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ABSTRACT

The microwave dielectricbehavior ofvegetationwas examined through the de-

velopment of theoreticalmodels involvingdielectricdispersion by both _bound"

and "free_ water and supported by extensivedielectricmeasurements conducted

over a wide range of conditions. The experimental data were acquired using an

open-ended coaxialprobe that was developed forsensing the dielectricconstant of

thin layersof materials,such as leaves,from measurements of the complex reflec-

tioncoemcient using a network analyzer. The probe system was successfullyused

to record the spectralvariationof the dielectricconstant over a wide frequency

range extending from 0.5 GHz to 20.4 GHz at numerous temperatures between

-40°C and +40°C. The vegetation samples - which included corn leaves and

stalks,tree trunks, branches and needles,and other plant material - were mea-

sured over a wide range of moisture conditions (where possible). To model the

dielectricspectrum of the bound water component of the water included invege-

tation,dielectricmeasurements were made forseveralsucrose-water solutionsas

analogs forthe situationin vegetation. The resultswere used inconjunction with

the experimental data for leavesto determine some of the constant coefficientsin

the theoreticalmodels. Two models, both of which provide good fitto the data,

are proposed. The firstmodel treatsthe water in vegetation as two independent

components, a bound water component with a relaxationfrequency of 0.178 GHz

and a freewater component with a relaxationfrequency of 18 GHz at 22°C. The

second model treatsallthe water as a singlemixture with a relaxation frequency

that increaseswith moisture content from about 0 for dry vegetation to 18 GHz

for vegetation with very high moisture contents.
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Chapter 1

Introduction

Over the past two decades, spaceborne microwave sensors have been play-

ing an increasingly important role in the study of the earth's surface and atmo-

sphere. They can provide near-global coverage of the earth's surface unhampered

by cloud cover and with independence of sun angle. Furthermore, the ability of

microwave energy to penetrate through dry media has proved useful for study-

ing subsurface terrain features (Carver et al, 1985). In recent years, the field of

microwave remote sensing has made significant advances along several fronts. A

prime example of a major technological development is the recent realization of

digital techniques that can provide real-time processing of SAR images. Also,

improved scattering and emission models are now available to relate the backscat-

tering coefficient a ° and emissivity • of a distributed target to its dielectric and

geometric properties.

Since 1962, numerous microwave radiometers have been flown on earth-orbiting

satellites; some examples of these space missions are given in Table 1.1(Ulaby et



al, 1982):

Year 1962 1972 1973 1978

Spacecaft Mariner 2 Nimbus 5 Skylab Nimbus 7

Instrument acronym S193 SMMR

Frequency(GHz) 15.8,22.2 19.3 13.9 6.6,10.7,18,21,37

Type Of Scanning Mechanical Electrical Mechanical Mechanical

Swath-Width (Km) Planetary 3000 180 800

Resolution (Kin) 1300 25 16 18 x 27

Table 1.1 Examples of space missions.

Also, several SAR systems have been flown in space including Seasat(1978),

SIR-A (1981), and SIR-B (1984).Many experiments have been conducted to relate

a ° and e to target characteristics at various frequencies and polarizations. Some

of these experiments have utilized truck-mounted radar systems to observe the

backscattering and emission from natural targets as a function of frequency, look

angle, and polarization (Ulaby et al, 1982).

The dielectric properties of natural targets play a key role in remote sens-

ing. Its importance stems from the fact that it determines, besides the sensor

parameters and the target geometrical features, the backscattering and natural

emission from a distributed target. Also, the dielectric properties of a target

relate its physical properties (e.g. its water content or temperature) to its a °

and e. This feature is very important in remote sensing science because it is a



criticalingredient of the inverse scattering process. Yet, understanding of the

dielectricbehavior of natural materials remains superficialat the present time

and this isparticularlytrue in the case of vegetation. Only a few experiments

have been conducted to date to examine the dielectricproperties of vegetation

material. Reviewing the literaturerequires a minor effortbecause only a few

measurements and modelling attempts (Carlson, 1967; Broadhurst, 1971; Tan,

1981; Ulaby and Jedlicka,1984) have been conducted so far.Moreover, these at-

tempts were limited to narrow ranges ofthe major parameters ofinterest,namely

plant type and parts, frequency band, moisture content, effectivesalinity,and

temperature. The following table provides a comparison between the range of

parameters already tested and those desiredfrom the standpoint of natural vari-

ability-as far as the physical parameters are concerned- and in terms of the

frequency range of interestto the remote sensing community:

Measured Parameter Available Data Desired Range

Frequency (GHz) 1-2,3.5-6.5,7.5-8.5 .1-20

Moisture Content (percent gravimetric) 0-60 0-90

Temperature (°C) 20 to 25 -40 to +40

Effective NaC1 (Parts Per Thousands) 11 4 to 40

3



Table 1.2 Available and desired ranges of parameters.

Another shortcoming of the studies already conducted on thissubject isthe

lack of a comprehensive model that relatesdifferentplant physical parameters

to the dielectricproperties using as a few free parameters as possible.This lack

of knowledge motivated the current research to study these missing pieces and

to try to develop a universal model for vegetation materials. The parameters

of interestare frequency (.1 to 20 GHz), temperature (-40 to +40 0 C), water

content (0 to 90 % gravimetric), vegetation density (by testing differentplants

and paxts),and salinity(4 to 40 parts per thousand). An additional major goal

isto establishthe roleof bound water in the dielectricprocess.

The goals of thisstudy can be summed up as follows:

I. To develop a dielectricmeasurement system suitablefor dielectricmeasure-

ments of plant parts. The system should be fast,reliable,accurate, operate

over a broad frequency range, and suitablefor temperature measurements.

2. To generate a dielectric constant database for a variety of plant types and

parta as a function of:

(a) moisture level,

(b) electromagnetic frequency,

4



(c) vegetation bulk density,

(d) effective NaC1 salinity of included liquids,

(e) temperature, and

(f) part location relative to root system.

3. To develop an understanding of the different mechanisms that contribute

to the overall dielectric behavior of vegetation materials, and to establish,

if possible, the roles of salinity and bound water.

4. To develop a general physical mixing model for plant materials that incor-

porates all of the previously mentioned parameters. Empirical and semi-

empirical models will be developed as well.



Chapter 2

Background

A vegetation material, such as a leaf, can be considered a heterogeneous

vegetation-water mixture consisting of four components: (1) free water, (2)

bound water, (3) bulk vegetation matter, and (4)air. Since plants are, in general,

found in nature with a very high water content, their dielectric properties are

mainly determined by the properties of included water. It was found (Ulaby

and Jedlicka, 1984) however, that these fluids have a finite salinity equivalent to

an NaC1 salinity of about 10 ppt 1. Therefore, the first section of this chapter

will provide the background material for the dielectric properties of liquid water

as a function of various physical parameters. It is of great importance to note

the similarity between the general dielectric behavior of liquid water and that of

wet plants. Any deviation however, should be studied and properly attributed

to other causes. Some of these causes may include the effects of bound water

which differs substantially from free water. Another important cause may be

the various structural differences within a plant part which may affect the de-

1Parts Per Thousand
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polarization shape factors (DeLoor, 1968;DeLoor, 1982), which , in turn, may

have a significant influence upon the dielectric constant of the vegetation-water

mixture. This topic is examined in section 2.2. Next, in section 2.3, a short

review is presented of the general principles of plant physiology as they relate to

the study of the dielectric properties of vegetation material. Finally, in section

2.4, a brief discussion of previous studies is presented.

2.1 Dielectric Properties Of Liquid Water

The dielectric properties of water have been extensively studied, and are quite

well understood with regard to the dependence on salinity, frequency, and tem-

perature. A complete analysis is presented in Hasted (Hasted, 1973). Also, a

comprehensive summary of the dielectric properties of natural targets, including

water, is provided by Ulaby et al (Ulaby et al, 1986). Since the dielectric proper-

ties of liquid water are based on the well known Debye equation (Debye, 1912),

it will prove useful to provide a brief background of the Debye equation and the

associated relaxation process.

2.1.1 What Is A Relaxation Process

This section is intended to present a brief description of the mechanism by

which water molecules exhibit a spectral absorption line at microwave frequen-

cies. For a complete analysis the reader is referred to the classical book of Debye

(Debye, 1912), or those by Hasted (Hasted, 1973) and Pethig (Pethig, 1979).



Polar Molecules

The permittivity of a material may be regardedasthe proportionality factor

betweenelectric chargeand electric field intensity. Also, it reflects the extent to

which a localized charge distribution can be distorted through polarization by

an external electric field. The polarizability, a, is defined as the dipole moment

induced by a unit electric field and is given by

at = ae -_-aa -t- ao (2.1)

where at is the total polarizability, a_ is the electric polarizability (due to dis-

placement of the electron cloud relative to the nuclei), a_ is the atomic polariz-

ability (due to displacement of the atomic nuclei relative to one another), and

ao is the orientational polarizability (due to a permanent electric dipole mo-

ment). Thus, a0 only exists in polar materials, e.g. water, and the higher the

polarizability of a material, the higher its static dielectric constant. For non-polar

materials, the polarizability arises from two effects, namely electronic and atomic

polarization. Since the dispersion due to the fall-off of the atomic polarization,

aa, occurs at frequencies comparable with the natural frequencies of vibrations

of the atoms in a molecule (i.e. in the infrared spectrum around 1014 Hz), and

that for electronic polarization, ae, occurs at still higher frequencies correspond-

ing to electronic transitions between different energy levels in the atom (visible,

UV, and X-ray frequencies), the dielectric properties of non-polar materials are

constant in the microwave band and do not show any temperature dependence

either.



Polar molecules, although electrically neutral, have a charge distribution such

that the centers of positive and negative charge are not coincidental. These

molecules are termed polar, and were found to have a high static dielectric con-

stant (e.g., es of water is about 80.). The slowest polarization mechanism is often

that of dipolar reorientation. The dipole moments are just not able to orient fast

enough to keep in alignment with the applied electric field and the total polar-

izability falls from ctt to (at - cto). This fall in polarizability, with its related

reduction in dielectric constant (e.g., Ee drops roughly from 80 to 4.5 for water),

and the occurence of energy absorption is referred to as dielectric relaxation or

dispersion. It is worth noting here that the dispertion due to ao is completely

different from that due to a_ or ae. The former is a relaxation dispersion while

the later is a resonance dispersion 2

Debye's Equation

The total dipole moment of molecules in a polar material represents the degree

of polarization aquired after the application of an external electric field

= atE,1 (2.2)

where fit is the dipole momont and E1 is the local electric field. This equation

may be written in the form

ff't = _ + aE1 (2.3)

2e.g. relaxation dispersion has the broadest spectrum known in physics which is approximately
1.4 decades wide.



wherep is the permanent dipole moment and a -- a_ + a,.

Since p is a permanent moment, the application of an electric field will gen-

erate a torque p x _7 tending to align the molecules with the field. Obviously,

this orienting tendency is opposed by thermal agitation. The potential energy of

a dipole moment p in a field E1 is given by

U = -_E,1 = -pEx cos 0 (2.4)

where 8 is the angle between p and/_x. According to the Boltzmann distribution

law, the relative probability of finding a dipole oriented in an element of solid

angle dO is proportional to exp(-U/KT) and the thermal average of cos0 can

be shown to be (Pethig, 1979)

< cos 0 >= coth x - -1 (2.5)
X

where x = K_r. It was shown, for Ex < 105v/m, that

pEx
< cos 0 >_- 3K-'-'T (2.6)

and that the average moment per dipole in the direction of the applied field, ffd,

is given by

ffd =/_ < cos 0 >= 3KT" (2.7)

Hence, the total polarizability is

at = 3K---T + r,. + a.. (2.8)

We must keep in mind, however, that equation (2.8) is only valid for small

values of electric field (El < lOSv/m); if the fields are higher than that, a more

complicated expression is required (Hasted, 1973).
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One of the most difficult problems in dielectric theory is to relate the local

field (acting on a molecular dipole), to the externally applied field (macroscopic

field). Many researchers have tried to relate /_1 to /_ and their results were

not generally satisfactory (e.g. the Mossotti-Clausius-Lorentz formulation). To

derive a mathematical model for the orientational relaxation process, we shall

assume that the polarization, P is given by

P = PI + P2 = XIE + P2 (2.9)

where P1 is the polarization due to atomic and molecular displacements (it re-

sponds instantly to E, at least at microwave frequencies), P2 is the polarization

due to dipolar reorientation (it lags behind E at microwave frequencies), and X1

is the dielectric susceptibility. It can be shown that (Pethig, 1979)

d-7-= (X,E- P2) (2.10)

where X2E is the final value of P2, and I"is the relaxation time constant. Solving

equation (2.10) for E as a step function at t - 0 when P2 = 0 yields

P--- P1 + P2 = (Xi -t- X2(1- exp -t))E, (2.11)
r

which shows that the polarization reaches its final value exponentially with a

time constant r. A solution for (2.11) of an alternating field, E -- E0 exp(jwt),

can be shown to be (Pethig, 1979)

P = P_ + P2 = (Xx + X2 )E (2.12)
1 + j_r

11



which corresponds to a complex dielectric constant of the form

-- Eoo + e° - coo (2.13)
1 -I- jw_

where e is the macroscopic complex dielectric constant, coo is its high frequency

(or optical) limit, e, is its low frequency (or static) limit, and r is the relaxation

characteristic time. The complex dielectric constant can be expressed in real

numbers as

e = c'- e" (2.14)

and the real and imaginary parts can be expressed as

- (2.15)
E' = e_¢ + 1 + W2T 2

and

E" -- (_" -- Eoo)wr (2.16)
1 + w2_2

Equations (2.13) to (2.16) are commonly known as the Debye dispersion for-

mulas.

