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ORIGINAL P,-4cZ V,-^

OF, 
POOR QUALffy

ABSTRACT

The problem of applying modular attitude control to a rigid body . flen1le suspension model of a flexible
spacecraft with some state variables uu=-- siWe was addressed by developing a sequace of singieaaxis model
and gig a series of raddced state line* observers of minimum order to reconstruct those scalar state
variables that were Inaccessible. The specific " ,t axis models treated consisted of two, three, four and five
rigid bodies, respectively, interconnected by a dsxiible shah passing through the masscenters of the beam
Red wed state Haear observers of all orders up to ,", less than the total number of scalar state variables were
generated for each of the four she-axis models cited. Each of the single•aris models was then transformed
to a corresponding modal model to which modal damping was added. Each of the damped modal models
was written in state variable form. With the asamptioa that at least oas of the scaler modal s A* var^zbles
was acce=U. reduced date linear observers were developed for sytheaung the inaccessible modal elate
variables for each modal model.
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EBCTION 1	 OF POOR QUALITY

24TILODLTCTION

This report is submitted in compliance with the Scope of Work imder contract NABS-33979. The
period of performance covered by the contract is from October 1, 1985 to August 31, 1994. The submission
and approval of this report constitute the successful completion of the "Exibibit D" portion of the contract.

This report is a sequel to five others, two of than previously submitted under a different contract
nvsd,w. The two prior reports, under a different contract number, references (1-1) and (1-2), were submitted
'in October 1978 and September, 1979 and covered the periods from July 27, 1977 to July 27, 1978 and from
August 20,1978 to August 26,1979, respectively, in compliance with "Exhibit A" of contract NAS8-32660.
Three prior final reports was prepared under contract NAS-33979. Reference (1-3) was submitted on March
8, 1982 and covered the period from August 15, 1980 to October lb, 1981 in compliance with "Exhibit A"
of the contract. Reference (1-4) was submitted on March 18, 1963 and covered the period from October 16,
1981 to October 31, 1982 in compliance with "Exhibit B". Reference (1-5) was submitted on January 24,
1984 and covered the period from November 1, 1982 to September 30, 1983 in compliance with "Exhibit C".

1.1 OBJZCTWZ

The sections that follow summarise the effort expended on the Modular Design Attitude Control System
Study contrac from October 1, 1983 to Auge-jt 31, 1984. In prior applications of modular attitude control
to rigid body-flen`ble suspension approximations of the rotational dynamics of prototype flexible spacecraft,
it was assumed that all of the scalar state variables of the linearized models were accessible for measurement
and/or control. Actual spacecraft to be controlled almost never satisfy such a broad condition. Therefore,
the principal objective of the development of modular attitude control, completed August 31, 1984, was the
generation of a series of linear observers to support the application of control to state variable models of
flexible spacecraft with damping for which one or more state variable;* are inaccessible.

1.9 SCOPZ

Study effort was concentrated in four main areas:,
A. Development of a series of single axis state variable models of flexible spacecraft with damping to

be utilized in the comparison of different approaches to the development of modular attitude control 	 +.
systma. These models consisted of two, three, four or five rigid bodies serially connected by a flexible
suspension in such a way that motion was restricted to rotation about a common axis through the
mass centers of the bodies.

B. Generawen of reduced state linear observers for each damped single axis model developed in Task
A corresponding to various numbers %nd distributions of inaccessible state variables following the
approaches presented in Luenberger (1-6), (1-7), (1-8), and Sage (1-9).

C. l-andformation of the undamped versions of the single aids models developed in Task A to their
corresponding modal models with modal damping following the approach presented in Thomson (1-

D. Generation of reduced state linear observers for each modal model developed in Task C with various
numbers of inaccessible modal state variables utilising direct matrix products as described in Lancaster
(1-11).	 1

1.3 GZNZRAL

This report is comprised of seven sections. Settiotu 2 through b describe the development of the two.,
three-, four. and ftve•body single-axis state variable models, respectively, of a prototype flexible spacecraft
with damping and the generation of the minimum order reduced state linear observers for the reconstruction
of inaccessible scalar state variables of these models. Section 6 begins with the transformation of the single•
axis models of Sections 2 through b to modal forma to which modal damping is added and concludes with
the development of reduced state linear observers for these models when one or more modal state variables
are inaccessible. Section 7 lists a number of conclusions and recommendations drawn from generation of
linear observers for the series of single-axis state variable models described above. References are listed at
the end of each section.
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SECTION f

DEVZLOPMIL'VT Olr TWO-BODY BINGLS-AMS MODEL AND ITS
REDUCED NTATZ LDMA L OHaBYVZW

2.1 OR,IGMAL DAJ"ZD MODEL

The rotational dy=n ics of the two-body shWe-skit model of a A*zR a spacecraft with damping shown
iz Flg. 4-1 mq be repnnnken by thxxe following set of egsadom:

Iis l = —Cl (41 — 4) — h1(01 — d9) + ql 	 (2-1)

t j, ! el (jl - B,) + lh (01 - 09) + qs	 (2-2)

'*now.
I; = rotational inertia of body i; i =1, 2
8; = angular displacement of body i
®r - angular rate of body i
qi = torgae applied to body i
ki - rotational spring coeflickut at the interface between the bodies
el - rotational damping coe@lcicnt at the interface between the bodies

9.9 STATE VAB.T,ABLZ MODEL

The state variable form of the two-body "* .axis model of a flexible spacecraft with damping bhown
in Fig. 2-1 may be expressed as follows:

I — As +'9n	 (2-3)

X", - Cx	 (2-4)

where:

X
—[81

 Bl	 ® 1	 02	 B? ]' — L xl	 X'	 i'	 241" = XT	 ^T 1T	 = state vector
1x, — m•vettor of accesdble scalar states

x, - g-vector of inaccessibAe scalar states

u L 017= [ u l	 U3 )r n• (	 = control vector

A - 4 x 4 state vector coefficient matrix
B = 4 x r control vector coefficient matrix (r - 1 or 2)
C - m x 4 measarnaent or observation matrix

0	 1	 0	 0

A -	 -alt	 —a9ari 	at*	 a9arl (2-.S)

I0	 0	 1

441	 441rl	 —a4l 	 —a41r1

r l
C l= (2-4)

1̂

ass = 
ki
Il

(2-7)

441 -ji
12

(4-8)

0	 0

B 1	 0	 for r= 2 (2-9)
0	 0

0	 1

• Al
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FIGURE 2-1

TWO-BODY SING1 r!. AXIS MODEL WITH DAMPING
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The Us& diagram coeiwpoadfet to this model is depicted in Fig. 2--2.
ORIGINAL	 ,

2.3 ZZMUCZD STATZ 1f.IlMAB 0883ZVZZS	 OF POOR

2""	 Ilan
The mi*:mom order (aamber of scalar state variabla) of a reduced state linear observer required to

srooauiraee the 4-m macc ssi le scalar states of the two-boo she-axis model represented by equations
(9-3) th v@A (2-9) is p - 4 - m. This reeoastzioctioa was accomplished for a given state variable model in
three main stages.

1) Syndwsimg a linear observer of miain— regairad order (p).
2) Defining a synthesised variable corresponding to each of the inaccessible state variables of the siren

state variable model.
3) Expressing each synthesised variable as a fancdon of the state variables of the reduced state observer

and the accessible state variables of the given state variable model.

The relationship between the single axis model and its corresponding reduced state observer is depicted in
Fig. 2-3.

The equations for the reduced stag observers corresponding to the state variable model of equations
(2-3) through (2-9) are the following.

i - Dar + Zu+ Gy	 (2-10)
s - Tx	 (2-11)
Z - TB	 (2-12)

where:
D = p x p obsemr coc'Reiem maths (assumed diagonal)
Z = p x r observer control vector coefficient matrix
G = p x m observer vector of observed states coefficient matrix
T - p x 4 observer weighting matrix

The corresponding block diagram appears in Fig. 2-4.

9.3.9 Observer Synthesis Zquatloms

The equations for synthesising the reduced state linear observers, based on those appearing in Luen-
berm (1-1), (1-2), (1-3) and Sage ( 1-4), were written in the following form.

TA - DT - F	 (2-13)

7 - GC	 (2-14)

For

tll	 t 19	 t la	 t14
T -	 (2-ib)

14,1 tp,s W tp,4

fil f14 lie f14

F -	 (2-18)

f,,l f,,z i►a fp ,4

{dii	 0
D s l 

l0	 4,p

6
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FIGURE 2-2

BLOCK DIAGRAM OF THE STATE VARIABLE MODEL
OF A FLEXIBLE SPACECRAFT
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Vehicle

Model
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Observer

	

	 x  = xI (.&. 
ZA • T)

T

u n vector of scalar inputs to vehicle model

xA = vector of accessible scalar states of model

= vector of scalar states of observer
	 E

T = observer weighting matrix
	

n:

zI = vector of reconstructed scalar states of model

z	 -- = reconstructed vector of all scalar state variables of
	

i

xI	 vehicle model	
i

k
i

tE

i

t

FIGURE 2-3

BLOCK DIAGRAM OF SPACECRAFT MODEL
AND ITS REDUCED STATE LINEAR OBSERVER
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Observer Equations

z Dz + G_^A + Eu

Since GxA = GCx = Fx,

z Dz +Fx+Eu

FIGURE 2-4

BLOCK DIAGRAM OF LINEAR OBSERVER
FOR STATE VARIABLE MODEL OF FIGURE 2-2
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sad the foe= of the ♦ matriz given in equation (2-6) the observer synths equations ro-uce to the following
general forme•

til - dilti2 - a41r1 =i4+fi2	 i- 1,2 1 ... ,p	 (2-1d)

tie - -alerl ti2 +do244 + fi4	 (2-19)

r-(al8t +dii) 	&41P1	 1 
['i2 

s [fil +dfifi9
1L	 ^	 -(6+^+4i)1ti4 	 fie+difi4 J	

(2-20)

4-ii - a2a*1 + ii	 (2-21)
die - a41r1 +4	 (2-22)

pt - 1 + rldi	 (2-23)
A,•+i2 - (a23P1 ♦ •i)(a41P1 +,e-:) - a2a a41P1

— cii(a2aP1 + 4,41P1 + du)	 (2-24)

42 - - (a41PI+d'i)(fil+diifi2)+a4IPI(A2+diifi4) 	 i=1 2	 (2-25)
Ail

• 44	
a23P1(fil +A fit) + (aWl + d2') (AS + dii fi4	 (2-26)

"	
'i2

dii [a41 + (a2a + a41 )rl di + 4j; 1 	a di
411 - -	 (fil + difi2) + fit + 

41
4l (fia + difi4)	 (2-27)

	

Awn	 ,2

a28det 	 di [a2a + (a2a + a41)r1dii +d2
tis - -1114101 +difi2) + (fia +difi4) +fi4	 (2-28)

'i2	 Ai2

2.3.3 Comparison of T Matrices for Damped and Undamped Models

^^ 
if damping is removed from the model, r l -+0, di1 di, dig —► di, Pl '^ 1 and

—i2 — dj2i (a2a + a41+ dig) — 4i2-

42 s _ (a41 + d?:)(fil +144M) + a41(fia +difi4)'	 i = 1,2....	 (2-29)
Ad

44 : _ as$(fil +difi2)+(a2a+di)(fi8 +difi4) 	 (2-30)
A.'2

di [(a41 + (0,j) (fit + 444) - a41(fia + difi4),

til - h2 -	 (2-31)
1542

di [4228(fil + 444) - (623 + dii) (fia + di fi4)l
tia - fi4 -	

a2	
(2-32)

Comparison of the corresponding equations for generating the elements of the T matrix, t il (i — 1, 2, ... , p;
j =1, 2, 3, 4) revealed that the addition of damping at the niterface between the two bodies had the following
effects:

t
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1. & tie egandew exp Melot gig asld 44, the d m & of the even colw= of the T matrix as a foncdon
of tie J; f, the elements of the F matrix, the form of eachegaa=reaains the saw under addition
d dawrW witi sup, aad a41Pi wag sobedtated fm nude scalar azs and a41 appearing in the
caerespoaft equations for the undamped t* ►o body model.

9. In the egaatioa expressing tit , the duands of the first column of the T matrix as a function of
the J; j, the desmsmts of the ? matrix, the form of the equation remains the same under addition of
danvift except that the expression, a41p1 +a9srldri, appears in the place of s41 in the coethcient of
(fit +drrh') in the anmmerator and atipt and a41P1 appear in the pL--ce of ass and a41 respectively in
the denominator.

3. to the equation expraft t;s, the dements of the third column of the T matrix as a functinon of
the jt j, the loners s of the T matriz, the form of the equation remains the same under addition of
dunpiag except " the expression, a28pl + a4l rl dfr. appears in the place of a28 in the coefliciellt of
(fis +444) in the numerator and a2aP1 and a41P1 appear in the place of as $ and a41 , respectively,
in the denominator.

9.4 SOLUTION FOIL SYNTBZSIZZD STATZ VAB.IABLZS

9.4.1 Introduction

Inaccessibility of a state variable in the model equations (2-,3), (2-4) is reflected by a corresponding
null column in the observation matrix, C, and a corresponding null column in the F matrix as implied
by equation (2--14). For the generation of reduced order observers for the two body model the number of
inaccessible state variables can be 1, 2 or 3.

2.4.9 First Order Observers (p s 1)

A first order linear observer corresponds to inaccessib ility of one of the four scalar state variables of
the two body model. The observer equation then reduces to:

s = ds +Zu+GY,	 (2-33)

the F and T matrices reduce to:

F = [fl f2 fs 141
	

(2-34)

T = [ti t2 to t41
	

(2-35)

t - .

rill

and the observer synthesis equations reduce to the following forms:

t2
_ _ (a41p1+ d2)(fl +dM+a41P1(f2+44)

A;
	

tt4 s _a28P1 (ft +w 2) +(a2aP1 + d'n )(fa +yl
^t

4)

W2

t l = A44 IPI  + a-2sr1A d2) (f, +dfZ) 
+f2 + ^i (fe +df4)

"'7

to =—alyd(fi+df2)+d(a2sA1+a4trid d2)(fs+d14)+f4

P1 = 1 +"'rid
0'2 = a'(a2spt + a41P1 +d')

Since this case corresponds to inaccessibility of one state variable, one of the 1; (i = 1,2,3,4) = 0.

(2-38)

(2-37)

(2-38)

(2-39)

(2-40)

(2-41)

11
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SuPPoM 84, the scalar state rePresuding the angular rate of body 2, is inaccessible. Than it is assumed
e

that:

1 0 0 0
C= 0 1 0 0	 (2--42)

0 0 1 0

for which:

i

4

F - [ ft A A 0] (2-43)

and T is of the form shown in equation (2-35).
From equations (2-14), (2-42) and (2-43),

G = [ h l2 A j (2-44)

and fiom equations (2-9), (2-12) and (2-35)

Z = [t2	 4 1 (2--46)

This equation corresponds to r = 2, control torques applied to both bodies. For control troque applied only
to body 1,

Z = [t2	 01 (2-48)

and for control torque applied only to body 2,

Z = [0	 94 1 (2-47)

The equations for determining the elements of the T matrix reduce to the following forms:

t2 = _ (441P1 + d2) (I
0+ 

#2) + a41P1I8 (2-48)
2

t4 = _ a2spi (ft +/2) + (aWl +d2)Ia
(2-49)

as

tt	 = _ d(a4tpt + a29*t d + d2 )(It +df2) 
+l2 + a4;dfa 2-50 (	 )

Da	 p2

is = _!i sd(/t +d/2) + d(a2api +a4t*td+d2)I8
(2 51)

A

From equations (2-11) and (2-35),

i = h St +1222 + 9828 +9414 (2-52)

W ien 14 = %he synthesised 24.

