General Disclaimer
 One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

INFORMATION EXTRACTION AND TRANSMISSION TECHNIQUES
 FOR SPACEBORNE SYNTHETIC APERTURE RADAR IMAGES

Final Technical Report 596-5
by

Victor S. Frost, Principal Investigator, with L. Yurovsky, E. Watson, K. Townsend, S. Gardner, D. Boberg, J. Watson, G.J. Minden, and K.S. Shanmugan

Supported by NASA Headquarters NASA Grant NAGW-381

December 1984

TELECOMMUNICATIONS AND INFORMATION SCIENCES LABORATORY THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.
2291 Irving Hill Drive - Campus West Lawrence, Kansas 66045

The purpose of this research was to investigate information extraction and transmission techniques for synthetic aperture radar (SAR) imagery. Four interrelated problems were addressed. An optimal tonal SAP image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image anhancement alqorithms have been proposed. A study was undertaken to quantatively compare the effectiveness of each algorithm.

1.0 INTRODUCTION

The value of spacehorne remote sensing systems have heen clearly demonstrated by the success of the LANDSAT series of satellites. The technoloqy for extracting useful information from the data returned from these satellites is well developed. Recently, a new class of spaceborne inaging systems have been tested, Synthetic Apertures Radar (SAR). Processing the data from spaceborne SAR systens to form images is a non-trivial task and a great deal of research is currently underway to develop high speed SAR processors. Unfortunately, a similar effort is not being devoted to the development of information extraction techniques for $S A R$. The research reported here developed information extraction and transmission techniques for SAR.

Four interrelated problems have been addressed: 1) classification; 2) data compression; 3) textural modeling and edge detection; and 4) image anhancement. An appendix is attached for each of these topics which describes the results of our investigations.

2.0 RACKGROUND AND OVERVIFW

Digital image processing techniques have been successfully applied to a wide variety of problem ranqing from the analysis of X-ray images to identeification of handwriting to the extraction of information from satellite images $[1,2,3,4,5]$. Each new problem in image processing presents new technical challenges which must be addressed. This research addressed important prohlems involved in digital processing of SAR imaqes.*

Spaceborne imaging radars are important because they provide a unique view of the earth's surface. Their imaging geometry, spectral characteristics, and all-weather capability give active microwave systems an advantaqe over conventional imaging techniques, e.q., photoqraphy. For many years, imaging radars have been successfully used for military reconnaissanse and qeologic mapping. Operational systems arecurrently in use for ice surveys and the detection of oil spills on the world's oceans.

Until very recently, all informatin was extracted from radar images by human interpreters. Other techniques were not considered because radar data was disseminated as photoqraphic products, e.q., paper or film positives. Not only was it awkward for an interpreter to convert these data into a digital format for automatic or machine-aided information extraction, but this conversion process degraded the quality of the data. The advent of the digital signal correlator [e.g., 6] for synthetic aperture radars (SAR) has changed this, and now radar images are commonly distributed in a digital format. In addition, quantitative information is now desired from radar images, e.g., soil moisture and crop type estimates are being sought. The volume of data collected from proposed spaceborne imaging radar missions can be enormous, as shown by the Seasat-A SAR mission. If imaging radars are to meet their full potential, then automatic information extraction is needed, or at least ma-chine-aided analysis to ease the work load on the interpreters is required.

An initial approach for automatic information extraction from radar imagery would be to employ the well developed technology associated with other sensors $[1-5]$ (e.g., LANDSAT). This method was unsuccessful. The failure of

[^0]this approach occurred because existing processing algorithms were designed assuming a specific system and statistical model. The most common model assumed was additive, white Gaussian noise (AWGN). This model does not apply to radar images. Therefore, processing algorithms hased on an AWGN did not perform satisfactorily when applied to radar images.

It has been shown that $[7,8]$ radar images can be modeled by a multiplicative noise process which is non-Gaussian and has a poor sicnal-to-noise ratio. The standard technique for improving the interpretability of SAR images has been to use noncoherent inteqration (9-11]. Noncoherent averaginq is used extensively for noise reduction on coherent systems [12-14] and can be implemented in many ways. The basic idea behind this method is that independent samples (or looks) of the terrain are gathered and averaged after detection. Independent samples can beobtained by polarization or frequency diversity. Most SAR systems use frequency diversity, i.e., nonoverlapping subareas of the spectrum of the complex received signals are used to form the independent images.

Continuous scanning of the spectrum is also used $[11,13,14]$. The net effect is to reduce the bandwidth (degrade the spatial resolution), while improving the signal-to-noise ratio, S / N. Several studies $[10,15,16]$ have shown the advanrages of noncoherent processing for the interpretation of SAR imaqery. However, there are several disadvanrages to this approach: 1) the technique is spatially invariant and thus does not account for the multiplicative nature of the noise and the nonstationarity of the signal; 2) the technique was developed for coherent optical processors and thus it is easily implemented with such a processor but is not necessarily optimum for digital processors; and 3) the technique is only aimed at improvinq the S / N and not for direct extraction of information.

Several digital image enhancement algorithms have recentiy been developed $[17,18,19]$ to treat the multiplicative nature of SAR images. Also, several hueristic approaches have been applied [20]. The technique we developed in [17] is an adaptive minimum mean square error spatial filter which preserves edges while smoothing homogeneous areas, e.g., agricultural fields. Homomorphic filtering has also been used [18] for enhancement of speckled images. A linear approximation to the multiplicative noise process is used in [19] to
develop an adaptive filter based on the local mean and variance. Whereas [17] and $\{19\}$ demonstrate the performance of their alqorithms on actual SAR imagery, only s-mulations are used in [18]. All of these alqorithms on actual SAR imagery, only simulations ave used in [18]. All of these alqorithms have only been directed toward image enhancement assuming that the information extraction process would be performed manually. While these techniques are of great value for manual interpretation of SAR imagery, algorithms for automating the information extraction tasks are needed.

Appendix A describes a quantative evaluation of several of these enhancement algorithms. The comparison was based on both an edge quality measure and computer execution time.

What is the information to be extracted from spacehorne SAR imagery? Active microwave remote sensing is being used for several applications (e.q., geology, ice mapping, and monitoring wave conditions in the ocean); several more applications have been proposed, e.g., soil moisture measurement, crop classification, monitoring crop growth and harvest progress, and snow mapping [21].

In each application, the SAR is used to measure different properties of the earth's surface. The problem of information extraction can be viewed as a signal analysis problem where different properties of the signal (here the SAR image) are used to imply certain properties of one target. For example, in geology SAR images are analyzed for their large scale spatial structure. Different image structures imply different geologic structures [22]. The backscattered power (which is mapped into the SAR image intensity) is used to estimate the soil moisture of crop type [23]. For ocean applications, it is the Fourier spectrum of the SAR image which is used to estimate ocean conditions.

Thus, the successful extraction and handing of information for SAR images requires: 1) identifying unique image properties; 2) relating those image properties to the ratqet characteristics of interest; 3) finding ways of efficiently measuring those imaqe properties; and 4) findinq ways of efficiently representing (for storage or transmission) these image properties

Appendix B contains a SAR imaqe classification alqorithm. In this algorithm image, tone was the property of the signal (SAR image) used to obtain information ahout the earth. The multiplicative model for SAR imaqes was used to develop a maximum likelihood classification algorithm. It was first assumed that the target feature information was known a-priori. A probability of incorrect classification was then determined for this algorithm as a function of thie SAR parameters (e.q., the degree of noncoherent averaging). A technique was also developed to extract the tarqet feature information from the supplied image. This classification alqorithm was tested on SEASAT-A SAR imagery.

Appendix C contains a description of a data compression developed for SAR images. This technique was based on the multiplicative noise SAR image model and is designed to preserve the local statistics of the image. The technique is an adaptive variable rate modification of the block truncation coding technique developed in (24). A data rate of approximately $1.6 \mathrm{bits} / \mathrm{pixel}$ is achieved with the technique while maintaining the image quality and cultural (point like) targets. The algorithm requires no large data storage and is computationally simple.

In some applications, the image astribute, desired siqnal characteristic, which is needed is clearly defined as in the case of image intensity. And the classification algorithm described in Appendix C provides the maximum likelihood technique to separating image features based on intensity (or tone). However, for others, a distinct signal property has yet to be identified. One promising attribute is texture. Texture is known to be important for the manual interpretation of SAR images for geology and these large scale texture differences have been shown to be separable using digital techniques [22]. Appendix D contains a description of an optimum textural edge detection filter.* This filter will be of value in separating reqions of different textures in SAR imaqes. The filter described in Appendix D is optimal in the sense that for the qiven texture model, a maximum amount of output signal energy is concentrated within a given resolution interval about the textural transition for a set filter bandwidth. The filter developed here is also a

[^1]qlobal operator, rather than a local operator. In other words, the entire image is transformed and modified by the filter, instead of breaking the processing down into many local operations. The optimum textural edge detector is an extension of the optimum tonal edqe detector \{25\}.

With the increased availahility of digital SAR images, information extraction and transmistion alqorithms will increase in importance. This research effort addressed several critical problems in SAR imaqe processing. It is hoped that these algorithms will be both useful and provide a basis for further developmenet of radar image processing techniques.
[1) W. K. Pratt, Diqital Image Processing, John Wiley and Sons, New York, 1978.
[2] H. C. Andrews and R. R. Hart, Diqital Image Restoration, PrenticeHall, Inc., 1977.
K. R. Castleman, Diqital Image Processing, Prentice-Hall, Inc., 1979.
"Special Issue on Pattern Recuqnition and Image Processing," IFFE Proceeding, Vol. 67, No. 5, May 1979.
"Special Issue on Image Processing," IFEE Proceeding, Vol. 69, No. 5, May 1981.
W. A. Penn, "Signal Fidelity in Radar Processinq," IRE Trans. on Military Electronics, Vol. 6, April 1962, pp. 204-218.
[10] L. J. Porcello, "Speckle Reduction in Synthetic-Aperture Radars," J. Opt. Soc. Am., Vol. 66, No. 11, 1976, pp. 1305-1311.
[11] J. S. Zelenka, "Comparison of Continuous and Discrete Mixed-Integrator Processors," J. Opt. Soc. Am., Vol. 66, No. 11, 1976, pp. 12951304.
J. C. Dainty, Laser Speckle and Related Phenomenon, Sprinqer-Verlag, New York, 1975.
[13] 2. Hariharan and Z. S. Hegedus, "Reduction of Speckle in Coherent Imaging by Spatial Frequency Sampling, Part I," Optica Acta, Vol. 21, No. 9, 1974.
[14] P. Hariharan and z. S. Heqedus, "Reduction of Speckle in Coherent Imaqing by Spatial Frequency Sampling, Part II," Optica Acta, Vol. 21, No. 9, 1974.
[15] R. K. Moore, "Tradeoff Retween Picture Element Dimensions and Noncoherent Averaging in Side-Looking Airborne Radar," IEEE Trans. on Aerospace and Electronics, Vol. AES-15, September 1979, pp. 697-708.
G. R. DiCaprio and J. F. Wasielewski, "Radar Imace Processing and Interpreter Performance," Photogrammetic Fng, and Remote Sensing, Vol. 52, No. R, Auqust 1976, DP. 1043-1048.
V. 8. Frost, et al., "Adaptive Smoothing for Noisy Radar Images," IEEE Proceedings, Vol. 69, No. 1, January 1981.
J. S. Lim and H. Nawah, "Techniques for Speckle Noise Removal," Optical Enqineering, Vol. 20, No. 3, May/June 1981.
J. S. Lee, "Speckle Analysis and Smoothing of Synthetic Aperture Radar Images," Computer Graphics end Image Processing, Vol. 17, pp. 17-32, December 1981.
P. S. Chavez, "Automatic Shading Correction and Speckle Noise Mapping/Removal Techniques for Radar Image Data," Radar Geology: An Assessment, JPL Publication 80-61, July 1979.
F. T. Ulaby, et al., Microwave Remote Sonsing - Active and Passive, Vol. I, Addison-Wesley Co., Reading, Mass., 1981.
K. S. Shanmugam, et al., "Texture Features for Radar Image Analysis," IEEE Transaction Geoscience and Remote Sensing, Vol. GE-19, No. 3, July 1981.
F. T. Ulaby et al., "A Simulation Study of Soil Moisture Estimation by a Space SAR," Photogrammetic Enqineering and Remote Sensing, Vol. 48, No. 4, April 1982, pp. 645-660.
E. J. Delp and O. R. Mitchell, "Image Compression Using Block Truncation Coding," IEEE Trans, on Communication, Vol. COM-27, No. 9, Sept. 1979, pp. 1335-1342.
K. S. Shanmugan, F. M, Dickey, J. A. Green, "An Optimal Frequency Domain Filter for Edqe Detection in Pictures," IEFF Trans. Patt. Analysis and Mach. Intel1., Vol. PAMI-1, No. 1, Pp. 37-49, January 1979.

APPENDIX A
Evaluation of Edge Preserving Properties of Radar Image Enhancement Algorithms

EVALUATION OF EDGE PRESERVING PROPERTIES OF RADAR IMAGE ENHANCEMENT ALGORITHMS

J. Scott Gardner

Victor S. Frost Jeff Watson

University of Kansas Telecommunications and Informatiu. Sciences Laboratory

ABSTRACT

Many algorithms exist for the enhancement of synthetic aperture radar (SAR) images. These algorithms improve the signal-to-noise ratio of an image in order to make the image more useful for an observer. The trade-off for this improvement is a decrease in the image resolution and is seen as a blurring of fine detail. For many applications, most notably for the analysis of agricultural scenes, this blurring effect is only critical in edge areas where a boundary exists.

In this study several different enhancement algorithms were implemented. These algorithms were then compared based on an edge quality testing procedure. This procedure established a method with which the edge-preserving abilities of the various algorithms could be compared. The amount of computer processing time required by each algorithm was also recorded. Using the results of these comparisons, recommendations are made as to which algorithms are best suited for various applications.

LIST OF FIGURES

Follows Page

I
Figure 2.1Weighted Filter Window5
Figure 2.2 Filter window operation 6
Figure 2.3 The size of the window affects the sizeof the output image.6
Figure 2.4 Sequential storage of image data. 8
Figure 4.1 Steps used in determining edge orientation. 19
Figure 4.2 Edge masks used in calculating new window statistics. 19
Figure 4.3 Flowchart of Lee's filter. 20
Figure 4.4 Exponential filter weighting. 22
Figure 4.5 A vertical edge is present on the left sideof the local area.25
Figure 4.6 Non-isotropic window weighting. 26
Figure 5.1
-5.22 Edge figure of merit plots. 39
Figure 5.23 Plot of computer time for each algorithm. 39
Figure 5.24 Plot of computer time relative to theequal-weighted filter.39
Figure 5.25 Filter performance rankings. 39

The usefulness of synthetic aperture radar (SAR) imagery is dependent on the ability of an observer to recognize detailed features in an image. This ability is often greatly decreased by the presence of noise. Various algorithms have been developed to suppress noise in SAR imagery. (1,2,3,4) The problem with noise reduction algorithms is that they tend to suppress the desired signal as well as the noise. This is particularly a problem for edge areas. The purpose of this paper is to evaluate several of the algorithms in order to determine how well each algorithm preserves edge information while suppressing noise.

The principle type of noise in SAR imagery is speckle noise, which is multiplicative in nature. Speckling effects are due to the fact that SAR generates images by the coherent processing of the reflected signals, resulting in more noise in those areas where the signal is greater. This can be modeled mathematically by the equation:

$$
\begin{equation*}
z_{i, j}=x_{i, j} v_{i, j} \tag{1.1}
\end{equation*}
$$

where $Z_{i, j}$ is the observed power at a particular range and azimuth, $X_{i, j}$ is the signal that would ideally be observed
and $V_{i, j}$ is the noise. The subscripts are present in order to emphasize that the image is to be processed digitally with i and j corresponding to a row and column in the SAR image to be analyzed. Hereafter, for simplicity, the subscripts will be omitted.

In order to improve the interpretability of an image, it is necessary to suppress speckle noise while enhancing the desired signal. Many different enhancement algorithms have been developed for this purpose. (1,2,3,4) Most algorithms suppress noise by averaging the surrounding points. That is, a pixel is replaced by an average of its neighbors, producing a smoother, less noisy image. However, since neighborhood averaging is often applied to all points within an image, the desired signal points are also averaged, leading to a degradation of the image resolution.

In an edge area (defined as a boundary between two areas of differing average power return), the edge will also be smoothed, causing the boundary to, appear "blurry". In many cases this retards interpretability as effectively as speckle noise. Obviously, it is desireable to suppress speckle while also preserving the edge information.

A useful application of edge preservation is analysis of agricultural areas in which relatively large homogeneous areas of differing radar reflectivity have distinct boundaries. While smoothing in the uniform regions suppresses speckle, a loss of resolution in these areas is
rot as critical, since there should be little variation in signal strength for a level field containing only one type of crop. (Variables such as soil mosture or plant disease would cause the field to appear as more than one region of uniformity, However, no smoothing is desired in the edge area in order to preserve the distinct boundaries. The type of filter chosen for processing of noisy images significantly affects the amount of edge degradation in the processed image.

The extent to which an enhancement algorithm preserves edges can be evaluated by an "edge figure of merit" (EFM) algorithm. (5) The EFM establishes a means of image comparison by detecting the amount by which an edge was smoothed. In addition to detecting smoothed edges, the EFM may detect "false" edges due to noise. These combined effects contribute to the calculation of a relative EFM value which is used in drawing conclusions about the effectiveness of each algorithm.

This report provides a quantitative comparison of several different noise suppression algorithms. Section 2 provides a brief description of the development of a digital noise filter. Section 3 explains the manner in which the filter performances were quantitatively compared, and section 4 outlines the development of each filter compared in this study. A discussion of the results is given in section 5. The appendices contain the listings for all computer programs used in this study.

2.0 DIGITAL SPATIAL FILTERING TECHNIQUES

The purpose of this section is to briefly outline the considerations involved in the development of a spatial digital filter. Although many different types of image processing algorithms exist (1), this study focuses only on spatial filtering techniques. A large number and variety of algorithms have been developed to perform this type of filtering. The SAR image to be digitally enhanced is contained in a two-dimensional array of values representing the reflected power at each discrete area of the target. Each element of the array is a pixel in the image. Usually the image is been scaled to accomodate the display system. The term "image enhancement" is the process of suppressing the image noise while retaining the signal. To best illustrate the procedure used in developing a specific filter for a particular application, it is helpful to examine the development and implementation of a simple, yet effective, filter -- the "equal-weighted" or "box filter."

Consider an NxM image $f(i, j)$ containing both the signal and multiplicative noise. The enhancement procedure is to generate a smoothed image $g(i, j)$ in which the gray level at every point (i, j) is the average of the gray levels of f contained in a predefined neighborhood of
(i,j). (For this study, the neighborhood of (i,j) includes the point (i,j).) That is,

$$
\begin{equation*}
g(i, j)=\frac{1}{T} \sum_{(n, m) \in S} f(n, m) \tag{2.1}
\end{equation*}
$$

where S is the set of coordinates of points in the neighborhood of the point (i,j), and T is the total number of points defined by the coordinates in S (7).

Computationally this process involves calculating an average for each $n \times m$ region of the image. The nxm region is referred to as a "window" because of the way in which the entire image is viewed nxm pixels at a time.

To generalize the filter, the filter window is defined in terms of an nxm array of weig!ted values (fig. 2.1). Each cell in the window contains a value which determines the degree to which the image gray level at that coordinate influences the average. By changing the window weight, it is possible to change the filter characteristics.

Subsequent sections of this report examine the determination of window weightings for several different filters.

As an example, consider a 5×5 window with a gaussian weighting to be used in filtering a 100×100 pixel image. By dividing each element in the window by the sum of the window elements, the window is normalized so that it sums

Figure 2.1 Weighted filter window
to one. The operation to be performed is a "moving average." Visualize placing the window on top of the image, starting with the upper left corner and moving across the image. At each position of the window, the sum of the products for the overlapping cells can be calculated. Since the window has been normalized, this sum will equal the weighted average of the values for the pixels "covered" by the window. The values in the window determine how much each covered image pixel is weighted in the average. For the normal weighting used in this example, the points farther from the center of the window have less influence on the average. Each sum is a point in the output image. Moving the window across generates a line in the output image. Once a line is output, the window is moved back to the left side of the image, down a row, and then across to generate the next line of output (fig. 2.2 illustrates the operation). At this point it is clear that the window will not be able to cover enough points at the end of a column or row for determining an average (fig. 2.3). These end points can either be copied directly into the filtered image or discarded, making the filtered image smaller by an amount equal to one less than the window size. (To prevent false edges from being created, the filters used in this study discard the end points).

With a basic idea of why windows are used in image

processing, the computational requirements for the implementation of a window operation can be examined. One of the most fundamental considerations for image processing is memory management. Typically a SAR image is quite large; usually there are over 500×500 pixels, while an image containing 2000×2000 pixels is not uncommon. To store an entire image in memory while it is being processed can take up many megabytes of storage space. Obviously some thought must be given to how much of the image is needed at any one time for processing. Most images are stored sequentially. That is, the top record or line of data is read first while following lines are read in the order that they appear in the image (fig. 2,4). Therefore the algorithm must also take into account the order in which the data is read.

One of the most efficient algorithms to deal with window operations is a two-dimensional circular queue. This data structure is a "first-in-first-out" construct. Since only the rows coveref by the window are being processed at any one time, this is the only data which needs to be in memory.

All of the programs presented in this paper utilize a circular queue to implement various types of window operations. A straightforward illustration of the queueing technique as applied to a spatially invariant two-dimensional convolution is presented in Appendix A.

Figure 2.4 Sequential storage of image data
This filter is better shown in the section on theequal-weighted filter, but this simple example programmakes the queuing operation more obvious. In the nextsection of this report, the performance criteria for thedigital filters are presented, and the development of theedge figure of merit algorithm is outlined.

3.0 Performance Criteria

All of the filters coapared in this study improve the signal-to-noise ratio of SAR imagery. However, the degree by which edges are degraded differs from one filter to the next. This section outlines the procedure used in developing a "fair" test of the edge preserving qualities of each filter.

The most difficult question asked when developing a "fair" test deals with the amount of filtering done in the homogeneous areas of the image. This is an important consideration, since a filter might appear to perform much better based solely on the results of the edge figure of merit (EFM) test. The EFM algorithm used in this study is based on the mean-square distance EFM developed by pratt (5) defined as

$$
\begin{equation*}
F=\frac{1}{\max \left(I_{I}, I_{A}\right)} \sum_{i=1}^{I_{A}} \frac{1}{1+\alpha d^{2}(i)} \tag{3.1}
\end{equation*}
$$

where I_{I} and I_{A} represent the number of ideal and actual edge map points, α is a scaling constant, and d is the separation distance of an actual edge point normal to a line of ideal edge points. The scaling constant was chosen to be $\alpha=1 / 9$ to provide a relative penalty between smeared edges and isolated, but offset, edges.

Since filter parameters dirfer widely from one algorithm to the next, a filter may not do as much smoothing in the homogeneous areas as another filter. If too little smoothing is performed, then the presence of noise will cause the detection of false edges, leading to a lower EFM. To validate the results of this study, each filter was applied so that the amount of filtering performed in homogeneous regions was approximately equal. Equal amounts of filtering were most important in the adaptive filters where a great deal of flexibility exists in the filter characteristics. For more rigidly defined filters, the window size is used as a common factor, while it still might be true that a filter operating on a 5×5 local area of one type does as much filtering as a 7×7 filter of another type.

The input images used in this study were 144 rows by 144 columns, containing only one vertical edge near the center of the image. The edge ratios used in this study were 3,6 , and 9 dB , with the number of independent looks equal to 1 and 4. A total of 6 images were processed by each filter for various window sizes.

Once the filtered images were produced, they were processed using a differential operator (see App. A). For this study the 2×2 Robert's gradient was utilized. The gradient images became the input images for the edge figure of merit program which generates a binary image by thresholding the gradients. That is, if a gradient point
was found to be greater than or equal to an edge threshold, that point was set equal to a vaiue representing the existence of an edge. Otherwise the point was set equal to zero. This operation resulted in the generation of an "edge map" which, when displayed as an image, shows edges as bright areas and homogenec'ıs areas as dark. Since the original images contained only one edge, the optimum result would be a single vertical line at the edge's location in the image. In practical cases, however, the actual edge is not completely identified.

The threshold chosen in the generation of the edge map radically influences where edge points are identified, since too low a threshold highlights smaller gradients which might be false edges, while too high a threshold may miss some edges which actually exist. Therefore the edge figure of merit routine has two distinct, yet related tasks. The best threshold is sought in order to obtain the best edge map and the highest EFM, while the EFM is used as a way of determining the best threshold.

The EFM routine implemented for this study uses a quadratic search for finding the best threshold in order to minimize the number of passes through the images, since each EFM calculation for a particular threshold requires processing the entire image. Once the best threshold was calculated for the 3 dB image, the same threshold was applied to the 6 and 9 dB images. These calculations allowed comparison of the filter's ability to preserve low contrast edges. The
optimum threshold was also found for the 6 and 9 dB images
so that further comparisons could be made. As an
additional factor of comparison, the amount of computer
processing time was recorded, yielding a relative measure
of cost. The results are presented and discussed in
Section 5. In the next section, the development of each
filter is examined separately.

4.0 FILTER IMPLEMENTATION

In this section, each filter compared in this study is discussed separately. Complete program listings are given at the end of the report in Appendix A. The filters presented in this section were written, tested and implemented using a HARRIS 230 minicomputer and FORTRAN 77. Some routines were converted from existing programs, while others were designed from information supplied in reports. (Specific source references are made where applicable.) In each case, an attempt was made to make the algorithms as general as possible with emphasis on readability. To achieve both generalizability and readability, the programs should be viewed as a package, since program layout and structure are common for most of the filters. Computational efficiency was an important consideration in the original design, and while specific algorithns could be optimized slightly, the common design approach does yield a usable product.

4.1 The Equal-Weighted Filter

The equal-weighted filter, often referred to as a box filter, is probably the most widely used spatial filter. The term "equal-weighted" describes the filter weighting function applied over each local area. In this filter, all
points in the area of the window are each weighted equally, resulting in the average for the area being the output point. The second term, "box filter," views the filter as a discrete two-dimensional convolution with a box function. This is given by the relation

$$
\begin{equation*}
f(i, j) * g(i, j)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) g(x-m, y-n) \tag{4.1}
\end{equation*}
$$

for $i=0,1,2, \ldots, M-1$ and $j=0,1,2, \ldots, N-1$ where $g(i, j)$ represents the $S A R$ image as a two-dimensional function and $f(i, j)$ is the box function. The $M x N$ array given by this equation is one period of the discrete, two-dimensional convolution (7). The equal-weighted filter performs a moving average over the entire image, smoothing edge points as well as homogeneous areas. This procedure makes the implementation of the filter straightforward, since only one pass through the filter window is required for each local neighborhood. It should be noted that this filter program is a straightforward application. The code can be optimized by moving some operations out of the innermost loop, resulting in a slight increase in efficiency. This optimization was not done here in order to maintain program readability.

4.2 The Median Filter

The median filter is another commonly used filter, but in many respects it is quite different from other filters. The operation performed by the median filter is to replace an image point by the median value of the points in the local area. That is, for the points contained within the filter window, the point is found for which there are an equal number of pixels with lower intensities as there are pixels with higher intensities.

In developing this filter, the question of window size must be addressed. Completely different programming approaches are required in order to optimize the filter for either small or large window sizes. This consideration is important, since the median filter, though simple in concept, requires a significant amount of computational overhead. For a small window size, it is easiest to sort the points and retreive the median. For larger window sizes, the increasing number of points makes this multi-pass approach very inefficient, and it becomes more desirable to generate a histogram of the points and sum counts until a median is found. The trade-off in central processing unit (CPU) time is summarized below for the relatively small 144×144 pixel images used in this study:

WINDOW SIZE SORT METHOD HISTOGRAM METHOD

3×3	23.16 sec	67.08 sec
5×5	90.64	79.14
7×7	271.37	96.55

Larger images increase the need for computational efficiency. Since a more general approach was desired for this study, the histogram method was implemented.

4.3 Lee's Edge Filter

Most filters developed for the enhancement of SAR images take a general approach to the suppression of speckle; no special consideration is given to the filtering of edge areas. The local statistics algorithm developed by Lee (2) attempts to idertify edges so that less smoothing can be done in these areas.

To determine if an edge is present for a local area of the image defined by the filter window, the local statistics are first calculated. An edge is defined as a point of transition between two areas of differing properties. The property examined by the local statistics algorithm is the pixel intensity. If an edge exists within the local area, then a transition is present between relatively high and low pixel intensities. This results in the local area having a higher pixel variance. In this manner edges may be identified as being present within the local area by establishing a threshold for the variance.

Lee also presented a statistical model based on the signal dependency of speckles (3). Using the model given by (Eq. 1.1), an extension may be made to find the a priori
mean and variance

$$
\begin{equation*}
x=\frac{\bar{z}}{\bar{v}} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}(x)=\frac{\operatorname{Var}(z)+\bar{z}^{2}}{\operatorname{Var}(\mathrm{v})+\overline{\mathrm{V}}^{2}} \tag{4.3}
\end{equation*}
$$

where \bar{z} and $\operatorname{Var}(z)$ are approximated by the local mean and variance of the speckle corrupted image. The parameters \bar{x} and \bar{v} are the means of the desired signal and the noise, while var(v) is the variance of the speckle noise. By linearizing the observed pixel z using the first-order Taylor series expansion about (\bar{x}, \bar{v}) :

$$
\begin{equation*}
z=\bar{v} x+\bar{x}(v-\bar{v}) \tag{4.4}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{Var}(z) & =E\left[(x v-\bar{x} \bar{v})^{2}\right] \\
& =E\left[x^{2}\right] E\left[v^{2}\right]-\bar{x}^{2} \bar{v}^{2}, \tag{4.5}
\end{align*}
$$

which can be further simplified if the window is assumed to cover an area of constant average intensity. Therefore,

$$
\begin{equation*}
\mathrm{E}\left[\mathrm{x}^{2}\right]=\overline{\mathrm{x}}^{2} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{Var}(z) & =x^{2}\left(E\left[v^{2}\right]-\bar{v}^{2}\right) \\
& =\bar{x}^{2} \operatorname{Var}(v) \\
\operatorname{Var}(v) & =\frac{\operatorname{Var}(z)}{\bar{z}^{2}} \tag{4.8}
\end{align*}
$$

Equations (4.5) through (4.8) are used to justify the multiplicative noise model, while also providing a simplified expression for $\operatorname{Var}(\mathrm{v})$ which is needed to complete Eq. (4.4). From Eq. (4.7) it can be further determined that

$$
\begin{equation*}
\operatorname{Var}(\mathrm{v})=\frac{1}{\mathrm{~N}} \tag{4.9}
\end{equation*}
$$

where N is the number of looks for the SAR image. This information, along with the assumption that $v=1$ and Eq. (4.2), leads to the final equation for the estimation of x,

$$
\begin{equation*}
\hat{x}=\bar{x}+k(z-\bar{x}) \tag{4.10}
\end{equation*}
$$

with

$$
\begin{equation*}
K=\frac{\operatorname{Var}(x)}{\bar{x}^{2} \operatorname{Var}(v)+\operatorname{Var}(x)} \tag{4.11}
\end{equation*}
$$

This allows the actual signal to be estimated for a pixel by knowing the local mean and local variance for the filter window and also knowing che average number of looks for the SAR image. The best results were achieved by setting the number of looks parameter equal to an exact value calculated from the statistics for the SAR image being processed. The edge preserving quality of Lee's filter is achieved through his use of the local statistics of the homogeneous areas of the image. If the local area is determined to be homogeneous based on the variance test, then the statistics for the entire window area are applied to the model in obtaining the estimate for the signal. If an edge is present, then its orientation is found by applying a 3×3 gradient mask to a 3×3 array of subareas calculated from the window. Fig. 4.1 shows the steps taken in obtaining the edge orientation. Once the edge position and orientation are known, statistics are calculated for the homogeneous portion of the local area. The new statistics are calculated by masking the edge points in the window when calculating the new mean. These masks are given in fig. 4.2. These statistics are applied to the noise model to obtain a new estimate for the signal. Since this new estimate is only dependent on the homogeneous area, there is less degradation of the edge information.

m_{11}	m_{12}	m_{13}
m_{21}	m_{22}	m_{23}
m_{31}	m_{32}	$m_{n 3}$

Formation of 3×3 subarea means from a 7×7 window.

After a 3×3 gradient mask has been applied to determine the edge orientation, the pixels perpendicular to the edge are compared to one another to determine on which side of the edge the center pixel lies.

Fig. 4.1 Steps used in determining edge orientation. (2)

Fig. 4.2 Edge masks used in calculating new window statistics. (2)

The entire procedure is flowcharted in fig. 4.3.
For the purposes of this study, the implementation of Lee's filter was designed with an emphasis on flexibility. The window size was allowed to vary so that comparisons could be made based on this parameter. The edge threshold value, used as an input parameter for determining the presence of edges, is modified based on the results of previous executions of the program which report the percentage of the image assumed homogeneous. Since the images used in this study contain an exactly defined number of edge points, this allowed the results to be kept consistent for all applications of the filter.

PROCESS EACH LOCAL AREA OF THE INPUT IMAGE

Figure 4.3 Flowchart of Lee's filter

4..4 The Adaptive Filter

The operation of the adaptive filter is as the name implies; the filter is adapted to the local area based on some criteria. The filter developed in this study uses the local statistics of the area defined by the filter window in order to determine the filter window weightings. For each local area of an image, the local number of looks is calculated using the relationship

$$
\begin{equation*}
N_{\ell}=\frac{\bar{z}^{2}}{\operatorname{Var}(z)} \tag{4.12}
\end{equation*}
$$

where N_{l} is the local number of looks, \bar{z} is the mean of the area defined by the window, and $\operatorname{var}(z)$ is the variance of the local area. Using the value N_{ℓ}, an index into an array of filters is chosen. The filter weightings range from an equal-weighted filter to a filter which does no averaging. The filters defined within this range are weighted using

$$
\begin{equation*}
F(x)=e^{-a|x|} \tag{4.13}
\end{equation*}
$$

The rate of decay of the exponential determines how heavily surrounding pixels are weighted in the local average and, hence, how much smoothing is done for the pixel being processd. Figure 4.4 illustrates this for the one-dimensional discrete case, but an extension can easily be made to two dimensions.