Some of the interesting features of the Debye relaxation process are:

1. Its transition extends roughly over four decades in frequency.

2. The width of the e" peak at the half-height value is roughly 1.4 decades in

frequency (very broad !).

3. It is possible to represent a relaxation graphically in two different ways:

12



(a) Two straight lines: If we plot the following relations e'_ --- (E, - E')//T

and _"/0J = (E_- Eoo)r, we will have two straight lines whereby r can be

estimated from their slopes (Pethig, 1970). This is a useful technique

if the measurement data are not enough to describe the relaxation

behavior (e.g. measurement frequency band is either lower or higher

than resonance frequency).

(b) Cole-Cole plot: In order to check for single or multiple relaxation

times, this plot can prove very useful. Using equations (2.15) and

(2.16), and by eliminating _r, we can show that

(_, _°-__oo),+ C_")2=(_° -4_oo)2 C2.17)

Equation (2.17) is an equation of a circle. A Cole-Cole plot can be

easily constructed by plotting _" versus E' with frequency as a variable

parameter.

4. Since relaxation time r represents a molecular process that usually follows

an Arrhenius temperature law, we can write

AH

r = A exp(-_-_) (2.18)

where AH is the Arrhenius activation enthalpy per mole, and A is a con-

stunt. From equation (2.18)

a(L_,-) AH
a(_---]-= -_- (2.19)
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so that a plot of In r against _ gives a straight line of slope _. A more

complete expression for (2.18) can be given as (Pethig, 1079).

h --AS AH

r = K--T exp(--_) exp(-_) (2.20)

where h is Planck's constant and AS is the molar entropy of activation.

A plot of In(rT) or In(_) against _ should be a straight line of negative

slope, from which AH can be calculated. It is generally the practice to plot

simply In(wo) against 1 and compare with other activation energy graphs

(because of the approximate nature of this treatment).

5. Deviation from an ideal Debye-type single relaxation could occur for many

molecular systems. This effect tends to smear the relaxation pattern (e"

curve becomes broader). Examples of this phenomena and their respective

representation can be given as follows:

(a) Cole-Cole equation

E,-E_ (2.21)
e=c_+ l+(jwr) _

where a represents the width of the symmetrical distribution of re-

laxation times. A graphical technique (using chords) was designed

(Hasted, 1973) to analyze data that has a symmetrical distribution of

relaxation times.

(b) Modified Cole-Cole equation

Eo -- coo (2.22)
C = Coo"+" 1 -k-jl-a(wr) 1-_

14



where j3 is a constant less than unity.

(c) Cole-Davidson equation

Es _ E_

c = e¢¢ + (1 + jwT) a" (2.23)

This equation corresponds to an asymmetrical distribution of relax-

ation times and gives rise to a skewed arc in d(d') diagram.

(d) In general, we can write

fo °° G(r)dr (2.24)e = _ + (Eo - E_) 1 +jwr

where G(r) represents a general distribution of relaxation times.

2.1.2 Pure Water

For pure water, it is assumed that the ionic conductivity is zero, which means

that there are no free ions to contribute to the total loss (especially at low

frequencies). The frequency dependence is given by the Debye equations ( 2.13)-

( 2.16):

_,° - E_oo (2.25)
_w = _w_ + l + jwrw

It was found experimentally that _,_oo, Ew,, and f_ (=l/2_rr, o) are functions of

temperature, especially Ew° and f_. Complete analysis and polynomial expres-

sions can be found in (Hasted, 1973; Stogryn, 1971; Klein & Swift, 1977; and

Ulaby et al, 1986).
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The importance of liquid water at microwave frequencies stems from the fact

that its relaxation frequency lies within this band. For example,

f_,(0°C) - 9GHz (2.26)

and

f_(20°C) = 17GHz

It was found that ewoo _- 4.9 by Lane and Saxton (1952).

(2.27)

Figure 2.1 illustrates

' and " for water at 20°C Curves for sea water (s ---the frequency behavior of Ew _w

30 ppt)are shown also for comparison purposes.

2.1.3 Saline Water

A saline solution is defined as a solution that contains free ions whether these

ions are of organic or non-organic nature. The salinity, s, of a solution is defined

as the total mass of dissolved solid salts in grams in one kilogram of solution.

An equivalent Debye-like equation could be used to represent saline solutions in

F,w = e._ + Esw. -- csw_ (2.28)
(_/__2

I -t- _I,.j

the following modified form

and

where the subscript sw refers to saline water, tri is the ionic conductivity in

Siemens�m, and eo is the free space dielectric constant (E0 = 8.854 × lO-12f/rn).

16
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Figure 2.1. Dielectric constant spectra for liquid water with salinity (in ppt)

as parameter at room temperature (20o(2). Calculated from [ Stogryn,

1971].
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Again, a_, Eo,_0, and fo,_O were found to be functions of salinity (in addition

to their temperature dependence). Complete expressions are given in (Stogryn,

1971 )and (Klein and Swift, 1977) in the form of polynomial fits. The equations

are repeated here because they will be used in future chapters:

_o_ = 4.9, (2.30)

e,,,,s(T, 0) = 87.74 - 4.0008T -+-9.398 x 10-4T 2 + 1.410 x 10-6T s, (2.31)

2_rr(T,0) = 1.1109 x 10-1°- 3.824 x 10-12T + 6.938 x I0-14T 2- 5.096 x 10-1eT s,

(2.32)

o... =..iT, s) = _... =.,..(25,s)e_pC-A_),

where A -- 25 - T and a is a function of T and S,

(2.33)

a = 2.033 x 10-2+1.266 x 10-44+2.464 x 10-6A2-S [1.849 x 10 -s-2.551 x 10-TA+2.551 x 10-

(2.34)

and

a,,,w,,,,(25,S) ----S[0.182521-1.46192 x 10-SSW2.09324x 10-5S2-1.28205 x 10-'Sa],

(2.35)
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in the range 0 _ 5 _ 40.

2.1.4 Bound Water

The term bound water is always encountered in the literature of plant phys-

iology, especially that dealing with cold and drought resistance (Kramer, 1955).

The concept of bound water is founded on the observation that a part of the wa-

ter in both living and nonliving materials behaves in a different manner from free

water. While free water freezes at 0°C, acts as a solvent, and is usually available

for physiological processes, bound water does not. It remains unfrozen at some

low temperature, usually -20°C or -25°C, it is also known not to function as a

solvent, and in general it seems to be unavailable for physiological processes. It

should be understood here that there is no sharp distinction between unbound

and bound water ; rather, there exists a gradual transition between free water

and completely bound water. Bound water was found to resist oven drying even

at 100°C for a long period of time. Obviously, water bound that firmly plays

an important role as a cell constituent in the tolerance of drying of some seeds,

spores, microorganisms, and a few higher plants (Kramer, 1983).

Much of the bound water is held on the surfaces of hydrophilic colloids s, but

some is associated with hydrated ions and molecules. Kramer (Kramer, 1955)

wrote a thorough review on bound water and described 14 different methods for

measuring it:

SA colloid is a phase dispersed to such a degree that the surface forces become an important
factor in determining its properties
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1. The Cryoscopic Method, based on the assumption that bound water does

not act as a solvent.

o The l_'latometric Method, using the fact that ice occupies more volume

than water and that bound water does not freeze at normal freezing tem-

peratures.

3. The Calorimetric Method, since one gram of free water ice absorbs about

79.75 calories when it thaws, it is possible to estimate the amount of total

free water in plant tissues using a calorimeter.

4. The Direct Pressure Method, differences in the amount of water expressed

from various materials under a given pressure can indicate differences in

bound water contents.

5. Refract,metric Method, using a refract.meter (Dumanskii, 1933; and Simi-

nova, 1939).

6. Polarimetric Method, (Koets, 1931)

. The X-ray Method, the presence of shells of oriented water molecules should

give X-ray patterns similar to those produced by ice, this method is useful

qualitatively and not quantitatively.

8. Infrared Absorption, Infrared transmission curve for bound water was found

to be different from that of free water.
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9. Heat Of Welting, it is known that when colloids imbibe water, heat is

released because water molecules loose part of their kinetic energy when

they are adsorbed on the interfaces.

10. Specific Heat Method, it was observed that bound water has an abnormally

low specific heat.

11. Drying Method, since bound water is so tightly held by colloids, it remains

in samples dried at temperatures as high as 200°C.

12. Osmotic Pressure Method (Levitt and Scarth, 1936).

13. LNeleetrie Constant Method, since,in general, the dielectricconstant of

free water is much higher than that of bound water (Marinsco 1931), it

ispossible to estimate bound water content using dielectricmeasurements

(as willbe discussed in Chapter 5).

14. Vapor-pressure Method, adding a nonelectrolyte to free water lowers its

vapor pressure. If adding sucrose, e.g., results in an abnormally large de-

crease in vapor pressure, this indicates that a certain amount of the water

is bound.

Although there are many methods to measure the amount of bound water

in plant tissues,only a few of them proved to be accurate enough to produce

meaningfull results.The calorimetric,dilatometric,and cryoscopic methods are

used most frequently.According to Kramer (Kramer, 1955), the amount ofbound
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water found in plant tissues varies with the species tested, the environment in

which the plants are grown, and the method used to measure it. There is more

bound water in woody plants than there is in herbacious plants. Also some

research (Levitt, 1980) indicates that plants have more bound water in the winter

than in the summer and more in plants from dry habitats than in those from

moist habitats. As a final remark, bound water exists in general in cell walls

where it can scarcely affect the protoplasm, and it is held so firmly that it can

not act as a solvent or take part in physiological processes. Hence, bound water

may have some importance in seeds, spores, and other air-dry plant structure,

but it probably is of little significance in growing plants.

The last remark underscores the bound water importance in physiological

processes; however, its importance in determining the dielectric properties of

vegetation materials is significant, especially at microwave frequencies. Many

researchers claimed to observe a relaxation frequency for bound water similar

to that of free water, except it takes place at frequencies well below that of free

water (e.g. Hoekstra and Doyle, 1971). A possible peak of power absorption takes

place around 500- 1500 MHz and was attributed to bound-water relaxation.

There are two factors, however, that hold back a proper characterization of this

relaxation:

1. Ionic Conductivity dominates losses at and below 1 GHz and tends to mask

the effect of bound water. It would be useful to test a plant tissue that has

very low values of salinity, if such a plant really exists.
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2. Small Volume Fractions of bound water pose another serious problem, espe-

cially for fresh plants, where the free water volume is the largest component.

If we attempt to examine a dried plant part that has a low moisture level,

the increase in salinity would tend to counteract the relative increase in

the volume ratio of bound water to free water and hence ionic conductivity

would still be dominant.

In Chapter 5, an attempt was made to isolate an appreciable amount of

bound water that has no free ions and hence, no conductivity losses. This water

was bound on the surfaces of sugar molecules (e.g., sucrose and dextrose) and

was tested over the frequency range from .2-20 GHz. The observed relaxation

frequency was found to be in agreement with previous reports which place it at

around 1 GHz. A complete description and analysis of the experiment will be

given in Chapter 5.

In Chapter 6, however, a conclusion was reached that the nature of bound

water is subjective and it depends entirely on how we look at it. Two approachs

were used: (i) the dual relaxation spectrum (refer to Sec. 6.3.1 to 6.3.4) and (ii)

the single relaxation spectrum (refer to Sec. 6.3.5).

2.1.5 Temperature Dependence

As mentioned in Section 2.1.1 and 2.1.2, the dielectric behavior of liquid water

has a strong dependence on temperature above freezing. The dependence is even

more drastic below freezing, which is called the freezing point discontinuity ,
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where the magnitudes of the real and imaginary parts drop rather sharply 4. One

way to detect a relaxation behavior is to measure the dielectric constant of a

material as a function of temperature and observe the gradient of the imaginary

part. Three cases would arise:

aE_#
1. If _ is negative, the dominant loss mechanism is relaxation and the mea-

surement frequency is below the relaxation frequency (f _ f0).

2. If _ is l_sitiv¢, then either:

Ca) losses are completely or partially caused by a relaxation process and

in this case f _ f0,

(b) losses are completely or partially caused by conductivity, or

(c) both relaxation if > f0) and conductivity losses exist.

0c u
3. If _ is -- 0 then either:

Ca) the material islossless(e.g.dry),

(b) there are two differentmechanisms affectingthe losses,relaxation

(with f <z f0) and conductivity, and they are comparable in mag-

nitude, or

(c) a relaxation peak (f = f0) existsat that particular temperature.

As mentioned above, at the freezing point discontinuitythe dielectricprop-

ertiesof a sample drasticallychange because liquidwater (with,e.g.,e ---80- j4

4free water freezes at O°C ' while bound water freezes around (or even below) -25°C
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at 1 GHZ) changes into ice (whose e -_ 3.15- j0 at 1 GHz) which represents

big steps in both the real and imaginary parts. Bound water, however, freezes

at temperatures well below free water; it was reported in several papers (e.g.,

Hoekstra and Doyle, 1971) to have a freezing point between -20°C and -30°C.

This last observation could .prove useful in studying the bound water in plant

tissues by extending the temperature measurements down to -50°C. A complete

report of these measurements will be given in Chapter 5.

