
I 1!NASA-CP-242219860016322 NASA Conference Publication 2422

Applications
of Tethers

in Space
Workshop

Proceedings
Volume 2

Proceedings of a workshop held in
Venice, Italy

October 15-17, 1985

I

National SpacePlan _A





NASA Conference Publication 2422

Applications
of Tethers

in Space
Workshop

Proceedings
Volume 2

William A. Baracat, Compiler
General Research Corporation

McLean, Virginia

Proceedings of a workshop sponsored
jointly by the Italian National Space
Plan, CNR, and NASA and held in

Venice, Italy
October 15-17, 1985

N/_A
NationalAeronautics

and Space Administration

Scientificand Technical
InformationBranch

1986





PREFACE

The Applications of Tethers in Space Workshop was held in Venice,

Italy during the period October 15-17, 1985. The Hotel Excelsior,

located on the island of L1do, provlded outstanding accommodations for

the workshop, which was Jointly sponsored by the Italian National Space J

Plan, National Research Council, and the Natlonal Aeronautics and Space

Administration, Office of Space Flight, Advanced Programs Division.

Workshop.coordlnatlon was provided by the Centro Internazlonale Congressl

and General Research Corporation. Aeritalia generously provided a gala

dinner banquet for the workshop attendees and their guests, and the

office of the Mayor of Venice hosted a reception at the city hall.

General Research Corporation would llke to thank and commend every-

one who organized, coordinated, and participated in the workshop. The

panel co-chairmen are especially noteworthy in fulfilling their roles of

directing and summarizing their respective panels. We are proud to have

participated in the workshop and be a part of the advancement of this

exciting and challenging field which, as is evident in these proceedings,

is evolving into a technically sophisticated and mature science. The

complete documentation of this workshop is contained in the Workshop

Proceedings, Volumes I and 2. The Executive Summary, which contains an

abbreviated compilation of the panel summaries, is also provided.

Wi11iam A. Baracat

McLean, Virginia
March 1986
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FOREWORD

TheTethers in Space Workshop held in Venice, Italy, follows by only

two years the one held in Williamsburg, Virginia, in June 1983. Yet,

much has happened. The most significant events are: (i) the passing of

our beloved leader, Giuseppe Colombo, (2) the announcement by President

Reagan of the Space Station as a national goal, and (3) the initiation of

several tether demonstration missions, already in hardware development or

design phases.

Bepl, whom we call the "Fatherof Tethers,"would be pleasedat the

pace of this emergingtechnology. The developmentof the Tethered

SatelliteSystem (TSS),a Joint U.S. - Italy project, is on a firm

course,with the first launch scheduledfor 1988. The announcementof

the Space Stationgoal by the Presidenthas providedan anchor for

seriousstudiesof the use of tetherson the Space Station. A whole

panel sessionwas devotedto this subjectat this workshop,and was the

second best attended. NASA, Italy, and industrycontinueto examine the

benefitsand technologicalproblemsassociatedwith placinga tether

system on the Space Station. We fully expect to see this happen,

although it may be after the InitialOperationalCapability(lOt).

Are there other tether and tether related missions that can be flown

in the next few years on the Shuttle in addition to the TSS? The answer

is yes. NASA, with Italy's involvement, will be verifying the principles

of electromagnetic tethers in space to produce power or drag. A series

of flight experiments are either hardware ready, or in hardware develop-

ment. These experiments should enhance the Tss-i mission, and may use at

some point the disposable tether, which itself will require a preliminary

demonstration. Looking to the future, there is much interest in the

tethered platform, with the tether assisting in platform pointing.

NASA's Ames Research Center, again with the Italians, are engaged in a

definition study on this, called the Kinetic Isolation Tether Experiment

(KITE).
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Our reach in this workshop has not only been to Earth orbit but also

to the planets. Serious attention to tether operations near the Moon,

Mars, and other planets is underway. Some of these ideas are presented

in the workshop proceedings. Although it may sometimes seem that we are

getting ahead of ourselves, these applications may be here sooner than we

think.

Paul A. Penzo
March 1986
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TRANSPORTATION PANEL SUMMARY REPORT

The transportation panel has discussed the followlng applications

and has ranked them. The ones having the best potential near-term

payoffs are listed first. The rest depend increasingly on future

developments, either in tether technology itself or in the remainder of

the space infrastructure.

I. The Small Expendable Deployment System for boosting payloads
from the shuttle

2. Electrodynamlc propulsion for small and large orbit changes
within LEO

3. Boosting of OTVs from the Shuttle, to reduce the delta-V needed
to reach GEO

4. Launch vehicle capture & release by tethers hanging from

permanent facilities

5. Artificial gravity on manned deep-space expedition vehicles

during transit

6. Multl-pass remote aerobraklng of planetary orbiters, to simplify

navigation

7. An equatorial "staircase" or "fire brigade" to high orbits and

escape

8. "Slings" of various sorts:

a. Spinning lunar-orbltlng rock collector/prospector
b. Lunar-surface-based sling to throw rocks into low lunar

orbit

c. Asterold-based sling (to throw rocks, or to move the

asteroid itself)

d. Hoops or solenoids with electromagnetic assist to the
tether strength

The proceedings for the session are organized as follows:

I) General presentations (by Loftus and Valleranl).

2) Concept presentation and discussion summaries (I-SD).

3) Viewgraph presentations on selected concepts.



Joe Loftus, JSC

Space initiatives have moved away from single mission optimization.

Space Shuttle and Space Station are complementary parts of a new,

general-use infrastructure. With Space Shuttle launches normalized

(e.g., to the Ist and 15th of the month), the Space Station becomes a

temporary cargo storage facility, holding various satellites until their

peculiar insertion windows open. As an accumulator, in this manner,

Space Station almost becomes the equivalent of a 5th orbiter. The point

is that Space Shuttle and Space Station are only parts of a total set,

and all other space hardware and capabilities should be considered as

complementary parts of a greater whole.

Ernesto Valleranl, Aeritalla

o Utilization of tethers for docking

o Explore advantages for use of tethers for planetary

explorations

(A review of Chris Purvls" idea of multiple-pass tether aerobraking)



I. Joe Carroll - Shuttle Expendable Tether System or SETS

(Presented at the miniworkshop)

Initially, expendable tethers were considered in conjunction with

the external tank of Space Shuttle. Since less than I lb. tension is

needed to downward deploy the external tank, low tension deployment

captured attention. A proposal for a study resulted. Deploy-only m_de

for expendable tethers with low (but not zero) tension means you do _ot

need a take-up capability. The system that results is a low-tension

high-braking capability system that can be used to deboost payloads by a

pendulum swing release. A project to launch a 50 15. payload from a GAS

can is in the initial hardware development stage_ and could fly before

TSS. SETS has been approved for experimentation.

Critical Issues:

-- Operatlons
-- Hardware

-- Safety

-- Reliability

Priority: Near Term, High

Recommended Flight Tests: o In works
o Deboost

o Preferred for Ist test

2. Bill Loftus - Electrodynamic Propulsion of Tethers for Transport

Critical Issues:

-- TSS one mission & success o£ other early tests

-- IMPORTABTValue of electrodynamlc propulsion is

considered to be of such high priority that all

possible methods should be looked at during early
tether tests

-- Dynamics of orbital elements

Priority: Near Term, High

Recommended Flight Tests: o TSS I & other plasma contactor
experiments needed



3. Mark Henley - Tethered OTV Operations

OTV is considered a Space Station element. OTV tether boost

combined with stage and propulsive burn is the concept. Hanging and

swinging tether options being considered, and Shuttle, E.T., and Space

Station as launch mass options. Relative payload gains noted for all

three OTV options: reusable; alr propulsive; reusable aerobraked; or

expendable (in decreasing order). Swinging tethers offer improved

capabilities over hanging tethers without notleeable penalties. Expend-

able tethers are preferred over reusable tethers. Command and Control

issues examined.

Mark Henley - Tether Boost Technology Demo Package

Using a Centaur to demonstrate potential to augment OTV deployment

by tether. Demo in 1990s. After Centaur returns to LEO by aerobrakep it

would rendezvous with Orbiter for tether demo. Called Centaur and

Shuttle Tether (CAST) tether demonstration package.

Critical Issues:

-- Shuttle based v. Space Station launch

--- maximize commonality
-- Attitude control of end mass

-- Release operations of end mass

-- TSS vs. expendable tether
--- TSS Robust but instrumented

Priority: Near Term, High

Recommended Flight Tests: o Centaur & Shuttle Demo
Shuttle Demo

o TSS One & Other

Electrodynamic

(Plasma experiments)

4. Joe Carroll - Tethered Docking and Release of Shuttle with Space

Station

Results in slightly lower apogee, much lower perigee, tethered

deboost, and propellant scavenging (for transfer to an OMV).

Critical Issues:

-- Space Station SCAR design impact
-- Operation precision

-- Temporary S.S. orbit effects

-- Loads on Space Station



Priority: Near Term, High

Recommended Flight Tests: o Can be demo

by SETS or TSS

o Capture

5. Mark Henley - Low RPM Spinning Tethers for Artificial Gravity for

Manned Planetary Excursions

Critical Issues:

-- Can it also be used in LEO?

--- Proof of concept? ,
-- How much gravity is needed by human physiology?

-- Can it be Shuttle/TSS tested? Concept demonstration

during TSS mission one or two?

Priority: Near Term, High

Recommended Flight Tests: o Some TSS I data

applicable

o TSS I in a spin
mode

o Future TSS or

SETS experiments

6. Chris Purvis - Multiple-Pass Aerobraklng Tethers

Using I00 km, I mm dla. tether hanging from a 2000 kg space probe

circularized above a planet with an atmosphere, to reduce orbit height

Saves mass over a "hard shield" aerobrake.

Critical Issues:

-- Material options

-- Scheduling/control options
-- Meteoroid risk

--- Ribbon is better ?

--- Multiple strands
-- Failure
-- Dynamics for tether

--- Elliptical orbit?

-- How deep into atmosphere do requirements of science want

probe to go?
-- Flow fields

-- Specular vs. diverse flow

Priority: Near Term, High

Recommended Flight Tests: o SETS or TSS II
Demo

o TSS II should

yield data

applicable



7. Mark Henley - Use of Series of Equatorial Plane Tethers as a

Stairway to Escape Velocity

Critical Issues:

-- Need equatorial or polar plane launch
-- Nodes vs. Van Allen Belt

Priority: Later Development

Recommended Flight Tests: o Other flight experiments
should cover

8A. Joe Carroll - Spinning Tethers to Pick Up Lunar Material

Critical Issues:

-- Dynamics

-- Releaslng-almlng-catchlng (especially core grabber)

-- Deployer hardware
-- Mass concentrations - lunar

Priority: Later Development

Recommended Flight Tests: o Ground based tests
o TSS should be considered

8B. Joe Carroll - Lunar-Surface Based Sling

Launching I0 kg payloads, by a rotating sling on the lunar surface.

An Apollo lander sized vehicle lands and anchors itself to the lunar

surface. A rover retrieves materials and passes them to the anchored

sling, which throws i0 kg into lunar orbit. A lunar orbital tether

station then slings payload into a lunar-Earth transfer.

Critical Issues:

-- Could it be scaled and tested in a vacuum chamber?

-- Does this have a customer? Are lunar materials needed?

-- Bearing loads
-- Release mechanisms

-- Can they be caught?
-- "Safety" issues

-- Shape of spinning tethers? Dynamics?

-- Manufacturing techniques for tapered tethers

Priority: Later Development

Recommended Flight Tests: o Ground tests (vacuum)

10



8C. Chris Purvls - Rotating Constellation With A Center Reel, To Be Used

To Sling Material From Asteroid Belt Without Landing

Critical Issues:

-- Basic design
-- On asteroid or in space?

-- Release, aiming, etc.?

Priority: Later Development

Recommended Flight Tests: o Ground tests

8D. Chris Purvis - Rotating Hoop of Tether Material, Under Magnetic

Field to Reduce Tension, to be Used as a Method of Slinging Material

from Lunar Surface

- Critical Issues:

-- Super-magnetlc technology

-- Supplement the tensile properties of the material

-- Dynamics

-- Releasing-aiming-catching (especially core grabber)
-- Deployer hardware
-- Mass concentrations - lunar

-- Electrical energy

-- Throughput potential

Priority: Later Development

Recommended Flight Tests: o Ground tests seem
in order

o Further examination

II



Transportation Concept 8c.

NuclearPower
or SolarCells

-, lO00kg Masses

Tether Reels
Gearedto Motor/

Generator

Spin Axis

Symmetric Rotating Tether System For Returning Material From Near-Earth Asteroids
(Can be in Free Flight or Bolted to Asteroid)

12



x x x x x x Transportation Concept 8d.
Force

X X X X X

rt- x B

X X X X X

Current

x x x x x

Uniform
Magnetic

X X X X Field

• Rotating Hoop Tether

Can Have Rim Velocities in Excess of Material Characteristic Velocity

Field Lines

I -
20Om

Magnetic Plates >

Tether Z

(BetweenPlates) _ Plates
Tether

SPINNING TETHER I cm in diameter in very strong lOOw/m 2field can experience no
tension at ) 2kms-1 rim velocity could fling payloadscapable of withstanding 4000g's

(Current power -- 1000 w )
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SMALL EXPENDABLE DEPLOYMENT SYSTEM (SEDS)

Joseph A. Carroll
Energy Science Laboratories_ Inc,
11404 Sorrento Valley Rd,9 #113

San Diego_ CA 92121
619/452-7039



OUTLINEOF PRESENTATION:
.,_&_

o Introduction to Basle Concept
O_

• . Summary of Phase I Findings

o. Summary of Phase II Status

o, Potential Applications

• Conclusions a Reeommendations



Low-Tension Deployment Followed by Pendulum Swing & Release



What is special about this deployment concept?
Low tension deployment & swinging release
Disposable tether



Comparison of hanging and swinging releases
for equal energy and momentum transfer:

IJl l I _ J' I II I L.. I I I I

Swing amplitude 0° 35° 85°
i jii , i i l i :

Tether length 1 .67 .54
iml

Maximum loads 1 1.33 1.69
| i i ii m i i

Tether mass 1 .89 .91
........... . ... . .........

pmeteoroid hazard 1 .2? .12
i ii i • i ,

Power dissipation 1 .30 .002
I i i i ............. i



What advantages does a disposable tether have?
lu i i i i i • i , ,

o

• Eliminates time-consuming retrieval operation

• Simplifies deployer: no motors or level-winders needed

• Eliminates need for TSS-like boom & docking gear

• Minimizes tether degradation (new tether each time)



What have we studied during the SBIR Phase I study?

Control strategies

STS operational impacts

Safety & reliability

Deployer locations

Prototype hardware

New concepts

Early applications

Range of performance benefits
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SUMMARYOF SBIR PHASE II EFFORT
(April 1985 -- March 1987)

Primary objective:

• To bring our concept to flight-test-ready status

Secondary objectives:

• To determine the range of potential users _ benefits_
® To make the test system similar to the operational one_
o To benefit the TSS & TAS programs.

Phase II Tasks & Fraction of Effort:

• Design_ deveiop_ test9 & evaluate hardware: 40_
• Analyze _systems integration_ safety_ & reliability: 25_
• .Study control options & improve simulations: 20_
® Identify early applications & performance benefits: 15_



Possible Tether Recoil Trajectory if Prompt Snag Prevents Rewinding 'J 

Possible Tether Trajectory With RCS Use & nRocking-Horsell Strategy 



A TYPICAL INTEGRATION ISSUE:
i

"All nonmetallic materials exposed to the payload bay shall be
selected for low outgassing characteristics. Material selection
criteria of 1 percent, or less, total mass loss and 0.1 percent, or
less,VolatileCondensible Material(VCM) as definedinNASA/JSC
SpecificationSP-II-0022A,or itsequivalent,shallbe used."

kn

ICD 2-19001, sectionI0.6.2

Kevlar 29 containsup to about 7% water at 55% RH, and that water
comes out ratherslowlyin a vacuum.

Possiblesolutionsto thisproblem include:

• Seek waivers(& hope otherusers don't object);

o Keep the deployersealeduntilready foruse;

e Dry out the tetherbefore launch-& keep itsealed;
e Use non-hygroscopic tethers(e.g.,Spectra 900).



CONTROLS _ SIMULATION STUDIES.

• Identifythe most important design & operation parameters;
(e.g., effects of payload mass, tether tension, etc.)

• Enhance & use simulation programs to support other analyses;
(We plan to enhance our 2-D simulation program to run on
a Macintosh with simple input & real-time graphic output.
We plan to use GTOSS for most detailed simulations, and
maybe SLACK2 for severed-tether simulations.)

• Refine operations & controls for best-early-candidate users.
(Some new applications require new control strategies.)



POTENTIAL APPLICATIONS OF SEDS

• Dilemma: "Useful" tests are desired with real payloads_
but reliability worries_ integration time_ and
payload problems may delay early tests.

i Response: Use cheap payloads that don't REQUIRE a boost:
• Deployable GAS for calibrating airport radar;
® Other "WeTll take whatever we can get" STS users";
• Controlled-reentry test for station priority cargo;
• Chemical release experiments;
• Dedicated passive payloads.

• Later operational uses:
• Electrodynamic power tether for extended STS missions;
• (Re)boosting major payloads (LDEF_ AXAF_ SolarMax_ etc.)
o Boosting supply caches for future use on space station.





CONCLUSIONS:

• SEDS may provide larger benefits than most
STS enhancements, at radically lower cost.

o SEDS & TSS have complementary capabilities & roles.

o SEDS may facilitate quick-turnaround tether experiments.
•

RECOMMENDATIONS:

• NASA fund one or more early flight tests of SEDS.

e STS users consider what "cheap boosts., can do for them.





OW OPTIONS

MarkW.Honloy
OonorolDynomics

 oce SystemsI vlmon

INTRODUCTION
Do tethers make sense for the Orbital Transfer Vehicle? This question is

adressed here, as a part of OTV flight operations, as the operational issues of
tether launch for the OTV are considered to be more significant even than
technical issues. The answer to this question is that tether boost is an attractive
option for OTV in spite of the significant operational issues. Expendable
shuttle-based swinging tether boost is recommended for near term applications
requiring a moderate (-20%) increase in OTVpayload capability. Heavier reusable
tether systems are recommended for far term applications from the Space Station
or other orbiting facilities, further improving OTV payload capacity, and with a
corresponding increase in operational complexity.

TETHERPRINCIPALS
The concept of a tether boost for the OTV is based upon the exchange of

momentum between the OTV and a lower orbiting object, such as the Space
Station, Space Shuttle or External Tank. The OTV is given a small delta V upon
release, which can be subtracted from the total delta V requirements of the
mission, as illustrated to scale for the trajectory of a static vertical tether in figure
I. Because of the exponential relationship between delta V and payload delivery
capability, a substantial payload gain is realized by a relatively small delta V

reduction. I_

AV = 440 m/s
(i,440 ft_)

Propulscve transfer to lEO

_rig_ /// _ _ ,o%,_ \ \
= 7o0km(.38on_i), ..-J_1I _ _ '_ _ \ \
;)oo_m(.o,,m,)/ II I : \/ _-_"_ I I ^r,oO_o_OWe.or
above system / It | "_,,,,.._'_,z""__'_ _ I I _.---'_'_ release = 1,0,30nmi

/
Orb*tof center o! mass of refinersystem

cete_se from tether syste_

Figure I. Tether boost for OTVis illustrated in an example trajectory.
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Forany action,thereisan equalandoppositereaction.Thereaction,inthis
case,isa lossof orbitalvelocityby the lowermass in thetetheredsystem.
Momentum (massx velocity)gainedby theOTV equalsthatlostby thelower
mass,andthusaheavierlowermasswillhavea smallerchangeinvelocitythan
theOTV (alighter,uppermass).

A tetherisactedupon by thegradientinthegravitationalpotentialofthe
earth.Thehighermassisfartherfromtheearth'scenterofmassandexperiences
lessgravitationalattractionthanthelowermass.Thisdifferenceingravitational
attractionresultsina tensioninthetetherwhichisproportionaltothevertical
displacementbetweentheorbitingmasses.A tethersystemwhichisvertically
orientedwithrespecttotheearthwillactuallymake onerotationperorbitinan
inertialframeofreference,addinga centrifugalterm(halfthatfromthegravity
gradient)tothetensioninthetether.A verticallyorientedtethersystemisina
stableconfiguration,whereas a system with a componentof horizontal
displacementwillnotremaininthatorientation,butwillswinginresponseto
gravitationalforces(andinitialvelocityconditions).Bothofthesesystemsare
consideredhereforOTV boost.

Figures2 a andb illustratethetrajectoriesresultingfromre!_aseofan OTV
from static(vertical)anG swingingtethersystems.The lowermass inthese
illustrationsisconsiderablyheavierthantheOTV,causinglesschangeinitsorbit
thantheboosttotheOTV uponreleasefromthetethertip.Theswingingtether
strategy,asnoted,resultsina substantiallygreaterapogeeincreasefora given
tetherlength.Operationsintheswingingstrategyaresimplifiedsomewhatby the
reducedtetherlength,butinvolvemorecomplicateddynamics.The staticcase
may actuallybe more difficultto achievethanthe swingingcase,as orbital
dynamicscausea swingingmotionupon extensionof a tetherin thevertical
direction. _

Orbit of / Orbit of / /
CM of tethered, CM of /
system \ tethered

system
/ /
I I
\ \
\ \

\ \
\ \

Figure2a.Statictetherboost Figure2b.Swingingtetherboost
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TETHERBOOSTSYSTEMOPTIONS

OTV boostthroughtetheroperationsmay utilizeavarietyoflowermassesfor
momentum exchange.TheoptionsofusingtheSpaceShuttle,ExternalTank,and
SpaceStationas thelowermass areillustratedinfigure3 Additionalfarterm
optionsarepossible,suchasa dedicatedorbitingtransportationnode,similarto
theSpaceStationinitstransportationfunction,butwithouttheconstraintsupon
tetheredoperationsimposedby SpaceStationusers.

TETHERED OTV BOOST SYSTEM OPTIONS

OTV-NSTS OTV-ET OTV-SS

Launchoption SwingingOK SwingingOK Hangingonly
OTVmass 30 tons 30 tons 30tons

Othermass 90 tons 35 tons 200 tons

OTV boost 10 x length ,7 x length 6 x length

Otherdeboost 3 x length 6 x lencjth 1 x lencjth
Deboosteffect LowerOrbit Re-entry. Undesireable
Accelerations InconsequentiallnconsequentialUndesireable ,,,o,,®._

Figure3.SeveraloptionsexistforthelowermassintetheredOTV boost.
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Momentum exchangeisdesirableforreducingtheorbitalenergyoftheSpace
Shuttleand ExternalTank,butmay be detrimentaltotheSpaceStation.Space
Stationorientationconstraintsalsolimitthetetheroperationsto nearvertical
deployment,andthemicrogravityenvironmentontheSpaceStationisexpectedto
exceed10-5g duringtetheroperations.SpaceStationoperationalconsiderations
arenotedbelowinfigure4.

QIENIRA/ OYNAMICIK

TETHERED OTV BOOST FROM SPACE STATION

Considerations for tether-launched OTV

_._j • Momentum of OTV launched must be balanced by an opposite reaction to
maintain Space Station altitude:
-- Use Space Station propulsion
-- De-orbit mass (ET. Shuttle, etc)

• Change in Space Station altitude must remain within acceptable limits

• Accelerationlevels aboard the Space Station will exceed 10-5g duringtether
operations(may exceed allowable limits for materials processing)

I 1105700"4

Figure4.SpaceStationoperationswouldbeconstrainedby OTV boost.
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PERFORMANCEBENEFITS
OTV payload capability improvement is the object of tether boost scenarios.

This increase in payload capability may be utilized in baseline OTV launch
strategies, or in special circumstances when payload mass exceeds normal OTV
capabilities. Relative payload gain from tether boost for a reference OTVis plotted
in figure 5 as a function of initial delta V supplied by the tether. Payioad
improvement is iUustrated for this vehicle in an all propulsive, aerobraked, and
expendable mode of operation. The dramatic difference in percent payload
improvement between these modes of operation is not duplicated on an absolute
scale (pounds of payload gained). Total payload of this reference vehicle without
the tether boost varies substantially depending upon mode of operation
(all-propulsive, aerobraked, or expendable).

Percent
payload
gain

100--I Conditions /
| • 7,900 Ibm(3,600 kg) inertOTVmass
] • 58,500 Ibm (26,500 kg) usablepropellantmass
--I • 1,500Ibm (680 kg) aerobrakemass
| • Isp = 446.4 Ibf.s/bm .

• GEO delivery mission
| Reusable,all-propulsiveOTV__ /

so-1 orv._ Reusable,aerobraked X

0t-- ' i i
I 5oo looo 1500 2000 ft/s
] i i i I i m/s
0 100 200 300 400 500

Initial AV supplied by tether
10 20 30 40 50 60 70 80

I I I I t t l {_ ! nmi
0 5O 100

Swinging tether length from tether system's center of mass

Figure 5. Relative payload gain depends upon OTVtype.
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STATICvs SWINGINGTETHERBOOST
The pros and cons of static and swinging tether boost systems are noted in

figure 6. The static tether is in a lower energy state than the swinging tether, and
must dissipate (or store / use) the energy generated during tether deployment.
The swinging tether converts this energy, instead, to motion of the tether system
(resulting in an approximately doubled tether delta V for a given tether length);
the swinging tether apparatus is expected to suffice with a friction brake for low
level energy dissipation, as opposed to the more elaborate devices required for the
static tether system. System weight is reduced by the simpler energy dissipation
mechanism, and the tether itself is approximately 12%lighter than that required
for an equal delta V using a static tether. Reuse of either system would be
operationally complex, probably requiring a tether tip satellite which assists in
system control during the reeling in operation. The static tether system, however,
is expected to be more amenable to reuse.

Issue Hanging* Swinging

Deployment Vertical Horizontal

Power dissipation Needed Not required

System weight Heavier Lighter

System volume Greater Lesser

Tether weight 10% heavier 10% lighter

Tether length Longei" (---double) Shorter (-_1/2)

OPS duration Similar Similar

OPS complexity Similar Similar

*Some swinging motion is generated (& damping operations
needed) with vertical tether deployment & retraction

Figure 6. Swinging tether issues compare well to static (hanging) issues.
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EXPENDABLEvs REUSABLETETHERSYSTEM
Expendable and reusable tether systems both show potential benefits for OTV.

A trade between these two alternatives, figure 7, shows that an expendable
system is operationally more desirable, primarily because of the absence of
retrieval operations. System mass is also a major issue-the reusable system is
expected to be substantially heavier, due to the increased mass of the apparatus
(which includes a tether tip satellite), and the substantial electrical power is
required for the retrieval operations. An expendable tether may remain
temporarily in LEO,as is suggested below, or may be released directly into a
re-entry trajectory.

Issues Expendable Reusable

Timelines Shorter duration Longer duration

Complexity Simpler operation Added operation

Reliability Affected by duration & complexity

Weight Lighter system Heavier system
Control Shuttle/OTV RCS Sub-satellite

Debris Tether stays in orbit No debris release
(Rapid orbital decay)

Figure 7. Expendable tethers may simplify OTV tether boost operations.
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An expendablesystemisonlybeneficialifthetethersystemislessmassive
thanthepropellantrequiredforan equivalentpayloadincrease.Infigure8,
payloadincreaseisplottedagainsttethermass.From theapproximationthatthe
tethermassisonehalfthatoftheexpendabletethersystem,alimitisderivedto
the practicalextentof an expendabletether.In theeventthatan OTV is
insufficientlysizedfora particularpayload,expendabletetherlaunchmay be
worthwhilebeyondtheapproximatelimitshown here.Notethattheregimes
belowrefertoa particularOTV designand do notnecessarilyindicatelimitsfor
othervehicledesigns.

A Payload

Ibm kg AMass OTV & propellant
-- 4000 for equivalent&payload

Conditions
• 9,400 Ibm(4,280 kg)inertmassof OTV & aerobrake Ibm kg
• 58,500 Ibm(26,500 kg)usablepropellantmass (x 1000) (x 1000)
• Isp = 446.4 Ibf.s/Ibm

-3000 • GEe deliverymissions,OTV returnsto LEO

J2 -10•--------- Expendableor _ _, Reusable tether . n
5,0O0- reusabletether mtether _112 mOTVOTV_ v-

-2000 mtether _112 mOTV for equal payload ,_

for equal payload _- 15-

i_,_ _ 10- -5

ooo ,o T o ft/s
500 1000 1500

I T r T mls
0 100 200 " 300 400 500

Initial_V suppliedI_ytether
10 20 I 30 40 50 60 70 80

I [ I I I I =1 /T I nmiI ' ; ' ' I ' ; ' ' i ' J i km
50 100

0 Swingingtether length fromlethersystem'scenterof mass
1 2 3 4 I 5 10 15 20 25 30
I I I I l I I iI I l Ibm(x 1000)I I I I I I I I I I I I I kg ( x 1000)

0 .3 .5 1 2 3 4 5 6 7 8 9 10 15
Swingingtethermass'

"BaseduponequationsforKevlarfromJ. Carrollin "Guidebookfor Analysisat TetherApplications"

Figure 8. Expendable tether boost for OTV is limited in scope.
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EXPENDABLESHUTTLE-BASEDTETHEROPERATIONS
A swinging, expendable tether system is suggested for Space Shuttle

operations. Operation of this system (figure 9) is divided into four time periods,
deployment, swinging, release, and post-release operations. In this scenario, the
tether is either left in a low orbit (with an orbital lifetime on the order of days, so
that orbital debris hazard generation is minimal), or is released from the OTVinto
a re-entry trajectory.

i_ iNIRAI. DyNAMIC_

SHUTTLE-BASED EXPENDABLE TETHER BOOST OPERATIONS

f
_ :-,

1 2 3 4

1) Tether deployment 3) Tether release
• NSTS RCS initiatesdeployment • Timed for maximum Delta V gain
• Brake controlsdeploymentrate • Vehicles enter new orbits

2) Tether swinging 4) Mission complete
• Brake haltsdeployment • NSTS prepares for reentry
• Gravity gradient causes swing • OTV prepares for first burn

• Tether orbit decays rapidly

11105700-9

Figure 9. An expendable tether is recommended for Shuttle-based OTVboost.
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A more detailed view of a candidate tether system apparatus is shown in
figure 10. The first member of the RMSarm is utilized as a part of the system,
and is supported by two lines in order to spread the tether's tensional load across
the Space Shuttle's center of mass. The tether itself resides within a protective
sleeve running the length of the first RMSmember; this serves to protect both the
tether, by shielding it, and the orbiter, by preventing any potential tether
breakage in this region from possible entanglement with the RMSarm. A remote
disconnect mechanism is shown at the OTV,which is to be activated after a
guillotine mechanism within the tether canister/deployer releases the Space
Shuttle from the lower end of the tether. The canister/deployer suggested is a
derivative of a predecessor currently being developed under MSFCfunding. The
system illustrated is not necessarily a final recommendation, but represents the
best of several alternatives traded on the basis of weight and volume
minimization.

9
Tether

RMS arm with tether
guide modification

Latch mechanism \ Supporting lines (2)
to span NSTS OG

®

Tether cannister/deployer

CM of Orbiter & ASE

Figure I0. Shuttle-based tether boost may use a system such as this.
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COMMANDand CONTROL
Three options are explored in figure 11 for the command and control of

shuttle-based tether boost operations for OTV. The primary difference between
these alternatives of passive, assisted, and active control is the inclusion of
operations by a tether tip satellite or the OTV itself for the latter two options,
respectively. A sufficient degree of control is expected through passive
operations, in which the Space Shuttle supplies the delta V for initial separation
and subsequent corrections, and the OTVacts as a dumb mass, becoming activated
after release from the tether tip. Assisted and active control options are desirable,
but not mandated for tether operations.

Passive Assisted Active

Tethertip control None Sub-satellite OTV RCS

ShuttleRCS control Primary Back-up Back-up

Deploymentrate Tetherbrake Tetherbrake Tetherbrake

Libration damping None/NSTS Sub-satellite OTV/NST$ RCS

Release at Shuttle Guillotine Guillotine Guillotine

Release at OTV Tether tip Sub-satellite OTV control
r__

Degree of control Sufficient Precise Precise

Figure I I. Control may be passive, active (sub-satellite), or through OTVRCS.
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SAFETY"CONSIDERATIONS

Tether entanglement and breakage hazards must be minimized, with thorough
contingency planning if tether boost operations are to be considered a realistic
option for the OTV. Figure 12 lists a number of precautions against these hazards.
Hazards to Space Shuttle operations are more critical than to Space Station
operations due to the more limited time and resources available for repair. Safety
issues must be considered in depth in the design of tether boost systems for ouch.

Safety Considerations

Hazard Precautions

Tether entanglement • Ensleeve tether in low abrasion tubing
between reel & "rod" tip

• Make system jettisonable
• Supply EVA tools & training for

contingency extrication

Tether breakage * Minimize exposure period to
micrometeoroids & orbital debris

• Monitor tether tension & integrity (e.g.,
fiber optics)

• Jettison tether in event of break
• Use RCS to maneuver away from

jettisonned tether system
• Keep Shuttle altitude high enough to

prevent re-entry

Figure 12. Safety issues must be resolved for tethered OTVoperations.
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TETHEREDPROPELLANTDEPOT

The conceptof a tetheredpropellantdepotforOTV propellantstorageand
acquisitionontheSpaceStationhasbeentradedagainstthatofan attacheddepot
infigure13.The Bondnumber(Bo,theratioofgravitygradientforcestosurface
tensionforces)associatedwitha propellantdepotlocatedatthebottomofthe
SpaceStationissufficientforthesettlingofOTV propellantsinlargediameter
tanks,removingpartoftherationaleforsuchadepot.Safetywouldbe improved
by themore distantlocationof potentiallyhazardouspropellantsupplieson a
tethereddepot,butsafetywouldalsobe enhancedby a contingencysupplyof
oxygenand waterfrom OTV propellantsuppliesattachedtotheSpaceStation.
Operationsingeneralwouldbe more difficultwitha tethereddepot,and the
microgravityenvironmentwouldbe disruptedunless(andperhapseven if)a
secondtetheredmasswere extendedfrom the SpaceStationin theopposite
direction.

OTV PROPELLANT DEPOT AT SPACE STATION
TETHERED VS ATTACHED

Emergency
support

systems

-..,_,-.-_

Issues _ ,_.',

Operations Difficult rendezvous Normal rendezvous
Tetherlaunchdifficult Tetherlaunchok
Impacts Space Station
prox. ops. Normal SS prox. ops.

Safety Distant propellants Contingency Oz & H,O
Commonality Propulsion,ECLSS
Microgravity More than 10-5g Less than 10-5g

Propellant settling LH2settles (B0>>50) LH2settles (Bo> 50)

1110670Gl3

Figure 13. A tethered OTVpropellant depot is not necesssarily recommended.
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ADVANCEDTETHERAPPLICATIONS
Advanced applications of tethers for OTV extend as far as ones imagination

wishes. Several of these potential applications are worthy of further study. Figure
14 illustrates the use of a tether to exchange momentum between the OTVand its
payload, the scenario shown here is that of payload delivery to the moon, but the
same concept can be applied to put a payload in an approximate final orbit. A
rotating tether system might be useful for the creation of an artificial sense of
gravity for manned OTV missions of long duration, such as would be expected in
the exploration of Mars. Earlier it was mentioned that a separate orbital
transportation node might be desirable in LEO,such a facility could use techniques
beyond those already discussed for improving OTV payload capability. For
example, rotational tether systems are feasible in addition to the static and
swinging system alternatives which have been discussed. These are but a few of
the potential applications of tethers which the OTV might evolve to use in the long
term.

ADVANCED TETHER APPLICATION EXAMPLE
!

Rotating
tether

Lander

OTVj

Circularize downrange
OTV at LEO

Lander supplies
finalAV

Aero- Spacecraftreteased
braking fromrotatingtether

enter neworbits

Mid-course
corrections

• Momentum transfer via rotatingtether can supply part of the._V requiredfor
deliveryof mass to the lunar surface

• Less AV needed for Lunar Lander
• Less AV needed for OTV return to Earth

Similar strategymay be used for GEO delivery

11105700"14

Figure14.LunardeliveryillustratestheevolutionoftetheredOTV operations.
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SUMMARY

The preceding discussion has centered upon the operational aspects of tether
boost for the OTV. Major conclusions from this discussion are listed in figure 15.
Tether boost for the OTV is recommended as an option which deserves increased
emphasis in the future. Swinging, expendable Shuttle-based operations have
received little, if any, attention in the past, but have been identified here to have a
potential for OTVpayload improvement. Reusable, space=based tether systems
are considered to be more feasible for long term applications involving larger
delta V gains. Development and demonstration of OTV=associated tether
technology and operations should be given a high priority by NASA.
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Centaur And Shuttlo Tether
Tochnology Demonstration Pactago

Tether assisted OTV launch from an orbiting facility (Shuttle, Space Station,
Platform, etc.) can supply an initial velocity boost and substantially increase OTV
payload. Technology for tether boost of the OTVis relatively simple compared to
other technology advancements with similar performance benefits, such as
aerobraking or advanced engine development. The basic technology for tether
assisted launch can be demonstrated early and effectively by the use of the
Shuttle-Centaur as a mock OTV,as is suggested in figure I.

CM of expended Centaur

Tether (-25 km long)

Latch mechanism RMS arm with tether

guide modificationSupporting lines (2)
to span NSTS CG

Tether cannister/deployer

CM of orbiter & ClSS

Figure I, An expended Shuttle-Centaur may be used to demonstrate the
technology required for tethered boost operations for the OTV.
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The proposed Centaur and Shuttle Tether Technology Demonstration Package
(CASTTDP)can test the operations and hardware for tethered launch of an OTV
from the Shuttle, and can demonstrate an initial velocity boost achieved upon
release of the tether (Hgure 2).

CENTAUR & SHUTTLE TETHER TECHNOLOGY
DEMONSTRATED PACKAGE

Trajectory
1 km 24 km )rbitof Centaur

1 _ _ after release from
• '- swinging tether

) f
1

Shuttle release
239 km (129 nmi)
(new apogee)

New Shuttle perigee
216 km (117 nmi)

1
after release

312 km t

l Circular orbit of CM
apogee _,,__ of system

New Centaur

j 552 km (300 nmi) 240 km (130 nmi)
I 1105700 19

Figure 2. The CASTTDPtrajectory simulates that of a tethered OTVboost.

The CASTTDPis a scaled-down simulation of an actual tethered OTVlaunch.
The large size of the expended Shuttle-Centaur (Shuttle-Centaur) reasonably
represents the OTV. Tether length, mass and tension, and "OTV"mass and delta V
boost for this demonstration are a modest fraction of those occurring in an actual
OTV launch. The deboost delta V received by the shuttle, a potential secondary
benefit from a tethered OTV launch, is also less significant for the CAST TDP.
Estimates of these parameters are listed in the following table for both the CAST
TDPand a tethered OTVlaunch.
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Technology Technology
Demonstration Application

Lowervehicle Shuttle Shuttle
Uppervehicle ExpendedCentaur OrbitTransferVehicle
Tetherlength 14n.mi. {N2_k_) 40n.mi.(---TS'_,_
Tethertension 150Ibf (_to _ ) 4,000Ibf (/_ooo _

Tethermass 50Ibm (.__k_ 4,000Ibm ( I,_'oo/<_
V gainofuppermass 330ft/s _/oo_/_ 750ftls ('23o_/u_
V lossoflowermass I0ft/s C3 :_/_ 250ftls (7_ _//s_
Tetherguidesystem RMS arm attachment RMS arm attachment
Tethercontainer Smallcanister Compactpalletorcanister

Interfaces for the CASTTDPinclude both data transmission and physical
connections (Figure 3). The Shuttle-Centaur must return to LEOafter fulfilling its
primary mission, requiring avionics modifications identical to those found in other
proposed TDPswhich return the Shuttle=Centaur to LEO. Additional power may
be required in order for the Shuttle-Centaur to collect and transmit experimental
data such as accelerometer and inertial attitude readings. Data interfaces aboard
the Shuttle include visual and radar observation, and the monitoringlcontrol of
tether tension, attitude, and deployment velocity.

Interface Requirements

Shuttle/Centaur
• Avionics As peraerobrakeTDP for returnto NSTS
• RCS Replacedoubleby quadthrusters
• Grapplefixture PointthroughCM of expendedShuttle/Centaur;
Tethersystem
• Tethertip EVAor RMS attachmentto Shuttle/Centaur
• Tethercannister Contain & deploy tether
• Supporting lines Spread load acrossNSTSCM
• RMS attachment Constrain tether relationto NSTSCM
• Tether controls Control tension, velocity, release time

NSTS
• Visual Monitor position, attitude,dynamics
• Ku-band radar Monitor distantShuttle/Centaurmotions
• RCS Initiate deployment& control attitude

Figure3. CASTinterfaces require minor modificationsof existing systeme,
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Physical interfaces consist of the connections between the tether system
and the end masses (Shuttle and Shuttle-Centaur), and of the mechanisms which
control tension and release. Tether tension must be transmitted directly through
the Shuttle's center of mass (CM) in order to avoid the introduction of a torque
upon the Shuttle during tether operations; supporting lines are used here to effect
the spreading of the tensional load across a region which includes the Shuttle's CM.
For the CASTTDP,the tether interface with the upper vehicle does not necessarily

need to remotely disconnect, as it would in actual practice, it is desirable, however,
to include a remote disconnect capability in order to accurately simulate a
tethered OTV launch. A redundant tether release mechanism at the Shuttle is
required both for the experiment and in practice, with EVAbackup and jettisoning
of tether apparatus available as contingency options to ensure separation of the
tether from the Shuttle.

The CAST TDP offers a relatively lightweight and low cost method of
demonstrating OTVtether launch operations and delta V gain upon tether release
(Figure 4). The TDP achieves minimal weight through the selection of an
expendable, rather than reusable, tether system, and by using the RMSarm in a
dual role (for both manipulating the mock OTV and for spreading tether tension
across the Shuttle's CM). The volume required for the package is also minimal,
allowing an essentially a full Shuttle Cargo Bay Envelope for the primary
Shuttle-Centaur mission. Dimensions of the tether deployment canister are those
of a Get Away Special canister, and would be scaled up for the tethered launch of
an OTVand its payload. Other hardware designed for the CASTTDPis capable of
later use in a tethered OTVlaunch.

