WASA-CR-175, 113

NASA Contractor Report CR-175113

NASA-CR-175113 19860017812

## STRUCTURAL TAILORING OF ENGINE BLADES (STAEBL)

User's Manual

K. Brown

Prepared for NASA-Lewis Research Center Under Contract NAS3-23697 June 1986



National Aeronautics and Space Administration

Lewis Research Center Cleveland, Ohio 44135 AC 216 433-4000

# LIBRARY COPY

JUL 15 1986

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

|   |               | DISPLAY 06/2/1<br>86N27284*# ISSUE 18 PAGE 2850 CATEGORY 7 RPT#: NASA-CR-175113 NAS<br>1.26:175113 PWA-5774-39 CNT#: NAS3-22525 85/03/00 106 PAGES |
|---|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|   | UTTL:         | Structural tailoring of engine blades (STAEBL) user's manual                                                                                       |
|   | AUTH:         | A/BROWN, K. W.                                                                                                                                     |
|   | CORP:         | Pratt and Whitney Aircraft, East Hartford, Conn. CSS: (Commercia)                                                                                  |
|   |               | Products Div.) AVAIL.NTIS                                                                                                                          |
|   | SAP:          | HC AUG/MF A01                                                                                                                                      |
|   | UIU:<br>MAIC. |                                                                                                                                                    |
|   | (1HV3.        | / "HIREVILƏ/"CUDING/"CUMEREƏƏVR BLHDEƏ/"CUMEVIER ERUGRHMƏ/"CUƏI HNHLIƏIƏ/"<br>Decien analveic /#adtimization//#thodine dianec/#heed deallidemente  |
| • | MINC:         | Z COMPOSITE MATERIALSZ ELHTTERZ STRESS ANALVSISZ VIRRATION                                                                                         |
|   | ABA:          | Author                                                                                                                                             |
|   | ABS:          | This User's Manual contains instructions and demonstration case to prepare                                                                         |
|   |               | input data, run, and modify the Structural Tailoring of Engine Blades                                                                              |
|   |               | (STAEBL) computer code. STAEBL was developed to perform engine fan and                                                                             |
|   |               | compressor blade numerical optimizations. This blade optimization seeks a                                                                          |
|   | 1             | minimum weight or cost design that satisfies realistic blade design                                                                                |
|   | S.F.          | CONSTRAINTS, by TUNING ONE TO TWENTY design variables. The STAEBL                                                                                  |
|   |               | - constraint androses include plade stresses, vibratory response, indicer,                                                                         |
|   |               | thickness at several locations, blade chord, and construction variables:                                                                           |
|   | ENTER         | :                                                                                                                                                  |
|   |               |                                                                                                                                                    |

.

N86-27284#



In reply please refer to: KWB:dla:(0115k); MS 163-10 Ref. No. PWA-5774-39, NASA CR-175113

June 23, 1986

| To: | National Aeronautics and Space Administration |
|-----|-----------------------------------------------|
|     | Lewis Research Center                         |
|     | 21000 Brookpark Road                          |
|     | Cleveland, Ohio 44135                         |

Attention: Mr. Chris Chamis, Program Manager Bldg. 49 Room 211 Mail Stop 49-6

Subject: User's Manual for the Structural Tailoring of Engine Blades (STAEBL) Program

Reference: Contract NAS3-22525

Mr. Chamis:

We are pleased to submit six copies of the User's Manual in fulfillment of the terms of the referenced contract.

Sincerely yours,

UNITED TECHNOLOGIES CORPORATION Pratt & Whitney Group Engineering Division

Kenneth WBrown

Kenneth W. Brown Program Manager

cc: Administrative Contracting Officer Air Force Plant Representative Office UTC/Pratt & Whitney East Hartford, Connecticut 06108

| 1. Report No.                                                                                                                                                                                                                                                         | 2. Government Accession No.                                                                                                                                                                                                                            | 3. Recipient's Catalog No.           |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|
| NASA CR- 175113                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                      |  |  |  |  |  |  |
| 4. Title and Subtitle                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        | 5. Report Date                       |  |  |  |  |  |  |
| Structural Tailoring of Eng                                                                                                                                                                                                                                           | gine Blades (STAEBL)                                                                                                                                                                                                                                   | March 1985                           |  |  |  |  |  |  |
| User's Manual                                                                                                                                                                                                                                                         | 6. Performing Organization Code                                                                                                                                                                                                                        |                                      |  |  |  |  |  |  |
| 7. Author(s)                                                                                                                                                                                                                                                          | 8. Performing Organization Report No.                                                                                                                                                                                                                  |                                      |  |  |  |  |  |  |
| K. W. Brown                                                                                                                                                                                                                                                           | PWA-5774-39                                                                                                                                                                                                                                            |                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                       | 10. Work Unit No.                                                                                                                                                                                                                                      |                                      |  |  |  |  |  |  |
| 9. Performing Organization Name and Address                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                        | 11. Contract or Grant No             |  |  |  |  |  |  |
| Pratt & Whitney Aircraft 6                                                                                                                                                                                                                                            | ation<br>Group                                                                                                                                                                                                                                         | Contract NAS3 22525                  |  |  |  |  |  |  |
| Commercial Products Divisi                                                                                                                                                                                                                                            | on                                                                                                                                                                                                                                                     | 13 Type of Beport and Period Covered |  |  |  |  |  |  |
| East Hartford, CT. 06108                                                                                                                                                                                                                                              | }                                                                                                                                                                                                                                                      |                                      |  |  |  |  |  |  |
| National Aeronautics and S                                                                                                                                                                                                                                            | pace Administration                                                                                                                                                                                                                                    | User's Manual                        |  |  |  |  |  |  |
| Washington, DC 20546                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | 14. Sponsoring Agency Code           |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                      |  |  |  |  |  |  |
| 15. Supplementary Notes Project Man<br>NASA Lewis<br>21000 Brook<br>Cleveland,                                                                                                                                                                                        | 15. Supplementary Notes Project Managers, C. C. Chamis and M. S. Hirschbein<br>NASA Lewis Research Center<br>21000 Brookpark Road, MS 49-8<br>Cleveland, OH 44135                                                                                      |                                      |  |  |  |  |  |  |
| 16. Abstract                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |                                      |  |  |  |  |  |  |
| This User's Manual contain<br>data, run, and modify the<br>code. STAEBL was develope<br>optimizations. This blade<br>satisfies realistic blade<br>variables. The STAEBL con<br>response, flutter, and for<br>airfoil thickness at sever<br>hole size for hollow blade | ion case to prepare input<br>e Blades (STAEBL) computer<br>ompressor blade numerical<br>weight or cost design that<br>one to twenty design<br>e stresses, vibratory<br>sign variables include<br>d construction variables:<br>up for composite blades. |                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        | -                                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                      |                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                      |  |  |  |  |  |  |
| · · · ·                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                      |  |  |  |  |  |  |
| Approximate Analysis; Math                                                                                                                                                                                                                                            | ematical Unclassifi                                                                                                                                                                                                                                    | nen<br>ied, Unlimited                |  |  |  |  |  |  |
| Optimization; Objective Fun<br>Refined Analysis; User Inst                                                                                                                                                                                                            | nction;<br>truction;                                                                                                                                                                                                                                   |                                      |  |  |  |  |  |  |
| Input; Uutput                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                      |  |  |  |  |  |  |
| 19. Security Classif. (of this report)                                                                                                                                                                                                                                | 20. Security Classif. (of this page)                                                                                                                                                                                                                   | 21. No. of pages 22. Price*          |  |  |  |  |  |  |

## STRUCTURAL TAILORING OF ENGINE BLADES (STAEBL) USER'S MANUAL

## Table of Contents

| Sect | zion                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page                                                           |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1.0  | STAEBL PROGRAM DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                              |
| 2.0  | STAEBL FLOWCHART                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                              |
| 3.0  | APPROXIMATE ANALYSIS FLOWCHART                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                              |
| 4.0  | DETAILED INPUT INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                              |
|      | 4.1 Data Block A                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                              |
|      | 4.2 Data Block B                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                             |
|      | 4.3 Data Block C                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                             |
| 5.0  | DETAILED OUTPUT DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34                                                             |
|      | 5.1 COPES/CONMIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34                                                             |
|      | 5.2 Approximate Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34                                                             |
|      | <ul> <li>5.2.1 Global Variable Definition</li> <li>5.2.2 Analysis Information</li> <li>5.2.3 Airfoil Geometry</li> <li>5.2.4 Resonance Margin Information</li> <li>5.2.5 Resonance Margin Information, Forced Response</li> <li>5.2.6 Flutter Output</li> <li>5.2.7 Tip Mode Information</li> <li>5.2.8 Stress Output</li> <li>5.2.9 Object Function Information</li> <li>5.2.10 Local Foreign Object Damage Output</li> <li>5.2.11 Root Foreign Object Damage Output</li> </ul> | 34<br>34<br>35<br>36<br>37<br>37<br>38<br>38<br>39<br>39<br>39 |
| 6.0  | PROGRAMMED ERROR MESSAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                                             |
|      | 6.1 COPES/CONMIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40                                                             |
|      | 6.2 COPES/ANALIZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40                                                             |
|      | 6.3 Finite Element Preprocessor                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41                                                             |
|      | 6.4 Finite Element Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41                                                             |

## Table of Contents (continued)

| <u>Sect</u> | ion  |                                                                               | Page     |
|-------------|------|-------------------------------------------------------------------------------|----------|
| 7.0         | EXAM | MPLES: VALIDATION TEST CASES                                                  | 43       |
|             | 7.1  | Energy Efficient Engine Fan Hollow Blade with Borsic Inlay                    | 43       |
|             |      | 7.1.1 Input<br>7.1.2 Output                                                   | 43<br>45 |
|             | 7.2  | Energy Efficient Engine Fan Superhybrid Blade                                 | 47       |
|             |      | 7.2.1 Input<br>7.2.2 Output                                                   | 47<br>49 |
|             | 7.3  | Energy Efficient Engine Fan Superhybrid Blade with<br>Local Increased Density | 51       |
|             |      | 7.3.1 Input<br>7.3.2 Output                                                   | 51<br>53 |
|             | 7.4  | Energy Efficient Engine High-Pressure Compressor<br>Rotor 6 Solid Blade       | 55       |
|             |      | 7.4.1 Input<br>7.4.2 Output                                                   | 55<br>57 |
| 8.0         | INST | TRUCTIONS FOR PROGRAM MODIFICATIONS                                           | 59       |
|             | 8.1  | Program Modifications                                                         | 59       |
|             |      | 8.1.1 Read/Write Units<br>8.1.2 Common Block Cross Reference                  | 59<br>60 |
| 9.0         | SUBR | ROUTINE DICTIONARY                                                            | 62       |
|             | 9.1  | COPES/ANALIZ; Miscellaneous Constraint Analysis                               | 62       |
|             | 9.2  | Airfoil Finite Element Preprocessor                                           | 64       |
|             | 9.3  | Finite Element Analysis                                                       | 65       |
|             | 9.4  | Local Foreign Object Damage Analysis                                          | 69       |

## Table of Contents (continued)

.

| Secti | on      |                                |                        |                                                     | Page |  |
|-------|---------|--------------------------------|------------------------|-----------------------------------------------------|------|--|
| 10.0  | INPUT   | IT AND OUTPUT VARIABLE LISTING |                        |                                                     |      |  |
|       | 10.1    | Input \                        | /ariables              |                                                     | 71   |  |
|       | 10.2    | Output                         | Variables              |                                                     | 77   |  |
| 11.0  | INDEX   |                                |                        |                                                     | 80   |  |
| 12.0  | APPEND  | IX A:                          | OPTIMIZATI             | ON USING COPES/CONMIN                               | 82   |  |
|       | 12.1    | Optimiz                        | zation Meth            | od                                                  | 82   |  |
|       |         | 12.1.1                         | General O              | ptimization Theory and Background                   | 82   |  |
|       |         | 12.1.2                         | COPES/CON<br>Feasible  | MIN Exact Analysis: Method of<br>Directions         | 85   |  |
|       |         |                                | 12.1.2.1               | Choice of Search Parameters for<br>COPES/CONMIN     | 87   |  |
|       |         |                                | 12.1.2.2               | Scaling of Design Variables in<br>COPES/CONMIN      | 91   |  |
|       |         |                                | 12.1.2.3               | Number of Function Calls for COPES/CONMIN           | 93   |  |
|       |         | 12.1.3                         | COPES/CON<br>and Stres | MIN Interfaces to Vibration, Flutter,<br>s Programs | 94   |  |
| 13.0  | APPEND  | DIX B:                         | STAEBL COM             | PILED LISTING CONTENTS                              | 95   |  |
| 14.0  | PRATT   | & WHITM                        | IEY PROPRIE            | TARY SUPERSONIC FLUTTER ANALYSIS                    | 97   |  |
| DISTR | IBUTION | LIST                           |                        |                                                     | 99   |  |

## List of Illustrations

| Figure Number | Title                                                                                                                                                         | Page |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1             | Flowchart for the STAEBL Optimization Process                                                                                                                 | 3    |
| 2             | Approximate Analysis Flowchart                                                                                                                                | 4    |
| 3             | Definition of Angle ALPHA                                                                                                                                     | 17   |
| 4             | 1X2Y Airfoil Section Coordinate Input                                                                                                                         | 18   |
| 5             | Blade Root Angle and Neck Description                                                                                                                         | 19   |
| 6             | Blade Model With Attachment and Flowpath Angle<br>After Blade Preprocessing                                                                                   | 20   |
| 7             | Location of the Worst Vibratory and Steady<br>Stress Combination on the Modified Goodman<br>Diagram - STAEBL                                                  | 23   |
| 8             | Contour Plot of Tip Mode                                                                                                                                      | 23   |
| 9             | Typical Station Locations for Airfoil Maximum<br>Thickness Starting Values                                                                                    | 25   |
| 10            | Resonance Diagram for a Successfully Tuned<br>Blade (No Response Crossings Within 5 Percent<br>of the Speed Operating Range)                                  | 27   |
| 11            | Local Foreign Object Damage Model                                                                                                                             | 28   |
| 12            | Unidirectionally Reinforced Lamina                                                                                                                            | 29   |
| 13            | Dimensions and Layup Associated With a Hollow<br>Blade Design                                                                                                 | 30   |
| 14            | Layup Associated With a Superhybrid Blade Design                                                                                                              | 31   |
| 15            | Dimensions Associated With a Local Increased<br>Density Blade                                                                                                 | . 32 |
| 16            | Feasible Region is Union of All Points that<br>Satisfy All Constraints                                                                                        | 84   |
| 17            | Line Search Terminates Either at Minimum of<br>Objective Function or at a Constant Boundary.<br>Sequence of line searches converge to <u>x<sub>opt</sub>.</u> | 86   |

## List of Illustrations (continued)

| Figure Number | Title                                                                                                                                                                    | Page |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 18            | New Search Direction, $s_i$ , Lies in the Usable Feasible Sector. The value of the push-off factor, $\theta_j$ , determines the orientation of the new search direction. | 88   |
| 19            | Constraint Thickness Parameter, CT, Determines<br>When a Constraint is Satisfied, Violated, or<br>Active                                                                 | 89   |
| 20            | For Proper Choice of CT, Two Constraints Become<br>Simultaneously Active So That Search Proceeds<br>Down the "Valley" Formed by the Constraints                          | 90   |

•

### SECTION 1.0

### STAEBL PROGRAM DESCRIPTION

The Structural Tailoring of Engine Blades (STAEBL) computer program was developed to perform engine fan and compressor blade numerical optimizations. These blade optimizations seek a minimum weight or cost design that satisfies realistic blade design constraints, by tuning one to twenty design variables.

The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.

To perform a blade optimization, three component analysis categories are required: an optimization algorithm; approximate analysis procedures for objective function and constraint evaluation; and refined analysis procedures for optimum design validation. The STAEBL computer program contains an executive control module, an optimizer and all approximate analyses. The optimization algorithm of STAEBL is the COPES/CONMIN (Control Program for Engineering Synthesis/Constrained Minimization) optimization package, which is a proven tool for optimizations with a small to medium (1-20) number of design variables.

The approximate analyses of STAEBL utilize an efficient, coarse mesh, plate finite element blade vibration analysis procedure. The finite element analysis provides blade natural frequencies and mode shapes, stress under centrifugal loads, and blade weight. Additional constraint evaluations, including flutter and foreign object damage calculations, utilize outputs from the finite element analysis.

Once a candidate optimal design has been found, the design should be verified by applying refined analyses to assure that all constraints are satisfied. This level of analysis is not automatically performed by STAEBL, but is left to the user's existing design/analysis system. STAEBL experience has shown that a first optimal candidate design satisfies most constraints, and does not severely violate the remaining constraints. If a constraint is found to be violated, the allowable constraint value must be modified to reflect the differences between approximate and refined analysis. For each of the cases studied during the STAEBL development effort, a fully satisfactory design was found on the second optimal blade design.

To use the blade optimization system, a coordinate description of the initial blade design is required. From that point, STAEBL will change the blade design according to the available blade design variables. Typically, blade geometry variables have consisted of maximum section thickness at five spanwise locations, and blade chord. For the composite blades optimized by STAEBL, additional construction variables are also available. These variables include composite material thickness and orientation, and/or hollow size and location.

The STAEBL system has been applied to several stages of the Energy Efficient Engine, which was designed under NASA Contract NAS3-20645. Fan blades of superhybrid and inlaid hollow construction have been tailored, showing significant potential for design improvements through the application of numerical optimization and these composite constructions. A solid all titanium compressor blade was also tailored using STAEBL, demonstrating significant blade weight reduction even for a relatively "simple" blade design application.

### SECTION 2.0

### STAEBL FLOWCHART

Figure 1 illustrates the STAEBL optimization process by which an optimum blade design is derived and verified.



Figure 1 Flowchart for the STAEBL Optimization Process

### SECTION 3.0

### APPROXIMATE ANALYSIS FLOWCHART

Figure 2 illustrates the approximate analysis module flowchart. Details and additional information with regard to the approximate analysis module are provided in Section 9.0.



Figure 2 Approximate Analysis Flowchart

### SECTION 4.0

### DETAILED INPUT INSTRUCTIONS

Due to the modular construction of the STAEBL program, data input has been broken into three separate data blocks: 1) input to the COPES/CONMIN optimizer, 2) airfoil description, and 3) constraint calculation control. The three data blocks, designated as data blocks A, B and C, currently follow individual input procedures. Consistent data input procedures will be utilized in future releases of STAEBL. The three data blocks are input and are defined as follows:

| DATA BLOCK A | COPES/CONMIN input. Further details can be<br>found in Appendix A and/or the COPES/CONMIN<br>user manual (NASA Report No. NPS69-31-003). |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------|
| DATA BLOCK B | Airfoil coordinate data and other airfoil information, analysis speed, etc.                                                              |
| DATA BLOCK C | Additional approximate model input, scaling                                                                                              |

- factors for geometry, etc. Note: Any analysis options flagged in DATA BLOCK C that are to be used for optimization purposes must have the appropriate global variable included in DATA BLOCK A. Otherwise, the correct analysis will be made
  - cluded in DATA BLOCK A. Otherwise, the correct analysis will be made but will not be considered an optimization constraint. Similarly, if a global variable is called out as a constraint in DATA BLOCK A, DATA BLOCK C must have the appropriate flags and analysis information input.

Cards of DATA BLOCK A and Card Cla may be input using unformatted data input. For these cards, data entries may be separated by commas or by one or more blanks. If exponentiated numbers such as 1.+5 are read on an unformatted card, there must be no embedded blanks within the number being input. Unformatted cards may be intermingled with formatted cards. Real numbers on an unformatted card should have a decimal point. In DATA BLOCK A, if more than one number is contained on an unformatted data card, a comma must appear somewhere on the card.

4.1 Data Block A

### CARD A1 (COPES DATA BLOCK A)

Contents: Title

| 1     | 2     | 3      | 4           | 5                                      | 6     |  | 8 |
|-------|-------|--------|-------------|----------------------------------------|-------|--|---|
| _     |       |        |             |                                        |       |  | _ |
|       |       |        |             | ······································ |       |  |   |
| Field | Item  | Format | Description | <u>n</u>                               |       |  |   |
| 1-8   | TITLE | 20A4   | Any 80 chai | racter t                               | itle. |  |   |

## CARD A2 (COPES DATA BLOCK B)

| Contents | s: COPES | Control Para | meters<br>4                                          | 5                                                                   | 6                                                    | 7                      | 3         |
|----------|----------|--------------|------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|------------------------|-----------|
| NCALC    | NDV      |              |                                                      |                                                                     | IPNPUT                                               |                        |           |
|          | 10       | 20           | - <u></u>                                            | - <u></u>                                                           | 50                                                   | <del> </del>           | · · ·     |
| Field    | Item     | Format       | Descript                                             | ion                                                                 |                                                      |                        |           |
| 1        | NCALC    | I            | 0 = Read<br>1 = One<br>2 = Optin                     | input and<br>cycle thro<br>mization.                                | stop.<br>ugh program                                 | 1.                     |           |
| 2        | NDV      | I            | Number c<br>timizati                                 | of independ<br>on.                                                  | dent desig                                           | n variabl              | es in op- |
| 6        | IPNPUT   | I            | Input pr<br>O = Prin<br>prin<br>1 = Form<br>2 = No p | int contro<br>t card im<br>t of input<br>atted print<br>rint of inp | l.<br>ages of d<br>data.<br>t only of i<br>put data. | ata plus<br>input data | formatted |

CARD A3 (COPES DATA BLOCK C. OMIT IF NDV = O ON CARD A2)

Contents: Optimization Control Parameters

|   | ]      | 2      | 3      | 4                                                                                                                                                 | 5                                                                                                                                                                       | 6                                                                                                                                                  | 7                                                                                                                                        | 8                                                                                                          |
|---|--------|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|   | IPRINT | ITMAX  | ICNDIR | NSCAL                                                                                                                                             | ITRM                                                                                                                                                                    | LINOBJ                                                                                                                                             | NACMX1                                                                                                                                   |                                                                                                            |
|   | 10     | 20     | 30     | 40                                                                                                                                                | 50                                                                                                                                                                      | 50                                                                                                                                                 | 70                                                                                                                                       | 30                                                                                                         |
| F | ield 1 | Item F | Format | Descript                                                                                                                                          | ion                                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                          |                                                                                                            |
|   | 1 1    | PRINT  | Ι      | Print cor<br>0 = No pr<br>1 = Print<br>forma<br>2 = Print<br>and<br>tion<br>3 = Print<br>tion<br>itera<br>4 = Print<br>5 = Print<br>tor,<br>value | ntrol used<br>int during<br>t initial<br>ation.<br>t above p<br>design van<br>t above pl<br>t above pl<br>t above pl<br>t above pl<br>t above pl<br>t objectives during | in optimiz<br>optimizat<br>and fina<br>lus object<br>iable val<br>us constra<br>and move<br>us gradient<br>us each pu<br>e function<br>the one-dim | zation.<br>ion.<br>l optimiz<br>ive funct<br>ues at ea<br>aint value<br>parameter<br>t informat<br>roposed de<br>on and o<br>mensional s | ation in-<br>ion value<br>ch itera-<br>es, direc-<br>at each<br>ion.<br>sign vec-<br>constraint<br>search. |

## CARD A3 (continued)

.

| Field | Item    | Format | Description                                                                                                                                                                                                                                                  |
|-------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | ITMAX   | I      | Maximum number of optimization iterations al-<br>lowed. DEFAULT = 20.                                                                                                                                                                                        |
| 3     | ICNDIR  | I      | Conjugate direction restart parameter. DEFAULT<br>= NDV + 1. For blade optimization, set ICNDIR<br>equal to zero.                                                                                                                                            |
| 4     | NSCAL   | I      | Scaling parameter. Suggested values are 0 or<br>NDV + 1. When design variables differ largely<br>in magnitude, internal scaling every NSCAL<br>times will improve the optimization procedure.<br>NDV + 1 is recommended for blade optimization.              |
|       |         |        | GT.O = Scale design variable to order of magni-<br>tude one every NSCAL iterations.                                                                                                                                                                          |
|       |         |        | LT.O = Scale design variables according to user-input scaling values.                                                                                                                                                                                        |
| 5     | ITRM    | I      | Number of consecutive iterations which must<br>satisfy relative or absolute convergence cri-<br>terion before optimization process is termi-<br>nated. DEFAULT = 3.                                                                                          |
| 6     | LINOBJ  | I      | Linear objective function identifier. If the<br>optimization objective is known to be a linear<br>function of the design variables, set LINOBJ =<br>1. DEFAULT = Nonlinear.                                                                                  |
| 7     | NACMX 1 | Ι      | One plus the maximum number of active con-<br>straints anticipated. DEFAULT = NDV + 2. If<br>CONMIN writes an error message that the number<br>of active and violated constraints exceeds<br>N3-1, then NACMX1 must be increased (note that<br>NACMX1 = N3). |

## CARD A4a (COPES DATA BLOCK D. OMIT IF NDV = 0 ON CARD A2)

Contents: Optimization Program Parameters (continued)

|   | 1    | 2      | 3      |    | 4                                             | 5                                                    | 5                                          | 7                                      | 8                                   |
|---|------|--------|--------|----|-----------------------------------------------|------------------------------------------------------|--------------------------------------------|----------------------------------------|-------------------------------------|
|   | FDCH | FDCHM  | СТ     |    | CTMIN                                         | CTL                                                  | CTLMIN                                     | THETA                                  |                                     |
|   | 10   | 20     |        | 30 | 40                                            | 50                                                   | 50                                         | 70                                     | 80                                  |
| F | ield | Item   | Format |    | Descripti                                     | ion                                                  |                                            |                                        |                                     |
|   | 1    | FDCH   | F      |    | Relative<br>lating f<br>0.01. (N<br>blade opt | change ir<br>inite diff<br>lote: Defa<br>:imization. | n design \<br>ference gr<br>ult value<br>) | variables<br>adients.<br>is sugge      | in calcu-<br>DEFAULT =<br>ested for |
|   | 2    | FDCHM  | F      |    | Minimum a<br>dient ca<br>fault va<br>tion.)   | absolute st<br>lculations<br>lue is su               | tep in fin<br>. DEFAULT<br>uggested f      | ite differ<br>= 0.01. (<br>or blade    | ence gra-<br>Note: De-<br>optimiza- |
|   | 3    | СТ     | F      |    | Constrair                                     | nt thicknes                                          | s paramete                                 | er. DEFAULT                            | r = -0.1.                           |
|   | 4    | CTMIN  | F      |    | Minimum<br>optimizat<br>Default<br>tion.)     | absolute v<br>tion proce<br>value is s               | alue of Cl<br>ss. DEFAUL<br>suggested d    | f consider<br>_T = 0.00<br>for blade   | ed in the<br>4. (Note:<br>optimiza- |
|   | 5    | CTL    | F      |    | Constrain<br>straints.<br>is sugges           | nt thickne<br>DEFAULT :<br>sted for bi               | ss paramet<br>= -0.01. (<br>lade optim     | er for li<br>Note: Defa<br>ization.)   | near con-<br>ult value              |
|   | 5    | CTLMIN | F      |    | Minimum a<br>optimizat<br>Default<br>tion.)   | absolute va<br>tion proce<br>value is s              | alue of CT<br>ss. DEFAU<br>suggested       | L consider<br>_T = 0.00<br>for blade   | ed in the<br>1. (Note:<br>optimiza- |
|   | 7    | THETA  | F      |    | Mean valu<br>of Feasi<br>0.3 is su            | ue of the<br>ble Direct<br>uggested fo               | push-off f<br>tions. DEF<br>or blade op    | actor in t<br>AULT = 1.<br>otimization | che Method<br>O. (Note:<br>n.)      |

## CARD A4b (COPES DATA BLOCK D, SECOND CARD. OMIT IF NDV = 0 ON CARD A2)

Contents: Optimization Program Parameters (continued)

|   | 1      | 2      | 3      | 4                                                       |                                                                                                                                                                                          |
|---|--------|--------|--------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | DELFUN | DABFUN | ALPHAX | ABOBJI                                                  |                                                                                                                                                                                          |
|   | 10     | 20     | 30     | 40                                                      |                                                                                                                                                                                          |
| F | ield   | Item I | Format | Descript                                                | ion                                                                                                                                                                                      |
|   | 1      | DELFUN | F      | Minimum<br>to indic<br>process.<br>gested fo            | relative change in objective function<br>cate convergence of the optimization<br>DEFAULT = 0.001. (Note: .005 is sug-<br>or blade optimization.)                                         |
|   | 2 1    | DABFUN | F      | Minimum<br>to indio<br>process.<br>jective<br>gested fo | absolute change in objective function<br>cate convergence of the optimization<br>DEFAULT = 0.001 times the initial ob-<br>value. (Note: Default value is sug-<br>or blade optimization.) |
|   | 3 ,    | ALPHAX | F      | Maximum<br>able for<br>dimension<br>fault va<br>tion.)  | fractional change in any design vari-<br>first estimate of the step in the one-<br>nal search. DEFAULT = 0.1. (Note: De-<br>lue is suggested for blade optimiza-                         |
|   | 4 ,    | ABOBJI | F      | Expected<br>function<br>one-dimen<br>Default<br>tion.)  | fractional change in the objective<br>for first estimate of the step in the<br>nsional search. DEFAULT = 0.1. (Note:<br>value is suggested for blade optimiza-                           |

## Remarks:

The DEFAULT values for these parameters usually work well.

