SOFTWARE ENGINEERING LABORATORY SEL-84-004 SEL-84-004

{NASA-TM-88594) PROCEEDINGS GF THE NINTH N86~-19967

ANNUAL SOFTWARE ENGINEERING WCORKSHOP (NASA) THRU

361 p HC A16/MF acCt CSCL 09B N86-19380
Unclas

G3/61 05491

PROCEEDINGS OF THE
NINTH ANNUAL SOFTWARE
ENGINEERING WORKSHOP

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

PROCEEDINGS
OF
NINTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Organized by:

Software Engineering Laboratory
GSFC

November 28, 1984

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

CONTENTS

Page

AGENDA . e s iv
SUMMARY OF THE SESSIONS:

Ninth Annual Software Engineering Workshop e e e C e e . 1
SESSION 1

An Approach to Developing Specification Measures cee 14

Evaluating Software Testing Strategies e B - ¥

Software Development in ADA e 65
SESSION 2:

A Large Scale Experiment in N-Version Programming 86

Design Metrics for Maintenance e e e 100

An Approach to Operating System Testing e e 136

The Cognitive Connection: Software Maintenance and Documentation 168
SESSION 3:

An Evaluation of Programmer/Analyst Workstations e e 178

A Model for the Prediction of Latent Errors Using Data Obtained During

the Development Process e e e e ... 196

The Independence of Software Metrics Taken at Different Life-Cycle Stages 213
SESSION 4:

An Interactive Program for Software Reliability Modeling e . 231

Assessing the Proficiency of Software Developers 264

Tailoring a Software Production Environment for a Large Project oo . 313
Attendance Coee e e e e . e .. A
Bibliography of Sel Literature C e e e B-1

e

277~ 7o T

FOREWARD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National Aeronautics
and Space Administration Goddard Space Flight Center (NASA/GSFC) and created for the purpose of
investigating the effectiveness of software engineering technologies when applied to the development

of applications software. The SEL was created in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)
The goals of the SEL are (1) to understand the software development process in the GSFC environ-
ment; (2) to measure the effect of various methodologies, tools, and models on this process; and (3)
to identify and then to apply successful development practices. The activities, findings, and recom-

mendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series
of reports that includes this document.

Single copies of this document can be obtained by writing to

Frank E. McGarry

Code 552

NASA/GSFC

Greenbelt, Maryland 20771

111

8:00 a.m.

8:45 a.m.

9:00 a.m.

10:30 a.m.

11:00 a.m.

12:30 p.m.

AGENDA

NINTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER
BUILDING 3 AUDITORIUM

NOVEMBER 28, 1984

Registration - ‘Sign In’
Coffee, Donuts

INTRODUCTORY REMARKS

Session No. 1

‘‘An Approach to Developing
Specification Measures’’

‘‘Evaluating Software Testing
Strategies™’

‘“‘Analysis of Software Development
in Ada”’

BREAK

Session No. 2

‘A Large Scale Experiment In
N-Version Programming’’

*‘Design Metrics for Maintenance’’

‘“‘An Approach to Operating System
Testing™’

LUNCH

v

J. J. Quann, Deputy Director
(NASA/GSFC)

Topic: Current Research in the
Software Engineering Laboratory
(SEL)

Discussant: F. E. McGarry
(NASA/GSFC)

W. Agresti (CSC)

R. Selby (Univ. of Maryland)
V. Basili (Univ. of Maryland)
Topic: Software Error Studies
Discussant: M. Zelkowitz

(Univ. of Maryland)

J. Knight (Univ. of Virginia)

H. Rombach (Univ. of Maryland)

R. Sum (Univ. of Illinois)

1:30 p.m.

3:00 p.m.

3:30 p.m.

5:00 p.m.

Session No. 3

“‘Implementation and Evaluation of
Programmer/Analyst Workstations™’

“‘A Model for the Prediction of Latent
Errors Using Data Obtained During
the Development Process’’

*“The Independence of Software
Metrics Taken at Different Life-Cycle
Stages”’ '

BREAK

Session No. 4

“‘An Interactive Program for Software
Reliability Modeling**

““Measuring Proficiency of Software
Developers’’

““Tailoring A Software Production
Environment of a Large Project”’

ADJOURN

Topic: Experiments with Software

Development

Discussant: J. Page (CSC)

K. Koerner (CSC)

J. Gaffney (IBM)
S. Martello (IBM)

D. Kafura (Virginta
Polytechnical Institute)

Topic: Software Tools

Discussant: K. Tasaki (GSFC)

W. Farr (NSWC)

L. Putnam (QSM)

D. Levine (Intermetrics)

NINTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

ABOUT THE WORKSHOP

The Ninth Annual Software Engineering Workshop was held on Nov 28, 1984, at Goddard Space
Flight Center in Greenbelt, MD. Nearly 300 people, representing 7 universities, 26 agencies of the
federal government, and 56 private organizations, attending the meeting.

As in the past 8 years, the major emphasis for this meeting was the reporting and discussion of ex-
periences in the identification, utilization, and evaluation of software methodologies, models, and
tools. Twelve speakers, making up four separate sessions, participated in the meeting with each ses-
sion having a panel format with heavy participation from the audience.

The workshop is organized by the Software Engineering Laboratory (SEL), whose members represent
the NASA/GSFC, University of Maryland, and Computer Sciences Corporation (CSC). The meeting
has been an annual event for the past 8 years (1976 to 1984), and there are plans to continue those
yearly meetings as long as they are productive.

The record of the meeting is generated by members of the SEL and is printed and distributed by the
Goddard Space Flight Center. All persons who are registered on the mail list of the SEL receive
copies of the proceedings at no charge.

Additional information about the workshop or about the SEL may be obtained by contacting:

Mr. Frank McGarry
Code 552
NASA/GSFC
Greenbelt, MD 20771

301-344-6846

vi

SUMMARY OF THE SESSIONS: NINTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

Prepared for the
NASA/GSFC

NINTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

By
Q. L. Jordan

COMPUTER SCIENCES CORPORATION

and

THE GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

The Ninth Annual Software Engineering Workshop was held on
November 28, 1984, at the National Aeronautics and Space
Administration (NASA)/Goddard Space Flight Center (GSFC) in
Greenbelt, Maryland. This annual fair is held for the pur-
pose of reporting and discussing experiences in measurement,
utilization, and evaluation of software methodologies, mod-
els, and tools. John J. Quann, Deputy Director of NASA/
GSFC, indicated in his opening remarks that NASA's involve-
ment in ever larger and more complex systems, like the space
station project, provides a motive for the support of soft-
ware engineering research and the exchange of ideas in
forums such as this workshop. The workshop was organized by
the Software Engineering Laboratory (SEL), whose members
represent NASA/GSFC, the University of Maryland (UM), and
Computer Sciences Corporation (CSC). The workshop was con-
ducted in four sessions that addressed the topics of current
SEL research, software error studies, experiments with soft-
ware development, and software tools. Twelve papers, three
for each topic, were presented, with the audience actively
participating in all discussions through general commentary,
questions, and interaction with speakers.

Approximately 300 persons representing 56 private companies,
7 universities, and 26 agencies of the Federal Government
attended the workshop.

Ong of the major themes of the day pertained to the devel-
opment, assessment, and verification of software measures
applicable to the requirements and design phases of the
software life cycle. This theme was addressed by

Dr. William Agresti, Dr. Dennis Kafura, Dr. Dieter Rombach,
and Mr. John Gaffney. Dr. William Agresti of CSC (An

Approach to Developing Specification Measures) discussed the

application of a Composite Specifications Model (CSM) that
describes specifications from several representative

aspects. The basic purpose of his project was to provide,
early in the development process, appropriate information to
the diverse groups of managers, analysts, developers, and
customers. This information should be provided by objective
measures derived from the requirements specification. His
paper described one attempt to accomplish this by extracting
29 explicit measures such as number of pages, constraints,
and input/output (I/0) requirements from existing require-
ments specification documents for five NASA/GSFC projects.
He showed that, while these measures were extractable, they
were not useful. He defined a CSM representing specifica-
tions from three aspects: functional (data flow), contex-
tual (entity/relationship), and dynamic (state/transition).
Fifty-eight explicit and analytic (i.e., derived from the
explicit) measures were defined and extracted from a NASA
project that was part of the ground system for a recent
shuttle-launched satellite and consisted of 11,000 lines of
code. This experiment showed that the CSM is feasible and
can provide predictive quantitative information early in
development. Since this attempt with the CSM represents
only one data point, the CSM must also be applied to other
projects. In response to questions, Dr. Agresti indicated
that the CSM did not represent performance, so that the tra-
ditional specification is not completely replaced. He also
noted that tracking changes through several versions is a
configuration management problem, but it should be easier
with the CSM than the traditional representation.

In another experiment related to the software measures,
Dr. Dennis Kafura of Virginia Polytechnic Institute (The
Independence of Software Metrics Taken at Different Life

Cycle Stages) discussed an effort to define a complete and
minimal set of metrics--complete in the sense that all forms

of complexity are represented, and minimal in the sense that
no redundant (i.e., highly correlated) measures appear.
Threq projects, an operating system, a data base system, and
a ground support system, were chosen to represent different
applications and environments. Metrics considered in the
study were broadly classed as code, structure, and hybrid
metrics. Code metrics, defined in terms of the implemented
code, include Halstead's software science measures and
McCabe's cyclomatic complexity. _Structure metrics, defined
in terms of the relationship between major system components,
include Henry and Kafura's information flow complexity and
McClure's invocation complexity. Hybrid metrics, combining
elements of both code and structure metrics, include
Woodfield's syntactic interconnection measure (combining
control and data relationships between components with
Halstead's effort measure) and Yau and Collofello's stabil-
ity measure. Study results indicate that the code metrics
all seem to be highly correlated. The structure metrics
appear to be distinct among themselves and different from
code metrics. The relationship of the hybrid to the code
and structure metrics is less straightforward. During the
following discussion, Dr. Kafura noted that information flow
metrics were expensive to obtain, since this involved input-
ting source code to a tool and working backward. The struc-
ture and hybrid metrics might be obtained more easily at
design time.

In another effort to assess the utility of measures,
Dr. Dieter Rombach of UM (Design Metrics for Maintenance)

presented a study to determine the impact of system design
characteristics on maintenance behavior. Three timesharing
and three process control systems were chosen for the study.
The software was characterized by the number of modules and
the number of explicit and implicit data structures. The

structure of a module was characterized by exterior com-
pPlexity (control, data, and information control) and
interior complexity (control flow, length, and interface
intensity). Dr. Rombach extracted these measures from de-
sign documents and then seeded each system with 25 faults.
Nine programmers simulated a maintenance environment by re-
sponding to the seeded faults, environment changes, and
requirements changes. Complexity, stability, and modifi-
ability were compared for different module types, and the
results showed that the maintenance behavior of a system can
be predicted by an examination of design documents; the best
prediction can be obtained from a system that has exterior
complexity characterized by integrated information flow.

In yet another effort targeted toward the area of measures,
Mr. John Gaffney, Jr., of IBM (A Model for the Prediction of
Latent Errors Using Data Obtained During the Development
Process) discussed a model implemented on an IBM personal
computer that estimates latent (postship) errors on the
basis of the count of errors found during each stage of the
software life cycle. This technique has proved effective in
predicting software errors during late phases of development
as well as after system delivery. Model input consists
mainly of error counts during each stage of the life cycle,

which includes an error discovery process. This process
includes high-level design inspections, low-level design
inspections, code inspections, unit test, integration test,
and system test. A discrete form of the Rayleigh curve is
used in the model to represent the number of errors removed
per thousand lines of source code (KSLOC) as the inde-
pendent variable expressed as a function of the error
discovery process. This model can be used to aid the man-
agement and control of the development process by providing
estimates of error counts found during successive stages of

the development process. For example, if early error

discovery rates are not as high as predicted, some manage-
ment action such as additional inspections or test hours may
be indicated for later stages to produce an acceptable
latent error content. The error discovery histories of dif-
ferent software products and different stages in the devel-
opment of a single product. can be compared.

The second major theme for the day pertained to experimenta-
tion with and evaluation of software development methodolo-
gies. This theme was addressed by Dr. Richard Selby,

Dr. Victor Basili, Ms. Kathy Koerner, and Dr. John Knight.
Dr. Richard Selby of UM (Evaluating Software Testing

Strategies) described an experiment conducted to compare

some common software testing techniques: code reading,
functional testing, and structural testing. Thirty-two pro-
grammers from NASA/GSFC and CSC participated in the experi-
ment to test three programs. The results of this experiment
showed that code reading is more effective in uncovering
faults (3.3 errors per hour versus 1.8 errors per hour for
the other two methods) and less expensive to utilize than is
either functional or structural testing. In the ensuing
discussion, Dr. Selby said that no previously unknown errors
were found, though some problems reported as errors were
cleared up by clarifying requirements or driver programs.

He also pointed out that it was not yet clear that the re-
sults of this experiment can be generalized to larger pro-
grams.

In a second experiment dealing with methodology assessment,
Dr. Victor Basili of UM (Analysis of Software Development in

Ada*) discussed a project to develop and analyze an Ada

*Ada is a registered trademark of the U. S. Government (Ada
Joint Program Office).

product in terms of effort and errors. The goals of this
project were to evaluate the effect of using Ada for the
development methodology, to develop a set of metrics for
Ada, and to establish a baseline for future projects using
Ada. The experiment task was to redesign and implement in
Ada a satellite ground support system that was initially
developed in FORTRAN. Four programmers with no prior Ada
experience were involved in the redesign and implementation
after 1 month of training. Errors were classified as lan-
guage related (syntax; semantics - i.e., the meaning of an
Ada feature; and concept - i.e., how an Ada feature should
be used), misunderstanding of the problem or environment,
and simple clerical or typographical errors. Dr. Basili
noted that the majority of errors found in this project were
syntax errors, which led him to conclude that a syntax-
directed editor is almost a must with Ada. Programmers
tended not to think at a high enough level of abstraction
but rather at the FORTRAN code level. Ada features were
used, but conservatively, and there was little information
hiding. He concluded that training in Ada-based methodology
is not only extremely important but also requires a much
larger effort than he had originally anticipated. Examples
from the area of the given application are needed to under-
stand appropriate data abstraction. Because a higher level
of abstraction is required to apply Ada to coding, the de-
velopment methodology must begin at a higher level early in
the development process. In the discussion following

Dr. Basili's presentation, the point was made that, if used
properly, Ada should result in very high productivity. If,
however, Ada is used with the traditional FORTRAN
methodology or "mind-set," then developers would do better
to stick to FORTRAN.

Ms. Kathy Koerner of CSC (An Evaluation of Programmer/

Analyst Workstations) reported the results of an experiment

to evaluate programmer/analyst workstations to automate re-
quirements and design activities. Automation of require-
ments and design activities promises substantial gains in
productivity and quality. CSC and GSFC are conducting a
three-step evaluation of programmer/analyst workstations
that provides requirements analysis and design tools. The
steps are: (1) an assessment of available workstation tech-
nology, (2) a controlled experiment utilizing selected work-
stations, and (3) a long-term study of the effects of
workstation use on development. Steps 1 and 2 were com-
pleted recently. The industry survey identified four micro-
processor implementations of workstations that provided most
of the required capabilities. The NASTEC CASE 2000 and
Index Technology EXCELERATOR were selected for the in-house
evaluation. Both a collection of general users and a divi-
sion evaluation team participated in the evaluation. The
general users rated the EXCELERATOR high with respect to
ease of learning and use but otherwise rated the two systems
about equ;lly. The division evaluation team rated the

CASE 2000 high in terms of overall support. Both systems
offer improvements in productivity and quality relative to
the manual approach. Differences between the general user
and division team evaluations reflect different perspectives
on workstation support needs. The EXCELERATOR appears to be
better suited for small- to medium-scale projects, while
some of the special capabilities of the CASE 2000 make it
more attractive for large projects. During Step 3 of the
evaluation process, both workstations will be applied to
different production projects, and their effects on produc-
tivity and quality will be measured objectively. 1In the
following discussion, an estimate was offered for one case

of a 40 percent cost reduction for design and specification
in the use of these tools for reworking drawings.

In yet another area of development methodology experimenta-
tion, Dr. John Knight of the University of Vvirginia (A
Large-Scale Experiment in N-Version Programming) described a

method in which several versions of a program are independ-
ently prepared from a single requirements specification, to
produce fault-tolerant software. The execution results of
all versions which are run with identical input are com-
pared, and a decision is made or output is chosen by vote.
Use of the technique implicitly assumes that failures among
the several versions are independent. This assumption was
tested in an experiment using senior undergraduate and grad-
uate students at the universities of Virginia and California-
Irvine. The problem chosen was the development in Pascal of
a radar data processor that provided missile friend/foe
identification. Twenty-seven Pascal versions of the com-
pleted software were subjected to one million tests. Ten
versions demonstrated no failures, and most were 99 percent
reliable. There were a number of multiple failures. The
bugs shared among versions were usually obscure and seemed
to result from flaws in problem understanding. The computed
probability of multiple failure was 0.000126. However, the
observed probability was 0.001255. The independence hypo-
thesis was rejected at the 99 percent confidence level. 1In
response to questions, Dr. Knight added that test data was
generated by uniformly distributed random number sequences
and that, where a parameter had a range, the value was
varied throughout the range. No testing of real-time capa-
bilities was done.

The third group of presenters covered a potpourri of topics
ranging from productivity to configuration management. The
presenters were Mr. Larry Putnam, Mr. David Levine,

Mr. R. N. Sum, Mr. William Farr, and Mr. Oliver Smith.

Specific topics were empirical studies to model productivity
and other development characteristics as functions of staff-
ing profiles, the impact of formalized and automated con-
figuration tools for large-scale development projects, a
heuristic method for testing an operating system, and an
interactive tool to support software reliability modeling.
Mr. Larry Putnam of Quantitative Software Management, Inc.
(QSM) (Measuring Proficiency of Software Developers) pre-

sented the results of empirical studies he has performed to
model productivity and other software development character-
istics in terms of staffing profiles, and he pointed out
sharp differences between development in the United States
and Japan. An algorithm from the Software Lifecycle Manage-
ment Model (SLIM) was used to develop a productivity index
to measure the proficiency of software developers. This
productivity index has been computed for each of the

800 systems in the QSM data base. Comparisons of the devel-
oper performance were made with development time and effort,
project staffing, and productivity. From this analysis, it
was possible to determine the developers' style for building
software. One style was characterized by fast buildup of
resources, high staffing levels, and quick product delivery.
Another style was characterized by slower buildup, lower
staffing levels, and slower product delivery. Three Japanese
companies exhibiting the former style were contrasted with
three American companies exhibiting the latter style. The
Japanese cost was higher and productivity was lower than the
U.S. companies. The implication is that scheduling and
staffing, controlled by management, have a significant im-
pact on productivity. During the following discussion,

Mr. Putnam said that the slower buildup development style
produced higher quality code. One U.S. manufacturer got five

times better code.

10

Mr. David Levine of Intermetrics, Inc. (Tailoring a Software

Environment for a Large Project) described the impact of

utilizing automated and formalized configuration control
tools in the support of disciplined development for large-
scale projects. A software production environment was con-
structed to meet the goals of a specific large programming
project (100 KSLOC and 700 modules). A method was developed
to automatically maintain the version identification of each
module in a form that was easily visible and checkable by
standard tools, especially by the linker. The version num-
ber was also appended to a module when copied into the pro-
grammer's private library. The version number was then
frozen and was carried into the object code and load mod-
ules. The development language supported separate compila-
tion. This capability required good management to maintain
correctness and to control recompilation. A system was
developed in which the interface definitions were provided
in the same files as the functions they described. They
could then be extracted for inclusion by other units. Other
systems were developed to meet the needs imposed on the
project by continuous integration to maintain a stable of-
ficial baseline configuration while developers were adding
and modifying code. The environment was implemented on UNIX
to support development by up to 20 programmers. The project
took 2 years and involved 9200 versions. A project of this
size seems to require a less strong interconnection and less
changeable interface than a smaller project. This has major
implications for the support system.

Mr. R. N. Sum, Jr., of the University of Illinois (An_Ap-
proach to Operating System Testing) discussed a heuristic
method used to test an operating system. The results of
applying this method to the IBM System 9000 XENIX operating
system test and the development of a UNIX test suite were

presented. System specifications were used to divide the

11

system into manageable pieces to test, and user's manuals
were used to develop the specific tests. The system was
divided into high-level commands available to users, library
and utility subroutines, and system calls used by the system
programmers and drivers. Testing methods applied were ex-
haustive (every possible value in the input range), random
(values randomly selected from the input range), special
(specific values of input that have specific or unusual
results), explicit (values explicitly used or suggested in
the manuals), and exception (illegal input values to test
error handling). A Problem Tracking Memorandum (PTM) was
used to document errors. Commands, being the largest cate-
gory, were the most error prone (51.9 percent of PTMs), with
documentation accounting for 19.6 percent of the PTMs. A
surprising 15.4 percent of PTMs were accounted for by system
calls., Results were also presented by test type, error
severity level, and manpower profile. The method exhibits
many of the characteristics of a good system test, and even
though the System 9000 is considered a small system, the
system test used approximately 30 research-assistant months.
It therefore appears that hardware advancements are blurring
the concept of size so that size must be carefully consid-

ered in system development.

Mr. William Farr and Mr. Oliver Smith of the Naval Surface
Weapons Center (An Interactive Program for Software Relia-
bility Modeling) described an interactive tool that has been
developed in support of the use of several well-known soft-
ware reliability models for the estimation and analysis of
errors. They implemented a Statistical Modeling and Estima-
tion of Reliability Functions for Software (SMERFS) to fa-

cilitate the application of reliability analysis. The
program includes eight well-known models, four based on
error interarrival time and four based on the count of er-
rors per testing period. Development goals of the SMERFS

12

program were maintainability, providing a complete reliabil-
ity environment, interactive capability, error detection
capability, and machine transportability. The use of the
program was illustrated with a sample data analysis. The
user may, by menu selection, input, edit, or transform data,
obtain statistics and plots of input data, run a model from
the choice of eight, obtain goodness-of-fit results, and
generate plots of original and predicted data and plots of
residual data. In the discussion that followed the pres-
entation, Mr. Farr said that the program has been used by
two large-scale Navy projects with very good results. Pre-
dicted error rates using some of these models were within

10 percent of actual.

13

PANEL #1

THE SOFTWARE ENGINEERING LABORATORY (SEL)
W. Agresti, Computer Sciences Corp

R. Selby. Universitv of Marvland
V. Basili. University of Marvland

(3%

Vi
N8§6-19968
AN APPROACH TO DEVELOPING SPECIFICATIQN MEASURESl

William W. Agrest12
Computer Sciences Corporation

ABSTRACT

An approach to developing specification measures is de-

scribed. A key feature of the approach is the introduction
of a new requirements representation, the Composite Specifi-
cation Model (CSM). Results are reported from an experiment
in which the requirements for a real system are recast using

the CSM. Specification measures are then extracted from the
CSM representation of the system.

lProceedings, Ninth Annual Software Engineering Workshop,

National Aeronautics and Space Administration, Goddard
Space Flight Center, November 1984

2puthor's Address: System Sciences Division, Computer

Sciences Corporation, 8728 Colesville Road, Silver Spring,
Maryland 20910

14

INTRODUCTION

The first objective of the Software Engineering Laboratory
(SEL) (Reference 1) is to understand the software develop-
ment process in the flight dynamics environment of the
National Aeronautics and Space Administration (NASA) Goddard
Space Flight Center (GSFC). To meet this objective, many
SEL studies (e.g., References 2 through 4) have followed
Lord Kelvin's admonition (Reference 5) that "satisfactory”
understanding comes through measurement. However, aspects
of the software development process and product accommodate
measurement to vastly different degrees. Coding and test-
ing, for example, lead to familiar measures such as lines of
code and fault rate. But if we want measures that will help
us estimate and plan, these measures become available too
late in the software development life cycle to be of use.

In earlier phases, measurement grows increasingly more dif-
ficult. As the target of measurement shifts from coding to
design and, ultimately, to requirements, we find that the
familiar measures depend on infcrmation that is no longer
available. Despite this expected difficulty, this study
sought to extend tne SEL's measurement horizon to the re-
quirements phase.

THE MEASUREMENT OF REQUIREMENTS SPECIFICATIONS

One way to account for the difficulty in measuring require-
ments is to recognize the needs of the various audiences who
use requirements specifications.

People who fulfill four different roles--analyst, manager,
developer and customer--look to the requirements for differ-
ent reasons. While it is axiomatic to say that all four
groups want a "good" specification, closer inspection re-
veals the "goodness" taking many forms. Figure 2* implies
that a good specification possesses certain desirable prop-
erties e.g., consistency, completeness, and understanda-
bility.

*All figures are grouped together at the end of the paper.

15

Figure 2 also suggests that a good specification facilitates
assessment and estimation:

) How complex are the requirements?

° How much will it cost to develop software that sat-
isfies the requirements?

° How familiar is this application to our development
staff?

The measurement goal is to encase the requirements in a

shell (Fiqure 3) so that anyone referring to the specifica-
tion may now obtain a measure of his/her property of inter-
est. Clearly the requirements specification will need to be
processed in some fashion to generate such property measures.

THE INITIAL APPROACH

The approach (Figure 4) to providing specification measures
was driven by a preference for objective measures instead of
guestionnaires or other subjective ratings (Reference 6).
Requirements specifications from the flight dynamics area
were examined for the purpose of identifying measurable at-
tributes. A total of 29 measures were defined (Reference 7).

Because of the interest in objectivity, the resulting meas-
ures were explicit counts--number of pages, number of con-

straints, etc.--that were believed to be unaffected by the

analyst extracting the measures.

As an experiment, the measures were extracted from several
requirements specifications. Being explicit counts, the
measures were easy to extract. However, examination of the
metric values led to the conclusion that they were not use-
ful for quantitatively characterizing the requirements.

This conclusion is not a judgment on the contents of the
requirements documents. Rather, it finds that the require-
ments specifications do not facilitate objective measure-
ment. Such a result is not unexpected. Boehm has observed
(Reference 8) that "Some work has been done to correlate the
amount of software development effort to the number of spec-
ification elements. . . . These attempts have run into the
same sort of definitional and normalization problems as have
the 'number of routines, reports, etc.'...."

Figure 5 is an example of the extracted data that led to the
conclusion. Five flight dynamics projects were selected

16

because all involved spacecraft attitude determination.
Furthermore, their requirements documents contained identi-
cal section headings, indicative of parallel organization.
Because of the commonality in the documents' structure, the
measures might be more apt to exhibit some pattern that can
be exploited to advantage for estimation or property detec-
tion.

Figure 5 depicts, for the five projects, the number of new
source lines of code in the delivered system plotted against
the number of payes in the system's requirements document.
The intuition is simple: if it takes more pages to specify
the requirements for one system than another, then we would
expect the first system to be larger than the second because
both systems were built to satisfy their requirements speci-
fications.

The scatter in Figure 5 shows that our expected pattern did
not materialize. The requirements documents for projects D
and E, for example, were nearly the same size, but project E
had five times the number of new source lines as project D.
Other evidence that the extracted metric values were not
true indicators of the requirements was not easy to display
graphically. Measures such as "number of constraints" were
difficult to enumerate fairly when aspects of the require-
ments were expressed at different levels of detail.

The lesson learned from this initial excursion into require-
ments specification metrics was that "representation is
everything!" The simple counts we extracted were not useful
measures because they reflect the variability that is found
in the representation of requirements.

THE REVISED APPROACH

The message was clear: get the process of representing re-
quirements under control. Only then would we have confi-
dence that our extracted measures were indicative of the
underlying requirements and not an artifact of their textual
representation.

Our revised approach centered on the development of a dif-
ferent requirements representation, one that would enable.
the definition and extraction of objective measures. We
proposed a five-step plan (Figure 6) that included an exper-
iment of applying the new model to a real system.

17

The first step the revised procedure was to propose a new

representation. We sought a representation that would ac-
commodate the varying sized projects that are found in the
flight dynamics environment. Requirements statement lan-

guages were an alternative. However, previous SEL experi-
ence (Reference 9) with such languages suggested their use
only for larger projects, rather than those common to our

environment (Reference 1).

We developed a representation called the Composite Specifi-
cation Model, or CSM. It seemed both realistic and valuable
as a template for specifying requirements. CSM is motivated
by the work of DeMarco and others (References 10 and 11) in
expressing the benefits of multiple views of requirements.
The inherent complex behavior of large software and the mul-
tiple audiences for requirements specifications (Figure 2)
support the observation that no single view of the require-
ments will be satisfactory. DeMarco (Reference 1l0) suggests
an analogy to this situation is a three-dimensional object
presented in a two-dimensional medium: an illustration
would show the orthogonal projections of the object onto
each plane,

Another analogy is the representation of a building. The
architect may use a scale model to show the planning commis-
sion and a set of blueprints to show the electricians. More
than one representation of a complex object may exist at any
time. The object's features that are highlighted depend on
the needs of the audience.

STEP 1l: THE COMPOSITE SPECIFICATIONS MODEL

The CSM is a composite of different viewpoints, each with
its own notation (Figure 7). Currently, the CSM is com-
prised of three views--functional, contextual, and dynamic--
but more could be added. The decision was made to advocate
distinct "pure" views as opposed to embellishing an existing
notation (e.g., data flow diagrams) with new symbols and
associated semantics. Generating the CSM would impose a
healthy discipline on the analyst to briefly restrict his or
her attention, for example, to functional issues. The ana-
lyst would capture that understanding of functional require-
ments in a notation before moving on to consider, in turn,
the contextual and dynamic views.

Certain properties of the CSM are significant. First, the
number of views is not fixed at three; more may be added.
Second, the viewpoint is not ultimately connected to one
specific notation. If a better notation were found for the
dynamic view, for example, it could be introduced. 1In this
sense, the CSM can grow and adjust to new developments.

18

The current notations for the CSM are

° Data flow analysis (for functional view)

® Entity-relationship (ER) approach (for contextual
view)

° State-transition analysis (for dynamic view)

All three notations may be expressed using diagrams, making
the CSM more accessible because of its nonnarrative style.

Examples of the three views are presented in Figures 8, 9,
and 10.

Figure 8 represents a data flow diagram of processes, data
flows, and data stores in accordance with the guidelines in
Reference 12. A data dictionary would accompany the dia-
grams to provide definitions of the data items, data rec-
ords, external entities, processes, data flows, and data
stores. Because data flow analysis is generally well known,
it will not be discussed further; References 12 may be con-
sulted for a detailed introduction.

While functional processing is a predictable component of
most specification models, the contextual view is not so
obvious a choice. Hence, the motivation for its use will be
discussed. The environment or information space in which
the system will reside is of immediate concern. Capturing
the context of a system has been relatively undervalued as a
tool for requirements engineering. A partial explanation
may be that, for small programming exercises (e.g., sorting
numbers or solving an equation), the background environment
is either nonexistent or not a major concern, and therefore
needs no representation. Many of the guidelines for
addressing large system development have begun as attempts
to "scale-up" the approaches (e.g., structured techniques)
that were successful with small programs. Because the con-
text is not important in understanding small programs, it
has not been one of the techniques that investigators pur-
sued in this scaling-up process.

Witn larger systems, the context or environment is a signif-
icant element in understanding the system's behavior. The
software system is modeling some portion of an environment.
The system, when it is completed, will be taking its place
in that environment, interacting with other objects (e.g.,
hardware, sensors, other software) that are producing behav-
ior in the environment. To describe its behavior relative
to these other objects, the system must refer to specific
attributes of the objects, for example, the mean radius of

19

the Earth or the size of fuel tanks. Likewise, events in
the environment (e.g., loss of signal, thruster on-time) may
trigger behavior by the system. Not all of the attributes
or events in the environment are modeled by the system. 1In
this sense, the model of the environment is not complete,
nor is it ever intended to be complete. An individual at-
tempting to understand the functioning and behavior of the
software will be aided by seeing a representation of pre-
cisely those objects, attributes, and events that the system
needs to know about in its environment.

The representation of the environment is not the same as a
data dictionary. Data items in the dictionary may have no
counterpart in the breakdown of objects, attributes, and
events in the environment. Conversely, descriptors in the
environment (e.g., Earth, gyro) will not always correspond
to data items.

Because of the increase in complexity, it is much more dif-
ficult to specify the requirements for large systems than
for small programs. Simon (Reference 13) sees the origin of
the added complexity in a rough analogy between large sys-
tems and humans as decisionmaking, behavior-producing en-
tities:

"A man, viewed as a behaving system is quite simple.
The apparent complexity of his behavior over time is
largely a reflection of the complexity of the environ-
ment in which he finds himself."

The implication is that a large system is more complex be-
cause it is modeling more of a complex environment. In this
sense, representing the environment in the CSM requires fo-
cusing properly on the source of the complexity.

Capturing the information space or context will be extremely
valuable in making decisions about the reusability of sys-
tems. From this representation, the particular environment
of an existing system will be visible. An analyst or devel-
oper will thus be able to assess the degree of reusability
based on the new system's similarity to the objects, attri-
butes, and events characterizing\the environment of an ex-
isting system.

Modifiability or designing for change is a desirable attri-
bute of a system. 1Its embodiment earlier in the life cycle
is to "specify for change." Many of the changes to a system
are responses to changes in the environment. When the spec-
ification includes a representation of the environment, the
effects of such changes are easier to assess, because both
the change and the specification being changed are expressed

20

in the same terms in the domain of the application and the
user.

The form used in the CSM for representing the contextual
view of a system is the ER approach (Reference 14). Four
terms are used in the ER approach: entities, relationships,
attributes, and value sets. Figure 9 is an example of an ER
diagram that is a useful visual aid when a small number of
opjects are being displayed.

Entities are identifiable objects in the environment. Some
examples are a momentum wheel, a user, a CRT display, a fuel
tank, Earth, and a spacecraft. Events (e.g., start of ma-
neuver, end of integration step) are considered to be enti-
ties in the ER approach. In the CSM, the entities that
correspond to events can be identified separately but share
all of the properties of entities. 1In the following dis-
cussion, entities may includes events.

Relationships are associations among entities and are de-
fined as are relations in discrete mathematics (Refer-
ence 15). Examples of relations in Figure 9 are T/S for
thruster-spacecraft and F/T/S for fuel-thruster-spacecraft.

Information about entities and relationships is expressed by
a set by attribute-value pairs. An attribute is a property
or feature of the entity or relationship. For example, the
entity "fuel tank" have an attribute of volume.

Value sets combine the concepts of the units of measure with
ranges and types of acceptable values for attributes. Fig-
ure 9 shows the value set for the attribute "center of
gravity."

A valuable conceptual feature of the ER approach is the
ability to associate attributes with relationships as well
as entities. The attribute, thruster position, in Figure 9
is properly associated with the thruster-spacecraft rela-
tion. It would be inaccurate to associate it with either of
the entities "thruster" or "spacecraft" alone.

Figure 10 shows an example of the CSM's dynamic view, repre-
senting the benavior of the system over time. The notation
used is the state transition diagram, a directed graph in
which the nodes correspond to states of the system and the
directed arcs show the possible changes in state. Events in
the environment (e.g., a user selects a menu option) provide
the stimuli to trigger a state change.

21

STEP 2: THE DEFINITION OF MEASURES

As the second step in the revised procedure (Figure 1l1),

58 measures were defined using the CSM as a basis. Because
of the CSM's graphical style, there existed many opportuni-
ties to use basic counts of the objects in the diagrams.
From the functional view, some obvious explicit measures
were counts of tne constituents of data flow diagrams:
functional primitives, data flows, data stores, and external
entities. From the contextual view, the explicit measures
were counts of entities, events, relations, value sets, and
attributes. The dynamic view generated counts of states and
transitions.

To these explicit counts were added a host of analytic meas-
ures. Some were derived from applying various normalization
factors to the explicit counts to obtain measures like arc
weignht or relation density. Other analytic measures were
based on suggestions of other investigators, for example,
weighted function and derivation set complexity. The com-
plete definitions of all 58 measures are given in Refer-
ence 7.

STEP 3: THE CSM APPLICATION

Step 3 (Figure 12) involved applying the CSM to a real sys-
tem. The selected system was the Yaw Maneuver Control
Utility (YMCU) of the Earth Radiation Budget Satellite
(ERBS) . Although identified as a utility, the system was
not a trivial one. It consisted of 85 modules comprising
11,200 delivered source lines of FORTRAN.

The requirements for YMCU were recast in the form of the
CSM, producing a new document (Reference 16).

STEP 4: THE EXTRACTION OF MEASURES

Using the CSM representation, the recommended measures were
extracted as Step 4 in the revised approach (Figure 13).
Some of the extracted metric values are shown in Figure 13,
organized according to the three views of the CSM. Details
of the matrices extraction procedure are found in Refer-
ence 17.

STEP 5: THE ASSESSMENT OF THE EXPERIMENT

Step 5 (Figure 14) required assessing the process and the
resulting measures. The process was demonstrated to be fea-
sible through the experiment of extracting the measures from

the YMCU. A consequence of the process was the production
of a recast requilrements document using the CSM. The CSM

22

version appeared to be clearer, more accessible, and more
informative through its nonnarrative style featuring dia-
grams, lists, and tables. We will want to obtain many
comments from users of requirements documents to determine
if this optimistic assessment is justified.

A characteristic of the metrics extraction experiment from
the outset was the collection of effort data in an attempt
to understand the cost of obtaining the CSM representation.
The data revealed that 1.7 staff months were spent con-
structing the CSM representation of the YMCU. Standard SEL
effort data on the YMCU software development project showed
that 2.1 staff months were charged to traditional require-
ments analysis. Many factors should be covered in a thor-
ough discussion of the relative effort required to build the
CsM representatlon. Without reproducing that dlSCUSSlOD,
whichn 1is pursued in References 7 and 17, one conclusion 1is
clear: both effort figures are of the same order of magni-
tude. That is, 10 or 20 times more effort was not required
to build the CSM model when compared to traditional require-
ments analysis. If the CSM is clear and more understandable
as it seems to be, the effort in successive phases may be
reduced.

Two observations are clear regarding the assessment of meas-
ures. First, the collection of measures constitutes only a
single datum in any attempt to draw inferences from the
measures. More projects would need to be measured before
any patterns might begin to emerge. One superficial rela-
tionship stands out. The 39 functional primitives are ap-
proximately one half of the number of modules (85) in the
delivered product. Whether any such relation persists is
open to speculation.

The second observation is that human judgment continues to
play a role in these specification measures. Our preference
for objective measures is no assurance that we have elimi-
nated subjective considerations. The superficial relation
noted above provides a ready example. The identification of
functional primitives is sensitive to the procedure for de-
composing processes in data flow analysis. At least four
guidelines exist in DeMarco's books alone for determining
when functional decomp051t10n should be ceased (Refer-

ences 10 ana 12).

Although the CSM has not eliminated the subjective component
in specification measurement, it has, we believe, reduced

its effect dramatically when compared to measures drawn from
narrative statements of requirements. The enumerative style

23

of the CSM and its reliance on notations that have some in-
ternal consistency give us reason to believe the CSM has
made progress toward objective specification measurement.

CONCLUSIONS

This investigation has confirmed that objective specifica-
tion measures need a disciplined representation of require-
ments (Figure 15). The CSM has been advanced as a framework
for capturing software requirements. The CSM fulfills its
original purpose by enabling the definition of objective
specification measures. 1Its multiple views are more reveal-
ing than any single perspective on requirements. The CSM is
a new product of the software development process, available
early, and therefore able to assist later stages. The non-
narrative CSM style affords visibility at a life cycle phase
in which the identification of configuration control items
is extremely difficult through traditional means. The CSM,
being more accessible and modular, facilitates reusability.
Other investigators have recognized the benefits of achiev-
ing reusability during the earliest life cycle phases (Ref-
erences 18 and 19).

By representing the context of the software system, the CSM
is capturing valuable information. The environment of the
system is the starting point for object-oriented design.

The goal of this study was portrayed in Figure 3 as develop-
ing a measurement shell that would encase the requirements
and supply measures of the properties of interest. Through
the CSM representation, measures have been defined and ex-
tracted. These measures serve as early indicators of prop-
erties like size and complexity. For other properties,
although no direct measures were defined, the CSM represen-
tation will make it easier to detect, for example, incon-
sistency and incompleteness.

This study has contributed to our understanding of the role
that specification measures might fulfill in the flight dy-
namics environinent. We intend to consider the CSM and its
derived measures for application on new software projects.

ACKNOWLEDGMENTS

This study of specification measures has benefited from the

comments and suggestions of many SEL colleagues, especially
V. Church, F. McGarry, D. Card, L. Jordan, W. Decker, and
V. Basili.

24

lO.

ll'

12.

13.

REFERENCES

Software Engineering Laboratory, SEL-81-104, The Soft-
ware Engineering Laboratory, D. N. Card, F. E. McGarry,
G. Page, et al., February 1982

W. W. Agresti, F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Program Transformation and
Programming Environments. New York: Springer-vVerlog,
1984

V. R. Basili and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2,
no. 1

Software Engineering Laboratory, SEL-82-001, Evaluation
of Management Measures of Software Development, G. Page,
D. N. Card, and F. E. McGarry, September 1982, vols. 1
and 2

R. S. Pressman, Software Engineering: A Practitioner's
Approach. New York: McGraw-Hill, 1982

W. W. Agresti, "Measuring Program Maintainability,"
Journal of Systems Management, vol. 33, no. 3, 1982

Software Engineering Laboratory, SEL-84-003, Investiga-
tion of Specification Measures for the Software Engi-
neering Laboratory, W. W. Agresti, V. Church, and

F. E. McGarry, December 1984

B. W. Boehm, Software Engineering Economics. Englewood
Cliffs, N.J.: Prentice-Hall, 1981

Software Engineering Laboratory, SEL-78-006, GSFC Soft-
ware Engineering Research Requirements Analysis Study,
P. Scheffer and T. Velez, November 1978

T. DeMarco, Controlling Software Projects. New York:
Yourdon Press, 1982

R. T. Yeh and P. Zave, "Specifying Software Require-
ments, "Proceedings of the IEEE, vol. 68, no. 9, 1980

T. DeMarco, Structured Analysis and System Specifica-
tion. New York: Yourdon, Inc., 1978

H. Simon, The Sciences of the Artificial. <Cambridge,
Mass.: M.I.T. Press, 1970

25

14.

15.

le6.

17.

18.

19.

P. Chen, “"The Entity-Relationship Model--Toward a Uni-
fied View of Data," ACM Transactions on Data Base Sys-
tems, March 1976

C. L. Liu, Elements of Discrete Mathematics. New York:
McGraw-Hill, 1977

Computer Sciences Corporation, Informational Memorandum,
"Case Study in Recasting Flight Dynamics Software Re-
quirements Using the Composite Specification Model
(CSM) ," W. Agresti, December 1984

--, Informational Memorandum, "Extracting Specification
Measures From Flight Dynamics Software Requirements,”
W. Adgresti, December 1984

Y. Matsumoto and K. Matsumura, "A Specification Analysis
and Documentation System for Process Control Software,"
Proceedings, IEEE COMPSAC, 1981

S. J. Greenspan, J. Mylopoulos, and A. Borgida, "Captur-
ing More World Knowledge in the Requirements Specifica-
tion," Proceedings, Sixth International Conference on
Software Engineering, New York: Computer Societies
Press, 1982

26

THE VIEWGRAPH MATERIALS
for the

W. AGRESTI PRESENTATION FOLLOW

Aoa

AN APPROACH TO DEVELOPING
SPECIFICATION MEASURES

W. AGRESTI

8¢

Z 2anbtg

ANALYST

® SIZE
® FEASIBILITY
® COMPLETENESS

WHO USES REQUIREMENTS?

VMANAGER
® COMPLEXITY
® FAMILIARITY
® COST

CUSTOMER

© CORRECTNESS

® CONSISTENCY
® TESTABILITY

DEVELOPER

® UNDERSTANDABILITY
® MAINTAINABILITY
® STABILITY

6C
¢ o2anbtg

WHO USES REQUIREMENTS?