Tether system
• Tether tip mechanism 25 {I
• RMS attachment 100 e_
• Supporting lines 20 q

• Tether can lster 150 (>
• Tether & controls 200 ct I
• Shuttle RCS propellant + 200 _ J
• Subtotal; additional weight on Shuttle 695 3 ! <
• Contingency (= 15%) + 105 z./_, .

Total
800 Ibm _(:,3 P.._.

u
Figure 4. The CASTTDPoffers a lightweight and low cost method

of testing tether boost operations and hardware for OTV.
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TimeUnes for the CASTTDP are dependent upon mission selection and
comanifestationofotherTDPson thesame mission.TheCASTTDP requiresthe
returnoftheexpendedShuttle-CentaurtoLEO,whichisaccomplishedby several
otherproposedTDPs.TimeUnes(Figure5)thereforebeginafterthereturnofthe
Shuttle-Centaurto LEO,in a referencescenariowhich usesan aerobraking
technologydemonstrationtobringtheShuttle-Centaurbacktothevicinityofthe
Shuttle.

TIMELINE FOR CAST TECHNOLOGY DEMONSTRATION

Eventtitle Start Duration Finish

AerobrakeTDP(returnsexpendedCentaurto LEO) 00:00:00 34:20:00 34:20:00
Centaurphasing 34:20:00 06:00:00 40:20:00
RemainingCentaurpropellantsdumped 34:20:00 01:00:00 35:20:00
TetheredOTVTDP 40:20:00 00:00:00 40:20:00
Centaurco-orbitswithShuttleOrbiter 40:20:00 00:10:00 40:30:00
OrbitermaneuversclosetoCentaur 40:30:00 00:30:00 41:00:00
CentaurcapturedwithRMS 41:00:00 00:15:00 41:15:00
Visualinspectionof Centaur/aerobrake 41:15:00 00:15:00 41:30:00
EVAtotetherOrbitertoCentaur 41:30:00 04:00:00 45:30:00
RemovethermalmaterialsamplesfromCentaur 41:30:00 00:30:00 42:00:00
TetheredCentaurdeployment 45:30:00 06:00:00 51:30:00
ReleaseCentaur& tether 51:30:00 00:00:00 51:30:00

Figure 5. CASTTDPtimetinesfollow_ompletionof the primary mission.

The CASTTDPtimeline is of a relatively short duration, with tether system
connection and tether deployment encompassing most of the operational time.
EVA is used in this reference timeline partly for simplicity in making tether
apparatus connections - alternatively, the RMS may be able to perform this
function, shortening timelines and reducing costs. Tether deployment is expected
to require approximately 90 minutes for extension and 30 minutes for swinging; a
wide margin of excess time is allotted in this reference timeline, which might be
shortened considerably in the actual mission.

The reference timeUne estimates, while of relatively short duration, may
be further shortened in order to reduce power storage requirements associated
with longer mission durations. Shuttle-Centaur power availability during the
CASTTDPcan be omitted at the expense of the absence of data transmission from
the Shuttle-Centaur. We recognize the value of active Shuttle-Centaur avionics
throughout the CASTTDPhowever, and hence measures are being considered to
reduce timelines and improve time-dependent power supplies.
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Many issues remain for the CASTTechnology Demonstration Pacckage, as
summarized below in figure 6. It is hoped that a variation of the package
discussed in the preceeding pages can be flown in the relatively near future, in
order to make this technology available for OTVapplications

ISSUES
Centaur & Shuttle TetherTDP

• Should avionics remain activated for TDP?
Three-axis acceler0meter data desireable
Shuttle/Centaur RCS maneuvers possible
Requires additional power provision

e Should TDP scope be increased?
Current scope limited by selected mission
Larger TDP weight allocation desireable

o Is RMS modification approriate?
Requalification required
Other options may be better suited to TDP

• Are alternate missions available for TDP?
Requires return of Centaur to Shuttle

[

• Several hardware elements required are TBD
Attach points on CISS, Centaur & RMS
Suitable deployer in early development

• Disposal of Centaur & aerobrake after TDP
Can RCS initiate re-entry?
Is downward tether boost alternative preferable?
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CONTROLLED GRAVITY PANEL SUMMARY REPORT

During its deliberations, this Panel formulatea a significant class of

opportunities that the panel denoted as "controlled gravity". This capability

offered by tether systems has unique aspects that seem not to have been fully

appreciated or articulated previously. These topics reach to the very founda-

tions of fundamental science and still have immediately apparent practical

possibilities. In the experience of the Panel members this is a rare and pre-

cious circumstance deserving serious and careful attention. Therefore this

report seeks first to convey the concepts of controlled gravity that the Panel

found so intriguing and promising.

A parallel between electromagnetic and gravitational fields may be instruc-

tive. Man's control and use of electromagnetic fields is the very basis of mod-

ern technology. The same is not as true of gravitational fields or their

equivalent acceleration fields (The equivalence of gravitational and accelera-

tion fields is a fundamental tenet of relativistic mechanics). Most of man's

experience is in a familiar and comfortable gravity field of about 9.8 m/s2.

To be sure, higher acceleration fields can be produced in centrifuge apparatus,

and these have widespread practical applications. The advent of spacecraft gave

the first possibility of appreciable durations of near-zero acceleration fields.

The vicinity of the center of mass of a small body in a free-fall gravita-

tional orbit experiences very small acceleration fields. The term microgravity

environment has come into common usage for this situation, although the actual

accelerations may vary by at a factor ± 102 from the lO-6g implied by a literal

interpretation of the term, (g = the acceleration on the equator at mean sea

level on the Earth surface). The possibility to perform experiments in

microgravity and prospects for subsequent commercial operations is the motivation

for serious scientific and development efforts in several national space

programs.

Tether systems offer the new possibility of controlled acceleration fields,

or controlled gravity, in the range from I0-Ig to values below lO-6g, perhaps

even I0-8g. Still smaller accelerations require other techniques, as developed
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for investigations of fundamental gravitational physics (See, for example,

Robert L. Forward, "Flattening spacetime near the Earth," Phys. Rev. D 26 pp

?35-?44, 15 Aug Ig82). Tether systems achieve their control through placing

experiments at significantly large displacements from the orbit center or zero

acceleration position of an orbiting system. The system may either be in a gra-

vity gradient stabilized configuration (rotating once per orbit in an inertial

frame), or it may be rotating more rapidly.

As used in the previous paragraph, controlled has broad interpretation. It

includes not only the magnitude of the acceleration field, but also its vector

properties, its time dependence, and the uncertainty or noise associated with

them. For example, by varying the length of a tether in accordance with a pre-

scribed control law, a desired time dependent acceleration field can be imposed

on an experiment system. This changing field could be a step function of

increasing or decreasing magnitude, it could be a periodic function or it could

have some other pattern. As another example, the tether length could be varied

to compensate for field variations due to orbital eccentricity, the oblateness

of the Earth or thermal expansion displacements. Thus the applied acceleration

fields might be held constant within tight uncertainty limits. These are only

two examples from many that could be given to illustrate the manner in which the

space tether concept can be used to provide a controlled gravity environment.

In its range of applicability, this is a unique capability. It makes possible

controlled gravity operations of great interest, in the same way that controlled

magnetic and electric fields opened new vistas a century earlier.

The Panel in joint sessions with the Constellations Panel spent some time

reviewing the specific modes in which tether systems can be employed to provide

controlled acceleration fields. These fall conveniently into two cases: I) gra-

vity gradient stabilized configurations and 2) rotating configurations. The

equilibrium acceleration field obtained in case I) for various numbers of bodies

and tethers and at different places in the system are given in subsequent sec-

tions of this document (Napolitano and Belivacqua; Lundquist).

For time-varying gravity gradient configurations, the control laws, motions

and resulting acceleration fields are more complicated but amenable to analysis.
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The radial acceleration field produced by a rotating system, as in case 2), is

well known. The use of a long tethered system has the advantage that the rela-

tive change in acceleration with radial distance can be small (i,e. the field is

more uniform across the dimensions of an experiment). Again a time varying

tether length is a more involved but tractable situation.

Circumstances in which controlled gravity might be applied usefully are so

diverse that the Panel had neither time nor composition to evaluate them in

depth. The Panel did hear presentations and received written statements on

several applicationso The presentation and written materials are tabulated

below and reproduced in subsequent parts of this report. Also the Panel as a

group discussed other applicationso From these considerations some broad obser-

vations can be drawn.

PRESENTATIONSTO THE CONTROLLEDGRAVITY PANEL

Luigi G, Napolitano Tethered Constellations, Their Utilization as

and Franco Bevilacqua Microgravity Platforms and Relevant Features

Charles A. Lundquist Artificial or Variable Gravity Attained by

Tether Systems

James R. Arnold Remarks to Controlled Gravity Panel

Dale A. Fester Tethered Orbital Refueling Study

Enrico Lorenzini Dynamics of Tethered Constellations in Earth

Orbit (this appears in the Constellations
Panel section)

Paul A. Penzo Tethers and Gravity in Space

R. Monti Tethered Elevator: A Unique Opportunity for

Space Processing

Kenneth R. Kroll Gravity Utilization Issues
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Biological response to different fixed magnitudes of gravity or to varying 

acceleration fields is a topic of significant interest. The organisms of con- 

cern range from microscope specimens to man himself. In the range from 10'lg to 

10-8g, little is known about threshold values for biological phenomena. 

Measuring these is a fundamental scientific contribution. It also has practical 

implications for extended space missions such as a manned expedition to Mars. 

Is some level of artificial gravity necessary or desirable during such a trip? 

If so, what level is required or optimum? These issues could be explored on 

tethered platforms in orbit about the earth. If necessary, a mission to Mars 

could employ a rotating tethered configuration to supply the desired artificial 

gravity. 

Fluid mechanics plays ubiquitous roles in space operations, These range 

from practical applications, such as propellant handling, to scientific applica- 

tions, such as separation of organic molecules or living cells. In all these 

operations, the presence or absence of an acceleration field is a crucial 

matter. In some instances even a small acceleration field is advantageous, for 

example to settle propellants in the desired end of a tank. In other circum- 

stances some stringent upper limit of acceleration must be respected, as may be 

the case in electrophoretic separation of biological materials. In each of 

these examples, a tether system can be applied beneficially. However, in many 

cases the optimum acceleration field is just not known. In growing some crystal 

from a solution, the dominant mass transport mechanism for the depositing 

material may change from turbulent flow, to laminar flow, to diffusion if the 

applied acceleration field is reduced over several orders of magnitude. The 

quality and quantity of the growing crystal presumably changes also, but where 

is the'optimum? How sensitive is the product to noise or other unwanted 

variation of the field? Do important thresholds exist? Such questions can be 

answered definitively only if experiments can be done with different controlled 

acceleration fields. This control is again an appropriate role for a tether 

mechanism. 

The answer to these optimization and threshold questions can have important 

fiscal implications both for anticipated commercial operations and for facili- 

ties such as the Space Station. The imposition of an unnecessarily restrictive 



acce]eration requirement on the Space Station can be very costly (Arnold, this

report). On the other hand, refurbishment to correct for inadequate initial

requirements is also costly. Tether systems can not only facilitate answers to

these questions, but also they can provide a versatile mechanism for control of

the acceleration field at desired positions within the Station.

The tether length to some auxiliary body or bodies can be adjusted to main-

tain the required environment at the position of a microgravity laboratory

module when masses move about the station complex or when masses are added or

removed from the station. In addition, active contro] should provide more pre-

cise placement of the acceleration field and allow a vertical distribution of

microgravity experiments to be performed sequentially. An artificial intelli-

gence system coupled with acceleration sensors on the station could prescribe

continuous adjustment to accomplish these objectives.

The tethered auxiliary body could benefit as well from the greater acce-

leration field it will experience. This could be the case for a propellant

management depot, which could have a fixed, non-zero, gravity field. These gra-

vity control functions are but some of those discussed by the Space Station

Panel.

An additional implication of a tether for controlled gravity is the isola-

tion it provides from distrubances. A tether acts as a low frequency bypass

filter to lateral distrubances, while work with tether weaves may also provide

some damping of distrubances along the tether. This advantage can be achieved

by moving the distrubances off the space station or moving the microgravity

laboratory off the space station. The later option would minimize the accelera-

tion level seen by the laboratory, but would hamper manned involvement with

experiments.

When more complex, or constellation configurations of three or more bodies

are examined, controlled gravity is a natural consideration. Perhaps the first

example of this class will be an elevator mechanism that attaches to the tether

between two primary bodies and carries a third body upward or downward along the

tether. The acceleration field in the third body thus can be easily controlled

by moving it up or down the tether.
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Finally, the Panel noted that the orbital mechanics of tethered systems and

the gravity control by them is a rapidly developing discipline for which little

standard terminology or notation has evolved. In the interest of more efficient

communication, the Panel recommended the nomenclature in the following diagram.

RECOMMENDED TERMINOLOGY

Microgravity 10.4 g and smaller

reduced gravity

Low Gravity 10-I g to 10-4 g

Earth Gravity I g

Hypergravity greater than I g ) enhanced gravity

RECOMMENDATIONS

The Panel was asked to organize its conclusions and recommendations as they

pertain to three eras: I) the Tethered Satellite System period extending

through the first few TSS flights, 2) the period of Space Station Initial

Orbital Capability embracing its first few years of operation, 3) a post-IOC

period when the Space Station becomes mature and facilities are added systemati-

cally to it. The recommendations also should include a priority list of tether

uses and of economical demonstrations of tether capabilities.

To accommodate this desired reporting format, the Panel prepared the matrix

below. Its vertical columns indicate the three eras. The two horizontal divi-

sions represent, respectively, I) the controlled gravity uses or objectives that

the Panel judged to be appropriate for each era and 2) the demonstrations and

experiements that would address these objectives.
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TSS ERA IOC ERA POST-IOC ERA
PRE-IOC FOR SPACE STATION

Objective is to master Gravity Controlled Fully exploit
the concept and tech- experimentation in gravity control

3BJECTIVES nology of gravity Space Station applied in Space missions.
control, to:

AND Life Sciences
Gravity control would Materials Science

USES be applied to: Fluid Science
Life Sciences Engineering Uses
Materials Science
Fluid Science

Engineering Uses

Demonstrate gravity Science and Processes and
profile generation, application applications.

DEMONSTRATIONS measurement and use, experiments, possibly
including appropriate using TSS deployer

AND analysis and evaluation.

EXPERIMENTS Recommended Opportunities
for early demonstrations:

Spinning Orbiter Mission
Orbiter experiments
during tether missions
Elevator on a tether.



The demonstrations of gravity control during the TSS era are of great

importance to future applications. They fall in two general classes: I)

gravity-stabilized tethered systems and 2) rotating systems. These demonstra-

tions deserve more detailed discussion than can be given in the matrix. This

can best be done individually for some anticipated missions.

Disposable Deployer Mission, (1987). This mission may allow a measurement

of the acceleration field change and particularly the associated acceleration

noise at positions in the shuttle while the tether and payload are deployed.

Appropriate instrumentation for these measurements needs to be identified and

scheduled for the mission.

Spinning Shuttle Mission, (1987-8). This mission provides the first oppor-

tunity to begin investigations of controlled gravity and threshold phenomena in

the low gravity range (10-I to 10-4). Although a tether is not involved in this

demonstration, the rotation principles for achieving low gravity are the same as

for a rotating tethered system. Therefore the mission is included here. The

experiment currently planned has attitude control thrusters firing for a 3 hour

period; however, the spin may be extended for a longer period for those experi-

ments that are sensitive to thruster firings. Maximum yaw spin rate is planned

to be approximately 5 degrees per second. The acceleration level, of course,

varies with position in the shuttle. Fluid science and applications are par-

ticularly pertinent for this mission. Necessary instrumentation and demonstra-

tion equipment should be planned.

TSS-1, (1988)

The first TSS mission provides a fine opportunity to demonstrate and

analyze the resulting acceleration field on the Orbiter including the associated

acceleration noise, during all phases of tether operations. These measurements

should be correlated with other data such as accelerations on the satellite,

tether length and tether tension. This mission should provide the necessary
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information to extrapolate performance of a tether gravity control system for

Space Station.

TSS-2

The controlled gravity experiments on the Orbiter for TSS-I should be

repeated and expanded with the greater deployment length planned for this

mission. This mission may provide an opportunity to test an "elevator" that

moves along the tether between the Orbiter and the Satellite. Such testing

would determine the precision with which the elevator can be placed at a desired

gravity level and would help map the acceleration noise resulting from desired

gravity level profiles.

KITE

The disturbance isolation aspects of this proposed mission may make it par-

ticular]y suited to studies of the uncertainties or noise levels that accompany

the obtained acceleration fields.

TSS-3

The controlled gravity objectives for this mission would be similar to

those for TSS-2, except that improved demonstrations should be expected based on

experience with earlier missions.
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TE_L_R_ CONSTELLATION, THE_.RLrrIL£ZAT!CNAS MZCROGRAVZTY
PLATYORMS A_YDR,KLE'¢ANTFL:,TURKS

Lutgt O. Napollta=o
U_,iversity o£ Naples (Italy)

France _evilacqua
Aerltalla, Space Division - Turin (Italy)

Abstract One of the parametersnever taken Into
accountis the directionof the "residual"
gravityvector;in the _o!lowlngparagraphs

Thlspapersummarlzesthe characteristics thereasonof tha_is clarified.
of theartificialgravityfieldactlngon rathe- Once =ha leveland the directionof g
redplatforms.Themaincharacteristicsof mlcrE havebeen consideredand hopefullycontrolled,
gravityenvlronmantsare identifiedand theim- the tlme dependanceof g representfurther
provamentsof tetheredplatformsoverthe clas- parameters.In parulculartthedurationand the
slcalplatformgravityconfigurationare empha- qualityof the chooserg leveland direction
sized.The new mlcrogravi=7environmentgives _ustbe analyzed,beingthequalitycharacterlz-
thepossibilityof studyinga verylargenumber ed in termsof parslstencaof theuomlnalvalue
of phenomenaofferingnew potentialitiesto throughoutthedurationandof Eravltypollution.
mlcrogravltysclenoes.

A simplifiedanalyticalinvestigationis
perfo_d to pointout the effectsof three 2. Micro_ravlt[envlronmentsof classicaland
causes thac affect the artificialgravity tetheredplatformsand importanceof _-
fleld,namely:the orbitaleccentricity,the variations.
tetherthermalfieldand the dockingof space
vehicles with the malt platform. The The comln8of the tetheredplatformshas
eccentrlclt7 affec_sare due to thedeviationo£ changedtheway of tblnkin$about=hegravlta-
_ha tetheredsystem from the ideal nominal =localconditionsobtainableIn space;In partl-
circularorbit.A periodicalvariationof the cularthe conceptof g-varlatlonsis changed.
tetherlengthis inducedfrom the changeof In factotheclassicalplatformgravityoonflgu-
ca=hertemperatureduringeach orbit,wlth a rationischaracterizedby:
consequentaffecton the gravityfield.The - singlepointnomlmalg-value
docklnK of a spacevehicleto the maltplatform - unknownd_rection
can introduceon the global system of the - timeindependentor quasi-steadynominal
tetheredplatforms_ dynamicalperturbation, g-value

Ultlmatal7,the order of magnitudeof - differentg-quall_y
these effectsare investigatedand co_pared
witheachother. All thismeansthatg-varlatlonsare nei-

therconsiderednorcon=rolledand,in anycase,
representdisturbingparameters.

I. Characcerlzat_ono£ the_ravltyfield On thecontrary,tetheredplatformsallow
to lookat g-varlatlonsas a systemperformance

The spaceevolutionintroducedby the, and_suchas that,_heycanbe continuouslycon-
TetheredSatelliteand representedby the very trolled.Thus,the main characteristicsof is-
largeconste'.latlonof alreadystudledcomplex =hazedplatformsmlcrogravltyenvlroumentare:
tetheredplatformscannotforget,as more and
_re timesunderlined,a new fieldof science - continuousfuncrlouof co_Lnalg-values
suchas mlcrogravlty. (bothin intensityanddirection)

Sincethenewkind of mlcrogravltyenvlro_ - controllability
mannofferedby Tethersis subs_antiallydiffe- - E-qualityhigher=hatclassicalone
rentfrom=ha "classical"one, it seemsueces- - possibletlmedependentnominalg-value
saryand appropriateat thisstaketo indivi- (5othin intensityanddirection)
duatethecharacteristicsof thegravityfield.

Obviously,the firstparametercharacte- Apartfromthequalityand€ontrollability
rlzinga gravityfieldis its level(Fig.I) effects,the additionof the time dimension
ranging,at present,ofrom the groundvalue appears_o be the most importantand promlslmg
(g/g_-_)=o g/g-_O'~ofthe aircraftsflylng parametersofferedby thetetherconstallaclons.
parabolicKlepenl_norbits,to IO"_ forSounding Thenewm_crogravltyenvl=onmentgives=ha
Rocket_,to _0-° of the terres_rlalDropTowers, pos_ibilltyo£ studyinga verylargenumberof
to _0" of Spa=slabandto I0""of theAutomatic phenomenanot yet investigated;an absolutely
Platforms(FreeFlyers).It _ustbe recognized not completellstof themis reportedbelowin
that,apartfrom the varlabllltyaroundthem, order=o glvean Ideaon theposslbllltlesoffe_
thesevaluesdefinea dlscreterangeof gravity edby tethers:
levels.
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- parametricg-value (intensityand direc- distance from the center of gravity of =._e
tlon) investigationsin order to obtaina global _ethered space system and vertically
continuousE(g) curve (E representsan7 orientedwhen in stationarystabilisedc0ndl-
exper_nentalparameter) tlons.

- imposedand controlledg-level time pro- This net accelerationopposed by the
files; a particularcase is represented tetherCensloncan be viewed as an "artificial
by a periodlc,bothin intensityor direc- gravity"_hat, at the end of a staticvertical
tlon, functionof g(t), in order to study tether, can be tuned at differentvalues by
the effectsof frequencyand amplitude controllingthe tetherlenght:L i.e.:

- analysis of the g-Jittersby simulatlng 2
them; up to now g-Jittershave been only g Ro 3
msasured -3CR- I L- effectsof g-intermittenclesor, in gene-
ral,effectsat g(t) stepfunctions

- effects of g(t) hysteresison different where:

phenomena g/go:artificialgravityreferredto Earth
- €ontrollabili_7of g-nolse Surfacegravity

R : Earth SurfaceRadius
H_ Alti_udeof TetheredSystemCenterof

3. New potentialitiesofferedby tethers to graylY7.
mlcr0_ravltysciences

In the Table I a preliminaryevaluationon
The potentialitiespresentedin the last artlflclalgravitylevelsofferedby a tethered

paragraph are self-explanatory and the platform for different altitudes and tether
importanceof themvlth respectto the different lenghtsis shown:
field of science should be self-evldent.
However,It is interestingto enter expllcltely Tab. _ - Ar_IflclalGravityas functionof altl-
thethreemain fieldsof scienceinvolvedwith rudeand tetherlength
microgravi_yconditions:LifeSciences,Material
Sciences,

Fluid Sciences.For each Of them i_ is easlbly Altitude:H Ar_IflclalGravluy:g/So
possible to Indlvlduatea number of _yplcal (km)

examplesof user'sneeds: LLin- lOO m Lmax- 100.000m

- Lifs Sciences
- Determlna_ionof _hresholdg valuesfor 463 3.81 i0-_ 3.81 10-_

biologicalprocesses 1.000 3.04 10-'_ 3.04 i0-_
- MatarlalSciences I0.000 2.78 10"!I 2.78 t0-_

- determina_ion of the level-frequency 35.786 1.63 I0" 1.63 10-_
acceptability regions for crystal
grow_chprocesses

-- solldlf_catlonfron_ geometryany dyna- _n particular,llmltinE our a_en_ion on
re.lOsas functionof g(t) low orbit, we can evidentlatetha_ the micro

- Fluid Sciences gravity performancesoffered by tethers cover
- g-Jltrers all the range between AutomaticPlatformsand
- contactanglehysteresis Aircraf_performances.
- dynamicwetting In Fig. i we have shown three scales,
- spreading relevan_to low orbit (H - 463 km),mediumorbit
- influence of g-hls_ory on critical (H - I0.000km) and geostatlonaryorbit (H -

pointphenomena 35.286km), relating the tetherlenght to the
- stabilityenhancingby meansof time obtainedartlflcialgravlt7 levels.

variationof g-levels \. It is Important_o say thatthe possibility
to modifythe artificialgravitylevelby modi-

The!nfluenceof a g-varlatloncapability fylngand couurolllngthe tetherlenght,unavold-
on processesis also important,for example,for ably induces dis_urblngaccelerationseffects
the optlm_zationof the processitselfby means due to a quite complex orbital transient
of the so-calledg-tunlng, dynamics.

So an imposedand controlledg-leveltime
profileis to be consideredtakingintoaccount

4. Main _erformancesand Characteristicsof thistransientdisturbingeffects.
a tetheredplatform Another importanuaspectaffectinga te-

thered platform performance is the g-noise
Duringour s=udy on thisargumentwe con- induced by different perturbing reasons like

vlncedourselfon the opportunityto concentrate residualorbital eccentricityof the tethered
our sffor_ on the dynamics issuesrelated to system, thermal behavlours inducing tether
thes_off-standardsclen_Ificplatformsinstead lengh=variation,rendez-vousand dockingmanoeu-
to dls_rlbuteour attentionon differentaspects vres of the main station inducingdynamicper-
like confIEuratlon,architectureand mission, turbatlonon the tetheredplatforms.These dif-
in order to clearlyidentifythe main characte- ferentaspectswill be analysedin a preliminary
rls_Ics of this attractivemicrogravitatlonal approachin the next paragraphs.
solutionbeforeto approachmoregeneralaspects.

It is clear that a tetheredplatformex-
hlbltsa net accelerationproportional_o the
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The d_ruanLtcsmodel A _rade off abou= _wo differen_ :e_her
materials has been considered:

Since the objective of =his paper was co
outline some aspects of _iorogravit7 enviroumen=, - 302 amain!ass Steel
the analysiswas basedon a ratherslmpl£fled - _evlar'9
dyuamiomodelof =hesys=amo

The mostslgniflcantslmpllfloa=ionswere Table2 showsthe mainpropert!esof the
theomissionof lateraltetherdynamicsandthe _o tethersconsideredfor=hecalculations.
use of only one normal mode for the elastic ex-
pansion of the tether. Table 2 - Characteristicsof AnalyzedTethers

The tether was assumed to have a constant
diameter of 2.3mm anduniformmassdistribution I302STAZNLESS KEVLAR-29
paruniClength. I STEEL (BARE)

The mlcrogravit7 platform was assumed Co CONYZGURATZONlx19 Standed Bare braided
have a =ass of i0 ton. Wire Rope (no Jacket)

From Lasrange's theory the stretch equa- EXTERnaL 0.89 _-, 2.00 _m
tion can be expressed in the following form: DIAMETER

I)I ABSO_TIVZTY O.44 O.44L_ANSION
-K Z (|) 'THERMALCOEFF. 20.0xi0-6 -2.5xi0"6

Vhere t'he _wo _uler angles 0 and I_
dsscrlbe the platformmotion,M and mt are the
platform and the tether masses, Z is the tether A thermal mathematical modal has beau da-
elongation, 1 the unsCretched tether length veloped in which =he 100 Km as=her has been sub-
and L the tether length. _ represents the divided in 100 nodes. The energy balance equa-
ansular velocity of orbital reference frame, tions have been solved using the SINDA thermal

In _his equation as generalized forces analyzer.
were assumed only first order gravity gradient The analyses have bean conducted oouside-
fleld and elastic tether force, ring _he _ao extreme orbital oondt_lona under a

ARrodyuamic forces vera neglected, thermal poin= of view, as shown in Fig° 2.
The elasticity was represen=ed by a linear _ particular subroutine yes improved to

sprlngwhosespring€onstantK Is: exactlyslmula:athe t_rillgh:effeo:duringthe
tether east7 and exi_ from _he earth shadow.

_'_-- / T c_ alb-=ether nodes during one orbit, l_ is
posslble to quantify the tether total expansion/

where d is the diameter of tether and E is contraction and the relevant veloci_ies and ac-
Young's modulus, celerattous with the hypotheses of considering

The energy dtssipa_ion due to frictional a completely free tether.
losses in the _ethar _atertal is in general The results obtained during the above men-
small, and the damping was assumed to be null. atoned analyses can be su_artzed as following:

- the _ thermal gradient between the

5.1 The d_uamic effect of the thermal environ _wo tether ends both for the stainless
ments steeland for the kevlaris alwayslower
-- =hen 15°C, during all _he orbital phases
The effect of the _hermai field generated - the re=her average temperature behaviour

along the tether is one of the most interesting as funcrlcn of the orbit alma is shown in
parameter Co be considered in order to investi- Fig. 3 for all the analyzed cases
gate the dynamic behaviour of a system compound - the tether length varia_ion, =he relevant
by two bodies connected to this tether, velocities and accelerations are rasps:ti-

The main parameters which affec_ =he tether vely shown in Flgs 4, 5 and _.
te_eraCure are the follo_lng:

The analysis of =he previous results sho_s
- Solar Radiation =he following conclusions:
- albedo
-T Infrared Radiation - _he maximum _e_har length variation dur!ng
- Aerodynamic Heatin_ one orbit due to thermal loads varia_io_

is of approximately 300 meters for the
At the orbl=al altitudes =hat are late- stainless steel tether and of 25 =stars

resting for the analysis of =he micro_ravity for the kevlar tether;
phenomena, the effec_ of the atmospheric heating - the maximum speed corresponding :o the
is negligible, therefore it has not been intro- above variation is of approximately 0.5

• ducsd in this analysis. The s£mulations consi- =/s for =he stainless steel and of 0.0_
dered during these preliminary thermal analysis m/s for the kevlar;
have been performed assuming a tether default - the m_imum acceleration impulse ob_aln_
length of L = 100 Km (measured at a tempera- ed durlu__the simulation Is of O.015 :is"
ture of 20*_) and placing the _ether in a (1.5xI0- g) f_r =he sta._less steel and
circular orbi_ where i_s center of mass alti of 0.008 m/s (0.SxL0- g) for the
rude, with respect to the earth surface, is of kevlar.
400 _.
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To analyse_he effec=ivedynamicresponse _lescausea disturbanceof orblcal per!cdiclcv
of che sys=emco =hermalfleligenera=edby entry end ampli=udefunc=lon of eccen=rici=y.2or a
and exi= from_he earth shadowthe eq. /1/ was typical circular error of about 5"L_ _ ch_
u_ad. dlscurbance results of about 1.5"10- m/s

As additionalsimplificationsthe =ether peak co peak ampli=ude.
_-ss was neglectedand the assumptlonof null
Ln-planeand out-of-planelibra=Ionswas made.

The systemorbi= was circularwi=h _emi-
ma_or axis a - 5778 _n and the uns=re=ched 5.3 The dynamiceffectsof dockln_
_ether length (a_ a temperatureof 20"C) was
assumedi - _00km. Thls sectionis devoted co give a pre!i-

The°baslcelastlcpropertiesof =wo _ether minary assessmentof _he g-varlatlonsinduced
ma_erlalswere considered, by a dockingmanoeuvreon a te=heredplatform.

For Kavlar 29 a springcons=an=K - 5.55 The simplifiedmodel,.adoptedco represen=the
N/m was consisted with basic mode frequency sys=em dynamics, considers=he morion of the
few = 3.75"I0--Hz. subsatelliteas unldlmenslonalalong the z-axls

For 302 S=alnlesssteela springcons_an_ of =he =ether.Bo_h _he geome=rlcaland struc-

K - 8.78 N/m _as found vlth na=uralfrequency rural charac=er_stlcsof =he systemcomponen=s
fST" 4.72"I0" Hz. (namely,subsatelli_e,re=her and upper pla_-

The sys=em was assumed sire=chadbu_ in form)were assumedaccording_o _he defini_lons
equilibriumas inl_lalcondi=ion, given In the previoussections;here, an addl-

The _e=her =hermal behavlour (described =loualsystem componen_(i.e. the shuttle) Is
in the previouspar.)was applied_o _he system, consideredCo model _he dockingmanoeuvrewith
and =he dynamic response was found by numerical the upper platform.
in_egraClonof eq. / I /. Basically,the effec_of a docking_anoeu-

The fig's 7 and 8 show =he =etherclones- vre on _he subsatelllteaccelerationlevelsis
€_n and _he dynamic radial accelerationfor twofold;one is a short-termeffeo=representing
=he _avlarand S_alnlessmatarlalsand for _he _he subsatelll_edyuamioresponseto an exuer-

betavaluesof 0 and 52 degrees, nal impulsedue Co =he docking and =he ocher
For the Kavlar =ether =he equilibrium is a long-=arm effec= due Co =he change of the

elonga=lon results of abou_ 697 m. overall system centre of mass.
The =harmalenvlronmen_causeselonga=lon The flrs_ affec_was assessedby conslde-

oacllla_lonaof abou_4 m peakco peak amplitude ring=he =arge_(=ha_Is, upperplatform,ca=her
over one orbital period, and subsa_ellt_e) _o be in a circular orbi_ with

The global _ccelqratlou disturbance results its centre of mass a= 6778 Fun al=ltude, and _he
of abot _+ 1.3"10 -_ Q/s'. shuttle approximing co _he upper platform wl=h

The S=a!nlesstetherpresentsan equlli- relativevelocl_7along=he z-axls.
brlum elonga=lonof about 4&O m. The _hermal By assuminga mass ratioM/m - I00 between
translen_ induces elongation oscillationsof _he upper pla=formand _he subsa=ellite,100 _n
abou_ + 30 m ampll_udeduring one orbi=. The for =he =e_herlength(in Kevlar29) whose lon-
accele_=_on _Is_urbance results of abou_ gltudlnal stiffnesswas previously estlma_ed
__2.5"I0""m/s_. as K - 5.55 ._/m,and t:he worst case of impact

The S=atnless malarial induces per_urba- in =ha range of _he allowable condi_ions for
_tons of one order of magnitude grea_er =ban _he redez-vous and docking manoeuvre, the
the Kevlar one. maxiunnn vaz-lation of acceleration induced o_

Kevlar seems sui=able _cerial for micro- =he_ microgravity platform we_s about 1. I0"
gravi=a_lonal environmen=, m/s _. Tha_ is, =he 0.15 m/s _ of acceleration

induced on =he upper platform were damped via
the _ether flexibility until _he above men=ton-
ed small value a_ =he lower platform.

The lone =arm effect arises because, when
_.2 The dynamiceffectof orbl=aleccencrlcl=v the shu_=ledocks wi=h the upper platform,the

overall system will change. In condltlousof
To evalua=a=he _!crogravi_7 dls:urbances sof_ Impac_=he velocl_lesof =he variousparts

due _o small eccentrlcl_7of _he system orbit of _he oomposi=esystemwill all be the same
=he eq. / $ / was used. as i-_edlacelybefore _he docking, while the

As addi=ionalsempllflca=lonthe re=her center of mass will be differentand so the
mass was neglec=edand =he assumptionof null orbi_ of _he new centre of mass. Energy and
In-planeand out-of-planellbra=ionswas made. angularmomentumpreservationallow for tel=u-
In addi_lonthe elasticpropertiesof the =ether latlngboth the new seml-majoraxis and eccen-
were neglectedbecause_hlskind of discurbances _rlci_yof _he orbit.Assum!ng=ha= the veloci_7
is no_ aspeoted_o exci=e_he elasticexpansion of =he new ten=reof mass is greater than =he
mode of the =ether. local circular velocity,the composi=esystem

The orbi_ seml-majoraxls was fixed at willbe a_ the perigeeof the new orbiti_nedla-

6778 _. _ the orbt_l eccentricity was varied cely after =he docking and so _he _aximum (nega-from 1 to 15"10" . cive) varia_ion of accelera_ion on _he _cro-
The Fig. 9 shows the orbi=al radius, =he gravi=y will resul= after an orbi=al semiperiod.

an_ular veloci_7 and the radial accelera_ion Wi_h _he assumptions of _he above simplified
in function of =he =rue anomaly for five values model, the variation of the centre of mass is
of orbitaleccentrlci=y, res=rictedco a few =stets along the negative

The gravl=y gradlen= acceleration relevan_ z-axis and so negligible g-variations as resul=-

=o a =e_her lengh_. SLa_ 100 km, for circular lng from _he applioa_ion of Eqn. / _ /.o_bl_ is 0.384 m/s . 1 orbit eccentrici- Thus, =he g-varia=ions induced by the
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dc_klng manoeuvre may be consldered,lnfirs=
approxlma_ion,very,small when compared wlrh
those induced by the ocher already analyzed
environments.

Conclusions

Techeredplatformsprovidea uniquemulti-
disciplinaryfacilityfor conductingresearchon
microgravitysciences.

The potentialitiesofferedby a tethered
pla=form are clearly representedin Fig. 1 in
which a comparisonbetween artificial_icro-
gravity performances offered by different
solutionsas Aircraft,Rockers,Spacelab,Drop
Towers, Automatic Platforms and a Tethered

System,evldentlateits advantagesin capabili_
to cover an e_tended _icrogravit7range: 10
< g/g, _ 10- for an indefinite time. The
tapabilltyto perform a desired g-level ti_
profile,actingon tetherlenghtwith a suitable
control law able to m!nim/ze transient
disturbing effects, represents an important
feature.

The results obtained by a preliminary
analysis on g-nolse induced by different
perturbing reasons like residual orbital eccen-
tricity, tether lenght thermal modification and
docking induced dynamic effects are reasonably
acceptable.

In particular, for a low orbit (H - 400
km) and considering a tether lenght of 100 km,
the microgravic 7 disturbances due r_ orbital
eccentricity ranging between: 3X_0- _ •
15xl0- .is limited to: 4xlO g < g

< 20xl0"_g i.e. from I% to2 5% of ar_Iflclal
gravi=yvalue:g/go" 3.8 10" .

The dynamic effects induced by tether
lenght variation as a function of temperature
behaviour are essentially concentrated in the

sun-ecllpsetranslClonsper orbit in which
the temperaturepresents a derivativediscon-
cinulry. _o dlffer_t tether uacerlals have
been considered:Stainless Steel and Kevlar

havin_,a coefficientof the_r_alexpansionof
20x100 I/C" and -2.5xL0_ I/C" respec-
tlvely.

The global accelerationdisturbanceon a
lO0 k._ tethered platform in low orbit, as

deducedby a simplifiedmodel _eglectlngdamping
effects, has been . 2.5xi0-g for stainless
steel tetherand _ _.3x10-_g for Kevlar tether
i.e. of the order of 6% and 0.3% of artificial
gravity respectively Kevlar seems a suitable
ma=erial for uLicrogravity tethered platforms.

The g-variation induced by a docking
manoeuvre at the upper platform, assuming a mass
ratio of [00 between this platform and the sub-
satellite, 100 __ of tether lenght, is of the
order of ixlO g, i.e. less =hen iZ of
artificialgravlCy. This per_urbatloucan be
considered negllgeable _rlch respect to the
others,takingalsointoaccountthe singularity
of this event.
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ARTIFICIAL OR VARIABLE GRAVITY ATTAINED BY TETHER SYSTEMS*

Charles A. Lundquist

The University of Alabama in Huntsville

I. MOTIVATION

The simplest orbiting tethered system demands for stability that the mass
centers of two end bodies be displaced above and below the position of zero
acceleration. Therefore, the contents of the end bodies are subjected neces-
sarily to acceleration fields or "artificial gravity" whose magnitudes depend on
the dimensions and masses of the system. If the length of the tether changes,
so do the fields. Even for a fixed tether length, the acceleration field at a
location in the system may be somewhat variable unless special means are
employed to maintain a constant value.

These fundamental properties of a tethered system can be used to advantage
if small or variable acceleration fields are desired for experimental or opera-
tional reasons. This potential use involves a few expressions from a formu-
lation of tether system dynamics. Some of these formulae have been collected
here for convenient reference.

A special application of acceleration field control using a tether system
is attainment of near-zero gravity. In this application, even small variations
about zero become a critical matter.

II. THE TWO BODY EQUILIBRIUM CASE

The most rudimentary model of an equilibrium tethered system assumes that a
body of mass, m2, is connected to another body of mass, m_, by a tether of neg-
ligible mass oriented along a geocentric radius, (See figure I). As shown in
Figure I, Q is the geocentric distance to the center of mass of ms and m3, and S
is the tether length between m_ and m_. Further let G be the fundamental gravi-
tational constant, mI the mass of the Earth, and m = mz + m_. The Earth is
treated as a point mass, and the orbit of the tethered system is assumed to be
circular. It is easily shown, for this simplistic case, that the orbital angu-
lar rate, _, is given by

Gm, m2 m_ _ -z m3 m2 _ -2}= - ( )] + [1 + ( )]

For analytical treatments of tether dynamics, the use of (;) as a small

*Prepared for the Applications of Tethers in Space Workshop, Venice, Italy,
October 15-17, Ig85.

79



parameterfor series expansionsis useful. To secondorder in this small
quantity,equation (2.1)can be rewrittenapproximatelyas

Gm1 m2m3 Q 2 '_o 2 = _-- {1 * 3 --_ ( ) } (2.2)

Likewise the tension is

Gmlm2m3 m3 Q -z m±T = mQ2 {[I - _-- ( )] [1 + _-- ( )]

- [1 + _ ( )] [1 - _-- ( )]} (2.3)

To second order in (_) this can be written

Gmlm2m3 (_-) (m3 - m2) (_-) zT = mQz {3 + 3 m } (2.4)

The corresponding radial acceleration fields to second order are

Gm, ms (Q) 3(m3- m2) (_)2Y2 = Qz m [3 + m ] (2.5)

GmI m2 (Q) 3(m3 - m2) (Q)ZY3 = _T _ [3 + m } (2.6)

where the positive sense is radially outward. These are the fields 7i sensed by

an experiment at the body centers of mass respectively and in a coordinate
system rotating with the orbit of the system.