### CARD A5 (COPES DATA BLOCK E. OMIT IF NDV = O ON CARD A2)

Contents: Total Number of Design Variables, Design Objective Identification and Sign

|   | ]    |                          | 2      |                              | 3                                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|------|--------------------------|--------|------------------------------|---------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | NDV  | TOT                      | IOBJ   | J                            | SGNOP                                 | т     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |      | 10                       |        | 20                           |                                       | 30    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| P | ielo | ! :                      | Item   | F                            | ormat                                 |       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | Ţ    | ſ                        | νυντοτ |                              | Ι                                     |       | Total number of variables, including variables<br>which are linked to the design variables. Thus,<br>two or more variables may be assigned to a sin-<br>gle design decision variable. The value of each<br>parameter is the design variable value multi-<br>plied by a scalar, to be input on Card A7. Each<br>parameter may employ a different multiplier<br>value. DEFAULT = NDV. (Note: For STAEBL blade<br>optimization, the default value is recommended.) |
|   | 2    | :                        | IOBJ   |                              | I                                     |       | Global variable number associated with the objective function in optimization. (Refer to the Global Variable Code listing below. Usually variables 90 or 102 are used.)                                                                                                                                                                                                                                                                                         |
|   | 3    | S                        | SGNOPT |                              | F                                     |       | Sign used to identify whether function is to be<br>maximized or minimized. +1.0 indicates maximi-<br>zation1.0 indicates minimization. If SGNOPT<br>is not unity in magnitude, it acts as a multi-<br>plier as well, to scale the magnitude of the<br>objective.                                                                                                                                                                                                |
|   |      |                          |        |                              |                                       | STAEE | BL GLOBAL VARIABLE CODE                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | ١    | AR. I                    | NO.    | VARI                         | ABLE                                  |       | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |      | 1<br>2-6<br>7-1<br>12-32 | 1<br>2 | OBJF<br>FN(S<br>DLAF<br>THKV | <del>.</del><br>5)<br>R(5)<br>/AL(21) |       | Blade weight<br>Frequency of first 5 roots<br>Flutter log. decrement for first 5 roots<br>Design variable - thickness (e.g., for 5 thick-                                                                                                                                                                                                                                                                                                                       |

- Design Variable thickness (e.g., for 5 thick-nesses, use 12-16) Resonance margin for order number (ORDN) and root RF(ORDN,ROOT) 33 RF(1, 1) 34 RF(2, 1) 38 RF(1, 2) 45 RF(3, 3) 33-57 RF(5, 5)

# STAEBL GLOBAL VARIABLE CODE (continued)

| VAR. NO. | VARIABLE | DEFINITION                                                  |
|----------|----------|-------------------------------------------------------------|
| 58       | BRCC     | Design variable - root chord                                |
| 59       | STRN     | Foreign object damage parameter - leading edge strain       |
| 60-80    | TOVB(21) | Thickness to chord ratio                                    |
| 81       | DLE      | Location of hole from leading edge                          |
| 82       | DTE      | Location of hole from trailing edge                         |
| 83       | DROOT    | Location of hole from root                                  |
| 84       | DTIP     | Location of hole from tip                                   |
| 85       | TTI      | Titanium skin thickness for a hollow blade                  |
| 86       | TLT      | Inlay thickness                                             |
| 87       | TIS      | Titanium skin thickness for a superhybrid blade             |
| 88       |          | Titanium center thickness                                   |
| 89       | PCBA     | Percent of boron aluminum                                   |
| 90       | OBJEUN   | Object function - cost and weight function                  |
| 91       | BIA      | Borsic (registered trademark of Avco Corpora-               |
| 02       |          | tion) titanium fiber angle                                  |
| 92       | DAA      | Boron aluminum fiber angle                                  |
| 95       | SPOOT    | Maximum voot statis stross                                  |
| 97       |          | Maximum root foreign object damage                          |
| 98       | TSPT(1)  | Maximum root TSAI-WI stress for a solid or hol-             |
| 50       |          | low blade                                                   |
| 99       | TSRT(2)  | Maximum root TSAI-WU stress for a superhybrid blade         |
| 100      | TSRT(3)  | Maximum root TSAI-WU stress for a superhybrid               |
|          |          | blade or maximum hole TSAI-WU stress for a hol-             |
| 101      | TCDT/A   | IOW Diade<br>Maximum woot TSAT III stange for a superhybrid |
| 101      | 13K1(4)  | blade on maximum bala TSAL WI stress for a superhyperic     |
|          |          | low blade                                                   |
| 102      | STGWT    | Stade weight                                                |
| 103      | TPMRG    | Tip mode frequency margin                                   |
| 104      | FLTSLD   | Bending flutter constraint - solid blade.                   |
|          |          | FLTSLD = $1000 / f_1 b_7 s_9$ where f1 is the               |
|          |          | first bending mode frequency, cps, and b75%                 |
|          |          | is the chord at the 75% span location                       |
| 105-109  | GDMAX    | Forced response margins                                     |
| 111      | AMPA     | Mass/unit area for local increased density                  |
| 112      | ADLE     | Location of local increased density area from               |
|          |          | leading edge                                                |
| 113      | ADTE     | Location of local increased density area from trailing edge |
| 114      | ADROOT   | location of local increased density area from               |
|          |          | root                                                        |
| 115      | ADTIP    | Location of local increased density area from tip           |

### CARD AG (COPES DATA BLOCK F. OMIT IF NDV = 0 ON CARD A2)

Contents: Design Variable Bounds, Initial Values and Scaling Factors. NDV cards are read.

|   | 1    |      | 2      | 3                             | 4                                    |                                                                                                   |
|---|------|------|--------|-------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------|
|   | VLB  |      | VUB    | х                             | SCAL                                 |                                                                                                   |
|   |      | 10   | 20     | 30                            | 40                                   |                                                                                                   |
| 5 | ield | Item | Format | Descrip                       | otion                                |                                                                                                   |
|   | 1    | VLB  | F      | Lower b<br>no lowe            | oound on t<br>er bound.              | the design variable. If VLB.LT1.0E+15,                                                            |
|   | 2    | VUB  | F      | Upper l<br>no uppe            | oound on t<br>er bound.              | the design variable. If VUB.GT.1.0E+15,                                                           |
|   | 3    | X    | F      | Initial<br>this wi<br>supplie | value of<br>11 superse<br>ed subrout | the design variable. If X is non-zero,<br>ede the value initialized by the STAEBL-<br>ine ANALIZ. |
|   | 4    | SCAL | F      | Design<br>Block (             | variable :                           | scale factor. Not used if NSCAL.GE.O in                                                           |

### CARD A7 (COPES DATA BLOCK G. OMIT IF NDV = 0 ON CARD A2)

Contents: Design Variable Identification. NDVTOT cards are read.

|       | 1     | 2     |        | 3              |                                                                                                                                                   |
|-------|-------|-------|--------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|       | NDSGN | IDSG  | N AM   | 1UL T          |                                                                                                                                                   |
|       | 10    |       | 20     | 30             |                                                                                                                                                   |
| 1.1.1 | ield  | Item  | Format | De             | scription                                                                                                                                         |
|       | י ו   | NDSGN | I      | De<br>te       | sign variable number associated with this parame-<br>r. (NDSGN = 1, 2, 3,, NDVTOT)                                                                |
|       | 2     | IDSGN | I      | G1<br>te<br>de | obal variable number associated with this parame-<br>r. (Refer to the Global Variable Code listing un-<br>r Card A5 input instructions.)          |
|       | 3     | AMULT | F      | Co<br>th<br>me | nstant multiplier on this parameter. The value of<br>e parameter will be the value of the design para-<br>ter, NDSGN, times AMULT. DEFAULT = 1.0. |
|       |       |       |        | ( N            | ote: NDVTOT = NDV for blade optimization.)                                                                                                        |

### CARD A8 (COPES DATA BLOCK H. OMIT IF NDV = 0 ON CARD A2)

### Contents: Number of Constraint Sets

|   | 1     |       |        |                                                        |
|---|-------|-------|--------|--------------------------------------------------------|
|   | NCONS |       |        |                                                        |
|   | ·     | 10    |        |                                                        |
| F | -ield | Item  | Format | Description                                            |
|   | 1     | NCONS | I      | Number of constraint sets in the optimization problem. |

CARD A9a (COPES DATA BLOCK I. OMIT IF NDV = O ON CARD A2 OR IF NCONS = O ON CARD A8)

Contents: Constraint Identification and Constraint Bounds. NCONS pairs of Card A9a and Card A9b are read.

|             | 1    | 2      | 3      |                                                                                                                                                                                                                        |
|-------------|------|--------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | ICON | JCON   | LCON   |                                                                                                                                                                                                                        |
|             | 10   | 20     | 30     |                                                                                                                                                                                                                        |
| г<br>1<br>— | ield | Item F | Format | Description                                                                                                                                                                                                            |
|             | T I  | ICON   | I      | First global variable number corresponding to the constraint set.                                                                                                                                                      |
|             | 2    | JCON   | I      | Last global variable number corresponding to the constraint set. DEFAULT = ICON.                                                                                                                                       |
|             | 3 1  | _CON   | Ι      | Linear constraint identifier for this constraint<br>set. LCON = 1 indicates linear constraints. (In<br>blade optimization, constraints are usually<br>nonlinear. Therefore, LCON in most cases will<br>be equal to 0.) |

### Remark:

Each Card A9a identifies a set of consecutively numbered global variables (ICON through JCON) to be constrained, with the constraint limits specified on the subsequent data card, Card A95.

### CARD A9b (INCLUDE FOR EVERY CARD A9a USED)

Contents: Constraint Identification and Constraint Bounds (continued)

|   | 1    | 2      | 3     | 4                      |                                                                 |
|---|------|--------|-------|------------------------|-----------------------------------------------------------------|
|   | BL   | SCAL 1 | BU    | SCAL 2                 |                                                                 |
|   | 10   | 20     | 30    | 40                     |                                                                 |
| F | ield | Item F | ormat | Descript               | ion                                                             |
|   | 1    | BL     | F     | Lower bo<br>BL.LT1.    | und on the constrained variables. If<br>.0E+15, no lower bound. |
|   | 2    | SCAL 1 | L.    | Normaliza<br>MAX of AE | ation factor on lower bound. DEFAULT =<br>SS(BL), 0.1.          |
|   | 3    | BU     | F     | Upper bo<br>BU.GT.1.0  | und on the constrained variables. If<br>)E+15, no upper bound.  |
|   | 4    | SCAL2  | ۶     | Normaliza<br>MAX OF AB | ation factor on upper bound. DEFAULT =<br>BS(BU), 0.1.          |

#### Remarks

- 1. The normalization factor should usually be defaulted.
- 2. Each constrained parameter is converted to two constraints in CONMIN unless ABS(BL) or ABS(BU) exceeds 1.0E+15, in which case no constraint is created for that bound.

### CARD A10 (COPES DATA BLOCK V)

Contents: COPES Data 'END' Card



### Remarks

- 1. This card MUST appear at the end of the COPES data.
- 2. This ends the COPES input data.
- 3. Data for the STAEBL airfoil processor follows this data set.

4.2 Data Block B

## CARD B1

Contents: Case Control

1 73 Field Format Description Item Insert 'l' (one) in column 73 to indicate start of blade data. Col. 73 NTEST I CARD B2 Contents: Title 6 1 2 3 4 5 7 ITTLE-10 20 30 40 50 60 70 <u>Field</u> Description Item Format Descriptive title. 1-7 ITTLE Α

### CARD B3

Contents: **RPM** Increment 2 3 4 5 6 7 8 9 10 1 RPM ROOT DRPM 8 40 48 Field Description Item Format 1 RPM F Analysis speed, RPM. This is the speed desired for flutter stability evaluation. 5 ROOT F Number of frequencies desired, maximum of 5. 6 F DRPM Delta RPM. This RPM increment is added to the input RPM and another frequency is calculated at the higher speed for the purpose of comput-ing the sensitivity of the natural frequencies to speed. 1000.0 is suggested. CARD 34

Contents: Blade Station Definition



## CARD 85

Contents: Blade Station Radius, Chord Angle, Coordinate Instruction. Input One Card B5 for Each Blade Station from ID to OD.

| 1            | 2       | 3     | 4         | 5                                            | 6                                          | 7                                      | 8                                       | 9                               | 10                              |
|--------------|---------|-------|-----------|----------------------------------------------|--------------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------|---------------------------------|
| R            |         |       |           | ALPHA                                        |                                            |                                        |                                         |                                 | NO                              |
| ·            | 8       |       |           | 40                                           |                                            | <u> </u>                               |                                         | 7                               | 3 77                            |
| <u>Field</u> | Item    | Forma | <u>at</u> | <u>Descript</u>                              | ion                                        |                                        |                                         |                                 |                                 |
| 1            | R       | 7     |           | Distance<br>blade st<br>should b<br>tip stat | from t<br>ation, i<br>e the b<br>ion. (See | he engi<br>nches.<br>lade at<br>Figure | ne cente<br>The firs<br>tachment<br>5.) | er line<br>t input<br>, the l   | to the<br>station<br>ast the    |
| 5            | ALPHA   | F     |           | Angle be<br>and chore                        | tween pl<br>i normal                       | ane of<br>(y=0),                       | rotation<br>degrees.                    | of roto                         | or stage                        |
| 10           | NO      | F     |           | The numb<br>chord us<br>Maximum<br>are recor | per of<br>ed to<br>of 53 p<br>nmended.     | coordina<br>describe<br>oints.         | te stat<br>the a<br>Thirty t            | ions al<br>irfoil  <br>to fifty | ong the<br>profile.<br>′ points |
|              |         |       |           | Y                                            | 3<br>LEADIN<br>EDGE                        | LOCAL C<br>SYS                         | OORDINAT<br>TEM                         | Ε                               |                                 |
|              | FORWARD |       |           |                                              |                                            |                                        |                                         |                                 |                                 |
|              |         |       |           | ALPHA                                        |                                            |                                        | DIRECTIO                                | N OF ROT                        | ATION                           |
| X            |         | Fig   | gure 3    | Definit                                      | ion of Ar                                  | ngle ALP                               | HA                                      |                                 |                                 |

### CARDS B6, B7, AND B8

### Contents: Airfoil Coordinates

These cards follow Cards B5 at each station. Input x values first, then upper y's, then lower y's. For a solid or hollow airfoil with a conventional parallelogram neck geometry to serve as the transition between airfoil root and dovetail attachment, the coordinates of the first station will be ignored. The coordinates for station 1 must be input, however, usually using the station 2 coordinates. STAEBL will build a model of the neck, shown in Figure 5, from information included on Card B9. For an airfoil with no platform and a contoured neck, such as the superhybrid blade, the neck is treated as an extension of the airfoil, and thus proper section 1 coordinates are required.



CARD B9

Contents: Blade Root Angle. Neck Description.

|   | 1    | 2     | 3     | 4                                                                                                | 5                                                                    |                                                                                                                                                                                                           |
|---|------|-------|-------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |      | THER  | TROOT | RROOT                                                                                            | BRANG                                                                |                                                                                                                                                                                                           |
|   | 8    | 16    | 24    | 32                                                                                               | 40                                                                   |                                                                                                                                                                                                           |
| r | ield | Item  | Forma | at I                                                                                             | Descript                                                             | ion                                                                                                                                                                                                       |
|   | 2    | THER  | F     |                                                                                                  | Blade ro<br>Detween<br>ter line.                                     | ot angle, degrees. This is the angle<br>the blade platform and the engine cen-<br>. Positive counterclockwise.                                                                                            |
|   | 3    | TROOT | F     | -                                                                                                | Thickness                                                            | s of blade neck, inches.                                                                                                                                                                                  |
|   | 4    | RROOT | F     | F<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Radius o<br>radius is<br>the airff<br>respond<br>station<br>R(NSTA). | f first airfoil station, inches. This<br>s the radius at the half-chord point of<br>oil root. RROOT does not have to cor-<br>to an airfoil 1X2Y coordinate input<br>radius, but must lie between R(1) and |
|   | 5    | BRANG | F     | Ē                                                                                                | Broach ai<br>of the br                                               | ngle, the angle between the center line coach slot and an axial plane, degrees.                                                                                                                           |



Figure 5 Blade Root Angle and Neck Description

### CARD B10

Contents: Number of Blades 3 4 5 6 7 2 1 BLADES 56 48 Field Format Description Item 7 Number of blades in initial stage. The number of blades will be varied inversely with chord BLADES F during optimization in order to preserve solidity.



Figure 6 Blade Model With Attachment and Flowpath Angle After Blade Preprocessing

## 4.3 Data Block C

CARD Cla

+

.

ы

## Contents: Problem Definition

|   | 1    | 2     | 3      | 4   | 5      | 6      | 7                                                                                                                                           | 8                                                             | 9                                            |                                                                                                                   |  |
|---|------|-------|--------|-----|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
|   | NTIS | NRF   | NRFOD  | NCD | NLAYER | NRTFOD | NRESFF                                                                                                                                      | QM411N                                                        | BRSV                                         |                                                                                                                   |  |
|   | 5    | 10    | 15     | 20  | 25     | 30     | 35                                                                                                                                          | 40                                                            | 50                                           |                                                                                                                   |  |
| F | ield |       | Item   |     | Format |        | Description                                                                                                                                 |                                                               |                                              |                                                                                                                   |  |
|   | 1    | NTIS  |        |     | I      |        | Number of thickness input stations, maximum of 21, minimum of 2. Suggested value is 5.                                                      |                                                               |                                              |                                                                                                                   |  |
|   | 2    | NRF   |        |     | I      |        | Numt<br>max                                                                                                                                 | Number of roots calculated by flutter analysis, maximum of 5. |                                              |                                                                                                                   |  |
|   | 3    | NRFOD |        |     | I      |        | Number of roots for both local and root foreign<br>object damage (FOD) analysis. Suggested value<br>is 5. If = 0, FOD analysis is not made. |                                                               |                                              |                                                                                                                   |  |
|   | 4    | NCD   |        | I   |        |        | Def                                                                                                                                         | ines 1                                                        | the airfo <sup>.</sup>                       | il type:                                                                                                          |  |
|   |      |       |        |     |        |        | 0 =<br>1 =<br>2 =                                                                                                                           | solio<br>hollo<br>super                                       | d<br>ow<br>rhybrid                           |                                                                                                                   |  |
|   | 5    |       | NLAYER |     | I      |        | Numł                                                                                                                                        | per of                                                        | f layers f                                   | for blade.                                                                                                        |  |
|   |      |       |        |     |        |        | If M<br>If M<br>If M                                                                                                                        | NCD=0<br>NCD=1<br>NCD=2                                       | use 1 or<br>use 5 or<br>use 7 or             | 1;<br>5;<br>7.                                                                                                    |  |
|   |      |       |        |     |        |        | Note<br>pres<br>TSAI<br>lim                                                                                                                 | e: If<br>set 1<br>[-WU<br>its w <sup>-</sup>                  | NLAYER<br>imits (s<br>limits).<br>ill be inp | is positive, the program uses<br>ee Card Cll for the preset<br>If NLAYER is negative, TSAI-WU<br>out on Card Cll. |  |
|   | 6    | 1     | NRTFO  | )   | I      |        | Root                                                                                                                                        | t for                                                         | eign objed                                   | ct damage option:                                                                                                 |  |
|   |      |       |        |     |        |        | 0 =<br>1 =                                                                                                                                  | not (<br>calcu                                                | calculated                                   | i                                                                                                                 |  |

## CARD Cla (continued)

| Field | Item   | Format | Description                                                                                                                                                                                                                                                                                                     |
|-------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7     | NRESFF | I      | Resonance margin criteria:                                                                                                                                                                                                                                                                                      |
|       |        |        | <pre>0 = resonance margins calculated<br/>1 = forcing function calculated. STAEBL-provided<br/>forcing functions are applicable to the En-<br/>ergy Efficient fan blade only. User-supplied<br/>forcing functions may be incorporated by<br/>updating Subroutine FRCFNC.<br/>2 = both of the above</pre>        |
|       |        |        | Notes:                                                                                                                                                                                                                                                                                                          |
|       |        |        | <ol> <li>Excitation orders for which margins are cal-<br/>culated are input on Card C5.</li> </ol>                                                                                                                                                                                                              |
|       |        |        | 2. When resonance margin is specified as a con-<br>straint in Data Block A and if NRESFF=O,<br>minimum resonance margin will be as speci-<br>fied on Card A9b.                                                                                                                                                  |
|       |        |        | If NRESFF=1, minimum resonance margin will<br>be based on maximum permissible vibratory<br>and steady stress combination on the blade<br>which satisfies the Modified Goodman Diagram.<br>STAEBL assumes titanium for Goodman Diagram<br>construction. To change material, Subroutine<br>GOODMN may be updated. |
|       |        |        | When NRESFF=2, the limiting case (either the specified resonance margin or maximum per-<br>missible blade stress) will govern.                                                                                                                                                                                  |
| 8     | NTIPMD | I      | Tipmode search (required if a tip plate vibra-<br>tory mode constraint is desired):                                                                                                                                                                                                                             |
|       |        |        | <pre>0 = no search ≥1 = number of modes tested for tip (5 maximum) Note: if NTIPMD &gt; 0 and no tipmodes are found, tipmode defaults to fifth mode.</pre>                                                                                                                                                      |
| 9     | BRSV   | F      | Root chord length for which optimization will<br>begin, inches. All coordinate input will be<br>scaled by BRSV/coordinate input root chord.                                                                                                                                                                     |

-


Figure 7 Location of the Worst Vibratory and Steady Stress Combination on the Modified Goodman Diagram - STAEBL



Figure 8 Contour Plot of Tip Mode

# CARD C15

| 1                 | 2       | 3    | 4   | 5     | 6                                            |                                                                   |  |  |
|-------------------|---------|------|-----|-------|----------------------------------------------|-------------------------------------------------------------------|--|--|
| CF 1              | CF2     | CF3  | CF4 | CF5   | CFT                                          |                                                                   |  |  |
| 5 10 15 20 25 30  |         |      |     |       | 30                                           |                                                                   |  |  |
| <u>Field</u> Item |         | ltem | F   | ormat |                                              | Description                                                       |  |  |
| 1 CF1             |         |      | F   |       | First mode correction factor. DEFAULT = 1.0. |                                                                   |  |  |
|                   |         |      |     |       |                                              | CF = Refined Analysis Frequency<br>Approximate Analysis Frequency |  |  |
| 2                 | (       | CF2  |     | F     |                                              | Second mode correction factor. DEFAULT = 1.0.                     |  |  |
| 3                 | 3 CF3   |      |     | F     |                                              | Third mode correction factor. DEFAULT = $1.0$ .                   |  |  |
| 4                 | 4 CF4   |      |     | F     |                                              | Fourth mode correction factor. DEFAULT = 1.0.                     |  |  |
| 5                 | 5 CF5 F |      |     | F     |                                              | Fifth mode correction factor. DEFAULT = 1.0.                      |  |  |
| 6                 | 6 CFT F |      |     |       |                                              | Tipmode correction factor. DEFAULT = 1.0.                         |  |  |

\_

•

# Contents: Frequency Correction Factors

## CARD C2

Contents: Airfoil Coordinate Input in Section B Will be Scaled to Reflect These Starting Values of Maximum Thickness.

| 1      | 2                    | 3      | 4       |                                              |
|--------|----------------------|--------|---------|----------------------------------------------|
| IST(1) | VALT(1)              | IST(2) | VALT(2) | NTIS TIMES                                   |
| 2      | 10                   | 12     | 20      |                                              |
| Fiel   | <u>d</u> <u>Item</u> |        | Format  | Description                                  |
| 1      | IST(                 | 1)     | I       | Station number (as referenced to Section B). |
| 2      | VALT                 | (1)    | F       | Thickness, inches.                           |

ALTERNATE NTIS TIMES

Remark:

IST(NTIS) must correspond to the blade tip.