MANAGER
® COMPLEXITY MEASURE

@ FAMILIARITY MEASURE
® COST MEASURE

DEVELOPER
® UNDERSTANDABILITY MEASURE
® MAINTAINABILITY MEASURE
® STABILITY MEASURE

ANALYST

® SIZE MEASURE
® FEASIBILITY MEASURE
® COMPLETENESS MEASURE

CUSTOMER

® CORRECTNESS MEASURE
® CONSISTENCY MEASURE
® TESTABILITY MEASURE

0t

p sanbtg

FOCUS:
PROCEDURE:

RESULT:

OUR APPROACH

OBJECTIVE MEASURES

DEFINED 29 EXPLICIT MEASURES BASED ON
EXISTING REQUIREMENTS SPECIFICATIONS
NUMBER OF PAGES

NUMBER OF CONSTRAINTS

NUMBER OF I/0 REQUIREMENTS

L

MIEASURES WERE EXTRACTABLE
BUT NOT USEFUL

1€

G 2anbtg

FIVE FLIGHT DYNAMICS SOFTWARE PROJECTS
NEW SOURCE LINES VS. PAGES OF REQUIREMENTS

°E
100K +-
N "
1]
e
: =
{17
O
o
S -
o
g 50K + A
- :
m b
2
o " B,
(o]
2
1 { 1 1 1 1
1 T 1
100 200 300

PAGES IN REQUIREMENTS DOCUMENT

LESSON: TO DEVELOP OBJECTIVE SPECIFICATION
MEASURES, REPRESENTATION IS EVERYTHING!

[43

9 o2anbtg

OUR REVISED APPRCOACH

STEP 1: PROPOSE A NEW REPRESENTATION

STEP 2: DEFINE SPECIFICATION MEASURES
BASED ON IT

STEP 3: APPLY IT TO A REAL SYSTEM
STEP 4: EXTRACT THE MIEASURES

STEP 5: ASSESS THE PROCESS AND THE
RESULTING MEASURES

te

L 2InbTg

STEP 1:
PROPOSE A NEW REPRESENTATION

COMPOSITE SPECIFICATION MODEL (CSM)

RATIONALE: REQUIREMENTS FOR COMPLEX SOFTWARE
NEED TO BE SPECIFIED FROM MULTIPLE

VIEWPOINTS

VIEWPOINT NOTATION

@ FUNCTIONAL ® DATA FLOW
© CONTEXTUAL © ENTITY/RELATIONSHIP
® DYNAMIC ® STATE/TRANSITION

ve

8 2anbtg

EXAMPLE OF FUNCTIONAL VIEW

FUEL WEIGHT
EMPTY AND DENSITY

—S/C MOI

sicmol
TANK MO!
FUEL WEIGHT s/c
AND DENSITY CoG
PROPERTIES SENK COG
—— FUEL WEIGHT
T S/C COG R

EMPTY S/C COG
TANK POSITION

ce

EXAMPLE OF CONTEXTUAL VIEW

KEY

6 2InbTJg

ENTITY

<> RELATIONSHIP

[ATTRIBUTE

¢ THRUST TORQUE VECTOR

FUEL

® MASS

SPACECRAFT K ® CENTER OF

A

® DENSITY

GRAVITY (EMPTY)

VALUE SET

TYPE: REAL
STRUCTURE: VECTOR
SIZE: 3

RANGE: -, 0, +
COORDINATE SYSTEM: S/C BODY
UNITS: METERS

® THRUSTER POSITION
® THRUST DIRECTION

~_"

® COOLING CURVE
® FUEL FLOW RATE

THRUSTER

9¢

0T 2aInbT4

EXAMPLE OF DYNAMIC VIEW
(STATES AND TRANSITIONS)

>/ CORRECTION
BURN
THRUSTER STATE

INITIAL
BURN MAX PITCH OR

ROLL ANGLES
STATE EXCEEDED

PITCH AND ROLL
ANGLES 0.K.

/ MAX NO. CORRECTION

YAW RATE BURNS REACHED

EXCEEDS CUTOFF
VALUE

TARGET YAW
ANGLE REACHED

TARGET YAW
ANGLE REACHED
BRAKING

LE

1T @1

STEP 2: DEFINE MEASURES BASED
ON THE COMPOSITE SPECIFICATION
MODEL

58 MIEASURES DEFINED

EXPLICIT ANALYTIC
NUMBER OF FUNCTIONAL WEIGHTED FUNCTION
PRIMITIVES

RELATION DENSITY
NUMBER OF DATA ITEMS

ARC WEIGHT
NUMBER OF STATES @
® o

8¢

¢T =4

STEP 3: APPLY THE COMPOSITE
SPECIFICATION MODEL TO A REAL
SYSTEM

®© YAW MANEUVER CONTROL UTILITY OF
EARTH RADIATION BUDGET SATELLITE
(ERBS)

® FORTRAN

® 11,200 DELIVERED SOURCE LINES

® 85 MODULES

STEP 4 EXTRACT THE MEASURES

MEASURE VALUE

FUNCTIONAL VIEW

e FUNCTIONAL PRIMITIVES 39
e INTERFACE COUNT 3
e INTERNAL ARCS 60
;? e INTERNAL DATA ITEMS 42
7 ® SYSTEM IN/OUT DATA ITEMS 67
o O ® FILE IN/OUT DATA ITEMS 74
® WEIGHTED FUNCTION 688

CONTEXTUAL VIEW
® ENTITIES 11
®© EVENTS 14
® RELATIONS 19
e ATTRIBUTES 91
® VALUE SETS 29

DYNAMIC VIEW

® STATES 7

© TRANSITIONS 1

oy

pT 2anbtyg

STEP 5: ASSESS THE PROCESS
AND RESULTING MEASURES

PROCESS

® EFFORT REQUIRED FOR CSM MAY REDUCE EFFORT
IN LATER PHASES

— 2.1 STAFF MONTHS FOR TRADITIONAL
REQUIREMENTS ANALYSIS

— 1.7 STAFF MONTHS FOR BUILDING CSM

RESULTING MEASURES
e HUMAN JUDGMENT STILL IS A FACTOR
@ NEED TO MEASURE MORE PROJECTS

|87

GT 2anbtg

CONCLUSIONS

© OBJECTIVE SPECIFICATION MEASURES NEED
DISCIPLINED REPRESENTATION OF REQUIREMENTS

@ BUILDING THE CSM IS FEASIBLE
— YIELDS OBJECTIVE SPECIFICATION MEASURES

— MULTIPLE VIEWS ARE MORE REVEALING

— MORE EFFECTIVE REPRESENTATION TO BEGIN
DESIGN

® CAPTURING THE CONTEXT OF A SYSTEM IS BENEFICIAL
— SOURCE OF CHANGES TO THE SYSTEM

— LOGICAL PREDECESSOR OF OBJECT-ORIENTED
DESIGN

N86-19969
gurs

Evaluating Software Testing Strategies

Richard W. Selby, Jr. and Victor R. Baslll
Department of Computer Sclence
Unlverslty of Maryland
College Park, Maryland 20742
(301) 454-4247

Jerry Page
Computer Sclences Corp., Silver Spring, MD

Frank E. McGarry
NASA/GSFC, Greenbelt, MD

ABSTRACT

This study compares the strategles of code reading, functional testing, and struc-
tural testing In three aspects of software testing: fault detection effectiveness, fault
detectlon cost, and classes of faults detected. Thirty two professlonal programmers
applied the three technlques to three unlt-sized programs In a fractlonal factorial experl-
mental design. The major results of this study so far are the following. 1) Code readers
detected more faults than did those using the other technlques, while functional testers
detected more faults than did structural testers. 2) Code reagers/ had a hilgher fault
detection rate than did those uslng the other methods, while’ there was no difference
between functlonal testers and structural testers. 3) Subjecﬁs testing the abstract data
type detected the most faults and had the highest fault détection rate, while Indlviduals
testing the database malntalner found the fewest faults and spent the most effort test-
Ing. 4) Subjlects of Intermedlate and Junlor expertise were not different In number or
percentage of faults found, fault detectlon rate, or fault detectlon effort; sublects of
advanced expertise found a greater number of faults than did the others, found a
greater percentage of faults than did Just those of junlor expertise, and were not
different from the others In elther fault detectlon rate or effort. 5) Code readers and
functional testers both detected more omisslon faults and more control faults than did
structural testers, whille code readers detected more Interface faults than did those using
the other methods.

Research supported in part by the Natlonal Aeronautics and Space Administration Grant NSG-5123 and the Alr Force Office
of Sclentific Research Contract AFOSR-F49620-80-C-001 to the University of Maryland. Computer support provided in part by the
facilitles of NASA/Goddard Space Flight Center and the Computer Science Center at the University of Maryland.

42

1. Introduction

The processes of software testing and defect detection continue to challenge the
software community. HKven though the software testlng and defect detection activitles
are Inexact and inadequately understood, they are crucial to the success of a software
project. The controlled study presented addresses the uncertalnty of how to test soft-
ware effectively. In this investigation, common testing technlques were appllied to
different types of software by a representative group of programming professionals.
This work 1s Intended to characterize how testing effectlveness relates to several factors:
testing technique, software type, fault type, tester experlence, and any Interactions
among these factors.

This paper glves an overview of the testing technlques examlned, Investigation
goals, experlmental deslgn, and data analysls. The results presented are from a prelim-
Inary analysis of the data; a more complete analysls appears elsewhere [Selby 84, Baslll
& Selby 85].

2. Testing Techniques

To demonstrate that a particular program actually meets its specifications, profes-
slonal software developers currently utillize many different testing methods. In func-
tlonal testing, which Is a ‘“‘black box’ approach [Howden 80], a programmer constructs
test data from the program’s speclfication through methods such as equivalence parti-
tloning and boundary value analysis [Myers 79]. The programmer then executes the
program and contrasp/s 1ts actual behavior with that indicated in the speclfication. In
structural testing, which Is a ““white box’ approach [Howden 78, Howden 81}, a pro-
grammer Inspects the source code and then devises and executes test cases based on the
percentage of the program’'s statements or expressions executed (the ‘‘test set coverage')
[Stuckl 77]. The structural coverage criterla used In this study was 100% statement
coverage. In code reading by stepwise abstraction, a person identifles prime subpro-
grams In the software, determines thelr functlons, and composes these functions to
determline a function for the entire program [Mills 72, Linger, Mills & Witt 79]. The
code reader then compares this derlved function and the specifications (the Intended
function).

2.1. Investigation Goals

The goals for this study are to compare the three common testing techniques of
code reading, functional testlng, and structural testing In terms of 1) fault detection
effectiveness, 2) fault detectlon cost, and 3) classes of faults detected. An example
research question in each of these goal areas Is as follows. Which testing technique
(code reading, functional testing, or structural testing) leads to the detectlon of the most
faults? Which testlng technlque leads to the hilghest fault detectlon rate
(#faults/effort)? Which testing technlques capture which classes of faults?

3. Empirical Study

Admittedly, the goals for this study are quite amblitious. In no way Is 1t implied
that this study can definltively answer all of these questions for all environments. It Is

43

Intended, however, that the statlistically significant analysls undertaken lends insights
into their answers and Into the merlt and appropriateness of each of the techniques.

A primary conslderation In thils study was to use a realistic testlng environment to
assess theseffectlveness of these different testing strategles, as opposed to creatlng a best
possible testing situatlon [Hetzel 76]. Thus, 1) the subjects chosen for the study were
professlonal programmers with a wide range of experlence, 2) the programs tested
correspond to different types of software and reflect common programming style, and 3)
the faults in the programs were representative of those frequently occurring in software.
Sampling the subjects, programs, and faults In this manner is Intended to provide a rea-
sonable evaluation of the testing methods, and to facllitate the generallzatlon of the
results to other environments. Note that prior to this experiment, we conducted a slmi-
lar testing study Involving 42 advanced students from the University of Maryland [Baslll
& Selby 85].

The following sectlons describe the empirical study undertaken, Including the selec-
tlon of subjects, programs, and experlmental design, and the operation of the study.

3.1. Subjects

The 32 subjects in the study were programming professionals from NASA and
Computer Sclences Corporation. These Indlviduals were mathematiclans, physicists,
and englneers that developed ground support software for satellites. They had famillar-
Ity with all three testing techniques, but used functional testing primarily. R. W. Selby
conducted a three hour tutorial on the testing techniques for the subjects. The subjects
were selected to be representative of three different levels of computer sclence expertise:
advanced, intermediate, and jJunlor. Several criterla were consldered in the assoclation
of a subject with an expertlise level, Including years of professlonal experlence, degree
background, and thelr manager's suggested assignment. The Iindlviduals examined
Included elght advanced, eleven Intermedlate, and thirteen junlor subjects; these groups
had an average of 15.0, 10.9, and 6.1 years of professional experience, respectively, with
an overall average of 10.0 (SD = 5.7) years.

3.2. Programs

The three FORTRAN programs used In the Investigatlon were chosen to be
representative of several different software types: a text formatter, a numerlic abstract
data type, and a database malntainer. The programs are summarized in Figure 1. The
specificatlons for the programs and thelr source code appear in [Selby 84].

Figure 1. The programs tested.
[so-l;rce executable cyclomatic #froutines ##faults
rogram lines statments complexity
text 169 55 18 3 g
formatter
numeric data 147 48 18 9 7
abstraction
database 365 144 57 7 12
malntalner

There exists some differentlatlon In size among the programs, and they are a realls-
tic slze for unlt testlng. The first program 1is a text formatting program, which also
appeared In [Myers 78]. A verslon of this program, originally wrltten by [Naur 69] using
technlques of program correctness proofs, was analyzed In [Goodenough & Gerhart 75).
The second program Is a numerlic data abstraction consisting of a set of list processing
utilitles. Thils program was submitted for a class proJect by a member of an Intermedi-
ate level programming course at the University of Maryland [McMullln & Gannon 80].
The third program is a malntalner for a database of blbllographic references. Thls pro-
gram was analyzed In [Hetzel 78], and was written by a systems programmer at the
Unlversity of North Carolina Computation Center.

3.3. Faults

The 28 faults In the programs comprise a reasonable distribution of faults that
commonly occur In software [Basill & Welss 82, Basill & Perricone 84]. All the faults In
the database malntalner and the numeric abstract data type were made during the
actual development of the programs. The text formatter contalns a mix of faults made
by the origlnal programmer and faults seeded In the code. Note that thls investigation
Involves only those types of faults occurring In the source code, not other types such as
those In the requirements or specifications. ‘ '

Two abstract classlfication schemes charéc\terlze the faults In the programs. One
lfault categorization method separates faults of omission from faults of commisslon. A
second fault categorlzation scheme partitlons software faults Into the six classes of 1)
initlalizatlon, 2) computation, 3) control, 4) Interface, 5) data, and 8) cosmetic. An
explanation of these classificatlon schemes appeared 1n _[Baslll & Perricone 84], and the
faults themselves are described In [Selby 84]. These\two classificatlon schemes are
intended to distingulsh among different reasons that progx\'ammers make faults In soft-
ware development. The consistent application of the two schemes to the faults In the
programs resulted In a mutually exclusive and exhaustive categorization; it Is certalnly
possible that another analyst could have a different interpretation (see Figure 2).

-

45

| F'igure 2. Distribution of faults In the programs.
Omission Commlssion Total
Inltlalization 0 2 2
Computation 2 2 4
Control 2 4 6
Interface 2 11 13
Data 2 0 2
Cosmetlc 0 1 1
Total 8 20 28

3.4. Experimental Design

The experlmental design applled was a fractlonal factorlal design [Cochran & Cox
50, Box, Hunter, & Hunter 78]. All of the subjects tested each of the three programs
and used each of the three technlques. Of course, no one tested a glven program more
than once. The order of presentation of the testing techniques was randomized among
the subjects In each level of expertise. A factorlal analysls of variance (ANOVA) model
supports the analysls of both the maln effects (testing technique, software type, pro-
grammer expertise) and any Interactions among the maln effects.

The subjects examined In the study were random samples of programmers from the
large population of programmers at each of the levels of expertise. If the samples exam-
ined are truly representatlve of the population of programmers at each expertise level,
the inferences from the analysls can then be generallzed across the whole population of
individuals at each expertise level, not Just across the particular sublects In the sample
chosen.

3.5. Experimental Operation

The controlled study Included flve phases: tralning, three testing sesslons, and a
follow-up sesslon. All groups of subjects were exposed to a similar amount of tralning
on the testing technlques before the study began. In the testlng sessions, the individuals
were requested to use the testlng technlques to the best of their ability. The subjects’
deslre for the study’s outcome to Improve thelr software testing environment ensured
reasonable effort on their part. Note that when the sublects were applying elther func-
tlonal or structural testing, they generated and executed thelr own test data; no test
data sets were provided. At the end of each of the testing sesslons, the subjects
estimated the amount of tline spent detectlng faults and the percentage of the faults In
the program that they thought were uncovered. The study concluded with a debrlefing
session for dlscussing the preliminary results and the sublects’ observations.

4. Data Analysis

This section presents the data analysls accordlng to the three goal areas discussed
earller.

46

4.1. Fault Detection Effectiveness

The first goal area examilnes the factors contributing to fault detection effectiveness.
The following sectlons present the relationship of fault detection effectiveness to testing
technlque, software type, programmer expertise, and self-estimate of faults detected.

4.1.1. Testing Technique

The subjects applylng code reading detected an average of 5.09 (SD = 1.92) faults
per program, persons using functional testing found 4.47 (SD = 1.34), and those apply-
ing structural testing uncovered 3.25 (SD = 1.80); the subjects detected an overall aver-
age of 4.27 (SD = 1.86) faults per program. Subjects using code reading detected 1.24
more faults per program than did subjects using elther functional or structural testing

(< .0001, 95% c.. 0.73 — 1.75).1 Subjects using functional testing detected 1.11 more
faults per program than did those uslng structural testing (a<.0007, 95% c.l. 0.52 —~
1.70). Since the programs each had a different number of faults, an alternate Interpreta-
tlon compares the percentage of the programs’ faults detected by the technlques. The
technlques performed In the same order when percentages are compared: subjects apply-
Ing code reading detected 16.0% more faults per program than dld subjects using the
other techniques (a<.0001, c.l. 9.9 — 22.1%), and subjects applying functional testing
detected 11.2% more faults than did those uslng structural testing (a<<.003, c.l. 4.1 —
18.3%). Thus comparing either the number or percentage of faults detected, Individuals
using code reading observed the most faults, persons applylng functional testing found

the second most, and those dolng structural testlng uncovered the fewest.?

4.1.2. Software Type

The subjlects testing the abstract data type detected an average of 5.22 (SD =
1.75) faults, persons testing the text formatter found 4.19 (SD = 1.73), and those test-
Ing the database malntalner uncovered 3.41 (SD = 1.68). The application of Tukey's
multiple comparison reveals that subjects detected the most faults In the abstract data
type, the second most In the text formatter, and the fewest faults in the database maln-
talner (simultaneous «<.05). This ordering i1s the same for both number and percen-
tage of faults detected.

4.1.3. Programmer Expertise

Subjects of advanced expertise detected an average of 5.00 (SD = 1.53) faults, per-
sons of Intermedlate expertise found 4.18 (SD = 1.99), and those of Junlor expertise
uncovered 3.90 (SD = 1.83). Subjects of intermediate and junlor expertise were not sta-
tistically different In terms of either number or percentage of faults observed (a>.05).

1 The probably of Type I error is 1'eporteq, the probabllity of erroneously rejecting
the null hypothesls. The abbreviation ‘“‘c.l.”” stands for confidence interval. The inter-
vals reported are all 959 confldence Intervals.

2 Recall that the Individuals used the followlng technlques: code readlng by stepwlse
abstraction, functional testing wuslng equlvalence partitioning and boundary value
analysls, and structural testing with 1009 statement coverage criteria.

47

Individuals of advanced expertise detected both a greater number and percentage of
faults than did those of Junlor expertise (a<.05). Persons of advanced expertise
detected a greater number of faults that dld those of Intermediate expertise (a<.05),
but the advanced and lntermedlate groups were not statistically different ln percentage
of faults detected (o> .05).

4.1.4. Self-Estimate of Faults Detected

At the completion of a testing session, the subjects estimated the percentage of a
program’s faults they thought they had uncovered. Thils estimation of the number of
faults uncovered correlated reasonably well with the actual percentage of faults detected
(R = .57, @<.0001). Further Investigation shows that Indlviduals using certain tech-
nlques gave better estimates: code readers gave the best estimates (Pearson R = .79,
a<.0001), structural testers gave the second best estimates (R = .57, «<.0007), and
functlonal testers gave the worst estlmates (no correlatlon, o>.05). This observation
suggests that the code readers were more certain of the effectiveness they had 1n reveal-
Ing faults in the programs.

4.2. Fault Detection Cost

The second goal area examlnes the factors contributing to fault detectlon cost. The
following sections present the relatlonship of fault detectlon cost to testing technlque,
software type, and programmer expertise.

4.2.1. Testing Technique

The subjects applylng code reading detected faults at an average rate of 3.33 (SD
= 3.42) faults per hour, persons using functlonal testing found faults at 1.84 (SD =
1.08) faults per hour, and those applying structural testlng uncovered faults at a rate of
1.82 (SD = 1.24) faults per hour; the subjects detected faults at an overall average rate
of 2.33 (SD == 2.28) faults per hour. Subjects using code reading detected 1.49 more
faults per hour than did subjlects using elther functional or structural testing (a<<.0003,
c.l. 0.75 — 2.23). Subjects using functional and structural testing were not statistlically
different in fault detection rate («>.05). The subjects spent an average of 2.75 (SD =
1.57) hours per program detecting faults. Comparing the total time spent In fault detec-
tion, the technlques were not statistically different (a>.05). Thus, subjects using code
readlng detected faults at a higher rate than did those applylng functional or structural
testing, while the total fault detectlon effort was not different among the methods.

4.2.2. Software Type

The sublects testing the abstract data type detected faults at an average rate of
3.70 (SD = 3.26) faults per hour, persons testing the text formatter found faults at 2.15
(SD = 1.10) faults per hour, and those testing the database malntalner uncovered faults
at a rate of 1.14 (SD = 0.79) faults per hour. Applylng Tukey's multiple comparlsons,
the fault detectlon rate was higher In the abstract data type than it was for elther the
text formatter or the database maintalner, while the text formatter and the database
malntalner were not statistically different (slmultaneous a<.05). The overall tlme spent
In fault detectlon also differed among the programs. Subjects spent more time testing

48

the database malntalner than they spent on elther the text formatter or the abstract
data type, while the time spent on the text formatter and the abstract data type was
not statistically different (simultaneous a<.05). Thus, subjects uncovered faults at the
fastest rate In the abstract data type, and spent the most time testing the database
malintalner.

4.2.3. Programmer Expertise

Subjects of advanced expertise detected faults at an average rate of 2.36 (SD =
1.81) faults per hour, subjects of Intermedlate expertise found faults at 2.53 (SD = 2.48)
faults per hour, and subjects of junlor expertise uncovered faults at a rate of 2.14 (SD
= 2.48) faults per hour. Programmer expertise level had no relatlon to elther fault
detectlon rate or total effort spent In fault detectlon (both a>.05).

4.3. Characterization of Faults Detected

. The third goal area focuses on determining what classes of faults are detected by
the different technlques. An earlier section characterized the faults In the programs by
two different classification schemes: omisslon or commission, and Initlalization, control,
data, computation, Interface, or cosmetic.

When the faults are partitioned according to the omlission/commisslon scheme, a
distinction surfaces among the technlques. Subjlects using elther code reading or func-
tlonal testing observed more omission faults than did Individuals applying structural
testing, whille there was no difference between code reading and functional testing.
Since a fault of omlsslon occurs as a result of some segment of code belng left out
(**‘omitted”), you would not expect structurally generated test data to find such a fault.

Dividing the faults according to the second fault classiflication scheme reveals a few
distinctlons among the methods. Sublects using code readlng detected more interface
faults than did those applying elther of the other methods, while there was no difference
between functlonal and structural testing. Thls suggests that code readlng by abstract-
Ing and composing program functions across modules must be an effectlve technique for
finding Interface faults. Individuals using elther code readlng or functlonal testlhg
detected more control faults than did persons applylng structural testing. Recall that
subjects applylng structural testing determined the execution paths In a program and
then generated test data that executed 1009 of the program’'s statements. One would
expect that more control path faults would be found by such an approach. However,
structural testing dld not do as well as the others In thls fault class, suggesting the
Ilnadequacy of statement coverage criteria.

5. Preliminary Conclusions

This study compares the strategles of code readlng, functlonal testing, and struc-
tural testing 1n three different aspects of software testing: fault detection effectiveness,
fault detection cost, and classes of faults detected. Each of the three testing technlques
showed merit In this evaluation. The Investigatlon was Intended to compare the
dlifferent testing strategles In a representatlve testing sltuation, using professlonal pro-
grammers, different software types, and common software faults.

49

The major results of this study so far are the following. 1) Code readers detected
more faults than did those using the other techniques, while functional testers detected
more faults than did structural testers. 2) Code readers had a higher fault detection
rate than did those using the other methods, while there was no difference between func-
tlonal testers and structural testers. 3) Subjects testlng the abstract data type detected
the most faults and had the highest fault detection rate, while Iindividuals testing the
database malntalner found the fewest faults and spent the most effort testing. 4) Sub-
Jects of intermedlate and Junlor expertise were not different In number or percentage of
faults found, fault detectlon rate, or fault detectlon eflort; subjects of advanced exper-
tise found a greater number of faults than dld the others, found a greater percentage of
faults than did just those of junlor expertise, and were not different from the others In

_elther fault detectlon rate or effort. 5) Code readers and functional testers both
detected more omlisslon faults and more control faults than did structural testers, while
code readers detected more Interface faults than did those using the other methods.

A comparlson of professional programmers uslng code readlng with novice and
Junlor programmers using the technlque suggests a posslble learning curve. In a testing
study simllar to thls one, uslng a group of advanced students, code readers and func-
tlonal testers were equally effective In fault detectlon while structural testers were either
equally effective or Inferior [Baslll & Selby 85]. Also, the three technlques were not
different 1n fault detection rate. Further comparison of this study with other testing
studles, Including [Hetzel 76, Myers 78, Hwang 81}, appears In [Basill & Selby 85].

Investigatlons related to this work Include studles of fault classificatlon [Basilli &
Welss 82, Johnson, Draper & Soloway 83, Ostrand & Weyuker 83, Baslll & Perricone 84]
and Cleanroom software development [Selby, Baslll & Baker 84]. In the Cleanroom soft-
ware development approach, technlques such as code reading are used In the develop-
ment of software completely off-llne. In the above study, systems developed using
Cleanroom met system requirements more completely and had a higher percentage of
successful operational test cases than dld systems developed wlth a more traditional
approach.

This emplrical study 1s Intended to advance the understanding of how varlous soft-
ware testing strategles contribute to the software development process and to one
another. The results given were calculated from a set of Individuals applylng the three
technlques to unit-sized programs — the direct extrapolatlon of the findings to other test-
Ing environments Is not implied. However, valuable insights have been galned and addl-
tlonal areas of analysls and Interpretation appear In [Selby 84, Baslll & Selby 85].

6. Acknowledgement

The authors are grateful to the subjlects from Computer Sclences Corporation and
NASA Goddard for thelr enthuslastic particlpation in thls study.

50

7. References

[Baslll & Welss 82]
V. R. Baslll and D. M. Weiss, Evaluating Software Development by Analysls
of Changes: The Data from the Software Englineering Laboratory*, Dept.
Com. Scl., Unlv. Maryland, College Park, Tech. Rep. TR-1236, Dec. 1982..

[Basllt & Perrlcone 84|
V. R. Baslll and B. T. Perricone, Software Errors and Complexity: An Em-
pirical Investigation, Communications of the ACM 27, 1, pp. 42-52, Jan.
1984,

[Baslll & Selby 85]
V. R. Basill and R. W. Selby, Jr., Comparing the Effectiveness of Software
Testing Strategles, Dept. Com. Scl., Unlv. Maryland, College Park, Tech.
Rep., 1985.

[Box, Hunter, & Hunter 78|
G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters,
John Willey & Sons, New York, 1978.

[Cochran & Cox 50]
W. G. Cochran and G. M. Cox, Ezxperimental Designs, John Wlley & Sons,
New York, 1950.

[Goodenough & Gerhart 75]
J. B. Goodenough and S. L. Gerhart, Toward a Theory of Test Data Selec-
tlon, IEEFE Trans. Software Engr., pp. 156-173, June 1975.

[Hetzel 76]
W. C. Hetzel, An Expermental Analysis of Program Verificatlon Methods,
Ph.D. Thesls, Univ. of North Carolina, Chapel Hill, 1976.

[Howden 78]
W. E. Howden, Algebralc Program Testing, Acta Informatica 10, 1978.

[Howden 80]
W. E. Howden, Functional Program Testlng, IEEE Trans. Software Engr.
SE-6, pp. 162-169, Mar. 1980.

[Howden 81]
W. E. Howden, A Survey of Dynamlc Analysis Methods, pp. 209-231 in Tu-
torial: Software Testing & Validation Technigques, 2nd Ed., ed. E. Miller and
W. E. Howden, 1981.

51

[Hwang 81]
S-S. V. Hwang, An Empirical Study In Functional Testlng, Structural Test-
Ing, and Code Reading/Inspection*, Dept. Com. Scl., Unlv. of Maryland,
College Park, Scholarly Paper 362, Dec. 1981.

[Johnson, Draper & Soloway 83]
W. L. Johnson, S. Draper, and E. Soloway, An Effectlve Bug Classification
Scheme Must Take the Programmer Into Account, Proc. Workshop High-
Level Debugging, Palo Alto, CA, 1983.

[Linger, Mllls & Witt 79]
R. C. Linger, H. D. Mills, and B. 1. Witt, Structured Programming: Theory
and Practice, Addison-Wesley, Readlng, MA, 1979.

[McMullin & Gannon 80|
P. R. McMullin and J. D. Gannon, Evaluating a Data Abstraction Testing
System Based on Formal Speclficatlons, Dept. Com. Secl., Unlv. of Maryland,
College Park, Tech. Rep. TR-993, Dec. 1980.

[Milis 72)
H. D. Mills, Mathematical Foundations for Structural Programming, IBM
Report FSL 72-6021, 1972.

[Myers 78]
G. J. Myers, A Controlled Experiment In Program Testing and Code
Walkthroughs/Inspections, Communications of the ACM, pp. 760-768, Sept.
1978.

[Myers 79]
G. J. Myers, The Art of Software Testing, John Wiley & Sons, New York,
1979.

[Naur 69]

P. Naur, Programming by Action Clusters, BIT 9, 3, pp. 250-258, 1969.

[Ostrand & Weyuker 83]
T. J. Ostrand and E. J. Weyuker, Collecting and Categorlzing Software Er-
ror Data In an Industrial Environment, Dept. Com. Scl., Courant Inst. Math.
Scl., New York Unlv., NY, Tech. Rep. 47, August 1982 (Revised May 1983).

[Selby 84]
R. W. Selby, Jr.,, A Quantitative Approach for Evaluating Software Techno-

logles, Dept. Com. Scl., Unlv. Maryland, College Park, Ph. D. Dissertatlon,
1984.

[Selby, Baslll & Baker 84]

R. W. Selby, Jr., V. R. Basll}, and F. T. Baker, CLEANROOM Software De-
velopment: An Empirical Evaluation, Dept. Com. Scl., Unlv. Maryland, Col-

lege Park, Tech. Rep. TR-1415, July 1984. (submitted to the IEEE Trans.
Software Engr.)

[Stuckl 77]

L. G. Stuckl, New Directions In Automated Tools for Improving Software

Quality, In Current Trends in Programming Methodology, ed. R. T. Yeh,
Prentice Hall, Englewood Cliffs, NJ, 1977.

53

THE VIEWGRAPH MATERIALS

for the

R. SELBY PRESENTATION FOLLOW

Evaluating Software Testing Strategies

Richard W. Selby, Jr. and Victor R. Basili
University of Maryland

Jerry Page
Computer Sciences Corporation

Frank McGarry
NASA /Goddard Space Flight Center

54

Overview

e Problem: The software community is uncertain
of how to effectively test software

e Idea: Conduct a controlled study in which
common testing techniques are applied to different
types of software by a representative group of
programming professionals.

e Benefits: Characterize how testing effectiveness
relates to
— different testing techniques
— type of software being tested
— type of faults in the software
— interactions among testing techniques and
type of fault or type of software

e Action: Organize and run controlled study (Oct. 1984)

55

Goals

Compare code reading, functional testing, and structural

testing w. r. t.

e # faults detected

e cost-effectiveness

e classes of faults uncovered

56

Controlled Study

e Testing techniques: code reading, functional
testing, and structural testing (stmt. cov.)

e Representative testing environment
— 32 professional subjects from NASA/CSC (10 yrs.)
— 3 programs (350, 170, 160 LOC)

— faults (12, 9, 7)

e Iterative experimentation

e Fractional factorial design

57

Fractional Factorial Design

Code Functional Structural

Reading Testing, Testing

P1P2P3 P1P2P3 P1P2P3

S, —X —X— X—

Advanced Sy —X— X— —X
Subjects

Sg X— —X —X—

8 —X— X —X

Inter- S, | —X —X— X——
mediate

Subjects ..

S0 X— — X —X—

Sep —X— X— —X

Junior S X—— —X —X—
Subjects

Sgs —X —X— X—

e Blocking according.to experience level and program
tested

e FKach subject uses each technique and tests each program
58

5.1

Number of Faults Detected

Reading Functional Structural

4.5

3.3

%

Reading > others; Functional > Structural (e« < .005)
Different # faults detccted in each program

Same relationships for % faults detected

Advanced > others (¢ < .05); Intermediate =~ Junior

¢6 detected correlates with 95 felt uncovered:

R = .57 (a < .001)
59

Cost-Effectiveness (#Faults Detected / Effort)

Reading Functional Structural

3.3

1.8 1.8

¢ Reading > others (¢ < .005, Est. +1.5(.4));
Functional =~ Structural

e Diflerent overall detection rate for one program
¢ Tecchniques not different in total detection time

e Technique-program interaction (a < .005)

60

Fault Characterization

e @mission (8) vs. commission (20)

Reading Functional Structural
100% cca® cOo®
CC C
C CC C
caofC P
75% @cC C
C
CCCC @cccc CCCC
CC C
50% - C
CC
C o9 CCC
C CC
CC
25% C CC
@cC C ©cC
@ ®
e® e
0% @8C BSBC

© Reading and functional stronger for omission faults

61

Fault Characterization

e Initialization (2-A), computation (4-P), control (6-C),
data (2-D), interface (13-I), cosmetic (1-S)

Reading Functional Structural
100% 1P AIP
I C
P I C
AIIC 1P
756% CP I
A
CPCC CACPC PIIC
IC A
50%% C C
PI
1 1I ATl
S 11
1C
25% I 1C
DI S CI
| . D
1ID CIl
0% PIID IIDP SDPIII

e Reading and functional stronger for control faults

e Reading stronger for interface faults
62

(Przliminary) Result Summary

Code
Reading

IFunctional
Testing

Structural
Testing

Detection
Effectiveness

Detection
Rate

Total
Detection
I ffort

Omission
Faults

Control
Faults

Interface
Faults

63

Conclusions

e [ach of the testing techniques showed merits in this
representative evaluation

e Code reading performed well overall; functional testing
similar in detection effectiveness

e Code reading learning curve (UMD studies)

e Related work

— Hetzel

— Myers

— UMD studies

— error studies

— Cleanroom off-line development

e Use of these results

¢ Valuable insights into problems in software development
and modification can be gained by controlled study

D3
N8§6-19970

SOFTWARE DEVELOPMENT IN ADA

Victor R. Basils
Elizabeth E. Katz
Unlversity of Maryland

1. Introduction

Ada will soon become a part of systems developed for the US Department of
Defense. NASA must determine whether 1t will become part of its environment and
particularly whether 1t will become a part of the Space Statlon development. How-
ever, there are several Issues about Ada whlich should be consldered before thls decl-
slon Is made. What information I1s needed to make that decision? What are the
tralning needs for Ada? How should the iife cycle be modified to use Ada most
effectlvely? What other Issues should management consider before making a decl-
slon? These are but a few of the Issues that should be considered.

One means of considering these Issues Is the examination of other developments
in Ada. Unfortunately, few full-scale developments have been completed or made
publicly avallable for observation. Therefore, it will probably be necessary to study
an Ada development In a NASA environment.

Another means related to the first Is the development of Ada metrics which can
be used to characterlze and evaluate Ada developments. These metrics need not be
conflned to full-scale developments and could be used to evaluate on-going projects
as well.

The remalnder of this paper describes an early development in Ada, some
observations from that development, metrics which have been developed for use
with Ada, and future directlons for research into the use of Ada In software develop-
ment In general and In the NASA Goddard environment 1n particular.

2. Overvlew of a Previous Project

In a prevlous project conducted by the Unlversity of Maryland and General
Electric, we monltored a software development project written In Ada by Integrat-
Ing measurement Into the software development process. Our goal was to ldentify
areas of success and difficulty In learning and using Ada as a deslgn and coding
language. The underlylng process and the evolving product were measured, and the
resulting Information characterized this project’s successes and fallures. Observa-
tions from the prolect might be used to make recommendations about training,
methodology, and metrics to the Ada users community. This experlence with data
collectlon and metrlcs also wlll ald In the selectlon of a general set of measures and
measurement procedures for any software development project.

This work Is supported In part by the Office of Naval Research and the Ada Joint Program Office under grant NCOO14-
82-0225 !

Ada is a reglstered trademark of the US Department of Defense - AJPO

65
PRECEDING-PAGE BLANK NOT FLMED

Lo
T STt
S

The project studled Involved the redesign and relmplementation of a portion of
a satellite ground control system originally written iIn FORTRAN. Four program-
mers were chosen for thelr diverse backgrounds and were given a month of training
In Ada and software development methodology. They deslgned the project using an
Ada-like PDL although a processor for the PDL was not available at that time. The
deslgn evolved Into Ada code which was processed by the NYU Ada/Ed Interpreter.
The design and coding phases of the project extended from April 1982 to December
1982. Some unlt testing of the prolect was done during the summer of 1983 using
the ROLM complier; however, the entire system has not been tested.

We used a goal-directed data collectlon approach from the beglnnlng. Goals
and objectlves for the study were defilned. Specific question and hypotheses were
assoclated with each goal. Data collection forms and procedures were developed to
address these questions. The forms and procedures were Integrated Into the
software development methodology. The flnal step of thls approach Involved
analyzing the data In order to answer the questlons and elther acéept or reject the
hypotheses.

Most recently, the data have been analyzed. All the data from the forms were
entered in a database as were the data gathered by a processor which parses the
design and code, checking for correct syntax and taking varlous measurements. Our
observatlons are summarized below and elaborated upon In (2] and (3].

3. Observations from that Project

Although the prolect studied ended part way through development, the results
indicate what might happen In early stages of development In other projects. The
data can be compared with the corresponding stages of other prolects. The results
from thls prolJect may prevent others from makling costly management mistakes.

Learning Ada takes tlme. In thls project 1t consumed 209 of the total effort.
That tlme must be lncluded ln any estimate of effort for early projects using Ada.
Tralning will probably have to be a continulng process as the team members learn
the finer polnts of the language.

Ada 1s more than syntax and slmple examples. The underlylng software
englneering concepts must be taught In conjunction with the support Ada provides
for those concepts. Most programmers are not famillar with the methodologles
developed In the seventles that Ada supports. Tralning In software engineering
methodology and how to use 1t In the environment of a particular application Is an
absolute necessity for the proper use of Ada.

We do not know how Ada should be used. Ideally, our understanding of the
software engineerlng concepts Ada supports would make the use of Ada natural.
However, many people learn by example, and we do not have many good examples
of how Ada should be used. We do not know how and when to use exceptlons,
tasks, and generics. We need to study varlous alternatives and show how they work
with examples from varlous environments.

Deslgn alternatives must be lnvestigated. The deslgn for thls project was func-
tional and more illke than unlike the earlier FORTRAN design. This may be the
66

best deslgn, but a group at General Electric developed an object-oriented design for
the same pro)ect [4]. It 1s not clear which design, If elther, 1s most appropriate.
Just as a comblnation of top-down and bottom-up development Is appropriate to
many applicatlons, a combination of functional and oblect-orlented design might
well be most appropriate. Only after we know which type of design, or combination
thereof, 1s best sulted to the particular application can we teach people which design
approach to use. Wilthout such tralnlng, programmers wlll rely on thelir experlence
with other languages and wlll probably produce functional designs.

Proper tool support Is mandatory. This project was done without a
production-quallty valldated compller. In addition to that very necessary tool, a
language-oriented editor, which could have ellminated 609 of the observed errors,
would have been desirable. Thls would have allowed the programmers to focus
thelr attentlon on the logic errors that undoubtedly remaln In the deslgn and code.
Data dictlonarles, call structure and compilation dependency tools, cross references,
and other means of obtalning multiple views of the system would have helped. A
PDL processor with Interface checks, definltlon and use relation lists, and varlous
metrics would also be helpful.

Some methodology must be followed for a prolect to be successful. The metho-
dology and tools to be used should be understood before the prolect begins. The
effect of the lack of good tools s mentioned above. In addltlon, the PDL was
loosely deflned until after design began. Effectlve design reading might have caught
many of the errors. Even If we wanted to test thils project after a compller became
avallable, we would have needed to create a test plan after the requirements were
completed. However, that aspect of the methodology was deemed unimportant.
The language 1s only one aspect of the environment and methodology. It cannot
save a project In which the rest of the methodology Is ignored.

‘We belleve that thls prolect Is atyplcal In that It was done before a compller
was avallable and was not finished. However, it is typical in that training consumed
an enormous amount of effort and the programmers were not famillar with the
underlylng software englneering concepts of Ada and that it might look like the
beginning of many projects. The learnlng curve In methodology Is quite large. As
we study more prolects that use Ada, we will learn how to teach it, how to use lIt,
and where we mlght make mistakes. Until then, we need to study Ada and Its use
further.

4. Metrics for Ada

In conjunction with the project described above, a number of metrics specific to
Ada have been developed. Some of these have been used to evaluate the use of
packages on that projJect and the other design presented In [4]. Two of the package
metrics characterize the visibllity of packages and the use of data hiding via pack-
ages. These and other metrics for packages are further described in [5].

Other aspects of Ada might also be measured. Although we have not studled
these In detall at thls tlme, metrics for tasking might characterize the shared code
and evaluate the use of concurrency. Metrics for exception handling might measure

67

the locality of the exception handlers or the complexity of those handlers. However,
we must determine how these aspects of Ada should be used before we try to assign
quallitatlve values to these measures.

In additlon, we are developlng a taxonomy of evaluative, predlctive, and
characteristic metrlcs that might be used for Ada projects in particular but also
non-Ada software developments. Metrics are placed In elght categories which fall
roughly Into two groups. The first group contains the process categorles such as
resource use, changes, and environment. The second group contalns the product
categories such as slze, control, data, language, and operation. This Is but one
example of a categorization, and determinlng which categorles are most pertinent to
one’'s environment 1s a difficult task. However, we attempt to provide a set of
metrics which can be used In con)unction with the data collection paradigm
described above.

In addition to the categorization, the taxonomy also contalns a formallzation
for describlng metrics via formula generators. This Is a notation for describing sets
of metrics so that the myriad of comblnations of metrics can be discussed without
enumerating them. An earller version of this work appeared in [1], but a better for-
mallization Is belng developed.

5. Future Work

Ada Is a new language and it Is only starting to be used. We do not know how
to teach people to use Ada correctly. We do not even know how Ada should be
used. However, we plan some further research into Ada in order to answer some of
the questlons above.