Th adaptive filter preserves edge information by applying a filter window which affects less averaging for the local areas with a lower N_{ℓ} (higher $\operatorname{Var}(z)$), while homogeneous areas receive more averaging, since a more uniformly weighted window is chosen for those areas.

Several different parameters are involved in the definition of the adaptive filter, allowing a great deal of flexibility in the characteristics of the filter. The window size is variable, while the number of filters to be used is also variable. A larger number of filters allows a more continuous smoothing effect. To generate the filters, the first and last filters are generated, with the first filter equal-weighted, and the last filter weighted so that no averaging is done. The weightings of the filter windows within this range of filters were specified by the value, alpha, which relates to the rate of decay of the exponential. Alpha is first calculated, based on the relationship,

Figure 4.4 Exponential filter weighting

$$
\begin{equation*}
\alpha=\frac{2}{W} \tag{4.14}
\end{equation*}
$$

where w is the equivalent resolution for a box filter.
Alpha is then found by evaluating the integral

$$
\begin{equation*}
W=2 \int_{0}^{\infty} e^{-\alpha x} d x \tag{4.15}
\end{equation*}
$$

Quantizing alpha gives

$$
\begin{equation*}
\alpha=K_{0} \text { Index } \tag{4.16}
\end{equation*}
$$

where K_{0} is a constant evaluated for the case where $\alpha=.5$ when $\mathrm{N}_{\ell}=\mathrm{N}$, the number of looks for the image. The motivation behind these choices of values is based on the constraint that when the local variance (described by N_{ℓ}) is equal to the average of all the local variances (described by N), then the filter applied to this area should be the filter in the middle of the range of filters. This yields

$$
\begin{equation*}
K_{0}=\frac{2}{W} \frac{\Delta_{N}}{N} \tag{4.17}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta_{N}=\frac{\operatorname{Max}\left(N_{\ell}\right)-\operatorname{Min}\left(N_{\ell}\right)}{\# \text { Filters }} \tag{4.18}
\end{equation*}
$$

Collecting terms produces

$$
\begin{equation*}
\alpha=\frac{2}{W} \frac{\Delta_{N}}{N} \text { Index } \tag{4.19}
\end{equation*}
$$

which describes the filter shape for each filter. In order to generate a complete range of filter shapes, the program uses the user-supplied parameters, w and Δ_{N}. The other filter characteristic which may be modified is the rate of filter usage. By calculating the local statistics, the local number of looks may be found from

$$
\begin{equation*}
N_{\ell}=\frac{\bar{z}^{2}}{\operatorname{Var}(z)} \tag{4.20}
\end{equation*}
$$

which is used to select the filter to be applied to the area,

$$
\begin{equation*}
\text { Filter }=\# \text { Filters }-\frac{N_{\ell}}{\Delta_{N}} \tag{4.21}
\end{equation*}
$$

Here the only parameter to be varied is Δ_{N}, which also was used in the filter generation. The parameters, w and Δ_{N}, are both factors used in the generation of the filter
weightings, while only Δ_{N} is needed for the determination of the filter usage. To accommodate this parameter dependency, the filter usage should first be determined. Once this characteristic is resolved, then the amount of averaging desired for the image may be regulated by varying the parameter w.

4.5 The Edge Adaptive Filter

This filter combines the edge-locating attributes of Lee's edge filter with the filter flexibility of the adaptive filter. Once Lee's edge filter determines the presence of an edge within the local area, the edge orientation can be found. With this information, it is possible to develop an adaptive filter algorithm which uses non-isotropic filter windows so that the edge pixels within the local area receive less averaging than those of the homogeneous portion within the window.

Assume that for a particular local area of an image, a vertical edge has been found to exist on the left side of the window area (Fig. 4.5). Depending on the local statistics for the window region, the adaptive filter of Section 4.4 would apply an isotropic filter window to the area. However, since it is known which pixels are part of the edge, a non-isotropic filter window may be defined which does less averaging for the edge points. An

Figure 4.5 A vertical edge is present on the left side of the local area.
exponential weighting function similar to the one used for the adaptive filter is utilized. However, the edge adaptive filter applies an exponential weighting function with a steeper decay on the pixels containing the edge (Fig. 4.6). This weighting is accomplished by first calculating a new set of statistics for the homogeneous portic of the window, establishing the weighting factor for the right-hand side of the window. For the remaining pixels within the window, filter weightings are applied using weightings for the filter defined by

$$
\begin{equation*}
\mathrm{F}_{\mathrm{E}}=\# \text { Filters }-\mathrm{F}_{\mathrm{H}}+1 \tag{4.22}
\end{equation*}
$$

where F_{H} is the filter index chosen for the homogeneous portion of the local area, and F_{E} is the filter to be applied to the edge area.

The parameters needed to define the edge adaptive filter are very similar to those used for Lee's edge filter and for the adaptive filter.

4.6 The Sigma Filter

The chief attraction of the sigma filter developed by Lee (6) is its simplicity and speed. The pixel to be processed is replaced by the average of those neighboring pixels having their gray level within two standard

Figure 4.6 Non-Isotropic window weighting
deviations from that of the concerned pixel.
The sigma filter is based on the multiplicative noise model for speckle in SAR images as presented in Eq. (1.1) with the assumption that the multiplicative noise, $v_{i, j}$, has a mean of 1 and a variance Var(v). From this it follows that

$$
\begin{equation*}
\bar{z}=\bar{x} \bar{v}=\bar{x} \tag{4.23}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{Var}(z) & =E\left[(x v-\bar{x} \bar{v})^{2}\right] \\
& =E\left[x^{2}\right] E\left[v^{2}\right]-\bar{x}^{2} \bar{v}^{2} \tag{4.24}
\end{align*}
$$

For a small local area, the signal may be assumed nearly constant, allowing $E\left(x^{2}\right)=\bar{x}^{2}$; which reduces $\operatorname{Var}(z)$ to

$$
\begin{equation*}
\operatorname{Var}(z)=\bar{x}^{2} \operatorname{Var}(v) \tag{4.25}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma_{v}=\frac{\sigma_{z}}{\bar{x}}=\frac{\sigma_{z}}{\bar{z}} \tag{4.26}
\end{equation*}
$$

Equation 4.26 describes the standard deviation of
multiplicative noise in SAR imagery as the ratio of the standard deviation of z and the mean of z.

It is assumed that $z_{i, j}$ is the a priori mean of $x_{i, j}$ and also that pixels in the window with gray level within two standard deviations from $z_{1, j}$ are from the same distribution. Since the speckle noise is multiplicative in nature, the two-sigma intensity range from Eq. (4.26) is $\left(z_{i, j}-2 \sigma_{v} z_{i, j}, z_{i, j}+2 \sigma_{v} z_{i, j}\right)$. The average of pixels in this intensity range replaces the center pixel as the smoothed value of $z_{i, j}(6)$.

The implementation of the sigma filter requires that the relative limits for the distribution of σ_{v} be established at the onset of program execution. In the filter implemented by Lee, a normal distribution was assumed. For comparison, a chi-square distribution was also modeled in this study. Additionally, a threshold K is established to deal with the presence of spot noise in the filtered image. The retention of spot noise is due to the fact that the gray level of the spot noise is significantly different from its neighborhood pixels. If the total number of pixels within the two-sigma range is less than or equal to K, the center pixel is replaced by the average of its four neighbors.

The sigma filter was applied to the test image using a wide range of configurations. Both chi-square and normal distributions were modeled, while the threshold K was set
to 3 for the 7×7 window and 2 for the 5×5. Results are presented for a single pass and for a second pass of the filter.

5.0 RESULTS, CONCLUSIONS AND RECOMMENDATIONS

This final section presents the results of the filter performance comparisons. The results are shown in plots so that comparisons can be more easily made. The edge figure of merit value is expressed as a percentage shown on the vertical axis. The EFM is plotted versus the edge contrast ratio for varying filter window sizes and number of looks. The EFM is also shown with respect to the window size for varying edge rotios and number of looks. These results are summarized in fig. 5.25 which ranks the six filters using several different criteria. A value of one indicates the best performance by a filter.

There were two methods used in obtaining the EFM values. The first method calculated the best edge threshold for the 3 dB image and applied the same threshold to the 6 dB and 9 dB images to determine their EFM. The second method found the optimum threshold at each edge ratio and used this threshold in calculating the EFM. Results are plotted for both methods.

Figures 5.23 and 5.24 show the central processing unit (CPU) time required of each algorithm. This is first shown in terms of the actual time (fig. 5.23) reported for each alyorithm using various window sizes. The values are then scaled and shown in fig. 5.24 as a relative time versus window size. The relative time factor is determined
by dividing the time required for each algorithm by the time required for the equal-weighted filter of the same size. The scaling factor varied with window size.

The results should be analyzed carefully, since the wide diversity of filtering methods leads to a large number of factors which should be considered in the evaluation of each filter. Several general observations can be made about the results. As expected, the higher contrast edges y^{i} a higher edge figure of merit. Also, the four-look images, since they are not as noisy, show a higher EFM. These variations are independent of the filter type. However, allowing for this inherent EFM improvement, it is still possible to draw some conclusions about how well a particular filter type performs relative to edge quality. Another general observation is that all filters yielded results which were, to varying degrees, better than those obtained from the unfiltered images. As a final overall observation, it should be noted that for most filters an increase in the filter window size led to an increase in the edge figure of merit. This improvement can be explained by the fact that, since a larger window usually allows more averaging, fewer false edges are detected. For reasonably sized windows, the suppression of false edges is usually enough to outweigh the contrast loss caused by a larger window performing more smoothing.

5.1 Evaluation of Equal-Weighted Filter Performance

The results for the equal-weighted filter are important, since it is the most widely used spatial filter and may be used as a standard for comparison. The popularity of the equal-weighted filter is justified by the results. The filter, even though it makes no assumptions concerning edges, averaging all pixels equally, still yields a fairly good EFM when compared to the other algorithms. This performance is clearly evident from the results. For the low contrast edges, the equal-weighted filter provides results which are only a few percent higher than those of the other filters. (A percentage value given for comparison is a value difference read from the graph--not a ratio of the EFM for each filter.) For 6 dB edges, however, the equal-weighted filter is superior by as much as 20 percent. As the edge sharpness is increased to 9 dB , the results of the other algorithms improve dramatically, though the equal-weighted filter still earns a comparable EFM.

A comparison based on filter window size also shows the effectiveness of the equal-weighted filter. A 5×5 pixel window gives an EFM very nearly equal to that for the more complex filters, while the 7×7 window gives results which are as much as 20% higher than those of the other filters (fig. 5.2). A 9×9 equal-weighted window was not
applied in this study, so a definite comparison cannot be made for large window sizes.

Fig. 5.25 shows that the equal-weighted filter performed best for the $\mathrm{N}=1$ images. This conclusion is not as evident from the plots, since fig. 5.25 was based on an average for all the $N=1$ data. The fact that the equal-weighted filter obtained top ranking in this catagory is not surprising when it is considered that in order to prevent false edged from being detected, more averaging is required. The equal-weighted filter performs more averaging than any other type of filter using the same window size.

As a further benefit, when processing cost is considered a factor, the equal-weighted filter algorithm turns in the best times of all the filters considered. In some cases, the algorithm is over three times faster. This filter has another advantage in that it is very easy to apply, since the only parameter is the size of the window. This can sometimes be an important consideration when compared to the more complex edge filters utilizing several different parameters.

5.0 Evaluation of Median Filter Performance

The median filter is also quite common and simple to use. However, the results of the EFM were nearly the
lowest of those from all the filters. This is evident from the plots which show that the median filter gives better results for larger window sizes and greater edge ratios. This improvement with window size and edge ratio is probably related to the nature of the EFM as discussed earlier in this section, since the improvement is not nearly so dramatic as for the other filters. Fig. 5.25 shows that in every catagory compared, the median filter earns a low ranking. In addition, the large overhead in processor time tends to discount this filter as a practical alternative to the other filters.

5.3 Evaluation of Lee's Filter Performance

Lee's edge filter compares well to the other filters. This was expected, since special processing is performed for edge areas. However, for smaller windows the algorithm does not do as well as the box filter. In fact the lowest overall EFM values are for Lee's filter using a 5×5 window (fig. 5.1 and 5.25). This poor performance is probably due to the fact that with a smaller window, there is a greater chance that a false edge will be detected by Lee's filter. This speculation receives some justification
when it is noted that for the less noisy $\mathrm{N}=4$ images and for more distinct edges, the equal-weighted filter is not as significantly superior to Lee's filter.

As the window size, edge ratio or number of looks was increasel, the performance of Lee's algorithm improves dramatically as shown in the plots. In some cases, Lee's filter had an EFM as much as 40 percent greater than that of the other filters (fig. 5.5). A conclusion that may be made about this filter is that it is prone to the detection of false edges, but by using less noisy images (larger N) with higher contrast edges and a larger window size, quite good results can be attained.

The time for processing Lee's edge filter might be considered too long--especially since a larger window size and more CPU time is required in order to achieve the best results of the filter. It should also be noted that the CPU time shown for Lee's filter is somewhat misleading, since the parameters for Lee's filter were adjusted for the mostly homogeneous test images. These images are not very realistic, since most SAR imagery contains more edge information. Between 3% and 7% of each test image was known to contain edges while roughly 20% to 60% of an actual image may have edge information. For actual imagery, the required $C P U$ time is much closer to that for the more time consuming filters compared in this study.

5.4 Evaluation of Adaptive Filter Performance

The adaptive filter also yields a high EFM, but unlike Lee's filter, achieves good results for the smaller window sizes. The adaptive filter earned the best ranking for low contrast edges (fig. 5.25), and when the rankings for all the comparison criteria are averaged, the result is 2.75 (The result is 2.0 if the computer time is not included in the average.).

Again, noisy images and low contrast edges tend to lead to inferior performance, since the adaptive filter also uses the local statistics method in order to determine the amount of smoothing to apply to an area. Larger window sizes improve the performance of the adaptive filter for these images.

The amount of CPU time required for the adaptive filter is quite large. This is especially true when compared to that of the equal-weighted filter, but also true when compared to the time required by Lee's filter. However, since Lee's algorithm requires a larger window size to get similar results, this disadvantage is slightly offset. For the adaptive filter, the processing time required for larger windows becomes even harder to justify, but some of the best results were achieved using this filter configuration (fig. 5.9).
A disadvantage of the adaptive filter is that it is relatively difficult to establish the filter characteristics. This disadvantage can be minimized by gaining experience with the filter, but often it can still take at least one initial pass with the filter before optimum filter characteristics may be determined.

5.5 Evaluation of Edge Adaptive Filter Performance

The edge adaptive filter gave some of the best results of all filters compared. For the $N=4$ images with a 5×5 window, this filter earns the best overall EFM (fig. 5.10). The improvement is slight, and in general the unmodified adaptive filter produces better results. As is shown in figure 5.25 , the edge adaptive filter earned the best ranking for small window sizes, but the filter also obtained the worst ranking for noisy images. CPU time is not significantly higher than that for the adaptive filter, while the smaller window size allows good results without using a great deal of processor time.

5.6 Evaluation of Sigma Filter Performance

The results for the sigma filter are somewhat discouraging. This is shown in figure 5.25 . Even though the filter is quite fast, two passes are required in order
to receive results comparable to those of the other filters. Two passes more than doubles the amount of processing required, yet the results are still inferior. In fairness, it should be noted that the poor results are probably due to the presence of spot noise which the EFM routine detects as false edges. Lee gives several techniques for reducing spot noise, which if applied, might lead to better results for the EFM test.

5.7 Recommendations

Having reviewed each filter separately, several conclusions and recommendations can be made. Figure 5.25 cannot by completely relied on, since it was compiled from averages for all values given for each particular parameter. Optimum combinations of parameters are not shown by these rankings. In addition, rankings were not calculated for large window sizes.

If processing time is not a factor, then it can be assumed that a large filter window should be used, since a higher EFM results by using the larger windows. Lee's algorithm gives the best results for the noisier images, while the adaptive or the edge adaptive would be better for less noisy images. If a smaller window size is preferred, then the equal-weighted filter should be used for noisy images. If processing time is an important consideration,
then the equal-weighted filter is clearly the best choice. The main basis of comparison in this study was the edge figure of merit. Though the desirability of an algorithm should not be determined solely from this criterion, some indication is given as to how well each algorithm will filter edge aroas.
\% EDGE FIGURE OF MERIT

て*s axnbta

$$
\begin{aligned}
& \text { SOTOHS3BHL mnnudo no dasve wris }
\end{aligned}
$$

$\begin{aligned} & \mathrm{N}=1 \\ & \text { EDEE RATIO }=9 \mathrm{DB}\end{aligned}$
$\mathrm{N}=1$

־ EDGE FIGURE OF MERIT

$\mathrm{N}=4 \quad \mathrm{D}$ - EQUAL WEIGHTED
90.0
\% EDGE FIGURE OF MERIT

\% EDGE FIGIJRE OF MERIT

200
337

3MONOT 30
\% EDGE FICURE OF MERIT

\% EDGE FIGURE OF MERIT

$0 Z^{\circ} \mathrm{s}$ axnbitd

C.P.U. SECONDS
દて's axn6Ṭd

ゅでs axnbṬa

Fig. 5.25

1. Victor S. Frost, "A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise," IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-4, No. 2, pp 157-165, Mar. 1982.
2. J.S. Lee, "Refined Filtering of Image Noise Using Local Statistics," Computer Graphics and Image Processing 15, 380-389 (1981).
3. J.S. Lee, "Speckle Analysis and Smoothing of Synthetic Aperture Radar Images," Computer Graphics and Image Processing 17, 24-32 (1981).
4. Alan V. Oppenheim and Ronald W. Schafer, Digital Signal Processing. Chap. 10. New Jersey : Prentice-Hall, 1975.
5. W.K. Pratt, Digital Image Processing. New York : Wiley, 1978.
6. J.S. Lee, "A Simple Speckle Smoothing Algorithm for Synthetic Aperture Radar Images," IEEE Trans. Syst. Man Cybern. SMC-13, No. 1, 85-89 (1983).
7. R.C. Gonzalez and P. Wintz, Digital Image Processing, Massachusetts : Addison-Wesley, 1977.

Listings for computer programs

Program
 Description

Name

CONVO	Example of an equal-weighted filter
DIFOP	Discrete differentiation of an image
EFM	Calculate the edge figure of merit
EQUFLT	Equal-weighted filter
MEDFLT	Median filter
LEEFLT	Lee's edge filter
ADPFLT	Adaptive filter
EADFLT	Adaptive filter with a non-isotropic filter window
SIGFLT	Sigma filter

All required subroutines are listed after each mainline. However, modules that are common to several routines are given at the end of the appendix.

```
THIS IS A PROGRAM TO PERFORM A TWO-DIMENSIONAL SPATIAL CONVCLUTION ON A REAL ARRAY.
```

SUBROUTINE CONVO (QUEUE, WINDOW, OUT, WNDSIZ, SIZE, DUMMY1, DUMMY2, OUTSIZ)

THE DUMMY ARGUMENTS ARE USED IN THIS IMPLEMENTATION IN ORDER TO ALLOW VARIABLE ARRAY DIMENSIONS.

IMPLICIT INTEGER ($\mathrm{A}-2$)
REAL TOTAL, QUEUE (WNDSIZ, SIZE), WINDOW (WNDSIZ,WNDSIZ) REAL OUT (OUTSIZ)

INITIALIZE CIRCULAR QUEUE WHICH WILL STORE A HORIZONTAL STRIP OF THE INPUT IMAGE.

DO $10 \quad \mathrm{X}=1$, WNDSIZ
READ (1) (QUEUE (X, WRD), WRD $=1$, SIZE) CONTINUE

INITIALIZE RECORD COUNT AND QUEUE POINTER.
$\mathrm{REC}=0$
$\mathrm{QREC}=1$
BEGINNING OF OUTERMOST LOOP. SET THE TEMPORARY QUEUE POINTER EQUAL TO THE FRONT OF THE QUEUE.
$T M P Q R C=Q R E C$
PROCESS A ROW OF THE IMAGE
DO 60 START $=1$, OUTSIZ
PROCESS THE CONTENTS OF THE WINDOW. INITIALIZE THE SUM OF THE WINDOW PRODUCTS TO ZERO.

TOTAL $=0.0$
DO 80 WREC $=1$, WNDSIZ
WWORD $=1$
DO 50 QWORD $=$ START, START + WNDSIZ - 1
TOTAL $=$ TOTAL + QUEUE (TMPQRC, QWORD)

* WINDOW (WREC, WWORD)

WWORD $=$ WWORD +1
CONTINUE
UPDATE THE QUEUE POINTER
$T M P Q R C=M O D(T M P Q R C, W N D S I Z)+1$

CONTINUE

```
LNIVEASITY GF YANSAS TELSGCNNLNICAIICNS ANG INFCEFATIGN CLIENCTS LA&
```


FRCCRAH SLITE: ACISG FILTLAS
! ह月. \quad;
c

PLRFCSE ; PFRECRNS OISC?ETE CIFFEQENIIARISA CE AD ITPLT
IMGEE LSING RCEERIS. NHEHITT, LQ SCBEL CIFFSRCATIAL Z冫LンATCQS.

ORIGINAL PAGE IS OE POOR QUALITY

FRCCRAH

C1F：

$$
\text { PARLNETER (NAXST: }=512)
$$

$$
\text { PARAVETfR (NXhSi! }=3 \text {) }
$$

$$
\begin{aligned}
& \text { RLFCLE }=\text { NAXS:フE AAXhINCChSI?E } \\
& \text { QLFWAC }=\text { KAXhIACCHSILE FAXHANUChSIIE }
\end{aligned}
$$

```
I
```



```
INTEGER 2ECS, TTUE("AXSIZ), CPNLH, CLTIYPF
INTES:R SIZE, CUTSIL, hNOSIL, AR2SIZ
INTFGER OLFLGGPLFGL(1, GINECW(TLFWAC)
INTEGFRD1 INFNM(1,&). CUTFNM(18)
If.TELFF TTYIN, TTYCUT
EATA TTYIA, iTY買 /15, 16/
qQ|TE (TTYCU1,\sigmaC1)
FCFNAT (IX,'ENTER THG FILSNAMS FLR IAMUT (FLST 的AA CLC FILE)')
KEAC (TTYIN, ミ1U) |NFNM
51C
FCRHAT (:7A1)
h*ITE (TTYCLT,7CD) INFN:F
FCFAAT (IX,1ZA!)
C
C
6C2
kR1TE 1TTYCLT,SC2)
FCKRAT (LY,'ENTER THE FILFNANEFご CLTPIJT (VLST 3F A AEL, FILE)')
#EAC (TTYIN, ELD) CUTCNM
h2!TE (TTYQUT,7OD) CJJFNM
C
hRITE (TTYCLT,N10)
FCRHAT (LX,'ENTER THE STZE OF THE INPUT 1'AGL,')
REAC (TTYIN,0) SILF
#QITE (TTYCLT.7LO) SIZE
7 1 0
FCRNAT (1<,14)
C
IF (SIZR ,GT. MAXSIL) THEN
    WRIT! (TTYCLT, (L5) ,1AXSIL.
6 1 5
```



```
    CCTL 1CIC
ENL IF
C
KPITE (TTYCUT, ©27)
627
I>c
& LX,'1 = ROBERTS. 2 = PREWITT, 3 = SJEEL',
REAC (TIYIN, D) CPNUN
WRITE (TTYCUT,710) CPNLH
IF (ICFNUN .GT. 3) .CR. (DPNLN -LT. C)) TFSN
    hRITE (TTYCUT,62B)
```



```
GCTE 1C10
ENC IF
IF (CPN1/N * *C. 1) THEN
    h1.CSIL = ?
LLSS
    kNCSS1L = 3
ENC iF
```

```
        hRITL(TTYCLT, .2.)
    629 FCRNAT(IX, 'GRADIENT CR ANGLE? 1 NGKAG!SNT, ? = ANCLE')
        REAC(TTYIN, &) OLTTYPF
        hR!TE (TTYCLT,710) DLTTYOE
        IF(IJLTTYPE &AC. I) .ANO. (CLTTYPE ,NF. ZI) THE
        hRITE(TIYCLT, 630)
    63C FCRHAI(IX,'ERRCR - - - CUTPLT IFACF TYDE NUYIERS ARE I ANC 2',
        CC TC 1CIC
        EN! IF
        CLTSIL = SILE - iNDSIT + 1
        ARRSIZ = WNCSI2 क WNOS!Z
        RECS = C
C
C
    CALL SUGRCUTINE TC CL THE WCRK
        CALL CIFSUEI INFAM, UUTFNM, ARRSIL, DILE, RSCS,
```



```
C
C
C
            hPITE (TTYCUT,631)
```



```
    HRITE (TTYLUT,G4D) DUTSIL, RECS
64C FCFFAT (IX,'THE CUTPUT IKAGE IS ,,I5,' पC,ES IY , ,I5,' QECGRZS')
C
ICIC STCP
ECF..
?

C OUT \((\) START \()=\) TOTAL
C

STOP
END




```

INTESER 2ECS, T?!jF(\becauseAXS:Z), CONLG, CLTTY\&

```
INTESER 2ECS, T?!jF(\becauseAXS:Z), CONLG, CLTTY&
INTECER 2ECS, T?!jF(\becauseAXS:Z), CONLH, CLTTY&
INTECER 2ECS, T?!jF(\becauseAXS:Z), CONLH, CLTTY&
INTEJFR SIZE, CUTSIL, hNOSIL, ARQSIZ
INTFGER OLFLE(RLFCLI), ,INECW('LF.NAC)
C
C
C
INTEGFF%1 INrNN(1,?), CUTFNN(1己)
```

```
r.
IN.TELFG TTYIN, TTYRUT
C\DeltaIA YTYIN, TTYULT /ls, 1G/
C
C
    qRITE (TTYCU1, %CL)
SC
510
KFA: (TTYIN,三1J) INFNA
7r.C
C
G
KRITE ITTYCLT,GOL\
```



```
#EAC (TTYIN, ELD) CUTGNF
W2ITE (TTYOUT,7Cこ) (OJTFNM
C
C
G1C FGRNAT (1X,'ENTER THE EIZE OF THE INPUT IAAGG. ')
    F:EAC (TTYIN:0) SILE
    #शITE (TTYCLT.7LC) SILE
    FCRNAT (IX,I4)
C
    IF (SIZF -GT. NAXSIZ) THEV
        WRITE (TTYCLT, (15) , 1AXSI%.
```



```
    CCTL ICIC
    EN.L: IF
G
    h口ITE (TTYCUT,027)
C
    FCRNAT (IX,'ENTFR THE NLMRER CF THE LIFFERENTIAL OPEKATCF',I,
        & 1X,'1 = RSPERTS, 2 = PREWITT, 3 = SJEEL')
    REAE (TIYIN,*) CPNUN
    WRITE (TTYCUT,710) CONLN
    IF (ICFNUN .GT. 3) .CF. (DPNUN -LT. C)) 「ト\subseteqN
        hFITE (TTYCUT, S2?)
```



```
        GCTE 1C10
    ENC IF
C
    IF(CPMIJN * =? 1) THEN
        WT.CSIL=?
    ELSE
        kNCSIL=3
    ENC i
```

```
    WRITt.(TTYCLT, い2.)
    629 FCRNAT(IX,'CRADIENT CR ANGLE? I = GRAG!EVT, ? = ANCLE')
        REAC(TTYIN, %) DLTTYPE
        hRITE (TTYCUT,710) DLTTYOE
        JF(IJLTTYPE.NE. 1) .ANE. (CLTTYPE.NF. Zl) THFA
        hRITE(TTYCLT, G3O)
    63C FCRHAT(IX,'ERKCR - - - CUTPLT IHACF TYIP NUVZERS ARE 1 ANC 2')
        CC TC 1CIC
        ENC IF
13 CLTSIZ = SILE - iNCSI% + 1
        ARPSIL = ANCSI? % WNOSIZ
        RECS = C
C
C
C
    CALL SUGRCLTINE TE CL THE NCRK
    CALL CIFSUEI INFSH, OLTFNM, ARRSIL, \IZE,, RSCS,
    \varepsilon
C
C
    hP.ITE (TTYCLT,631)
631 FCRMAT (IX,*% A L L C C N E % % %%)
    HRITE (TTYLUT.G4') QUTSIZ, RECS
```



```
C
ICIC STCP
    ENC
ECF..
?
```

DRIGINAL PAGE IS
OE POOR QUALITY

LNIVERSITY CF KANSAS TELECCMNLNICATICNS AND INFCZNATICN

```
FRCGRAM SLITE : NCISE FILTERS REF. 4 :
```

C FRCGRAM NAME:C:FSUE AUTHCR:JEFF KATSCV DATF:4/:5 3
CCES THE PRCCESSINC FCR THF CIFFERENTIAL CPERATCR
C Filter aftrr blinc callev ey oifcp.

PARAMETER DEFINITICA
MANE

I TYPE
1
CLASS
RANGE
O「SCRIPTISN
--------------INFILE CUTFILE
ARRSIZE
$\backslash \mathrm{CH} \div 13$

$\backslash R$	1
\R	1
12	1
\R	1
\w	1
\R	1
12	1
\ii	1
\R	1
IR	1
1	1

\INPUT FILFAANE
\CH: 13 IR \CLTPLT FILENAME I! IR I INUNCEZS GF ELEAENTS IN FINCCh II IR I ICCLUN'IS I'H INPUT IMAGF 11 IW IVCWS IN CUTPUT INAGE II IR 1 IhINDCWSIZE
WINCSIZE
II
11
II
TTYCUT
G
$\begin{array}{ccc}11 & 1 R & 1 \\ 1 I & 1 i & 1 \\ 11 & 1 R & 1 \\ 1 I & I R & 1 \\ 1 & 1 & 1\end{array}$

MRIGINAL PAGE IS IOF POOR QUALITY

NCN-LOCAL VARIAELES

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

SUBROUTINES RECUIRED

NAPE
1
OESCRIPTICN
GENMSK IGENERATES DIFF. GP MASKS
GETPNT IFINCS PCINT VALUE FOR CUTPUT
CPN ICPEAS FILE AND ASSIGNS LCGICAI UNIT
UCLCSE JCLOSES FIIES OPEAED WITH CPN

1

1
1

SUBROUTINE CIFSLB I INFILE, CUTFILE, ARRSIZE, NCOLS, NOLTPCW, \& hINCSIZE, NCUTCCL, TTYQUT, G, ARPVAL, TBUF, CPNUN, CLTTYPE)

LCGICAL ERR

IATEGER ARRSILE, NCOLS, NCUTCCL, hINCSIZE, CPNUM, CLTTYPE
INTEGER I, J, K, ERRNUM, START, ARRPCS, DUTCCL, NROHS
IATEGER NUUTRCh,TTYUUT, ARRVAL(ARRSIZE). TBLF(NCOLS)
REAL AAGLE, 1

UN IINAL PAGE IS
NCLTRCW $=0$
OF POOR QUALITY
$P 1=4$ क $\operatorname{ATAN}(1.0)$

CALL GENNSK(MSKI, MSKZ, ARRSIZE, CPNUM)
CALL CPN (INFNUN, INFILE, 'CLD', 'LNF', EPRNU', ERR)
IF (ERR) GCTC 92
CALL CPA (CUTAUN, CUTFILE, 'NEW', UUNF', ERRNUM, ERR)
IF (ERR) GOTC 94
inttialize gueve

DC $30 \quad I=1, h I N C S I Z E$
REAC(INFNLN, ENO = 98) (TBUF (K), K = 1, NCCLS)
CC $20 \mathrm{~J}=1 . \mathrm{NCOLS}$
$\mathrm{C}(1 . \mathrm{J})=\operatorname{TBUF}(\mathrm{J})$
20 CCNTINUE
30 CCNTINUE

MAIN PROCESSING

```
4O CCNTINUE
    EC 70 START = 1, NOUTCCL
        CC 6O I = 1, WINDSIZE
            DO 50 J = START, START + WINDSIZF - l
                ARRPCS = WINDSIZE*(I-1) + J-START+1
                ARRVAL(ARRPOS)=C(I,J)
                CCNTINUE
            CONTINUE
    CALL GETPNTI MSKI, ARRSIZE, ARRVAL, GI)
    CALL GETPNT( MSKZ, ARRSIZE, ARRVAL, G2)
    IF(CUTTYPE .EQ. 1) THEN
        VALUE = SQRT(REAL(G1%%2) + REAL(G京市%2))
    ELSE
    IF( G1 .EO. O ) THEN
        IFI C2.GT. 0, ANCLE = PI/2.0
        IF(G2.LE. C ) ANGLE = 3%PI / 2.0
        ELSE
            ANGLE = ATAN( REAL(G2)/ REAL(G1) )
        ENC IF
```

 ANGLE IS NCW BETWEEN -PI/2 ANC PI/2, AND WG WANT IT BETWEEN
 C \(\triangle\) NC 2PI. MLST CHECY. SIGN OF GI AND GZ.
 \(I F(G 1\).LT. O) ANGLE \(=A N G L E+P 1\)
 IF(\(\mathcal{I} 2\)-LT. 0) AND. (G1.GT. 0)) \(A N G L E=A N G L E+2 \% P I\)
 IFY CPNUN •EQ. 1) THEN
 \(A N G L E=P I / 4.0+A N G L E\)
 ENC IF
 VALUE \(=255 \%\) ANGLE / \(2 . C \neq\) PI) + 0.5
 FCR RCEERTS, THE ANGLES WERE RCTATEC EY PI/4. THIS COULC
 CAUSE PRCBLENS WHEN THE ANGLE GETS RCTATED INTO THE FIRST CUADRANT
    ```
        IF( VALUE .GT. 255 ) VALLE = VALLE - 255
        ENC IF
        CLTCCL = START
        TBUF(CUTCOL) = VALUE
        70 CCNTINUE
    NCUTRCh = NCLTROW + 1
    WRITE(CUTNUN) (TBUF(K), K=1, NCUTCCL)
C
C
C
            UPCATE GUEUE
        CC 80 I = 1 , HINCSIZE
            IF(I .LT. WINCSILE) THEN
                CC 85 J = 1. NCCLS
                    Q(I,J)=O(I+I,J)
        COCNTINLE
        GC TC 4C
C
C WE HAVE REACHED THE END CF THE INPLT FILE
92 CALL FILERR (TTYOUT, INFILE, ERRNUN)
C
        GCTC 99
        9 4 ~ C A L L ~ F I L E R R ~ ( T T Y O U T , ~ D U T F I L E , ~ E R R N L N ) ~
            GCTC 99
C
C
    98 CCNTINLE
        CALL UCLCSE(INFNUM)
        CALL UCLCSE(CUTNUM)
        99 CCNTINLE
        RETURN
        END
ECF..
?
```


C