Figure 9 Typical Station Locations for Airfoil Maximum Thickness Starting Values

### CARD C3 (REQUIRED IF NRF > 0 ON CARD C1a)

Contents: Supersonic flutter analysis input control.

|    | 1    |    | 2      |    | 3      |    | 4                    |                                |                          |       |    |     |
|----|------|----|--------|----|--------|----|----------------------|--------------------------------|--------------------------|-------|----|-----|
|    |      |    | TEMPS  | Г  |        |    | NAC                  |                                |                          |       |    |     |
| •. |      | 10 |        | 20 |        | 30 | 40                   | 949 <u></u>                    |                          |       |    |     |
| F  | ield | ]  | Item   | F  | format |    | Descript             | ion                            |                          |       |    |     |
|    | 2    | ]  | rempst |    | F      |    | Inlet sta            | atic temperatu                 | re, °F.                  |       |    |     |
|    | 4    | ٢  | VAC    |    | I      |    | Number o<br>sent, on | f aerodynamic<br>y one station | stations.<br>is allowed. | Note: | At | pre |

# <u>CARD C4 (REQUIRED IF NRF > 0 ON CARD C1a)</u>

Contents: Aerodynamic Data for Flutter Calculation. Input NAC Times.

|   | 1      | 22       | 3      | 4         |                                      |
|---|--------|----------|--------|-----------|--------------------------------------|
|   | VOM(I) | ARAD(I)  |        | STPRS(I)  |                                      |
|   | 10     | 20       | 3      | ol 40     |                                      |
| 2 | ield   | Item     | Format | Descript  | ion                                  |
|   | י ד    | VOM(I)   | F      | Relative  | inlet Mach Number.                   |
|   | 2      | ARAD(I)  | F      | Correspo  | nding radius in inches.              |
|   | 4      | STPRS(I) | F      | Inlet sta | atic pressure, lbf/ft <sup>2</sup> . |

CARD C5

Contents: Speed and Excitation Orders for Resonance Margin Calculation

|                   | 1  | 2       | 3    | 4                          | 5           |                                     |    |  |
|-------------------|----|---------|------|----------------------------|-------------|-------------------------------------|----|--|
| SPDRL             |    | SPDMC   | NORD | IORD<br>(1)                | IORD<br>(2) | NORD TIMES                          |    |  |
|                   | 10 | 20      | 30   | 35                         | 40          |                                     |    |  |
| Field Item Format |    |         |      | Desc                       | cripti      | on                                  |    |  |
|                   | 1  | SPDRL   | F    | Redline speed, RPM.        |             |                                     |    |  |
|                   | 2  | SPDMC   | F    | Minimum cruise speed, RPM. |             |                                     |    |  |
|                   | 3  | NORD    | I    | Numi                       | per of      | excitation orders input, maximum of | 5. |  |
|                   | 4  | IORD(I) | I    | Orde                       | er num      | ber.                                |    |  |
|                   |    |         |      |                            |             |                                     |    |  |

I = 1, NORD



Figure 10 Resonance Diagram for a Successfully Tuned Blade (No Response Crossings Within 5 Percent of the Speed Operating Range)

# CARD C6 (REQUIRED IF NRFOD > 1 ON CARD C1a)

| Content                    | ts: Loca | l Foreign         | Object                                                                                                          | Damage I                                                                    | Input                 |                        |                  |  |
|----------------------------|----------|-------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------|------------------------|------------------|--|
| 1                          | 2        | 3                 |                                                                                                                 | 4                                                                           | 5                     | 6                      |                  |  |
| R                          | VP       | THE               | TA                                                                                                              | RH O                                                                        | TSTEP                 | BETA                   |                  |  |
| •                          | 10       | 20                | 30                                                                                                              | 40                                                                          | 50                    | 60                     |                  |  |
| Field                      | Item     | Format            | Des                                                                                                             | cription                                                                    |                       |                        |                  |  |
| 1 R F Bird radius, inches. |          |                   |                                                                                                                 |                                                                             |                       |                        |                  |  |
| 2 VP F                     |          |                   | Bir                                                                                                             | Bird velocity, inches/sec.                                                  |                       |                        |                  |  |
| 3 THETA F                  |          | Imp<br>dia<br>fol | Impact angle relative to ALPHA on Card B5, ra-<br>dians (see Figure 11). THETA can be calculated as<br>follows: |                                                                             |                       |                        |                  |  |
|                            |          |                   |                                                                                                                 | THETA                                                                       | A = ALPHA (           | (at impact             | radius) – $\phi$ |  |
|                            |          |                   | whe                                                                                                             | where                                                                       |                       |                        |                  |  |
|                            |          |                   | φ=                                                                                                              | $\phi = TAN^{-1}((60 \cdot V_p)/(2\pi \cdot b) = (mpact radius \cdot RPM))$ |                       |                        |                  |  |
| 4                          | RHO      | F                 | Bird                                                                                                            | density,                                                                    | 1b sec <sup>2/.</sup> | in <sup>4</sup>        |                  |  |
| 5                          | TSTEP    | F                 | Time                                                                                                            | estep, sec                                                                  | conds. 1 x            | 10 <sup>-5</sup> recor | nmended.         |  |
| 6                          | BETA     | F                 | Moda                                                                                                            | l damping                                                                   | g, 0.0 is r           | recommende             | d.               |  |



Figure 11 Local Foreign Object Damage Model

# CARD C7 (REQUIRED IF NRFOD > 0 ON CARD C1a)

Contents: Foreign Object Damage Input (continued)

| 1     | 2     |         |                                                                                                 |
|-------|-------|---------|-------------------------------------------------------------------------------------------------|
| NREF  | NSTEP |         |                                                                                                 |
| 5     | 10    | <u></u> |                                                                                                 |
| Field | Item  | Format  | Description                                                                                     |
| 1     | NREF  | I       | Leading edge impact node for local foreign ob-<br>ject damage. Normally use 16 (see Figure 11). |
| 2     | NSTEP | I       | Number of timesteps required. 40 is suggested.                                                  |

CARD C8

Contents: Material Properties (Input NLAYER Values)

|     | 1      | 2      | 3         | 4                | 5           |                                    |
|-----|--------|--------|-----------|------------------|-------------|------------------------------------|
|     | E11(I) | E22(I) | V12(I)    | G12(I)           | RH(I)       |                                    |
|     | 10     | 20     | 30        | 40               | 50          | <u></u>                            |
| 1.5 | ield   | Item F | Format    | Descript         | ion         |                                    |
|     | 1      | E11(I) | Ξ         | Youngs mo        | odulus in p | primary (1-1) direction, psi.      |
|     | 2      | E22(I) | E         | Youngs m<br>psi. | nodulus in  | secondary (2-2) direction,         |
|     | 3      | V12(I) | F         | Poissons         | ratio.      |                                    |
|     | 4      | G12(I) | E         | Shear mod        | iulus, psi. |                                    |
|     | 5      | RH(I)  | F         | Mass dens        | sity, 15 se | ec <sup>2</sup> /in <sup>4</sup> . |
|     |        |        | $\langle$ |                  | 2           |                                    |

Figure 12 Unidirectionally Reinforced Lamina

### CARD C9 (REQUIRED IF NCD = 1 ON CARD Cla)

Contents: Data Associated With a Hollow Blade Design

| 1    | 2     | 3      | 4         | 5          | 6           | 7           |        |
|------|-------|--------|-----------|------------|-------------|-------------|--------|
| DLE  | DTE   | DROOT  | DTIP      | TTI        | TLT         | BTA         |        |
| 10   | 20    | 30     | 40        | 50         | 50          | 70          |        |
| ield | Item  | Format | Descript  | ion        |             |             |        |
| 1    | DLE   | F      | Distance  | to hole fi | rom leading | g edge, in  | ches.  |
| 2    | DTE   | F      | Distance  | to hole fr | rom traili  | ng edge, in | nches. |
| 3    | DROOT | F      | Distance  | to hole fi | rom airfoi  | l root, in  | ches.  |
| 4    | DTIP  | F      | Distance  | to hole fr | rom airfoi  | l tip, incl | hes.   |
| 5    | ТТІ   | F      | Thicknes  | s of skin, | inches.     |             |        |
| 6    | TLT   | F      | Thicknes  | s of inlay | , inches.   |             |        |
| 7    | BTA   | F      | Inlay fil | ber angle, | degrees.    |             |        |





### CARD C9a (REQUIRED IF NCD = 2 ON CARD Cla)

Contents: Data Associated With a Superhybrid Blade Design

|   | 1    | 2       | 33     | 4                     | 5                 | 6          |                   |   |
|---|------|---------|--------|-----------------------|-------------------|------------|-------------------|---|
|   | TIS  | TIC     | PCBA   | ваа                   | GEA               | A MP A     |                   |   |
|   | 10   | 20      | 30     | 40                    | 50                | 60         |                   |   |
| F | ield | Item    | Format | Descript              | ion               |            |                   |   |
|   | 1    | TIS     | F      | Skin thic             | ckness, ind       | ches.      |                   |   |
|   | 2    | 2 TIC F |        |                       | nickness,         | inches.    |                   |   |
|   | 3    | PCBA    | F      | Outer co<br>composite | omposite p<br>e). | percent (  | remaining is inne | r |
|   | 4    | ВАА     | F      | Outer con             | nposite fil       | ber angle, | degrees.          |   |
|   | 5    | GEA     | F      | Inner con             | nposite fil       | per angle, | degrees.          |   |
|   | 6    | AMPA    | F      | Added mas             | ss patch of       | ption.     |                   |   |
|   |      |         |        | If AMPA =             | = 0: No a         | ided mass. |                   |   |
|   |      |         |        | If AMPA 🗦             | >0: Addee         | d mass o   | ption active, an  | d |

f AMPA > 0: Added mass option active, and AMPA reflects mass per inch<sup>2</sup>, 1b sec<sup>2</sup>/in<sup>4</sup>.



Figure 14 Layup Associated With a Superhybrid Blade Design

# CARD C10 (REQUIRED IF AMPA ≠ 0 ON CARD C9a)

|   | 1    | 2      | 3      | 4                |                                      |
|---|------|--------|--------|------------------|--------------------------------------|
|   | ADLE | ADTE   | ADROOT | ADTIP            |                                      |
|   | 10   | 20     | 30     | 40               |                                      |
| 5 | ield | Item F | format | <u>Descripti</u> | on                                   |
|   | 1    | ADLE   | F      | Distance         | to patch from leading edge, inches.  |
|   | 2    | ADTE   | F      | Distance         | to patch from trailing edge, inches. |
|   | 3    | ADROOT | F      | Distance         | to patch from blade root, inches.    |
|   | 4    | ADTIP  | F      | Distance         | to patch from blade tip, inches.     |

Contents: Local Increased Density Input





### CARD C11 (REQUIRED ONLY IF NLAYER < 0 ON CARD C1a)

Contents: TSAI-WU Failure Limits. Input NLAYER Values.

|   | 11     | 2             | 3      | 4                     | 5                        | 6                 |                                        |
|---|--------|---------------|--------|-----------------------|--------------------------|-------------------|----------------------------------------|
|   | X1T(I) | X1C(I)        | X2T(I) | X2C(I)                | S6P(I)                   | S6M(I)            |                                        |
|   | 10     | 20            | 30     | 40                    | 50                       | 50                | ······································ |
| - | ield   | <u>Item</u> F | ormat  | Descript              | ion                      |                   |                                        |
|   | 1      | XIT           | E      | Ultimate<br>psi.      | tensile                  | strength i        | in fiber direction,                    |
|   | 2      | X1C           | E      | Ultimate<br>tion, ps  | compressi<br>i.          | ve streng         | th in fiber direc-                     |
|   | 3      | Х2Т           | E      | Ultimate<br>ber direc | tensile s                | strength p        | erpendicular to fi-                    |
|   | 4      | X2C           | E      | Ultimate<br>fiber dir | compressi<br>rection, ps | ve strengi<br>si. | th perpendicular to                    |
|   | 5      | S6P           | E      | Ultimate              | shear stre               | ength in x-       | y direction, psi.                      |
|   | 6      | SGM           | Ε      | Ultimate              | shear stre               | ength in y-       | -x direction, psi.                     |

Notes:

Input all strengths with positive value.

S5P and S6M are usually equal.

If NLAYER on Card Cla is positive, the following preset values for TSAI-WU limits will be used:

X1T = 110,000 psi X1C = 110,000 psi X2T = 110,000 psi X2C = 110,000 psi S6P = 63,470 psi S6M = 63,470 psi

These values correspond to the values required to calculate a Von Mises equivalent yield limit in titanium.

### SECTION 5.0

### DETAILED OUTPUT DESCRIPTION

A description of the STAEBL output is summarized in the following sections, including each variable name, the writing element, and, if the output message is not self evident, an explanation follows.

5.1 COPES/CONMIN

Refer to Appendix A and/or the COPES/CONMIN manual (NASA Report No. NPS59-31-003).

5.2 Approximate Analysis

5.2.1 Global Variable Definition

Write routine for global variable description: MESAGE

5.2.2 Analysis Information

| Output Message   | Var.<br>Name | Subroutine | Remark                                                      |
|------------------|--------------|------------|-------------------------------------------------------------|
| Iteration Number | ITER         | CNSTAV     | Analysis iteration counter.                                 |
| INFOG            | INFOG        |            | Gradient calc. flag:<br>O = nongradient<br>l = gradient     |
| IFREQ            | IFREQ        |            | Frequency calc. flag:<br>0 = no<br>l = yes                  |
| IFLT             | IFLT         |            | Flutter calc. flag:<br>0 = no<br>1 = yes                    |
| IFOD             | IFOD         |            | Foreign object damage calc. flag:<br>O = no<br>l = yes      |
| ISTR             | ISTR         |            | Stress calc. flag:<br>0 = no<br>1 = yes                     |
| IRTF             | IRTF         | l l        | Root foreign object damage calc. flag:<br>O = no<br>l = yes |

# 5.2.3 Airfoil Geometry

| Output Message     | Var.<br><u>Name</u> | <u>Subroutine</u> | Remark                                                                           |
|--------------------|---------------------|-------------------|----------------------------------------------------------------------------------|
| NCD                | NCD                 | CALCTH            | Airfoil type:<br>O = solid<br>l = hollow<br>2 = superhybrid                      |
| DLE                | DLE                 |                   | Hollow blade: distance from lead-<br>ing edge to hole.                           |
| DTE                | DTE                 |                   | Hollow blade: distance from trail-<br>ing edge to hole.                          |
| DROOT              | DROOT               |                   | Hollow blade: distance from blade root to hole.                                  |
| DTIP               | DTIP                |                   | Hollow blade: distance from blade tip to hole.                                   |
| TTI                | TTI                 |                   | Hollow blade: skin thickness.                                                    |
| TLT                | TLT                 |                   | Hollow blade: inlay thickness.                                                   |
| B/T ANG            | BTA                 |                   | Hollow blade: inlay angle.                                                       |
| TIS                | TIS                 |                   | Superhybrid blade: skin thickness.                                               |
| TIC                | TIC                 |                   | Superhybrid blade: center thick-<br>ness.                                        |
| РСВА               | PCBA                |                   | Superhybrid blade: percent thick-<br>ness of remaining for outer com-<br>posite. |
| B/A ANG            | BAA                 |                   | Superhybrid blade: outer composite angle.                                        |
| G/E ANG            | GEA                 |                   | Superhybrid blade: inner composite angle.                                        |
| MASS PER UNIT AREA | AMPA                |                   |                                                                                  |
| ADLE               | ADLE                |                   | Location of patch from leading edge.                                             |
| ADTE               | ADTE                | ¥                 | Location of patch from trailing edge.                                            |

`

| <u>Output Message</u> | Var.<br>Name | Subroutine | Remark                                       |
|-----------------------|--------------|------------|----------------------------------------------|
| ADROOT                | ADROOT       | CALCTH     | Location of added mass patch from root.      |
| ADTIP                 | ADTIP        |            | Location of added mass patch from tip.       |
| STA.                  | I            |            | Design station number.                       |
| RADIUS (IN.)          | R            |            | Design station radius.                       |
| PCT. SPAN             | PC           |            | Airfoil percent span.                        |
| THICKNESS (IN.)       | тсс          |            | Airfoil maximum thickness.                   |
| CHORD (IN.)           | BCC          |            | Airfoil chord length.                        |
| THK/CHD               | ТОВ          | ¥          | Airfoil thickness to chord ra-<br>tio (t/b). |

# 5.2.4 Resonance Margin Information

| Output Message                | Var.<br><u>Name</u> | <u>Subroutine</u> | Remark                                                                |
|-------------------------------|---------------------|-------------------|-----------------------------------------------------------------------|
| FREQUENCIES AT RPM<br>(#1)    | SPD1<br>FN1(1)      | RESMRG            | Initial analysis speed.<br>lst mode frequency                         |
| (n)                           | FNI(n)              |                   | nth mode frequency Calculated                                         |
| FREQUENCIES AT RPM<br>(#1)    | SPD2<br>FN2(1)      |                   | Incremented speed. (not corrected)<br>Ist mode frequency              |
| (n)                           | FN2(n)              |                   | nth mode frequency                                                    |
| REDLINE SPEED-RPM             | SPDRL               |                   |                                                                       |
| MIN CRUISE SPEED RPM          | SPDMC               |                   |                                                                       |
| FREQUENCY-CPS<br>(REDLINE)    | FRL                 |                   | Composted Encouraging                                                 |
| FREQUENCY-CPS<br>(MIN CRUISE) | FMC                 | 5                 | corrected frequencies                                                 |
| MARGIN (REDLINE)              | RRL                 |                   | Positive margin at redline in-<br>dicates a frequency above an order. |
| MARGIN (MIN CRUISE)           | RMC                 | ¥                 | Positive margin at min cruise indicates a frequency below an order.   |

| Output Message | Var.<br>Name | Subroutine | Remark |
|----------------|--------------|------------|--------|
| MARGIN (MAX)   | RF           | RESMRG     |        |
| ORDER          | IORD         |            |        |
| ORDER NUMBER   | I            |            |        |
| ROOT NUMBER    | J            | ¥          |        |

5.2.5 Resonance Margin Information, Forced Response

| Output Message | Var.<br><u>Name</u> | Subroutine | Remark                                 |
|----------------|---------------------|------------|----------------------------------------|
| MODE           | I                   | GOODMN     |                                        |
| ORDER          | IORD                |            | Order number.                          |
| SPEED          | SPRL                |            | Redline speed.                         |
| PC MARGIN      | PMGDRL              |            | Percent margin at redline speed.       |
| SPEED          | SPMC                |            | Min cruise speed.                      |
| PC MARGIN      | PMGDMC              |            | Percent margin at min cruise<br>speed. |
| MODE           | Ι                   |            |                                        |
| MARGIN         | GDMAX               | Ý          | Max response margin.                   |

5.2.6 Flutter Output

| Output Message     | Var.<br><u>Name</u> | Subroutine    | Remark                                                        |
|--------------------|---------------------|---------------|---------------------------------------------------------------|
| FLUTTER CONSTRAINT | FLTSLD              | ANALIZ        | Bending flutter evaluation used for solid blade optimization. |
| AERO DAMPING COEF. | DELSAV              | <u>1TW751</u> | Minimum aero. log. decrement<br>found.                        |
| CRIT. NODAL DIA    | NSAV                | ¥             | Nodal diameter associated with minimum aero. log. decrement.  |

# 5.2.7 Tip Mode Information

| Output Message                         | Var.<br><u>Name</u> | <u>Subrout ine</u> | Remark                                                |
|----------------------------------------|---------------------|--------------------|-------------------------------------------------------|
| FREQUENCY-CPS AT # RPM<br>(#)          | SPD1<br>FN1         | FRQTIP             | Analysis RPM.<br>Tipmode frequency (raw).             |
| <pre>FREQUENCY-CPS AT # RPM  (#)</pre> | SPD2<br>FN2         |                    | Incremented analysis RPM.<br>Tipmode frequency (raw). |
| REDLINE SPEED-RPM                      | SPDRL               |                    |                                                       |
| FREQUENCY-CPS                          | FRL                 |                    | Corrected tipmode frequency at redline.               |
| MARGIN                                 | TPRL                |                    | Redline margin.                                       |
| MIN CRUISE SPEED-RPM                   | SPDMC               |                    | <i>,</i>                                              |
| FREQUENCY-CPS                          | FMC                 |                    | Corrected tipmode frequency at minimum cruise.        |
| MARGIN                                 | ТРМС                |                    | Minimum cruise margin.                                |
| TIPMODE FREQUENCY MARGIN               | TPMRG               |                    | Limiting margin.                                      |
| ON #E                                  | NRD                 |                    | Order for limiting margin.                            |
| MODE                                   | NM                  | ¥                  | Tipmode mode number.                                  |

٠

٠

-

.

5.2.8 Stress Output

| Output Message                                    | Var.<br><u>Name</u>    | <u>Subroutine</u> | Remark                                                                                                             |
|---------------------------------------------------|------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------|
| ROOT STRESS                                       | SROOT                  | ANALIZ            | Maximum root stress as out-<br>put from finite element ana-<br>lysis. (First two rows of<br>element are searched.) |
| TSAI-WU STRESS<br>FOR ELEMENT NUMBER<br>AND LAYER | TSRT<br>NELRT<br>NLYRT | STRCON            | Maximum TSAI-WU stress.                                                                                            |

5.2.9 Object Function Information

| <u>Output Message</u> | Var.<br><u>Name</u> | Subroutine |
|-----------------------|---------------------|------------|
| BLADE WEIGHT          | WGHT                | ANALIZ     |
| NUMBER OF BLADES      | BLDGPC              |            |
|                       |                     |            |
| STAGE WEIGHT          | STGWT               | ¥          |
| OBJECT FUNCTION       | OBJFUN              | OBJTV      |

BLOGIC is changed during the optimization process to keep the gap/chord ratio a constant.

Remark

5.2.10 Local Foreign Object Damage Output

| Output Message | Var.<br><u>Name</u> | <u>Subroutine</u> | Remark                                          |
|----------------|---------------------|-------------------|-------------------------------------------------|
| STRAIN         | STRN                | ANALIZ            | Average leading edge strain.                    |
| AT TIME        | ТМХА                | ¥                 | Time of maximum average<br>leading edge strain. |

5.2.11 Root Foreign Object Damage Output

| Output Message     | Var.<br><u>Name</u> | <u>Subroutine</u> | Remark |
|--------------------|---------------------|-------------------|--------|
| ROOT FOD           | TSWU                | ANALIZ            |        |
| FOR ELEMENT NUMBER | NELM                |                   |        |
| AND LAYER          | NLAY                |                   |        |

### SECTION 6.0

#### PROGRAMMED ERROR MESSAGES

This section contains programmed error messages found in STAEBL's approximate analysis. The COPES/CONMIN (Control Program for Engineering Synthesis/Constrained Minimization) manual and/or Appendix A should be referred to for any additional messages encountered.

5.1 COPES/CONMIN

Refer to Appendix A and/or the COPES/CONMIN manual, NASA Report Number NPS69-81-003.

5.2 COPES/ANALIZ

| Message                                                                                    | Problem                                                                                                          | Routine | Write<br><u>Unit</u> |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------|----------------------|
| N EXCEEDS NTIS                                                                             | Number of thickness input<br>stations not equal to the<br>specified amount. See NTIS,<br>IST on card Cla and C2. | CALCTH  | 25                   |
| NCD=NOT A VALID OPTION                                                                     | Bad NCD on card Cla.                                                                                             | CALCTH  | 25                   |
| NLAYER=MUST BE BETWEEN 1&7                                                                 | Bad number of layers speci-<br>fied on card Cla.                                                                 | RDDATA  | 26                   |
| NLAYER=NLAYER MUST EQUAL<br>1, 5, OR 7 WHEN ITFL EQUALS<br>0. EXECUTION HALTED.            | Self explanatory.                                                                                                | TSWUFL  | 25                   |
| INDEPENDENT VARIABLE WHICH<br>IS, IS OUT OF X RANGE                                        | Beam fit routine is falter-<br>ing. Check flutter aero.<br>input stations.                                       | BMEVAL  | 6                    |
| ROOT NUMBER= A ROOT NUMBER<br>OTHER THAN 1, 2, OR 3 IS NOT<br>SUPPORTED. ANALYSIS STOPPED. | Forcing functions for Energy<br>Efficient Engine fan blades<br>beyond third mode are not<br>supported.           | FRCFNC  | 26                   |

6.3 Finite Element Preprocessor

| Message                                                                                                                                               | Problem                                                                                | <u>Rout ine</u> | Write<br><u>Unit</u> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------|----------------------|
| NSPAN=THE MAXIMUM IS 8. ANOTHER SPC1<br>CARD IS REQUIRED.                                                                                             | Self explanatory.                                                                      | BC              | 6                    |
| NCHORD=THE MINIMUM IS 3. NSPAN=<br>THE MINIMUM=5.                                                                                                     | Self explanatory.                                                                      | BC              | 6                    |
| THE NUMBER OF DATA POINTS IS LESS THAN 2. N=                                                                                                          | Inadequate sub-<br>routine input.                                                      | BMFIT2          | 6                    |
| THICKNESS CHECK IN LAMINA FAILURE CHECK=                                                                                                              | Remaining per-<br>centage thickness<br>check has failed.                               | LAMINA          | 26                   |
| THE SUM OF LAMINA THICKNESSES DOESNT<br>EQUAL THE INPUT TOTAL THICKNESS FOR<br>THIS LAMINATE. SUM OF LAMINA THICK-<br>NESSES= INPUT LAMINA THICKNESS= | Thicknesses of<br>element in ques-<br>tion are bad. Check<br>layer thickness<br>input. | LAMI N8         | 26                   |

6.4 Finite Element Analysis

Note: Error messages from this module will probably never be seen unless the user has made changes to or replaced the existing preprocessor module.

| Message                                                                                                                                                                                                   | Problem                                                                                                    | <u>Routine</u>   | Write<br>Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------|---------------|
| BANDED MATRIX SIZE LIMIT EXCEEDED.                                                                                                                                                                        | Self explanatory.                                                                                          | MNU808           | 6             |
| ERROR IN DATA, IER=                                                                                                                                                                                       | If IER=1: element<br>property card ID<br>problem. If IER=<br>2, 3, 4: element<br>grid point ID<br>problem. | EMGG             | 5             |
| ***USER FATAL MESSAGE 4298. A CORNER<br>POINT MEMBRANE THICKNESS HAS NOT BEEN<br>SPECIFIED FOR ELEMENT WITH ID= AND<br>THERE IS NO DEFAULT VALUE ON THE ASSO-<br>CIATED PROPERTY CARD.                    | Self explanatory.                                                                                          | ETR3D,<br>STR31D | 6             |
| ***USER FATAL MESSAGE 4301. FOR ELEMENT<br>WITH ID A= THE MATERIAL ROUTINE -MAT-<br>RETURNS A 3X3 G-MATRIX WITH EITHER OR<br>BOTH OF BOTH TERMS G11 AND G22 EQUAL<br>ZERO. MATERIAL ID CONCERNED EQUALS . | Self explanatory.                                                                                          | ETR3D,<br>STR31D | 6             |

| Message                                                                                                                                                   | Problem                                                                 | Routine          | Write<br><u>Unit</u> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------|----------------------|
| ***USER FATAL MESSAGE 4558. INAPPROPRI-<br>ATE GEOMETRY OR INCORRECT MATERIAL DATA<br>SPECIFIED FOR ELEMENT WITH ID=                                      | Self explanatory.                                                       | ETR3D,<br>STR31D | 6                    |
| INAPPROPRIATE -TRIA3- GEOMETRY.                                                                                                                           | Self explanatory.                                                       | ETR3D,<br>STR31D | 6                    |
| MID2 MATERIAL -G- 3X3 MATRIX INSUFFI-<br>CIENT, MATERIAL ID=                                                                                              | Self explanatory.                                                       | ETR3D,<br>STR31D | 6                    |
| ZERO MOMENT OF INERTIA COMPUTED.                                                                                                                          | Self explanatory.                                                       | ETR3D,<br>STR31D | 6                    |
| SINGULAR TRANSVERSE SHEAR MATRIX -Z                                                                                                                       | Self explanatory.                                                       | ETR3D,<br>STR31D | 6                    |
| INCOMPATABLE MATRIX MULTIPLICATION.                                                                                                                       | Bad subroutine input.                                                   | GMMATD           | 6                    |
| UNKNOWN BULK DATA CARD.                                                                                                                                   | An unrecognizable<br>name encountered<br>during read for<br>F.E. input. | INPUT            | 6                    |
| NO.OF GRIDS ELE PSHELL MAT CORD RFOR<br>MAX. 80 120 120 240 80 1<br>THIS<br>RUN<br>THIS RUN STOPPED BECAUSE ONE OF THE<br>ABOVE LIMITS HAS BEEN EXCEEDED. | Self explanatory.                                                       | INPUT            | 6                    |
| FAILED TO FIND LOCAL COORDINATE                                                                                                                           | Self explanatory.                                                       | TRANSD           | 6                    |

# SECTION 7.0

## EXAMPLES: VALIDATION TEST CASES

# 7.1 Energy Efficient Engine Fan Hollow Blade With Borsic Inlay

# 7.1.1 Input

| <u>Card</u> :                            | Data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1<br>A2<br>A3<br>A4a<br>A4b<br>A5<br>A6 | E3 TEST CASE (HOLLOW BLADE)<br>2,13<br>5,10,0,14<br>0.0,0.0,05,0.0,0.0,0.0,.3<br>.005<br>0,90,-1.0<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,1.E+15<br>0.0,5,4.5<br>2.42,16.4<br>0.0,0.3<br>-90.0,90.0<br>1,12,1.0<br>2,13,1.0<br>3,14,1.0<br>4,15,1.0<br>5,16,1.0<br>5,88,1.0<br>10,882,1.0<br>9,83,1.0<br>10,84,1.0<br>11,85,1.0<br>11,85,1.0 |
| A8<br> A9a<br> A9b                       | 12,86,1.0<br>13,91,1.0<br>13<br>33,35<br>.05,0.0,1.E+15<br>38,40<br>.05,0.0,1.E+15<br>43,45<br>.05,0.0,1.E+15<br>60,61<br>.02,0.0,.15<br>62,63<br>.02,0.0,.12<br>64<br>.02,0.0,.09<br>7<br>00786,0.0,1.E15<br>8,9<br>0.0,0.0,1.E15<br>94<br>0.0,0.0,47340.<br>59<br>-1.0E+15,0.0,.165<br>98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

.