An orbiting point mass with the same angular rate as equation (2.1), or its

approximation, equation (2.2) would have a radial distance Q given by

_z Gm_ _a Gm_= _ or = -- (2.T)
Q3 _z

The radius Q is in some sense a "center of motion" for the tether system. It
is related to the center of mass by the expression
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, m,C Ij2m3 m._3 Qs [1 ---m +--m [1 +--m ] I (2.8)

or approximately by

m:, / (2.9)

The Q also differs from the center of gravity of this simplistic tether system.

The center of gravity is defined as the radius, Q, at which a single body of
mass m would be subject to the total gravitational force on bodies me and m3,

m m2 m3
-- =-- +-- (2.1o)
_z rz 2 r3 3

The center of gravity, Q, to second order is

= Q {1 3 m2m3 (S)z} = _ {1 1 m2m_ (_)2} (2.11)2 m2 Q 2 m2

The three centers are also related by

_a = Q _2 (2.12)

The pertinence of Q is its role as the position at which acceleration is zero
for the angular rate from equation (2.1) or (2.2). Acceleration is not zero at
the system center of mass or the center of gravity.

Ill. TETHER WITH S_GNIFICANT MASS

If the mass of the tether itself, mT, is significant relative to the mass
of the two end bodies, then the expressions of Section II must be modified. For
a tether of uniform mass density, the orbital rate for the equilibrium
configuration is given by

_z Gm, [m2 1 1 r_.._]= -- _ + m3 -- + mT (3,1)Qm rzZ r3 2

where the total mass is

m = mz + ma+ mT
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and the center of mass, Q, is

m2 m3 mT (r2 + r3Q = 7 r2 + E- r3 + m 2 )

The last term in the equation for e2 corresponds to the gravitational force on

the tether between bodies 2 and 3. Thus, the center of gravity, Q, for the
system is given by

m m2 m3 mT (3.2)--=--4--+

52 rz2 r32 r2r3

and

GmI Gml
U2 = -- = -- (3.3)

Equation 3.3 has the same form as 2.?.

To the second order in (_), equation 3.1 becomes

m2m3 m m2 m3 m _. 2]Gm, [1 + {3 * * (34)

Correspondingly, the position of zero acceleration is

(311 {mm-mz3m mz m3 m S z]= - --+ _mm(m- +--m + _m)}(Q) (3.5)

Likewise, the tensions on body 2 and body 3 and the acceleration fields at
their centers of mass are, respective]y

Gmlm2 . _ mT2 = - m2_'2 = _{3[ + _'_-m]( ) +

[3 ._.(m, - m2 _ ) + _-_(_-- + _m)](-_) } (3.6,m )4 (m3-m=mm m3 m 2
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Gmlm 3 . _ m Q-Ts = rosY3= -_T--{3[ + _m]( ) +

- - m m2 m
[3 mm--2(m3m m2) + minT(mS_ m±) ___(E + _m)](Q)Z} (3.7)

IV. THREE AND MORETETHEREDBODIES

A radial configuration of three bodies connected by two tethers is the
first constellation system of interest for its resulting acceleration fields,
As a special case, the middle body can be put at the position of zero accelera-
tion.

For the three body case, let m2 be the mass of the body closest to the
Earth, ms be the middle body and m4 be farthest from the Earth. The radial dis-
tances are rz, rs, r4, respectively. Also for uniform linear mass densities,
denote by m2_ the total tether mass between bodies 2 and 3, and likewise use
ms4 for the tether between bodies 3 and 4. The tether tension pulling on body 2
due to the tether to body 3 will be denoted by Tzs. Similarly, the tension at
body 3 due to the tether to body 2 is Tsz. By the same convention, Ts4 also
acts on body 3 and T4s on body 4. Figure 4.1 illustrates these notations.

For the case in which the bodies execute circular orbits and the tethers

lie along a geocentric radius, the force equilibria are specified by the equa-
tions below. Equation 4.1 pertains to body 2, Equation 4.2 to the tether be-
tween 2 and 3 etc.

Gm_m2

T_ + mzrz_2 r22 = 0 (4.1)

• - Tz= + Tsz + mzs( rz + r s Gmlmzs
2 )u2 r2rs = 0 (4.2)

Gm_ms
- TS2 + T34 + msrsu 2 = 0 (4.3)

rsz

- T34 + T43 + m34( r3 + r 4 Gm_m34
2 )_z _ rsr-----_-- = 0 (4.4)

Gm_m4
- T4s + m4r4_2 = 0 (4.5)

r42

These five equations have five unknowns, namely u2, Tzs, Tsz, T34, T4s, where
the radii and masses are considered as given.
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Adding Equations (4.1) through (4.5) gives the solution for _z

Gm Gm1
(az = _ = -- (4.6)

where

mQ = msr2 * ms3(rs * r3) * m_r3 * ms4(r3 * r4) + m4r4 (4.7)2 2

m ms ms3 m3 m34 m4__ = __ + _ + -- + _ + -- (4.8)
z rsr r_rA_s rs 3 r3S r4s

m = ms + mz3 + m3 + ms,= + m4 (4.9)

Equation 4.6 has the same form as 2.7 and 3.3. In fact, it is clear from
the derivation that the same result can be generalized directly to any number of
bodies and uniform density tethers in a radial linear configuration in circular
orbits.

Using Equation 4.6, the tensions are immediately derived from 4_I through
4.6. The acceleration fields at the center of mass of each body likewise follow

immediately.

T2a Gml (4.10)
Y2 = - m_ = r2_2 r2s

Tas T34 Gm_
= r3_z s (4.11)

73 = ma m3 r3

T43 Gm_ (4.12), 74 = _ = r4_s
m 4 r4 2

If body 3 is to be positioned at the point of zero acceleration (i.e.,

7a = O) then as expected

r33 = _3 Gml= _-T (4.13)

But _s is also a function of r3, and therefore Equation 4.13 must be solved for
r3. A cubic equation in r_ results which can be solved analytically or numeri-
cally.

However, if the two tethers have the same linear mass density, the case
reduces to that of Section 3. This can be seen intuitively because any third
mass can be attached to the tether at the zero acceleration point between two
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bodies without influencingthe tension. The same resultfollowsanalytically
from equations4.1 through4.5 using the uniformdensitycondition,

m2a maa
= (4.14)

rs - r2 r4 - ra

and the condition for zero acceleration at body 3,

--Ta2+ Ta4 = 0 (4.15)

Thus, in this case, Equation 3.5 can be written to second order,

m_m4 m24(m2 m4 m24_ Q z]r3=_=Q[I+{ *_-,_-+_-+4m'}() (4.15)
where

m = mz + mz4 + m4 (4.17)

mQ = mzr2 + m24(r2 + r42 ) + m4r4 (4.18)
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REMARKS TO THE CONTROLLED GRAVITY PANEL

James R. Arnold

The necessary level of acceleration for materials studies (microgravity) on

the space station or other work platform in LEO is not now well defined. Some

suggestions have placed this level as low as 10-7 , 10-8 or even 10-9 g.

Discussions yesterday made it clear that such levels can only be achieved

if many subtle second-order and third-order effects are controlled.

My colleagues in the materials field, and especially just those persons

most active in experimental programs, have convinced me of one basic point:

"The level of microgravity must not be allowed to be the cost driver

for the first facilities put into use".

What should be done is to achieve what can be done with the use of tethers

and intelligent design, but not to attempt highly complex and difficult tech-

nologies beyond that point. I have the impression (perhaps wrong) that acce-

lerations on the order of 10-s g, or even perhaps better, can be achieved in

this way. This will already allow a rich field of studies in materials science

and related fields.

Venezia, 16 October, 1985
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TETHERED ORBITAL REFUELING STUDY

PRESENTEDBY

DALEA. FESTER
MARTINMARIETTADENVERAEROSPACE

DENVER,COLORADO

PRESENTEDTO
APPLICATIONSOF TETHERSIN SPACEWORKSHOP

VENICE,ITALY/OCTOBER15-17,1985
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PROGRAM OVERVIEW

PROGRAMTITLE: TETHEREDORBITALREFUELING,STUDY

CONTRACT: NAS9-17059

PROGRAMMANAGER: DALEFESTER(303)977-8699

CUSTOMER: NASA-JSC
KENNETHR. KROLL,TECHNICALMONITOR

PROGRAMOBJECTIVES: EVALUATETHEFEASIBILITYANDLIMITATIONSOF FLUID
ACQUISITIONANDTRANSFERUNDERAN ACCELERATIONINDUCEDINA
TETHEREDORBITALREFUELINGFACILITYAND PROVIDECONCEPTUAL
DESIGNS

PERIODOF PERFORMANCE:NOVEMBER1983TO AUGUST1985
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PROGRAM TASKS
If-..... IP r_" ........... i,. - .......... -- -----dll I II III ............. i,ii

0 RECOMr,IENDTHEFLUIDTRANSFERMETHODANDPARAMETERS

0 EVALUATEDISTURBANCES,FLUIDMOTION,AND DAMPING

- ESTABLISHNECESSARYFACILITYCONFIGURATIONDETAILS
- DETERMINETYPE,RELATIVEMAGNITUDE,AND SOURCESOF DISTURBANCES
- DEVELOPDAMPINGCRITERIAFOREACHTYPEOF FLUIDMOTION
- DETERMINEENVELOPEOF OPERATIONIMPOSEDBY THEDAMPINGCRITERIA

0 SELECTPASSIVEDEVICESTO AUGMENTINHERENTFLUIDDAMPINGANDDETERMINETHE
RESULTANTENVELOPEOF OPERATION

0 ASSESSFACILITYIMPACTSON SPACESTATIONANDOTVDESIGNREQUIREMENTS

0 AS,,E%THEEFFECTOF TETHERLENGTHON HAZARDSASSOCIATEDWITHTANKOVERPRESSURE
EXPLOSIONANDCONTAMINATIONDUETOPROPELLANTLEAKAGEORVENTING

0 IDENTIFYGROUNDANDFLIGHTTESTSNECESSARYTO PROVETHETETHEREDORBITAL
REFUELINGCONCEPT
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STUDY LOGIC FLOW
_ll,-,,,,lllr _ -- I I lllr

_TA_ TR_SFERFAO,UT_ ,,_PAOT
---..._.../ /VqALYSIS DETAILING ASSESSMENT

l,
IJlorURBAF,CE IIqI-tEREI,IT AUGHENTED

DEFINITIOr,4s DAFIPING OAPIPING
_4D

ANALYSIS ANALYSIS

!

AI' JAL'Y'SES RECOIdI'-'IEIqDATIONS
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WORK STATEMENT GROUNDRULES

0 3 TETHERCASES

- STATIC,VERTICALTETHERWIIEREMOTIONISDUETO FLUIDMOTIONONLY
- GENERALPENDULUMMOTIONTHROUGHA FIXEDANGLEEITHERALONGOR

PERPENDICULARTO THEORBITALPLANE

0 FACIL.ITYC.G.ISMAINTAINEDALONGTI4ETETHERAXIS

0 PROPELLANTS:LO2/LH2:100,000LBMSTORAGEAND45,000LBMTRANSFERRED

N204/MMHANDN2H4: CONSIDERONLYIN A CURSORYSENSE

0 INDIVIDUAL'TANKSARE14 FEETINDIAMETEROR LESSAND90%,50%OR 10%FULL

0 TRANSFERMETHODS:PRESSURE,PUMP,OR GRAVITYFEED

0 THESPACESTATION,REFUELINGFACILI.TYANDPROPULSIONSTAGEARELOCATEDINA
NOMINALORBITOF 250NAUTICALMILES
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MtN!MUMTETHERLENGTH

SYSTEMCONFIGURATION

4_

BONDNUMBERMUSTBEOVER50;THUS: PROPELLANf L,FT ACCELERATION,G

LO2 120 1,4X 10.5
4 Bo __-5L > LII2 280 3,2 X 10-5

- 1,16X i0-7rid2
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\

0 REQUIREDTETHERLENGTHWAS \\
FOUNDBYEOUATINGLINE io \

PRESSUREDROPTOGRAVITY \
HYDROSTATICHEAD 5 \

0 LINEPRESSUREDROPIS _ \
BASEDONFANNINGEQUATION E ] \

- ASSUMESNOMINAL30 FT __ 0.5 _ _ 6hr.

o \\ \
_= LINELENGTH "- \
u_ L _ LH2 hr.,

.\-- -- LO2 _ 4 hr.- NEGLECTSVALVEAND _ o.i \ \FILTERPRESSUREDROPS o
%

0,05 Minimum Distance - LH2\ _6 hr.

4-_ hr.v}
-t-

.....................................

Minimum Distance - LO2

0.01 ___ L I I I !
1 2 3 4 5 6

Feed]ineDiameter(inches)
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E!J.J!O..T..BANSEEB.MSTHO!).._SE_L_SG,..T!_O_N................
TAI_IKFILLMETIIODS TRANSFERMETHODS

0 VENTWIIILEFILLING 0 PRESSURIZED

0 EVACUAI-EDFILL 0 PUMPED

0 ULLAGERECOMPRESSION 0 GRAVITY

SE!:_ECTIONFACTORS

kO

_' 0 ABILITYTOACCOrIPLISHFILL 0 TRANSFERTIME

0 VENTINGREOUIREMErlTS 0 MASS

0 RELIABILITY

AUTOGENOIISPRESSURIZEDTRANSFER
WASCfIOSENFORCRYOGENS
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TAN.!<_8.H_A_RE_A__L_TERNAT_LV...E_S ..........._

I__HH2.TANKS(19,000LBM)
r--

D = 13.3 ft ]D = 11.6 ft D = 11 ft D = 8.7 ft D = 14 ft
L = 41
0 34.

i

_J
i

_-L/D = 1 L/D= 2 L/D= 5 L/D= IO_CONICAL BASED-
i

= 13.7 ft D = I0 ft D = 7.1 ft D = 5.6 ft D = 13.3 ft
L = 18.4 ft
0 34.50

LO2 TANKS (81,000LBM)
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AE = MAG_H

ENERGYfor LH2, ft-lbf
25

Cyl_O i i

20 L/D=1
A

15 L/D=2
€

__ 10 LID=5

V

_H 5

Tank Outlet / 0 21)004000 6000 8000 10000

TE[IERLENGTH,ft

I0- 10/15/85



TANK.ANALYSIS RESL.LTS ............ -

CONICAL
L/D = 1 L/D = 2 L/D = 5 L/D : 10 BASED

LH2
TANK AND MLI NASS,I_BM 5,716 4,362 5,008 6,163 4,110
BOILOFF,LBM 28,768 21,900 25,230 31,010 20,674
TOTALMASS,LBM 34,484 26,262 30,238 37,173 24,784

SLOSHENERGY,FT-LBF 2 3 4 6 6
(10%FILL,3000FT TETHER)

L02*
TOTALMASS,LBM 1,202 1,299 1,830 2,525 1,262

SLOSHENERGY,FT-LBF 6 7 11 16 14
(10%FILL,3000FT TETHER)

* L02BOILOFFISZERO;L02VCS ISCOOLEDBY H2
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TY DESIGNCHARACTERISTICSFACIIJ , ,

ITEM MASS,LBM

TANKS/FEEDSYSTEM 5,570
STRUCTUREANDDEBRISHIELDING 11,000
THERMALCONTROL 4,000
PRESSURIZATIONSYSTEM 1,080
POWERZENERGYSTORAGE 1,700
ACS/PROPULSION 500
CONTROL/MONITORING 1,000
AVIONICS 5OO
GRAPPLING/DOCKINGEQUIPMENT 3,000

oo DRYMASS 28,350

6o' PROPELLANT 100,000

TOTALMASS 128,350
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TORF LAUNCH CONFIGURATION

0 STS AVAILABLEPAYLOADBAY ISGO FT

- DEPLOYMENTISVIASPRINGLOADEDTRUNNIONSAND STSRMS
- DEPLOYMENTWILLBE INPROXIMITY(<100M) OF SPACESTATION

0 TORFRMSLAUNCHCONFIGURATION

- STOWEI)INCHANNELALONGTORFSIDE
- WRISTAND GRAPPLEFIXTURESECUREDON TORFAFTEND
- 6.9FT (2.1M) TELESCOPINGSECTIONIN UPPERARMSTOWEDINRETRACTED

o POSITION
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FLUID$Y.SIE[_,4SCH,_MATfO._
Z

_-( _Q"

$ _ z x-.---J r_

!*
c_
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AUXILIARY PROPULSION

0 REQUIREMENTSINCLUDEATMOSPHERICDRAGMAI'E-UP,SHUTTLEBERTHING,ANDOTV
BERTHING

- SHUTTLEAND OTV APPROACHVELOCITIESARE ASSUMEDTO BE 2 FT/S

0 CONTINUOUSDRAGMAKE-UPIS NECESSARYTO MINIMIZETHRUSTERINDUCEDTORFLIBRATION

- A SINGLEBURNOF A 30 DAYREBOOSTINDUCESLIBRATIONANGLESOF OVER30°
WITH25,50 OR 100LBFTHRUSTERS

S 0 USINGONLYH2 BOILOFFINCOLDGASTHRUSTERS,THEAPSREQUIREMENTCANBE MET
WITHA SPECIFICIMPULSEOF 220 s

- BOTHTORFAND SPACESTATIONDRAGMAKE-UPCANBE DONEWITHA SPECIFIC
IMPULSEOF 570s

0 BASELINE220s SPECIFICIMPULSETHRUSTERSFORTORFAUXII_IARYPROPULSION,
EXCLUDINGSPACESTATIONDRAGMAKE-UP
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0 NASASPECIFICATION- A 95%PROBABILITYOF NOPENETRATIONOF SHIELDORTANKIN A
IO-YEARPERIOD

0 TO MEETREQUIREMENT,AN ALUMINUMPARTICLE,1 CM INDIAMETER,MOVINGAT 9 KM/S
MUSTBE STOPPED

0 BASELINESIIIELDDESIGNIS A TWO-WALLTYPEWITHBUMPERANDBACI<WALL

0 SHIELDWALLTHICKNESSESGIVENBY EXPERIMENTALCORRELATIONAS A FUNCTIONOF

- PARTICLEMASS
o - PARTICLEVELOCITY

- PARTICLEDENSITY
- WALLYIELD STRENGTH
- WALLDENSITY
- BUMPER-TO-BACKWALLSPACING

(REF. ESA SP 153,PROTECTIONFOR HALLEYSCOMETMISSION,BURTONG. COUR-PALAIS)
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TORF DEBRIS SHIELD

0 ALUMINUMTANKWALLUTILIZEDASBACKWALL ,/46CM /£-"MLI

- DICTATEDBY WELDLANDMINIMUMTHICKNESS

- REQUIREDTHICKNESSIS0.32CM I I!ll_--__
0 ALUMINUMHONEYCOMBSUPPORTSTRUCTUREOUTERSHEAR

PANELUTILIZEDASBUMPER I I X----

0 VCS,MLI,AND HONEYCOMBSTRUCTUREINNER
. SHEARPANELPROVIDEADDITIONALPROTECTION --_

0 VCSTUBEEXPOSEDAREAISSMALL

- HONEYCOMBSTRUCTUREIS

I--SUFFICIENTSHIELDING

- MEETSNASASPECIFICATIONOF 95% /_

PROBABILITYOF NOPUNCTURE _ _--VCS
/

-BACKWALL ZBUMPER
(TANKWALL)
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FACILITY/FLUID DYNAMICS STUDY

CONFIGURATION

DEFINITION

DISTURBANCE

DEFINITION
_IATIIEMATICALRESPONSE

. IMOTIONTYPES!_ MODEL FIOTI/ONS

o

DAMPENING

I"CHARACTERISTICSI OPERATIONAL INHERENT
AVOIDANCE STABILITY

AUGMENTED

STABILITY
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DISTURBANCE TYPES AND MAGNITUDES

TYPE MAGNITUDE DESCRIPTION

IMPULSIVE 0-16000LBF-SEC BERTHING
0-100IN LBF-SEC ATTITUDECONTROL

RANDOM 0-10LBF CREWMOVEMENT

SINUSOIDAL 2 X 10-2LBF,90 MINPERIOD DRAGON SOLARARRAYS
10.6 G, 90 MINPERIOD LUNARGRAVITY

. STEADYSTATE 3 X 10.3 LBF ATMOSPHERICDRAG
o

STEP 0.028LBF STATIONKEEPING
i00 LBF, 10 MIN/30 DAYS REBOOST

TRANSIENTS 10.3 LBF FLIJIDTRANSFERSTARTUP
10.2 LBF STEADYFLOW
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!N_!lI!AL....DYN&M!CSAN&LYSES.............. __

0 SMALL-DISTURBANCE,LINEAR,PLANARMODEL(2640FT TETHER)

MODE MOTION PERIOD,S _0" RAD/LBF _H." RAD/LBF

1 TETHERPENDULUM 3190 6 X 10.5 1.5 X 10.4
2 FACILITYPENDULUM 181 1.6 X 10.3 5.3 X 10-3

3 FACILITYFLUIDS 124 1.3 X 10.2 2.2 X 10-2
4 FACILITYFLUIDS 113 7 X 10.3 3.9 X 10-2

5 OTV FLUIDS 95 3.1 X 10.4 4.8 X 10.4
6 OTV FLUIDS 76 7.3 X 10.4 2.4 X 10.4

0 FREQUENCYISA LINEARFUNCTIONOF TETHERLENGTH
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MODEL APPROACH

THEMODELISA COL[_ECTIONOF POINTMASSCONNECTEDBY RIGIDLINKS

Facility 1 Facility 2
Sp.-,ce Station (TORF) (OTV)

FH FO OH O0
4 5 6 7

_0

THE FACILITYANDOTVAS A SINGLERIGIDBODYISREPRESENTEDBY 2 MASSESWHICHARE
SEPARATEDBYA DISTANCEWHICHGIVESTHE SAMECENTEROF MASSANDTHESAMEPITCHAND
YAW INERTIAS.EACHFLUIDMASSISREPRESENTEDAS A PENDULUMWHOSELENGTHISBASED
ON TANKGEOMETRY
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ANALYSIS APPROACH
- " I _ I MI.= II I I II I

0 IDENTIFYWORST-CASEDISTURBANCES

0 EVALUATELIMITSFORZERODAMPING

- FLUIDSLOSHAMPLITUDE
- FACILITYSWINGANGLE

0 EVALUATELIMITSFORDAMPINGTIMECONSTANT

0 SYSTEMPARAMETERS
o

- FACILITYFILL: 10%,50%,90%
- OTVFILL: 10%,50%,90%
- TETHERLENGTH:500FT, 1000 FT, 2000 FT, 4000 FT

- FACILITYMAXIMUMSWINGANGLE: 0°,15°,30°
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DISTURBANCES

0 VARIOUSFORCINGFUNCTIONSORIGINATINGON THE SPACESTATIONWERECONSIDERED

- INPLANE
- OUTOF PLANE
- ALONGRADIUS

- STATIONDELTA= 1 FT/S(MAXIMUM),

0 DISTURBANCESON TORFDURINGFLUIDTRANSFER(~ ,01LBF)ARE NEGLIGIBLE

0 THEWORSTCASEDISTURBANCEWASUSEDFORALLFOLLOWINGANALYSES
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RESULTS.......... -- |,

COMPARISON.OF DAHPEDANDUNDAMPEDSLOSHRESPONSESDUETO A t FT/SEC
VELOCITYCHANGEOF THE SPACESTATION. TETHERLENGTH= tO00 FT.

UNDAMPED DAMPED

--T---i "

DEG,IOANGLELHO O0 ; ___. i_t ;- _ _t__ _ ANGLEDEG,IOLH2 20 ----_ ....'____A,.___0 --- 0
400 800 1200 1600 400 800 1200 1600

TIME - SECONDS TIME - SECONDS

24 - !O/t518S



RESULTS .(CONTINUED).......... -- "11_ --i-r, i1 ---- i i ...... el i i ii_il I i

TETHERANDFACILITYSWINGANGLESFORTHEUNDAMPEDCASEOF A 1 FT/SEC
VELOCITYCHANGEOF THESPACESTATION

20.0 i J 19.5
L

F le.5
19.0 _ ,

.... _.-_ | , q

i
,.-. 180 ............

o " o 17.5 \
t_ Z Z

. o \ /
i.d ,<

'- 17.0 u. 16.5

, ,../

[ t [ I I_.._\,

' lq.5
o _ O0 _ _ o _ CO lIJ
• , •

TIME " TIME
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RF SULTS (CONCLUDED) ......
I I I II '"' IIII

FLUIDSLOSHANGLEAS.A FUNCTIONOFTETHERLENGTHFORA 1 FT/SEC
VELOCITYCHANGEOFTHESPACESTATION

6O

5O

SLOSHANGLE40 \
\

- DEGREES- 30
\

2O
\

\

I0 "_0 --

0 , i T'- --- -0
i000 2000 3000 4000

TETHERLENGTH- FEET
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CONCLUSIONS........ |1

0 WORSTDISTURBANCESARE IMPULSIVE

0 FLUIDMOTIONSENSITIVETO TETHERLENGTH

0 DAMPINGREQUIREDFORMOTIONPERSISTANCE

0 MAXIMUMMOTIONINSENSITIVETO DAMPING

0 MINIMUMDAMPING5%

0 MINIMUMTETHERLENGTH1000FT
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POWER TOW.ER S_P_ACESTAT!QN DESIGN
BOOM

.......... !_: -I I- 072 O

9' CUBE (]YP) UPPER

31.5 KW DYNAMIC ..... 1026.0---I--9120--I1080 o POWER SYSTEM _. TRANS-
VERSE

BOOM 860.0

912 0 _) ALPIIAADJUST

J .. FLIGIIT

_ PATil541k10 _* BETA
NADIR MOBIL E ADJUST

MANIPtJLATOR

MOBILE MANIPUI.ATOR
LOWER KEEL

LOGISTICS RADIATI_RS

/ 0 50' ALPHA
_L__a._--lm _) ADJUST

SCALE KEEL

II /IIAB ,AIFILOCK

L ,f_AO !/LAB
!-i tO'WEn

432 o___ [ ,, RCS

LAB _1 432 1500
270 0 4320

*--8tOO--*

MASS: 106LBM
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S_P.ACE,,STATION IMPACT ASSESSMENT

0 SPACESTATIONHARDWARENECESSARYTO SUPPORTTHETORFINCLUDES
- TETHERDEPLOYMENTPALLET
- TETHERDEPLOYMENTBOOM
- TORFBERTHINGMECHANISM
- TRACKING/RANGINGELECTRONICS

0 MAJORTECHNOLOGICALADVANCESARE NOTNECESSARYTO DEVELOPTHISHARDWARE

0 ACCELERATIONOF OVER 10-5GARE IMPOSEDON THESPACESTATION

. 0 BERTHINGTHEORBITEROFF-AXISAT THESTATIONWILLIMPOSEATTITUDETORQUESAND.
SHIFTSINTHE GRAVITYGRADIENTMAGNITUDE

0 PROXIMITYOPERATIONSMUSTAVOIDTETHER

0 RENDEZVOUSWITHEITHERTHETORFOR THESTATIONINVOLVESNON-KEPLERIANORBITS
ANDMUSTBE DONE"ONTHEFLY"
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TORF/OTV OPERATIONS
...... I ilb ..... -- -- -- _ -- li --- ,.... I HI I

0 SEVERALOPTIONSEXISTFOROTVDEPLOYMENTTO TORF

- THEOMVMANEUVERSTHEOTV/PAYLOADPACKAGETO THETORF
- A CRAWLERTRANSPORTSTHEOTV/PAYLOADDOWNTHETETHERTO THE TORF

0 THEOMVMANEUVERWASBASELINEDFOR-THEBERTHINGMANEUVER

- RENDEZVOUSWITHOUTBOARDENDOF DEPLOYEDFACILITYAPPEARSBEST

0 HARDWARENECESSARYFORVEHICLEDOCKINGINCLUDES

- STRONGRMSs
- BERTHINGRINGWITHLATCHES
- FLUIDTRANSFERCONNECTOR

0 TIMELINEINCLUDES:

- SIXOTVREFUELINGPERYEAR
- SIXOTVSCAVENGING(IFDESIRABLE)PERYEAR
- SIXSTSRESUPPLYPERYEAR
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PROXIMITY OPERATIONS .... III

0 THEOMVMANEUVERSTHEOTVAROUNDTHESPACESTATION

- MAXIMUMOTV/PAYLOADDRYMASSIS23,000LBM

0 OMVORBITALMANEUVERINGDEPENDSON TORFDEPLOYMENTDIRECTIONWITHRESPECTTO
THESPACESTATION

- WITHTHETORFDEPLOYEDTOWARDSTHEEARTH,THEOTV/OMV/PAYLOADPACKAGE
RELEASESFROMTHESPACESTATIONANDDROPSTO THETORF. A MISDOCKRESULTS
INTHEVEHICLEANDFACILITYDRIFTINGAWAYFROMEACHOTHER

- WITHTHETORFDEPLOYEDAWAYFROMTHEEARTH,THEOMVMUSTFIRETOWARDSTHE
STATIONTO MOVEAWAY. A MISDOCKRESULTSINTHEVEHICLEAND FACILITY
DRIFTINGTOWARDSEACHOTHER
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GRAPPLE MANEUVER
I ...... I - -- II II i I Im III I I I fir

0 GRAPPLINGSCENARIOFOROMV/OTV/PAYLOADPACKAGE /_sp.o.s,.,,o.
/ \

- VEHICLEAPPROACHESFACILITY,
- GRAPPLEARM#1 ATTACHESTO OMV,
- GRAPPLEARM#2 REACHESAROUNDOTVAEROBRAKEAND To.F

ATTACHESTO OTV,

- OMVRELEASESOTV/PAYLOADANDFLIESAWAY,

- GRAPPLEARM#1 ATTACHESTO OTV, --.'/_----JoMv_I'_._
BOTHARMSPULLOTV/PAYLOADTO HARDDOCKON TORF, __

FLUIDTRANSFERLINESATTACH, . _ _-"'_"
o

L )L .,_ ''" I

0 A MODIFIEDRMS ISBEINGCONSIDEREDFORTHE GRAPPLEARM,
I I

LONGERANDSTRONGERARMS i I"'"°"I
- STRONGERJOINTS
- STRONGERATTACHPOINTS
- MODIFIEDGRAPPLEFIXTURE
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TETHER BREAKING OR SEVERING
-- --i ....... -- I I| ........... I i i

0 ASSUME
- THE NOMINALORBITALTITUDEIS250 NMI

- THE FACILITYIS ABOVETHE SPACESTATION
- THE FACILITYIS FULLYLOADED

0 FORA 3000FT DISTANCEFROMTHESPACESTATIONTO THECENTEROF MASSAFTER
BREAKING:

- THERESULTINGSPACESTATIONORBITHASA PERIGEEOF 249.6NMI
- THERESULTINGTORFORBITHASAN APOGEEOF 251NMI

0 FORTHETETHERLENGTHSREQUIREDBY THEREFUELINGFACILITY,IF THETETHER
BREAKS,THE SPACESTATIONISNOTIN'DANGEROF DEORBITING
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M,AJOBCo_NC_L_US_.!ONS.............. ,

0 A TORFAPPEARSTO BE TECHNICALLYFEASIBLE

0 THEMAJORSYSTEMCONCERNSFOCUSAROUNDTHECOMPLEXOVERALLOPERATIONS
REQUIREMENTS

0 THEADVANTAGESOF A TORFINCLUDE:

- POTENTIALIMPROVEDSPACESTATIONSTABILITY
- POTENTIALEASIERFACILITYFLUIDMANAGEMENT

. - POTENTIALIMPROVEDSPACESTATIONSAFETY
- PROBABLEREDUCEDSPACESTATIONCONTAMINATION

0 FURTHERANALYSESSHOULDCOMPARETETHEREDTO ZERO-GPROPELLANTSTORAGETO
QUANTIFYTHESEADVANTAGES
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_C,URRFNT PROGRAM OVERVIEW

PROGRAMTITLE: TETHEREDORBITALREFUELINGSTUDY

CONTRACT: NAS9-17422

PROGRAMMANAGER: DALEFESTER(303)977-8699

CUSTOMER: NASA-JSC
KENNETHR. KROLL,TECHNICALMONITOR

PROGRAMOBJECTIVES: EVALUATETHEFACILITY'SCOMPETITIVENESSWITHTHECRYOGENIC
FLUIDMANAGEMENTFACILITY(CFMF)ZERO-GRAVITYREFUELING
TECHNOLOGY.THEPROGRAMSHALLEXAMINETHE INTERACTIONOF
FLUIDANDTETHERMOTION,THE ASSOCIATEDOPERATIONSAND
COMPARETHECOSTSAND BENEFITSOF EACHFACILITY.

PERIODOF PERFORMANCE:SEPTEMBER1985TO JUNE1986
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TETHERSANDGRAVITYINSPACE

PaulA. Penzo
JetPropulsionLaboratory
Pasadena,California

Officeof SpaceFlight
AdvancedPrograms
NASAHeadquarters

LifeScience



GRAVITYINSPACE-LIFESCIENCEOBJECTIVES

• EASETRANSITIONBETWEENOgINSPACEANDlg ONEARTH

• PROVIDEEARTH-LIKEHABITABILITYATPARTIALg

• STUDYEFFECTSOFPARTIALg ONPLANT,ANIMALDEVELOPMENT

• STUDYEFFECTSONMAN:CARDIOVASCULAR,SKELETAL,VESTIBULAR
SYSTEMS;PERFORMANCE

O',

• STUDYEFFECTSONINDIVIDUALDEVELOPMENT

• SIMULATEGRAVITYCONDITIONSOFMOON,MARS

• PREPAREFORPOSSIBLEUSEOFARTIFICIALGRAVITYFORMANNED

MISSIONSTOMARS,ASTEROIDS



PRODUCINGVARIABLEGRAVITYINSPACE

CENTRIFUGE

• ANYg-LEVEL ROTATION
• SMALLVOLUME TETHER • ANYg-LEVEL
• LARGECORIOLIS • LOWg-LEVEL (0.1) • LARGERADIUS
• DYNAMICDISTURBANCE

• LARGEVOLUME • LOWCORIOLIS

• LONGDURATION • PLATFORM,BUTPOSSIBLY
• NEGLIGIBLECORIOLIS SPACESTATION
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TETHEREDMICROGRAVITYFACILITY

20,0001bs. CONTAMINATION-FREE

5 X 10-4 g's ANDISOLATIONLEVELDISTANCE
FROMCG g's

200kin 10-1 PLATFORM

20kin 10-2
TENSION= 100Ibs---_ 1km
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LIFESCIENCESGRAVITYLABORATORY
(GRAVLAB)

TECHNOLOGYREADINESSPOSTIOC

MISSIONS_ _._ PROGRAM
• SOLARPOWERSYSTEMS • PLATFORMCONSTRUCTION
• BEAMBUILDING • LONGTERMHABITATION
• SPACELABEXPERIENCE • MANNEDOPERATIONS
• TETHEREXPERIENCE • EXTENSIVESERVICING

• SATELLITESERVICING 1

____________MISSING-_ _i

• MANNEDOMV



GRAVLABDESIGN-TETHERPLATFORMCONCEPT

TETHER SOLARARRAYS
REEL (DE-SPUN)

SYSTEM

DEPLOYED

MODULE MODULE LENGTHRPM g-LEVEL
MOTOR ,. 4 km 0.75 1.25

s"

• ENDMASSESASSUMED 1Okra 5 km 0.48 0.65
EQUALANDROTATING RETRACTABLE"_ 6 km 0.33 0.38
ABOUTCOMMONCENTER TETHER 8 km 0.20 0.16
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DE.SPUNANDSUN
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GRAVLABDESIGN-STATIONCONCEPT
• 4 MODULES,2 AT
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GRAVLABSTATIONDESIGN-TETHERENHANCEMENT

TETHERREEL
ANDCONTROL

• TETHERMAYBEUSEDTOCONTROL
ROTATION(HENCEG-LEVEL)WITHOUT
USEOFPROPELLANT
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CONCLUSIONS/RECOMMENDATIONS

• LIFESCIENCESSHOULDCONSIDERUTILIZINGTHELOWGRAVITYLEVEL
AVAILABLEWITHTHESHUTTLELAUNCHEDTETHEREDSATELLITESYSTEM

• THISSYSTEMCANSUPPORTLONGDURATIONEXPERIMENTSWHENPLACED
ONTHESPACESTATION

L,,'I

• POSTIOC,SPACESTATIONANDTETHERSYSTEMSWILLBEAVAILABLE
TOBUILDA ROTATINGSEPARATEVARIABLEGRAVITYLABORATORY

• FORSUCHA LABORATORY,TETHERSCANPROVIDEA LARGEANDEASILY
VARIEDRADIUSTOREDUCECORIOLISEFFECTS,ANDVARYTHEg-LEVEL





TETHERED ELEVATOR: A UNIQUE OPPORTUNITY FOR SPACE PROCESSING

R. MONTI

I. INTRODUCTION

i.;itestFluidynamic and Material Science experiments in

Microgravity Environment have emphasized the importance of

t)l_ residual gravity level and of the g-jitter on Fluids

Physics phenomena.

T!_esestudies point out at the importance of:

i) studying the combined steady residual g-level and/or the

y-jitter on the different classes of experiments.

2) studying the non-linear effects on the fluid systems such

as: accumulation during the experiment time, stability of

fronts ( liquid-fluids interfaces, solidification fronts,

di]Jlusionfronts) and consequently evaluating the effects

uI_onthe processes under study.

3) separating the effects of the residual constant

gravity-level from the effects of g-jitter.

The above points are of interest not only for a proper

analysis of the experimental results and for a rational

design of microgravity experiments, but also for allowing

ti_(_Sponsoring Space Agencies and/or the Manufactoring

Companies to adopt useful criteria in the design

requirements of the platforms and of the microgravity

laboratories. Sound requirements are in fact desperately

sought about the residual gravity levels, below which

scientific returns from the various experiments can be

ensL1]-ed;the danger is to make expensive and useless e/forts
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in reducing the gravity field at too low levels that are too

demanding for Space hardware.

A number of the above questions could be resolved by

experimenting at conditions of zero-gravity (say at levels
.L

of I0 g) and by evaluating the effect of increasing gravity

levels on single experiments, if the possibility exists of

increasing at will the residual gravity.

2. G-LEVEL TOLERABILITY OF SPACE PROCESSING EXPERIMENTS

The strong reduction of the g-level ensured by the Space

efivironmentsis not always sufficient to guarantee the

thermofluidynamics fields wanted by the experimenters (that

is the fields corresponding to real zero-gravity

conditions).

Fo_- instance, the problems of the stability of the

solidification fronts, of the stability of the symmetry

c()ndJtions (spherical, cylindrical and plane) points out at

the possibility that there might be a number of accumulation

processes (memory of the system) particularly when the

boundary conditions are somehow dependent on the

thermofluidynamics fields themselves.

As an example we briefly analyze the application of a

_-level step disturbance and its effect on the propagation

of a plane solidification front.

In consequence of the g-level, buoyancy forces are produced;

they induce a convective velocity field which distorts the

concentration and/or temperature fronts ahead of the

solidification front in the liquid where the process of
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solidification takes place and which is mainly controlled by

diffusion processes in absence of gravity.

This distortion depends on the level of the residual

gravity, on the characteristics of the fluid and on the

boundary conditions.

The relation between the order of magnitude of the induced

convective speeds and of the diffusion speed can be taken as

a measure of the disturbance.

The ratio between the convective speed and the diffusive

speed can be very high, also for small values of the imposed

g-level, and, consequently, also the distortion of the

solidification front can be relevant. The return of the

g-level to very small values, even if the boundary

conditions have not changed, seldom allows a return to the

conditions of a plane front within a reasonable time (the

tllelmaland mass diffusion velocities, are typically very

small).

Another important example is the effect of a g-level on the

spherical symmetry of a thermofluidynamic field.

Let use consider a spherical drop of a liquid or a solid

sphere that are dissolving or forming in a liquid matrix at

condition of zero gravity; typical examples are those of the

solL_tiongrowth or of the drops formation (e.g. cooling

through a miscibility gap).

Periodical g-_itter disturbances have different effects on

the overall drop motion and on the thermofluidynamic field

around the drop: the overall drop motion may be not relevant

in a purely g-jitter field with zero average value

(displacements of the drop relative to the liquid tend to
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cancel out during a cycle) but the temperature and

concentration field distortion could be of importance if

some stability limits are trespassed.

The order of magnitude of the times necessary to cause the

distortion, in comparison to those needed to return to

:;i,hericalfronts, are in the same ratios as the (induced)

convective velocities and the diffusion velocities:

Vc/Vd=g?/ DP
where D is the thermal (or mass) diffusion coefficient and

i_:the density variation consequent to a temperature or to a

concentration non uniformity.

Referring to typical values for the acqueous solutions it

results (for g=10_ _ ):

t_/t4 _ i0 (mass diffusion)

t_/td _ I_ (thermal diffusion)

l'l,iswould mean that it is necessary to wait a time of the

order of 15 minutes for each of 104gdisturbance that lasts

one second only, in order to obtain the zero-g concentration

conditions again, and to wait a time of the order of 2

minutes, in order to obtain the conditions again for the:

zuro-g temperature distribution.

Of course the real situation is more complex insofar as t_J,

<'_,nvectivemotion has to decay to a zero velocity condition

(the decay is related to the viscous momentum propagation

time _/_ ) and the zero-g concentration and/or temperature

fields must have time to reach purely diffusive conditions.

The evolution towards those conditions strongly depends __;
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the problems under study and it is difficult to give general

quantitative indications.

11_ the case of g-jitter with a certain frequency it is more

di[r4icult to anticipate what is the order of magnitude of

tI_e times involved, mainly because those caused during a

_,mli-period might be compensated by that induced in the next

somi-period.

T]_, € _ise becomes more difficult if limits of stability are

tre_{[,assed, this occurs when, for instance, the

_j-disturbance is able to induce in the liquid sort of Benard

cells that create a flow pattern that may be independent of

the direction of the g-level during the semiperiod.

3. POTENTIALITIES OF A TETHERED ELEVATOR

It is desiderable the realization of a platform able to: i)

s,:,tlevels of zero gravity to certain payload, 2) allow a

cont_-o]]ed change of this level within values of I0_ < g/_ <

]0 ,lJld3) create accelerations with controlled amplitudes

and frequency.