```
            NSK2(1) = -1
            NSk2(2) = C
            NSK2(3) = C
            NSK2(4) = 1
            GC TC Z%
C
    PREWITT ANC SCPEL DIFF. OPERATCRS CIFFER C'ILY BY THE ( SSTANT
    C. C=2 FCR SCPEL, C=1 FCR PREWITT.
        lc ccntinle
            C = 1
            If (cpaun .co. 3) C = 2
C
            NSK1(1) = 1
            NSK1(2) = c
            NSK1(3) = -1
            NSK1(4) = C
            NSK1(5) = C
            NSK1(6) = -C
            NSK1(7) = 1
            NSKl(\varepsilon) = 0
            NSKl(S) = -1
C
            NSN2(1)=-1
            NSK2(2)=-C
            NSK2(3)=-1
            NSK2(4) = C
            MJK2(5) = c
            NSK2(6)=0
            NSK2(7) = 1
            NSK2(8)=C
            NSK2(9) = 1
C
20 CCNTIILE
            RETURN
            ENO
                    ECF..
```

```
    LNIVERSITY CF KANSAS TELFGCMPLNICATICNS AND INFCQMAIICN SGIVNCFS LAE
FRCCPAN SLITE : NCISE F ILTLRS RE:
PRCCRAM NANE:THCFNC AHTHC?:J. SCCTT GARDNER DMTE:C2/27/83
PURFCSE: THIS IS THE MAINLINE FCR TH TH?ESHIOL?
SEARCH RCUTINE hHICH USES A QUACRATIC SEARCH
TC FINC THE EEST THRESHCLD FCR FRCCUCING
AN ECGE MAP QASEC JN THE EDCE FIGURE CF NGRIT.
```

ORIGINAL PAGE IS OE POOR QUALITY

```
PARANETER DEFINITICN
AANE \(~ T Y P E ~ \ ~ C L A S S I ~ R A N G E ~ \ ~ C E S C R I P T I C N ~\)
```



```
NON-LOCAL VARIABLES
```



```
PRCCRAN THCFAC
INTEGER MAXSIL, MXhSIZ
PARAMETER (NAXSI2=512)
PARANETER (NXhSIL=15)
INTEGER RECS
INTEGER TBLFF(MAXSIZ), SIZE, OUTSIZ, WNCSIZ
```

INTEGERDI ICLFN(13), ACTLFN(18), THRSFN(18)
c C
INTELFR TTYIA,TTYCLT
r.

C
$L C G I C A L \quad E R R$

ORIGINAL Pagie is DE ROOR QUALITX

$E R R=$-FALSE.
CATA TIYIN, TTYOUT /15, 16/
C
C
WRITE (TTYCLT, 601)
GCI FCRMAT (IX,'ENTER ICEAL IMAGE FILEAANE (MUST GE AN CLC FILE)') REAC (TTYIN,510) IDLFN
510 FCRNAT (13A1)
hRITE(TTYOUT,701) ICLFN
7C1 FCRNAT(1X,1\&A1)
C
hRITE (TTYCUT,GO2)
© 602 FCRNAT (IX, 'ENTER ACTUAL I HAGE FILENAME (MLST BE AN CLC FILE)') REAC (TTYIN.510) ACTLFN
C
C
WRITE(TTYCUT, 701) ACTLFN
WRITE (TTYCUT,GC3)
4. \quad C 3 FCRNAT (IX, 'FILENAAE FCR THE EOGE NAP (NUST BE A NEK FILE)')

REAC ITTYIN, 5:0 THRSFN
C
c C
WRITE(TTYCUT,701) THRSFN
c 610
WRITE (TTYCUT,610)
610 FCRNAT (IX, 'ENTER THE SIZE OF THE IDEAL' I:AGE ')
NEAC (TTYIN, क) SIZE
hRITE(TTYCUT, क) SIZE
c C
C
IF (SIZE -LE. MAXSIZ) GCTO 12 hRITE (TTYCUT, 615) MAXSIZ
615 FCRNAT (IX, \% $\%$ HR R D R - - THE NAXIMUMSIZE = , I5) GOTO LCIC

C

c $\quad 12$
WRITE (TTYCUT,627)
FCRNAT (IX, 'ENTER THE SIZE CF THE FILTERED IMAGE')
REAC (TTYIN, *) CUTSIZ
WRITE (TTYCUT, \%) CUTSIZ
C

> IF (SUTSIZ •GT. SIZE) THEN
hRITE (TTYCUT.641)
641 FCRNAT ($1 \times$, FILTERED IMAGE MUST BE SNALLER THAN ICEAL INAGE') GOTO 1010
END IF

C

[^2]

IFI ERR) GCTC 101 C
C

```
        WR1TE (TTYCLT,630)
```



```
    hRITE (TTYCLT.640) GUTS12, RECS
64C FCRFAT (IX,'THE UUTPUT IMAGE IS ',15,' WCRCS IY ',15,', LCCPCS')
C
ICIC STCP
                ENC
    CCF..
```


SLUROUTINE THCQUDIICLFLE, ACTFLE, THRFLE, NCCL, NCLTRCW, £ NCUTCOL, TTYOUT, TTY:N, TBリF, CRR)

INTEGER NCCL, NJITROW, NDUTCCL, TTYCUT, TTYIN, MAXCCLAT INTEGER ERRNLK, TEUF(NCUTCDL), J, ICLNUN, ACTNUM, TFREUN

INTEGF X, XLEFT, XRIGHT, ALFSTAR, T, XMARK, ALPHA
IT,TEGER ALFST, CCLNT, XO, AB, $\triangle Z, ~ \triangle S T A R, ~ N I N T H, ~ M A X T H, ~ A N S W E ? ~$

```
    XLEFT(XNARK, ALPHA) = XNARK - ALPHA
    XRIGHT(XHARK, ALPHA) = XMARK + ALPHA
    ALFST(F1,F2,F3,T) = INT((4*F2 - 3*F1 - F3)%T/
&
    HALFST(F1,F2,F3) = F1 - (ABS(4%F2 - 3%F1 - F3))%%21
&
```

C
CALL CPN(THRAUN, THRFLE, 'NEW', 'UNF', ERRNLM, ERR)
IF(ERR) THEN
CALL FILERR(TTYCUT, THRFLE, ERRMUM,
GC TO 99
ENC IF
CALL CPN(ACTNUN, ACTFLE, 'CLD', 'UNF', ERRNUM, ERR)
IFI ERQ) THEN
CALL FILERR(TTYCUT, $\triangle C T F L E, ~ E R R N U N$)
GC TO 97
ENC IF
CALL CPN(ICLNUN, IDLFLE, 'CLD', 'UNF', ERRNU:A ERR)
IF (ERR) THEN
CALL FILERR(TTYCUT, IDLFLE, ERRNUM)
GO TO 99
ENC IF
C.
DC $10 J=$ MINTH, MAXTH
EFNARR(J) $=0.0$
10 CCNTINUE

C
$X C=0$
$\Delta 2=50$
$X=X R$ IGHT $X O, A 2$)
C
 $F 2=E F M(I C L N U M, ~ A C T N U M, ~ N C C L, ~ N C U T C O L, ~ X, ~ T T Y C U T) ~$
$E F M A R R(X C)=F 1$
$\operatorname{EFMARR}(X)=F 2$
CCLNT $=2$
IFI F2 •GE. F1) THEN
RIGHT $=$. TRUE.
ELSE

$$
\text { RIGHT }=\text {.FALSE. }
$$

$X C=X R I G F T(X O, A 2)$
$F 3=F 2$
$F_{2}=F_{1}$
$F 1=F 3$

```
20 CCNTINLF
```

20 CCNTINLF
30 CCNTIALE
A3 = 2 \& 12
Call thnegx(pight, xO, A3, maxth, minth, x, INECiNC)
IF(INECLNC) THEN
IF(EFMARR(X) .FO. O.O) THEN
F3 = EFN(IDLNUH, ACTAUM, NCCL, 'NCUTCOL, X, TTYCUT)
EFNARI(X) = F3
ELSE
F3 = EFHARR1 X)
ENC IF
CCLNT = CCLNT + 1
ELSE
F3 = 0
ENC IF
ENC IF
IF(F3 .GT. FZ) THEN
AL=A3
F2 = F3
GO TC 20
ENC IF
IF((F1 -EQ. F2) .AND. (F2 .EG. F3)) THEN
WRITE(TTYOUT, 50)
50
FCRMAT(IX,'GRIGINAL BCUNDS OF SEARCH NEEC TC BE Ch\DeltaNGEC')
GC TC 87
END IF
HSTAR = HALFST(F1,F2,F3)
ASTAR = ALFST(F1,F2,F3,A2)
IF(ASTAR .EQ. AZ) ASTAR = ASTAR + I
CALL THNEWX(RIGHT, XO, ASTAR, MAXTH, MINTH, X, INBCLND)
IF(INBCUND) THEN
IF(EFNARR(X Y..FG. 0.0) THEN
FSTAR = EFN(IDLNUM, ACTNUM, NCOL, NOUTCOL, X, TTYCLT)
EFNAR2(X) = FSTAR
ELSE
FSTAR = EFMARR(x)
ENC IF
CCUNT = CLUNT + 1
EL.SE
FSTAR = 0.0
END IF

```

C
```

 ERFCAL ALS(HSTAR - FSTAR2)
 IF(1 (LRRCAL .GI. OELTA) -CR. (AL .fit. 3))
 & .AN!. (CCUNT .LT. FAXCCLNT)) THEN
 ENC If
 X = NINTH
 EFNMAX = C.C
 CC 55 J = FIMTH. MAXTH
 IF(EFNARR(J) .GT. EFMMAX) THEN
 X = J
 EFMiAAX = EFNARR(J)
 ENC IF
 55 ccntinue
hRITE(TTYCUT,70) X, EFMNAX
70 FCRMAT(IX,'RESST THRESHCLD,',I3,' GIVES ECGE FIGLRRF CF MERIT,''
IF (CEEVG) THEN
WRITE(TTYCLT,75) CCLNT
75 FCRNAT(IX,'IT TOOK',I3,' ITERATICNS')
END :F
create trresholded file
call thCrFil actmum, thrnur, tbuF, nCutrCh, noutcol,
\varepsilon
X, MINTH, MAXTH)
97 CCNTINUE
hHile(ceeug)
REhINC(ACTNUN)
hRITE(TTYCUT, QO)
90 FCRHAT(:X,'ENTER SPECIFIC THRESHICLD (0-255). THRESHCLC',/,
\varepsilon
IX,'CUTSIDE RANGE TC STCP')
READ(TTYIN, \#) X
HRITE(TTYCUT, \#) X
IF((X .LT. C) .OR. (X .GT. 255)) GO TC 93
FSTAR = EFN(IOLNUM, ACTNUM, NCOL, NCUTCOL, X, TTYCUT)
WRITE(TTYCUT,95) X, FSTAR
95 FORNAT(IX,'FCR. THRESHOLD,',I3,' EFM = ',F7.E)
EAC wHILE
g8 CCNTINLE
CALL UCLCSE(THRAUM)
call uclCSE(actaum)

```
c
C
C
c
C
C
\(c\)
C
C
    At abcve eest threshcld finc efm anc egie yap for diffenent inages
    ANShEQ = 1
    hHILE (ANSHER -EQ. 1)

C
CALL THSPECI X, IDLAUM, ANSWER, NCCI, NOUTCOL, TEJF, \(\varepsilon\) WINTH, MAXTH, TTYIN, TTYOUT,
C
ENE WHILE
C CALL UCLCSE(ICLNUA)
¢9 CCNTINUE RETURN
ENC
```

--
UNIVEQSITY CF KANSAS RENGTE SENSING LAE
PRCGRAF: SLITE : NCISE FILTERS REF. \# :
PRCCRAM NANE:FF", AUTHCR:JEFF WATSCN DATE:2/4/A3
PURPCSE:
THIS ALGCRITHN CALCULATES THE EDGF FIGLRE CF NERIT
CF AN ACTUAL EUGE MAP AS PRCFCSED BY PRATT,
*CUGNTLTIVE DESIGN AND EVALLATIDN CF ENHANCENENT/TFRESHGLC
ECGE DETECTORS', FHGCEEDIVGS CF THE IFEE, :A^Y 1G7G.
THE EDGE FIGURE DF MERIT IS CEFINSL EY
F=(1.C/MAX(JCCLNT, ICCUNT)) SU:O(1.O/(1.C + A\#CSC))
THIS FICURE OF MERIT CAN BE LSEC TC EVALLATE EITHER
IHE PERFCRNANGE CF EDGE CETECTCRS CR TiAE RELATIVE
CUALITY CF VARICUS INAGE ENHANCENFNT ALGCRITHMS
H:TH RESPECT TU ECGS QUALITY. HERE AN IDEAL ECGE NAP
CEFINES THE EXACT LOCATICN CF TH!E EDGE. IN THIS
FRCGRAN I ASSUME THAT THERE IS QNLY CNE EDGE ANC IT IS
VERTICAL.

```
C
                    PARAMETER DEFINITICN
AAME I TYPE \(~ C L A S S I ~ R A N G E ~ \ ~ C E S C R I P T I O N ~\)
C

NON-LOCAL VARIAELES
\begin{tabular}{lllll}
\(c\) & 1 & 1 & 1 & 1 \\
\(c\) & 1 & 1 & 1 & 1 \\
\(c\) & 1 & 1 & 1 & \\
1 & 1 & 1 & 1
\end{tabular}
                                    SUBROUTINES REQUIREC
                            DESCR!PTICN
1
1
1
1
1
1
1

10 CCNTIN:E
            REAC(ICLNUM, END=q8)(1DKOW(1), \(1=1\), NCCL)
    REAC(ACTKUM, END=98)(ACROh(1), \(1=1\), NOUTCCL)
    tris lcop finds the :CEAL EDGE pCints for this line
    ( i assurec cnly cae ecge peint per line in the ideal inage)
    ano stcres their location anc celnts them
    \(\mathrm{CO} 20 \mathrm{CCL}=1, \mathrm{ACOL}\)
        IF (ICROW(CCL) .EU. FLAG) THEA
            \(I E P=C C L-(N C O L-\) NCUTCOL \() / 2\)
            JCCLNT \(=\) JCOUNT +1
            GC TC 2.5
        ENC If
    20 continue
    25 CCNTINUE
            the follewing loop finds the actual fege peint (aEp)
            cclnts them, calculates the sguared distance betheen
            It and the iep and calculates its covtrisution tc
            the figlire of merit.
            CO \(30 \mathrm{COL}=1\), NOUTCOL
            IF ( \(\triangle C R C h(C C L)\)-GE. THRHCLD) THEN
            \(\triangle E P=C C L\)
            ICCLNT = ICCUNT + 1
            CSG = REAL((IEP - AEP) \(\because(I E P-A E P))\)
            DSUM \(=\) DSUM \(+1.0 /(1.0+A * C S C)\)
            ENC IF
        30 continue
            GC TC 10
C
98 continle
    calculate the edge figure cf merit
```

C
XNLN = REALIICCLN,T,
IF(JCCLNT .ÜT. ICCLNT) XNLM = RE^L(JCCUNT)
EFiA= LSUN/XNUV
C
IF(CEEUG) THEN
GRITEITTYCUT,40) THRHOLI,, EFH
FCRNAT(}:X,'THRESHOLD= ', I4,' EFK= ',F5.3
END IF
REWINC(ICLNUN)
REWINC(ACTNUN)
RETURN
ORIGINAL PAGE IS
OE POOR QUALITY
END

```

\section*{UNIVERSITY OF KANSAS RENCTE SFASINC゙ LAE}
```

PRCCRAH SLITE : NCISE FILTERS REF. 4:

```
PRCCRAM NANE:THCRFI AUTHCR:JEFF WATSCN DATE:5/25/83
PURFCSE: CREATES THRESIHOLDEC FILE
                                    ORIGRNAL PAGE IS
                                    DE POOR QUALITY
                                    PARAMETER DEFINITICN


> NON-LOCAL VARIABLES


SUBROUTINES RECUIREC
hane
1
DESCRIPTICN
-----------------
SUBRIUTINE THCRFIC ACTNUM, THRAUM, TBUF, NCUTRCW, NCUTCCL,
\(\varepsilon\)
THRESH, MINTH, MAXTH,
INTEGER ACTNUM, THRNUM, THRESH, NCUTRU'W, NCUTCCL
INTEGER MINTH, MAXTH, J, TQUF( NCUTCRL,
NCUTRCW \(=0\)
10 CCNTINUF
REAC(ACTAUM, END = 30) (TBUF(J), J=1, NOUTCOL)
NCUTRCW \(=\) NCUTRCH +1
```

 OC 2U J = 1, HOUTCCL
 IF(TGUF(J) .GE. THRESH) THEN
 TBLF(J) = IAAXTH
 ELSE
 TRUF(J) = M1:NTH
 ENC IF
    ```
        20 CCNTINUE
        hRITE( THRNLN) (TBUF(J), J = 1, NCLTCCL)
        GC TG 10
    C
            30 CCNTINLE
        RETL?N
        Enc
            NRGINAT FAEF TS
    ECF..
    OF POOR QUAL.

```

C
IF(G X =LT. NINTH, OQR (X .GT. MAXTH)) THEN
INQCUNE = .FALSE.
ELSE
INECUNC = .TRUE.
ENL IF
RETURN
END
ORIGINAL PAGE IS
DE POOR QUALITY

```
UNIVERSITY OF KANSAS REMCTE SSNSING LAE
PRCERAF SLITE: NC:SEFILTLRS HEF. 4 :
PRCCRAM NAHE:THA2XO AUTHOQ: JEFF WATSCN DATE:5/25/83
PURPCSE : TG FING VEW STEP LENGTH ANO NCVS XO FOR GUADRATIC SEARCH
DRIGINAL PAGE IS DE POOR QUALITY

PARAMETER DEFINITICN

\begin{tabular}{|c|c|c|c|c|}
\hline NAME & \ TYPE & \multicolumn{2}{|l|}{\ CLASSI RANGE} & 1 DESCRIPTION \\
\hline RIGHT & VLCG & \MOD & 1 & \OIRECTICN UF SEARCH \\
\hline \(\times \mathrm{C}\) & \INT & \MOD & 10-255 & \INITIAL THRESHOLC \\
\hline \(\triangle S T A R\) & \INT & \REAC & 10-255 & \OISTANCE FRCH XC TC \\
\hline & 1 & 1 & 1 & \CUAD'S HEST GUESS \\
\hline A 2 & \INT & \REAC & 10-255 & ISTE? LENGTH CF SEARCH \\
\hline F1 & \REAL & \MOU & \0-1 & \EFM AT XO \\
\hline F2 & \RE゙AL & \MOD & \0-1 & \EFM AT A. 2 FPOM XC \\
\hline FSTAR & \REAL & \FEAC & 10-1 & IEFM AT ASTAR FRDN XO \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 1 \\
\hline & \multicolumn{3}{|r|}{NCN-LOCAL VARIAELES} & \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

SUBROLTINES REQUIRED

MANE

\section*{DESCRIPTICN}

1
1
1
1
1
1
SLBROUTIAE THAZXC( RIGHT, XO, ASTAR, AZ, FI, FZ, FSTAR,
C
INTEGER XO, \(\triangle S T A R, ~ A 2, ~ X R I G H T, ~ X L E F T, ~ X N A R K, ~ A L P H A ~\)
LCGICAL RIGHT
REAL F1, F2, FSTAR
C

> XRIGHT ( XNARK, ALPHA ) = XNARK + \(\triangle L P H A\)
> XLEFT XHARK, LLPHA ) \(=\) XMARK - ALPHA

\section*{ELSE \\ ELSE}
ELSE
```

AL = ASTAR - AL
IF(RIGFI) THES
8l冲T = .FALSF.

```
    \(X C=X R I G I T T(X O, A S T A R)\)
ELSE
            2IGHT \(=\). TRUE.
            \(\times C=\times L E F T(\times O, A S T A R)\)
ENC IF
\(F 1=F S T A R\)
```

 NAX IS BETVEEN AZ ANC AB
    ```
            \(I F(R I G H T) \quad \times O=X R I G H T(X O, A 2)\)
                IF(.NET. RIGHT) \(X 0=X L E F T(X O, A Z)\)
                \(A 2=A S T A R-A Z\)
                \(F_{1}=F 2\)
                \(F 2=F S T \Delta R\)
            END IF
C
ASTAR gETWEEN AI AND ..... A2
IF(F2 .GT. FSTAR) THEN
naX getween astar anc ab
IF(RIGHT) XO \(=X\) IGHT (XO, ASTAR)

\[
\text { IF(.NOT. RIGHT) } \quad X O=X L E F T(X O, \angle S T A R)
\]

\[
A 2=A 2-A S T A R
\]

\[
F 1=F S T A R .
\]
ELSE
max between al and ..... A 2
IF(RIGHT) THEN
RIGHT = .FALSE.
\(\mathrm{XO}=\mathrm{XRIGHT}(\times 0, \Delta 2)\)
ELSE
RIGHT = .TRUE.
XO = XLEFT (XO,AZ)
END IF
\(A 2=A 2-A S T A R\)
\(F_{1}=F 2\)
\(F 2=F S T A R\)
END IF
Enc If
C
RETURN*
END
ECF..

C C C C C C

```

UNIVERSITY OF KANSAS R\&*UIE SENSING LAE

```
PRCCRAK SLITS: ACISC FILTERS AFF. \#:


PLRFCSE : CREATES A THRESHDLCED FILF ANT FINCS THE FFN FCR AN IMACE

                    PARAMETER DEFINITICN
    MAME \(\backslash\) TYPE \(\backslash\) CLASSI RANGE \(\backslash\) CESCRIPTIDN

    NON-LOCAL VARIARLES
    \(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\)

                    SUJROUTINES RECUIREC
    MANE
    1
                        DESCRIPTICN
-
THCRFI
CPN
UCLCSE
ICPEAS FILES AND ASSIGNS LDGICAL FILE NUMBERS
ICLCSES FILES OPENED BY CPN
IREPORTS ERRCR IN CPENING FILE WITH CPN
IFINDS THE EDGE FIGURE CF MERIT FCR A GIVEN THRESHDLC
1
1
SUBROUTINE THSPECI THRESH, IOLNUN, ANSNER, NCDL,
\& NCUTCCL, TBUF, MINTH, MAXTH, TTYIN. TTYOUT )

INTEGER ICLNUV, ACTNUM, THRNUM, THRESH, NCUTCLi.
INTEGER TBUF(NOUTCCL), ANSWER, NCCL, MINTH, YAXTH
INTEGER TTYIN, TTYCUT, ERRNUM, RECS

INTEGEKン1 ACTLFN(13). THRSFN(1R)
C

LCGICAL ERP

DRIGINAL PAGE IS
OF POOR QUALITY
    \(E Q \hat{P}=. F A L S E\).
    WRITEG TTYCUT, 10 )
    10 FCKMATI/,' IS THERE A:IOTHER FILTEREO IHAGZ OF THE SAME SIZE', /,
    \& , IX, 'THAT YCU WCULD LIKE AN EFN AND EJGE YAF OF FCR THIS.
    \(\varepsilon \quad\) 'THRESHCLD?', \(1,1 \mathrm{~K},{ }^{\prime} 1=\) YES, \(O=\) NO')
    REAC( TTYIA, 完 ) ANSINER
    WRITEI TTYCLT, \(\%\), ANSVER
    IF ( \(\triangle N S W E R\) - EU. O ) GO TC GC
    : SRITE (TTYCUT, 20)
    \(2 C\) FCRNAT (IX, 'ENTER ACTUAL INAGE FILENAME (MLST BE AII CLC FILE)')
    FEAC (TTYII: 30) ACTLFN
3C FCRNAT (1\&د1)
    WRITE(TTYDUT, 4 J) ACTLFN
40 FCRNAT (1X,18A1)
    CALL CPN( ACTNUM, ACTLFN, 'OLD', 'LNF', ERRNUY, ERR )
    IF (ERP ) THEN
            CALL FILERR( TTYCUT, ACTLFN, ERRNUM )
            GC TJ 70
    END IF
        WRITE (TTYCUT, 45)
        45 FCRMAT (IX, 'FILENAYE FOP. THE EDGE MAP (MUST BE A NEW FILE)')
    REAC (TTYIN, 30) THRSFN
    HRITE(TTYCUT, 40) THRSFN
    CALL CPN( THRNUN, THRSFN, 'NEW', 'UNF', EPRNUM, EPR )
    IF ( ERR , THEN
            CALL FILERR( TYYOUT, THRSFN், ERRNUN,
            SC TO 70
        トINC LFM FCR THE SPECIFIC THRESHCLD
        \(F=E F N\) I ICLNUM, ACTNUM, NCOL, NDUTCOL, THRESH, TTYCLT,
        WRITE! TTYOUT, 50 ) THRESH, F
        C FCRMAT (IX, 'THRESHCLI,', I4, GIVES ECGE FIGURE CF MERIT,',FB. 5)
        CREATE THRESHOLCED FILE
        CALL THCRFI ( \(\triangle\) COTNUM, THRNUN, TBUF, RECS, NCUTCCL,
        \(\varepsilon\) THRESH, HINTH, HAXTHI
        CALL UCLTSE( ACTNIJM)
        CALL UCLCSE( THRNUM )
```

C
tO CCNTINLE
70 CCNTINLE
REILRN
ENL

```

DRIGINAL PAGE IS OE POOR QUALITY.


NON-LOCAL VARIABLES
\(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\)
AANE 1 DESCRIPTICN
DESCRIPTICN


C
ECUSLE
dCCES the prccessing-- called with variable parameters 1

1
1
1
1
1
PRCGRAM EGUFLT
INTEGER MAXSIZ, MXWSIZ, BUFGUE

\section*{BLFELE = NAXSILE \% YAXWINCCNSIZE}

PARANETER (VAXSIL=8CO)
PARAMETER ( \(\mu \times h S I L=15)\)
PARAMETFR (BLFGUE=MAXSIZ:SMXWSIL)


```

LNIVERSITY OF KANSAS TELCCCNNLVICATIINS AN) INFLRNATICN SCIENCSS LAE

```

```

FRCCRAH SL:TE : IICISE FILTERS PRFF. 4:
PRCGRAM NANE:FQUSUR AUTHCR:J. SCCTT GARDNER DATE:3/4/93
PURPGSE : THIS IS THC SURROUTINE TC PERFCFN
THE ACTLAL PRCCESSING FCR THE EOUAL NEIGFTED
FILTER RCUTINE.

```

REAL CUEUE(KNRSII,SIZE)
REAL WNCPTS, ANCIGG, TCTALM, XESTNT
INTEGER \(\quad 1\) INFNN(Iタ), (IUTFNM(!8)
LCGICAL ERR
LCGICAL ERR
```

INTEGER TTYOUT, INFC,DUTFC

```
CPEN FILES ANC CHECK FOR ERPCRS
CALL CPN (INFC, INFNM, 'OLD', 'UNF', ERRNLN, ERR) IF (ERR) GOTC 1009
CALL CPN ( CUTFC, OUTFNM, 'NEW', 'UNF', ERRNUM, ERR) IF (ERR) GCTC 2009
```

WADPTS = WNCSIL % WNOSIZ

```
Calculate the weighting factor
```

WNChGT = L.C / HivOPTS

```
INITIALI: THE CIRCULAR GUEUE
```

CC 4C REC=1,WNOSIZ

```
    REAS ( 1 NFC, ERR \(=4009\) ) (IN(WRC),WRC=1,SI7E)
        CC 30 WCRC=1,SIZE
        GUEUE (REC, WCRC) = IN(WORC)
        CCNTINUE
        CCNTINUE
BEGIN PRCCESSING
        RECS \(=0\)
QREC \(=1\)
TNPCRC \(=\) QREC
CC SO START \(=1\), OUTSIZ
TCTALM \(=0.0\)
CC 2C KREC \(=1\), WNOSIZ
    hHCRD \(=1\)
    CC 10 GWCRO = START, START + WNDSIZ-1
        TCTALM = TCTALM + QUELE(TMPQRC,ChCRD) \# WNCWGT
    \(W W C R S=W W O R D+1\)
LCATIAnE
```

THPGRC = MCC (TMPZKC, UNDSIZ) + 1
CCNTINLE
XESTMT $=$ TOTALSA
PLT THE FILTERSC VALUE IN THE CUTPUT BUFFSR
CLT(START) = INT (XESTAT)
CCNTINLE

```
```

WRITE THIS RECORD ANO UPDATF THE RECCRC CSUNTER

```
WRITE THIS RECORD ANO UPDATF THE RECCRC CSUNTER
    WRITE (CUTFC) (OUT(WRD),WPD=1,CUTSIZ)
DCN'T ECTHEP TC CHECK FCR A WRITE ERRCR
    RECS = PECS + 1
REAC A NEW RECCRD INTC THE QUEUE AND UPDATE THE FRONT-ENC FCINTER
    REAC (INFC,END=2OC,ERR=4OC9) (IN(WRC),WRD=1,SIZE)
    CC 1CO hCRC=1,SI7E
        QUEIJE(GREC,HCRD) = IN(WORD)
    CCNTINUE
    QREC = MCD (QREC, WNDSIZ) + 1
    GCTC 50
weve reached an end-cf-file sc the cutput number cF
RECCRCS WILL BE wNDSIZ-1 LESS than the number input
WRAF IT ALL UP AND QUIT
    CALL UCLGSE (INFC)
    CALL uClose (CuTFC)
    GCTC 1C1C
    1009 CALL FILERR (TTYOUT, INFNN, ERRNUN)
    GCTC 101C
```

```
zCCs Call Filern (ttyeut, cutfiom, erraun)
    GCTC 1CIO
C
C
4COF WRITE (TTYOUT,OSO)
600 FCRMAT (IX,'% & ERPCR IN REACING INPUT INAGE % % *')
C
ICIC RETLRN
    END
ECF..
?
\[
\begin{aligned}
& \text { ERXGINAE BACE IS } \\
& \text { DE POOR QUGLITY }
\end{aligned}
\]
```


URGINAL PAGE IS
 DE POOR QUALITY


```
<nSIL=2C)
```


INTEGER RECS, TRUF(*AXSIZ)
INTEGER SIZE, CUTSIL, hNOSIL, ARRSIL INTEGER QLEUE（ コUFQUE），WINCCW（BUFWNC）

```
INTEGER&1 INFNM(1タ), CUTFNM(18)
INTEGER TTYIN, TTYCUT
DATA TTYIN, TTYOUT /15, 16/
hRITE (TTYCUT,OCL)
FERNAT (IX,'ENTER THE FILENAME FOR INPUT (NLST RE AN CLO FILE)')
REAC (TTYIN.510) INFINN
FCRNAT (18A1)
```

WRITE (TTYCUT, $6 C 2$)
FCRNAT (IX, 'ENTER THE FILENAME FOR CLTPUT (MLST BE A NEM FILÉ)')
REAC (TTYIN.51J) OUTFNH
WRITE (TTYCLT,610)
FCRNAT (IX, 'ENTER THE SILE CF THE INPUT I:AAGE ')
REAC (TTYIN, SILE
IF (SILE .GT. :AAXSIZ) THEN
hRITE (TTYCUT, E15) MAXSIZ
FCRMAT ($1 \times$, $\%$ \% $\%$ R R OR - THE KAXIMLMSIZE $=$ - , IS)
GCTC 1CIC
ENC IF
WRITE (TYYCUT,027)
627 FCRMAT ($1 \times$, 'ENTER THE SILE OF THE FILTER WINCOW*)
REAC (TTYIN, \because) WNCSIZ
IF (hNCSIZ -GT. MXWSIZ) THEN
hRITE (TTYCUT,623) MXWSIZ
FCRNAT (IX, \# 力 空 ERRGR - - NAXIMUM WINCCWSIZE = ', I5)
GCTC 1010
END IF
CLTSIZ = SIZE - WNCSIZ + 1
ARRSIZ $=$ WNCSIZ $\%$ WNOSIZ
RECS $=C$

CALL SURRCLTINE TO DD THE WORK
CALL NECIANI INFNA, OUTFNN, ARRSIZ, SILE, RFCS,
ε
WNCSIZ, CUTSIZ, TTYCUT, QLEUE, hINDON, TZUF)

```
h2IT! (11Y UT,(30)
630 FCRHAT (1X,') क% A L L C C N E % क力口
hRITE (TTYCLT,640) UUTSIZ, RECS
64C FCRHAT (IX,'THE OUTPUT IMAGE IS ',15,' HCRCS 3Y ',I5,' RECCRCS')
ICIC STCP
ENC
DRIGNAC PAGE IS
OF POOR QUALITY
```


ORIGWAE PAGE IS OE POOR QUALITY