Solving for i4 yields:

3
a4 = tl (s-^t;x;)

4
(2-53)

j-t

V_ ,

^r
	 12

..yam w^. .flr^+R^-""'s ^^g	 a	 + •	
-- -	

s.	 -
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FW kaecasn"aft of al , as or ft, taw equations for datumioing ti, (") throuo (240) are appropriately

l.&S Seea nd Ordaa Obsarvm (p = 2)

The eq"on for a linear observer of order two corresponds to two of the four scalar state variables
being buwces". It is represented here as equation (2 -10). N the obeaver coefi3cieat matrix is assumed to
be diagonal in this case it appears as followr.

2
dll 0	

(2-44))D	 0 42

Since the observer is of order two,

n _:IT 	(2-55)

F
 = ^

fll !12 118 1141	
(2-58)

Ill f22 /22 124 J
and, T

 = It2l
t11 t12 t ier t141	 (2-67)
 t22 t28 924 1

The specific formiq of the equations for generating the elements of Z depend upon which two of the scalar
states are inaccessiMs. For each inaccessible Mate the corresponding columns in the C and F matrices are
mall.

Example

Corresponding to the angular position and rate, respectively, of body 2, suppose that the scalar states
ze and x4 are inaccessible. Then the equations for generating the elements of the T matrix assume the
following forms.

	

a	 r
9i2 = - 41P1

a, 

'^' d ?• 
(fil + 4-40)	 i = 1,2	 (2-58)

.2

a^RP1
44 = —	 (JiI +diifi2)	 (2-30)

^i

dii a41P1 + a23*1di +
GI = --	 (

4^2	
fil +diiM) +fit	 (2-80)

a2edii
9 i2	

—
A,2 (lil +dil^f2)	 (241)

When pl and 'Yf2 are defined in equations (2-23) and (2-24).
From equation (2.11),

I t19 t141 N s f 
xl — t11Z1 — t!2Z2	 (2-42)

t2e 9241 	 L'! — 9 21 21 — 97722

where is sad d4 are synthesized state variables.

Let 02 = 9 13 t14 = t 1024 — t i4t23 0 0
1t23 t24

where:
(A2 )i j = A2 without elements of ith roar and jth column

13



ta)i.l tsl —9 11 101 —912412) — (02)2.1(X2 — t91901 — 922412)	 ('"^)
As

i	 —(0
^;1 — 91 181 —912X2) + (02 )2.2 (S2 — t21901 —922902)- 	 ('=--04)

` -	 A2

For as and 904 hwassible, it is assumed that:

C= 1 0 0 0	 2-a6
^0 1 0 0I	 (	 )

111 /12 0 0	 /.^dl
r = /21 /22 0 0

From r = GC,

r=
 j

!11 /12	 (2-07)
l21 /22 2

Emm Z = Ts,

Z [h l  914	 for r n• 2 (control torques applied to both bodies)	 X2-88) 
=22 124 1

Z = [t,2 01	 for control restricted to body 1	 (Z-69)

[0
0

42 0

Z = 
	

44 ]	 for control restricted to body 2	 (2-70)

2.&A Third Order Observers (p = 3)

The equation for the linear observer of order one less than the system 's dimension corresponds to three
of the four scalar state variables being inaccessible. It is represented here as equation (2-10).
If the observer coefficient matrix is assumed to be diagonal in this case it appears as follows,

^di l	 0	 0
++ _	 ^ ter_ _	 n	 /^-7^ 1

l0	 0 doe

Since the observer is of order 3,

a = 1s19;292SIr 	 (2-72)

!I1 !12 !13 !14

r — /21 !22 /2t /24	 (2-73)

1181 !a2 Al !84

and,

ill t12 912 914
T = 921 922 12s 924	 (2-74)

[

i
ll t22 is$ te4

The specific forms of At equations for generating the elements of T depend upon which three of the scalar
states are inaccesegible. For each inaccessible state the corresponding columns in th C and F matrices are
null.

r+-
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Suppose the sealat states,	 as and a~, representing the angular rate of body 1 and the angular
is position and rule of body 2, are inaccessible. Then the equations for pneratinp the elements of the T

matrix ase®e the following form since jrt - jrs = fi4 - 0 for i =1, 2, 3.

s _ a~t	 + dos•

tr'	
fit	 i-1,2,3 (2-76)

A6

(2-76)
4

r,
tit	 = _drr (a41Pt +fisrtdrr +d*r)

fit 2-77
(	 )

F 42

tie = —
aQ^i 

fit (2-78)
r9

where Pt and 0i9 are defined in equations (2-23) and (2-24).
From equation (2-11),

t1e	 t1a	 t 14 ^2 s1 — tiia

t22	 42	 t24 ze = [ Z2 —(212 : ] (2-79)
tag	 tau	 t84 i4, s8 —t81x1

Where h, 18 and 14 are synthesised state variables.

t 19	 tla	 t14
Let	 = t22	 t2a	 t24 710

tag	 tau	 t84

when,
(AS )ij _ As without dements of ith row and jth column

a

Xf+1	
= .a	 j =1,2,3 (2-80)

For a2, as and 24 inaccessible, it is assumed that:

C	 = 11	 0	 0	 01 (2-81)

j11	 0	 0	 0
7 j21	 0	 0	 0

[fsl
(2-82)

0	 0	 0

From ! = GC,

j11

G = fit (2-83)

jut
PO From z = TB,

t14

Lr
[ 9 12

t2;	 t 24 for r = 2 (control torques applied to both bodies) (2-84)

I
t82	 t84

1a
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OZCTION f
DEVELOPMENT 07 TES TMLiZ-BODY SINGLZ -r XIB MODEL

AND YTS JUWUCZD STATE LINEAR OBBZZVZ"

i t OWGINAL DAMMED MODEL
The rotational dynnnics of the three-body "x-axis model of a flexible spacecraft with damping

shown in Fig. 3-1 nuW be represaAed by the following set of equatioas:

'1111 - —01(81 — 42) — kl (01 — 02) +q1	 (3-1)
124- c1 (a l — v2) + k1(B l — Bs) +ea (^s — 82) + ^ (Ba — B2) + q2 	 (3-2)

lees - —M(is - 92 ) - 1y (Ba - 01) + qa	 (3-3)

where
1; - rotational inertia of body i; i - 1, 2,3
B; - angular dielpacement of body i
9; - angular rats, of body i
W - torque applied to body i
kj - rotational spring coefficient at interface j; j - 1, 2
ej - rotational dampoing coefficient at interface j

s.r STATE VABIABLZ MODEL

Th state variable form of the three -body single-axis model of a flexible - pacecraft shown in Fig. 3-1
may be e:[pressed as follows:

it = Ax + Bu (3-4)
xt = Cx (3-S)

where: 4

X - (zl	 s2 	...	 Z6 )r .. [g l 	gl 	02 	92 	Ba	 Bs l T - (xT	 xT ] T - state vector

xA = m•vector of accessible scalar states

X, = p•vector of inaccessible scalar states

U 1	 4. r-(el	 ...	 UP]r - ( ^	 (r-1,2or 3)
t I1	 1,

C + observation matriz of dirmasions ern x 6, m - 1, 2, ... , S (Minimum dime p on of reduced order
observer required = 6 - nn). 'I

Partitioning of this model by rigid body results in the following forms for its coefficient matrices.

0	 1	 0	 0	 0	 0
—ate	 —423r 1	 a2s 	 a2sr1	 0	 0

A- 0	 0	 0	 1	 0	 0 O
G41	 a41r1	 a43	 a44	 a46	 a46r2

0	 0	 0	 0	 0	 1
0	 43	 402	 —aea	 —aear2 i +

P

r 17
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FIGURE 3-1

THREE-BODY SINGLE•AXIS MODEL WITH DAMPING
AT BOTH INTERFACES
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Q4t = 1' (3-7)

440 = -(441+ 46)

A" _ -(641r1 ♦00r9)

b3

Is

rj	 =	 i	 7 = let
_	 1

(3-9)

0	 0	 0
1	 0	 0

B s 0	 0	 0
0	 1	 0

for r : 3 (control torques applied to all three bodies) (3-9)

0	 0	 0

0	 .0	 1

The block diagram corresponding to this model is shown in Fig. 2-2.

3.3 RZDUCED STATE LINEAR. OBSEB.YZB.S

34.1 Introduction

For the three-body single-axis model represented by equations (3-4) thrrugh (3-9), the minirwm order of a
reduced state linear observer required to generate the inaccessible states is p = 6 - m (m = 1, 2,..., 5) . All
of the reduced state linear observers for the three body model may be written in the form represented by
equations (2-10) and (2-11) where, in this case, the observer coefficient matrix, D, is assumed to be diagonal
and of dimensions p x p. The corresponding observer weighting matrix is of the following form;

...	 ti8

T 
a

b

ill
(3-1G)

l...tr,l	 tP,g

From equations (2-12), (3-9) and (3-10).

42	 44	 t18

Z =
1 9 p*,2

for r = 3 (control torques applied to all 3 bodies) (3-ill
tp,4	 tf,8

j

^ !11 ••• Ila

L.Ip,l	 fp,8

r	 The corresponding observer block diagram appears in Fig 2-4.

19
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l:
Scam Lasub rger (3-1), (3-2), (3-3) and Safe (3-4) the egaations for synthesis the re&ced state

f	 linear obwwM hr the dweabody si e.am model represented by equations (3-4) through (3-9) an given
by equations (2--13) and (2-44). With codkieet matri, ;ea of the forms listed in 3.3.1 this set of observer
synthesis eguatioas reduces to the following forms:

(, s)1.l (!il + aiiti2) — (0'ia)2.1(fie + difk) + (Wia)a,l (!;6 + di lie)42 =	 _

a [(641P1 + 4) (awn + ali ♦ a4sp2 ]ii)	 ^i
(!il ♦di li2)

4a 

641P1 [(awP2 + d'i) (!;a + d; I;4) + allP2 (!is + di lie)]

X	 ,8)12	 : )	 '	 !'	 ( ')	 ib + di i^•	 (!i1 +diti2) — (^a 2,2 (I  ̂ 8 +di ^4) + 'pia a,2 (! 	I^ )44s —
Aia

= alsp,(aWP2+ di2i)(Al+dilis)+(asaPl+di2i)(aUP2+di2i)(lis+dili4)
4a

+ awp2 (asap, + d'i ) (I;a + di fie)	
(3-14)

Ais

tie
(^i8)1,3 (I;1 + di lit) — W02,3 (fig + dih4) + (4a)a ,a (!i6 + 446)I;8)

= i^i a

= aaa aap,P2(!;1 +4M) + a4sp2(a23P1 +d2i)(lia +4il;4)
198

+ [(a23Pl +d2•i)(a4bP2 + d';) +a41P,d, ](lice +dilie)
(3-15)

d' I [(a4lPl + dili) (aWP2 + d';) + a45P24*jj
ti l =

wis

698*1d; [(846'raw)P2 +`ji]
+

	

	 ,	 (!il +d;l;2) +I;2pia
a41 di [(aeap2 + d';) (!;8 + diifi4) + a68P2 (!iG + difie)]

+

	

	 (3-18)
A

,
ia

r^!
20
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tj* 
= ysdrr_ —*s)+ *W2 +4)] 

(fit +diiJ,2)
4a

+ drr [(a2am +4)(fteps +fir) +a4t ridi(assP2 +fir)

Wis

04024 (a2sP: + di2,)
+	 (fie + di J,4) + J,4

eesdi [a tAa (rl — r2) + ("am + •
f

)j
(i,a +d,I,e)

as 

a4ad, [a2spt (fit +d,J,2) + (a2spt +d,•;)(f,a
tib =

A,a

di f 	 [(a28 + a4i)Pt +di;I
+ 'Wig

+ [(a23Pt 4' d2,) (a402 + ,) + a4tPt d';,

^,3

where:

(3-17)

(3-18)

;	 j =1,2
ki

	

Pj =1 + ryd,;	 >=1,2
d, t = a2a*t + d,
d,2 = a4trt + a46r2 +d,

d„a = aears + d,

-(aWl +d,';)	 a4tPI
^^a =	 a2aPi	 -(a41Pt +a46P2+a'ji

	0 	 a.6P2

-(a22Pt +d',)(Wa)1,1 - a2aPt(4a)2,1

-d1;[(a2046 + a2aaea + a4taea)PtP2

+ (a2aPt + a41Pt + a46P2 + aeaP2) d2i, + d';,

(34)

(3-19)

(3-20)	 s
(3-21)

(3-22)

(3-23)

0
aeaP2

-(aeaP2 + ,)

a.s.s Comparison of T Matrices for Damping at Various Interfaces

The observer synthesis equations for the three-body single -azii model with damping were compared
with those for the sage model without damping. A general form was developed for these equations that
encompassed the synthesis ofthe elements of the observer T matrix for the following conditions with respect
to damping in the model.

1. No damping;
2. Damping only at the interface between bodies 1 and 2;

21
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* Dampier at both iatesfaces.

Umbatim of damping at interface I of the model corresponds to setting r j = 0 and pj =1 in the equations
for gawrating the elements of the T matrix with damping present at both interfaces, equations (3-13) through
(3-23). If all damping is removed hvin the three body model, r. --# 0, p -+ i, dji -y drs -+ this -► dj and
A4 ^ —4 [4520446 + 4=4468 + 441468 + (420 + 441 + a46 + 466) 4-i + d4;;l = Z.

L(64^  ;(GM +d;) +44ad';i]
42 =	

Ass 	 (fil +di/i2)

441 [(au + db;;) (h8 + di/i4) + aM (fib d+ i li6)]
♦

	

	
i = 1,2,...,p	 (3-24)

A.3 

44 a
a2a(aW -t a )(hl ♦ diifi2) + (a2a +d?;)(asa+di2i)(fig+difi4)

pia
age a2a + d^•

+	 (/ia +difie)
pia 	

(3-25)

a2aa46 (fil + di M) + a" (a2a + d';) (Iia + di I:4)' is	
Dia

+ [a2sa" + (a28 + a41 + a4a)	 ]

(Iia +difis)	 (3-26)
Dia 

di [(a4: + ,Pii) (asa + d?;) + a46d?i]
nil :	 as	 (/il +di/i2) +fit

+ a41 di [(a62 + dj2;) (Iia + diih4) + asa (M+ dii /i6)]	
3-27

as	 (	 )

t
.
• 
a	 1

= a2adi 
as 

^' :) i/il +-CfO) + 4-i (a23 + a8(a6a +d^:) (M +difi4) +I;4

+ a6a4i (a23 + d':) (Iia + di /i6)	 (3-28)
4a

a4adi [a2a(/il +dili2) + (a2a +d';)(Iia + dili4)]
tin =

4a

di [(a28 + d'i)(a4b +d3;) +a4ldj2;]
+	 (fin + di /is) + /i6 	 (3-29)

Dia

The elements, t il through t;6 (i =1, ..., p), of the T matrix of the linear observer of order p corresponding
to this model with one or more inaccessible states were found to be affected by the addition of damping at
the interface between bodies 1 and 2 as follows.

1. The scalars, a23 and a4l i were modified to a23p1 and a41p1, respectively, in the equations for generating
t ie, 44, tin and 46 and in the denominators of the equations for generating til and t ia when pi was
defined in equation (3-19).

22
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2. In the mmsoratair of the equatooa for gem til , (3-16), tk following changes occurred.
a. The teem, ouri iii (a4e + an + dli) was added to the coefficient of f i 1 where rl is defined in

(3-8)-
b. The scalar, a41 , in the coefficient of fil was changed to a4lp1.