In fact application of controllable g-levels allows to

answer a number of questions posed by recent results of the

experimentation in microgravitational Fluidynamics.

The Tethered Elevator could have the possibility of

providing variable g-levels (both steady and g-jitter)

around a very low steady g-level (that can be realized when

the Elevator is near the center of mass of the Space

Station-Tether complex). Sliding the elevator at a distance

(e) from the center of mass one gets a steady g-level that

i._ al,proximatively equal to: g/_ = 31/R; R being the
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distance of the center of mass from the center of the earth

( ty_,icallyg/_ = 4.4 10_for each meter of the distance

(])).

Whe,lpositioning a variable periodic oscillation to the

I_ly]oada clean g-jitter disturbance can be obtain that

wouid not be otherwise obtainable by other systems. These

two possibilities make the Elevator a unique facility to

hel_ resolving a number of still open questions.

4. MODEL EXPERIMENTS

A number of experiments can be deviced to ascertain the

,,!i_,ctof the g-level on some class of experiments.

Two experiments falling within the fluidynamics problematics

indicated in Section 2 are briefly described.

A) A copper sphere is suspended inside a transparent liquid

l_1_,trix(See Fig.l) and is observed by holography or

Jntorlerometry in order to visualize the isotherms. When

heating the sphere by Joule heaters embedded in the copper

_fl_,_,,starting from an isothermal spherical simmetry,

(i.,. when locating the payload at the CG of the system, or

very close to it) and before any interference occurs with

non spherically-symmetric boundaries (if any) the isotherm

_ittern look as in Fig.2. The thermal field can then be

disturbed either by moving the payload gently out of the CG

(to a steady g-level) or inducing a preselected g-jitter. At

those new conditions the isotherms (that will be

axi_ymmetric along the induced g direction) will evolve

towards another pattern due to the convective flow field

JI_duced by the thermal buoyancy forces _Fig.3). '!'!_,
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evolution time depends on the values of the flow velocities.

Aft_r a quasi-steady pattern has been established, the

zero-g conditions are reestablished on the payload: the

system will the evolve towards the initial, spherical

symmetric, diffusion controlled situation.

Th_ time necessary to restore the zero-g thermal pattern

will depend on the value of the flow field velocities and on

the characteristic thermal diffusion time.

I_)A very similar experiment can be deviced for a mass

diffusion controlled experiment in which a dissolving sphere

of solid material is suspended in a solution and the

iso-concentration frents are visualized by a similar

diagnostiu apparatus. A spherical symmetry can be ensured

J<,rthe diffusion controlled (zero-g) process by suitable

b<,u_l_Jarygeometry and conditions.

The measurement of the times necessary to disturb the

a×isymmetry and to restore it at different steady and

g-jitter levels will greatly help in the establisment of

v_1[i_]criteria for the g-level tolerability in a very

important class of MS experiments (e.g. solution crystal

gJo_vthand vapour crystal growth).

5. CONCLUSIONS

The Tethered Elevator will greatly contribute to the

solutions of many still open problems that are preventing a

i,lucJlwider utilization of the Space environment in the

Microgavity area.

Dt,t_JJed study must be carried out to enable the E]evator to

I' _:_,im _long the" l_ri_,llydescribed ]ines.
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Fig. 1 - Spherical heater suspended in a transparent box
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conditions
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GRAVITYUTILIZATIONISSUES

KennethR. Kroll

JohnsonSpace Center,NASA

• Can the extra cost of a tetherbe justified?

• Is movementof the space stationcenter of gravityacceptable?

• should microgravitylaboratorymodulesbe moved to the tether?

• should balancingtether applicationsbe used?

Is changingproximityoperationsproceduresand hardwareacceptable?

• Can a tether crawlerbe developed?

• Can dockingbe done at a centerof gravitywhich is on the tether?"

• Will platformsbe permanentlydeployed•

• Where will servicingbe performed?

• Is tethermovementto be limited?

• Can experimentsbe stoppedfor disturbances?

• Which is more important:manned involvement low disturbancelevels?

• Can experimentsbe remotelycontrolled?

• Can power and communicationsbe suppliedthroughthe tether to a moving

platform?

• Will laboratorymovement adverselyaffect experiments?

• What are the best proceduresfor limitingtethermovement?

Can disturbancesensitivityand variablegravitylaboratorycoexist?

Is liquid settlingthe primaryuse of gravity?

• Are long tetherlengthsfor small sizes practical?

• How can higher gravity level medicalexperimentsbe integratedinto the

space stationsystem using a tether?

Venezia, 16 October,1985
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CONSTELLATIONS PANEL
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CONSTELLATIONS PANEL SUMMARY REPORT

Introduction

The ConstellationsPanel, because of its limitednumber of

attendees, shared its llfe during the Workshop in part with the Micro-

gravity Panel and in part with the Space StationPanel. It could,

therefore,benefit from the inputs of two differentpanels which are

related to tetheredconstellations. Tethered constellations,in fact,

can providea valuablesolution to projects such as the mlcro-g/variable-

g laboratory,the multl-probetetheredsystem,and the centrifugefor

low-gravityapplications.

The following presentation highlights the versatility of tethered

constellations and the various different configurations that have been

conceived so far. The presentation is divided into three sequential

tlmeframes which have, as a central reference point, the IOC (Initial

Operating Capability) phase of the Space Station program. Therefore the

demonstration flights of certain one-dlmensional tethered constellations

belong to the Pre-lOC-Era while the final, operational utilizations of

the one-dimensional tethered constellations belong to the lOC-Era. All

the other more complex configurations, such as the two-dimensional

constellations and a couple of new ideas developed during the Workshop,

have been listed under the Post-lOC-Era category.
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Pre-lOC-Era

i. Demo flight for the mlcro-g/variable-g (space elevator) with a

modified TSS system (e.g., adding a down-scaled elevator to the TSS)

2. Shuttle-borne, multl-probe I-D system for simultaneous data collec-

tion (e.g., measurement of spatial geophysical gradients with good

time correlation)
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2. DEMO MULTI-PROBE SYSTEM1. DEMO MULTI-g/VARIABLE-g
(BEADS ON THE TETHER)

( TSS

SCALED DOWN
ELEVATOR

_ FD
FD ___ _ _ -

k 1 PROBE
2 PROBE
3 PROBE

_ ) TSS

@ ' @
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lOC-Era

3. Micro-g/Variable-g Lab (space elevator) Space Statlon-borne

4. Space Station c.o. (orbital center - center of mass) management

5. Space Statlon-borne multi-probe system
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3. I-D, 3-Mass, Vertical, Tethered Constellation (SS at one end)

PURPOSE - Multl-purpose system:

- micro-g/variable-g

- controlled g variations

- service to the end platform

NEED - Strongly requested by the micro-g community

- g-tuning

- g-Jitter

- controlled-g time profile

- hysteresis cycles

BENEFITS - Unique capability of providing time varying g-profile from

microgravity level to lO-2g

SCIENCE & TECHNOLOGY

E'7 ENDPLATFORM

MICRO-g/VARIABLE-g
LAB

I I

ORBITAL CENTER

_]_ {_ SPACE STATION

ix2
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FEASIBILITY - high

PRACTICALITY - high

COST BENEFIT POTENTIAL - N/A for variable-g applications

- TBD for micro-g applications

PRIORITY - Ist

REQUESTED TECHNOLOGY - Very accurate accelerometers for micro-g

applications

- Very smoothly operating reeling systems or

crawlers

ALTERNATIVE APPROACHES - None for mlcro-g/varlable-g combined

OTHER THAN TETHERS applications

NEAR TERM APPLICATION - Demonstration flights with the Shuttle (modify

TSS system by adding a simplified elevator)

FUTURE APPLICATIONS - Attached to the Space Station
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4. I-D, 3-Mass, Vertical, Tethered Constellation (SS in the middle)

PURPOSE - Management of the system's orbital center

NEEDS - Especially required if another payload is deployed on a tether

and the micro-g lab is on the SS

BENEFITS - Greater operation flexibility w.r.t, micro-g experiment

schedule

SCIENTIFIC PLATFORM

MICRO-g LAB
C.O. AT THE ORBITAL CENTER

BALLAST
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FEASIBILITY - high

PRACTICALITY - high

COST BENEFIT POTENTIAL - TBD

PRIORITY - Ist

REQUESTED TECHNOLOGY - Very accurate accelerometers

ALTERNATIVE APPROACHES - Alone if tethered systems are deployed on one
OTHER THAN TETHERS side and simultaneous micro-g experiments have

to be performed

FUTURE APPLICATIONS - Attached to the Space Station
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5. I-D, More Than 3-Mass, Vertical, Tethered Constellation (multl-probe
tethered system)

PURPOSE - Measurement of spatial geophysical gradients

BENEFITS - The system can reach low altitude orbits that are not

achievable otherwise

- It provides simultaneous data at different locations (good

time correlation of the measurements)

_ SHUTTLE

_., FD (OR SPACE STATION)

LV

f

I_ EARTH
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FEASIBILITY - high

PRACTICALITY - medium high

COST BENEFIT - N/A

PRIORITY - Ist

CRITICAL DESIGN AND REQUESTED TECHNOLOGY - o Dynamic analysis

o Crawling system

o Operational sequence for

deployment and retrieval

ALTERNATIVE APPROACHES - None if simultaneous data collection is required
OTHER THAN TETHERS

FUTURE APPLICATIONS - Space Shuttle flight (or Space Station)
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Post-lOC-Era

All the following applications are supposed to be free-flylng systems.

6. Quadrangular 2-D constellations electrodynamlcally stabilized.

7. Quadrandular 2-D constellations stabilized by differential alr drag.

8. Pseudo-elllptlcal2-D constellation,electrodynamlcallystabilized.

9. Centrifuge for low-g application: >lO-3g.

I0. Torquing of a spinning station (or vehicle) for controlling the

precession rate of the spin axis.
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6. 2-D, Electrodynamically Stabilized Constellation (ESC)

PURPOSE - Separation of Junctions in a physically connected configuration

FEASIBILITY - Medium

PRACTICALITY - With complexities

PRIORITY - 2nd

CRITICAL DESIGN - o Multl-reel system control

o Better dynamics analysis required

FUTURE APPLICATIONS - TBD

_ 10 Km =-I

ELECTRO-MAGNETIC
FORCES

! /
0

FLIGHT c_ CURRENT

DIRECTION

LOCAL
VERTICAL
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7. 2-D, Differential Drag Stabilized Constellations (DSC)

PURPOSE - Separation of functions in a physically connected configuration

FEASIBILITY - Medium

PRACTICALITY - With complexities

PRIORITY - 2nd

CRITICAL DESIGN - o Multi-reel system control

o Better dynamics analysis required

FUTURE APPLICATIONS - TBD

--

FLIGHT

DIRECTION I

I

P
J _

LOCAL
VERTICAL
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8. 2-D, Electrodynamically Stabilized, Pseudo-Elliptical Constellation
(PEC)

PURPOSE -External frame for stabilizing light structures (e.g.,

reflectors, solar sails)

FEASIBILITY - High

PRACTICALITY - Medium high

PRIORITY - 2nd

CRITICAL DESIGN - Multl-reel system control

FUTURE APPLICATIONS - TBD

E
,4
O

_,, FLIGHT _ ['_"_

DIRECTION LJCURRENT

10 Km ._1

LOCAL
VERTICAL
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NEW IDEAS

9. CENTRIFUGE FOR LOW GRAVITY: >10-3g

rl r2
11 L 9

SPIN AXIS

I0. TORQUING OF A SPINNING STATION FOR CONTROLLING THE PRECESSION RATE

OF THE SPIN AXIS: (e.g., Keeping the spin axis aligned with the
local vertical)

, @I
I
I

F I

H

F

-J-- IIGIMBALLED/STABILIZE D
H : 2R " F *,AXIS

I

I
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CONCLUSIONS

I-D vertical constellations provide unique capabilities (Ist priority)

- 3-mass system (space elevator) can provide variable-g environ-

ment from microgravlty level to lO-2g.

- More-than-3-mass system provides simultaneous data collection

at different locations.

- 3-mass system (SS in the middle) for SS orbital center

management allows simultaneous micro-g experiments and other

tether assisted experiments.

2-D constellations (2nd priority)

- Stable configurations proposed for providing a separation of

functions among physically connected platforms.

- Pseudo-elllptlcal constellations provide an external 2-D frame

for stabilizing light structures (e.g., reflectors, solar

sails).

RECOMMENDATIONS

Improve the fidelity of dynamics models, especially w.r.t, tether

dynamics

Tether construction

- multl-function tether concept to be further developed

- tether physical characteristics; effects on the system dynamics

Ingenious design of crawling systems

Improve the knowledge of mlcro-g/variable-g requirements
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SMITHSONIAN ASTROPHYSICAL OBSERVATORY WORK DONE UNDER CONTRACTS:
60 GARDEN STREET NAS8-35497 NASA/MSFC
CAMBRIDGE, MASSACHUSETTS 02138 NAS8-36606 NASA/MSFC
U.S.A. RH4-394019 MMC

PANEL PRESENTATION

ON

DYNAMICS OF TETHERED CONSTELLATIONS

IN EARTH ORBIT
"-4

BY

ENRICO LORENZINI

PRESENTEDTO:

APPLICATIONS OF TETHERS IN SPACE WORKSHOP
VENICE, ITALY
15-17 OCTOBER 1985



SUMMARY OF PRESENTATION

, PHASE I STUDIES

STATION KEEPING OF SINGLE-AXIS AND TWO-AXIS CONSTELLATIONS

- WRAP-UP OF PHASE I STUDIES ALREADY PRESENTED TO NASA/MSFC

- FURTHER ANALYSIS CARRIED OUT ON TWO-DIMENSIONAL CONSTELLATIONS

- SINGLE-AXIS VERTICAL CONSTELLATIONS. LOW-G PLATFORM

• PHASE II STUDIES

DEPLOYMENT OF CONSTELLATIONS

- SINGLE-AXIS VERTICAL CONSTELLATIONS WITH THREE MASSES

--DEPLOYMENT STRATEGY

--DAMPING OF VIBRATIONAL MODES



PHASEI STUDIES

DYNAMICSANDSTABILITYOFA HORIZONTALTETHER

WITHADOWNSTREAMBALLOON

'STABILITYCONDITIONWHENNEGLECTINGTHE

TETHERDRAGCONTRIBUTIONISGIVENBY:za2CDi_A2AZ _q,,'_'___6 p _, ____ " c_
_ ,,j

tt,, 'm_
'THESYSTEMDECAYBY:

A2+AI _cada vlrt,_a_
dt - 2 CD ml+m2 p_a

'STABILITYANDSYSTEMLIFETIME,WITHOUTREBOOSTING,ARECONTRASTINGREQUIREMENTS

'MAXIMUMHORIZONTALTETHERLENGTHACHIEVABLESTRONGLYLIMITEDBYTECHNOLOGICALLY

ATTAINABLEA/MRATIOOFTHEBALLOON(MAXIMUMA/M= zo - 20M2/KG)



DRAGSTABILIZATIONLIMITSFORSINGLE-AXISHORIZONTALCONSTELLATIONS

AREA/MASS= A/M2- 1o M2/KG

MinlmumAtmo. Density Maximum Atmo. Density

Exospherlc Temp. = 600K Exospheric Temp. = IIOOK

da da (km/day)_k_) _(m)* d_(k_/ _a_(m) d_
day)**

150. 2.31x105 2.84x103 3.23x105 3.97x103

o 200. 1.89xi04 2.29xi02 4.79xi04 5.82xi02

300. 5.47x102 7.05 4.51xi03 5.36xi01

400. 3.57xi01 0.42 7.58xi02 8.80

500. 3.64 0.04 1.61xi02 1.83

*h = maximum horizontal length for stable
max configuration

**da
d-_= orbital decay rate



ORIGINAL"FISH-BONE"CONFIGURATIONSTABILITYANALYSIS

'STABILITYCONDITION,WHENNEGLECTINGTHE =,,A=

( lll

HORIZONTALTETHERDRAGCONTRIBUTION,IS: --I

1 a 2 3A! +dt1£ q , _'_/_,_€._.._i

3A2+dt2£2 I) > 1

-TETHERAIMRATIOINCREASESBYDECREASING _- _,,,_, _,

ITSTHICKNESSBUTITISNEVERTHELESSSMALL _--£_--__
. WHENCOMPAREDTOTHEBALLOONS. ,_

- m1,,,A, LLV |
M,= 2_,i+m_2,

-THENECESSITYOFA MASSIVEDEPLOYERSYSTEM _ :z_,_+_z, _',,_*

ATMASSM22STRONGLYREDUCESTHEMAXIMUM
A/MRATIOOFTHEDOWNSTREAMVERTICALTETHER

SUBSYSTEM.

'CONCLUSIONS

-THE"FISH-BONE"CONSTELLATION,WITHOUTANYMODIFICATIONS,HASA STABILITY

(MAXIMUMALLOWABLEHORIZONTALTETHERLENGTH)LOWERTHANTHESINGLEAXISHORIZONTAL

CONSTELLATION.



STABILITYLIMITSFORA "FISH-BONE"CONSTELLATIONVS,ORBITALALTITUDE

'ASSUMPTIONS

£2 = £1 = 20 km

A2/m12 = l0 m2/kg ; Al/mll = 4x10-3 m2/kg

dt2 = 1 mm (kevlar) ; dtl = 2 mm (kevlar)

mll = m12 = 200 kg

m21 = i000 kg ; m22 = 800 kg (deployer) + 200 Mg (balloon) = i000 kg

Minimum Atmo. Density Maximum Atmo. Density
ExosphericTemp. = 600K ExosphericTemp = II00K

da da
z(km) hmax(m)* _ (km/day)** hmax(m) _ (kin/day)

150. 9.54xi04 5.99xi04 1.33xi05 8.38xi04

200. 7.81xi03 4.83xi03 1.98xi04 1.23x104

300. 2.26xi02 1.49xi02 1.86xi03 1.13x103

400. 1.47xi01 8.87 3.13xi02 1.86xi02

500. 1.50 0.84 6.65xi01 3.86xi01

*h = maximum horizontal length for a stable configurationmax

**da
d-_= orbitaldecay rate



'SOMECONCEPTUALEXAMPLESOFTWO-DIMENSIONALCONSTELLATIONSHORIZONTALLY

STABILIZEDBYAIRDRAG(DSC)

-WITHTHISCONFIGURATIONTHEDRAGFORCEISFULLYEXPLOITEDTOGUARANTEE

THEMINIMUMTENSIONLEVELINTHEHORIZONTALTETHERSANDNOTTOCOUNTERACT

GRAVITYGRADIENT,



'SOMECONCEPTUALCONFIGURATIONSOFTWO-DIMENSIONALCONSTELLATIONSWHERESHAPE

STABILITYISPROVIDEDBYELECTRODYNAMICFORCES(ESC).

-ELECTRODYNAMICFORCESSTRETCHTHECONSTELLATIONWHILETHERESULTANTISZERO

SOTHATTHEYDON'TINCREASETHEORBITDECAY,



DESIGNPARAMETERSFORDSCANDESC..

"ASSUMPTIONS

Orbit Altitude = 500 km; mto t = 4x5000 kg = 20 metric tons; h/£ = 0.5; Near Equatorial Orbit.

*T ffiTension in the horizontal tethers

**Orbit decay rate computed for average atmo. density.

"DSC WITH HORIZONTAL TETHER DIA. =.2 nun.

Min. Atmo. Density Aver. Atmo. Density Hax. Atmo. Density m_
Exosp. Temp.= 6OOK Exosp. Temp.= 800K Exosp. Temp.= llOOK Orbital Decay

*T(N) T/3Ufl2 dia. balloon (m) dia. balloon (m) dla. balloon (m) (km/day) h(km) [(km)

_=_ 0.02 1.21xlO8 137.92 51.78 20.72 0.62 9. 18.

t_n 0.04 2.42xi0B 195.05 73.22 29.31 1.25 14. 28.

0.06 3.63x108 230.88 89.68 35.90 1.87 23.5 47.

"ESC (OPTION i) ALL ALUMINUM TETHERS WITH THE SAME DIA.

V = Electro B!V Diameter Solar Orbit
*T(N) Motive h(km) t(km) Conductive Current Power Panel Decay

Force (KV) 360_2 Tether (mm) (Amp) (kw) Area (m2) (km/day)

0.06 0.21 0.2 2.76 20. 1.61xlO -2

0.1 ,0,2? 0.33 4.55 32.5 1.83x10 -2

0.2 13.80 lOxlO 8 10 20 0.38 0.67 9.23 66.0 2.39x10 -2

,0.3 0.47 1.O1 13.80 98.6 2.93x10 -2

0.6 0.67 2.03 27.98 199.9 4.55x10 -2



"ESC (OPTION 2) HORIZONTAL WIRES ALUMINUM, VERTICAL WIRES COPPER

- COMPARATIVE TABLE

T(N) I (Amp) Y(KV) Power(KW) Comments

13.8 13.8 All wire aluminum

0.3 1.01 10.6 10.6 Horizontal A1 + .38 mm dia. copper
vertical

7.6 7.6 Horizontal AI + .$4mn dia. copper
vertlcal

_ "ESC (OPTION 3) HORIZONTAL WIRES KEVLAR VERTICAL WIRES COPPER

- FRONT VERTICAL WIRE AS ALFVEN ENGINE

- REAR VERTICAL WIRE AS POWER GENERATOR

- POWER TRANSFER (TRANSFER VOLTAGE 5kV, EFFICIENCY 90%)

BIFILAR LINE TO DELIVER POWER MADE OF SAME COPPER WIRE

I(A) T(N) Vdelivered ([V) V(KV) P(I[W) Comments

0.2 0.06 2.96 2.44 .49 •
0.33 0.1 2.54 3.06 1.02 •
0.67 0.2 1.71 4.89 3.26 •
1.0 0.3 1.07 6.53 6.53 •

0.2 0.06 3.32 1.58 .316 ••
0.33 0.1 3.08 1.93 .643 ••
0.67 0.2 2.54 3.06 2.04 ••
1.0 0.3 2.17 3.93 3.93 *•

- •Vertical tether copper R = 30009 die. = .38 mm
• •Vertical tether copper R = 1500Q die. = .54 mm



PSEUDOELLIPTICALCONSTELLATIONELECTRODYNAMICALLYSTABILIZED(PEC)

'ASSUMPTIONS
F

- ALUMINUM WIRE DIA. = .67 mm gg _fgg
- THIS KIND OF STRUCTURE CAN BE USED AS

EXTERNAL FRAME TO STABILIZE A LIGHT fe
TWO-DIMENSIONAL STRUCTURE

(e.g. A REFLECTOR)

FD

C1)

Current Voltage TI(N) T2(N) Pezlmeter F
(Amp) (kV) gg

LV
Case 1

h = 2a = 20 km
£ = 2b = 40 km 1.130 12.4 1.35 .56 96.88

Case 2

h = 2a = lOkm
£ = 2b = 20 km .565 3.10 .339 .141 48.44



TRIANGULARCONSTELLATIONSSTABILIZEDBYAIR DRAG

•STABILITY ANALYSIS

- ASSUMPTIONS

ORBITAL ALTITUDE = 500 km

3-MASS 1000 kg EACH

BALLOON BALLISTIC COEFFICIENT = 10 m2/kg

BALLOON DIA. = 100 m

A SMALL PITCH ROTATION OF THE _-I"

co CONSTELLATION MAKES ONE OF THE

INCLINED TETHERS GO SLACK.

I:D
Constellation Rotation (del) that causes one of the inclined

tether to go slack, as _a.function of |eometrlcal pazameter:

0.3 0.5 0.7 1.0 h/£

h(ka)

5, 4°42 2_'.03 I°.39 0°,9.5 _" I

+o. 2;22 ,:o, o:+9 0=47 8,° |
I',s-"

15. 1+.48 0_.67 0':46 0".+1 _" %



PRELIMINARYCONCLUSIONSONTWO-DIMENSIONALCONSTELLATIONS

"ORIGINAL "FISH-BONE" CONSTELLATIONS ARE STABLE WITH VERY SHORT HORIZONTAL

TETHERS (LESS THAN 100 M. AT 500 KM ALTITUDE).

"ALTERNATIVE SOLUTIONS ARE QUADRANGULAR DSC's AND ESC's AND, FOR SPECIAL

APPLICATIONS, PEC'S.

"IN ALL OF THEM ROTATIONAL STABILITY IS PROVIDED BY GRAVITY GRADIENT

(SUITABLE MASS DISTRIBUTION) WHILE SHAPE STABILITY IS PROVIDED BY

DRAG FORCES OR ELECTRODYNAMIC FORCES.

"SUITABLE DESIGN PARAMETERS CAN PROVIDE GOOD STABILITY WITH A REASONABLY

LOW POWER REQUIREMENT FOR ESC'S AND FEASIBLE BALLOONS FOR DSC'S.

"ESC's HAVE A STRONGER TENSION IN THE HORIZONTAL TETHERS THAN DSC's AND

AN ORBIT DECAY SMALLER BY AN ORDER OF MAGNITUDE.

"ESC's ARE SUITABLE FOR LOW INCLINATION ORBITS. AN OSCILLATION AROUND THE

VERTICAL AXIS AT ORBITAL FREQUENCY IS UNAVOIDABLE BECAUSE ESC's TEND TO

KEEP THEIR LONGITUDINAL PLANE PERPENDICULAR TO THE _ VECTOR.

"DSC's CAN FLY AT ANY ORBITAL INCLINATION. THE YAW OSCILLATION SHOWS UP AT

HIGH INCLINATION ONLY DUE TO THE EARTH'S ROTATING ATMOSPHERE.



SINGLE-AXIS,VERTICALCONSTELLATIONWITHTHREEMASSES

"GOOD STABILITY

"MIDDLE MASS LOCATED AT THE SYSTEM ORBITAL CENTER FOR LOW-G APPLICATIONS

"ORBITAL CENTER IS 1.2 m LOWER THAN THE SYSTEM C.M. IN THE CONSTELLATION

UNDER INVESTIGATION

"DESIGN PARAMETERS ADOPTED

End Platform(m2)
-ORBIT ALTITUDE = 500 km

-ORBIT INCLINATION = 28.5°

-TETHER LENGTH = 10 km
oo
o

-mI (S/S) = 90.6 TON

-m2 (BALLAST) = 9.06 TON I

-m3 (LOW-G) = 4.53 TON
Flight
Direction

c.m.

"STATION KEEPING PHASE HAS BEEN SIMULATED ] Low-g Platform (m3)

-J2 GRAVITY TERM TAKEN INTO ACCOUNT

-TETHER TRANSVERSE MODES NEGLECTED _y//_ SpaceStation(ml)

-LONGITUDINAL DAMPERS NOT INCLUDED IN Local Vertical

THE SIMULATION to the Earth Center



*LOW-G APPLICATIONS, STATION-KEEPING PHASE 

IN-PLANE COMPONENT VS. TIME OUT-OF-PLANE COMPONENT VS. .TIME 

HRSS srnBoL 
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PHASE II STUDIES

• TWO-DIMENSIONALMODEL IMPLEMENTEDTO STUDY AND OPTIMIZE DEPLOYMENTMANEUVERS

OF SINGLE-AXISVERTICAL CONSTELLATIONSWITH THREE MASSES

- SPECIALIZED SOFTWARE NECESSARY FOR PARAMETRICAL STUDY OF DEPLOYMENT

- STUDY GOAL IS TO DEVISE A DEPLOYMENT STRATEGY WHICH MINIMIZES THE

DISTURBANCES (ACCELERATION LEVEL) ON BOARD THE LOW-G PLATFORM

- SAME DESIGN PARAMETERSAND />k!h_,.,)
ORBITAL CHARACTERISTICSAS

IN STATION-KEEPINGSTUDIES

THROUGHOUTsTuDIESDEPLOYMENT • ' </_
'C.I,

RaSS)

z (local recital)

(Space Station)

Lagran_ian coordinates:

e - in-plane angle
€ - lateral deflection

£I • tether length of tether 11 • (orbit semi-n-jor axis)

13 • tether length of tether #2

to the center of the Earth



SELECTION OF THE DEPLOYMENT STRATEGY

• ASSUMPTIONS

- NO DAMPERS

- UNSTRETCHABLE TETHERS

- INITIAL ALIGNMENT ERROR OF THE THREE MASSES: _ = 5 CM

• DEPLOYMENT STRATEGY

- RATE CONTROL LAW DESIGNED IN ORDER TO KEEP THE MIDDLE MASS AT THE

SYSTEM C.M. THROUGHOUT THE ENTIRE MANEUVER

- LATERAL DEFLECTIONS (AND ACCELERATIONS) OF THE.MIDDLE MASS ARE KEPT

LOW BY FOLLOWING THE ABOVE MENTIONED STRATEGY

- WHEN DEPLOYMENT IS COMPLETE THE MIDDLE MASS SHOULD BE MOVED TO THE

ORBITAL CENTER

• DETAILS ON THE CONTROL LAW

- ACCELERATION PHASE (CONSTANT ANGLE)

(t) : _I EXP (st) o < t < t_ (TRANSITION TIME)

- DECELERATION PHASE

_(t) = _( - (_ - _T) exp [-fl(t-t_)]t_ < t < tsK

#= -
- ALL THE CHARACTERISTIC LENGTHS ARE IN THE SAME RATIOS AS THE FULLY

DEPLOYED TETHER LENGTHS.
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COMMENTSON DEPLOYMENTSIMULATIONSWITHOUT DAMPERS

- BY MAINTAININGTHE MIDDLE MASS AT THE SYSTEM C.M. THE

PERTURBATIONSON IT ARE MINIMIZED DURING DEPLOYMENT.

- THE ACCELERATIONLEVEL, HOWEVER, DEPENDS ON THE INITIAL

MISALIGNMENTERROR OF THE THREE MASSES.

- AT THIS STAGE OF THE STUDY DAMPING OF LATERAL OSCILLATIONS%0
o

APPEARSTHE MOSTDIFFICULT.

- THE MIDDLE MASS SHOULD BE MOVED TO THE ORBITAL CENTER

(ZEROACCELERATIONPOINT IN STEADY STATE CONDITION),WHEN

THE DEPLOYMENTHAS BEEN COMPLETED.



DAMPING OF VIBRATIONAL MODES

• IMPROVEDTWO-DIMENSIONALMODEL

- ELASTIC TETHERS

- LONGITUDINALTETHER OSCILLATIONDAMPERS

• MODIFIED TETHER CONTROL LAW

- OPTIMIZED ANGULAR FEEDBACK FOR RATE CONTROL LAW

--OVERALLLIBRATIONCONTROL

--EFFECTIVEALSO IN DAMPING TRANSVERSEOSCILLATIONS

• THE ORBITAL VELOCITY STRONGLYAFFECTS THE IN-PLANERESPONSE SO THAT

THE BEST DAMPING CYCLE IS NO LONGER SHAPED LIKE A YO-YO CYCLE.

• THE BEST OSCILLATIONCYCLE MAKES THE SATELLITE FOLLOW AN S-SHAPED

TRAJECTORYWITH DECREASINGTETHER LENGTH FOR RETROGRADE TETHER

LIBRATION.



• TETHER LIBRATIONDAMPING (8)

- ENERGYDISSIPATEDPER CYCLE

Eo= 2!j_(_-n)_dt

- THE TERM DEPENDINGON 11(ORBITALRATE) IS DOMINATING

- IN ORDERTO HAVE Ed>> 0 A GOOD CONTROLLAW IS

2

_€= _s_(i - KoS) so that Ed --_2_s_Ke ZIldt Sdt

\
• TRANSVERSE OSCILLATION DAMPING (_) \

- ANGULAR EEEDBACK THAT TAKES INTO

ACCOUNT THE LATERAL DEFLECTION _\

DAMPS OUT LATERAL OSCILLATIONS _%
\%
\

-es_1[z K.(o_/el)]tether_zt_z

_o_=e_,[z K.(o+_/_)]tether#2 __
rnl

!
!



• TETHER LONGITUDINALOSCILLATIONAND TETHER LIBRATIONHAVE

FREQUENCIESDIFFERENT BY AN ORDER OF MAGNITUDE

• SIMULTANEOUSMULTI-FREQUENCYDAMPING BY REEL-CONTROLIS AN OPTION.

REEL-CONTROLTUNED IN TIME SHARING TO FREQUENCIESTHAT ARE TO BE

DAMPED OUT IS ANOTHER OPTION

• A LONGITUDINALDAMPER (SPRING+ DASHPOT) PER EACH TETHER IS PROBABLY%0

A SIMPLER SOLUTION

- THIS SOLUTION IS ADOPTED
zz,_z/

IN THE FOLLOWING SIMULATIONS L

- EACH DAMPER IS TUNED TO THE
/

RESPECTIVETETHER'S
n

L_N L,GITUDINALFREQUENCY _

- CRITICALDAMPING FACTORS n
ARE MORE EFFECTIVETHAN

I'

- LONGITUDINALDAMPERS

STRONGLYREDUCE THE LIKELI- _

HOOD OF SLACK TETHER



• MODIFIEDDEPLOYMENT STRATEGY + DAMPERS

- LONGITUDINALDAMPERS ACTIVE THROUGHOUTTHE WHOLE MANEUVER

- ACCELERATIONPHASE EQUIVALENTTO PREVIOUS DEPLOYMENT (CONSTANTANGLE)

- WHEN TETHER VELOCITY OF PHASE I MATCHES TETHER VELOCITYREQUIRED BY

ROTATIONALDAMPER ON, ROTATIONALAND TRANSVERSEDAMPERS ARE SWITCHEDON

--A COSINUSOIDALTRANSITIONLAW IS USED TO MATCH THE TETHER LENGTHS

--THE ROTATIONALDAMPER DRIVES THE SYSTE_ TO A COMPLETEDEPLOYMENT

_c -- _I exp (at) acceleration phase
%O

_c= _sK[l-fir- k0(0 - E/_)] rotationaldamper on

fir= (_ztr-_it_)cos (2 t/Try)

- MODIFIED DEPLOYMENT STRATEGY RESULTS IN A FAST MANEUVER

- THE ELASTIC TETHERS ASK FOR EXTRA CARE IN THE INITIAL PART OF

THE MANEUVER

--IN LINE THRUSTER RECOMMENDABLE

--PRESENT SIMULATIONS START AT A TETHER LENGTH (20 M AND 200 M

RESPECTIVELY) WHERE THE IN-LINE THRUSTERS ARE SUPPOSED TO GO OFF
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• COMMENTSON DAMPING OF VIBRATIONALMODES DURING DEPLOYMENT

- EFFECTIVEWAY OF DAMPING LONGITUDINAL,LATERALAND SYSTEM

LIBRATIONSHAS BEEN DEVISED

--DAMPINGOF LATERAL OSCILLATIONSREQUIRESA GOOD KNOWLEDGE

OF THE THREE-MASS ALIGNMENT

--ROTATIONALANGLE WITH RESPECT TO THE LOCAL VERTICAL ALSO

REQUIRED. A LOWER ACCURACY THAN THAT FOR THE LATERAL

DEFLECTIONIS NECESSARY.
_oo - FAST DEPLOYMENTHAS BEEN ATTAINED
to

- INITIAL OSCILLATIONSDAMPED OUT IN FEW HOURS SO THAT FINAL

ACCELERATIONLEVEL ON THE LOW-G PLATFORM IS LOWER THAN THAT

ESTIMATED IN THE STATION-KEEPINGSTUDIES (THEFORCING TERMS

ARE INACTIVETHIS TIME).
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TECHNOLOGY AND TEST PANEL SUMMARY REPORT

October 16th Summary

Either the Technologyand Test panel did an outstanding Job at the
Williamsburg workshop two years ago, or the same people are repeating the
recommendations that were made then. In actuality, it is a combination of
the two situations because the basic tether technology requirements have not

changed nor have the people who were involved in 1983 changed all that much.
In fact, the new panel members reinforce the position of the continuing
members. As a result of this situation, the panel makes no new recommenda-
tion nor does it have any new applications to propose. This position is
pending interfaces and inputs from the other discipline panels, but prelimi-
nary discussions indicate continuing technology concerns from the other
panels also.

The Technology and Test panel spent the day in formal presentations and
reviews of the ongoi_ngtechnology related work. The morning session was
spent reviewing the;Atmospherlc/Aerothermodynamlc or tethered "wind tunnel"
concept, specifically the TSS-Z proposal, and the Shuttle Tethered Aero-
thermodynamic Research Facility ?easlbillty/deflnltion study results. The
panel endorses this work as an important near-term tether application and
recommends an aggressive design and development program. (It was also
brought to the panel's attention that a high priority recommendation of the
S&A panel was a low atmosphere mission similar to that proposed by STARFAC).

The second technology area reviewed was tether mission (science) and system
(engineering) instrumentation. Ongoing studies have concentrated on the
definition of instrument requirements for the atmospherlc/aerothermodynamic
mission but have also touched on general tether applications system perform-

ance monitoring and control instrumentation such as satellite positioning
laser systems to supplement GPS capabilities, tether temperature, and tech-
niques for failure detection (fiber optic). An instrumentation issue
surfaced as a result of a stated requirement for a tensiometer to be located
at the satellite during TSS-2 and STARFAC missions to define system drag and
support system control and post-fllght dynamic modeling and performance
analysls. If such a measurement is necessary for TSS-2, why shouldn't TSS-I
also have such a measurement to support similar analysis. As a result of
discussions, the panel recommends that the inclusion of such a measurement be
studied and implemented if possible.

The morning session was concluded with presentations, by Turcl, relative to
the status of Aeritalian studies: (I) Tether Pointing Platform, a system
similar to that proposed by Lemke of NASA ARC to provide a controlled remote
platform for TBD tether application; (2) Tether Space Elevator Mechanism
Concepts, the development of which is an enabling technology for Variable
Gravity Applications and transportation of platforms and systems along a
tether.

The afternoon was spent reviewing various dynamic simulation/mission modeling
capabilities. Although SKYHOOK and GTOS5 were not formally presented, they
were discussed and are considered the base simulation systems at this time.
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The question being asked is "Is there a need for a 'universal' simulation
capability and, if not, how can mission designs and analyses be regulated and
controlled for consistency and reliability?" This subject will be discussed
tomorrow, and a recommendation will be made.

Not included in today's summary because of a lack of interested or involved
participants (which [s probably a result of a lack of activity In the area)
was the subject of tether materials and configurations. This lack of activi-
ty is of concern to the panel because a recommendation to initiate applica-
tions related tether requirements and development studies was made at the
Williamsburg workshop. Tether materials and configurations is an enabllng
technology without which the tether application program cannot mature and
evolve.

Tomorrow's activities will center around briefings from 3oe Kolecki relative
to Electrodynamic Technology and 3oe Carol relative to Expendable Tether
Capabilities. The latter will provlde a method for accomplishing early tech-
nology related tether tests, as well as continued tests during the interim
years between TSS-I and TSS-2 which now may be as much as 3 years. Finally,
the panel will review its activities and formulate its final recommendations.
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TECHNOLOGY &: TEST
._H

OCTOBER 16, 1985 SUMMARY

REVIEWED:

• ATMOSPHERIC/AEROTHERMODYNAMIC (TETHERED WIND .TUNNEL) CONCEPT
-- TSS--2 PROPOSAL----CARLOMAGNO

-- STARFAC FEASIBIUTY/DEFINITION----SIEMERS

PANEL ADVOCATES CONCEPT/RECOMMENDS CONTINUED DEFINITION
AND DEVELOPMENT

• INSTRUMENTATION----WOOD

-- SCIENCE FOR ATMOSPHERIC/AEROTHERMODYNAMIC
-- ENGINEERING FOR TsS_rAS

r_

TENSIOMETER REQUIREMENTS FOR TSS DYNAMICS MODEUNG AND

CONTROL (?) MAJOR CONCERN RELATIVE TO INSTRUMENT
AT SATELUTE

• TETHER POINTING PLATFORM CONCEPT STUDIES----TURCI
-- TECHNOLOGY SUPPORTING TAS MISSIONS TBD

• TETHER SPACE ELEVATOR MECHANISM CONCEPT (CRAWLER)
-- ENABUNG TECHNOLOGY FOR VARIABLE GRAVITY
-- ENABUNG TECHNOLOGY FOR TRANSPORTATION ALONG TETHER

CONCEPTS

• DYNAMIC MODEUNG

-- "UNIVERSAL" SIMULATION CAPABIMTY (?)



TECHNOLOGYANDTEST

SessLon IV

Flnal Oral Report

October 17, 1985

This Is the final oral report of the Technology and Test panel. Whereas the
other workshop panels are primarily concerned with the definition of tether
applications, the Technology and Test panel's emphasis has been relative to
the accomplishment of promising tether applications. It is the opinion of
the panel's members that the early definition of the enabling technologies
and the initiation of programs required to resolve the tether related
technology issues is critical to the success of the TSS program as well as
the growth and maturing of the tether concept. In addition to defining
specific tether technology issues, the panel has defined a technology based
application as well as several systems concepts requiring technology
development to realize their potential. The technology issues, application,
and systems defined are:

1. Tether Requirements/Materials Configuration
2. Tether Dynamics
3. TSS-2 Supporting Technology
_. Shuttle Tethered Aerothermodynamic Research

Facility--Application
5. TSS-1/Electrodynamic Tethers
6. Space Elevator--System
7. Tether Pointing Platform--System
8. Time

Technology Issue--Tether Requirements/Materials/Configuration

In spite of a lack of participants wlth a specific interest in this
technology area which concerned the panel, the panel expressed considerable
concern relative to the issue with the concluslon that the definition and
development of tethers is the singular most critical technology related to
the implementation of the tether applications defined to date. It is impera-
tive that the tether characterLstlcs/requlrements necessary to accomplish the
various proposed applications be defined. One of the ongoing tether technol-
ogy related actlvlties which must be continued and expanded is the definition
of potential tether environments and the development of tethers that are
compatible with that environment. Issues such as temperature, atomic oxygen,
ultravlolet and infrared radiation, micrometerold impact, and many others
must be defined and addressed. An extremely important issue related to the
Shuttle Tethered Aerothermodynamlc Research Facility tether application is a
high temperature tether capable of operating under large loads at tempera-
tures in excess of 1000= K. Another significant tether characteristic that
must be defined and will require considerable development is the requirement
to be conductive In order to generate or transmit power or provide a
communication 11nk between tethered system and parent vehicle.