```
    LNIVERSITY CF KANSAS TELFCCMNLNICATIUNS AAN INFCRNATILA SCIENCES LAZ
    PRCGRAM SLITE : NCISE FILTERS REF. ":
    FRCGRAM NANE:MECIA:S AUTHCR:JEFF NATSCN CATE:3/द/93
PLRFCSE : CCES THE PRCCESSING FCR THE VEDIAI, FILTER AFTER bEINC
CALLEG EY PRCGRAN YECRLT.
```

 PARAMETER DEFINITICA
 MAMË I TYPE \ CLASSI RANGE \ OESCRIPTIOA
INFILE

| $\backslash C H 218$ | $I R$ | 1 | 1 |
| :---: | :---: | :---: | :---: |
| ICHOL3 | $I R$ | 1 | 1 |
| $1 I$ | $I R$ | 1 | 1 |
| 1 | $I R$ | 1 | 1 |
| 1 | $I W$ | 1 | 1 |
| 1 | $I R$ | 1 | 1 |
| 1 | 1 | 1 | |
| 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 |IINPUT Filenaike

outfile
\CHक:3
scutput filenaiae
ARRSIZE
tnumeer of elements in hindoch
ICCLIJVYS IN INPUT INAGE
trows in cutput inace
IhINDCWSIZE
WINCSIZE
NCUTCCL II IR I ICCLUMNS IN CUTPUT inAGE
TTYCUT \I IR \ ICUTPUT TC TFRMINAL FILECCOE
n
$\stackrel{C}{C}$
C
NCCLS
NOUTRCW
non-local variables

UCLCSE

IFINDS MEDIAN OF LCCAL hINDCW
ICPEAS FILE AND ASSIGNS LCGICAL UNIT
ICloses files opened with cpn
1
1
1
1

SURRCUTIAE MECIAN (INFILE, CUTFILE, ARRSIZE, NCCLS, NOUTRCh, ε WINCSIZE, NOUTCCL, TTYCUT, Q, ARQVAL, TBUF)

LCGICAL ERR

INTEGER ARRSIZE, NCOLS, NOUTCCL, hINOSILE
IATEGER I, J, K, ERRNUM, START, ARRPCS, CUTCCL, NQCWS INTEGEK NCLTRC', TTYOUT, ARRVALIARRSIZEI, TBLFF(NCCLS) INTEGER J(WINDSIZE,NCQIS), INFNUN, OUTNUV, MEL, MEDPCS INTEGER*1 INFILE(18), UUTFILE(13)
CC $30 \quad 1$ a 1 ,h1NCSIZE
REAL (INFNLN, ENC = G3) (TBLF $(K), K=1$, NCCLS)
CC $20 \mathrm{~J}=1$,NCULS
C(i.J) = T3UF(J)
20 CCNTINLE
30 CCNTINLE
MAIN PRCCESSINC
MEDPCS $=$ ARRSIZE/2
40 CCNTINUE
CC 70 START $=1$, NOUTCOL
CC OC I = 1. WINDSIZE
CC 50 J = START, START + WINOSIZE - 1
ARRPCS $=$ WINOSIZE (I $\mathrm{I}-1)+\mathrm{J}-$ START +1
ARRVAL(ARRPOS) $=\mathrm{C}(1, \mathrm{~J})$
50
CCNTINUE
60 CCNTINUE
CALL MECFNC(ARRVAL, NED, ARRSIZE, MECPCS)
CUTCOL $=$ START
TQUF(CUTCCL) $=\mu E D$
70 CONTINUE
NCUTRCW $=$ NOUTRO: +1
hRITE(CUTAUM) (TBUF (K), $K=1$, NOUTCCL)
update cleue
CC 80 $1=1$, $\operatorname{CINCSILE}$
IF(I .LT. WINDSIZE) THEN
CO $85 \mathrm{~J}=1$, NCOLS
$C(I, J)=Q(I+1, J)$
ccatinue
ELSE
REAC(INFAUM, ENC $=98)(\operatorname{TEUF}(K), K=1$, NCOLS)
OC $87 \mathrm{~J}=1, \mathrm{NCOLS}$
$C(1, J)=\operatorname{TBUF}(J)$
CCNIINUE
ENC If
80 CONTINUE
GC TO 40
we have reached the end cf the input file
s8 CCNTINLE
CALL UCLCSE(INFAU:1)
CALL UCLCSE(CLTAUM)
RETURN
ENC


```
FCE I = 1, SILF
    PIAARR( ARR\ 1 ) ) = PIXARR(ARR(1) ) + 1
ENC FCR
C
1=-1
CCLNT = . 
CC
COLNT = CCLNT + PIXLRRP 1,
LNTIL ( CCLNT .GT. NEDPCS )
MEC=1
C
RETURA
END
```

I=1+1

```
I=1+1 OE POOR QUALITY
```



```
                            IF (kNES!? .i. NSI?) GOTC 13
        hRITE (TTYCUT,023) 4XWSIZ
        FCRNAT (IX,'% ERRC R - MAYIMUY NINOCW SILE = ',15)
        GCTC 101C
c
13 CUTSI? = SIIL - WNCSIL + 1
```


ORIGINAL PAGE IS OF POOR QUALITY

```
CALL SLBPCLTIAE TC CC THE WORK
        CALL LEESUS IINF:M, IUTFNM, CUEUE, NINCCN, NSKMAE, IN, CLT,
        \varepsilon SILE, RECS, NNUSIZ, OUTSIL, THSHLD, NUNLKS, TTYDUT,
    C
C
WRITE (TTYCUT,b30)
63C FCRHAT (I<,'& % A L L C CNE क % %')
    WRITE (TTYOUT,b40) OUTSIZ, RECS
64C FCRMAT (1X,'THE OUTPUT IHAACE IS ',I5,' WCRES RY '.15,' RECCRCS')
C
GCTC 101C
C
C
101C STCP
    END
ECF..
?
```

 subroutines recuired
hane
1
DESCPIPTION

GNMSKS
LCSTAT
suersk
FNCEDG
EGSTAT
ESTMTE
CPN
UCLCSE

IGENERATES MASKS
ICCMPUTES LCCAL STATISTICS OF HINCOW
IGETS A 3×3 LOCAL MEAN FRCM WINCCW
IGETS EDGE ORIENTATIGN AND SELECTS A MASK
ICCMPUTES LOCAL STATS CLTSICE ThE EDGE
IFINDS AN ESTIMATE FQR THE SIGNAL
ICPENS FILE AND ASSIGINS LCGICAL UNIT \CLOSES FILES OPENED WITH CPN

SUBROUTINE LEESUB IINFAM, OLTFNM, QUEUE, WINDOK, MSKWNC,〔 IN, CUT, SIZE, RECS, WNDSIZ, OUTSIZ, THSHLD, NUMLKS, TTYCUT,

INTEGER SIZE, DUTSIZ, hiNDSIZ

INTEGER INTEGER INTEGER

NSK3×3(3,3,4), S9AREA(3,3), MSKWNC(3, MNDSIZ,hNCSIZ)
IN(SILE), CUT(CUTSIZ)
REC, WRD, WORD, RECS, GRFC, TMPQQC, START, IERR

INTFUEK NSKNLSA, I, J. K, ER, KNじ

INITIALILE THE 3×3 GRADIENT WINJCWS

CATA $(((M, K 3 \times 3(1, J, K), I=1,3), J=1,3), K=1,4)$
\& $/ 1,1,1, C, C, C,-1,-1,-1,0,-1,-1,1, C,-1,1,1, C$,
ع $\quad 1,0,-1,1,0,-1,1,0,-1,1,1,0,1, C,-1,0,-1,-1 /$

IAITIALIZE ZMEAN\&ZNEAN/VARZ MIN AND MAX AN) TGTALS
THRSMI $=100000$
THRSHX $=-10 C C O C$
TTLTMN $=0.0$
TTLTSC $=0.0$
TTLHMN $=0 . C$
NMHPTS $=0 . C$
ceternine the number cf peints in inage (asslmed souare)
NUMPTS = OUTSIZ OLTSIZ

CPEN FILES ANC CHECK FOR ERRCRS
CALL CPN (INFC, INFNM, •OLC', UUNF•, ERRNLM, ERR) IF (ERR) GUTC 1009

CALL CPA (CLTFC, CUTFNN, 'NEW', 'LNF', ERRNUM, ERR) IF (ERR) GCTC 20C9
first, Generate the eoge templates
CALL GNMSKS (MSKWND, WNDSIZ)

```
    WAUPTS = WNCSIL % WNOSIZ
    SUBPTS = (WNCSIZ/2+1) % WNCSIZ
```

initialize the circular gueve

CC 40 REC $=1$, WNOSII
REAC (INFC.ERR=3n09) (IN(WRD),WRC=1,SIZE)

CC 3C hCRE=1, S: LL
CUEUE(PEC,WCRD) $=1 \mathrm{~A}$ (UCRC)
CCATINUE

```
BEGIN PRCCESSING
```

```
    RECS = C
    UREC = 1
    TMPGRC = OREC
    OC SO START=1,CUTSIL
GET THE LCCAL STATISTICS FOR THE AREA CEFINEC EY THE WINCCh
anc fill the winogn array to be usec later if av ecge is fcund
    cALL LCSTAT (OUEUE, WINCUN, tMPGRC, START, WNOSIZ, NNCPTS,
    \varepsilon SILE, LMEAN, VARL, Z)
```

finc the edge threshold value
EGTHRS $=2 M E A N \% 2 M E A N / V A R Z$
UPCATE RUNAING SUMS FCR DETERNINING THRESHCLC
TTLTMN $=$ TTLTMN + EGTHRS/NURPTS
TTLTSC $=$ TTLTSD + EGTHRS謁GTHRS/AUNPTS
THRSH: $=$ MIN (THRSM!, EGTHRS)
THRSMX = MAX (THPSMX, EGTHRS)
DETERHINE IF AN EDGE EXISTS EASED ON THE LOCAL STATISTICS,
tre nurger cf lcuks and the user specified threshclo.

```
    IF (EGTHRS .LE. NUMLKS-THSHLD) GCTO 44
    TTLHMN=TTLHMN + EGTHRS
    NMHPTS = NMHPTS + 1.0
    GCTC }6
```

we have an edge, sc prcceec with the ezGe filtering
Get the 3×3 surarea local mean
CALL SUQMSK (WINDCW, SSAREA, WNOSIZ)
FIND THE EDGE ORIENTATION ANC DETERMINE WHICF EDGE
terplate tc use in calculating dur new lccal mean
CALL fNCEDG (SbAREA, rSK3X3, mSKAUN)
CCMPUTE A AEh lCCAl mean and variance l'sing the appacpriate
terplate
CALL EGSTAT (WINDCW, MSKWNC, WNDSIZ, MSKNLM,

```
    S IMEAN, VARI, (I
```

C
C
C
C
C
C

FINC AN ESTIFATE FUR THE SIGNAL. XESTYT

CALL ESTMTE (IMEAN, VARZ, Z, NUNLKS, XESTAT)

IF (KESTMT.GT. 255.0) XESTMT $=255.0$
PLT THE FILTEREC VALLE IN THE CUTPUT BLFFEQ
CLT(START) $=$ INT (XESTAT)

CCNTIT:LE

WRITE THIS RECCPD ANC UPCATE THE RECCRC CCLNTER
WRITE (CUTFC) (CUT (hRD), WRC=1, LUTSIZ)

CCN'T BCTHER TC CHECK FOK A WRITE ERRCR

RECS $=$ RECS +1

REAC A IIEM RECCRD INTO THE OUEUE ANC UPDATE THE FRGNT-ENC PCINTER

REAC (INFC, END $=20 C, E R R=3009)(I N(W R C), W R D=1, S I Z E)$
CC 100 hORE=1,SIZE
QLEUE (GRFC, GQRD) = IN(WORD)
CCNTINLE
QREC $=$ MCD (QREC, WNDSIZ) +1
GCTC 50

WE'VE PEACHEC AN END-CFFFILE SO THE CUTPUT NUMBER CF
RECCRES WILL BE WNOSIZ-I LESS THAN THE NUMBER INPUT
WRAF IT ALL UP AND QUIT

CALL UCLCSE (INFC)
CALL UCLCSE (CUTFC)
hRITE (TTYCUT,635) THRSNI,THRSMX,TTLTMN,TTLTSD-TTLTMN*TTLTMN
FCRMAT ($1 \times$, 'ECGE THRESHCLD MIN $=$, .F9. 3 ,
\& /IX, ${ }^{\text {E ECGE THRESHOLD } M A X=}=, F 9.3$,
$\varepsilon / 1 \times$, ECGE THRESHOLO MEAH $=$, F9.3,
\& /IX.,ECGE THRESHIDLD STANCARD DEVIATICN = *FG.3)
HRITE (TTYCUT, O37) TTLHNN/NNHPTS
FCRNAT (1X, 'HCHOGENECUS AREA NEAN = *FQ.3)
hRITE (TTYCUT,638) NHHPTS: 1CO.O/NUNPTS
FCRMAT (1X,FG. 3, ' PERCENT GF THE IMAGE WAS HCMOGENECLS')
GOTC 101 C

C
$2 C O G C A L L F I L E R R$ (TTYCUT, DUTFI!M, ERRNUN)
GCIC ICIC
C
3COG WRITE (TTYCLT, 660)

C
ICIC RETURN
ENC
ECF..
?

```
LNIVERSITY CF KANSAS TELECCANLNICATICAS ANN INFCRNAIIGN SCIENCES LAE
```

c

PRCGPAM NANE:ESTMTI

AUTHCR:J. SCCTT GARDNER OATE:02/14/93
PURPCSE: THIS SURROUTINE ESTIMATES THE SIGNAL FRCM THE
l.ceal mean anic variaice.

ORIGINAL PAGE IS OE POOR QUALITY.

NON-LJCAL VARIABLES

AAME 1 SUBROU DESCRIPTICNE DESCRIPTICN
SUBROUTINE ESTMTE (ZMEAN, VARZ, Z, NUMLKS, XESTMT)

REAL LMEAR, VARV, VARZ, Z, XFSTMT, XMEAN, VARX, K REAL NUMLKS

```
    SIGNAL MEAN = INAGE HEAN / NGISEMEAN
        \triangleSSUME NCISF MFAN = 1
        XNEAN = ZHEAN
        VARV = 1.C / NUMLKS
        VARX = (VARZ + ZMEANWZMEAN) / (VARV + 1.O) - XMFAN%XNEAN
        Z CAN BE LINEARIZEC BY THE FIPST OKDER TAYLTR SSRIES
        EXPANSICI, AYUUT (YMEAN, VMEAN)
        Z = VMEAN%X + XMEAN % (V - VMEAN)
        FRCM THIS AN ESTIIAATE FOR X IS DEVELCPEC
        K = VARX / (XNEAN % XMEAN % VARV + VARX)
        XESTNT = XMEAN + K ; (Z - XMEAN)
        RETURN
        ENC
```

 EOF..
 ?
 C

```
LTIVERSITY GF KANSAS TELECCMNLNICATICAS AND INFCRNATI
PRCGRAM SLITE : NCISE FILTERS REF. :
C PURFCSE: THIS IS THE MAINLINE FCR THE AUAPTIVE FILTER
C RCUTINE hHICH USES A FILTER

PRCGRAN ACPFLT
```

 TER (1NXNSIZ=15)
 FFR (VXFLTS=25)
 A & TER (CLFSUE=HAXSI2कHXHSI2)
 PARAMETER (GUFWM)=NXHSILbHXUSIL)
 PARAMETER (BUFFWN=NXFLTS क MXWSIL क NXWSIZ)
FCRMAT (IX,'FILENAMF FOR FILTER OUTPLT (MUST BE A NEh FILE)')
REAC (TTYIN,510) OUT2FN
hRITE (TTYCUT,700) OUT2FN
HRITE (TTYCUT,GIO)
FCRMAT (IX,'ENTER THE SIZE OF THE INPUT IMAGE ')
REAC (TTYIN,*) SIZE
WRITE (TTYOUT,705) SIZE
FCRHAT (1X,14)
IF (SIZE .LE. MAXSIZ) GCTD 12
FCRMAT (IX,* * * ER R O R - - THE MAXIMLM SIZE = ',I5)
GOTO }101
WRITE (TTYOUT,625)
FCRMAT (1X,'ENTER THE NUMBER CF LOCKS ')
REAC (TTYIN,%) NUIGLKS
WRITE (TTYCUT,710) NUMLKS
FCRMAT (1X,F6.3)

```
```

 WRITE (TTYUUT,OO3)
    ```
```

 WRITE (TTYUUT,OO3)
    ```
C
C
70 E
C12
HRITE (TTYCUT, 615) MAXSIZ
c
12
625
c
537
```

mateger recs. fltmuia
INTEGER IN(NAXSIZ), DUT(MAXSIZ), SIZE, CUTSIZ, WNOSIZ
INTEGER FLTHST (GXFLTS)
REAL NUMLKS, HMAX, NMIN, CIST(3UFWNC), EQLRES
INTEGEF%1 INFINM(18), CUTFNM(18), CUT2FN(18)
INTEGER TTYIN,TTYOUT,INFC,OUTFC, CUT2FC
CATA TTYIN, TTYOUT /15, 16/
WRITE (TTYCUT,601)
FCRMAT (IX,'ENTER THE FILEMAME FCR INPUT (MLST eE AN CLC FILE)')
REAC (TTYIN,510) INFNM
FCRMAT (1341)
HRITE (TTYOUT,TCO) INFNH
FCRHAT (1X,18A1)
WRITE (TTYOUT,OOZ)
FCRHAT (IX,'ENTER THE FILENAME FOR CLTPUT (MLST BE A NEW FILE)')
REAC (TTYIN.510) OUTFNM
hRITE (TTYCUT,700) OUTFNM
REACTM, (MUST SE A NEM FILE)',
FCRHAT (IXOI4)
WRITE (TTYCLT,637)
FCRNAT (IX,'ENTER THE EQUIVALENT RESCLUTION ')
REAC (TTYIN,*) EOURES
hRITE (TIYCUT,710) ECURES

```
(AL , IYCUT,645)
FCRNAT (IX, 'ENTER THE MINIVUM NUMBEZ CF LYCK
REAC (TTYIN., 宗) NHIN WRITE (TTYOUT, 710 ) NMIN
C
WRITE (TTYLUT,047)
647 FCRNAT ( \(1 \times\), 'ENTER THE MAXIMUM NUMYER CF LJCKS ')
REAC (TTYIN, \(\dot{A}) \quad y^{\prime} A X\)
WRITE (TTYCUT,710) NMAX
C
WRITE (TTYCUT,649)
549 FCRNAT (: \(\mathbf{5}\), 'ENTER THE NUMBER OF FILTERS ')
REAS (TTYIN, \%) FLTNUM
WRITE (TTYCUT,705) FLTNUM
C
C
hRITE (TTYCUT, 621 )

\section*{627}

FCRNAT (IX,'ENTER THE SIZE OF THE FILTER WINCOW', \& / IOX, "(THIS ?ARAMETER MUST BE ODC)")
READ (TTYIN, *) WNCSIZ
WRITE (TTYOUT,705) WNCSIL
C
IF (MCC(WNUSIZ, 2) -NE. C) GOTO 20
WNDSIZ \(=\) WNCSIL +1
WRITE (TTYOUT,632) WNDSIL
FCRNAT (IX, 'THAT IS NOT AN DDD NUMEER. I WILL USE ', 12,' INSTEAC')
632
C
2 C IF (WNCSIZ •LE, : 1 XWSIZ) GOTC 13
WRITE (TTYCUT,641) MXWSIZ
 GCTC 1010
C
13 OLTSIZ = SIZE - WNDSIZ + 1
C
C
C
C CALL SUBRCUTIAE TC DO THE WORK
C
CALL ADPSUE (INFNM, JUTFNM, GUT2FN, GUEUE, WINCCW, FLTRS, DIST, \(\varepsilon \quad 1 N\), CUT, FLTHST, SIZE, FLTNUN, RECS, WNOSIZ, CUTSIZ, NLVLKS. \& NMIN, NMAX, EQURES, TTYOUT)
\(C\)
\(C\)
\(C\)
6
6
\(C\)
\(C\)
WRITE (TTYCUT,630)

WRITE (TTYCUT,640) OUTSIZ, RECS
FCRMAT ( \(1 \times\), 'THE OUTPUT IMAGE IS ', 15,' WGRES EY ', IS,' RECCRCS')

GOTC 1010
C
C
C
ICIC STCP
END
EOF.
?

\section*{DrgGinal page is DE POOR QUAGEITY}

C
C LNIVERSITY CF KATSAS TELECCMNUNICATIONS AND INFCRMATICA SCIENCES LAB
C FRCGRAM SLITE : NCISE FILTERS REF. 4 :
```

C PRCGRAM NAHE:ADPSUP, AUTHC?:J. SCCTT G1RCNER CATE:3/4/93

```
C ------------------------------------------- THIS IS THE SUHROUTINE TO PERFC?
C THE ACTUAL FRCCESSING FCR THE ADAPTIVE WEINER
Filter routine.

PARALETER JEFINITION


NON-LOCAL VARIABLES
i 1 \

\section*{subroutines reguirec}

AANE
GENFLT
1
DESCRIPTICN
IGENERATE THE FILTERS AND PRINT THEM
IGETS LOCAL STATS AND FILLS A HINDOW ARRAY FRCM GUEUE
\APPLY THE PROPER FILTER TO THE LCCAL AREA
ICPEA FILE AND ASSIGN FILECODE
\CLCSE FILES OPENED WITH CPN
IREPORT TYPE OF FILE ERROR
SUBRUUTINE ADPSUB TINFNM, CUTFNM, OLTZFN, QUEUE, WINCOW, FLTRS, \(\varepsilon\) DIST, IN, UUT, FLTHST, SIZE, FLTNUM, RECS, WNDSIL, OUTSIZ. \& NUMLKS, NMIN, NMAX, EQURES, TTYOUT)

INTEGER SILE, OUTSIL, WNDSIL
INTEGER FLTAUM, FLT, ERRNUM
INTEGER IN(SIZE), CUT(CUTSIZ), FLTHST (FLTALA)

REAL CUEUE（hNUSIZ，SIZE），WINUCh（WNDS！Z，WNLSIE）
REAI FLTRS（FLTNUH，UNESIZ，ANCSIL），CIST（ANCSIL，I，ACSIZ）

REAL THRSMX，THRSMI，TTLTHA，TTLTSO，JELTAN，NMI\％，ANAX
REAL FGTHRS，＇UVPTS，ECURES
INTEGER＝1 INFNN（1己），UUTFんッ（1 ठ），CUT？FN：（18）
LCGICAL ZRR，RNGFRZ

INTEGER TTYCUT，INFC，OUTFC，CUTZFC

INITIALIZE ZMEANOZHEAN／VARZ MIN ANC MAK ANO TCTALS
THRSMI \(=100 C O O\)
THRSMX \(=-1 C C C O 0\)
TTLTMN \(=0.0\)
TTLTSO \(=0.0\)

RAGERR＝．FALSE．

ZERC HIST ARRAY
CC \(5 \mathrm{FLT}=1\) ，FLTNUN
FL．THST（FLT）\(=0\) CCNTINUE

CETERNINE THE NUABE？CF PCINTS IN INAGE（ASSUMEO SOUARE）
NUMPTS＝JUTSIZ \(\%\) OUTSIZ

Calculate the incremental nunber cf lCeks
TC BE USEC IN INDEXING THE FILTERS

DELTAN \(=(\) NMAX－NMIN）／FLOAT（FLTNUN）

OPEN FILES ANC CHECK FDR ERRCRS
CALL CPN（INFC，INFNM，＇OLC＇，＇UNF＇，ERRNUM，ERR） IF（ERR）GOTC 1009

CALL CPN（ DUTFC，DUTFNM，＇NEW＇，＇LNF＇，ERRNU＇ィ，ERR） IF（ERR）SOTC 2009

CALL CPN（ OUTZFC，CUT2FN，＇NEW＇，＇FCR＇，ERRNUM，ERR） IF（ERR）GOTC 3009
```

WNOPTS = WNDSIL \& HNDSIZ

```
            CALL GENFLT (FI,TZS, JIST, FLTNUV, WNCSIZ, LELTAN, NUNIKS, NEDTS,
\& ECLRES, CUTZFC, TTYCUT)
```

INITIALILE THE CIRCULAR GUEUE
DC 40 REC=1, WNCSIL
READ (INFC,GRR=4009) (IN(hRD),WRC=1,SI2E)
CO 30 WCRE=1,SIZE
QUEUEE(REC,WCRD) = IN(HCRO)
CCNTINUE
CCNTINLE

```
    BECIN PRCCESSIAG
    RECS \(=C\)
    CREC \(=1\)
C
50
C
    CC 90 START \(=1\), OUTSIL
GET THE LCCAL STATISTICS FCR THE AREA LEFINEC EY THE WINCCh
ANO FILL THE WINOC' ARRAY

CALL LCSTAT IGUEUE, WINCOW, TMPGRC, START, WNOSIL, WACPTS, \& SIZE, ZMEAN, VARZ, Z)

EGTHRS \(=\) ZMEAA \(\%\) ZMEAN / VARL
CHECK TC SEE IF LOCAL NUMBER CF LCOKS IS OUT OF THE USER RANGE
IF (EGTHRS •LT. NMIN • OR. EGTHRS •GT. NMAX) RNGERR = •TRUE.

UPCATE RUNAING SUMS FCR DETERMINING THRESHOLC
TTLTMN = TTLTMN + EGTHRS/NLMPTS
TTLTSD \(=\) TTLTSD + EGTHRS*EGTHRS/NUNPTS
THRSMI \(=\) MIN (THRSMI, EGTHRS)
THRSMX \(=\) MAX (THRSMX, EGTHRS)

\section*{CALCULATE WHICH FILTER TO USE}

FLT = FLTKUN - INT((EGTHRS-NMIN) / DELTAN)
1F (FLT •LT. 1) FLT = 1
\(I F \cdot(F L T\).GT. FLTNUM) FLT \(=\) FLTNUM

\section*{UPDATE HISTUGQAM}

FLTHST \((F L T)=\) FLTHST \((F L T)+1\)

PERFCRN THE FILTERING
    XESTMT \(=\therefore M E A N\)

PUT THE FILTEREC VALUE \(1 / \mathrm{A}\) THE OUTPUT BUFFER

\section*{ORIGINAL PAGE IS
OE POOR QUALITY}

IF (XESTMT .GT. 255.0 ) XESTMT \(=255 . C\)
CLT(START) \(=1 N T \quad(X E S T M T)\)
```

 WRITE THIS RECCRJ AYD UPDATE THE RECCDL CCLYTER
    ```
        WRITE (CUTFC) (CUT (WRD), WRC=1,CUTSIZ)
    DCN'T BCTHER TC CHECK FSR A WRITE ERRCK.
        RECS \(=\) RECS +1
    FCRMAT \(11 \times,^{\prime} \Rightarrow \geqslant \Rightarrow E R\) O R -- ENCCUNTERED LCCAL NUMRER
    \(\varepsilon / 5 X\), " CF LCCKS WHICH WERE CUTSIDE THE USER SPECIFIGC RANGE."
    \(\varepsilon / 5 \times\), ' THE FIRST OR LAST FILTERS WERE USED IN THESE AREAS')
```

 NRITE (CU FC, 6SO)
 FCRNAT (/5%,'- - - F I L T ER U S A GFF - -
 EP %',
 & 5x,'% USAA゙E')
 C
CC 150 FLT = 1,FLTAJM
hRITE (CUT2FC,70)) FLT,FLCAT(FLTHST(FLT))*1C0.0/%NFFS
700
15C
FORNAT (1X,13,6X,F6.3)
CCNTINUE
C
C
GCTC 101C
ORIGINAL PAGE IS
C
C
C
ICOG CALL FILCR? (TTYCUT, INFNM, ERRNUN)
GCTC 1C1O
C
2COG CALL FILERR (TTYOUT, CUTFNN, ERRNUN)
GCTC 101C
C
3COG CALL FILERR (TTYOUT, CUT2FN, ERRNUN)
GCTC 1010
C
4CO9 WRITE (TTYCUT,660)
660 FCRNAT (1X, ** % % ERRCR IN REACING INPUT INAGE % ***)
C
1CIC RETURN
ENC
ECF..
?

```


\section*{PRCGRAM EACFLT}

> INTEGER MAXSIZ, MXWSIZ, BUFGUE, BUFWND, MXFLTS, BUFFhN INTEGER BUFMWN

BLFGLE \(=\) MAXSILE \(\Rightarrow\) AXWIISCCWSILE
BLFWNE = MAXHINCUKSILE \(\%\) MAXWINJOWSIZE
BLFFWN IS THE EUFFE? FUR THE FILTERS ARマAY

PARA: \(\quad \therefore \quad(Y A X, 12=312)\)
PARA" :
PSRAMETER (VXFLTS = 20 )

ORIGINAL Page is
DE POOR QUALITY
PAKAMETER (ULFWVO = MXWSIL\&MXWSI2)
PARAAETER (EUFNhM=9*MXhSI Z \(4 M \times W S 12\) )


INTEGER RECS, FLTNUM, MSKWNC(EUFNLNN)
INTEGER SILE, חUTSIL, WNDSIZ, OUT(MAXSIL)
INTEGEH IN(MAXSIZ)
IATEGER FLTHST (4XFLTS)

WRITE (TTYCLT. SIO)
FCRHAT (IX, 'ENTER THE SIZE OF THE INPUT IYAGE ')
REAC (TTYIN, \%) SIZE
WRITE (TTYCUT,710) SIZE
REAL GLEUE(3UFGUE), WINUNW(BUFWNC), FLTRS(BUFFV:N)
REAL NUMLKS, NHAX, NNIN, CIST(BUFWNC), EZLPES
REAL THSHLD
INTEGER*1 INFNM(18), QUTFNM(18), CUT2FN(18)
INTEGER TTYIN.TTYOUT, INFC, CUTFC, CUTZFC
CATA TTYIF. TTYOUT /15, 16/
hPITE (TTYCUT, GC1)
FCRNAT ( \(1 \times\), 'ENTER THE FILENANE FOR INPUT (MUST BE AN CLD FILE)')
REAC (TTYIN.510) INFiNH
FCRMAY (13A1)
WRITE (TTYUUT,TOO) INFNM
FCRNAT \((1 X, 13 A 1)\)
hRITE (TTYOUT, oC2)
FCRNAT ( \(1 X\), 'ENTER THE FILENAME FOR OLTPUT (MLST BF A NEW FILE)')
REAC (TTYIN, 510) DUTFNH
WRITE (TTYOUT, TCU) OUTFNM
WRITE (TTYCUT,603)
FCRNAT (IX, 'FILENAME FUR FILTER OUTPLT, (MUST BE A NEh FILE)') REAC (TTYIN, 5'0) DUTZFN
WRITE (TTYCUT,700) OUT 2FW

FCRMAT (IX,IS)
IF (SIZE LEE MAXSIZ) GOTO 12
hRITE (TTYCUT, EL5) MAXSIZ
 GETO 1010
C
12
WRITE (TTYEUT, 625)
FCRMAT ( \(1 X\), 'ENTER THE NUMGER 'CF LCCKS ')
REAC (TTYIN, *) NUMLKS
WRITE (TTYOUT,720) NUMLKS
FCRNAT (1X,F10.3)
```

 ITE (TTYCUT,O3\:
 C

```

CALL SUBRQUTINE TO DO THE WORK
CALL EACSUB (INFNM, JUTFNM, DUT2FN, GUEUE, WINDDW, MSKWNC, FLTRS, \(\varepsilon\) DIST, IN, CUT, FLTHST, SIZE, FLTNUN, 只ECS, WNCSIZ, \& UUTSIZ, NUMLKS, THSHLD, NMIN, NMAX, EJURES, TTYOUT)
C
C
C
```

 FCRMAT (LX,'ENTER THE ECUIVALENT RESCLINTION ')
 KEAS (TTYIO, S) =CLRAS
 WRITE (TTYCUT,72O) EQURES
 WPITE (TTYCLT,020)
 FCRMAT (IX,'ENTER THE EDGE THRESHCLD VALLE ')
 REAO (TTYIV,%) THSHLD
 WRITE (TTYCUT,72O) THSHLU
    ```

```

 WRITE (TTYCUT,645)
 FCRNAT (IR,'SNTER THE MINIMUN NUMBER OF LICKS ')
 REAS (TTY:N,字) &MIN
 MRITE (TYYCUT,72O) NM:N
 WRITE (TTYCUT, 647)
 FCRMAT (IX, 'ENTER THE NAXINUM NUMEER OF LIEKS ')
 REAC (TTYIN,क) NMAX
 WRITE (TTYCUT,720) INMAX
 WRITE (TTYCUT, &49)
 FCRNAT (IX,'ENTER THE NUMBER GF FILTEQS ')
 REAC (TTYIN, %) FLTNUM
 hRITE (TTYCUT,710) FLTNUN
 WRITE (TTYOUT, 627)
 FCRNAT (IX, 'ENTER THE SILE CF THE FILTER WINDOW',
 ` /10X,'(THIS PARAMETER MUST BE OCL)')
 REAC (TTYIN, %) WINDSIZ
 WRITE (TTYCUT,710) WINLSI?
 IF (MCC(WNOSIZ,2) .NE & O) GOTC 20
 WNDSIZ = WNCSIL + 1
 WRITE (TTYOUT,G32) WNDSIZ
 FCRMAT (IX, 'THAT IS NOT AN ODO NUNBER. I WILL USE ',I2," INSTEAE')
 IF (:NNCSIZ &E. MXWSIZ) GOTO 13
 WRITE (TTYCLT,641) MXWSIZ
 FORMAT (IX,'# % E FRROR - - MAXIIMUM WINDCW SIZF = *IS)
 GCTO 10:0
 CUTSIZ = SIZE - WNDSIZ + I
 CALL SUARCUTINE TC DO THE WORK
 GOUTSIZ. NUMLKS. THSHLD, NMIN. NMAX, EJURES, TTYOUTD
 WRITE (TTYCUT.030)
 FCRNAT (IX,"#% % & L D CNE % % % %)
 WRITE (TTYCUT,640) OUTSIZ., RECS
 FCRMAT (IX,'THE OUTPUT INAGE IS ',I5,' HCRCS BY ',IS,' RECCRCS')
    ```

\section*{DRIGINAL PAGE is}


SUBROUTIAE EADSUS (INFAM, CUTFAM, OUT2FN, CLEUE, HINCCh, HSKWAC,
```

\&. FLT2S, ... CUT, ILTHST, SILE, rLTNUM, NSGS, nNLSIZ,
\& CUTSIL, KS, THSHIDD, NNIN, INNAX, EDURES, TTYOUTI
INTEUSR SIZE, RUTSIL, WN')SIZ
INTEGER IN:(SILE), UUT(UUTSIL), URD
INTEOER NSK3X3(3.3.4), SBAREA(3,3), YSKWNO(O,WNDSII,WNDSIL)
INTEGEF FLTNUN, FLT, ERRNUM
INTEGER FLTHST (FLTNUM)
IATEGER REC, HCRD, RECS, GREC, TMPQRG, START, IERQF POOR QUALITY
INTSGEN MSKNURI, I, J, K
REAL QUEUE(hNLSIL,SIZE), hINDCW(WNESIZ,WNUSIZ)
REAL FLTRS (FLTHUM, WNCSIZ, WNCSIL), DIST(WNOSIL,GNCSIZ)
REAL WNCPTS, 2, ZMEAN, VARZ, NUMLKS, THSHLD, XESTHT
REAL THRSMX, THRSMI, TTLTNN, TTLTSD, UELTAN, NNIN, NNAX
REAL. EGTHRS, NUMPTS, EGURES, TTLHMN, NMH!'TS
INTEGER*1 INFNM(19), OUTFNN(18), CUT2FN(18)
LCGICAL ERR, RNGERR
IATELER TTYOUT, INFC,OUTFC, CUTZFC

```
```