We plan to contlnue our work with Ada-specific metrics. We would like to
apply these metrics to varlous projects and compare the measures to our perceptlons
of the prolects. Also In this area, we would like to develop more elaborate metric
tools.

Also In the area of tools, we plan to categorlize tools and technlques by the
faults they will prevent, the faults they will detect, the faults they might detect,
and the faults they will not detect. If we know the types of faults code developed In
this environment usually contalns, we mlght be able to apply the appropriate tools
or techniques to best discover those faults.

There were many drawbacks to the prolect presented above. The tralining
should have contalned specific and more detalled examples. A clearly deflned
methodology, Incorporating Ada, should have been used. Finally, the project should
have been taken to completion. We plan to monitor other large projects In which
these problems have been corrected. At least one of these will probably be done in
the NASA environment to determine how Ada flts into that environment.

In addition, we would like to study varlous deslgn alternatives. Comparisons of
when to use an object-ortented versus a functional deslgn would probably help In
Ada tralnlng. However, we currently do not know when each type of design should
be used. We need to determine some means of comparing deslgns and evaluating
the varlous alternatives. Controlled experiments would be one vehlcle, along with

68

the larger projects, for these studles of design.

There many interesting problems assoclated with Ada. We are addressing only
some of those problems. We welcome any comments on our research and encourage
others to Investigate these and other aspects of Ada.

6. Acknowledgements

We wish to thank John Balley, Shih Chang, John Gannon, Ellzabeth Kruesi,
Nora Monilna Panlillo-Yap, Connle Loggia Ramsey, Sylvia Sheppard, and Marvin
Zelkowitz for thelr contributions as the other monitors of the GE project.

7. References

[1] Victor R. Baslll and Elizabeth E. Katz, "Metrlcs of Interest In an Ada Develop-
ment,” IEEE Workshop on Software Englneerlng Technology Transfer,
Miami, FL, April 1983, pp. 22-29.

[2] Victor R. Basill, Nora Monlna Panlillo-Yap, Connle Loggla Ramsey, Shih
Chang, and Elizabeth E. Katz, A Quantitative Analysls of a Software
Development in Ada,” Unlversity of Maryland Computer Scilence Techni-
cal Report, UOM-1403, May 1984.

[8] Victor R. Baslll, Ellzabeth E. Katz, Nora Monina Panlillo-Yap, Connle Loggla
Ramsey, and Shih Chang, " A Quantitative Characterlzation and Evalua-
tlon of a Software Development In Ada,” submlitted to IEEE Computer.

[4] A.G. Duncan, J.S. Hutchison, J.W. Balley, T.M. Chapman, A. Fregly, E.E.
Kruest, D. Merrill, T. McDonald, and S.B. Sheppard, "Communicatlons
System Deslgn Using Ada,” Proc. 7th Intl. Conf. on Software Englneer-
Ing, Orlando, FL, March 1984, pp. 398-407.

[5] John D. Gannon, Elizabeth E. Katz, and Victor R. Baslll, "Metrics for Charac-
terlzing Ada Packages” under draft.

69

THE VIEWGRAPH MATERIALS
for the

V. BASILI PRESENTATION FOLLOW

bl

SOFTWARE DEVELOPMENT IN ADA

Victor R. Basile
University of Maryland

with
Elizabeth Katz
Nora Monina Panlilio-Yap
Connie Loggia Ramsey
Shih Chang

and
other project members

John Bailey
John Gannon
Elizabeth Kruest
Sylvia Sheppard
Marvin Zelkowitz

* Thls work 1s supported by the Offlce of Naval Research and the
Ada Joint Program Oflice under grant N00014-82-0225.

+ Ada iIs a registered trademark of the Unlted States Department of
Defense - Ada Joint Program Offlce.

70

MOTIVATION

* Importance of studying Ada

- NASA needs to make a decision about
using Ada with the Space Station

- How should people be trained?

- How does background affect the
learning and use of Ada?

- How cost effective is the use of Ada?

* Look at other developments for suggestions

* Look at related projects for support in metrics
and tools

71

UNIVERSITY OF MARYLAND / GENERAL ELECTRIC
ADA PROJECT

* Redesign portion of satellite ground control
* Goal to make recommendations on training and tools
* Data collected according to paradigm
* HExtensive training spread over a month
- class, videotapes, practice project,
- methodology then and during project
- could have been more effective
* Used Ada-like PDL for design
* NYU Ada/Ed interpreter used for processing

* Project not completed and only partially tested
due to lack of compiler

72

*

GOAL-QUESTION-METRIC
PARADIGM FOR DATA COLLECTION

Generate set of goals based on needs or organization

Derive set of questions of interest or hypotheses
which quantify those goals

Develop a set of data metrics or distributions which
provide the information needed to answer the questions

Define a mechanism for collecting accurate data
Validate the data

Analyze the collected data to answer the questions

73

FOUR AREAS OF GOALS

Characterize the effort, changes, errors,
and Ada errors

Evaluate the use of Ada, the effect of
using an Ada-like PDL, the effect of
programmer background on the use of Ada,
and how much of Ada is used

Evaluate the data collection and validation
Develop a set of metrics for Ada and

provide a data base for future Ada projects
to predict some properties of those projects

74

PROGRAMMERS

Years of
Programmer Exper- Education Languages Known
fence
Lead 9 B.S. FORTRAN, Assembler
Senlor 7 M.S FORTRAN, Assembler,
SNOBOL, PL/1, LISP
Junior 0 B.S. FORTRAN, Assembler,
Pascal, PL/1, LISP
Librarian 0 High FORTRAN
School

*

Had no experience with Ada

* Lead and senior programmer had some experience
with the application but not with current
software engineering techniques

* Junior programmer had most experience with newer
software engineering techniques, and he created
the made Ada-like code

*

75

Each used the model of programming he knew best

PRODUCT CHARACTERISTICS

Ada and Programmer
nonexpanded PDL | Lead Senlor Junior | Librarian Total
nonblank lines 1633 3611 4307 396 9899
text lines 857 1904 2159 274 5154
executable stmts. 378 718 866 127 2089
compilation units 9 20 36 2 67

* Senior and junior programmers wrote most of the code

Senior programmer expanded all of his design

*

*

Librarian wrote very little code
* Some PDL was never expanded

Design looked more like the original FORTRAN design
than unlike it

*

76

MAKE THIS SIDEWAYS AT NASA
+ data analysis should look like it continues
+ half month is granularity
+ last row is hours (none for data analysis)

Date

require-
ments

train-
ing

design

cade

test

data
analysis

Activity

Jan 82
Feb
March
April
May
June
July
Aug
Sept
Oct
Nov
Dec
Jan 83
Feb
March
April
May
June
July

Aug

*

* o H ¥

* % H H H B X X »

L JEE K NN JER R NEd JNE JEE R K J

®* % * B X ¥ »

E R R R . L B SR K IR JEE JEE IEE BEE BEE BN

Calendar
Time

684

849

714

381

332

Hours

77

*

*

CHANGES AND ERRORS

Study changes and errors to determine problem
areas and effectiveness of training
Difficult to compare with completed projects
332 changes -- 579 were error corrections
192 errors
Most errors were syntax errors and trivial

- 909% affected only one component

- 809 were isolated and corrected in less
than half an hour

.091 errors per executable statement

Reading focussed on syntax errors rather
than on more serious ones

78

OMISSION VS. COMMISSION ERRORS

* Compare with Basili & Perricone SEL study

Errors Percentage
Involved Omission Commission
This study
w/o compiler 52% 48%
faults
Basili & Perricone
New module 45% 55%
€IrToTS

BUT

¥ All Ada modules were new

* All SEL modules had at least clean
compiles before error reporting began

* We don’t consider those faults that could
have been detected by a compiler

79

LANGUAGE-PROBLEM-CLERICAL ERRORS

* Subjective in that the monitors must try to
determine what the programmer was thinking

*+ LANGUAGE - related to the use of Ada

- SYNTAX - misunderstanding or misuse
of the syntax of a feature

- SEMANTICS - misunderstanding of the
meaning of a feature in that language

- CONCEPT - involves the general idea
of how the feature should be used

* PROBLEM - misunderstanding of the problem
domain or the environment

* CLERICAL - due to carelessness, e.g. typos

Number of Errors
Category All w/o Compiler
Errors Faults
Language 160 18
Concept 8 8
Semantics 44 10
Syntax 108 0
Problem 26 26
Clerical 6 0
Total 192 62

* Language errors are rare for NASA projects

80

USE OF ADA FEATURES

* Most features were used, but not together

Generics were instantiated once

Some simple exception handling

Several tasks

No new abstract data types defined

* Little information hiding
- Little private data
- Representation of structures was shared

- Changes to representation would be
disastrous in some cases

* No attempt to limit visibility of data
* Packages for device drivers

* Ada-specific features were more error-prone

81

RECOMMENDATIONS FROM THIS STUDY

* Ada is more than syntax and simple examples

Learning Ada takes time

Need examples from application area

Ada should be used with somme methodology

Need training in methodology

% Lessons in tool support

- Must evaluate quality and availability
of compilers and other tools

- Language-oriented editor would alleviate
the problems with syntax errors

x Design alternatives should be investigated

* Study how Ada features should be used

82

METRIC DEVELOPMENT
* Look for metrics to evaluate methodology

* Metrics to evaluate Ada use
- Package metrics (Gannon, Katz, and Basili)

+ Visibility
+ Implementation hiding

- Tasking metrics

+ Shared code
+ Concurrency

- Exception metrics

+ Locality of handlers
+ Complexity of handlers

83

*+ General metrics are available for evaluating
other aspects of the development

* Metric taxonomy of evaluative, predictive, and
characteristic metrics (Basili and Katz)

- Eight categories in two groups

PROCESS PRODUCT

resource use size
changes control
environment data
| language
operation

- Formalization via formula generators

< - O~

84

FUTURE WORK

+ Continue work on Ada-specific metrics
+ Develop more elaborate metric tools

%+ Categorize tools and techniques by the
faults they prevent, will detect, might
detect, or will not detect

«+ Monitor other large projects, €.8. NASA
- Training with specific examples
- Clearly defined methodology
- Taken to completion

+ Study design alternatives

- When to use object—oriented VvS.
functional design

- How to evaluate alternatives

- Controlled experiments

85

PANEL #2
SOFTWARE ERROR STUDIES

J. Knight, University of Virginia
H. Rombach, University of Maryland
R. Sum, University of Illinois

E. Soloway, Yale University

Dit
N86-19971

A LARGE SCALE EXPERIMENT IN N-VERSION PROGRAMMING

John C. Knight
Department of Computer Science
University of Virginia
Charlottesville, Virginia.

Nancy Leveson
Department of Computer Science
University of California
Irvine, California.

A Summary
Submitted To The Ninth Annual Software Engineering Workshop

Goddard Space Flight Center
Greenbelt, Maryland.

86

N—ve-r51og progggm'gxing has been proposed as a method of providing fault tolerance in
sofAts_ml.r‘e. The abprt;z;;:l; ;'equires the independent preparation of several {i.e. "N") versions
of a piece of software for some application from the same requirements specifications.
These versions are executed in parallel i1n the application environment; each receives
identical inputs and each produces 1ts version of the required outputs. The outputs are
collected by a voter and, in principle, they should all be the same. In practice there may be

some disagreement. If this occurs, the results of the majonty are assumed to be the correct

output and this is the one used by the system.

The great benefit that N—version programming is intended to provide is a substantial
improvement in reliability. It is assumed in the analysis of the technique that the N
different versions will fail independently; that is faults 1n the different versions occur at
random and are unrelated. Thus the probability of two or more versions failing on the
same input 1s very small. Under this assumption, the probability of failure of an N-
version system, to a first approximation, 1s proportional to the N’th power of the
probability of failure of the independent versions. If the assumption 1s true. systems with
extremely high levels of reliabilty could be built with components that are individually of

only average quality.

We are concerned that this assumption might be false. Our intuition indicates that
when solving a difficult intellectual problem (such as writing a computer program), people
tend to make the same mistakes even when they are working independently. If the
assumption of independence 1s not born out in practice, 1t would cause the analysis of the
reliability to overestimate the reliability of an N-version system. This could be an
important practical problem since N—version programming 1s being used in existing crucial

systems and 1s planned for others.

To test this underlying assumption of independence, we have carried out a large scale

experiment in N-version programming. A statistically rigorous test of independence was

87

by

the major goal of the experiment and all of the design decisions that were taken were

dominated by this goal.

In graduate classes 1n computer science at the University of Virginia (UVA) and the
University of California at Irvine (UCI), students were asked to write programs from a
single requirements specification. The result was a total of twenty seven programs (nine
from UVA and eighteen from UCI all of which should have produced the same output
from the same input. Each of these programs was then subjected to one million randomly

generated test cases.

The problem that was selected for programming is a sumple simulation of an anti-
missile system. The program is required to read some data that is supposed to represent
radar reflections. Using a collection of conditions, the program has to decide whether the
radar reflections come from an object that 1s a threat or otherwise. If the decision i1s made
that the object is a threat, a signal to launch an interceptor has to be generated. The
problem is known as the "launch interceptor” problem and the various conditions upon
which the decision depends are referred to as "launch interceptor conditions" (LI1C’s). The
various conditions are heavily parameterized. For example, one condition asks whether a

set of reflections can be contained within a circle of given radius; the radius 1s a parameter.

The students were given a brief explanation of the goals of the experiment and the
principies of N-version programming. The need for independent development was stressed
and students were carefully instructed not to discuss the project amongst themselves.
However, we did not impose any restriction o'n their reference sources. Since the
application requires some knowledge of geometry, it is to be expected that the students
would consult reference texts and perhaps mathematicians in order to develop the necessary
algorithms. We felt that the possibility of two students using the same reference material
was no different from two separate organizations using the same reference sources in a

commercial development environment.

88

As would be expected during development, questions arose about the meaning of the
requirements (surprisingly few questions we are pleased to say). In order the prevent any—-
possibility of information being inadvertently transmitted by an informal verbal response,
these questions were submitted and answered by electronic mail. If a question revealed a

general flaw 1n the specifications, the response was broadcast to all the programmers.

Each student was supplied with twelve input data sets and the expected outputs for
use in debugging. Once a program was debugged using these tests and any other tests the
student developed, it was subjected to an acceptance test. The acceptance test was a set of
two hundred randomly—generated test cases: a different set of two hundred tests were
generated for each program. This procedure was used to prevent a general “filtering” of
common faults by the use of a common acceptance test. Once a program passed its

acceptance test, 1t was considered complete and entered 1nto the collection of versions.

Once all the versions had passed their acceptance tests, program development was
stopped and the versions were tested. A test driver was built which generated random
radar reflections and random values for all the parameters in the problem. All twent:
seven programs were executed on these test cases and the determination of success was made
by comparing their output with a twenty—eighth version, referred to as the gold program.
The gold program had been tested extensively in other experiments and had been the
subject of an extensive walkthrough. It was thought to be correct but each disagreement
between the gold version and one of the others was investigated to ensure that the gold
version was not at fault. A total of one million tests were run on these twenty eight

versions.

For the particular problem that was programmed for this experiment, we have
concluded, based on the results on the million tests, that the assumption of independence
that is fundamental to the analysis of N-version programming does not hold. Using a

fairly simple probability model of independence, our data indicates that the hypothesis of

89

independence has to be rejected at the 99% confidence level.

It 1s important to understand the meaning of this statement. Farst, it is conditional on
the application that we used. The result may or may not extend to other programs, we do
not know. Other experiments must be carried out to gather data similar to ours in order to
be able to draw general conclusions. Second, the statement above does not mean that N-—
version programming does not work or should not be used. It means that the reliability of
an N-version system may not be as high as theory predicts under the assumption of
independence. If the implementation issues can be resolved for a particular N—version

system, the required reliability might be achieved by using a larger value for N.

90

THE VIEWGRAPH MATERIALS
for the

J. KNIGHT PRESENTATION FOLLOW

70 a

A LARGE-SCALE EXPERIMENT

John C. Knight
Department of Computer Science
University of Virginia
Charlottesville, Virginia, 22903
(804) 924-7605

91

IN N-VERSION PROGRAMMING

Nancy G. Leveson
Department of Computer Science
University of California
Irvine, California, 92717
(714) 856-5517

LARGE-SCALE EXPERIMENT IN N-VERSION PROGRAMMING

Fault-Tolerant Software By N-Version Programming

Currently Being Applied (A310 AIRBUS)

Examination of Assumption of Independence

Statistically Rigorous Analysis

Two Universities - UVA and UCI

Graduate and Senior Classes in Software
Provided Programmers

92

Engineering

EXPERIMENT OVERVIEW

Specifications Rewritten at UVA Based on RTI Experience

RTI Gold Program Rewritten in Pascal

Twenty Seven Versions Written

Each Required To Pass 200 Test Cases Before Acceptance

Satisfactory Versions Subjected to One Million Tests

Intermediate Computations Checked

7 VAX’s, 5 Primes, 2 Cyber 170, Cyber 730

93

PROGRAM OVERVIEW

Processing of Simulated Radar Data

Considerable Geometric Knowledge Required

Written in Pascal

Final Versions Turned Out To Be 500 - 800 Lines

Versions Written as Procedures

All I/0 Through the Parameters

Fixed Precision Real-Compare Function

94

$6

VERSION

FAILURE DATA

Version Failures Reliability Failures Reliability
1 2 0.999998 15 0 1.000000
2 0 1.000000 16 62 0.999938
3 2297 0.997703 17 269 0.999731
4 0 1.000000 18 115 0.999885
S 0 1.000000 19 264 0.999736
6 1149 0.998851 20 936 0.999064
7 71 0.999929 21 92 0.999908
8 323 0.999677 22 9656 0.990344
9 53 0.999947 23 80 0.999920
10 0 1.000000 24 260 0.999740
11 554 0.999446 25 97 0.999903
12 427 0.999573 26 883 0.999117
13 4 0.999996 27 . 0 1.000000
14 1368 0.998632

MULTIPLE FAILURES

Number Probability Occurrences

2 0.00055100 551
3 0.00034300 343
4 0.00024200 242
S 0.00007300 73
6 0.00003200 32
7 0.00001200 12

8 0.00000200 2

96

- UCI AND UVA

CORRELATED FAILURES

UVA Versions

COOOOC OO0 OO ONLOCOOCOO

00 v O ~— o oY o
05 0200 = =

110

=N O ™
Q] on

323

OlnonOOIOOZOOOOIOO
020030101030”00050
COO0O OO0 OO0 O0OO0C OO0 O00O00O0
QOO0 OO0 O0OO0O0 OO0 OO0 O0O00C0O0O0

QXX OVOONMANTWVLHOANNO < o
Ul o o))

115

COO0OOC OO OO0 OO0 O0O00O00O00O0

QOO OO OOANOOOCOOOO0OOO

O™ ANt O
T i v g v vy

17
18
19
20
21
22
23
24
25
26
27

UCl
Versions

97

FAULTS DETECTED DURING TESTING

Version Faults Version Faults

1 1 15 0
2 0 16 2
3 4 17 2
4 0 18 2
5 0 19 1
6 3 20 2
7 3 21 2
8 2 22 3
9 2 23 2
10 ¢ 24 1
11 1 25 3
12 2 26 8
13 1 27 0
14 2

Bug (a) Shared By 1, 18(twice)

Bug (b) Shared By 3(twice), 8(twice), 20, 25(twice)

Bug (c) Shared By 7, 12, 14, 17(twice)

Bug (d) Shared By 9, 11,20, 22(3 times), 26(twice)

Bug (e) Shared By 13,16,21

98

DISCUSSION

@ Student Programmers Are Realistic Subjects

® Million Tests Represent Reasonable Lifetime

e Conclusions
— Computed Probability of Multiple Failures - 0.000126
— Observed Probability of Multiple Failures - 0.0012535
— Hypothesis of Independence Rejected at the 99% Level
— N-Version Programming Needs to be Used CAREFULLY

— Many More Experiments Are Needed

99

N86-19972
DS

DESIGN METRICS FOR MAINTENANCE +
H. Dieter Rombach *

Department of Computer Sclence
Unlversity of Maryland
College Park MD 20742

(301) 454-4251

Abstract

This paper describes results of a study to develop maintenance metrics based on struc-
tural software design characteristics. The intent of the study was to define a characteris-
tic metric set, suited to explain and predict software maintenance behavior. The maintenance
aspects investigated in this study are stability and modifiability. While stability addresses the
average number of modules affected per change cause, modifiability characterizes the ease with
which changes can be made within each of these modules. Additional interest is dedicated to the
difference between characteristic design and implementation metric sets, and to the difference
between change behavior during development and maintenance. This study examines the

development of six software systems and controlled maintenance experiments using these systems.

* Some of these results are contalned In my Ph.D. thesis [Rombach 84} written at the Dept. of Computer Sclence,
Unlversity of Kaiserslautern, Fed. Rep. of Germany.

+ Research for this study was supported in part by the ministry of research and technology of the Fed. Rep. of
Germany (Project on DISTributed Operating Systems at the University of Kaiserslautern, Fed. Rep. of Germany).

100

Motivation

The study presented In thls paper was part of a project to deslgn and lmple-
ment a new LAnguage for Distributed sYstems (LADY [Nehmer et al. 82]),
started at the Computer Sclence Department at the Unlversity of Kalserslautern,

Federal Republic of Germany, 1n 1980.

The overall goals of this project were to Improve the behavior of software for
distributed systems with respect to comprehensibility, malntalnabllity, and reusa-

bility. To achleve these goals, the following language features were Included:

1) A hlerachy of two expliclt levels to structure a system: A system Is character-
1zed as a set of teams (functional units of distribution), each team as a set of
modules (unlits of separate complilation).

2) Strong typing, even of structural units.

3) Formal Interface parameters.

To determine the degree to which these goals were met, quantitative estima-
tion of the behavior of systems was developed. The behavior of a number of sys-
tems Implemented In LADY were compared with a number of systems lmple-
mented In a ’‘conventional’ language without these features. The behavior of
software 1s Influenced by varlous factors [Baslil 81]. In order to attribute different
behavlor to system structure, 1t was necessary to Keep all factors not of Interest
as constant as possible. One way to achleve this Is to use restrictive development
and documentation guldelines, If possible supported by tools. One of the tools
[Rombach, Wegener 84] was used to assist In developing consistent, semlformal
deslgn documents based on ldeas In [DeRemer, Kron 76]. On the other side, this
increase of formalism of design documents was the presupposition to extend
research about the Influence of measurable structural software characteristics on

software behavlor from code to deslgn documents.

101

This paper focuses on the quality characteristic malntalnability and 1ts pred-
lctablllty by structural deslgn characterlstics. Data for this study were collected
from slx systems, all deslgned and Implemented using the above mentloned ’con-

ventional’ modularization concept.

Goals

The overall goal of this study is to determine the impact of struc-
tural software design characteristics on maintenance behavior. Before
stating the questions of Interest, a few terms have to be Introduced: Each fallure,
change of environment, or change of requirements Is called a change cause.
Each change cause can result In a number of changes in different modules.
Analogously, two different malntenance aspects, stability and modifiability, are
of Interest. While stabllity addresses the impact df each change cause on the
whole system, e.g., number of affected modules, modifiabllity characterlzes the
ease with which changes can be made within each of these silngle modules. For
each module, the effort spent to change this unit Is called its internal change
effort. The effort spent In all other units because of the same change cause ls
called 1ts external change effort.

The questions of interest are:

(Q_1) Is it possible to explain or predict stability in terms of 'number of
changed units per change cause during maintenance’ by analysis of
the system structure as available from design documents?

(Q_2) Is it possible to explain or predict stability in terms of ’external
change effort in staff_hours per change cause during maintenance’
by analysis of the system structure as available from design docu-

ments?

(Q_3) Is it possible to explain or predict modifiability in terms of ’inter-

102

nal change effort in staff _hours per change during maintenance’ by
analysis of the system structure as available from design docu-

ments?

Two additional questions address the impact of the terms ’'design document’ and

‘'malntenance’ In the three questions above:

(Q_4) Are questions (Q_1) to (Q_3) answered differently, if software
characteristic data to characterize system structure are collected
from code instead of design documents?

(Q_5) Are questions (Q_1) to (Q_3) answered differently, if changes are

analyzed during development instead of maintenance?

Software Model

Very different models as abstractions of software depending on the aspect of
Interest [Harrison 82|, [Henry, Kafura 81]. An information_flow based model
seems to be most sensitive regarding all Inter_module aspects, as specified by the
type of design document used In this study (see chapter ‘Experimental
Approach’). Based on a model presented In [Henry, Kafura 81], a software sys-
tem 1s modelled as a set of algorithmic units (modules) and global data, and varl-
ous Informatlon flows between these modules.

An Information flow from module A to module B 1Is of type

1) Explicit Global, If "A has write_access and B has read_access to the same
global varlable”.

2) Implicit Global, if "B uses Information from module A, not explicltly avall-
able as data 1n code”.
This Implicit global Information flow Is added to the original model because it

seems to be a very Important aspect, especlally (but not only) in distributed

103

systems. Examples of such flows are shared assumptions about environment
parameters such as number of termlnals or assumptlons about buffer slzes. In
most cases, these Implicit dependencies are the result of design decislons not
specified at all or lost by transformlng deslgns to code. Thls undocumented
informatlon can be expected to cause problems, If personnel not Involved In the
development of a system have to change this system.

3) Local Direct, If "A calls or uses B”.

4) Local Indirect, If elther a) "B recelves data from A, caused by a call_ or
use_relatlon from B to A”, or b) "A Is connected by local Indirect flow of type
a) to a third module C, and C calls or uses B with the same data recelved from
A”.

In this study, one of the lmportant aspects with regard to the practical usa-
bllity of metrics Is, whether possible metrics are determined by automatically
measurable data, or whether addlitional data are needed, which have to be
analyzed or even determined by Intultlon.

Regarding this, a grouping of the above mentioned flows In 3), 1) + 4), and 2)

seems to be adequate. Further In this study, the followlng significant terms will

be used to classify metrics as based on:

- Control Flow, If only flows of type 3) are considered.

- Data Flow, if flows of type 1) and/or 4) are needed In addition to flows of type
3).

- Information Flow, if flows of type 2) are needed In additlon to flows of type

1), 3), 4).

In the gilven order, the number of structural aspects taken In conslideration

Increases, and the ease of collecting the necessary data decreases.

104

Experimental Approach

3 Time Sharing Systems (TSS), all implementing ldentical requirements,
and 3 Process Control Systems (PCS), all iImplementing ldentlcal requirements,
were developed and malntalned to collect data In order to answer the questions

(Q_1) to (Q_5).

¢ Experimental Design
The experiments were carrled out In 2 subsequent steps.
Step_1, the development of these systems, was done by three graduate stu-
dents (assisted by a number of student research assistents) writing their
diploma (master) theses. These developments took about 18 months. The
developed systems are characterized In Table 1.
Step_2, a number of controlled malintenance experiments, (as) ldentical (as
possible) for all six systems developed In step_1, was done by student research
assistents over about 8 months. First, the systems were seeded with 25 faults
of different types which the students had to 1solate and correct.
The selectlon criterion for all faults was to choose a dlstributlon pattern of
fault types (control flow, data flow, data structure, computation, etc.)
corresponding to the average one determlned for all systems durlng develop-
ment. All the faults to be lIsolated and corrected were speclfied by a system
speclfic fallure description. Second, the students had to adapt the systems to
10 changes of environment, e.g., new Interface to devices. Third, the stu-
dents had to carry out 15 changes of system requirements. None of the
students involved 1n step_2 of the experlments for a specific system was
Involved In step_1 for thls speclific system. So, malntenance experiments were
carried out for each system by students getting all thelr knowledge about the

systems excluslvely from exlisting documents.

105

¢ Experimental Environment
The design language used, forces all declslons to be described explicitly. It Is
based on a module_interconnection_language presented In [DeRemer, Kron 76].
That means not only one flnal design verslon Is described, but a number
(depending of the developer’s capablllty to handle the problem) of (different
abstract) deslgn views are described. Therefore, the whole deslgn documenta-
tlon consists of a hlerarchy of, slngle_level_descriptlons (see Figure 1). Figure
2 outllnes the scheme of the complete module deslgn document. Such a
module design description (= description of level_n in Figure 1) contalns for-
mal specification of the module interface (EXPORT, IMPORT In Flgure 2) and
the algorithmic design (DYNAMICS In Figure 2) at least. Descriptions of
different levels In Figure 1 usually consist of a different portlon of formal Infor-
mation. Descriptions of level_1 to _n-1 differ in the sense from level_n descrip-
tlons, in that the complete lmplementation part doesn’t exist yet. The
specification part already exlsts, perhaps In a more abstract view depending on

the level of the deslgn document within the hlerarchy of Figure 1.

The implementation language used Is an extenslon of PASCAL (plus con-

current processes and communication primitives), called C-TIP, which conslsts

of 2 structuring levels:

- system level (specification), describing a system as a set of modules (processes,
classes, procedures), processes only communlcating by exchanging messages

- module level (algorithmlc), lilke PASCAL (plus communlcation primitives)

e Data Collection
Data were collected both to characterize the software structure and to charac-
terlze the software maintenance behavior.

A list of Structural software deslgn Characteristics (SC_1), for which data were

106

collected per module, Is:

SC_1) Number of exported functions

SC_2) Number of parameters per exported function

SC_3) Number of imported functions

SC_4) Number of parameters per imported function

SC_5) Number of exported functions with output parameters

SC_6) Number of imported functions with output parameters

SC_7) Number of exported Implicit informations (= flow of type 2))

SC_8) Number of imported implicit informations (= flow of type 2))

SC_9) Number of other modules 'using’ exported functlons

SC_10) Number of other modules implementing the imported functions

SC_11) Number of other modules ‘'using’ exported functions with output
parameters

SC_12) Number of other modules implementing imported functions with out-
put parameters

SC_13) Number of other modules establishing Implicit informatlon to be used

SC_14) Number of other modules to which the observed module has informa-

tlon flow relations

These structural software deslgn characteristics data were collected after
development (characterizing the structure of the final version of a system).
A list of Quality Characteristics (QC_l1), characterizing the malntenance

behavlior, Is:

QC_1) Number of modules changed per change cause
QC_2) Effort In staff_hours to Isolate per change cause
QC_3) Effort In staff_hours to correct or change In each module per change

cause

107

These quality characteristlc data were collected durlng all phases of develop-
ment (startlng with design) and durlng malntenance experiments with a

separate form for each change cause.

e Data Validation
Valldation of collected data was carrled out by the author meeting with all

developers at the beginning of each week.

e Data Evaluation
Although the study concentrates on the Inter module aspect of system struc-
ture, the metrlcs under Investigation combine this exterior complexity (cou-
pling [Myers 75], programming_in_the_large [DeRemer, Kron 76]) with the
interior complexity (strength or coheslon [Myers 75],
programming_lin_the_small [DeRemer, Kron 786]).

Therefore, for each module these complexity metrics K are of type

KNKeztcrior*Kt'nterior

The exterior complexity Is composed of two views:

- integrated view, that conslders the module embedded In an concrete sys-
tem. Actual flows between thls speclfic module and 1ts environment are con-
sidered. Software characterlstics 9) - 14) especlally contribute to this aspect.
Depending on which type of flow 1s of Interest, the exterlor complexity 1s
represented by one of the followilng comblnations of structural software
design characteristics: "SC_9 + SC_10", "SC_11 + SC_12", "SC_13 +
SC_14", etc..

- isolated view, that conslders the module isolated (Ilbrary module for future
and different use). Possible flows between thls speclfic module and Iits
environment are consldered. Software characteristics 1) - 8) especlally contri-

bute to this aspect. Depending on which type of flow Is of Interest, the
108

exterlor complexlty Is represented by one of the following comblnations of
structural software deslgn characteristics: "(SC_1 * SC_2) + (SC_3

SC_4)", "SC_1 + SC_3", etc..

The interior complexity is composed of three measures:

- Structure v (G)” (like Cyclomatic Complexity [McCabe 76])

- Design Length "L~ in terms of the number of linear Internal program
sequences.
A program Is represented by a graph as In [McCabe 76], except that nodes
are not only nonlinear control constructs, but also Interface accesses
(export_, Import_functions). L is the number of edges of the corresponding
graph.

- Number of Interface Accesses "IA™ In terms of number of calls of Import

functlons (see Figure 2) plus number of exported functions.

In order to answer the questions of Interest (Q_1), data were evaluated In the

following way:

- Determline for all modules of each system the correlations between the
module complexity and the module-speclific quallty characterlistic data
(QC_J) for all faults during development.

- Determine for all modules of each system the correlations between the
module complexity and the module-specific quallty characteristic data
(QC_i) for all mailntenance experiments, Including faults, environment adap-
tlons, requirement changes (dangerous, because number and type of changes

were filxed by Intultion!)

The correlatlon between structural deslgn characteristics and quantitative qual-
1ty characteristics 1s determined by uslng the Spearman correlation
coefficient together with 1ts level of significance.

109

Data Analyses Results

All analysls results are presented according to the questions of Interest:

r

e Answers to question (Q__l)

For all modules of each system, the correlations between different types of

‘'module complexity’ and the 'average number of modules changed because of

all change causes, the corresponding module was changed too’ are presented.

All the results are supported by the data In Table 2, row 3 and 4, for two

representative systems.

The overall correlations are sufficlently good for analyzing not the completely
Implemented system but only deslgn documents. The best correlation
coefficlents for each type of metrlcs are between 0.7128 and 0.8200
(slgnificance < 0.01 at least).

The best metrics to explaln thls stabllity aspect are using 'Integrated Informa-
tlon flow’ to characterize the exterlor complexlty and the 'number of Inter-
face accesses IA' to characterize the Interlor complexity. The very best
correlation coefficlent Is 0.8200 with slgnlficance level 0.001.

The best metric uslng the ’Integrated data flow’ 1s not slgnificantly worse
than the best metric based on ’Integrated Information flow’.

Metrics using the 'isolated data or Information flow’ show worse correlations
than metrics using ‘'Integrated data or information flow’.

Metrics not using any characterization of the interior complexity are in the
range between 0.5494 and 0.7180 (slgnificance In most cases 0.05 at least).
Conventional metrics, uslng the interlor complexity such as 'v(G) and 'L’,
show no sufficlent correlation. Only 'IA’, the characterization of the Intenslty
of Interface access, has a sufficlently good correlation “with number of
changes. Thils fact Is reflected In the fact that all metrics which characterize
the Interior complexity by 'IA’ result In the highest correlation coefficlents.

110

e Answers to question (Q_2):

For all modules of each system, the correlations between different types of
'module complexity’ and the 'average external change effort In staff_hours per
change cause’ are presented.

All the results are supported by the data In Table 2, row 5 and 6, for two
representative systems.

The results overall are comparable to those corresponding to question (Q_1).
The same pattern can be recognized, which says that for each exterlor com-
plexity class the metric using the 'number of interface accesses IA’' shows the

best correlation.

- The overall correlatlons were sufficlently good for analyzing not the com-
pletely Implemented system but only design documents. The best correla-
tlon coefficlents for each type of metrics are between 0.6643 and .8065
(slgnificance < 0.05 at least).

- The best metrics to explain this stabllity aspect are using only the ’'Integrated
information flow’ to characterize the exterlor complexity. The very best
correlation coefliclent 1s 0.8065 with significance level 0.001.

- The best metric using the 'Integrated data flow’ I1s not much worse than the
best metric based on 'Integrated Informatlon flow’ (0.7780).

~ Metrics using the ’isolated data or Information flow’ show worse correlations
than metrics uslng ’Integrated data or Informatlon flow’.

- Conventional metrics, using the Interlor complexity such as 'v(G)' and 'L’,
show no correlation. Only 'IA’, the characterizatlon of the intenslity of inter-
face access, has a sufficlent correlation with number of changes. This fact 1s
reflected In the fact that all metrics which characterize the Interior complex-
Ity by 'IA’ result in a higher correlation coefficlent than those using 'v (G)’

or 'L’.

111

e Answers to question (Q_3):
For all modules of each system, the correlations between different types of
'module complexity’ and the ’average Internal change effort In these modules
per change cause’ are presented.
All the results are supported by the data in Table 3 for four representatlve sys-

tems.

- The overall correlatlons were sufficlently good for analyzing not the com-
pletely itmplemented system but only deslgn documents. The best correla-
tlon coefficients for each type of metrics are between 0.6901 and 0.8230
(significance < 0.05 at least).

- The best metrics to explain this stability aspect are using the ’integrated
information flow’ to characterize the exterlor complexity and the ’length L’
to characterlize the Interlor complexity. The very best correlatlon coefficient
is 0.8230 with significance level 0.001.

- The best metrics using the ’Integrated data flow’ still show sufficiently good
correlations (0.6984 to 0.7962).

- Metrics using the ‘isolated data or Informatlon flow’ show no worse correla-
tlons than metrics using 'Integrated data or Information flow’.

- Metrics not using any characterizatlon of the Interlor complexity are In the
range between 0.6901 and 0.7870 (significance 1n most cases 0.05 at least).

- Conventlonal metrics, using the Interlor complexlity such as 'v(G)' and espe-
clally 'L’ show sufficlently good correlation. 'IA’, the characterizatlon of the
intensity of Interface access, doesn't correlate with number of changes at all.
This fact is reflected in the fact that all metrics which characterize the inte-

rlor complexity by 'L’ result In the highest correlation coefflclents.

All results corresponding to questions (Q_1) to (Q_3) are supported by results
about change behavior of the systems durlng development. These results are

112

presented In detall In [Rombach 84]. The followlng data analysls results
corresponding to questions (Q_4) and (Q_5) are not supported by data presented
In this paper but by data In {[Rombach 84]. Nevertheless, the results are presented
briefly because 1t might help to put the results about design metrics for malnte-

nance In perspective.

e Answers to question (Q_4):
The same correlatlon pattern exlsts for metrlcs using structural data from code
documents as for those using structural data from design documents.
- The correlation coefficients using data from code are about 0.1 higher.
It always must be remembered that the reported good results for design
metrics depend very much on the formal way of documenting deslgns used In

thls study.

e Answers to question (Q_5):
Correlation coefficlents show a simlliar pattern for all change causes durlng
development as for maintenance experiments.
- The total change effort for maintenance experlments was about twice as high
as for the same changes durlng development.
- The ratlo ’Isolatlon effort/change effort’ was about 1:1 during development

and about 3:1 for malntenance experlments.

Use of Analyses Results

Fortunately, design metrics characterized only by explicitly measurable
or analyzable structure data show sufficlently high correlation with stability
and modifiability. The best complexity metrics of this type explain stability of
a module by its data flows with other modules (Integrated data flow), and the
number of internal interface accesses (’calls’) appearing in its module

design. Modifiability 1s explalned by the same integrated data flow as
113

stability and by the design length of the algorithmic module design. These
metrics can be completely automated and used at the end of module design

as a

- development tool, to decide between deslgn alternatives In a ordinal way, or
- management or quality assurance tool, to plan module specific testing
effort accordlng to complexity, or to consider redesign If module complexity

exceeds tolerable complexity bounds.

The fact that complexity metrics only characterlzed by exterior aspects like
integrated data flow st,llll show sufficlently good correlations encourages the use
of these deslgn metrics for malntenance not only at the end of module deslgn but
much earlier during design. They should be used as soon as a system deslgn,

which descrlbes the module Interactions In some formal way, exlsts.

The maln result of thls study can be summarized as follows: Software
structure proved to be a reliable base to explain maintenance behavior.
The result can be improved if the amount of implicit information in
design documents can be decreased by forcing the principle of explicit
documentation of all design decisions. Thls Is true because the conversion of
Implicit global data to expllcit global data makes this information explicitely
measurable so that no difference exists between data flow metrics and informa-
tion flow metrics In Table 2 and 3. This result has been validated by controlled
experlments under the described experlmental environment. Especlally, the
necessary requirements for formal design documents have to be reminded.

All results are only transferable Into other environments If formal deslgn docu-
mentation of the required type (formal description of Interfaces and algorithmic

design) Is used.

114

Open Questions

Research 1n this fleld usually trles to answer a few questions but results In creat-

Ing more unanswered questions. Some of these unanswered questions are:

e What Is an upper bound of module complexity - as measured by complexity
metrics - causing no problems to deal with?

e How can the ratlo between exterlor and Interlor complexity (balancing aspect)
be Integrated In or added to metrics?

e How can the ratlo between system complexlty and average module complexity
(balancing aspect) be Integrated in or added to metrlcs?

e How can the answers for the balancing problems be used to determline some-
thing like an optimal design (relative to some requirements)?

e What aspects should be added to these ordinal metrics In order to obtaln

metrics interpretable with respect to Interval scales?

Can these results be transferred to different development environments?

e Do these results hold under reallstic maintenance conditions?

References

[Basili 81]
Victor R. Basili, "Data Collection, Validation, and Analysis,” in Tutorial on 'Models and
Metrics for Software Management and Engineering, IEEE Catalog No. EHO-167-7, 1981, pp.
310-313.

[DeRemer, Kron 76]
F. DeRemer and H. H. Kron, "Programming-in-the-large versus Programming-in-the-Small,”
IEEE Transactions on SE, Vol. SE-2, No. 2, June 1976, pp. 80-86.

[Harrison et al. 82]
W. Harrison, K. Magel, R. Kluczny, A. DeKock, "Applying Software Complexity Metrics to
Program Maintenance,” IEEE Computer, Sept. 1982, pp. 65-79.

(Henry, Kafura 81]
S. Henry, D. Kafura, "Software Structure Metrics based on Information Flow,” IEEE Tran-
sactions on SE, Vol. SE-7, No. 5, Sept. 1981, pp. 510-518.

(McCabe 76]
T. McCabe, "A Complexity Measure,” IEEE Transactions on SE, Vol. SE-2, No. 6, Dec.
1976, pp. 308-320.

[Myers 75]

G. J. Myers, "Reliable Software through Composite Design,” van Nostrand Reinhold Co.,

115

New York, 1975.

[Nehmer et al. 82]
J. Nehmer, R. Massar, W.-F. Racke, H. D. Rombach, R. Schrapel], "DISTOS - A Methodol-
ogy to construct Distributed Operating Systems,” Technical Report, Computer Science
Department, University of Kaiserslautern, April 1982, in German.

[Rombach 84]
H. Dieter Rombach, ”Quantitative Estimation of Software Quality Characteristics based on
Structural Complexity,” Ph.D. dissertation, Computer Science Department, University of
Kaiserslautern, Fed. Rep. of Germany, 1984, in German.

[Rombach, Wegener 84]
H. Dieter Rombach, K. Wegener, "Experiences with a MIL design tool,” Proc. 8th Confer-

ence on Programming Languages and Program Development, Zurich, Switzerland, March
1984.

116

Figure 1: Hierarchy of Design Descriptions

level 1

L3N]
level_2 [subsystem_1] [subsystem_2{ » « « {subsystem_k |
level_n |module_11}.«fmodule_1s} fmodule_k1}-. module_k1]

117

Figure 2: Example of a Module Design

MODULE < name > :

SPECIFICATION:
AUTHOR: < name of designer >
DEADLINE: < date of completion >
DATE: < date of last change >
VERSION: < version number | to be increased with each
’logical’ change >
PROBLEM: < This part contains an informal (textual)
description of the function of the whole
module. Although it is informal, all information
is to be ordered in a uniform way.
Especially all the information, that can’t be
formalized in this stage of development, but
already exists, should be documented in this
section >
EXPORT: <« All functions with parameters and types,
offered by the module like:
function_1 (A : A_type, B : B_type ---> C : C_type) >
IMPORT: < All functions with parameters and types,
used from other modules like:
module_name.function_2 (A : A_type ---> B : B_type) >
END SPECIFICATION

IMPLEMENTATION:

STATICS: <« The meaning, parameters, etc., of each
exported function can be described in a
informal way.

These function specific parts are comparable
to the PROBLEM part for the whole module
in the SPECIFICATION above. >

DYNAMICS: < PASCAL-like description of a flow-graph.
The nodes of this flow graph are
nonlinear control flow operators like
’if’, 'while’, 'for’, ’case’, etc.