2.2 Dielectric Mixing Models

A vegetation part, such as a leaf, is considered to be a heterogeneous mix-

ture of free water, bound water, bulk vegetation material, and air. An average

dielectric constant can be measured for a particular heterogeneous mixture con-

sisting of two or more substances. This average quantity depends on the volume

fractions, the dielectric constants, the shape factors, and the orientation (relative

to the applied electric field) of each and every constituent in the mixture. The

continuous medium (or the host material) is usually taken to be the substance

with the largest volume fraction in the mixture. For a more complete review,

the reader is referred to (Ulaby et al, 1986). For the purpose of this study, only

randomly oriented and randomly distributed inclusions will be considered. In

the general development of most dielectric mixing models, it is assumed that

the inclusions are much smaller in size than the applied wavelength in order for

the equations to hold. These conditions are suitable assumptions for vegetation
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materials in most cases. However, a study of the effect of inclusions' orienta-

tions could be useful in future research, especially for parts that have an obvious

orientation pattern (e.g., a tree trunck). In the following three sections, a brief

discussion of the mixing models used in the course of this study is given. They

include theoretical models (DeLoor, 1968), semi-emperical models (Birchak et

al, 1974), and emperical models (Dobson et al, 1985).

2.2.1 DeLoor's Mixing Model

The mixing formula as proposed by Polder and Van Santan (Polder and Van

Santan, 1946) and DeLoor (DeLoor, 1956) for a host medium with dispersed

randomly-oriented and randomly-distributed inclusions is given by:

c,,_ = Eh + _ vi(Ei - _h) S 1 (2.36)
,=1 3 _ 1 + (_ - 1)Aj

j=l

where e,_ is the macroscopic dielectric constant of the mixture, (h is the host

or continuum dielectric constant, v_ and El are the volume filling factor and the

dielectric constant of the ith dispersed inclusion, respectively, (* is the effective

relative dielectric constant near an inclusion-host boundary, A_ are the depo-

larization factors along the main axes of the ellipsoidal inclusions, and n is the

number of different inclusions in the mixture.

factors is equal to

The sum of the depolarization

Y_ Aj ----1 (2.37)
j----1

These factors, known also as shape factors, are determined by the inclusion

shapes. Three special cases are considered as follows:
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1. Circular discs ; Aj = (0, O, 1) Equation (2.36) will reduce to the following

form

+. = +_+ _ _(+, - +,)(2+ ) (2.38)
i=1

2. Spheres ; Aj = (_, _, _)xx

•---., .n 3E*

c,,, = eh + _.., v+[ei - Eh) 2e, + Eli=1

3. Needles ; Aj ----(_, ½,0)

(2.39)

Equation

n Vl x 5E* -4- El

i=1

2.36 can not be used in its present form, since no information is

available on e*. However, after a thorough investigation of the available data, it

was found (DeLoor, 1956; DeLoor, 1968) that e*, in general, lies between e,,_ and

eh. An upper and a lower limit for _,n can be established by setting e* = e,,, and

e* = eh in (2.36), respectively. Moreover, when the depolarization factors are not

known, which is generally the case, it is still possible to estimate the limits of

e,,,. The limits in this latter case lie further apart than when the shape factors

are known. These limits are given by (DeLoor, 1968):

1. Upper Limit (circular discs; e* = e,.)

2

-- -- _b._"* 1 1 _=x vi(1 +,) (2.41)

2. Lower Limit (spheres ; e* = eh)

n

+., = +h+ 3_v+ Eh(e+- +,,)
i=1 (2Eh "k" Ei)

(2.42)
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where the variables used in ( 2.38)-(2.42) are as defined in connection with

(2.36). These limits axe of great help in studying the unknown shape factors for

any system by plotting the measured data along with the expected limits.

2.2.2 Seml-empirlcal Models

There are two semi-empirical models that have proved to be useful for mod-

eling vegetation material, namely, Birchak and the Debye-like models.

1. Birchack Model

e -- (_ e_v,) 1/a (2.43)
i=1

where a is the only free parameter. When ,v is equal to .5, the Birchak

model is called the refractive model.

2. Debye-like A_odel Since the dielectric properties of biological materials are

dominated by the dielectric properties of liquid water, a Debye-like model

would, in general, be the obvious choice for semi-empirical modeling. Of

course, a slight modification is necessary to this formulation in order to

include conductivity losses and a spread of relaxation times. The proposed

form of Debye's equation is as follows

2 (2.44)
1 + -_Z. _;e03y_,

where the variables axe as defined earlier and the subscript m indicates

the vegetation mixture, e,,_oo and e,_° could be evaluated for a particular
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mixture provided that we know the following:

(a) the volume fractions, v_, of all the constituents,

(b) eoo_ and _, of all the constituents, and

(c) the proper mixing formulas relating ems to esi of the constituents, and

similarly for Coo.

Since volume fractions can he determined from vegetation physical parameters,

5, and eoo_ and Eel are known, the only unknown is the proper mixing formulas.

It is possible, for convenience, to use Birchack model, which gives

N

and

_t

Em_ = _"_ a (2.45)
i=1

N

c,_s = _ r,e_.. (2.46)
i----1

The problem now is to determine a suitable value (or values) for ,_ to best fit

the measured data. Similarly, fm Can be selected by optimizing the model to fit

the data points, and the relaxation frequency of liquid water can be used as an

initial condition. The form of tTm is not known, since the effective NaCl salinity

changes as a function of moisture content. Hence, in general,

am = f(Mv) (2.47)

where M_ is the volumetric moisture of the material. Two possible representa-

tions for am may be proposed

6As will be discussed in chapter 6
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1. a,,_ = A - BM_, and

__ A
2. a,,_- _'i,

Obviously, the first form is more suitable since a,n remains finite even at Mu = 0.

For a vegetation mixture, the number of constituents can be two, three, or four

depending on the model used. Since the bulk vegetation material and air are

non-polar materials, they do not have any temperature sensitivity. The only

temperature-dependent constituents are the free and bound water.

2.2.3 Empirical Models

The most suitable and most commonly used empirical model for the dielectric

constant of vegetation materials is simply a polynomial function. Linear regres-

sion can be used to determine the unknown coefficients and an evaluation of

the fit is performed in terms of correlation and mean-squared errors. Individual

polynomials are generated for ee and e" as a function of Mu (volumetric moisture)

for a particular plant type, part, and at a given frequency and temperature. The

disadvantages of this approach are

1. there is no physical significance for the coefficients, and

2. the model is not easily extendable to other moisture, temperature, and/or

frequency conditions.

On the other hand, the major advantages are

• Simplicity, and
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• The ability to achieve almost a perfect fit to the data by properly choosing

the order of the polynomial.

2.3 Water in Plant Materials

Water is one of the most common and most important substances on the

earth's surface. It is the most significant single environmental factor that deter-

mines the kinds and amounts of vegetation cover on various parts of the globe.

2.3.1 Ecological and Physiological Importance of Water

It is almost a general rule that wherever water is abundant, vegetation cover

is lushy, and deserts are where water is scarce. The ecological importance of

water stems from its physiological importance. Every plant process is affected

directly or indirectly by the water supply. If the water supply is decreased,

plants will suffer loss of turgor and wilting, cessation of cell enlargement, closure

of stomata, reduction in photosynthesis, interference with many basic metabolic

processes, and continued dehydration will, eventually, cause death of most or-

ganisms (Kramer, 1983).

2.3.2 Uses of Water in Plants

According to Kramer, the function of water in plant materials may be listed

as follows:

I. Constituent: Fresh weight of most herbaceous plant parts is80-90% water,

and water constitutesover 50% of the fresh weight of woody plants. Some
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plant parts, e.g. seeds, can be dehydrated to the air-dry condition, or even

to the oven-dry condition without loss of viability, but a marked decrease

in physiological activity accompanies the loss of water.

2. Solvent: Gases, minerals, and other solutes can enter plant cells and move

from cell to cell and organ to organ through the continuous liquid phase

throughout the plant.

3. Reactant: Water is essential to many processes such as photosynthesis and

hydrolytic processes.

4. Maintenance of Turgidity: This is important for cell enlargement and

growth and for maintaining the form of herbaceous plants. It is also im-

portant for various plant structures (Kramer, 1983).

2.4 Previous Studies

Very few studies have been conducted to date with the goal of measuring

and modeling the microwave dielectric properties of green vegetation. Extensive

dielectric measurements have been conducted and reported for grains (Nelson,

1978) however. This short section reviews some of the reported data for green

vegetation, and provides brief discussions of the measurement systems used and

their reliability.
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2.4.1 Carlson (1967)

A cavity perturbation technique was employed to measure the relative di-

electric constant of green vegetation samples (grass, corn, spruce, and taxus) at

room temperature and at a single frequency of 8.5 GHz. The measurements were

made as a function of water content from freshly-cut samples to perfectly dry

ones. The relative dielectric constant was found to be roughly proportional to

the moisture content and can be modeled as

! H

(e'- je") = 1.5 + (E2 - j_)f (2.48)

for the samples of corn, grass, and taxus, where d -je" is the relative dielectric

constant of vegetation samples, t_-t-_:-"%,is the relative dielectric constant of water,

and f is the fractional amount of water in the sample. The major source of errors

in this experiment was due to the measurement uncertainty of the sample size.

2.4.2 Broadhurst (1970)

Broadhurst (1970) used a TEM coaxial waveguide with a specimen of the

material under test occupying some of the space between the coaxial conduc-

tors. His measurements were conducted at room temperature (23°C) on living

foliage, plant materials, and clay soil over a wide frequency band extending from

100 KHz to 4.2 GHz. In order to calibrate the system for accuracy, distilled

water was measured and compared to reported data. The results were within

10% accuracy for the real part, while sizeable errors were observed for the imag-

inary part. Also, a check on the precision of the leaf measurements was made
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by taking six separate samples from a leaf type and by measuring each sample

three different times (after each measurement the sample was removed from the

chamber and then repacked and measured). An analysis of variance was then

conducted on the data to ascertain the components of variance for instrumental

error and for variability between leaves. The scatter in the data due to the leaf

was, generally, greater than that due to instrumental errors. The scatter due to

the leaf was primarily due to measurement errors of leaf thickness, and secondar-

ily due to variations in leaf biological structure. The uncertainty in the thickness

measurements amounts to 5 - 10% and the overall uncertainty was below 20%.

Excessive scatter in the data above 1 GHz was caused by higher-order mode

propagation in the line.

2.4.3 Tan (1981)

Similar to Carlson's set-up, Tan used a cavity waveguide resonator at 9.5 GHz

to measure tropical vegetation samples (grass, casuarina, rubber leaf, rubber

wood) at room temperature. Measurements were made as a function of sample

water content. The overall accuracy of the system is estimated to be 10 - 15% for

both the real and imaginary parts of e. Extending Carlson's modeling approach,

Tan used six different mixing formulas to model his data. He concluded that the

best model that fits his data was the Polder and Van Santen model (1946) with

parameters e° --- e_ and Aj = (0, 0,1). In other words the water inclusions have

a circular disc shape within the vegetation host. Again, the main source of error

is due to thickness measurements of the plant samples.
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2.4.4 Ulaby and Jedlicka (1984)

These measurements (Ulaby and Jedlicka, 1984) were conducted using a

waveguide transmission technique in three different bands, namely, L-band (1.1-

1.9 GHz), C-band (3.5-6.5 GI-Iz), and X-band (7.6-8.4 GHz). Vegetation types

investigated included wheat, corn, and soybeans. Leaves, stalks, and corn heads

were measured as a function of their water content. Also, extracted fluids from

these parts were measured and compared to saline solutions. An accurate system-

atic procedure (McKinley, 1983) was developed to measure vegetation densities

as they change with volumetric moisture.

Uncertainties in the data were due to sample preparation and data-reduction

techniques rather than to variations in measurement system stability. In the

modeling efforts conducted, the vegetation medium was considered to be a four-

component mixture with the vegetation bulk material as the host and free water,

bound water, and air as the inclusions. Also, a three-phase mixture model was

attempted with dry vegetation as the host (bulk vegetation material and air)

and free water, and bound water as inclusions. The volume of bound water

and its dielectric properties were chosen arbitrarily to be 5_ and (3.15 -3"0),

respectively. The reason behind the latter assumption is the view of bound water

as a state where water molecules are so strongly bound to colloidal surfaces that

they assume the dielectric properties of ice. Another modeling approach was

adopted using a two-phase mixture model, in which the host was taken to be the

dry vegetation part (bulk vegetation and air) and the inclusions were taken to
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be liquid water with effective (or depressed ) dielectric properties.

2.4.5 summary

Table 2.1 shows a summary of the previous studies:
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Parameter

System

Frequency

Carlson,1967

Partially-filled

cavity

8.5 GHz

Broadhurst,1970

TEM Coaxial

Cell

100 KHz-

4.2 GHz

Tan,1981

Partially-filled

Cavity

9.5 GHz

Ulaby and

Jedlicka,1984

Waveguides,

Transmission

1.1-1.9 GHz

3.5-6.5 GHz

7.6-8.4 GHz

Moisture % 65 80 60 80

Temperature 230 C 23°C 21 ° C 23 °C

Accuracy E'_ 10-20 10 10-20 5

Accuracy E"% 10-20 10-100 10-20 5-37

Plants grass

corn

taxus

blue spruce

leaves

grass

casuarina

rubber

leaves

wood

bampoo

Tulip tree

leaves

branchs

Parts

corn

wheat

soybeans

leaves

stalks

fluids

Table 2.1: Comparison between previous microwave dielectric measurements

on vegetation material.
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From the brief discussion in the previous subsections, we can conclude the

following:

1. Only a few attempts have been made to date to study the microwave di-

electric properties of plants.