IMITIALILE THE 3*3 GRADIENT hINJCWS

```
CATA \((((M S K 3 \times 3(1, J, Y), I=1,3), J=1,3), K=1,4)\)
£ \(\quad 1,1,1,0,0,0,-1,-1,-1,0,-1,-1,1,0,-1,1,1,0\),
G \(\quad 1, C,-1,1, C,-1,1,0,-1,1,1, C, 1, C,-1, \cup,-1,-1 /\)

INITIALIZE ZNEAN宗ZMEAN/VARZ NIN ANC MAX AND TCTALS
```

THRSMI = 10C000
THRSMX = -100000
TTLTMN = 0.0
TTLTSC = 0.0
TTLHMN = 0.0
NMHPTS = 0.0

```
RNGERR \(=. F A L S E\).
ZERC HIST ARRAY
CC 5 FLT \(=1\), FLTAUM
    FLTHST(FLT) \(=0\)
CONTINUE
determine the number cf peints in image (assumed square)
AUMPTS = OUTSII \% OUTSI?
CALCulate the incremental number cf locks


DELTAN \(=\left(N^{N} \quad\right.\) MIN) / FL')AT(FLTAUN)

CFEN FILES ANE CHECX FJR ERRERS
CALL CPA ( INFC, INF, M, 'OLC', 'UNF', ERRNUM, ERR) IF (ERR) GUTG 1009

CALL CPN ( CLTFC, OUTFI,M, 'NEN', 'LNF', ERRNUA, ERRI IF (ERR:) GUTS 2JC9

CALL CPA ( CLTZFC, CUT2FN, 'TVEW', 'FCR', ZRRNJM, ERR) IF (ËRR) GUTC 3.JOg

FIRST, GENERATE THE EDGE TEMPLATES
CALL GNHSKS (MSKHNO, WNUSIZ)

KNDPTS \(=\) iNNCSIL \(\% ~ A N D S I Z\)

GENERATE THE FILTERS
CALL GENFLT (FLTRS, DIST, FLTNUN, WNCSIZ, DFLTAN, NUNLKS, WNCPTS, \& ECLRES, CUT2FC, TTYCUT)

INITIALILE THE CIRCULAR QUEJE

CC 40 REC \(=1\), WrIDSI 2
REAC (INFC, END=4009,ERR=4C09) (IN(IYRO), WRC=1,SIZE)
CC \(30 \quad\) KORD \(=1\), SIZE
QUEUE (REC, HORD) \(=\operatorname{IN}(\) WORC \()\) CONTINUE
CCNTINUE

BEGIN PRCCESSING
RECS \(=C\)
QREC \(=1\)
TMPCRC \(=\) QREC
DC 90 START \(=1\), OUTSIZ

GET THE LCCAL STATISTICS FOR THE AREA CEFINEC EY THE WINDCh AND FILL THE WINDOS ARRAY

CALL LCSTAT I QUEUE, WINCOW, TMPGRC, START, WNDSIL, WNCPTS,
\& SIZE, ZMEAN, VARZ, Z)

1F (VAR2. .NE. O.2) THEN
EGTHRS = ZMEAIN \(\% ~ Z M E A N / V A R 2\)
ELSE
```

CHECK TC SEE IF LOCAL NHMELR OF LOUKS IS OUT OF THE LSER QANGE

```
IF (LSTHRS •LT. (NNIN-.O1*NUNLKS) . OR. FGTHRS .GI.
\& (NMAX+.CLONUALKS) ) RAGERR = .TRUE.
UPDATE PUNAING SUMS FCR DETERMINING THRESHOLE
TTLTMN = TTLTNIN + ESTHRS/NUNPTS
TTLTSO = TTLTSO + EGTHRSEEGTHRS/NUNPTS
THRSNI = MIN (THRSMI, EGTHRS)
THRSMX \(=\) AAX (THRSIAX, EGTHRS)
DETERNINE IF AN EDGE EXISTS BASEC ON THE LCCAL
NUMEE? CF LOOKS
    IF (EGTHRS .LE. NUMLKS - THSHLD) GOTO 44
        TTLHNN \(=\) TTLHMN + EGTHRS
        NMHPTS \(=\) NMHPTS +1.0
    GCTO 60
```

we have an edge, so proceed hith the edGe filtering
GET THE 3\times3 SUBAREA LCCAL MEAN

```
    CALL SUBMSK (WINLCN, SBAREA, WNDSIZ)
FIND THE EDGE CRIENTATIDN ANC DETERMINE WHICH EDGE
terplate tc use in calculating our new local mean
    CALL FNCEDG (SBAREA, MSK3X3, MSKNUM)
CCMPUTE A NEW LCCAL MEAN AND VARIANCE USIAG THE APPRGPRIATE
TERPLATE
    CALL EGSTAT (WINDOW, MSKUND, WNDSIZ, MSKNUM,
    \& ZMEAN, VARZ, Z)
    IF (VARZ -NE. O.O) THEN
        EGTHRS = ZMEAN \(\because Z M E A N / V A R Z\)
    ELSE
        EGTHRS \(=\) NNAX
    ENC IF
    のロロロの

Calculate which filters to use．
```

FLT = INT((EGTHRS-NNIN) / CELTAN) + I
IF (FLT -LT. 1) FLT = 1
IF (FLT .GT. FLTNUM) FLT = FLTNUM
FLT = FLTNUN - FLT + I

```
```

UPCATE TIGGQAM
FLTHST (FLT) FLTHST (FLT) + 1
PERFCRN THE ECGE FILTERINC
CALL ECGFLT IWI.UDOW, FLTPS, USKWNC, WIDSIL, FLTN'MM,
\& FLT, ASKNUN, 2YEAN, VARZ, Z)
GCTC 63
THIS AREA IS HENÜGENECUS
CALCULATE WHICh FILTER TG USE
FLT = INT((EGTHRS-NNIN) / CELTAN) + 1
IF (FLT .LT. 1) FLT = 1
IF (FLT .GT. FLTNUA) FLT = FLTNUM
FLT = FLTNUN - FLT + I
UPCATE HISTQGZAN
FLTHST (FLT) = FLTHST (FLT) + 1
PERFCRN THE FILTERING
CALL FILTER ININDCW, FLTRS, WNCSIZ, FLTNUN, FLT,
\& LMEAN, VARZ, L)
XESTMT = ZMEAN
PLT THE FILTEREC VALUS IN THE CUTPUT SUFFER
IF (XESTNT .GT. 255.0) XESTMT = 255.0.
OUT(START) = INT (XESTMT)
CCNTINUE
WRITE THIS RECCRC AND UPDATE THE RECCRC COUNTER
WRITE (CUTFC) (OUT(WRD),WRC=1, CUTSIZ)
RECS = RECS + 1

```
REAS \(\triangle\) NEW RECCRD INTC THE DUEUE AND UPDATE THE FRCNT-END FCINTER
    REAU (INFC, ENU \(=200\), ERR \(=40 C 9\) ) (IN(WRC), WRD \(=1, S I 2 E)\)
        CC 110 WORD \(=1\),SILE
            CUEUE(QREC, NDRO) \(=1 N(W C R C)\)
        CCNTINUE
```

QREC = NCC (SREC, aNLS:Z) + 1

```
```

GCTC 50

```
```

WE'VE REACHED AN EIO-CF-FILS SC THE CUTOLT NUNBER CF
RECCZCS WILL QE UNUSIZ-1 LESS THAN THE NUSAEEK IHPUT
WRAF IT ALL US ANO CLIT

```


CALL UCLCSE (IIIFC)
(ALL UCi.OSE (CUTFC)
```

WRITE (TTYCUT,635) THRSNI, THRSMX,TTLTMN,, TTLTSD-TTLT'KN穴TTLTYF
FCKNAT (IX,'\muINIAUM NUMBER CF LCOKS = , FG.3.
\&. /IX,'MAXIMUM NUMEER CF LCOKS = ,FG.3,
\varepsilon /1X,'MEAN NUMBER CF LCOKS = ,FF9.3,
\& /1X, STANDARD DEVIATICN GF NUNBER CF LCJKS = ',F9.3)

```
635
WRITE (TTYCUT, O 37 ) TTLHMN/NMHPTS
FCRNAT (1X, \({ }^{\text {HCLHOGENEOUS AREA MEAN }=\text { * F9.3) }}\)
WRITE (TTYOUT, 033 ) NMHPTS\% \(100.0 /\) NUNPTS
C
FCRMAT (IX,FG.3,' PERCENT CF THE IMAGE WAS HCMLGEVECLS')
IF (RNGERR) WRITE (TTYOUT, G45)
    645
FCRMAT (IX, ' \(\%\);
\(\mathcal{E} / 5 \%\), ' OF LCOKS WHICH ' \('\) ERF OLTSIDE THE USER SPECIFIEC RAAGE.'
C
C
C
    650
        WRITE (CUT2FC, 650)

\&. \(5 X,{ }^{\prime}\) ' USAGE')
C
CC 150 FLT \(=1, F L T A U M\)
    hRITE (OUT2FC, 700) FLT,FLCAT(FLTHST(FLT)) क1CO.C/NUNPTS
    FORMAT \((1 X, 13,6 X, F 6.3)\)
CCNTINLE

GCTC 1010
```

CCTC 1010

```

ICOS CALL FILERR (TTYOUT, INFHM, ERPNUN)
GCTC 1010
C
2CCG CALL FILERR (TTYOUT, GUTFNM, ERQNUN)
GCTC 1C1
C
\({ }^{1}\)
CALL FILE?R (TYYJUT, IUUTZFN, ERRNUN)
GOTC 1010
C
4OCG WRITE (TTYCUT,O6.))


ICIC RETURN
ELCF..

\section*{ORIGINAL PAGE IS OS ROOR QUALITY}

LNIVERSITY CF KASAAS TKLECCMNLNICATICNS AND IAFCRNATICN SCIENGFS LAE PRZCKA: JLITE: NC:SS FILTERS REF. 4 :
PRCGRAM NGME:ZUSFLT AUTHCR:J. SCCTT ARONER OATE:C2/14/92

PLRFCSE: THIS SUBROUT:NE CDNPLTES THE LLCAI TATISTICJ FCR
A h INDCh AFTER AFPLY:'U A FILTER AHICH MLST
PREVICUSLY HAVE JESN NGISNALIZCE.

PARAMETER OEFIVITION
\begin{tabular}{|c|c|c|c|c|}
\hline AAME & & & 1 RANGE & 1 CESCRIPTIJN \\
\hline hIt.CCH & \(\ R\) & IR & 1 & ILCCAL AREA hImDCh \\
\hline FLTRS & IR & \R & 1 & \FILTERS ARRAY \\
\hline MSKLIIE & \I & lis & 1 & \ESGE TENPLATES \\
\hline WNDSI? & 11 & \(\backslash \mathrm{R}\) & 1 & \STLC OF WINCOW \\
\hline NLNFLT & \1 & In & 1 & \AUMスE? OF FILTERS \\
\hline FLT & 11 & 1品 & 1 & \NUNISE DF FILTEQ TC USE \\
\hline NSKNJM & \1 & 1rim & 1 & \AJMZER OF MASK TC USE \\
\hline ZNEA:! & If. & 1.6 & 1 & ILCCAL MEAN \\
\hline \(V A R Z\) & IR & 1 l & 1 & \L?CAL VAR!ANCF \\
\hline 2 & 19 & \ir & 1 & IVALUE CF CENTER FIXEL \\
\hline & \[
\
\] & \[
1
\] & \[
1
\] & \[
1
\] \\
\hline & 1 & 1 & 1 & \[
1
\] \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & \[
1
\] \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
```

NON-LUCAL VAPIAELES

```
\begin{tabular}{|c|c|c|c|}
\hline 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

NAME
SUYROUTIIEES RECUIREC
1 DESCPIPTICN
1
1
1
1
SUQRJUTIT, ECCFLT (WINCOW, FLTRS, MSKwa!D, WNOSIZ,
\(\varepsilon\) NLNFLT, FLT, MSKNUH, ZMEAN, VARZ, 21
INTESER WNCSIZ, FLT, REC, HCRE, NUNFLT
INTEGER :HSKWN) (Q, WINDSIZ, WNCSIZ), MSKNUM, FLTNCX
REAL FLTRS(NUNFLT, WINDSIZ, WN.CSIT)
REAL WINDCW(1,I:DSIZ, WNESIZ)
REAL ZMEAN, VARZ, \(Z\), TCTALN, TCTALV, FLTVAL
        TCTALN \(=0.0\)
        TCTALV = ?.C
    DC 20 RES \(=1, \ldots, 031:\)
    \(\operatorname{CC} 10\) hZR? = \(1, \operatorname{HCS} 12\)
        IF(NSKLNO(NSKNUA, \(2=C\), WORC). CO. O) THEN
        FLTI.CK = MUNFLT - FLT + 1
        DRGINAL
DAG ROOR QUGE IS
QUALITY.
        ELS
        FLTH,CX \(=\) FLT
        Enc if
        FLTVAL = WINOGH(?EL,WCRO) \% FLTRS (FLTA)X,REC, ADRC)
        TCTALN \(=\) TCTGLA + FLTVAL
        TCTALV = TCTALV + FLTVAL \% PLTVAL
    CCNTILUE
    CCITINLE
ZMEAS = TUTALM
VARZ \(=\) TCTALV - ZAEAN*ZMEAN
RETJRN
ENC

```

PRCGRAM SLITE : NCISL FILTERS SCF. 4 :
FRCGRAM NAME:SICFLT AHTHC?:J. SCCTT G\KDNSR CATE:CG/17/93

```
PLRFCSE : THIS RCUTINE PERFGRNS LEE'S SIGYA FILTiR.
                    PARANETEF OEFINITICN
MAME I TYPE I CLASSI RANGE \(\mid\) CESCRIPTIEA
 NON-LOCAL VARIAELES
\begin{tabular}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular}


FRCGRAN SIGFLT

INTEGER MAXSIZ, MXWSIZ, CUFQIJE

BLFSUE \(=\) NAXSILE * AXININCCNSTLF
PARAMFTER ( \(\quad\) a AXSIL=512)
PARAMETER (NXWSIL=15)

```

 INTECER RECS
    ```

```

REAL CLごリE(ELrcijT)
PSAL NI見LK'S.K
INTEGEス%: INF.\&M(1;), OLTFNH(15)
INTECER YTYIN,TTYLUT,INFC,CUTFC

```

```

DATA TTYIN, TTYOUJT/15, 16/
WRITE (TTVCLT,SCL)
FCRNAT (IX,'ENTER THE FILENAVE FOR INPUT (HLST RE AN CLC FILE)')
REAC (TTYIN.5:0) lNFNM
FCRNAT (13A1)
W२ITE (TTYOUT,70J) INFNN
FCKNLT (13A1)
VRITE (TTYCUT,0C2)
FCRNAT (IX,'LNTER THE FILENANE FOR CLTPUT ('LLST BE A NEN FILE)')
REAS (TTYIN,510) OUTFNM
HRITE (TTYCUT,7CO) CUTFINM
WRITE (TTYCUT, \&10)
FCRNAT (IX, 'ENTER THE SIZE CF THE INPUT IAAGE ')
REAL (TTYIIN,%) SILE
WPITE (TTYOUT,T1G) SILE
710 FCRNAT (1X,15)
IF (SIZE -LE. IAXSIZ) GCTO 12
hRITE (TTYCUT, 615) MAXSIL
FCRMAT (LX,*% % ER R O R - THE VAXIイLN SIZE = , 15)
GOTO 1010
WRITE (TTYOUT.625)
FCRNAT (IX*'ENTER THE NUIMBER OF LCCKS ')
REAC (TTYIN,%) NUMLKS
WRITE (TTYCUT,720) NUMLKS
FCRNAT (1X,F10.3)
WRITE (TTYCUT,623)
S28 FCRNAT (IX, 'ENTER THE SIG:MA THRESHCLD ')
REAC (TTYIN,%) K
WRITE (TTYCUY,720) K
WRITE (TTYCLT,S27)
FCRMAT (IX, 'ENTER THE SIZE OF THE FILTER IIINCJW',
\& /LOX,'(THIS PAKAIAETER MUST 3E DDC)')
REAC (TTYIN, *) WNCSIL
ARITE (TTYCUT,710) WNCSI%

```
```

 IF (.uこ(n)LSI2,2) .NL. C) GOI? 20
 WHOSSIL = NCSI! + 1
 WRITE (TIYCLT,O32) h\OSIL
 FCKNAT (1X,'IFAT IS NCT AN CDD NUNBER. I AILL USE ',I2,' INSTFAC')
 IF (nNOSI? .LS. 4x:1Sil) GOTC 13
 hEITE (ITYCLT,641) 4X,.SIi
 FCQRAT (IY,'% % F R C R - - MAYIMし" NINCS& SI2E = ',15)
 GCTC 1010
 C
 l3
 CALL SUBPCUTIAE TO DO THE WIRK
CALL SIGSUẼ IINF,H, OUTFINM, GUELE, IN, OLT,
\& SILE, RECS, NINSIL, CUTSIZ, NUMLKS, K, TTYCUT)
C
WRITE (TTYOUT,D3O)
6 3 0
FCRMAT (1X,'% % \& L L C C NE % % %')
WRITE (ITYCUT,64)) JUTSIL, RECS
FCRNAT (1X,'THL OUTPUT IMAGE IS ',I5,' WCRCS BY ',15,' RECCPES')
GCTC 1010
C
c
1C1C STC?
ENC
EOF..

```
?

```

 M EML L*RL!*(G), F:(t), L`WER, UPOE', L!!K, UP?
 RELL VALUE, SUS, TUTALN, CENTER, USFCYT
 INTEGES*! INF:N(1:1, SUTFAM(!d)
 LCCICAL ERN
 INTESEK TIYSUT, IMFC, OUTFC
 INITISLIZ UPPER AVZ LJWER IINIT ARRAYS
DATA L\&2LIN /.025,.121,.207..273..367,.%c/
CATA UPRLIM 13.59.2.725,2.408.2.191.1.945,1.7C41
THE FCLLCMING JATA STATFHSNTS ANE FOR A GAL.SSIAN
ASSLNPTICN
CLTA L!%2LIM/C.0.0.0,C.0.0.0,.18..37/
CLTA UPRLI4 /3.C.2.41,2.15,2.C.1.82,1.63/
INDSA = NLMLKS + 0.5
IF (ITCEX .GT. 4) THEN
F (JHEEX .LE. B) THEN
vofx}=
ELSE
1+05x = 0
ENC IF
EAO IF
LCWER = LWFI.1N (INODEX)
UPPER = UPRLIF (INLEX)
LSRCNT = O.C
CFEN FILES ANC CHECK FUR ERRCRS
CALL CPN (INFC, INFI,M, ''ILC', 'UNF', ERRNLM, ERR)
1F (ERI:) GOTE luCG
CALL CPN (CUTFC, OUTFNM, 'NEW', 'LNF', ERRNUM, ERR)
IF (ERR) GOTC 2009
INITI\DeltaLILE THE CIRGULAR GUEUE
LC . 40 REC=1, wNOSIL
REAC (INFC,ERK=4009) (IN(WRD),WRO=1,SI)E)
CC 3C hCRC=1,SIZE
QUEUE(REC,VCRD) = 1N(NCRU)
CONTINUE
CCNTINUE

```
2.EGI: FRCCESSHG
```

CC GO ST:RT=1,OUTSI:

```
```

TCTALN = C.O
SLEPTS = O.2
MICLRD=START+|VNS ILI:
CEATER = QLEUE (MICREC,MIDLRD)
LhR = LCWER % CEMTER
UPR = UPPER % CFHTER

```
\(C C\) BO \(\quad h R E C=1\), WNOSS12
    CC 70 GHCPPC \(=\) START,START + WNCSIL-I
    VALUE = CUEUE (TAPCRC, GWCRD)
    IF (VALUE.GE.L!R .ANiU. VALLE.LE.LPR) I
        TETALN = TCTALA + VALUE
        SUBPTS = SL:SPTS + 1
        End IF
        continue
TMPGRC \(=\) MOL (TMPQRC, MARDSIZ) +1
CCNTIALE
```

IF (SUEPTS .LE. K) THEN
TOTALM = CENTER + QUEUE (NIDREC,MIDGRC+I)
NXTGRC = MCO (MICREC,WNOSIZ) + I
TCTALV = TCTALM + GUEUE(NXTGRC,FIICHRD) + GUEJE(FXTGRC,MIDLRC+1)
XESTMT = TOTALM / 4.0
USSCNT = USECHT + 1.0
ELSE
XESTNT = TCTALM / SUBPTS
ENC IF

```
plt the filterec value in the cutput buffer
```

IF (XESTNT .GT. 255.0) XESTMT = 255.0

```
CUT(START) \(=\) INT (XESTMT)
cofitinue

WRITE THIS RECORD AND LPDATF THE RECCRC CCLNTER
WRITE (CUTFC) (CUT(KRO), WRC=1, OUTSII)
CCN'T BCTHE? TC CHECK FSF A WRITE ERRCR
```

 ROLS=:&LS+!
    ```


```

 CC 10O n\anglePC=1,S::E
 GLEJE(GO(C,HFPQ)=1:(.,7FD)
 CCNTINLE
 GRLC = KCC (CREC, NNOSIZ) + 1
 HIUREC = NLCC (%IDREC, HNCSIZ) + 1
 GCTC 5!
 WE*VE REACHED AN END-CF-FILE SC THE CUTPLT NLNJEA CF
 RECCRCS :ILL QE INOSIZ-I LESS THAN THE NUU'ABZK INPLT
 HRAF IT LLL UP A!ID OUIT
 CALL UCLCSE (INFC)
 CALL UCLDSE (CUTFC)
 WRITE (TTYCUT, 65?) 100.0 % USECNT / EL`AT(SUTSIZAOUTSIZ)
 FCRMAT (/5X,'THE SIGUA THRESHCLO NAS APFLIEJ TO ,FG.2.
 & /IX,'PERCENT OF THE INACE')
 CCTC 101C
 CALL. FILERR (TTYOUT, INFNN, ERPNUN)
 GCTC 1010
 ZCC9 CALL FILERR (TTYOUT, OUTFNM, ERRNUN)
GCTC 1C10
RN
ENC

```
\(C\)
\(C\)
6
6
6
1
5
5
E

UNIVENSITY CF KANSAS TFLFCCMNLNICATICAS AND INFCANATICA SCIENCES LAE PRCGRAM SL!TE: NCISE FIL:ERS REF. 4 :

FRCCRAN NAME:GNNSKS AUTHCR:J. SCCTT GARDNER CATE:C2/13/93
C
PLRPCSE: THIS IS A SU3RCUTIAE TC GENERATE THE ECGE TEMPLATSS FC? AN ADAPTIVE EDGE FILTER.

PARAMETER DEFINITICN
AAME
MSK 3 X
MSKhND
WADSIZ

\section*{I TYPE}
\I \W I
II
\begin{tabular}{ll}
\(1 W\) & \(\vdots\) \\
IW \\
IR & \(\vdots\)
\end{tabular}

\section*{Driginal page is DE POOR QUALITY}
```

START = I
CC 2OO LINE=1,W:OS12
CC 19C CLM=1,NNOS12

```

\section*{RETURN}

END

\section*{CONTINJE}

CCNTINUE

IF(CLH •LT. hySI2/2+1) GCTC IC
MSKWNC(1,LISE,CLN) \(=1\)
GCTC 15
MSKiHAC(1,L LivE, CLY) \(=0\)
IF (CLM -LE. WNOSIL/2+1) GCTE 20 MSKWNC(5,LINE,CLM) \(=0\)
GCTC 25
NSKVNC(5,LINE, CLN) \(=1\)
IF (CLM .GE. START) GOTC 30 MSKWNO (2,LINE,CL. 1\()=0\) GCTC 35
MSKWNC(2,LINE, CLK) \(=1\)
IF (CLM.GT. START) GOTO 40 MSKhND(6,LINE, CLM) \(=1\) GCTC 45
MSKWNC( 6, LINE, CLM) \(=0\)
IF (LINE . LF. WNDSIZ/2+1) GOTC 50 MSKWND(3.LINE, CL.4) \(=0\) GCTC 55
NSKKNC(3,LIINE,CLM) \(=1\)
IF (LINE -LE. WNOSIZ/2) GOTO 6C MSKWND(7,LINE, CLM) \(=1\) GCTC 65
NSKWNC(7,LINE,CLM) \(=0\)
IF (CLM •LE. WNOSIZ-START+1) GCTC 70 MSKWAC(4,LINE,CLM) \(=0\) GCTC 75
MSKUNC(4,LINE, CLM) \(=1\)
IF (CLM -LE. WNCSIZ-START) GOTC 80
MSKWNC(9,LINE,CLM) \(=1\)
GCTO 19 C
NSKhNC( \(\alpha\), LINE, CLM) \(=0\)

START \(=\) START +1

EOF..
?

```

T ICTALV = C.C
C
CC 2C WREC=1,MNOSIZ
hWCRD = i
CC 10 GNCRD=START, START +WNDSIZ-1
TCTALN = TCTALM + (ZUELE(TNPORC,ChCRC)
TCTALV = TCTALV + QUEUE(TMP()RC,GWCRC)斿?
HINCCW(NREC,WWCRO) = CUEUE(TMPGRC,GWCLZE)
WWCRC = WHCRC + 1
ccatinue
ORIGINAL PAGE IS
1 0
C
C
C
TNPGRC = MCC (TMPORR, WNDSIZ) + 1
CCNTINUE
C
C
ZMEAN = TOTALN / VINOPTS
VARZ = TOTALV / WNOPTS - ZNEAN%LMEAN
C
C
FINC THE CENTER PIXEL
L WINCCW(WNCSIZ/2+1, WNi)SIZ/2+1)
c
RETURN
END
ECF..
?

```

\section*{DRIGINAL PAGE IS OF POOR QUALITY}

\section*{UAIVERSITY OF KANSAS REXOTE SENSING LAE}

\section*{PARAMETER DEFINITICN}

-

FPCCRAH SLITE: NCISE FILTERS REF. H:
PRCCRAM NAMF:SUBNSK AUTHCR:J. SCCTT GARDNCK DATE:C2/13/33

PURFCSE: THIS IS A SUSRUUTINE TC GENERATE A \(3 \times 3\) HINCCh CF LCGAL HEANS FRGM A WINLC: LF CATA PCINTS.


NON-LOCAL VARIABLES

SANE
SUBRUUTINES REGUIRED
DESCRIPTICN
SUERDUTINE SUBNSK (WINCOW, SBAREA, wNCSIZ)
INTEGER WHESIZ, SBISIZ, OVRLAP, SEAREA(3, 3)
INTEGER STARTR, SIARTW. MREC, NWORC, KEC, MCSE
REAL WINCCh(W:NESIZ,WINDSIZ)
REAL NLMPTS, TOTAL

C
\[
\begin{aligned}
& \text { CVRLAP }=\text { VCC }(W N U S I Z, 3) \\
& \text { SBhSIZ }=\text { WNCSILIS }+ \text { OVRLAP }
\end{aligned}
\]

C
\[
\text { NLAPTS }=\operatorname{SishSIL} ; \text { SEirSIL }
\]
\[
\text { STAFTR }=1
\]
\[
\text { STARTW }=1
\]

C
\[
\text { CC } 40 \quad M R E C=1.3
\]
\[
\text { TCTAL }=0.0
\]
\(D C \geq C\) REC \(=\) STARTR, STARTR + SBWSIL-1
                    TCTAL = TCTAL + IVINCON(REC,WCRD)
    10 CCNTINUE
    20
                CENTINLE
    C
                STAPTW = STARTH + SBWSIZ - CVRLAF

3 C CCNTINUE
\[
\text { STARTH }=1
\]
\[
\text { STARTR }=\text { STARTR }+ \text { SBWSIZ - CVRLAP }
\]
CCNTINUE
\(T \quad \begin{aligned} & C \\ & C\end{aligned}\)

T ECF..
END
?

\section*{OF POOR QUALITY}

        MAXVAL \(=-1 C C C O\)
```

CC 5O NSKNCX = 1.4

```
CC 5O NSKNCX = 1.4
SLM = 0
        CC 2C RCh = 1.3
            DC 10 S,LA= 1,3
                SUN = SUM + SSAREA(RCW,CLM) % NK3X3(RTh,CLM,MSKNCY)
                ccntINUE
    CCNTINUE
    IF (AES(SUN) .LT. MAXVAL) GOTC 5C
        MAZVVAL = ABS(S:N4)
        MSKNLN = NSKNDX
CCNTINUE
IF (MSKNUM .NE. 1) GDTC 6C
        THRSHL = SBAREA(2,3) - CENTER
        THRSHZ = SGAREA(2,1) - CENTER
        GOTO 90
    C
    60
    F (NSKNUM .NE. 2) GOTC 7C
        THRSHI = SBAREA(1.3) - CENTER
        THRSH2 - SEAREA(3,1) - CENTER
        GOTC 90
    70 IF (MSKNUM .NE. 3) GOTC 80
        THRSH1 = SBAREA(1,2) - CENTER
        THRSH2 = SISAREA(3,2) - CENTER
        GCTC GO
    C
8C THRSH1 = SEAREA(1,1) - CENTER
    THRSH2 = SBARSA(3.3) - CENTER
    C
        C
9C IF (ABS(THRSHI) .GT. ABS(THRSHZ)) MSKNUM = NSKNUM + 4
C
            RETURN
            ENC
EDF..
?
```

LNIVERSITY CF KANSAS TELECCHMLVICATIONS AND INFERNATICN SCIESCES LAE

PROCRAM SLITE: I.CISE FILTERS REF. $\%$:
PRCCRAM NAME:EGSTAT
AlHTHC?:J. SCCTT GARDNER DATE:C2/14/03

C PURPOSE : THIS SUZRIUTINE CCMPUTES THE LOCAL STATISTICS FCR
C A ECGE WINOCW AFTER ADPLYITG A MASK WHICH MUST
C PREVICUSLY HAVE BEEN: NURNALILED.
C
C
C
c

PARAMETER DEFINITICA

AANE			1	1 DCSCRIPTICN		
WINCCW	VR	IR	1	\LDCAL	AREA hIND	
MSKhNC	IR	1R	1	\EDGS T	EMPLATES	
WNCSIZ	11	IR	1	\SIZE '	F WINCOW	
MSKNUM	\I	12	1	\NUNBEP.	CF M, ASK	TC USE
ZMEAN	IR	IW	1	\LICCAL	MEA	
VARZ	IR	$1: 1$	1	\LOCAL	VARIANCE	
Z	IR	IW	1	ivalue	CF CENTER	FIXEL
	1	1	1	1		
	1	,	1	1		
	1	1	1	1		
	1	1	1	1		
	1	1	1	1		
	1	1	1	1		
	1	1	1	1		
	1	1	1	1	.	

 NON-LCCAL VARIABLES


```
C
CC 20 REC = 1,WソOSIL
    CC 10 hQRL = 1,1/NCSIL
        FLTVAL = WINOCW(REC,WDRD) % FLDAT(NSKHN') (MSKNUA,REC,HCRC))
        TCTALN = TCTALM + FLTVAL
        TCTALV = TCTALV + FLTVAL. * FLTVAL
        CONTINUE
        CCIVTINLE
        ZNEAN = TOTALN / SUBPTS
        VARZ = TCTALV / SUBPTS - ZMEAN%LNEAN
            RETURA
            END
EGF..
?
```


ORIGINAL PAGE IS
 OF POOR QUALITY

PRCGiAM NANE:CENFLT AUTHCJ:J. SCOTT GMPCNER DATE:3/23/E3

PLRPCSE : THIS SUPROUTINE GENERATES THE
FILTERS FOR THE WEINER FILTER.