Data: Card: A9a A9b 100 -1.0E+15,0.0,.2254 101 -1.0E+15,0.0,1.0 97 -1.0E+15,0.0,28.9 ¥ A10 END 81 1 E3 TEST CASE B2 3.0 1000.0 B3 3988.0 B4 19 13.50000 86.259 34. **B**5 0.0 0.03053 0.29415 0.58829 0.88244 1.17659 1.47073 1.76488 2.05902 2.35317 2.64732 2.94146 3.23561 3.52976 3.82390 4.11805 4.41220 4.70634 **B6** 5.00049 5.29463 5.58878 5.88293 6.17707 6.47122 6.76537 7.05951 7.35366 
 1.00049
 3.29403
 5.08676
 5.08293
 6.17707
 6.47122
 6.76537
 7.05951
 7.35366

 7.64781
 7.94195
 8.23610
 8.53025
 8.82439
 9.09154
 9.11854

 0.04844
 0.07751
 0.32854
 0.59306
 0.84106
 1.07337
 1.29103
 1.49489
 1.68168

 1.85026
 1.99982
 2.13126
 2.24482
 2.34106
 2.41926
 2.47904
 2.52126
 2.54577

 2.55287
 2.54231
 2.51273
 2.46329
 2.39262
 2.29955
 2.18224
 2.03889
 1.86715

 1.66456
 1.42809
 1.15503
 0.48090
 0.10566
 0.06774
 Y B7 -0.04022-0.02154 0.13972 0.31228 0.47586 0.63044 0.77619 0.91305 1.04078 1.15895 1.26610 1.36224 1.44688 1.51962 1.57913 1.62503 1.65783 1.67747 1.68450 1.67814 1.65746 1.62181 1.57046 1.50239 1.41662 1.31222 1.18824 **R**8 1.04298 0.87521 0.68361 0.46697 0.22348-0.02522-0.05036 -1.00000 86.259 0.03053 0.29415 0.58829 0.88244 1.17659 1.47073 1.76488 2.0590? B'5 15.91800 34. R6 0.0 2.35317 2.64732 2.94146 3.23561 3.52976 3.82390 4.11805 4.41 5.00049 5.29463 5.58878 5.88293 6.17707 6.47122 6 7 • . 7.64781 7.94195 8.23610 8.53025 8.82430 0.04844 0.07751 0.32854 0 500 1.85026 1.99982 2 2.55287 ٠ . 34. 2.56851 2.99660 5.99320 6.42129 6.84937 y80 9.41789 9.8459810.2740610.70215 ... 4144912.8425813.2509713.27066 ... 0.02314 0.02300 0.02118 0.01777 0.01268 0.00627-0.00083 uob2-0.01674-0.02528-0.03481-0.04446-0.05146-0.05257-0.04596-0.03170 -0.01084 0.01444 0.03705 0.05534 0.06935 0.07932 0.08548 0.08801 0.08716 0.08315 0.07598 0.06591 0.05324 0.03823 0.02116 0.02034 -0.01979-0.02145-0.05291-0.08597-0.11857-0.15068-0.18216-0.21274-0.24184 -0.26915-0.29461-0.31809-0.34082-0.36058-0.37516-0.38205-0.37939-0.36572 -0.34232-0.31474-0.28587-0.25866-0.23292-0.20856-0.18517-0.16264-0.14090 -0.11987-0.09924-0.07883-0.05841-0.03807-0.01837-0.01742 24.3000 1.283 15.844 10.0 B9 24.00 B10 Cla 5 3 5 5 1 0 08.16064 1 .937 .920 .931 0.0 2.77128 61.20216 10.59455 15.25854 19.26292 C1b C2 12 C3 C4 0.0 -45.0 0.768 13.500 496.6 0.834 15.844 491.0 0.903 18.301 20.758 485.1 0.988 477.9 23.215 1.080 467.5 25.672 1.172 457.5 448.4 1.268 28.130 1.360 30,587 441.8 1.450 438.2 33.044 1.530 35.501 439.8 37.958 445.0 1.610 1.692 40.491 449.5 C5 4267.0 3625.0 3 2 3 4 .0000841 .000010 0.0 C6 C7 2.225 .4122 14075.0 35 62 16.1 E616.1 E6.33 6.05 E60.000414 E6.27 7.65 E60.000226 27.9 E618.0 E60.000000 E60.000226 E600.0 E618.0 E6.00 E6.27 0.00 00.0 27.9 E60.000414 6.05 16.1 E616.1 E6.33 C9 .74685 1.1914 2.4200 .2494 .018385 .060076 -.0129

### 7.1.2 Output

\* \* \* \* ANALYSIS INFORMATION \* \* \* \*

ITERATION NUMBER 7 INFOG = 0(INFOG = 0 - NON-GRADIENT CALCULATION , = 1 - GRADIENT CALCULATION)

ANALYSIS NOT PERFORMED FOR A ZERO INDICATOR (GRADIENT CALCULATION ONLY) (IFRQ-FREQUENCY ANALYSIS, IFLT-FLUTTER ANALYSIS, IFOD-FOD ANALYSIS, ISTR-STRESS ANALYSIS, IRTF-ROOT FOD) IFRQ = 1 IFLT = 1 IFOD = 1 ISTR = 1 IRTF = 1

\* \* \* \* AIRFOIL GEOMETRY \* \* \* \*

NCD = 1 (HOLLOW FOIL) DLE = 0.90077E+00 DTE = 0.10476E+01 DR00T = 0.24200E+01 DTIP = 0.24884E+00 TTI = 0.15210E-01 TLT = 0.46733E-01 B/T ANG = -0.12899E-01

**\$ - INDICATES A DESIGN VARIABLE STATION** 

| STA.     | RADIUS   | PCT. SPAN | THICKNESS | CHORD    | THK/CHD |
|----------|----------|-----------|-----------|----------|---------|
|          | (IN.)    |           | (IN.)     | (IN.)    |         |
| \$<br>2  | 15.91800 | 0.0       | 0.76344   | 7.80949  | 0.09776 |
| 3        | 17.36340 | 5.88      | 0.91237   | 8.05830  | 0.11322 |
| 4        | 18.80881 | 11.76     | 1.06130   | 8.40903  | 0.12621 |
| 5        | 20.25421 | 17.65     | 1.21024   | 8.77593  | 0.13790 |
| \$<br>6  | 21.69962 | 23.53     | 1.35917   | 9.07369  | 0.14979 |
| 7        | 23.14502 | 29.41     | 1.18392   | 9.30773  | 0.12720 |
| 8        | 24.59042 | 35.29     | 1.00868   | 9.49244  | 0.10626 |
| 9        | 26.03583 | 41.18     | 0.83343   | 9.64939  | 0.08637 |
| \$<br>10 | 27.48123 | 47.06     | 0.65818   | 9.83029  | 0.06695 |
| 11       | 28.92664 | 52.94     | 0.57759   | 10.00858 | 0.05771 |
| 12       | 30.37204 | 58.82     | 0.49699   | 10.18422 | 0.04880 |
| 13       | 31.81744 | 64.71     | 0.41639   | 10.35054 | 0.04023 |
| 14       | 33.26285 | 70.59     | 0.33580   | 10.52599 | 0.03190 |
| \$<br>15 | 34.70825 | 76.47     | 0.25520   | 10.70728 | 0.02383 |
| 16       | 36.15366 | 82.35     | 0.25294   | 10.88196 | 0.02324 |
| 17       | 37.59906 | 88.23     | 0.25069   | 11.07183 | 0.02264 |
| 18       | 39.04446 | 94.12     | 0.24843   | 11.24325 | 0.02210 |
| \$<br>19 | 40.49001 | 100.00    | 0.24617   | 11.36554 | 0.02166 |

\* \* \* \* RESONANCE MARGIN INFORMATION \* \* \* \*

| FREQUENCIES | AT | 3988.2 | RPM | 115.11 | 258.12 | 319.41 |
|-------------|----|--------|-----|--------|--------|--------|
| FREQUENCIES | AT | 4988.4 | RPM | 130.83 | 284.88 | 326.29 |

RED LINE SPEED-RPM = 4267.0 MIN CRUISE SPEED-RPM = 3625.0

| FREQUENCY-CPS | FREQUENCY-CPS | MARGIN       | MARGIN       | MARGIN      | EXCITATION | ROOT   |
|---------------|---------------|--------------|--------------|-------------|------------|--------|
| (RED LINE)    | (MIN CRUISE)  | (RED LINE)   | (MIN CRUISE) | (MAX)       | ORDER      | NUMBER |
| 0.11182E+03   | 0.10290E+03   | -0.21384E+00 | 0.14845E+00  | 0.14845E+00 | 2          | 1      |
| 0.11182E+03   | 0.10290E+03   | -0.47590E+00 | 0.43230E+00  | 0.43230E+00 | 3          | I      |
| 0.11182E+03   | 0.10290E+03   | -0.60692E+00 | 0.57422E+00  | 0.57422E+00 | 4          | 1      |
| 0.24402E+03   | 0.22936E+03   | 0.71561E+00  | -0.89813E+00 | 0.71561E+00 | 2          | 2      |
| 0.24402E+03   | 0.22936E+03   | 0.14374E+00  | -0.26542E+00 | 0.14374E+00 | 3          | 2      |
| 0.24402E+03   | 0.22936E+03   | -0.14220E+00 | 0.50935E-01  | 0.50935E-01 | 4          | 2      |
| 0.29902E+03   | 0.29537E+03   | 0.11023E+01  | -0.14444E+01 | 0.11023E+01 | 2          | 3      |
| 0.29902E+03   | 0.29537E+03   | 0.40156E+00  | -0.62962E+00 | 0.40156E+00 | 3          | 3      |
| 0.29902E+03   | 0.29537E+03   | 0.51171E-01  | -0.22221E+00 | 0.51171E-01 | 4          | 3      |

\* \* \* \* FLUTTER OUTPUT \* \* \* \*

P&W FLUTTER ANALYSIS

| MODE | CRIT. NODAL DIA | AERO DAMPING COEF. |
|------|-----------------|--------------------|
| 1    | 2               | -0.78906E-02       |
| 2    | -2              | 0.26567E-01        |
| 3    | 2               | 0.51978E-01        |

\* \* \* \* STRESS OUTPUT \* \* \* \*

ROOT STRESS (PSI) = 0.20653E+05

ROOT TSAI-WU STRESS = 0.15801E+00 FOR ELEMENT NUMBER 14 AND LAYER 5 HOLE TSAI-WU STRESS (TI) = 0.22297E+00 FOR ELEMENT NUMBER 21 AND LAYER 1 HOLE TSAI-WU STRESS (B/T) = 0.67622E+00 FOR ELEMENT NUMBER 21 AND LAYER 2

```
* * * OBJECT FUNCTION INFORMATION * * * *
BLADE WEIGHT (LBS) = 0.88612D+01
NUMBER OF BLADES = 0.28023E+02
STAGE WEIGHT (LBS) = 0.24832E+03
OBJECT FUNCTION = 0.10785E+01
```

\* \* \* \* LOCAL FOD OUTPUT - AVE. PERCENT STRAIN,TIME,LOCATION \* \* \* \* STRAIN = 0.130921E+00 AT TIME = 0.320000D-03

\* \* \* \* ROOT FOD OUTPUT \* \* \* \*

ROOT FOD = 0.60347E+01 FOR ELEMENT NUMBER 16 AND LAYER 5

### 7.2 Energy Efficient Engine Fan Superhybrid Blade

7.2.1 Input

Card: Data: E3 TEST CASE A1 2,11 5,10,0,12 0.0,0.0,-.00928,0.0,0.0,0.0,.3 A2 A3 A4a A4b .005 0,90,-1.0 0.0,1.E+15 0.0,1.E+15 0.0,1.E+15 0.0,1.E+15 3.0,20.0 .010,5.0 0.0,5.0 0.0,5.0 0.0,5.0 0.0,1.0 -90.0,90.0 1,12,1.0 2,13,1.0 3.14,1.0 A5 AG A7 3,14,1.0 4,15,1.0 5,16,1.0 6,58,1.0 7,87,1.0 8,88,1.0 8,88,1.0 9,89,1.0 10,92,1.0 11,93,1.0 14 33,35 .05,0.0,1.E+15 38,40 .05,0.0,1.E+15 43,45 A8 | A9 a | A9 b .05,0.0,1.E+15 60,61 .02,0.0,.15 62,63 .02,0.0,.12 .02,0.0,.09 7 -.00714,0.0,1.E15 8,9 0.0,0.0,1.E15 94 0.0,0.0,47340. 59 -1.0E+15,0.0,.165 97 -1.0E+15,0.0,28.9 9ġ -1.0E+15,0.0,.2269

| <u>Card</u> :                                                                     | <u>Data</u> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| A9a<br>A9b<br>A9a<br>A9b<br>A10<br>B1                                             | 100<br>-1.0E+15,0.0,1.0<br>101<br>-1.0E+15,0.0,1.0<br>END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| B2<br>B3<br>B4<br>B5<br>B6<br>₩<br>B7<br>₩<br>B8<br>B5<br>B6<br>₩<br>B7<br>•<br>• | E3 TEST CASE<br>3988.0 3.0 1000.0<br>19<br>13.50000 0.0 86.259<br>0.0 0.03053 0.29415 0.58829 0.88244 1.17659 1.47073 1.76488 2.05902<br>2.35317 2.64732 2.94146 3.23561 3.52976 3.82390 4.11805 4.41220 4.70634<br>5.00049 5.29463 5.58878 5.88293 6.17707 6.47122 6.76537 7.05951 7.35366<br>7.64781 7.94195 8.23610 8.53025 8.82439 9.09154 9.11854<br>0.04844 0.07751 0.32854 0.59306 0.84106 1.07337 1.29103 1.49489 1.68168<br>1.85026 1.99982 2.13126 2.24482 2.34106 2.41926 2.47904 2.52126 2.54577<br>2.55287 2.54231 2.51273 2.46329 2.39262 2.29955 2.18224 2.03889 1.86715<br>1.66456 1.42809 1.15503 0.84095 0.48090 0.10566 0.06774<br>-0.04022-0.02154 0.13972 0.31228 0.47586 0.63044 0.77619 0.91305 1.04078<br>1.15895 1.26610 1.36224 1.44688 1.51962 1.57913 1.62503 1.65783 1.67747<br>1.68450 1.67814 1.65746 1.62181 1.57046 1.50239 1.41662 1.31222 1.18824<br>1.04298 0.87521 0.68361 0.46697 0.22348-0.02522-0.05036<br>15.91800 -1.0000 86.259<br>0.0 0.03053 0.29415 0.58829 0.88244 1.17659 1.47073 1.76488 ? ^ 2<br>5.00049 5.29463 5.58878 5.88293 6.17707 6.47107<br>7.64781 7.94195 8.23610 8.53025 * ^ 2<br>0.04844 0.07751 0.32854 ^ 2<br>1.85026 1.99967<br>2.557 | 34 |
| В9                                                                                | 2.56851 2.99660<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34 |
| B10<br>C1a<br>C2<br>C3<br>C4<br>↓<br>C5<br>C5<br>C6<br>C7                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                                                                   | 16.1       E616.1       E6.33       6.05       E60.000414         27.9       E618.0       E6.27       7.65       E60.000226         18.5       E61.54       E6.30       0.85       E60.000115         16.1       E616.1       E6.33       6.05       E60.000414         18.5       E61.54       E6.30       0.85       E60.000414         18.5       E61.54       E6.30       0.85       E60.000115         27.9       E618.0       E6.27       7.65       E60.000226         16.1       E616.1       E6.33       6.05       E60.000414         042700       023200       0.72330       0.0205       = 007212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |

#### 7.2.2 Output

\* \* \* \* ANALYSIS INFORMATION \* \* \* \*

ITERATION NUMBER 9 INFOG = 0(INFOG = 0 - NON-GRADIENT CALCULATION , = 1 - GRADIENT CALCULATION)

ANALYSIS NOT PERFORMED FOR A ZERO INDICATOR (GRADIENT CALCULATION ONLY) (IFRQ-FREQUENCY ANALYSIS, IFLT-FLUTTER ANALYSIS, IFOD-FOD ANALYSIS, ISTR-STRESS ANALYSIS, IRTF-ROOT FOD) IFRQ = 1 IFLT = 1 IFOD = 1 ISTR = 1 IRTF = 1

\* \* \* \* AIRFOIL GEOMETRY \* \* \* \*

NCD = 2 (COMPOSITE FOIL) TIS = 0.20587E-01 TIC = 0.20291E-01 PCBA = 0.59084E+00 B/A ANG = -0.20500E-02 G/E ANG = -0.71201E-02

**\$ - INDICATES A DESIGN VARIABLE STATION** 

| STA.     | RADIUS   | PCT. SPAN | THICKNESS | CHORD    | THK/CHD |
|----------|----------|-----------|-----------|----------|---------|
|          | (IN.)    |           | (IN.)     | (IN.)    |         |
| \$<br>2  | 15.91800 | 0.0       | 1.18092   | 7.89029  | 0.14967 |
| 3        | 17.36340 | 5.88      | 1.11082   | 8.14167  | 0.13644 |
| 4        | 18.80881 | 11.76     | 1.04071   | 8.49603  | 0.12249 |
| 5        | 20.25421 | 17.65     | 0.97061   | 8.86673  | 0.10947 |
| \$<br>6  | 21.69962 | 23.53     | 0.90050   | 9.16757  | 0.09823 |
| 7        | 23.14502 | 29.41     | 0.93836   | 9.40402  | 0.09978 |
| 8        | 24.59042 | 35.29     | 0.97622   | 9.59065  | 0.10179 |
| 9        | 26.03583 | 41.18     | 1.01408   | 9.74922  | 0.10402 |
| \$<br>10 | 27.48123 | 47.06     | 1.05194   | 9.93199  | 0.10591 |
| 11       | 28.92664 | 52.94     | 0.93722   | 10.11212 | 0.09268 |
| 12       | 30.37204 | 58.82     | 0.82249   | 10.28958 | 0.07993 |
| 13       | 31.81744 | 64.71     | 0.70777   | 10.45762 | 0.06768 |
| 14       | 33.26285 | 70.59     | 0.59305   | 10.63489 | 0.05576 |
| \$<br>15 | 34.70825 | 76.47     | 0.47832   | 10.81806 | 0.04422 |
| 16       | 36.15366 | 82.35     | 0.42921   | 10.99454 | 0.03904 |
| 17       | 37.59906 | 88.23     | 0.38010   | 11.18638 | 0.03398 |
| -18      | 39.04446 | 94.12     | 0.33098   | 11.35957 | 0.02914 |
| \$<br>19 | 40.49001 | 100.00    | 0.28186   | 11.48312 | 0.02455 |

\* \* \* \* RESONANCE MARGIN INFORMATION \* \* \* \*

| FREQUENCIES AT | 3988.2 RPM | 119.85 | 299.23 | 411.66 |
|----------------|------------|--------|--------|--------|
| FREQUENCIES AT | 4988.4 RPM | 133.76 | 318.47 | 415.83 |
|                |            |        |        |        |

RED LINE SPEED-RPM = 4267.0 MIN CRUISE SPEED-RPM = 3625.0

| FREQUENCY-CPS | FREQUENCY-CPS | MARGIN       | MARGIN       | MARGIN      | EXCITATION | ROOT   |
|---------------|---------------|--------------|--------------|-------------|------------|--------|
| (RED LINE)    | (MIN CRUISE)  | (RED LINE)   | (MIN CRUISE) | (MAX)       | ORDER      | NUMBER |
| 0.12307E+03   | 0.11476E+03   | -0.13475E+00 | 0.50257E-01  | 0.50257E-01 | 2          | 1      |
| 0.12307E+03   | 0.11476E+03   | -0.42316E+00 | 0.36684E+00  | 0.36684E+00 | 3          | 1      |
| 0.12307E+03   | 0.11476E+03   | -0.56737E+00 | 0.52513E+00  | 0.52513E+00 | 4          | 1      |
| 0.30002E+03   | 0.28895E+03   | 0.11093E+01  | -0.13913E+01 | 0.11093E+01 | 2          | 2      |
| 0.30002E+03   | 0.28895E+03   | 0.40623E+00  | -0.59421E+00 | 0.40623E+00 | 3          | 2      |
| 0.30002E+03   | 0.28895E+03   | 0.54668E-01  | -0.19566E+00 | 0.54668E-01 | 4          | 2      |
| 0.42635E+03   | 0.42391E+03   | 0.19976E+01  | -0.25082E+01 | 0.19976E+01 | 2          | 3      |
| 0.42635E+03   | 0.42391E+03   | 0.99837E+00  | -0.13388E+01 | 0.99837E+00 | 3          | 3      |
| 0.42635E+03   | 0.42391E+03   | 0.49878E+00  | -0.75411E+00 | 0.49878E+00 | 4          | 3      |

```
* * * * FLUTTER OUTPUT * * * *
```

**P&W FLUTTER ANALYSIS** 

| MODE | CRIT. NODAL DIA | AERO DAMPING COEF. |
|------|-----------------|--------------------|
| 1    | 2               | -0.71425E-02       |
| 2    | -2              | 0.15013E-01        |
| 3    | -2              | 0.56323E-01        |

\* \* \* \* STRESS OUTPUT \* \* \* \*

```
ROOT STRESS (PSI) = 0.31434E+05
```

ROOT TSAI-WU STRESS (TI) = 0.76245E-01 FOR ELEMENT NUMBER 12 AND LAYER 1 ROOT TSAI-WU STRESS (B/A) = 0.99606E+00 FOR ELEMENT NUMBER 13 AND LAYER 6 ROOT TSAI-WU STRESS (G/E) = 0.41773E-01 FOR ELEMENT NUMBER 9 AND LAYER 3

```
* * * OBJECT FUNCTION INFORMATION * * * *
BLADE WEIGHT (LBS) = 0.97301D+01
NUMBER OF BLADES = 0.27736E+02
STAGE WEIGHT (LBS) = 0.26987E+03
OBJECT FUNCTION = 0.12105E+01
* * * * LOCAL FOR OUTPUT - AVE PERCENT STRAIN TIME
```

\* \* \* LOCAL FOD OUTPUT - AVE. PERCENT STRAIN,TIME,LOCATION \* \* \* \*
STRAIN = 0.102622E+00 AT TIME = 0.230000D-03

\* \* \* \* ROOT FOD OUTPUT \* \* \* \* ROOT FOD = 0.49362E+01 FOR ELEMENT NUMBER 16 AND LAYER 6

### 7.3 Energy Efficient Engine Fan Superhybrid With Local Increased Density

7.3.1 Input

Card: Data: A1 E3 TEST CASE ( L.I.D. ) A2 A3 2,16 5,13,0,16 0.0,.0001,-.02154,0.0,0.0,0.0,.3 A4a A4b 0,90,-1.0 0.0,1.E+15 0.0,1.E+15 A5 A6 0.0,1.E+15 0.0,1.E+15 0.0,1.E+15 3.0,20.0 .010,5.0 0.0,5.0 0.0,1.0 -90.0,90.0 -90.0,90.0 0.0,.2 .05,4.5 .05,4.5 2.42,16.4 1,12,1.0 2,13,1.0 3,14,1.0 4,15,1.0 5,16,1.0 6,58,1.0 A7 7,87,1.0 8,88,1.0 9,89,1.0 10,92,1.0 11,93,1.0 12,111,1.0 13,112,1.0 14,113,1.0 15,114,1.0 16,115,1.0 A8 14 А9а А9Б 33,35 .05,0.0,1.E+15 38,40 .05,0.0,1.E+15 43,45 .05,0.0,1.E+15 60,61 .02,0.0,.15 62,63 .02,0.0,.12 .02,0.0,.09 7 -.00714,0.0,1.E15 8,9 0.0,0.0,1.E15