3. In this samorMor of this equatisa for generating t is, (3-17), the foUawing changes occaaed.

a. This term, ana4art i , was eabtraetsd from the coeffideat of (fit + d i fi 2)
b. The term, aiirl d,!i (an +I-i), was added to the coefficient of fig.
c. Each an in the coefficients of fie, fie and fig was mdifled to aeapl
d. This ts:m, a41488rl4i, was added to the codficient of (fit +difis)•

Addition of damping at the interface between bodies 2 and 3 had the following effects.

1. The scalars, a4s and ass, were modified to a4ap2 and ae3p2, respectively, in the equations for generating
til , tit, ti4 and t ie, and the denominators of the equations for generating tin and tis where pi was defined
in equation (3-19).

2. In the numerator of the equation for generating t ia, (3-17), the following changes occurred.
a. The term, a2aa46r24;, was added to the coefficient of (Al +&44M) where ry is defined in equation

(3-8)•
b. Each aes in the coefficients of fr1 , f.-2 and fin was modified to asap2•
c. The term, a Ar2d ;̂i (a23 + d'i ), was added to the coefficient of fia.
CL Zle tern:, a4i asar2d2i , was subtracted from the coefficient of (fir, +drfr6)

3. In the numerator of - the equation for tis, (3-18), the following changes occurred
a. The term, agar2di'i(a2a+a4i +dj;), was added to the coefficient of fia•

b. ':$e scJar, a4s, in the coefficient of fia was changed to a46p2•

Addition of damping at both the interface between bodies 1 and 2 and the interface between bodies 2 and
3 had the following effects.

1. The scalars, ago, a4i, a" and ass, wen modified to a2api, a4lPi, a46P2 and ae3r2 respectively, in the
equations for generating tiq, ti4 and t ie and in the denominators of the equations for generating til,
tis and t is where pi are defined in equation (3-19).

2. In the numerator of the equation for generating t il , (3-16), the following changes occurred.

a. The term, a22rl d'i [(a4r, + asa)p2 + d2ji ] , was added to the coefficient of f i l i where ry is defined
in equation (3-8) and pi is defined in equation (3-19).

b. The remaining scalars, a41 , a4& and ass, were modified to a41Pi, a45P2 and a63P2, respectively,
with the exception of the a41 common to the coefficients of fi4 through fig.

3. In the numerator of the equation for gene_ -ting tis, (3-17), the following changes occurred.

a. The term, a28a46d'i (r2 - rl ), was added to the coefficient of (fii +diA2)-
b. The terms, a4i ri'# (anpq+e4;) and a4&r2 dj2i(e23pi +(°;), were added to the coefficient of fig.
c. The term, a4laudii (rl - rs), was added to the coefficient of (fie +diifts).
& The remaining scalars, ate and aea, wen modified to a28pt and asap2 , respectively.

4. In the numerator of the equation for generating tee i (3-18), the following changes occurred.

a. The term, agar; I(a2a + a41 )pl +a ;l, was added to the coefficient of fir,.
a

b. The remaining scalars, a23 , a41i a45 and aea were modified tc 41 23Pi, a4iPi, a46P'2 and a63P2
respectively with the exception of the a46 common to the coefficients of fii, fie, AS and h4-

23
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to = 628a"PIP2 (f1 +df2)+(agape+d2)a46P2(fs+df4)
Ws

(428Pi +a*) (a"p2  + d2) + a41P1d'

[(a41P1 + d2 )(a6ap2 + d2 ) + a4ap2d", + agarld[(a4a + a")P2 + d2I

i
i
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i.Ll lsrtroduetlaol
-- -- - mMft oaf a scalar state vat able in equst m set (3 -1), (3-2) is reflected by a con*Wnding null

coluuia in the observation matrix, C and, as implied by equation (2-11), in the B matrix for the generation
of reduced order observm for the three -body model. T^* number of inaccessible scalar states can be 1, 2,
3,4or5.

S.&2 Phit Order Ob.w"n (p —1)
A &A order obmver is required when sup► one of the six scalar state variables of the three body model

is inaccessible. The first order form of the linear observe equation is:

s = de + 1u + Gy	 (3-30)

The t and T matrices associated with a first order observer for the three body model then reduce to the
following row forms.

F = (!t f2 fa f4 fe fe 17	 (3-31)

T : It, t2 to 4 4 t6 ]
r 	 (3-32)

The observer synthesis equations are then given by equation (3-13) through equation (3-23) with i =1.
Since a feat order observer corresponds to one of the scalar state variables being inaccessible, one of the

A (i — 1,2,3,4,5,6) • 0.

Example
Suppose that the scalar state representing the angular rate of body 3, xe i is inaccessible. Then fs = 0 and
the observer synthesis equatiour reduce to the following forms.

a41P1 + d2 ) (aWft +d2 ) + a46P2d2l (fl +d f2)

t

.,

I

92 = 
a

a41 P1 [(awp2 + d') (la + d f4) + aeaP2fs

i ^a

t4 = a2M (aeaP2 + d2 )(f1 + d f2) + (a2aP1 + d2 )(aeaP2 + d2 )(fa t df4)

A's

+ a6sP2(a2aP1 + d2)fs

A's

(3-33)

(3-34)

(3-35)

1 + d f2 ) + f2

(3-36)

t l =

441  (assp2 + d2 ) (fa + d f4) + asap2fa

+	
We
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to s	 ^	 (!1 +df9)

• d[(amPI + da ) (d" i + CO ) + a41rld(aWPz +d2) + a4sr2d(G2$Pl + da)^
(fa +df4) 

+f4

• 
egd[aud(rl — ra) + (amPi + d2)] 

fe	 (347)A;

a4ad [anpi (f, + d fa) + (aiap, + des) (fa + d f4)
t6 s

Aa

r	

-

d j aurad [(aaa + a41)Pl + d es ] + [(asap, + des ) (a4aP^ + des ) + a41P1 d2 , }

+ t	 w#	 fs	 (3-38)

where:

e•
ri _

	

	 (3-8)
kj

Pi — 1 + ri d	 (3-39)

As s —0 [(018a4d + 028068 + a43a6a)P1P4

+ (a2aP1 + a41P1 + a4sp2 + aesp2)0 + d4J
	

(3-40)

From equation (2-11) the synthesized scalar state, 4, is expressed in terms of the observer state variable,
z, and the accessible scalar state variables as follows,

c
s

^6 = 1 (x - L, t'x;1
	 (3-41)

4=1

In this case, it is assumed that:

[ 0

C	 k	 (3-42)

0	 -

when Is = 5 x 5 identity matrix.
From F = GC,

G - [A f, fa A A ]	 (3-43)

Emm Z = TD,

Z = [ts 4	 t 6 ) for r = 3 (control torques applied to all three bodes) (3-44)
Z = [t1 4	 01 for control applied to bodies : and 2 (3-45)	 i

Z - [ t2 0	 01 for control applied to body 1 (3-48)

Z — (ts 0	 As ) for control applied to bodies 1 and 3 (3-47)
I
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Observers , of	 Ordw (p = 36 3 or 4)
I

fa the asa in which an iasrmsdiatie amber of the sirs scalar states of the three-body sing6axis
model is nmcas^le the mieimumn odder of the redncad state Iinear observer required to reconstruct these
imaccasible data is Wlvem by p. In each ass the number of trail columns in the measurement or observation
msWx, C, and the Z mufti: also is equal to p. The senenl forms of the Z, F and T matrices are oven
in equation (3-10), (3-11) and (3-12) for p = 2, 3 or 4 when p represents the number of inaccessible state

i variables of the model.
L^l!

( Suppose the scalar states, as and ere, corresponding to the uplar position and rate, respectively, of body
3, are maecemml& Them fie = fcs = 0 for i = 1, 2 and the observer synthesis equations reduce to the form
of equations (3-13) tkvq* (3-23) with fig = fie = 0. From equation (2-11) the synthesized scalar stated,

{	 3a and As, are expressed in terms of the observer variables, ;1 and s9 , and the accessible state variables as
follows.

F4
.i

4	 4
(A9)1,1(sl — j:tljzj) (42)2,1 (Z2 — j:tsjsj)

jnl	 j=1
is	

0

4	 4
—(01)1,2	 + (,&1)9,7(Y2 — Ft2j-- )

j-1	 j=t
^6 =

04

where,

09 = ^ ti t16	
4026 —t 16t1a # 0

ja

and (02); j _ &9 without the elements of the itt roar and jte colmn.

For za and as inaccessibis, it is assumed that:

0 0 -
C = 14

0 0

where 14 = 4 x 4 identity matrix.
From r = GC,

(3-48)

(3-49)

(3-50)

(341)

(8-54)

(3-63)

(3-54)

(3-55)

f17 fld f14[f11

fzl f22 fsa f24

From Z m TZ,

for r = 3 (control torques applied to all three bodies)

for control applied to bodies i and Z.

for control applied to bodies 1 and 3.

26
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Z =
1 t22
t14 t 14 t ie l

tae 1t94

s f t i7
I 2

t 14 0

' t2 t94 OJ

Z :	
t 19

[ t11
0 t16

t4610
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[tom 0 0l	 for coaral restricted to body 1. 	 (3-5A)

3-" IM Ordesr Observers (p = 5)-

Aa observer of at least order fire is required when any five of the six scalar state variables of the three
body model are inaccessible. The observer syathesis equations are given in equations (3-13) through (3-23)
with i =1,2,...,5. Since a fth order observer corresponds to five of the six scale states being inaccessible,
/rf = 0 for firs of tin six valves of the subscript, j.
L=—WA1e

Suppose that the scalar states, az, as, a*, as and sea representing the angular rate of body i and the
andar displacaaaft and rata of bodies 2 and 3 are inaccessible. Then In = Ira = Ii4 = fib = fi6 = 0 for
i =1, 2,..., 5 and tha obsea vw synthesis equations reduce to the form of equations (3-13) through (3-23)
with only !it # 0. The synthesized scalar state variables, i2 , is, 4 r is and ie are expressed in terms of the
observes malar variables, s1 i s2, ..., ss, and the accessible state variables, using equation (2-11) as follows:

D-1)" (06 )i,k(Xi —taZI)

ik+l = i- 1
	As	

k = 2,...,5	 (3-57)

t12 tla 914 tlb tie

t22	 -	 t26

As = tae	 t,e

ton	 to

962 968 964 t66 966

a tl2 (A6)1,1 —t 22 (A6 )2,1 + t82(O6 )8,1 —942 (06)4,1 +962(066.1	 (3-58)

when (As)i j =Os without the elements of the ith row and its column.
For only a l accessible, it is assuveed that:

C=[ 1 0 0 0 0 0]	 (3-59)
From F = GC,

/il

f21

G = 181	 (3-80)
141

J61
From Z = TB,

t12 914 t16

Z	 for r = 3 (control torques applied to all three bodies).	 (3-81)
1t62 964 t66 

3.b RZFZRZNCZS

3-1 Lumberger, D .G., "Determining the State of a Linear System with Observers of Low Dynamic Order",
Ph.D. dissertation, Stanford University, M.

3--2 Luenberger, D.G., "Observers for Multivariable Systems", IEEE Transactions on Automatic Control,
Vol. AC-11, No. 2, April 1064, pp. 190-197.

3-3 Luenberger, D.G., "An Introduction to Observers", IEEE Transactions on Automatic Control, Vol. AC-
18, No. 8, Dece niber 1971, pp. 598-802.

3-4 Sage, A.P., Optiemum Systems Control. Englewood Cliffs, N.J.: Prentice-Hail, Inc. 1988, pp. 306--312.

27

Vim'

r

a



n

r1i

ORMINAL Nk is t°b

SfCTYON s	 OF POOR QUAL; iV

DEVELOPMENT OP T>EM "M BODY 9INGLZ-AXIS MODEL
AND ITS ISDUCED STATE LINZAE. OHSZYVER

s a 0JUGIINAL DAMPED MODEL
The rotational dynamics of the fourbody Angl&axis model of a HeaVe epacecrafit with damping shown

in Fig. 4-1 ma, be represented by the following set of equations.

11 it = —CI ((it — 92) — ki (01 — 82) + 41	 (4-1)

,02 - 61 (it - 02) + kl (it - 02) + C2 (it - 02) + /12(08 - 02) + 92	 (4-2)
legs — 82(42—i8)+h2(02- 08) +Ce(44- is) +/18(04-08) + qs 	(4-3)
1484 - -CS 04 - 48 ) - ke (04 - $a) + 44	 (4-4)

when:
Ii = rotational inertia of body i; 	 i = 1, 2, 3, 4

Bi = angular nisplacrwnk of body i
9; = angular rate of body i
q; = torque applied to body i
k} = rotational sprint coefficient at interface j; 	 j = 1, 2,3
ci - rotational damping coefficient at interface j

4.9 STATE VA] UBLZ MODEL
The state variable form of the four-body single-axis model of a flexible Spacecraft depicted in Fig. 4-1

was written in the Wowing form.

$ - Acs + fin
XA — CX

when:

X -[X I  ... xe ]T - f Bl 91 82 B2 08 is 94 841 T - ( X7 x,7 17 -    state vector

XA - p vector of accessible scalar states

X, - m vector of inaccessible scalar states

r	 T
U -(ul ... u,)T-111 	 (r -1,2,3 or 4)

C - m x 8 measurement or observation matrix

Partitioning of this model by rigid body yields the following forme for its coefficient matrices:

(4-5)
(4-4)

(4"7)

0 1 0 0 0 0 0 0
-a2s -a2sr i ate 428rl 0 0 0 0

0 0 0 1 0 0 0 0
a4i 441 F1 as a44 a" 446r2 0 0

A -
0 0 0 0 0 1 0 0
0 0 44 ad8r2 as& ads adz a97r8

0 0 0 0 0 0 0 1

0 0 0 0 ass assra -ass -aesra
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FOUR-BODY SIT"GLE-AXIS MODEL WITH DAMPING AT ALL
THREE INTERbACES
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0 0 0 0

a 1 0 a

H for P-4
0 0 0 0

`
r
t

0 0 1 0
_

0 0 0 0

0 0 0 1

• ,

kr
a2a

441 = 
12	

la
^	 a4b ^ 

12,
	 a4a M — (a41 + a45),	 a44 - — (a41 T 1 +a4br2)

	

12	
(4-9)

aaa — 1$ , 	 a67	 (aG$ + a67),	 am = — (aea + a67),	 a66	 (aear2 + 467*3)

ke
4sb — 4

ri — !	 j - 1,2,3	 (4-10)

The corresponding block diagram appears in Fig. 2-2.