2. The available measurements were made in limited microwave frequency

bands.

3. None of these measurements covered temperature ranges beyond room tem-

peratures (20 - 25°C).

4. Attempts to model the dielectric behavior of vegetation-water mixtures

have been only marginally successful, at best.

These shortcomings motivated the development and use of a measurement tech-

nique that would operate over a wide frequency range, that is suitable for di-

electric measurements as a function of temperature, and that can measure the

dielectric constant accurately, rapidly, and non-destructively. This technique is

the subject of Chapter 4.
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Chapter 3

Dielectric Measurement

Systems-General

Many studies have been conducted in the past ('Con Hippel,1954) to examine

the dielectric properties of natural and artificial materials. However, very few

of these were concerned with vegetation materials. In the past three decades,

great improvements have been realized in terms of microwave measurement tech-

niques. The development of automatic network analyzers and sweep frequency

measurements has led to the development of better and faster dielectric mea-

surement techniques. This chapter will provide a review of microwave dielectric

measurement techniques and systems, with particular emphasis placed on those

that may be suitable for vegetation materials.

3.1 Transmission Techniques

The measured quantity in this case is the transmission coefficient (both am-

plitude and phase, T,,_ and _b,,0. The problem is to measure it accurately and then

use it to infer the dielectric constant of the unknown material. The most com-
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monly used trsnsmission systems are the waveguide and the free space systems

and these will be the subject of the next two sections.

3.1.1 Waveguide System

The block diagram shown in Fig. 3.1 represents a standard system used for

measuring the amplitude and phase of the TEt0 mode transmission coefficient.

The main part of the system is a network analyzer capable of comparing the

phase and amplitude of both arms, when the sample holder is empty, and again

when the sample holder is filled with the unknown material. If we assume that

the sample holder is of length L, we can write (Hallikainen et al, 1985).

T., = IT ,le = (1 - R2)e
1 - R2e -2"_L

(3.1)

where 7 - propagation constant of the dielectric-filled waveguide and 7 = a+jfl.

R -- the field reflection coefficient = _ where Z0 -= the characteristic
Z+Zo

impedance of the waveguides connected to the sample holder. Z and Z0 are

given by

Z = jw#......._o__ 27rT/o fi(1 + jo_/_) (3.2)
"/ _o a2 + f12 '

and

where w = 2_rf,

Zo = jw#o _ 2_rr/0 (3.3)
"_o ,_oflo

4O
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#o -----permeability of free space,

),o -- free space wavelength,

170 _ (_O/EO) 1/2, _ the intrinsic impedance of free space,

"yo= 3"_o = the propagation constant in the air-filled waveguide connected to

the sample holder.

flo and "7 are given by

2 [1 __°= Ao (3.4)

2¢r(A0_2

where Ac = a/2 isthe cutoffwavelength ofthe guide of width a (forTEIo mode).

From measurements of/T,_/ and @,_,itispossible to determine a and fl,from

which the realand imaginary parts of e may be determined:

d= t"_° _2rf2¢_ 2
"2¢" "Ac" -- (a2 --_2)], (3.6)

d'= (2_)2(2_/_), (3.7)

In practice,because of the nonlinear relationshipsbetween the measured quan-

titles/T,,_/and @,_ and the quantitiesa and fl,an iterativeprocedure Lsused

to solvefor a and ft.The detailsof the procedure are given in Hallikainen et al

(1985).
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3.1.2 Free-Space System

As shown in Fig. 3.2, the free-space transmission system is basically similar to

the waveguide system. The only difference is the utilization of two antennas and

a sample holder, in the form of a dielectric slab, instead of waveguide sections.

Consequently, the analysis is the same if we set 1/A_ = 0 in (3.4), (3.5), and

(3.6). Again, an iterative procedure is used to determine E.

3.2 Reflection Techniques

The problem here is to measure the reflection coefficient at the end of a trans-

mission line (both amplitude, IP-,I and phase, _,_) and to try to relate it to E of an

unknown medium. Reflection techniques have, in general, two major problems:

first, since the reflection coefficients for most natural materials are very close

to unity, great care has to be taken in measuring Ip_I, and second, the mathe-

matical expressions relating p,_ to E are usually derived for an infinite sample, a

condition that can not be satisfied in practice. In the next two subsections a brief

description will be given for two measurement systems based on the reflection

technique.

3.2.1 Slotted Line System

This system was used by Broadhurst, a_ discussed earlier in Section 2.5, and

it is shown schematically in Fig.3.3 (Broadhurst, 1970 ). The measurement of

dielectric constant can be related to the measurement of the admittance of a
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coaxial transmission line with a specimen of the material occupying some of the

space between the coaxial conductors (Broadhurst, 1970). The measurement of

the admittance of a coaxial line is equivalent to the measurement of reflection

coefficient at the same plane of reference.

The characteristic admittance _ of a section of the line filled with an unknown

material of permittivity E = g -j_" is given by (Kraus and Carver, 1973)

Y, - _ (3.s)
60l,_(a/b)

where a and b are the outer and inner radii of the line. Similarly, for an air-filled

coaxial line, the characteristic admittance and propagation factor are given by

1

Yo = 60 In(a/b)' (3.9)

And the propagation constants "7, and "70 are given by

and

.W%= :-_, (3.1o)
C

where c --speed of light - 1
_-_.

.tO

"_o= :- t_."J
C

In the following mathematical treatment, it will be assumed that the operat-

ing frequency is low enough for the line to propagate in the TEM mode only.
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The admittance YM at point M, referto Fig. 3.3,can be expressed in terms

of the admittence Yr.at point L, Yo, and "7oas follows:

YM = Yo Yr "4-Yotanh(_ol)
Yo + Yt.tanh('7ol)' (3.12)

where l is the length of line between M & L.

Since it is impossible to achieve an open circuit at the end of the line, an

extra length, /1, is determined where the actual open circuit is located. Using

equation (3.12) to transform the effective open circuit to point I,

Yz = YotanhTo(lt -/°) (3.13)

If we transform this admittance from point I to point L (through the sample),

we can show that

or

Yj + YJanh(%l,)
YL

Y'Yx + Y, tanh(%l.)'
(3.14)

Yotanh',/o(ll -/,) + Y, tanh(%l,)

Yr. = Y,y, + Yotanh%(ll- lo)tanh(%l,) (3.15)

Substituting Yc = YoV_ and ",/, = _/0V_ and simplifying we obtain

tanh[%(ll-/.)]+v_tanh(vff%l°)
Yr.= Y°I+ _.tanhbo(ll-t°)ltanh(v_ol.)

(3.16)
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Equation (3.16) relates a measureable quantity, the admittance Yr., to the un-

known dielectric constant of the sample c. The relationship, however, is not

simple and suitable approximations must be used. Broadhurst used frequencies

up to 4.2 GHz ()_ = 7.1era) and samples of thicknesses less than .04 cm. lz

was found experimentally to be about .3 cm. Hence the maximum values of the

above arguments can be shown to be less than .26. Using equation (3.16) and

the approximation tanh(u) _ u, leads to

yr. _ yo-YO(ll- l,) + _'yol,
1+ %_(tl- t,)t, (3.1_)

The resulting error is about 7 percent or less. Using the above argument, we

can also neglect the second term in the denominator, leading to

Yr.= Yo[_o(tl- t,) + ,rot,] (3.18)

Using equation 3.18, E can be calculated from the measured value of Yr.,

1 rYr. (3.19)

It should be noted here that equation (3.19) is only valid under the following

assumptions:

(i) Pure TEM propagation mode.
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(ii) _l. __ .25.

(iii) _(11 - lo) <_ .25.

Condition (ii) limits the maximum measureable sample thickness to .3 cm at

4 GHz. Broadhurst reported fc, the upper limit of frequencies that can be used

before higher order modes start to propagate, as

fo- 9.s/Iv (320)

This limit depends on the coaxial line dimensions as well as ( (as will be

shown in Chapter 4).

3.2.2 Probe System

Open-ended coaxial lines can be used successfully in measuring the permit-

tivity of unknown materials (Burdette et al, 1980; Athey et al, 1982; Stuchly

et al, 1982). A complete description and analysis of this system will be delayed

until the next chapter. However, a brief discussion of the theory of operation is

given here for the sake of completeness. Figure 3.4 shows a block diagram of the

measurement system. It is basically a standard reflection coefficient measure-

ment system with the probe tip acting as the termination load (either immersed

or in contact with the sample). The input reflection coefficient at the probe tip,

p, is given by

zL - Zo
P "- Zr. % Zo' (3.21)
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where Zo is the line impedance (50 fl usually) and ZL is the load impedance

given by (Deschamps, 1962; Burdette et al, 1980)

_/ _/o
(3.22)

where t/0 and t/ are the intrinsic impedances of free space and the measured

dielectric medium respectively, E0 and E are the complex dielectric constant of

free space and the medium under test respectively, and w is the angular frequency.

For a non-magnetic medium where/_ = _t0, ZL simplifies to

1

ZLCw,_)- "-_cZLCv/_W, Eo). (3.23)

If the probe equivalent circuit can be modelled analytically, the medium dielectric

constant can be retrieved from the measured reflection coefficient; sometimes an

iterative solution is required depending upon the complexity of the form of ZL.

It is possible, albeit difficult, to relate the measured reflection coefficient

directly (e.g., the Method of Moments, MOM)to the unknown _ (Gajda and

Stuchly, 1983). The analysis, e.g. MOM, and processing time would be enor-

mous using this approach. On the other hand, if we choose the frequency range

and the line dimensions such that the field distribution around the probe-tip

is dominantly capacitive we could develop a lumped-element equivalent circuit

which would facilitate the analysis and data precessing.

The equivalent circuit elements could be chosen on the basis of the line di-

mensions and the operating frequency. In this section only the low frequency
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equivalent circuit will be analyzed and the complete one will be discussed in the

following chapter.

The input impedance for the low frequency equivalent circuit is given by

ZL = 1/jw(C! + Co) in free space,

and ZL = 1/jw(C! + ego) in the medium, where, Cf is the fringing field

inside the teflon, and Co is the fringing field outside the teflon and inside the

medium. The reflection coefficient can then be expressed as

1 --jwZo(O! + (Co) (3.24)
P = 1 + jWZo(O! + COo)'

and, solving for e we get

l--p Of (3.25)
= ywZoOoO+ p)-

This equivalent circuit is only valid at frequencies where the line dimensions

are small compared to ,_; i.e., only the reactive field exists with no radiation.

G! and Go are not known and should be estimated using calibration against

a standard material such as distilled water. This technique is quite attractive

because e can be computed from p in a straightforward manner.
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3.3 Resonance Technique

In the following two sections a brief description will be given of the use of

resonant cavities in the measurement of the microwave dielectric properties of

matter.

3.3.1 The Filled-Cavity Approach

A block diagram of a typical cavity measurement system is shown in Fig.

3.5 . A complete theoretical analysis of this problem was given by Harrington

(Harrington, 1961). The basic idea is that the dielectric constant of a material

filling a cavity is determined by the shift in the resonant frequency f0 and the

change in the quality factor Q (Russ, 1983). An air-filled cavity is assumed to

be the reference with f0 and Q0; while the dielectric-filled cavity has fo and Q°.

The dielectric constant can then be calculated from

err ---- (fo/ f°) 2, (3.26)

and,

E_ -- E,[_o Qo ]" (3.27)

The quality factor Qi is in general given by

Qi- filAfi (3.28)
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where fi is the resonant frequency and Afi is the 3-db bandwidth. Equations

( 3.26- 3.28) are evidently very simple and easy to use, yet there are two problems

encountered:

1. If er is too high, an undesirable large frequency shifts and/or reduction in

the value of Q would preclude an accurate measurement of f, and Qa.

2. For some materials, such as vegetation, it is very difficult to fill the cavity

with solid material without some air pockets remaining. This complicates the

inference of the dielectric constant of the material.

3.3.2 The Partially-filled Cavity Approach

This technique is also called the perturbation technique. Small resonant

frequency shifts are attainable by the proper selection of the sample size. The

perturbation analysis is given in details in (Harrington, 1961; Russ, 1983). These

derivations were based on the assumption that either the sample volume or its

dielectric constant are small enough so that the field structure in the cavity is not

substantially changed by the insertion of the sample. The shape of the sample

is an important factor in determining the appropriate approximate formula to

be used. Spheres, discs, and needles are the most commonly used shapes, and

among these the needles are the most popular. Let us take, as an example, a

TMolo cylindrical cavity with

d < 2a (3.29)

where, d is the cavity length and a is the cavity radius.
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For a cylindrical sample of radius c and length d, (Russ, 1983) shows the

derivations leading to

wo-Wo =-1.855(e,. -- 1)(c) 2,
W0

(3.30)

• to8

w: = too -l- 3 _"_, (3.31)

and

I toO -- tOe
e,- -t- 1, (3.32)

1.855tO,Vu

e" ---- Wo 1 Q0), (3.33)3.71toov, ( Q°

where equations 3.32 and 3.33 were derived using equations 3.30, which is only

applicable for a needle-shaped sample, and 3.31, which represents the resonant

frequency for a lossy circuit. Data processing in this case is very straightforward.