Another critical design consideration for future tethered applications is the
incorporation of tether system redundancy to minimize or eliminate payload
loss or parent vehicle damage due to tether damage or failure. A related
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technology system recommended for design and definition is a system of
instrument capability that would detect tether failure and provide early
warning for system safety.

As a result of these tether issues, the Technology and Test panel recommends
that (1) NASA and PSN initiate a coordinated program to define tether
requirements and a development and test program to evaluate tether concepts
and materials, (2) that, because of the importance of this issue and the lack
of specific participation relative to this technology issue, a Tether
Nequlrements/Materials/Conftguration panel be established for the next
workshop to generate interest and activity in the area.

Technology Issue--Tether Dynamics

The panel spent considerable time reviewing tether dynamic simulation
capabilities. It is believed by the panel that the development of accurate
dynamic simulation/mission modeling capabilities is critical to the accept-
ance of the tether concept. It is imperative that the dynamic character-
istics of TSS-I and TSS-2 be accurately predicted to ensure the acceptance of
the concept. Nothing will do the program more damage than to have the flight
dynamics differ from the predictions. With this in mind, the panel expressed
concern that there are numerous special purpose simulation capabilities in
existence and the number is growing at what seems to be an exponential rate.
This lack of control o_ the dynamic modeling and simulation programs elimi-
nates any basis for program comparison or checking relative to application
feasibility studies and mission planning. This lack of a coordinated
dynamics/mission simulation capability was of concern to the Technology and
Test panel as was an inability, due to environment simulation capability, to
generate a test case for evaluation of the various dynamic models. Even the
major programs, SKYHOOK and the recently developed GTOSS, require
verification.

As a result of the panel concerns9 it is recommended that the existing Tether
Dynamics Working Group's activity be expanded to include the design, develop-
ment, implementation, and review of a dynamics "test case" incorporating the
TSS-I and TSS-2 missions for program verification. Concepts for earlier
simulation tests should be seriously studied and considered. The Tether
Dynamics Working Group should oversee and provide a peer review function of
the results of the "test case" simulation results and, as a result, make
recommendations relative to future development of dynamic/mission simulation
capabilities as required for tether applications. As with the Tether
Requirements/Materials/Configuration issue, the establishment of a Dynamics
panel for future workshops is recommended. (As major technology issues

•evolve into significant work areas, their considerations by the Technology
and Test panel is no longer productive except in overview capacity.)

Technology Issue--TSS-2 Supportin9 Technology Programs

The success of TSS-I and TSS-2 is crltical to the evolution and growth of the
tether concept. While the TS5-1 mission will be discussed later, the
successful accomplishment of TSS-2 has significant implications to future
atmospheric tether missions and related programs. There are several TSS-2
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related technology issues which concerned the Technology and Test panel,
namely:

Instrumentation
Materials

Aerothermal Analysis
Dynamics
Configuration (Satellite)

The issue of instrumentation relates to the design and development of both
the mission control instrumentation; such as, tensiometers, which the panel
recommends at each end of the tether for all the TS5 missions for dynamic
control and post-flight verification, and tether temperature sensing for
mission control and tether performance verification as well as science
related instrumentation. Relative to the science instrumentation, it is
important to note that the TSS-2 mission will operate in a region of the
upper atmosphere that imposes peculiar measurement requirements to define
molecular species and determine ion and electron concentration at both the
satellite surface as well as across the flow field; i.e. Mass Spectrometer
and Rayleigh Scattering (laser systems), respectively. While Mass Spectrom-
eters are flight qualified, their design is peculiar to each mission, and
laser flow-field profiling is a ground-based capabillty requiring consider-
able study prior to flight certification. Finally of concern was the
development of heat flux sensors for the satellite and the tether and the
need for instrumentation capable of detecting tether failure.

The panel was also concerned about tether and satellite materials. Since the
panel is interested in extending TSS-2's operating range (below 130 km
altitude), studies relative to both tether and satellite materials that will
perfom at higher temperatures are recommended. The development of high
temperature tether and satellite materials is a prerequisite to the accomp-
lishment of aerothermodynamic research in the free-molecule and transition
flow regimes proposed for TSS-2, as well as being of interest and value to
the proposed STARFAC missions. These proposed TSS-2 studies are required to
define thermal, as well as aerodynamic, design parameters for future atmos-
pheric missions. Preliminary studies indicate rapid increases in tether
temperature as well as significant increases in length of tether required to
accomplish lower altitude missions. The increased tether requirement occurs
as the aerodynamic drag on the tether and satellite approaches the gravity
gradient force, and the tether deployment angle deviates significantly from
the vertical. These aerothermodynamic phenomena result in requirements for
considerable studies relative to tether/satellite dynamics as well as mission
studies relative to the deployment, mission operations, and retrieval of the
tethered system, specifically relative to communication, tracking and
satellite/tether control. The TSS-2 mission, as well as extended capability
baseline geometry missions, could significantly contribute to an understand-
ing of the upper atmosphere and upper atmospheric aerothermodynamics.

Finally, the panel expressed considerable concern relative to the mission
turn-around time between TSS-I and TSS-2 and the lack of compatibility of the
objectives of TSS-I and TSS-2 satellite configurations. It is believed that
such delays will considerably compromise the impact on the success of the
first mission and thereby the potential growth of the concept and its

213



applications for space station particularly. Consideration should, there-
fore, be given to the development of two satellites--one for electrodynamic
missions and one for atmospheric missions.

The primary recommendation relative to TSS-2 is the initiation of detailed
system studies to define the mission limitations of the present TSS configu-
ration and the definition of the modifications, both tether and satellite,
required to extend the present capability to lower altitudes. Such studies
would include all the previously discussed TSS-2 supporting technology
issues.

Technology Issue--Shuttle Tethered Aerothermodynamic Research Facility -
STARFAC

This is the Technology and Test panei's proposed tether application and is an
extension of the proposals presented relative to TSS-2. STARFAC Is a
research proposal that would take advantage of the tether concept's peculiar
capability to provide in-situ steady-state aerothermodynamic/atmospheric
data. The proposal recommends the extension of the TSS-2 capability to an :
altitude of 90 km. While present studies indicate that a passive TSS-2
configured sateIlite may be llmlted to 100 km altitude, the inclusion of
negative lift, propulsion, or tether configuration changes, could extend
this capability. The supporting technologies as discussed relative to TSS-2
are:

Instrumentation

Materials (see Technology Issue--Tether Requlrements/
Materials/Configuratlon)

Configuratlon
Dynamlcs/Mission Design (see Technology Issue--Tether

Dynamics)

The STARFAC proposal extends the research capability to include the
transition and possibly slip flow regimes while the TSS-2 is probably Iimited
to the free-molecule regime. This capability expands the studies required to
support the development of the enabling technologies.

The panel recommends thatstudies be initiated as soon as possible relative
to mission design and iimitation definition, as well as the development and
test of required hardware systems with emphases on instrumentation and high
temperature components. These recommendations are compllmentary to the TSS-2
recommendations.

Technology Issue--TSS-1/Electrodynamic Technology

The interaction between the Electrodynamic and Technology and Test panels was
initiated as a result of concerns expressed by Technology and Test panel
members relative to TSS-I success. The interaction resulted In a "charged"
discussion about the success potential of the planned mission. As a result
of this discussion, it was Jointly agreed, the details of the agreement were
included in the Electrodynamlc panel's final report as given by 3oe KoIecki,
"that a plasma contactor (hollow cathode) sffouldbe Included and operated on
the Orbiter during the TSS-I mission."
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For the futureof the electrodynamictether concept,the developmentof
tether conductors and insulators is critical. It is recommended that, as
discussed in Technology Issue--Tether Requirements/Materials/Configurations,
tether materials receive priority study with significant emphasis on electro-
dynamic applications. (Electrodynamic and atmospheric high-temperature
tether configurations are of particular significance to the tether program
because of the TS5 program and the near-term potential of these two
concepts.) Finally, the success Of the electrodynamic tether concept depends
on the generation of power in kilowatts which requires the development of
high voltage power managementand control hardware. (Bee Electrodynamic
panel's report for details.)

Technology Issue--Space Elevator (Crawler)

The implementation of many tether applications requires the development of a
tether crawler for tether inspection but primarily for the transport of
materials and equipment between a space station, for example, and a tethered
work station. Such a system capability requires the development of technolo-
gy and then the design and development of the required mechanisms. The panel
encourages continued design effort relative to the Space Elevator (Crawler)
concept. Such work is presently underway by Aeritalia.

Technology Issue--Tether Pointin_ Platform

The Tether Pointing Platform is a system proposed by both NASAand Aeritalia
for various applications relative to tether controlled operational missions.
The Technology and Test panel recommendscontinued study of this concept
leading to feasibility definition and demonstration.

Technology Issue--Time

The Technology and Test panel is concerned relative to the timely definition
and development of the application's enabling technologies. The development
of these technologies must be accomplished to allow the evolutionary growth
of the tether concept. Technology will control the future of the tether
(second only to dollars).

The only recommendation that can now be made is that the technology related
programs discussed be implemented as soon as possible, quickly, NOW!

That concludes the final report of the Technology and Test panel--thank you.
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TECHNOLOGY AND TEST

TECHNOLOGYISSUE :

• TETHER REQUIREMENTS/ MATERIALS I CONFIGURATIONS

• DEFINE TETHER CHARACTERISTICSTO SUPPORTTETHER APPLICATIONS

• ,REDUNDANCY
• ENVIRONMENTCOMPATIBILITY
• CONDUCTIVE I NON-CONDUCTIVE
• HIGH TEMPERATURE
• TRANSMISSIONCAPABILITY

I--=

POWER
COMMUNICATION

• FAILUREDETECTION

RECOMMENDATIONS :

• INITIATECOORDINATEDNASAIPSN PROGRAM TO DEFINEREQUIREMENTS AND
INITIATEDEVELOPMENTAND TEST OF TETHER CONCEPTS AND MATERIALS

• ESTABLISHTETHER REQUIREMENTS/ MATERIALS I CONFIGURATIONPANEL
FOR NEXT WORKSHOPTO GENERATEINTEREST I ACTIVITY

q



TECHNOLOGY AND TEST
,11

TECHNOLOGY ISSUES :

• ELECTRODYNAMICS
• TETHER MATERIALS

• CONDUCTORS
• INSULATORS

• POWER MANAGEMENTAND CONTROL
• HIGH VOLTAGE

• INCLUSION I OPERATIONOF PLASMA CONTACTOR(HOLLOW
CATHODE)ON ORBITER DURINGTSS-1 MISSION

co

• SPACE ELEVATOR(CRAWLER)
• MECHANISM DESIGN AND DEVELOPMENT

• TETHER POINTINGPLATFORM
• CONCEPT DEFINITION



TECHNOLOGY AND TEST

TECHNOLOGY ISSUE :
• TSS-2 SUPPORTINGTECHNOLOGY PROGRAMS

• INSTRUMENTATION
• TENSIOMETER
• TETHER TEMPERATURE
• HEAT FLUX SENSORS
• FLOW FIELD PRORLING INSTRUMENTS (RAYLEIGHSCATTERING)
• MASS SPECTROMETERINLETS
• TETHER FAILUREDETECTION

,- • MATERIALS
',.,0

• TETHER
• SATELLITE

• AEROTHERMALANALYSES - THERMAL CONSTRAINTS
• DYNAMICS I MISSION STUDIES

• COMMUNICATION
• TRACKING
• CONTROL

• CONFIGURATION (TSS'2 AND TSS-1)

RECOMMENDATIONS:
• DEFINE MISSION PLAN WITHIN CAPABILITIESOF PRESENT CONFIGURATION
• DEFINE MODIFICATIONSREQUIREDTO EXTEND PRESENT CAPABILITY



TECHNOLOGY AND TEST

TECHNOLOGY ISSUE :

• SHUTTLE TETHERED AEROTHERMODYNAMIC RESEARCHFACILITY
CONCEPT TO EXTEND ATMOSPHERIC/AEROTHERMOCAPABILITYTO
90 km ALTITUDE

• SUPPORTINGTECHNOLOGY
• INSTRUMENTATION
• MATERIALS
• CONFIGURATION

I',,o

o • DYNAMICSIMISSION DESIGN

RECOMMENDATIONS :

• INITIATE STUDIES RELATIVETO STARFACDESIGN DEVELOPMENTAND TEST
WITH EMPHASISON :

INSTRUMENTATION
HIGH TEMPERATURECOMPONENTS



TECHNOLOGY AND TEST

TECHNOLOGY ISSUE :

• TETHER DYNAMICS

o SPECIAL PURPOSE SIMULATIONCAPABILITIESARE NUMEROUSAND GROWING
° NO BASIS FOR COMPARISON! CHECKING
° NO COORDINATEDDYNAMICS I MISSION STUDY CAPABILITY

RECOMMENDATIONS:
p-=

• DEFINITION/ DEVELOPMENTOF TSS-1 / TSS-2 DYNAMICSTEST CASE

• EXPANDDYNAMICS WORKING GROUP'S ACTIVITY TO INCLUDE
IMPLEMENTATIONAND REVIEW OF TEST CASE RESULTSAND PROVIDE
PEER REVIEW FUNCTION- RECOMMENDFUTURE DEVELOPMENTFOR
TETHER APPLICATIONS

• ESTABLISHDYNAMICS PANEL FOR FUTURE WORKSHOPSAND TAS REVIEWS



TECHNOLOGY AND TEST

TECHNOLOGY ISSUE :

TIME

RECOMMENDATION:

IMPLEMENT TECHNOLOGY RELATED PROGRAMS QUICKLYFO

( NOW ! )



REFERENCE-I

AN EXPERTSYSTEMFORDEPLOYMENT,RETRIEVALANDCONTROLOF

TETHEREDSATELLITES

by

W. Teoh
M.C. Ziemke

The Universityof Alabamain Huntsvil|e
Huntsville,Alabama 35899

October1985
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ABSTRACT

Withinthe next few years, there will be a Space Shuttlemissionwhereina
satelliteon a conductingtetherwill be flown 20 km above the orbiterand a
non-conductingtether satellitewill be flown 100 km lowerthan the spacecraft
orbit of 200 km to 240 km. These tetheredsatelliteswill be deployedby a
systemconsistingof a precisely-controlledwinch and an extendableboom-type
projector. Once projecteda distanceabove or below the spacecraft,the
satelliteswill begin to feel the effectsof the gravitygradientand pull away
with increasingforce, requiringwinch brakingto controldeploymentspeed. For
satelliteretrieval,the winch will requirepower input. The processof optimum
tetheredsatellitecontrolobtainedthroughbrakingand/orpoweringthe winch
can be rathercomplexand will requirethe developmentof a set of system
controllaws. This complexityarisesfrom severalfactorsof tetheredsatellite
dynamics. The atmosphericdrag on the satelliteand its tetherwill vary with
altitude,especiallywhen the lower satellitemoves down into the transition
flow regionbelow 130 km. It is also believedthat the satellitewill develoQ
swingingmotionswhich must be dampedby precisetuggingof the winch.
Additionalforces on the tetherwill resultfrom the electrodynamiceffectsthat
occur when a currentflows along the conductingtether. Other controlcomQlica-
tions arise from the use of moving subsatelliteinstrumentpackagesdeployed
from the spacecraftor from the deploymentof a subsatellitefrom the main
tetheredsatellite.

It is believedthat an expertsystemcould be verybeneficialto the optimjm
controlof the tetheredsatellitesby the winch and boom. The Universityof
Alabamain Huntsvilleis currentlydevelopingan expertsystem (calledDEX) that
can be used for dockingmaneuversof the 0MV. A similarconceptcan be used to
develop an expert systemto controlthe tetheredsatellitesystem'sreel and
boom mechanism. The use of this expertsystemcan substantiallyreduce the man-
power requirementsduring the deploymentand retrievalof tetheredsatellites.
Additionally,it can maintaina stableconfigurationin the interimby intro-
ducing controlleddampingthroughvariationof the tethertension.

Becausethe only tetheredsatellitesystemdata availableto date is derived
from simulationstudies,it may not be initialypossibleto constructa complete
knowledgebase. Thus, the tetheredsatellitecontrollaws, sensorsignalpro-
cessing,self-]earningand manual over-ridecapabilitiesmust be built into this
proposedexpertsystem.
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SCIENTIFICOBJECTIVES

- provideinformationsrelativeto the aerodynamicand heattransfer
coefficientswithinthe rangeof the thermo-fluid-dynamiccondi-
tionsexperiencedby thesatelliteduringTSS atmosphericflights,

-improve the understanding of the gasdynamic processes occurring
downstreamof the bowwavestanding in front of the satellite.

O_

-. implement the knowledge of the chemistry and physics of the upper
atmosphererelated to satellite aerothermodynamics,

- check for the existence of an overshooting of the air drag coeffi-
cient of the sphere in the transition regime (Bird AIAA J. 1966,
Kussoy& Stewart AIAAJ. 1970).



TECHNOLOGICALOBJECTIVES

- define TSScapabilities with regard to atmospheric .flights,

-exploit parallel feasibility studies concerning tether materials, aero-
dynamicstabilizers etc,

- provide valuable engineering informatlons on the TSSoverall experimental
envelope of operat lon,



MOTIVATIONS

-current wind tunnel technology does not provide reliable thermo-
fluid-dynamic data in the combined low Reynolds number and large
Mochnumberregime,

- present computational methods cannot yield the required thermo-
fluid-dynamic coefficients because of computational limitations
and/or lack of on experimental data base,

-designers who need free-molecule/transition-flow regime data ore
forced to resort to empirical representations based upon sparse
flight data and/or extrapolation of wind tunnel data,

-the researcl_ will give preliminary results on thefeasibility
of a tethered system mainly devoted to oerothermodynamicresearch,



AIMS

-the present .research yields a complete set of measurementswithin the
extended range of flight conditions and/or the long time of operation
encompassedby TSS,

- a. proper instrumentation allows the execution of "in situ" measurements
to characterize the upper atmosphere and provides the data base to

_D

develop and validate theoretical models of free molecule/transition
flowfields.

-the comparison of computational data with flight measurements can
produce a reliable design tool for future flight systems operating
in this regime;

- in the first atmospheric mission the molecular mean free path of the
free stream will vary by two orders of magnitude, Large variations
are also present for temperature, I_ressure, density, molecular weight
and speed ratio,
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RELATIONTOOTHERONGOINGRESEARCHPROGRAMS

" researchto definethe Orbiter'saerothermodynamicsin thefree-molecu-
le/transitionflow regime is currentlysponsoredby the Officeof
Aeronauticsand SpaceTechnology(OAST)of NASAas partof theOrbiter
Experiment(OEX)program,

- SCOWT is the first step towarddevelopementof the ShuttleTethered
AerothermodynamicResearchFacility(STARFAC)

-advanced hypersonicflightsystemswhich operatein the rarefiedatmo-
sphere as AeroassistedOrbiterTransferVehicle (AOTV)and Entry Re-
searchVehicle(ERV)are presentelyunderfeasibilitystudy,

- SCOWTsupportsthe developmentof the computationalmodelsrequiredin

orderto designthe .aboveflightsystemsand to reducethe development
timeandflightdemonstrationcosts,



INVESTIGATIONAPPROACH

A comprehensiveset of measurementsis performed to characterize:

I,o

- state vector of the satellite (position, velocity, attitude)

- free stream characteristics (composition, density, etc,)

- satellite/flow field interotion (forces, skin temperatures, heat fluxes,
boundary layer composit ion)



CURRENTLYIDENTIFIED CANDIDATEMETHODS PROJECTEDR&D
MEASUREMENTS UNDERCONSIDERATION REQUIREMENTS

EXTENDED MODERATE
GROUNDBASEDSHUTTLEAND N.A.
SATELLITERELATIVETO
SHUTTLETRACKINGS

TSSATTITUDE 3-AXESGYRO-SYSTEM *
TETHERTENSION 3-AXESTENSIOMETER *
SATELLITEACCELERATION 3-AXESACCELEROMETER *
INTERNALTEMPERATURES GROUNDEDJUNCTIONTHERMO- *

COUPLES
SURFACETEMPERATURES CO-AXIALOR PARALLELRIB- *

BONTHERMOCOUPLES
HEATFLUXES STANDARDSENSORSAS THIN *

FILMS,CALORIMETERS,ETC.
FREESTREAMGAS FREESTREAMMASSSPECTRO- *
ANALYSIS METER

BOUNDARYLAYERGAS BOUNDARYLAYERMASSSPEC- *
ANALYSIS TROMETER

FLOW-FIELDPROFILING RAYLEIGHSCATTERING,IR, *
LASERFLUORESCENCE



STATEVECTOROF THESATELLITE

L_

- the ground based Shuttle tracking and the satellite-relative-to-Shuttle
tracking give the TSSBest Extlmated TraJectory (BET),

-BET together with the outputs of the.3-axes accelerometer-gyro system
give the complete state vector of the satellite (position, velocity and
att ] tude),



SHUTTLETRACKING TSS
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TENSIOMETER

- the overall force exerted by the tether on the satellite is measuredby
a three componentbalance (tensiometer),

- the force measurementtogether with accelerometer data can provide the
fluid dynamicdrag.

- in the atmospheric missi,on the presence of tensiometer on the satellite
will give valuable informotions on tether dynamics,
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THERMALMEASUREMENTS

-internal temperatures can be measured with grounded Junction thermo-
couples, Present In-house thermocouple calibration facilities ere
adeguatewithout further development,

oo

-surface temperatures can be measuredwith either co-axial or petal]el
ribbon thermocouples, An experimental measurementsverification program
will be performed to insure that the sensors meet the accuracy require-
ments,

- heat flux measurementscan be performed by one of the standards methods
selecting the sensor by temperature level, and heat rote level and
frequencies considerat ions,
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HEATFLUXMEASUREMENTS

-heat flux sensorsmust be investigatedwith regardto theirfrequency
response,

- heat flux sensors generally are bodies whosetemperatures are measured
et knownpoints,

o

- four types of one-dimensional heat flux sensors have to be basically

considered: thin film (T1); thick film (T); wall calorimeter (T2);
gradient sensor (3T),

- the slab back face can be either insulated (adiabatic; Q2=O)or main-
tained at a given temperature (in contact with a heat sink; T2=O),

- amplitude and phase lag are dependent on frequency e)and thermal dtffusi-
vtty coefficient a.



NOTATIONFORONE-DIMENSIONALHEATFLUXSENSORS

QI - IQllsin _t
T

.T = ITIsin (rot + .)

• _ T AT = T -T
_Q2 1 2

¥ =sOTd×/L
t



STARFAC EQUATORIAL CIRCULAR ORBIT SIMULATION

Orbiter Target leLher LengLh SaLellite leLher Tension Deploy I Orbiter lather
AILitude Altitude (km) Altitude lemperaLure Orbiter lime ! Altitude SimulaLion

(kin) (kin) (kin) ('K) (Newtons) (5ec) Haintenance Hass Point.u
larger Actual

200 N/A 90 91.] 109.5 774 341 8803 Infinite Hass 2

200 " 90 100 102. ] 909 35J B803 None 2
200 " 90 Infinite Hass 5
200 " 90 102 10]. ] 904 554 72411 " 8
200 " 90 " 10
200 " 95 i " 2
200 " 1OO 138.5 100.1 934 1047 _0000 " 2
200 " 110 " 2
220 125 N/A 94.8 125 572 721 11000! " 2

FO
*'- 220 125. " 95.2 124.9 568 55_I tm_#i " 6

220 120 " 100 120 61) 762 i150OI " 2
220 120 " 96.1 120 604 720 9OO(iI None 2
220 115 " 105.5 115 706 802 12OOOlInfinite Hass 2

220 100 " 160.6 100.] 942 1251 400001 ,, 6
220 110 " 112.1 110 761 820 1]OOOI " 2
220 110 " 107.4 110 758 802 98001 Hone 2

220 95 " 187.7 97.7 978 1614 400001 Inf [ill te I{l._s _;
220 105 " 123. ] 105 H59 919 2ql}Oi)I " 2
220 100 " 152.9 100.2 944 1147 4OOOOI " 2
220 115 " I01.4 115 704 781 94OO1 Hone 2
220 100 " 12 I. 4 100.2 969 458 10OO01 " 2

_- 220 100 " 151. ) 100.4 941 377 40(i001 Low lhrusL 2
_-220 95 " 206.] 96.6 990 1595 40OOOIInfinite Hasa 2

220 95 " lqJ. 8 95 1004 576 15000] None 2
220 110 " 111.9 110 760 275 195OOI Low lhrusL 2
2qO H/A 130 lnfiniLe Ha_s ?
240 110 IliA 126.7 110 761 470 12(iiiii I tlo.c .,
240 100 " 14 i. 7 100. i 969 55zt 126iiiil " ,,
240 95 " 159.1 95.1 1046 629 lbt_OOl " ,,
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FREQUENCYRESPONSEOF O_;E-DIMENSIONALHEAT FLUX SENSORS (PHASELAG)
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BOUNDARYLAYERMASSSPECTROMETER

•-a "boundary layer" mass spectrometer ls being, developed to measurethe
gas composition end the ratio of neutral to charged molecules and atoms
at the satellite surface (behind the bowwave),

- tile instrument is a small double-focussing mass spectrometer projected
to weigh on the order of few kgs,

-to hove minimal effects on the flow, an "effusive" inlet is being
developed basedon a small disc containing parallel capillaries.



THE DOUBLE FOCUSSING MASS SPECTROMETER

Flow /- Effusiveinlet,=_

Ion source Spacecraftwall

Electrostaticlens

Ion beam
detectorplane

Inhomogeneousfield
magneticlens

THE EFFUSIVE INLET

105 capillariesicm2

Glassdisc i0 pm diameter
Gasflow through capillaries
the effusiveinlet
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SENSORFORCONCENTRAT!ONPROFILE

-t_ith regard to the Interaction between the satellite surface and tile
flow field, the possibility of measuring the concentration profiles in
tile boundary layer by meansof an Infrared (IR) concentration profile

",4

sensor will be evaluated,

-this study will define boundary layer resolution, spectral bandwidths
and level of concentrations which can be measured,

- alternatively the Rayleigh scattering and the laser fluorescence
techniques will be investigated,



TSS SECTIONVIEW

TYPICALMEASUREMENTLOCATIONS

TetherJ,to shuttle

Tensiometer

Power

Signal _---Output
_onditioner_" I.ni.ti.ate

Direction 2-4
of travel (_or T channels

on stabilizer
boomand tail

Stabilizer_

Le,;end

FSMS -Free stream massspectrometer

BLMS - Boundarylayer massspectrometerat TSSsurface

- Surfacetemperaturesensor or heat flux sensor,
not on samestreamline as any other sensor

c - Housekeepingtemperaturesensor
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CONCLUSIONS

-SCOWT's. primary objective is to perform "in situ" measurements to
provide aerodynamic and heat transfer coefficients at the conditions
experienced by the satellite duringTSS atmospheric flights,

-o complete set of measurements is performed in order to provide the
data hose to develop and validate theoretical models of free-molecule
transition flow fields,

- tl]e research is well related to other ongoing programs such as STARFAC,
AOTVand ERVpresently being investigated.

-SCOWTsupports the development of the models required to design tile
aboveflight systemsand to reduce developmenttime and flight demonstra-
t ion costs,





TECHNOLOGY AND TEST PANEL

PRESENTATION II

SHUTTLE TETHERED AEROTHERMODYNAMICS

RESEARCH FACILITY

(STARFAC)

INSTRUMENTATION REQUIREMENTS

OCTOBER 15 - 17, 1985

GEORGE M. WOOD
PAUL M. SIEMERS
SSD /IRD / LaRC

GIOVANNI M. CARLOMAGNO
UNIVERSITY OF NAPLES

JOHN HOFFMAN
UNIVERSITY OF TEXAS - DALLAS

251



Typical Physical Proper=les of =he
Terrestrial Atmosphere

Altl- i Temper- Number Mean
rude _ ature Pressure Density ._[olecular Research

Regions km oK torr N/cm a Weight Vehi:les

T °u 600 i000 2.1 x I0-I°-" I o 11.51
_, 0 " --9

:_ .__ 400 990 2.6x L0 15.98

x 300 976 1.4x I0-g 6 5xlO e 17.73o-4

= 250 941 I 6xlO -7 1.9x I09 19.19OJ

•-4 200 854 8.4x I0 _ 7.2x I0 _ 21.30
m

_- iS0 634 2 7x10 -6 4.9x i0l° 24.10

-_ o 140 520 4.6x i0-6 9.3x 10I° 24.75

o o =- 130 420 8.5x i0-6 2.0x I0it 25.44bd t.

o o It,

=_= =€.= ='_ 120 355 2.0x 10-s 5.4x 10 *t 27.27 1

,_° =° " 110 265 5.8x10 -s 2.1xlO tz 27.90
_ o
'J "_ i00 2 I0 2.4 x I0 -_ I. I x I0' 3 28.40_J

'!' 95 193 6.4x I0-_' 3.2x 10 J'l 28.60 .._
-- -- 90 176 1._. x I0 -3 7.6x 1013 28.77 o

85 160 2.9x 10-3 1.9x10 l_ 28.88

"O
80 177 7.9 x 10-3 4.2 x 10 l' 28.96 :

'_ 75 194 1.0 x 10-z 9.6 x i0 _ op. :0
"_ 70 211 4.4x I0-z 2.0x i0zst/]

c
= :n 65 232 9.4x i0-z 3.9x I0*s...4

-' - 60 253 1.9 x 10 1E 7.2x iOIs

55 273 3.6x i0-I 1.3x i016

"_ _ 50 274 6.6xi0 * 2.3xI0_6
..0

" _" 45 274 1.2x lO° 4.3xI0t6
4a " ,_ 4J
"" "& _ &0 268 _ __u"x"_° o J._u°.'x'_ls

o_' _= _ 35 252 :_.3xI0° l. Tx I0l_ ,_°
=-. o _ 30 235 8.6x i0° 3.6x i0 1";'

L _

_ 25 227 1.8x tO_ 7.7x 1017 "=
-- 0

----- 20 219 3.9xi0_ 1.7xI0*e

15 211 8.5xI01 3.9x IOta i

o '- I0 231 l.SxI0: 7.;x i0_a
,-.=.; --"

_._ 5 266 3.7xi0z 1.3xI0:_

0 291 7.6x102 2.5xI0:_ 28.96
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from; Heicklen,J.,"AtmosphericChemistry,"
AcademicPress,1972.

REPRESENTATIVE ATMOSPHERIC DAYTIME ION CONCENTRATIONS



EQUILIBRIUM AND NONEQUILIBRIUM GAS PROPERTY
COMPARISONS FROM AT POINT AWAY FROM THE WALL

Sphereconeat altitude=58km:Mach=14:Angleofattack=300
-4 -4

1.5 - x 10 3 - x 10 /
/

/
1.0- 2 //

Density. Viscosity, _
SIm2 _ ""kglm3 N• _.5 1- -

b

0 ! I I 0 I I I
L_7

3000- 6000-
/

//

2000r- 4000"_.... ""
Velocity, Tomperatur.e, ,-
m/see K Equilibriumflow

1000 2000- Nonequilib.flow,catalyticwall
....... Nonequilib.flow,noncat,wall

I I I I I I
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STARFAC

AEROTHERMODYNAMIC MEASUREMENTS AND INSTRUMENTATION

• RESPONSIBILITY OF TSS (STARFAC) TECHNOLOGY AND TEST PANEL AT LaRC
(SPACE SYSTEMS DIVISION; INSTRUMENT RESEARCH DIVISION)

• DEFINE ENGINEERING MEASUREMENTS NECESSARY FOR
" CONTROL AND HOUSEKEEPINGLn
l.n

• DEFINE SCIENCE MEASUREMENTS NECESSARY TO INVESTIGATE
AEROTHERMODYNAMIC ENERGY AND MOMENTUM TRANSFER

• DEFINE INSTRUMENTATION REQUIREMENTS AND ASSESS
STATE-OF-THE-ART

• MEASUREMENT ADVISORY PANEL TO INTERFACE AEROTHERMO-
DYNAMIC, ENGINEERING, AND MEASUREMENT SPECIALISTS

LaRC
7/18/85



STARFAC

SCIENCE MEASUREMENTS

i

CURRENTLY IDENTIFIED CANDIDATE METHODS PROJECTED R&D
MEASUREMENTS UNDER CONSIDERATION REQUIREMENTS

EXTENDED MODERATE

SURFACE TEMPERATURE THERMOCOUPLES. ,
DISTRIBUTION

_, HEAT FLUX RATE THERMOCOUPLES, CALORIMETERS =€
o, SURFACE PRESSURE CAPACITANCE, VARIABLE =_

DISTRIBUTION RELUCTANCE
FREE STREAM GAS FREE STREAM MASS _,

ANALYSIS SPECTROMETER
BOUNDARY LAYER GAS BOUNDARY LAYER MASS _,

ANALYSIS SPECTROMETER
FLOW-FIELD PROFILING RAYLEIGH SCATTERING, IR, LASER •

FLUORESCENCE

GAS DENSITY PRESSURE, TEMPERATURE, MASS ,
SPECTROMETER MEASUREMEI_TS

BOUNDARY LAYER PRESSURE, TEMPERATURE .
TRANSITION MEASUREMENTS

WALL CATALYSIS MASS SPECTROMETERTEMPERA- *
TURE MEASUREMENTS

LaRC 7/18/85



STARFAC

ENGINEERING MEASUREMENTS

CURRENTLY IDENTIFIED CANDIDATE METHODS UNDER PROJECTED R&D
MEASUREMENTS CONSIDERATION REQUIREMENTS

i

• ' EXTENDED MODERATE

TETHER TENSION TENSIOMETERS, ACCELEROME- *

TERS
TETHER TEMPERATURE REFLECTED ACOUSTIC WAVE *

PROPOGATION
SATELLITE SURFACE THERMOCOUPLES *

TEMPERATURE
HEAT TRANSFER RATE THERMOCOUPLES, CALORIMETERS *
SATELLITE INTERNAL THERMOCOUPLES, RADIOMETERS *

TEMPERATURE
DYNAMIC SURFACE CAPACITANCE, VARIABLE RELUC- *

PRESSURE TANCE
INTERNAL PRESSURE THERMOPILE, CAPACITANCE *
ACCELERATION (DRAG) ACCELEROMETERS, GYROSCOPES *
SATELLITE COORDINATE:; LASER RADAR *
SATELLITE / STS FIBER OPTICS, ELECTRONIC, *

COMMUNICATIONS LASER
a

LaRC 7/18/85



.TSS- 2 FREE STREAM GAS ANALYSIS

Objectives: Quantitativelydetermineneutralandionizedgasconcentrations
(NO= 109,N+= 106/cm3),in orderto relateglobalvariations
in free-streamcompositiontoTSS-1-operationalbehaviorand
to electrodynamicmeasurements.

(3O

Approach: Modifyandintegratean existingflightqualifiedVenusprobe
highresolutionmassspectrometerfor TSSuse.

Development:Designandfabricatefree-streaminlet;minormodificationof
electronicsto optimizeoperationparametersfor TSSmission,
incorporatedatastoragesystem.



THE DOUBLEFOCUSSING MASS SPECTROMETER
Flow

/-- Effusiveinlet

Ion source Spacecraftwall

Electrostaticlens

L,n
_J_

Ion beam
detectorplane

Inhomogeneousfield
magneticlens

THE EFFUSIVE INLET

105 capillarieslcm2

(;lassdisc ]0 IJmdiameter
(;as flowthrough capillaries
the elfusiveinlet



POTENTIAL NON-INTRUSIVE IWEASUREMIENTTECHNIQUES
FOR HYPERSONIC B_ARY-LAYER RESEARCH

Technique Measurement Issues
Passive

MassspectrometrySpeciesconcentrationSamplingandcollecting,single
pointmeasurement

Thermalemissions Temperature,species Poorspatialresolutionwith
identity averagingeffect

o

Optical

Rayleighscattering Totaldensity Noisefromstraylight,particulates.
andhighfluorescentemissions
behindshock

Ramanscattering Temperature.species SameasRayleigh- limitedto
concentration N2 identificationbelow+52kin,

N2 thermometrybelow40km
I

J
I |I IPI I IIl I I I • I i ,



QUANTITATIVE PHYSICAL MEASUREMENTS AND CANDE)ATE
MEASUREMENT METHOOS FOR AEROTHERMOOYNAMICSTUDIES

Currently Identified CandidateMethods
Measurements UnderConsideration

Surfacetemperature Thermocouples

Heatflux Thermocouples,calorimeters

Internaltemperature Thermocouples,radiometers

Surfacepressure Capacitance,variablereluctance,thermopile

Acceleration Accelerometers,gyros

• Free-streamcomposition Freestreamneutrallchargedparticlemassspectrometer

Boundary-layercompositionBoundary-layerneutralmassspectrometer

Density Pressure,temperature,massspectrometermeasurements

Flow-fieldprofiling IR, Rayleighscattering,laserfluorescence

Boundary-layertransition Surfacetemperatureandpressuremeasurements

Wallcatalysts Determinefrommassspectrometermeasurements

iii J



STARFAC

MEASUREMENT AND INSTRUMENTATION DEFINITION STATUS

• MAJOR ENGINEERING AND SCIENCE MEASUREMENTS IDENTIFIED

o, • CANDIDATE MEASUREMENT METHODS IDENTIFIED, BUI" NOT SELECTED
FOR EACH, STATE-OF-THE-ART ASSESSMENT CONTINUING

• R & D,REQUIRED : ALL METHODS WILL REQUIRE AT LEAST MODERATE
ENGINEERING R & D TO MEET SPECIFIC TSS REQUIREMENTS

• DATA ACQUISITION REQUIREMENTS, USE OF ARTIFICIAL INTELLIGENCE,
CONTROLLED DATA SYSTEM, AND COMMUNICATIONS METHODS BEING
ASSESSED

LaRC
7/18/85



STARFAC

EXAMPLES OF MEASUREMENrS REQUIRING R & D

• TETHER TEMPERATURE DISTRIBUTION - RECENTLY IDENTIFIED REQUIREMENT
FOR 100 KM FLIGHT ;REFLECTED ACOUSTIC WAVE PROPAGATIONBEING
CONSIDERED FOR MEASUREMENT

O_

• FLOW FIELD PROFILING - MAJOR LIMITATIONS ARE LOW SIGNAL DUE TO LOW
DENSITY (N=lO13/CM3} , REQUIREMENT FOR SMALL, HIGH POWER SOLID STATE ,
LASER AND DETECTOR ARRAYS; RALEIGH OR RAMAN SCATTERING,
FLOURESENCE ARE CANDIDATES

• DENSITY AND GAS ANALYSIS - R & D REQUIRED FOR NON-INTRUSIVE, NON-
PERTURBING SAMPLE SYSTEMS AND FOR MULTIPLE ION BEAM DETECTOR;
CURRENT FLIGHT MASS SPECTROMETER TECHNOLOGY IS ADEQUATE FOR
TSS APPLICATIONS

LaRC
7/18/85
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STARFAC

The Earth's atmospherefrom 90 _n to 200 kmprovides the last aerothermodynomics
frontier. This atmospheric region is taking on even more significance as man
advances into spaceon a more routine basis with plans for a permanentpresence
requiring even moreextensive capabilities to "fly" in and through this region,
Present NASAprogramswhich require but also can provide an understanding Of
tl_e aerodynamicsand aerothermodynamicsof the free molecule and transition flows
that exist at these altitudes are the Aeroassisted OTV,Entry ResearchVehicle
and the Tetllered Satellite, Eachof these programsprovides a unique opportunity
to do flight research In the rarefied upper atmosphere, However, the Tethered

Satellite Programprovides, becauseof its capability to obtain global_ln-situ,
steady-state,data,.the greatest potential to:

1. Define the performanceof aerodynamic shapesas a function
of environmental characteristics (free molecule, transition,
slip flow regimes).

2. Define the cl]eracteristics of the upper atmosphereend the
global variebil.ity of properties such as composition tem-
perature, pressure and density.

Suchdata are required to accomplish the systematic developmentand verification
of analytical prediction techniques required to support advanceconfiguration
designs,

• LaRC
1/22/_5 .



SHUTTLE TETHERED AEROTHERMODYNAMIC
RESEARCH FACILITY
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STARFAC

PROPOSED RANGE OF ATMOSPHERIC PROPERTIES

t_

o

ALl, km letup °K 'ressure, _ Density H.W. HfP, m Kn
torr p, kg/mj

90 176 1.4x10 -3 3.63x10 -_ ,?8.77 0.01 .01
100 210 2._xlO -_ 5.6xlo -7 28._0 O. 1 O. 1
125 _10 1. _xtO -s 1. _× tO-u 25.10 10 10
150 6]z, 2.7x10 -5 2.1xlO -9 2z_.I0 50 50
200 85_ 8._x10 -7 2.5x10 -l° 21.30 100 100

.....: .... ,, .... LaRC
....-'_.-'" '_ _"__ 7/18/85



STARFAC ,,

• OBJECTIVE

ESTABLISH THE FEASIBlUTY OF A TETHERED SATELLITE SYSTEM

CAPABLE OF OPERATING FROM THE SPACE SHUTTLE ORBITER AND

ACCOMPLISHING AEROTHERMODYNAMIC RESEARCH AT AN ALTITUDE

BETWEEN 90 KM AND 200 KM

LaRC
7/18/85



STARFAC

APPROACH:

• DEVELOP OR MODIFY AS REQUIRED A TETHER SYSTEM SIMULATION
PROGRAM ,TO STUDY SYSTEM ELEMENTS RELATIVE MOTION, STABILITY
FORCES, TEMPERATURE, DEPLOYMENT, RETRIEVAL, ETC.