43 RIMUCiZD STATE LINEAR OHSZB.VZSS

4.3.1 Iatroduetlon

The minims- order of s reduced state linear observer required to reconstruct the 8 — m inaccessible
scalar state variables of the four body single axis model of a flexible spacecraft represented by equations
(44) through (4-10) is p — 8 — m when m - 1, 2, 3, 4, b, 6 or 7. All of the reduced state linear observers
for this four body model may be written in the form of equations (2-10) and (2-11) under the -assumption
that the observer coefficient matrix, D, is diagonal and of dimensions p x p. The corresponding observer
weighting matrix is of the following form.

t 11	 ...	 trs

T	 (4-11)

It*1 ... tM
From, equations (2-12), (4-8) and (4-11).

h2 9 14	 9 16	 tle

]; •	 (4-12)

tp,a 9r,4 pp.$ pi,s

Il,	 ...	 /1b

g	 (4-13)
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4lrif Obeeerae QppRbede >^gou^iow

Ymn Laenberm (4-1), (4-4), (4-a) al:.: se;e (4-4) the eq axiom for tyatheeising the reduced assts
lbwar obow"n for the four-body angle-am modul rtpzweated by equation. (4-6) through (4-10) an puce
by "wdiom	

)a to 4̂  followieg	
^^ of the form listed in 4.3.1 this set of obse

q►l^theeie egaatiams redse 	
mr

{	 42(WJ4)1.1(/il +4119) _ (0!4)9.1(/;g + iii/;4) 4 (Ai4)t.l (fig +4V;4)

_ W4)4.1(/17 + la fie)	 -

i1	 _^ 
A;4

i	 ^a4iae.P2(aesPt + dili)

44

(441P1 + a46P9 +'Vii) [(ftap2 + d2i)(aesP9 +dj;) + ae7ptd,2i] ^(fil +d'i rig)
_	 ^	 JJJ

WU
_ 441P1 [taupq + a4i;)(assps +dili ) + ae7Ped';j (fit +4";1;4)

ll	 ^i1

— 1241 ftSPl P4 [(aesps + di;) (fig + d; fig) + as& pa (f;7 + d;fie }
{	 44

44 a _ (^i4)1.9 (Iil +difi9) — 044)2 :2 (fig + 4i fi4) + (W i4)3,2 (fib
r

+ ('&'14)4.9\/i7 +4ifit)
14

s	 (a"P4+^i)(atsPt+ ;)+a67Pg^i,[a?gPl(fil+441;9)+(a97+40ii)(fig^di^fi4)
0^4

— (awl +d* )ae8P9 i(aesPe +d,2, ) (f,&  + difis) + assps (fa +difie)
r (4-15)

X14

(4101,3(fil +4,1;9) — (4 t4 )2,3(h3 + 14ifi4) + (A%)3r3(Iis +difie)
t;s rDi4

(44)4.8 (fi7 + difis)
Aw

44sP9(assps + dili)[a9tpl(fii + difi9) + (G28PI + d2i;)(fig + difi4)1

42SP1 + d7i ) (a4sP9 + d';) + a4 1P1 Old [(acs" + d'i) (fis + di fie)

-	 —	 Ai4

k	 agape (fi7 + 4ifie)

Lp ^;4

F
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ra = _(_.4Vil+drr/ra)-(44)1A(/n+dii/ra)+W44.,j(Irt+d;/is)

+ (44^ r? +drt/rs)	
44

4

	

s"	 Pt s"In (/r1 +d(rfra) +(a»p1 +d'r)(fis +drrfi4)l

^r4
(w•P1 + d?r) (a4tPt + 4j) + 441 P1 d'; (/i. + dri fie )

44
d'rr [441 P1 (assP! + as7Pt +fir) + a6lP241

&14

(6201 + d3i ) (&"P9 + dgii) (ae7Pt + d'i) + a9s aesP1 P9 dii f (A7 + 1i i fit )
J

Wk

l [(a'16r l +4i) (a46P1 + d'i) + a41di'i 1 [(aap7 + d'i) (attPs + ^i )

	

tr1 -` 

l	 W

aan4ij "' 446as2pi(at6Ps +4) ((fil +diifi9)

Ai4

	

+	 ,	 11	 + fa

a4l dii [(t%sp4+d1)(ataPt+d*ii)+ae7Podj'ij(M+diifi4)

Q'i4
awp9 (asses + d',) (fi6 + dii fie) + aesataPJPs (fa + d-i fit)

OP4

j

(4-18)

alt 
l
l [a46 (r1 — r9) — dii j [(aSP2 + di2i) (ataPt + di21) + ad7P3 di2i j

a4taetP7 (attpt + d i ) (?I — r9) I (fi l + d'i fi 9 )

44

[(a9iP1 + dili) (a4ar3 + dri) + 441 ridi3i 
j 

[(amp, — d,2 (aRtPt + d'i )

44
ae7Ptd̂ ;, - a4ta6tP7 r7 (a2spi + d2i) (ataPt + d'i ) (fit + di i /i4 )

+	 ..	 + fi4

+ 4W4 a„PI+a4ldii(r1— r2;+ d'ij[(attPt+ a*)(fi6+diifis)+ataPt(fi7 +difit)

Di4
(4-19)
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a"	 1assps +aadi (rs —r2) +'tii j Ia2spl (fil +difi!) + (a2spi + d2 )(fis + di fi4),
gig W —

44
d1( 1 28A + 4i) (G"P2 + 4;) (asgps + aarsdii + di;)

+	 A4

di [(423P1 + a4lPl + Ca68r2 + a4lPl dil (as6Pa + d';;) + a67r3 d^; ( (ha + di fie)—	
JJ

44 +fib

1
41iasadi 	 i [a2saesPI (r2 — rl ) + ass (+'s — *2) (a41P1 + a,i) — a4lPldi,

+	 Q,4

(a2aP1 + d';)(n4aP2 + d2)	 (J '7 + ,if, pl)_

^i4
(4-20)

a87di l a4bP2 [aNP1(fi 1 + 44M) + (a28Pl + di2;) (f is + difi4),
47 s —^

A4
l

[(a2aP1 +i)(a4bP2 +d';) ♦ a41Pld' (fib +difi6)

+	 44(
di j [(ae7Pa +asa radii + di2i)(a2aP1 + di1;)(a"p2 +d2ii)

Di4

a41a67as6p1P8r3di1 +di [a28aWlP2 +a41a6aP1P2
+

^i4 .
1 t

a41a6YPi pa + (a41 r1 + a6aP2)d';1 ((!i7 + ikifi8)
+	 ,	 JJ	

+fis
4,i4

(4-21`

when:

r j ? =1, 2, 3 (4-22)

Pj = 1 + rjdi,	 s a 1 9 2, ... ,P	 = 1, 2,3 (4-23)
dill = a22rl + di (4-24)
dig = a41 r1 + a45r2 + di (4-25)
dia = abar2 + a67r3 + d;i (4-26)

dii4 = as6ra + dli (4-27)

— (a2sPl +d'i)	 a41P1	 0	 0
Qi4 s	 a28P1	 "(a41P1 + a46P2 + d';)	 a68P2	 0

0	 446P2	 —(4602 + a67Pe + d'i )	 as a ps
0	 0	 a67Pa	 —(aespa + ali i )

a d'i[(a28a46 a6' + a28445as6 + a28asaas5 + a41a62as5)P1P2P8

+ (a28a46P1 p2 + 2a28aesp1p2 + 2a28a6'PIpB + 2a28486P1 p8 + 2a406002
+ 244067P1P8 + 2041 agsplp8 + a406022 + 224647P2Pa + 2a46asbp2p8
+ a68as6P2P8)di2 + 2 (aUP1 + a41P1 + a46P2 + a68P2 + a67P8 + asopa)d;; + 2d6i , (4-28)

4.3.3 Comparison of T Matrices Fir Elimination of Damping at Various Interlaces

Elimination of damping at interface j of the model corresponds to setting rj = 0 and pi = 1 in the

'D I
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sgsatieow far guerati'g the demmrts of the T math:, equatioas (4-14) through, (4-28). The following
damping coadidons have been treated for this at of equWoao.

j
1. Damping eliminated at the interface between bodies 1 and 2;

!	 Z. Damping dinoiaated at the interface between bodies 2 rnd 3;

3. Damping eliiminated at the interface between bodies 3 and 4; 	
J

4. Damping eboisOated at the interfaces between bodies 2, 3 and 4; 	 !,

S. Damping eliminated at the interfaces between bodies 1 and 2, and 3 and 4.

8. Damping eliminated at the hAerfaces between bodies 1, 2 and 3;

7. Damping eliminated from all interfaces.

Example: All interface damping eliminated.

If damping is removed from all three interfaces of the four body model, ry --* 0, pj 1, di 1 -" dii, C2 di,
dig di, 44 -i di and

"f4 	 d,,, [a23a46 a67 + a2sa4a ass t assa6aass + a4 l aeaasa

♦ (a2aa46 + 2a2aaea + 2a23a67 + 2a2aaea + 2441 aft + 2a4la67

+ 2441 aea + a46a6a + 2446as, + 2a4aae6 + a6aae6)d3i

+ 2 (a2Q'.•a41 + a4s+ a6a+ a67 + aa6)d;i +diliJ °Ai.i
i
i

{a46aea(ass +d?i ) - (a41 + ass +dj j [(aea + dli ) (ass + d?i ) +a67d'i ] } (fit + di fi2)
tit : Dit

—  [(ftaa4t + d?i)(aea + d'i) +ag?d,^i^ (jig +diili4)— 	
Di4

— a4 1 a6a [(aea + d2i) (fi6 +d ifie) + ae6(fi7 +d'i fie)

(aea + dii ) (a!s + di2i) + 467d2iij [a28(fil + difO) + (a23 + di2)(L3 + difi4),
t,4 

s	 11.4

(a2a + d'i )aea [(ass + d?i ) (fib + di fib) + ae6(fi7 + di fir)]
-	 (4-30)

44

a4a(ata + d i ) [a2a(fil + difi2) + (a2a t d?i )(fis + difi4)l
tie s —

Di4

[( a2a+ d?i)(a46 +d'i)+ a4ld^i)+ a41 d'ji 1 [(aea+ d?,`)(fi6 +diifi6) +466(fi7+diifie),
- 

Di4	
(4-31)

P1
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saarr [420Vil + diifi9) + (a$$ + dri)Via +drrlr4),
pia = —	

Oro
A

487 [(ali +4)(^ +4) + 441 ,0,i, (fib + dali8)

Ar4

"ii [a41(aea + 487 + ^'i) + a8adi2i)

Ap

(OU +4x)(446+' iii)(a87+ 4) +asaa6a^ii (f,7+ diifis)
+	 (4-32)

0,4 

i
d i (443 + 446 + d';) [(aW + d'i) (a26 + dii) + a67a*ii

tit = — Or4

a46a6a(aa6+ d2i)I(Jil +diiJi7)	 t—	 +! i4Di4	
/

4414 I [(a4a + d2i ) (ass + d';) + a87d2i],] (fig + dii fi4)

014	
tt

aw(aa6 + d?i) (fis + diifi6) + awaa6(fi7 + diifi6) 1+(4-33)
Di4

t;a

ank [(a4a + d';) (a66 + d';) + a47 d'; ] (fi l + di fis )
s —

lili4

d,-j (a18 + d';) [(aG$ + d';) (ap s + d?;) + a67d2j; l (Ii8 + di i fi4 )

,&.'4
 +fi4

audii (a2a + d';) [(ass + d?i ) (fib + diifiS) + a66 (fi7 + dii fib)
(4-34)

Ai4
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%A, (a" +err) [ass(lii +41iIn) + (s» + d?r)(f s + drrhe)1

44

drt [(ass + 4j)(aU + d'i) (aea + d'r) — a+id:ri (ws + Ai )] (A. + 4-i ho)
+	

Ai4	
+ /is

a"di [aud}i + (ass + d?i) (a" +dpi)] (Ii7 + diilis)

	

a4	 (')

Q67dr { a" [ass (h1 + dirlis) +(o„ + d'ii) (Iis + di Ii4 ►j
t'7 — —

Di4

+ [(a2s+ 4)(a46 +4) +a41di'i] (P6+dJAG)

Di4	

JJJ

dr j (a23 +dj2i)(a46 +dii)(a67+4)
+	 A,4

di [atBaes+ a41 a68+ a4ta67+(a4t+ 468) I-" (A7+w'e`i6)
+	

4.	 J	 + /^e	 (4-36)

Ors  SOLUTION FOR SYNTHESIZED STATE VARIABLES

-	 ' 4.4.1 Introduction
R

Inaccessibility of a scalar state variable in the model equations (4-5), (4 ,.) is reflected by a corre-
sponding nall column in the C and F matrices as implied in equation (2-14). For the generation of reduced
state observers for the four body model the number of inaccessible state variables, p, can be 1, 2. 3, 4, 5, e
or 7.

&x.9 Pint Order Observers (p —1 1
An observer of order at least . :no is required when only one of the eight scalar state variables of the

four body model is inaccessible. The first order form of the linear observer equation is as follows:

s - ds + Eu+ Gy	 (4-37)

The F and T matrices associated with a first order observer for the four body model then reduce to the
following row forms.

F - (f1 f2 ... Al	 (4-38)

T — (t 1 is ... to]	 (4-39)

The observer sy"hesis equations are then of the form of equations (4-14) through (4-28) with i — 1.
Since a first order observer corresponds to one of the scalar state variables being inaccessible, one of the
!i (i — 1,2,...,8) — 0.I	
Example

1 /
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Suppose the scalar state representing the angular rate of body 4, as is inaccesabls. Then Is - 0 and
the observer synthesis equations reduce to the form of equations (4-14) through (4-28) with fie = 0 and
i — 1. From equation (2-11), the synthesised scalar state, is, is expressed in terms of the scalar observer
variabb, s, and the accessible scalar state variables as follows.

is - of=-^t^^]	 (4-40)

For xe inaccessible, it is assumed that:

^ 0

C =	 Ir	 ,	 ,	 (4-41)

0

when I7 = 7 x 7 identity matrix.

From F=GC,

G — (fi f2 fa A fs A fr ]	 (4-42)

From E - TB,

E -[t2 t4 is to ]	 for r = 4 (control torques on all 4 bodies)	 (4-4.3)

4.4.3 Observers of Intermediate Order (p - 2, 3, 4, 5 or 8

For those cases in which an intermediate number of the eight scalar states of the four -body single-axis
model is inaccessible, the minimum order of the reduced state linear observer required to reconstruct these
inaccessible states is given by p. In each case the number of null colmmms in the measurement or observation
matrix, C, and the F matrix also is equal to p. The general forms of the E, F and T matrices are given
in equations (4-11), (4-12) and (4-13) for p -2, 3, 4, 5 or 6 when p represents the number of inaccessible
scalar state variables of the model.

Example

Suppose the scalar states, zr and zo, which represent the angular position and rate of body s, are inaccessible.
Then A7 = fig - 0 for i -1, 2 and the observer synthesis equations reduce to the form of equations (4-14)
through (4-28) with the preceding conditions. From equation (2-11) the synthesised scalar states, z7 and
ze i are expressed in terms of the scalar observer variables, z and z 2 and the accessiable scalar state variables
as follows.

2	 6

(4-44)
42

2	 6
^(-1) •+i (02)x,2 (z^ - E

j_i
e	

02	
(4-45)

for

02 s 
I tsr t

ee I = tl7t2s - t 18 1 27 0 0	 (4-46) 
t 17 tl
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where (As)i j - As wMant the elems®ts of the i" row a" PAI colmtom.

For or and as inaccesdbie, it is aammed that:

®!	
( 0 0

-	 k	 . .	 (4-47)
X00

w,
where Ie - 6 x a identity matrix.

I	 Since F — GC,

G =
[
fII f12 fig !14	 fI6	 h (4-48)
f21 f22 f28 f24	 AS	 f26

From B = TB,

10 = [42
922

t14
t24

t 16
t26

tls 	 for r = 4 (control torques applied to all four bodies)
t2a

(•4-49)

[ t 12E —
t22

t 14
t24

t 16
t26

0	 for r = 3 (control torques applied to bodies 1, 2 and 3)
01

(4-50)

z _ I42
t22 t;4 0	 00

for r — 2 (control torques applied to bodies 1 and 2) (4-51)

z — I
t22
t12 0	 0

0	 0
0 1
0J for r =1 (control torque applied to body t) (4-52)

C&A Sevie th Order Observers (p — 7)

When any seven of the eight scalar state variables of the four body model are inaccessible, a linear
observer of at least order seven is required. The observer synthesis equations are as presented in equations
(4-14) through (4-28) with i = 1,2,...,7. Since a seventh order observer corresponds to seven of the scalar

states being inaccessible, f 1 j - 12j = ... = f7i — 0 for seven of the eight values of the subscript, j.

