since each solution for A corresponds to the square of a modal frequency, equation (6-32) may also be written
as follows. '

AA-wl)A-wd) =9 7 (6-33)
for which the solutions are: A; = 0, A\; = w} and A3 = 3.
The eigenvectors corresponding to A, are obtained by solving equations of the form presented in equation
(6-10) for v; where ¢ = 1,2,3. The resulting pairs of eigenvalues and eigenvectors are displayed in Table
6-2. :
Application of the remaining steps in the approach utilized in Section 6.2 yields the following state variable
maodal form for the three-body single-axis model of a flexible spacecraft.

6.3.4 State Variable Form of Three-Body Modai Model with Damping

"1 "0 1 0 0 0 0 I
ya 00 0 0 (1] 0 ¥a
va| |0 O 0 1 0 0 vs
y'4 00 -w? —2{101 0 0 Ya
s 00 0 0 0 1 ¥s
Vs [0 0 0 0 —wi —2wsl Lye.
r0 0 07
1 0 0
4
0 0 0
*lo 1 ol|® (6-34)
0 0 0 (,J
[0 0 1]
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Table 6-2

Bigenvalues and Eigenvectors for Each Mode
of Three Body Modal

Normalived
Eigenvalue Eigenvector Eigenvector
Mode No. A=mw? oo v Coefficient, ¢;
1
1 0 e f1 *(h+hL+5H)"'?
1
p 1 -
kl —U’Il k I 3 k I k 2 -1/2
3 —des sl Monlit
2 wy e A :k[11+( Y ) I’+(k,—rlla ’ﬁ) Ia]
kl —w’lll h
| ks ~wils ky |
[ 1]
kl —U’Il k 2 2 -1/3
3 e b—nh "_1:'1_1!"_:)
} . LY *["*( ) ne (Roare) o
1 —waln
| by —wil3 by |

6.4 EXTENSION OF RESULTS TO SINGLE-AXIS MODELS WITH FOUR Ok MORE
RIGID BODIKS

Inspection of the state variable modal form of the three-body single-axis model with modal damping in
equation (6-34) and the corresponding modal two-body model in equation (8-26) reveals that the state
vector coefficient matrix, A, in these modal models could be written in the following 2 x 2 block diagonal
forms.

Two-Body Model:
A= Ay 0 (6-35)
¢ Apn
Three-Body Model:
A 0 0
A=]0 Ay 0 (6-36)
0 0 Ay
where A;; and 0 are 2 x 2 submatrices.
Furthermore,
01
Ay = [0 0] {6-37)
and
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Ay '[-—:?.. _’;_lw](on'>l | (6-38)

IS also should be noted thai the dimensions of each A matrix are equal to twice the namber of rigid bodies
in the model. Application of the approach utilized in transforming the two-body and thres-body single-axis
modals to state varisble modal form with damping yields a set of models that extend the patterns for these
models. In particular, a single-axis model involving r rigid bodies can be transformed to a modal state
variable model with a st-te vector coeflicient matrix of the following form.

M e O ]

)

A= (e-39)

which is 3 2 x 2 block diagonal matrix of overall dimension n x n where n = 2r. The forms of the 2 x 2
sabmatrices along the principal diagonal of this coefficient matrix are given in equations (6-37) and (6-38)
for i =1,2,...,n/2. The remaining elements in the A matrix are zero.

‘

6.5 OBSERVER SYNTHESIS EQUATIONS EXPREESED IN TERMS OF DIRECT
MATRIX PRODUCTS

The observer synthesis equations are exprissed in the following form i Section 2 of this report
TA-DT =F =GC ' (6-40)
for the state variable form of a single-axis model of a Aexible spacecraft, with some scalar states inaccessible,
% = Ax+Bu O (e-1)
x, = Cx (6-42)
where the corresponding reduced state observer is given by:

4 =Ds+Eu+Gx, (6-43)
s=Tx (6-144)

The coefficient matrices and vectors appearing in equations (6-40) through (6-44) are defined for a linear
model of dimension n with m accessible scalar states and p inzccessible scalar states as fullows.