AND all accesses to the export

or import interface. All edges (= linear

parts without interface access) are represented
by comments, later to be transfered into the
code as comments. >

END IMPLEMENTATION

END MODULE < name >

Underlined key_words mark segments of formal representation of design information.

118

Table 1: Characteristics of developed systems

Developed Systems

SW-Characteristics TSS 1 TSS_2 TSS_ 3 PCS_1 PCS_2 PCS_3
No.of MODULES
- all objects/types 53/26 29/14 42/21 23/13 10/6 16/10
- processes (obj/types) 21/11 20/11 17/10 12/6 10/6 11/8
LINES OF CODE+ 11000 10200 10800 1500 1460 1450
DEVELOPMENT
EFFORT (in h)* 269.76 332.85 308.43 71.75 103.45 95.2
- system design 26.7 62.15 42.0 21.45 42.25 32.0
- module design 89.86 155.0 110.18 16.2 33.5 25.0
- system impl. 1.6 2.8 3.2 1.5 2.0 1.6
- module impl. 151.6 112.0 153.05 32.6 25.7 36.6
TEST EFFORT (in h)** 147.1 143.65 127.7 78.8 70.16 87.75
- module test 95.1 108.25 82.1 52.75 50.16 46.35
- system test 52.0 35.4 45.6 26.05 20.0 41.4
No.of CHANGES++ 72 90 85 28 37 31
No.of LOGIC ERRORS 49 50 59 20 16 22
NO. OF CHANGES
OCCURED IN PHASE
(with average
change effort (h))
- system design 2 6 3 2 2 2
(10.2) (5.1) (7.0) (9.5) (7.15) (6.1)
- module design 13 33 25 7 16 5
(3.1) (1.8) (1.2) (3.2) (2.12) (2.8)
- system impl. 0 2 4 1 0 2
“) (2.0) (0.9) (2.1)) (¢.2)
- module impl. 35 24 33 9 10 6
(0.8) (0.92) (0.78) (1.2) (1.6) (2.2)
- module test 18 19 17 7 8 12
(1.2) (1.6) (1.26) (1.38) (1.5) (1.05)
- system test 4 6 3 2 4 4
(3.5) (2.1) (6.05) (3.8) (2.6) (4.0)
NO.OF CHANGES WITH
EARLIEST DOCUMENT
CHANGED
- system design 11 22 14 10 3 3
- module design 24 28 22 7 16 11
- system impl. 0 2 3 1 0 1
- module impl. 37 38 46 10 18 16
AVERAGE No.of UNITS
CHANGED PER REASON 3.04 1.9 2.47 3.14 1.81 2.43
- system 0.37 0.32 0.38 0.66 0.55 0.54
- modules 2.67 1.58 2.09 2.48 1.26 1.89

+ All lines except pure comment lines
* All development effort (no unit test) except time for compilation
*x All test effort (module test, system test)
+-+ All types of changes except clerical errors

119

Table 2: STABILITY aspect

Spearman correlation coefficients between different types
of *'module complexity’ and ’relative number of changed modules
per change cause during maintenance’ respectively ‘relative external
change effort in staff_hours per change cause during maintenance’
(separate for modules of two selected systems)

Types of Complexity No. Changed Modules for | External Effort for
exterior Compl. | interior Compl. || TSS_1 PCS_1 TSS_1 | PCS_1 |
ISOLATED
- control -— 55854 5494~ 6812 .6728%
- control v (G) .5020+ .4972- 4819% 4777-
- control L 5262 .5182- .4865x% .4807-
- control 1A 7222 71284 .8373 8301
- data - 8126 8084+ 8718 B658%
- data v (G) .5262+- 5182~ .4685% .4612-
- data L 5376+ .5275- 4710x% 4572~
- data IA 7418 7381+ .8537 .8510%
- information -— .6214 8125+ .6704 6643*
- information v (G) 5384+ .5290- .4646% 4599~
- information L 5510+ .5392- 4680% .4564-
- information 1A 75622 75004 .6498 8473
INTEGRATED
- control - .86440 8382 7363 T270%
- control v (G) .6020+ .5933x% .5028+ 4982~
- control L .6102 .6071% 5090+ .4998-
- control 1A 7736 76024 7298 7250%
- data -— .6458 B8412% 7780 T729%
- data v (G) .6180 6106 5401+ .5385-
- data L .6303 .6228x% 5454+ .5407-
- data 1A 7855 78104 7709 L7684 %
- information ——— 7180 7148+ .8065 .8005+
- information v (G) 6412 .6364% .5660+ .5609-
- information L 6584 6507 * 5678+ .5633-
- information IA .8200 .8168 .8008 T7978%

— v (G) .4010% .3801- - -
— L .4609% .4562- - -
——— TIA .6828 8700 .8518 .8382%

- . significance >= .05, * : significance < .05, + : significance < .01,
otherwise : significance < .001

120

Table 3: MODIFIABILITY aspect

Spearman correlation coeflicients between different types
of 'module complexity’ and ’relative internal change effort
in staffl_hours per change cause during maintenance’

(separate for modules of four selected systems)

Types of Complexity Relative Change Effort for
exterior Compl. | interior Compl. || TSS 1 | TSS 3 | PCS 1 | PCS 3
ISOLATED
- control - 7870 7718 7268+ | .7203*
- control v (G) .7005 .6922 .6846% .6811%
- control L .7668 7428 .89024+} .6872*
- control 1A .5820+ .5765+ .5650% .5601-
- data - 7352 7308 7014+ | .7002%
- data v (G) 7021 6931 .6690% .6618%
- data L 7488 7344 .8744% | .6688%
- data IA .5550+ .5488+ .5402- .5365-
- information -— 75564 7498 71124+ .7082%
- information v (G) 7216 7155 .6740% .6706%
- information L 7716 .7632 .6521* | .8480+
- information 1A .6064 .6008+ .52563- .5213-
INTEGRATED
- control - 7221 7172 69254 | .6901=
- control v (G) 6918 .6808 .6704% .6672%
- control L 7723 7878 .6788* | .8734+*
- control 1A .6100 6011+ .5512- .5498-
- data -— .6956 8902 7012+ | .6999*
- data v (G) 7042 .7008 .6840% .6790%
- data L 7962 7916 70244 | .6984*
- data 1A 6244 .6196+ .5813% .5776-
- information — 7312 7285 7318+ .7300+*
- information v (G) 7496 7440 7182+ 7172%
- information L .8230 .8196 73444 | 7289+
- information 1A .6506 .6466+ .6071% .6040-

—— v (G) 5619+ | .5572+ | .5846% .5802-
----- L 7049 7010 .8038* | .5985-
—— IA _— —— _— _—

- : significance >= .05, x* : significance < .05, + : significance < .01,
otherwise : significance < .001

121

THE VIEWGRAPH MATERIALS

for the

H. ROMBACH PRESENTATION

/& o

DESIGN METRICS
for
MAINTENANCE

H. Dieter Rombach *

Computer Science Department
University of Maryland

November 1984

* Research for this study was supported in part by the ministry of
research and technology of the Federal Republic of Germany (DIS-
TOS project).

122

OBJECTIVES

e Study the impact of system structure
on software quality!

e Use design documents to measure
system structure!

e Find design metrics

- easy to automate

- usable early

123

DESIGN DOCUMENTS

e The following design information is re-
quired in a formal, measurable way for each
unit (system, subsystems, modules):

- the functional interface of the unit
(exported, imported functions)

- internal realization of the unit functions

(algorithm control flow)

e The concrete type of design documentation
used in this study, is an extension of the module
interconnection language (DeRemer & Kron):
- Hierarchy of unit design documents

- Each unit design document contains a

% List of exported functions
% list of imported functions

* PDL-like description of control flow

124

GOAL - QUESTIONS

e GOAL: Determine the impact of structural software
design characteristics on maintenance behavior!

The two maintenance aspects of interest are,
according to two important activities:

- Stability <---> isolate

- Modifiability <---> change

e Question_1: Can software structure as available from
design documents, be used to explain or pre-
dict STABILITY (number of changed units
per change cause)?

e Question_2: Can software structure as available from
design documents, be used to explain or pre-
dict MODIFIABILITY (change effort per unit
and per change cause)?

125

SOFTWARE MODEL

e Number of algorithmic units (modules)
e Number of data structures
- explicit
- implicit
e Structure of each module is characterized by its
- Exterior complexity
(how the module is, or can be embedded
in its environment)
% control flow
% data flow

% information flow

- Interior complexity
(how the module functions are implemented)

% control flow
* Length

* Intensity of interface access

126

EXPERIMENTAL APPROACH

OBJECTS:

e 3 Timesharing Systems (TSS)
~ 41 modules (20 module types)
~ 10,500 LoC

e 3 Process Control Systems (PCS)
~ 20 modules (10 module types)
~ 1,500 LoC

CONTROLLED MAINTENANCE EXPERIMENTS:

e 25 Failures
- FFaults identical for each system type
- Fault types (control flow, data flow, data structure,
interface, computation) with same distribution as
during development
e 10 Environment Changes
e 15 Requirements Changes

SUBJECTS:
e 9 1-person teams

- each team worked on one TSS and one PCS

127

DATA COLLECTION

e The following maintenance data were collected per change
cause:

- Number of changed modules
- Effort in staff_hours per change cause to Isolate faults
- Effort in staff_hours per change cause to change

e The following structure data were collected per unit:

- Number of exported functions
- Number of parameters per exported functions
- Number of imported functions
- Number of parameters per imported functions

- Number of exported functions with output parameter
- Number of imported functions with output parameter

- Number of exported implicit informations
- Number of imported implicit informations

- Number of units using exported functions
- Number of units from which functions are imported

- etc.
- Number of independent paths - v (G)”
- Number of sequences without nonsequential control flow

operator and Interface access - "L”
- Number of accesses (calls) to the unit interface - "IA”

DATA VALIDATION

e weekly meetings

128

DATA EVALUATION

e Spearman (R) correlation coefficients between

- different types of module complexity

and
- number of changed modules per change cause

(STABILITY)
- effort in staff_hours per change cause
(MODIFIABILITY)

e Hypothesis about relevant design metrics:

K~K, +K;

zterior " Minterior

- Exterior Complexity

* Isolated Exterior Complexity
Possible control flow
Possible data flow
Possible information flow

* Integrated Exterior Complexity

Actual control flow
Actual data flow
Actual information flow

- Interior Complexity
Structure v (G)
Length L
Intensity of interface access IA

129

DATA ANALYSES RESULTS

e Question_1 (No. of changed modules ~ structure):
Spearman correlation coefficlents (R) between "different
types of module complexity” and "number of changed modules
per change cause” for one representative system TSS_1:

Types of Complexlty
exterlor interior TS§__1__‘
ISOLATED
control e .55+
control v (G) .50+
control L 52+
control 1A 72
data - .61
data v (G) 52+
data L 53+
data 1A 74
information -— .62
information v (G) .53+
Information L .55+
Information 1A 75
INTEGRATED
control -— .64
control v (Q) .60+
control L .61
control 1A 77
data -—- .64
data v (G) .61
data L .63
data TA .78
Information -— 71
Information v (GQ) .64
Information L .85
Information IA .82
-— v (G) .40%
- L .46%
—- 1A .68

*: slgnlflcance < .05, —+: significance < .01, otherwlise: significance < .001

130

DATA ANALYSES RESULTS

QUESTION_1 (No. of changed modules per
change cause ~ structure):

e Overall good correlations: 0.5 to 0.82

e Best correlation (0.82) for metric using
- (integrated information flow,
number of interface accesses IA)

e Sufficiently good correlations (0.78) for metric using
- (integrated data flow,
number of interface accesses)

e Sufficiently good correlations (0.64) for metric
using
- only integrated data flow
e Bad correlations (~ 0.4) for metrics using
- only structure v(G), or
- only length L
e Sufficiently good correlation (0.68) for metric
using

- only the number of interface accesses IA

e General correlation pattern:
(Ke:cterior’ 1A)> (Kea:terz'or’)> (Kea:terz'or’ W G)orL)

131

DATA ANALYSES RESULTS
QUESTION_2 (Change effort per change
cause ~ structure):
e Overall good correlations: 0.6 to 0.82

e Best correlation (0.82) for metric using
- (integrated information flow, length L)

e Sufficiently good correlations (0.79) for metric
using
- (integrated data flow, length L)

e Sufficiently good correlations (0.69) for metric
using

- only integrated data flow

e No correlations for metrics using
- number of interface accesses TIA

e Sufficiently good correlations (0.56 to 0.70)
for metrics using
- only length v (G), or

- only structure L

e General correlation pattern:

(Kemterz'or’__—) > (Kea:terz'or’L) > (Ke:cterz'or’ u(G)> (Kexterior’IA)

132

PRACTICAL USE OF RESULTS

Use

e stability metrics of type
(integrated data flow, IA)

e modifiability metrics of type
(integrated data flow, L)

to
- decide between design alternatives
(! ordinal !)

- plan testing effort

- check lower, upper bounds
at different milestones

133

CONCLUSION

e It is possible to explain software main-
tenance behavior (MODIFIABILITY, STA-
B]LITY)by analyses of software structure
as available from design documents.

e Best theoretical explanation:
exterior complexity characterized by
integrated information flow

e Best practical explanation:
exterior complexity characterized by

integrated data flow (EASY to AUTOMATE)

e Metrics without using any interior com-
plexity show sufficiently good correlation.
—=> VERY EARLY design documents
(without any algorithmic design) can be
used, to explain or predict maintenance
behayvior.

134

e These results are
- drawn from formal design documents
- validated by controlled experiments

e Unsolved problems are:

- no sufficiently good linear regression
between complexity metrics and main-
tenance data could be identified.

- these results have to be validated for
larger projects and realistic maintenance
data.

- the influence of the ratio ’exterior com-
plexity/interior complexity’ or ’system com-
plexity/average module complexity’ is not
evident.

135

Db
N86-19973

An Approach to Operating System Testing

R. N. Sum, Jr.
R. H. Campbell
W. J. Kubitz
Department of Computer Science
University of [llinois "
1304 W. Springfield Av.
Urbana, IL 61801

ABSTRACT

To ensure the reliability and performance of a new system, it must be
verified or validated in some manner. Currently, testing is the only reason-
able technique available for doing this. Part of this testing process is the
high-level system test. This paper considers system testing with respect to
operating systems and in particular UNIX. This consideration results in
the development and presentation of a good method for performing the
system test. The method includes derivations from the system
specifications and ideas for management of the system testing project.
Results of applying the method to the IBM System/9000 XENIX operating
system test and the development of a UNIX test suite are presented.

136

t

H

“r 1, Introd

i 3o

» i
i

. ek
dction

Every new system must be evaluated before delivery to ensure proper functioning and
reliability. One part of this evaluation is the system test. A system test validates the high-

level functionality of a system. In the context of a general purpose computer operating sys-

tem, a system test verifies that the user interfaces conform to the system’s specifications.

Verification, in the form of program proofs, would eliminate the need for system test-
ing. However, the current proof techniques are not yet adequate. Therefore, a systematic
approach to system testing is needed. This paper describes a heuristic approach to a
software system test that derives its tests from the system specifications. The approach
includes individual tests embedded.in a comprehensive testing framework. This paper
describes the application of this approach to the system test of a XENIX® operating system

for the IBM Instruments, Inc. System 9000.

1.1. System Test Overview

The goal of system testing is to show that a system does not meet its specifications
[Myers79]. For a system test, two classes of specification must be considered. The first class
is provided by an overview of the components of the system which is often called the ‘‘for-
mal system specification” [Beeru83]. The second class is the user documentation which
includes user’s manuals, operator manuals, and hardware manuals [IBMIn84a, IBMIn84b,
IBMIn84c|. With these two classes of specification, a hierarchical testing framework can be

designed in a top down manner for the system test.

The list of user interfaces provided by the formal system specification can be used to
organize the test suite into a hierarchical framework. Each listed interface is tested by a

corresponding component of the test suite. Although this approach may not be appropriate

XENIX 1s a trademark of Microsoft

137

for all systems, for UNIX® we found it provided a natural decomposition of the test suite.
Each component can take advantage of particular properties of the system interface (for
example, whether the interface is programmable or is interactive) while the decomposition

organizes the particular testing methods and ensures that all the interfaces are tested.

Here we describe the decomposition of the test suite into components, the specific test-
ing techniques used in the components, and the results of applying the test suite. We
present several testing strategies which were required because of the particular properties of
the user interface. We then summarize the errors discovered in the system test and the
manpower effort required to generate the test results. The XENIX system tested is a port of
a commercially available software system and required the programming of new device
drivers and machine dependent code. In our conclusions, we attempt to identify to what
extent the errors we discovered could be associated with the components of the system
which were rewritten for the port. Our analysis reveals that there is only a small correlation

between the rewritten software and the errors that were identified.

2. Development of a UNIX Test Suite

The XENIX operating system test suite is organized according to the structure of the
interfaces specified in the system specification. Examples of tests in the System 9000 test

suite will be used to exemplify our testing methods and methodology.

2.1. The Test Suilte Structure

The formal specification of the System 9000 described four major user interfaces and

these were adopted as the major components of the test suite. They are:

1. Commands - the high-level commands available to every user,

2. Subroutines — the subroutine libraries designed for use in application programs,

UNIX 13 a trademark of Bell Laboratonies

138

3. System Calls - the subroutines designed for use in systems programs that directly
invoke operating system functions,
4. Device Drivers - the interface designed for use in systems programs that request

access to hardware devices attached to the System 9000.

The four interfaces provided a useful global organization for the test suite. Each component

of the test suite had different testing concerns and required different testing techniques

2.2. The Components

Each component of the test suite includes programs, test plans, and documentation for
each function to be tested. The design of the tests is based upon the usage specified by the
manuals that make up the second class of system specifications. The major issues that arise

in the design of a test involve test style and fest coverage.

Test style refers to the manner in which the test is performed. There are three
approaches used in the test suite: inferactive procedures, guided programs, and aulomated
programs. The test style selected for a test is determined by the properties of the interface
being tested. For example, many interactive user commands are tested by a user following
an interactive procedure which yields reproducible results. However, most programming

libraries are tested using automated programs.

Test coverage concerns the development of a sufficient number of tests to ensure that
all of the functions provided by an interface are tested. The manuals describe the functions
provided by the manual’s interface and how they are expected to interact. For example,
coverage of a math subroutine library includes determining that all the functions exist, and
that they take the specified number and types of parameters. Notice that coY_erag-e ‘for a
system test may differ from coverage for a function test that is used to test the isolated

function before system integration. Although it is desirable to test every valid parameter,

this is often too time consuming in a system test and would duplicate work perfonhed in the

139

function test.

Due to the variety of interfaces contained in the system, each test suite component
employs different test styles, test descriptions {(documentation), and test derivations. Some
of the test styles, descriptions, and derivations encountered in the UNIX test suite are

described below.

2.2.1. Test Styles

As a consequence of the form of the interfaces in UNIX, the most common testing
styles used in the test suite are interactive procedures, guided programs, and automated pro-
grams. When testing an interactive environment, intuition suggests the use of an interactive
procedure style. For example, text editors such as ‘‘vi’’ provide an interactive environment
in which user commands are executed. An interactive procedure may be the only means to
ensure easily that the editor commands correctly update the screen of a terminal. Conse-
quently, most of the tests in the commands sub-suite are interactive procedures. A guided
program is a small, interactive, test program and is a hybrid of an interactive procedure and
an automated program. Guided programs are used if an interactive procedure is undesirable
or tedious but the expected response cannot be easily calculated within an automated pro-
gram. For example, guided program tests are used in the test suite for high level terminal
input/output subroutine packages such as “termlib”, “‘termcap’’, and ‘‘curses’” and allow a
person to examine the effect of a long sequence of operations on the display of a terminal by
comparing the resulting output with a standard pattern. An automated program is used
when a program can easily calculate the expected response and check its correctness. This

approach was taken for most low level programming interfaces including system calls.

The different forms of user interface also produce different forms of test descriptions as

well as test styles.

140

2.2.2. Test Descriptions

Corresponding to each testing style is a particular form of low level documentation
that describes the test and its execution. The documentation used in the test suite for
automated program tests consists of a standardized header that is prepended to the program
code and describes the test, its use, and any dependencies. When a group of related tests (for
example, the system calls) all use automated programs, a common logging system is used to
record the test results. Separate documentation for the logging system is provided. The
documentation for guided programs and interactive procedures must supply a precise script
for the user as well as describing the test. A Test Definition Form (see Appendix) is used in
the test suite to supply this information. The Test Definition Form contains a standardized
header that is similar to the one used for automated programs and a procedures section con-
taining an enumeration of the commands to perform and the responses to expect. Although
the Test Definition Form is not quite as exact as a program, it provides a means of defining

reproducible tests that could be reliably executed by any member of the testing team.

2.2.3. Test Derivation

Individual tests in the test suite are designed by studying the manuals relevant to each
function. The number of tests and the test data for each function are dependent upon the
size and complexity of the function and include exception testing and stress testing. Ezcep-
tion testing involves the erroneous use of the function and the subsequent error handling
used by the system. Stress testing explores whether the system will support the extremes
specified in its documentation.

In most cases, because the manuals are written in imprecise English, the mechanical
derivation of test data for a system test is impossible. This placed most of the burden for
choosing test data for the test suite on the individual test developer. A test data design

methodology was developed that involved examining the input and output specifications

141

found in the manuals and applying a set of simple test data derivation techniques including:

1. Exhaustive testing — the use of every possible data value,

2. Random testing - the use of values chosen randomly throughout all of the
input ranges of the function being tested,

3. Special case testing - the use of particular values that are chosen because they
exercise the function at the limits of its range and domain,

4. Explicit case testing — the use of values explicitly used or suggested in the manu-

als.

In general, functions with a very small (less than 10) input range were tested exhaustively
while functions with a larger input range used a composite of random, special, and explicit
data values. The “abort routine” of UNIX is an example of a function that is easy to test
exhaustively because it requires no parameters. The system call “write” is an example of a
function that has many possible parameters (including file descriptors and buffer interfaces)

for which a composite test data derivation technique is appropriate.

Exception tests and stress tests are employed in the test suite whenever possible.
Exception tests included test data for error conditions described in the user manuals for
which error handling was defined as well as test data that would obviously correspond to an
error but would not correspond to a documented error condition. An example of an excep-
tion test is a program that writes to a file that is open for read only access. Stress tests were
applied to determine system response when its limits were reached. Stress tests were used to
exercise device drivers, memory management routines, and file allocation and deallocation.
Test data used in the stress tests included requests involving maximum program and file
sizes. One example of a stress test used in the test suite is a program that requests as ‘mucb

memory as the system has available.

142

3. Results of Testing the System 9000 XENIX

We now describe some of the results obtained in applying the test suite developed
above to the system test of a pre-released version of the System 9000 XENIX operating sys-
tem. Most of the bugs that were discovered in the system test described have since been
fixed or documented as restrictions in the user manuals. A terse description of the system is
followed by some general results and discussion of problems of particular interest. Each bug
found was documented in a Problem Tracking Memorandum (PTM). The documentation
describes the error found and the likely software component that contains the software fault

that generated the error.

3.1. System 9000 XENIX

The System 9000 is a small MC68000-based system designed for use as a workstation.
The System 9000 XENIX operating system is a port of the Microsoft’s Version 7 UNIX-based
XENIX operating system and supports multiple users and processes. The entire operating
system occupies approximately 7Mbytes of hard disk storage including all binaries and sys-
tem data files. The memory resident part of the system occupies approximately 144Kbytes
of memory. The source code of XENIX is proprietary and was not available to the test
team. This has made it difficult to estimate the number of faults found relative to the

number of lines of code tested.

3.2. General Results

Table I, PTMs by Test Area, shows how the software system faults are distributed
within the interfaces and specifications (user documentation.) Without any detailed
knowledge of the implementation of XENIX on the System 9000, one might expect the larg-
est number of bugs to be present in the commands since these represent the largest amount
of code. However, the System 9000 has a ported operating system and based on this
knowledge, one might expect that a greater number of software faults would be found in the

143

Table L.
PTMs by Test Area

Test Area Number Percentage
Commands 81 51.92
Drivers 5 3.21
System Calls 24 15.38
Subroutines 15 9.62
Specifications 29 18.59
Incomplete Data 2 1.28

device drivers and machine specific parts of the operating system. Most faults were found

within the commands.

The proportion of the bugs found in the system calls is more serious than other bugs
because these reflect failures in direct requests for operating system services. These bugs
and hardware bugs occasionally interrupted the system test schedule while they were fixed.
Documentation errors were expected since both the documents and the system were
developed simultaneously. (The Incomplete Data category indicates that a couple of PTM

forms were not filled in completely.)

Table If, PTMs by Test Type, is a summary of where the bugs where found based on
whether the test tested normal usage or error-handling (exception testing). While exception
testing in general did not display any unusual trends, it did discover significant system bugs,

particularly in the system calls and subroutines.

Table III, the Severity Level Summary, compares the number of bugs against their

impact on the system. Severity level 1 bugs are the most severe and cause the system to

Table IL
PTMs by Test Type
Test Type Number Percentage
Exception 17 10.90
Normal 137 87.82
Incomplete Data 2 1.28

144

Table III.
Severity Level Summary

Level Number Percentage
1 10 6.41
2 22 14.10
3 90 57.69
4 34 21.79

crash no matter how the command is used. Level 2 bugs cause a function not to work or a
part of a function to crash the system. Level 3 bugs cause part-of-a-function not to work.
Level 4 bugs are documentation errors or cause an “‘annoyance’’ form of error. Based on
the description of the severity levels, it is not surprising that level 3 has the biggest percen-
tage of the total. The distribution of bugs appears to be what one would expect in a

software system test.

Table IV, Univ. of Hllinots Man-Power Summary, corresponds to a typical curve for
project manpower usage. The productivity in the early months reflect the design of the test
suite. (Some delay in November was incurred due to a problem with shipping the systems.)
In January 1984, the bulk of the tests were coded and the number of bugs discovered
peaked. Finally, as the number of test cases increased, the bugs found decreased, and the
manpower devoted to testing was reduced. It was found that several of the test cases were

difficult to formalize and code. Because of the desirability of generating results, the difficult

Table IV,
University of Illinois Manpower Summary

Month RA-months Number of PTMs
Oct. 83 1.5 0
Nov. 3.0 0
Dec. 30 14
Jan. 84 60 2
Feb. 6.0 19
Mar. 6.0 19
Apr. 30 6
May 20 2

145

tests were often deferred until later in the testing period. This also contributed to the
decline in reported bugs since the difficult tests took longer to design and code. (One RA-

month is approximately one-half of a man-month.)

3.3. Furcher Analysis

The test results revealed several interesting faults related to the hardware, the C ¢com-

piler, the file system, and commands.

Nine bugs were found in the hardware during the software system test. Many of these
were. discovered as a result of the stress put on the hardware system by the software system
testing activity. It was somewhat unexpected to have the software test discover some timing

errors in the hardware.

The C compiler was found to have at least three bugs directly traceable to the origins
of an early portable C compiler that was several years old. This was discovered through
previous testing of other C compilers at the University. At first, a complete test of the C
compiler could not be accomplished because it would not compile the C test suite programs.
Based on the earlier testing of other C compilers, a list of suspected as well as confirmed
bugs was dispatched to the developers. Because the operating system is written in C, the
defects in the C compiler are potentially very serious. However, we believe that a cross com-
piler was used for the port, not the system’s C compiler. We were unable to test the C com-
piler used for the port but suspect that it too may have contained some bugs that showed

up as faults in system software.

Table V, Faults Distributed by Funclion, displays the distribution of faults over the
various subsystems within XENIX. File system bugs when collected across the various inter-
faces amounted to 15 per cent of all bugs found. This could mean that many of the file sys-
tem bugs were dependent on a few of the device driver bugs or that there may have been

some latent design flaws remaining in the file system. Unfortunately, we have too little

146

Table V.
Faults Distributed by Function

Function Number Percentage
File System 23 14.74
Hardware 9 5.76
C Compiler 5 3.2
Memory Mngmt. 2 1.28
Other Kernel 6 3.84
Other Software 111 71.1

information to allow us to draw a conclusion.

Twenty three of the bugs we discovered (the C compiler’s bugs were counted as one
bug for this purpose) appeared to be attributable to the XENIX system rather than to the
port. These bugs included a read and write system call that failed to provide appropriate
error handling when invoked with a null buffer pointer parameter. A stress test also
revealed that the file system would allow more links to be made to a tile than the docu-
mented limit. In this case, the documentation was correct and the error checking within

XENIX was inadequate.

Finally, a couple of command bugs proved rather disquieting. The first occurred in the
system shutdown command and caused the system to hang rather than clean itself up
correctly. The second, which caused much amusement, occurred in the XENIX ‘“remove
user” command and always caused the removal of every user in the system as well as the

requested user. This obviously rendered the system unusable after everyone logged out.

4. System Test Management

This section describes some of the management aids that were used during the develop-
ment of the test suite and during testing. The aids supported test development, reporting

bugs, organizing man power, and providing maintenance tests.

147

4.1. Guiding Test Development

To guide the system test, a system test plan [Morri83] was drawn up by a small test
design team. This system test plan included objectives for the system test, outlines of the
testing to be done, naming conventions for the tests, and a very loose estimate of the size of
the project. Essentially, the system test plan was an informal requirements and specification

document for the test suite.

To ensure system test coverage in the components of the test suite, a set of matrices
was used that cross-listed the proposed tests with the functions to be tested. At least one
matrix was used for each interface and some large interfaces required several matrices.
Although these matrices tended to be sparse, they did provide a convenient way to check
coverage of the tests. For the final presentation in the test suite [Sum84] documentation,

the matrices were compressed into a more compact tabular form.

4.2. Reporting Bugs

To manage bug reports, a Problem Tracking Memorandum (PTM) was used. The
PTM form included information about its originator, place of origin, severity level, date of
origin, test number, the operating system release, the hardware configuration, and both a
short synopsis and detailed description of the problem. (A sample PTM is included in the
Appendix.) These forms were filled out by a test team member upon discovery of a bug.
The forms were then relayed from the test team to the developers responsible for the prob-
lem area. After the bugs were fixed, a response to the PTM was returned and the test
repeated. If the retest was successful, the PTM was closed, that is, the bug was considered

fixed.

4.3. Organizing Manpower

The allocation of manpower to system test development appears in retrospect to have

followed a similar pattern to software development. This is -attributable to the close

148

similarity to the processes involved. Initially, a few people were assigned to design and
develop the test plan. After testing began, people were added to develop and code tests and
to execute the tests. Finally, as the discovery of new bugs decreased and the test suite

neared completion, the number of people was decreased.

4.4. Communlications

A problem that was solved during the project was a method for exchanging PTMs (bug
reports) between the test team and development group at IBM Instruments in Danbury,
Connecticut and the test team at the University of lllinois. This problem was solved by using
a dedicated notesfile [Essic82, Essic84] on one of the University of Illinois computers. A
notesfile is a news/bulletin board system that allows notes and responses to be appropriately
grouped and managed on-line. The PTM notesfile was checked daily by the team in Dan-
bury by logging in over long distance phone lines. This form of communication proved to be
faster and more effective than using the U. S. mail service or reporting the bugs by tele-
phone. The scheme resulted in an rapid exchange of bugs and fixes and permitted quick

qualification of ambiguous descriptions in the PTMs.

4.5. Maintenance Provisions

A key reason for developing the test suite is to help facilitate regression testing of
future operating system releases. The test suite organization was instrumental in providing
this ability. The hierarchical framework used for the test suite, together with the UNIX file
system, provided an easy way to store the test suite on line. The UNIX text processing facil-

ities encouraged full documentation.

5. Conclusion

Construction of the test suite was, we believe, valuable to both IBM and to the stu-

dents who participated in the project. We believe that twenty three bugs originated in the

149

XENIX software. This demonstrated the benefits of a systematic system test. The large
number of bugs discovered in the XENIX commands compared with the small number
discovered by testing the device drivers, memory management, and system calls would
appear to suggest that many of the machine dependent, port generated faults could be more
easily discovered in a system test than in an isolated function test of a system component.
However, we have been unable to verify this for lack of information concerning the nature of
the fixes that were made to the system and for lack of access to the source of XENIX. We
were intrigued that we could identify the C compiler used in the System 9000 XENIX by the
errors it contained and somewhat dismayed at how such errors could be tolerated in com-
mercial software for such long periods of time. Finally, although the construction of the test
suite was tedious at times, it did provide a significant learning experience for the students

and many of them have continued on to become very knowledgeable UNIX users.

8. Acknowledgements

The authors wish to acknowledge the help and cooperation of the entire Professional
Workstation Research Group of the University of Illinois at Urbana-Champaign. Also
appreciated was the cooperation of John Morris and his stafl at IBM Instruments, Inc. in

Danbury, CT and the funding from IBM which made the project possible.

7. References

[Beeru83j! Beerup, Carl, CS 9000 XENIX System Programming Functional

Specification, IBM Instruments, Inc., November 1983.

[Essic82 Essick, Raymond B. IV and Rob Kolstad, Notesfile Reference Manual,

Technical Report UIUCDCS-R-82-1081, 1982.

{Essic84] Essick, Raymond, B., Notesfiles, M.S. Thesis, Technical Report, UIUCDCS-

R-84-1165, 1984.

YThis document 13 internal to IBM and pot available to the general public

150

(BMIn84a]
([BMIng4b)

[[BMIn84c]

[Morrig3)?

[Myers79]

[Sum84]

IBM Instruments, Inc., XENIX System Device Driver Manual, March 1984.
IBM Instruments, Inc., XENIX System Operations Manual, March 1984.
IBM Instruments, Inc., XENIX System Reference Manual, March 1984.
Morris, John D., CS 9000 XENIX System Test Plan, IBM Instruments, Inc.,
November 1983.

Myers, Glenford J., The Art of Software Testing, John Wiley & Sons, Inc.,
1979,

Sum, Robert N, Jr., et al., UNIX/XENIX Test Suite - IBM S9000 System
Test, Report of the Professional Workstation Research Group, Dept. of

Computer Science, University of Illinois, June 1984,

This document 15 internal to IBM and not available to the general public

151

8. Appendix: Test Deflnition Form

This is a sample Test Definition Form as used for defining and executing the interac-

tive and guided program tests.

Test Deflnition Form

Testcase Id: UXCMD103 Author: Robert Sum
Date Written: 2/9/84

Modified By: Robert Sum Date: 2/15/84
Function:

Mkuser is the usual way to add users to the XENIX system.
Description:

Use mkuser to create a new user for the system.
Dependencies:

Tester must be a super-user.

Restrictions:

Copyright (C) 1984

Robert Sum

IBM Workstation Research Project

Department of Computer Science
University of Illinois

Procedure:

1. Enter-

a) do: mkuser

b) when prompted enter ‘mktester’ as the user name.

¢) when prompted enter ‘mkpasswd’ as the user passwd.

d) when prompted enter ‘Make User Test’ as the user comment.

152

¢) when asked if everything is ok, check it out and respond accordingly.

f) when everything 1s ok, answer affirmatively and wait.

System Response

a) The program will pause for you to check once more.

b) Then it will create the user passwd file entry, home directory, mail file, his

introductory mail, and his ‘.profile’ file.

2. Enter-

a) do: more [etc/default/mkuser

b) Remember the default home directory and shell.

¢) Change directory to the home directory, ie. ‘default
directory’/mktester.

d) do: 1

e) do: cmp .profile fusr/lib/mkuser.prof

f) do: more fusr/lib/mkuser.mail

System Response

a) Changing directory should act silently.
b) 1 should list just the profile.
¢) cmp should not return anything, i.e run silently.

d) Remember what the mail is.

153

home

3. Enter-

a) do: logout

b) Login in as mktester.
c) do: printenv

d) do: more .profile

e) do: mail

f) do: q

g) do: logout

System Response

a) Login should be successful.

b) Result of printenv should agree with things set in ‘.profile’. NOTE: This is
true only if the default shell is the Bourne shell (sh).

¢) mail should mail the output of the more in part 2 with an added header.

d) q just exits mail.

e) Logout should be successful.

Comments:

This test should be chained with UXCMD105 which tests rmuser.

154

9. Appendix: Problem Tracking Memorandum

This is a sample Problem Tracking Memorandum as used to report bugs during the

testing. It is filled in as if the bug has just been discovered.

Problem Tracking Memorandum

SYS-2003

Severity Level: 2

Problem Summary: C compiler error: expression causes compiler loop.
Originator: R. Sum Department: UIPWG Extenslon: (217)333-8741
Regression Test:

Opened: 12/1/83 Answered: [/ Verifled: [/ / Closed: [/
Test Case Number: UXCMD801

Publication Title: N.A. Draft Date: [/
Software Level: Driver 2Hardware Level: N.A.Application Level: N.A.

Problem Description: This compiler error message is generated by moderately long expres-
sions, particularly when doing some type casting. The following generated the error:
if((int)c != 26 || (int)s != 26
| (int)l = 26 || (int)u != 26
I (int)f != 26 | (int)d !'= 26) Irc = lrc+4;
where
¢ is a char variable,
s short
1 long
u unsigned
f foat
d double.

Irc is an integer local return code.

155

THE VIEWGRAPH MATERIALS
for the

R. SUM PRESENTATION FOLLOW

/554

An Approach
to
Operating System Testing

Robert N. Sum, Jr
Roy H. Campbell
William J. Kubitz

Department of Computer Science
Unwversity of Illinors
Urbana-Champaign

28 November 1984

156

System Test Objective

Goal: Show that the system does not meet its
specifications.

Ideal: Program and System Proofs, but ...

Reality: Use a Good Heuristic Approach

Example: System/9000 System Test

157

System Interfaces: High-Level Testing Structure

Idea: Decompose the system into its user interfaces
and test each one.

Example: XENIX on the System/9000 has:

1. Commands — day-to-day user commands

2. Subroutines — high-level programming

3. Systemecalls — low-level system programming
4. Drivers — low-level hardware programming

158

Test Styles

e Interactive Procedures

e Guided Programs

e Automated Programs

159

Test Derivations

e Exhaustive Testing

e Random Testing

e Special Case Testing

e Explicit Testing

e Fixception Testing

160

Test Results

— ——— v — — — ——— —— —— — — — ——— — — ——— ——— — —— — —— ——— — o— —— ———— —

I PTMs
L Test Area |
__________________ r
| _Commands L
| Drivers |

161

Test Results

| __SeverityLevel Summary _____ |
| _Level | Number | Percentage _|
L A0 641 ____|
9 | 22 | 14.10 |
e PR |
. S 0 . 97.69 ____
1 | Lee
L 4 ____ do 84 _______ I 21.79 _____ |

Description of Severity Levels:

1 Very Severe - function causes system crash

2 Severe - part of a function does not work,
may cause crash

3 Usual - part of a function does not work, lit-
tle system impact

4 Annoyances - Documentation and micellane-
Ous mMinor errors

162

Test Results

S Faults Distributed by Function |
[____Et_u_leﬁiP_n ______ T‘___Nglp_hqr___' __Percentage
|_File System _____ 123 ___ Lo 1474 |
| Hardware_______1_____ 9 1 ____ 5716 |
L C Compiler ______ R S 32
| Memory Mngm¢. | 2 | 128 |
._Other Kernel T'_______G _____ 'r_____§;§i____:
|_Other Software _ | 111 l____ 711 |

163

Test Results

_ Month__|__RAcmonths | _Number of PTMs _

| Oct.83 | 15 o
| Nov. |30 1 0 .
LP@E;____J_______@;Q ______ L _________ L
| Jan.84 | ____ 6.0 _____ Lo 23
[Feb. |60 I o
| Mar. __, ___ 60 Lo 19
Apr._ 130 1! 6 .
(May | 20 o 2

164

Management Problems

Error Tracking

Man-power Allocation

Coordination of Test Teams

Regression Testing

165

Management Solutions

Problem Tracking Memorandum (PTM) form used
to keep all information together.

Man-power followed a standard project team
method with increases and decreases as testing pro-

ceded.

Distance between in-house and out-of-house test
teams was bridged by keeping PTMs on line and
having the in-house group check it at least daily.

The Tests were organized into the UNIX/XENIX
Test Suite which includes the code and documenta-
tion for running the tests.

166

Conclusions
e The ’Value of System Tests.
e The Difficulty of Fault Location.
e Fingerprinting Software by its Bugs.
e Bug Survivability.

e Testing as a Learning Experience.

167

N86-19974
Y

The Cognitive Connection:
Software Maintenance and Documentation!

Elliot Soloway:

Stan Letovsky .
Beatrice Loering .
Art Zygielbaum

.Department of Computer Science
Yale University
New Haven, Connecticut 06520

”Department of Statistics and Computer Information Systems
Baruch College - CUNY
New York, New York 10010

" Jet Propulsion Laboratory
California Institute of Technology
Pasadena, Calif.

Abstract

With the goal of trying to understand what software maintainers do, we conducted talking
aloud, video-taped protocols with four expert maintainers as they were actively engaged in the
process of enhancing a relatively small, interactive database program. Our subjects exhibited a
number of different types of information gathering strategies. Underlying these patterns of
behavior, however, was the use of expectations about what should be seen in the program under
examination. These expectations were generated on the basis of knowledge previously acquired as
to the the goals and programming plans that are typically employed in realizing interactive
database programs. Thus, while the experts seemed to possess adequate programming
knowledge, their actual code patches violated a basic principle of program structure. We
attribute this failure by the programmers, at least in part, to ineffective program documentation.
We conclude with suggestions for changes in the content of program documentation that should

better facilitate software maintenance.

1. Introduction: Motivation and Goals
Our collective consciousnesses are in the process of being raised to the important problem of
software maintenance: it is clear that program maintainers need new tools to aid them in their

significant chore. The approach we take to the development of such tools is one that we have

!Research described in this paper was carried out in part at the the Jet Propulsion Laboratory, and in addition was
supported by the Jet Propulsion Laboratory, California Institute of Technology under contract with the National
Aeronautics and Space Administration. 168

- K3

Soloway, Letovsky, Loerinc, Zygielbaum

taken in a number of other similar software engineering situations [2]:

we first try to understand how the maintainer does (and fails to do) the task of program
maintenance; we are then in a better position to suggest tools/methods that can aid him in the
specific areas in which he is having the most difficulty.

Towards this end we have carried out a video-taped study with actual program maintainers at
JPL. In this paper we present first, some observations of what the maintainers did --- and most
importantly, did not do --- and second, recommendations for changing the content of software
documentation that we feel should facilitate the maintainers doing a better job of maintaining
software. We hasten to point out the work reported here is only a beginning: the conjectures we
make based on this work cry out for further experimental studies, which we in fact plan to carry
out. Nonetheless, we feel the results gathered so far are already intriguing enough to justify

presentation.

2. Detalls of the Study
We video-taped 6 professional programmers “talking aloud” as they were engaged in the task
of adding a new feature to an existing program. The talking aloud methodology
allows us to better view the process of software maintenance; this type of data
is an important source from which to develop a cognitive theory of software maintenance.
Subjects in our study were 4 expert level program maintainers and 2 junior level program
maintainers;> the former had between 3 and 20 years of professional programming experience,

while the latter had less than 3 years of professional experience.

We presented each of the subjects with a Fortran 77 program that managed a small,
interactive database of personnel information, henceforth referred to as the PDB program. The
program contained 15 routines, for a total of approximately 500 lines of code. Figure
2-1 presents an overview of this system. In fact, this exact overview was provided to the subjects
as part of the documentation of the program. In addition to the brief Overview, the
documentation contained the following (in this order):

e Program Module Descriptions: each module was described in terms of its specific
function and its use of variables;

e Hierarchy Chart: the calling structure of the modules was given;
e File Description: the structure of database file was given;
o Sample Session: a trace of the use of the PDB was given.
Our intention was to make the documentation of the PDB reflect generic standards for program

documentation.