• DEVELOP CONTROL LAWS AND LOGIC AS REQUIRED TO MEET STARFAC
MISSION OBJECTIVES

• PERFORM SYSTEM TRAJECTORY SHAPING STUDIES TO ESTABLISH
OPERATIONAL CONSTRAINTS

• PERFORM MISSION SIMULATION TO DEFINE CONCEPT MISSION ENVELOPE

• DEFINE SYSTEM ENGINEERING AND SCIENCE DATA REQUIREMENTS AND
ESTABLISH INSTRUMENT DEVELOPMENT REQUIREMENTS

LaRC
7/18/85



STARFAC

SIMULATIONS

SIMPLIFIED MISSION

• EQUATORIAL, CIRCULAR ORBIT

-_ • SHUTTLE ALTITUDE MAINTAINED

• SPHERICAL 500 kg SATELLITE

• STAINLESS STEEL TETHER ,
1 1/2 mm DIAMETER

LaRC
7118/85



1 1 1 1 I 1 I I 1 
0  4 I 12 18 20 24 28 X2 38 40 

TlME kssc 

20 "I: 

o w  1 1 1 I 1 1 I I I 1 
0 4 I 12 10 20 2 4  28 U W 40 

TlME kaec 

Satellite tit. = 100 k n ~  LoRC 
1/22/85 



.O4

0
0 4 a 12 _e 20 24 2a 32 34 4o

TIME ksec

Satellite Ht. = 100 I_, LoilC
1/22/'d5



'° i lE !
"_ -1o i

m -30-
t-
O

0
o

-70 -

_ -00 -

-110 -

-I:)0 I I I I I I I I I I I I I I I I I I I i i f I I I
-20 0 20 40 60 60 tOO 120 140 100 160 200 220 240 260 280 300 320, 340 340 380 400 420 440 440 4_50

IN-PLANE Component km

Satellite Hr. = 110 km LoRC
1122185



STARFAC

SIMULATIONS

ELLIPTICAL ORBIT MISSIONS

• PURPOSE " PROVIDE THERMAL RELIEF FOR TETHER

lether Lengtl_ Orbit Parameters Satellite lether lension L_ploy Orbiter
(n) (km) Altitude lemperature Orbiter lime Altitude

(kin) (°K) (Newtons) (see) Haintendnce
larger Actual Perigee Apogee

90 96.9 200 220 109.8 770 368 11Jq6 Infinite Russ
90 101.8 200 2qO 115.0 709 250 1It,01 infiniLe Russ
90 96.6 200 260 116.7 697 373 11436 lnfinite Russ
90 96.6 200 260 113.8 730 376 I I q01 None
90 99.8 200 300 12q.6 608 250 1150q InfinlLt: 14.jss
90 97.7 200 qO0 137.2 551 253 11560 ll,finite Russ
90 9q.2 ZOO 500 159.9 502 35q 11730 infinite Russ

CONCLUSIONS

• NO THERMAL RELIEF
• REDUCED DATA PERIOD
• TETHER DYNAMICS PROBLEMS
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STARFAC

SIMULATIONS

• INCLINED ORBIT (REAL) MISSIONS

Idrget lether Satellite Tether Tension Deploy OrbiLer i eliLer Orbit
Altitude Length Altitude [emperdture Orbiter lime Altitude Simulation inelindtio.

-_ (kin) (kin) (kin) (°K) (Newtons) (See) I1._intendnee 8 Hdss Points
Go

120 9_.6 120 770 298 7800 Infi.ite HdSS No 2B°
120 85.7 120 618 2_0 7260 Hone Ho 28°
110 110.6 110 763 366 11300 Infinite Hass No 20°
110 99.6 109.9 762 325 11000 Hone NO 28 °
100 lq6.7 100 9qO 402 28500 Infinite Hass NO 2FI°
100 162.1 100 936 1281 1835q Infinite HdSS Yes 28 °
100 Iq6.6 I00 94_ 409 2t_O00 None No 28 °
100 125.7 101.8 909 }]2 39500 Low lhrust NO 28"
100 Iq0.6 99.8 976 421 15000 Infinite Hdss No 57 °
I00 IJ2.5 100 98} 319 12000 Low lhrust No 57°

LaRC
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INCLINED ORBIT SIMULATIONS
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STARFAC.

ORBITER ALTITUDE LOSS VERSUS STARFAC ALTITUDE

35-

30-

25

_, ORBITER
20

&h, KM

15

10

5

0 I I I l I I I I ' I
90 95 100 105 110 115 120 125 130 135 140

SATELLITE h, KM
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STARFAC
MISSION TIMELINE

TYPICAL MISSION
• DEPLOY TO INITIAL TARGET ALTITUDE
• MAINTAIN SHUTTLE ORBITER ALTITUDE BY CONTINUOUS

_V MANEUVERS
• ACCOMPLISH MINIMUM OF ONE ORBIT DATA PERIOD
• DEPLOY SATELLITE TO SECOND ALTITUDE
• REPEAT SEQUENCE

Hi ss ion Ait I tude lether Iota Ico

_o Iime (km) Orbi t
(See) Length Temperature le.sion Revs.

Satel i ire Orbiter (km) (°K) Orbiter (.)

O 215 219 S 0 6 O.O
7177 125 209 8€ 516 230 1.3

146_6 125 21) 82 520 170 2.7
16799 170 217 98 620 270 3.2
2_277 I?0 203 Pi 700 230 4.6
2756_ 115 217 10_ 701 2_ 5.2
35028 115 '207 100 739 244 6.6
385J5 I10 218 112 75; 281 7.2
h_OO_ II0 210 111 762 207 B._
_926_ 105 217 116 830 2_0 9.2
56729 105 20_ 117 889 276 10.6
91611 100 208 142 944 375 17.2
99065 100 202 1_4 9)3 3_2 18._

.................. _--:

PROCESS MAY BE REPEATED UNTIL ORBITER MAINTENANCEAV BUDGET DEPLETED (TOOl

LaRC
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STARFAC

CONCLUSIONS :

• THE FEASIBILITY OF DEPLOYING A TETHERED SATELLITETO AN
ALTITUDE OF 100 KM HAS BEEN ESTABLISHED

• THE.FEASIBILITY OF DEPLOYING A TETHERED SATELLITE TO AN
ALTITUDE BELOW 100 KM IS POSSIBLE BUT COSTLY

Go • THE ACCOMPLISHMENT OF AEROTHERMODYNAMIC RESEARCH AT
ALTITUDES BETWEEN 100 AND 200 KM IS PRACTICAL

• CIRCULAR SHUTTLE ORBITS PROVIDE OPTIMUM MISSION TIMELINES

• MISSIONS BELOW 125 KM ALTITUDE REQUIRE THE DEVELOPMENT
OF A HIGH TEMPERATURE TETHER

• T.ETHERMISSIONS ARE LIMITED TO ORBITAL SPEEDS

LaRC
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RECOMMENDATIONS:

• ACCOMPUSH DETAILED MISSION STUDIES
• OPTIMIZE SKYHOOK
• INCORPORATE GTOSS

,_ • TSS BASELINE I MINI-MOD MISSIONS
GO
,.,, • FOREBODY MODIFICATIONS

• CONICAL
• RUDDER MODIFICATIONS

• CONTROL
• WAKE FLOW

• DISPOSABLE TETHER MISSIONS
• AERODYNAMIC (LID) VEHICLE CONFIGURATIONS
• PROPULSION AUGMENTED MISSIONS

• " INSTRUMENTATION DESIGN; DEVELOPMENT AND TESTING
• TETHER DEVELOPMENT

LaRC
7/18/85
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I 1 i ' . . . ! 1. I I I i I 
I I . SUFFI CI ENTLY 1 LARGE FREQUENCY BAND RESPONS,E . I i I ! i ! 1 

i ME~HANI  SM CONCEP\S AND TECHNOL~GI CAL SOLUTIONS ARE GIVEN 'HERE FOR I I I i 
A &ALE; ! SATP : .I.. / - 1  CONSTRAI~S : 1 
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1.2 Candidate Concepts

The conceptsevaluated in thisstudyare described
by the followingsketches of fig I.

Fig.l tethered pointing platform mechanism

concepts a), b), c).
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• i ! I (HINGES OF THE ARMS ' ; ,Oz. ) - i , , i .
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_" .................._T.E,THE.R...PO!.N.T,!.iGIT*PLATFORM-ANDISPACEELEVATOR-TIIIIMiiiiANiiMs,.....................!

!...........................BAsE' i ! ! I
i ! ' . 1

L_

......... INE LONCE,PT-UESCRIPTION

...........J . I i I ; i , • I .............. i

! _. CoNC_PT C_ H_S BEEN ASSUMEDAS ' ; " ' ' ' 'BASELINE ANDI.ANALYZED.............. I..

i THE ENGINEERING.-.DRAWINGS IN FIG,2 ILLUSTRATE THE CONFI!GURATION_ND ............"

[ _ L ! , , , , , L ; !• " ; ' ' I ..................... i" q
--, THE LAYO T, , ' ' ' i _ i , I

- IDENTICAL ROTA Y A TUATORS CONTRO AZIMUTHiAND ELEVATIONIANGLES kS:AN- ....

i DARDIZATION), ! t i _ i i iI , ' i { J i':I

t ' I ! i _ ' ......
, " BOTHiACTUATORS!CONSIST OF : MOTOR, SYNCHRO,OP_ICA_ EN?ODERi,
_ :T '
i _-HE ELEVA_ONACTUATOR IS AXIALLY ALIGNED WITH THE!AZIMUTH ONE SO
_ " !ASTO MINIMIZEI ITS INERTIAL LOAD, : " : i

i : i ! ;.... !.

i I]RREVERSIBLE GEAR COUPLINGS ( WORM & :WORMGEAR - SPROCKET TOOTHED ,1

i SECTOR_ -PROVID,E.AFULLRANGE OFTILT.ELEVATION "ANGLES'.WHENTHE MOTOR

,TURNS A FULL ROTATION;. THE RESPONSE :TIME CAN BE DESIGNED IDENTICAL I
' I : , _ i i '

i IONA!BOTH;CHANNELS,!THEOVERALL ASSEMBLY S RUGGED SO TO ENSURE GOOD

i ' ; : CKLASH _ i 'I ACCURACIES; BA IS MINIMIZED OR MADE NULL, i : l

I i _ ,
i _ i i i i , f
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!......_,4 BASELINE CONCEPt-CONTROL:ANALYSIS ' ; I . I i I r

! ! I i ; ..... i!
.......... j - - I ' ..........w ! . - I _ ! ' ! ,, • •
! I _HE CONTROL BLOCK DTAGRAM FOR THE _ZIMUTH CHANNEL IS ILLUSTRATED :.... ;

[H /L_J l_ l I [

..+ _ z _ , - ! / , , !
i IEMPORAL. RESPONSES TOiSTEP!COMMANDSI AREIGIVEN £COMPUTER SIMULA-i

.. } . TIONS!) IN FIG, 4 AND 5 WITHOUT AND WITH LEAD,/'LAGFILTER,i I _
i _ , i .........] .........

I THE MOTOR HAS BEENIASSUMED TO BE:A D,C, BRUSHED MOTOR, THE ANGULAR..

: TRANSDUCER A PLASTIC FILM POTENTIOMETER AND THE SPEED EEEDBACK TO ;
I : ! , i !

I .BE IDEAL DERIVATIVE FUNCTION, ; , ......
L I

L i

; i ; !

i i
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a
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,_ l I I !

I , i i i
,_ FIG,3AZIMUTHCHANNEL CONTROL BLOCK DIAGRAM



The system has a very high time constant so it is neces-

sary to use the filter. If _" assume =]= _ra'we would
on!y have a lag as high as t.,, but this procedurewould
•cause unchecked modes.

!% is so bet%or to use an hither leadr_ and a \'ery

•ittle t2 .
:n this way the system response is _he following :

0.09

0.08

0.07

0,06

0.05

0.0_

•0.03

0.02

0.01

OL%
J

0 0.01 25 0.02 5 0.0375 O.CY5

FIG 5 - Resnonse _.:ithlead,/la£filter
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It is so possib'le to evaluate the transient without

or with the lead/lag filter simply imposing respecti-

\'ely _ 1= _. = _ or _ = 20 m sec and t_ = -_m sec

The response without the filter is shown in fig. 4

0.02

0.01

FIG.4 - Response without lead/log filter
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J TETHERPOINTINGPLATFORMANDSPACEELEVATORMECHANISMS J

!

.. '' i ) ' ....i
' i .w. 1 i ,
_ 2,1 SCOPE i , ' ,._

i : A:MOVI'NGELEVATbR AUONG TETHER D_PLOYFD Td A FIXED LENGTH HAS .' 1

' : BEEN ALREADY PR POSED IN!THE _RAME:OF S STE STUDIES AS AISPACE !

: S_ATIdN FA_ILIT ! i .i ., , , ,' ' i I ; i i '

i E C NCEP PROPOSED IN THIS HAPTER IS:REFERREDTO AiSCALED SATP i

_ _ ' ' TO 1,0 (APPROX.WHERE!THE TETHER INTERACTION_LENGTH IS LIMITED'

.METEK),TH_ TETHER IS MADE OF KEV_ (_ 2 MM) AND THE INTERAC-

TION MAX. IFORCE IS :10N, THE ELEVATOR WILL BE HOOKED TO THE

i
TETHER BYiMEAN_ OF THE RMSOF THE SHUTTLE,
THE SPEED RANGEI IS ZERO TO 1,0METER/SECOND OR MORE, IF POSSIBLE' i

THE :MOVEMENT HAS TO BE SMOOTI4EDAND CONTROLLED_BY PROGRAMMED

• SPEED PROFILES.' THE OPERATIVE LIFETIME IS LIMITED TO ONE MONTH.
}
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m

FIG,6 ....
TEST SET-UP FOR FRICTION MEASUREMENT AND TEST RESULTS..
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- HaToRS (60 N-cm) 

(33 N-Cm) AXIAL FORCE 1 
TRANSDUCER 9. . 

v,r* reor 'W. 

/S*pp.t;nw prml -4) 

FIG. 7 - SPACE ELEVATOR MECHANISM FOR SCOLED SATP 
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TETHERPOINTINGPLAIFORMANDSPACEELEVATORMECHANISMS

• I i:_ i ' _ i , 1 ] ! , I
m _

!; IFSI'Ip.P.INGS.OCCUR .. THE TORQUE TRANSDUCER EVIDENCES:THEEVENT AND AN
' [ :

INCREASE OF PUSHING FORCE IS COMMANDEDTO THE LINEAR ACTUATOR,

THE SIGNALS FROM'THE PIEZO- ELECTRIC TRANSDUCERS ANDFROMTHE TACHOGENE-

RATORSWILL BE USED ALSO AS MONITORS, :
I.Q

O

2,4 .ScALEDS_TP BASELINE CONCEPT- COMPONENTSAND TECHNOLOGIES

ANACTERNATIVE SOLUTIONTOTHE"BRUSHED REDUNDEDD,C, MOTORS IS THE

BRUSHLESS SYNCHRONOUSTORQUE MOTOR (WITHREDUNDED WINDING AND REDUNDED

E,C,U,)THisMACHINE REQUIRES THE USE OF A ROTOR POSITION ENCODER

(HALL SENSOR ENCODER)AND THREE PHASE BRIDGE COMMUTATIONCIRCUIT (THREE

PHASE CONFIGURATION), THE SWITCHESARE OPERATED SEQUENTIALLY AT INTER-

VALS ACCORDINGTO THE SIGNALS GENERATEDBY THE MAGNETIC ENCODER,

THISSOLUTION LOOKS TOO COMPLICATE FOR THE SCALEDSATP WHEN THE OPERATIVE

: LIFE IS OF THE ORDER OF ONE MONTH, INALTERNATIVETO THEPIEZO-ELECTRIC.TRANSDUCERS
STRAINGAUGESCANBE USED,
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I TETHLR PO I Nl'I NG PLATFORM AND SPACE ELEVATOR 
. . - . . .  . . . . . . .  . . .  ..,.. , .., . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  ... . . . . . . . . .  &". i 

i . . 
' . I  . ,  . 

I . IN FACT THE TE$HER HAS / A DI AMETEP OF / ; 17 MM :THE INTERACTION 
i 1 

M A X .  I FORCE . . IS I - h50 11 THE ELEIATOR MASS IS (PROBABLE 6 ~ ) -  5 . T ~ N S  . i . i 
! .  I r 

'AND THE OPERA<IVE LIFETIME AS MINIMUM, AN ORDER/ OF ~MAGN~TuDEJ . . . . . . .  
I i i 1 i I I 

i !LONGER THAN {HE SCALE-D! j ONE. ! , I i I I 

\ 

! 

I I I I - !  . . ' -  I ! j I 

i ! 
i j ! : I i 

! 
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.............................................................................. ELEVATOR ....i -, POl,,,-,-,,,,,_P,. ,,,,,,.,,,,__P.,,.,:,_........i i.i.ii.i_.i_ii.i_.i'................I

i ...........:i_..!I........ i, ,;, , , ,..........,,i THE ROTATIONS,I THEI NG BLOCKS PRESS THE TETHER''WITHCONTROLLfD !

[ FORCEIS UTILIZING A1 LINEARI ACTUATOR,; S'IMILARiTO1,THE !PROPOSED fIN T,HE.......I

SCALED coNCEPT A ITORQiE TRANSDUCER ASSEMBLED!ON THE ACTIVE WHEEL
MEASURES THE D'RAGGING P OVl ING PRO ORTIONAL CONTROL OF THE SLID-

: . .. !. .

ING BLOCK PRE SURESI I , ' : I I
_ : I • i - , . +.

I i i ! : i I i
_ iF FURTHER ANALYSIS OR MORE DETAILED REQUIREMENTS iWILLiREJECT THE

" _ SLIDING BCOCKS _ BECAUSE OF THE WEAR AND DEBRITS_ AN ARRAY OF NEEDLES

CAN BE USED SATISFACTORY; (SEE_PART, FIG, 8B), I ! t ..................- •
! i ! i , _ _ ] i I

ACCURATE EVALUATION OF ITHE 'TOOTHED BELT !TECHNOLOGY HAS STILL TO .
' _ , ' : , i ! I

BE DONE; ANYHOW, METAL_TAPE ORI POSIDRIVE BELTS MADE OF NEOPRENE ..... '
i ! , I I !

WITH ITHEETH COVERED BY!NYLON, INTERNALLY REINFORCED WITH- METALLIC

i i _ " ; iCABLES CAN BE USED, = ' _
: t i : : _ i i " " i .....

i ! ' i i :

DETAILS OF THE DES GN AND THE TECHNOLOGIES ARE REPRESENTED N FIG, '=;

8B, i i _ , i



I

!/
i

I I

I'
iI

._ II I_

|

FIG,8a-SATP ELEVATOR MECHANISM (TOOTHED BELT CONCEPT)



FIG,8 B - SATP,ELEVATOR MECHANISM-DETAIES AND TECHNOLOGIES



I TETHERPOINIINGPLATFORMANDSPACEELEVATORMECHANISMS I

3,5 SATPELEVATOR-ROBOTIC CONCEPT DESCRIPTION

THE POSSIBILITY TO DRAG THE:TETHER.UTILIZING TWO PINCERS AND AN ALTER-

NATIVE LINEAR MOTION HAS BEEN [NVESTI'GATED, : ' ' ,

THE CONCEPT IS DESCRIBED IN FIG, 9 A) ! : _ ': :'
m_

Two LONG SCREWS WITH RECIRCULATING BALL BEARINGS DRIVE, IN BOTH

DIRECTIONS, TWO PINCERS, THE PINCER GRASPS THE TETHER AND DRAGS IT

ALONG THE SCREW WHILE THE SECOND ONE (oPEN) RETURNS TO ITS INITIAL

POSITION, CONTINUITY OF THE MOTION IS ENSUREDBY A CONTEMPORARYDRAGGING

OF BOTH PINCERSFORA WHILE UNDERCONTROLLEDIDENTICALSPEEDS,

WHENAT THE ENDOF ITSSTROKE,THE PINCEROPENS,THE OTHER ONE STARTS ITS STROKES

HAVINGCOMPLETEDTHE INVERSIONOF MOTION AND INITIALTRANSITORY,

i ! i i i i '
; _ i i Z



i..... FIG, 9 ASTP ELEVATOR ROBOTIC CONCEPT CONFIGURATION AND PINCER



............. i!

! ..... TETHERPOINTINGANDSPACEELEVATORMECHANISMS D_

, ! I I i" i I i
i _ l , ' . ; '

:, 7 i > _ r t , i I

• THE PINCER IS DESCRIBED IN FIG, 9 B) .. _
; !

0PENING/CLOSURE OPERATIONS ARE REALIZED BY A SMALL D,C, BRUSHLESS

TORQUE MOTOR, THE GRASPING BY AN ELECTROMAGNET> CURRENT IS CONTROL-

LED BY THE DRAGGING FORCE MEASURED BYIA PIEZO-ELECTRIC TRANSDUCER

" (OR STRAIN-GAUGES). (FIG,10 ), _ ' _<

WHEN A .SL.IPRING.EVENT ARISES, AN INCREASE OF CURRENT_IS COMMANDED _TO

THE ELECTROMAGNET,

THE SLEEPING EVENTS ARE TAKEN BY A PICK-OFF (DIFFERENTIAL TRANSFORMER)

LOCATED INSIDE THE TWO JAWS GRASPING THE TETHER,
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i ........................... !

I TETHERPOINTINGPLATFORMANDSPACEELEVATOR i

'3,4 SATPELEVATOR - ELECTROMAGNETI(PROPULSION CONCEPT!DESCRIPTION i i
!

THE POSSIBILITY TO DRAG A MASS OF 500 KG, (ELEVATOR) ALONG A TETHER OF

17MM, DIAMETER EXCHANGING A MAX, FORCE OF 150 N WITH A MAX, SPEED OF

FEW METERS /PER SECOND UTILIZINGELECTROMAGNETIC FORCES HAS BEEN EVA-

LUATED,

THE INVESTIGATED CONCEPT UTILIZES THE FORCE OF A CORE IMMERGED IN A

o MAGNETIC FIELD CREATED BY A COIL, h J!

THE FORMULA OF THE FORCE IS 'F_ -I- Z _ WHERE _ IS THE
'I I -2 4_

VARIATION OF THE INDUCTION DUE TOTHE CORE MOVEMENT INSIDE THE COIL,

I IS THE CURRENTOF THE COIL,

INFIG, 11 IS INDICATED THE BEHAVIOUR OF A CORE MOVING INSIDE A

COIL, ...._--_..-,; £; .........................

............... I.... d k " = :"--=_I i= I I I - II I=I :'I :_ ( _ -- "a ...... I :

FIC, 11



TEIHERPOINTINGPLATFORMANDSPACEELEVATOR !

": I i ii!" .'.'. ".. _ i ; Z

HE FORC ACTI G O A CORE IMMERGED IN A SINGLE COIL INCREASES AND i "

INVERTS i ITS_DIRECTION!WHERE CROSSINGTHE COIL,

THE REALIZATION OFIA HIGH MEAN FORCE AND MINIMUM RIPPLE IS POSSIBLE IF
• r.

: i- MANY COILS ARE USED : THE COILS HAVE TO BE OPPORTUNELY OUT OF PHA-

SE IN REFERENCE TO THE CORE POSITIONS, : : :

!- CO LS ARE SWITCHEDOFF WHENCORESCROSSTHE COILS: THIS AVOIDS ,

BRAKING! " i _ :, :FORCES 1

- A SWITCHING. PROCEDURE IS USED : IN SUCH A WAY TO REALIZE A CONTI-

NOUS MOVEMENT IN BOTH SENSES,

TAKING INTO ACCOUNT THE FORMER ASSUMPTIONS AND THE REQUIREMENTS, THE
: • , i

FOLLOWINGGEOMETRIC CONFIGURATION HAS BEEN OBTAINED (SEE FIG, 12
i

i ; 1 I
@
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i
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: FIG,12 - GEOMETRICAL ARRANGEMENT OF THECOILS AND CORES
! ! _ t i
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! .._I-TETHERIPOIN[INGAND sPACEIELEVATOR I

, ' I I I I ii ; i I ..... I
THE TETHER ',SECTION NCLUDING ELECTRICAL CABI_ES. ORES AND STR CTUR L ,i

SKIN S SKETCHED IN FIG :14t _ I i: , | _ ............... , ......

" i : { " sIv.l',_ ¢ ,,_,,,.) J i; ..... i

el_fr,'_ c_Ll,_ ! co_e A-_2,_!_,_2) . ,
' _ i ! " }I4:" I i i i _:I I _ I

l 1 , ! _ ,
; I = 7 _ -i.......... i ....i :.
i , I I I :
, IFIG .ELI TETHER SECTION I ............... i
' i i i I I ' ,'

.: THE DYNAMICBEHAVIOURCANBE INVESTIGATED UT;ILIZIiNG THE FORMUL_i ......i ..... { ;
' i ,, ; ' I , _ . i 1 . i ... _

' - "'/ _K_--'_'_" .),_---iFF = /:::)U N, i --.M_,_5:000 KG ,

THE PROPULSIVE _ORCE rTtyJ IS VARIABLE INSIDE 'THELIMITS! )

..._=lto_(/ FT_x=2C_¥ _ THE CURRENTINTHE COILSIS T_ 5.3LIA AND THE ;: ' i _ I i _ :

TOTALELECTRICRDWERIS2860w WHERETHEFIECHANICAI_POWERIS' _ i--150(N) '5 (F_/S)

:_ =750W, ;CXX)LINGOF THE COILSRESULTS NECESSARY, ! ! ! ; ;, i
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THE DEVELOPMENT OF OPTIMAL CONTROL LAWS
FOR ORBITING TETHERED PLATFORM SYSTEMS

P. Balnum*, S. Woodard XX, and Jer_Nan
4-

Juang

A mathematloal model of the open and
closed loop in-orblt plane dynamics of a
space pl at f orm-tether ed_subsatellite
system is developed, The system consists
of a rigid platform from which an (assumed
massless) tether is deplcylng (retrieving)
a subsatellite from an attachment point
which Is, in general, offset from the
platform' s mass c.ente_ _. A Lagrangian
formulation yields equations describing
platform pitch, sutsatelllte tether.allne
swing, and varying tethe_ _ length motions.
These equations are linearized about the
nominal station keeping motion. Control
can be provided by both modulation of the
tether tension level and by a momentum
type platform_mounted device; system
controllability depends on the presence of
both control inputs. Stability criteria
are developed in ter_Is of the control law
gains, the platform inertia ratio, and
tether offset parameter. Control law
gains are obtained based on linear
quadratic regulator techniques. Typical
transient responses of both the state and
required control effort are presented.

* Professor of Aero;3paoe Englneer., Dept.
of Mechanical Engr., Howard University,
Washington, D.C. 20059

xx Graduate Research Fellow, Dept. of
Mechanical Engr., Howard University,
Washington, D.C. "2C059

. Aerospace Technologist, Structural
Dynamics Div., NASA Langley Research
Center, Hampton, VA 23665
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INTRODUCTION

The Smithsonian Astrophysical ObserYatory I proposed
the Shuttle based "Skyhook" concept consisting of a
tether of approximately !00kin length to be deployed
from the Shuttle Orbiter and transporting at its end
a subsatelllte experimental package . The
subsatelllte could be deployed either above or below
the Shuttle for purposes of conducting a variety of
upper atmospheric experiments; an In-orblt
demonstration of the tethered satellite system could
occur as early as 1987.2

The analyses of the dynamics and control of the
tethered -- subsatelllte system (TSS) has been
performed by a host of investigators; a recent survey
article by Misra and Hodi3 describes over sixty
papers treating various aspects of tether (or cable)
connected orbiting two-body systems. A prellmlnar_.
treatment of the TSS system was addre_sed by Rupp

#

who assumed that motion was restricted to the orbital
plane and neglecte_ the tether mas:s. A tether
tension station keeping control law was _roposed such
that the tension would vary as a linear functlon of
the tether llne length, rate of change of length, and
desired (commanded) length. For deployment/retrleval
the commanded length could be varied according to a
prescribed function of time. Subsequently, the three
dlmenalonal dynamics and control In_luding the
inertia effect of the tether mass and aerodynamic
forces (and heating) on the tether and subsatelllte
was treated. It was noted that for local _ertlca!
station keeping, within the linear range, tether
tension would not provide conti'ol of the
out_of_orblt_plane swing motion (roll) , but such
control would be implemented in the non-!Inear system
due to higher order couplln$ 5, or by including
nonlinear feedback terms in the tension control !aw. 6

Balnum and Kumar7 introduced a new tether tension
control law (for a massless tether) where the tension
was assumed to vary as a linear function of the
In_plan,_ length and angular variational coordinates
and tholr :-ares based on an application of linear
optimal control theory. By proper selection of the
state and control penalty matrices it was possible to
obtain faster responses with no increase in power
levels during station keeping as compared with
alterna=e control strategies. As an extenslon to
this Diarra 8 showed that the effect of a massive but
taut tether is to reduce the stability region in the
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parametric space formed by the optimal _._trol gains
of Ref. 7.

Advanced space platform - based applications of the
tethered satellite system were recently described by

Laue and Manarlnl.9 As an autonomous subsystem it
could be used to deploy and recover payloads from the
platform with advantages of higher payload mass and
longer mission durations than would be possible with
the original Shuttle based systems. Another
application of tethered - platform systems could
involve tethers attached to astronauts who would be
servicing experiments which are designed to function
at a pre-set distance from the platform monitoring
deck.

The objective of the present paper is the development
of a mathematical model for an advanced space
platform-based application of the TSS and the
synthesis of appropriate control laws based on an
application of optimal control theory. To the
authors' knowledge this is the first suck development
of a mathematical model based primarily on
tethered-platform applications.

DEVELOPMENT OF THE SYSTEM EQUATIONS OF MOTION

The system is idealized as containing a rigid
platform from which an assumed (massless) tether is
deploying or retrieving a subsatellite (Fig. I) at a
distance, £, from a point on the platform which is
offset by a distance, h, from the platform's mass
center. The point of tether attachment is assumed to
be along the platform's roll axis (h_O). The tether
is considered to be massless and remains taut for all
subsatelllte motion.

For this study the mass Of the subsatelllte is
assumed to be significantly less than that of the
platform. Therefore, the composite system center of
mass can be assumed to be coincident with the
platform center of mass and shifts in the composite
center of mass can be neglected.

Only the platform pitching motion and the
subsatellite motion in the orbit plane will be
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cons Idered . Environmental dlsturbances
such as solor pressure, aerodynamic drag and torques,
and the dynamic effects due to the earth's oblateness
are considered to be negligible•

A Lagrangian formulation is used to derive the system
equations of motion• Figure I illustrates the system
geometry. The body

A A eA coincide with the platform principalaxes e_, e_, n

axes of inertia. The transformation between the body
frame of reference and the orbit frame of reference
is given by,[s_sln ( ) and c.cos ( )]

- . • (1)
A A

e_ = 0 I 0 ey
^ I ^
en_ s_ 0 cT ez

•

A _ .A
where ex, ey, eZ are orbit frame axes, with eAzin the^
direction of the local vertical and ey normal to the
orbital plane. The angle T describes the orientation
of the platform with respect to the local vertica!.
The position vector describing the location of the
sub_satelllte is

- "_o+ _ (2)

Equation (2) may be further developed as:

R = -.(RoS._+ h . Zse)eA_. (RoC_. _ce)eAn C3)

where R o represents the distance between the center
of the earth and the platform center of mass and
represents the length of the tether llne. The
distance, h, is the tether attachment offset from the
platform center of mass. The angle, e, represents
the angular displacement of the tether llne relative
to a local normal in the platform.

The subsatellite velocity is

R = Ro = _ (4)
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which, a f t e r  expansion takes  the form: 

where u i s  the o r b i t a l  r a t e  o f  the platform. 

The t o t a l  system k i n e t i c  energy can be represented in 
terms of  the platform and s u b s a t e l l i t e  components: 

- - 
T = Tp + TS = Tp + ( 1 / 2 ) m  ( R o R )  (6 1 

~ x p a n s i o n  o f  E q .  (6) y i e l d s ;  

(7) 

w h e r e  M ,  m ,  a n d  a r e  t h e  p l a t f o r m  m a s s ,  s u b -  

s a t e l l i t e  m a s s ,  and p l a t f o r m  p i t c h  pr inc ipa l  moment 
of inertia, r e s p e c t i v e l y .  

The s u b s a t e l l i t e  p o t e n t i a l  eaergy is given b y :  

w h e r e  G and M o  a r e  t h e  U n i v e r s a l  g r a v i t a t i o n a l  
c o n s t a n t  and mass  o f  t h e  E a r t h ,  r e s p e c t i v e l y .  



Substitution of Eq. (3) into Eq. (8) yields,

Vs = _GMo m [R2° + h2 + £2 + 2£hs8

+ 2RohST + 2Ro£C(V-8)]-i/2 (9)

Equation (9) can be rewritten as:

vs = -(GMom/Ro)[l+(h2+_2+2_hs0)/R2o

+ 2(hs_+ _c(_-e))/_o]-1/2 (lO)
h2 2 R2Because , £ , and £h << the expansion of certain components

of the-second term inside t_e bracket yields higher order terms

as compared with the remaining terms. With the binomial ex-
pansion, retaining terms of order (h/R) 2, etc. from the brackets,

Vs = - (GMom/R o){I- (hsV+£c (V-8)) IR°

_ (h2+£2+2£hse) /(2Ro) 2

+ (3/2)[h2s2_ + 2h£s_c(_-8) + £2c2(_-8)]/R_} (ii)

Based on Kepler's third law

= GMo/R , and (12)

therefore, Eq (ii), becomes

V = - _2m[R2-hR s_-£R c(_-8) -(h2+£2+2£hsS)/(2)
S O O O

+(3/2)h2s2p + 3h£sPc(P-8) + (3/2)£2c2(p-8)] (13)"

The platform potential energy is denoted by,

Vp = - GMoM/R o + (3/2)_2(I n - I_) (s2_-l) (14)

Where I and I_ are the platform yaw and roll principal mo-
ments o_ inertia, respectively. The second term represents

the effects of a distributed massive r_id body under theinfluence of a gravitational gradient The total system
potential energy is a combination of the platform and sub-
satellite contributions as given in Eqs (14) and (13_

V = V + V (15)
p s
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The g e n e r a l  f o r m  o f  L a g r a n g e ' s  e q u a t i  2 - 5  

w i l l  b e  c o n s i d e r e d  f o r  t h e  g e n e r a l i z e d  c o o r d i n a t e s :  
q i  = R ,  8 ,  1; w h e r e  Q 1 i s  t h e  c o r r e s p o n d i n l  
g e n e r a l i z e d  f o r c e .  A p p l y c a t i o n  o p  E q s .  ( 1  6 )  r e n d e r :  
i n d e p e n d e n t  e q u a t i o n s  f o r  e a c h  o f  t h e  t h r e t  
g e n e r a l i z e d  c o o r d i n a t e s .  A f t e r  s u b s t i t u t i o n  a n c  
e x p a n s i o n  t h e s e  e q u a t i o n s  a re :  

L e n g t h  ( 2 )  e q u a t i o n  

Swing  a n g l e  (O) e q u a t i o n  

" .. ( 1  8) 

(8 -Y)  + 2 ( i / R )  [ ( B - i ) - u ] - i ( h / R ) s o  

- ( 3 / 2 ) w 2 s ( 2 ( ~ - ~ ) )  = ~ ~ l m R 2  
P i t c h  a n g l e  (Y) e q u a t i o n  



where

_2 . (I _" I )/I
n _

NON_DIMENSIONALIZATION OF SYSTEM EQUATIONS OF MOTION

The offset parameter, tether length, and time
will be nondimensionalized using:8 - h/£c; _ - Z/Zo;

= _t ; where £0 is the nominal reference length.
Eqs. (117)_(19) oanlbe rewritten in the following
nonedimenslonal form, which may be more appropriate

for the subsequent numerical parametric studies.

Length

(20)

Q£/(m_}2£c )
S Wl_ nga n g 1 e _ I -"

(e,, _. _") . (2_,/_)[(e,_,)_l]-(3/2)s[2(._.-.s)]

,_(13/{;) [_"se+(_'2+2_')ce "3s_s(_"_e)] "

QeI(m_2_2) (21)

Pitch angle

_,, + (3/2)X2s2_ ' + (m/I)_2 c {[_((_' "

e,)+l)2ce + (_.,, .-. s'')ss_c_,c(v_e) ", c(2?_'e)]
' 1

+ [{''oB-(3/2)Bs2V + _t''8+2_t(l(_l'-.ef)+l)se]} ''l

Q_/(i_w2) (22)

LINEARIZATION OF SYSTEM EQUATIONS OF MOTION

By assuming that the pitch and swing angles remain
small (i.e. 8 << I, V << I ) and also their rates, and
by having "_ - I + € where _.<< I, then slnq=q, cosq=1
and Eqs. (20) _ (21) can be approximated by _the

334



followlng ilnear equations for length_ swing angle,
and pitch angle, respectively,

(23)
zt'e2CY'_e')'-'3z+ 8(Y''-_3_)= 3 + Q /(m"'2£c)"

AQ£

(24)
e''-_''_3('_-e) "2g'_28_ ' - Q_/(m£2m 2) = AQ_

Y''+312y . (m/i_)SZc2[_(3e + 2 (Y'-8'))

(25)
+ (€''-38_+_''S) ] = Q /(i m2) +3(m/I )8£2c = AQ

The AQ i on the right hand side o-f Eqs. (23)_(25)
represent potential control laws. The 3 on the right
hand side of Eq. (23) represents the equilibrium
tension required at le'ngth, Zc. rhls tension force
may be provided by either _he'control sytem or the
tether's natural elastlc_Ity or comDinatlons of both.

The 3(m/I_ ) SZ2c represents the equilibrium
nongdlmenslonal torque (acceleration) required for
the platform pitch angle to be zero. Without any
attachment offset (8-0, Eq. (25) decouples from the
length and swing angle equations.

At equilibrium for Q4 " Qe-= Q_ "_ 0, q"i " q'i = O.
By choosing _ - £c therefore e - 0. The equilibrium
values of pitch angle and swing an'gle (in the absence
of control) are:

8eq " :eq " (m/l_)SZ2c(_2"_h2m/I_) _'I (26)

':hese equilibrium values are _ependent on the
physical properties of the platform such as its
prlnclpal moments of inertia and on the attachment
offset distance and the subsatelllte mass. For the
range of numerical parameters considered here, there
are no singularity problems with the denomlnator
terms in Eq. (26).

DEVELOPMENT OF SYSTEM CONTROL

In state variable form in the abeence oP external

disturbances, Q£ , Qe, Q%u, but in the presence of
control, Eqs. (23) - (25) can be rewritten as:

\
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dX
-- = AX + BU (27)
dr

where

XT = [€ e €' e'] (28)

and

(29)

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
A=

3 3B-3B_ 2 0 0 2 -2

0 -3_ 2 0 0 0 0

0 3-3_ 2 -3 2 2B 0

where: A is the system state matrix; X is the system
state vector; B is the control influence matrix and U
is the control vector, respectively. Matrices X, A,
B, and U have dimensions nxl , nxn, nxr , rxl,
respectively, where n is the order of the system and
r is the number of control inputs. For the system
under consideration n-- 6.

For this application it is assumed that control could
be realized through appropriate modulation of the
tension in the tether line and the momentum-type
controller for the platform pitching motion. Thus,
the control influence matrlx is given by,

_i o 0 1 0 0_

BT = . (30)
0 0 0 I 0
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CONTROLLABILITY AND OBSERVABILITY OF THE SYSTEM

Before the development of a suitable 0ontrol law for
U, it is necessary to show that the system satisfies
the following controllability eondltfon. 11 The
system X' = AX + BU is controllable if andonly if
the rank of P- n where:

p ,, [B IAB IA2B I ... ] An_'IB] (31)

In addition to B, the partitions of P (in transposed
form) are:

(32)

0 2B _(B+3B_.2) (.":3k2) (7_3_.2

1 0 •0 0 0 ..'8
(A3B)T .

B+38X2) (_3X2) (7_3_2) _8 0 ._(SB+12Bl2)

(A4B)T =

.--8 0 _(8B,-12B_ 2) (6BX2.,13B+9_I_ 4) (9_ 4) (9_4-37)

(ASB)T ,,

I 13 o o o 3 50 |

q

J(6BX2+I3B+9BX 4) 9_4 (9_4_37) 50 0 (503+48BX2+36BX4

By using a particular submatrfx of P, formed from its
first, second, third, fourth, fifth and seventh
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columns, (P') it can be verified that Det P' = 20_
0; therefore, the rank of P is 6 and the system is com-
pletely controllable. It can also be verified that with
control generated by a single input represented only by
tether tension modulation, then the system is uncontrollable.
On the otherhan_ for the case where only a platform pitch
controller is used (except for possibly some singular values
of the inertia ratio, l), and when 8 = 0, the system is
controllable. For the general case with offset a further
numerical analysis would be required, but due to the in-
creasedcoupling it is thought the same results would prevail.

If all the state variables are available as measureable out-
puts, Y, the matrix, C, in the equation: Y ffiCX is an identity
matrix (6x6) in which case the observability condition becomes
trivial. But, if due to practical limitations only two of
the state variables, length (£) and length rate (£') are
available as outputs, then, the output vector, Y, can be
written as

Y = CX (33)
where

[:°°°°00 0:I
Through the rotation of a drum, £ can be measured, and with
a chronometer, an average £' can be determined at all in-
stants of time. A linear control strategy, U, as based on
linear state feedback of the form: U = -KX, requires the
complete knowledge of all state variablesat all instants of
time.

In the system under consideration the swing angle, 8, swing
rate, 8' pitch, T, and pitch rate, _' would then have to be
estimate from the output measurements. This is possible only
if the system equations satisfy the observability condltion. II
The system is observable if and only if the matrix

= [cTIA T cTI (AT)2cTI.-.I (AT)n-I CT] (341

has rank ffin

It can be verified that the rank of Q is 6 and the system is
completely observable. By measuring only the length (£) and
length rate (£') the other system state variables can be esti-
mated. For many applications of the tethered platform system it will
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be relatively easy to measure these two components of
the state, whereas measurements of the other state
components may require different types of sensors,
which may be more difficult to implement.