= n X n model state vector coefficient matrix

= n X r model control vector coeficient matrix

= m X n model measurement or observation matrix
= p X p observer state vector coeficient matrix

= p X r observer control vector coefficient matrix

= p X m observer ooserved vector coefficient matrix

A o8 0OOW >

= p X n transformation matrix from model state vetor to obeerver state vector

m[xT xT|T = n-vector of model scalar states

X, = m-vector of accessible scalar states

X, = p-vector of inaccessible scalar states
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8 = p-vecior of ocbeerver scalar states
From these definitions, each of the matnx products appearing in equation (8—40j has the dimensions p x n.
If I, is defined as the identity matrix of dimensions p > p and I, is defined correspondingly, then each of

the matrix products, I, TA and DT, also has the dimensicns p x n. The observer synthesis equations may
pow be writtea in the following form.

LTA-DTL, =GC="F (¢-48)

However, the definition of a direct matrix product given in Lancaster (6-3) may be used to write the observer
synthesis equations in the following equivalent form.

(LOAT-DRL|T= (e~10)
whore:
T
P =|TT
7

TT =  vector comprised of the elements of the i** row of the T matrix

and ¥ is related to F in the same way.
From Lancaster {1-3), the direct matrix products appearing in equation (6-40) may be expanded as

follows. .
Af
| ar O
LOA" = O (647)
Ar npxnp
For
"d" e dyy
D =|: : (6-48)
.d’l ° dn
(duyle -+ dyyly
DRI, =| : : (6-49)
.dyl!u oo d”x“ npxnp
Solving for T yields
% =|I,3AT-DoL|'GC (8-50)

In general, this solution would require inversion of a matrix of dimension np x np.
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6.6 OBSERVER SYNTHASIS EQUATIONS FOR SINGLE-AXIS MODELS IN MODAL
FORM

I A is the state vector coeFicient matrix of a single-axis model in modal form, it was shown in Subsection
4.4 that it assumes tho form given in. equation {6-39). The transpose of : “ch a 2 x 2 block diagonal matrix
also is block diagonal and of the following form.

O | ~ (6-51)

A:/I.all

Af

AL

where each submatrix, A;;, is 2 X 2 and the remaining elements in AT are zero.

For an observer of even order, p, of a state variable single-axis model in modal form with an A matrix of
the 2 x 2 block diagonal form appearing in equation (8--39) the observer state vector cocfficient matrix is of
the following 2 x 2 blok diagonal form.

Dy, . -
Dazs O (8-52)

O ; Dn/?,n/?

where D;; = 2 x 2 submatrix on the principal diagonal.

DRI,
D33 01, O

AT =

DAoL, = (6-53)
Dy/2,5/30 1
where:

[dyy  dig

Du - - (6-34)
[ dsy  dys

daa 434] e

D. =i, 8-5:

22 | i dug (8-55)

DI:.L =y = .Z’- 3p-13 d’— 3,01 ] (6_56)

T [dp~11p-3 dp-1,p-1
- [dy_1,5-3 dp—l.p] 6-57
D.‘L'% | dp,p—1t dy,» ( )

61



ORIGINAL PAGET i
OF POOR QUALITY

The equs‘un for generating the elements of the T matrix may now be written in the followng form

[Af,- -dulh =dily T r.
—éuk  Afj-dnh O T, r;
O Afi=dy1p1ls =dpiyh | [ Tp-1y Fpory

_ —dpp-1la AL <d .BIL Ty Fpi

i=13,...,n/2 (6-58)
where:
10
o =[o 1]

Tij = [t.',zj_l ti35 ]r t1=12...,p (6-59)
¥ =[fizj-r [fig|F - (6-60)

It should be noted that all of the 2 2 submatrices appearing in the coefficient inatrices of equation set (8-38)
are commutative under mmitiplication becaus:: this property is useful in the solution for the elements of the
T matrix for p > 1. Since all diagonal matrices commute, it is necessary only to show that the matrices,
A};- —~dipI3 and A}-; ~ dyoI3, commnte for j = 1,2,...,n/2.

lAﬁ-dulallA.’,—d..xala[“‘" 0 ][-du 0 ]

1 -dH 1 —du
dud,, 0 1
= [—(dH .;d") dkld,.] = [Afl - an')l[AT‘ - 'fﬂlg] (6—01)
~d 2 -d —?
AT, — duL][AT - = O] Y » 2, ]
{ gy~ oM QI[AJJ dro13] [ 1 —(du +2fj..|uj-l)] [ 1 =(dva +25j-19-1)
- dud,, -u,’--x “’?-x + 21wy

_(dH + dn + zfj—l“j-l) dkldn + 2(}—1“)’-1 (dkl + dn) + (“j’-l - 1)“}_ ‘)

=[A]; - druL][A]; - cuT] i=23,...,n/2 (6-62)

Hence, the 2 x/2 submatrices, Aj; —dixl3 and Aj; —d,,[3 are commutative under matrix multiplication for
J=1,2,...,nf2.