%In this paper we will not analyze in detail the behavior of the junior level subjects; rather we will focus on the
experts.
169

Soloway, Letovsky, Loerinc, Zygielbaum

The personnel data base system provides online personnel information. As the sample session
below illustrates, the user can issue various commands to view or make modifications to the
entries in the database. SHOW allows the user to see the contents of an already existing record.
CREATE allows the user to create a new record. DELETE will delete an existing record and
UPDATE will allow any field of the record to be changed. A session ends when the user issues the
EXIT command.

Figure 2-1: Personnel Data Base System: Overview

The Personnel Data Base System provides online personnel information. Today, we ask you to
increase the functional capability of this system by making the following enhancement:
Allow the user to restore a record that was deleted during the current session. For example,
assume that the user deleted the following record during a session with the Personnel Data Base
System:
Soloway Elliot M
177 Howard Ave
Nev Haven, Ct 06519
203 562-4151

Dunham Labs 322C
436-0606

Deleting a record makes that record unavailable for subsequent access. The enhancement we are
asking you to make would allow the user to restore a deleted record to the data base, during the
same session that it was deleted it. For example, a user who had deleted the above record could
then restore it during the same session. The record is thus returned to active status and is
available for subsequent access.

Figure 2-2: Enhancement Task

Figure 2-2 describes the enhancement task that our subjects were asked to perform. Briefly,
they were asked to add a function to the PDB that would allow users to restore a record that was
deleted in the current session. Three of the 6 subjects completed the task in the allctted 90

minutes.

3. Recurrent Behaviors

While there was considerable variability in the details of how our subjects performed, we were
still quite able to abstract a number of behaviors that essentially all of our expert subjects
exhibited. In what follows we identify and describe these key strategies.

e Model-directed program understanding: While the experts had apparently never
designed a program exactly like the one we gave them to modify, they nonetheless
had considerable experience with programs similar to the PDB. Not surprisingly, the
expert subjects employed this experience in coming to understand the given program.
In particular, experts were continually drawing on their knowledge of similar systems
to set up expectations about what they should see in the program at hand. These
expectations guided subsequent program analysis.

The expectations formed and used by our subjects dealt with identifying the goals
and programming plans in the code. That is, our subjects drew on their knowledge of

170

Soloway, Letovsky, Loerinc, Zygielbaum

database systems in general in order to predict that certain goals would need to be
achieved in the program in order to achieve the higher level objectives stated in the
Overview. Moreover, our subjects drew on their knowledge of generic programming
techniques --- which we have called programming plans — in order to predict the
manner in which the goals would be realized. Previously, we have presented
arguments, plus supporting empirical data, that programmers do in fact have and use
this type of knowledge in comprehending programs [1}.

For example, the quotes given below, taken from the video-taped protocols with the
experts that, illustrate these claims. In the first quote, one expert assumes that the
routine called GETDB will accomplish the goal of inputting the database:

Subject: ... Ok. It would call GETDB.
¥We don’t know what that is yet --
ve won’t worry about that.

Experimenter: Ok. You're not going to worry about that?

Subject: Well, I'm going to assume that
it gets the file into memory.

In the next quote, we see an expert predicting the standard, alternative ways that a
database array will be searched for a record key:

Experimenter: So what does this tell you?
¥hat are you thinking about?

Subject: ... Just trying to figure out
hov you step down [through the array].
If this thing is by number
or by last name or how it’s
besically indexed in the array.
They use pointers I suppose.

In the following quote, we see an expert making a prediction and then going to the
code to verify that prediction.

Subject: Ok. I’'m down to GETDB here [in the code].
Now, the subject turned back to GETDB in the documentation.

Experimenter: Why?

Subject: Just to make sure that what I understand
it to do here is the
same thing as it says it's going to do there.
And if not; why not.

We call this information gathering strategy model-directed since the experts were
employing an abstract characterization of database programs, expressed in terms of
goals and plans, to direct the process of understanding the specific database program
given to them. As described more fully below, the model-directed strategy was used

171

Soloway, Letovsky, Loerinc, Zygielbaum

in two different ways by the experts.

e Systematic Perusal of the Program: Several of our experts spent considerable time
(approximately 35% of their 90 minutes) trying to understand much of the PDB
program be fore they attempted to carry out the specific modification. They used, of
course, expectations to guide their understanding; however, they were attempting to
understand more about the program than would seemingly be required in order to
correctly make the desired enhancement. We have several possible interpretations of
this behavior:

1. the subjects who employed this strategy explicitly voiced their concern that
undocumented interactions between parts of the program that could impa-t in
some way on their subsequent enhancement

2. while the PDB program was written using, what we believe to be, standard
programming plans and rules of programming discourse, subjects may have
been less confident that the program was in fact going to conform to their
expectations; in other words, programmers may not have trusted the program
to be written in a standard manner -- i.e., one that would be in accord with
their expectations.

It is entirely reasonable to suppose that in fact both interpretations are correct.

o As-needed information gathering strategy: Several subjects did not employ a
systematic strategy, but rather after a very brief examination of the program and
documentation, started right in on the actual enhancement. However, questions arose
about aspects of the PDB program that they needed to know -- which they didn’t
then know -- in order to insure that their enhancement would indeed fit correctly in
the existing program. In these situations, subjects would then go back to the program
and to the documentation in order to find answers to these questions. It is important
to note that by and large the searching for information was very focused; there were
no real fishing expeditions. Rather, guided by their expectations, again, they were to
able to pose specific questions about what they needed to know, and they were able to
predict where in the code answers to those questions were to be found.

For example, in the quote given below taken from one expert we see him deciding to
look back at the code in order to answer a specific question. Notice that the expert
had already begun the modification.

Subject: I'd say I've got the big picture on what it
[the program]
does. ... Of course, there's some of these
searching mechanisms I
haven't looked at that but...
That may be complex, I don’'t know. I don’t
really care.

Experimenter: Why not?

Subject: Ah. Weli, to do this one [this modification)
--it assumes that
this thing can go out and search.
Although I probably should look to
see...Good thought. Maybe it won't find a

172

Soloway, Letovsky, Loerinc, Zygielbaum

record that’'s deleted. I'llI
take a look at SEARCH. Ok.

It is interesting to speculate as to why subjects would employ this latter strategy. One
suggestion, consistent with our observation that expectations played a key role is this:
after the brief perusal of the code, subjects found that the code met their
expectations, and thus became confident that the rest of the code would also meet
their expectations. In other words subjects employing the as-needed strategy felt that
there would be no surprises, and that therefore they could safely assume that there
were not any nasty hidden interactions.

In sum, then, the one behavior common to all our expert subjects that we observed was the
experts’ repeated use of expectations: they constantly were making conjectures about what they
should see in the program, based on what is normally in an interactive database programs. We
have previously argued that knowledge about “what is normal” is represented in terms of
programming plans and rules of programming discourse [1]. The expectations, therefore, were
derived from these types of knowledge. Given that the experts thus demonstrated their
knowledge of what would count as standard programming practices, the reader may be quite
surprised at the code patch that was actually produced by these experts.

4. Analyzing the Actual Code Changes

Before turning to an analysis of how our subjects modified the PDB program, let us first
analyze the unmodified program. The key issue is the decomposition of the modules: i.e., what is
the calling structure of the modules, and why is that an appropriate decomposition? In Figure
4-1 we present a portion of the hierarchy chart (given as part of the documentation) that
represents the actual calling sequence of the routines. The chain of routines, GETNME - SRCH
- SRCH2, which retrieves a record from the database array, reports back to the main routine; the
main routine in turn passes the record to the particular operation, e.g., SHOW. The standard
programming principle that was used to structure the code in this way can be phrased as:

General Principle: Systematic Grouping Of Functions

Specific Application:
Code which is independent of each user command (e.g., SHOW,
UPDATE), should be factored out and attached to the
routine that calis the individual command routines.
Thus, since the functions of GETNME, SRCH, and SRCH2, routines to get a record name from
the user and then find it in database, are used by all the command routines and contain no
reference to any of the specs fic commands themaselves, they hang off of the main calling routine,

and are not called by each of the command routines.

With the above analysis in mind, consider the hierarchy chart and code fragment in Figure

C-5

Soloway, Letovsky, Loerinc, Zygielbaum

4-2 that was generated by 2 of our subjects (2 of the 3 that actually completed the assignment).
In contrast to the original situation where the search routines (SRCH and SRCH2) needed to
simply fetch an active record (or no record), these routines need to be modified to search for an
ACTIVE or DELETED record, depending on the specific user command. The patch generated
by these subjects was to simply pass the name of the command (in CMD) down through
GETNME and SRCH to SRCH2. SRCH2 then tailors its search to the particular command, e.g.,
if the command is RESTORE then it looks for a DELETED record; if the command is not a
RESTORE, then it looks for an ACTIVE record. The retrieval of a record, then, is a function of
the the command being acted upon.

The problem of with this method is that it violates the general principle that organized the

original modules:

General Principle: Systematic Grouping Of Functions

General Principle: VIOGLATED!!
Command is passed down from MAIN to SRCH2;
command specific information is located in SRCH2
as well as in the command routines.

In other words, information about the command has been distributed outside of the specific
command module. Moreover, the structure of the code does not reflect this new functionality: it
still appears as if GETNME, SRCH and SRCH2 are independent of the specific commands. Such
code structuring can only cause a program reader considerable confusion: since the code appears
to be structured according to the modularity principle described above, then one would not
expect to find command specific information in routines that were supposed to be command
independent. In fact, a program reader using expectations to understand this modified program
might easily miss the fact that SRCH2 contains command specific information. On the other
hand, an experienced programmer who does notice the distribution of information to SRCH2
might then become quite skeptical of the rest of the program: if a programmer could do that,
then what else might he do? Finally, given that the programmers exhibited their knowledge of
good programming practices in coming to understand the PDB program, one would be quite
surprised if, given the task of writing the PDB program from scratch that included the
RESTORE command, they would have constructed a program that included their style of patch.
Almost certainly a good programmer would have constructed the program using a code structure

that is indicated in the patch :*yle given below.

A better coding technique would be to obey the original structuring principle, and restructure
the calling hierarchy, as is done in Figure 4-3. Since the retrieval of a record is based on the
command, therefore the retrieval should be subordinate to the command thus clearly indicating

the functional relationship. 174

Soloway, Letovsky, Loerinc, Zygielbaum

General Principle: Systematic Grouping Of Functions

Specific Application:
Since the search routines now need to know gbout specific commands,
these search routines should be called by the commands themselves.

Each command module now passes a flag to SRCH2 to tell it to search for an ACTIVE or
DELETED record. Unfortunately, the little change in the search routines requires a major
change to the calling hierarchy. However, the resultant program would be more in keeping with
accepted good programming practice and would facilitate the generation of appropriate
expectations.

We can summarize the behavior of our subjects with respect to the style of their patch as
follows:

Broadly speaking, there were two constraints on programmers making the enhancement.

o First, there was the code structuring principle that was only smplicit in the code and
documentation.

o Second, there was a calling hierarchy embodied ezplicitly in the hierarchy chart included in
the documentation.

Apparently, our subjects tried to remain consistent to the explicit criteria of the calling sequence
reflected in the hierarchy chart, rather than be consistent with the implicit constraint of the code
structuring principle.

The obvious implications of this claim are described below.

5. Implications for Documentation
In order to facilitate what we have described as a model-directed style of program

comprehension, we would suggest that documentation should explicitly contain references to the
goals and programming plans in a program, and to the rationale for the choice of those goals and
plans. For instance, in the fragment of the PDB program given in the hierarchy chart in Figure
4-1, we must be told something like the following:

GOAL: retrieve named record

PLAN: standard item search foop plan

data structure: array containing database
SUBROUTINE: SRCH2

GOAL/PLAN STRUCTURING POLICY:
General Principle: Systematic Grouping Of Functions

Specific Application:
Code which is independent of each user command (e.g., SHOW,
UPDATE), should be factored out and attached to the

175

Soloway, Letovsky, Loerinc, Zygielbaum

] MAIN ROUTINE f
/ \ AV WA
/ \ | U
GETNME SHOW CREATE DELETE
/
SRCH
/
SRCH2

Figure 4-1: Part of Hierarchy Chart of Original Program

| MAIN ROUTINE |
/ \ \ AV WY
/ \ \ NN
GETNME RESTORE SHOW CREATE DELETE
/
SRCH
/
SRCH2

SUBROUTINE srch2(dbase, 1final, 1ptr, nase, cmd)

D0 700 1=1, 1final
IF (name(l 1pos-1) EQ dbase(: 1)(1 1pos-1)

AND ((emd .NEQ. 'r’ .AND. dbase(i,7).EQ. sctive’)

{OR. (cmd .EQ. 'r’' .AND. dbase(i,?) .EQ. 'deleted’)

THEN
Iptr =

END
NOTE the bold typeface indicates additions to the code made by the saintainers

Figure 4-2: Subjects’ Modification

| MAIN ROUTINE |

/ \ \ AR WA
/ \ \ \ \
GETNME RESTORE SHOW CREATE DELETE
\ b /
N/
N
SRCH
1
SRCH2

SUBROUTINE srch2(dbase, tfinal nase flag 1ptr)
D0 700 1=1, ifinal
IF (name(l 1pos-1) EQ ddase(r 1)(1 spos-1)
AND dbase(1.7) EQ flag) THEN
iptr =1

END
Figure 4-3: A Better Modification

176

Soloway, Letovsky, Loerine, Zygielbaum

routine that calls the individusl command routines.

This type of documentation makes explicit what the experts are doing anyways: they are
searching in the code to verify if the goals they expected are implemented in the manner they
expected. Such documentation should enable the program reader to better understand the

program.

While that claim may be mildly contentious, consider the following claim: documentation that
contains the goal/plans and thesr rationale should facilitate better code patches too! That is, the
maintainers will have in front of them explicit reasons why the code is structured in the way it 1s.
Thus, their goal will be to preserve the structuring principles, or at least, be quite clear that they
are modifying or violating those principles. When documentation doesn’t include that rationale,

as we saw in the previous section, subjects were trying to preserve the surface results of those

deep structuring principles.

6. Concluding Remarks

In this paper we have presented an analysis of the behavior of several expert software
maintainers. We have described that behavior in terms of strategies, e.g., model-directed,
systematic, and as-needed, that the experts employed in coming to understand the program they
were given to modify. We have also presented an analysis of the actual code modification

produced by our subjects. The link between these two descriptions can be summarized as follows:

In making the actual program modification, the maintainers violated their own good principles of
software construction, which was unfortunately only implicit in the documentation, and instead
remained consistent with a structuring constraint (the hierarchy chart) that was explicit in the
documentation.

Based on this link, we have suggested how documentation should be changed so as to facilitate
the generation of better code patches. We look forward to reporting on subsequent experiments

in which we attempt to evaluate the implications of the claims drawn from this first experiment.

ACKNOWLEDGEMENT
The authors would like thank Ed Ng, who smoothed out the logistical bumps we encountered
as we conducted this research. Finally, we would like to thank JPL for providing us with the

resources to pursue this research.
References

(1] Soloway, E., Ehrlich, K.
Empirical Studies of Programming Knowledge.
IEEE Transactions on Software Engineering SE-10(5):595-609, 1984.

[2] Soloway, E.
A Cogpnitively-Based Methodology for Designing Languages/Environments/Methodologies.
In Proc. of then Symposium on Practical So ftware Development Environments. ACM
SIGSOFT/SIGPLAN, Pittsburgh, Pa., 1984.

177

PANEL #3
EXPERIMENTS WITH SOFTWARE DEVELOPMENT
K. Koerner, Computer Sciences Corporation

J. Gaffeey and S. Martello, IBM Corporation
D. Kafura, Virginia Polytechnical Institute

177%

N86-19975
D&

An Evaluation of Programmer/Analyst Workstations

K. Koerner, R. Mital, and D. Card

Computer Sciences Corporation

A. Maione

National Aeronautics and Space Administration

Computer Sciences Corporation (CSC) and the National Aeronau-
tics and Space Administration (NASA) are striving for improve-
ments in the quality and productivity of software development
efforts. Until recently, very few automated tools were
available to support software requirements analysis and

design even though improvements in quality during these

phases appear to offer the greatest leverage for improving

the quality and productivity of the overall software develop-
ment process (Reference 1). Recently, however, some such tools
have appeared on the market. This paper documents an effort
to evaluate the effectiveness of these tools, specifically

programmer/analyst workstations.

As a first step, CSC and NASA studied commerically available
products through an industry survey. WNext, an in-house eval-
uation of two commercial products by programmers and analysts
was undertaken to determine which tool is the best to support
programmers and analysts through life cycle development.
Finally, a tool was selected for full implementation on a

CSC project, where complete analvsis of software statistics
over the system life cycle will determine whether or not
quality and productivity improvements have actually occurred.
This paper summarizes the results of the industry survey and

in-house evaluation. Reference 2 describes this study fully.

178

OBJECTIVES

CSC has adopted a structured software development methodology,
summarized in Digital System Development Methodology (DSDMl)
Reference 3. Part of CSC's commitment to DSDM involves

the providing of programmer/analyst workstations that allow
this methodology to be implemented easily, thereby permitting
programmers and anlaysts to concentrate on technical solutions

to problems.

Automated tools can replace the current mode of developing
paper models for data flow diagrams, data dictionaries,
function specifications, structure charts, and so on. To
support the interactive process of analysis and design, the
workstations must be able to supply information graphically

as well as in text form. Given the iterative nature of
anlaysis and design, automation and simplification of the
process of generating and refining paper models should increase
efficiency. Workstations are the first step in implementing

the software factory concept (Reference 4).

To best support DSDM during software development, the analysis
and design tools need to automate the basic steps of this
methodology. The automated tools ultimately sought should

be able to:

° Implement the DeMarco (Reference 5) structured analysis
methodology, providing the programmer/analyst with
the capabilities to interactively
- Create and modify data flow diagrams
- Create and maintain an analysis data dictionary
for data flow diagrams.
- Create and modify process descriptions.
° Implement the Yourdon (Reference 6) structured design
methodology, providing the capabities to interactively

- Create and modify structure charts

1 . . .
DSDM is a trademark of Computer Sciences Corporation.

179

- Create and maintalin a structured design data
dictionary.

- Describe a module's design, including a standard
format for a prolog in text and a process flow in
program design language (PDL).

- Construct a template for a unit test matrix based

on the module design.

Provide these facilities on a microcomputer based
workstation -- A basic concept for the programmer/analyst
workstation is to be able to implement the tools and
techniques of DSDM on a microcomputer workstation.

The microcomputer provides the capabilities to

- Maintain a constant development environment
regardless of the project's host computer.

- Make the tool available to different projects
without adding the cost of conversion and
retraining.

- Ensure access at all times -- The project host
computer avaiability is eliminated as an issue.

- Maintain information in a standard format from one
project to another -- A project's design is thus
maintained on a data base and can be accessed for
use on another project.

- An effective programmer analyst workstation should
reduce the cost and improve the quality of require-
ments analysis and system design activities. Con-
sequently, the overall productivity and reliability

of the operational system will increase.

180

INDUSTRY SURVEY

The industry survey during March-May of 1984, consisted of

a two-level screening of commercially available products.

This survey phase began with attending conferences, reviewing
current literature on the subject, and consulting with technical
experts in order to identify feasible resources. Next, sources
were screened via telephone discussions and written corres-
pondence. During this initial screening, CSC found that

most commercially available products support code generation
and report writing. Products or tools that support the develop-
ment of analysis and design products are fairly new. Many
companies indicated that they are pursuing development of

these tools on a microcomputer; however, relatively few
products are available and supported today. Initially, eight
vendors were contacted whose products are currently available

in this area. These eight products and their current status

as analysis and design tools are listed below.

o Yourdon -Not available
-Being developed for IBM PC
-Earliest demonstration in

January 1985

° Tektronix -Available for BETA test site
-LSI or VAX based

™ PROMOD (GEI) -U.S. Availability unknown
-IBM PC/XT or VAX based

° Excelerator

(Index Technology) -Available for IBM PC/XT
° CASE 2000 (NASTEC) -Available on CTEC 8086
[Boeing Argus —-Package and nonsupported source
available

181

-New enhanced and supported product

available in January 1985

® Symbolics -Available on Symbolics 3600

-No requirements analysis tools

° SOFTOOL CCC and PE -Configuration control and
programming environment tools
-IBM PC implementation in late 1984
-Design environment tools in
1985

The initial screening determined that four

products met the key criteria of providing requirements
analysis and design tools and microcomputer implementation.
These were the Tektronix, PROMOD, Excelerator, and CASE 2000.

The second level of the industry survey was to determine which
products that met the basic criteria provided the most benefits.
CSC had already decided that only an in-house evaluation could
provide a sufficiently thorough analysis of benefits. However,
further information was needed to determine which products
provide sufficient improvements over the current manual
approach to warrant the costs associated with an in-house
evaluation. Vendor demonstrations were used to determine

the availability of the nine major desired feasures at this
level of the evaluation. Table 1 shows the desired features
and CSC's evaluation of the availablility of each fgature

for each product.

182

€81

TaBLE 1 - RESULTS OF INDUSTRY SURVEY

FEATURES TEKTRONIX PROMOD EXCELERATOR CASE 2000
1. USER FRIENDLINESS ¢ = o O
2. GRAPHIC AND TEXTUAL DATA ® o ° o
MANIPULATION
3. CAPABLE INTERACTIVE REQUIREMENTS ® ° o ®
ANALYSIS TOOLS
4. CAPABLE INTERACTIVE DESIGN TOOLS O O o _ =
5. USABILITY AS A DEVELOPMENT ® ® ° o
TERMINAL ON HOST
6. LIBRARY CAPABILITY TO SUPPORT =) @ ® o
SOFTWARE REQUIREMENTS AND DESIGN
TOOLS
7. MANAGEMENT SUPPORT TOOLS O @ =
8. WORKSTATION NETWORKING ° O O
CAPABILITIES
9. MICROPROCESSOR IMPLEMENTATION ® ° [°

O FEATURE NOT CURRENTLY AVAILABLE
@ FEATURE PARTIALLY AVAILABLE
® FEATURE AVAILABLE

687-MIT-(59a")

COMPUTER SCIENCES CORPORATION
SYSTEM SCIENCES DIVISION

IN-HOUSE EVALUATION

Based on the results of the industry survey the Index
Technology Excelerator (Reference 7) and the NASTEC CASE

2000 (Reference 8) workstations were selected for the in-house
evaluation. Figure 1 shows the logical configurations of

the two systems as implemented for this evaluation. The
Excelerator system consisted of two independent workstations
(IBM PC/XTs), with individual data bases, and controlled
through a mouse interface. The CASE 2000 system consisted

of three workstations (CTEC 8086s), connected to a central
data base, and controlled through a set of programmed

function keys.

The in-house evaluation included two parts: a general survey of
workstation users and a detailed evaluation by a team of
experts. Both parts were completed within a three month

trial veriod.

184

FIGURE 1. CONFIGURATION

EXCELERATOR

[EEESS N\ (AR

— —

¢81

IBM PC/XT

INDEPENDENT WORKSTATIONS
INDIVIDUAL DATA BASES
MOUSE INTERFACE

CASE 2000

/SR

[= »]
R = ———

CTEC 8086

UP TO 16 WORKSTATIONS
CENTRAL DATA BASE
PROGRAMMED FUNCTION KEYS

712-MIT-(89)

COMPUTER SCIENCES CORPORATION
SYSTEM SCIENCES DIVISION

User Evaluation

During the three month trial period, the Index Technology
Excelerator and NASTEC CASE 2000 workstations were made
available to personnel from five different operations. The
evaluation organizers did not assign specific problems or
times for workstations use. Participants in the evaluation
effort generally attempted to apply the workstations to an
ongoing task. Relatively few users of either the Excelerator

or the CASE 2000 achieved more than 20 hours of contact time.

Users provided their reactions via a questionnaire (reproduced
in Reference 2). The questions on this form deal with user
background, specific workstation capabilities, overall
effectiveness, and the manner in which workstations were

used. A total of 34 persons responded to the survey: 22
rated the Excelerator: 29 rated the CASE 2000. Survey
respondents represented a wide range of professional
experience (from 1 to 20 years). However, most were
programmers and/or analysts. Consequently, the reguirements
analysis and system design capabilities were most carefully

explored in this phase of the evaluation.

Survey respondents rated 13 specific tool capabilities as
well as the overall effectiveness of each workstation. Table
2 summarizes the respondents' evaluations of the specific

tool capabilities. Respondents rated each capability on

a scale from one (poor) to five (excellent). Chi-square
tests (Reference 9) determined whether or not significant
differences (P<.05) existed between the workstations with
respect to the ratings of each capability.

The Excelerator was rated significantly higher for ease of
learning and user friendliness. No substantial differences
exist between the two workstations with respect to ratings
of requirements analysis and design capabilities. The

differences in ease of learning and user friendliness account
for the difference in the total ratings shown in Table 2.

186

1eLE 2 - RESULTS OF USER SURVEYS

MEDIAN RATING?

LI

CAPABILITY EXCELERATOR CASE 2000
GRAPHICS SUPPORT 4 4
EASY TO LEARN 4b 2
FAST RESPONSE 3 4
DSDM REQ. ANALYSIS 3 3
DATA FLOW DIAGRAMS 3 3
DSDM DESIGN 3 3
STRUCTURE CHARTS 3 4
DATA DICTIONARY 4 3
USER FRIENDLINESS ab 2
PROJECT MANAGEMENT — 3¢
QUALITY ASSURANCE 3 3
CHECK REQUIREMENTS 4 3
CHECK DESIGN 3 3
TOTAL RATING 1 37
NUMBER OF EVALUATORS 22 29

ARATING: 5 = GOOD, 1 = POOR.

bpROBABILITY < 0.05 THAT THIS DIFFERENCE IN RATINGS IS
DUE TO CHANCE.

CVALUE NOT INCLUDED IN TOTAL RATING BECAUSE CAPABI-
LITY WAS NOT RATED FOR BOTH WORKSTATIONS. 712-MIT-(66"a)

COMPUTER SCIENCES CORPORATION
SYSTEM SCIENCES DIVISION

Quality assurance and project management capabilities
were not fully explored by survey respondents. Users
frequently complained of the lack of capabilities for
verifying the consistency of requirements and design.
Consequently, most survey respondents did not rate these

capabilities.

Survey respondents also evaluated the overall effectiveness

of the workstations with respect to three key attributes:
quality of product, time to generate, and effort to produce.
Figure 2 summarizes the responses obtained. These ratings
are subjective assessments, not objective measures of
actual quality, time and effort. Tests of proportions
(Reference 9) determined whether or not the percent of

favorable responses was significant (P < .05).

Both workstations were judged to be improvements over existing
manual procedures, as shown in Figure 2. A significant pro-
portion of respondents rated the Excelerator positively with
respect to all three key attributes in spite of frequent
complaints about the printer. The CASE 2000 received
significant positive ratings for quality and effort only.

The lower rating for total time may have been due to the
substantial learning time required for operation of the

CASE 2000.

In summary, although the Excelerator was rated significantly
higher in terms of ease of learning and user friendliness, the
two systems were not rated very differently in terms of
support for requirements analysis and design. Both systems
appeared to offer improvements with respect to the key
attributes of quality, time, and effort. However, those
individuals who exercised both systems generally stated a

preference for the Excelerator.

188

FIGURE 2 -

USER EVALUATION OF OVERALL EFFECTIVENESS

IMPROVES REDUCES
QUALITY? TIME?
93
n
2
% YES
% NO
EXCELERATOR CASE EXCELERATOR CASE
2000 2000

REDUCES
EFFORT?
85
EXCELERATOR
712-MIT-(89)

S COMPUTER SCIENCES CORPORATION
SYSITEM SCIENCES DIVISION

Detailed Evaluation

A detailed comparison of features available on the Excelerator
and the CASE 2000 to support requirements analysis and

design was undertaken to determine the relative strengths

and weaknesses of the two systems. The following paragraphs
summarize the approach used, results obtained and conclusions

derived from this exercise.
Eight major categories of relevant features were identified:

Data flow diagrams

Structure charts

Data dictionary

Function specifications

Data flow diagram validation
Structure chart validation

Report/display generation

General/other

The eight categories were assigned relative weights adding
up to 100. Each major category was further divided into
specific features. Each feature was assigned a weight of
either 1 (desirable) or 2 (mandatroy). Four groups of senior
programmers and analysts who had used both the Excelerator
and the CASE 2000 fairly extensively during the evaluation
period were asked to assess the two systems feature by
feature. The input was in the form of both a qualitative
assessment as well as a numerical score on a scale of 0 to 5
(0 = not available, 1 = low, 5 = high) for each feature.

An informal Delphi method was used to arrive at the ratings

on which the results are based.

A final score for each workstation was computed as follows:

Let w, = weight of ith feature in a major category (value =
1 or 2)
r, = raw score for ith feature (range = 0 to 5)

190

Wj = weight of jth major category (Wj = 100)
W.r,
Rj = overall raw score of jth major category (=vifwi—&—%
i
i = W.R.
Then, final score 2V ;
y3F

The range of final scores is 0 to 5.

Table 3 shows the computation of final scores from overall
raw scores. In summary, the Excelerator and the CASE 2000

scored as follows:

Excelerator 2.01
CASE 2000 2.82

A listing of specific features within the eight major categories
and the computation of the overall raw scores for each can be
found in Reference 2, One of the major differences between

the two systems was the provision for a multi-user centralized
data base on the CASE 2000. The evaluation team made two

general observations about the workstations:

° Neither the Excelerator nor the CASE 2000 scored
very high. This indicates that both systems lack
many of the desired features.

) Feature for feature, the CASE 2000 provides more

support than the Excelerator.

191

TABLE 3 - RESULTS OF DETAILED EVALUATION

OVERALL RAW SCORE | OVERALL WEIGHTED SCORE
MAJOR CATEGORY | WEIGHT
EXCELERATOR | CASE 2000 { EXCELERATOR | CASE 2000
DATA FLOW DIAGRAMS 15 2.5 2.8 37.5 42.0
STRUCTURE CHARTS 15 1.7 3.6 25.5 54.0
DATA DICTIONARY 15 2.5 2.1 37.5 31.5
FUNCTION SPECIFICA- 5 3.0 5.0 15.0 25.0
TIONS
_ | DATA FLOW DIAGRAM 15 1.9 2.7 28.5 40.4
S | VALIDATION
STRUCTURE CHART 5 0.0 0.7 0.0 35
VALIDATION
REPORT/DISPLAY 15 1.9 3.1 28.5 46.5
GENERATION
GENERAL/OTHER 15 1.9 2.6 28.5 39.0
TOTAL 100 201 282
FINAL SCORE 2.01 2.82

712-MIT-(59¢*)

COMPUTER SCIENCES CORPORATION
SYSTEM SCIENCES DIVISION

CONCLUSIONS

The ease and benefit of integrating either workstation into an
existing requirements/design environment depend on its match

to that environment. The evaluation experience indicated that
the Excelerator and CASE 2000 are optimized for different
environments. The former targets the environment in which many
unrelated, small-to medium-scale requirements/design problems
are being solved simultaneously. The latter targets the enviro-
nment in which the solution to a single large requirements/
design problem is developed over a relatively long period of

time.

The Excelerator's ease of learning and operation (via a
mouse) makes the system cost effective in those situations
in which one or two individuals spend a few months producing
a formal requirements/design specification (possibly based
on input from a larger team). These individuals spend the
rest of their time on other activities (e.g., mathematical
analysis or programming). The provision for individual
diskettes allows the system to be shared by many users with
different problems. Furthermore, the computer can be used
to run other software when no requirements/design activity

is in progress.

The CASE 2000's central disk and data dictionary support the
situation in which many individuals are working on different
aspects of the same requirements/design problem. This system
simplifies configuration management for large projects and
enhances analyst communication. The additional cost imposed by
the lengthy training and phase-in period are recovered during
the relatively long development period; function keys move the
user through the system faster than does a mouse. Furthermore,
the function keys can be programmed to satisfy project-specific
needs. However, "difficult to learn" implies "easy to forget,"”

so this system is not suited to non-full-time users.

193

The results of the in-house evaluation indicated that
both systems offer improvements in the productivity and
quality of requirements analysis and design, relative to
the existing manual procedures. These benefits should
compound throughout the software life cycle. This is
consistent with another recent study (Reference 10) that
showed that the availability of workstation support for

requirements and design improved overall productivity.

The next step in CSC's evaluation process is to apply
these two workstation systems to different production
projects of the appropriate sizes. Objective measures of
productivity, reliability, and maintainability collected
during the development process will enable a quantitative
determination of the benefits of workstation usage to be
made.

194

10.

REFERENCES

B. W. Boehm, "Software Engineering R&D Trends

and Defense Needs." Research Directions in Software

Technology. MIT Press: Massachusetts, 1979

R. Mital, et al., Programmer/Analyst Workstation

Evaluation Report, CSC/TM-84/6138, Computer Sciences

Corporation, November 1984

e ,
Computer Sciences Corporation, Digital System
Development Methodology, Version 2.0, March 1984

J. H. Manley, "Computer Aided Software Engineering
(CASE) Foundation for Software Factories", Proceedings
of the Twenty-Ninth International Computer Conference
pp 84-91, September 1984

T. DeMarco, Structured Analysis and Syitem Specification,

Yourdon Press, 1978

E. Yourdon and L. Constantine, Structured Design,

Yourdon Press 1978

Index Technology Corporation, Excelerator Reference
Guide, 1984

NASTEC Corporation, CASE 2000 Workstation Reference
Manual, Release 3.0, July 1984

H. M. Blalock, Social Statistics, McGraw-Hill:
New York, 1972

B. W. Boehm, et al., "A Software Development
Environment for Improving Productivity" IEEE Computer,
pp 30-42, June 1984

195

N86-19976

A MODEL FOR THE PREDICTION OF LATENT.
ERRORS USING DATA OBTAINED DURING THE DEVELOPMENT PROCESS

Presentation At:The 9ih Annual Software
Engineering Workshop,

NASA,Goddard, Nov. 28,1984

John E. Gaffney,Jr.
IBM Corporation
Federal Systems Division
Advanced Technology Dep't.

Gaithersburg,Maryland

Steven J. Martello
IBM Corporation
Kingston, New York

196

L3

SUMMARY

This paper presents a model implemented in a program that runs on

the IBM PC for estimating the latent (or post ship) content of a body of
software upon its initial release to the user. The model employs the
count of errors discovered at one or more of the error discovery pro~-
cesses during development., such as a design inspection,

as the input data for a process which provides estimates of the total
life-timé(injected)error content and of the latent (or post ship) error

content-~-the errors remaining at delivery.

The software development process may be considered to consist of a
sequence of activities. One set is that used in the IBM, Federal Systems

a, 2) which is: system definition, software design, software

Division,
development (coding and unit test), software system test, and system/
acceptance test. Included in these major activities are error discovery

processes. A set of them is:

. High level design inspections

Low Level design inspections

. Code inspections
Unit test

. Integration test

o W -

. System test

The model presented here presumes that these activities cover all of the
opportunities during the software development process for error discovery
(and removal). Data will, typically, not be available in all of them for
any particular project. The model might be expanded to cover some
additional software error discovery activities, such as a "requirements/
objectives inspection"; that possibility will not be considered further

here, however.

197

Analysis of the number of errors discovered at the successive stages of
the software development process suggest that the profile of defect
discovery'ﬁuring the software development process, when taken on a
phase-by-phase basis, at first increases and then decreases as a function
of phase (e.g., high level design inspection, low-level design inspec-
tion, etc.). Thus, errors per KSLOC (thousands of source lines of code)
may be plotted as a—function of each error discovery phase or activity

as shown in Figure 1.

The model employs a discrete form of the Rayleigh curve to represent the
errors/KSLOC removed as a function of defect removal process. It is of
interest to note that the Rayleigh curve has been used widely to model
the '"proper" application of manpower to develop processes in general

3) (4)

and the software development process more particularly as well

(5)

as the entire software development life cycle. The model presented
here does not presume any given 'level" of the SLOC to which it is
applied (e.g., JOVIAL vs. assembly "level' code). A recent paper by

(6)

Gaffney presents an analysis of some software data that suggests

that the error content of a body of software is strongly a function of

the number of SLOC and not of the "level" of the language in which they

are written. The cumulative form of the Rayleigh model, as applied to

the defect discovery process model presented here, is:

2
¢ = E¥ (l'e-bt)

Vt = total number of errors (or errors per KSLOC)

<3
i

where;

discovered through development phase (or activity

no. "t").
E = total lifetime defect content or "injected" error.
b = 1 _— "error discovery phase constant,"

2td2; d

the point at which 39% of "E" errors has been

discovered.
198

661

FIGURE 1-ERROR DISCOVERY PROFILE

ERRORS/
KsLoc
PER PHASE

AV, | AV, | AVs | AV, | AV | Ay

' 4 5
HIGH LEVEL 1] r3 I 6 L INHERENTLATENT

DESISN INSP. ERROR
Low LEVEL cope UMIT SYSTEM TEST
DESIGN INSP, INSP. TEST INTEGRATION TEST

/) P
PAVLEIGH CURVE Fir: aVg = E[e$EY - o8 7

E 2 TOTAL LIFEIINE ERROR RATE

/
b257:2 ; Ty = PEFECT DISCOVERY PHASE CoNSTANT

" DEVELOPMENT
PHASE X

The independent variable, "t", represents error discovery activity

indices as follows:

t Error Discovery Activities

1 High level design inspections

2 Low level design inspections

3 Code Inspections

4 Unit Test

5 Integration Test

6 System Test

6= | Field Potential or Latent Errors

The Rayleigh curve may be expressed so that it can be used to model

discrete data groupings (corresponding to the discrete activities of the

software development process) as follows:

Let Ut be the actual number of errors discovered, defects per KSLOC
noted, PTR's per KSLOC written, or other convenient measures of
defect removal during phase t (which extends from "time" or "activi-
ty index value" (t-1) to t). The "idealized" equivalent to this
value, given by the discrete Rayleigh model is AVt, where:

- Ex(e-D(t-1)%_-bt?)

AVt

The idea of the model is to estimate "b" and E from data obtained during
one or more of the error discovery processes listed above, and then use

the equation for AVt to estimate the error discovery rates (errors/KSLOC)

for the remaining error discovery processes.

The software error discovery profile model presented here can be used to
aid in the management and control of the software development process by
providing projections of the number of errors that will be found at
later stages of the development process, based upon discovery data from

earlier stages. If the error discovery rates are not as high as earlier

200

projected, this may suggest that some management action is appropriate,
such as scheduling additional inspections, extending the number of test

hours, etc.

The approach taken in the model offers a number of advantages relative

to various possible alternatives to the software developer in gaining an
understanding of the error creation and removal processes associated

with his software product. The model would facilitate an early estimate
of error content; the developer need not wait until the software is
actually coded and is running in a processor. He can use data obtained
during inspections to gain knowledge about the probable error content of
his software upon its release. If he is not pleased, he has time to

take actions that will, hopefully, counter that situation. Data about
different segments of a software product can be combined, and/or compared,
as appropriate, since a time base is not directly involved. This feature
of the model also facilitates the comparison of different software
products' error discovery histories to be made more easily than might

otherwise be possible if the error data were time-based oriented.

The excellent work of Mr. Rick Qualters of IBM,Gaithersburg in implementing
the model to run on the IBM PC is gratefully acknowledged.

201

REFERENCES

Quinnan, R.E., "The Management of Software Engineering, Part V,"
"IBM Systems Journal,'" Vol. 19, No. 4, 1980; pg. 466.

Gaffney, J. E., Jr., "Approaches to Estimating And Controlling
Software Costs"; CMG XIV Proceedings, op cit, pg. 335.

Norden, P.V., "Useful Tools for Project Management," in M. K.

Storr, Ed., "Management of Production,' Penguin Books, New York,
1970.

Gaffney, J. E., Jr., "A Macroanalysis Methodology for Assessment of
Software Development Costs," in "The Economics of Information
Processing,' Volume 2, pg. 177, John Wiley and Sons, New York,
1982, edited by R. Goldberg and H. [gpjy,,

Putnam,L.H. , "A General Empirical Solution to the Macro Software
Sizing and Estimating Problem," "IEEE Transactions on Software
Engineering"; SE-4 (4); July, 1978, pg. 345.

Gaffney, J. E., Jr., "Estimating the Number of Faults in Code,"
"IEEE Transactions on Software Engineering," Vol. SE-10, No. 4,
July 1984, pg. 459.

202

THE VIEWGRAPH MATERIALS
for the

J. GAFFNEY/S. MARTELLO PRESENTATION FOLLOW

2 040

A MODEL FOR THE PREDICTION OF LATENT
ERRORS USING DATA OBTAINED DURING THE DEVELOPMENT PROCESS

Presentatior At:The 9th Annual Software
Engineering Workshop,

NASA,Goddard, Nov. 28,1984

John E. Gaffney,dr.
IBM Corporation
Federal Systems Division
Advanced Technology Dep't.

Gaithersburg,Maryland

Steven J. Martello
IBM Corporation
Kingston, New York

203

PLEASE NOTE:
VARIOUS NUMBERS PRESENTED SUBSEQUENTLY SHOULD NOT BE

INTERPRETED AS ACTUAL IBM WORKING DATA, BUT ARE PRO-
VIDED FOR ILLUSTRATION ONLY.

204

THIS TALK PRESENTS:

WHAT: A METHOD/MODEL FOR ESTIMATING:

THE LIKELY ERROR CONTENT OF A BODY OF SOFTWARE
UPON ITS DELIVERY TO A USER, BASED ON DATA OB-
TAINED DURING THE DEVELOPMENT CYCLE.

HY: AN ESTIMATE, EARLY IN THE DEVELOPMENT CYCLE, OF
ERROR CONTENT/SYSTEM UNAVAILABILITY CAN BE A VERY
IMPORTANT INPUT TO THOSE CONTROLLING THE SYSTEM

DEVELOPMENT PROCESS.

205

SOFTWARE DEVELOPMENT CYCLE

DEVELOPMENT
ACTIVITIES

INCLUDED ERROR DISCOVERY/
REMOVAL ACTIVITIES

SYSTEM DEFINITION

SOFTWARE DESIGN

HIGH LEVEL DESIGN INHSPECTION
LOW LEVEL DESIGHN INSPECTION

SOFTWARE DEVELOPMENT
(CODINHG & UHIT TEST)

CODE INSPECTION
UNIT TEST

SOFTWARE SYSTEM TEST

SOFTWARE INTEGRATION TEST

SYSTEM & ACCEPTANCE
TEST

SYSTEM TEST

206

ERROR DISCOVERY PROFILE

ERRORS/
ksLoc
PER PHASE

A V)_ 4 V_.; A V4 AV; AV6 ‘

4V,
t | s
HIGH LEVEL 1172 [3] 6 1 INHERENT/LATEN T

DESISN INSA. ERROR
Loy LEVEL CODE UNIT SYSTEM TEST
DESIGN INSE INSP. TEST INTEGRATION TEST

2-)% _ps2
PAYLEIGH CURVE Firs AVy = E[e PE . o8 "/
E 2 TOTAL LIFEYINE ERROR RATE

/
V. 2752 ; 74 = PEFECT DISCOVERY PHASE CoMSTANI

RAYLEIGH CURVE,CUMULATIVE FORM:

B2
V,=E*(1-e7B%)

LATENT ERROR CONTENT:

L=E*e-36B
207

> DEVELOPMENT
PHASE 2

RANGE OF ERROR DISCOVERY/REMOVAL ACTIVITY
DEVELOPMENT PHASE INDEX (#)

0-1 HIGH LEVEL DESIGH INSPECTION

1-2 LOW LEVEL DESIGN INSPECTION

2-3 CODE INSPECTIOHN

3-4 UNIT TEST

4-5 INTEGRATION TEST

5-6 SYSTEM TEST

60 LATENT/POST-SHIP ERROR

208

'BASELIMIE’ ERROR DISCOVERY PROFILE(!’