PARAMETER DEFINITION

NANE		\ CLASSI RANGE		1 DFSCRIPTIDN	
FLTRS	IR	\R/W	1	IFILTERS ARRAY	
DIST	\R	\K/W	1	\OISTANCE ARRAY	
FLTNUN	11	$\backslash \mathrm{R}$	1	\NUMSER CF FILTERS	
HNOSIZ	\1	\R	1	\SILE OF THE FILTER	WINCCh
DELTAA	IR	$\backslash R$	1	\INCREYENTAL NIJMRER.	CF LCCKS
NUMLKS	\R	$\backslash R$	1	\AUMREQ CF LCCKS	
WNCPTS	IR	IR	1	\AUKBE? QF PTS IN W!	NCOK
ECURES	IR	IR	1	\ECUIVILEAT NUMBER C	F LCCKS
OUTZFC	\I	IR	1	\FILTER OUTPUT FILEL	CCE
TTYCUT	\I	\R	1	ITERIAINAL JUTPUT FIL	ECCCE
	1	1	1	1	
	1	1	1	1	
	1	1	1	1	
	1	1	1	1	
	1	1	1	1	
	1	1	1	1	

FLTRS	\R	\R/W	1	\FILTERS ARRAY
DIST	\R	\K/W	1	\OISTANCE ARRAY
FLTAUN	11	\R	1	INUMSER CF FILTERS
WNOSIZ	11	$\backslash R$	1	ISIZE OF THE FILTER WINCOM
DELTAA	\R	IR	1	VINCREYENTAL NIMRER CF LCCKS
NUMLKS	IR	$\backslash R$	1	\AUMRES CF LCCKS
WNCPTS	IR	IR	1	\AUHBE? OF PTS IN W!NCOK
ECURES	\R	1R	1	\ECUIVILENT NUMBER CF LCCKS
OUTZFC	\I	IR	1	\FILTER OUTPUT FILECLCE
TTYCUT	\I	\R	1	ITFRIAINAL JUTPUT FILECCCE
	1	1	1	1
	1	1	1	1
	1	1	1	1
	1	1	1	1
	1	1	1	1
	1	1	1	1

DIST IR IK/N I IOISTANCE ARRAY
FLTAUR \I \R I INUMSER CF FILTERS
HNCSIZ II I I ISIZE OF THE FILTER WINCGM
DELTAA IR I I IINCREYENTAL NIINRER CF LCCKS
NUMLKS IP IR \ INUNREQ CF LCCKS
WNCPTS IR IR I INUKBE? QF PTS IN KINCOK
ECURES IR IK \ IRCUIVALENT NUMBER CF LCCKS
OUTZFC II IR I IFILTER OUTPUT FILELECE
TTYCUT II IR I ITERIAINAL JUTPUT FILECCCE

```
LNIVERSITY OF KANSAS TELECCMNLNICATICNS ANO INFCDNATILN SCIENGSS LAZ
```

LNIVERSITY OF KANSAS TELECCMNLNICATICNS ANO INFCDNATILN SCIENGSS LAZ

FRCCRAM SLITE: NCISE FILTERS REF. ":

```
FRCCRAM SLITE: NCISE FILTERS REF. ":
```


NON-LOCAL VARIABLES

SUBROUTINES RECUIREC
AANE 1
DESCRIPTICN

1
1
1
1
1
1
SLEROLTIAE GENFLT IFLTRS, DIST, FLTNUM, hNCSIZ, DELTAN, NUNLKS, ε WNDPTS, EQURES. OUTRFC, TTYOUT)
INTEGER FLTNUM, WNOSIZ, MIC, RGW, CLM, FLT
INTEGER OUTZFC, TTYOUT

C
RFAL DFLTAN, FLTRS (FLTNUN, hNDSIZ, WNNSIZ)
REA! XCIFF2, YCIFF2, ALPHA, SUN, ECURES
REAL DIST (hNOSIL, hNDSIL), WNCPTS, TEMP
c
c

```
FIRST, FINC tHE MIOPCINT AND FILL THE CISTANCE ARRAY
    MID = viscil2/2+1
        DC 20 2CH= = , WNOSI2
        YOIFF2 = FLCAT ((RCW-AID) क (RCW-NIC))
        CC 10 CL:M = 1,WNDSIT.
            XCIFF2 = FLCST ((CLN-MID) * (CLN-NID))
        DIST(RUN,CLN) = SCRT(XOIFF2 + YDIFF2)
        CCNTINUE
            ccotinle
CALCULATE filters 2 thrcugh numFilts - 1
    DC 90
        FLT=2,FLTNUMM-1
CALCULATE ALPHA BASED ON THF REIATICNSHIP THAT
ALPHA = 2 / W WHERE W IS THE EQUIVALENT RESOLUTIJN FCR A 5X5
BCX FILTER.
GUANTIZING ALPHA GIVES ALPHA = K % INDEX WHEOE K IS
A CCNSTANT EVALUATEC FOR THE CASE WHERE ALPHA=.5 WHEN N=NLMLKS
THIS YIELES K = (2/W) : OELTAN / NLMLKS
    ALPHA = (2.C/EQURES) क DELTAN % FLCAT(FLT) / NUNLKS
NEXt CALCulats the value cF each elenent df this filter
    SULA = 0.0
    DC SO RCH = 1,WI!DSIZ
        CC 50 CLM = 1, WIDSIZ
        TEVP = EXP (-ALPHA % DIST(RON,CLN))
        SUM = SUM + TEMP
        FLTRS(FLT,RCU,CLM) = TEMP
    continue
        CCNTINUE
    Normalize the filter
        DC 80 RCW = 1,WINDSIZ
            0O 70 CLM = 1,WNDSIZ
            FLTRS(FLT,ROW,CLM) = FLTTRS(FLT,RCW,CLH) / SUM
        continue
        CCNTINLE
        ccntinue
calculate the first and last filters
```

```
            CC 110 ROC = 1,NDDSI2
                CG 1OO CLF= 1,NNUSI?
```


100

c
c
c
c
c
600
PRINT CUT THE FILTERS
CC 13 C FLT $=1$, FLTAUM
hFITE (CUT2FC, GOO) FLT
FCRMAT $(/, 1,1,10 X, ' T H I S$ IS FILTER $\#$ ', 13, /)
CC $12 \mathrm{C} \quad \mathrm{BCW}=1, \mathrm{WNDSIL}$
WRITE (CUT2FC,601) (FLTRS(FLT,RJW,CLY), CLN=1, hNOSI2)
FCF.MAT (1X,31(F9.6.2X))
CCNTINUE
centitive
RETURN
END
EGF..
?

DRIGINAL PAGE IS

DE POOR QUALITY

LNIVERSITY CF KANSAS TELECCMHLNICATICNS AN: INFCQMATICA SCIEICGS LAE
PRCCRAM SLITE : NCISE FILTERS REF, I
PRCGRAM NAFE:FILISR AUTHC?:J. SCCTT GARDNSR CATE:C2/14/83
PURPCSE : THIS SUQRDUTINE COMPUTES THE L.CCAL STATISTICS FCK
A HINOO'G AFTER APPLYING A FILTER WHICH MLST
PREVIOUSLY HAJE BEEN NORFALIZED.
PARAMETER DEFINITICN

NON-LOCAL VARIAELES

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

SUSROUTINES REQUIRED

1 DESCRIPTICN
1
1
1
1
SUEROUTINE FILTER (WINCOW, FLTRS, WNDSIZ,
ε NUMFLT, FLT, ZMEAN, VARZ, 2)
INTEGER WHCSIZ, FLT, REC, WCRD, NUNFLT
REAL FLTRS (NUMFLT, WINDS (\angle - SNOSIZ)
REAL WINOCW(WNDSIZ, पस: S12)
REAL ZNEAN, VARL, Z, TUTALM, TCTALV, FLTVAL

```
TCTALV = 0.C
```

```
CE 2C REC=1,WNOSIZ
        CC IC hDRC = 1, HNCSIZ
            FLTVAL = hINCOW(REC,WC\hat{N) % FLTRS (FLT, REC,ICRO)}
            TCTALN = TCTALA + FLTVAL
            TCTALV = TOTALV + FLTVAL % FLTVAL
        CCNTINUE
    CCNTINUE
ZNEAT: = TCTALN
VARZ = TJTALV - ZMEANHZHFAN
```

C
RETURN
EAD
ECF..
?

APPENDIX B

Maximum Likelihood Classification of Synthetic Aperture Radar Imagery

```
[Paper for Computer Vision, Graphics, and Image Processing]
                    Maximum Likelihood Classification of
                            Synthetic Aperture Radar Imagery
                            V.S. Frost, L.S. Yurovsky
Telecommunications and Information Sciences Laboratory
    University of Kansas Center for Research, Inc.
            Lawrence, Kansas 66045
```


Abstract

Classification of synthetic aperture radar (SAR) images has important applications in geology, agriculture and the military. A statistical model for SAR images is reviewed and a naximum likelihood classification algorithm developed for the classification of agricultural fields based on the model. It is first assumed that the target feature information is known a priori. The performance of the algorithm is then evaluated in terms of the probability of incorrect classification. A technique is also presented to extract the needed feature information from a SAR image; then buth the feature extraction and the maximum likelihood classification alqorithms are tested on a SEASAT-A SAR image.

\qquad , Revised \qquad -

This work was supported by NASA Headquarters Grant No. NAGW-381.

1.0 Introduction

Synthetic Aperture Radar (SAR) imaging systems have been used to obtain images of the Farth's surface. This paper deals with the problem of automatic classification of SAR imagery.

According to the definition in [1], classification of an object in the image is the decision regarding the category to which the object belongs. For example, if the image is of an agricultural area containing a number of fields and there are three categories, or classes of fields, such as corn, wheat, and soybeans, classification is the process of assigning a category to each field.

Each object (target) class is characterized by a unique set of measurable properties, or features. The classification is done by assigning the target to a class based on how closely the observed set of target features matches the set of features for that particular class. The assignment of an object to one of several classes can be done on the basis of a maximum likelihood criteria, that is, a classification decision is made such that the probability of incorrect classification is minimized. The problem of maximum likelihood classification has been presented in general form in [9], and solved for the specific case where the observed feature vector is distributed is multivariate normal random variable. In our case (SAR images), the classification is based on one observed feature, gray level, which is not normally distributed. The major problem with processing SAR images is that coherent nature of the microwave illumination gives rise to a phenomenon called speckle. Speckle noise seriously degrades the quality of an image [12]. It, is signaldependent. Because of the dependency of the noise on the signal, processing techniques designed for additive Gaussian noise fail. Thus other statistical models are needed, and one which has been successfully used in the past $[15,16,20]$ will be introduced in the next section.

As has been mentioned above, a target in a SAR image can be described by a single feature - gray level mean. This is especially true for agricultural targets, where textural features do not offer much discrimination. Here, a maximum likelihood classifier based on gray level mean is designed. This classifier assigns every pixel of an image to one of several target classes. It is originally assumed that the gray level means are known a priori for all target classes. A method is then presented to estimate those values automatically. To evaluate the performance of the classifier, the

probability of classification error is derived, and the classifier performance is tested using radar image simulation and SFASAT-A SAR images.

2.0 Statistical Model for Intensities of Pixels in Synthetic Aperture Radar Images
 It has been confirmed [16] that heuristic image processing techniques, such as qradient edge detection algorithms do not work well for SAR imaqes.

 Thus a statistical model is needed, one which would incorporate the physics of the SAR imaqe formation process. This model is the basis for image processing techniques developed later.The main ch racteristic of SAR images is that the noise variance $\sim_{x}{ }^{2}$ of the pixel intensity x is proportional to $\mu_{x}{ }^{2}$, the square of the mean of this pixel. The true intensity μ_{x} is proportional to power return from the pixel n the absence of noise. The ramifications of proportionality of mean and variance is that targets with higher intensity have higher noise variance, and one can conclude that the noise power is the function of the signal power. This precludes the use of an additive white Gaussian noise (AWGN) model, where siqnal power and noise power are assumed to be independent.

Synthetic aperture radar images belong to the cateqory of speckled images. The statistical characteristics of speckle noise have been developed in [13] and applied to synthetic aperture radar in [14,15]. The complete noise model was developed in $[16,20]$. According to this model, let R be a random variable representing observed pixel intensity from the SAR image. It has been shown that the probability density function (pdf) of R is exponential with the mean of μ where μ is the true intensity of the target to which this pixel belongs. It has been shown in [15] that pixel intensities of neighboring pixels can be assumed to be uncorrelated. Here we also assume that they are independent. In most SAR imaqing systems more than one independent sample of detected power is obtained for each pixel. The number of independent samples, α is often referred to as number of looks per pixel.". Now pixel intensity x is obtained by averaging these independent samples:

$$
\begin{equation*}
x=\frac{1}{\alpha} \sum_{i=1}^{\alpha} R_{i} \tag{1.2}
\end{equation*}
$$

The probability density function of X can thus be expressed by the formula for qzimma distribution:

$$
\begin{equation*}
f_{x}(x)=\frac{x^{\alpha-1} B^{-\alpha} e^{-x / \beta}}{\Gamma(\alpha)} \tag{1.3}
\end{equation*}
$$

where,

$$
\begin{aligned}
& B=\mu / \alpha \\
& \Gamma(\alpha)=(\alpha-1)!\text { for } \alpha \text { an integer. }
\end{aligned}
$$

Mean and variance of pixel intensity X can be calculated using the properties of qamma distribution. They are equal to μ and μ^{2} / α, reãーこtively. The ratio of signal power to noise power (signal-to-noise ratio) [4] can be calculated as

$$
\begin{equation*}
\frac{S}{N}=\frac{E^{2}[x]}{\operatorname{Var}[X]}=\alpha \tag{1.6}
\end{equation*}
$$

Thus it has been shown that noise power is proportional to signal power with coefficient of proportionality of $1 / \alpha$.

This relates directly to the observation about dependency of noise on siqnal, made at the beginning of this chapter. Statistical noise model for SAR imagery can thus be best characcerized as "multiplicative noise model", where signal and noise power are proportional to each other:

$$
\begin{equation*}
X=S \cdot N \tag{1.7}
\end{equation*}
$$

where X is defined as before, S is noise-free signal, and N is random variable, representing multiplicative noise. One should note that signal S is a continuous random variable and its probability density function is continuous.

There are restrictions to the model, worth mentioning:
(1) The statistical model for pixel intensities introduced above is only valid for a type of region that can be defined as homogeneous. A homogeneous region is an area where all pixels belong to the same target, best characterized by a single feature: mean μ. If more than one target is present in the reqion the distribution of pixel intensities does not follow gamma distribution, and more sophisticated model is needed [16]. Such regions are called edge reqions, and since the model is not valid for them, they should be excluded in any analysis.
(2) There are seve:al conditions to be imposed on the target for multiplicative noise model to be valid for SAR imagery. These conditions were outlised in [13]. One of them is that the surface roughness of the target should be large, compared with wavelength of radar siqnal. There is a variety
of target classes that would meet such conditions. An example is a target that contains an agricultural area, such as corn field.
In summary, the statistical model that incorporates properties of SAR imaqe formation process was introduced, and its limitations mentioned. This model will be used throughout this paper.

This section presents a solution to the problem of the classification of pixels in a SAR imace, hased on qray level. Also, an expression for probability of incorrect classification is derived, and a test to exclude edqe reqions is presented.

In this section it is assumed that the imaqe contains M tarqets. The true tarqet means are known a priori. (An alqorithm to extract tarqet means from the SAR image will be presented later). A sliding $K \times K$ frocessing window is applied to the image, and sample mean is calculated for each window position. Then, based on the outcome of the test to be described, the center pixel of the window is assigned the value of the tarqet mean, to which the region, defined by the window, is most likely to belong.
A. Maximum Likelihood Approach to Classification

For a given window position, let $x_{1}, x_{2}, X_{3}, \ldots, x_{N}(N=K x K)$ be the gray level intensities of the pixels within a window. According to our model, we can assume that x_{1}, \ldots, X_{N} are independent and uncorrelated. Let $\bar{X}=\frac{1}{N} \sum_{i=1}^{N} X_{i}$ be the observed mean, and $X_{L_{1}}, X_{L_{2}}, \ldots, x_{L_{M}}$ be true means of all M targets in the imaqe, known a priori, as previously assumed. It is assumed that all the pixelc in the window belong to the same homogeneous region and that the region is characterized by the mean . Regions that contain a mixture of tarqets (edqe reqions) will be excluded by a test to be described later. Now consider the following set of hypotheses:

$$
\begin{aligned}
& H_{1}: \mu=X_{L_{1}} \text { (reqion belongs to Target 1) } \\
& H_{2}: \mu=X_{L_{2}} \text { (region belongs to Target 2) } \\
& H_{M}: \mu=X_{L_{M}} \text { (region belongs to Target } M \text {) }
\end{aligned}
$$

The likelihood function under hypothesis H_{i} is defined as joint probability density function of all samples under the hypothesis
$H_{i}, 1 \leqslant i \leqslant M$, multiplied by a priori probability of hypothesis H_{i} being true, $P\left(H_{i}\right)$. Using the SAR imaqe model previously described, the likelihood

$$
\begin{align*}
& \text { function can be written as } \\
& \qquad L\left(x_{L_{i}} ; x_{1}, x_{2}, \ldots, x_{N}\right)=P\left(H_{i}\right) \cdot \frac{\binom{N}{\prod_{j=1} x_{j}}^{\alpha-1} e^{-\alpha N \bar{x} / x_{L_{i}}}}{(\Gamma(\alpha))^{N}\left(\frac{X_{L}}{\alpha}\right)^{\alpha N}} \tag{3.2}
\end{align*}
$$

region. The test is carried out this way: If $\frac{\bar{x}}{s^{2}}$ is less than $\frac{\alpha}{2}$, the region is an edqe region. Threshold of $\frac{\alpha}{2}$ has been chosen heuristically. To identify edge region, the center pixel of the window is assiqned zero intensity, and no further testing described in previous section is needed. This test is a quick way to check whether the region defined by a processinq window at a qiven position is homoqeneous. However, it is not necessarily the optimal test. It may miss some of the edqe regions. A better test (Likelihood Ratio Test) has been derived in [16]. Likelihood Ratio test would define the edqe reqions better at the expense of computational efficiency.
C. Performance Analysis of Maximum Likelihood Classification Alaorithm

Section 3.A considered the problem of assiqning center pixel of processing window in a SAR imaqe to one of M targets. There is probability that the pixel is assigned to the wrong target. The purpose of this section is to derive an expression for this error probability. In [23], a performance analysis criteria were derived for two targets in the imaqe and with Gaussian noise model assumed. The following analysis uses the multiplicative noise model and M targets in the image for derivation. Let
$Y_{i}=\frac{\bar{x}}{X_{L i}}+\ell n X_{L i}, 1 \leqslant i \leqslant M$, be our decision criterion. Let $P_{e_{1}}$ be the probability of assigning the pixel to a target other than target 1 , when hypothesis H_{1} is true (that is, pixel belonys to Tarqet 1). Identically, $P_{e_{i}}, 1 \leqslant i \leqslant M$ is the probability of assigning the pixel to target other than correct target with mean $X_{L i} .{ }^{P} e_{i}$ can also be expressed in terms of probability of correct decision:

$$
\begin{equation*}
P_{e_{i}}=1-p_{c_{i}} \tag{3.6}
\end{equation*}
$$

${ }^{P_{C}}$ is the probability of correctly assigning the pixel to target i, when hypothesis H_{i} is true. Since all tarqets occur with equal probability, the average probability of misclassification can be calculated as:

$$
\begin{equation*}
P_{e}=\sum_{i=1}^{M} P_{e_{i}} / M \tag{3.7}
\end{equation*}
$$

Thus the task of performance analysis boils down to finding $P_{e_{i}}, 1 \leqslant i \leqslant M$.

$$
\begin{equation*}
Y_{i}=\frac{\bar{x}}{X_{L_{i}}}+\ell n X_{L_{i}} \quad 1 \leqslant i \leqslant M \tag{3.8}
\end{equation*}
$$

Let the true tarqet means be arranged in ascending order: $X_{L 1} \leqslant X_{L 2}<\ldots<$ $X_{L M}$. The probahility of correctly assianing the pixel to Target 1 , when hypothesis H_{1} is true can be calculated as:

$$
\begin{equation*}
P_{C 1}=P\left(\left(Y_{1}<Y_{2}, Y_{1}<Y_{3}, \ldots, Y_{1}<Y_{M}\right) \mid H_{1}\right) \tag{3.9}
\end{equation*}
$$

where the comma in probability expression is defined as logical "and". Next, calculate the difference of random variables Y_{i} and Y_{j} where $1 \leqslant i \leqslant M$ and 1 \& $j \leqslant M$:

$$
\begin{equation*}
Y_{i}-Y_{j}=\frac{\bar{x}}{X_{L i}}+\ell n x_{L i}-\frac{\bar{x}}{X_{L j}}-\ln X_{L j}=\bar{x} \frac{X_{L j}-X_{L i}}{X_{L j} X_{L i}}+\ell n \frac{X_{L i}}{X_{L j}} \tag{3.10}
\end{equation*}
$$

The inequality $Y_{i}-Y_{j}<0$ can thus be expressed as:

$$
\begin{equation*}
\bar{x}<\left(\ln \frac{x_{L j}}{X_{L i}}\right) \frac{x_{L j} X_{L i}}{X_{L j}-X_{L i}} \tag{3.11}
\end{equation*}
$$

Let $Z_{i, j}$ be equal to $\frac{X_{L j} X_{L i}}{X_{L j}-X_{L i}} \ln \frac{X_{L j}}{X_{L i}}$. By inspection, one can conclude that $z_{i, j}>0$ and $z_{j, i}=z_{i, j}$. Rewriting the probability of correctly assiqning pixel to target 1 , we obtain:

$$
\begin{equation*}
P_{c 1}=P\left(\left(\bar{X}<Z_{1,2}, \bar{X}<z_{1,3}, \ldots, \bar{x}<z_{1, M}\right) \mid H_{1}\right) \tag{3.12}
\end{equation*}
$$

This joint probability can be expressed as the product of the following conditional probabilities:

$$
\begin{gather*}
P_{C 1}=P\left(\left(\bar{X}<Z_{1,2}\right) \mid H_{1}\right) P\left(\left(\bar{X}<Z_{1,3} \mid \bar{x}<Z_{1,2}\right) \mid H_{1}\right) \ldots \\
\left.P\left(\bar{X}<Z_{1, M} \mid \bar{x}<Z_{1,2}, \cdots, \bar{X}<Z_{1, M}\right) \mid H_{1}\right) \tag{3.13}
\end{gather*}
$$

But $X_{L 1}<X_{L 2}<\ldots<X_{L M}$, and therefore $Z_{1,2}<\mathrm{Z}_{1,3}<\ldots, Z_{1, M-1}<\mathrm{Z}_{1, M}$ so all conditional probabilities in the expression above are equal to unity i.e.,

```
\(\mathrm{P}\left(\left(\overline{\mathrm{X}}<\mathrm{Z}_{1,3} \mid \overline{\mathrm{X}}<\mathrm{Z}_{1,2}\right) \mid \mathrm{H}_{1}\right)=1\)
-
\(P\left(\left(\bar{x}<Z_{1, M} \mid \bar{X}<Z_{1,2}, \bar{x}<Z_{1,3}, \ldots, \bar{x}<Z_{1, M-1}\right) H_{1}\right)=1\)
```

and

$$
\begin{equation*}
P_{C 1}=P\left(\bar{X}<z_{1,2} \mid H_{1}\right) \tag{3.14}
\end{equation*}
$$

By analogy the probability of correct classification for the largest a priori nean is:

$$
\begin{aligned}
\because P_{C_{M}}= & P\left(\bar{X}>Z_{1, M} \mid H_{M}\right) P\left(\left(\bar{X}>Z_{2, M} \mid \bar{X}>Z_{1, M}\right) \mid H_{M}\right) \\
& \left.P\left(\bar{X}>Z_{M-1, M} \mid \bar{X}>Z_{1, M}, \bar{X}>Z_{2, M}, \ldots, \bar{X}>Z_{M-2, M}\right) \mid H_{M}\right)
\end{aligned}
$$

Aqain, all conditional probabilities are equal to unity, and

$$
\begin{equation*}
P_{C M}=P\left(\bar{X}>Z_{1, M} \mid H_{M}\right) \tag{3.15}
\end{equation*}
$$

For any $P_{C i}, 1<i<M$, the expression becomes:

$$
P_{C i}=P\left(\bar{X}>z_{i, 1}, \bar{X}>z_{i, 2}, \ldots, \bar{X}>z_{i, i-1}, \bar{X}<z_{i, i+1}, \ldots, \bar{X}<z_{i, M} \mid H_{i}\right)
$$

or:

$$
\left.P_{c i}=P\left(\bar{x}>z_{i, i-1} \mid H_{i}\right) P\left(\bar{X}<z_{i, i+1} \mid \bar{x}>z_{i, i-1}\right) \mid H_{i}\right)
$$

It can be easily shown that the only tarqets that the pixel can be incorrectly assigned to when it belongs to target i, are targets with true means $X_{L_{i-1}}$ and $\mathrm{X}_{\mathrm{L}_{\mathrm{i}+1}}$, directly below and above true mean X_{Li}. The probability of correct decision can be expressed as:

$$
\begin{align*}
P_{C_{i}} & \left.=P\left(\bar{X}>z_{i, i-1} \mid H_{i}\right) P\left(\bar{X}<z_{i, i+1} \mid \bar{X}>z_{i, i-1}\right) \mid H_{i}\right) \\
& =P\left(z_{i, i-1}<\bar{X}<z_{i, i+1} \mid H_{i}\right) . \tag{3.16}
\end{align*}
$$

In summary, probabilities of error $\mathrm{P}_{\mathrm{ei}}, \mathrm{P}_{\mathrm{ei}}=1-\mathrm{P}_{\mathrm{ci}}$, can be calculated as:

$$
\mathrm{P}_{\mathrm{e} 1}=\mathrm{P}\left(\mathrm{X}>\mathrm{Z}_{1,2} \mid \mathrm{H}_{1}\right) .
$$

$$
\stackrel{\rightharpoonup}{\bullet}
$$

$$
\dot{P}_{e i}=1-P\left(z_{i, i-1}<\bar{x}<z_{i, i+1} \mid H_{i}\right)
$$

$$
\cdot
$$

$$
\dot{P}_{e M}=P\left(\bar{X}<Z_{1, M} \mid H_{M}\right)
$$

Since the processing window size is large, one can apply central limit theorem to find the probability density function \bar{X} under any hypothesis $H_{i} 1$ \& $i \leqslant M$. Expected value of \bar{X} under hypothesis H_{i} is:

$$
\begin{equation*}
E\left[\bar{X} \mid H_{i}\right]=\frac{1}{N} \sum_{i=1}^{N} E\left[X_{i}\right]=\frac{1}{N} \sum_{i=1}^{N}=X_{L i} \tag{3.18}
\end{equation*}
$$

And variance of \bar{X} under the same hypothesis is:

$$
\begin{equation*}
\operatorname{Var}\left(\bar{X} \mid H_{i}\right)=\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)=\frac{1}{N^{2}} \frac{N \alpha X_{L i}{ }^{2}}{\alpha^{2}}=\frac{x_{L i}{ }^{2}}{\alpha N} \tag{3.19}
\end{equation*}
$$

Thus, according to the central limit theorem, it can be assumed that $\overline{\mathrm{X}}$ has an approximate normal distribution under arbitrary hypothesis H_{i}, with mean of X_{Li}, and variance of $\mathrm{X}_{\mathrm{Li}}{ }^{2} / \alpha \mathrm{N}$. Let R_{i} be equal to:

$$
\begin{equation*}
R_{i}=\left(\frac{\bar{x}-X_{L i}}{X_{L i_{-}}}\right) \sqrt{\alpha N} \tag{3.20}
\end{equation*}
$$

Under hypothesis H_{i}, R_{i} is approximately normal with zero mean and unit variance. Now we can express error probabilities in terms of R_{i} :

$$
\begin{aligned}
& P_{e_{1}}=P\left(R_{1}>\left.\left(\frac{Z_{1,2}-X_{L i}}{X_{L 1}}\right) \sqrt{\alpha N}\right|_{H_{1}}\right) \\
& \left.\left.P_{e_{i}}=P\left(\frac{Z_{i, i-1}-X_{L i}}{X_{L i}}\right) \sqrt{\alpha N}<R_{i}<\left(\left(\frac{z_{i, i+1}-X_{L i}}{X_{L i}}\right) \sqrt{\alpha N}\right) \right\rvert\, H_{i}\right) \\
& :_{L} \\
& P_{e_{M}}=P\left(R_{M}<\left.\left(\frac{Z_{1, M}-X_{L M}}{X_{L M}}\right) \sqrt{\alpha N}\right|_{H_{M}}\right)
\end{aligned}
$$

The threshold $\left(\frac{Z_{i, j}-X_{L i}}{X_{L i}}\right) \sqrt{\alpha N}$ is equal to

$$
\frac{\sqrt{\alpha N}}{T_{i, j}}\left(\ln T_{i, j}+1-T_{i, j}\right)
$$

where $T_{i, j}=\frac{X_{L i}}{X_{L j}}$ is the relative target contrast of Target i with respect to Target $j, 1 \leqslant I \leqslant M, 1 \leqslant J \leqslant M$. $T_{i>j}$ can also be expressed in decibels. Now error probabilities can be expressed in terms of Q function, where the Q function is defined as:

$$
\begin{equation*}
\varphi(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-y^{2} / 2} d y \tag{3.22}
\end{equation*}
$$

The error probabilities can then be calculated as follows:

$$
\begin{aligned}
& \left.P_{e 1}=O\left(\left(\frac{\ell n\left(T_{1,2}\right)+1-T_{2}}{T_{1,2}-1}\right) \sqrt{\alpha N}\right)\right) \\
& :_{e i}=1-Q\left(\left(\frac{\ell n T_{i, i+1}+1-T_{i, i+1}}{T_{i, i+1}-1}\right) \sqrt{\alpha N}\right)-\rho\left(\left(\frac{\ell n T_{i, i-1}+1-T_{i, i-1}}{T_{i, i-1}-1}\right) \sqrt{\alpha N}\right) \\
& P_{(3,23)} \\
& P_{e M}=1-\varrho\left(\left(\frac{\ell n\left(T_{M, M-1}\right)+1-T_{M, M-1}}{T_{M, M-1}-1}\right) \sqrt{\alpha N}\right) \\
& P_{e}
\end{aligned}
$$

D. Conclusions.

Inspecting the expressions, derived in Section C one can make some important conclusions:

The maximum likelihood classifier can incorrectly assign the center pixel of processing window of size N only to targets with true means either above or below the mean of the target to which the reqion belongs. The error probahility depends on two relative tarqet contrasts $T_{i, i-1} ; T_{i, i+1}$. The experiments to be discussed in a later section are consistent with these conclusions.

The performance of maximum likelihood classifier depends on the product of number of independent, samples averaged by the imaging system (aumber of looks per pixel), α, and number of pixels in the processing window, N. Since the error does not depend on α and N individually, but rather on their product, there is a tradeoff between α and N. For instance, performance of maximum likelihood classifier on an image with 4 looks per pixel $(\alpha=4)$ and 25 pixels in the processing window ($\mathrm{N}=25$) is equivalent to performance on the imaqe with 10 looks per pixel and 10 pixels in the processing window. Thus we can call αN total number of looks or total number of samples.

The classification decision, derived in this section will yield the best error performance for a type of SAR imaqe consistent with our statistical model. It has been shown in [9] that maximum likelihood classifier will minimize error probabilities. Therefore, this technique results in optimum performance for the given statistical model.

4.0 Tarqet Mean Fxtraction Technique

The maximum likelihood classification algurithm, derived previously, assumes that true target means are known a priori. In many cases these means may not be available. This section deals with the problem of estimating target means. When the estimation process is complete, the resultant target means can be supplied to maximum likelihood classification algorithm. A test气o compensate for imperfect ex. raction is also described here.

According to our statistical model, the pixel intensity of a homogeneous area is a gamma distributed random variable. Therefore the probability density function" (pdf) of the whole imace containing a number of targets can be characterized as pdf of a mixture of a number of gamma distributed random variables. The problem of estimating target means is equivalent to estimating the parameters of each mixing gamma pdf. Such estimation is possible if the mixture is identifiable (for definition of identifiability see [28]). There are methods to estimate parameters in identifiable mixtures [9]. However, the mixture of gamma variates is identifiable only if the random variable representing target means takes on only discrete values; otherwise the mixture is generally not identifiable [29]. Unfortunately, in our case the random variable representing target means has continuous pdf, and the mixture parameters cannot be estimated. Even if we assume that pixel intensities have approximately normal distribution, the mixture is still unidentifiable, because mixtures of normal pdf's are identifiable only if all normal variates used in the mixture have equal variances [28]. In our case the variances and the means for each area will be unequal. Therefore a different approach towards estimation of target means is needed. One of the approaches considered here is based on selecting the area that is most likely to be homoqeneous and estimating target mean from such area.

A. Automatic Extraction of Target Means

The purpose of this section is to describe an automatic (unsupervised) target mean extraction procedure. The basic idea of the procedure is the following:
(a) The homogeneous areas of the image are identified, e.g. the ones that belong to the same tarqet.
(b) These areas are combined into groups on the basis of likelihood of belonging to the same target. Therefore each target is identified by a respective group.
(c) All pixel intensities within each group are averaged to obtain estimates for tarqet means.

In summ cy, pixels from homogeneous areas defined by the alqorithm serve as a basis for estimating tarqet means. Therefore the test to identify such regions has to be very stringent. The probability of selecting an edge area (e.q. area containing multiple tarqets) as homoqeneous must be small. Conversely, the probability of missing (rejecting) a homogeneous region is not important. For example, if the target contains 500 local areas and only one of 500 is selected, this is still enough to provide a good estimate for the tarqet mean. However, if a non-homogeneous area is selected as homogeneous, the estimate based on such area is wrong. Therefore, trying to minimize the probability of selecting edqe areas as homoqeneous is an important consideration.

The complete flow chart of the procedure is shown in Figure 1. The following is the description of flow chart block by block.
(1) The first step is to apply a sliding processing window (typical size 13×13) to the image. Then, for a qiven window position, the mean and variance of pixel intensities within the window is calculated.
(2) The variance test is a quick way to check whether the neighborhood (defined by the processing window) is homogeneous. It is basically a moment matching technique that tells how closely the observed variance of the neighborhood conforms to maximum likelihood estimate of that variance. The maximum likelihood estimate of the variance is predicted from the mean and is equal to:

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\bar{x}}{\alpha} \tag{4.1}
\end{equation*}
$$

α is a number of looks per pixel and is always known for a particular SAR imaging system [16]. If $\left|S^{2}-\hat{\sigma}^{2}\right| \leqslant P$ where P is a threshold, the region may be homogeneous and chi juare test is invoked to impose tighter constraints. If this inequality fails, the region is not homogeneous and no further testing is needed. The sliding window is then moved to another neighborhood.
(2) The next test for homogeneity uses a chi-square qoodness-of-fit test. This test is a more stringent check of homogeneity. It provides a qualitative measure of how closely the gray level distribution measured from the neighborhood fits the gamma distribution, predicted by the model.

Figure 1. Flowchart of the target mean extraction algorithm.