For an even p the solution for the elements of the T matrix now involves np/4 inversions of the coefficient
matrices of dimensions 4 X 4 partitioned into 2 X2 submatrices. Since the 2 X 2 submatrices are commutative
under mmltiplication, each of the np/4 vector-matrix equations of the set can be solved in terms of each
Tij which has the effect of reducing dimensions of the matrix inversion iwvolved by a factor of two, The
definitions of T;; and F; in equations (6-59) and (6~60) in terms of the indevidual elements of the T and
P matrices would then be invoked to complete the solution.

For the case in which p is an odd integer, the corresponding D matrix is 2 x 2 block diagonal except at
one location along its principal diagonal where there occurs a degenerate “block” in the form of a single
non-gero scalar element. With the assumption that the individual scalar state variables can be reordered,
this isolated principal diagonal element can be placed at the lower right hand corner so vhat the D matrix
assumes the following form.

Dn

D= 5’ . O (6-63)
ekt

d’i’
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where D;; are 2 x 3 submatrices defined in the same way asforpeven fori=1,2,...,(p~1)/2 and d,,, is
a scalar on the principal diagonal of the D matrix.

D, 91, :
Di; @1, O

DOIL, = O (6-64)
Y-
s oL

By the same procedure as utilized for even p the equations for generating the elements of the T matrix when
p is odd may be expressed in the following form with F;, and T;; defined in equations (6-59) and (6-60).

—dul; AT -dyl, TrT,1 8y
1y iJ
i-dﬁllﬁ Ay-dﬂxﬂ O TQ)’ ng
Al =dp3p-2ls =dp-3,- 1L Tp-2y Fo-2y
-d,- 1,,-212 A}; - dp—l,p-ll7 TP"J FP“J
L A]'Tj-d,"lz- - ij - - FPJ -
(6-865)

From equation set (6-85), it is evident that when p is an odd integer, n/2 of the equations in the set
reduce to the form,
(AT = 4, LIT,, = P,y jetge.d (600

where it has been assumed that the state var’i‘ab}e model can be rearranged, if necessary. so that this vector-
matrix equation appears last in each of the ry sets of equations.

From equation (6-37},

[ ]
-1 =d
(AT, —dul;]™! = 3 = (6-67)
From equation (6-38),
[-(24','-1«1,'-1 +du) Wi, ]
- -d
(AT —du) ™! = - ol (6-68)

wi_y + 2o 1wjo +d3,

Hence, for the case in which the order of the observer, p, ir an odd integer the solution for the elements of
the T matrix in terms of the elements of the F matrix reduces to n{p — 1) /4 inversions of coefficient matrices
of dimension 4 x 4 partitioned into 2 x 2 submatrices and n/2 inversions of coefficient matrices of dimensions
2 % 2. Since all of the 2 x 2 matrices of equaticn set (6-56) commute under multiplication, the dimensions
of the n(p—1)/4 coefficient matrices to be inverted are in effect reduced by a factor of two by first solving
for the T,;'s in terms of the F;;’s and then applying equations {6-59) and (6-60).

6.6.1 First Order Observers (p = 1)
Since p is an odd integer, equation (6-65) applies and reduces to the following form.
[AL =du LT j=F;, s=1,2...,n/2 (6-69)
where F;; and T,; are defined in equauons (6-59) and {6-60) and the F matrix, which has a single row,
may be written as follows:

F=[F[, F, .- F[ |7 (6-70)
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Thcmpouﬁudndomtmtrixmbo'ﬂttqhthmﬁmnuthlmﬁx. Solving equation
(6-69) for T;; yields the following:

Tijm [A};- -durg]-l’u (0-71)
which, in view of equations (6-59) and (6-60), becomes:
1] -1 [ fa,35-
[ oy | (A5~ duk]™ [ }':;:1] (¢-72)

where [AT, = dub]™! is given in equation (6-67) and (AT - dulp] ™! is given in equation set (6-68) for
j-2,3,...,ﬂ/2.