PERCENT OF LIFETIME ERROR DISCOVERY/REMOVAL ACTIVITY
ERROR CONTENT
7.69 HIGH LEVEL DESIGN INSPECTION
19,70 LOW LEVEL DESIGN INSPECTION
25,93 CODE INSPECTION
20,88 UNIT TEST
14,27 INTEGRATION TEST
7.92 SYSTEM TEST
5,61 LATENT/POST-SHIP ERROR

floTE (1): FoRr ’T"D = 2,5; B = ,08

209

ESTIMATION OF
TOTAL LIFETIME ERRCR RATE, E

BotH E & B (THE PEAK LOCATION CONSTANT) ARE ESTIMATED BY
OBTAINING A 'BEST FiT' TO THE DATA, THE USER-ENTERED

VALUES,
E.6.: USy = HIGH LEVEL DES. IWSPEC. ERRORS/KSLOC.

BEST FIT <=> E & B SUCH THAT

[}

1]
™
o

N
-
o
—

= (Us; - av))

L)
i

MINIMUM

THEN, FOR EXAMPLE:
IF HIGH LEVEL DES. INSPECTION AND CODE INSPECTION
DATA ARE AVAILABLE:

USl + U33

3
(1 - e‘B + er”B _ ErgB)

USING THE VALUE B = ,08 For THE BASELINE ERROR
DISCOVERY PROFILE, WE WouLD HAVE:

US; + US
P 1+ Uss

(l - e".08 + e"|32 - e-|72)

210

SAMPLE ESTIMATE USING PUBLISHED DATA

0 GAFFNEY(l) (USING LIPOW(Z) DATA) SUGGESTED 22.7 ERRORS
PER KSLOC AFTER CODE COMPILATION

LD 22.7
IMPLIES: E = &=4— = U46.6 ERRORS/KSLOC
. 4868
/\
L = 46,6 x .0561 = 2,62 ERRORS/KSLOC

0 SCHNEIDER(B) ‘SUGGESTED A FIGURE OF 20 ERRORS/KSLOC
COMMENCING WITH UNIT TEST

IMPLIES: E\= 20.0 . 41.1 ERRORS/KSLOC
, 4868

T = 141.1 x .0561 = 2.3 ERRORS/KSLOC

THESE FIGURES ARE RELATIVELY CLOSE.

NoTEs: (1): [IEEE SOFTWARE ENG, TRANSACTIONS; JuLY, 1984
(2): [TEEE SoFTWARE ENG. TRANSACTIONS; JuLy, 1982
(3): ACM/SIGMETRICS PER, SprING, 1981

211

SOME OVERALL OBSERVATIONS

DATA ANALYZED BY PRINCIPAL DEVELOPMENT ACTIVITY, RATHER
THAN BY TIME AS INDEPENDENT VARIABLE.

AVOIDS DETERMINING 'EQUIVALENCE' OF TIME BASES IN
INSPECTIONS, SWIT, ETC,

FACILITATES EARLY ESTIMATE OF DEFECT COMTENT,

AVOIDS MANAGEMENT PROBLEM OF ASKING DEBUGGERS TO NOTE
PRECISE TIMES OF DEFECT DETECTIONS.

ENABLES (STATISTICAL) ADVANTAGE TO BE TAKEN OF GROUPING
DEFECT DETECTIONS - MINIMIZES EFFECT OF 'NOISE' IN DATA,

ENABLES COMPARISON OF DIFFERENT PROJECTS’ ERROR DETECTION
HISTORY TO BE MADE WITHOUT REGARD TO SCHEDULE DIFFERENCES.

212

N86-19977

o

THE INDEPENDENCE OF SOFTWARE METRICS
TAKEN AT DIFFERENT LIFE-CYCLE STAGES

by

Dennis Kafura
James Canning
Gereddy Reddy

Computer Science Department
Virginia Polytechnic Institute
Blacksburg, VA 24061

ABSTRACT

Over the past few years a large number of software metrics have been proposed and,
in varying degrees, a number of these metrics have been subjected to empirical validation
which demonstrated the utility of the metrics in the software development process. In
this paper we will report on our attempts to classify these metrics and to determine if the
metrics in these different classes appear to be measuring distinct attributes of the software
product. Statistical analysis is used to determine the degree of relationship among the
metrics.

213

I. INTRODUCTION

Underlying our effort to determine an operational classification of the metrics is the
belief that software products exhibit different forms of “complexity” in a number of “in-
dependent” dimensions. That there are a number of different forms of “complexity” is
attested to by the large number of different complexity metrics and also by a number
of prior studies of programmer performance. That these complexities are “independent”
is evidenced by the common practice of trading one form of complexity for another in
the design and implementation processes. For example, the global relationships between
components can often be simplified by combining several together. However, this simpli-
fication of the global relationships results in greater complexity within the newly created
component.

A proper classification of software metrics is important for two reasons. First, it reduces
the number of metrics which must be employed. The costs associated with redundani
metrics include not only the price of extracting, storing and displaying the metric but
also, and perhaps more importantly, the price to an analyst of viewing and attempting to
evaluate the significance of these additional metrics. Second, the elimination of redundant
metrics focusses our attention fundamental factors which affect software complexity, leads
more directly to the discovery of other independent metrics, and simplifies the processes
of investigating and modeling of the software development process and its products.

The study which we report in this paper is also of interest because of it uniquely
combines the following features. First, a variety of software metrics are used including
metrics of low-level code details as well as measures of general relationships between com-
ponents. Second, only realistic software systems are used. Realisitic systems to us are
those that have been developed by several individuals over more than a year of calendar
time in some demanding application area. Third, evidence from different application area
and different development environments is presented. The three systems presented in this
paper are an operating system, a database system, and ground-support software systems.
Fourth, because of the size of the systems considered and the number of metrics evaluated
it was important to develop automated metric tools. Fifth, and finally, we have applied
the metrics to the same collection of software systems making it possible to compare these

metrics.

The metrics which we considered may be group into three broad classes based on the
features of the software product which must be known in order to compute the metric.
The metrics in one class, referred to as code metrics, are defined in terms of the features
of the implemented code. Metrics in this class include Haltead’s software science measures
[1] and McCabe’s cyclomatic complexity measure [2]. A second class of metrics, termed
structure metrics, is based on more global features of the software system. Typically,

214

structure metrics are defined in terms of some relationship between major components of
the system without regard for the details of the components themselves. This class includes
Henry and Kafura’s information flow complexity measure {3-5] and McClure’s invocation
complexity measure [6]. Hybrid metrics, the third major class, combines elements of both
code and structure metrics. A member of this class, Woodfield’s syntactic interconnection
measure [7], combines control and data relationships between components with Halstead’s
effort measure to produce a composite measure for each component. Yau and Collofello’s
stability measure [8] is also in this class.

II. COMPARISON OF METRICS

The results of this study are briefly: (1) the code metrics studied all appear to be
high associated, and (2) the structure and hybrid metrics appear to be distinct among
themselves and different from the code metrics.

The first of three sets of data is shown in Table 1. This data is based on an analysis of
the kernel of the UNIX operating system and has appeared previously [9]. This table shows
a comparison between only one of the structure metrics, the information flow complexity,
and a variety of code metrics. The code metrics used in this study included several of the
Halstead software science measures and McCabe’s cyclomatic complexity. The last column
in this table shows that a low correlation exists between the information flow metric and
any of the code metrics. The range of correlations is 0.20 to 0.38. On the other hand,
very strong relationships appear among the code metrics themselves. The correlations
among the code metrics ranges from 0.84 to 0.99. This study was the first evidence that
a classification of software metrics was both possible and necessary.

The second set of data is presented in Tables 2 and 3. The metrics used in this study
were derived from an automated analysis of a database management system constructed at
Virginia Tech [10]. This system has undergone 4 major revisions over a period of approx-
imately five years. The code metrics used in these tables include only one of the Halstead
measures, the effort measure, along with the length (lines of code) and McCabe’s cyclo-
matic complexity. In contrast to the first study, however, all of the structure and hybrid
metrics have been included in this experiment. An additional factor in this experiment
is the use of two different types of statistical measures, the Pearson parametric measure
and the Spearman non-parametric measure. As can be seen by comparing Tables 2 and
3 the essential results are the same regardless of the statistical measure used. It may be
observed in this two tables that the code metrics are again highly associated. the Pearson
correlations range between 0.79 and 0.97 while the Spearman correlations range between
0.81 and 0.95. Also apparent from these tables is the marked lack of association between
the code metrics and the structure or hyrbid metrics. The range of Pearson correlations in

215

this case is from 0.15 to 0.49 while the Spearman correlations range between 0.05 and 0.28.
Also it should be noticed that the associations among the structure and hybrid metrics is
weak. Except in the case of the correlation of 0.60 between the information flow metric
and McClure’s metric, the range of Pearson correlations for these two groups of metrics is
from -0.06 to 0.36 while the Spearman correlation lie between -0.05 and 0.43.

The study of the database management system strengthen our conviction that a clear
distinction exists between measures based on code details and measures based on more
global relationships among components. Furthermore, this study also leads one to believe
that the measures of global relationships are measuring different properties of the software
system. Confirmation of these results is sought in the last of the three studies presented

in this paper.

The final set of data was derived from a study of several ground support software sys-
tems developed by the Computer Sciences Corporation for NASA Goddard in cooperation
with the Software Engineering Laboratory. A typical set of data from this extensive study
is shown in Table 4.

An examination of Table 4 shows that, once again, a strong association exists among
the code metrics. Somewhat in contrast to the previous data, however, we observe a higher
level of association between the code metrics and the information flow metric. This one
aside, the range of correlations between the code and structure metrics is from 0.16 to 0.51.
With regard to the information flow metric is should be observed that even though higher
corrqlation were seen in this study than in the two previous ones, the level of correlations
(0.55 to 0.63) is still significantly lower than the correlations among the code metrics (0.85
to 0.96). Furthermore, if Pearson correlation coefficients are used, the level of correlation
between the code metrics and the information flow metric falls into the range of 0.26 to
0.45 — certainly comparable to the previous data. Finally, the relationship between the
structure and hybrid metrics has one anomalous point — a 0.71 correlation between the
information flow metric and the Yau and Colofello stability measure. Aside from this one
point, the range of correlations between these two classes of metrics is from 0.20 to 0.47.
.para For the most part, the study of the Goddard systems is consistent with the results
seen in the prior two studies. Only one metric, the information flow metric, exhibited a
somewhat different pattern than had appear earlier.

216

III. CONCLUSIONS

Based on the data presented in the paper we feel confident in concluding that: (1)
the code metrics considered in this study are measuring essentially the same properties of
software systems; and (2) the structure and hybrid metrics considered in this study are
measuring properties of the software system distinct from the code metrics and also from
each other. These two conclusions are advanced with some confidence since the same results
have been observed in software systems which were written in two different languages (C
and Fortran), were developed in different time frames for different application areas and
in different development environments with different personnel.

Based on these results we would argue that less work needs to be done in inventing
new metrics based on code details and that more work must be done to establish a more
complete set of “independent” metrics. It is by no means to be implied by our study that
the set of structure and hybrid metrics which we have used is in any sense complete.

IV. REFERENCES

[1] Halstead, M.H. Elements of Software Science, Elsevier, New York, 1977.

[2] McCabe, T.J. “A Complexity Measure,” IEEE Transactions on Software Engineering,
SE-2, December 1976.

[3] Henry, S.M. and Kafura, D.G. “Software Structure Metrics Based on Information
Flow,” IEEE Transactions on Software Engineering, SE-7, September 1981.

[4] Kafura, D.G. and Henry, S.M. “Software Quality Metrics Based on Interconnectivity,”
The Journal of Systems and Software,, 2, 1981.

[5] Henry, S.M. and Kafura, D.G. “The Evaluation of Software Systems’ Structure Using
Quantitative Software Metrics,” Software— Practice and Experience, Vol. 14(6), June
1984.

[6] McClure, C. “A Model for Program Complexity Analysis,” Proceedings: 3rd Interna-
tional Conference on Software Engineering, Atlanta, Georgia, May 1978.

[7] Woodfield, S.N. “Enhanced Effort Estimation by Extending Basic Programming Mod-
els to Include Modularity Factors,” Ph.D. Thesis, Purdue University, 1980.

[8] Yau, S. and Collofello, J. “Some Stability Measures for Software Maintenance,” IEEE
Transactions on Software Engineering, Vol. SE-6, No. 6, November 1980.
217

[9] Kafura, D.G., Henry, S.M., and Harris K. “On the Relationship Among Three Software
Metrics,” 1981 ACM Symposium on Measurement and Evaluation of Software Quality,
University of Maryland, March 25-27, 1981.

[10] Reddy, G.R. “Application of Software Quality Metrics to a Relational Data Base Sys-
tem,” Master’s Thesis, Virginia Polytechnic Institute, May 1984.

218

N N(est.) Volume Effort McCabe In.Flow

N 1.0 .94 .99 .92 .91 .32
N(est.) 1.0 .94 .81 .84 .20
Volume 1.0 .94 .91 .31
Effort 1.0 .84 .38
McCabe 1.0 .34
In.Flow 1.0

Table 1. UNIX Study (Pearson Correlations)

219

Length Effort McCabe In.Flow Wood. Yau McClure

Length 1.0 .97 .79 .49 .26 .17 .49
Effort 1.0 .87 .39 .26 .24 .43
McCabe 1.0 .15 .24 .24 .26
In.Flow 1.0 .19 -.06 .60
Wood. 1.0 .00 .36
Yau 1.0 .07
McClure 1.0

Table 2. DataBase Management System Study (Pearson Correlations)

220

Length

Effort

McCabe

In.Flow

Wood.

Yau

McClure

Length Effort McCabe In.Flow

1.0

Table 3.

.95 .81
1.0 .82
1.0

1.

.26

.36

.21

Wood.

.04

.08

.05

.39

1.0

1.

Yau

.33

.37

.39

.43

.05

McClure

.26

.23

.28

.14

.29

.11

1.0

DataBase Management System Study (Spearman Correlations)

221

Length Effort McCabe In.Flow Wood. Yau McClure

Length 1.0 .96 .86 .62 .20 .49 .46
Effort 1.0 .85 .63 .18 .51 .44
McCabe 1.0 .55 .16 . 46 .40
In.Flow 1.0 .38 72 .46
Wood. 1.0 .26 .20
Yau 1.0 .47
McClure 1.0

Table 4. NASA Goddard Study (Spearman Correlations)

222

THE VIEWGRAPH MATERIALS
for the

D. KAFURA PRESENTATION FOLLOW

AAK «

THE INDEPENDENCE OF SOFTWARE METRICS
TAKEN AT DIFFERENT LIFE—CYCLE STAGES

Dennss Kafura

James Canning
Gereddy Reddy

Virginia Polytechnic Institute
Blacksburg,Virginia

223

HYPOTHESES ABOUT SOFTWARE METRICS

o Software Systems are complex entities with a
number of “independent” dimensions of “com-

plexity”.

o Many kinds of “complexity” have tangible at-
tributes which ean be quantified (i.e., mea-
sured).

224

GOAL

Find a “complete” and “minimal” set of metrics

Complete : all forms of complelxity are measured

Minimal : no redundant metrics

QUESTION

Are metrics currently in use “independent” of each other ?

225

APPROACH

o Use automated tools to obtain metrics of real-
istic software systems

o Include a variety of metrics
~ code (Halstead,McCabe, etc.)
~ structure (information flow, McClure)
~ hybrid (Yau, Woodfield)

o Study statistical relationship among metrics

226

N N(est.) Volume Effort McCabe In.Flow

N 1.0 .94 .99 .92 .91 .32
N(est.) 1.0 .94 .81 .84 .20
Volume 1.0 .94 .91 .31
Effort 1.0 .84 .38
McCabe 1.0 .34
In.Flow 1.0

Table 1. UNIX Study (Pearson Correlations)

227

Length Effort McCabe In.Flow Wood. Yau McClure

Length 1.0 .97 .79 .49 .26 .17 .49
Effort 1.0 .87 .39 .26 .24 .43
McCabe 1.0 .15 .24 .24 .26
In.Flow 1.0 .19 -.06 .60
Wood. 1.0 .00 .36
Yau 1.0 .07
McClure 1.0

Table 2. DataBase Management System Study (Pearson Correlations)

228

Length Effort McCabe In.Flow Wood. Yau McClure

Length 1.0 .95 .81 .26 .04 .33 .26
Effort 1.0 .82 .36 .08 .37 .23
McCabe 1.0 .21 .05 .39 .28
In.Flow 1.0 .39 .43 .14
Wood. 1.0 -.05 .29
Yau 1.0 .11
McClure 1.0

Table 3. DataBase Management System Study (Spearman Correlations)

229

Length Effort McCabe In.Flow Wood. Yau McClure

Length 1.0 .96 .86 .62 .20 .49 .46
Effort 1.0 .85 .63 .18 .51 .44
McCabe 1.0 .55 .16 .46 .40
In.Flow 1.0 .38 .71 .46
Wood. 1.0 .26 .20
Yau 1.0 .47
McClure 1.0

Table 4. NASA Goddard Study (Spearman Correlations)

230

PANEL #4
SOFTWARE TOOLS
W. Farr, NSWC

L. Putnam, QSM
D. Levine, Intermetrics

AI0 %

N86-19978
Pl

AN INTERACTIVE PROGRAM FOR SOFTWARE RELIABILITY MODELING

by

William H. Farr
and

Oliver D. Smith

231

ABSTRACT

With the tremendous growth in computer software, the demand has arisen for
producing cost-effective reliable software. Over the last 10 years an area of
research has developed which attempts to address this problem by estimating a
program's current reliability by modeling either the times between error detec-
tions or the error counts in past testing periods. This paper describes a new
tool for interactive software reliability analysis using the computer. This
computer program allows the user to perform a complete reliability analysis using
any of eight well-known models appearing in the literature. The paper illus-
trates some of the capabilities of the program by means of an analysis of a set

of simulated error data.

232

CONTENTS

Page
INTRODUCTION . 1
SMERFS' GOALS AND DESIGN . 3
MAINTAINABILITY . . 3
COMPLETE RELIABILITY ANALYSIS ENVIRONMBNT . 4
INTERACTIVE IN NATURE . 4
ERROR DETECTION CAPABILITIES 6
MACHINE TRANSPORTABILITY 6
SAMPLE DATA ANALYSIS . 6
SUMMARY ¢ v i i e e e e e e e e e e e e e e e e e e .18
REFERENCES o« o 0 v v v v h it e e e e e e e e e e e

ILLUSTRATIONS

Figure Page
1 PROGRAM STRUCTURE « v o v « v v v v o o 5
2 PROGRAM MENU o o o 0 v v v v v e e e e e 8
3 DATA INPUT « « o o o v o i v e e e e e e e e e e 9
4 SUMMARY STATISTICS« « « v « v « .« .. 10
5 PLOTS OF RAWDATA ¢« « o v oo . 1
6 SELECTING A MODEL v « « v v« « « « « « . . 13
7 MODEL ESTIMATION PROCEDURES « « « +« « . . . 14
8 GOODNESS-OF-FIT « v v « v « v « « « « . 15
9 MODEL FIT OF DATA « v « v v v « v« . .. 16
10 PLOT OF RESIDUALS v v v v v v v e v v o« 17

233

INTRODUCTION

Over the last decade there has been a tremendous growth in the applications
of computer software. Part of this growth has been due to the development of
microprocessors and distributed processing and networking. Every day new and
innovative ideas on how the computer can be applied in business, education,
industry, and government are being proposed. This ''computer revolution' has
spurred the dramatic growth in the number, size, and comple®ity of the accompany-
ing computer software. In 1977 the costs of just the software to the entire U.S.

economy ranged from 10 to 19 billion dollars (Reference 1).

This increasing role for software has also meant the emergence of the problem
of developing "error-free" programs. For large, complex programs the number of
conceivable logic paths through the code is astronomical, making it impossible to
check every path for correctness. Researchers and practitioners of software
code development have therefore looked for ways of minimizing the chances of error
introduction in the program design and development stages. Various tools and
approaches used to accomplish this include: structured code, '"top-down" design,
and the development of a number of automated verification and validation (V&V)
tools for program checkout. Another area of research, which attempts to quantify
the degree to which a section of code is "error-free," is software reliability
estimation. Software reliability is defined as ''the probability that a given
software program will operate without failure for a specified time in a specified
environment." A software failure is defined as '"any occurrence attributable to
software in which the system did not meet its performance requirements.” If one
were to have an idea of a program's current reliability, a more rational judgment
could be made on when that software should be released to the user. Moreover,
knowing the reliability of the various components of a program could aid the
testing team in making determinations for allocations of testing personnel and

time to those sections of the code in which the indicated reliability is low.

234

Over the last 15 years many models and estimation procedures have been pro-
posed to quantify a program's reliability. References 2 through 6 are excellent
reviews of the various approaches. The approach that has received the greatest
emphasis in the literature centers upon modeling either the times between error
detections [measured either by elapsed wall clock time or Central Processing Unit
(CPU) time] or the number of errors detected per testing period. In addition to
estimates of a program's reliability, these models usually estimate the total
number of errors in the code and the expected time (or number of errors) until

the next error detection (in the next testing period).

Many of these models are either based upon the assumption that the time
between errors follows an Exponential distribution or the number of detected
errors per testing period follows a Poisson distribution. The parameters of these
distributions are taken as functiomns of up to three unknowns. The unknowns are
estimated using either a maximum 1likelihood or 1least squares procedure. The
estimates are then used to estimate the reliability measures of the program. A
major problem with these models is the difficulty in obtaining the estimates.
Many of these models are nonlinear in the unknowns, thus requiring sophisticated
numerical techniques to obtain the estimates. This necessitates the use of the
computer and thus the primary reason for developing an interactive computer pro-
gram for software reliability modeling. Different starting points for the numer-
ical procedures can be input allowing the user to investigate the optimality of
the achieved estimates. Once the user is satisfied that the appropriate estimates
have been obtained, various reliability estimates are provided along with the

associated precision of the estimates.

The Statistical Modeling and Estimation of Reliability Functions for Software
(SMERFS) program incorporates eight different models; four using as input data the
times between error occurrences and four using the number of detected errors per
testing period. The former include: Littlewood and Verrall's Model (Reference
7), Moranda's Geometric Model (Reference 8), John Musa's Execution Time Model
(Reference 9), and an adaptation of Goel's Non-Homogenous Poisson Process (NHPP)
Model to time between error data (Reference 10). The latter models include: the
Generalized Poisson Model (Reference 3), Goel's NHPP Model (Reference 10), Brooks
and Motley's Model (Reference 11), and Norman Schneidewind's Model (Reference 12).

235

These models were chosen from among the many proposed for their performance in
comparative studies and their adaptability to handle data collected from various

testing environments.

In the next section the program's goals are described, along with how the
program has been structured to accomplish these goals. Using a sample data set,
the last section of the paper demonstrates some of the capabilities of the program

by demonstrating how one would perform a reliability analysis.

SMERFS' GOALS AND DESIGN

During the development stage of the SMERFS program, certain goals were esta-
blished to increase the benefit of this software reliability program. These goals
touch on both the maintenance and the anticipated use of the program, and can be

summarized as follows:
1. Maintainability,
2. Providing a complete reliability analysis environment,
3. Interactive in nature,
4. Error detection capabilities, and

5. Machine transportability.

MAINTAINABILITY

Software reliability is a relatively new field and therefore subject to
change. Because the field is still growing, the SMERFS code was required to be in
an easily maintained and fully documented state. To satisfy the established goal
for ease in code understanding and alterations, all coding was performed in adher-
ence to a Naval Surface Weapons Center (NSWC) publication on structured program-
ming standards (Reference 13). This document directs code generation toward
top-down design, indentations around loops and conditionals, and extensive in-line

documentation. Additionally, the document requires that each routine of a program

236

contain prologue information of headings intended to provide routine understand-
ing. These headings include: author, purpose, description, restrictions, com-
munications (files, globals, and parameters), local glossary, errors, associated

subprograms, references, language, declarations, and formats.

COMPLETE RELIABILITY ANALYSIS ENVIRONMENT

The second established goal addressed the completeness of the obtainable
output from the SMERFS program. Besides the program including the eight models
mentioned in the previous section, additional modules included: data input, data
editing, transformations of the data, general summary statistics of the data,
plots of the originally collected data, plots of the original and predicted values
according to the fitted model, and a goodness-of-fit module to aid in determining
the model adequacy (Figure 1). These various options are illustrated in the

next section when a software reliability analysis is performed.

INTERACTIVE IN NATURE

The SMERFS program is designed to be flexible in execution. The program is
made up of eight main modules (Figure 1). All but one of these modules have
secondary modules or varying modes of execution. Because of the program's flexi-
bility, the third established goal was that the program had to be utilized under
an interactive mode. Under this method of execution, the program supplies the
user with various menus and questions and the user inputs a response via the
terminal keyboard. Free-format input of user responses was elected to reduce
potential operational errors. This established goal generated other considera-
tions in the program's design. The first was that the user should have complete
control in the direction of the program. Reexecution of modules or omission of
modules is directed solely by user responses. A second consideration was that the
program had to load into a Control Data Corporation (CDC) 6700 computer in a
reduced field length of 60K. This is a restriction imposed upon terminal executed
programs at NSWC. This restriction was challenging to meet due to the massiveness
of the error collection data base and the software package utilized for the graph
generations. To satisfy this load length, the SMERFS program was written utili-
zing the CDC OVERLAY capability with one common data results vector and one

temporary storage file.

237

8¢T

MODULE
MENU
TRANS - PLOTS GOODNESS- PLOTS PLOTS END
INPUT oIt FORMATIONS STATISTICS RAW DATA MODELS OF-FIT TESTS RAW/FITTED RESIDUALS EXECUTION
o FILE o CHANGE DATA * 1OG (A e X(1)+8) TIME BETWEEN TIME BETWEEN TIME BETWEEN TIME BETWEEN TIME BETWEEN TIME BETWEEN * PROGRAM
TIME BETWEEN —_— —_— —_—— TERMINATION
* KEYBOARD ® DELETE DATA ® EXP (AsX()+B) o MEDIAN © PLOT OF ERROR © LITTLEWOOD AND ® LIST OF THE « PLOT OF THE * PLOT OF THE
« RETURN TO MAIN « INSERT DATA « xA . HINGE %c'cuus:sugeu VERRALL'S OBSERVED PREDICTED, ORIGINAL AND RESIDUALS VERSUS
AND THE RESID! PREDICT| THE ERROR INDEX
* COMBINE DATA eX+A o MINZMAX CLOCK) VERSUS ® MUSAS AL VERSUS E?-%G“
o CHANGE FATAUTY o X & A o # ENTRIES ERROR INDEX * GEOMETRIC INDEX
(TIME BETWEEN) NTRI . NHPP
o ST OATA RESTORE DATA o MEAN
* RETURN 1O MAIN © RETURN TO MAIN
o RETURN TO MAIN ¢ DEV/VAR
* SKW/KRT
ERROR COUNT ERROR COUNT ERROR COUNT ERROR COUNY ERROR COUNT ERROR COUNT
o PLOT OF ERROR © GENERALIZED o UIST OF THE * PLOT OF THE « PLOT OF THE

NOTE THAT THERE ARE NO
‘RETURN TO MAIN' OPTIONS
UNDER THOSE MODULES
WHICH ARE NOT CYCLIC IN
THEIR EXECUTION

WITH EQUAL LENGTHS

TOTALS
MEDIAN
HINGE
MIN/MAX
ENTRIES
MEAN
DEV/VAR
SKW/KRT

* TOTALS
RATIO

ENTRIES
HINGE
MIN/MAX
MEDIAN

FIGURE 1.

COUNTS AND POISSON
TESTING PERICD
LENGTHS VERSUS
PERIOD INDEX

* NHPP

« BROOKS AND
MOTLEY S

* SCHNEIDEWIND §
* RETURN TO MAIN

OBSERVED PREDICTED ORIGINAL AND
PREDICYED DATA

AND THE RESIDUALS
VERSUS PERIOD
* CHI SQUARE TEST INDEX

PROGRAM STRUCTURE

RESIDUALS VERSUS
THE PERIOD INDEX

40

9¥d TYNIDIYO

ALITYN® ¥ood

St 3

ERROR DETECTION CAPABILITIES

The third established goal was that the program had to have complete error
detection code in ‘place. This meant it was designed with the capability to is~-
sue an informative error message and continue execution in a direction specified
by the user, if either the user input an illegal response to a prompt or the

numerical procedure to find the estimates of the model became unstable.

MACHINE TRANSPORTABILITY

The fifth and final goal addressed the potential for complete machine trans-
portability of the code. The code of the software was developed in strict adher-
ence to ANSI approved FORTRAN IV statements, with the exception of the following
three areas: the CDC program card of file management, the use of free-format
input, and the use of CDC OVERLAYS. The complete software operates on a CDC 6700
computer with a SCOPE 3.4 operating system. To allow for more machine transport-
ability, the actual processing code of the software was removed and placed in a
library. This created library is comprised completely of ANSI approved FORTRAN
statements and therefore almost all facilities can utilize this library through
simple CALL statements. The remaining portion of the program, known as the
"DRIVER," consists of the input and output portions having the non-ANSI approved
FORTRAN statements. Users with different computer systems, therefore, may only
have to alter (or rewrite) this section of the program. However, full use of the

software reliability library can be made.

SAMPLE DATA ANALYSIS

This section illustrates the use of the program in performing a reliability
analysis on a set of data. The data were simulated on a computer and represent
the number of errors detected per testing period. Each testing period was stan-
dardized to be one unit of length (1 day, 1 week, 1 month, etc.). The data were
simulated to follow a non-homogenous Poisson process which satisfies the assump-
tions of Goel's NHPP Model. Since error count data are used in this example, none
of the features of the program as applied to time between error detections are
illustrated. Also, not all of the options provided by the program are illustrated,
including aspects of data entry, data transformations, model fitting, and error

detection within the program itself. 239

Figure 2 shows the menu that is provided to the user when the program is
first executed. The various module options are listed in the order in which an
analysis would be performed. The first chosen option would be DATA INPUT. The
program then provides a menu showing the various input options (Figure 3). The
program allows a preexisting data file to be entered (FILE INPUT), the data
to be entered via a terminal keyboard (KEYBOARD INPUT), or a combination of both
(FILE INPUT followed by KEYBOARD INPUT). 1If the KEYBOARD option is chosen, the
program then asks for the type of data to be entered. The various options reflect
the different data requirements of the various models (time between error occur-
rences as measured by elapsed wall clock and/or CPU time or error counts per
testing interval). Since our example is error counts, the program prompts the
user for the number of errors detected per period and the length of the period
until the user is finished with data entry. This is indicated to the program with
the entry of any negative numbers for the count and length. The user can then

return to the main menu to pick the next module option.

If an error had been made in the data entry or a software error was subse-
quently analyzed not to be a programming error (e.g., an operator error), this
necessitates a change to the error counts. The DATA EDIT option can be used to
accomplish the required modifications. If the data need to be transformed in
some manner, the DATA TRANSFORMATIONS option provides the user with a large selec-

tion of available transformations.

The user can next obtain various summary statistics pertaining to the entered
data. These include: the median error count, the mean, the variance and standard
deviation, the skewness and kurtosis measures for the data, and the number of

errors discovered up to this point (Figure 4).

Module option 5 (PLOTS OF THE DATA) can be selected to provide either a plot

of the raw data or a smoothed version of it. Figure 5 shows the plots provided

for the sample data. The top plot is the raw error counts per testing period
plotted against the testing period number. The smaller bottom plot represents
testing period length versus period number. Notice the general downward trend

exhibited by the data in the top plot. This indicates that fewer errors are being
detected as testing progresses, thus indicating increasing reliability of the

program.

240

SMERFS QUTPUT, DATE. 10/@4/84 TIME: @8.51.18.

PLEASE ENTER MODULE OPTION, ZERG FOR LIST=[g]
THE AVAILABLE MODULE OPTIONS ARE

DATA INPUT

DATA EDIT

DATA TRANSFORMATIONS

STATISTICS OF THE DATA

PLOT(S) OF THE RAW DATA

EXECUTION OF THE MODELS
COODNESS-OF-FIT TESTS

PLOT OF ORIGINAL AND PREDICTED DATA
PLOT OF RESIDUAL DATA

STOP EXECUTION OF SMERFS

PLEASE ENTER MODULE OPTION=[1]

QOO NN L NN -

NOTE: Blocked entries represent user input.

FIGURE 2. PROGRAM MENU

241

PLEASE ENTER INPUT OPTION, ZERO FOR LIST:
THE AVAILABLE INPUT OPTIONS ARE

I FILE INPUT

2 KEYBOARD INPUT
3 RETURN TQO THE MAIN PROGR

PLEASE ENTER INPUT OPTION=

PLEASE ENTER KEYBOARD OPTION, ZERO FOR LIST=
THE AVAILABLE KEYBOARD [NPUT CGPTIQONS ARE
! WALL CLOCK TIME-BETWEEN-ERROR (WC TBE)
2 CENTRAL PROCESSING UNITS (CPU) TBE
3 WwC TBE AND CPU TBE

4 INTERVAL COUNTS AND LENGTHS
5 RETURN TO THE INPUT ROUTINE

PLEASE ENTER KEYBOARD INPUT OPTION=[4]
A RESPONSE OF NEGATIVE VALUES FOR THE PROMPT
“PLEASE ENTER ERROR COUNT AND TEST LENGTH="
WILL STOP PROCESSING

PLEASE ENTER
PLEASE ENTER
PLEASE ENTER
PLEASE ENTER
PLEASE ENTER

PLEASE ENTER
PLEASE ENTER
PLEASE ENTER
PLEASE ENTER
PLEASE ENTER

ERROR
ERROR
ERROR
ERROR
ERROR

ERROR
ERROR
ERROR
ERROR
ERROR

COUNT
COUNT
COUNT
COUNT
COUNT

COUNT
COUNT
COUNT
COUNT
COUNT

AND
AND
AND
AND
AND

AND
AND
AND
AND
AND

TEST
TEST
TEST
TEST
TEST

TEST
TEST
TEST
TEST
TEST

LENGTH=
LENGTH=
LENGTH=
LENGTH=
LENGTH=

LENGTH=
LENGTH=
LENGTH=
LENGTH=
LENGTH=

-ulvnliﬂu

PLEASE ENTER INPUT OPTION, ZERO FOR LIST=[3]

NOTE:

Blocked entries represent user input.

FIGURE 3.

DATA INPUT

242

PLEASE ENTER MODULE OPTION, ZERQ FOR LIST=[g]
THE AVAILABLE MODULE OPTIONS ARE

DATA INPUT

DATA EDIT

DATA TRANSFORMATIONS

STATISTICS OF THE DATA

PLOT(S) OF THE RAW DATA

EXECUTION OF THE MODELS
GOODNESS-OF -F IT TESTS

PLOT OF ORIGINAL AND PREDICTED DATA
PLOT OF RESIDUAL DATA

STOP EXECUTION OF SMERFS

PLEASE ENTER MODULE OPTION=[4]

INTERVAL DATA WITH EQUAL LENGTHS
STATISTICS FOR ERROR COUNTS TOTALING TO 189
2222 RR 2202022222 0 s b R0 28020

DODNONDBWNN ~—

MEDIAN ¥ . 6@00PPQ0E+0! ¥
HINGE X . 40000000E +0 .00000000E+8! %
MIN/MAX X . 2000@000E +01 . 15000000E+02 %
s ENTRIES % 28 *
MEAN x .67500000E+@1 X
DEV/VAR X .34278273E+0! . 11750000E+82 ¥
SKW/KRT % .53602710E+00 -.45801790E+00 ¥

E2 2222222232222 2 232200202000 2282 3030202

PLEASE ENTER MODULE OPTION, ZERO FOR L1ST=[5]

NOTE:

Blocked entries represent user input.

FIGURE 4. SUMMARY STATISTICS

243

-ZCOoO

IT=OzZzmr

TEST DATA

iS5 e
- X
- ¥ X
10 — 2 b §
- ¥ ¥ 4 4
- p 4 X X
- L S]
5 — X X
- b 4 X §
- b 4 L R S
- b 4 ¥
] LA AL B B L DL [T T 177 | AR 771 L AL B
9) 10 15 20 25 3
INTERVAL
INTERVAL LENGTH-! MONTH
2
l-; FYIYX¥FYXXIXTXITLEYXEILXLEY I XY EXY R XXX
3
2 rr 1T iy T vy r1 1Tt 11 rrrr T
1) 5 18 15 29 25 30
INTERVAL

FIGURE 5. PLOTS OF RAW DATA

244

Module option 6 (EXECUTION OF THE MODELS) is next chosen for the actual model
fitting. As Figure 6 indicates, a menu appropriate to the type of data entered is
provided. The choice for this example execution is to fit the Non-Homogeneous
Poisson Model. If the user desires, a list of the model assumptions and data
requirements is provided to allow the user to make a judgment on the applicability
of the model. If the user decides to continue with the candidate model, the
program will request the number of iterations to be used in the numerical pro-
cedure and a starting value for that procedure. If the optimization procedure is
successful, the various reliability estimates and corresponding precision of those
estimates will be provided. In addition, the program will allow the user to
iterate again to investigate the optimality of the derived estimates. In Figure
7, after 2 iteratioms, the maximum likelihood estimate of the proportionality
constant in the NHPP Model was obtained as .043 with an associated 95% confidence
interval of (.025, .061) and an estimate of the total number of errors residing in
the code being 270 with a 95% confidence interval of (200, 340). The actual
underlying parameters used to generate this data set were .05 and 250. The pro-
gram for this particular model will allow the user, if desired, to estimate the
number of errors expected in the next testing period. 1In this example, for an
additional unit of testing, an additional four errors will be detected. Least
squares estimates are also provided. These estimates (.043 and 269) are very

close to the maximum likelihood ones.

After fitting a candidate model, the user can make a determination of the
adequacy of the model by using options 7 (GOODNESS-OF-FIT TESTS), 8 (PLOT OF ORIG-
INAL AND PREDICTED DATA), and 9 (PLOT OF RESIDUAL DATA). Option 7 will perform a
chi-square goodness-of-fit test as well as show a table of observed counts, pre-
dicted counts using the model, and the difference between the observed and the
predicted (the residuals). For our example (Figure 8), the value of the chi-
square statistic was 25.1 with an associated degrees-of-freedom of 25. If a test
of hypothesis is made that the data set follows the candidate model, using an
o-level of .05, the hypothesis would be accepted. Using option 8, the user can
observe the raw and fitted model together (Figure 9). Option 9 (Figure 10) al-
lows a plot of the residuals to aid in discovering any inadequacies in the model.
Based upon the results of options 7 through 9, it appears that the NHPP Model can

be used to estimate the reliability of the given program.

245

PLEASE ENTER MODULE OPTION, ZERO FOR LIST=
THE AVAJLABLE MODULE OPTIONS ARE

DATA INPUT

DATA EDIT

DATA TRANSFORMATIONS

STATISTICS OF THE DATA

PLOT(S) OF THE RAW DATA

EXECUTION OF THE MODELS
GOODNESS-OF-FIT TESTS

PLOT OF ORJGINAL AND PREDICTED DATA
PLOT OF RESIDUAL DATA

18 STOP EXECUTION OF SMERFS

PLEASE ENTER MODULE OPT]ON=

PLEASE ENTER COUNT MODEL OPTION, ZERO FOR LIST=[8]
THE AVAILABLE ERROR COUNT MODELS ARE

I GENERAL IZED POISSON MODEL

2 NON-HOMOGENEOUS POISSON MODEL

3 BROOKS AND MOTLEY'S MODEL

4 SCHNEIDEWIND'S HODEL

5 RETURN TO THE MAIN PROG
PLEASE ENTER MODEL OPTION=

WN ~-

DONON

NOTE: Blocked entries represent user input.

FIGURE 6. SELECTING A MODEL

246

PLEASE ENTER A | FOR MAXIMUM LIKELIHOOD, A 2 FOR LEAST

SOUARES, OR A 3 TO TERMINATE MODEL EXECUTION=[1]

PLEASE ENTER AN [NITIAL ESTIMATE FOR_THE PROPORTIONALITY CONSTANT
(A NUMBER BETWEEN ZERO AND ONE)=

PLEASE ENTER THE MAXIMUM NUMBER O RATIONS=

ML MODEL ESTIMATES AFTER 2 JTERATIONS ARE.
PROPORTIONALITY CONSTANT OF THE MODEL]S .43140563E-01
WITH APP. 95X C.J. OF (.24941691E-01, .61339435E-81)
THE TOTAL NUMBER OF ERRORS IS .26954311E+03
WITH APP, 85X C.I1. OF (.19963048€+03, .33945575E+083)

PLEASE ENTER 1 FPR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO=[1]
PLEASE ENTER THE PROJECTED LENGTH OF THE TESTING PER!OD:[]
THE EXPECTED NUMBER OF ERRORS IS .34007917E+0Q!

PLEASE ENTER A | FOR MAXIMUM LIKELIHOOD, A 2 FOR LEAST

SOUARES, OR A 3 10 TERMINATE MODEL EXECUTION=[2]

PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY CONSTANT
(A NUMBER BETWEEN ZERO AND ONE)= [@ §43]

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS=

LS MODEL ESTIMATES AFTER 2 ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL [S .43315840E-0)
THE TOTAL NUMBER OF ERRORS IS .26890859E+03

PLEASE ENTER | FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD, ELSE ZERO=
PLEASE ENTER THE PROJLCTED LENGTH OF THE TESTING PERIOD:[]
THE EXPECTED NUMBER OF ERRORS IS .33895981E+01

PLEASE ENTER A 1 FOR MAXIMUM LIKELIHOOD, A 2 FOR LEAST
SQUARES, OR A 3 T0 TERMINATE MODEL EXECUTION= [3]

NOTE:

Blocked entries represent user input.

FIGURE- 7. MODEL ESTIMATION PROCEDURES

247

PLEASE ENTER MODULE OPTION, ZERO FOR LIST:

PLEASE ENTER THE CELL COMBINATION FREQUENCY (THE STANDARD
IS A FIVE); OR A MINUS | TO INDICATE NO CELL COMBINATIONS=
THE CHI-SQUARE STATISTIC IS
25 DEGREES-OF -FREEDOM
PLEASE ENTER | TO TRY ANOTHER COMBINATION FREQUENCY: ELSE ZERO=

WITH

.25055379E+@2

PLEASE ENTER 1| FOR THE DATA LISTING; ELSE ZERO=[1]

NUMBER ORIGINAL DATA

*
i
1]
]
"
1}

OONANN—-QODODNNAUBLWKNN—

NQTE:

- s w om wm ws e
sS=EssSsS==z===sz====

.90000000E+Q!
. 15000000E +@2
. S00000B00E+D1
. 13000000E +02
.82000000E+D!
. 70000000E +Q |
. 19000000E+02
.60000000E+01
.60000000E +0Q!
. 1 1000003E +32
.70000000€ +0!
.40000000E+92)
.650000000E+01
.30P0000RE +01
.900000002€ +01
. 110000920E+92
. 10000000E +92
.60000000E+9!
.20000800E +21
.40000000t +9!
.200P0000E +0!
. 70000000E +9 !
.40000000E+0!
.500000C0E+0 |
.30000000E +01
-30000000€+01
. 30002000E+D 1
.50000000E+01

PLEASE ENTER MODULE OPTION, ZERO FOR LIST=

FIGURE 8.

PREDICTED DATA

ZES=SSES=SEII

.11380985E+02
. 10800443E+02
.10440191E+02
.99993724E+01
.95771664E+0]
.91727874E+01
.87854825E+01
.84145300E+91
.80592421E+01
.77189547€+81
.73930354E+01
.708@8774E+01
67818908E+01
.64955459E+01
.62212829E+01
.59586001E+0!
.57070087€+01
.54660482E+01
.52352463E+01
.508141972E+81
.48024815E+91
.450907951E+01
.44054906E+01
.42104765E+01
.40413165E+91
.38706790E+01
.37072464E+0)
.35507144E+01

Blocked entries represent user input.