Specifically, let $x_{1}, x_{2}, \ldots, x_{N}$ be pixel intensities from the neighborhood. Aqain, according to the model, we czin assume that random variables X_{1}, \ldots, X_{N} are independent and uncorrelated. A hypothesis test of the following form is then used:

$$
\begin{align*}
& H_{0}: f\left(x_{i}\right)=\frac{x_{i}^{\alpha-1} \beta^{-\alpha} e^{-x_{i} / \beta}}{\Gamma(\alpha)} \quad 1 \leqslant i \leqslant N \\
& H_{i}: f\left(x_{i}\right) \neq \frac{x_{i}^{\alpha-1} B^{-\alpha} e^{-x_{i} / \beta}}{\Gamma(\alpha)} \quad 1 \leqslant i \leqslant N \tag{4.2}
\end{align*}
$$

where $f\left(X_{i}\right)$ is the probability density function of a given pixel X_{i}; α is number of looks per pixel and β is μ / α, as defined before. Since true mean μ is unknown, it can be replaced by its maximum likelihood estimate,

$$
\begin{equation*}
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \tag{4.3}
\end{equation*}
$$

This is equivalent to the following hypothesis test:
H_{o} : neighborhood is homogeneous
H_{1} : neiqhborhood is not homogeneous
Dividing the range of pixel intensities into K intervals, the probability of randon variable X_{i} being within given interval [a,b] is:

$$
\begin{equation*}
P\left(a<x_{i} \leqslant b\right)=\int_{a}^{b} \frac{x_{i}^{\alpha-1} \beta^{-\alpha} e^{-X_{i} / \beta}}{\Gamma(\alpha)} d_{x_{i}}=F(b)-F(a) \tag{4.4}
\end{equation*}
$$

Where $F(y)$ is the distribution function of the pixel intensities. Thus expected number of samples from a neighborhood to fall within an interval [a,b] is $N(F(b)-F(a))$. The observed number of samples can be calculated from pixel intensity histogram for a given neighborhood. Define expected number of samples to fall within ith interval as $N e x p_{i}$, and actual number of samples as Nobs $_{i}$, respectively. Then define test statistic; $\chi_{\text {, }}$ as follows:

$$
\begin{equation*}
x=\sum_{i=1}^{K} \frac{\left(\text { Nobs }_{i}-\operatorname{Nexp}_{i}\right)^{2}}{\operatorname{Nexp}_{i}} \tag{4.5}
\end{equation*}
$$

where K is the number of intervals.
X has an approximate chi-square distribution with ($K-1$) degrees of freedom. X is defined as our measure of "dearee of homogeneity". The areater X is, the more non-homogeneous the neighborhood is likely to be. Thus we define homogeneous neiqhborhoods by the following test. We accept H_{0} if X < X_{T}, otherwise we reject H_{0}. Threshold X_{T} is determined by the significance level of the test, and the typical values for X_{T} are between 1 and 7 . If we accept the hypothesis that the neighborhood is not homoqeneous, we go on the next neighborhood.
(4) Having established that the neighborhood is homoqeneous, and if the neighborhood is the first homoqeneous neiqhborhood in the imaqe, an initial estimate is created for the true mean of the first tarqet. This estimate is obtained by taking the average of all pixels in the neiqhborhood. Also, the number of pixels that were averaged to obtain this initial estimate is recorded, along with processing window coordinates.
(5) If the homogeneous neighborhood is not the first one in the image, then there already exists some table of initial estimatos. There are two possible outcouss: (a) The neighborhood belongs to a target, for which initial mean estimate has already been created; or (b) The neiqhborhood belongs to a target for which no initial estimate has been created. To check which of the two possible outcomes is true, the following statistic is calculated:

$$
Y_{i}=\frac{\bar{x}_{X_{L i}}}{}+\ln x_{L i}=\min \left({\frac{\bar{x}}{L_{1}}}+\ln {x_{L}}_{1}, \ldots, \bar{x}_{L j}+\ln x_{L j}\right)
$$

where $\overline{\mathrm{X}}$ is the local neighborhood mean, $\mathrm{X}_{\mathrm{L} 1}, \mathrm{X}_{\mathrm{L} 2}, \ldots, \mathrm{x}_{\mathrm{Lj}}$ are initial mean estimates for the first j tarqets, and $1 \leqslant i \leqslant j$. The statistic Y_{i} is nothing more than the maximum likelihood criterion, developed in section 3.

Now the two possible outcomes can be reformulated as (a) Neiqhborhood belongs to the target with mean $X_{L i}$; and (b) Neighborhood belongs to a new target with mean $X_{L j+1}$, and initial estimate is : $X_{L j+1}=\bar{X}$.

Under the hypothesis that the neighborhood belongs to target with mean $X_{L_{i}}, Y_{i}$ is approximately normallv distributed with mean $1+\ln X_{L_{i}}$ and standard deviation of $1 / \alpha N$. If the observation Y_{i} is within three standard deviations of its predicted mean $1+\ell n X_{L_{i}}$, outcome (a) is likely. Otherwise, outcome (b) is likely. The measure of three standard deviations has been chosen heuristically.
(6) If Y_{i} is not within 3 standard deviations $(3 / \sqrt{\alpha N})$ of its mean, a new initial target estimate $\bar{X}_{L j+1}=\overline{\mathrm{X}}$ is created. Number of pixels in the neighborhood is also recorded, along witu processing window coordinates, that define the current neighborhood. Then the processing window is moved to the next neighborhood.
(7) If Y_{i} is within 3 standard deviations of its mean, then the neighborhood is most likely to belong to the tarcet with initial mean estimate of X_{Li}; $1 \leqslant i \leqslant j$. If that's the case, the tarqet mean estimate can be updated by taking a weighted averaqe of already existinq estimate $X_{L_{i}}$ and current neighborhood average $\overline{\mathrm{X}}$.

It is important to assure that this weighted averaqing required to obtain an estimate for a tarqet mean is done over non-overlapping neiqhborhoods, e.q. the neighborhoods that don't have common pixels. Since each neighborhood is defined by processing window of fixed size at a qiven position, and window coordinates have been recorded, it's easy to check whether the current neighborhood overlaps with all other neiqhborhoods which were used to obtain an estimate for a given target mean $X_{L_{i}}$. If the current neiqhborhood does overlap, its qray level averaqe cannot be used to update qiven tarqet mean estimate $\mathrm{X}_{\mathrm{L}_{\mathrm{i}}}$.
(8) If the neighborhood does not overlap with all others that belong to the same target, and pixels from which were used to obtain an estinate for target mean, then the initial estimate X_{Li} is updated by weighted averaging:

$$
\begin{align*}
& X_{\text {Li new }}=\frac{X_{\text {Li old }} \cdot H_{\text {old }}+\overline{\mathrm{X} N}}{H_{\text {old }}+N} \tag{4.6}\\
& H_{\text {new }}=H_{o l d}+N \tag{4.7}
\end{align*}
$$

where $H_{o l d}$ is number of pixels that were used to obtain initial estimate, N is the number of pixels in the neighborhood. $X_{L_{i}}$ new and $H_{n e w}$ are initial estimates after updating for a target mean, and number of pixels used to obtain that estimate, respectively. The current window coordinates are also recorded.

This procedure is a recursive procedure, the result of which is a vector of target mean estimates. Its performance will be evaluated in section 5 .

B. A Test to Compensate for Imperfect Target Mean Fxtraction

The procedure described in the previous section leads to target mean estimates to be used as a input to maximum likelihood classifier. But these estimates may be imperfect. For instance, some tarqets may be missed, and others may be estimated incorrectly. This will increase the probability of classification error. However, there is a test to partially compensate for imperfect tarqet mean estimates at the second (classification) staqe.

As before, let Y_{i} be our decision criterion:

$$
Y_{i}=\frac{\bar{x}}{X_{L_{i}}}+\ell n X_{L_{i}}
$$

Suppose that the neighborhood gets assigned to arbitrary target i with mean $\mathrm{X}_{\mathrm{L}_{\mathrm{i}}}$. This test is similar to merqing criterion described in the previous section. Under the hypothesis H_{i} being true, Y_{i} is approximately normal with mean of $1+\ln X_{L_{i}}$ and variance of $1 / \alpha N$. If the value of statistic Y_{i} is far enouqh from its expected value $1+\ell n X_{L_{2}}$ ("far enough" is a least three standard deviations: $3 / \sqrt{\alpha N}$), then the center pixel of the neiqhborhood defined by processing. window is assiqned zero intensity. This test implies that even thouqh the neiqhborhood belongs to a qiven target on the basis of maximum likelihood, its decision criterion's value is far apart from the expected value of that decision criterion. This may occur because the neighborhood belongs to a target, the true mean of which is missing, or has been estimated incorrectly. Therefore we don't really know which target the neighborhood belongs to and thus assign zero intensity to its center pixel to show that target couldn't be determined. Similar testing is done in the area of digital communications. When at the receiver it is not possible to determine whether the received bit of information was zero or one because of high ambiquity, the output bit is assigned "don't care" condition. Practice of assigning "don't care" condition to cases when it is not possible to determine correct status is of ten called "erasures", and is described ir the communication literature [26]. The test developed here will be referred to as "erasure test" from here on.
A. Verification of Performance of the Maximum Likelihood Classifier

A computer program based on the maximum likelihood classification algorithm described in Section 3 was written and tested on SAR imaqe simulations and real SEASAT-A SAR imaqe [27]. Simulated images were of size 250×250 pixels and contained 14 tarqets. This section discusses simulation results. The advantage of using simulated images to test the performance of the maximum likelihood classifier is that the location of each tarqet and tarqet means are known a priori. The description of simulation procedure is available in [21]. The basic idea of SAR image simulation is that a noiseless image (where all pixel values are equal to values of their respective target means) is multiplied by a random variable, which incorporates desired speckle, e.q. number of looks per pixel, α. As a result, the noisy image arises, with the noise statistics fitting the multiplicative noise model described previously. Such simulation is a qood representation of a real SAR image. The noiseless imace that serves as an input to simulation is called power map. The power map in Figure 2 was used for this experiment (the numbers in squares represent true target mean):

140	120	100	80	60
40	30	20	10	5
100	160	240	220	180
140	120	100	80	60
40	30	20	10	5

Figure 2. Power map for $S A R$ image simulation

This image contains 14 targets 50×50 pixels each. The target means were selected such that a wide range of relative tarqet contrasts would be present (from 0.38 dB to 3 dB). This is done because the probability of classification error depends on relative tarqet contrasts (see Section 3.C). Also some of the same targets are separated and located in the different parts of the imaqe to illustrate the fact that tarqets with the same mean can be disjoint. Five simulations were made, based on this power map. Imaqes with α $=2,4,6,8$, and 10 were created. (See Fiqure 3). Then they were processed with 9×9 sliding window by the maximum likelihood classification algorithm.

Figure 2. SAR Image Simulations: (a) $\alpha=2$ (b) $\alpha=4$ (c) $\alpha=6$
(d) $\alpha=8$ (e) $\alpha=10$

20

ORIGINAL PAGE BLACK AND WHITE PAGOTOGRAPH

Figure 3. Results of Maximum Likelihood Ciassification Processirg (a) $\alpha=2$ (b) $\alpha=4 \quad$ (c) $\alpha=6$ (d) $\alpha=8 \quad$ (e) $\alpha=10$

The results of processing are available in Fiqure 4 . From inspecting the results, one can see that classification algorithm's performance improves as number of looks per pixel qoes up, for a fixed window size. The black (zero intensity) points represent the edqe reqions selected by the test, described in Section 3.B. This edge region exclusion test defined fost (but not all) local areas containing edqes. It also defined as edqe areas some areas that are homogeneous; but that was not a major problem, because such areas only constitute a small proportion of the imaqe. The classification is more adversely affected by missing edge areas than defining false edqes. For any qiven target, the misclassified pixels were assiqned to a taraet with mean either above or below the mean of the qiven target, as expected. Also, the highest number of misclassifications occurred for a taraet with the lowest relative target contrasts $T_{i, i-1}$ or $T_{i, i+1}$, as defined in Section 3.C. All of these ohservations aqree closely with the theory.

Fiqure 5 shows the plot of averaqe prohability of error $P_{e}=\frac{1}{M} \sum_{i=1}^{M} P_{e i}$ and maximum probability of error versus total number of samples, αN, for the simulations described above. These curves enable the operator to choose the right processing window size $\sqrt{N} \times \sqrt{N}$ to achieve the desired error performance for a given number of looks per pixel, α.

Figure 5. Predicted Probability of Classification Error for Simulations From Figure 2.

The target mean extraction alqorithm was applied to the simulations described previously. Since the true means of all tarqets in these simulations are known a priori, it is possible to compare these means with the means, extracted by the alqorithm for different numbers of looks per pixel. The threshold on a chi-square test, X_{T}, was chosen to be 1.0 , and the range of intensities was divided into 10 intervals, each having equal expected counts. The processing window was chosen to be 13×13. Table 1 compares results of the extraction procedure described above with known true means:

True Mean	Fxtracted Means				
	$\alpha=2$	$\alpha=4$	$\alpha=6$	$\alpha=8$	$\alpha=10$
5.0	8.11	4.93	- 4.95	5.20	5.04
10.0	9.90	18.27	10.11	-	10.17
20.0	22.27	20.85	26.82	27.71	-
30.0	30.20	29.88	30.87	30.69	28.75
40.0	38.20	40.01	39.59	40.73	41.22
60.0	63.21.	60.22	-	57.71	57.69
80.0	-	80.97	84.12	80.10	81.45
100.0	100.34	98.75	101.04	-	102.71
120.0	127.36	115.50	118.39	123.54	118.42
140.0	-	138.87	138.7 .1	135.76	140.37
160.0		-.. 156.09	154.08	-	159.47
180.0	170.43	-	185.84	177.28	-
220.0	212.82	-	-	270.57	-
240.0	-	-	-	247.17	246.89

One can observe that extraction technique has been able to estimate most target means correctly. However, there are some imperfections, like a few missing tarqet mean estimates, and a few incorrect estimates. Fffects of these imperfections can be partially compensated for by the test described in Section 4.B. The results of applying maximum likelihood classifier with erasure test to the simulations utilizing target means extracted by previously described alqorithm are qiven in Figure 6. The dark areas represent the

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 8. Results of Processing Simulations with Target Means Estimated by Extraction Algorithm ("Erasure test" was used to partially compensate for imperfect extraction) (a) $\alpha=2$ (b) $\alpha=4$ (c) $\alpha=6^{\prime}$ (d) $\alpha=8 \quad$ (e) $\alpha=10$
regions, where classifier failed to make a decision. One can illustrate the effectiveness of erasure test by the following example:

In the case of $\alpha=2$ simulation, the extraction routine missed a true target mean of 5 and extracted a false tarqet mean of 8 . The true tarqet mean of 10 was found correctly and its estimate was 9.9. In the original image, tarqets with means of 5 and 10 are 50×50 squares next to one another in the bottom right-hand corner. Since true target mean of 5 was missing, the whole area which was supposed to belong to that target was assigned zero intensity. If no erasure testing was done, this whole area would have been assigned the value of false target mean of 8 . The next square has a true target mean of 10 , and most of its pixels were classified likewise. Only very few pixels were assigned the value of false label 8 , most of them at the edge of areas with true tarqet means of 5 and 10 . Thus, a number of classifications to the false label was siqnificantly reduced.

Of course, if mean of 8 was not extracted, there wouldn't have been any misclassifications at all. Therefore, it always degrades the performance more to extract a false target mean then to miss a true one. Yet the test, described in 4 .B provides some deqree of protection in both cases. C. Application of Complete Algorithm to Real SEASAT Imaqe

The SEASAT image [27] used in this experiment was 512×512 image of agricultural scene. This image is shown in Figure 7. The number of looks per pixel, α, was approximately 3 . The image was processed by maximum likelihood classifier with 9×9 processing window size with edge test and compensation test included. Target means were extracted manually, and automatically. Resulting imaqes are given in Figure 8 and 9, respectively. Table 2 lists target means, extracted in both cases. Note that neither of the extraction techniques is perfect.

ORIGINAL PAGE
 BLACK AND WHITE PHOTOGRAPH

Figure 9. SEASAT-A-SAR Image

ORIGINAL PACE
 BLACK AND WHITE PHOTOGRAPH

Figure 10. Result of Processing SEASAT-A-SAR Image (Target means extracted

28

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

*. - . . 11. Result of Processing SEASAT-A-SAR Image (Target means estimated by extraction algorithm)

36
29

Real SEASAT Image Target Means

| Estimated Manually | Estimated Automatically |
| :---: | :---: | :---: |
| 15.3 | 18.05 |
| 25.0 | 27.50 |
| 41.9 | 40.96 |
| 48.9 | 51.28 |
| 59.8 | 62.69 |
| 107.8 | 72.57 |

Table 2

The performance in both cases is quite reasonable, especially compared with results of processing the same image using other techniques such as different types of qradient edge detectors [16]. A major problem is hiqh misclassification rate at boundaries of targets (edges). This occurs because the statistrcal model doesn't apply to edge reqions, and the mean ${ }^{2} /$ variance test described in Section 3.R fails to select all the edge regions. This problem would be reduced if more sophisticated edqe test was used, such as likelihood ratio test, available in [16].

6.0 Conclusions

To summarize a maximum likelihood classification algorithm was developed for SAR imaqes, and its theoretical performance was evaluated. Also, automatic extraction algorithm was developed to estimate target mean levels, and a test to partially compensate for imperfect extraction was introduced. The algorithms were tested, using simulations and SEASAT-A SAR imagery.

The classification scheme developed here is the hest classification possible based on the qiven statistical model. This statement can be made because the maximum likelihood approach minimized the probability of classification error [9]. Another advantage of maximum likelihood classification algorithm is a high computational efficiency. It takes only slightly longer to complete classification then to complete equal weighted filtering of an imaqe.

There are two major problems. First, is high misclassification ri+e at edqes. This problem is created by the fact that the edqe test, described in Section 3.B does not detect all edge reqions. The problem of high misclassification rate at edqes can be overcome by applying a better edge detector, for instance, maximum likelihood edge detector, developed in [16]. Another problem is the imperfect extraction of target means. Partially, this problem is overcome by applying compensation test, described in Section 4.B. The extraction algorithm is by no means optimal, althouqh it does estimate most target means well (see Section 5.B). Further research is needed to improve extraction techniques. Finally, classification error can be reduced by applying a simple post-processing algorithm. This algorithm would select pixels or small groups of pixels that have been assigned to a target other than the majority of surrounding neighbors. These "isolated" pixels would then be re-assiqned the same target level of as its neighbors.
[1] K.R. Castleman, Digital Imaqe Processing, Prentice Hall, 1979.
[2] A. Rosenfeld, A. Kak, Digital Picture Processing, Second EAition Academic Press, 1982.
[3] R.C. Gonzalez, P. Wintz, Digital Image Processing, Addison-Wesley, 1977.
[4] I.E. Abdou, W.K. Pratt, guantitative Design and Evaluation of Enhancement/Thresholding Fdge Dete tors. Proceedings of IEEE, Vol. 67, No. 5, May 1979.
[5] G.B. Shaw, Local and Regional Edqe Detectors: Some Comparisons, Computer Graphics and Image Processing, No. 5, 1979.
[6] S.W. Zucker, Region growing: Childhood and Adolescence, Computer Graphics and Imaqe Processing No. 5, 1976.
[7] R.M. Haralick, K.S. Shanmuqan, I. Dinstein, "Textural Features for Image Classification," IFEE Transactions on Systems, Man and Cybernetics, Vol. SMC-3, November 1973.
[8] R.M. Haralick, "Statistical and Structural Approaches to Texture," Proceedings of the IEEE, Vol. 67, No. 5, 1979.
[9] R.O. Duda, P.F. Hart, Pattern Classification and Scene Analysis, John Wiley, 1973.
[10] J.J. Kovaly, Synthetic Aperture Radar, Artech House, 1976.
[11] K. Tomiyasu "Tutorial Review of Synthetic Aperture Radar (SAR) with Applications to Imaging of the Ocean Surface", Proceedings of the IEEE, Vol. 66, No. 5, May 1978
[12] P.M. Shankar, H.M. Gupta, "Image Detection in the Presence of Speckle", Proceedings of IEEE, Vol. 67, No. 2, February 1978.
[13] J.W. Goodman, Some Fundamental Properties of Speckle, J. Opt. Soc. Amer. 66, No. 11, 1975.
[14] L.J. Porcello, et al., Speckle Reduction in Synthetic Aperture Radars, J. Opt. Soc. Amer. 66, No. 11, 1976.
[15] J.S. Lee, Speckle Analysis and Smoothing of Synthetic Aperture Radar Imaqes, Computer Grap:ics and Image Processing, No. 17, 1981.
[16] V.S. Frost, et al., Topics in Radar Image Analysis, Remote Sensing Lab Technical Report 453-9, University of Kansas Center for Research, Inc., Lawrence, KS 66045.
[17] A.D. Whalen, Detection of Siqnals in Noise, Academic Press, 1971.
[18] J.L. Devore, Probability and Statistics for Enqineering and the Sciences, Brooks/Cole Publishing Co., 1981.
[19] K.S. Shanmuqan, Diqital and Analog Communication Systems, John Wiley, 1979.
[20] V.S. Frost, et al., A Model for Radar Images, and Its Application to Adaptive Diqital Filterinq of Multiplicative Noise, IEEE Transactions on Pattern Analysis and Machine Intelliqenve, March, 1982.
[21] J.C. Holtzman, V.S. Frost, J.A. Stiles, V.H. Kaupp, "Radar Image Simulation", IEEE Trans. Geosci. Election, vol. GF-16, pp. 296-303, Oct. 1978.
[22] A.M. Breipohl, Probabilistic Systems Analysis, John Wiley, 1971.
[23] D.J. Shazeer, Performance Measures for Statistical Seqmentation, Applications of Diqital Image Processing IV (1982), SPIE Vol. 359.
[24] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, 1965.
[25] R.V. Hogg, A.T. Craig, Introduction to Mathematical Statistics, Macmillan Publishing Co., 1978.
[26] J.G. Proakis, Digital Communications, McGraw-Hill, 1983.
[27] Jordan, R.L., The SEASAT-1 Synthetic Aperture Radar System, IEEE Journal of Oceanic Engineering, OE-5, 2 (Apr. 1980) 154-165.
[28] H. Teicher, on the Mixture of Distributions, Annals of Mathematical Statistics, vol. 31, p. 55, 1960.
[29] H. Teicher, Identifiability of Finite Mixtures, Annals of Mathematical Statistics, vol. 34, p. 1265, 1963.

APPENDIX C

A Data Compression Technique for Synthetic Aperture Radar Images

v. S. Frost
G. J. Minden

Manuscript Received \qquad ; revised \qquad -
This work was supported by NASA under Grant NAGN-381. The authors are with the Telecommunications and Information Sciences Laboratory, University of Kansas Center for Research, Inc., Lawrence, Kansas 66045.

A DATA COMPRESSION TECHNIQUE FOR SYNTHETIC APERTURE RADAR IMAGES

Abstract

A data compression technique is developed for Synthetic Aperture Radar (SAR) imagery. The technique is based on a SAR image model and is designed to preserve the local statistics in the image by an adaptive variable rate modification of block truncation coding (BTC). A data rate of approximately 1.6 bits/pixel is achieved with the technique while maintaining the image quality and cultural (point like) targets. The algorithm requires no large data storage and is computationally simple.

The purpose of this paper is to describe an efficient image data compression technique which has been specifically designed for Synthetic Aperture Radar (SAR) images. SAR has become an important class of imaging sensor for both civilian and military applications. As with other imaging systems there is a need to transmit and store SAR images, and thus, there has been considerable interest in efficient coding algorithms for SAR [1, 2, 3].

The aim of data compression is to minimize the data rate while maintaining the information contained in the signal using as simple an algorithm as possible. Thus a desirable property of an image encoding algorithm is fidelity, i.e. the reconstructed (received) image should preserve of all of the "important" features of the sensed image. For example, in some radar applications cultural features which appear in SAR images as small bright features are important and should be faithfully reproduced. In the geologic analysis of SAR images texture [4] is important and thus should be preserved. Image fidelity (quality) is a difficult quantity to measure [5] because it is application dependent. Image data compression algorithms are also compared on the basis of their compressing capability, i.e. the number of bits per image sample in the coded image. Implementation complexity is also an important consideration in evaluating data compression algorithms [6]. The technique described below preserves important image features (e.g. cultural features) at about 1.6 bits/sample and is simple to implement.

Standard compression techniques fall into two broad categories-predictive and transform cosing. Predictive coding is performed in the spatial domain and attempts to remove the local redundancies in the image. Transform coding is performed by an energy preserving transformation of the image into another image so that the maximum information is placed into a minimum number of transform components [6]. Many different transforms, e.g. Fourier, Cosine, Karhune-Loeve, have been used. Transform coding tends to be more complex than predictive coding. It will be shown in Section 2 that predictive coding is not possible on SAR images, and further, it will be argued that transform coding is not a viable alternative because of the low correlation observed in SAR images even though it has been tried [1].

The technique developed here is a modification of the Block Truncation coding (BTC) algorithm developed in [7]. BTC is suitable for SAR images because it preserves the local statistics of the image. In SAR these statis-
tics are important. In BTC the image is divided into small blocks (e.g. 4×4) of picture elements (pixels) and for each block a one bit quartizer is applied such that the block can be reconstructed with the moments (e.g. mean and variance) preserved. Clearly, in addition to the bit mask (quantized block), supplementary information is needed. In the BTC the supplementary information is the sample mean, \bar{x}, and standard deviation, s_{x}. For example, a BTC system using 4×4 blocks of picture elements (pixels) (with 8 bits/pixel) and 8 bits to code \bar{x} and s_{x} results in a 4 to 1 compression or 2 hits/pixel. Reducing the number of mean and standard deviation code bits as well as further coding of the bit mask can result in further compression [7,8].

Direct application of the BTC algorithm [7] (2 bits/pixel) to SAR images produced reconstructed images that were of suitable quality visually and preserved cultural features. These results will be presented in Section 6. A further reduction in bit rate was achieved by observing that the local mean and variance are proportional in SAR images of homogenous areas, and thus, it is required to transmit only the mean. This modification results in a 5.3 to 1 compression or 1.5 bits/pixel (using the above example).

This modification did produce reconstructed images of acceptable quality, however, significant contrast was lost for cultural features. This weakness was overcome by developing an adaptive BTC algorithm. The adaptive BTC algorithm sends only the mean if the local area (block) fits the standard radar model. For those blocks where the model does not fit, both the mean and standard deviation are transmitted.

Using this adaptive approach, a 5 to 1 compression or about 1.6 bits/pixel was achieved with the quality of the original 2 bits/pixel BTC algorithm. Now a variable number of bits per block is required for the adaptive BTC technique. However, this modification to the BTC algorithm does not significantly increase its complexity.

A statistical model for SAR images will be reviewed in Section 2 . The original BTC technique will be discussed in Section 3. The modifications to the BTC algorithm for SAR images will be described in the following section. The BTC, modified BTC (mean only) and adaptive BTC were implemented and tested using SEASAT-A SAR imagery. These results are presented in Section 6. The SAR image data compression described here is simple, produces reconstructed images of adequate quality for many applications and tends to preserve cultural futures.

2.1 Point Statistics

An imaging radar illuminates areas of the terrain within its field of view and records the value of the power returned from nonoverlapping resolution cells on the ground. A resolution cell is typically made up of a large number of scatterers, and under some mild assumptions we can model the signal received by the radar (before detection) as a narrowband Gaussian random process. Then, with a square-law detector, the value of the received power P from a resolution cell has the probability density function $[9,10,11]$

$$
\begin{equation*}
f_{p}(p)=\mu^{-1} \exp (-p / \mu) \quad \text { for } p \geqslant 0 \tag{1}
\end{equation*}
$$

where $E\{P\}=\mu$.
In most imaging radars several independent measurements of the reflected power for each resolution cell are obtained and are averaged to form the image intensity value $Y\left(t_{1}, t_{2}\right)$ for the resolution cell with a spatial location $\left(t_{1}, t_{2}\right)$. The probability density function (pdf) of Y is the gamma distribution $[9,10]$ of the form

$$
\begin{equation*}
f_{y}(y)=\frac{y^{N-1}(\mu / N)^{-N} \exp (-y N / \mu)}{\Gamma(N)} \quad y>0 \tag{2}
\end{equation*}
$$

where N is the number of independent measurements (or "looks"),

$$
Y=\frac{1}{N} \sum_{i=1}^{N} P_{i} \text { and } \Gamma(N)=(N-1)!
$$

The mean value μ of the power reflected from a resolution cell is proportional to the radar reflectivity X of the resolution cell, and we can assume that $\mu=X$ without any loss of generality. Since the radar reflectivity changes from resolution cell to resolution cell, we can model the reflectivity as a random variable x (or a random process $x\left(t_{1}, t_{2}\right)$) and write (2) as a conditional pdf of the form

$$
\begin{equation*}
f_{Y \mid X}(y \mid x)=\frac{y^{N-1} x^{-N} \exp (-y N / x)}{\Gamma(N) N^{-N}} . \tag{3}
\end{equation*}
$$

We assume a Swerling type II [10] target model to describe the statistical characteristics of the echo on a per-pixel basis and then let the mean reflectivity X vary to model the SAR image of a large heterogeneous scene. With an appropriate change of variable we obtain the relationship between X and Y :

$$
\begin{equation*}
Y\left(t_{1}, t_{2}\right)=\frac{x\left(t_{1}, t_{2}\right) z\left(t_{1}, t_{2}\right)}{2 N} \tag{4}
\end{equation*}
$$

where Z has a standard chi-square distribution with 2 N degrees of freedom [10], and X and Z are statistically independent.

Note that $Z\left(t_{1}, t_{2}\right)$ represents the speckle noise in SAR images. Here we have explicitly shown that x and z are functions of position, however, for notational convenience the spatial dependence will be dropped. It can be easily shown that for a given X

$$
\begin{align*}
& E[Y / X] \Rightarrow \mu \tag{5}\\
& \sigma_{Y / \bar{X}}^{2} \frac{\mu}{N}^{2} . \tag{6}
\end{align*}
$$

For our purposes, we can see that if we are considering an "homogeneous" target (i.e., $E[X]=\mu$), then we can predict the variance given the mean. This observation is the basis for the modified BTC algorithm.

2.2 Autocorrelation Properties of SAR Images

The feasibility of using ejther predictive or transform coding for SAR image can be discussed in terms of the image correlations properties. On a local level, i.e. inside a homogenous area, the model (equation 4) indicates that adjacent pixels will be uncorrelated. This is quite different comparad to images collected with noncoherent sensors. For noncoiserent sensors, e.g. LANDSAT or Aerial photographs, pixels in homogenous areas are highly correlated. The low correlation of adjacent pixels has been observed previously [12] and eliminates predictive coding from consideration.

However, transform coding can can operate over larger regions and and thus the regional correlation properties of SAR images needs to be considered. Figure 1 presents a typical autocorrelation* in the row and
column directions of a SAR image of terrain (see Figure 4 for the image). Note that this autocorrelation functions decays very rapidly. The presence of some correlation indicates that transform coding is possible, however the rapid decay implies that the size of the transform window must be large, thus greatly increasing the memory and computational requirements of the compression algorithm. A sophisticated transform coding algorithm for SAR images has been reported [1]. The technique described in [1] uses row/column deletation (resampling) and transform coding; however, the algorithm is computationally intensive and requires substantiai amounts of memory.

Reexamining the SAR image model (equation (4)) we notice that the mean and variance of each local area (within a larger homogeneous region) are redundant, and thus, a coding algorithm which preserves these image attributes would be suitable for SAR. In the next section, the BTC algorithm which does preserve these features is discussed, and it is modified to fit the above SAR image models.
3. Review of Block Truncation Coding

Let \bar{y} and S_{y} denote the sample mean and standard deviation of a block (e.g. 4×4) of pixels in a SAR image. That is

$$
\begin{equation*}
\bar{y}=\frac{1}{m} \sum_{i=1}^{m} y_{i} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{y}^{2}=\overline{\left(y^{2}\right)}-(\bar{y})^{2} \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
\overline{\left(y^{2}\right)}=\frac{1}{m} \sum_{i=1}^{m} y_{i}^{2} \tag{9}
\end{equation*}
$$

where
$m=$ number of pixels in the block
and
$y_{i}=$ pixel intensity

[^3]In BTC a one bit quantizer is used for each pixel in the block with the quantizing threshold set at \bar{y}. That is, if $y_{i} \geqslant \bar{y}$ then that pixel location is coded with a 1, otherwise with a 0. A bit mask is thus formed. This bit mask along with \bar{y} and s_{y} are transmitted/stored.

At the receiver, a level A is assigned to a point if that pixel location within the block contained $a \operatorname{and} a$ level B if $a \quad 1$ was contained. The levels A and B are selected to preserve the moments of the block. These levels can be simply found as $[7,13)$

$$
\begin{equation*}
A=\bar{y}-s_{y} \sqrt{\frac{q}{m-q}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\bar{y}+s_{y} \sqrt{\frac{m-q}{q}} \tag{11}
\end{equation*}
$$

where
$\mathrm{q}=$ number of one's in the received block.

For a 4×4 block and using 8 bits to code \bar{y} and s_{y} results in 4 to 1 compression ratio or 2 bits/pixel.

4. Modified Block Truncation Coding

Based on the SAR image model, we can predict the standard deviation for a block based on the sample mean. Let the predicted standard deviation be
where $\sigma_{p}=\frac{\bar{y}}{\sqrt{N}}$
where
$\mathrm{N}=$ number of looks for the SAR.

The BTC technique described in Section 3 is then applied at the source. Now only the sample mean and the bit mask are transmitted. At the receiver, the levels A \& B are reconstructed using ${ }^{\circ}$

$$
\begin{equation*}
A=\bar{Y}\left(1-\sqrt{\frac{q}{N(m-q)}}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\bar{y}\left(1-\sqrt{\frac{m-q}{N q}}\right) \tag{14}
\end{equation*}
$$

For a 4×4 block and using 8 bits to code the sample mean a compression ratio of 5.3 to 1 or a data rate of 1.5 bits/pixel is obtained.

It was found that this technique produced reconstructed images of homogeneous areas almost identical to the 2 bit/pixel technique. However, contrast was lost on cultural features relative to the initial BTC method. The reason for this is obvious. Regions containing cultural features do not fit the SAR model of equation (4). To overcome this weakness an adaptive variable bit rate BTC was developed.

5. Adaptive Variable Bit Rate Block Truncation Coding

The goal of the adaptive BTC technique is to use the modified BTC for those image blocks where it is appropriate, i.e. where the model fits, and to use the original BTC algorithm otherwise. A simple test based on the predicted and sample variances was developed to indicate if the data from an image block fits the SAR model. Specifically, if $k \cdot S_{y}{ }^{2}>\sigma_{p}{ }^{2}$ (where k is a constant) then the model does not fit the data. That is, if the observed (sample) variance is "too much" greater than the predicted variance then it would be expected that the model does not provide an adequate description for the data. The proportionality constant, k, must be selected such that the probability of rejecting the model when the model is valid, P_{F}, is small, i.e.,

$$
\begin{equation*}
P_{F}=P\left(k_{Y}^{2}>\sigma_{P}^{2} \mid \text { model is valid }\right) \tag{15}
\end{equation*}
$$

From the theory of confidence intervals [14] we know that we can find a B such that

$$
\begin{equation*}
P\left(\frac{m S_{Y}^{2}}{\sigma_{p}^{2}}>\beta\right)=P\left(\sigma_{p}^{2}<\frac{m S_{y}^{2}}{\beta}\right)=P_{F} \tag{16}
\end{equation*}
$$

The above equation indicates that the probability that $\mathrm{m}_{\mathrm{S}}^{\mathrm{y}}{ }^{2} / \beta$ (here $\mathrm{k}=\frac{\mathrm{m}}{\beta}$) is greater than the unknown parameter $\sigma_{p}{ }^{2}$ is P_{F} when the SAR mocel fits the data. The predicted variance $\sigma_{p}{ }^{2}$ is calculated using equation (12). Therefore, the SAR model is not appropriate if

$$
\begin{equation*}
\frac{\bar{y}^{2}}{\mathrm{~N}}<\frac{\mathrm{m}}{\beta} S_{y}^{2} \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\bar{y}^{2}}{S_{y}^{2}}<\frac{m N}{\beta} \tag{18}
\end{equation*}
$$

where β is selected to force P_{F} to be small, e.g. 10^{-3}. Note that \bar{y}^{2} / S_{y}^{2} is an estimate for the number of looks used in the SAR processing based on the in pixels in the block. This ratio will be referred to as the local number of looks.