8.6.3 Second Order Observers (p=23)
Since p is even, equation (6-58) applies. For P = 2 it reduces to:

AL -4y, ~di3Ih ][Tu‘] [rlj]. ; 2 :
[-d“h af o | IR v ERE L SR . (6-73)

where T;; and F;; are defined in equations (6-59) and (6-60).

Al —d,1, —di3Lp ]
Aa: 81} 6-74
u= [ ~dy Iy AT —dp1, (674
Since AT, - dyI, commutes with AT, - 4,,I, under matrix multiplication
ot Ay 75 .
[Ag;] = |[AT - duh|[A]; - dyy 1) - diadg I (6-75)
Then
Ar‘ - dﬂlﬁ dulg n
s om 9373, L duiadp o F=1,2,...,2
AT 4
Ty; = dﬂ_l?pu + —JJ_LI’F” (6-77)
|4 [Ba;]

Solutions for the individual elements of the T matrix in terms of the elements of the P matrix are then
obtained by application of the definitions of T;; and F.; in equations (6-59) and (8-60).

[tm,--;] - [Argz"'dﬂlﬂ [fuj—x] +_d&[f2,2j—l]

t1,325 [Aqj] J1,35 [Ag5] L fa25
I L2...,2 (6-78)

[tz,zj-x] ‘dl_ﬂ[fl.aj—l}+[Arn'_d“171 [fi,Qj-l]

83,25 |Ags] L S35 |Agj Ja,35
(6-79)
6.6.3 Observaers of Higher Order
For p = 3 equation (6-65) reduces to the following.
AT —d,1, —dialy } [T; J [T; ]
] i = ! Ty ”

[ —dnl; AL —duL )| Ty, Ty (6-73)
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[A}.; ~dess]|To; =Wy w=1,3,..., : (0-50)

The cbeerver synthesis equations for p = 3§ differ from those for p = 2 by the addition of equation set (6-
80) which is of the same form as the observer synthesis equations for p = 1 with the sabscript, 3, substituted
for the subscript, 1. Therefore, the solutions for the elements of the first two rows of the T matrix for p = 3
are identical with those for the two rows of the matrix for p = 2, equations sets (6-76) and (6-77). While
the solutions for the elements of the third row are of the same form as those for T matrix for p = 1, equation
set (6-71) with the numerical subscript, 3, substituted for the subscript, 1.

For p = 4 equation set (6-38) reduces to one equation set identical with the one for p = 2, and another
equation set of the same form with each numerical subscript incremented by one. Hence, the solations for
the clemaents for the first two rows of the T matrix for p = 4 are identical with those for the two rows of the
T matrix for p = 3, equation set (6-78) and (6-77). The solutions for the elements of the third and fourth
rows are given by the same equations with each of the mumerical subscripts incremented by one.

The solutions for the elements of the T matrix for larger values of p follow the same pattern. Thus,
they can be constructed directly by using the solutions for p = 1 and p = 2 as “building blocks” as was
demonstrated for p= 3 and p = 4.

8.7 SOLUTION FOR SYNTHESIZ D STATE VAxIABLES
In Subsection 8.4 it was shown that the single-axis modal models of a flexible spacecraft treated in this
report can be written in the state variable form in terms of the modal state vector as follows.
¥y =Ay+Bu (6-81)

where

A =n xn state vector coefficient matrix

B =n xr control vector coefficient matrix

C =m X n observation or measurement matrix

y = modal state vector of dimension n

ya = vector of accessible modal state variables of dimensicn m

u = control vector of dimension r

;I'he block diagram corresponding to this model is the same as Fig. 2-2 except that the vectors, x and x,,
?;e_sroe;)laced by y and y,, respectively. The 2 x 2 block diagonal form of the A matrix is shown in equation

If the number of inaccessible modal model scalar states is given by p = n — r (1 < p < nj, then the
corresponding reduced modal state linsar observer model is the torowing.

s=Ty (6-84)
where
D = p X p observer state vector coefficient matrix
E =p x r observer control vector coefficient matrix
G = p x m observer observed vector coefficient matrix
T =p x n observer weighting matrix
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The block diagram for this observer is the ssme as that shown in Fig. 2—4except that the vector, y, is
nbm*modlorthwctorx.