RESIDUAL DATA

.23808854E+01
.40095567E+01
.14401012€E+01
.30006276E+01
.57716642E+00
.21727874E+01
.12145175E+01
.24145309E+01
.20592421E+01
.32810453E+01
.30303536E+00
.I0808774E+0)
.78189976E+00
.34955450E+01
L27787171E+01
.50413096E+0)
.42029913E+01
.53305976E+00

t

- . o v W= -
STmSsS=I==S=m=

~.32352463E+01

.10141972€+81

-.28024815E+01

GOODNESS-OF-FIT

248

.24P02949E+91
.40549063E+00
.78952340E+00
.10413165E+@1
.87067C800E+00
.70724637E+P09
.1440285S6E+01

£l

—“ZCOO

12.

N

TEST DATA-NHPP MODEL FITTED

(]

(8]

(6]

]
_1|lIJJlllllll!lLllllLlJ_LilJllJ

* R
.5
¥ ot
Q AL I D B S B N N R S B B A N O A A B 4 l'l =TT
7 5 10 15 20 2%
INTERVAL

FIGURE 9. MODEL FIT OF DATA

249

30

-“ZCO0O

RESIDUAL PLOT OF NHPP FIT

133
- X
4a— ¥ i
¥
- * *
b 4
2 —
X
| x
X
b §
2 —
4 b 4
4
| ¥
- 4 *'
b 4
-2 %
X ¥ b
i *
¥ x
b 4
-4 LR N B A L L B L BN B L L B DL | LN SN UL B B B B
7] S 19 15 20 25 20
INTERVAL

FIGURE 10. PLOT OF RESIDUALS

250

If the model was inadequate the user could have tried an alternative model,
and/or transformed the data before fitting the model. The interactive capability
of the program allows the user to dynamically create the best model for the given

set of data.

SUMMARY

With the rapid growth of computer software, researchers have been developing
tools and techniques which will aid in developing reliable software. One such
area has been the estimation of a program’'s reliability using past error discovery
data. Many different models have been proposed using these data to estimate vari-
ous measures of reliability (total number of errors, expected time until the next
error, etc.). These models, however, require sophisticated numerical procedures
to obtain the estimates, necessitating the use of the computer. An interactive
computer program, SMERFS, has been developed which allows the user to enter a set
of data, modify it if necessary, fit an appropriate model, and determine the
adequacy of the fitted model. This tool allows rapid assessment of a program's
reliability during the testing phase. This, in turn, helps in addressing the age

old question, "How do I know when the software should be released?".

251

REFERENCES

M. Shooman, "Software Reliability: Analysis and Prediction," Integrity in

Electronic Flight Control Systems, AGARDograph No. 224, Advisory Group for

Aerospace Research and Development, Part II, p. 7, 1977.

L. S. Gephart, C. M. Greenwald, M. M. Hoffman, and D. H. Osterfeld, Soft-
ware Reliability: Determination and Prediction, Air Force Flight Dynamics

Laboratory Technical Report, AFFDL-TR-78-UU, June 1978.

R. E. Schafer, J. F. Alten, J. E. Angus, and S. E. Emota, Validation of Soft-

ware Reliability Models, Rome Air Development Center Technical Report, RADC-
TR-79-147, 1979.

George J. Shick and Ray W. Wolverton, "An Analysis of Competing Software
Reliability Models," IEEE Transactions on Software Engineering, Vol. SE-4,
No. 2, March 1978, pp. 104-120.

C. V. Ramamoorthy and F. B. Bastani, '"Software Reliability - Status and
Perspectives,'" IEEE Transactions on Software Engineering, Vol. SE-8, No. 4,

July 1982, pp. 354-371.

W. H. Farr, A Survey of Software Reliability Modeling and Estimation, Naval

Surface Weapons Center Technical Report, NSWC TR 82-171, June 1983.

B. Littlewood and J. Verrall, "A Bayesian Reliability Growth Model for Com-
puter Software," The Journal of the Royal Statistical Society, Series C,
Vol. 22, No. 3, 1973, pp. 332-346.

P. Moranda, "Predictions of Software Reliability During Debugging," 1975

Proceedings of the Annual Reliability and Maintainability Symposium, Washing-

ton, DC, 1975.

J. Musa, "A Theory of Software Reliability and Its Applications," IEEE Trans-

actions on Software Engineering, Vol. SE-1, No. 3, September 1975, pp. 312-
327.

252

10.

11.

12.

13.

REFERENCES (Cont.)

A. Goel and K. Okumoto, '"Time-Dependent Error-Detection Rate Model for Soft-

ware Reliability and Other Performance Measures," IEEE Transactions on Re-

liability, Vol. R-28, No. 3, August 1979, pp. 206-211.

W. D. Brooks and R. W. Motley, Analysis of Discrete Software Reliability

Models, Rome Air Development Center Technical Report, RADC-TR-80-84, April
1980.

N. F. Schneidewind, '"Analysis of Error Processes in Computer Software,"

Sigslan Not., Vol. 10, No. 6, 1975, pp. 337-346.

R. T. Bevan and J. H. Reynolds, Computer Programming and Coding Standards for

the FORTRAN and SIMSCRIPT II.5 Programming Languages, Naval Surface Weapons

Center Technical Report, NSWC TR-3878, December 1981.

253

THE VIEWGRAPH MATERIALS
for the

W. FARR PRESENTATION FOLLOW

A53

NSWE
$'<

& EG}:G AN INTERACTIVE PROGRAM FOR
SOFTWARE RELIABILITY MODELING

124

WILLIAM FARR — NSWC

OLIVER SMITH — EG&G

INEG:G

OUTLINE OF PRESENTATION

Y4

PROGRAM GOALS AND DESIGN

SAMPLE DATA ANALYSIS

CONCLUSIONS

JNEG=G PROGRAM GOALS AND DESIGN

— —

MAINTAINABILITY
- STATE-OF-THE-ART PROGRAMMING CONVENTIONS AND STRUCTURES

9¢¢

COMPLETE RELIABILITY ANALYSIS
- INTERACTIVE IN EXECUTION WITH ERROR DETECTION AND CORRECTION

MACHINE TRANSPORTABILITY
- DRIVER — CONTAINING 1/0
- LIBRARY — CONTAINING COMPUTATIONS

SAMPLE DATA ANALYSIS

INEG:G

MODULE MENU

86T

DATA INPUT

DATA EDIT

DATA TRANSFORMATIONS

STATISTICS OF THE DATA

PLOT(S) OF THE RAW DATA

EXECUTION OF THE MODELS
GOODNESS-OF-HT TESTS

PLOT OF ORIGINAL AND PREDICTED DATA
PLOT OF RESIDUAL DATA

INPUT MODULE

6S¢

TYPES OF INPUT
FILE
KEYBOARD

TYPES OF DATA
TIME BETWEEN ERROR
WALL CLOCK UNITS (24 HR)
CPU
ERROR COUNTS
ERROR COUNTS PER TESTING PERIOD
TESTING PERIOD LENGTHS

MODELS MODULE

09¢

TIME BETWEEN ERROR MODELS
LITTLEWOOD AND VERRALL'S BAYESIAN MODEL
MUSA'S EXECUTION. TIME MODEL
GEOMETRIC MODEL
NON-HOMOGENEQUS POISSON EXECUTION TIME MODEL

ERROR COUNT MODELS
GENERALIZED POISSON MODEL
NON-HOMOGENEQUS POISSON INTERVAL DATA MODEL
BROOKS AND MOTLEY'S DISCRETE MODEL
SCHNEIDEWIND'S MAXIMUM LIKELIHOOD MODEL

JNEG=G RESULTS OF THE NHPP MODEL FIT

19¢C

MAXIMUM LIKELIHOOD LEAST SQUARES

TOTAL NUMBER OF ERRORS 263.5 (199.6,339.5) 268.9
PROPORTIONALITY CONSTANT 0.043 (0.025, 0.061) 0.043
PREDICTED NUMBER OF ERRORS | 34 34

IN THE NEXT PERIOD

PLOT OF RAW DATA
AND FITTED MODEL

9T

TEST DATA

x

llll'jfll

§

l'ﬁ'l‘lllll

10

15
INTERVAL

o

2

lIlllllﬁ'

25

30

INEG:G CONCLUSIONS

£9C

COMPLETE RELIABILITY ANALYSIS

Y MODULARITY IN DESIGN

FULLY DOCUMENTED

NB6-19979 DI~

ASSESSING THE PROFICIENCY OF SOFTWARE
DEVELOPERS ©

by

Lawrence H. Putnam
Douglas T. Putnam

Lauren P. Thayer

In the mid 1970's Lawrence Putnam developed a equation that
explained the behavior of software systems. He called it the software
equation. It is written in the form:

1/3 /3 3

ss = ¢k x K/ x 1a%/3, subject to k/Td’ <G

Notice that there are only four terms in the basic equation. The
components are defined as:

Ss - The total number of DDESLOC #=

Ck - An overall efficiency-complexity measure

K - Total Life-cycle effort

Td - The development time

G - maximum manpower acceleration possible !
for a class of system

Thus, a given product can be developed in Td amount of time, for K
amount of effort, at C efficiency level.

The software equation can be thought of as a powerful trade-off
law. A given product developed in a fixed environment, could be
developed with many different time-effort combinations, all of which
would satisfy the equation. However, because of the time and effort
exponents, the equation gives dramatic results. With these exponents
small changes in time produce substantial changes in effort. In
practical use the software equation has demostrated it can be a high
leverage software management function.

Over the past 5 years we have analysed data from over 2000
software projects. Our intention was to independently validate the
software equation. Of those 2000 projects some 803 had complete data
and have been entered into our database. With this data we have been
able to prove that the exponents are very close to the true behavior.

*+ DDESLOC is the notation use for Delivered, Developed, Executable,
Source Lines of Code.

(C) Copyright by Quantitative Software Management, Inc. April 1984

264

N - .
. PR o
R T . v Y £
[N “ : . NP
1‘ Y P' .

In late 1982 we established regression trend lines for our
database. Regression lines were developed for the measures listed
below.

Productivity (Ss/MM) vs DDESLOC
Schedule vs DDESLOC

Effort vs DDESLOC

Average Manpower (MM/MOS) vs DDESLOC

In the initial analysis we observed clusterings in the values of
Ck. The cluster patterns were related to application type. It was
thought that the trend lines might be correlated to Ck. Each
application type should have it's own family of trend lines that would
shift up or down according to the range of Ck values present.

By mid 1983 the database was large enough to stratify according to
application type. The major categories identifed were:

Real time Embedded systems
Avionics systems

Management Information systems
Scientific systems

Command and Control systems
Systems software

Microcode and Firmware systems

The curve fitting exercise confirmed our thoughts. The trend lines did
shift. Micro-code and firmware were located at the low end of the
spectrum. This software had low values for Ck, low productivity, took
a long time, was quite expensive and demanded more people relative to
similar sized projects. The MIS application were at the high end of
the spectrum. These systems had high values for Ck, high productivity,
shorter schedules, were less expensive and used fewer people relative
to their size.

Variability around the average trend lines was still a concern.
Could the software equation explain that variability? There is a ratio
that effectively measures the application of effort over time. This
measure is called the Manpower Buildup Gradient. It is defined as
K/Td"3. It discloses the style of the software development
organization. High values (generally larger than 20) are present when
parallel effort is possible and management is willing to commit what-
ever resources are necessary to get a system built fast. Low values
are more typical of sequential efforts (design intensive processes) or
a management constrainted situation (limited available manpower).

New data was analyzed using the new trend lines as a basis for
comparison. We found that it told a consistent and unambigious story.
The typical behavior pattern for systems with a steep manpower buildup
rate is: modest schedule compression, lower productivity (Ss/MM),
higher average code production (Ss/Mos), requiring more effort and more
people. Conversely, systems with a gradual manpower buildup rate had
slightly longer schedules, much higher productivity, lower average code

265

production rates, requiring less effort and fewer people.

CASE STUDY (A Major Computer Vendor)

An independent data set from a major U.S. computer manufacturer
illustrates these points. The systems used in this analysis come from
a manufacturing facility dedicated to building smart IBM compatible
mainframe terminals. The software that drives the most recent family
of terminals is written primarily in C language with a small portion of
assembly code. The primary system functions are diagnostics, memory
management, and communication. This family of products has a limited
market share. The costs associated with product development are high
but can be recovered along with a profit if the manufacturer can
deliver the product within a narrow market window. The software is the
guts of the product and therefore critically important. Company
management is willing to dedicate large software development staffs to
get whatever schedule compression is needed to meet the market demands
(regardless of whether the schedule is realistic or not).

The data from three systems developed recently at this plant is
summarized in the top portion of Table 1. Notice that two systems are
RAM based. Due to a hardware constraint the third system had to be
written so that it could reside in ROM. The unique problems present on
the ROM development include severely limited memory and very high
performance specifications. High quality was essential on the ROM
system because it involved a manufacturing process and would be costly
to replace once it was in the field.

The bottom portion of Table 1 summarizes important calculations
made on the input data. The column titled Productivity Index uses a
linear sequence of numbers that relate to the actual Ck values in
parenthesis. Likewise the Manpower Buildup Index corresponds to the
Manpower Buildup Gradient values in parenthesis. Notice that there is

a big difference between the Ck values of the RAM and ROM based
systems.

The Manpower Buildup Gradient for all three systems are high. The
value calculated from RAM #2 is more than double that of RAM 1.
According to the software trade-off law there should be a noticable '
difference between the two systems for the time and effort required to
complete these projects. The other measures summarized in Table 1 are
dependent on system size. Taken out of ‘this context they are not
meaningful. However, if we compare them against a baseline for their
own size and application then they will be meaningful.

GRAPHICAL ANALYSIS (QSM System Software Database)

Figure 1 is a frequency graph of the Manpower Buildup Index for
the three systems. Two observations can be made from this chart. The
development style af this company is to staff up quickly and wuse alot

266

of people. This management practice can be explained by the market
environment. A second observation is worthy of notice. The RAM based
systems have different manpower buildup index measures. The data from
RAM {#1 calculates a 3. RAM #2 calculates a 4. The management
trade-off decisions that produced these systems should show exchanges

of time and effort according to the software equation.

Figure 2 show the distribution of Ck. The graph utilizes an index
whic the Ck values fall within. It is immediately obvious that there
is a big difference between the two types of software implementations.
The difference can not be attributed to the function that the software
performs. They are quite similar. Rather, it is in the way the code
has to be designed and written for the particular implementation which
is quite different. The ROM software is more difficult because it
requires designing tricky code overlays to meet memory restriction and
needs constant performance tuning. It must be bug free before it is
burned into ROM. RAM {#2 has a higher Ck than RAM {#1. With a higher Ck
RAM {#2 utilized less overall effort. The higher efficency of RAM #2
will counteract the nonlinear effort increase attributed to the steeper
Manpower Buildup Rate that RAM #2 had.

In Figure 3, the data is superimposed on the average manpower
trend lines for the System software database. Notice that the scales
are logrithmic. The log scales turn the non-linear trends into
straight lines. The absissa (X axis) represents the total number of
Delivered Developed Executable Source Lines of Code. The ordinate (Y
axis) is the average number of people (MM/Td). There are three trend
lines drawn on the graph. The middle line is the best regression fit
for all the data contained in the Systems software’ database. The high
and Jow lines are the plus and minus one standard deviation bounds.
Each cross represents the calculated average manpower plotted at the
reported size.

The ROM system required significantly more people than other
comparably sized systems software projects. On the other hand, the RAM
based systems are very economic in their use of manpower compared to
the industry average for their size. In a relative sense RAM #1 has a
lower manpower utilization compared to RAM #2. This can be attributed
to the more gradual manpower buildup rate.

Figure 4 is a similar portrayal of the database. In this case we
will compare Total Manmonths against the system size. Since manmonths
are proportional to cost, this graph compares these systems for cost
effectiveness. The ROM system is significantly more expensive. The
RAM systems are well below the industry average. RAM 1 appears to be
a little less expensive compared to RAM #2.

Figure 5 compares the data against the productivity trend lines.
The ROM system is close to two standard deviations lower than the
average for that sized project. The RAM based systems again are better
than the industry average. Notice that RAM #1 has a better relative
postion compared to it's size.

Figure 6 starts to disclose the trade-off situation. This figure
compares the data against the trend lines for average project

267

duration. It is no surprise that the ROM system took significantly
longer than the average. The RAM systems are interesting. RAM #2 is
somewhat shorter than the average. In constrast RAM {#1 is a little
longer than the average. The pattern seems to coming together. RAM #2
as you recall had the steeper manpower buildup rate. The objective
must have been to get the system built fast. The system was built in a
shorter time but in a relative sense it required a lot more effort and
people. The difference would be more pronounced if the values of Ck
were the same. The non-linearities present in software equation are
still powerful enough counteract the lower efficency of RAM {#1.

The pattern continues in Figure 7. The ROM system is again below
the industry average. The Ck for the ROM system was well below the
Systems software average and explains why it compares in such a
unfavorable way. RAM {#2 experienced a rapid manpower buildup and
therefore had a higher code production rate. RAM #1 had a more gradual
manpower buildup and a lower relative code production rate.

CONCLUSION

The trend lines presented in this paper can be useful in a number
of ways. They provide a baseline of comparision from which software
developers can compare their performance against a large database of
similar projects. This will often identify a organizational style. In
this case study it was possible to quantify the organizational style
using the Manpower Buildup Gradient. Additionally we were able to show
that the developer was a better than average producer on RAM based
systems. The Ck associated with the ROM system suggests that it is a
different class of work. When this system is compared against the
Firmware database it is very creditable.

It is important to recognize that there are non-linearities
present in the software process. The non-linearities are tied to
system size. For comparative purposes we must always make judgements
based on similar sizes. In the past the tendency has been to calculate
a few ratios on several projects and then compare them without any
regard to amount of functonality that was created. This practice can
be very misleading and dangerous. The method describe in this paper
used in a thoughtful analytic manner can be very helpful.

There are some problems associated with curve fitting that should
be pointed out. With the non-linearities present in software, small
data sets will often produce wide variations in slope. Any effort (MM)
dependent ratios are particularly troublesome. Productivity has
consistently proven to be the most sensitive. Of all fits on
productivity (5s/MM) that we have made we have never been able to get a
r squared value better than (.02). The nonlinearities in the terms
productivity is composed of are responsible for this. TJo work around
this situation we have chosen to combine a theoretical slope tuned by
the actual data.

268

It is possible to extend this approach. The present plans include
providing for a reliability comparision. Right now the error database
is not large enough to get totally reliable statistics but before too
long we hope to establish those trend lines as well. The database will
be analyzed to determine the improvement that is being made in each of
the application areas over time. Some preliminary work in this area
has been done and it looks very promising.

269

0LT

S TERM
AME

e
3}

RaM =0

FTWARE #1

M RO TWARE #17

Fa S0F TWARE WL

SYSTEM
FINME

e TWARE W1

=t

i

RO SOFTHARE #1

FRODUCTIVITY
IMDE~

At SR TWARE G0

CALIBRATE

1t

55 (MG

2000 S4.0
G E) |

14000 lo. O

Phafdivae BN T

INFIT

EFFORT

(15

MANFOWER
RUTILDUF

c INDEX ¢

tT (15,976)
1+ (20,348)

S (2,100)

e
.

Table 1

SUFMAnY

AL

ICATTUN

TYRE

SYSTEM

]

YSTEM

i)
I

SYHBTEM

METRILS

FRODUCTIVITY
{(SS/MMD

SOF TWARE
SUF FLNRE

SOU Tl

EA
MANF W e
(PEDFILE s

P
(e

mRA T TUNGL

DATE

AT
FROCLE, T ION
RalE (5%/M0)

RAST
APen

375

ALTVND 3004 30

Sl 39vd TwNIDINO

1L

FREQUENCY

COMPUTER VENDOR
STAHAFFING BUILDURP DEV DRTAHRBASE

6
C) o
S £ 2
E g £ -
g i < C
4 |- Q : -m-
; > (Y] (] —~ |
— L) - [V} [\
- i 5 g = -
- [[e
3 g 3 § $ 5 g
2 _
RAM #1
1+ ROM #1
RAM #2
%]
1 2 3 4 S 6

STAFFING BUILDUP INDEX

FIGURE 1

e

FREQUENCY

COMPUTER VENDOR
TECHNOLOGY FRACTOR DEV DATABASE

INDUSTRY AVERAGE
SYSTEM SOFTWARE

w

T
ROM #1 (C, = 2100)
RAM #1 (C, = 15976)
RAM #2 (C, = 20348)

W\ A4 w ® W o g o) ® (W o
LESS EFFICIENT -~e—

—3— MORE EFFICIENT
PRODUCTIVITY INDEX

FIGURE 2

€LT

AVERAGE # PEOPLE

SYSTEM SFTW

AVERAGE # OF PEOPLE

VS. Ss
>
©
o
10800=)
- >
—_— [~]
—| More People -
1800=
= >
— ©
- ‘ ©
— ©
»
~| Fewer People —
190= ‘
- ROM #1
~ (14000, 11) M #1
(229000, 36)
180=
- RAM #2
- (49800, 13)
I~ R T 1 1 11100} T 1T 1T TTi0] T 1 1T 111114
— (AN Q Q AN
— \N Y Q
— A\ N}
— AN
Ss (x 1BBB) ooesioc

FIGURE 3

YLT

TOTHL ™MM

100000

10000

1000

1808

10

1 P i 1 irinn

i

SYSTEM SFTW —

TOTAL MANMONTHS

VS. Ss
>
+] std dev 8
More Expensive 3
[2]
! T
Less Expensive
ROM #1 M #1
(14000, 178) (229000, 869)
RAK #2
(49800, 133)
I T T1T00 N 1 1T T 1rin 1 0 rrrrrd
Q (AN [N o
— AN AN
— ®
Ss (x 1000) ooesoc

FIGURE 4

€Le

PRODUCTIVITY

(Ss/MM)

SYSTEM

SFTW — PRODUCTIVITY

VS. Ss
l@@@@g
- RAM #2
- (49800, 374)
_ (RAM #1)
1%8_:‘_ (229000, 264)
— >
- 8
— hn -]
0
(7]
180={ Higher —
=| Productivity + +
= ROM #1
- f (14000, 79)
190=
= ®
- ; S
-_— . -]
—| Lower o
Productivity T
1—.I } b | RN H [R } RN
— © N © W)
—)))
— ® Q
— ®
Ss (x 1800) ooesoc

FIGURE 5

(Mos)

9LT

DURATION

SYSTEM SFTW — PROJECT DURATION (Mos)

VS. Ss
109000 = Y
=| Longer Schedule
1080= >
= ©
- ‘ o
- v
—| Shorter Schedule —
— -+
- RAM #1
188? (229000, 24) 5
- ROM #1]
- (14000, 16) o
- 1
+ -
10= 1
- RAM #2
- (49800, 10)
1—I | | N B | I A N | N EEERE | | I T O N
— S (AN o} AN
— ® oY) S
— N AN
— W

Ss (x 1000) ooestoc

FIGURE 6

LLT

(Ss/Mo)

CODE PRODUCTION

SYSTEM SFTW — CODE PRODUCTION

V5. Ss
16@8@88? Higher Average
=| Code Production Rate 2
- ©
- 1 S
“,
18B000= ¥
- RAM i1 S
- ‘ (229000, 954 =
19000 =| Lower Average (49R8A68 #2980) p:]
=| Code Production Rate ’ v
z T
1000= +
- ROM #1
_ (14000, 875)
180+ R Tl o r T rTrrn 1 T i
— Q Q N |
— (N (V) Y
— S Y
— ®

Ss (x 1000) ooesioc

FIGURE 7

THE VIEWGRAPH MATERIALS
for the

L. PUTNAM PRESENTATION FOLLOW

A77%#

MEASURING THE PROFICIENCY
AND THE STYLE

OF
SOFTWARE DEVELOPERS

Lawrence H. Putnam
Quantitative Software Management, Inc.
1057 Waverléy Way
MclLean, Virginig 22101
(703) 790-0055

278

EVALUATION MEASURES TO
DETERMINE REAL PRODUCTIVITY IN
SOFTWARE DEVELOPMENT.

279

DEVELOPMENT ENVIRONMENT MEASURE

INCLUDES:

Management
Methodologies
Techniques
Computer based aids
Experience

Machine service
Type of application

SIMPLE SCALE

1, 2, 3,....... 11, 12,....18, 19, 20, 21
Special Telecom, Advanced
systems Systems Commercial

Software

280

QSM SOFTHARE DATA BASE

(AS OF JAN 84)

PRODUCTIVITY INDEX

281

A MEASURE OF STYLE ——
THE MANPOWER BUILDUP INDEX

A SIMPLE SCALE BUILD UP PROBLEM
RATE TYPE

1 Slow Sequential
All new design

2 Mod. slow Mod. Seq.
Mostly new design

3 Moderate Mod. parallel
Some new design

4 Rapid | Parallel
Little new design

5 Very rapid Very parallel
Almost no new design

6 Extremely rapid Totally parallel

No new design

282

QSM SOFTWARE DATA BASE
(A4S OF JAN 84)

AX =T

MANPOWER BUILDUP INDEX

283

SOME DATA-BASED MEASURES

* AVERAGE MANPOWER vs. SIZE

* EFFORT vs. SIZE

x* DURATION vs. SIZE

* AVERAGE CODE PRODUCTION RATE -
vs. SIZE

* AVERAGE PRODUCTIVITY vs. SIZE

284

¢8¢

RAVERRCE NUMBER GF PECPLE

(FTMM/TM)

N
o’

K —

10

AVERAGE NUMBER OF PEGPLE VS 0DSLOC

LEAST SQURRES BEST FIT
Y = .014751(%4. 608761)
R = .003A88

T

LI lllll]

100

[1 llllll'] L § lllllll ¥ L | lll'l' L) ¥ lllll'l 1 LR) ll"‘l

IK 1cK 100K 14 104

DSLOC RADC/1SES Q09 -70 -0/

oLl

CALIBRATE INPUT SUMMARY

SYSTEN SIZE TIME EFFORT APPLICATION OPERATIONAL
MK L35 s e mE AIE .
CIMsAd 10840 19.8 38 REAL TINE 8383
CIKSAS 11000 12.0 13 COMNAND AND CONTROL 0383
CINSAG 12294 12.8 22 COMMAND AND CONTROL ©383
CIHsA? 13000 12.8 31 COMMAND AND CONTROL . 6383
CIusas 104 2.0 M REAL TINE 8363
CINSR9 36300 249 76 CONWAND AND CONTROL 8383
NANAGEMENT METRICS
SYSTEN PRONCIIVITY WAPOMER PRODCTIVITY MG UG CODE
NANE BUILMP ~ (SS/WM) MANPOWER PROBUCTION
______ B TNDEX "(MVHO) RATE (SS/KO)
CIMSA4 5 1 265 2 521
CIHSAS 9 1 611 2 917
CIMSAG 9 2 559 2 1025
CIHSA? 9 2 49 3 1083
CIHSAS 7 1 501 2 gl
CIHSA9 9 1 486 3 1538

286

FRENCH DEFENSKE CONTRACTOR FRENCH DEFENSE CONTRACTOR

SOFTHARE DATA BASE SOFTHARE DATA BASE
= !A
la :
{3
i3 .
+2
|2 H
!
L1 -'H.
A A A N 4 _— N + . Jda - 3 . N . in
f 3 8 9 11 13 1% 1% 15 21 25 25 2 3 4 s P4
PRODUCTIVITY 1INDEX MANPOMER BUILDUP INDEX

QSM SOFTHARE DATA BASK
C(AS OF JAN 84Q) QSM SOFTHWARE DATAR BASE
(AS OF JAN 84>

PRODUCTIVITY INDEX
MANPOWER BUILDUP INDEX

287

PRODUCTIVITY
Command & Control Sustens

Ao aiuy A1 daisug AT i aaaanlg

1 10 1006 1600 100609

8s »x 1000
—+#+1 STD DEV — AVERAGE — -1 STD DEV

DURATION
Commnand & Control Systems
1000
§ }100
$10
N TPV 1Y
16 1da 1a00 1a0aa
Ss x 1009
—¢1 STD DEV —AVERAGE — -1 STD DEV
EVFORT
Comnand & Control Sustems
10000
E {1000
g 100
;-‘9
- A A A ALLiAL A Ad bAdiddd Ad A AALALY A4 AJJAII‘ 1
£ 1 1d0 1006 10300

s x 1000
—+¢1 STD DEV —AVERAGE — -1 STD DEV

288

AVERAGE MANPOWER
Command & Control Systems

AMIOX \ XX

100

100

1@

A Adiing

—¢1 STD DKV

ide

ey
1600 10000

s x 1900
~AVERAGE ~—-i STD DEV

AVG CODE PRODUCTION RATE
Conmmand & Control Systems

WTHZOX \
h)
[}

Ao d A ALILAY PRSI

100Qe0

1000

100

b 8 b ¥

—~+¢1 STD DEV

8s
-A

160

x 1000
VERAGE

A i disy ianudiQ

1000 10008

— =1 STD DEV

CALIBRATE INPUT SUMMARY

SYSTEM SIZE TIME EFFORT APPLICATION OPERATIONAL
NAME (SS) (M0S) (MM) TYPE DATE
JAPAN VENDOR ! 390000 24.0 1003 BUSINESS 2879
JAPAN VENDOR 1 224000 16.0 472 BUSINESS 0881
JAPAN VENDOR 2 400000 18.0 1324 BUSINESS 0381
PARTS NUMBER 108000 21.0 25 BUSINESS 2182
RFM 100000 21.0 48 BUSINESS 1082
MATERIALS MGMT 700000 38.0 384 BUSINESS 2183
MANAGEMENT METRICS
SYSTEM PRODUCTIVITY MANPOWER PRODUCTIVITY AVG AVG CODE
NAME INDEX BUILDULP (SS/MM) MANPOWER PRODUCTION
INDEX (MM/MO) RATE (SS/MO)
JAPAN VENDOR 1 16 3 389 42 16250
JAPAN VENDOR 1 17 3 475 30 14000
JAPAN VENDOR 2 17 S 302 74 22222
PARTS NUMBER 16 1 4320 1 S143
RFM 15 1 2083 2 4762
MATERIALS MGMT 17 1 1823 10 18421

289

PRODUCTIVITY
Business Sustens

$s x 1000
— ¢4 STD DEV — AVERAGE --1 STD DEV

A A adany Al 2 asig iy s s ul]

1 1 100 16k 10860

DURAT I ON
Business Sustens
G
1
-
» -
o et 1199
Pt b
: -]
e {10
e
VNP P
g 1b 160 1000 1 0¢

Ss x 1000
—+1 STD DKV — AVERRGE ~- -1 STD DEV

EFFORT
Business Systens

<L 4 dany Adl Maduay A a2y a—aaaanlg

q b 106) 10080

83 x 1000
—~ 41 STD DKV —AVERAGE —-31 STD DXV

290

AVERAGE MANPOMWER
Business Sustems

7/
N
§
H
s
.Aff’.‘u\‘.f FENESETY S S ST T O T T W T 1
[16 1da 10bo 12000

Ss » 19009
—+1 STD DEV — AVERAGE - -1 STD DEV

AVGC CODE PRODUCTION RATE
Business Systens

OTHZOX \

4
A A AALL L sailyg

s Y 1do 1oh0 10¢

Ad hh Al

A A Adiis

$s _x 1008
—+1 STD DEV —~AVERAGE — -1 STD DEV

BUSINESS SYSTENS
SOFTHARE DATA BASK

ra

" NS r S f‘fxbeEz"x 25 ab

PRODUCTIVITY INDEX

QSM SOFTHARE DATA BASE
CAS OF JAN 84)

PRODUCTIVITY 1NDEX

291

BUSINESS SYSTEMS
SOFTHARKE DATA BASE

MANPOWER BUILDUP 1NDEX

QSM SOFTHARE DATA BASE
CAS OF JAN 84>

MANPONER BUILDUP INDEX

SYSTEM
NAME

—————

DIGITAL SWITCH

D708 SWITCH

US SWITCH

SYSTEM
NAME

-———— -

DIGITAL SWITCH

D700 SWITCH

US SWITCH

CALIBRATE INPUT SUMMARY _

SIZE TIME EFFORT APPLICATION OPERATIONAL
(SS) (MOS) (MM) TYPE 0ATE
465900 15.0 270 TELECOM&MSG SWITCH 0283
210000 26.0 2185 TELECOM&MSG SWITCH 2883
308000 27.0 3860 TELECOM&MSG SWITCH 0682

MANAGEMENT METRICS

PRODUCTIVITY MANPOWER PRODUCTIVITY AVG AVG CODE
INDEX BUILDUP (SS/MM) MANPOWER PRODUCTION
INDEX (MM/MO) RATE (S5/MO)
11 3 174 18 3127
12 4 96 84 8077
12 4 80 143 11407

292

PRODUCTIVITY
Telecom Systems

}1800

100

xx \
/
/
!
|
bf
]
&
M
[
¢!

1@

A4 A dastay Ad)aasi) A_b i LAMIL) A2 aaunuld

1 16 168 1008 10620

8s x 1000
—~+*+1 STD DEV —AVERAGE — -1 STD DEV

DURATION
Telecom Systens
1000

}mo

BIT-OX

10

A aaaaiiiag

b ide 10bo 18300

A A aatsuy s annlg

s x 1000
—~ ¢4 STD DEV —QVERAGE - -1 STD DEV

EFFORT
Telecon Systens
1
E 340««
¢ fmo
¥]
s 340
o J 4
e HL
1 ls l% na'Sa 12600
s »x 1000
~—+¢1 STD DEV —AVERAGE — -1 STD DEV

293

AVERAGE MANPOWER
Telecon Sustens

1600
E|
u 1
’ {100
" 3
0
g e
. -]
s 2 1y 4o 2 aaaalib 4 laaany a—saaaanld
f 1b 108 1abe 18900
Ss x 1000
—+¢1 STD DEV —AVERAGE —-1 $TD DEV
AVG CODE PRODUCTION RATE
Telecon Sustens
1
g }Loaae
/
’O‘ 1000
d l100
[S EENTELY L A LAJAML A4 1 AiRil) " AJILA.II'"G
3 10 1de 10t 104008

Ss x_ 10080
—~#+) STD DEV — AVERAGE — -1 STD DEV

TELECOM SYSTEMS
SOFTHARE DATA BASE

1s TELECOM SYSTEMS
s 3 SOFTHARE DATA BASE

L)
]
e
A

73 39 3 11 15 15 17 15 21 ab 25

FRODUCTIV1ITY INDEX

HANPONER BUILDULP INDEX

QSM SOFTHARE DATA BASE
CAS OF JAN 84)

80

Q$M SOFTWARE DATA BASE
6O (AS OF JAN 84>

40

120

PRODUCTIVITY INDEX

MANPOWER BUILDUP INDEX

294

IT IS POSSIBLE TO MEASURE REAL
PRODUCTIVITY IN SOFTWARE

— THE MEASURES ARE:

x* AVERAGE MANPOWER vs. SIZE

* EFFORT vs. SIZE

* DURATION vs. SIZE

x AVERAGE CODE PRODUCTION RATE
vs. SIZE

* AVERAGE PRODUCTIVITY vs. SIZE

x SOFTWARE EFFICIENCY INDEX

* MANPOWER BUILDUP INDEX

— TAKEN TOGETHER THEY TELL A
CONSISTENT STORY.

— COMPARED WITH A STRATIFIED DATA
BASE THEY TELL HOW EFFECTIVE
THE DEVELOPER IS.

295

MANAGEMENT IMPLICATIONS

* The Productivity Index is a good overall measure
of efficiency. It is determined from size, time
and effort; therefore, it is a good measure of
a real productivity gain. It can be used to
measure improvements over time. In ideal
situations where additional project information is
available it can isolate tools, methodologies or
management practices that had a high payoff.

* The Manpower Buildup Index is @ good measure
of staffing style.

* SCHEDULE and STAFFING are determined and
controlled by management. So management can
have a big impact on "effective productivity"
in software development. This means that
staffing decisions effect the BOTTOM LINE.

Quantitative Software Management, Inc.

296

A BASIC MANAGEMENT TENET IS:

"If you can't measure it,
you can't manage it."

Richard L. Nolan

Managing the Crisis

in Data Processing

HARVARD BUSINESS REVIEW
March—April 1979

297

"If you do things the way you
have always done them,

you will get what you

have always gotten before.”

Buick

Srientific American, May 1984

298

Ownv7T

PROGRESS IN REFINING AND USING A CONSISTENT SET
OF SOFTWARE PRODUCTIVITY MEASURES

(C)Copyright by Quantitative Software Management, Inc.
b April 1984
Y

Lawrence H. Putnam
Douglas T. Putnam
Lauren P. Thayer

In the mid 1970's Lawrence Putnam developedi a equation that
explained the behavior of software systems. He called it the software
equation. It is written in the form:

ss = ck x k3 x ra?/3, subject to K/Td° <G

Notice that there are only four terms in the basic equation. The
components are defined as:

Ss - The total number of DDESLOC **

Ck - An overall efficiency-complexity measure

K - Total Life-cycle effort

Td - The development time

G - maximum manpower acceleration possible
for a class of system

Thus, a given product can be developed in Td amount of time, for Y
amount of effort, at Z efficiency level.

The software equation can be thought of as a powerful trade-off
law. A given product developed in a fixed environment, could be
developed with many different time-effort combinations, all of which
would satisfy the equation. However, because of the time and effort
exponents, the equation gives dramatic results. With these exponents
small changes in time produce substantial changes in effort. In
practical use the software equation has demostrated it can be a high
leverage software management function.

Over the past 5 vyears we have analysed data from over 2000
software projects. Our intention was to independently validate the
software equation. Of those 2000 projects some 803 had complete data
and have been entered into our database. With this data we have been
able to prove that the exponents are very close to the true behavior.

** DDESLOC is the notation use for Delivered, Developed, Executable,
Source Lines of Code. 299

In late 1982 we established regression trend lines for our
database. Regression lines were developed for the measures listed
below.

Productivity (Ss/MM) vs DDESLOC
Schedule vs DDESLOC

Effort vs DDESLOC

Average Manpower (MM/MQOS) vs DDESLOC

In the initial analysis we observed clusterings in the values of
Ck. The cluster patterns were related to application type. It was
thought that the trend lines might be correlated to Ck. Each
application type should have it's own family of trend lines that would
shift up or down according to the range of Ck values present.

By mid 1983 the database was large enough to stratify according to
application type. The major categories identifed were:

Real time Embedded systems
Avionics systems

Management Information systems
Scientific systems

Command and Control systems
Systems software

Microcode and Firmware systems

The curve fitting exercise confirmed our thoughts. The trend lines did
shift. Micro-code and firmware were located at the low end of the
spectrum. This software had low values for Ck, low productivity, took
a long time, was quite expensive and demanded more people relative to
similar sized projects. The MIS application were at the high end of
the spectrum. These systems had high values for Ck, high productivity,
shorter schedules, were less expensive and used fewer people relative
to their size.

Variability around the average trend lines was still a concern.
Could the software equation explain that variability? There is a ratio
that effectively measures the application of effort over time. This
measure is called the Manpower Buildup Gradient. It is defined as
K/Td"3. It discloses the style of the software development
organization. High values (generally larger than 20) are present when
parallel effort is possible and management is willing to commit what
ever resources are necessary to get a system built fast. Low values
are more typical of sequential efforts (design intensive processes) or
a management constrainted situation (limited available manpower).

New data was analyzed using the new trend lines as a basis for
comparison. We found that it told a consistent and unambigious story.
The typical behavior pattern for systems with a steep manpower buildup
rate is: modest schedule compression, lower productivity (Ss/MM),
higher average code production (Ss/Mos), requiring more effort and more
people. Conversely, systems with a gradual manpower buildup rate had
slightly longer schedules, much higher productivity, lower average code

300

production rates, requiring less effort and fewer people.

CASE STUDY (A Major Computer Vendor)

An independent data set from a major U.S. computer manufacturer
illustrates these points. The systems used in this analysis come from
a manufacturing facility dedicated to building smart IBM compatible
mainframe terminals. The software that drives the most recent family
of terminals is written primarily in C lanquage with a small portion of
assembly code. The primary system functions are diagnostics, memory
management, and communication. This family of products has a limited
market share. The costs associated with product development are high
but can be recovered along with a profit if the manufacturer can
deliver the product within a narrow market window. The software is the
guts of the product and therefore critically important. Company
management is willing to dedicate large software development staffs to
get whatever schedule compression is needed to meet the market demands
(regardless of whether the schedule is realistic or not).

The data from three systems developed recently at this plant is
summarized in the top portion of Table 1. Notice that two systems are
RAM based. Due to a hardware constraint the third system had to be
written so that it could reside in ROM. The unique problems present on
the ROM development include severely limited memory and very high
performance specifications. High quality was essential on the ROM
system because it involved a manufacturing process and would be costly
to replace once it was in the field.

The bottom portion of Table 1 summarizes important calculations
made on the input data. The column titled Productivity Index uses a
linear sequence of numbers that relate to the actual Ck values in
parenthesis. Likewise the Manpower Buildup Index corresponds to the
Manpower Buildup Gradient values in parenthesis. Notice that there is
a big difference between the Ck values of the RAM and ROM based
systems.

The Manpower Buildup Gradient for all three systems are high. The
value calculated from RAM {#2 is more than double that of RAM {1l.
According to the software trade-off law there should be a noticable
difference between the two systems for the time and effort required to
complete these projects. The other measures summarized in Table 1 are
dependent on system size. Taken out of this context they are not
meaningful. However, if we compare them against a baseline for their
own size and application then they will be meaningful.

GRAPHICAL ANALYSIS (QSM System Software Database)

Figure 1 is a frequency graph of the Manpower Buildup Index for
the three systems. Two observations can be made from this chart. The
development style of this company is to staff up quickly and use alot

301

of people. This management practice can be explained by the market
environment. A second observation is worthy of notice. The RAM based
systems have different manpower buildup index measures. The data from
RAM {##1 calculates a 3. RAM {#2 calculates a 4. The management
trade-off decisions that produced these systems should show exchanges

of time and effort according to the software equation.

Figure 2 show the distribution of Ck. The graph utilizes an index
which the Ck values fall within. It is immediately obvious that there
is a big difference between the two types of software implementations.
The difference can not be attributed to the function that the software
performs. They are quite similar. Rather, it is in the way the code
has to be designed and written for the particular implementation which
is quite different. The ROM software is more difficult because it
requires designing tricky code overlays to meet memory restriction and
needs constant performance tuning. It must be bug free before it is
burned into ROM. RAM #2 has a higher Ck than RAM {#1. With a higher Ck
RAM #2 utilized less overall effort. The higher efficency of RAM #2
will counteract the nonlinear effort increase attributed to the steeper
Manpower Buildup Rate that RAM {2 had.

In Figure 3, the data is superimposed on the average manpower
trend lines for the System software database. Notice that the scales
are logrithmic. The log scales turn the non-linear trends into
straight lines. The absissa (X axis) represents the total number of
Delivered Developed Executable Source Lines of Code. The ordinate (Y
axis) is the average number of people (MM/Td). There are three trend
lines drawn on the graph. The middle line is the best regression fit
for all the data contained in the Systems software database. The high
and low lines are the plus and minus one standard deviation bounds.
Each cross represents the calculated average manpower plotted at the
reported size.

The ROM system required significantly more people than other
comparably sized systems software projects. On the other hand, the RAM
based systems are very economic in their use of manpower compared to
the industry average for their size. In a relative sense RAM {1 has a
lower manpower utilization compared to RAM #2. This can be attributed
to the more gradual manpower buildup rate.

Figure 4 is a similar portrayal of the database. In this case we
will compare Total Manmonths against the system size. Since manmonths
are proportional to cost, this graph compares these systems for cost
effectiveness. The ROM system is significantly more expensive. The
RAM systems are well below the industry average. RAM {#1 appears to be
a little less expensive compared to RAM {2,

Figure 5 compares the data against the productivity trend lines.
The ROM system is close to two standard deviations lower than the
average for that sized project. The RAM based systems again are better
than the industry average. Notice that RAM #1 has a better relative
postion compared to it's size.