Card: Data: A9a A9b 94 0.0,0.0,47340. 59 -1.0E+15,0.0,.165 97 -1.0E+15,0.0,28.9 99 -1.0E+15,0.0,.2269 100 -1.0E+15,0.0,1.0 101 -1.0E+15,0.0,1.0 A10 END **B1** I B2 E3 TEST CASE 3.0 1000.0 **B**3 3988.0 84 19 B5 13.50000 86.259 34. 0.0 0.03053 0.29415 0.58829 0.88244 1.17659 1.47073 1.76488 2.05902 B6 2.35317 2.64732 2.94146 3.23561 3.52976 3.82390 4.11805 4.41220 4.70634 5.00049 5.29463 5.58878 5.88293 6.17707 6.47122 6.76537 7.05951 7.35366 7.64781 7.94195 8.23610 8.53025 8.82439 9.09154 9.11854 0.04844 0.07751 0.32854 0.59306 0.84106 1.07337 1.29103 1.49489 1.68168 87 1.85026 1.99982 2.13126 2.24482 2.34106 2.41926 2.47904 2.52126 2.54577 2.55287 2.54231 2.51273 2.46329 2.39262 2.29955 2.18224 2.03889 1.86715 1.66456 1.42809 1.15503 0.84095 0.48090 0.10566 0.06774 1.04930 1.15203 1.15303 0.04039 0.14303 0.10304 0.77619 0.91305 1.04078 1.15895 1.26610 1.36224 1.44688 1.51962 1.57913 1.62503 1.65783 1.67747 1.68450 1.67814 1.65746 1.62181 1.57046 1.50239 1.41662 1.31222 1.18824 1.04298 0.87521 0.68361 0.46697 0.22348-0.02522-0.05036 **B**8 1 **B5** 15.91800 -1.00000 86.259 0.03053 0.29415 0.58829 0.88244 **B6** 0.0 2.35317 2.64732 2.94146 3 ? • 5.00049 5.29463 34. . 2.56851 2.99660 . 5.99320 6.42129 6.84937 980 9.41789 9.8459810.2740610.70215 4144912.8425813.2509713.27066 U.02314 0.02300 0.02118 0.01777 0.01268 0.00627-0.00083 0.01084 0.01444 0.03705 0.05534 0.06935 0.07932 0.08548 0.08801 0.08716 0.08315 0.07598 0.06591 0.05324 0.03823 0.02116 0.02034 -0.01979-0.02145-0.05291-0.08597-0.11857-0.15068-0.18216-0.21274-0.24184 -0.26915-0.29461-0.31809-0.34082-0.36058-0.37516-0.38205-0.37939-0.36572 -0.34232-0.31474-0.28587-0.25866-0.23292-0.20856-0.18517-0.16264-0.14090 -0.11987-0.09924-0.07883-0.05841-0.03807-0.01837-0.01742 24.3000 1.283 15.844 10.0 89 B10 24.00 Cla 3 5 7 1 0 08.1664 2 С1ь .996 .9861.033 0.0 Č2 6.8993 21.2001 101.1023 15.5123 19.2634 12 C3 0.0 -45.0 C4 0.768 13,500 496.6 0.834 491.0 15.844 0.903 18.301 485.1 0.988 20.758 477.9 467.5 1.080 23.215 1.172 25.672 1.268 28.130 448.4 1.360 30.587 441.8 1.450 33.044 438.2 1.530 35.501 439.8 37.958 445.0 1.610 1.692 40.491 449.5 C5 4267.0 3625.0 3 2 3 4 C6 2,225 14075.0 .4122 .0000841 .000010 0.0 Č7 35 16 6.05 **C**8 16.1 E616.1 E6.33 E60.000414 27.9 E618.0 E6.27 7.65 E60.000226 18.5 E61.54 E6.30 0.85 E60.000115 16.1 E616.1 E6.33 6.05 E60.000414 18.5 E61.54 E6.30 0.85 E60.000115 E60.000226 27.9 E618.0 E6.27 7.65 E60.000414 16.1 E616.1 E6.33 6.05 C9a C10 -.00205 .019800 0.67260 -.00711 .0000165 .017400 .9567 .9631 10.979

#### 7.3.2 Output

\* \* \* \* ANALYSIS INFORMATION \* \* \* \*

ITERATION NUMBER 8 INFOG = 0(INFOG = 0 - NON-GRADIENT CALCULATION , = 1 - GRADIENT CALCULATION)

ANALYSIS NOT PERFORMED FOR A ZERO INDICATOR (GRADIENT CALCULATION ONLY) (IFRQ-FREQUENCY ANALYSIS , IFLT-FLUTTER ANALYSIS , IFOD-FOD ANALYSIS , ISTR-STRESS ANALYSIS , IRTF-ROOT FOD) IFRQ = 1 IFLT = 1 IFOD = 1 ISTR = 1 IRTF = 1

\* \* \* \* AIRFOIL GEOMETRY \* \* \* \*

NCD = 2 (COMPOSITE FOIL) TIS = 0.15233E-01 TIC = 0.18581E-01 PCBA = 0.64650E+00 B/A ANG = -0.20500E-02 G/E ANG = -0.71100E-02

ADDED MASS OPTION MASS PER UNIT AREA = 0.15162E-04

ADLE = 0.97570E+00 ADTE = 0.97286E+00 ADROOT = 0.11637E+02 ADTIP = 0.20065E+00

**\$ - INDICATES A DESIGN VARIABLE STATION** 

| STA.     | RADIUS   | PCT. SPAN | THICKNESS | CHORD    | THK/CHD |
|----------|----------|-----------|-----------|----------|---------|
|          | (IN.)    |           | (IN.)     | (IN.)    |         |
| \$<br>2  | 15.91800 | 0.0       | 1.17632   | 7.84335  | 0.14998 |
| 3        | 17.36340 | 5.88      | 1.12544   | 8.09324  | 0.13906 |
| 4        | 18.80881 | 11.76     | 1.07457   | 8.44548  | 0.12724 |
| 5        | 20.25421 | 17.65     | 1.02369   | 8.81398  | 0.11614 |
| \$<br>6  | 21.69962 | 23.53     | 0.97281   | 9.11303  | 0.10675 |
| 7        | 23.14502 | 29.41     | 1.00822   | 9.34808  | 0.10785 |
| 8        | 24.59042 | 35.29     | 1.04362   | 9.53359  | 0.10947 |
| 9        | 26.03583 | 41.18     | 1.07902   | 9.69123  | 0.11134 |
| \$<br>10 | 27.48123 | 47.06     | 1.11443   | 9.87291  | 0.11288 |
| 11       | 28.92664 | 52.94     | 0.99271   | 10.05197 | 0.09876 |
| 12       | 30.37204 | 58.82     | 0.87099   | 10.22837 | 0.08515 |
| 13       | 31.81744 | 64.71     | 0.74927   | 10.39541 | 0.07208 |
| 14       | 33.26285 | 70.59     | 0.62755   | 10.57162 | 0.05936 |
| \$<br>15 | 34.70825 | 76.47     | 0.50583   | 10.75370 | 0.04704 |
| 16       | 36.15366 | 82.35     | 0.44029   | 10.92914 | 0.04029 |
| 17       | 37.59906 | 88.23     | 0.37474   | 11.11983 | 0.03370 |
| 18       | 39.04446 | 94.12     | 0.30920   | 11.29199 | 0.02738 |
| \$<br>19 | 40.49001 | 100.00    | 0.24365   | 11.41481 | 0.02135 |

\* \* \* \* RESONANCE MARGIN INFORMATION \* \* \* \*

| FREQUENCIES AT 3988.2 RPM   | 118.91 297.98 404.91         |
|-----------------------------|------------------------------|
| FREQUENCIES AT 4988.4 RPM   | 132.62 316.87 409.15         |
| RED LINE SPEED-RPM = 4267.0 | MIN CRUISE SPEED-RPM = 3625. |

| FREQUENCY-CPS<br>(RED LINE) | FREQUENCY-CPS<br>(MIN CRUISE) | MARGIN<br>(RED LINE) | MARGIN<br>(MIN CRUISE) | MARGIN<br>(MAX) | EXCITATION<br>ORDER | ROOT<br>NUMBER |
|-----------------------------|-------------------------------|----------------------|------------------------|-----------------|---------------------|----------------|
| 0.12208E+03                 | 0.11390E+03                   | -0.14168E+00         | 0.57344E-01            | 0.57344E-01     | 2                   | 1              |
| 0.12208E+03                 | 0.11390E+03                   | -0.42778E+00         | 0.37156E+00            | 0.37156E+00     | 3                   | 1              |
| 0.12208E+03                 | 0.11390E+03                   | -0.57084E+00         | 0.52867E+00            | 0.52867E+00     | 4                   | 1              |
| 0.29869E+03                 | 0.28782E+03                   | 0.11000E+01          | -0.13820E+01           | 0.11000E+01     | 2                   | 2              |
| 0.29869E+03                 | 0.28782E+03                   | 0.40000E+00          | -0.58799E+00           | 0.40000E+00     | 3                   | 2              |
| 0.29869E+03                 | 0.28782E+03                   | 0.49999E-01          | -0.19099E+00           | 0.49999E-01     | 4                   | 2              |
| 0.41940E+03                 | 0.41691E+03                   | 0.19487E+01          | -0.24503E+01           | 0.19487E+01     | 2                   | 3              |
| 0.41940E+03                 | 0.41691E+03                   | 0.96579E+00          | -0.13002E+01           | 0.96579E+00     | 3                   | 3              |
| 0.41940E+03                 | 0.41691E+03                   | 0.47434E+00          | -0.72516E+00           | 0.47434E+00     | 4                   | 3              |

```
* * * * FLUTTER OUTPUT * * * *
P&W FLUTTER ANALYSIS
    MODE
            CRIT. NODAL DIA
                              AERO DAMPING COEF.
     1
                  2
                                  -0.70173E-02
     2
                                  0.13480E-01
                  -2
     3
                  -2
                                  0.58687E-01
* * * * STRESS OUTPUT * * * *
ROOT STRESS (PSI) = 0.34400E+05
ROOT TSAI-WU STRESS (TI) = 0.83558E-01 FOR ELEMENT NUMBER 12 AND LAYER 1
ROOT TSAI-WU STRESS (B/A) = 0.99478E+00 FOR ELEMENT NUMBER 13 AND LAYER 6
ROOT TSAI-WU STRESS (G/E) = 0.45189E-01 FOR ELEMENT NUMBER 9 AND LAYER 3
* * * * OBJECT FUNCTION INFORMATION * * * *
BLADE WEIGHT (LBS) = 0.10544D+02
NUMBER OF BLADES = 0.27902E+02
STAGE WEIGHT (LBS) = 0.29421E+03
OBJECT FUNCTION = 0.12754E+01
* * * * LOCAL FOD OUTPUT - AVE. PERCENT STRAIN.TIME.LOCATION * * * *
STRAIN = 0.898786E-01 AT TIME = 0.220000D-03
* * * * ROOT FOD OUTPUT * * * *
ROOT FOD = 0.42661E+01 FOR ELEMENT NUMBER 16 AND LAYER 6
```

7.4 Energy Efficient Engine High-Pressure Compressor Rotor 6 Solid Blade

7.4.1 Input

Note: For this blade optimization, no analytical flutter evaluation was performed. To protect against possible bending flutter, the first mode reduced velocity (originally 2.3) was constrained to be no higher than 4.5, the reduced velocity of the seventh rotor of the Energy Efficient Engine high-pressure compressor. In constraint form, this flutter parameter is satisfied when  $0 \leq 1000/b75\% \omega \leq 1.0$ . The reduced velocity constraint term is stored in global location 104 of COPES, and is handled by COPES as a standard constraint.

> Card: Data: E3 TEST CASE (SOLID BLADE) AI A2 A3 2,6 5,10,0,7 0.0.0.0,.0,-.05,0.0,0.0,0.0,0.3 A4a A4b .005 A5 0,102,-1.0 A6 0.0,1.E+15 0.0,1.E+15 0.0,1.E+15 0.0,1.E+15 0.0,1.E+15 0.05,10.0 Y 1,12,1.0 2,13,1.0 A7 3,14,1.0 4,15,1.0 5,16,1.0 6,58,1.0 A'8 A9a A9b 33,36 0.05,0.0,1.E+15 38,41 0.05,0.0,1.E+15 43,46 0.05,0.0,1.E+15 60,61 0.02,0.0,.15 62,63 0.02,0.0,.12 64 0.02,0.0,.10 94 0.0,0.0,47340. 103 0.10,0.0,1.E+15 104 0.0,0.0,1.0 A10 END

| <u>Card</u> :                                           | <u>Data</u> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| B1<br>B2<br>B3<br>B4                                    | E3 HPC ROTOR 6<br>14250.0 3.0 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,   |
| B5<br>B6<br>₩<br>B7<br>₩<br>B8<br>B8<br>B5<br>B6<br>••• | 6.24132       70.404         0.0       0.01090       0.09054       0.18108       0.27162       0.36217       0.45271       0.54325       0.63379         0.72433       0.81487       0.90542       0.99596       1.08650       1.17704       1.26758       1.35812       1.44866         1.53921       1.62975       1.72029       1.81083       1.90137       1.99191       2.08245       2.17300       2.26354         2.35408       2.44462       2.53516       2.62570       2.71625       2.79768       2.80679         0.01483       0.02328       0.08505       0.15171       0.21325       0.27039       0.32278       0.37128       0.41555         0.45610       0.49286       0.52615       0.55590       0.58238       0.60514       0.62349       0.63730       0.64635         0.65076       0.65051       0.64535       0.63514       0.61968       0.59866       0.57173       0.53833       0.49777         0.44918       0.39133       0.32254       0.24040       0.14113       0.03177       0.01955         -0.01183-0.00713       0.02720       0.06498       0.10051       0.13839       0.1610       0.34100       0.34100       0.35049       0.31033       0 | 34. |
|                                                         | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 89<br>810                                               | +5958 0.57448 0.68937 0.80427<br>1.37874 1.49364 1.60853 1.72343 1.83832<br>2.29790 2.41280 2.52769 2.64259 2.75748 2.87238<br>217 3.21706 3.33196 3.44685 3.55206 3.56175<br>00951 0.01046 0.02059 0.03096 0.04060 0.04951 0.05782 0.06549 0.07253<br>0.07897 0.08485 0.09021 0.09513 0.09964 0.10378 0.10761 0.11120 0.11458<br>0.11783 0.12096 0.12441 0.12771 0.13028 0.13098 0.12896 0.12411 0.11651<br>0.10607 0.09279 0.07662 0.05749 0.03534 0.01184 0.00968<br>-0.00952-0.00936-0.00771-0.00614-0.00476-0.00354-0.00247-0.00146-0.00052<br>0.00036 0.00120 0.00205 0.00296 0.00396 0.00511 0.00646 0.00806 0.00995<br>0.01219 0.01485 0.01794 0.02201 0.02566 0.02859 0.03009 0.03019 0.02881<br>0.02606 0.02189 0.01633 0.00934 0.0095-0.00813-0.00897<br>12.0 .438 6.85 15.00                                                                                                                                                                                                                                                                                                                                                                                               | 34. |
| C1a<br>C1b<br>C2<br>C5<br>C8                            | 5 0 0 0 1 0 0 52.80679<br>.976 .972 .912 1.138<br>2.286 6.238 9.1955 13.120 16.106<br>14250.0 12800.0 4 2 3 4 10<br>16.2 E616.2 E60.35 6.0 E6.000409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |

•

56

.

\* \* \* \* ANALYSIS INFORMATION \* \* \* \*

ITERATION NUMBER 9 INFOG = 0(INFOG = 0 - NON-GRADIENT CALCULATION , = 1 - GRADIENT CALCULATION)

ANALYSIS NOT PERFORMED FOR A ZERO INDICATOR (GRADIENT CALCULATION ONLY) (IFRQ-FREQUENCY ANALYSIS, IFLT-FLUTTER ANALYSIS, IFOD-FOD ANALYSIS, ISTR-STRESS ANALYSIS, IRTF-ROOT FOD) IFRQ = 1 IFLT = 1 IFOD = 1 ISTR = 1 IRTF = 1

\* \* \* \* AIRFOIL GEOMETRY \* \* \* \*

NCD = 0 (SOLID FOIL)

**\$ - INDICATES A DESIGN VARIABLE STATION** 

| STA.     | RADIUS<br>(IN.) | PCT. SPAN | THICKNESS (IN.) | CHORD<br>(IN.) | THK/CHD |
|----------|-----------------|-----------|-----------------|----------------|---------|
| \$<br>2  | 6.85000         | 0.0       | 0.23011         | 1.70967        | 0.13459 |
| 3        | 7.19500         | 7.14      | 0.22360         | 1.73262        | 0.12905 |
| 4        | 7.54000         | 14.29     | 0.21709         | 1.75660        | 0.12359 |
| 5        | 7.88500         | 21.43     | 0.21058         | 1.78239        | 0.11814 |
| \$<br>6  | 8.23000         | 28.57     | 0.20407         | 1.80845        | 0.11284 |
| 7        | 8.57500         | 35.71     | 0.18266         | 1.83354        | 0.09962 |
| 8        | 8.92000         | 42.86     | 0.16125         | 1.85759        | 0.08681 |
| \$<br>9  | 9.26500         | 50.00     | 0.13984         | 1.88315        | 0.07426 |
| 10       | 9.60999         | 57.14     | 0.12320         | 1.91112        | 0.06447 |
| 11       | 9.95499         | 64.29     | 0.10657         | 1.94215        | 0.05487 |
| 12       | 10.29999        | 71.43     | 0.08994         | 1.97715        | 0.04549 |
| \$<br>13 | 10.64499        | 78.57     | 0.07330         | 2.01664        | 0.03635 |
| 14       | 10.98999        | 85.71     | 0.07518         | 2.06138        | 0.03647 |
| 15       | 11.33498        | 92.86     | 0.07705         | 2.11377        | 0.03645 |
| \$<br>16 | 11.68000        | 100.00    | 0.07892         | 2.16952        | 0.03638 |

\* \* \* \* RESONANCE MARGIN INFORMATION \* \* \* \*

| FREQUENCIES A<br>FREQUENCIES A | T 14250.0 RPM<br>T 15250.2 RPM | 511.62 1114<br>535.86 1149 | .05 1373.67<br>5.97 1389.29 |             |            |        |
|--------------------------------|--------------------------------|----------------------------|-----------------------------|-------------|------------|--------|
| RED LINE SPEE                  | D-RPM = 14250.0                | MIN CRUISE SP              | PEED-RPM = 12800            | ).0         |            |        |
| FREQUENCY-CPS                  | FREQUENCY-CPS                  | MARGIN                     | MARGIN                      | MARGIN      | EXCITATION | ROOT   |
| (RED LINE)                     | (MIN CRUISE)                   | (RED LINE)                 | (MIN CRUISE)                | (MAX)       | ORDER      | NUMBER |
| 0.49934E+03                    | 0.46604E+03                    | 0.51237E-01                | -0.92270E-01                | 0.51237E-01 | 2          | 1      |
| 0.49934E+03                    | 0.46604E+03                    | -0.29917E+00               | 0.27182E+00                 | 0.27182E+00 | 3          | I      |
| 0.49934E+03                    | 0.46604E+03                    | -0.47438E+00               | 0.45387E+00                 | 0.45387E+00 | 4          | Ť      |
| 0.49934E+03                    | 0.46604E+03                    | -0.78975E+00               | 0.78155E+00                 | 0.78155E+00 | 10         | i      |
| 0.10829E+04                    | 0.10402E+04                    | 0.12797E+01                | -0.14379E+01                | 0.12797F+01 | 2          | 2      |
| 0.10829E+04                    | 0.10402E+04                    | 0.51980E+00                | -0.62529F+00                | 0.51980F+00 | 3          | 2      |
| 0.10829E+04                    | 0.10402E+04                    | 0.13985E+00                | -0.21897E+00                | 0.13985F+00 | 4          | 2      |
| 0.10829E+04                    | 0.10402F+04                    | -0.54406F+00               | 0.51241E+00                 | 0.51241E+00 | ່າດໍ       | 2      |
| 0.12528E+04                    | 0.12336F+04                    | 0.16374E+01                | -0 18912F+01                | 0 163745+01 | .0         | 2      |
| 0 125285+04                    | 0 123365+04                    | 0 758295+00                | -0.027/05+00                | 0.750205+00 | 2          | 3      |
| 0.12528E+04                    | 0 123365+04                    | 0.319725+00                | -0.927402400                | 0.210725-00 | 3          | 5      |
| 0 105005-04                    | 0.120302704                    | 0.510/20100                | -0.445012400                | 0.310/28+00 | 4          | 3      |
| U.123282+04                    | 0.123362+04                    | -0.4/2516+00               | 0.421/62+00                 | U.421/6E+00 | 10         | 3      |

```
FLUTTER CONSTRAINT = 0.99414E+00

* * * * TIP MODE INFORMATION * * * *

FREQUENCY-CPS AT 14250.0 RPM = 2375.10

FREQUENCY-CPS AT 15250.2 RPM = 2383.42

AT RED LINE SPEED-RPM = 14250.0 FREQUENCY-CPS = 2702.86 MARGIN = 0.13805E+00

AT MIN CRUISE SPEED-RPM = 12800.0 FREQUENCY-CPS = 2690.22 MARGIN = -0.26104E+00

TIP MODE FREQUENCY MARGIN = 0.13805E+00 ON 10 E MODE = 5

* * * * STRESS OUTPUT * * * *

ROOT STRESS (PSI) = 0.28467E+05

ROOT TSAI-WU STRESS = 0.62948E-01 FOR ELEMENT NUMBER 9 AND LAYER 1

* * * OBJECT FUNCTION INFORMATION * * * *

BLADE WEIGHT (LBS) = 0.19073D+00

NUMBER OF BLADES = 0.42685E+02

STAGE WEIGHT (LBS) = 0.81413E+01

OPTIMIZATION RESULTS
```

OBJ = 0.81715E+01
#### SECTION 8.0

### INSTRUCTIONS FOR PROGRAM MODIFICATIONS

#### 8.1 Program Modifications

When it is required that a particular element of STAEBL be modified or replaced, it is important that data supplied by that element to other elements be provided. In most cases this information is brought through the common blocks. But in some cases, such as with the finite element preprocessor, output is transferred via external read and write units. In addition, these units may differ for any given element depending on iteration number, etc. Subroutine WTW137, for example, has several different write units. Section 8.1.1 provides a listing of the major elements in STAEBL and in what form data are transferred. Those elements with an asterisk have only common blocks associated with data transfer under that heading type. It should be noted that associated with the major elements listed are various supporting routines that must also be considered when program modifications are to be made.

### 8.1.1 Read/Write Units

| Element                     | Input | Output |
|-----------------------------|-------|--------|
| Finite Element Preprocessor | *     | 6,9    |
| Finite Element Analysis     | 5,9   | 5,6    |
| Postprocessing              | -     | -      |
| Laminate Stress             | *     | 5,26   |
| Forced Response             | *     | 26     |
| Tip Mode Detection          | *     | 26     |
| Flutter (W751)              | 5     | 6,26   |
| Flutter (NASA)              | *     | 5,25   |
| Local Foreign Object Damage | 5     | 5,25   |
| Root Foreign Object Damage  | *     | 26     |
| COPES/CONMIN                | 25    | 25     |

Below is a listing of the read and write units used in STAEBL:

| <u>Unit No.</u> | Unit Function                 | Additional Comments           |
|-----------------|-------------------------------|-------------------------------|
| 5               | Temporary read, write data    | Used by RDW137, MNW751, MODES |
| 6               | Write for long printout       |                               |
| 7               | Write for final geometry      | Input data block B format     |
| 9               | F.E. input data read, write   | NASTRAN input data format     |
| 11,12,24        | COPES/CONMIN requirements     | ·                             |
| 25              | Input data, blocks A, B and C |                               |
| 26              | Write for short printout      | See Output Description        |

# 8.1.2 Common Block Cross Reference

The following common block cross reference can be useful when program modifications are being made:

# Table of Element Names Per Common Block

| Common:                                  | Element                              | Names                            |                            |                  |                  |                  |                 |        |        |        |        |        |        |
|------------------------------------------|--------------------------------------|----------------------------------|----------------------------|------------------|------------------|------------------|-----------------|--------|--------|--------|--------|--------|--------|
| ANALO1:<br>ANALO2:<br>ANALO3:<br>ANALO3: | RDW137<br>RDW137<br>ANALIZ<br>ANALIZ | WTW137<br>STAEBL<br>BC<br>CALCTH | WTW137<br>FODSAV<br>FLTSAV | MNU808<br>Matrl  | RDW137<br>MNW137 | WTW137<br>OBJTV  | WT751<br>RDDATA | RDW137 | STAEBL | TMAX   | wtw137 |        |        |
| ANALOS:                                  | ANALIZ                               | CALCTH                           | DK369                      | OBJTY            | RDW137           | STAEBL           | STRCON          | WTW137 | •      |        |        |        |        |
| ANALO7:<br>ANALO8:                       | DK369<br>PSHEL                       | RDW137<br>RDW137                 | STAEBL<br>STAEBL           | TMAX<br>TRIA3    | WTW137<br>WTW137 |                  |                 |        |        |        |        |        |        |
| ANAL 10:                                 | RDW137                               | WTW137                           | CODEAN                     | 174761           | NACELT           | NDU751           | 201137          | WTW137 | VT751  |        |        |        |        |
| ANAL 11:<br>ANAL 12:                     | RDW137                               | WTW137                           | FUDSAV                     | 110751           | WATE             | 100701           | NOR I OF        |        |        |        |        |        |        |
| ANAL 13:                                 | RDW137                               | WTW137                           |                            |                  |                  |                  |                 |        |        |        |        |        |        |
| ANAL 15:                                 | RDW137                               | WTW137                           |                            |                  |                  |                  |                 |        |        |        |        |        |        |
| ANAL 16:<br>ANAL 17:                     | RDW137<br>ANALIZ                     | WTW137<br>CALCTH                 | OBJTV                      | TMAX             | WTW137           |                  |                 |        | _      |        |        |        |        |
| ANAL 30:                                 | ANALIZ                               | CALCTH                           | ITW751                     | LAMINA           | LYERAT           | mnu808           | NASFLT          | OBJTV  | PSHEL  | RDDATA | STAEBL | STRCON | IRIA3  |
| ANAL31:<br>ANAL32:                       | ANALIZ                               | FRQTIP                           | GOODMN                     | MNU808           | RDDATA           | RESMRG           |                 |        |        |        |        |        |        |
| ANAL33:                                  | ANALIZ                               | FODSAV                           | MNU808                     | RDDATA           |                  |                  |                 |        |        |        |        |        |        |
| ANAL40:                                  | DK369                                | FLTSAV                           |                            |                  |                  |                  |                 |        |        |        |        |        |        |
| ANAL41:<br>ANAL54:                       | FLTSAV                               | NASFLT<br>ITW751                 | WT751<br>RDDATA            |                  |                  |                  |                 |        |        |        |        |        |        |
| ASET                                     | INPUT                                | MNU808                           | 4402                       |                  | ASYCON           |                  | DEKADM          | SSCASC |        |        |        |        |        |
| BLKIA :                                  | АКАРИ                                | AKAPPA                           | AKP2<br>DLKAPM             | DRKAPM           | SSCASC           | DENAFR           | UNNAFTI         | 330430 |        |        |        |        |        |
| BLK2 :                                   | AKAPM                                | ASYCON                           | DRKAPM                     | SSCASC           |                  |                  |                 |        |        |        |        |        |        |
| CNMN1 :                                  | CNMN01                               | CNMN02                           | CNMN03                     | CNMN05           | CNMN06           | CNSTAV           | CONMIN          | COPEO1 | COPE02 | COPEO4 | COPE09 | MAIN   | SINCON |
| CNSTNT:                                  | ANALIZ                               | CNSTAV                           | MNU808                     | COPEOI           |                  |                  |                 |        |        |        |        |        |        |
| CNVRG :                                  | AKAPM                                | ASYCON                           | DLKAPM                     | DRKAPH           | SSCASC           |                  |                 |        | CTOCON | ****** |        |        |        |
| COMPST:                                  | HOLLOW                               | HOLLW2                           | LAMINA                     | LAMIN8<br>REORDR | LYERAT<br>STR31D | OBJTV<br>STR32D  | RDDATA          | RTFUD  | STRCON | SIRESZ |        |        |        |
| CONSAV:                                  | CONMIN                               |                                  |                            |                  | ••••••           |                  |                 |        |        |        |        |        |        |
| COPESI:<br>COPES2:                       | COPEO1<br>COPEO9                     | COPEO4<br>MAIN                   | COPE06                     | MAIN             |                  |                  |                 |        |        |        |        |        |        |
| COPES3:                                  | COPEO1                               | COPEO2                           | COPEO3                     | COPEO4           | COPEO6           | COPEO9           | MAIN            | TRANSD |        |        |        |        |        |
| CTRIA3:                                  | BANDER                               | EMA                              | EMGG                       | IMPCT            | INPUT            | LOAD             | MNFOD           | MNU808 | MODES  | PROJ   | STRESS |        |        |
| DLTARO:                                  | ITW751                               | NASFLT -                         | WORK                       | CTOFCC           |                  |                  |                 |        |        |        |        |        |        |
| EMAC :                                   | EMA                                  | GP6X6                            | GP6X6B                     | IMPCT            | LOAD             | MNFOD            | MNU808          | MODES  | RLOAD  |        |        |        |        |
| EMACC :<br>FMG :                         | GOODHN<br>DK369                      | IMPCT<br>EMA                     | LOAD                       | MNFOD            | MNU808<br>FGAB   | PSTRSS<br>GOODMN | GP6X6           | GP6X6B | INPCT  | MNFOD  | MNU808 | HODES  | PROJ   |
|                                          | STAEBL                               | STRESS                           | STRES2                     | MUUOOO           | CTOCCC           |                  |                 |        |        |        |        |        |        |
| EMGDST:<br>EMGEST:                       | EMA                                  | ETR3D                            | MNU808                     | PSTRSS           | STRESS           | STR31D           | STR32D          |        |        |        |        |        |        |
| EMGPRH:                                  | EMGG                                 | ETR3D                            | MNU808                     | STRESS           |                  |                  |                 |        |        |        |        |        |        |
| FAIL :                                   | TSAIWU                               | TSWUFL                           | 214522                     |                  |                  |                  |                 |        |        |        |        |        |        |
| FODMEN:                                  |                                      | ETR3D                            |                            |                  |                  |                  |                 |        |        |        |        |        |        |
| GLOBCM:                                  | ANALIZ                               | CALCTH                           | COPE09                     | HOLLOW           | HOLLW2           | LAMINA           | LYERAT          | MAIN   | OBJTV  | RDDATA | STRCON | TRIA3  |        |
| GRD :<br>GRID :                          | IMPCT<br>CTMASS                      | MNF OD<br>Ema                    | MUDES<br>Emgg              | FGAB             | FODSAV           | INPUT            | LOAD            | MNFOD  | MNU808 | MODES  | RLOAD  | STRCON | STRESS |

# Table of Element Names Per Common Block (continued)

•

....