However, special care should be taken in the following cases: (i) If the sample

length is not equal to the cavity length, a different set of equations is valid

(Parkash et al, 1979). (ii) If the sample volume is very small, the changes it

produces may not be detectable, and if the sample volume is very large, it could

modify the fields, thereby destroying the validity of the perturbation equations.
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3.4 Comparison

Table 3.1 provides a summary of the pertinent features of the various mi-

crowave dielectric measurement techniques. An analysis of these features will be

given next.

3.4.1 Usable Frequency Band

(i) The Waveguide Transmission System

L, S, C, and X band systems are possible frequency bands for the measure-

ments, yet for each band a separate waveguide system is needed. This fact

makes measurements across a wide band, e.g. 1-12 GHz, discontinuous due to

calibration problems. Also, packing an X-band waveguide is very difficult and

it is hard to achieve a homogeneous sample. One of the major limitations of

the waveguide system is the possible propagation of higher-order modes in the

guide, especially in the upper end of the range. Above X-band, the waveguide

size becomes impractically small to use.

(ii) Free-Space System

The free-space system was used successfully in measuring dielectric properties

of wet soils and snow samples over the 3-18 GHz (Hallikainen and Ulaby, 1983).

The lower frequency limit was imposed by the required sample size and the upper

limit by the cut-off frequency of the antennas. A similar system at 37 GHz was

also constructed and calibrated. The only high frequency limit seems to be the

required smoothness of the sample surface (surface rms roughness should be less
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than

(iii) Slotted Lkue System

Since this system utilizes a TEM cell in a coaxial line, it has a much larger

bandwidth compared to a waveguide system (Broadhurst, 1970). Broadhurst

reported a slotted line system that operated from 100 kHz to 4.2 GHz but he

also concluded that excessive scatter in the data above 1 GHz was due to high-

order mode propagation. For the coaxial line used in his experiment the cutoff

frequency of these modes is given by

Io=9.siva,

which means that a moist leaf can be measured up to 1 or 2 GHz without the

occurence of moding problems.

(iv) Probe System

Since the probe system is basically an open-ended coaxial line, the usable

bandwidth is expected to be as high as that of the slotted line system. In the

course Of this study, however, it was only attempted to operate the system from

100 MHz to 20 GHz. Reduction in the system sensitivity was observed in the

low frequency range and an increase of higher-order mode propagation ku the

high end. A statisfactory compromise can be achieved by using larger probes at

low frequencies and smaller probes at high frequencies as will be discussed in the

next chapter.

(v) Resonant Cavity Systems
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The frequency of operation is limited to only one single frequency for each

cavity.

3.4.2 Measurement Accuracy and Precision

(i) Vv'aveguide System

The relative measurement errors A_'/_' and A_'f/c _' were estimated on the

basis of the precision specifications of the network analyzer/phase gain indicater.

They were compared to those observed during the course of measurement and

found to be in complete agreement. The results may be summarized as follows:

(a) A_' _ .15 and A_" _ .17 for all samples tested.

(b) (A_l/c I) _ .9% at 1.4 GHz and _ .7% at 5 GHz for all samples tested.

(c) A_"/_ n decreases from 37% at low values of E" to 6% for high values of E".

The 37% relative precision was observed for E_ = .06 and the standard devia-

tion was Ae n = .022. So, even though the relative precision is large, the absolute

precision is small.

(ii) Free-Space System

The total calculated worst case error bounds were plotted against frequency

for different sample lengths and for various dielectric constant magnitudes for

both et and en and were found to be around 10% (except for very low loss materials

where the error can be as high as 60 %). The error bounds include uncertainties

in both the equipment and in sample preparation. The system was calibrated

for absolute accuracy using polymethyl methacrylate (a low-loss material) and

water (a high-loss material) and the errors were within the worst case bounds.
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It was found that the system accuracy improves with increasing frequency,

magnitude of c, and sample thickness.

(iii) Slotted Line System

The accuracy of measuring the real part was within 10%, while for the imag-

inary part sizeable errors were reported (Broadhurst, 1970). It was found gen-

erally that the accuracy improves at low frequencies. A check of the precision

of leaf measurements was conducted by packing the sample, measuring it, un-

packing it, then packing it and measuring it again. The previously mentioned

procedure was repeated several times for different samples and at different fre-

quencies and an analysis of variance was conducted to separate the instrumental

errors from those due to sample variations. The uncertainties in the leaf- thick-

ness measurements amounts to 5 - 10%. In general, the total uncertainties in

the measurement system was much better than 20%.

(iv) Probe system

Athey et al (part 1, 1982) grouped the errors in their measurement system into

two types: (1) Systematic errors and (2) nonsystematic errors. The systematic

errors, which are due to the network analyzer system, were assumed to be _]Pl =

.003 and A_ -- .3 °. The estimated uncertainties around 1 GHz were found to be

within 2% for d and 8% for _n. The nonsystematic errors, on the other hand, were

attributed to repeatability of connections, temperature drift, noise, nonperfect

probe connector, dirt, imperfect contact with the sample, and inhomogeneities

in the substance under test. The system overall accuracy depends on how far the
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probe capacitance is from the optimum capacitance value (a discussion of this

condition will be given in the next chapter).

The nonsystematic errors can be avoided if proper care is exercised during the

measurements and by repeating suspicious data sets. According to Athey (1982),

the overall system accuracy and precision were within the limits estimated on

the basis of the systematic errors alone.

(v) The Cavity Systems

The precision of the filled cavity measurement system is almost perfect espe-

cially if care is taken in replacing the cover and tightening the bolts using a torque

wrench. The measurement error for QL for a partially filled cavity is -4-1.25%

( for QL _> 500) and ±7% for( QL -- 200) (Chao, 1985), which means that the

measurement error is negligible for d and less than ±2% for e" (compared to 37%

in the waveguide system ).

Howev_.r, the smaller the sample volume the larger are the errors associated

with g and d w due to dimensions measurement errors. These errors can be as

large as 10%.

3.4.3 Dielectric Values Limit

It is probably a general rule that the higher the magnitude of e is, the better

becomes the accuracy and precision of the measurements, as long as the values

of e do not allow higher-order modes to propagate.
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3.4.4 Practical Aspects

(1) Sample Size and Preparation

From a vegetation dielectric-measurement-system point of view, the waveg-

uide, the free-space, and the cavity techniques are not suitable because it is

impossible to achieve a unity filling factor (because of unavoidable air voids in-

side the measured sample). Also it is impossible to achieve the smooth surface

required for free-space system samples. Slotted line and cavity perturbation mea-

surements on a vegetation sample will always suffer from inaccuracies in thickness

measurements.

The probe system on the other hand, requires a relatively thin sample (at

most a few leaves-thick). However, special care has to be taken to insure that

the pressure applied by the probe against the sample is high enough to ensure

good contact, but not too high to cause squeezing of fluid out of the vegetation

tissue or changing the vegetation bulk density (as will be discussed in the next

Chapter).

(2) Temperature Measurements

The best system for the purpose of making dielectric measurements as a

function of temperature is probably the free-space system because there are no

metal parts in contact with the sample. The waveguide is probably the hardest

because large pieces of metal would need to be insulated. The probe system

(as will be shown in the next chapter) operates satisfactorily with regard to

temperature measurements.
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(3) Field Measurement

The probe system, no doubt, is superior to any other system for field operation

because it is the only nondestructive tool capable of measuring samples without

destroying them.

Technique
Feature

Usable

Band

(GHz)

Accuracy
Low

lOSS

Accuracy

high

loss

Sample
Size

Waveguide

System

Field

Measurements

1-2,2-4,

4-8,8-12

4 systems

reasonable

very

good

small at HF

largeat LF

Free-Space

System

3-18

1 system

reasonable

good

large at HF

Slotted-

Line

i00 KHz-

4.2GHz

2 systems

bad

good

reasonable

Probe

System

.05-20.4

1 system,

2 probes

bad

good

small

Sample Easy but hard and easy easy

Preparation lengthy tedious

temperature hard perfect hard easy

hard hard hard easy

Filled-

Cavity

Partially.
filled

single single

frequency frequency

per cavity per cavity
the

best

Does not

work

small at HF

very
good

good

small

large at LF

hard// hard//

impossible impossible

perfect perfect
hard hard

Table 3.1 Comparison between differentmicrowave dielectricmeasurement tech-

niques.
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Chapter 4

Open-Ended Coaxial Probe

System

4.1 System Description

As previously discussed in section 3.2.2, an open-ended coaxial line and a

short monopole probe are found to be viable sensors for dielectric constant mea-

surements at microwave frequencies. We shall restrict the discussion here to only

open-ended coaxial line probes. As shown in Fig. 3.4, the main part of the

system is the microcomputer-controlled network analyzer (HP 8410C} which is

employed to measure the input impedance at the probe tip. The probe translates

changes in the permittivity of a test sample into changes in the input reflection

coefficient of the probe. The automation of the reflectometry system made data

acquisition, correction, and processing a straight forward task in addition to the

achieved speed of operation. Indeed, the development of such a system would

have been impossible only 15 years ago, since the concept of automated network

analyzer measurements was introduced recently.

64



The open-ended coaxial line probe system operates over a very wide frequency

band. The .141 _ probe model, for example, covers the range extending from

.5 CHz to 20 GHz. The overall error bounds for both t_ and _n were found to

be within 10 % of the measured values. The 10% figure is very conservative and

in some cases it is even better than 1_. Also, since the rounding error in E_

and E" is ±.1, at low dielectric values the relative errors can be too large. The

lower frequency limit is set by the degraded sensitivity while the upper limit is

determined by the cut-off frequency of the next propagating high-order mode as

will be discussed later is section 4.3.2 and 4.3.3. Besides the wide frequency band

of operation, the probe has the capability of measuring the dielectric constant of

test materials nondestructively and rapidly.

4.2 Analysis

The analysis of the probe system can be divided into the following steps: error

correction, equivalent circuit modeling, and calibration and the inverse problem.

4.2.1 Error Correction

There are certain inherent measurement errors when the network analyzer

system is used for microwave measurements. These errors can be separated into

two categories: (a) instrument errors and (b) test set/connection errors (HP

application Note and Burdette, 1980). Instrument errors are those related to

random variations due to noise, imperfect conversions in such equipment as the

frequency converter, crosstalk, inaccurate logarithmic conversion, nonlinearity
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in displays, and overall drift of the system. Test set/connection errors are due

to the directional couplers in the reflectometer, imperfect cables,and the useof

connectoradaptors. Among thesetwo error sources,the latter is the major source

of error at UHF and microwavefrequencies.Theseuncertainties arequantified as

directivity, sourcematch, and frequency tracking errors. The analytical model

used for correcting test set/connection errors is based on the model used by

Hewlett-Packard for correcting reflectivity measurements (HP Application note).

This model accounts for the three types of systematic errors. Each of them is

shown schematically in Fig. (4.1). The measured reflection coei_icient can be

derived as

P11_,= ,911+ ,912S21plia (4.1)
1 - `92_PxI,

Sn isthe directivityterm and isdue to (a) directleakage ofthe incidentsignal

intothe testchannel via the reflectometerdirectionalcouplers and (b) to further

degradation by connectors and adaptors. `922is the source match term and is

caused by multiple reflectionsintothe unknown load. The product (,9_I,91_)isthe

frequency tracking term and isdue to small variationsin gain and phase flatness

between the testand referencechannels as a function of frequency. The reflection

coefficientsPllm and P11a are the measured and actual reflectioncoe_cients,

respectively. These three error factors can be determined and calibrated out

using three known standard loads with known P11aacross the required frequency

band. Hence, Plla can then be determined from
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F|gure 4.1. Error models used for test set connection errors.
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(Pn,_ - $11) (4.2)
pn. = $2_(p11_ - $11) + S12Sn

Sn can be determined separately using a sliding matched load termination. The

reflection coefilcient of the load can be eliminated by multiple load measurements

at different path lengths. The loci of these points form a circle whose center is the

true directivity error vector. Using short-circuit and open-circuit loads, $22 and

$125_1 can be determined ($12 and $21 were lumped together because they always

appear as a product). Since the open-circuit condition is hypothetical, because

of radiation and fringing fields, a correction to (P11,)o.c. is always made. Also,

since the calibration should be done with the probe tip as the reference plane,

and since there is no standard short circuit for that situation, liquid mercury

has been used as the short circuit termination. This approach proved successfull

as long as care is taken to ensure an approximate phase shift of 180 o from the

open-circuit reading. A Final remark that should be made here about Bn is that

its determination is made at the APC-? connector reference plane and it is used

at the probe tip reference plane. This approach neglects the reflections due to

the APC-7 connector and any other reflections along the probe especially due

to the bent, along the probe line, and any inhomogeneity in the teflon. This

approximation is justified by assuming that the APC-? connector and the probe

line are free of defects. This approximation is probably accountable for most of
/

the system errors (accuracy), while instrumental errors can be greatly reduced

by data averaging.
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4.2.2 Equivalent Circuit Modeling

In general, there are two approaches to handling the probe analysis: an exact

electromagnetic treatment or an approximate modeling approach. The exact

electromagnetic treatment uses either the variational or the moment methods.