After ilie observer syrithesis equation given by equation {(6-40) or one of its equivalent forms such as
equation set (8-58) for even p and equation set (6-65) for odd p has been solved for the elements of the T
matrix, ¢;;, equation (6-84) can be solved to express the synthesised inaccessible modal model scalar states
in termos of the accessible modal model scalar states. This last step generally will require the inversion of
a p X p matrix. A block diagram of the modal model of a flexible spacecraft and its reduced state linear
observer appears in Fig. 0-1.

Example: Solution for two synthesized modal states in the two body model.

Suppose that for the state variable modal two-body model the modal scalar states, ys and y, are inacces-
sible. Then p = 2, n = 4 and the T matrix is thus:

tu g tia tise
= 6-85
T [tn taz a3 tu] (6-85)
corresponding to:
y=(n w v vl (6-86)

If the remaining modal model scalar states, y; and y; and all of th. elements of the T matrix are known
then equation (6—84) can be solved to express the synthesized inaccessible modal model scalar states y; and
94 as follows.

ya = (AZ), (21 =t = tiaya) - (_.._)’_(32 —tq1y1 —taaya) {6-88)

Yo = (32%13(:‘ ~tuy ~tiaya) = (-7:'13‘1(7-2 —t3191 —~taays) (6-89)
where

A = :;i :;: =1t)1tag —tiats1 ¥ 0 (6-90)

{Ag);; = Aq without the elements of the #** row and the ;** column.
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CONCLUSIONS AND RECOMMENDATIONS

During the period covered by this report, the class of single-axis state variable models with some
inaccessible states was extended three ways.

1. The patterns involved in the prior development of the state variable forms of the two-body, three-body,
and four-body single-axis models of a flexible spacecraft were extended to produce a five-body model

that could represent the single axis that was found to be decoupled from the remaining axes of a
Bve-body three axis model treated in earlier work.

2. A rotational damping coeflicient was added to each fexible interconnection between the rigid bodies
comprising each model.

3. Each undamped single axis model was transformed to a modal model with one or more inaccessible
model state variables.

For each combination of single axis state variable model and inaccessible scalar state(s) a reduced
state linear observer was generated to reconstruct those scalar states that were inaccessible. This was done
because the application of linear quadratic regulator (LQR) and closely related time domain approaches to
attitude control utilize all or nearly all of the scalar states of the mcdel of the spacecralt to be controlled.

7.1 CONCLUSIONS

The following conclusions were drawn mainly from the development of the damped two-, thrse-, four-
and five-body single-axis models with inaccessible scalar state variables of a prototype fexible spacecraft
and the generation of the corresponding linear observers of minimum order required to reconstruct these
inaccessible scalar states.

7.1.1 Observers Generated for Single- Axis Models Based on Angular Displacement and Rate
State Variables

1. Since, of the four coefficient matrices appearing in the observer synthesis equation, A, D, F and T,
only the state vector coefficient matrix in the single-axis model, A, is known a priori, the following
approach was used to generate the elements of the coefficient matrix, T, for the transformacion [rom
the state vector of the model, x, to the state vector of the observer, 3.

2. The elements of P can be determined by utilizing the known values for the elements c¢f C, the
observation matrix in the single-axis model and the assumed values of the elements of G in
conjunction with the equation, F=GC.

b. Assuming that D is diagonal simplifies significantly the solution of the equations for determining
the elements of T.

2. The minimum order required for a reduced state linear observer to reconstruct p inaccessible scalar
statey of a single-axis state variable model with a total of n scalar states is p where p = 1,2,...,n~1.
Therefore, the number of elements in the T matrix to be determined equals np and solving for the p
inaccessible synthesized scalar state variables requires the inversion of a p x p coefficient matnix.

3. The rigid-body flexible-joint single-axis models of a fexible spacecraft treated in this report are in a
more general form when damping is added to each joint connecting the rigid bodies. Therefore it is
far easier to develop the observer synthesis equations for the damped models than to begin with the
equations for the undamped models and generalize them to account for the effects of added damping.

4. If n =1 of the n scalar state variables of the single-axis model are accessible, a reduced state observer
of order at least one (p = 1) is required to synthesize the inaccessible staie variable. The number of
elements in the T matrix to be determined equals n and solving for the one inaccessible scalar state
variable does not require the inversion of a matrix.
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8. As the number of accessible scalar state variables decreases, the number of inaccessible scalar states,
p, the number of elements in the T matrix to be determined, np and the dimensions of the coefficiens
matrix to be inverted in solving for the inaccessible synthesized scalar state variables, p x p, increase,
which increases the number of computations required.