APPLICATION OF THE LINEAR QUADRATIC REGULATOR PROBLEM
TO DEVELOP CONTROL LAWS

In order to develop a control law based on linear
state feedback, the Ifnear quadratic regulator
problem from optimal control theory will be
appl led.11

The optimal control, U, which minimizes the
performance index

OD

J I ; (xTQx.UTRU) dr. " ([35)
O

is given by,

U = _(ReIBTp)x = rEX (36)

where Q is the positive semi_definlte state penalty
matrix, R is the positive definite control penalty
matrix which penalizes the system more severely for
large control, and P is the: po_itlve definitive
solution to the steady state Riccati matrix
equation,; ;

'_-PA*.ATp+PBR_IBTp+Q - 0 (37)

The linear control strategy, U, requires gains
proportiona! to all positions and rates. The
appropriate gain matrix, K, is given by

I jKe K_ Ks Kz' K.!'K8' (38)
K =

C_ C./C8 C£' CT' C8'

?

This control scheme is suita'_le for a closed loop
system having tension modulation on the tether line
and a momentum_type device for controlling the

•-_+ pitching motion of the platform. A computer
algorithm developed by Melsa and Jones 12 has been
implemented for solving for the elements of the gain
(K) matrix, given the elements of the state and
control penalty weighting matrices, Q and R, the
state matrix, A, and control influence matrix, B, and
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after the controllability of the system has been
established.

STABILITY CONDITIONS FOR THE LINEAR SYSTEM WITH
LINEAR CONTROL

By assuming solutions for length, swing angle, and
pitch angle to be, respectively:

(39)

€(T) = _e ;8(_) = Ye + @eq;_(_) = _e + _eq,

where 8eq (or _eq) is given by Eq. (26), the
variational coordinates for the swing and pitch
angles are used to bias the nonzero equilibrium
values for the pitch angle, and the swing angle in
Eqs. (23) - (25).

The linear control strategy, U, renders two separate
control laws for controlling the tether tension and
the platform pitch angle. The two control laws can
be written as,

(4O)
t

KOY 'Y' + K_ + K_'_ )AQ£ = -(K_€ + K_'_' + + K@

(41)

AQ _ - (C g + C ,€' + C Y + C ,Y' + C e + C,a')

where Y and _ are the swing and pitch angle
variational coordinates, respectively,

Eqs. (39) - (41) can be substituted into Eqs. (23) -
(25) with the assumption that AQ = 0 to deveiop the
closed-loop system characteristic equatlon.13 In
this process it is also noted that one of the
subdetermlnants also corresponds to that used to
develop the characteristic equation for the TSS
sytem.7,13 For the lower order system of Ref. 7 a
graphfcal interpretation of the stability boundaries
in terms of the gains in the tension control law was
previously obtained (Ref. 7, Fig. 2.). For the case
of zero offset (h = O)and where the platform mass
distribution approximates that of a uniform sphere,
this f_.gure can still give insight into the stability
of the more complex system studied here. For the
present study the necessary and sufficientcondltions
have been fully developed in terms of the control law
gains, tether offset parameter, platform inertia
ratio, ;3ubsatellite mass, and desired tether length.
Because of their complexity, a simple geometric
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interpretation has not been successfully implemented,
but these complex conditions appear in full in Ref.
13.

NUMERICAL RESULTS

Three modes of operation are involved with the

platformlsubsatellite system. They are: deployment
of the subsatellite; maintalning its potitlon at some
nominal location (station keeping); and subsatellite
retrieval. Here attention focuses only on the
station keeping phase of the operation. For the

subsequent numerical work in this study th°e following
platform and subsal;ellite properties are considered,

Platform mass, M = 10000.0 Kg; Subsatellite mass, m -

100.0 Kg

Platform pitch principal moment of inertia, L.-

5.33xi06 Kg_m2

Platform momenl; of inertia ratio, X2 - 1.200;

Platform altitude - 500.0 Kin;

Platform orbitel ra_e, m - 1.1068xI0_3 rad/sec

Tether llne reference length, £c " 100.0 m;

Platform length - .30.Om; Tether attachment offset -

20.Ore

With the above system properties the equilibrium

tether line swing angle, ee q and platform pitch angle
_eq are calcula_;ed (Eq. (26)), to be 0.0314 rad.

PARAMETRIC STUDIES OF THE STATE AND CONTROL PENALTY
MATRICES

Assuming that the information about all the state
variables is available either through direct
measurement or by estimation, only the feedback gains
in Eq. (38) need to be computed for implementation of
the control. Optimal feedback gains for a gi{en set
of state and control penalty weighting matrices, Q and
R, respectively, in the performance index, J, are
obtained by sol ting the nonelinear algebraic matrix
Riceati equatio_ for p11. It is difficult to obtain
an analytic expression for P in terms of the weighting
matrices, Q and R, for a high order system. Hcwever,
many numerical algorithms are available for solving

341



the matrlx Riccatl equation with the ai_ of a digital
computer. The numerical procedure adopted in the
•present analysis is as given in Melsa and Jones 12
wlth inclusion of a subroutine from ORACLS 14, whlch
determines closed-loop system elgenvalues.

The matrices, Q and R, in the performance index, J,
are selected such as to yield the desired system
performance. For the present analysis it is desired
to have the Settling time as small as possible without
excessive energy in the state or control. Only by
trial and error can one arrive at suitable values for
Q and R which result in the desired closed-loop system

response. Figures•2-4 show typical variations of the
real par't of the leased damped oscillatory mode with R
and different components of the •Q matrix. Figure 2
represents the case where the diagonal eYements of Q
are varied and the tether is assumed to be attached at
the platform mass center. Figure 3 illustrates the
effect of the same variations with a tether attachment
offset of 20.0 meters.

The effect of the offset is to increase the natural

coupling of the system. This increased coupling
improves the performance in the least damped mode
(i.e., shifts the curves upward). This tendency is
morepronounced for the smaller values of weights in
the state penalty matrix. Larger weighting elements
in the state penalty matrix result in higher coupling
from the control effort which overshadows that due to
the attachment offset. Increases in the control

penalty weighting result in more rapid damping of the
system's oscillatlons (i.e., more negative values for
the real part of the eigenvalue). This tendency is
more apparent for smaller weighting elements in the
state penalty matrix.

When only one of the diagonal elements of the state
penalty matrix is varied at a time, the performance
is improved when that element penalizes a position
state as compared with the situation where the
diagonal element being varied penalizes the
corresponding rate state. As an example, Fig. 4
shows the effect of varying only the tether length

penalty element in the Q matrix on the real part of
the least demped mode while holding the other
elements in the Q matrix constant where the offset
parameter, h -20m. From the results of the more

extensive parametric study 13 it is seen that similar
weighting of all states gives better results than
split weighting , for the range of parameters
considered here.
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Table I lists the control system characteristics of
the platform/subsatelllte system with a 20.0 meter
tether attachment offset. These control parameters
render a desirable settling time without excessive
energy in the state and control effort. Table 2
lists similar characteristics for the case of no
offset.

TABLE I

TETHER AND PLATFORM CONTROL CHARACTERISTICS AND
CONTROL LAW GAINS

Offset - 20.0 m
Least Damped Modal Time Constant - 0.243 hr

State penalty matrix, Q-1061j

Control penalty matrix,

Gains,

K¢ 8.03247 Cz I.91681
K_ _1.56196 CT 2.16826
Ke 3.44483 Cs I,80729
K¢, 6,760.85 Cz' 1.43246
KT, I.43246 CT, 5.38079
Ke' 2.92402 Ce' 1.17312
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T A B L E  2 

T E T H E R  A N D  P L A T F O R M  C O N T R O L  CHARACTERISTICS A N D  
C O N T R O L  LAW GAINS 

O f f s e t  = 0 .0  m 
Least  Damped Modal Time Constant = 0 .243  hr 
S t a t e  pena l ty  matr ix ,  Q - 1  O 6 i j  

Control  penal ty  matr ix ,  

Gains , 



TRANSIENT RESPONSES

By using Euler integration techniques, Eqs. (23) a
(25) were numerically integrated to give the
transient response of the system states for different
initial conditions. As an example, Fig. 5 shows the
response of the d'Ifferential length (from a desired
reference length of 10Ore), the platform pitch, and
the tether line swing angle for initial conditions of
I01m in tether length and 0.01 tad in both the
platform pitch angle and the t'ether llne swing angle
for a tether attachment offset of 20m. The tether
and platform control law gains for this application
are shown in Table I. It is seen that the tether
llne swing motion is the most poorly damped requiring
about 1.75 hr to reach the nominal value, whereas the
platform pitch motion is damped out within
approximately 1.0 hr.

CONTROL EFFORTS

The two dimensional control, laws for controlling
tether tension and platform pl tch angle are ,
respectively,

(42)
AQ " _mm2_c(K € + K ,g' + K Y . K ,Y' . K m . K ,m')

(43)
AQ " -I m2_c(C • + C ,€' . C 7 . C ,Y' + C m + C ,_')

These control laws represent the control effort the
designer must supply to ensure that the tether llne
remains taut at all times and that the local normal
at the platform's center of mass remains aligned with
the local orbit vertical. Equation (42) represents
the tether tension added to the tether llne's natural
tension (represented by the 3 on the right hand side
of Eq. (23)).

Figure 6 represents the time history of the tether
tension and platform torque control efforts for the
same initial conditions and attachment offset of Fig.
5. The transient responses of the tension control
effort illustrate tilat at certain intervals of time
the designer supplied tension amplitude becomes
negative. However, when this level of tension is
added to the system's natural tension (.037N) the
total tension remains positive. Therefore, the
tether line remains taut.
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For all cases of initial conditions and offsets
studied the settling time on the tension control
effort was about 1.5 hour. The torque control effort
has a settling time of approximately 1.0 hour. The
attachment offset is associated with increases in the

amplitudes of the control efforts but the order of
magnitudes of the amplitudes do not change.

CONTROL POWER LEVELS

An important interest to the designer is the amount
of power which must be supplied to control a given
system in a desirable manner. As an example of the
amount of power needed to supply tether tension and
platform torque control for the case o_' increased
initial conditions of 0.05 (dlmenslonle_s) and no
offset, it was seen that the maximum (differential)
tension power level was less than 3zI0 _4 watts and
platform torque power level required was less than
0.08 watts.

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
INVESTIGATIONS

In this study of the in.plane dynamics and control of
a space platform with a tethered subsatelli:e, it has
been seen that:

(I) within the linear range the system is
controllable with momentum-type c¢,ntrol on the
platform and with tension modulation on the tether
line; (2) equilibrium values of swing znd pitch
angles are dependent on the physical properties of
the platform inertia, subsatell!te ma._s, and tether
attachment offset; (3) the linear system is
observable with tether length and length rate
measurements only; (2) tether attachment offset
increases the system's natural coupling and improves
transient performance in the least damped mode, but
at the cost of slightly larger control force
amplitudes; and (5) the linear quadratic _egulator
problem has been utilized for determlnlag tether and
platform control law gains which provide for stable
closed_loop systems.

The authors suggest the following topics for future
research ;

(I) development of a three dimensional model of the
platform--subsatelllte system; (2) development of a
two dimensional model of the platform_subsatellite
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system to include tether mass and platform
flexibility. Include in this model an examination
for resonance interaction between the flexible tether
and the platform; (3) include disturbances in either
model such as solar pressure, aerodynamics, and plant
and measurement noise; and (4) examine effects of
other control devices on the platform or
subsatelllte, such as active thrusters.
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Figure 4 Variation of Real Part of Least Damped Mode with R and Q_
:(remaining Qii=l.0); with Offset
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RECOMMENDATIONS TO THE -TECHNOLOGY
AND TEST PANEL

Recommendations:

I) Recommendations of committee should be coordinated with those of tl=e
Space Station panel due to obvious overlay.

2) Regarding dynamic simulation capability, general purpose complete
software programs should be used only after extensive preliminary
design parametric studies are performed using simpler routines
oriented toward a specific configuration, but often neglecting some
of the physical effects. The general purpose and specific software
routines should thus be used in a logical complimentary fashion.

3) There is an'impending need to provide an in-orbit demonstration test
of the validity of existing dynamic simulations. This should be done
in three distinct phases: (a) during deployment; (b) during
station-keeping; and (c) during retrieval operations. As a start,
the TSS-1 mission in which atmospheric drag effects are expected to
be small is suggested. A confidence in the accuracy of dynamic
models will provide a significant boost to the more complex TSS-2
mission in which the effect of the rotating atmosphere will be impor-
tant, especially if altitudes as low as 90 km will be considered. An
experiment should also be designed for the TSS-2 mission to test the
accuracy of the way in which atmospheric effects are modeled.

Needless to say, if either of the first two missions is not
successful, or encounters partial dynamic problems, the potential
jeopardy to the whole TSS concept and its many exciting applications
should be obvious.

It would appear that some care in validating existing dynamic
analysis (and making necessary changes) in this Initlal phase may pay
greater dividends in the long run.

Respectfully submitted by

Peter M. Bainum
Panel Member

Peter M. Bainum

Dept. of Mechanical Engr.
Howard University
Washington, D.C. 20059

(202) 636-6612
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THE SPACESHUTTLEBASEDTETHEREDSYSTEMS

In lts utmost generality the problem is quite

challenging as the systemdynamics ls governedby o

set of ordlnary and partial nonlinear, nonautonom.ous

and coupled equations which account for*:

. three dimensional rigid body dynamics(iibrG-

tional motion) of the Shuttle and the subsatellite;

. swinging lnplane and out-of-plane motions of

the tether, of finite massand elasticity, with

longitudinal and transverse vibrations super-

imposedon them;

. offset of the tether attachment point from the

Shuttle's center of mass;

. aerodynamicdrag in a rotating atmosphere.

A.K. Misra, and V.J. Mad1,"A Genera] DynamicalModel for the
SpaceShuttle basedTethered Subsatellite System," Advancesin
the Astronautical Sciences, Vol.40, Part II, 1979, pD.537-557.

Misra, A.K., and Modi, V.J., "Dynamicsand Control of Tether
ConnectedTwo-BodySystems," Invited Address, 33rd Congressof
the Internatlonal Astronautical Federation, Paris, France,
Sept.1982, Paper No.IAF-82-316; also Space2000, Selected Papers
from the 33rd AIF Congress, Editor: L.G. Nopolltano, A1AA
Publisher, pp.473-514.

• Xu, D.M., Misra, A.K., and Modi, V.J., "On Thruster Augmented
Active Control of a Tethered Subsatelllte SystemDuring lts
Retrieval," AIAA/AASAstrodynamIcsConference, Seattle, Wash.

August lgSq, Paper No. 84-1993.
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f

I

ROTATIONSANDVIBRATIONSOFTHETETHERAREINHERENTLYUNSTABLE

DURINGRETRIEVALOFTHESUBSATELLITE,

SCHEMESEXISTTOCONTROLROTATIONALMOTIONSUCCESSFULLY.

CONTROLOFLONGITUDINALANDTRANSVERSEVIBP_TIONSSTILL
REMAINSA PROBLEM,

NONLINEARCOUPLINGBETWEENTRANSVERSEANDLONGITUDINAL
VIBRATIONSISIMPORTANT,
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CONTROLSTRATEGIES

Tension contro] strategy as proposed by K1sse] (Baker et o1,)"

optimallowbasedon an applicationof the linearregLiator

prob]emas proposedby Bainumand Kumor**;

Severalnonilnearcontrolstrategiessensitiveto the

tetherlength,lengthrate,I1brationaland vibratJono!

dynamics***;

Nonlinear control strategies together with thrusters t,

* P.W.Baker,et of.,"TetheredSubsotelliteStudy,"NASA
TM X-73314,March1976.

"" P.M.Boinum,and V.K.Kumar,"OptimumControlof the Shuttle-
TetheredSubsatelliteSystem,"30thCongressof the Inter-
nationalAstronauticalFederation,Rome,Italy,September
1981,PoDerNo.IAF-81-347;alsoAcreAstronoutica,Vo].9,
No.6-7,1982,pp.437-443.

Xu, D.M.,Misro,A.K.,and Modi,V.J.,"On VibrationControl

of TetheredSatelliteSystems,"NASA/JPLWorkshopon Applica-
tionof DistributedSystemTheoryto the Controlof Large
SpaceStructures,Jet PropulsionLaboratory,Pasadena,Calif.,
U.S.A.,July1982,NASA/JPLPubllcotlon83-q6,Editor:
G. Rodrigues,pp.317-327.

Xu, D.M.;Mlsro,A.K.,and Mad1,V.J.,"On ThrusterAugmented
ActiveControlof a TetheredSubsotelI1teSystemDuringRetrieval,"
AIAA/AASAstro_nGmtcsConference,Seattle,Wash.,U.S.A.,
August1984,PaperNo. AIAA-8q-1993.
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SUMMARYOF RESULTS

(i) The analysissuggeststhata reIatlveiyslmp]epoint

massmodelcan provideusefulinformationconcerning

ltbrattonaldynamicsduringdeploymentand retrleval

of the SpaceShuttlebasedtetheredsubsateIIite

system, The resu]tsshowthata nonIlneartension

controlstrategyof theformT = T(_, _,,€,_ In

conJunctionwltha sultabiechoiceof gainsand

realistic dampingcan lead to stable retrieval

menoeuver with amplitudes In pitch and rail llmlted

to acceptable values,

(it) Longitudinal and lateral vibrations of the .tether

are strongly coupled and con lead to the slackening

of the tether,

(1il) Tether vibrations con be controlled qulte effectively

by speeding up the retrieval at smaller tether length

and/or using thrusters,

380



COMMENTS

GENERAL:

• IF ONE JUDGES FROM THE MATERIAL PRESENTED AT THIS
CONFERENCE, THE PROGRESS MADE SINCE THE FIRST WORKSHOP
APPEARS TO BE MINIMAL.

• TIME HAS COME TO GROW OUT OF THE INFANTILE PHASE OF
ENUMERATING A WIDE VARIETY OF POSSIBLE TETHER APPLICATIONS
AND SETTLE DOWN ON DETAILED STUDIES OF A FEW APPLICATIONS
CONSISTENT WITH COMMITTED PROGRAMS AND AVAILABLE RESOURCES.

co
I,-,=

TO BE TAKEN SERIOUSLY BY ALLOCATORS OF FUNDS AND PROGRAM
MANAGERS, THE WORKSHOP OF THIS NATURE SHOULD FOCUS
ATTENTION, NOT DIFFUSE IT.

• WITH THE U. S. COMMITMENT TO A SPACE STATION, THE FUTURE
OF THE TETHER CONCEPT HAS THE MAXIMUM PROMISE IN THAT
AREA.. JUST AS THE SPACE STATION HAS A BASELINE
CONFIGURATION, THIS WORKSHOP, OR THE FUTURE ONE, SHOULD
IDENTIFY "BASELINECONFIGURATIONS" FOR POSSIBLE TETHER
PROJECTS. WHAT IS NEEDED IS A CONCERTED EFFORT IN A FEW
WELL THOUGHTOUT PROJECTS RATHER THAN AN TORRENTIAL

"OUTPOUR OF CONCEPTS WHICH REMAIN CONCEPTS.



COMMENTS

SPECIFIC:

• SUCCESS OF MOST OF THE CONCEPTS TALKED ABOUT AT THIS
WORKSHOP RELY ON THE FUNDAMENTAL REQUIREMENT OF DYNAMICS,
STABILITY AND CONTROL OF TSS DURING DEPLOYMENT,
STATIONKEEPING AND RETRIEVAL. MORE ATTENTION SHOULD BE
DIRECTED TOWARDS NUMERICAL MODELING OF THE DYNAMICS AND
CONTROL WITH PRE- TSS-1 EXPERIMENT(S) ABOARD THE ORBITER
TO VALIDATE THE MODEL AND OBTAIN RELIABLE INFORMATION
CONCERNING KEY INPUT PARAMETERS. IT SEEMS TO ME THAT

L_

= THIS IS OF FUNDAMENTAL SIGNIFICANCE.h,)

• FOCUS ATTENTION ON APPLICATIONS OF THE TETHER CONCEPT TO
THE SPACE STATION "SPACE CRANE', MRMS BASED TETHERED SYSTEM
FOR CONTROLLED GRAVITY EXPERIMENTS, AND DEPLOYMENT OF A
PLATFORM AT A DESIRED DISTANCE ARE THE ONES WHICH SHOW
PROMISE.

WE HAVE BEEN VISIONARIES TO DATE, AND RIGHTLY SO.
THE TIME HAS COME TO BE PRAGMATIC.
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Electrodynamle Tether Operation

Subsatellite

T ==% =.% ...%

E"v x B

.3,

(_) -- Orbiter

/

Figure I. Electrodynamlc Dra 8 il x B. Decrease in Orbiter Total Energy

= Electric Energy in Electrodynamlc Tether Circuit.

Some Technology Areas

o Plasma Contactors

- Hollow Cathodes

- Hollow Cathode Based Plasma Contactor

- Electron Gun

o Power Management and Conditioning

- Interface Electronics Between End Of Tether And User

- High Power Components

- Switching

- Storage
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o Materials

- Any materials to be exposed in the LEO environment must be able

to withstand a harsh atomic oxygen environment.

Status

o Plasma Contactors

- Study program which involvevs experimental and theoretical

characterization of hollow cathodes and hollow cathode based

plasma contactors

- Some early results: improved electron collection character-

istics seem to occur with increased ion production efficiency.

For ml/m c 300, li+~ 1/30ie-: ie., to collect x amps of

electron current from the magnetoplasma, an ion current of

~ x/30 amps is sufficient for an ion to electron mass ratio of

300.

- Advantageexists in the fact that a plasma contactorcan

"clamp"a spacecraftto within a few volts of plasma potential.

o Power Management and Conditioning

- There are no tether related activities in this area at present.

- Need to identify electrodynamic tether operational voltage and

current ranges. This will be done in the System Studies

presently underway.

- Need to identify state-of-the-art vs. advanced technology

requirements.

- Need to begin the necessary component and circuit development

programs early enough so as not to impact schedules later on.

o Materials

- Study program includes in-air and in-vacuo techniques for

applying oxygen resistant, insulating coatings onto

electrodynamic tethers.
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Summary

o High power, i.e., multikilowatt electrodynamic tether systems need a

variety of supporting technologies in order to be viable.

o Study programs show that some of the necessary subsystems should

prove workable.

o The area of interface between the high voltage end of the electro-

dynamic tether and the user has not been addressed. This area is

vital to the successful and safe operation of an electrodynamic

tether system, and should begin to be addressed as operating ranges

of multlkilowatt systems are defined.
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OBJECTIVES:

• TEST THE QUALITY OF THE COMMUNICATIONS LINKS BETWEEN
SATELLITES

• INVESTIGATE THE INTERACTION BETWEEN THE VLF AND ELF
WAVES, .GENERATED BY THE CONDUCTING TETHER, AND THE
SHF AND YHF ELECTROMAGNETIC WAVES, GENERATED BY THE
20/30 GHZ TRANSMITTER ON SATELLITE

Go

• MEASUREMENT ON IONOSPHERIC ELECTRON DENSITY IRREGULARITIES
BY MEANS OF PHASE-COHERENT RF TRANSMISSION BETWEEN
THE TWO VEHICLES

• OBSERVE MOTION OF THE TETHERED SATELLITE, THROUGH THE
DOPPLER LINK ESTABLISHED BETWEEN THE SHUTTLE AND THE
SATELLITE

• TEST THE TECHNOLOGY AND DEPLOYMENTOF SPACE-BORN
ANTENNAS OF LARGER DIAMETER

• DATA COLLECTION ON BOARD THE SHUTTLE



INSTRUMENTATION:

THE PAYLOAD WILL CONSIST OF A TEST ANTENNA AND
RECEIVER, MOUNTED ON THE SHUTTLE PLATFORM AND
A TRANSMITTER, PLACED ON THE SATELLITE, WHICH
GENERATES MICROWAVE ELECTROMAGNETIC WAVES

L_
_O
Q



12"RASSEGHAHIT[MAZIOHAL[ELETTRONICAIIIUCLEAREEDAERDSPAZIALE

Roma, 26 - 31 Marzo 1985

FILII'PO SCIARRINO

A PAYLOAD FOR UTILIZATION OF SPACE PLAIFORM IN THE

FIELD OF COMMUNICATION AND EARTH OBSERVATION

E_lratto da£1i ALLi d¢l

5" €OIIVF,GIHOITiRNAZIOIIALESIILLOSPAZIO
mn_26-27-20Mm,ze
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4. PAYLOADlax COI_falLATION L.lflk LXI'LHIIILN| UN

]HE 51IUIILL-1LIIoLNLU "AILLL.IIjL.

Shuttle-Tethered Satellite 5y_tt.m will utlllle the _huttle. tlI url, it Ill

• earth 4t an altitude of apprull_-Lely ZUU Ka In u*,k_," t** dll, l.y, by lal,l
tether; • satellite up to • dlstanLe: o| 100 ka and h_ld it ill a |l*ed

• ;,tlO_ with respect to the Shuttle.

ills system, the IoN9 conduct|Jig tetlw; wilh Iv.qth- ,,f li)-IOU Kill would

: strungly with tl_ lunuspI,erw and IlkSU,..luspIH:rlt. A nul, er of speLe
_Odperturbatl_ exWrilm_flts I.a. be 4(uJqJlivhed will, tl_ t,,i,duLttng tether
the tnstrtnted e|e.trodyhamics SaLt.linty, 4_ploy_d at • di_tan£_ of

'..'0 lureAbove the Shuttle. 0peritlb,r o| tlrase e:le_trodynaa, lc e*perlmntS vould
Jlve pertlcipatlmi of 5h.ttle-0,biLer personnel and ;e:wute _asure_ilts

:1 gf'uaJhdstations. But this al_iburem,lrt trLl.*iqu_ sul|ers tid_ dl_idvantigt:b
limited (miti_t tl.e-s and th_ dlstu, bliLU elfe{ts du_ to the different

bitel I_lt IonS.

rn, this palm, des,'ribe_ - pdyluJ,I tvhlth I% _.ltdl.le t_' creatr e na'a_ure:a_/It

terence system fur q.uiltlnucd U_fitlUil dlid wILl* blt'ed), eflvlounum_.Lal paid-
tart.

• pf,rposed p._yludd wi I I pL.rlf,rm dr, t°JJ,_'rlll'llt Of, I{liOllaUnicatiuri lJ.k
(I_LINK) i_tt_e:fl t0re ShutLle d0,d the le:tl_'le:d _,atullite.

I lH[ OIdJ[_llVL_ UF LKAt4LINK

• obJ_Ctlves O! th_ _u.i_lil£ation llnk e:xi_li_,_nt are as lullm, s:

te_,i U._ q_ility of the LUlilA_lllLatiun links bett/_e:l, satellites in space;

Investlqate U)e tfltt'raCtlu,', b_tv_uls thc Vii alirl Lll wave:',. _t:fle:rated by the
€ond_ctlno te:tl_vr. 4ttln 9 a: doot_aioia io, mi,mi't.pl.-.-., aard tl_ _)HI end t/t_"
elIctr_IMQ_LH, waves, _Wlle:ratud by th_ _at_lllte.

hike muasureR'nt on I,iliu_l,lla:ri( eit'ttoun _l_il..lly i_'fe:zjuIdt'i|oe_, by means

at phase-Ct_reoit rddlul0vq_.._y tf'ai,_ii_siuir b_t_ecn tire twu vehicles
(%huLLle and sub-satulliLe:);

observe: motibn Of till: tl:ll,vle:d ".di,'llll,-, lil;uug/l lore oupl,l_r Ili|k e_tabli-
$1ll:d I_tlm_ell tile _huLtle slid _lul_-_dt_ll ILe:;

lest the te_linuluQ¥ 4lid ik.pluy_:,ll O| _i_a_e IJtWill: illltenila_ U{ lir._r die-
i-Let lot {talllU/t|l.itlt_lS alq, I ILatiun.

I_ Sh,ttle-lether_d _al_lllte Ctalllunl_dtlun Illlk I_ shuln in Fig. 4.

.2 Ill( I_S(:IilPIIO_ Utr £1_Lil_; PAVL_U

te proposed payluald €oll_|'.ts u{ • lu_)t ililltlilld. II)Mllte:d _11 tile _hultle plat-
)rl e aM a tlali_lll|tter, plated oil Lilt" ".ub_d(_'llll_. idill(ll I_ Wlrl. _ _M_bpe:nile_
,'On. thl_ _liuItle: and Iruldte:', dli_laid It Ill d ",lidl. t." II_l'd _rl'bllil Ilhln. lhe
•4n$lll|e:l" will estdbll_ll pla:,ta dlid L'Ol'r IltXll,_,#it'ilL wavt:_,, dtd (i'eLIt_flLy
)0_ I0 _1, ¥1f_ln_ with al._duldtlull tl.'_.llllitJul"_.

_e type of llflle:nna on tile "hulllv Irlall,,'l_. will 1,_.,, .ll;e:t led parabolic
._flectuf of aL_,o,ur,'t it. di.rlil-{l'l'.

HILNA. All, L'." r', ..vLGNU INI IL _J_Lt_ '_t°A_KJ. HuklA I_tll_)
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INPUT TO TECHNOLOGY AND TEST
FROM PIERGIOVANNI MAGNANI

(FIAR SP A -MILANE)

• TENSIOMETER:
IT IS DESIRABLE TO PERFORM A TECHNOLOGICAL/STATE OF
THE ART SURVEY(OR ANALYSIS)IN ORDER TO ASSESS
FEASIBILITY/ AVAILABILITY

(SPACE QUALIFICATION IS NEEDED)
Lo

L,n

• "EQUATORIAL" ATTITUDE CONTROL OF TETHERED SATELLITE:
IN ORDER TO AVOID PLUME POLLUTION AROUND THE SIC, THE
POSSIBILITY OF ATTITUDE STABILIZATION BY MEANS OF "MAGNETIC
DIPOLE" TECHNIQUE CAN BE INVESTIGATED





INPUT TO TECHNOLOGY AND TEST
FROM GUALTIERO MARONE

SOCIETA ITAUANA AVIONIOA (S.I.A.)

THE GROWING IN EXPERIMENT COMPLEXITY REQUIRE:

- INCREMENT OF ENERGY AVAILABLE
- INCREMENT OF COMMUNICATION BIT RATE

STUDIES ARE LOOKING AT THE POSSIBILITY TO USE THE TETHER AS:

- POWER LINE TRANSPORTATION SYSTEM
- COMMUNICATION LINK( WITHOPTICAL FIBERS )

L_

CRITICAL AREAS AND TECHNOLOGICAL ASPECTS THAT ARE TO BE
INVESTIGATEDARE :

HIGH VOLTAGE POWER TRANSPORTATION

- TETHER CONDUCTORS
- TETHER INSULATORS



INPUT TO TECHNOLOGY AND TEST
FROM GUALTIERO MARONE (con't)

POWER MANAGEMENT AND CONDITIONING

- HIGH VOLTAGE POWER SUPPLY
- .HIGH VOLTAGE ELECTRICAL INTERFACES

COMMUNICATION WITH OPTICAL FIBERS
_O
Go

- OPTICAL FIBERS CHARACTERISTICS (ELECTRICAL/THERMAL)
- OPTICAL TRANSMITTER/RECEIVER DEVICES

TETHER CONFIGURATIONS

- MECHANICAL /ELECTRICAL CONSTRAINTS
-. TETHER MANUFACTURING ASPECTS



SPACE STATIONPANEL
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I. INTRODUCTION AND GENERAL BACKGROUND

It has not happened very often in space fYight that a long dormant

but radical new element of space flight is about to appear at the scene

of space operations. The last several years have seen the advent and

growth of a new avenue to space utilization: the tether. Well-organlzed

and structured efforts of considerable magnitude have explored and de-

fined the engineering and technological requirements of the use of

tethers in space and have discovered their broad range of operational and

economic benefits. The results of these efforts have produced a family

of extremely promising candidate applications. The extensive efforts now

in progress are gaining momentum and a series of flight demonstrations

are being planned and can be expected to take place in a few years. This

report is structured to cover the general and specific roles of tethers

in space as they apply to NASA's planned Space Station.

The evolution of the tether concept into an engineering program is

phased with the growth of the Space Station program. In such a way there

is the possibility to have the tether applications compatible with the

Space Station configuration and/or to be aware of what kind of tether

related operations have to be eliminated due to evident conflict with

respect to the Space Station requirements. Specific studies - started

even before the Space Station program became officially approved - have

been very useful in terms of a fast and efficient evaluation of what and

how the tether concept could be of benefit to the Space Station program.

In addition, the results of system investigation/dynamlc studies/simula-

tions and, later on, flight demonstration through the first TSS mission

are major drivers for tether concept application, particularly to the

Space Station. The success of early flight demonstrations will offici-

ally open a new door for the tether space activity, and the Space Station

area will not be second to any other kind of application. Many attract-

ive ideas have been generated so far on tether concept applications to

Space Station. Therefore we are now in a position to start filtering out

what, at present, is considered feasible and at the same time useful in

terms of science, technology, and operation. The major final goal is to

have tether concept application in conjunction with the lOC-phase Space

Station. In that regard, after having assured/verifled the compatibility
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with the Space Station configuration, the associated benefits should

automatically facilitate any final decision. It is anticipated that

total or partial demonstration is required in order to complete the

technical and safety scenario, considering also the technology and

operation derived from the new proposed solutions. The major hope is

that the impacts on the Space Station configuration can be easily

accommodated. That can more probably become a reality if the specific

issues are approached as soon as posslble and in the most proper way.
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2. TETHER APPLICATIONS TO SPACE STATION

Fundamental Items

o Specific Tether Applications

o Issues and Concerns

o Priorities

o Flight Demonstrations

o Application Priorities

o Conclusions and Recommendations

Space Station Facilities and Capabilities (IOC era) - priorities will

vary
with program changes

Tethered Orbiter Deployment (with OMS Propellant Scavenging)

Tethered Launch of OTV

IOC Tethered Space Station C.G. Vernier (C.G. Management)

IOC Electrodynamic Reserve Power

IOC Electrodynamic Thrust (Drag Make-up)

IOC Tethered Platform (short mission)

IOC "Zero G" Laboratory (soft suspension)

IOC Tethered Elevator (soft suspension)

Remote Docking of Orbiter

IOC Deboosting Small Cargo Modules

IOC Electrodynamic Tether (Research)

Tethered Propellant Depot and Fuel Transfer

Tethered Antenna Farm

IOC Multi-Probe (beads on string)(short mission)

Remote Wake Shield
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3. SPACE STATION BENEFITS FROM TETHER APPLICATIONS

o "Zero G" Laboratory

o Reserve Power Generator

o Halve Orbiter Deboost Propellant Requirement Through Tether Assisted
Deboost

o C.G. Management

o Waste Disposal by Tether

o Quick Sample Return

o Eliminate OMV Propellant Tanker

- Scavenge OMS Propellant During Tether Assisted Deorbit of
Orbiter

o Eliminate Instrument Contamination

- Tethered Instrument Modules

o Transfer of Hard Point For MRMS/Tether Operations From Orbiter to

Space Station

o Platform Useful to Settle Materials Before Processing

o Periodic Supply of OMS Bi-Propellant for OMV and Platforms

o Reduction of Statlonkeeplng Propellant Deliveries

o Reduced Requirements for De-Orblt Logistic Through Tethered Waste

Disposal

o Tether Assisted Attitude Control (Contamination Reduction)

o Combination of Center Mass Control Antenna Farm, Tether Assisted

Attitude Control and Collision Avoidance Maneuver Capability by a

Specific Tether System (Deployed Mass)

o Maintenance of Constant Altitude Capability for Specific Earth
Observations

o Utilization of Power Surge Caused by Orbiter Deployment for Material

Melting Coincident with the Generated G-Field for Settling the Melt

o Tether is the Only Way to Ma_ntaln a_d Exercise Control Over Various
Variable Gravity Fields (i0-" to i0- ) and Thus Responding to an

Urgent Scientific Requirement (Evolution of Gravity Maps)
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4. FLIGHT DEMONSTRATIONS

o Tether Shape Measurements

o KITE/Scaled-SATP

o Disposable Tether System Verification

o Fluid Transfer Experiments Under Various DC and AC
Accelerations

o Experiments Already Made to Be Repeated Under Different
G-Levels

o Needed: Tether Mediated Rendezvous Demonstration

- P/L Deployment and Subsequent Retrieval

o Elevator/Crawler Demonstration (Gravity Field Mapping and

Perturbation Determinations)

o Verifying and Refining Dynamic Models in Flight Demos

o Attachment/Detachment of Crawler to Tether

- RMS

- EVA

o Drive Mechanism for Crawler

- Electromechanlcal

- Electromagnetic

o Varlable/Minlmum Gravity

- Accuracy

- Duration

o Attitude Control

- Rotation About Tether

- Stabilization for Instrument Pointing

o Power Generaton/Disslpatlon

o C.G. Location and Maintenance for P/L's and Experiments

Attached to Crawler

o Degree of Automatlon/Robotlcs

o Internal Suspension System
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5. REQUIRED TECHNOLOGY EMPHASIS

o Tether Technology

- Materials and Configurations

- Maintainability

- Tension Control

- Damping Characteristics

- Environmental Compatibility

o Deployer Technology

- Motor/Generator

- Motor/Reel Coupling

o Electrodynamic Technology

- Plasma Contactors

- High Voltage Insulation

- High Voltage Conversion and Control

- Specific Tether Construction

- Environmental Compatibility

o Engineering Instrumentation

o Science Instrumentation

o Critical Systems Hardware (Mechanisms, Devices, etc.)
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6. IMPACT ON SPACE STATION CONFIGURATION AND OPERATION

Issues and Concerns

o Space Station Collision Avoidance Maneuvers

- 20 km Displacement in any Direction

- Up to 24 Hours Notice

o Space Station Quiet Periods Up to 30 Consecutive Days (10-6 g)

o Proximity Operations

o Debris Collision Probability of Long Duration Platform Tether

o Platform May Have to be Retrievable Without Tether

o Manned Zero G Laboratory

o High G Levels During Orbiter and OTV Deployment (10-2 g)

o Zero G Tether Module Should Also Serve as Transportation to
Platform

o On-Board Zero-G Laboratory Quite Massive ( 25,000 kg)

o Platform May Have to Have An Autonomous Power System because
Electrical Tethers Introduce Perturbations

o Energy Supply and Dissipation for Elevator

o Tethered Fuel Facility Has Severe Operational Problems

o Thrust Generation Due to Punctured Tank Cannot Be Handled

o Requirement to Support 20,000 N Longitudinal Force By Space
Station Structure
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7. SPACE STATION TETHER APPLICATIONS PRIORITIES

Criteria: o lOC Space Station Applicability

o Improved Operational Capability

o Solution to Space Station Problems

Priorities:

o Variable GravltyLaborabory (Controllable)

o Deboostlng Small Cargo Modules

o Electrodynamlc Reserve Power

o Tether Space Station C.G. Control (Vernier)

o Tethered Orbiter Deboost

o Tethered Remote Docking of Orbiter

- o Tethered Sclence/Appllcatlons Platform
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8. FUTURE TETHER APPLICATIONS

A. Other Potential Tether Facilities in Earth Orbit

A-I Electrodynamlc OMV and Debris Collector

A-2 Spinning Facility for Simulating Lunar and Martian Gravity

A-3 Spinning Transport Node near GEO

B. Potential Lunar, Martian, and Asteroidal Tether Facilities

B-I Surface-Based Slings (on the Moon, Phobos, and Asterolds)(see
Figure I)

B-2 Transport Node in Low Lunar Orbit (See Figure 2)

B-3 Space Station in Low Mars Orbit
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Lunar-Surface-Based Sling

o "Minimal mass-drlver" = fishing reel on Apollo ii

o Launcher for 10 kg payloads should fit in 1 shuttle

300 m tether @ 54 rpm imposes <I000 g on payloads;
bearing loads are similar to those on a train axle;
I launch/5 min. uses <I00 kW, boosts 1,000 tons/yr

o An orbiting tether facility collects launched payloads

o Collision and debris generation may be a major problem

Figure 1

EARTH-MOONTETHER-TRANSPORTINFRASTRUCTURE
AFV(AEROBRAKINGFERRYVEHICLE)

1. AEROBRAKESANDISCAPTUREDBYTAMPS 3. ISTETHER/ROCKETBOOSTEDTOMOON
2. IS UNLOADED& REFUELED 4. IS CAPTURED& LOADEDBYLOTS

5. IS SLUNGRACKTOWARDSEARTHBYLOTS
LESS

(LUNAREQUATORSURFACESLING)

(_ AFV THROWS--lOkgMOONROCKSINTOLOW-LJFETIME(1 MONTH)EQUATORIALORBITS

.>_ LOTS
I \

.i
AFV LOTS

(LUNARORBITINGTETHERSTATN)N)
TAMPS 1. CATCHESROCKS,SPINS4JP,CATCHESAFV

(TETHERANDMATERIALSPROCESSINGSTATION) 2.LOADSAFVWITH½OFROCKS
1. CATCHESAEROBRAKEDAFV,RETRIEVES& UNLOADSIT 3. SPINS4JP& THROWSAFVTOTEl
2. PROCERSE8MOONROCKSINTOLOz,ETC 4. OESPINS& LOADSOTHERROCKSONTETHER
3. FUELSAFV& REROOSTSITTOWAROSMOON

5. SPIHS-UP& DEBOOSTSROCKSFOR
4. RECOVERSMOMENTUMW/ELECTROOYNAMICTETHER MOMENTUMRECOVERY
5. ALSOCAPTURES,REFUELS,REBOOSTSAFV_ GOING

TOGEO& DEEPSPACE
Figure 2

411



9. CONCLUSIONS AND RECOMMENDATIONS

o Tethers can uniquely provide for the accomplishment of the Space
Station basic objectives

o Tether applications have solutions to significant Space Station

problems

o Tether applications can greatly improve Space Station capabilities

and operational efficlencles

o The complex interactions and interrelations of the many parameters

of tether dynamics require improved understanding and an increased

level of activity

o Tether applications should be incorporated into Space Station design
for use at IOC
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SCIENCEANDAPPLICATIONSTETHEREDPLATFORIq

WHATTO DO IT

- SEVERALPROMISINGAPPLICATIONS:KEYCONCEPTS

o MICROGRAVITYSCIENCEINA CONTROLLED-GENVIRONMENT

o tlIGHLYSTABLEPOINTINGPLATFOR,_FORASTRONOJ_YANDEARTHSCIENCE
; o TRANSPORTATIONTO ANDFRO_THEPLATFORM

o ACCESSIBILITY/UNCONTAMINATEDENVIRONMENT

HOWTO DO IT

- AUTONOMYVS.SHARINGOF SPACESTATIONRESOURCES

- TETHERTECHNOLOGY=POWERLINE,COMMUNICATIONSLINK

- SPACEELEVATORAS MICROGRAVITYFACILITY

- POINTINGPLATFORHBYHOVABLEATTACHMENTPOINTCONTROL

- SPACEELEVATORAS TRANSPORTATIONFACILITY

WHYDO IT

- CO_IPARISONWITHCONVENTIONALSOLUTIONS.
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KEY CONCEPT- i - THE SPACEELEVATOR

THESPACEELEVATORIS ANELEMENTABLETONOVEALONGTHETETHERIN A

CONTROLLEDWAY.THEmOSTINTRIGUINGTECHNOLOGICALFEATUREIS THEAC
TUATOR_ECHANIS_,DEVOTEDTOCONTROLELEVATORnOTIONALONGTHE TE-
THER.SEVERALIDEASAREUNDERSTUDYIN THEFOLLOWINGTWOBROADCLAS
SES:
o _ECHANICALDEVICES(FRICTIONINTERACTIONWITHTETHER)
o ELECTROi_AGNETICDEVICES(_AGNETICINTERACTIONWITHTETHER)

THESPACEELEVATORBAYBEUSEDASSPACESTATIONFACILITYIN A TWO
FOLDWAY.
o i-IICROGRAVITYFACILITYTOTAPDIFFERENTLEVELSOFRESIDUALGRAVITY

o TRANSPORTATIONFACILITYTOEASYACCESSTETHEREDPLATFORPIS;

SG'PB-AI-018 -3- 15-17/10/85



Q
_A E RITAoLc_,,,A_ IRI finmp[(nni[n

eerospazlale
,laliana

GRUPPO SISTEMI SPAZIALI

THEHICROGRAVITYSPACEELEVATOR

THESPACEELEVATORAS_ICROGRAVITYFACILITYSEEMSTOBETHEMOSTPRO
J_ISINGCONCEPT.IN FACTTHEItICROGRAVITYSCIENTISTSHAVE CONSIDERED
THISCONCEPTVERYINTRIGUINGBECAUSEOFTHEUNIQUECAPABILITIESTHAT
IT ALLOWS.