Figure 6 starts to disclose the trade-off situation. This figure
compares the data against the trend lines for average project

302

duration. It is no surprise that the ROM system took significantly
longer than the average. The RAM systems are interesting. RAM {2 is
somewhat shorter than the average. In constrast RAM {1 is a little
longer than the average. The pattern seems to coming together. RAM {2
as you recall had the steeper manpower buildup rate. The objective
must have been to get the system built fast. The system was built in a
shorter time but in a relative sense it required a lot more effort and
people. The difference would be more pronounced if the values of Ck
were the same. The non-linearities present in software equation are
still powerful enough counteract the lower efficency of RAM {1.

The pattern continues in Figure 7. The ROM system is again below
the industry average. The Ck for the ROM system was well below the
Systems software average and explains why it compares in such a
unfavorable way. RAM {#2 experienced a rapid manpower buildup and
therefore had a higher code production rate. RAM {#1 had a more gradual
manpower buildup and a lower relative code production rate.

CONCLUSION

The trend lines presented in this paper can be useful in a number
of ways. They provide a baseline of comparision from which software
developers can compare their performance against a large database of
similar projects. This will often identify a organizational style. In
this case study it was possible to quantify the organizational style
using the Manpower Buildup Gradient. Additionally we were able to show
that the developer was a better than average producer on RAM based
systems. The Ck associated with the ROM system suggests that it is a
different class of work. When this system is compared against the
Firmware database it is very creditable.

It is important to recognize that there are non-linearities
present in the software process. The non-linearities are -tied to
system size. For comparative purposes we must always make judgements
based on similar sizes. In the past the tendency has been to calculate
a few ratios on several projects and then compare them without any
regard to amount of functonality that was created. This practice can
be very misleading and dangerous. The method describe in this paper
used in a thoughtful analytic manner can be very helpful.

There are some problems associated with curve fitting that should
be pointed out. With the non-linearities present in software, small
data sets will often produce wide variations in slope. Any effort (MM)
dependent ratios are particularly problematic. Productivity has
consistently proven to be the most sensitive. Of all fits on
productivity (Ss/MM) that we have made we have never been able to get a
r squared value better than (.02). The nonlinearities in the terms
productivity is composed of are responsible for this. To work around
this situation we have chosen to combine a theoretical slope tuned by
the actual data.

303

It is possible to extend this approach. The present plans include
providing for a reliability comparision. Right now the error database
is not large enough to get ‘totally reliable statistics but before too
long we hope to establish those trend lines as well. The database will
be analyzed to determine the improvement that is being made in each of

the application areas over time. Some preliminary work in this area
has been done and-it looks very promising.

304

S0¢

oM S0

FTWARE #1

FeaM =SDF TWAORE #U

B S0OF TWARE ¥

SYVSBTEIM

TINME

vt e MTTHARE B
Fmid i TWARE T

O SOF THARE #1

FRODUCTVIVITY

CARLIBRATE THFUT SHMMARY

Q17F F It EFFORT
(35) {MOS (M

2220040 24.0 859 SYSTEM

AGR00 1.0 122 SYSTEM

5y}

14000 16.0 L7585 SYSTEM

FlfatdiALEMEMT METRICS

MANFOWER
RUILDUF
INDEX

INDEX

L7 (15,976) T (23) 254
14 (20,348) 4 (53) 74

S (2,100) T (39) 79

Table 1

AFFLLICATION

TYFE

SOF TWARE

SUF TORE

SOF TWARF

FRODUCTIVINY HEAL
(SS /MM

MANFOWRF
(FEOFILE,

T
Lo

17

OFERATITONAL
DATE

AveE CODE
FROCUCTION
RATE (55/7M0)

90¢

FREQUENCY

COMPUTER VENDOR
STARAFFING BUILDUPRP DEV DARTAHABASE

6
=)
S r o =
o— [(1]
[}-) (] [5
pe) = & T
4t g 3 > 5
> (3} Q B :
% % E T = £
> [+7] [(7] [\ >
e [58 |
S k- - 3 5 g
2
i RAM #1
Lk ROM #1
RAM #2
%
1 2 3 4 5 6

STAFFING BUILDUP INDEX

FIGURE 1

L0t

FREQUENCY

COMPUTER VENDOR
TECHNOLOGY FARCTOR DEYV DARTABASE

&
2
s | =E
> 3
— = I A~~~
4 L 2 QB e 3
z Se g o
) e
" "o
3+ &’:‘ S S
- = 2
2 x T x
g g 3
O o
%) 1 1 L1 1 1 1 1 E E N S R N
o <+ © ® N o <+ ® S o

— o o

w
LESS EFFICIENT - ~3- MORE EFFICIENT

PRODUCTIVITY INDEX

FIGURE 2

80¢

AVERAGE # PEOPLE

SYSTEM SFTKW

AVERAGE # OF PEOPLE

VS. Ss
>
S
10000= 2
- 7]
=~| More People T
1900=
= >
= -
- | 2
~| Fewer People -
109= !
_ ROM #1
_ (14000, 11) M #1
(229000, 36)
1535
= RAM #2
— (49800, 13)
l-l] N R | R | (R | | R R
— © © © W)
- S S W)
—_))
—_ N
Ss (x 1000) ooestoc

FIGURE 3

60¢

TOTAHL MM

N
S
AN
AN
o

10000

1000

100

e L onn L

R RERE

SYSTEM SFTHW

VS,

TOTHL MANMONTHS
Ss

+| std dev

More Expensive

f
&

Less Expensive

ROM #1
(14000, 178)

RAM #2
(49800, 133)

M #1
(229000, 869)

-1 std dev

| NN
\Y

-—

Ss

FPrb

(%

]

Q S
® ®
- ®

1000) ooestoc

FIGURE 4

) b] 1y e

10000

(Ss/MM)

1183

PRODBUCTIVITY

SYSTEM SFTW — PRODUCTIVITY

VS. Ss
1 PBOD=
- RAM #2
- (49800, 374)
1000 (RAM #1)

(229000, 264)

100=| Higher

Productivity +

- ROM #1
_ f (14000, 79)
10=
—1 Lower
Productivity
1—1] ettt | [] | I 1 11t | R
— Q

-~

120
10000~ ~] std dev

|
Y
Q
\N)

Ss (x 1888) ooestoc

FIGURE 5

+] std dev

11¢

DURATION

(Mos)

SYSTEM SFTW

&Y
Q
S
S

1000

U RRRE

180

10

VS, Ss

PROJECT DURATION

(Mos)

Longer'Schedule

f

J

Shorter Schedule

RAM #1
(229000, 24)

+] std dev

>
ROM #1 -
(14000, 16) ;5
+ —y

]

RAM #2
(49800, 10)
{ R | (I R B { 1t | R

(W) © ® N

— S N

— N

Ss (x 10988) ooestoc

FIGURE 6

[4 53

CODE PRODUCT ION

(Ss/Mo)

SYSTEM SFTW — CODE PRODUCTION

VS. Ss
1@@@@@@-5- Higher Average
=| Code Production Rate 2
_ -
- 1 N
©w
100000 = by
B) RAM #1 R
~ ! RAM #2 5
19000 =| Lower Average -
=| Code Production Rate (43800, 4380) 2
- T
1800= T
E ROM #1
" (14000, 875)
100~ P17 1T T 11101 1 T 1110 1T 1 T 11101 1 T 1T r0ri
— Q Q o AN
— Q

Ss (x 10800) ooestoc

FIGURE 7

N86-19980 &

TAILORING A SOFTWARE PRODUCTION ENVIRONMENT
FOR A LARGE PROJECT

(Abstract)

David R. Levine

Intermetrics, "'Inc.

733 Concord Ave.
Cambridge, Mass 02174
617: 661-1840

A software production environment was constructed to

meet the specific goals of a a particular large programming
project. This paper will discuss these goals, the

specific solutions as implemented, and our experiences

on a project of over 100,000 lines of source code.

The base development environment for this project was
an ordinary PWB Unix (tm) system. Several important
aspects of the development process required support not
available in the existing tool set (e.g. SCCS, make).

Version management:

Many systems provide source library tools with version
numbering and similar support. We wanted to track the
version number of a module at all stages of the

development process: within the source libraries; as
source and object in private development directories;

and as constituents in both private and official load

modul es. A method was developed to automatically maintain
the version identification of each module in a form as

to be easily visible and checkable by standard tools,

in particular by the linker.

313

-
AT
bl
s

, ¥
>,

In addition, the space / time balance of the source
library required evaluation. We desired fast access to
the library, and did not anticipate the need for
reference to very old versions. Furthermore, any
number of standard tools would be applied to the text,
including both unix tools such as grep, sed, and nroff,
and other of our own devising. A library was
developed in which the text was held in clear text,
thus providing both simplicity and speed in processing.
Simple file system techniques provided version and
access control.

Separate Compilation:

The development language supported separate compilation,

but with a caveat emptor attitude towards' interface consistency.
We required a more rigorous system to maintain correctness
and control recompilation; to avoid version skew and yet
minimize unnecessary recompilation. The project was based

on a decentralized methodology, in which every module had

the responsibility of defining its own interface. A system
was developed in which the interface definitions were provided
in the same files as the functions they described, and then
extracted for inclusion by other units. Techniques similar

to those used for basic version control provided firm

checking (including linker error reports) on version skew.

Incremental Development:

Our development model is one of continuous integration.

At any point, the developer must see a stable, official
baseline configuration, plus some personally constructed

set of modules being modified. Standardized handling was
desired to facilitate sharing of experimental modules among
different developers, and to ease the transition into new
configurations. Uniform procedure would allow automatic
logging of activity, desirable for management purposes, to
allow us to pick up if a key person were absent, and to .help
automate the "gate" (configuration acceptance) cycle. The
system as developed relied on the version visibility scheme
to allow private modules to coexist in public areas, and to
even obviate the absolute need for recompilation of a module
when submitted to the gate.

314

Experience:

This environment was implemented on Unix, originally as a
collection of shell scripts. It served to support
development by up to 20 programmers, on a large, highly
interconnected program. Over a period of two years, over
200 gate cycles were run, as the program grew to over 700
modules and over 100,000 lines of source code.

Reflection has shown both strengths and weaknesses of the
approach, For instance, a project of this size seems to
require less strong interconnection, and less changeable
interfaces; that has major implications for the support
system. More recent systems and tools, such as RCS on Unix
and Apollo's DSEE system, offer better solutions to the
basic space/time tradeoff in the source library.

315

TAILORING A SOFTWARE PRODUCTION ENVIRONMENT

FOR A LARGE PROJECT

David R. Levine

Intermetrics, Inc.
733 Concord Ave,
Cambridge, Mass. 02138

Qverview

This paper describes a software production environment that
we developed to support a large compiler project. The host
environment was a Unix * system, with a Remote Job Entry link to
a large batch mainframe. The project size reached 100K lines of
code in over 700 source modules, with approximately two dozen
developers at peak strength.

Figure 1 lists some of the problems involved in the design
of this environment. One of the factors unique to this project
was the particular choice of methodology and implementation
language, which mandated a high level of supplementary support
from the environment. The methodology in question includes a
heavy reliance on data abstractions, which tends to lead to a
highly modular design. We intended to maintain this design
structure in implementation as well. In a language like Ada **%,
which is designed to support this methodology, such a strategy
presents little difficulty. In our case, the implementation
language could be teased into supporting the design structure,
but at the expense of a great deal of potential complexity. It
was clear at the outset that additional tool support was needed
to provide the kind of consistency and configuration management
necessary to keep the methodology from getting in the way. A
specific penalty of complexity is a greater need to assure
correctness, especially in regard to separate compilation; in a
system with many components, one needs more positive measures.

For a large project, we knew a good configuration management
system was necessary. We intended to wuse an incremental
development strategy, in which one gets the core of the system
working and then glues on more and more functionality. This
strategy places a severe strain on configuration management,
imposing simultaneously the requirements of development and
maintenance phases. Firm configuration management is required to

* Unix is a registered trademark of Bell Laboratories.

** Ada is a registered trademark of the United States Govefnment,
Ada Joint Program Office.

316

Large Project
- USUBL WORRBIES o ACCOUNTABILITY THRUOUT PROCESS,

- CONSERVE RESOURCES NOT JUST 0D OFFICIAL VERSION

- METHODOLOGY ISSUES
METHODOLOGY IS - LESS COonrusion

LOTS of COMPILATION UNITS
and - SAVE BESOURCES

nim SUPPOAT LANGUAGE
MinimAaL from -STRONG CID SUPPORT AT

=> G00D MGIMT OF SEPARATE COMPILATION DEVELOPER LEVEL
(INTERFACES., RECOMPILATION)

e AUTOMATIC OB SEMI-AUTOMATIC
METHODS PREFERBED

= Good Configuration Mgmt
- SOURCE CODE VERSION MGMT BUILD TOOLS

- INCREMENTAL DEVELOPMENT A5 REQUIBRED

STABLE OPERATIONAL VERSHN,

¢ DESIGNATED CONFIGURATION LIBRA
FBEQUENTLY UPDATED RIAN

INTERMETRICS

Figure 1. Figure 2.

w
—
o

I:HEII:K ouT sgurce
privatie version
Ellll'l'
COIMPILE abject

private files

LIDK

load
private run

Exnlcun: Y

TEST

LI
I,Il
OO INTERMETRICS

Figure 3.

AN

CHECK 0UT
privat!e version
EDIT
CUH}PILE
private files

LIDK

private run

EXECUTE

TEST

POIVATE WORR -—-) QFFICIAL

Figure 4.

sonrce

object

)

maintain at all times a good, working version; at the same
time, the flexibility required during full development must also
be provided.

Figures 3 and 4 show some of the flow of activity in such an
environment. One will note the flow of modules from the
controlled [source] library into the private workspace of
individual developers and then back again into the library to
make up a new controlled configuration.

Traditional systems often enshrine a basic dichotomy between
the strict control of the configuration managed world and the
unstructured freedom of the individual developer. We felt there
were numerous advantages available if we could successfully
bridge this gap. We thus found ways to provide better support
for the developers, to help them systematize their activities in
a constructive manner by using the good features of the CM
system. We were able to reduce operational confusion at the
individual 1level. The similarity of procedures facilitated
cooperation between developers. And the CM system benefits too,
in reducing the complexity of its new-version acceptance phase.

Another of the major principles which guided us was that of
accountability. We wanted to track the pieces of the system as
they moved around in the development process. To the extent
possible, we wanted self-identification of the various components
and files in our system. We needed to create and maintain
correct interfaces, and be able to verify that necessary
recompilations had been done.

The Unix environment encourages the development and use of
tools. The library and configuration management systems that we
build saw us through over 9000 versions of the source modules,
and 200 CM acceptance cycles over a two year period. We employed
a Configuration Librarian to manage the centralized functions of
creating a new configuration; other elements of the system were
automatically handled by tools invoked by individual developers.

Positive Version Identification

Looking at a little more detail at the problem of module
identification, we notice that there is a three-dimensional space
to manage. The overall program under development consists of a
great many individual modules. For each module, several versions
may be in existence. And for each version, several forms must be
handled: source, object, and as a component of the 1linked
program., Figure 5 shows a simple example, with modules "A" and
"B". Note the shaded version #23 of "A" which forms part of the
current load module.

Proven source library systems exist, with good
functionality. But their tracking and control 1is ©purely
internal; once checked out, a file is essentially anonymous
until validated either by check-in or acceptance into the

319

0ce

SOURCE

developme!

OBJECT

private

Source Library systems
Only track internally

(1]
L
|an

INTERMETRICS

Figure 5.

Integrity assured
by controlling
build process

usu. anongmous
and suspect

Figure 6.

SOURCE OB JECT LOAD
A
A
A 3 v 21 v 23
v 24 A
v 23 B
———— *_ v 15 7?7
B T 1
B DER BS 16:
v 15 i v 15
B i;].[??
B$15
JEF B316 :
DER BS16: &P .
B#16.object ?
B#16.source
Integritg assured
by absence of -
PRIVATE FILES linker diagnostics
IEVER LOSE -~ Compaosition
GLOBAL IDENTITY can be verified

controlled configuration. Its identity is suspect; sy stem
integrity is assured by rigidly controlling the build process.
(The individual developer typically exerts only modest control
here, and thus is particularly susceptible to confusion.) Figure
5 shows a typical object module which claims to be version 23 of
"A", How is that identity established? Solely by knowing how it
was constructed. If any confusion sets in, the solution is to
scratch everything and start over -- often an unacceptably
expensive alternative.

Our system maintains order in two simple but effective ways.
The first concerns file names. A private copy of a file -- "B"
in the figure =-- need not be anonymous. By checking it out,
formally, the source 1library manager has reserved the next
highest version number. We take the obvious step and assign that
identity immediately, so that even in the private workspace the
file carries its correct name and version number. (Cf. figure 6)
Since that name and number combination is reserved, and unique
throughout the development environment, even the "private" object
files can be likewise tagged -- and furthermore be stored in a
canonical file system, accessible to anyone who needs them.

The other aspect of maintaining order 1lies in a self-
identification scheme, so that a module's identity can be firmly
established independent of external artifacts such as file names.
For this purpose, we create a special variable in each module.
This variable is not part of the program logic; it is purely
part of the CM system, The name of the variable is a
concatenation of the module name and version number,
automatically adjusted when a module is checked out of the source
library. (Thus within module "B" is the variable "B$16"; see
figure 6.) We use a variable, and not just a comment, so that
the version identification shows up in the compiler output.
Furthermore, the CM symbol is given external status, making it
visible —-- by name -- in the object module. In particular, as an
external symbol it is processed by the linkage editor.

In addition, the configuration 1librarian maintains a
separate source file with a set of complementary CM symbols. The
"DEF" construct in the primary module source serves to provide a
definition of the CM symbol in the external name space. The
configuration librarian's file has the same symbols, but using
the "REF" construct instead. "REF" (reference) requests must be
matched to corresponding definitions by the linkage editor, or an
error will be reported. This provides us with a plug-socket
positive version identification system., If the wrong version of
a module is linked in, the linker will be unable to satisfy a
"REF" request and will notify the user. This notification is not
fatal; in fact, individual developers should expect to see
messages for the particular modules for which they are creating
new versions.

321

(443

§ErnlaT?E BomMPILATION o

Hrocedore F{...)
Consumer _ Extergat;
Procedure F(8: ~.8:9; ;;’ Provider
Procedure F(8: -~ B:+);
—) Begin;
Call F(—.—); . INCLUDE (Fe):
: htod Procedure F(...);
End; Procedurs F{ _); External;
External;
Procedure F ;
_) Begin;
ITITYE-REgH G-E QDS 15 (TyEN Y 47, Calt F(-.-); .
Provide "EXTERNAL" declaration ’
for caller. End;
AW HEQGER
. INTERFACE DEFINITION
- ;r:bdam::ﬁm OWDED BY MODULE IT
= - DESCRIBES --
or from Provider CRIBES MABNUALLY MAIRTARINED
—— DECEDNTRALIZED BUT PHYSICALLY CLOSE

Figure 7. Figure 8.

Separate Compilation

There are two related problem areas involved in successfully
suppor ting separate compilation: external interface
specification, and recompilation.

In a system with hundreds of independently compiled modules,
the complexity of the external interface structure becomes very
high. 1Its correctness is vital.

The external interface allows the compiler to correctly
process references which cross compilation unit boundaries. 1In
order to process any procedure call, the compiler usually needs
to see a declaration of the procedure, which will give
information like the number and type of the arguments are.
Often the procedure definition is "external"; 1i.e., it resides
in another, separately compiled module. In some languages, the
compiler ducks 1its responsibilities, and simply assumes that
calls of external procedures are correct; this level of checking
is not adequate for a modern, strongly-typed language. In
languages such as Ada, these external declarations are provided
automatically through a database maintained by the compiler.
With compilers like Pascal/VS, all procedure calls are checked
for validity, but the programmer has to himself provide explicit
"EXTERNAL" declarations. (See figure 7.)

The challenge,then, is to create a semi-automated system to
maintain the external declaration information.

In our environment, the interface was taken from a standard
file, part of the general configuration managed library. The name
of the interface file is derived from the file name of the
provider file (by adding an "@" suffix), and so is easily and
uniformly accessible., (See figure 8.) The interface information
itself was extracted by a simple tool from the actual file of the
provider, thus maintaining the greatest possible degree of
accuracy.

It turns out that in our implementation language, it is
valid to include an T"EXTERNAL" declaration in the same
compilation as the actual procedure definition; EXTERNAL behaves
much like FORWARD. If that's not valid, the extraction system
must be a bit more clever. The point is that in any case the
external interface definition sits physically right next to the
procedure it describes., Even if it's manually maintained, the
chances of it being correct (meaning, especially, up to date) are
a whole lot better than if its off on another file someplace,
combined with other such interfaces. Also a feature here that we
have one interface file per source module. That makes for a lot
of interface files, but gives much better management of
recompilation.

323

yee

Fo

Procedore Fi...);
Externat;

INCLUDE (Fe):
BEF r$hi

Procedure F(.);
External:

Catt F(-,-);

@I INTERMETRICS

Figure 10.

Provider

DEFS%]!
REF ré81

Procedure Fi...%;
External;

Procedure F ;
Begin;

End;

NEeompinaTIon

DRECESSARY and SUFFICIENT CONDITIONS

¢ NOT: just to be sure
INTEBFACE CHANGE => RECOMPILE ALL USERS
NOT .
MODULE CHANGE BUSTR.

onlg if change can affect them

Some additions are known to be safe

FIRM TRACKING --

use $§ symbols
+

linker diagnositics

Figure 9.

~

Recompilation

Maintaining correct external interface files is only half of
the battle; the other is insuring that any modules which use
these files are recompiled when a change occurs. For a
collection of reasons, one cannot simply recompile all consumer
modules every time an interface changes. The environment must,
then, provide ways of tracking what has been done, and in
particular of determining whether all necessary recompilations
have taken place. A variation on the self-identification system
provided this support. g

Interface mismatches, resulting from improper recompilation,
cause particularly obscure bugs. In the absence of positive
accountability, one typically goes back to zero and recompiles
everything when such a problem is suspected,

As we did for version control, we added a special symbol,
whose name captures the module name and an interface version
number. (These symbols are written with a double §$ to
distinguish them from the basic version control symbols). The
provider file carries the "DEF" for the symbol. It also carries
a "REF", which is situated in the part of the source marked as
being external interface. The extracted file, therefore, has
only one of the pair, the "REF", and this shows up in every
consumer. (See figure 9.)

These symbols are manually maintained. When the developer
makes a change to the interface which will require recompilation
of the consumers, s/he is required to increment the interface
version ($$) symbol. (Using simple source file comparison tools,
the configuration librarian can check whether the "$$" symbol was
appropriately changed, providing an extra level of checking.) The
change is made in the provider file, of course, and so only the
new symbol will be defined at link time, If there are any object
modules present that were compiled with the 0ld interface, they
will still carry the request for the old interface symbol. This
is visible to various tools, and in particular will cause a
linker diagnostic.

The use of external names for version tracking, though a
simple scheme, 1is very powerful. It provides, inexpensively,
very important information and control which are missing in many
development environments.

Minimizing Recompiliation

The necessary condition for recompilation is an interface
change. However, not all interface changes require
recompilation; some changes can be known to be safe. In
particular, in our development style the interface to a

325

particular module tends to consist or a large number of
procedures. Adding another function is safe, as binding is done
at link time. The o0ld consumers, who don't know about the new
function, aren't affected. (A careful choice of name conventions
avoids the possibility of introducing name conflicts here.) As a
result, we achieved a considerable resource saving, especially
when dealing with key modules which are included by almost
everyone,

We handled these benign interface changes simply by not
changing the interface version symbol. .We did not forgo version
skew protection, though, If the [new] consumer module were
inadvertently linked with an old version of the provider, no
definition would be found for the missing functions, and a linker
diagnostic would be issued.

Conclusions

This development environment proved a qualified success. It
provided, as planned, very good accountability, good control of
external interfaces and recompilation, It managed complexity
well. But there were some loose ends, especially involving
secondary interactions in the area of separate compilation. 1In
addition, there was a lot more complexity present than had been
anticipated.

In a peaceful development process, an interface revision
originates in the provider module. As the changes are completed,
a new interface file is created, the consumer modules modified as
necessary, and then all are accepted 1into a new overall
confiqguration. Under the pressure of time and multiple parallel
paths of development, conflicting requirements made it difficult
to adhere to a simple, orderly procedure.

- A consumer module may be temporarily unavailable, as some
other developer has it signed out for other work. If
simple recompilation is all that is required, that can be
done from the 1library copy. If editing changes are
needed, a severe contention problem exists. It may even
be necessary to insert a new temporary version ahead of
the main new version of the consumer in order to achieve
a compatable whole.

- The revision may be driven by the consumer, which needs
some new functionality; this may be from a module
maintained by someone else. This leads to a situation in
which one person 1is relying on temporary, private
interface files taken from another person's development
COpY . The consumer module cannot, of <course, be
presented to the configuration 1librarian until the
provider module is also ready. Our system could have
provided better tracking of the version dependencies
here.

326

The transitive nature of dependencies would
sometimes lead to severe contention problems here. If A
depends on B, and B on C, a change to C does not in
general affect A. However, A might request a [trivial]
new function from B, which B's maintainer cheerfully
provides. However, B " itself 1is 1in the process of
incorporating some new functionality from C. Even though
the A - B interface is operational, the new version of A
has to be held up until the new C is available since
otherwise B will be incompatible. Sometimes it becomes
necessary to accept the new C, even though it does not
work properly, in order that work may proceed on A and B.

These problems are beyond the original design
considerations. To some extent, they are inevitable with a large
project., There were also aggravated by the existence of a large,
distributed interface structure in the program being developed.
The problems relate to resource utilization, which are
essentially management issues. Their solution lies, then, lies
in providing better support for the scheduling of development so
as to avoid the worst contention situations. The support
environment should contribute information such as a graphical map
of inter-module dependencies.

327

ATTENDANCE LIST 1984

BILL AGRESTI
of 10

ED ALBRIGO
SPERRY CORP

DQ*,. ALY,JEY
LOCKHEED

TROY AMES
NASA/GSFC

JACQUELIMNE AMRHEIN
NSA

ROB ARNOLD
MITRE CORPORATTION

PATRTICIA ASTILL
NASA/GSFC

EVFRETT AYERS
ARTINC RESEARCH CNRP

CURTTSS BARRETT
NASA/GSFC

DON BARRON
NSA

JEROME BARSKY
RENDIX

C,WRANDLE BARTH
NASA/GSFC

LYNN BARTON
LLOCKHEFED

VIC BASILI
UNTV OF MD

JOHN BAUMERT
SPACFE TELESCOPE SCT INSY

PETER BELFORD
o1

A-1

BILL BELLAND
FCC

JIM BENNETT
ROY RAQOND
NSA

HELEN RONK
NASA/GSFC

DAVID BOON
csc

JOHN BNUWFEN
HUGHES=FIILLERTON

ROYCE RRADSHAW
SOCIAL SECURTTY ADMIN

DAVE BRADY
TRW

MIMI BREDESON
SPACF TELESCOPF SCI INST

DALE BRENNEMAN
TRS

FELTZABETH BRINKER
MASA/GSFC

NANDER BROWN
FREDDIE MAC

DAVID RRYCH
ANALYTTC SCIENCE CORP

JOHN BUELL
csc

ELIZABETH RUIE
cscC

CARQL, RURNS
TIT RESEARCH INST

ATTENDANCE LIST 1984

PAVID CALLENDER
JET PROPULSION LAB

J, CAMPBELL
EPA

DU CAN CHAN
JoCARLSON
OAN CORP

DAVID CARD
cscC

JOHN CARL
NASA/GSFC

LLOYD CARPENTER
NASA/GSFC

MARGARET CHASSON
T8M

STFRVE CHEUVRONT
csc

ANDREW CHUNG
FAA TECH CFNTER

LEE CISNEY
NASA/GSFC

JUDITH CLAPP
MITRF CORPORATTUw

MARVIN CLEMMONS
NASA/LANGLEY

TED CONNELL
NASA/GSFC

HARRY CONK
FED HOME MNRTGAGE LUAN (U

LA'IRA CONK
GSC

A-2

PERRY COPP
FAA TECH CENTER

CARL CORNWELL
BENDIX

CLYDE CRAIG
AUTOMETRIC INC

STEWART CRAWFORD
BELL LABS

WILLIAM DECKER
csc

DICK DEMEESTER
CHARLES DICKSON
USDA=ARS=CDSD

P.NILTS
AMERICAN SYS CNRP

KEITH NPIMORIER
NASA/JSC

DAVID DISKIN
U S CENSUS BUREAU

BERNARD DIXON
NASA/GSFC

MARYANN DOIRNN
TIT RESEARCH INST

FRANX NQUGLAS
PROF S/W SFRVICES

JOHN DUKE
non PESO

LORRAINE DIIVAL
TIT RESEARCH INST

MARGARET EATOw
csC

ATTENDANCE LIST 1984

H,0,EBERHART
BETSY FDWARDS
NASA/GSFC

JENNTFER ELGOT
UNIV OF MD

NDEAN EULLTOTT
NASA/GSFC

WALTER ELLIS
TBM FSD HEADOUARTERS

HARRY EMERSOMN
ANALYTYIC SCIENCE CORP

FUNICE ENG
MASA/GSFC

MARY ANN ESTANDIAU
NASA/GSFC

MIKE FAGAN
UNIV OF MARYLAND

HOSEIN FALLAH
AT&T BELL LABS

AI FANG
NASA HEADQUARTERS

WILLTAM FARR
NAVAL SURFACE WEAPONS CTR

JAMES FARRELL
WESTINGHNUSE

RICHARD FATH
rCC

LARRY FISHTAHLER
csC

CELIA FITZERALD
DATA GENERAL CNRP

WAYNE FRTEDMAN
BQFIEOCO

JOHN GAFFNEY
IBM CORP

JULIA MEADF GALLTIER
NAVAL SURFACE WEAPONS CTR

PETER GAMM
PRC

JOSEPH GRARNER

ADV CoMP SCI GROMIP
PAT GARY

NASA/GSFC

C.H.GAUDETTE
1BM

RICHARN GAYLF

JOINT TACTICAL COMMAND CONTROL

& CNMMUNICATINN AGENCY

DIETWALD GERSTNER
NASA HEADQUARTFRS

NORMAN GLICK
NSA

JOHN GOLDEN
EASTMAN KODAK

ADNLF GQODSON
NASA/GSFC

CAROLINE GRAFTNN
DEFENSF SYSTEMS INC

ROBERT GRAFTON
OFFICE OF NAVAL RESEARCH

ART GRFREN
csc

ATTENDANCE LIST 1984

SCOTT GREEN
NASA/GSFC

ARNOLD GREENLAND
TIT RESEARCH INST

STEPHEN GREIF
RENDTIX

DR.C,J,GREWE
MARTTN MARTETTA AERQOSPACE

NAVID HAMMEN
DICK HANKINS
MYRQON HECHT

SOHAR TNCORP

JaUJHECK
SOHAR INCORP

CARL HEISE
FCC

NDOUGLAS HILLMER
CENSUS BUREAN

RARBARA HOLMES
GsC

ROBRERT HOLT
GEORGE MASNN UNIV
ROD HOnsTON
I1IT RESEARCH INST

ALAN HOWLETT
IIT RESEARCH INST

LARRY HULL
NASA/GSFC

NORMAN IDELSNWN
TIT RESEARCH INST

MARY ELLEN INGHAM
NSA

DONALD JENKINS
FAA

DAVID JOESTING
BRFEC NAO/SM

LEON JORDAN
csc

LINDA JUN
NASA/GSFC

DENNTS KAFURA
VA POLYTECHNTIC INST

AOWEN KARDATZKE
NASA/GSFC

ELYZABETH KATZ
UNTV OF MD

FRANCES KAZLAUSKT
NSA

JOE KELLAGHER
US DFPT OF CNOMMERCE

JOHN KNIGHT
UNTV OF VIRGINIA

KATHY KQERNER
csC

RICHARD KOPKA
DOD/ECAC

PATTY KRAMER
EPA

THOMAS KURIHARA
S DEPT OF TRANS

NAVID LAME
JET PROPULSINN LAB

ATTENDANCE LIST 1984

DICK. LANGLFY RAVY MAZ.ZNLA

FCC FORD AFRNSPACE

NANCY LAUBENTHAL TOM MCCARE

NASA/GSFC MCCABE ASSOC

MARGARET LAVIGNE S MCCARRNN
NASA/GSFC

RAY LEBER W,l, MCCQY

GENERAT, ELECTRIC NSWC

GERTRUNE LEE FRANK MCGARRY

DOTY ASSNCTATES NASA/GSFC

NAVID NLEVINE MARY ANN MCGARRY

TNTERMRTRICS TITRY

ROSCHW LIN DAN1FL MCGNVERN

LOCKHEED FAA TEFH CENTER

JANET LINDGRAN JOHN MCLROD

INFOMATICS JET PROPULSINN LAS

JEAN LTU EDWARD MFDEIROS

ase ese

KUEN=SAN LIU REG MERESNN

cse COMPUTFER TECHNTCAL ASSNC

PET=SHEN LO MICHAEL MELCHINRRE

csce RURRNUGHS CORP

MICHELLE LODOSER RORERT MFMBRTNO

FAA TECH CENTEP SINGER CN

JANET LUNDGREN VICTNRTA MENDENHALL

INFORMATICS GEMERAL CORP NAVAL SURFACE WEAPONS CTR

RILL MADDQY

GENERAT. DYNAMICS PHIL MERWARTH
NASA/GSFC

JOHN MANLEY

NASTEC CORP MARY LOU MTDDLFTON
FCC

THOMAS MASTERS
NSA

A-5

TIM MILES

U,8,DEPT OF COMMERCE

WARREN MILLER
cse

TAWNA MINTON
NSA

RAKESH MITAL
c¢sc

KAREN MOE
NASA/GSFC

S, MOHANTY
MITRE CORP

EILEEN MUNDAY
csc

RORERT MURPHY
NASA/GSFC

MARY MYERS

RURRNUGHS CORP

PHTLIP MYERS
csc

AHMED NANEEH
MITRE CORP

MATT NADELMAN
cscC

PDAVID MADQOLWNA
NSA

NDERRA NANQOLNA
NSA

JOE NAPKURT

RURT WEWLINM
DMSSN

A-6

ATTENDANCE LIST 1984

ED NG
JET PRNOPULSINN LAB

ROBERT NNONAN
WILLIAM & MARY

DR,A.F.NORCID
NAVAL RESEARCH LAB

JANE OHLMACHER
SQCIAL SECURITY ADMIN

L, O'NRIL
BELL LABS

JERRY PAGE
¢sc

ROGER PANARA
RADC/CNEE

NIKKY PANLILTO=YAP
UNIV OF MD

FDNIE PARAMORE
PAUL PASHBY
NASA/GSFC

TERESA PASSALACQUA
CENSUS BUREAU

MICHAE!, PASTFERNAK
NAVAL SURFACE WEAPONS CTR

DEBA PATNAIK
UNTV OF MD

MICHAET, PATTON
RAYMOND PAUL
NAVAL SEA SYSTEMS COMMAND

LEONIE PENNEY
PEMNEY ASSNCIATES

nOLLY PERKIANS
NASA/GSFC

GINVANNI PERRONE

MARTIN MARTETTA AEROSPACF

KARL PETFRS
NASA/GSFC

B, JANE PRTERSQOM
AUTOMETRYC INC

CARQOL PETRNSKI
JOHN PYETRAS
MITRE CORP

MICHAE!. PLETT
of 10

WILLIAM POSTHUMA
NASA/GSFC

WILLIAM POW

DAVID PRESTON
TITRY

POUGLASS PUGH
TITRY

NDOUGLAS PUTMAN
QsM

LARRY PUTMAN
Qs™

JOHN QUANN
NASA/GSFC

THOMAS QUINDRY
non PESO

CONNTE RAMSEY
UNTV OF MARYLAND

ATTENDANCE LIST 1984

JAMES RAMSFEY
TIINTIV QF Mp

DR,ED RANG
HONEYWRLL

GENRGE RATTE
ISDA=ARS

JOHN REDDING
FEDSTM/CAA

NDONAT,D RRIFER

REIFER CDONSULTANTS INC

PAT RINN
FCC

NON RORBINS
NSA

RICHARD ROBINSNN
MITRE CORP

H, DEITER ROMBACH
UNTIV OF MD

JORGE ROMEU
TITRT

ROBERT RNSSIN

GENERANL ELECTRTC COD

NDAN ROY
CENTURY COMPUTTNG

JOYCE RUFTHGER
MCCQHEN & ASSOC

STEVF RUGALA
FCeC

ROMATINFE RUPP
BURRNAUAGHS CORP

VINCYENT RUPOLD
BANKFRS TRUST CO

ATTENDANCE LIST 1984

ANDY RUTHERFORD
JOAN SANRORN
NASA/GSFC

CATHRYN SAVODOLATN
RELL LAAS

ROB SCHWFNK
NASA/GSFC

RICHARND SELBY
UNTV QF MD

ED SFINEWITZ
MASA/GSFC

FOMOND SENN
NASA/LANGLEY

PANL SERAFIN
EG&G

SILVIA SHEPPARD
COMPUTFR TECH ASSQOC

ARNQLD SMITH
MARTIN MARTETTA AEROSPACE

JOHN SMITH
NAVAL SURFACE WEAPONS CTR

OLTVFR S™ITH
EG & G

PATRICTA SMITH
NSWC

GLFNN SNYDER
csc

MARIA SO
NASA/GSFC

NAVIN SOLOMAN
~scC

DUANE SQOSKEY
€sC

C.B.SPENCE
cscC

AL STAMENT
PRC SYSTEMS SERVTCE

MIKE STARK
NASA/GSF

JODY STETNBACHER
JET PRAPULSINN LAB

RARBARA STNNE
PRC SYSTFMS SERVICE

RAY SUCHY
NSA

STFVE SUNDTITH
GSC

JUDIN SUKRI
UNIV OF MD

RORERT SIIM
UNIV OF TLLINOTS

STFEVE SWARTZ
FCC

M.LISA SYLLA
DERRA SYNQTT
JET PRNPULSION LAB

PAYL SZULEWSKI
DRAPER LABS

N, TAMARCHENKN
DATA GRNERAL CNRP

KETJI TASAKI
NASA/GSFC

ATTENDANCE LIST 1984

KENNETH TOM KEN WILLTAMS
ARTINC PLANNING RFSEARCH CORP
CAROL URT STRVE WILLIAMS
FCC TRYW
JOHN UTZ RAY WOLVFRTOM
EG & G TIT PRNAGRAMMING TECH CTR
ALAN VAN BOVEN

ALTCE WONG
GTR SYSTEMS FED AVTATION ADMTN
JON VALETT CHARLES YOUMAN
NASA/GSFC CEY ENTERPRISES
NANCY VEILLON ANDREW YNUNG
csc LOCKHERD
SUSAN VOTGT LEON YOUNG
NASA/LANGLEY RETFER CONSULTANTS INC
POLORES WALLACF
NAT BUREAU OF STANDARDS N GhELGRNTUSS

DAVID WETSS
MARV ZELKQWITZ
E
1S NAVAL RESEARCH LAB UNIV OF MARYLAND
T WEISS
igMgiT ets PRANAS ZUNDE
- GEODRGIA TECH UNIV

LT.GREG WELZ

AFSTC/VYLC ART ZYGIFLBAUM

JET PRAPULSION LAB

MARILERE WHEATON
AEROSPACE CORP

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

SEL-77-002, Proceedings From the Second Summer Software En-
gineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Langquages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP) Design
and Module Descriptions, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson and B. Chu, September
1978

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 19738

B-1

SEL-78-102, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 1), W. J. Decker and
W. A. Taylor, September 1982

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
gram Design Language (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
A. L. Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer Systems/
Compatibility Study, T. Welden, M. McClellan, and

P. Liebertz, May 1980

SEL-80-005, A Sstudy of the Musa Reliability Model,
A, M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

SEL-80-104, Configuration Analysis Tool (CAT) System De-
scription and User's Guide (Revision 1), W. Decker and
W. Taylor, December 1982

SEL-81-00v, Software Engineering Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-
bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-8l-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-
bution Over the Life of Medium Scale Software Systems, G. O.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Software Engineering Laboratory (SEL) Data Base
Organization and User's Guide Revision 1, P. Lo and
D. Wyckoff, July 1983

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Independent Verification and
Validation (IVa&V) Methodology for Flight Dynamics, G. Page
and F, McGarry, December 1983

SEL-81-203, Software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System Descrip-
tion, P. Lo, June 1984

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-002, FORTRAN Static Source Code Analyzer Program
(SAP) System Description, W. A. Taylor and W. J. Decker,
August 1982

SEL-82-003, Software Engineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes: The Data From the Software Engineering Laboratory,
V. R, Basili and D. M. Weliss, December 1982

SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-206, Annotated Bibliography of Software Engineering
Laboratory Literature, D. N. Card, Q. L. Jordan, and
F. E. McGarry, November 1984

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Vol-
ume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software En-
gineering Workshop, November 1983

SEL-83-104, Software Engineering Laboratory (SEL) Data Base
Retrieval System (DARES) User's Guide, T. A. Babst,
W. J. Decker, P. Lo, and W. Miller, August 1984

SEL-83-105, Software Engineering Laboratory (SEL) Data Base
Retrieval System (DARES) System Description, P. Lo,
W. J. Decker, and W. Miller, August 1984

SEL-84-001, Manager's Handbook for Software Development,
W. W. Agresti, V. E. Church, and F. E. McGarry, April 1984

SEL-84-002, Confiquration Management and Control: Policies
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investigation of Specification Measures for the
Software Engineering Laboratory (SEL), W. Agresti,
V. Church, and F. E. McGarry, December 1984

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the
Software Engineering Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

1Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Program Transformation and Pro-
gramming Environments. New York: Springer-Verlag, 1984

2Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering.

New York: Computer Societies Press, 1981

2Basili, V. R., "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation,"” University of Maryland, Technical Mem-
orandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

2Basili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

2Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

lBasili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation," Communications of
the ACM, January 1984, vol. 27, no. 1

2Basili, V. R., and T. Phillips, "Evaluating and Com-
paring Software Metrics in the Software Engineering Labora-
tory," Proceedings of the ACM SIGMETRICS Symposium/
Workshop: Quality Metrics, March 1981

lgasili, V. R., R. W. Selby, and T. Phillips, "Metric
Analysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Engineering, November 1983

Basili, V. R., and J. Ramsey, Structural Coverage of Func-
tional Testing, University of Maryland, Technical Report
TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development,"” Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

lBasili, V.R., and D. M. Weiss, A Methodology for Col-
lecting Valid Software Engineering Data, University of
Maryland, Technical Report TR-1235, December 1982

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

2Basili, V. R., and M. V. Zelkowitz, "Operation of the
Software Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

2Basili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"
Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Societies Press, 1978

2Basili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

2Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceed-
ings of the Fifth International Conference on Software
Engineering. New York: Computer Societies Press, 1981

1Doerflinger, C. W., and V. R. Basili, "Monitoring Soft-
ware Development Through Dynamic Variables," Proceedings of
the Seventh International Computer Software and Applications
Conference. New York: Computer Societies Press, 1983

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"
Proceedings of the Eighth International Computer Software
and Applications Conference, November 1984

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

2Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science.

New York: Computer Soclieties Press, 1979

lzelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research,” Empirical Foundations
for Computer and Information Science (proceedings),

November 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

lrhis article also appears in SEL-83-003, Collected Soft-
ware Engineering Papers: Volume II, November 1983.

27his article also appears in SEL-82-004, Collected Soft-
ware Engineering Papers: Volume I, July 1982.

B-7