8. At least one of the n state variables of the single axis model must be accessible in order for the
inaccessible state variables to be synth:zized by a reduced state observer.

7.1.3 Observers Generated for Single-Axis Models Based on Modal State Variables

1. The state vector coeflicient matrix, A, in each modal single-axis model appears in 2 x 2 block diagonal
form implying that the state vector coefficient matrix, D, in the corresponding reduced state observer
is 3 % 3 block diagonal.

2. When the observer synthesis equation is expressed in terms of direct matrix products, solution for the
elements of the T matrix generally requires inversion of an np % np coeflicient matrix.

3. When the number of inaccessible states of the model, p, is even, use of A and D matrices in 2 x 2
block diagonal form in the observer synthesis equation reduces the solution for the elements of the T
matrix to the inversion of 22 4 x 4 matrices partitioned into 2 x 2 submatrices all of which commute
under multiplicatioa.

4. When the number of inaccessible states of the model is odd, use of A and D matrices in 2 x 2 block
diagonal form in the observer synthesis equation reduces the solution for the elements of the T matrix
to the inversion of 5(’;"—11 4 X 4 matrices partitioned into 2 x 2 commutative submatrices and 2 2x 2
matrices.

S. The modal matrix operates on only the angular displacement state variables and thas each modal state
variable generally is a weighted linear sum of all of the angular displacements.
a. Reduced state linear ohservers predicated upon a modal single axis model generally require that
at least one of the modal state variables be accessitle which is equivalent to requiring that all of
the angular displacement state variables of the original state variable model be accessible.

b. Reduced state observers based on the modal model can be used to synthesize one or more inac-
cessible angular rate state variables of the original state model.

¢c. If no modal state variable is accessible or, equivalently, if any one of the angular displacement
state variables for the original s*ate model is inaccessible, reduced state observers predicated upon
the modal model cannot be used to synthesize any state variables.

0. Even if all of the necessary conditivas required for synthesis of state variables by a reduced state
observer predicated upon a modal single axis model are satisfied, two significant disadvantages of this
approach are the following:

a. Modal state variables that are weighted sums of angular displacements.and rate state variables
are difficult to interpret physically.

b. Transformation from the modal state variables to the angular displacement and rate ctate variables
may be very complicated.

7.3 RECOMMENDATIONS

The following directions are suggested for future study in the application of attitude control to state
variable models of flexible spacecraft for which one or more scalar states are inaccessible.

1. The modular control techniques developed for the attitude control of models of flexible spacecraft for
which all scalar state variables are accessible should be modified for application to series of single axis
models and their associated reduced state linear observers developed in the work treated in this report.

2. Selected combinations of single axis model and its associated linear observer and modular attitude
control system should be simulated on a digital computer to support investigation [ effects of changes
in the following single-axis model and observer characteristics.



4.

ORIGINAL P i
between OF POOR QUALITY
a. Ratioe the masees (rotational inertine ) of bodies comprising the single-axis model.

b. Magnitudes of spring and damping coefficients at the interfaces between the rigid bodies of the single-
axis model.

. The generation of reduced state observers to reconstruct inaccessible scalar states of a model of a flex-

ible spacecralt should be extended to the three-axis five-body model of a prototype flexible spacecraft
The application of modular techniques to the attitude control of selected combinations of a single-axis
model and its corresponding reduced state linear observer should be extended to the combinations of the

single-axis and two-axis fve body models representing the prototype flexible spacecraft and the corre-
sponding reduced state observers.

. The combination of single-axis and two-axis five body models and their linear observers and modular

attitude control systems should be simulated on a digital computer.

. Coefficients representing the sensitivity of the scalar states to parameters of the corab nation of singie-axis

and two-axis five body models and their linear observers and modular attitude control systems shouid be
developed. .

. Since, for 2 model with n scalar state variables, the number of elements of the T matrix to be determined,

np, and the dimensions of the coefficient matrices to be inverted in solving for the synthesized inaccessible
variables, p X p, increase as the number of inaccessible variables, p, increases, it would be desirable to
determine whether there is a value for the ratio, 2, at which a full state observer would be more readily
implemented than a reduced state observer.

. In view of the egpecially convenient forms of the modal state variable single-axis models of the flexible

spacecraft and of the corresponding observer synthesis equation it appears worthwhile to investigate ways
to mitigate the requirement that all rotational displacement state variables in the original model be
accessible.
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