These approches are exact, but they have a few problems:

1. Computer- time consuming,

2. The exact inverse problem is impossible, and

3. The loss of accuracy due to the approximate inverse problem is high.

On the other hand, the approximate modeling treameant is less accurate and

more efficient in terms of computer time. The model used to describe the probe

behavior has, as shown in Fig.(4.2), the following equivalent circuit parameters

(Marcuvitz, 19511; Tai, 1961; Kraszewski and Stuchly, 1983; Gajda and Stuchly,

1983):

1. Co, the fringing field capacitance,

2. GI, the fringing field (inside the teflon) capacitance,

3. /30: 2, the increase in the fringing field capacitance with frequency because

of the evanescent TM modes excited at the junction discontinuity, and

4. A, the factor representing the radiative discontinuity field.
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These four parameters are a function of the transmission line dimensions. The

admittance in free space is given by

Y(E = 1) = jw(C! + Co + Bw 2) + Aw 4 (4.3)

when the load is a lossy dielectric medium with complex dielectric constant e,

Y(e) is given by:

Y(e) = jw(C! + CoC + Bw'e _) + Aw4e 2"5 (4.4)

This is a linear equation with four unknowns C1, Co, B, and A. In order to

determine the equivalent circuit unknowns, two standard materials need to be

measured to provide two complex equations or four real ones. Usually distilled

water and methanol were used for calibration in this work. Equation (4.4) can

be solved for the unknown equivalent circuit parameters by solving the matrix

equation(4 x 4).

It is possible to solve this equation for CI, Co, B, and A using standard matrix

techniques (e.g. diagnonal method). After calculating the equivalent circuit

paramaters, the system will be ready to process the reflection coefficient data for

the unknown materials.

4.2.3 Calibration and the Inverse problem

In calibration we need to solve a (4 x 4) matrix for the equivalent circuit

parameters, but in calculating the unknown e of the material under test Equation
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(4.4) should be solved for E. This equation is a complex equation of the fifth

order. It was found that an easy method for solving it is through an iterative

routine. The algorithm used for correction, calibration, and data processing is

given in Fig.(4.3).

4.3 Probe Selection

The overall accuracy and precision of any probe system depends on the fre-

quency range of operation, the accuracy of the dielectric constant of the calibra-

tion materials, the value of the unknown dielectric, and the nature of the sample

under test.

4.3.1 Optimum Capacitance

It has been shown (Stuchly et al, 1974) that for a given accuracy of the

reflection coefficient measurement, the accuracy in determining the permittivity

is greatest when

CO

1

where Z0 is the characteristic impedance of the line.

(4.5)

The expression strictly

holds only when the uncertainties in the magnetude and phase of the reflection

coefficient are approximately the same, i.e., A_p _ A_£. For other cases the opti-
P

mum value of Co is different for E' and _"; nontheless, in general the value given

by (4.5) is a good compromise. Figures 4.4(a) to (d) show the calculated opti-

mum capacitance for a variety of materials plotted against frequency. Since the
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Figure 4.3. Calibration algorithm for the full equivalent circuit parameters,

C/, Co, B, andA.
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capacitance of an open-ended coaxial line is typically between .02 and .04 pf, the

optknum capacitance condition is satisfied for only some materiMs over a limited

frequency range (e.g., distUled water above 2 GHz ). The practical situation is

not really that stringent and a typical probe can operate satisfactorUy over quite

a wide band of frequency and range of dielectrics as will be discussed in the next

section. The optimum capacitance condition is only useful as a design guide-

line because the probe would still function satisfactorily in completely different

situations, albeit with some degradation in performance.

4.3.2 Sensitivity

The probe translates variations in the permittivity of the test material into

variations in the measured amplitude and phase of the reflection coefficient. The

variation in the measured phase depends on _" as well as _. However, the effect

of _' on A_ is of less importance compared to the effect of d specially at low

frequencies. Thus,

A_o = f(e', E') _. f(e').

A similar argument for AA can lead us to

_A = fC_',_")_-f(_")

We can define S_, the probe phase-sensitivity to E_, as

• . A_/¢>
S;_,= l,,-,.t,,,,__,o[A%--U77/_,]

= (_) o___

(4.6)

(4.7)
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We can interpretthe sensitivityS_ as the ratioof the fractionalchange in the

function _ to the fractionalchange in the parameter eJ,provided that the changes

are sumciently small (approaching zero). Similarly,S_,_ can be defined as

A third sensitivity term

_, tan6 0_os;.., = (u-)
8_an6_o

(4.8)

(4.9)

may also be defined for e'. The corresponding relations for A, where A is the

magnitude of the reflection coefficient, can be defined as follows:

s;A, . g. OA= ) ,

A tan5 OA ,= (-W-)

and

(4.10)

(4.11)

(4.12)

Figures (4.5)-(4.12) show plots of S_,5_,S_, and S_, versus frequency for

4 different materials: distilled water, methanol, 1-butanol, and 1-octanol. The

following conclusions can be drawn:

1. S_ has the highest value especially at low frequencies (Fig.4.6). This shows

that e" has a large sensitivity to the amplitude measurements, and shows

how critical the amplitude is in this type of measurements.

2. S_ is larger than S_ at low frequencies and for high loss materials (Fig.4.8).

As the frequency increases, S_ decreases while S_ increases and they be-

come equal around 5 GHz (for distilled water). This trend continues as
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the frequency increases, and SA becomes larger than S_. This observation

shows the increased importance of the amplitude measurement at high fre-

quencies. In other words, ee at low frequencies depends mainly on _o, while

at high frequency it is more sensitive to A. This is due to the increased role

of the radiation term Ac_ 4 in Eq. (4.4) with increasing frequency.

3. S_, is generally higher than S A (e.g., Fig.4.7), which shows that _u is more

sensitive to _ than e_ is sensitive to A.

4. For 1-Butanol and 1-Octanol (Fig.4.10 to 4.13), S_ and S_, increase with

frequency, S_ is roughly constant with frequency, and S A is almost zero.

5. The sensitivity of the probe generally increases with an increase in its

diameter (and hence its lumped capacitance and radiation resistance).

4.3.3 Higher Order Modes

Open-ended coaxial lines can be modeled as a simple capacitance, Co, espe-

cially at low frequencies (where the free space wavelength is much larger than the

line cross-sectional dimensions). When the frequency of operation increases, the

line starts to radiate and the energy is not concentrated in the reactive fringing

field any longer. In this situation Co increases with frequency due to the increase

in the evanescent TM modes being excited at the junction discontinuity. An

expression of the form Co -t- B_ 2, where B is a constant dependent on the line

dimensions, should be used in place of the constant value Co. Futhermore, when

the medium has a high dielectric constant, these modes may become propagating
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modes. The first of these modes is the TM01 mode which can propagate when

A, _ 2.03(a -- b), where A, is the wavelengh in the medium, and a and b are the

outer and inner line radii. Table (4.1) shows the cut-off wavelengh for the probe

types used in this study along with their line dimensions (Athey, 1982):

Cable

.085"

.141"

.250"

.350"

type a(mm) b(mm)

Teflon .838 .255

Teflon 1.499 .455

Teflon 2.655 .824

Teflon 3.620 1.124

a/b

3.282 1.177

3.295 2.129

3.222 3.764

3.221 5.067

Table (4.1): Dimensions and cut-off wavelengths for the TMol mode for the

probes used in this study.

If the frequency ishigh enough such that the wavelength in the medium is

shorter than A_, moding willoccur. To calculatethe wavelength in the medium,

the following equation can be used (Ulaby et al,1982):

A0
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where A_, _o, e_ and _ are as defined earlier. In order to avoid the moding problem,

care must be taken when materials with high dielectric constants are measured.

Usually this probem is encountered in two situations:

1. distilled water and saline solutions at high frequency, and

2. thin samples placed against metal background.

Table (4.2) shows the calculated wavelength in the medium A_ as a function

of frequency for distilled water:

f(GHz) 1 2 4 6 9 i0 20 30 40

()_c)c(mm) 33.7 16.9 11.7 5.825 4.05 3.70 2.21 1.75 1.49

Table (4.2): ()_,)c for distilled water.

From this table we can conclude the following:

1. The .085 _ probe may be operated at frequencies higher than 40 GHz,

2. The .141" probe may be operated at f _ 21 GHz,
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3. The .250_ probe may be operated at f __ 9 GHz, and

4. The .350 _ probe may be operated at f _ 6 GHz.

It was found experimentally, however, that this theoretical limit does not strictly

apply. The practical cut-ofl_ frequencies are slightly lower than the calculated

values. It should be noted that whereas a smaller probe can operate over a wider

frequency range, its sensitivities are smaller in magnitude than those of larger

probes.

4.3.4 Contact and Pressure Probem

The calibration procedure involves measuring two standard liquids (usually

distilled water and methanol). The open-ended coaxial line (with or without

a ground plane) is suitable for measuring liquids as long as care is excercised

to avoid air bubbles at the probe tip. Also, the fact that the calibration was

carried out using liquids made the probe more suitable and more accurate for

measuring liquid and semi-liquid materials. Semi-solid materials can also be

measured accurately since the surface can deform to comply with the probe

tip and achieve a good contact (an example of semi-solid materials is cheese).

On the other hand, solid materials are very hard to measure using ordinary

probes. When measuring the dielectric constant of a solid material, it is crucial to

achieve a perfect contact with the mterial under test particularly in the immediate

vicinity of the probe tip. As will be discussed later in this chapter, some new

probe designs with very smooth surfaces and ground planes were built, tested
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and found suitable to measure solid materials. Measuring vegetation materials,

particularly leaves, is usually a problem since any deformation of the plant part

would cause an immediate cellular rupture and possible flow of the included

liquids, in addition to the change in density with increasing pressure. It was

found that for each vegetation material and plant part there is an optimum

pressure above which the part will be crushed and below which the contact will

not be perfect. This optimum pressure is found experimentally for each part and

should be maintained constant during the experiment ( a digital scale was used

to cheek pressure). Usually a pressure of few hundred grams applied on the .141"

probe tip (,,_ .lern 2) is sufficient.

4.4 Probe Calibration

4.4.1 Choice of Calibration Materials

The overall performance of the system depends on the choice of calibration

materials as well as the accuracy with which we know their dielectric properties.

This section gives few guidelines regarding the selecting of proper materials for

a particular application. During the course of this work only distilled water

and methanol were used for calibration. The dielectric constant of water is the

highest known in the microwave band and that of methanol is approximately

one half of it. For wet vegetation materials, it is a good idea to use water as a

calibration material. On the other hand, for dry vegetation materials, a different

combination may be better. Butanol, e.g., can be used in place of water since its
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dielectric constant is about half that of methanol. The calibration liquids should

have, in general, the following features:

1. their dielectric properties should be known fairly accurately as a function

of frequency and temperature.

2. both must have a reasonably large imaginary part (any lossless material is

not suitable for calibration).

3. the dielectric properties of the two materials should be significantly differ-

ent (e.g., it is not recommended using two saline solutions with different

salinities).

4. the two materials should have dielectric values that cover the expected

range of the material under test.

4.4.2 Error Analysis

A measurement system usually suffers from three major sources of error,

namely the systematic, the random, and the illegitimate errors. The errors in

the probe measurement technique can be summed up as follows:

1. Systematic Errors

(a) System S parameters (Sll, S12, $21, and $22),

(b) Probe model accuracy,

(c) Experimental conditions and standards, and
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(d) Conditions of the sample under test.

2. Random Errors

(a) Network analyzer precision,

(b) Harmonic skip problem,

(c) Noise, and

(d) Sample conditions.

3. Illegitimate errors

(a) Blunders, and

(b) Chaotic.

Before proceeding into quantitative estimation of errors, the following as-

sumptions will be made:

1. The error correction procedure is perfect (for the system S parameters).

2. The sample conditions problem does not exist for liquids (since they are

homogeneous and since care was taken to avoid air bubbles at the probe

tip).

3. The harmonic skip problem is cured through averaging (of 4 sweeps and 4

independent measurements).

4. Since each time the computer reads the A/D board it actually reads it 30

times, the noise is eliminated.
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5. Illegitimate errors can be detected and eliminated by inspection.

Comparing this list to the errors' list, the remaining errors axe:

1. Model accuracy, experimental conditions, and standaxds.

2. Network analyzer precision.

In this analysis, it was assumed that

I. A_ = +2.%,

2. AA = ±.05dB,

3. A_b = ±.3 °, and

4. Since the number of independent samples is 4, then AE (4 independent

measurements) = AE (1 measurement)/2. The estimated precision and

accuracy of the probe system were evaluated and plotted as shown in Figs.

4.13-4.18 for yellow cheese (.141"), white cheese (.141"), 1-octanol (.250"),

1-octanol (.141"), 1-butanol (.250"), and 1-butanol (.141"), respectively. In

order to evaluate the probe performance; several standard materials were

measured and plotted along with the calculated values. An example is

shown in Figs. 4.19 and 4.20 for 1-butanol.

From this error analysis, it was found that the overall system accuracy and

precision axe within 10._ (including system and sample errors). The estimated

precision and accuracy of the probe system were evaluated and plotted as shown

in Fig.(4.19)-(4.20) for 1-Butanol.
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4.4.3 Thin Sample Measurements

The sample under test was assumed to be a semi-infinite medium. This

assumption is impossible to achieve practically; however, it was found that the

fringing and radiating fields decay rapidly with distance away from the probe

tip. A simple experiment was designed to show the validity of the semi-infinite

assumption. A stack of paper sheets, with variable thickness (1 up to 30 sheets),

was measured against two different backgrounds. The background materials were

selected to be plexiglass and metal in order to provide a large contrast (refer to

Fig. 4.21). The results of this measurement are shown in Fig. 4.22(a) to (c).

The following observations can be made regarding these figures:

1. One sheet (_ .1 ram)is too thin and does not satisfy the semi-infinite

medium condition.