Example

Suppose only the scalar state variable representing the angular position of body 1, z l , is accessible. Then
the remaining scalar states, z 2i z8,... , z9 are inaccessible, fit — fit - ••• = fig — 0 for i — 1, 2, 3, 4, 5,
8 and 7 and the observer synthesis equations reduce to the form of equations (4-14) through (4-28) with
fig — fig - ...  — fig — 0 and i - 1, 2,..., 7. The lynthesized scalar state variables, i2 through Zs, are
expressed in terms of the observer variables, s l through zy, and the accessible state variable, zl, by utilizing
equation (2-11) in the following form.

^(-1)it1(0^)i,k(si — tilzt)

Zk+t — — 1	
Aq	

k - 1,2,...,7	 (4-53)

tit	 ...
	

tts

Ar = .

9 7/2	 ...	 t78

— t12 ( 117 )1,1 — t22 (A7 )2,1 + t 82 (07 )8 ,1 — t42(A7)4,1

38
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+ wio7)^a - t•^io71.,1 +tn(A7)7,1	 (4-44)

when (A7)r, = 07+ wWwat the elements of the s'rA row and the Jtk colrtan.
For only s1 accanible, it is amomed that:

C=[ 1 0 0 0 0 0 0 0	 (4-65)

Jll

G =	 (4-58)

J71

Itom Z = TB,

[ tl', t14 t16 tlt

Z	 for r = 4 (control torques applied to 
all 

four bodies)	 (4-57)

t72 t74 t76 t76
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SZCTION a

DZVZLOPMZNT OP Tlflz VIVID-BODY SINGLZ-AXIS MODZL AND ITS
I=UCZD STATZ LVMAX OBSZB.VZILS

5.1 ORIGINAL D MpZD MODZL

In earlier work, Guidance Systems Division (5-1), it was shown that one aria of the three-axis five-body
approlomation of a prototype flexible spacecraft can be decoupled from the other two axes. The four-body
single•aads models of a flexible spacecraft developed in the previous section were therefore extended to
corresponding five body models to represent the decoupled axis of the three-axis five-body model.

The rotational dynamics of the five-body single-azis model of a flexible spacecraft with damping shown
in Fig. 5-1 may be represented by the following set of equations.

11 il = —C1 (e1 - 92 ) - kl (81 - 82) + q1	 (5-1)
Ise._ C1(81-es)+k1(81 — Bs) +CS(lla- 92)+k2(82- 82)+qs 	(5-2)
lava = Cs (9s - 4) + k2(82 - ea) + ea (84 - 8a) + k8 (04 - 83) + qa	 (5-3)

1484= Ca(4- 94)+ ka(Ba-94) +C4(Ba- 94)+k4(85-84)+q4	 (5-4)

1686 3 C4 (84 — h) + k4 (84 — 86) + q6	 (5-5)

where:

i .	 1i = rotational inertia of body i,	 i =1, 2,..., 5

8 i = angular displacement of body i

= angular rate of body i•

qi = torque applied to body i

jby = rotational spring coefficient at interface j 	 j =1, 2, 3, 4
3

ej = rotational damping coefficient at interface j

5.9 STATIC VABIABLZ MODZL

The state variable form of the five-body single-axis model of a flexible spacecraft depicted in F:g. 5-1
was written in the following form.

it = Ax + Bu	 (54)
xA, = Cx	 (5-7)

lwhere:

X = [ x 1 ... Z I O ] T = ] xw 
XT 

I T = [ 81 B1 8  9l ea 8a 84 84 86 86 I T = state vector

x,, = m vector of accessible scalar states

x, = p vector of inaccessible scalar states

	

U = [ ul ... u,]'- f q1	 4. T	
r = 1,2,...,5

	

l I1	 I, J

C = m x 10 measurement or observation matrix.
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Ito
T))tk I T ^lk 1%74 T	 5 T)3)	 4 ,

	

tk	 2	 4 /k  
T

e2	

53^k i 
2/ Tz ",\

	

2	
c	

c4c	 c	 c

	

1	 2	 3	 c4 
1512	 3	 4

FIGURE b-1

FIVE•BODY SIlqGLE•AXIS MODEL WITH DANTIINGAT ALL
FOUR INTERFACES
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ri — k ;	 j — 1,2,3,4
J

(5-10)

I

ORIGINAL PAGE 11
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0 1 0 0 0 0	 0 0 0	 0
—4" —69er1	 4is afsrl 0 0	 0 0 0	 0

0 0 0 1 0 0	 0 0 0	 0
441 441r1 448 a44 446 446r2	 0 0 0	 0

A-
0 0 0 0 0 1	 0 0 0	 0	 ()
0 0 ass aur2 a" a"	 a67 a67re 0	 0

0 0 0 0 0 0	 0 1 0	 0
0 0 0 0 sea ours	 487 ass a$o	 ag9r4

0 0 0 0 0 0	 0 0 0	 1
0 0 0 0 0 0	 a10,7 a10,7r4 —al o,7	 — a10,7r4

k,
a29 — 

it

a41 — 12tIn
44.5

12'
— 12 a43 ^ — (a41 + a"), a44 s '-(a41 r1 + a46r2)

ass — 467 — —(a6e + a87), au = —(a63 + a67), a66 - — (a63 r2 + a6713)	 (5-9)

k4
aeb —

14
as9 —

-14 2
a27 =. — (aid + aaD), age = — (ag5r3 + ag9r4)

k4
410,7 — j

b

B —I

0	 0 C 0	 0'
1	 0 0 0	 0

0	 0 0 0	 0

0	 1 0 0	 0

0	 0 0 0	 0
0	 0 1 0	 0

0	 0 0 0	 0

0	 0 0 1	 0

0	 0 0 0	 0
0	 0 0 0	 1

for r = 5
	

(5-11)

5.3 RZDUCZD STATZ LINZAR OBSZBVZRS

5.3.1 hstroductlon

The mini—in order of a reduced state linear observer required to reconstruct the 10 — m inaccessible

scalar state variables of the five-body "s-axis model of a flexible spacecraft represented by equations (5-6)
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through (5-10) is p = 10 — m wbon "s =1, Z, 3, 4, 5, 4, 7, 8 or !. All of the reduced state linear observers
fu: this A" body model map► be written in the form of equations (9-10) and (2-11) under the assumption
slant the observer coeBaeaot matrix, D, is diagonal and of dimensions p x p. The corresponding observer
weighting matirix is of the following form

t	 ,
tll	 ... tl,lo

T = _	 (5-12)

It o	 ... tp,30

From equations (2-12), (5-10) and (5-11),

912 t14 tl6 tit ti-o

E '	 (5-13)

tp,2 tp,4 tp,6 tp,t tp,10

!31	 ••• 11,10

F =	 (5-14)

Jp,l ... 4,10

The corresponding block diagram appears in Fig. 2-4.

5.3.2 Obewyer, Synthesis Equations

From Luenberger (5-2), (5-3) and (5-4) and Sage (5-5) the equations for synthesizing the reduced state
linear observers for the five-body single -aids model represented by equations (5-e) through (5-10) are given
by equations (2-13) and (2-14). With coefficient matrices of the form listed in 5.8 . 1 this set of equations for
generating the elements of the T matrix reduces to the following.

S [a4l a68PlP2 ♦ -41 a67P1Pa + a4owpipo + (ae1P1 + a4aPs + a63P2 + aWpa )d , ♦ 
d,4i,

42 = l	 (^i )
'	 a2aa46P1P2W, 

a67at5A(a41P1 + a46P2 +d'ji)(a10,7P4+d,,)
—	 (Jrl +d, M)

W4

4 a4 [ (aWP2 + a67Pa + di2i) Wifi )1,3 a67ae6P1 Pa (a , 0,7P4 + d..)
a2sa46P2 0ra	 pia

a4la6a(A^+	 is)l,a

(	 asta4a^ra
a41 aseasa
 

Will
Pi P2Ps

rr	 +	 [(al0 ,7P4 +C i)(lr7+ diiJie) + a lo,7P4 (Jio+ driJilC)I; i - 1,2,...,p 	 (5-15)
1 

1	 (a6sP2 + a67Pa +&*U )- 15 )1,3 _ a67as6Pa(a lo,7P4 +d,'i)

i	 i4	 a2aa4a IM W5	 Ai6

X [a2apl(Jil+ d+iili7)+(a28Pl+-?ji)(Jia+ (4ili4),+	 ^
(a2aP1 + d2i)aes (A 5) 1 .a (fi6'^'diiJiB)

a23a46P1 Ai5

e6PM (a23P1 + ^;	 /
) [(a le,7P4+ ail)(fi7+ siltlii)+'3 10,7P4(Jili + d,'iJi10) 1

1 (5-18)
+ 

a6aa

	 W
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atepiws 
	 + i)(Iro +dir/r4)l

+

	

	 (°if6)I.6(at6)6,6	
i (Iii + Ardis)

a3o4%"aosa10,7P1 P7P8P4 W i 6

+ (464.3 [(at0,7P4+4i)(li7+ Clio) + a10,7P4(Ji9+dfilile), 	 (b-17)alo,7P4^fs 

46as7PfP0(a10.7P4 + ^r)
tit •

	

	 4:	 [as6P1(Jil+dili7) +(aa6^ +^i)(IiB+d ili4),

a67 (Aia)6,3 (a10, 7P4 + dili)
+	 a6aato , 7P4A^a 	

(Ji6 +di Jib)

+ [(aGIP3 + a67Po + dii)(°fb)a,a _ (a78Pt + d'i)a46ae8Pz

a8aalo,7P8P4O;6	 °16

x [(zt0,7P4+ dj'i)(Ji7+dilit)+ a10,7P4 (fig +diJi10)J	 (b-18)

a46a67a89P7P$P4[a7aPl(Jil +di Ji7) +(a78P1 + î )(Ji8 +dili4),
tilo =

'his

aaIO (D i6)6 1 a
+

67
 a	

(Ji6 +di Jib)
86al0,7O'jg 

+ago
 (aUP7+a67Pa+dii)(g6)6,8 _ (a78P1 +di2i)a46a6aP22P4 ']

a6aalo,7P8Oi6 	 0^^	
(Ji7 +d i fig ,

[aGSa66P7P3 + a62aIMN + a67a6oPaP4 + (a6aP7 + a67Pe + a86P8 + aB0P1)4i +dj4i,

+	 ae6al0,7P6P4Oi6	 (A4)6,3

(a:8P1 + dli)a4aa68P3(a^6P7 + 4604 + di)

(Jig +diJi10)
pia

(5-19)

ii
di [(a41P1 + dii ) (abaft + a67P6 + di'i) + a46P9(a67Pa + dii)]

til =	 aW46P1P9Oia

a78*1 [a6aP7 dj2i + (a46P7 + dii) (a67P8 + t'i ) ]
+	 a72a46PtP7W ;5	

(wi6)l.a

a67a$5 02 (a lo,7P4 + di2i) [di (a4lPt + a46P7 + dj'i) + a78*1 (a402 + d'i )]
(Jil +di Ji7)

X16

t -	 a41di
+Ji7 +

	

	 { [(x602 +a67Pa +dili)(O1a)1,3a7aaUPt P7 Di6
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+ftsm	 )l,a(fig +difis)

+4la4464N466piAPa[(a16.7P4 +'N
AA

i)(f.`7 + drifi6) + 6t0,7P4(fi9+ &ifi10), }	 (gym)

[auol — r2) +drl (467Pa +drr) +agP6dr

—
a46PiP7'l6

a28a67aa6Pl (ato,7P4 + d2ir)[a46(rl — ry) — dil
+	 ,

r6	
(fil +diifi9)

^

^(a67Pa +d1)[(aaaPl + d'i )(146*a +dii) +441 r ldii]

423446PtP20li6

a68diP2 (a2SPl + a4lrl dii +d',)1(^i6)1,7

• 07046P1P9ai6

a67aabPa (a10,7P4 + d') I (al3p, + d?r) (a46r7 + dii) + a41 rl di2i 7
+	 l	 ,	 (fia+diifk)

asadi [a2aP1 ♦ a4ldri(r l —ra)+ d2 wia)1,a
+fi4 +	 ,	 (fig +drj'r6)

a?aa46PiP90i6

a66POA 1428pl (a46r9 + 40^' ^i dii71	 r7 (^ig)6,a
• a6?	 I4	 a10 7N,

	

^g	 W+	 6

	

x [(a10,7P4 + d'i)(fi7 + diifia) + a10,7P4(fi9 + drifil0)]	 (5-21)
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ti` _ ^—^(h —h)](46)i.t+a4ias7ot6^(ate.7p4+alr^(r9—*^,
^lopips- li	 Wig

X [a"PI 'Vit + diifi2) +(42$Pl + d4i)(fn +(Wi4)

(atspi 'dii)ftlr2(4s)1.6	 this (Dig)1.6(Dii)6.6

L	 a7amwa	 alta46a4410.MP2P6P40(6

+ a67f'!(a10,7P4 +4 )(406.3 (fig +difib) +figa10,7P40(6

[di + au(r2 — ra)1 (^i6)i,a a4646646aP2 (aWl + diN (r2 — ra

+	 a10.7P6P4^(i	 Ai

X [ (4 10,7P4 —cei)(Ii7 + diifi0 ) + 410,7P4(fi9+4ihl0 ) j	 (5-22)

^7	 367 
h (iii) l.a + a46P2P6 [aii di4 + a ,0,7P,- (a66

— —
ra + d i ),

t

aa6Pt Dii	 Ai,

k [a26P1 (fit +diifi2 ) +(a2aPl+d2ii) (Iia+diiJi4)}

[a10,7P4 — a6044 (ra — r4) + d?s, (^i6)b a

a66a1o ,7P'P4Wia

(a66P2 + d?;)[(a66ra + di)(alo,7P4 + d';) + ZYO*^^;,

+	 a66al o,,"P40(6

a67pvd,i  (a10,7P4 + a60r4di +dji )
+

	

	 (o
a6aal0,7P6P40i6

(a2aP1 + d,2; )a4aa6aP2 [at'i d•i4 + a 10,7P4 (a66ra + d•i )]

Ai

+ 

1 [4.. (aGSP2 +lpii ) (f4 —r2) — (SGSPI+ a67PI + dii l '4' i' (D i a) 6,a
 a66P6P4^;6

(a2ap, + d2ji )646a6iato,7P,,[366 (ri — 14) + dl'i
ll

—	 ,	 (fig + 4 fi10)	 (5-23)

is	
I

r-
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k9 =	
as9dit	

i 6"467as641s,7MPIP4 [a28P1 (fi1 + diili2)
T aUalo,7nP4A;6 t

I- (628P1 +	 (ha + diili4)^ + 467P8 (O;a)6,a (fig + diili6)
l

+ [(a"p2 + a67pa +4i)(Oi6)6,8 — (a2sp1 + 4i )a46awaualo,7P22paP4] (!i7 +diilis)

this 1468a86P2P8 + a68 a89P2P4 + a67a89P8P4 + (463P2 + a67P8 + assp8 + aegp4)dj2i + dj'i,

+	 aa6410 ,7P8P4Di6

ap 4a10,7r4(a68P2 + a67ps + d4a)

	

7PaP4^i	 (a6)b,8

	

aa6a10,	 i6

•'	 (a28p1 + dji)a46a68Y9 [a89p4a10,7r4 — di46(ae6pa + aegp4 + i)]
+	 fib

X (fig + (ki foo) + 160	 (5-24)

where:

ri = k ;	 j = 1,2,3,4	 (5-10)