-

.

| Common:            | Elemen                            | t Names                           |                                      |                                     |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
|--------------------|-----------------------------------|-----------------------------------|--------------------------------------|-------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|------------------------|------------------|-----------------|------------------|-----------------|-----------------|
| IO :<br>IOUNIT:    | BMEVAL<br>BANDER<br>I DENT<br>SPC | BMFIT<br>BMADD<br>INPUT<br>SPCARR | LINEAR<br>BRMPLY<br>MATCMP<br>STRESS | MAIN1<br>CTHASS<br>MATPRT<br>STRPRT | MAIN2<br>DIAG<br>MERGE<br>STR31D | MAIN3<br>ECHO<br>MNU808<br>STR32D | PLOTIT<br>EMA<br>MODPRT<br>TRANSD | VORK<br>EMGG<br>PRTRED | EMGPOM<br>REBAND | ETR3D<br>REORDR | FODSAV<br>RESTOR | GMMATD<br>RLOAD | GOSET<br>SDR2WT |
| IPARAM:<br>JMPCHK: | NSFLCL<br>ITW751                  | SSCASC<br>NDW751                  |                                      |                                     |                                  |                                   |                                   |                        |                  |                 |                  | •               |                 |
| KPR :<br>MATIN ·   | MATRL<br>ETP30                    | MNU808                            | PSHEL                                | STRES2                              | 579310                           |                                   |                                   |                        |                  |                 |                  |                 |                 |
| MATOUT:            | ETR3D                             | MAT                               | MNU808                               | STRES2                              | STR31D                           |                                   |                                   |                        |                  |                 |                  |                 |                 |
| MATI :             | FGAB                              | MNFOD                             | MODES                                | MODINT                              |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| MAT12 :            | INPUT                             | MAT                               | MNU808                               | STRES2                              |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| MAXSIZ:            | INPUT                             | MNU808                            |                                      |                                     |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
|                    | MAINZ                             | MATN2                             |                                      |                                     |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| M12 :              | MAINT                             | MAIN2                             |                                      |                                     |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| M123 :             | MAINT                             | MAIN2                             | MAIN3                                |                                     |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| M13 :              | MAINT                             | MAIN3                             |                                      |                                     |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| M23 :              | MAINZ                             | MAIN3                             |                                      |                                     |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| NFLI :<br>00TM7 •  | ANALT7                            | MNUROR                            |                                      |                                     |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| PLOTSS:            | MAIN3                             | PLOTIT                            | STABIL                               | WORK                                |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| PLTBUF:            | MAINT                             | MAIN2                             | MAIN3                                | PLOTIT                              | WORK                             |                                   |                                   |                        |                  |                 |                  |                 |                 |
| PRINT :            | MAINT                             | MAIN2                             | MAIN3                                | PLOTIT                              | WORK                             |                                   |                                   |                        |                  |                 |                  |                 |                 |
| PSHELL:            | ENGG                              | FGAB                              | INPUT                                | LOAD                                | MNFOD                            | MNU808                            | MODES                             | MODINT                 | STRESS           | STRES2          |                  |                 |                 |
| RERC :             | CIMASS                            | DTEOD                             | MNUSUS                               | KLUAD                               |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| ST7F :             | ANAL T7                           | BANDER                            | CTHASS                               | FMA                                 | ENGG                             | GETVEC                            | GP6X6                             | GP6X6B                 | INPUT            | MAT             | MNU808           | RLOAD           | SPCARR          |
|                    | STRESS                            | STRES2                            | STRPRT                               | TRANSD                              | 211010                           | 461160                            |                                   |                        |                  |                 |                  |                 | •••••           |
| SPDFRQ:            | FRQTIP                            | GOODMN                            | MNU808                               | RESMRG                              |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| STCSTR:            | GOODMN                            | PSTRSS                            | RTFOD                                | STRES2                              | STRPRT                           |                                   |                                   |                        |                  |                 |                  |                 |                 |
| STRMAX:            | ANALIZ                            | STRPRT                            | CT0210                               | CT0220                              |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| SIKS :             |                                   | 21 KE 22                          | 218310                               | 218320                              |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| TSISIG:            | LAMINA                            | RTFOD                             | STRCON                               | STRES2                              |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
| UIOS :             | ANALIZ                            | BIRDF                             | CALCTH                               | CNMN03                              | CNMN05                           | CNMN06                            | CNSTAV                            | CONMIN                 | COPE01           | COPE03          | COPE05           | COPE07          | COPE09          |
|                    | COPE14                            | COPE18                            | FRCFNC                               | FRQTIP                              | GOODMN                           | ITW751                            | MAIN                              | MESAGE                 | OBJTV            | RDDATA          | RDW137           | RESMRG          | RTFOD           |
| VALUES-            | STRCON                            | TIPMOD                            | TMAX                                 | TSWUFL                              | WTWI37                           | WT751                             |                                   |                        |                  |                 |                  |                 |                 |
| VALUES:<br>WIEGHT· | ΠΑΙΝΙ<br>ΙΔΗΤΝΔ                   | NR.ITV                            | TRIAS                                | VALUES                              |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |
|                    | PURITION                          | 00011                             | 11111                                |                                     |                                  |                                   |                                   |                        |                  |                 |                  |                 |                 |

## SECTION 9.0

## SUBROUTINE DICTIONARY

A programming description of the features in STAEBL follows. Elements are arranged by the parent module (generally like the flowchart described in Section 3.0).

•

9.1 COPES/ANALIZ; Miscellaneous Constraint Analysis

| Routine   | External Reference                                                                                                                                            | Calling<br>Element                           | Function                                            |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|
| *ANAL I Z | CALCTH OBJTV<br>CNSTAV RDDATA<br>FRQTIP RDW137<br>GOODMN RESMRG<br>ITW751 RTFOD<br>LYERAT STRCON<br>MESAGE TMAX<br>MNFOD WTW137<br>MNU808<br>MNW137<br>MYTIME | COPEO3<br>COPEO4<br>COPEO6<br>COPEO9<br>MAIN | Constraint calculation for<br>COPES/CONMIN          |
| BIRDF     |                                                                                                                                                               | RTFOD                                        | Calculates local foreign object<br>damage input     |
| BMEVAL    |                                                                                                                                                               | MAIN2                                        | Point evaluation from curve fit                     |
| BMFIT     |                                                                                                                                                               | FLTSAV<br>MAIN2<br>NASFLT                    | Interpolation routine                               |
| CALCTH    |                                                                                                                                                               | ANALIZ                                       | Input blade thickness calcula-<br>tion              |
| CNSTAV    |                                                                                                                                                               | ANALIZ                                       | Determines which constraints are active or violated |
| FLTSAV    | BME VAL<br>BMF I T                                                                                                                                            | MNU808                                       | Writes flutter modeshape input<br>data              |
| FODSAV    |                                                                                                                                                               | MNU803                                       | Writes foreign object damage<br>input data          |
| FRCFNC    |                                                                                                                                                               | GOODMN                                       | Calculates forcing function for forced response     |

\*Controlling routine for the module

# COPES/ANALIZ; Miscellaneous Constraint Analysis (continued)

.

| Routine | External Reference           | Calling<br>Element | Function                                                                                                                |
|---------|------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------|
| FRQTIP  |                              | ANALIZ             | Determines tip mode frequency<br>margin                                                                                 |
| GOODMN  | FRCFNC                       | ANALIZ             | Calculates blade forced response                                                                                        |
| ITW751  | NASFLT<br>NDW751<br>WT751    | ANALIZ             | Determines nodal diameters used<br>for flutter calculation, writes<br>input and calls appropriate<br>flutter subroutine |
| LYERAT  |                              | ANALIZ             | Sets layer angles and thick-<br>nesses into common block from<br>COPES                                                  |
| MESAGE  |                              | ANALIZ             | Prints global variable numbers,<br>names                                                                                |
| MULTZM  |                              | MN U808            | Multiplies mass and modeshape elements                                                                                  |
| NASFLT  | BMEVAL DIMAG<br>BMFIT NSFLCL | ITW751             | Generates NASA flutter input                                                                                            |
| NDW751  |                              | ITW751             | Selects nodal diameter for flutter calculation                                                                          |
| NSFLCL  | DCONJG<br>SSCASC             | NASFLT             | Routine calling NASA flutter code                                                                                       |
| · OBJTV |                              | ANALIZ             | Calculates objective function                                                                                           |
| RDDATA  | TSWUFL                       | ANALIZ             | Reads input Data Block C                                                                                                |
| RDW137  |                              | ANAL I Z           | Reads input Data Block B                                                                                                |
| RESMRG  |                              | ANALIZ             | Determines frequency margins                                                                                            |
| RFDSAV  |                              | MN U808            | Saves specific finite element<br>output data                                                                            |
| RTFOD   | BIRDF<br>STRES2              | ANAL I Z           | Root foreign object damage calculation                                                                                  |
| STRCON  |                              | ANAL I Z           | Finds maximum root and hole<br>stress                                                                                   |

# COPES/ANALIZ; Miscellaneous Constraint Analysis (continued)

| Routine | External Reference | Calling<br>Element | Function                                          |
|---------|--------------------|--------------------|---------------------------------------------------|
| ТМАХ    |                    | ANALIZ             | Determines airfoil section max-<br>imum thickness |
| TSWUFL  |                    | RDDATA             | Sets TSAI-WU failure limits                       |
| WTW137  |                    | ANALIZ             | Blade analysis output                             |
| WT751   |                    | ITW751             | Flutter output routine                            |

## 9.2 Airfoil Finite Element Preprocessor

| <u>Routine</u> | External Reference | Calling<br>Element | Function                                                                                   |
|----------------|--------------------|--------------------|--------------------------------------------------------------------------------------------|
| BC             |                    | STAEBL             | Generates RFORCE, SPC'S, ASET<br>input for finite element analy-<br>sis                    |
| BMFIT2         |                    | FLTSAV<br>MAIN2    | Curve fitting routine                                                                      |
| CORD2R         |                    | STAEBL             | Calculates CORD2R input for fi-<br>nite element analysis                                   |
| CUBIC          |                    | STAEBL             | Solves a cubic equation                                                                    |
| DK369          |                    | MNW 137            | Airfoil section property calcu-<br>lator                                                   |
| HOLLOW         |                    | TRIA3              | Calculates layer thickness for<br>airfoil elements and checks for<br>hollowness (cavities) |
| HOLLW2         |                    | TRIA3              | Same as HOLLOW, but used when added mass option exercised                                  |
| LAMINA         | LAMI N8            | TRIA3              | Generates layer thicknesses,<br>effective density                                          |
| LAMI N8        |                    | LAMINA             | Generates material property<br>cards for finite element analy-<br>sis                      |

Airfoil Finite Element Preprocessor (continued)

| Routine | External Reference                          | Calling<br>Element | Function                                                                                          |
|---------|---------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------|
| *MNW137 | DK369<br>STAEBL                             | ANALIZ             | Controls finite element model<br>generator                                                        |
| PBMFIT  | BMFIT2                                      | STAEBL             | Geometric curve fitter                                                                            |
| PSHEL   |                                             | STAEBL             | Generates property cards<br>(PSHELL) for finite element an-<br>alysis                             |
| STAEBL  | BC PSHEL<br>CORD2R TRIA3<br>CUBIC<br>PBMFIT | MNW137             | Generates grid locations, mean-<br>line thicknesses, and geometry<br>for the finite element model |
| TRIA3   | HOLLOW<br>LAMINA<br>XPROD                   | STAEBL             | Element connectivity generator                                                                    |
| XPROD   |                                             | TRIA3              | Calculates element area                                                                           |

# 9.3 Finite Element Analysis

| <u>Rout ine</u> | External Reference        | Calling<br>Element | Function                                  |
|-----------------|---------------------------|--------------------|-------------------------------------------|
| APPEND          |                           | INPUT              | Adds SPC's and/or ASETS to grid points    |
| BANDER          | MYTIME                    | MNU808             | Finds bandwidth of matrix                 |
| BMADD           | MYTIME                    | MNU808             | Adds two banded matrices                  |
| BRMPLY          | MYTIME                    | MNU808             | Multiplies rect. and banded ma-<br>trix   |
| CTMASS          |                           | MNU808             | Calculates centrifugal mass<br>stiffening |
| DIAG            | MYTIME                    | MNU808             | Prints matrix diagonal                    |
| ECHO            | MYTIME                    | MNU808             | Prints input image                        |
| ЕМА             | GP6X6<br>GP6X6B<br>MYTIME | MNU808             | Stiffness and mass matrix assem-<br>bly   |

\*Controlling routine for the module

| <u>Routine</u> | External Reference                                    | Calling<br>Element        | Function                                                                    |
|----------------|-------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------|
| EMGG           | ETRFOD<br>ETR3D<br>MYTIME                             | MNU808                    | Driver to build element stiff-<br>ness                                      |
| EMGPOM         |                                                       | ETR3D                     | Outputs stiffness matrix for element                                        |
| ETRFOD         |                                                       | EMGG                      | Calculates stiffness terms for certain foreign object damage model elements |
| ETR3D          | EMGPOM<br>GETVEC<br>GMMATD<br>MAT                     | EMGG                      | Generates element stiffnesses                                               |
| FTRNSF         | MATTMP                                                | RLOAD                     | Performs load transformation, global to local                               |
| GETVEC         | МАТМРҮ                                                | ETR3D                     | Transforms from local to basic coordinate system                            |
| GMMATD         |                                                       | ETR3D<br>STR31D<br>STR32D | General matrix multiplier                                                   |
| GOSET          | MYTIME                                                | MNU808                    | Matrix operator                                                             |
| GPSXS          | TRNSFM                                                | EMA                       | Inserts element stiffness into<br>global stiffness                          |
| GP6X6B         | TRNSFM                                                | EMA                       | Inserts element stiffness into<br>global stiffness                          |
| IDENT          | MYTIME                                                | MNU808<br>TRANSD          | Generates identity matrix                                                   |
| INPUT          | APPEND<br>INTRPD<br>INTRPI<br>LAJA<br>MYTIME<br>ZEROI | MNU308                    | Reads finite element input                                                  |

•

-

| <u>Routine</u> | External Referenc                                                                                                                                             | e Element                  | Function                                     |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------|
| INTRPD         |                                                                                                                                                               | INPUT                      | Keyword reader for finite ele-<br>ment input |
| INTRPI         |                                                                                                                                                               | INPUT                      | Keyword reader for finite ele-<br>ment input |
| LEQUSL         |                                                                                                                                                               | STRES2                     | Linear equation solution                     |
| MADD           |                                                                                                                                                               | MNU808                     | Calculates matrix addition                   |
| MAT            |                                                                                                                                                               | ETR3D<br>STRES2<br>STR31D  | Generation of material property<br>matrix    |
| MATCMP         | MYTIME                                                                                                                                                        | MNU808                     | Multiplies matrix by a constant              |
| МАТМРҮ         |                                                                                                                                                               | GETVEC<br>MNU808<br>STRES2 | Matrix multiplier                            |
| MATMP 1        |                                                                                                                                                               | TRNSFM                     | Matrix multiplier                            |
| MATMP2         |                                                                                                                                                               | TRNSFM                     | Matrix multiplier                            |
| MATPRT         | MYTIME                                                                                                                                                        | MNU808<br>SDR2WT           | Prints a matrix                              |
| MATSTP         |                                                                                                                                                               | STRESS                     | Mode shape selection                         |
| МАТТМР         |                                                                                                                                                               | FTRNSF<br>MNU808           | Multiplies matrix with transpose             |
| MERGE          | MYTIME                                                                                                                                                        | MNU808                     | Used to assemble deflection vector           |
| *MNU808        | BANDER MATMPY<br>BMADD MATPRT<br>BRMPLY MTTMP<br>CTMASS MERGE<br>DIAG MODPRT<br>EBALAF MSUB<br>EBBCKF MULTZM<br>ECHO MYTIME<br>EMBCKF PRTRED<br>EMESSF REBAND | ANAL I Z                   | Finite element driver                        |

\*Controlling routine for the module

| <u>Rout ine</u>   | External Reference                                                                                                                                                                                       | Calling<br>Element | Function                                          |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------|
| *MNU808<br>(cont) | EMA REORDR<br>EMGG RESTOR<br>EQRH3F RFDSAV<br>FLTSAV RLOAD<br>FODSAV SAVE<br>GOSET SCALE<br>IDENT SPC<br>INPUT SPCARR<br>LEQTIP STRESS<br>LEQIPB STRES2<br>LUELPB STRPRT<br>MADD TIRMOD<br>MATCMP ZEROFE | ANAL I Z           | Finite element driver                             |
| MODPRT            | MYTIME                                                                                                                                                                                                   | MNU808             | Print static disp. or mode shape                  |
| MSUB              |                                                                                                                                                                                                          | MNU808             | Calculates matrix difference                      |
| PRTRED            | MYTIME                                                                                                                                                                                                   | MNU808             | Matrix partition reduction                        |
| PSTRESS           |                                                                                                                                                                                                          | STR32D             | Calculates principle stress                       |
| REBAND            | MYTIME                                                                                                                                                                                                   | MNU808             | Reband matrix                                     |
| REORDR            | MYTIME                                                                                                                                                                                                   | MNU803             | Reorders eigenvalues from mini-<br>mum to maximum |
| RESTOR            | MYTIME                                                                                                                                                                                                   | MNU808             | Stores matrix in vector form                      |
| RLOAD             | FTRNSF<br>MYTIME                                                                                                                                                                                         | MNU808             | Builds load vector                                |
| SAVE              |                                                                                                                                                                                                          | MNU808             | Stores matrix A into B                            |
| SCALE             |                                                                                                                                                                                                          | MNU808             | Scales modeshape                                  |
| SPC               | MYTIME                                                                                                                                                                                                   | MNU808             | Interprets SPC cards                              |
| SPCARR            | MYTIME                                                                                                                                                                                                   | MN U808            | Arranges SPC cards in proper<br>sequence          |
| STRESS            | MATSTP<br>MYTIME<br>STR31D<br>STR32D                                                                                                                                                                     | MNUSO8             | Stress output driver                              |

\*Controlling routine for the module

....

.

| Rou  | <u>tine</u> | External Reference                | Calling<br>Element        | Function                                                                    |
|------|-------------|-----------------------------------|---------------------------|-----------------------------------------------------------------------------|
| STRI | ES2         | LEQUSL<br>MAT<br>MATMPY<br>TSAIWU | MNU803                    | Laminate stress generator                                                   |
| STRI | PRT         |                                   | MNU808                    | Print static or modal stress<br>save maximum static stress                  |
| STR  | 3 1 D       | AMMATD<br>MAT<br>TRANSD           | STRESS                    | Stress recovery for finite<br>elements                                      |
| STR  | 32D         | AMMATD<br>PSTRSS                  | STRESS                    | Stress recovery for finite<br>elements                                      |
| TIP  | 10D         |                                   | MNU808                    | Tipmode selection                                                           |
| TSA  | IWU         |                                   | STRES2                    | TSAI-WU failure criteria evalu-<br>ation                                    |
| TRAI | NSD         |                                   | STR31D                    | Displacement transforms to glo-<br>bal                                      |
| TRN  | SFM         |                                   | CTMASS<br>GP6X6<br>GP5X6B | Performs vector transformation                                              |
| ZER  | OFE         |                                   | INPUT                     | Array zeroing                                                               |
| 9.4  | Loca1       | Foreign Object Damage             | Analysis                  |                                                                             |
| Rou  | tine        | External Reference                | Calling<br>Element        | Function                                                                    |
| FGA  | 3           |                                   | MODES                     | Calculates coefficients for mo-<br>dal integration                          |
| IMP  | СТ          |                                   | MODES                     | Calculates bird impact mass,<br>squash up time and average to-<br>tal force |
| LOAI | D           |                                   | MODES                     | Zeroes blade momentum, calcu-<br>lates nodal forces                         |

Local Foreign Object Damage Analysis (continued)

| <u>Routine</u> | Externa               | 1 Reference                | Calling<br>Element | Function                                                                                                |
|----------------|-----------------------|----------------------------|--------------------|---------------------------------------------------------------------------------------------------------|
| MODES          | FGAB<br>IMPCT<br>LOAD | MODINT<br>MTMPYA<br>MTTMPA | MNFOD              | Reads foreign object damage<br>(FOD) input, calls FOD sub-<br>routines, writes output                   |
| *MNFOD         | MOD<br>PRO<br>ZER     | ES<br>J<br>O               | ANALIZ             | Zeros foreign object damage<br>(FOD) values, calls load sub-<br>routine and begins FOD calcula-<br>tion |
| MODINT         |                       |                            | MODES              | Writes modal integration input, performs integration calculation                                        |

•

\*Controlling routine for the module

### SECTION 10.0

## INPUT AND OUTPUT VARIABLE LISTING

## 10.1 Input Variables

A listing of input variables used in STAEBL is given below. A description of each variable, its input card and any suggested values, where appropriate, are included. Refer to Appendix A and/or the COPES/CONMIN manual (NASA Report No. NPS69-31-003) for variables used in DATA BLOCK A.

| Input<br>Variable | Description                                                                                                                                    | Card |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ADLE              | Distance from added mass patch to leading edge, inches.                                                                                        | C10  |
| ADTE              | Distance from added mass patch to trailing edge, inches.                                                                                       | C10  |
| ADROOT            | Distance from added mass patch to blade root, inches.                                                                                          | C10  |
| ADTIP             | Distance from added mass patch to blade tip, inches.                                                                                           | C10  |
| ALPHA             | Angle between plane of rotation of rotor stage and chord normal (y=0), degrees.                                                                | 85   |
| АМРА              | Added mass patch option. If>O, AMPA is mass per inch <sup>2</sup> , lbsec <sup>2</sup> /in <sup>4</sup> .                                      | C9a  |
| ARAD              | Aerodynamic radius, inches.                                                                                                                    | C4   |
| ВАА               | Fiber angle of outer composite layer, degrees.                                                                                                 | C9a  |
| BETA              | Modal integration damping factor.                                                                                                              |      |
| BLADES            | Number of blades in initial stage. The number of blades will be varied inversely with chord during optimization in order to preserve solidity. |      |
| BRANG             | Broach angle, the angle between the center line of the broach slot and an axial plane, degrees.                                                |      |
| BRSV              | Root chord length for which optimization will begin,<br>inches. All coordinate input will be scaled by<br>BRSV/coordinate input root chord.    |      |
| вта               | Inlay fiber angle, degrees.                                                                                                                    | C9   |

| Input    |                                                                                                                                                                                                                                 |      |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Variable | Description                                                                                                                                                                                                                     | Card |
| CFT      | Correction factor for tipmode.                                                                                                                                                                                                  | C1b  |
| CF1      | Correction factor for first mode.                                                                                                                                                                                               | C15  |
| CF2      | Correction factor for second mode.                                                                                                                                                                                              | С1Ь  |
| CF3      | Correction factor for third mode.                                                                                                                                                                                               | C1Þ  |
| CF4      | Correction factor for fourth mode.                                                                                                                                                                                              | C1b  |
| CF5      | Correction factor for fifth mode.                                                                                                                                                                                               | С1Ь  |
| DLE      | Hollow description, distance to leading edge, inches.                                                                                                                                                                           | C9   |
| DROOT    | Hollow description, distance to airfoil root, inches.                                                                                                                                                                           | C9   |
| DRPM     | Delta RPM. This RPM increment is added to the input<br>RPM and another frequency is calculated at the higher<br>speed for the purpose of computing the sensitivity of<br>the natural frequencies to speed. 1000.0 is suggested. | 83   |
| DTE      | Hollow description, distance to trailing edge, inches.                                                                                                                                                                          | C9   |
| DTIP     | Hollow description, distance to tip, inches.                                                                                                                                                                                    | C9   |
| E11      | Youngs modulus in primary (1-1) direction, psi.                                                                                                                                                                                 | 63   |
| E22      | Youngs modulus in secondary (2-2) direction, psi.                                                                                                                                                                               | C8   |
| GEA      | Fiber angle of inner composite layer, degrees.                                                                                                                                                                                  | C9a  |
| G12      | Shear modulus, psi.                                                                                                                                                                                                             | C8   |
| IORD     | Excitation order number.                                                                                                                                                                                                        | C5   |
| IST      | Station number associated with input thickness.                                                                                                                                                                                 | C2   |
| ITTLE    | Descriptive title for airfoil.                                                                                                                                                                                                  | 32   |
| NAC      | Number of aerodynamic stations.                                                                                                                                                                                                 | C3   |

72

.

s

.