TOEVALUATETHEPERFORMANCEOFA MICROGRAVlTYFACILITYTWO_AIN FEA-
TURESHAVETOBECONSIDERED:
o THENICROGRAVITYENVIRONI_ENT
o THERESOURCES/LOGISTICSUPPORT

UPTONOWANUNBANNEDFREE-FLYINGPLATFORMOFFERSTHEBESTMICROGRA-
VITY ENVIRONMENT,BUTA SPACESTATIONBAYOFFERTHEBESTRESOURCES/
LOGISTICSUPPORT.

WHATISTHEELEVATORCONCEPTROLE?
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THEHICROGRAVITYSPACEELEVATOR(CONT'D)

THEMICROGRAVITYENVIRONMENT

THEORDEROF PIAGNITUDEOF THEMINIMU_GRAVITYACCELERATIONATTAINA-

BLEBY ELEVATORCLOSETO THE CENTEROF ORBITOF A TETHERED SYSTEM

HASBEENFOUND10-8 G. THIS RESULTNEEDSFURTHERANALYSIS,MAINLY
FORTHE DISTURBANCESCOMINGFROMTHESPACESTATION.HOWEVERTHISRE

SULTIS COMPARABLEWITHMINI_UI4G-LEVELBY FREE-FLYINGPLATFORM.

TETHEREDELEVATORSALLOWA NEWMICROGRAVITYENVIRONMENT.THE NEW
MAINCIIARACTERISTICSOF ELEVATORMICROGRAVITYENVIRONMENTARE:

o WIDE,CONTINUOUSRANGEOF G-VALUESOBTAINABLE

o KNOWNG-DIRECTION
o G-QUALITYHIGHERTHANCLASSICALONE

o CONTROLLABILITYVS TIMEBOTHIN INTENSITYAND DIRECTION

THEADDITIONOF THETIMEDIHENSIONAPPEARSTO BE THE_OSTPROMISING

FEATUREOFFEREDBY ELEVATOR.
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Gradient
furnaces

/ l Sample storageand
exchange mechanism

Exampleof a typical metallur#ica/candidatepayload
1

!

gravity

lity Free - Flying Tetbered

Micro-G _ Space Space
Environment_.._ Platforms Elevator i

G-value Single Point Variable

Direction Unknown Known

YES
i

_._ Controllability_ NO both in intensity -kVs Time _t

i and direction
EG-Noise

_-_ NO YEScD Control •

G-Quality Medium High _'

Microgravity Environment Comparison
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THEHICROGRAVITYSPACEELEVATOR(CONT'D)

RESOURCES/LOGISTICSUPPORT

THEBICROGRAVITYELEVATORWILLOPERATENEARTHESPACESTATION.

A PROPOSEDSYSTEMCONFIGURATIONISCONSTITUTEDBY S/S,10 KM TETHER,

A SHUTTLEEXTERNALTANKAS A BALLAST,ANDTIIEELEVATOR.
INTHISCONFIGURATION,THEELEVATORJ_OVESALONG1 K,_OF TETHER FROM

THESTATION;IT ISPOSSIBLEWITHA SHORTANDSLACKCABLETO USESPACE
o

STATIONRESOURCES,INCLUDING:

o ELECTRICALPOWERBY POWERLINETRANSMISSION

o DATA,CONTROLANDMONITORINGBY OPTICALFIBRELINK

MOREOVER,THEELEVATORCANBERETRIEVEDAT ANYTIMEPROVIDINGEASYAC

CESSTOREPAIR_ALFUNCTIONSANDEXCHANGEEXPERII_ENTS,SAiqPLES,ETC,

THEELEVATORISABLETO FULLYUTILIZETHESPACESTATIONSUPPORT AND

TO AVOIDTHES/SCONTAP.IINATEDENVIRONHENTFROMA HICRO-G POINT OF

VIEWBY TETHERMEDIATION.
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THETRANSPORTATIONSPACEELEVATOR

THE IDEAOF USINGLARGETETHEREDPLATFORASCONNECTEDTO THESPACESTA
p

TIONBY POWERLINEAND COMMUNICATIONSLINK(VIATETHERTECHNOLOGY)HA

KES UNREALISTICFREQUENTOPERATIONSOF DEPLOYMENTANDRETRIEVAL.

ON THEOTHERHAND,THEPLATFORHHAY REQUIREEASYACCESSFORHAINTENAN

CE,SUPPLYOF CONSUHABLES,MODULEANDEXPERIHENTEXCHANGE.

THEELEVATOR,AS TRANSPORTATIONFACILITYABLETO HOVEALONGTHETETHER

TO AND FROMTHEPLATFORM,BAYBE THETOOLFORTETHEREDPLATFORMEVOLU
TION.

SEVERALTECHNOLOGICALPROBLEi4SHAVETO BE ANALYSEDTO VALIDATE THE

FEASIBILITYOF THISIDEA,BUTTHEFIRSTSTEPISTO EVALUATETHEDYNA-
HICSOF THESYSTEMDURINGTHEELEVATORI_IOTION.
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THETRANSPORTATIONSPACEELEVATOR(CONT'D)

DYNAMICSi40DELS

TWODIFFERENTilODELSWEREDEVELOPEDTOSIMULATETHESPACEELEVATORDY
NAi_ICS:
- 5 D.O.F. _ODELTOSIJ_ULATESYSTEMC.G., SPACESTATION,PLATFORMAND

ELEVATOR_IOTION.
ASSUi_PTIONS:o STATION,ELEVATORANDPLATFOR,_AREPOINT_ASSES

o TETHERELASTICITYIS NEGLECTED
o ONLYIN-PLANEa_OTIONIS i_ODELLED

- CONTINUOUSMODELTO SIMULATETETHERLATERALANDLONGITUDINALVIBRA-

TIONSORIGINATEDBY ELEVATORMOTION.
ASSUMPTIONS:o ELASTICANDORBITALEFFECTSONLYWEAKLYCOUPLED

o TENSIONCONSTANTALONGTHETETHER

o ELEVATORMOTIONSIMULATEDAS AN EXTERNALFORCE
o ELEVATORTRAVELSWITHCONSTANTVELOCITY.
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THETRANSPORTATIONSPACEELEVATOR(CONT'D)

SYSTEMDYNAMICS

SYSTEMPARAMETERS:

SPACESTATIONI_ASS= 106KG ELEVATORMASS = 5 ,103KG

PLATFORMMASS = 5 .10q KG TETHERLENGTH = i0 KM

INITIALORBIT = CIRCULAR,500KM HEIGHT

ELEVATORFREEMOTIONWAS INVESTIGATEDBY IMPARTINGTHENECESSARYIM-
PULSETO REACHTHEC.O.G.FROMTHE SPACESTATION.
SYSTEMDYNAMICALBEHAVIOURSHOWSTHATVELOCITYCONTROLISNEEDED.

CONTROLLEDTRANSFERWASANALYSEDFORCONSTANTTRANSFERVELOCITY.

FOR SMALLVELOCITIES,MOTIONISSTABLEANDTETHERDEFLECTIONISBOUN

DED.AS VELOCITYINCREASESPERTURBINGOSCILLATIONSAREEXCITED.
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THETRANSPORTATIONSPACEELEVATOR'(CONT'D)

TETHERLATERALVIBRATIONS

SYSTEMPArAi_ETERS:

PLATFORMBASS= 5 '104 KG ELEVATORf4ASS= 5 .103 KG
TETHERLENGTH= 10 KM ORBIT= CIRCULAR,500 KMHEIGHT

TETHERLATERALVIBRATIONSARE INDUCEDBY THECORIOLISFORCE ACTING

ON THEELEVATORAS ITMOVESALONGTHETETHER.

THEELEVATORWASASSUMEDTO TRAVELWITH2 M/S CONSTANTVELOCITY,THE

FIRSTTWENTYi_ODESWEREINCLUDEDANDTHETETHERDAI4PINGWASNEGLEC-

TED.

THEVIEWINGOF THEVIBRATIONSOF SELECTEDPOINTSALONG TIIETETHER

SHOWSTHATTHESMALLERTHEDISTANCEFROI_THES/S THEGREATERTHEEF

FECTOF HIGHERJ4ODES.

TETHERSHAPEASA FUNCTIONOFTIMEISTWOQUITELINEARSECTIONSWITH

SLOPECHANGEATELEVATORPOSITION.
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THETRANSPORTATIONSPACEELEVATOR(CONT'D)

TETHERLONGITUDINALVIBRATIONS

SYSTEMPARAMETERSSAMEASFORLATERALVIBRATIONS.

TETHERLONGITUDINALVIBRATIONSAREINDUCEDBYELEVATORCONTROLFOR-

CESTO MAINTAINCONSTANTVELOCITYOF 2 MIS.

THEFIRSTTWENTYMODESWEREINCLUDEDANDTHETETHERDAMPINGWASNE-
GLECTED.

THEDISPLACEMENTSARERELATIVETO TETHERSTRETCHEDCONFIGURATIONUN
DERCONSTANTTENSION.

THEVIEWINGOF DISPLACEMENTSFOR THECOdPLETETRANSFEROF THEELEVA

TORFROMTHES/STO THESATPSHOWSONLYDISPLACEMENTSCAUSEDBY I_ASS
TRANSFER,VIBRATIONSARENO APPRECIABLE.

THEPLOTSOF THEFIRST250SEC.OF THEMOTIONCONFIRMSTHAT VIBRA

TIONSARE PRESENTBUTOF QUITENEGLIGIBLEAi4PLITUDE.

SG-PB-AI-018 - 19 - i5-17/I0/85
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TE'[f-ER _']_ONS CAUSE.I)BY ELEVATORHOTION TI,_I_I ,JULY 1985
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0.0 1.000*03 Z,0g0H33 3._ 4.000K_ 5.0OO'e_ 0.0 t .000,03 Z.0(X}H33 3l._ 4._ 6,000',03
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KEYCONCEPT- 2 - THE PO]NTINGPLATFOR_

THEUSEOF A TETHEREDPLATFORMAS A SUPPORTFOROPERATINGASTROPHY
SICALANDOTHEROBSErVATTONALINSTRUMENTSrEQUIRINGPRECISIONPOIN-

T[NGANDCONTROLPRESENTSSEVERALADVANTAGES:
o ELECTR]CALPOWERFROMSPACESTATION

o HIGHCAPAC[TYOF DATATRANSMISSIONBY OPTICALFIBRES

o POSSIBILITYOFHUHANINTERVENTION

o EASEOFACCESS
o FREEDOMFROMCONTAMINATION

THISCONCEPTCOULDBECOMEATTRACTIVEONCEIT IS DEMONSTRATEDTHATA

POINTINGPERFORMANCEON THEORDEROF ARCSECONDSCANBE REACHED BY

THECOMBINATIONOF DISTURBANCESATTENUATIONTHROUGHTETHERANDACT[

VE CONTROLOF A MOVABLEATTACHMENTPOINT,

THIS IDEAREPRESENTSA NEWWAYTOCONTROLTHEATTITUDEOFA TETHERED
BODY.

SG-PB-AI-018 - 22 - 15-17/10/85
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THE POINTINGPLATFORM(CONT'D)

MOVABLETETHERATTACHMENTPOINT

THEORETICALCONTROLPHILOSOPHYWASINVESTIGATED

o INTRODUCTIONOFDAMPINGTERMPROPORTIONALTOATTITUDEANGULARRATE
o ROUGHDETERMINATIONOFCRITICALDAMPINGCOEFFICIENTS
o INTRODUCTIONOF STABILIZATIONTERNTO COMPENSATEDISTURBANCESDUE

TOTETHERDYNAMICS

QIECKSINULATIONWASPERFORMEDWITHDATAFROMTSSELECTRODYNAMICMIS-
SION

o HARDWAREANDCONTROLERRORSWERENEGLECTED

o ATTITUDE(ANGLES,ANGULARRATES)ANDTETHERTENSION(5-AXIS)_EASU
RENENTWEREASSUdED

o DRAG,ELECTRODYNAMICFORCES(1A),TETHERLIBRATIONSANDFIRSTTWO

LONGITUDINALVIBRATIONSWEREINCLUDEDINTHEMODEL.

SG-PB-AI-018 - 24 - 15-17/10/85
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THEPOINTINGPLATFOR_(CONT°D)

eiOVABLETETHERATTACHHENTPOINT(CONI'D)

RESULTSAREENCOURAGING.THEORETICALCONTROLALLOHSSTABILIZATIONTO
ArcsEcHAGNITUDE,

AREASTOBE INVESTIGATED:
o 14ECHANISM,SENSORSANDCONTROLERROS
o HOUNTING_ISALIGNHENTS
o THER_O-STRUCTURALSTABILITY,

SG-PB-AI-018 - 25 - 15-17/10/85
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THEPOINTINGPLATFORiq(CONT'D)

INITIAL CONFIGURATION

AS INITIAL STEPTOTETHEREDPLATFORMSEVOLUTION,A _EDIU_SIZE POIN
TINGPLATFORHSEEMSTHEMOSTSUITABLEFACILITYFORA CLASSOFOBSER
VATIONALAPPLICATIONS.

Q

IN FACTIF AMBITIOUSASTROPHYSICALPROJECTSJUSTIFYTHEDESIGNOFA
DEDICATEDCOMPLEXFREE-FLYER,IqEDIU_OBSERVATIONALAPPLICATIONSOF

RELATIVELYSHORTDURATIONCOULDTAKEADVANTAGEOFA STANDARDPOIN-
TINGFACILITYABLETOARRANGEATDIFFERENTTIMESEVERALOBSERVATIO-
NALINSTRUMENTS.

THISPOINTINGFACILITYCOULDALLOWGREATREDUCTIONOFCOSTS, AVOI-

DINGTHECOSTOFSEPARATESERVICEFUNCTIONSFOREACHAPPLICATION,

PRELIH]NARYCONFIGURATIONSTUDYOFTHEPOINTINGPLAIFORHIS IN PRO-
GRESS.
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THEPOINTINGPLATFOR_(CONT'D)

PRELIRINARYGENERALREQUIREi4ENTS

•oDEPLOYdENTTO10 KMFROMTHESPACESTATION
o POWERTRANSRISSIONANDDATALINK BYTETHErTECHNOLOGY
o INERTIALPOINTINGANDSTABILIZATIONABOUT3-AXIS
o RESCUEOPERATIONCOMPATIBLE

o MOUNTINGOF PAYLOADSBOTHFOR ASTROPHYSICALOBSERVATIONAND FOREAR

TH SURVEY

o STANDARDSERVICEJiODULEWITHCENTRALIZEDFUNCTIONS:
- ELECTRICALPOWERSUPPLY
- DATATRANSMISSIONS
- ON-BOARDDATAHANDLING

- AUXILIARYPROPULSIONSYSTEM
- ATTITUDEJ_EASUREMENTANDCONTROL
- STANDARDPAYLOADSINTERFACE.
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' TECItNICALISSUES

o SPACESTATIONII_PACTS
- STATICACCELERATIONLEVELS(10-4 G)

-DEPLOYERSYSTEIILOCATIONREQUIREJ_ENTS
- ELECTRICALPOWERSUPPLYREQUIREMENTS

- DATAHANDLINGREQUIREMENTS

- OPERATIONSCONTROL

o TETHER

- DEBRISCOLLISIONHAZARD
- ELECTRICALPOWERLINETECHNOLOGY

- OPTICALFIBRETECHNOLOGY

- DURABILITY

- DESIGNFORPERIODICALRECOIL
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TECHNICALISSUES(CONT'D)

o DYNAMICSANDCONTROL

- ELEVATORMOTIONDYNAMICSANDCONTROL

- PLATFORMATTITUDEDYNAMICSANDCONTROL
- TETHERDYNAMICS

o NEWSPACETECHNOLOGY

- MECHANISMSFORALONGTETHERMOTION
-MECHANISMSFORMOVABLEATTACHMENTPOINTCONTROL
- DEPLOYERSYSTEMS
- COMPLEX-MULTIFUNCTIONTETHERS,
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BENEFITSANALYSIS

o THESPACEELEVATOR

- UNIQUECAPABILITYAS HICROGRAVITYFACILITY

- THEBESTFACILITYTO ACCESSLARGETETHEREDPLATFORQS

o THE POINTINGPLATFORH

- IIIGHPOINTINGPERFORMANCE

- HIGHCAPACITYOF DATATRANSMISSION
- ACCESSREADINESS

- FREEDOMFROrlCONTABINATION

- COSTEFFECTIVENESSFORA LARGECLASSOF OBSERVATIONALAPPLICA-
TIONS.
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SHUTTLE-DEPLOYED"DOWN-SCALEDPLATFORM"

DEHONSTRATIONOFFEASIBILITYANDPERFORMANCEISNEEDEDBEFOREAPPL!
CATIONISPROPOSEDFORTHESPACESTATION.

TO SAVETIMEANDLIi_IITCOSTS:USEOF STANDARDTSSDEPLOYER.

QUESTIONTO BE ANSWERED:

o TO WHATEXTENTIS DOWN-SCALINGMEANINGFUL("SCALINGLAWS")

o WHATFEATURESARETO BE _ODELLED:
- _ICROGRAVITYENVIRONMENT
- STABILITYPROPERTIES
- OTHER

o I_PLEMENTATIONOF CONCEPT

- ELEVATOR

- MOVABLETETHERATTACHMENTPOINT

SG-PB-AI-018 - 34 - 15-17/10/85
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SCALED-SATPCONCEPT

ANASSESSMENTSTUDYOFTHECAPABILITIESOFA SATPREDUCED-SIZENO-
DELTOGIVESATPFEASIBILITYANDPERFORMANCEDEMONSTRATIONWASPER-

FORMED.

PARTICULARREFERENCEWASMADETO APPLICATIONSOF MICROGRAVITYAND

OF VERYFINEINSTRUMENTPOINTING.SPECIALCAREWASGIVENTO THEELE
VATORMOTIONOUTLINE.

ON THEBASISOF THISANALYSISSOMECONSIDERATIONSCANBE MADEABOUT

THEEXPERIMENTALPROBLEN:

- FULLSIiIILARITYOF ALLEFFECTSIS POSSIBLEONLYFORONE-TO-ONESCA

LE. IT SEEi_]SALSOTO BE NOTNECESSARY.
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SCALED-SATPCONCEPT(CONT'D)

- RESTRICTEDSIRILARITYIS POSSIBLE,
SCALEDSATPKEEPSFULLEFFECTIVENESSFORTESTINGREFINED MODELS

Do OFPHENOI_IENA(IT IS COI41_IONATTITUDEIN THEFIELDOFCORPLEXRODE-
LING).

- THEDIFFERENTASPECTSDEALINGWITHTHEPROPOSEDCONCEPTSAND THE

COi'4PLEXITYOFPHENOl'lENASEEMSTOI'4AKEESSENTIAL THE IN-FLIGHT
TESTS.
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CONFIGURATIONSTUDY

THENECESSITYTO UTILIZETHEON-GOINGTETHEREDSATELLITESYSTEMAP-
PEARSEVIDENTFOR COSTSANDSCHEDULEREASONS.

AS A GENERALAPPROACH:

- THEINTERFACESANDTHEGENERALREQUIRE,_ENTSDEFINEDFOR THE TSS

CANNOTBE CHANGED.
- ONLYTHETSS-SATELLITEMUSTBE CHANGED,AS LITTLEAS POSSIBLEIN

ORDERTO MAXIIIIZETHEEXISTINGHARDWAREUTILIZATION.

A CONFIGURATIONSTUDYWASPERFORMEDINORDERTO EVALUATETHE SATEL-

LITEDESIGNCHANGESREQUIREDTO LOCATETHEI_OVABLEATTACHMENTMECHA
NISMSANDTHEELEVATORINSIDETHE SATELLITE.

THEMOVABLEATTACHMENTPOINTCONCEPTREQUIRESONLYSMALL MODIFICA-

TIONSOF THE CURRENTDESIGN.
+

THEELEVATORHOUSEDINTHE SATELLITEREQUIRESLARGEDESIGN_ODIFICA
TIONS(E.G.,THE TANKHAVETO BE SHIFTED).
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PROPOSEDCONFIGURATION

THE INTRODUCTIONOF BOTHCONCEPTS(ELEVATORANDMOVABLEATTACHMENT

POINT)ONTHEPRESENTSATELLITEDESIGNAPPEARSVERYCRITICALBECA-
USEOFTHEVARIATIONINDUCEDONTHESTRUCTURE.

_OUNTINGONLYTHEHOVABLEATTACHJqENTPOINTHARDWAREON THE SATELLI
TE SEEMSTO BE A VERYCHEAPSOLUTIONCONSIDERINGTHAT THE DESIGN

J_ODIFICATIONCOULDBE SIMPLE.

THEELEVATORCOULDBE DESIGNEDTO PERi_ITITSMOUNTINGON THE TETHER

(BY_EANSOF THESHUTTLERi_S)ONCETHESATELLITEISFAROFFTHE DE
PLOYERAND RECOVEREDBEFORESATELLITERETRIEVAL.

A PRELIMINARYSTUDYOFTHISCONFIGURATIONISINPROGRESS.THESCA-

LEDELEVATORWILLBEDESIGNEDTOPROVIDE:
o RMSGRAPPLEFIXTURE
o FRONTSLOTFORTHEPOSITIONINGONTHETETHER
o FINALTETHERGUIDE-CAPTURESENSORSAND_ECHANISMS.
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PRELIMINARYELEVATORCHARACTERISTICS

o DIMENSIONS : 0,65x 0,65x 1,05M

0 mASS : 70 KG

o MAXVELOCITY : 2 H/S
(TETHERREFERENCEFRAHE)

o POWERCONSUMPTION :& 100W
o ONE-AXISATTITUDECONTROL(YAWAXIS)BY _AGNETICCOILS

o PASSIVETHERMALCONTROLANDDEDICATEDHEATERS

o HYBRIDSTRUCTURE(COiqPOSITES,AL ALLOYS)

o FRICTIONDRIVEa_ECHANISJ_

o S-BANDCOJ_UNICATIONS(5 KB/SEC-TENTATIVE)
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CONCLUSIONS

0TETHEREDELEVATORANDPLATFORHSCOULDI_PROVETHESPACESTATIONSCI

ENTIFICANDAPPLICATIVECAPABILITIES•

o THESPACEELEVATORPRESENTSUNIQUECHARACTERISTICSAS IIICROGRAVITY
FACILITYANDAS A TETHEREDPLATFOR_SERVICINGVEHICLE

o POINTINGPLATFORm,S COULDREPRESENTA NEWKINDOF OBSERVATIONFACI-
LITYFORLARGECLASSOF PAYLOADS.

o THEDYNAI_ICAL,CONTROLANDTECHNOLOGICALCOJ_PLEXITYOF THESE CON-

CEPTSADVISESDEBONSTRATIVEEXPERI_IENTS.

o THEON-GOINGTETHEREDSATELLITESYSTEBOFFERSTHEOPPORTUNITYTO

PERFOR_SUCHEXPERIJ_ENTS,
o FEASIBILITYSTUDIESARE IN PROGRESS.

THEMAJOREFFORTWILLBE DEDICATEDTO OUTLINECONCEPTSAND TECHNI-

QUESOF SUCHA DEMONSTRATION.
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ROLES FOR TETHERS ON AN EVOLVING SPACE STATION
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SUMMARY OF CONTRACT WORK STATEMENT:

1.Developa scenarioforevolutionofspacestationtethercapabilities.
Minimizetether-imposedconstraintson stationdevelopment& operations,
butderivemaximum benefitfrom a mutuallycompatiblecombinationof:

Electrodynamictethersforpower,thrust,and librationcontrol;

Momentum transferoperationsinvolvingtheSTS or upper stages;

Aeromaneuveringdevicesforspacestationorbitalplanechange;

Tetheredconstellationsand tether/free-flyercombinations.

2.For advancedtetherfacilitiesorbitingthemoon, determine:

StationkeepingdeltaVsto stayinpreciseequatorialor polarorbits;

Ratiooffacilitymass tomaximum payloadmass (surface-orbit-escape);

Electric-thrusterpowerrequirements& maximum rendezvousfrequencies;

Overallcapabilitiesand majorconstraintson such facilties.



ATTRACTIVE ROLES IDENTIFIED DURING STUDY:

Facility/Operation Location: Operational:- w,, t t tl ,, ,_ t l t

1.Gravity-GradientFluid Settling Near top & bottom Usually
2. Tethered MicroGee Platform StationCG Usually

3.Tethered Earth-Viewing Platform Bottom Usually_n

4. Electrodynamic Power Management Top or bottom As needed

5.ElectrodynamicOMV LEO free-flyer As needed
6.Payload Boosting, STS Deboosting Top & bottom Occasionally

7.Payload Jugglingby Tether Top & bottom Occasionally
8.Tethered Docking of STS by SS Bottom Occasionally
9.Hazardous or contaminatingops. Bottom Occasionally

I0.Lunar-Orbiting TetherFacility Lunar orbit When needed
11. Lunar-Surface-Based Sling Lunar equatoror pole When needed

12.Mars-OrbitingTether Facilities Various Mars orbits When needed



I. GRAVITY-GRADIENTFLUIDSETTLING

o Gravity-gradientfluidsettlingneed not be limitedto propellants:
Fluids are also used in science,materialsprocessing,& habitation.

o Gravity-gradientsof 20-30 microgee may often be enough for settling;

when more isneeded, allthat isneeded isto deploy ANY tetheredmass.

0 0

Depot __

ered ."

I Depot

Tethere"Anchor _(any mass)

.° . ° . • . .o_.

Two Propellant-SettlingOptions



2. TETHERED MICROGEE PLATFORM

Thisfacilitycan be moved when thestationCG moves,
or anothertethercan be adjustedtotrimthestationCG.

Slack restraint tethers_l. _._ Q . /

Umbilical tether ' I

Active station-keeping N .
(adjust "slack" tethers?)._.4 ,[_



3. TETHERED EARTH'VIEWING PLATFORM
, . ,, i.,

• Minimizescontamination& disturbances.

o Providesstationkeeping& attitudecontrol.
Allowsconvenientpower & datatransfer.

o AllowsstationCG adjustment(adjustlength).

Ch



4. ELECTRODYNAMIC POWEE (& MOMENTUM) MANAGEM_

• Off-peakpowercan be usedfororbitboosting.

e Storedorbitalenergycan offsetdrag makeup,
or canbe recoveredduringpeak-powertimes.

_.PLASMACONTACTOR f PLASMACONTACTOR

'_ CURRENT

DECELERATING. _ CURRENT 1 . ACOELERAT]N(_

'_ ;> FORCE

EARTH'S/

i /" iAGNETICJ / EARTH'S

FIELD/ MAGNETIC
FIELD'

- //ORBITAL " ORBITAL

/ VELOCn'Y/ / /VELOCrn'
/ PLASMA' PLASMAp
COk'TACTOR CONTRACTOR

SPACE SPACESTATION STATtON

,/ --POWE'B(GEHEIIATOB)Mx /THBU



o N10 km tether (1 em diameter aluminum+ 3 kV insulation)

© In the middle: OMV-like RCS, TV, end effectors, etc. -. _ 41- j

• At each end: variable voltage DC power supply (0-3 kV)

_. electron gun and largesail (o1' ion emitter) ",_

• DC & AC currents can alter all 6 orbital elements. In LEO" _

about 1.3 kwh is required per tonne.km altitude change

altitude changes over 100 km/day may be possible

inclination changes over .5 deg/day may be possible

\\



6.PAYLOAD BOOSTING_ STS DEBOOSTING

o Largeboosts& deboostsmust be pairedso SS can returnto formation.
Pairingcan alsobe withelectrodynamicops or tetheredrendezvous.

• Propellantsavingsscalewithstationloads& orbitchange:foreach
100 lb load & 1 nmi delta-a, 200 lbs/op is saved. Questions:

What loadsshouldthestationbe designedor scarredfor?
What are maximum allowable short-term orbit perturbations?

_ _.! L

i i< M,r,+ M_.rz= M,_.r,z
r,,} 7L if hanging release

@'_I 14L if swinging release-Mt_ L>14L if sptm or winched

Effects of Tether Deployment and Release



7.PAYLOAD JUGGLING BY TETHER: NEAR & FAR-TERM POTENTIALS

Usinga Momentum TransferTetherto "Juggle"Payloads:

Station-TendedSwarm ofFree-Flyers: _-._'"
"' _ O _ _

g

Payloadisboosted& releasedby hanging or swingingtp.ther;

Releasedpayload fliesfreeformonths whileitsorbitdecays;

When payload passesunder station,tetherrecapturesit.

Stationdoes any necessaryservicing& maintenanceon payload.

Single-orbitaerodynamic sensing,testing,or aircollection:

Vehicleisslungupwards from stationby spinningtether; i o

Stationdamps tetherspinby activelengthcontrol; _ f___

3/4 orbitafterrelease,vehiclereachesperigee; _._ . $
1/4-1/2orbitlate,r,vehicleisrecapturedfrom decayed orblt. ,_



8. TETHERED DOCKING OF SHUYrLE WITH SPACE STATION

o Hardware & constraintsmostlycommon w/STS deboost.
o Vary tether length with prop. needs & solar cycle.
o Savings scale with tether length up to about 60 kin.
o Potential60%increaseinSTS throughput! 470x 470 km

Slightly lower apogee
Much lowerperigee ,,,90_4_5km
Tethereddeboost

Cryo scavenging AfterMECO,
GPS + RCS used

for mid-course

corrections.
>_00knl \

Shuttlehoverstillcaptured,or
aborts to freefallrendezvous.

At end ofmission,tether
deboostsshuttleand
reboosts station.



9. HAZARDOUS OR CONTAMINATING OPERATIONS

Tetherisolatescontaminating& hazardous ops,
whileprovidingattitude,power,stationkeeping.

o Downward deployment shortensdebrisorbitallife.

• An example: skin,cut up, & melt down ETs:

O0



10. LUNAR-ORBITING TETHER FACILITY
i i

o Long swingingtethersor shortspinningones?

• Three rangesofdeltaVhave utility:

small,forcapturingpayloadsinorbit (Mr <<Mp)
850 m/s,to get 2/3 of surface-TEldeltaV (Mt_ Mp)
1700m/s, to pick up objectson surface (Mt_10Mp)

o

RequiredTechnology: .pumpforspin_damp swing-->_

Advanced tether controls k/ _ +_" _ " '/
Powerfultetherdeployer __
Maneuverabletethertip

Largepowersupply" /__\! _'_'Kk
High-lsppropulsion /fl_ \_ "_,k._ok)__fl_

Pr°pellant extracti°n p _)! Beoo[st _"!_i"!' _'_ i!-(_ I.\_l_

TransportCapabihties: / lY, Land ._) :/_':'}2_.__'_4;:;
Surface--Orbit--Escape # _%__.. _,-,"_.;_ t)]
Handleslargepayloads q _('J_._ _ '/ _'__, ) _" _]
Max g-loads < ._ .gee \ _ ,-_..'_ _ f/,_ >oc-_,-/_
Rocket backup if desired " \ k_' _. _L./>[_Ldo-fo//

Two-way .massflowis"free" % "<_,'.<.__"c:_';_fi/

Netboost,ngcosts--25MWH/tonne _
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ii.LUNAR-SURFACE-BASEDSLING

e "Minimalmass-driver"= fishingreelon Apollo Ii?

e Launcher forI0 kg payloadsshould fitin1 shuttle.

300 m tether@ 54 rpm imposes <1000gees on payloads;

Bearingloadsaresimilarto thoseon a trainaxle;
1 launch/5rain.uses <100 kW, boosts1,000tonnes/yr.

e An orbitingtetherfacilitycollectslaunched payloads.

• Collision& debrisgenerationmay be a majorproblem.



12. MARS-ORBITING TETHER FACILITIES
i i

Mars & itsmoons areuniquelysuitedtotetheroperations:

• Both moons areinrelativelylow equatorialorbits;
® Most requireddeltaVsarewellunder1 km/sec,soMt<Mp.

A systemof3 facilitiescouldhavepowerfulcapabilities:

Slingon Phobos (innermoon) throwsmass intolow-periapsisorbits;
o Stationinlow orbitcollectsmass fromPhobos & from atmosphere;
o Facilityineccentricorbitthrowspayloadsto earthor asteroids.

Phobos-BasedSling MarsSpaceStation Tether"UpperStage"



CONCLUSIONS:

• Most proposed tetherconceptson a space stationare compatible:
fu11-timeoperationisnot needed,so time-sharingcan be done.

• Many concepts aresynergistic(e.g.,STS deboost & rendezvous),so
cost-benefitstudiesofsingleconceptsunderstatethe truebenefits.

o Some conceptsmay requirestationscarsIN THE DESIGN PHASE.

RECOMMENDATIONS:

• NASA & Phase-B contractorsshouldstudyconcepts #I-#9 forrelevance.

• Cost-benefitstudiesshouldincludecombinationsof concepts #i-#9.

• Microgeetetheredplatformsshouldbe built& testedon KC-135 & STS.

• Already-flown"micro-gee"experimentsshouldbe reflownon TSS-1, to see
if20-40microgees (typicalg.g.levelson station)make a difference.



III

WORKSHOP SUMMARY OF RECOMMENDED APPLICATIONS AND DEMONSTRATIONS
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The Fridaymorning sessionof the Applicationsof Tethers in Space Workshop in

Venice includedthe panel co-chairmen,and was devoted to listingthose

applicationswhich would be appropriatefor the followingeras:

A. Shuttle

B. Space Station- IOC

C. Space Station- Post IOC

D. Post IOC - General

Some discussionwas also devotedto demonstrationand TSS missions,which

would providehigh sciencereturn and/or proof of an operationalcapability.

This input is provided in outlineform only. Deta_ileddiscussionof most of

these applicationsmay be found in the proceedings,or the attached

references.

A. OperationalApplicationsof Tethersfor the Shuttleera.

1. Small PayloadPlacement

2. ElectrodynamicPower Supply

3. Multiprobe (Constellation)System

4. Open Wind Tunnel

5. Gravity ControlledExperiments

B. Space StationFacilitiesand Capabilitiesin the IOC era.

1. VariableLength Tether for Space StationC.G. Management

2. ElectrodynamicPower Supply

3. ElectrodynamicThrust (Drag Makeup)

4. Tethered Platform (ShortTerm Missions)

5. "Zero G" Laboratoryusing a Tethered Elevator

6. DeboostingSmall Cargo Modules

7. ElectrodynamicTether for Research

8. Multi-probe"Beadson String"Constellation
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C. Space Stationin the Post IOC era.

1. TetheredOrbiter Deploymentwith OMS PropellantScavanging

2. TetheredLaunch of OTV

3. Remote Dockingof Orbiter

4. TetheredPropellantDepot and Fuel Transfer

5. TetheredAntennaFarm

6. Remote Wake Shield

D. Post IOC - General

1. SpinningManned Facility

2. Tethers on Platforms

3. ElectrodynamicOMV

4. Remote Aerobraking

5. Two DimensionalConstellations

6. Station in LEO to CaptureLaunch Vehicles in SubOrbitalTrajectories

(LEO Node)

7. HigherOrbit Tether TransferNodes

8. RotatingTether (Sling)attachedto the Moon or an Asteroidto Eject

SurfaceMaterial into Orbit

9. Tether Facilitiesat other planets

In additionto theseapplications, some discussionwas given to demonstration

missions and their candidateobjectives. The followingare somewhat in

chronologicalorder of development.

A. Plasma Motor Generator(McCoy - 86)

o Demonstratefeasibilityand performanceof hollow cathode

o Dynamicsand Temperature"Response

o Pulse Effectson AmbientPlasma

o KU-Band Radar Tests

(Frequentreflightsare planned)
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B_ DisposableDeployer (Carroll- 87)

o-Test SuccessfulReleaseof Tether

o VibrationDynamics

o AerobrakingEffectsof Tether

o AerothermalEffectsusing Balloon

o Tether Recoil and Shape

o Conduct low gravityexperimentson orbiterduring Tether deployment

(Frequentreflightsare planned)

C. SpinningOrbiterwith Tethered Satellite

o Test Fluid Settlingand Slosh

o Conduct low-gravityscience

D. Tethered SatelliteSystem (TSS-1)

o Accurate DynamicsVerification

o Data Collectionfor other applications

o PassiveElectron/IonCollectionEfficiency

o Effectiveness.ofHollow Cathodeon Orbiter

o Test Accelerometerson Orbiter

o Test Tensiometrson Satellite

o SatellitePassiveRetrievalmode for backup

E. Shuttlereleased DumbellSatellite

o Test RendezvousFeasibility

o Dynamic Behavior

o Elevatorattachment

F. TetheredCentaur

o Test feasibility

G. Kinetic IsolationTether Experiment(KITE)

o Pointing Stabilityand accuracy

o DisturbanceIsolation

o Test ExtensionCord Concept

o Do low gravityexperimenton orbiter
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H. Tethered SatelliteSystem (TSS-2)

o PlannedAerodynamicExperiments

o Low Gravityon Orbiter

o PossibleElevatortest

_I. TetheredSatelliteSystem(TSS-3)

o (SeeTSS-IApplications)

o PlasmaContactoron Orbiterand Satellite

o Test SpinMode
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APPLICATIONS OF TETHERS IN SPACE WORKSHOP

AGENDA

15-17 October 1985

14 October, 1985 - Monday

6:00pm -- 9:00am REGISTRATION

15 October, 1985 - Tuesday

8:00am -- 8:30am REGISTRATION

SESSION I - INTRODUCTION

8:30am -- 8:45am Orientation and Purpose...L. Guerrlero

8:45am -- 9:00am Welcome...representlng the Mayor of Venice, Mr.
A. Salvadorl

9:00am -- 9:30am Opening Address...Sen. Lulgi Granelll, Minister
of Scientific Research and Technology

9:30am -- 10:O0am BREAK

lO:O0am -- lO:lbam Keynote Address...l. Bekey

SESSION II - GENERAL PRESENTATIONS

lO:15am -- lO:30am Tethered Satellite System ....I. Sisson

lO:30am -- lO:45am Tethered Satellite Deslgn...G. Manarinl, A.
Lorenzon[

lO:45am -- ll:15am Tether Fundamentals...J. Carroll/S. Bergamaschl

ll:lbam -- ll:45am Science Appllcatlons...F. Marlani/P. Penzo

ll:45am -- 12:15pm Electrodynamic Interactlons...M Dobrowolny/J. E.

McCoy

12:15pm -- 12:45pm Transportation...G. von Tiesenhausen

12:45pm -- 2:30pm LUNCH

2:30pm -- 3:00pm Variable and/or Artificial Gravity... L.

Napolltano/K. Kroll

3:00pm -- 3:30pm Space Station ... W. Nobles/P. Merllna

3:30pm -- 4:00pm Technology and Test ... C. Buonglorno/P. Slemers

4:00pm -- 4:30pm Constellations ... E. Lorenzlni

4:30pm -- 5:15pm Tether Dynamics Movie ... J. Loftus

7:15pm RECEPTION HOSTED BY THE MAYOR OF VENICE
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APPLICATIONS OF TETHERS IN SPACE WORKSHOP

AGENDA (CONT.)

15-17 October 1985

16 October, 1985 - Wednesday

SESSION III - PANEL MEETINGS

8:30am -- 12:00pm Panels Meet in Assigned Rooms

12:00pm -- 2:00 pm LUNCH

2:00pm -- 4:00pm Panels Meet in Assigned Rooms

4:00pm -- 5:00pm Plenary Session - Preliminary Panel Reports

8:00pm -- ll:00pm GALA DINNER...J. ARNOLD GUEST SPEAKER

17 October, 1985 - Thursday

SESSION III - PANEL MEETINGS (CONTINUED)

8:30am -- 12:00pm Panels Meet in Assigned Rooms

12:00pm -- l:30pm LUNCH

SESSION IV - WORKSHOP SUMMARY

l:3Opm -- 3:3Opm Final Report Preparation - Panel Chairmen Meet

3:30pm -- 5:30pm Plenary Session - Summary of Workshop
Recommendations

18 October, 1985 - Friday

8:30am -- 12:30pm Panel Chairmen Turn in Final Panel Reports,
Legibly Prepared with Sketches, Diagrams and

Reproducible Graphics as Available
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