Assuming that the pixel intensities are Gaussian distributed (which is true for large N) the random variable $m S_{y}{ }^{2} / \sigma_{p}{ }^{2}$ has a x^{2} distribution with $m-1$ degrees of freedom. Thus, P_{F} can be estimated. For example, let $m=16$ (i.e. 4×4 blocks) and $N=4$ then for a $P_{F}=.005, \beta=32.8, k \simeq .5$ and $m N / B \simeq 2$. In this case we would expect that the sample standard deviations would be needlessly transmitted only for 1 in every 200 blocks.

The adaptive BTC algorithm for each block is implemented as shown in Figure 2. At the transmitter, the sample mean and standard deviation are calculated and the bit mask is formed as specified in the original BTC algorithm. An estimate for the number of looks, $\bar{y}^{2} / S_{y}{ }^{2}$, is calculated next and compared to a threshold mN / B. If the local number of looks is less than the threshold, then a flag is set on and a data block is sent which contains the bit mask, sample mean, sample standard deviation, and the flag bit indicating the presence of the standard deviation. If the local number of looks exceeds the threshold then it is highly probable that the SAR model is valid and thus the standard deviation present flag is set off and a block is sent which contains only the bit mask, sample mean, and the flag. At the receiver the flag is tested if it is on the original BTC reconstruction algorithm is applied, i.e. equations (10 and 11), otherwise the modified BTC algorithm (equations 13 and 14) are used to reconstruct the image.

The adaptive BTC algorithm described above automatically adds $1 / 16$ bit/pixel overhead, the standard deviation present flag. It was found that for SEASAT-A SAR images that the quality of the original BTC technique was maintained using the adaptive approach at approximately 1.6 bits/pixel.

The BTC algorithm produces reconstructed images which have a blocky appearance [13] when displayed with magnification. This characteristic also evident to when the BTC algorithm is applied to SAR images. However, the image reconstruction algorithm in the adaptive BTC technique can be modified to remove this blocky appearance.

When the SAR image model, e.g. (2), is valid and only the mean is transmitted we know that a pixels marked with a $1(0)$ can be modelled by a conditional probability densicy function, i.e., the p.d.f. given in equation 2
conditioned on the event that the sample is above (below) the mean. Synthetic sampling (using pseudo random numbers) can be used in the reconstruction to map pixels marked with a $1(0)$ into a gray level based on the appropriate conditional p.d.f. As will be shown in the following section using pseudo random numbers in the reconstruction algorithin does effectively remove the blockness. Unfortunately, generation of pseudo random numbers is computationally intensive, thus this modification increases the computational complexity of the algorithm. In some applications this refinement will not be required.

In the following sections the four compression algorithms, original, modified and adaptive BTC and adaptive BTC with pseudo random reconstruction will be compared.

6. Results

The compression algorithms, BTC, modified BTC, and adaptive BTC and adaptive BTC with pseudo random reconstruction have been applied to SEASAT-A SAR imagery. The purpose of this section is to discuss their performance. As mentioned previously, image quality is difficult to quantify. Here the performance evaluation is based on two criteria: 1) the faithful reproduction of cultural features, and 2) the general appearance of the reconstructed image relative to the original.

The SEASAT-A SAR imagery used here had a resolution of $25 \times 25 \mathrm{~m}$ with $N \approx 4$. Each pixel intensity was represented by 8 bits (0-255 grey levels). (For more details about the sensor see [15].) For all the compression algorithms described here, the sample mean was coded using 8 bits/block. Also, a 4×4 pixel block was used in all cases. In the original BTC algorithm the standard deviation was also coded using 8 bits/block resulting in a 2 bits/pixel data rate.

The modified BTC algorithm resulted in a 1.5 bit/pixel data rate. In the adaptive BTC algorithm, the standard deviation was coded using 7 bits/block, then allowing for the one overhead bit results in a maximum of 32 bits/block. Thus, in the adaptive BTC technique each block is coded into 25 or 32 bits depending on the statistics of the pixel intensities of the block. A threshold of 2.0 was used in all cases. The data rate of the adaptive BTC algorithm is variable. However, in most cases it was about 1.6 bits/pixel.

The response of the first three algorithms to a "point" like target is shown one-dimensionally in Figure 3. Figure 3a represents an intensity profile of 100 pixels from a SEASAT-SAR image. There is one bright feature in the center of this profile. The target-to-background contrast in Figure 3 is about 9 dB . Figure 3 b is the reconstructed profile using the original BTC technique. The target is still quite evident, the average backgrond level has remained the same as expected and the target level has been reduced. The target-to-background contrast is about 7.5 dB , a loss of 1.5 dB . The result of the modified BTC algorithm is shown in Figure 3c. In this case, the target-to-background loss is about 3.4 dB . This loss is not considered acceptable. The adaptive BTC algorithm, Figure 3d, restored the profile to that given by the original BTC at a small cost in data rate from 1.5 bits/pixel to 1.58 bits/pixel. There is little difference between the original and adaptive BTC results (Figures 3 b and 3 d), this observation is true for all the results presented here.

A scene containing a variety of terrain features is shown in Figure 4. This scene is composed of 512×512 pixels. The three compressed images favorably compare to the original in terms of reproducing the terrain features. However, there is some difference in scale of the texture in the homogeneous regions caused by the block nature of the block coding technique. These differences are more easily seen in the agricultural scene shown in Figure 5. The texture patterns in the reconstructed images appear as speckle patterns. This might be attributed to the compression algorithm's two level quantization of the pixels in each block. So the algorithm is mapping all the up fades to one value and the down fades to another.

The upper left corner of the agricultural scene is shown magnified in Figure 6. At this scale the "blockyness" property [13] of the algorithm is clearly illustrated. However, the shape of most cultural features is preserved. Specifically, the features identified as 1, 2, and 3 on the original SEASAT-A image, Figure $6 a$, are preserved in shape in all three ($6 \mathrm{~b}, \mathrm{c}$ and d) reconstructed images. Note the loss of contrast for the "point" like target (feature \#2) between the original BTC (Figure 6b) and the modified BTC (Figure 5c) reconstructed images. The result of the adaptive BTC algorithm using pseudo-random reconstruction is shown in Figure 6e. As expected this refinement reduced theblocky appearance of the reconstructed image. The properties of the BTC algorithm are also evident in Figure 7. This scene
contains a water body, a dam, and a power transmission line (the row of bright points near the bottom of the scene). Again, the shape of these features is preserved and the modified BTC algorithin shows a loss of contrast for the point targets.

7. Conclusions

A data compression technique has been developed for SAR images. The method was tested on SEASAT-A SAR data and found to produce images with a suitable quality for a variety of applications. The algorithm developed here is an extension of the BTC technique developed in [7]. The specific statistical properties of SAR data were used to improve the data compression ratio. A compression ratio of 5 to 1 (data rate of 1.6 bits/pixel) was obtained. Further minor reductions in data rate might be possible by reducing the number of bits used to represent the sample mean and standard deviation as suggested in [18]. The benefit of such a reduction would have to be considered based on the application of the sensor. Also, further study is needed to evaluate the effect of changing the number of looks of the SAR on the quality of the reconstructed images.

The technique presented here requires no large data storage as opposed to transform coding methods [1], and is computationally simple so that a single chip implementation is possible [7]. As the SAR image formation moves closer to a real time operation and is thus performed on the sensor, data compression techniques as the one presented here will provide the system designer with additional trade-offs for transmitting and storing the data.

Acknowledgment
The author would like to thank Dr. K. S. Shanmugan for his helpful critism of this work. Also the help of Ellie Watson and Dave Boberg for processing the images is recognized.
[1] B. G. Kashef and K. K. Tam, "Synetic Aperture Radar Image Bandwidth Compression," in Proceedings of the SPIE, Vol. 432, Aug. 1983, pp. 45-53.
[2] R. G. Lipes and S. A. Butman, "Bandwidth Compression of Synethic Aperture Radar Imagery by guantization of Raw Radar Data," in proceedings of the SPIE, Vol. 119, 1977, pp. 107-114.
[3] C. Wu, "Considerations on Data Compression of Synethic Aperture Radar Images," in proceedings of the SPIE, Vol. 87, 1976, pp. 134-140.
[4] K. S. Shanmugan, et al., "Textural Features for Radar Image Analysis," IEEE Trans. on Geoscience and Remote Sensing, Vol. GE-19, No. 3, July 1981, pp. 153-156.
[5] Moore, R. K., "Tradeoff between picture element dimensions and noncoherent averaging in side-looking airborne radar," IEEE Transactions on Aerospace and Electronics Systems, AES-15, Vol. 5, September 1979, pp. 697-708.
[6] A. K. Jain, "Image Data Compression: A Review," IEEE Proc., Vol. 69, No. 3, March 1981, pp. 349-384.
[7] E. J. Delp and O. R. Mitchell, "Image Compression Using Block Truncation Coding," IEEE Trans. on Communication, Vol. COM-27, No. 9, Sept. 1979, pp. 1335-1342.
[8] G. R. Arce and N. C. Gallaghen, "BTC Image Coding Using Median Filter Roots," IEEE Trans. on Communications, Vol. Com-31, No. 6, June 1984, pp. 784-793.
[9] Porcello, L. J., Massey, N. G., Innes, R. B., and Marks, J. M., "Spreckle reduction in synthetic aperture radars," Journal Optical Society of America, Vol. 66, No. 11, Nov. 1976, pp. 1305-1311.
[10] Meyer, D. P. and Mayer, H. A., Radar Target Detection, New York: Academic Press, 1973, pp. 36-65.
[11] Mitchell, R. L., Models of extended targets and their coherent radar images, proceedings of the IEEE, Vol. 62, No. 6, June 1974, pp. 754-758.
[12] Lee, J. S., Speckle analysis and smoothing of synthetic aperture radar images, Computer Graphics and Image Processing, Vol. 1, Dec. 1981, pp. 17-32.
[13] A. Rosenfeld andA. Kak, Digital Picture Processing, Academic Press, 1982.
[14] R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, MacMillan Co., London, 1970.
[15] Jordan, R. L., The SEASAT-A synthetic aperture radar system, IEEE Journal of Oceanic Engineering, Vol. OE-2, No. 2, April 1980, pp. 154-165.

List of Figures

1. SAR Image Autocorrelation Function of Terrain
2. Adaptive BTC Algorithm and Flow Diagram
3. Cultural Feature Response of the Compression Algorithms a) original, b) BTC, c) modified BTC, d) adaptive BTC
4. Results of Coding for a Scene Containing Elevation Changes a) original, b) BTC, c) modified BTC, d) adaptive BTC
5. Results of Coding for a Agricultural Scene a) original, b) BTC, c) modified BTC, d) adaptive BTC
6. Results of Coding for a Agricultural Scene: Magnified a) Original, b) BTC, c) Modified BTC, d) adaptive BTC, e) adaptive BTC with pseudo-random reconstruction
7. Results of Coding for General Scene
a) original, b) BTC, c) modified BTC, d) adaptive BTC

Figure 1. SAR Image Autocorrelation Function of Terrain (Scene shown in Figure 4)

```
SendAdaptiveBTC( InputImage, Threshold )
    DO for each row of blocks
    DO for each column of blocks
        Compute BlockMean and BlockStandardDeviation
        Send( BlockMean )
        IF ( (BlockMean / BlockStandardDeviation) < Threthold )
            THEN Send( 1 )
                        Send( BlockStandardDeviation )
            ELSE Send( 0 )
        DO for each row of block
            DO for each column of block
                        IF ( Pixel > BlockMean )
                        THEN Send( 1 )
                        ELSE Send( 0 )
            OD
        OD
        OD
    OD
ReceiveAdaptiveBTC
    DO for each row of blocks
        DO for each column of blocks
            Receive( BlockMean )
            Receive( BlockSDFlag )
            IF ( BlockSDFlag = 1 )
                        THEN Receive( BlockStandardDeviation )
                ELSE BlockStandardDeviation := BlockMean / sqrt( N )
            A :a BlockMean - BlockStandardDeviation * sqrt( q / m - q )
            B := BlockMean - BlockStandardDeviation * sqrt( q ; m - q )
            DO for each row of pixels
                        DO for each column of pixels
                        Receive( PixelFlag )
                        IF ( PixelFlag = 0)
                        THEN Pixel := A
                        EISE Pixel := B
                    OD
            OD
        OD
    OD
```

Figure 2a. Adaptive BTC Algorithm

TRANSMITTER

Figure 2b. Adaptive BTC Flow Diagram

Figure 3. Cultural Feature Response of the Compression Algorithms a) original data; b) BTC; c) modified BTC; d) adaptive BTC
original page
BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

c.
Result of Coding for a Scene Containing Elevation

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

犃

BLACK AND WHITE PHOTOGRAPH

[^4]and e) adaptive BTC with pseudo-random reconstruction

Fiçure 6.
esults of Coding for an Agricultural Scene: Magnified

っ
a) Original, b) BTC, c) modified BTC, d) adaptive BTC
and e) adaptive BTC with pseudo-random reconstruction
ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

BLACK AND WHITE PHCTOGRAPH

Figure 7

APPENDIX D

An Optimal Frequency Domain Textural Edge Detection Filter

> An Optimal Frequency Domain Textural Edqe Detection Filter

Victor S. Frost Assistant Professor

K. Sam Shanmugan
 Professor

J. Keith Townsend Research Assistant

```
Telecommunications and Information Sciences Laboratory
    University of Kansas
    Space Technology Center
                        Nichols Hall
        2291 Irving Hill Road
        Lawrence, Kansas 66045
        (913) 864-4832
```

An optimal frequency domain textural edge detection filter is developed and its performance evaluated. For the qiven one-dimensional texture model, and filter bandwidth, the filter maximizes the amount of output image energy placed within a given resolution interval centered on the textural edge. Filter derivation is based on relating textural edge detection to tonal edqe detection via the complex lowpass equivalent representation of narrowband bandpass signals and systems. The filter is specified in terms of translated-in-frequency prolate spheriodal wave functions. Performance is evaluated using the asymptotic approximation version of the filter. This evaluation demonstrates satisfactory filter performance for ideal and non-ideal textures. In addition, the filter can be adjusted to detect textural edqes in noisy images at the expense of edge resolution.
I. INTRODIICTION ANF DVFRVIFW

Edae detection is an important first step in extracting information from an imaqe. Many edqe detection schemes have been employed to enhance the boundaries between reqions of different average gray tone. These tonal edqe detectors are inadequate wher reqions in an imaqe are characterized by similar average gray tone, but different textural features.

A textural edge detection filter is presented in this paper which is optimal in the sense that, for the given model, a maximum amount of output image energy is placed within a given resolution interval width and a given filter bandwidth. The resolution interval is centered on the textural edge in the input image. The filter is derived in the frequency domain, and is easily implemented on a digital computer using Fast Fourier Transform (FFT) techniques.

The optimum textural edge detection filter is developed by treating the textural edge as a bandpass extension of a tonal edge. Hence, the optimum tonal edge detector derived by Shanmugan, Dickey and Green [1] (correspondence by Lunscher (2]), is related to the textural edqe detection case via the complex lowpass equivalent representation of signals and systems. It should be pointed out that the development is carried out in one-dimension. However, symmetries required for extension to two-dimensions are retained.

Section II presents a brief review of the optimum tonal edqe detector. The textural model used in the development of the optimum textural edge detector is then introduced in section III. The mathematical form of the optimum textural edge detection filter and some one-dimensional examples are presented in Section IV. Concluding remarks are given in Section V.
II. REVIFW OF THF OP'IMMIM TONAI, EDGF DETFCTOR

Ths purpose of this section is to briefly review the optimum tonal aige detector derived by Shanmugan, et al., [1]. For a given filter bandwidth, the optimum tonal edqe detector places a maximum amount of output image enerqy within a given resolution interval length in the vicinity of tonal edges. The tonal edge detector is insensitive to textural edges where the average gray levels of the different textural regions are equal.

The derivation of the optimum tonal edge detector is based on representing the filter output (for a step edge input) in terms of prolate spheriodal wave functions (for the derivation, see [1], [2]). The exact one-dimensional form of the filter transfer function is given in Shanmugan, et al., [1] as

$$
\begin{equation*}
H_{S T E P, E}(\omega)=\left\{_{1}^{B_{1} \omega \psi_{1}(c, \omega I / 2 \Omega),} \quad|\omega|<\Omega\right. \tag{1}
\end{equation*}
$$

where $c=\frac{\Omega I}{2}$ and ψ_{1} is the first order prolate spheriodal wave function. (The subscript STEP, E in Equation (1) denotes the Exact form of the STEP edge detector). For any given values of spatial bandwidth, Ω, and resolution interval length, I, the transfer function in Equation (1) places the maximum amount of energy in I. The filter is difficult to implement in this form, because the values of ψ_{1} are tabulated. Application of approximations by Slepian and streifer [1], yield the asymptotic approximation of the filter, which is in closed form, hence easy to implement. The resulting expression is

$$
\begin{equation*}
H_{S T E P, E}(\omega) \cong H_{S T E P}(\omega)=k_{1} \omega^{2} \exp \left(-\frac{c \omega^{2}}{2 \Omega^{2}}\right) \tag{2}
\end{equation*}
$$

Combining the constants that appear in the argument of the exponent, and dropping the gain factor, K_{1}, yields

$$
\begin{equation*}
H_{S T E P}(\omega)=\omega\left(\omega e^{-K \omega^{2}}\right)=\omega^{2} e^{-K \omega^{2}} \tag{3}
\end{equation*}
$$

It should be noted that the parameters I and Ω can no longer be independently specified.

Choice of K sets the bandwidth of the filter, and also the resolution interval length. As K increases, resolution interval size increases, and filter bandwidth decreases. Note that even though the asymptotic approximation to the optimum transfer function is not strictly bandlimited, $H_{S T E P}(\omega)$ is effectively zero for spatial frequencies above a certain value, depending on the choice of K. The asymptotic approximation will be used in the remainder of the development.

One inherent difficulty with textural processing is the fact that no single "h st" model exists for characterizing texture in images. The model used here in the development of the optimum textural edqe detector capitalizes on the relationship between texture and spatial frequency by representing each texture as a sinusoid of different spatial frequency (i.e., fine textures contain greater concentrations of energy at higher spatial frequencias than coarser textures do) [3], [4], [5], [6], [7], [8], [9].

In general, a class of one-dimensional images with n textures can be defined as

$$
\begin{equation*}
q(x)=A(x) \cos \left(\omega_{i} x+O(x)\right) \quad i=1,2, \cdots, n \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
A(x)=a(1+\alpha(x)) \quad|a(x)|<1 \tag{5a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.O(x)=b \int_{-\infty}^{x} \beta i \lambda\right) d \lambda \tag{5b}
\end{equation*}
$$

The functions $\alpha(x)$ and $\beta(x)$ are rindom processes, ω_{1} represents the ith texture, a and b are constants, and x is the spatial variable. Note that $q(x)$ is allowed to be negative. This can be viewed as subtracting off the mean level from an image, thus allowing negative brightness or gray level. In this model, $\alpha(x)$ represents average gray level, and $B(x)$ represents the variation of spatial frequency within a texture. In other words, the envelope of $q(x)$ can be thought of as the average gray level variation, while the underlying texture is represented by each different ω_{i}, where the random change of textire for a given ω_{i} is controlled by $B(x)$. Note that if time were the independent varialle, $q(x)$ would be a double sideband plus large carrier mołulated waveform, with simultaneous frequency modulation.

An ideal texture is represented in this model by a sinusoid with constant spatial frequency and constant amplitude. Hence, a transition between two
ideal textures can be represented by a pure simusoid at onn ibpatial frepuency followed by a pure sinusoid at mother spatial frequency. For the ideal two texture case let
$A(x)=1$
$O(x)=0$
$-\infty<x<\infty$ (infinite size)
Thus, an image with two ideal textures and a textural edqe at $x=0$ is represented mathematically as

$$
\begin{equation*}
f(x)=\cos \left(\omega_{i} x\right), \quad-\infty<x<\infty \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& i=1 \text { for } x<0 \text { and } \\
& i=2 \text { for } x>0
\end{aligned}
$$

The optimum textural edge detector is derived using the ideal, two texture image, $f(x)$.
IV. OPTIMIM TEX'JURAI, EDGE DFTECTOR RESULTS AND PLRFORMANCE

This section presents the mathematical form of the optimum textural adoe detection filter and discusses the performance of the filter for several different classes of input images. The derivation is only briefly sketched here, the details are given in Townsend [10].

For a two texture input image with one texture represented by a sinusoid with frequency ω_{1}, and the other texture represented by a sinusoid with frequency ${ }^{\omega_{2}}$, the transfer function of the optimum tonal edge detector is given by

$$
\begin{equation*}
\mathrm{H}_{\text {OPT }}(\omega)=\mathrm{H}_{1}(\omega)+\mathrm{H}_{2}(\omega) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{H}_{1}(\omega)=\mathrm{H}_{\text {STEP }}\left(\omega-\omega_{1}\right)+\mathrm{H}_{\operatorname{STEP}}\left(\omega+\omega_{1}\right) \tag{8a}\\
& \mathrm{H}_{2}(\omega)=\mathrm{H}_{\text {STEP }}\left(\omega-\omega_{2}\right)+\mathrm{H}_{\text {STEP }}\left(\omega+\omega_{2}\right) \tag{8b}
\end{align*}
$$

and

$$
\begin{equation*}
H_{S T E P}(\omega)=\omega^{2} e^{-K \omega^{2}} \tag{3}
\end{equation*}
$$

It is clear from Equations (7), (8), and (3), that the optimum textural edge detector is the sum of the responses of two bandpass "sub" filters, $H_{1}(\omega)$ and $H_{2}(\omega)$. Each "sub" filter is a translated-in-frequency version of the optimum tonal edge detector, $H_{S T E P}(\omega)$, discussed in section II. Note that $H_{S T E P}(\omega)$ is translated to each of the two textural frequencies.

The optimum textural edge detector is derived by recognizing that the two-ideal-texture input image, $f(x)$, given in Section III can be expressed as the sum of two truncated sinusoids, one at frequency ω_{1}, defined for $-\infty<x<$ 0 and the other at frequency ω_{2}, defined for $0 \leqslant x \leqslant+\infty$. But each of these two truncated sinusoids are bandpass at frequencies ω_{1} and ω_{2} respectively. Each truncated sinusoid has a step function for its complex lowpass equivalent
[11]. Because $H_{S T E P}(\omega)$ is optimized for detecting step type edges, a bandpass
version of Hempip (centered on frequency "i is optimum for detecting the discontinuity (modulated step function), in the truncated sinusoid at frequency $\quad 1$ [10]. Similarly, a bandpass version of $H_{S T E P}(w)$ translated in frequency to w_{2} is optimum for detecting the discontinui , the truncated sinusoid at frequency ω_{2}. The sum of the outputs of these two indpass filters produces the optimized output. A block diagram of the filter structure for the two texture case is shown in Fiqure 1.

A qualitative discussion is presented here to gain insight into how the filter works. Fiqure 2 presents an example of the optimum textural edge detector in the frequency domain. Note from the figure that the response at ω_{1} and ω_{2} (the spatial frequencies representing the two ideal textures) is zero. Hence, $H_{\text {OpT }}(\omega)$ does not respond to any input which has spectral energy only at these two frequencies. Therefore, the response to an input representing either pure texture (in steady state) is zero. The textural edge is characterized by a transition from one texture to the otlier. The Fourier transform of this boundary contains spectral energy at frequencies other than ω_{1} and ω_{2}. In particular, there is energy in the passband portions of $H_{O P T}(w)$, therefore filter response near the textural edge is non-zero resulting in a large amount of output image energy in the vicinity of the textural edge.

The Fourier transform of the entire input image is given by

$$
\begin{equation*}
F(\omega)=F_{1}(\omega)+F_{2}(\omega) \tag{9}
\end{equation*}
$$

where $F_{1}(\omega)$ and $F_{2}(\omega)$ are the Fourier transforms of the truncated textures represente i by sinusoids at ω_{1} and ω_{2} cespectively. Multiplication of $F(\omega)$ with $H_{O P T}(\omega)$ yields the transform of the output, $G(\omega)$, i.e.,

$$
\begin{equation*}
\mathrm{G}(\omega)=\mathrm{F}(\omega) \mathrm{H}_{\mathrm{OPT}}(\omega) \tag{10}
\end{equation*}
$$

but this is equivalent to

$$
\begin{align*}
G(\omega) & =\left[F_{1}(\omega)+F_{2}(\omega)\right]\left[H_{1}(\omega)+H_{2}(\omega)\right] \\
& =F_{1}(\omega) H_{1}(\omega)+F_{1}(\omega) H_{2}(\omega)+F_{2}(\omega) H_{1}(\omega)+F_{2}(\omega) H_{2}(\omega) \tag{11}
\end{align*}
$$

but

$$
\begin{equation*}
F_{1}(\omega) H_{2}(\omega) \approx 0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}(\omega) H_{1}(\omega) \cong 0 \tag{13}
\end{equation*}
$$

Substitution of Equations (12) and (13) into Equation (11) yields

$$
\begin{align*}
G(\omega) & =F_{1}(\omega) H_{1}(\omega)+F_{2}(\omega) H_{2}(\omega) \\
& =G_{1}(\omega)+G_{2}(\omega) \tag{14}
\end{align*}
$$

Hence,

$$
\begin{equation*}
g(x)=g_{1}(x)+g_{2}(x) \tag{15}
\end{equation*}
$$

Equations (12) and (13) are true because of the spectral separation between the two sets of bandpass inputs and systems. In non-ideal texture cases, there can be considerable spectral overlap between the Fourier transforms of the textures. The spectral overlap can cause non-zero response of a system, $H_{1}(\omega)$, for example, to a textxure not centered at $\omega_{1}, F_{2}(\omega)$ for example. This could also occur if the bandpass bandwidth of $H_{1}(\omega)$ is wide enough to pass a significant amount of energy due to $F_{2}(\omega)$.

Choosing the exponential parameter, K, such that the bandpass bandwidths of $H_{1}(\omega)$ and $H_{2}(\omega)$ are wider than the spatial frequency separation between ω_{1} and ω_{2} results in non-zero response to the two textures. There is improved resolution at the expense of an increase in the "background" level in the output image, thus decreasirg edge visibility. The "background" refers to the out-of-resolution-interval gray level. Edge visibility describes the difference in gray level between the in-resolution-interval and out-of-resolu-tion-interval (background) portions of the output image. The spatial frequency separation of the texcures affects the performance of the filter, i.e., the greater the separation, the better the performance.

It way :hown in shamasan, ot a]., [1] that the optimum tonal edge detector coull be used to enhance tonal edges in images corrupted by additive white Gaussian mols. The sime theory applies to the optimum textural edge detector. The exponential parameter, k, can be chosen to decrease the bandwidth of the "sub" filters to decrease the effects of the noise. The price paid for this is an increase in the resolution interval length [10]. The benefits of increased edge visibility may more than offset the decrease in resolution.

Figure 3 shows the result of implementing the filter on a digital computer. Displayed are the input and output images (one-dimensional) of the optinum textural edge detection filter for an input with two ideal textures (one textural edge). The textural edge is clearly marked in the output image.

The transfer function, $H_{O P T}(\omega)$, can be generalized to n textures by simply adding more translated-in-frequency versions of $H_{S T E P}(\omega)$. Denote the generalized, n texture transfer function as $H_{O P T, n}(\omega)$, defined as

$$
\begin{equation*}
\mathrm{H}_{\mathrm{OPT}, \mathrm{n}}(\omega)=\sum_{i=1}^{n} H_{i}(\omega) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{i}(\omega)=H_{S T E P}\left(\omega-\omega_{i}\right)+H_{S T E P}\left(\omega+\omega_{i}\right) \tag{17}
\end{equation*}
$$

and ω_{i} represents the frequency of the i th texture. Each of the n filters respond to transient energy where textural transitions occur but null out response to the ith texture in steady state. An example of a one-dimensional output image for an input image containing four ideal textures with three textural edges is shown in Figure 4. The normalized frequencies of the four different textures in the figure are $.04 \pi, .06 \pi, .08 \pi$, and . 1π, w_{1} th each texture occurring once in the input image.

It should be pointed out that although each of the "sub" filters (i.e., $\left.H_{1}(\omega), H_{2}(\omega), \cdots\right)$ are narrowband bandpass about the respective textural frequencies, the overall system bandwidth and image handwidth are about equal, as shown in Figure 5. The total textural edge detector bandwidth, $B W$, is written in terms of the tonal edge detector bandwidth as follows:

Figure 5 (a) Spectrum of an arbitrary input image.
(b) Spectrum of optimum textural edge detection filter with bandwidth shown in terms of ω_{n} and Ω.
 bandwidth of the filter centered on ω_{n}.

The most general case of the model used in this development is one in which each of the spatial frequencies representing the different textures in the image are allowed to rardomly deviate about some averaqe frequency. This complication is introduced to allow for some of the irregularity of a real texture. A one-dimensional example in which both the amplitude and spatial frequency vary in proportion to independent random processes is shown in Figure 6. In this example, the average normalized spatial frequencies representing the two textures are $.04 \pi$ and . 1π respectively. In terms of the general model presented in Section III, $\alpha(x)$ and $B(x)$ are independent Gaussian noise processes, with unit variance. The bandwidths of the amplitude noise and frequency noise processes are . 008π and $.006 \pi$ respectively. Note that the filter adequately marks the two textural edges in the image, but also responds to regions within each texture where the spatial frequency changes. Decreasing the bandwidth of the noise modulating the frequency causes the spectral separation of the textures in the input image to increase. This results in improved performance of the filter at distinguishing textural edges from frequency deviations within a texture.

V. (OONCLIISION

A frequency domain textaral edqe doteretion filter las beon foymiopeat
which, for the qiven model and filtor hdndwidth, placos a maximum amount of image energy within a specified resolution interval near the texturdl edqe. The textural edge detector was derived by relating textural edge detection to tonal edge detection via complex lowpass equivalent representation. Hence, the optimum textural edge detector was found to be a sum of translated-in-frequency versions of the optimum tonal edge detector. This form allows the filter to be adapted to multitextural images. In addition, examples were presented which show the filter's insensitivity to tonal features in an image. The filter is adjustable; resolution can be traded for edge visibility in the case wher the input image has been corrupted by noise.

The qualitative and complex nature of texture suggests that a totally general approach to modeling and classifying texture may never be found. It has been an objective in this investigation to develop a filter which optimizes a certain criteria relating to textural edqe detection. But, as always, simplifications and assumptions were made indicating the need for further research. The model used in this development represented texture in terms of spatial frequency, and gray tone in terms of amplitude. One example of further research might be to base the development on a moze complex model which incorporates a statistical description of texture. In addition, further work is needed in extension of the one-dimensional filter to two-dimensions.

This work has provided an approach to textural edge detection which can be implemented on digital hardware using the FFT. With the increased size and availability of digital computing facilities at a decreased cost, digital image processing methods will become more popular in the future.

11] K. S. Shanmugan, F. M. Dickey, J. A. Green, "An Optimal Frequency Domain Filter for Edqe Detection in Diqital Picuures," IFFF: Trans. Pattern Anal. Machine Intell., Vol. PAMI-1, Jan. 1979.
[2] W. H. H. J. Lunscher, "The Asymptotic Optimal Frequency Domain Filter for Edge Detection," IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-5, Nov. 1983.
[3] L. Kirvida, "Texture Measurements for the Automatic Classification of Imagery, IEEE Trans. Electromagnetic Compat., Vol. 18, pp. 38-42, Feb. 1976.
[4] L. Kirvida and G. Johnson, "Automatic Tnterpretation of ERTS Data for Forest Manaqement," Symp. on Siqnificas.t Results Obtained from the Earth Res. Technol. Setellite, NASA SP-327, March 1973.
[5] R. P. Kruger, W. B. Thompson, and A. F. Turner, "Computer Diagnosis of Pneumoconiosis," IEEE Trans. Systems, Man, and Cybernetics, Vol. SMC-4, No. 1, pp. 40-49, January 1974.
[6] R. N. Sutton and E. L. Hall, "Texture Measures for Automatic Classification of Pulmonary Disease," IEEE Trans. Computers, Vol. C-21, pp. 667-676, July 1972 .
H. Maurer, "Texture Analysis with Fourier Series," Proc. Ninth Int. Symp. on Remote Sensing of Fnvironment (Environmental Research Insti-
tute of Michiqan, Ann Arbor, MI), pp. $1411-1420$, April 1974 . tute of Michigan, Ann Arbor, MI), pp. 1411-1420, April 1974.
[8] R. Bajcsy and L. Licberman, "Computer Description of Real Outdoor Scenes," in Proc. Second Int. Joint Conf. on Pattern Recognition (Copenhagen, Denmark), pp. 174-179, August 1974.
[9] R. Bajcsy and L. Lieberman, "Texture Gradient as a Depth Cue," Comput. Graph. Image Processing, Vol. 5, No. 1, pp. 52-67, 1976.
[10] J. K. Townsend, "An Optimal Frequency Domain Textural Edge Detection Filter," Master's Thesis, University of Kansas, December 1984.

[^0]: * We are concerned here with extracting information from SAR images, not , rocessing the received inphase and quadrature voltaqes to form the SAR image.

[^1]: * The development of the textural edge detection filter was also partially supported by NASA Contract No. NASA 9-16664.

[^2]: CALL THCGUD IIDLFN, ACTLFN, THRSFA, SILE, REGS, OUTSIZ, ε TTYOLT, TTYIN, TBUFF, ER,R)

[^3]: *The image contained 512×512 pixels and the autocorrelation function was obtained using FFT techniques.

[^4]: a) original, b) BTC, c) modified BTC, d) adaptive BTC