÷

| Input<br><u>Variable</u> | Description                                                                                                                                                                                                                                                                                                                                | <u>Card</u> |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| NCD                      | Defines airfoil type: 0 = solid<br>1 = hollow<br>2 = superhybrid                                                                                                                                                                                                                                                                           | Cla         |
| NLAYER                   | Number of layers for blade. For a solid blade, use l<br>or -1. For a hollow blade, use 5 or -5. For a<br>superhybrid blade, use 7 or -7.                                                                                                                                                                                                   | Cla         |
|                          | Note: If positive, program uses preset limits. See Card<br>Cll for the preset TSAI-WU limits. If negative,<br>TSAI-WU limits will be input on Card Cll.                                                                                                                                                                                    |             |
| NO                       | Number of coordinate stations along the chord used to describe the airfoil profile (maximum of 53). Thirty to fifty points are recommended.                                                                                                                                                                                                | 85          |
| NORD                     | Number of excitation orders input, maximum of 5.                                                                                                                                                                                                                                                                                           | C5          |
| NREF                     | Leading edge impact node for local foreign object<br>damage. Normally use 16 (see Figure 11).                                                                                                                                                                                                                                              | C7          |
| NRESFF                   | Resonance margin criteria, determined by:<br>0 = resonance margins calculated<br>1 = forcing function calculated. STAEBL-provided<br>forcing functions are applicable to the Energy<br>Efficient Engine fan blade only. User-supplied<br>forcing functions may be incorporated by updating<br>Subroutine FRCFNC.<br>2 = both of the above. | Cla         |
|                          | Note: Refer to Card Cla input instructions, Section<br>4.3, for additional information regarding this<br>parameter.                                                                                                                                                                                                                        |             |
| NRF                      | Number of roots calculated by flutter analysis, maximum of 5.                                                                                                                                                                                                                                                                              | Cla         |
| NRFOD                    | Number of roots for both local and root foreign<br>object damage (FOD) analysis. Suggested value is<br>5. If = 0, FOD analysis is not made.                                                                                                                                                                                                | Cla         |
| NRTFOD                   | Root foreign object damage option:<br>O = not calculated<br>l = calculated.                                                                                                                                                                                                                                                                | Cla         |

| Input<br>Variable | Description                                                                                                                                                                                                                                              | Card |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| NSTA              | Number of spanwise coordinate input stations for blade geometry input description (21 maximum). Suggested value is 11.                                                                                                                                   | В4   |
| NSTEP             | For foreign object damage, number of timesteps required. Suggested value is 40.                                                                                                                                                                          | C7   |
| NTEST             | Indicator to start airfoil coordinate read.                                                                                                                                                                                                              | B1   |
| NTIPMD            | Tipmode search:<br>0 = no search<br>≥1 = number of modes tested for tip (5 maximum).<br>Note: if NTIPMD > 0 and no tipmodes are found,<br>tipmode defaults to fifth mode.                                                                                | Cla  |
| NTIS              | Number of thickness input stations, maximum of 21, minimum of 2 (5 recommended).                                                                                                                                                                         | Cla  |
| РСВА              | Percent thickness of outer composite material.                                                                                                                                                                                                           | C9a  |
| R                 | Distance from the engine center line to the blade<br>station, inches. The first input station should be<br>the blade attachment, the last the tip station.                                                                                               | B5   |
| R                 | Foreign object damage bird radius, inches.                                                                                                                                                                                                               | C6   |
| RH                | Layer mass density, 1b sec <sup>2</sup> /in <sup>4</sup> .                                                                                                                                                                                               | 63   |
| RHO               | Foreign object damage bird density, 1b sec <sup>2</sup> /in <sup>4</sup> .                                                                                                                                                                               | C6   |
| ROOT              | Number of frequencies to be calculated, maximum of 5.                                                                                                                                                                                                    | B3   |
| RPM               | Analysis speed, RPM. This is the speed desired for flutter stability evaluation.                                                                                                                                                                         | B3   |
| RROOT             | Radius of first airfoil station, inches. This radius<br>is the radius at the half-chord point of the airfoil<br>root. RROOT does not have to correspond to an airfoil<br>IX2Y coordinate input station radius, but must lie<br>between R(1) and R(NSTA). | 89   |
| SPDMC             | Minimum cruise speed, RPM.                                                                                                                                                                                                                               | C5   |
| SPDRL             | Redline speed, RPM.                                                                                                                                                                                                                                      | C5   |

•

\*

.

| Input    |                                                                                                                                                                                                                                                                          |           |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Variable | Description                                                                                                                                                                                                                                                              | Card      |
| STPRS    | Inlet static pressure, lbf/ft <sup>2</sup> .                                                                                                                                                                                                                             | C4        |
| S6M      | Shear term, y-x direction, psi.                                                                                                                                                                                                                                          | C11       |
| S6P      | Shear term, x-y direction, psi.                                                                                                                                                                                                                                          | C11       |
| TEMPST   | Inlet static temperature, °F.                                                                                                                                                                                                                                            | C3        |
| THER     | Blade root angle, degrees. This is the angle<br>between the blade platform and the engine center<br>line. Positive counterclockwise.                                                                                                                                     | 89        |
| THETA    | Foreign object damage impact angle relative to<br>ALPHA on Card B5, radians (see Figure 11). THETA<br>can be calculated as:<br>THETA = ALPHA (at impact radius) - $\phi$ , where<br>$\phi$ = TAN <sup>-1</sup> ((60·V <sub>P</sub> )/(2 $\pi$ ·blade impact radius·RPM)) | C5        |
| TIC      | Superhybrid blade center layer thickness, inches.                                                                                                                                                                                                                        | C9a       |
| TIS      | Superhybrid blade skin thickness, inches.                                                                                                                                                                                                                                | C9a       |
| TLT      | Thickness of hollow blade inlay, inches.                                                                                                                                                                                                                                 | C9        |
| TROOT    | Thickness of blade neck, inches.                                                                                                                                                                                                                                         | <u>89</u> |
| TSTEP    | Timestep for foreign object damage, seconds.<br>1 x 10 <sup>-5</sup> recommended.                                                                                                                                                                                        | C5        |
| ITT      | Thickness of hollow blade skin, inches.                                                                                                                                                                                                                                  | C9        |
| VALT     | Thickness at airfoil station, inches.                                                                                                                                                                                                                                    | C2        |
| VOM      | Relative inlet Mach Number.                                                                                                                                                                                                                                              | C4        |
| ٧P       | Foreign object damage bird velocity, inches/sec.                                                                                                                                                                                                                         | 60        |
| V12      | Layer poisson ratio.                                                                                                                                                                                                                                                     | C8        |
| Х        | The x coordinates of the blade cross section given in ascending order for NO points, inches.                                                                                                                                                                             | B6        |

| Innut    |                                                                                                |      |
|----------|------------------------------------------------------------------------------------------------|------|
| Variable | Description                                                                                    | Card |
| XIC      | Ultimate compressive strength in fiber direction, psi.                                         | C11  |
| XIT      | Ultimate tensile strength in fiber direction, psi.                                             | C11  |
| X2C      | Ultimate compressive strength perpendicular to fiber direction, psi.                           | C11  |
| X2T      | Ultimate tensile strength perpendicular to fiber direction, psi.                               | C11  |
| YL       | The lower y coordinates of a blade cross section corresponding to the x coordinates, inches.   | B8   |
| YU       | The upper y coordinates of the blade cross section corresponding to the x coordinates, inches. | B7   |

# 10.2 Output Variables

| Output Variable | Is Written From<br>Subroutine | With the Output<br>Message or Header |
|-----------------|-------------------------------|--------------------------------------|
| ADLE            | CALCTH                        | ADLE                                 |
| ADROOT          | CALCTH                        | ADROOT                               |
| ADTE            | CALCTH                        | ADTE                                 |
| ADTIP           | CALCTH                        | ADTIP                                |
| AMP A           | CALCTH                        | MASS PER UNIT AREA                   |
| ЗАА             | CALCTH                        | B/A ANG                              |
| BCC             | CALCTH                        | CHORD (IN.)                          |
| BLDGPC          | ANALIZ                        | NUMBER OF BLADES                     |
| BTA             | CALCTH                        | B/T ANG                              |
| DELSAV          | ITW751                        | AERO DAMPING COEF.                   |
| DLE             | CALCTH                        | DLE                                  |
| DROOT           | CALCTH                        | DROOT                                |
| DTE             | CALCTH                        | DTE                                  |
| DTIP            | CALCTH                        | DTIP                                 |
| FLTSLD          | ANALIZ                        | FLUTTER CONSTRAINT                   |
| FMC             | FRQTIP,RESMRG                 | FREQUENCY-CPS                        |
| FNI             | FRQTIP, RESMRG                |                                      |
| FN2             | FRQTIP, RESMRG                |                                      |
| FRL             | FRQTIP, RESMRG                | FREQUENCY~CPS                        |
| GDMAX           | GOODMN                        | MARGIN                               |
| GEA             | CALCTH                        | G/E ANG                              |
| I               | GOODMN                        | MODE                                 |
| I               | CALCTH                        | STA.                                 |
| IFLT            | CNSTAV                        | IFLT                                 |

| <u>Output Variable</u> | Is Written From<br>Subroutine | With the Output<br><u>Message or Header</u> |
|------------------------|-------------------------------|---------------------------------------------|
| IFOD                   | CNSTAV                        | IFOD                                        |
| IFREQ                  | CNSTAV                        | IFREQ                                       |
| INFOG                  | CNSTAV                        | INFOG                                       |
| IORD                   | GOODMN, RESMRG                | ORDER                                       |
| IRTF                   | CNSTAV                        | IRTF                                        |
| ISTR                   | CNSTAV                        | ISTR                                        |
| ITER                   | CNSTAV                        | ITERATION NUMBER                            |
| J                      | RESMRG                        | ROOT NUMBER                                 |
| NELM                   | ANALIZ                        | FOR ELEMENT NUMBER                          |
| NELRT                  | STRCON                        | FOR ELEMENT NUMBER                          |
| NLAY                   | ANALIZ                        | AND LAYER                                   |
| NLYRT                  | STRCON                        | AND LAYER                                   |
| NM                     | FRQTIP                        | MODE                                        |
| NRD                    | FRQTIP                        | ON E                                        |
| NSAV                   | ITW751                        | CRIT. NODAL DIA                             |
| OBJFUN                 | OBJTV                         | OBJECT FUNCTION                             |
| PC                     | CALCTH                        | PCT. SPAN                                   |
| PCBA                   | CALCTH                        | PCBA                                        |
| PMGDMC                 | GOODMN                        | PC MARGIN                                   |
| PMGDRL                 | GOODMN                        | PC MARGIN                                   |
| R                      | CALCTH                        | RADIUS (IN.)                                |
| RF                     | RESMRG                        | MARGIN (MAX)                                |
| RMC                    | RESMRG                        | MARGIN (MIN CRUISE)                         |
| RRL                    | RESMRG                        | MARGIN (REDLINE)                            |

.

| <u>Output Variable</u> | Is Written From<br>Subroutine | With the Output<br>Message or Header |
|------------------------|-------------------------------|--------------------------------------|
| TPMRG                  | FRQTIP                        | TIPMODE FREQUENCY MARGIN             |
| SPD1                   | FRQTIP, RESMRG                | FREQUENCY AT RPM                     |
| SPD2                   | FRQTIP, RESMRG                | FREQUENCY AT RPM                     |
| SPMC                   | GOODMN                        | SPEED                                |
| SPDMC                  | FRQTIP, RESMRG                | MIN CRUISE SPEED-RPM                 |
| SPDRL                  | FRQTIP, RESMRG                | REDLINE SPEED-RPM                    |
| SPRL                   | GOODMN                        | SPEED                                |
| SROOT                  | ANALIZ                        | ROOT STRESS                          |
| STGWT                  | ANALIZ                        | STAGE WEIGHT                         |
| STRN                   | ANALIZ                        | STRAIN                               |
| TCC                    | CALCTH                        | THICKNESS (IN.)                      |
| TIC                    | CALCTH                        | TIC                                  |
| TIS                    | CALCTH                        | TIS                                  |
| TLT                    | CALCTH                        | TLT                                  |
| TMXA                   | ANALIZ                        | AT TIME                              |
| ТОВ                    | CALCTH                        | THK/CHD                              |
| ТРМС                   | FRQTIP                        | MARGIN                               |
| TPRL                   | FRQTIP                        | MARGIN                               |
| TSRT                   | STRCON                        | TSAI-WU STRESS                       |
| TSWU                   | ANALIZ                        | ROOT FOD                             |
| TTI                    | CALCTH                        | TTI                                  |
| WGHT                   | ANAL I Z                      | BLADE WEIGHT                         |

### SECTION 11.0

INDEX

Aerodynamic Input, 26 Airfoil Geometry Input, 18 Output, 35 Airfoil Thickness Input, 25 Analysis Information Input, 5 Output, 34 Approximate Analysis Flowchart, 4 Output Description, 34 Common Block Cross Reference, 60-61 Constraint Inputs, 13 COPES Control Parameters, 6 COPES/ANALIZ Error Messages, 40 Subroutines, 62 COPES/CONMIN Exact Analysis, 85-87 Function Calls, 93-94 Interfaces, 94 Optimization Method, 82 Scaling of Design Parameters, 91-93 Search Parameters, 87-91 Theory and Background, 82-85 Correction Factors, 24 Data Block A, 5 B, 15 C, 21 Description Error Message, 40 Input, 5 Output, 34 Design Variable Bounds, 12 Design Variables, 10 Excitation Input, 27

Finite Element Analysis Error Messages, 41-42 Subroutines, 65-69 Finite Element Preprocessor Error Messages, 41 Subroutines, 64-65 Flowchart Approximate Analysis, 4 STAEBL, 3 Flutter Input, 26 Output, 37 Forced Response Input, 22 Output, 37 Foreign Object Damage Local Input, 21, 28-29 Local Output, 39 Root Input, 21 Root Output, 39 Frequency Correction Factors, 24 Margin Output, 36-37 Global Variable Definitions, 10-11, 34 Input, 10-11 Output, 34 Hollow Blade Input, 21, 30 Output (see Validation), 35 Input Description, 71-76 Variables, 5 Listings STAEEL Code, 95-96 Subroutines, 62 Variable, 71-79 Local Foreign Object Damage (see Foreign) Local Increased Density Input, 32 Output, 39

Material Properties Input, 29 Message Error, 40 Output, 34 Modifications Frequency Correction Factors, 24 General, 59 Modules, Major, 4, 62, 95-96 **Object Function** Input, section 4.1 Output, 39 Optimization Control Parameters, 6-7 Process, 3 Output Description, 34 Error Messages, 40 Variables, 77-79 Problem Definition, 21-22 Program Changes, 59 Flowchart, 3-4 Resonance Margin Information Forced Response, 37 No Forced Response, 36-37 Root Foreign Object Damage (see Foreign) Stress, 38

Solid Blade Input. 21 Output (see Validation), 35 Speed Input, 16, 27 STAEBL Flowchart. 3 Program Description, 1-2 Stress Input, 10-11 Output, 38 Subroutine Dictionary, 62 Superhybrid Blade Input, 21, 31 Cutput (see Validation), 35 Tipmode Input, 21-22 Output, 38 TSAI-WU Failure Limit Input, 33 Units Read and Write, 59 Validation Test Cases, 43-58 Hollow Blade, 43-46 Solid Blade, 55-58 Superhybrid Blade, 47-50 Superhybrid Blade With Local Increased Density, 51-54 Variable Description Input, 71-76 Output, 77-79

#### SECTION 12.0

#### APPENDIX A: OPTIMIZATION USING COPES/CONMIN

### 12.1 Optimization Method

A common engineering design problem is the determination of values for design variables which minimize a design quantity such as weight, drag, or cost, while satisfying a set of auxiliary conditions. In the STAEBL program, the structural design of solid, composite or hollow blades is accomplished by varying airfoil section thicknesses, chord, titanium skin thickness, etc. to minimize a combination of weight and cost subject to constraints on resonance, flutter, stress, and foreign object damage.

### 12.1.1 General Optimization Theory and Background

The engineering design process can be modeled as a mathematical programming problem in optimization theory. In theoretical terms, this constrained minimization problem can be expressed as follows:

minimize 
$$f(x)$$
, (1)

subject to the auxiliary conditions,

$$g_{i}(x) \leq 0, i=1, ..., m.$$
 (2)

The quantity  $\underline{x} = (x_1, \dots, x_n)$  is the vector of n design variables. The scalar function to be minimized,  $f(\underline{x})$ , is the objective function; and  $g_i(\underline{x}) \leq 0$ , i=1, ..., m, are the m inequality constraints. Upper and lower bounds on the design variables, e.g.,

 $L_i \leqslant x_i \leqslant U_i, i=1, \dots, n,$ (3)

are referred to as side constraints. The n-dimensional space spanned by the design variables is design space. If  $f(\underline{x})$  and  $g_i(\underline{x})$ ,  $i=1, \ldots, m$ , are all linear functions of  $\underline{x}$ , then the optimization problem is a linear programming problem which can be solved by well-known techniques such as Dantzig's simplex method. If  $f(\underline{x})$  or any of the  $g_i(\underline{x})$ 's are nonlinear, then it is a nonlinear programming problem for which a number of solution techniques are also available. If the objective function,  $f(\underline{x})$ , is to be maximized, then the equivalent problem of minimizing  $-f(\underline{x})$  is considered.

Any choice of variables, x, in design space that satisfies all the constraints, equations (2) and (3), is a feasible point. As shown in Figure 16, the union of all feasible points comprises the feasible region. The locus of points which satisfy  $g_i(x) = 0$ , for some i, forms a constraint surface. On one side of the surface,  $g_i(\underline{x}) < 0$  and the constraint is satisfied; on the other side,  $g_i(x) > 0$  and the constraint is violated. Points in the interior of the feasible region are free points; points on the boundary are bound points. If it is composed of two or more distinct sets, the feasible region is disjoint. A design point in the feasible region that minimizes the objective function is an optimal feasible point and is a solution of the problem posed in equations (1) through (3). As in any nonlinear minimization problem, there can be multiple local minima. In this case, the global minimum is the optimal feasible point. If a design point is on a constraint surface (i.e.,  $g_i(\underline{x}) =$ O for some i), then that particular constraint is active. A solution to a structural optimization problem is almost always on the boundary of the feasible region, and is usually at the intersection of two or more constraint surfaces (i.e., there are two or more active constraints).



Figure 16 Feasible Region is Union of All Points that Satisfy All Constraints

There are two basic approaches to solving the constrained optimization problem posed in equations (1) through (3): direct methods (e.g., the method of feasible directions as used in STAEBL), and indirect methods (e.g., penalty function methods).

In a direct method, the objective function and constraints are evaluated independently, and the constraints are treated as limiting surfaces. Zoutendijk's method of feasible directions is an example of a direct method and will be discussed further in Sections 12.1.2 and 12.1.3.

Several programs are generally available in software libraries (e.g., International Mathematical and Statistical Libraries, Inc., and HARWELL) that can solve the constrained minimization problem using either direct or indirect techniques. Due to its versatility in solving structural optimization problems at Pratt & Whitney, NASA/Langley, General Motors, and Ford Motor Co., the COPES/CONMIN (Control Program for Engineering Synthesis/Constrained Minimization) computer program was selected for the STAEBL contract. This program was developed by G. N. Vanderplaats of the Naval Postgraduate School and has the added capability of solving both constrained minimization problems, equations (1) through (3), and unconstrained minimization problems, equation (1). COPES is a user-oriented FORTRAN program that prepares an input data set for the optimization program CONMIN. Two solution techniques are available for the constrained minimization problem.

- <u>Exact Analysis</u> utilizes the method of feasible directions applied to the actual objective function and constraints. This approach is discussed in Section 12.1.2.
- <u>Approximate Analysis</u> utilizes the method of feasible directions applied to Taylor series approximations and to the objective function and constraints.

12.1.2 COPES/CONMIN Exact Analysis: Method of Feasible Directions

In this method, a sequence of designs  $(\underline{x}_0, \underline{x}_1, \ldots)$  is produced which converges to a local optimum design,  $\underline{x}_{opt}$ , provided a feasible region exists. The successive designs are generated iteratively as a sequence of one-dimensional line searches, i.e.,

$$\underline{x}_{i+1} = \underline{x}_i + \alpha \underline{s}_i, \qquad (4)$$

for i = 0, 1, 2, ..., where  $\underline{s}_i$ , the search direction, and a are chosen so that once the feasible region has been entered, all subsequent iterates remain feasible and the magnitude of the objective function is reduced at each step. If the initial design,  $\underline{x}_0$ , is infeasible, then gradients of the violated constraints are calculated so that search directions can be established which lead to the feasible region, provided one exists.

Once the feasible region has been entered, a particular direction is pursued until either: a) a local minimum of the objective function,  $f(\underline{x})$ , has been determined, or b) a constraint boundary has been reached. The value of a in equation (4) at the termination point of this one-dimensional line search in the  $\underline{s}_i$  direction is determined by interpolating polynomial fits of several trial values of the objective function and constraints. A schematic of a typical case is shown in Figure 17. The initial design,  $\underline{x}_0$ , is infeasible. The design point,  $\underline{x}_i$ , is a relative minimum of the objective function. The remaining search directions terminate at constant boundaries until  $\underline{x}_{opt}$  is reached.



Figure 17 Line Search Terminates Either at Minimum of Objective Function or at a Constant Boundary. Sequence of line searches converge to Xopt.

If a local minimum of the objective function has been reached, then the gradient of the objective function is calculated, and the procedure continues in the direction opposite to this (i.e., the "path of steepest descent"). If a constraint boundary has been reached first, however, then a new search direction can be determined using Zoutendijk's method of feasible directions as follows. A direction,  $\underline{s}_i$ , is usable if the objective function initially does not increase along this path, i.e.,

$$\underline{s}_{i} \cdot \overline{\nu} f(\underline{x}_{i}) < 0. \tag{5}$$

In addition,  $\underline{s}_i$  is feasible if no active constraints are initially violated along this path, i.e.,

$$\underline{s}_{i} \cdot \overline{\nu} g_{i}(\underline{x}_{i}) \leqslant 0, \ j=1, \ \dots, \ NAC, \tag{6}$$

where a subscript, j, is chosen for each of the constraints that are active at  $\underline{x}_i$ . As shown schematically in Figure 18, allowable paths that emanate from  $\underline{x}_i$  comprise the usable feasible sector.

12.1.2.1 Choice of Search Parameters for COPES/CONMIN

In Zoutendijk's method, the search direction,  $\underline{s}_i$ , is determined by solving a sub-optimization problem, i.e.,

maximize  $\beta$ ,

subject to:

$$\underline{s}_{i} \cdot \overline{\nu} f(\underline{x}_{i}) + \beta \leq 0,$$
  
$$\underline{s}_{i} \cdot \overline{\nu} g_{j}(\underline{x}_{i}) + \theta_{j} \beta \leq 0, \quad j=1, \dots, \text{ NAC}$$
(7)

 $|\underline{s}_i|$  bounded.

The parameter  $\theta_i$ , the push-off factor, determines the orientation of the new search direction vector,  $\underline{s}_i$ , in the usable feasible sector by pushing the search away from the constraints into the feasible region. As shown in Figure 18, s<sub>i</sub> approaches the constraint surface,  $g_i(\underline{x})$ , tangentially as  $\theta_i \rightarrow 0$ , and  $\underline{s}_i$  approaches a level curve to the objective function tangentially as  $\theta_i \rightarrow \infty$ . For a linear constraint,  $\theta_i$  can be set to zero and the search can proceed along that particular constraint surface. If  $\theta_i$  is too small, then for nonlinear constraints with convex curvature, the same constraint will be immediately re-encountered. In this case, the search will "skid" along the same constraint boundary with little change in the objective function. If  $\theta_i$ is too large, then the search will "zigzag" back and forth between two or more constraints, and the objective function will again not be reduced rapidly enough. A compromise value of  $\theta_i = 1$  is the default value used by COPES/CON-MIN for the initial iteration. Since many of the constraints (e.g., flutter, resonance, etc.) in the STAEBL optimization problems were nearly linear (at least locally), the value  $\theta_i = 0.3$  was used for the initial iteration to give more rapid convergence.



Figure 18 New Search Direction,  $s_i$ , Lies in the Usable Feasible Sector. The value of the push-off factor,  $\theta_j$ , determines the orientation of the new search direction.

The rate of convergence is also affected by the value of CT, the constraint thickness parameter in COPES/CONMIN. For theoretical purposes, the i<sup>th</sup> constraint is satisfied if  $g_i(\underline{x}) \leq 0$  and is active if  $g_i(\underline{x}) = 0$ . For computational purposes (as shown in Figure 19), COPES/CONMIN considers the i<sup>th</sup> constraint to be satisfied if  $g_i(\underline{x}) \leqslant CT$  and to be active if  $|g_i(\underline{x})| \leqslant -CT$ , where CT is a negative number. If |CT| is too small, then one or more constraints can be active on one iteration and inactive on the next, only to become active again on a subsequent iteration - another instance of "zigzagging". A proper choice of CT ensures that two or more constraints will often be simultaneously active when a new search direction is chosen. In this case, as shown in Figure 20, the search will proceed down the "valley" formed by the constraint surfaces. The default value in COPES/CONMIN is CT = -0.1 (i.e., a constraint is considered active if it is within 10 percent of its specified value). For many STAEBL applications, a value CT = -0.1 was too large since too many constraints were simultaneously active during the early iterations, and new search directions could not be established. Consequently, the value CT = -0.05 was used.