P} — 1 + rfdii;	 i — 1,2....,p	 j = 1 , 2 , 3 , 4	 (5-25)

dill - a28r1 + dii	 (5-26)

4H2 = a4t r1 + a46r2 + dii	 (5-27)

d is — a63r2 + a67ra + di	 (5-28)

4A = aebr8 + ae9r4 + dii 	(5-29)

diib — a 10,7r4 + dii	 (5-30)

— (a28P1 + d?)	 a41P1	 0	 0	 0
a23Pi	 —(041P1 + a46P2 + d?i )	 a63P2	 0	 0

Di6 =	 0	 a46P2	 — (a6aP2 + a67P3 + d?i)	 aebra	 0
0	 0	 a67ra 	 —(aebra + aegP4 + d?i )	 a10,7P4
0	 0	 0	 ae9P4 	 (al 0,7P4 + d,,)

— (a2vi +d'i) (46 )1,1 —a2aP1(O^ )2,1

	

s — (428p1 + iii) (Di6)1,1 — a2ep1W6 )1,2
	

(5-31)

6.3.3 Elimination of Damping From Model Interfaces

Elimination of damping at interface j (j = 1, 2, 3, 4 for the five body model) corresponds t4 setting
ri — 0 and pi - 1 in the equations for generating the elements of the T matrix, equations (5-18) through
(5-31) .
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L	 V damping is removed from all four haerLaes of the live body model, rj 0, PJ	 1, di1	 dii,et	

&3 di, di. di, &4 di, di6 di iad 46 Di6•

[44lae$+ a4la67+ a45ft1+(441+a46+am+a67)^;+ ;}
tit 	 (Dia)1,aa9Sd"'6

a67ae6(441 + a45 + d'i)(a10,7 + dID

a6

(aea+ae7+4i) (Dia)1.3 a67ae6(a10,7 +^; ) ]
+ a41	 —	 (Ii3+diili4)

	

a2aa460i6	 Di6

+ a4la68(Di6 )l,2
a2aa45Di6 (Ii6 

♦ diili8)
a41a6aaea

+	
a6	 (a10,7+4-i)(Ii7+diilie)+a10,7(ii9+d,-ifi10)J	 (5-32)

44
(a83 + a87+ ^i)(^6)1,3 a67aV6(a l0,7 + ^i)^	 —

a2aa460 ia	 di6

X [a23(fil + diifi2) +(a23 + d2ii)(Ii3 +'A'ifi4), 
+ (a23+&*ii)a63(Ai6 )1,3 (Iio+aiifi6)

	

a28a46Ai6	 l

	

a88a66(a28 + d?i) 
[ (a 10	 2
	 J+	 (a	 , 7+a;i)(Ii7+diilie)+a10,7(Iia+W-ifil0)]	 (5-33)

(Di6 )l,a
tie =

	

	 [a2a(Iit+diifi2)+(a23+dii)(Iia+diifi4),
a2a Oi6

• (&16)l,3(D,a)6,3 (fib +diili6)a2aa4aae6al0,704'a 

• 
(Di6 )6,3 

[(a,0,7 +d'i)(Ii7+diilie) +a ,0,7(fiO+diilil0), 	 (5-34)
410,744

a4a a67(alo,7 + aii )
t i8 	 [a23(AI + d-ili2) + (a23 + d2i)(Ii3 +d'ili4)J

Air

a67(Ai6)b,a (a 1 0,7+ dii )
+	

(Ii6 ♦
ae6a10,70ia	

d i li8)

+ [ (a63 + 487 + d,2•i )(D i6 )6,3 — (a28+aji)a46ae8
ae6a 10, 7Ai6	 446

X [(a10,7+dii)(li7+4'ili8)+a10,7(lia+dii/il0)J 	 (5-35}
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S{6Qe7s80 [a!e (l^ l + dii l,,!) + (fto + d*ii) (lie + djr l;4)l
ii	 etic -	
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•	 4eaalo,70;c (!;a 
♦ a;ilis)

+an
(age +487 + î)(^ia)a.a  (a98 ♦ d?;)a4a46S (fi7 + dii fie)

I	 assa10,746	 pia

a88aea + a8eee4 + 887884 + (an + a67 + ass + as9)d,2i + di4il
+	 (Dia)6^}	 ataalo,7Aia

(a9a + cqi)a46488(ass + a80 + dj2;)

(l;9 +C- h10)

^^
1t

(a41 + d ,) (a6a + a67 + d3,) + a45 (a67 + i) /
til =di	 a28a46Ai6	 (^i6)l,a

aaes(4 t0,7+ dj)(a41+ a4s+d67	 i)	 f
—	 0;6	 (li l + d,-JO)

a4l

+
I[(a3+a67+ d?i ) ('ib )1,3 — a93a46ag7a86(810,7 + ai;̂ ),(fi3 did,4)

a9aa4&A.,

+ a63(Dib)1,3 (fib + diifi6)
d

	

	
11t49a446a8aa8b [(a10,7+d'i)(fi7+ diili8) +a10,7(li9+d,'i1i10)^ 1 +fi7

i

(5-36)

(3-37)

j
dj 

	(a6a +a67+d2ii)(&i6) 1,3 	 a98a67ae6(a,o,7 +d'i]
a46446	 Di 6

(498 +i) (887 + di2i) + a88 (898 +i ), (a 6 )1,3

^y	
49844646

467aS6 (a33 + R;) (a l0,7 + ^; )
+	 4;a	 (fia +d;ifi4)

a6a (a9a + d'i) (Ai6) 1,3

a9aa460i6	
(fib + dii lib)

_ 883 886(893 -i ^,) l
fib	 [(a10,7+ dj';)(li7 +diifi8)+a10,7(fi9+diilil0)I 	 +fi4
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fib • dii { a2a^i6 ^^a(lit +drrli:) + (^q + r) (fie + & li4)^

+ (a6)t,8(a6)6,a _(fia 
+difis)asaa^akalo,746

+ 	 [(ato,7 — d'ri) (f.7 + diifie) + a10,7(fig + difilo)l + fi6	 (5-39)410,746	 }

47 - -dii 
^a46a67(S10,7+4 ass lrlrs + a2a+ais4s	 )	 fi +di(	 ) (	 i)(fia +difi4 )]

a67(alo,7 + a*ji)(4-a)6, 3

at6a10,7Ai6	
(I^a +difi6)

[(a6o + ^i)(at6 + ^i) + a67,	 (a a + d?.)a4saea
(alo,7+^i	 Di6 a,	

2	 ,^

)	 assa10,7Ai6	 (	 ) a —	 Aib	
(I 7 + di Ii8)

[ (agg + a67 + 4MAib)6,a (a28+d2i)a46 a63al0,7

+	 WbOib	 +	 Di6	
(Ii9+di1il0) +IiB	 (5--40)

f ig — di	
atg
	 a4067assa10,7 [a2a(fil + di fit)ataa10,7Ar6

+(a2A+'Pii) (fig + 144h4), +a67(,ib)a,a(Ii6+dili6)

+ [(aW + a67 + 4i) (A.i6)6,a — (a28 + d?i ) a4OW86a 10,7} (IM + d i fig ) }

[a68at6 + a68a19 + a67atg + (sea + a67 + a86 + a89) ^i + dji, (D i 6) 5,3

+	 assal0,746i5

(a2a + dj2i)a46a6a(ata + atg + dfi )

Oib	
(fi9 +di1i,30) +1i,10	 (5-41)

6.4 SOLUTION FOR SYNTEMSIZZD STATZ VARIABLES

5.4.1 Iatrod wdon
Inaccessibility of a scales state variable in equations (5-6) and (5-7) is refiected by a corresponding

null column in the C and F matrices as implied in equation (2-14). For the generation of reduced state
observers for the five body model, the number of inaccessible states can vary between one and nine.

tP	
6.4.9 Flint Order Obver-wens (p -1)

An observer of order at least one is required when any one of the ten scalar state variables of the five
body model is inaccessible. The first order form of the linear observer equation is as follows:

r'	 # — ds + Zu + Gy	 (5--42)
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The F and T matrices associated with a first order observer for the live body model then reduce to the
following Mw forces:

r • (h f2 ... fi g j	 (5-43)

T = jtj is ... t lo j	 ()

a The observer synthesis equations are then of the form of equations (5-15) through (5-31) R°ith i = 1.
Since a first order observer corresponds to one of the scalar state variables being inaccessible, one of the fi
(i = 1,2,...,10) = 0.

.	 Example

Suppose the scalar state representing the angular rate of body 5, s i c, is inaccessible. Then f, 0  = 0 and the
observer synthesis equations reduce to the form of equations (5-15) through (5-31) with the subscript, i,
omitted and f to = 0. From equation (2-11), the synthesised scalar state, i lo, is expressed in terms of the
scalar observer Mate variable z, and the accessible model scalar state variables as follows.

1	
g

210 s -.
i-

z —	 tizi	 ()tlo	 i.l

For zlo inaccessible, it is assumed that:

10
C =	 16	 (	 )

0

when 1 3 9 x 9 identity matrix.

From F = GC,

G = [fl fz ... f9 j 	 (5-47)

From Z = TB,

Z a (t, N to to t I o j for r = 5 (control torques applied to all 5 bodies)	 (5--48)

5.*.3 Observers of Order Greater Than One (1 < p < 10)

For those cases in which more than one of the ten scalar states of the five-body single-axis model are
inaccessible, the minimum order of the reduced state linear observer required to reconstruct these inaccessible
states is given by p. N each case the number of null columns in the measurement or observation matrix, C,
and the F matrix also is equal to p. The general forms of the Z, F and T matrices are given in equations
(5-12) through (5-14) for p =2, 3, 4, 5, d, 7, 8 or 9.

Example
Suppose the scalar states, so and zlo , which reprefneffi the angular position and rate of body 5, are inacces.
sible. Then fig = Ji ro = 0 for i =1, 2 and the observer synthesis equations reduce to the form of equations
(5-14) through (5—W) with i =1, 2 and fig = fi,lo = 0. From equation (2-11) the synthesised scalar states,
rg and 1 10 , are expressed in terms of the scalar observer states, z l and z2 and the accessible model scalar
state variables as follows.

2	 S

^(-1)itl(02)i,l(s► Ftilx))
i-1	 jal	

(5-49)= 	
Ds
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dio = ^-i	
t=1	

()

for

Dy
 =^

tig t1j: =t iotuo- t laotsolt0	 (8 51)yo tll

When (A7)r j _ As without the elements of the ilk row and Iea column.

For se and slo hmcesidble, it is assumed that-

 [	 ( 0 0
C	 re	 (	 (5-52)

0 0
where 1; is an 8 x 8 identity matrix.

Since F = GC,

G
 =[

fil ... hs1	 ( 3)
f21 "' f7e

From Z 

=[tI2

TB,	
1

Z = 	 t14 tls tls 
1 7,1 0

tl,lo
t77 t74 t78 t7e	 1 

for r = 5 (control torques applied to all five bodies)	 (5-64)

1L s [ t12 t14 tis t le 0] for control torquest77 t74 926 t78 0	 applied to bodies 1,2,3 and 4 	 (5-55)
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SECTION a

APPLICATION OF MODAL MODELING AND
DIRECT MATREX PRODUCTS

8.1 INTRODUCTION

In the development of reduced state observers for the clan of single-axis models of a flexible spacecraft
presented in sections R through S of this report, it was aimed that the state vector coefficient matrix of the
observer model was diagonal in order to reduce the amount of computation involved n solving the observer
synthesis equation,

TA — DT — F,	 (6-1)

for the elements of the T matrix as a function of the elements of the F matrix where

F — GC	 (6-2)

Despite this rather arbitrary assumption, the computational effort involved in this solution grew with alarm-
ing rapidity as the number of flexibly connected rigid bodies incorporated in the single-axis model was
increased. Furthermore, especiallly for the models incorporating both larger numbers of rigid bodies and
damping, the assumption of a diagonal D matrix seemed a rather poor approximation in -iew of the con-
siderable departure from diagonal form of the state vector coefficient matrices (A matrices) of these models.
In view of these problems, Dr. Henry Waites (6-1) of Marshall Space Flight Center suggested that a more
fmitfnl approach to synthesizing observers for this class of single-axis models of a flexible spacecraft treated
in the preceding sections of this report would be based upon the following sequence of steps.

1. Recast the state variable forms of each undamped single-axis model into modal form.

2. Add modal damping to each modal model.

3. Recast the observer synthesis equation in terms of direct matrix products.

The advantages cited for this approach include the following.

1. The state vector coefficient matrix, A, in each modal single-axis model appears in 2 x 2 block
diagonal form implying that the state vector coefficient matrix, D, of the corresponding observer
requ'-vd to accurately synthesize the inaccessible states would be no less sparse than 2 x 2 block
diagonal.

2. The modal model is more amenable to truncation of less significant oscillatory modes.

3. The coefficient of damping associated with each vibrational mode can be specified at the outset of
the analysis.

6.9 TRANSFORMATION OF THE TWO-BODY SINGLE-AXIS MODEL TO MODAL
FORM

The approach utilised in transforming the undamped two-body single-axis model of Section 2 to damped
modal form follows that presented in Thomson (6-2). It consists of the following steps.

1. Write original single-axis model in undamped form.

2. Write undamped single-axis model in terms of inertia and stiffness matrices.

3. Solve extended eigemalue problem for eigenvalues and corresponding eigenvectors.

4. Normalize the eigenvectors.

d. Construct the modal matrix from the normalized eigenvectors.

1. Transform the model to principal coordinates (modal form) utilizing the modal matrix.

7. Add modal damping to the model in modal form.
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(6-9)

8. Write the modal model with durving in state variable form.

644 Oel&d Undamped Two-Body Single-Ards Mudd

The mmdamped form of equations (4-1) and (9-4) is the following.

.0, - -ki ol + ki es - 41

142 " -41 82 + ki 01 — 44

when the coel$dmts and variables appearing in this set of equations are defined in Fig. 4-1.

6.8.8 Undamped Toro-Body Model In Twma of Ines tla and StIftwe Matrices

IIt + Rx = q

where.

X = 1 81 e2 ]r = ( x1 32]7

I : 0 0 - rotational inertia matrix

H - k1 1-11-1
rotational stiffnes matrix 1

q — ]91 q21r

(6-3)

(6-4)

(64)

6.2.3 Determination of Zlgenvalues and Zigenveetors

The eigenvalues for equation (6-6) are obtained by solving the extended eigenvalue problem which
is eauivalent to solving the following equation for A.

AIa - Kx	 (6-6)

An equivalent form of the above equation is:

[aI - K]x - 0	 (6-71)

A non-trivial solutionof the extended eigenvalue problem exists if the following holds with the expanded
forms of the rotational inertia and stiffness matrices for the two-body model expressed immediately following
equation (6-b)

JAI - KI -( A.11 - k1	k1	
IA,	 Al2 - k1

- 11 12 A A- ki ll +l2 = 0
1112

The solutions for this extended eigenvalue problem are:

Al = 0,
a2 — kl 

+ 12

54



I

J	 •

Ir 9

ORIGINAL
OF POOR Q!

The sigenveetors corresponding to A, we obtained by solving equations of the following form for r;
where i =1, Z.