2. At 1 GHz, at least 30 sheets are required to satisfy the thick sample con-

dition (3 mm).

3. The higher the frequency, the less stringent this condition becomes (at

8 GHz it is about 2 ram).

4. Since paper sheets are practically lossless, this condition is even easier to

satisfy for lossy materials.

5. By intuition, we can state that the larger the probe diameter is, the thicker

the required sample gets.
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As a rule of thumb, the sample thickness should be approximately equal to the

probe radius.

The previous discussion has shown that a sample 3 mm in thickness is suffcient

(using the .25" probe) to satisfy the semi-infinite condition for any material

and across the entire frequency band.of interest (.1-20 GHz). For dielectric

measurements of vegetation leaves, however, a single leaf does not have sufficient

thickness to satisfy the above conditions. So, a stack of leaves, usually 8 or more,

is used and 2 measurements are taken against plexyglass (or teflon) as background

and another 2 measurements are taken with a metal background. It is advisable

to check that these 4 measur.ements are consistent and that the variations, if

any, can be attributed to sample conditions (and not to sample thickness). In

order for the probe to be useful for measuring live or intact plants, it should be

able to measure samples that are thinner than the minimum thickness required

(3 mm). A semi-empirical formula was developed, tested, and has proved to

work satisfactorily over the frequency band of interest. The exact mathematical

analysis was fairly complex and hence we took a semi-empirical approach.

Assume that a TEM signal is propagating in medium 1 and impinging on

a dielectric slab of known thickness d and known permittivity E2. The slab is

terminated in a semi-infinite medium of dielectric constant Es (as shown in Fig.

4.23). If all multiple reflections are considered, we end up with the following

general equation for the input impedance at the interface between media 1 and

2 (Ulaby et al, 1982):
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Z,,, = z2(ll + R2e-i't,_- R_e-_'7,d) (4.13)

where,

zs-z2
R2 -- Zs d- Z2' (4.14)

2z"

= (4.15)

and Zi, Z2, and Z3 are the effective impedances of media 1, 2, and 3, respectively.

Equation (4.13) can be rewritten as:

Y2 + Ys Y2 - Y_n. (4.16)= (Y2- Ys)(Y2+ Y,.)'

where Y2, Ys, and Y_n are the admittances for media 2, 3, and the input admit-

tance respectively. This equation can be solved for Y2 by iteration if we know the

thickness d, Ys of a known background, and the measured Y_,. The material un-

der test is generally very thin (e.g., a vegetation leaf), so the error in measuring

d can be large, in addition to the fact that the solution is oscillatory and a very

strong function of thickness. It was suggested to use two different background

materials to eliminate the errors associated with the thickness measurement. We

will denote the two different backgrounds by the superscripts 1 and 2; hence,

aJso_

e-j-t,d ._ (Y2 -_- Y_l))(Y2 - Y/_))

(Y2 - Y_l))(Y2 -_- Y/_))' (4.17)
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(Y2 - YsO)) (Y_ + Yi_ )) (4.18)

After straightforward manipulation we obtain the general equation:

I y/C2)y/(2)(_._l) _ y_2)) .3q_ys(1)y3(2) (yi_) - yi(1))Y2' = (y/_) yi(nl}) - (ys(2) _ y(1))
(4.19)

This equation is valid for any 2 media with known Ys (1) and y(2) and 2 known

measured input admittances Y/_) and _). A special and useful case can, how-

ever, be deduced by putting yJX) = oo (i.e., medium 1 is metal). Y2, in this case,

will be given by

Y2 -- _/Yi(2)Yi(. 2) + Ys{2) (Yi_)- Yi_ )) (4.20)

The admittances of the media are those seen by the probe; hence, they depend

on the probe equivalent circuit. A special case can simplify the last expression

by assuming the simplest equivalent circuit, which is a capacitor, e2, in this case,

is given by

.(x).(,) (,), (2) _ e_t)) (4.21)_2 = _ein ¢in + _S _ _in

where _2, e(s2), cin'(x),and e_2,) are the relative dielectric constants for the sa_mple un-

der test, the second background medium (the first is metal), the measured input

e for background material 1 and material 2, respectively. It was found experimen-

tally that Equation (4.21) is valid only at low frequencies, while Equation (4.20)

is valid across the entire frequency range of interest (except when the frequency

is high enough to cause moding). The validity of this semi-empirical approach
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Figure 4.24(a). Evaluation of the thin-thick sample formula (refer to text) for

the 0.250 z probe at 1 GHz(real part).
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Figure 4.24(b). Evaluation of the thin-thick sample formula (refer to text) for

the 0.250 _ probe at 1 GHz(imaginary part).
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Figure 4.25(a). Evaluation of the thin-thick sample formula (refer to text) for

the 0.250 w probe &t8 GHz(real part).
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Figure 4.25(b). Evaluation of the thin-thick sample formula (refer to text) for

the 0.250 n probe at 8 GHz(imaginary part).

116



1 .0 OHz

Q
LI..I
I--
<
/
D
(J
_J
4:
C)

_J

90.

80

70.

60.
t t •

50. . I

4-0.

30.

20.

10.

0

I

O. 10. PO. 30 40. 50. 60 70._0.90

E' MEASURED

F|gure 4.26(a). Evaluation of the thin-thick sample formula (refer to text) for

the 0.141" probe at 1 GHz(real part).

117



1 .O GHz

O
l.g
I-

D
(D
.A
<
_J

Ld

45

40

35

30

25

20.

15.

10

5.

0 /
I I t I I 1 I I I I

O. 5. 10 _5. 20. 25. 30. 35. 40. 45.

E" MEASURED

Figure 4.26(b). Evaluation of the thin-thick sample formula (refer to text) for

the 0.141" probe at 1 GHz(imaginary part).
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Figure 4.2T(a). Evaluation of the thin-thick sample formula (refer to text) for

the 0.141 n probe at 8 GHz(real part).
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z09o//12 FRESH CORN LEAVES 0.141"
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Figure 4.28(a). Spectra of measured one leaf/metal, one leaf/plexiglass,and

thick stack/plexiglassalong with the calculated val.uesfrom the thin-thick

formula (realparts). Above 11 GHz high-order modes propagation (upper

curve) causes lm"ge errors.
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9/12 FRESH CORN LEAVES 0.141"
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Figure 4.28(b). Spectra of measured one leaf/metal, one leaf/plexiglass,and

thick stack/plexiglaesalong with the calculated values from the thin-thick

formula (imaginary parts). Above 11 GHz high-order modes propagation

(upper curve) causes large errors.
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was tested for a wide frequency range, wide range of dielectric values, and for the

.141 _ probe (Table 4.3). The results were found to be very satisfactory as shown

in Table (4.3). Figures (4.24) to (4.27) show how well this approximate model

works. Figures 4.28(a) and (b) show spectra of an example of these measure-

ments for thin and thick samples against various backgrounds. The data above

11 GHz was plotted to show how high-order modes can propagate when we use

a metal background and a Very thin sample. To avoid this problem, however, we

can use either a thicker sample or a background material other than metal.

f(GHz) 1 2 4 8

# points 24 25 25 25

E_ slope 1.0265 1.0078 1.0026 .9594

t_ intercept -2.03 -1.2728 -1.0795 -.5036

d variance 15.03 11.51 8.90 7.81

p .9776 .9829 .9858 .9849

_" slope 1.0306 1.0351 .9834 .8726

_" intercept -.0707 -.3509 -.2225 .2683

e" variance 4.38 1.70 1.43 2.34

p .9610 .9684 .9660 .9601
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Table (4.3): Evaluation of the thin-thick formula for the .141" probe.

4.4.4 Comparison to the Waveguide Transmission System

As was discussed earlier in Chapter 3, the transmission technique is, in general

more accurate than the reflection technique. A comparison between both systems

provides a useful confirmation of the validity of the probe-system accuracy. The

choice of material was a problem since the sample requirements are different for

the two techniques. Yellow cheese was finally selected because it is suitable for

both systems. As shown in Fig. (4.29) the agreement is very good and the error

is within the expected ±5% bounds. This evaluation test gave us confidence in

our measurement techniques to go ahead and start measurements on Vegetation

samples.

4.5 Probe Usage and Limitations-Other Probe

Configurations

The standard probes were found to have the following features and limita-

tions:

1. Wide frequency band (.5 - 20 GHz for the .141" and .05 - 9 GHz for the

.250").

2. Accurate to within +5% for all values of eJ and to within +10% for all

values of _" except for low loss materials (because rounding error is +0.1).

3. The system is very suitable for temperature measurements.
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4. The system is very suitable for measuring liquid or semi-liquid materials

but is difficult to use with solid materials.

5. The probe is suitable for non-destructive and in-t_vo measurements.

Other Probe Configurations

For standard cables, the ratio _ _ .3 and is kept constant in order to maintain,2

Z0 constant (refer to Fig. 4.2). In order to build an _optimum" probe, it may be

necessary to change this ratio to increase the probe sensitivity over a particular

frequency band and a given range of _. The cut-off frequency of the first higher-

order mode is proportional to (r2 - rl) while the sensitivity is proportional to

the probe tip area, i.e. to _r(r_ -r_). Thus we have two major objectives with

opposing requirements:

1. To avoid moding (r2 - ri) should be small.

2. To increase the sensitivity, _r(r_- r_) should be large which means (r2- rl)

should be large too.

Preferrably, the ratio (,_) should be kept constant in order to keep the cable

characteristic impedance matched to the probe tip.
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Chapter 5

Measurement Results

This chapter presents the experimental results obtained using the open-ended

coaxial probe system. Gravimetric moisture content M 0 was used in this chapter,

instead of the volumetric moisture content M_, because it is a directly measure-

able quantity, while M_ is dependent on vegetation density. Vegetation density

is very hard to measure, especially for leaves, and the density data measured in

this study represents an approximate estimate at best. For the most part, the

dielectric data presented in this report will be the actual measurements derived

from the probe measurements. In some cases, however, the measured variation

of e as a function of moisture will be presented in the form of plots based on

regression equations generated using actual data. This is done for the purpose

of making presentations clearer in cases where multiple plots are included in a

given figure. It should be noted that these regressions provide excellent fits to

the data and probably describe the moisture dependence of e better than the

actual data. The data presented in this chapter is a subset of that presented in

Appendix A. The primary purpose of this chapter is to acquaint the reader with
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the observed dielectric behavior. Interpretation and modeling of the data are the

subjects of Chapter 6.

5.1 Plant Type, Part, and Location

1. Plant type

Plant types (species) vary depending on the following parameters: (a) den-

sity, (b) salinity, (c) bound water content, and (d) how the vegetation ma-

terial shrinks when it dries out. Salinity and bound water effects are more

dominant at low frequency, while density effects are more obvious at low

moisture levels. Figure 5.1 shows a comparison between corn (Zea Ma_ls)

leaves and soybean leaves at 1 GHz. Corn leaves have, in general, higher

values of E_ and E" than soybean leaves. The difference can be attributed

either to measurement errors in the dielectric constant and moisture con-

tent or to physical and physiological differeces. Figure 5.2 shows another

comparison between corn stalks and black spruce tree trunk to test the

effects of plant type on high density plant parts. The tree samples were

measured at moistures less than 40% (graviometric). Corn stalks have a

lower _ for dry samples, which can be attributed to density effects.

2. Plant part

In order to illustrate the differences between plant parts, we will test two

different parts from the same species. Corn leaves and corn stalks are

compared at 1 GHz in Fig. 5.3. These two plant parts show comparable
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Figure 5.1. Comparison between corn leavesand soybeans leaves.Curves were

fittedto measured data using a second order polynomial fit.
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Figure 5.2. Comparison between corn stalks(measured on the inside part) and

tree trunk (Black-Spruce). Curves were fitted to measured data using a

second order polynomial fit.
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trends and magnitudes for both ee and e" in spite of the fact that their

densities are different.

3. Part location

It was observed that plants have a moisture distribution profile, especially

tall plants like corn. Figure 5.4 shows the dependence of d, e", and M_ on

height (above the ground) for a corn stalk of a fresh plant. The measured

dielectric constant varies quite significantly as a function of height while the

measured volumetric moisture exhibits a weaker dependence. This behavior

may be explained by the fact that when the probe is used to measure the

dielectric of a corn stalk from the outside sheath, it actually measures e of

the sheath (leaf) material surrounding the stalk, and not the stalk itself

(because the fringing field of the probe has an effective penetration depth of

only few millimeters). The moisture determination, however, is performed

for the stalk including the sheath and the inside. Hence, Fig. 5.4 should

not be considered quantitatively and the general trend only matters here.

5.2 Frequency Dependence

Figures 5.5 and 5.6 show the frequency behavior of the dielectric constant

of corn leaves at different volumetric moisture levels. The trends in these two

figures can be compared to those of saline liquid water ( refer to Fig. 2.1 ) and

to those of bound water ( refer to Fig. 5.18 ). The low frequency behavior

of d t is similar to those exhibited by both saline and bound water. At high
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frequencies , however, e" increases with f because of the free water component.