Figure 19 Constraint Thickness Parameter, CT, Determines When a Constraint is Satisfied, Violated, or Active



Figure 20 For Proper Choice of CT, Two Constraints Become Simultaneously Active So That Search Proceeds Down the "Valley" Formed by the Constraints

During the COPES/CONMIN optimization procedure, the values of CT and  $\theta_j$  are updated as follows. After the first few iterations, the value of CT is decreased monotonically so that fewer constraints will be active when new search directions are established. A minimum value of |CT| is given by CTMIN; the default value in COPES/CONMIN is CTMIN = 0.004. In addition, the value of the push-off factor,  $\theta_j$ , is also readjusted at each iteration according to the value of the active constraint to which it applies and to the current value of CT. Thus,  $\theta_j$  is a quadratic function of these parameters, i.e.,

$$\theta_{j} = \theta_{0} \left( \frac{g_{j}(\underline{x}_{j})}{CT} - 1 \right)^{2}, \qquad (3)$$

where  $\theta_0$  is the initial value of  $\theta_j$  (for STAEBL we have chosen  $\theta_0=0.3$ ). A maximum value of  $\theta_i = 50$  is also imposed.

The iteration is terminated under three conditions in COPES/CONMIN:

- 1. If the objective functions for three successive iterates are all within a prescribed error tolerance, then the procedure has converged to a local optimum. COPES/CONMIN uses default values of DELFUN = 0.0001 for the relative change in objective function and (DABFUN = 0.0001) x initial objective value for absolute change in the objective function as its convergence criteria. For the STAEBL application, 1 percent differences in the objective function were adequate for convergence so that DELFUN = DABFUN = 0.01. These increased values also reduced the number of function calls required for convergence.
- 2. If convergence has not been obtained after a certain number of iterations inside the feasible region, the procedure is terminated. Either this design can be accepted or else the optimization procedure can be restarted if progress toward an optimum is obviously being made. COPES/CONMIN uses a default value of 20 for the total number of iterations.
- 3. If the feasible region cannot be located after a certain number of iterations (the COPES/CONMIN default value is 10), then the process is terminated. At this time, either a new starting guess should be chosen, or else the objective function and constraints should be examined to determine whether or not a feasible region exists.

12.1.2.2 Scaling of Design Variables in COPES/CONMIN

Performance of the method of feasible directions can be greatly affected by the scaling of the design variables. At the beginning of each iteration in COPES/CONMIN, a new search direction is established according to Zoutendijk's method, equation (7). This procedure is based upon the gradient of the objective function and each constraint with respect to each of the design variables. The choice of the search direction is very sensitive to the components of these gradients. For example, in a two design variable problem, suppose that a 1 percent change in  $x_i$  leads to a 10 percent change in the objective

function,  $f(\underline{x})$ ; whereas a 1 percent change in  $x_2$  leads to only a 0.1 percent change in  $f(\underline{x})$ . To reduce the objective function most rapidly, the search direction will be primarily in the  $x_1$  direction. The "weak" variable,  $x_2$ , will be virtually unchanged, at least for several iterations. To obtain the optimal design, a relatively large change in  $x_2$  must be made to affect the objective function and constraints.

In a well-formulated problem, the components of the gradient of the objective function with respect to the design variables should all be roughly the same order of magnitude. The scaling option in COPES/CONMIN can be used to equilibrate the gradient components as follows. The i<sup>th</sup> design variable,  $x_i$ , is scaled by dividing it by its initial value  $x_i^0$ , i.e.;

$$\xi_i = x_i / x_i^{0} \tag{9}$$

provided  $x_i^0$  is nonzero. Using equation (9) in the chain rule, the i<sup>th</sup> component of the scaled gradient with respect to the nondimensional variable,  $\xi_i$ , is given by:

$$\frac{\partial f}{\partial_{\xi_i}} = \frac{\partial x_i}{\partial_{\xi_i}} \quad \frac{\partial f}{x_i} = x_i^0 \quad \frac{\partial f}{\partial x_i}$$
(10)

Thus, the ratio of the i<sup>th</sup> components in the scaled gradients is given by:

$$\frac{\partial f}{\partial \xi_{i}} / \frac{\partial f}{\partial x_{i}} = x_{i}^{0}$$
(11)

The scaling options in COPES/CONMIN are controlled by the input parameter NSCAL and are given as follows:

For STAEBL demonstration, scaling was always used. The value NSCAL = n+1 (where n = number of design variables) was recommended by G. Vanderplaats since this strategy worked well for unconstrained minimization problems using the conjugate gradient method.

12.1.2.3 Number of Function Calls for COPES/CONMIN

Engineering design problems are considered small or large according to the number of design variables as follows:

Small:
$$n \le 10$$
,

Moderate:
 $10 < n \le 50$ ,
(13)

Large:
 $n > 50$ .

The number, N, of function calls required for convergence of the method of feasible directions for COPES/CONMIN can be approximated as follows. As indicated in Figure 17, each iteration consists of a gradient evaluation of the objective function and constraints to determine the search direction, followed by a one-dimensional line search in that direction. When the gradients are not known analytically (as is the case for the STAEBL application), a backward difference gradient approximation is used. For n design variables, n function calls are required for the finite difference gradient calculation. The one-dimensional line search usually requires 3 additional function evaluations to update the objective function and constraints and to determine where the search should terminate. Thus, for m iterations, with n+3 function calls per iteration, we have:

$$N = m (n + 3).$$
 (14)

Typically, convergence is attained in approximately 10 iterations so that  $N \approx 10n + 30$ . Note that N increases roughly linearly as a function of the number, n, of design variables.

The limiting feature in these analyses is the computer time required per function call to evaluate the objective function and constraints.

12.1.3 COPES/CONMIN Interfaces to Vibration, Flutter, and Stress Programs

The COPES/CONMIN program is limited via subroutine ANALIZ to the approximate vibration, flutter, stress, and foreign object damage programs used for the structural analysis of blades.

Once an optimal feasible design has been obtained by COPES/CONMIN, this blade design must be evaluated by the refined analysis (finite element program) for further tailoring and possible re-optimization.

Subroutine ANALIZ is called by COPES/CONMIN in order to evaluate the objective function and constraints. There are three options, designated by different values of the parameter ICALC, utilized by COPES/CONMIN when calling subroutine ANALIZ:

ICALC = 1: Read data, set the parameters that are used throughout the analysis, and analyze the initial design; ICALC = 2: Analyze the current design; ICALC = 3: Write output data, parameters and results of analysis on final design.

In order to accomplish these tasks, subroutine ANALIZ calls the vibration, flutter, stress, and foreign object damage programs whenever necessary. The transfer of information between COPES/CONMIN and these approximate analyses is accomplished by accessing the data in common block GLOBCM.
# SECTION 13.0

# APPENDIX B: STAEBL COMPILED LISTING CONTENTS

| Module       | Element                                                                                                                                                                                                                                                                                                                                    | Module                                  | Element                                                                                                                                                                                                                             |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COPES/CONMIN | C NMNO 1<br>CNMNO2<br>CNMNO3<br>CNMNO5<br>CNMNO5<br>CNMNO5<br>CNMNO7<br>CNMNO3<br>CONMI N<br>SIMCON<br>COPEO 1<br>COPEO2<br>COPEO2<br>COPEO3<br>COPEO4<br>COPEO5<br>COPEO5<br>COPEO5<br>COPEO5<br>COPEO5<br>COPEO5<br>COPEO5<br>COPEO5<br>COPEO7<br>COPE05<br>COPE10<br>COPE11<br>COPE12<br>COPE13<br>COPE15<br>COPE15<br>COPE15<br>COPE17 | U809SANLIZ<br>(continued)<br>U309PREPRC | TMAX<br>STRCON<br>BIRDF<br>RTFOD<br>RFDSAV<br>WTW137<br>WT751<br>TSWUFL<br>MULTZM<br>FLTSAV<br>BMEVAL<br>BMFIT<br>ITW751<br>RESMRG<br>FODSAV<br>NASFLT<br>NSFLCL<br>DREAL<br>GOODMN<br>FRCFNC<br>MNW137<br>DK369<br>STAEBL<br>PSHEL |
| U809SANLIZ   | COPETS<br>MAIN<br>ANALIZ<br>LYERAT<br>MESAGE<br>CNSTAV<br>CALCTH<br>OBJTV<br>RDDATA<br>RDW137                                                                                                                                                                                                                                              |                                         | CORD2R<br>MATRL<br>BC<br>BMFIT2<br>CUBIC<br>PBMFIT<br>LAMINA<br>LAMIN8<br>HOLLOW<br>XPROD<br>HOLLW2                                                                                                                                 |

| Module     | Element                                                                                                                                                                                                           | Module                    | Element                                                                                                                                                                                                |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U809MNU808 | MNU808<br>APPEND<br>BANDER<br>BMADD<br>BRMPLY<br>CTMASS<br>DADOTB<br>DAXB<br>DIAG<br>ECHO<br>EMA<br>EMGG<br>EMGPOM<br>ETRFOD<br>ETRFOD<br>ETRSF<br>GETVEC<br>GMMATD<br>GOSET<br>GP6X6<br>GP6X6B<br>IDENT<br>INPUT | U809MNU808<br>(continued) | PSTRSS<br>PSTR2D<br>REBAND<br>REORDR<br>RESTOR<br>RLOAD<br>SAVE<br>SCALE<br>SDR2WT<br>SPC<br>SPCARR<br>STRESS<br>STRPRT<br>STR31D<br>STR32D<br>TIPMOD<br>TSAIWU<br>TRANSD<br>TRNSFM<br>ZEROFE<br>ZEROI |
|            | INTRPD<br>INTRPI<br>LEQUSL<br>MADD<br>MAT<br>MATCMP<br>MATMPY<br>MATMP1<br>MATMP2<br>MATPRT<br>MATMP2<br>MATPRT<br>MATSTP<br>MATTMP<br>MERGE<br>MODPRT<br>MOOGO<br>MSUB<br>PRTRED                                 | U809FLUTER<br>U809F0D     | SSCASC<br>AKP2<br>AKAPM<br>ALAMDA<br>AKAPPA<br>DLKAPM<br>ASYCON<br>MNFOD<br>MODES<br>FGAB<br>MODINT<br>LOAD<br>MTTMPA<br>MTMPA<br>MTMPYA<br>IMPCT                                                      |

s,

.

\*

. .

#### APPENDIX C

# PRATT & WHITNEY PROPRIETARY SUPERSONIC FLUTTER ANALYSIS

- For NASA Use Only -

As an option of STAEBL, a Pratt & Whitney proprietary supersonic flutter analysis is available for NASA use only. The optional flutter analysis is automatically referenced by STAEBL when more than one spanwise strip is requested for flutter analysis (NAC on Card C3). With the optional Pratt & Whitney flutter analysis, multiple spanwise strips may be evaluated to determine the overall blade stability. In all other respects, the analysis is similar to the analysis performed by the publicly available NASA flutter code.

Revised Card C3 (Required if NRF > 0 on Card Cla

Contents: Supersonic Flutter Analysis Input Control.

| 1     |          | 2      | 3      |    | 4                                                                                                                                                    |                       |
|-------|----------|--------|--------|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|       |          | TEMPST |        |    | NAC                                                                                                                                                  |                       |
|       | 10       | 2      | 0      | 30 | 40                                                                                                                                                   |                       |
| Field | <u> </u> | tem    | Format |    | Descript                                                                                                                                             | ion                   |
| 2     | Т        | EMPST  | F      |    | Inlet sta                                                                                                                                            | atic temperature, °F. |
| 4     | N        | IAC    | I      |    | Number of aerodynamic stations (maximum of 25).<br>NAC = 1 : NASA Flutter Analysis<br>2≪NAC≪25 : P&W Proprietary Flutter Analysis<br>(NASA use only) |                       |

# Subroutine Dictionary, P&W Flutter Analysis

| Routine | External Reference     | Calling Element | Function                                             |
|---------|------------------------|-----------------|------------------------------------------------------|
| AJ O    |                        | MAIN2           | Evaluate JO Bessel Function                          |
| AJI     |                        | MAIN2           | Evaluate Jl Bessel Function                          |
| LINEAR  |                        | MAIN]<br>MAIN3  | Perform Linear Interpolation                         |
| MAINT   | LINEAR                 | MNW751          | Read Flutter Input Stream                            |
| MAIN2   | BMFIT AJO<br>BEVAL AJI | MNW751          | Determine Blade Aerodynamic<br>Loading               |
| МАІМЗ   | L I NEAR<br>WORK       | MNW751          | Determine Unsteady Air<br>Loads, Aerodynamic Damping |
| *MNW751 | MAIN1 MAIN3<br>MAIN2   | ITW751          | Driver for P&W Proprietary<br>Flutter Analysis       |
| VALUES  |                        |                 | Block Data                                           |
| WORK    |                        | MAIN3           | Unsteady Work and Aero.<br>Decrement Calculation     |

\*Controlling routine for the module.

•

#### DISTRIBUTION LIST

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: Contracting Officer, MS 500-13 Attn: L. J. Kiraly, MS 23-2

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: Tech. Rept. Cont. Office, MS 60-1 Attn: C. C. Chamis, MS 49-6 (6 copies)

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: Tech. Utilization Office, MS 7-3 Attn: M. S. Hirschbein, MS 49-8

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: AFSC Liason Office, MS 501-3 Attn: J. A. Ziemianski, MS 86-1

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: Division Contract File MS 49-6 (2 copies)

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: Library, MS 60-3

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: L. Burke, MS 46-6

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: R. H. Johns, MS 49-8

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135

NASA-Lewis Research Center 21000 Brookpark Road

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: P. B. Burstadt, MS 100-5

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: D. P. Fleming, MS 6-1

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: R. E. Kielb, MS 23-2

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: J. J. Adamczyk, MS 5-9

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: R. D. Hager, MS 86-7

National Aeronautics & Space Administration Washington, DC 20546 Attn: NHS-22/Library

National Aeronautics & Space Administration Washington, DC 20546 Attn: RTM-6/S. L. Venneri

NASA Ames Research Center Moffett Field, CA 94035 Attn: Library, MS 202-3

NASA Goddard Space Flight Center Greenbelt, MD 20771 Attn: 252/Library

NASA John F. Kennedy Space Center Kennedy Space Center, FL 32931 Attn: Library, AD-CSO-1

NASA Langley Research Center Hampton, VA 23665 Attn: Library, MS 185

NASA Langley Research Center Hampton, VA 23665 Attn: M. F. Card, MS 244

NASA Langley Research Center Hampton, VA 23665 Attn: W. J. Strout NASA Lyndon B. Johnson Space Center Houston, TX 77001 Attn: JM6/Library

NASA George C. Marshall Space Flight Center Marshall Space Flt. Center, AL 35812 Attn: AS61/Library

NASA George C. Marshall Space Flight Center Marshall Space Flt. Center, AL 35812 Attn: R. S. Ryan

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103 Attn: Library

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103 Attn: B. Wada

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103 Attn: R. Levi

NASA S&T Information Facility P. O. Box 8757 Baltimore-Washington Int. Airport, MD 21240 Attn: Acquisition Dept. (10 copies)

Air Force Aeronautical Propulsion Laboratory Wright-Patterson AFB, OH 45433 Attn: Z. Gershon

Air Force Aeronautical Propulsion Laboratory Wright-Patterson AFB, OH 45433 Attn: N. Khot

Air Force Systems Command Aeronautical Systems Division Wright-Patterson AFB, OH 45433 Attn: Library

Air Force Systems Command Aeronautical Systems Division Wright-Patterson AFB, OH 45433 Attn: C. W. Cowie

Air Force Systems Command Aeronautical Systems Division Wright-Patterson AFB, OH 45433 Attn: J. McBane

Aerospace Corporation 1400 E. El Segundo Blvd. Los Angeles, CA 90045 Attn: Library-Documents

Air Force Office of Sci. Research Washington, DC 20333 Attn: A. K. Amos

Department of the Army U. S. Army Material Command Washington, DC 20315 Attn: AMCRD-RC

U. S. Army Ballistics Research Lab. Aberdeen Proving Ground, MD 21005 Attn: Dr. Donald F. Haskell MS DRXBR-BM

Mechanics Research Laboratory Army Materials & Mech. Research Ctr. Watertown, MA 02172 Attn: Dr. Donald W. Oplinger U. S. Army Missile Command Redstone Scientific Info. Center Redstone Arsenal, AL 35808 Attn: Document Section

AFFDL/FBE Wright-Patterson AFB, OH 45433 Attn: D. W. Smith

Commanding Officer U. S. Army Research Office (Durham) Box CM, Duke Station Durham, NC 27706 Attn: Library

Bureau of Naval Weapons Department of the Navy Washington, DC 20360 Attn: RRRE-6

Commander, U. S. Naval Ord. Lab. White Oak Silver Springs, MD 20910 Attn: Library

Director, Code 6180 U. S. Naval Research Laboratory Washington, DC 20390 Attn: Library

Denver Federal Center U. S. Bureau of Reclamation P. O. Box 25007 Denver, CO 80225 Attn: P. M. Lorenz

Naval Air Propulsion Test Center Aeronautical Engine Department Trenton, NJ 08628 Attn: Mr. James Salvino Naval Air Propulsion Test Center Aeronautical Engine Department Trenton, NJ 08628 Attn: Mr. Robert DeLucia

Federal Aviation Administration Code ANE-214, Propulsion Section 12 New England Executive Park Burlington, MA 01803 Attn: Mr. Robert Berman

Federal Aviation Administration DOT Office of Aviation Safety, FOB 10A 800 Independence Ave., SW Washington, DC 20591 Attn: Mr. John H. Enders

FAA, ARD-520 2100 Second Street, SW Washington, DC 20591 Attn: Commander John J. Shea

National Transportation Safety Board 800 Independence Avenue, SW Washington, DC 20594 Attn: Mr. Edward P. Wizniak, MS TE-20

Arizona State University Dept. of Aerospace Engrg. & Engrg. Sci. Tempe, AZ 85281 Attn: H. D. Nelson

Rockwell International Corporation Los Angeles International Airport Los Angeles, CA 90009 Attn: Mr. Joseph Gausselin D422/402 AB71

Rensselaer Polytechnic Institute Troy, NY 12181 Attn: R. Loewy Cleveland State University Dept. of Civil Engineering Cleveland, OH 44115 Attn: P. Bellini

Massachusetts Institute of Technology Cambridge, MA 02139 Attn: K. Bathe

Massachusetts Institute of Technology Cambridge, MA 02139 Attn: T. H. Pian

Massachusetts Institute of Technology Cambridge, MA 02139 Attn: J. Mar

Massachusetts Institute of Technology Cambridge, MA 02139 Attn: E. A. Witme

Massachusetts Institute of Technology Cambridge, MA 02139 Attn: J. Dugundji

Univ. of Illinois at Chicago Center Department of Materials Engineering Box 4348 Chicago, IL 60680 Attn: Dr. Robert L. Spilker

Detroit Diesel Allison General Motors Corporation Speed Code T3, Box 894 Indianapolis, IN 46206 Attn: Mr. William Springer

General Motors Corporation Warren, MI 48090 Attn: R. J. Trippet

AVCO Lycoming Division 550 South Main Street Stratford, CT 06497 Attn: Mr. Herbert Kaehler

Beech Aircraft Corp., Plant 1 Wichita, KA 67201 Attn: Mr. M. K. O'Connor

Bell Aerospace P. O. Box 1 Buffalo, NY 14240 Attn: R. A. Gellatly

Boeing Aerospace Company Impact Mechanics Lab P. O. Box 3999 Seattle, WA 98124 Attn: Dr. R. J. Bristow

Boeing Commercial Airplane Company P. O. Box 3707 Seattle, WA 98124 Attn: Dr. Ralph B. McCormick

Boeing Commercial Airplane Company P. O. Box 3707 Seattle, WA 98124 Attn: Mr. David T. Powell, MS 73-01

Boeing Commercial Airplane Company P. O. Box 3707 Seattle, WA 98124 Attn: Dr. John H. Gerstle

Boeing Company Wichita, KA 67201 Attn: Library McDonnell Douglas Aircraft Corporation P. O. Box 516 Lambert Field, MO 63166 Attn: Library

Douglas Aircraft Company 3855 Lakewood Blvd. Long Beach, CA 90846 Attn: Mr. M. A. O'Connor, Jr. MS 36-41

Garrett AiResearch Manufacturing Co. 111 S. 34th Street, P. O. Box 5217 Phoenix, AZ 85010 Attn: L. A. Matsch

Mr. R. Stockton Garrett Turbine Engine Company Rotor Integrity, 503-42 Mechanical Component Design 111 S. 34th Street, P. O. Box 5217 Phoenix, AZ 85010

General Dynamics P. O. Box 748 Fort Worth, TX 76101 Attn: Library

General Dynamics/Convair Aerospace P. O. Box 1128 San Diego, CA 92112 Attn: Library

General Electric Company Interstate 75, Bldg. 500 Cincinnati, OH 45215 Attn: Dr. L. Beitch, MS K221

General Electric Company Interstate 75, Bldg. 500 Cincinnati, OH 45215 Attn: Dr. M. Roberts, MS K221

General Electric Company Interstate 75, Bldg. 500 Cincinnati, OH 45215 Attn: Dr. V. Gallardo, MS K221

103

General Electric Company Aircraft Engine Group Lynn, MA 01902 Attn: Mr. Herbert Garten

Grumman Aircraft Engrg. Corp. Bethpage, Long Island, NY 11714 Attn: Library

Grumman Aircraft Engrg. Corp. Bethpage, Long Island, NY 11714 Attn: H. A. Armen

IIT Research Institute Technology Center Chicago, IL 60616 Attn: Library

Lockheed California Company P. O. Box 551 Dept. 73-31, Bldg. 90, PL. A-1 Burbank, CA 91520 Attn: Mr. D. T. Pland

Lockheed California Company P. O. Box 551 Dept. 73-71, Bldg. 63, PL. A-1 Burbank, CA 91520 Attn: Mr. Jack E. Wignot

Northern Space Laboratories 3401 West Broadway Hawthorne, CA 90250 Attn: Library

North American Rockwell, Inc. Rocketdyne Division 6633 Canoga Avenue Canoga Park, CA 91304 Attn: Library, Dept. 596-306

North American Rockwell, Inc. Rocketdyne Division 6633 Canoga Avenue Canoga Park, CA 91304 Attn: J. F. Newell North American Rockwell, Inc. Space & Information Systems Div. 12214 Lakewood Blvd. Downey, CA 90241 Attn: Library Norton Company Industrial Ceramics Div. Armore & Spectramic Products Worcester, MA 01606 Attn: Mr. George E. Buron Norton Company 1 New Bond Street Industrial Ceramics Division Worcester, MA 01606 Attn: Mr. Paul B. Gardner Aeronautical Research Association of Princeton, Inc. P. O. Box 2229 Princeton, NJ 08540 Attn: Dr. Thomas McDonough Republic Aviation Fairchild Hiller Corporation Farmington, Long Island, NY Attn: Library Rohr Industries Foot of H Street Chula Vista, CA 92010 Attn: Mr. John Meaney TWA, Inc. Kansas City International Airport

P. O. Box 20126

Kansas City, MO 64195

Attn: Mr. John J. Morelli

.5

Stevens Institute of Technology Castle Point Station Hoboken, NJ 07030 Attn: F. Sisto

Stevens Institute of Technology Castle Point Station Hoboken, NJ 07030 Attn: A. T. Chang

Mechanical Technologies Inc. Latham, NY Attn: M. S. Darlow

Shaker Research Corporation Northway 10, Executive Park Ballston Lake, NY 12019 Attn: L. Lagace

Lockheed Palo Alto Research Labs Palo Alto, CA 94304 Attn: B. O. Almroth

Lockheed Missiles and Space Company Huntsville Research & Engrg. Center P. O. Box 1103 Huntsville, AL 18908 Attn: H. B. Shirley

MacNeal-Schwendler Corporation 7442 North Figueroa Street Los Angeles, CA 90041 Attn: R. H. MacNeal

MARC Analysis Research Corporation 260 Sheridan Avenue, Suite 314 Palo Alto, CA 94306 Attn: J. Nagtegaal Ohio State University Columbus, OH 43210 Attn: A. W. Leissa

University of California Mechanics & Structures Department School of Engrg. & Applied Sciences Los Angeles, CA 90024 Attn: L. A. Schmit, Jr.

Columbia University New York, NY 10027 Attn: R. Vaicaitis

Georgia Institute of Technology School of Civil Engineering Atlanta, GA 30332 Attn: S. N. Atluri

Georgia Institute of Technology 225 North Avenue Atlanta, GA 30332 Attn: G. J. Simitsis

Lawrence Livermore Laboratory P. O. Box 808, L-421 Livermore, CA 94550 Attn: Library

Lehigh University Institute of Fracture and Solid Mechanics Bethlehem, PA 18015 Attn: G. T. McAllister

Materials Science Corporation 1777 Walton Road Blue Bell, PA 19422 Attn: W. B. Rosen

National Bureau of Standards Engineering Mechanics Section Washington, DC 20234 Attn: R. Mitchell

Purdue University School of Aeronautics & Astronautics West Lafayette, IN 47907 Attn: C. T. Sun

University of Dayton Research Institute Dayton, OH 45409 Attn: F. K. Bogner

Texas A&M University Aerospace Engineering Department College Station, TX 77843 Attn: W. E. Haisler

Texas A&M University Aerospace Engineering Department College Station, TX 77843 Attn: J. M. Vance

V. P. I. and State University Department of Engineering Mechanics Blacksburg, VA 24061 Attn: R. H. Heller

United Technologies Corporation Government Products Division P. O. Box B2691 West Palm Beach, FL 33402 Attn: Library, 706-50

United Technologies Corporation Pratt & Whitney Engineering Division-North 400 Main Street East Hartford, CT 06108 Attn: K. W. Brown, 163-10 University of Arizona College of Engineering Tucson, AZ 87521 Attn: H. Kamel

University of Arizona College of Engineering Tucson, AZ 87521 Attn: J. C. Heinrich

University of California Department of Civil Engineering Berkeley, CA 94720 Attn: E. Wilson

University of Kansas School of Engineering Lawrence, KS 66045 Attn: R. H. Dodds

University of Virginia School of Engrg. & Applied Science Charlottesville, VA 22901 Attn: E. J. Gunter

Northwestern University Department of Civil Engineering Evanston, IL Attn: T. Belytschko

United Technologies Corporation Government Products Division P. O. Box B2691 West Palm Beach, FL 33402 Attn: R. A. Marmol, 713-39

United Technologies Corporation Pratt & Whitney Engineering Division-North 400 Main Street East Hartford, CT 06108 Attn: Library, 169-31

United Technologies Corporation Pratt & Whitney Engineering Division-North 400 Main Street East Hartford, CT 06108 Attn: R. Liss, 163-09

United Technologies Corporation Hamilton Standard Division Windsor Locks, CT 06096 Attn: Dr. G. P. Towsend

United Technologies Corporation United Technologies Research Center East Hartford, CT 06108 Attn: Dr. A. Dennis United Technologies Corporation Pratt & Whitney Engineering Division-North 400 Main Street East Hartford, CT 06108 Attn: D. H. Hibner, 163-09

United Technologies Corporation Hamilton Standard Division Windsor Locks, CT 06096 Attn: Dr. R. A. Cornell