(a;l - E)V; - 0	 (6-io)

The eigenvectore are normalizedsolvin the followingby	 g	 owing equation for c; (i =1, 2

{	 The eigenvalues, eigenveetors and normalized eigenvector coe®cients are displayed in Table 6-1

6.9.4 Construction of the Modal Matrix

1
P — [ VI I V21—CI	

(T2)

6.9.5 Mraneformatlon to Principal Coordlnatu

= rx 	 8-13Y	 p	 (	 )

Y1 = hz1 +ctx2 = ci 8i +c 1 82	 (6-14)
I1 -1/2	 Il 1 /2	

(
Il ) - 1,12 0, 	 1/2

Y2 = CI 
Cl2	

xl C1 (

	

x2 = C1 t ^z 
	 — cl ^	

82	 (6-15)

d = p'q	

` //	 \	
(6-18)

q'i = c141 + a1 92 	 (6-17)
I	 -i/2	 Il 1/2 	 .±

Y2
J = Cl ( j7 /	

91 — el 
^12	

(8-18)	 '^

Model in Principal Coordinates (Modal Model)

Y1 = ^	 (8-19)	
i

Y2 = -w iY2 + q2	 (6-20)
1/2	 I

-	 w1 
= ^1^ + 12	

(8-21)

6.9.6 Two Body Modal Modal With Damping

Modal damping is added to the modal model described by equations (6-19) and (6-20) by adding a
damping term to the equation with which the modal frequency, w l , is associated. The two body model with
damping in modal form then may be written as follows.

y1 = el
JJ 	

(6-22)
Y2 = -2S1 w 1 Y2 —w lY2 + q2 	 (8-23)

where fl is the damping ratio associated with wj .

b8

ten/
r	 -



Thble 6-1	
OF POOR QUALi i''+°

Ztge ralues and Zigemwetors for Each
Mods of 'wo Body Model

Normalized
Mode No.	 fteavalus	 Eiigenvector	 Eigenvector

A; - W?	 Ti	 Coefficient, c;

1	 0
01 L1J	

±V, +12)'1/2

ki	

1 [	

I l
2	

I1 
+

12	 °3 —2	
ci l

i d
12

6.9.7 State Variable form of the Two-Body Modal Model with Damping

The subscript on Y2 has been changed to "3" so that the following relationships can be used in
constructing the state variable form of the Modal model.

Y2 = yl	 (6-24)

Y4 - is	 (6-25)

State Variable Modal Model

ii	 0 1	 0	 0	 yl	 0 0
y2 	 0 0	 0	 o	 y2	 1 0	 qI

+	 (6-26)
is	 o 0	 0	 1	 ys	 o 0	 e2

v+	 o o	 —W1 —2f wi	y+	 0 1

6.3 TB.ANSFOR31ATION OF TIM Z-BODY SINGLE-AXIS MODEL TO MODAL FORM

6.3.1 Original Undamped Three-Body Single-Aids Modal

The undamped form of equations (3-1) through (3-3) is the following.

Ile, — —kt et + ki82 +gl	 (6-27)

12 82 - bl e d + (k1 + 12)82 + k28a + 42	 (6-28)
lava - k282 — k268 + 48	 (6-29)

where the coefficients and varkbles appearing in this set of equations are defined in Fig. 3-1.

6.3.9 Undamped Three-Body Model In Terms of Inertia and Stiffness Matrices

Iii + Kx — q	 (6-30)
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1, 0 0
I = 0 Is 0 - rotational inertia matrix

0 0 Is
k,	 —k,	 0

E _ —ki ki + k2 —kt = ro"onal stWAsse matrix
0	 —Ty	 k2

q - (al 92 q8 I"

6.3.3 Datumduatlon of MIgenvalnes and Modal lrequeneies
Corresponding to equation (6-30) an extended a genvalue problem can be defined which consists of solving

the following equation for A.
AIa — Kx	 (6-31)

This is equivalent to setting the following determinant equal to zero

All — k,	 i,	 0
CAI—KI —	 ki	 X12 — ( kl + lee)	 k2

0	 lw;	 AIa —\ k,

=11I2Ii A[A2 —(^
,

+ k,+k2 + t! A+
k, ^ + k,

^.+
kl l^i

)=0	 (6-32)
11	12	 10	 1112	 11 13	12 1a J

Since each solution for A corresponds to the square of a modal frequency, equation (6-32) may also be written
as follows.

A(A — W2) (A — ^2) = 0 	 (6-33)

for which the solutions are: A l — 0, A2 = wi and AS = w2 .

The eigenvecton corresponding to A; are obtained by solving equations of the form presented in equation

(6-10) for vi when i — 1, 2, 3. The resulting pairs of eigenvalues an3 eigenvectors are displayed in Table
6-2.

Application of the remaining steps in the approach utilized in Section 6.2 yields the following state variable
modal form for the three-boiy single-axis model of a flexible spacecraft.

6.3.4 State Variable Form of Three-Body Modal Model with Damping

q, 0	 1 0 0 0 o y,
y2 0	 0 0 0 0 0 12

is 0	 0 0 1 0 0 vs
j4

-
0	 0 —w, —2f1 w, 0 0 Y4

is 0	 0 0 0 0 1
—2f2W2 

j y6
is 

j
0	 0 0 0 —w? ve 

j

0 0 0
1 0 0

^i

+
0

0
0

1
0
0 e2 (6-34)

eaj0 0 0 1

0 0 1
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ilIl^ard M and Zlgmveetora for Zaeh Mode
'of Thm Body Modd

Mode No.

1

2

3

NormaliAd
Ek"Md" ftaffeetor Eigenvector

Coefficient, ci

1
0 el	 1 *(I, ♦1,j + , ) - l/z

1

1

w1

^kl — well ( kl _ r Il ) 2 J2	 ( ki — 
r 1 11 k^ l	 - 1 ^

l
f Il 	 Iaea kl ♦ 

	 ^-	 /kl 	 ^ — r l la kl
kl —will I"k2 — wi la kl

1

w2
kl — w.121, kl — rlll 	 _ 

r111 kl
( kl

f Il	 )IsIa( kl	 k2 — r l la	 i,
ca	 kl + +

kl —w 2 IL k2

—1M w^ kt

6.4 ZXTZNSION OF B.ZSULTS TO SINGLZ- AXIS MODZLS WITH FOUR OiL MOEZ
B.IGID BODIZS

Inspection of the state variable modal form of the three-body single-axis model with modal damping in
equation (6-34) and the corresponding modal two-body model in equation (6-26) reveals that the state
vector coefficient matrix, A, in these modal models could be written in the following 2 x 2 block diagonal
forms.

Two-Body Model•
All 0

A = 0 A99

Three-Body Model:
[All 0	 0

A = 0 A22 0
0	 0 As

where Aii and 0 are 2 x 2 sabmatrices.

Furthermore,

All _ 1 0 1 10 0

and
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It aha should be noW flat the diuteeasions of each A matrix an equal to twice the number of rigid bodies
in the model. Applioatioa of the approadt utilised in transforming the two -body and three -body singie•axis
model to state variable modal form with damping yields a Set of models that extend the patterns for these
modeb. In. particular, a single-axis modal involving r A& bodia can be transformed to a modal state
variable model with a sts to vector cooscieat mmdx of the following form.

'Ali

A	 A" 0
0

which is a 2 x Z block diagonal matrix of overall dimension n x n where n Zr. The forms of the 2 x Z
nbmatrices along the principal diagonal of this coefficient matrix are given in equations (6-37) and (6-38)
for i = 1, 2j ... , n/4. The remaining elements in the A matrix am zero.

6.3 OBSZRVZB SYNTHZSIS EQUATIONS ZXPR .Z:'SZD IN TZBMS OF DIRZCT
MATRM PRODUCTS

The observer synthesis equations are expr ysed in the following Corm ^v iection Z of this report

. TA-DT=F=CC	 (6-40)

for the state variable form of a singl"xis model of a dexible ipacecra[E., with some scalar states inaccessible,

x = Ax+Bu	 (6-41)

xa = CX	 (6-42)

when the corresponding reduced state observer is given by:

11 = Ds + Za+ • CXA 	(6-43)

a = Tx	 (6-44)

The coefficient matrices And vectors appearing in equations (6-40) through (6-44) are defined for a linear
model of dimension n with m accessible scalar states and p inaccessible scalar states as follows.

A = n x n model state vector coefficient matrix

B = a x r model control vector coeHcient matriz

C = in x is model measurement or observation matrix

D = p x p observer state vector coefficient matrix

Z = p x r observer control vector coefficient matrix

Co = p x in observer ooserved vector coefficient matrix

T = p x n transformation matrix from model state vector to oteerver state vector

X = [xA x,? ]T = n. vector of model scalar Mates

X^ - m-vector of accessible scalar states

x, = pvector of inaccessible scalar states
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Prom theee Maidens, each of this moinx products appearing in equation (8-40) has the dimensions p x a.
U Ip is dished as the ides-  matrix of dimensions p x p and 4 is defined correspondingly, then each of
the matrix products, TeTA and D 'A'>;, also has the dismadc-s p x n. The observer synthesis equations may
awrw be wrhts in the following has.

TPTA - DTI. • CC = t 	 (8'43)

However, the deQaitioa of a direct matrix prodact give in Lancaster (6-3) mar be and to write the observer
synthesis egoatioas in the following equivalent form.

(4 40 Ar - D ®Iw (-f . :r	 (8-46)

where.

TT

T = Tr

if
Tr = vector comprised of the elements of the stt row of the T matrix

and ? is related to F in the Sam way.
From Lancaster (`-3), the direct matrix products appearing in equation (6-40) may be expanded as

follows.

Ar

Ar O
i, ®Ar 	

O	
(6-47)

Ar. wax wP

For

dll ... dip

D	 =	 (6-48)

41 ... do

dill. ... d1rL.

D04 _(9-49)

	

djllw	
dglw wpn wp

Solving for T yields

In general, this solution would require inversion of a matrix of dimension np x np.
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GA ORSM"$ S"Y`NTELSIS EQUATIONS FOR S1NGLZ-AXIS MODELS IN MODAL
FORM

U A is the state vector coefficient matrix of a single-alas model in modal form, it was shown in Subsection
'NA that it assumes thu form given is equation (6-39). The transpose of i -ch a 2 x 2 block diagonal Matrix
also is block diagonal and of the following foram.

1
AT

 A4;	
O

OAwr/9,w/7

where each submatrix, A;;, is 2 x 2 and the remaining elements in A t' are zero.
For an observer of even order, p, of a state variable single -axis model in modal form with an A matrix of

the 2 x 2 block diagonal form appearing in equation (6-•39) the observer state vector coefficient matrix is of
the following 2 x 2 block diagonal form. 	 E

Dll
D =	

D22
0

(6-52)_

where D;;	 2 x 2 submatrix on the principA diagonal.

D 1 l	 In
FF r. D'^ ^.	

Dzs ©1„	 Q
(6-33)0^

9 D,/?.p/2 011

where:

dl?',[di,
D11	 a	 (6-54)

d?1	 dz?

[4a	 d4a,

z [dp-2.p-2	 4-2,p- 1 	 (6-56)
D T	 I	 d'

d°
-',1-2	

-
1 ,I- 1

D'' f	
. [4-w- - , (6-57)

ddr,sdsr 1 	 1

61

i



3
ORIGINAL PAC--- C34*

OF POOR QUALITY

{	 The equs":on for generating the demote oft T matrix miay now be written is the following form

rAy -dub -4216	 0	 T1j	 71jr-4136 Ajj -deb	 Txj	 Fsj

	

0	
Ar - dp-l,P-1 16 4-1,pb Tr-1,i	 Tp-1.j

i	 -4,P-06	 Ajj -
d. ._b	 Trj	 ffp.i

J 1,2,...,n/2	 (6-58)

'	 where:

b _ 1 0
0 1

Tij -14,2j- 1 tt,xj ]s	 i =1,2,...,p	 (d•-59)

Ttj = (/r,xj-1 Ii,sj ]T	 (8-80)

It should be noted that all of the 2x 2 submatrices appearing in the coefficient iatrices of equation set (6-38)
are commutative under mnitiplication becans,. this property is useful in the solution for the elements of the
T matrix for p > 1. Since all diagonal matrices commute, it is necessary only to show that the matrices,
A.jrj - diklz and A j - 4„11 , commute for j = 1, 2,..., n/2.

dki	 0	 -dk,	 0[AT - db Is](Al i - d•.Is] = 
1-1	 -dki	 1	 -dkl

dki d"	 0	 [AT - 4.I2 1[Ar - 1k, 12 ]	 (8-61)-(dw +d..) dMd,,,

[ATj - M I AT11( • - ,. I2]	 did	 2	 -

	

-`''	 d,.	 W, 2-
J d^	 1 d

	

^	 1	 -(dki+2tj- ► ^'j-1)]	 1	 -(d..+2;i- ► ^'j-^)^
=	 dkid••-°'i-1	 wi-1 +2Sj-1wj-1

j-(dki+d,.+2tj- 1wj-1) dkid,.+ 2cj-L Wj-i(dki +d„)+(4fj 1 - 1)"i-t)]

=[Aj -d..16][Aij -HMIs )	 J =2,3,...,n/2 (6-82)

Hence, the 2 x 2 submatrices, Ajj - diklz and kj - d„12 are commutative under matrix multiplication for
j=1,2,...,n/2.

For an even p the solution for the elements of the T matrix now involves np/4 inversions of the coefficient
matrices of dimensions 4 x 4 partitioned into 2 x 2 submatrices. Since the 2 x 2 submatrices are commutative
under multiplication, each of the np/4 vector-matrix equations of the set can be solved in terns of each
Tij which has the effect of reducing dimensions of the matrix inversion u evolved by a factor of two. The
definitions of Tij and )f ; j in equations (6-59) and (6-60) in terms of the indevidual elements of the T and
7 matrices would then be invoked to complete the solution.

For the case in which p is an odd integer, the corresponding D matrix is 2 x 2 block diagonal except at
one location along its principal diagonal where there occurs a degenerate "block” in the form of a single
non-sero scalar element. With the assumption that the individual scalar state variables can be reordered,
this isolated principal diagonal element can be placed at the lower right hand corner so that the D matrix
assumes the following forma.

D11

D =	
Ds^	

0

	

0	 D.2 0 2 

dp,p

(6-63)
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when Ai an 2 x 2 sebmatrices defined in the same way as for p even for i =1, 2,..., (p -1) /2 and d,,, is
a scalar on the principal diagonal of the D matrix.

D22 ®zw
D O U "	 (6-84)

O Ds,^a,s,^t ®IR
dp,p 0 I„

By the same procedure as utilised for even p the equations for generating the elements of the T matrix when
p is odd may be expressed in the following form with F;., and Ti., defined in equations (6-59) and (640).

AT - d11I2 AT. - d12I2
All - d22I2

T,j F,;
A^ - d21 I2 T2j F2j

AL - alp-2,p-2I2 	 -dp-2,p-1 12 Tp-2J Fp-2j

0 -dp-l,p-2I2	 AJj -dp-1,p-112 Tp-1J Fp-Id
A7- 	 dp,pI2 Tpj Fps

(6-85)

From equation set (6-65), it is evident that when p is an odd integer, n/2 of the equations in the set
reduce to the form,

[A - dp,pI2lTpj = Fp j	 j a 1.2...., ?	 (6-66)
where it has been assumed that the state variab ;e model can be rearranged, if necessary. so that this vector-
matrix equation appears last in each of the 2 sets of equations.

From equation (6-37),

	

di	 0 l

[
t	 - t	 [ -1 -dam	

(6-67)JAll - 4k1 12 ) _
M

From equation (6-38),
f(2fj-Iwj-t +dki) w2_1

T	 -1 a L	 - 1	 -416
-88[Air -dMI2)	 w?+2djqsj-lw -1 +	 (	 )

^-1	 J	 J	 k!

Hence, for the case in which the order of the observer, p, it an odd integer the solution for the elements of
the T matrix in terms of the elements of the F matrix reduces to n(p -1)/4 inversions of coefficient matrices
of dimension 4 x 4 partitioned into 2 x 2 submatrices and n /2 inversions of coefficient matrices of dimensions
2 x 2. Since all of the 2 x 2 matrices of equation set (6 - 56) commute under multiplication, the dimensions
of the n(p-1)/4 coefficient matrices to be inverted are in effect reduced by a factor of two by first solving
for the T;J 's in terms of the F;j 's and then applying equations (6-59) and (6-60).

6.6.1 First Order Obeervera (p =1)
Since p is an odd integer, equation (645) applies and reduces to the following form.

I LO
	

[AJJT j - dl1 I2 IT1 j = Fj j,	 1 = 1, 2,..., n/2
	

(6-69)

where F1j and Ti j are defined in equations (6-59) and )8-80) and the F matrix, which has a ,inglp row-,
may be written as follows:

F = [ FT Fly	 F1 n/2 )T
	 (6-70)
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T2w con	 sine* row T mufti: m4 be written is the(^) for T;1 Yields the followms:	 Bum form as the F matrix. solving equation

which, is view of equations ("9) and ("0), becomes:

t	 =[A^ - d11I2[- 1

	

[f2,2j-1
  j2,2	 (6-72)

r	 where [A, 	 di i y1) -1 is given  equation (6-67) and [Ai -6 2,3,..., n/2.	 - du Is ' 1 is]	 given in equation set (6-68) for

t	 &G-2 Second Order ObSWVQM (p = 2)
Since p is even, equation (") applies. For^.p 2 it reduces to:

[
A.ry -diA 	 d - 12

 r
	

1 L T11 , _ [Fly,	 ^
-d21 I2	 AĴ  - dJ2I2 T2	 g2 J	 1 s 1, 2, ... , 2

	 (6-73)
where T, j and F;l an defined in equations (6-,59) and (6-0).

AT•	 112	 d
^2^s^

1 - d I1	 - 12LJ
-d2II2	 Au - 422I2 ,	 (6-74)

Since A - dM I2 commutes with A J - d,.I2 under matrix multiplicationt

IA2i1=1[AJ - d11I2[[A^ - d22I2 1 - d12421121	 6-75Then

T
TIi = AT.- `=F . d12]2	 n

Ip? •1	 11 + 142i I
F2;	 1 s 1'2,..., 

2	 (6-76)1

T = Al 	 AT -di1 I22i	
102 ( F1^ -^
	 0	 F2 .

1 2i 1 (6-77)

Solutions for the individual elements of the T

wobtained by application of the definitions of T;J and, ; in egnatof the elements of the F matrix we then

Lt1,2J-I = 
[A	 16

	

-d22	 j1,2;- 1 	 d12J	 (	
J	

/2,2i- 1 1t1 ,2i	 11121	 l 11,2;	 + Ir12JI 1 j2,2; J

frr 
	 1	 (6-78)

`tt2,2j
,2j-11 a 

I d142^1 1j1 ,'

i-11 + [AT. -d11I2

JJ	 j1,2j 1	 1021 , [1 f22j 1,

(6-79)

6.6.3 Observers of mgher Order
For p = 3 equation (d-6a) reduces to the following.

r A j - d1 1 I2	 -dL2I2 	 [TIJ	T1
d21I2	 Aj - d22I2 , T2 	 ^ T2J J	 (6-73)
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(AL - desb ]Tsf = is f;	 J = i,Z,...,	 (	 )
,

The Observer synthesis equations for p = 3 differ from those for p = 2 by the addition of equation set (6-
80) which is of the same form as the observer sym1hesis equations for p =1 with the subscript, 3, substituted r
for the subscript, I. Therefore, the solutions for the elements of the first two rows of the T matrix for p = 3 ^J
are identical with those for the two raw of the matrix for p = 2, equations sets (6-76) and (6-71). While

3 the solutions for the elements of the third row are of the same form as those for T matrix for p =1, equation
at (6-71) with the nummical subscript, 3, substituted for the subscript, 1.

For p = 4 equation set (6-M) reduces to one equation set identical with the one for .p = 2, and another
equation set of the same form with each numerical subscript incremented by one. Hence, the solutions for
the demos is for the first two rows of the T matrix for p = 4 are identical with those for the two rows of the
T matrix for p = 2, equation set (6-76) and (6-77). The solutions for the elements of the third and fourth
rows are gives by the same equations with each of the numerical subscripts incremented by one.

The solutions for the elements of the T matrix for larger values of p follow the same pattern. Thus,
they can be constructed directly by using the solutions for p = 1 and p = 2 as "building blocks" as was
demonstrated for p = 3 and p = 4.

4

6.7 SOLUTION FOR SYNTRESMOD STATL VAit,I"LES

In Subsection 8.4 it was shown that the single -axis modal models of a flexible spacecraft treated in this
report can be written in the state variable form in terms of the modal state vector as follows.

it = Ay + Bu	 (6-81)

Y". = Cy	 (6--82)

where

A = n x n state vector coefficient matrix

B	 = n x r control vector coefficient matrix

C	 = m x n observation or measurement matrix

y	 = modal state vector of dimension n
y„ a vector of accessible modal state variables of dimensicn m

u	 s control vector of dimension r i
The block diagram corresponding to this model is the same as Fig. 2-2 except that the vectors, x and x A , s

are replaced by y and y,,, respectively. The 2 x 2 block diagonal form of the A matrix is shown in equation

if the number of inaccessible modal model scalar states is given by p = n - r (1 < p < n), then the
corresponding reduced modal state linear observer model is the toliowmg.

t. >i = Do + 1ffu + Gy ,,	 (6-83)

i.
s = Ty	 (6-84)

where

D = p x p observer state vector coefficient matrix

L z p x r observer control vector coefficient matrix

` G = p x m observer observed vector coefficient matrix

T =	 x n observer weighting matrixp
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s = observer state vector

The block diagram for this obeerver is the same as that shown in Fig. 2-4 except that the vector, y, is
sabstit-at" for the vector X.

After the observer synthesis equation given by equation (6-40) or one of its equivalent forms such as
egnatioa set (d•-68) for even p and equation set (6-0) for odd p has been solved for the elements of the T
matriz, ki, equatim (6-84) can be salved to express the synthesised inaccessible modal model scalar states
in terms of the accessible modal model scalar states. This I" step generally 

will 
require the inversion of

a p x p matrix. A block diagram of the modal model of a flexible spacecraft and its reduced state linear
observer appears ilk Fig. 6-1.

ELamee: Solution for two synthesised modal states in the two body model.

Suppose that for the state variable modal two-body model the modal scalar states, yes and y4 are inacces-
sible. Then p = 2, n = 4 and the T matrix is thus:

T = t:t t 12 t18 9 14 1	 (^^)
I t2l t22 t23 t24 J

corresponding to:

Y = (Y1 Y2 Ya Y41T	 (6-88)

s : (s1 ^)T	 (8-87)

1

If the remaining modal model scalar states, y; and y2 and all of th.. elements of the T matrix are known
then equation (6-84) can be solved to express the synthesised inaccessible modal model scalar states ya and

t
il4 ar follows.

(	 04 (A2)2,11,1 
Y9 = Q' (zt — t 11 Y1 — t 12 Y2) — 

/ 
04 (

z2 — 9 41 Y1 — t22Y2)	 (8-88)

(1&2 )1,2	 (A2)2,2
14 = 04 (91 —t 11Y1 —t12Y2) — 

04 
(z2 —t21Y1 —t22Y2)	 (8-89)

when

02	 =1t2
1 t12, 

= t 1 1 t22 — 9 12921 A 0	 (6-90)

(A2);, i = 112 without the elements of the ate row and the nth column.

T

f	 1
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u	 Vehicle	 yq
	 y

Model

YI

Observer YI = YT (i t YA . T)
T

u = vector of scalar inputs to vehicle modal model

yA = vector of accessible states of modal model

& = vector of scalar states of observer

T	 observer weighting matrix

y
I = vector of reconstructed scalar states of model

A

y	 - = reconstructed vector of all scalar state variables of

yI	 vehicle model

FIGURE Or-1

BLOCK DIAGRAM OF MODAL SPACECRAFT MODEL AND !TS
REDUCED STATE LINEAR OBSERVER
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EXCTION T

CONCLUSIONS AND IMCOM UNDATIONS

. ,.J

Dories the period covered by this report, the class of single-axis state variable models with some
inaccessible states was extended three ways.

1. The patterns inrolved in the prior development of the state variable forms of the two-body, three-body,
aid foorbody single-axis model of a flexible spacecraft wen extended to produce a Bve-body model
tot could represent the single axis that was found to be decoupled from the remaining axes of a
be-body three axis model treated in earlier work.

2 A rotational damping coefficient was added to each flexible interconnection between the rigid bodies
compelshw each model.

3. Each undamped single axis model was transformed to a modal model with one or more inaccessible
model state variables.

For each combination of single axis state variable model and inaccessible scalar state(g) a reduced
state linear observer was generated to reconstruct those scalar states that were inaccessible. This was done
because the application of linear quadratic regulator (LQR) and closely related time domain approaches to
attitude control utilise all or nearly all of the scalar states of the model of the spacecraft to be controlled.

71.1 CONCLUSIONS

The following conclusions were drawn mainly from the development of the damped two. , three-, four-
and five-body single-axis models with inaccessible scalar state variables of a prototype Sexible spacecraft
and the generation of the corresponding linear observers of minimum order required to reconstruct these
inaccessible scalar states.

T.1.1 Observers Generated for SIngle-Axis Modeb Based on Angular Displacement and Sate
State Variables

1. Since, of the four coefficient matrices appearing in the observer synthesis equation, A, D, F and T,
only the state vector coefficient matrix in the single-axis model, A, is known a priori, the following
approach was used to generate the elements of the coefficient matrix, T, for the transformation from
the state vector of the model, x, to the state vector of the observer, s.

a. The elements of F can be determined by utilizing the known values for the elements cf C, the
observation matrix in the single-axis model and the assumed values of the elements of G in
conjunction with the equation, F=GC.

b. Assuming that D is diagonal simplifies significantly the solution of the equations for determining
the elements of T.

Z. The m*mmum order required for a reduced state linear observer to reconstruct p inaccessible scalar
state.n of a single-axis state variable model with a total of n scalar states is p where p =1, 2,..., n —1.

Therefore, the number of elements in the T matrix to be determined equals np and solving for the p

inaccessible synthesised scalar state variables requires the inversion of a p x p coefficient matrix.

3. The rigid-body fiexible-joint single-axis models of a flexible spacecraft treated in this report are u, a
more general form when damping is added to each joint connecting the rigid bodies. Therefore it is
far easier to develop the observer synthesis equations for the damped models than to begin with the
equations for the undamped models and generalise them to account for the effects of added damping.

4. If n —1 of the n scalar state variables of the single-axis model are accessible, a reduced state observer
of order at least one (p — 1) is required to synthesize the inaccessible stare variable. The number or
elements in the T matrix to be determined equals n and solving for the one inaccessible scalar state

•	 variable does not require the inversion of a matrix.
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L As the number of accessible scalar state variables dea wo, the nunober of inaccessible scalar states,
p, the wxmber of demenh is the T matrix to be determined, np and the dimensions of tine coe8lciesrt
matrix to be iwverted is solving for the inaccessible synthesised scalar "o variables, p x p, increase,
which iwcmases the mandw of computations required.

L At least out of d w a state variables of the dagle axis model must be accessible in order for the
inaccessible state variables to be synth.—sized by a reduced two observer.

?.1.3 Oboes va Generated for Slagle-Axis Madek Hosed on Modal State Variables
L The state vector coefficient matrix, A, is each modal single-axis model appears is 2 x 2 block diagonal

An= implying that the state vector coefilcient matrix, D, in the corresponding reduced state observer
is Z x Z block diaconal.

L Whoa the observer synthesis egaadoa is expressed is terms of direct matrix products, solution for the
da nests of the T matrix generally requires iaversioa of as np x np cod&ient matrix.

3. When the number of inaccessible states of the model, p, is even, use of A and D matrices in 2 x 2
block diagonal form in the observer synthesis equation reduces the solution for the elements of the T
matrix to the inversion of i 4 x 4 matrices partitioned into 2 x 2 sabmatrices all of which commute
under multiplication.

4. When the number of inaccessible states of the model is odd, use of A and D matrices in 2 x 2 block
diagonal form in the observer synthesis equation reduces the solution for the elements of the T matrix
to the inversion of " 4 t 4 x 4 matrices partitioned into 2 x 2 commutative submatrices and 2 x 2
matrices.

S. The modal matrix operates on only the angular displacement state variables and thus each modal state
1	 variable generally is a weighted linear sum of all of the angular displacements.
{ a. Reduced state linear observers predicated upon a modal single axis model generally require that

at least one of the modal state variables be accessible which is equivalent to requiring that all of
the angular displacement state variables of the original state variable model be accessible.

b. Reduced state observers based on the modal model can be used to synthesize one or more inac-
cessible angular rate state variables of the original state model.

e. If no modal state variable is accessible or, equivalently, if any one of the angular displacement
state variables for the original s+:ite model is inaccessible, reduced state observers predicated upon
the modal model cannot be used to synthesize any state variables.

•. Ever if all of the necessary conditions required for synthesis of state variables by a reduced state
observer predicated upon a modal single axis model are satisfied, two significant d isadvantages of this
approach are the following-

a. Modal state variables that are weighted sums of angular displacements. and rate state variables
are difficult to into rpret physically.

b. Transformation from the modal state variables to the angular displacement and rate state variables
mss► be very complicated.

7.2 RWOMIliENDATIONS
The following directions are suggested for future study in the application of attitude control to state

variable models of flexible spacecraft for which one or more scalar states are inaccessible.

1. The modular control techniques developed for the attitude control of models of flexible spacecraft for
which all scalar state variables are accessible should be modified for application to seri es of single axis
models and their associated reduced state linear observers developed in the work treated in this report.

2. Selected combinations of single axis model and its associated linear observer and modular attitude
control system should be simulated on a digital computer to support investigation f effects of changes
in the following single-axis model and observer characteristics.

r
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a. Raton between the masses (rotational inwtim ) of bodies comprising the single-axis modeL

b. Magnitudes of n Ndag end damping coebfldtsuts at the interfaces between the rigid bodies of the "s-
Axis model

3. The generation of reduced state observers to reconstruct inaccessible scalar states of a model of a Box-
We spacecraft should be extended to the three-axis Ave -body model of a prototype flexible spacecraft
developed earvw.

4. The application of modular techniques to the attitude control of selected combinations of a single-axis
model and its corresponding reduced state linear observer should be extended to the combinations of the
"*.axis and two-axis Ave body models representing the prototype flexible gmecraft and the cor. e-
sponding reduced state observers.

b. The combination of single-axis and two-axis five body models and their linear observers and modular
attitude control systems should be simulated on a digital computer.

6. Coefficients representing the sensitivity of the scalar states to parameters of the cor.** Ination of singie-aids
and two-axis five body models and their linear observers and modular attitude control systems should be
developed.

7. Since, for a model with n scalar state variables, the number of elements of the T matrix to be determined,
np, and the dimensions of the coefficient matrices to be inverted in solving for the synthesised inaccessible
variables, p x p, increase as the number of inaccessible variables, p, increases, it Mould be desirable to
determine whether there is a value for the ratio, at which a fall state observer would be more readily
implemented than a reduced state observer.

8. In view of the egpecially convenient forms of the modal state variable single-axis models of the flexible
spacecraft and of the corresponding observer synthesis equation it appears worthwhile to investigate ways
to mitigate the requirement that all rotational displacement state variables in the original model be

3	 accessible.
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