For the medium to low moisture samples (A4", __ .2), _ does not increase with

increasing f, but stays rather constant or decreases slowly with f. This behavior

is attributed to bound-water domination at low moisture levels (because the

bound relaxation frequency is below .2 GHz and its Cole-Cole shape factor is .5,

_" exhibits a very slowly varying dependence on f for f > 2 GHz, as illustrated

in Fig. 5.18). The dielectric loss factor c" has a minimum around 2 GHz and this

minimum becomes less sharp with decreasing moisture content. This minimum

separates the low frequency region (where losses are dominated by conductivity

and bound water ) from the high frequency region ( where losses are dominated

by free water relaxation with f0 -- 18 GHz at room temperature). At f _ 3 GHz,

the permittivity _* decreases with increasing frequency at a rate comparable to

that observed for bound water. This is discerned from a comparison of Fig. 5.5

with Fig. 5.18. Similar frequency behavior were observed for other vegetation

types and parts (refer to Appendix A). Figure 5.7 shows plots for Crassulaceae

Echeveria (which has succulent leaves) on an expanded scale covering the .2-2

GHz range. This material has a relatively low salinity (the measured salinity

of the extracted liquid was 4 parts per thousands). The real part is almost

constant indicating that there is no relaxation process in this frequency range,

which means that the bound water content is neglegible and the dielectric loss is

dominated by ionic conductivity.
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5.3 Water Content Dependence

Since the main constituent of a plant is liquid water, its 'dielectric properties

axe driven by the dielectric properties of liquid water. Liquid water exists in

plant tissues in two forms: free and bound. In addition, the free water com-

ponent usually has a certain amount of dissolved salts, which leads to an ionic

conductivity term. It was generally found that e' and E" are both monotonically

increasing functions of water content. Figure 5.8(a) shows the dielectric constant

for corn leaves versus M g at 1, 4, and 17 GHz. As expected, E_ increases steadily

with increasing M_ and decreases steadily with increasing f. On the other hand,

e" increases steadily with M 0 and has a peculiar frequency response: at low mois-

ture levels, E"(1 GHz) >_ c"(4 GHz) _> E"(17 GHz), while at high moisture levels,

e"(17 GHz) >_ e"(1 GHz) _ e"(4 GHz). The reason we choose to report dielectric

data as a function of gravimetric moisture rather than volumetric moisture is,

as discussed earlier, because M_ is not a measureable quantity and it depends

on the assumption we make about the dry vegetation density and the manner

by which plants lose water (i.e., whether or not they shrink). In some cases, E_

was observed to decrease with increasing moisture content at very high moisture

contents. An example of this behavior is shown in Fig. 5.8(b). No explanation

is available at present for this unexpected behavior.
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Figure 5.8(a). Measured dielectric constant of corn leaves at 1, 4, and 17 GHz,
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5.4 Salinity Effects

The equivalent NaCl salinity, in parts per thousand, is defined as the number

of grams of NaCl dissolved in one kilogram of distilled water. The imaginary

part of the dielectric constant, d', can be expressed as:

e" ----etA-" c_I A- e_ (5.1)

where the subscripts c, b, and f denote the conductivity, bound, and free water

" and E_'terms, respectively. Below 1 GHz , _ are, in general, much larger than

E_, while above 4 GHz , ¢_ is the dominant factor. We can summarize the loss

mechanisms as follows:

1. conductivity term

, "J._Al ", (5.2)
E a _ WE 0 _?

where a,l! is the effective conductivity in Siemens/m and a, (a, = a,yy/2reo)

is in set -1.

2. bound water term (refer to Sec. 5.5)

e ._L.
4= (5.3)

(1+./-_2 + ±V 2!0_J (2!o,)

where e°b and eoob are the static and optical limits for the bound water

dielectric constant and fob is the resonance frequency (the spread relaxation

parameter a was assumed to be .5).
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3. free water term

_f)(fo¢) (5.4)= _L
1 __.(_L._2

-- _,roy /

where e,l, cool,and fo! are, as defined earlier, the relaxation parameters

for free water.

At frequencies in the 1 GHz range, these terms can be approximated as:

tt_ C
1. _c --7'

2. 4 _-- -_l ( f > fob ) , and

3. ,; _-- Fv/"f (f <¢_foy),

where C, B, and F are constants. This approximate approach helps in studying

and understanding the low frequency behavior of _" qualitatively. Unfortunately,

both _ and _ terms decrease steadily with increasing frequency, although c_'

" which makes it difficult to separate the con-decreases more slowly than does Ec,

tribution of these two terms. In order to resolve this problem, we extracted

fluids from different plant parts at different moistures and measured their dielec-

tric constant. Table 5.1 shows the measured salinity of included liquids for corn

leaves and stalks that had been growing at different heights locations on the corn

plant.
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moisture fresh plant one day two days

location part P(tons) S(ppt) P(tons) S(ppt)

20 6 25 20upper

upper

middle

middle

lower

lower

leaves

stalks

leaves

stalks

le ayes

stalks

i0 4 12 6

15 6 25 29

5 5.5 5 7

I0 5 12 8

I0 6 25 29

3

6

8

5.5

5.5

6.5

P(tons) S(ppt)

20 11

2O 8

20 14

7 7

17 7.5

20 23

5 7

i0 7

5

10

6

6

Table 5.1: Measured salinity of liquids extracted from corn plants at different

pressures (in tons per unit area) and at different plant heights.

The data in Table 5.1 was obtained for three different corn plants from the

same canopy. The first was measured while still fresh, the second and the third

were measured one and two days later, respectively. Each plant was divided

into three parts: upper, middle, and lower sections. Then, liquids from leaves

and stalks, in each section, were extracted and measured separately and the
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extraction pressure was recorded in tons per unit area. A modified hydraulic

press was used to squeeze the juices out of the plant parts. The gravimetric

moisture of different sections were measured and the estimated averages of S (ppt)

and M 0 are given in Table 5.2:

leaves

S(ppt) M,

by measuring e

.351 29

.396 29

.521 23

.525 20

.605 II

.624 14

.646 6

.657 6

.675 6

.669

.674

.691

.733

.739

.742

.757

.779

.789

stalks

S(ppt)

by measuring e

6

4

8

5

7.5

7

6

6

7

Table 5.2 Salinity and gravimetric moisture for corn leaves and stalks.

The following observations are offered:
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1. It is very difficult to extract liquids from relatively dry leaves (M e __ .3).

2. Salinity increases with decreasing moisture content, which indicates an in-

crease in concentration of ions with moisture loss.

3. The smallest reported M 0 was .35 for corn leaves, while that for corn stalks

was .67.

Figure 5.9 shows the measured salinity (in parts per thousands) of corn leaves as

a function of volumetric moisture (assuming pDv-.33); the maximum measured

salinity is around 30 ppt, while the lowest is about 5 ppt. A best fit line for this

set of data is shown also; a linear equation relating S to M 0 is given by:

S - 37 - 46Mg ......... (ppt), (5.5)

or,

or

ae/! -- 57- 71_/ro.........(m Siemens/cm), (5.6)

a, -- 103- 130 M e.........(as defined in Eq.(5.2)) (5.7)

Because of the limited range of M 0 for stalks, it was not possible to adequately

relate S to Mg for stalks.

The previous three equations should be taken only as approximate estimates

of S,a_If,and a, because the variability among different species is quite large.

Furthermore, large differences in salinity were observed among samples of the

same species depending on the stage of growth and geographic location. As
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an example of this variability, the measured salinities of extracted liquids from

fresh corn leaves (Ulaby and Jedlicka, 1984 ) grown near Lawrence, Kansas, were

measured to be about 12 ppt. As shown in Table 5.1, the measured salinities of

fresh corn leaves grown near Ann Arbor, Michigan, were measured to be about

6 ppt. This large difference can not be attributed to measurement errors or

equipment calibration alone. A comparison between different measurements on

corn leaves grown in Kansas (1984) and in Michigan (1985) is given in Table

5.3 (both measured using the same technique, the open-ended coaxial lineprobe

system ).

where

Kansas

Michigan

Iwhenl ' ,"Itan/"
1984 .736 1 33.8 17 .50

.653 1 30 15 .50

1985 .835 1 46 18.5 .4

.645 1 27 9 .33

Table 5.3: Comparison between measured corn leaves grown in Kansas and

Michigan.

Another experiment was conducted in Michigan (December, 1985 ) on corn

leaves and stalks (grown at the University of Michigan Botanical Gardens). The

dielectric constant of corn leaves and corn stalks was measured as a function of
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frequency for fleshly cut plants. Simultaneously, extracted liquids from the same

plants were measured in two different ways: (i) Conductivity (mSiemens/cm),

using a conductivity meter and (ii) e, using the open-ended coaxial probe, and

then by comparing this data to that calculated for saline solutions, an estimate of

the effective NaC1 salinity can be made. Table 5.4 shows a comparison between

these two different approaches:

plant part

leaves

stalks

stalks

P(tons)

12

3

10

S(ppt) S(ppt)conductivity

meter

6.5

6.63

6.63

Table 5.4: Comparison between salinity measurements using conductivity

meter and using dielectric measurement.

Figures 5.10 to 5.12 show spectra of the dielectric constant of extracted liq-

uids along with that for saline solutions with S = 7 and 8 ppt. The effective

salinity inferred from the measured dielectric constant of the liquid is about 20%

higher than that measured by the conductivity meter. The latter represents the

actual density of free ions present in the solution, whereas the former represents

an effective value based on the observed loss factor. The difference may be at-
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tributed to the bound-water contribution. Bound water effects do not show as

conductivity losses, but rather as dielectric losses. Table 5.5 shows a summary

of this experiment at 1 GHz.

upper

middle

I
lower

part Mg IMo(p&=.33)] e_ 1 e" l tan(a)

leaves .526

stalks(in) .732

stalks(out) .650

leaves .589

stalks(in) .707

stalks(out) .722

leaves

stalks(in)

stalks(out)

.771

.840

.781

.813

.823

.833

.857

.858

.872

.664

.759

.780

34.6

48.8

29.2

42.9

48.5

37

44.8

50

45.2

13.3 .383

43.1 .268

8.3 .284

15.3 .357

16.7 .344

13 .351

15.8 .353

15.3 .306

16.9 .374

Table 5.5: Fresh corn leaves and stalks at 1 GHz (Michigan, Dec. 1985,

samples grown in Botanical Gardens)

Comparing Tables 5.3 and 5.5 shows a difference between corn leaves mea-

sured in the summer of 1985 and those in December, 1985. The dielectric data

suggests that the corn plants grown in the Botanical Gardens have more dis-

solved salts than those grown in the field. The reason for these variations was
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not sought in this work: it was our objective, rather, to test plants with differ-

ent ionic contents and to try to relate their measured salinities to their overall

dielectric behavior.

An attempt was made during the course of this study .to test plants with

exceptionally high ionic contents. We were advised to try desert plants because

they are known to have high ionic concentrations (probably to maLntain a high

osmotic potential ). Four plants were selected for this purpose:

1. Mesembrianthemum Crystallinum (code: MC)

2. Cakile Maritima (code: CM)

3. Lampranthus Haworthii (code: LH)

4. Crassulaceae Eeheveria (code: SK)

Desert plants were very hard to dry out without loss of turgidity. Hence only

measurements made on the fresh plants are considered reliable. A summary of

these measurements is given in Table 5.6.
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part liquids from leaves

plant s(ppt)] d I e" I tan(6)

MC 5 72.1 18.4 .255

CM 10 73.1 33 .451

LH

SK 4 73.6 15.8 .215

leaves

4 d' ]tan(6)

53.7 12.5 .233

36.6 20.2 .552

52.6 24.5 .466

22.6 7.2 .319

Table 5.6. Freshly cut desert plants ( at 1 GHz).

Table 5.7 presents the results of a test made to compare _ for potatoes, apples,

and tomatoes and to relate the measured e to the salinity of the extracted liquids.

part

material

potatoes

tomatoes

apples

solid

64.1 24.7 .385 71.3 24.1

73.5 16.3 .222 74.5 16

63.5 8.7 .137 72.2 6.4

liquids

Is(ppt) tan(6)

7 .338

4 .215

.8 .089

Table 5.7: Dielectric of potatoes, tomatoes, and apples (M e > .8 and f = 1

GHz).
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It is observed that tan(6) of the solid plant material is generally higher than

that for the extracted liquids, which may be due to the added losses contributed

by bound water. Figure 5.13 illustrates the effects of salinity by comparing the

dielectric constants of potatoes and apples as a function of frequency.

5.5 Bound Water Effects

As discussed in the previous section, the effects of bound water and salinity

are similar and they tend to mask each other, especially in the 1-5 GHz frequency

range. Therefore, two steps were taken to remedy this problem:

1. The measurement frequency range was extended down to .1 GHz, and

2. Special circumstances were sought that would allow the study of bound-

water effects in isolation of salinity effects.

To achieve the first step, the dielectric system was modified and the probe section

was calibrated so that it could operate at as low a frequency as 50 MHz, as

discussed in Chapter 4. In order to study the bound water without the "shadow"

of the ionic conductivity, it is necessary to use a material with known bound

water concentration. Sucrose (table sugar) is such a material (Sayre, 1932). It

was reported that each molecule of sucrose can bind to six molecules of water.

Since the molecular weights of water and sucrose are known to be 18.01534 and

342.30 respectively, we can write,

Xb = 6(18"01534"X342.30) = (6)X (5.8)

156



e

Imms

Z

tmml

7O

6O

50

40

3O

2O

10

POT_-APP.MG>0.8

-"- REALPARTts:3ot..scol
. "t-_ L.v,_.__.__r¢,o_.)

J

I i I I
1. 2. 3. 4.

FREQUENCY (GHz)

S,

Figure 5.13. Measured spectra of the dielectric properties of potatoes and ap-

plea. The meuured salinity of the extracted fluids were T and 0.8 ppt,

respectively.
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where Xb is the mass ratio of hound water to total water and X - -_ is the ratio

of sucrose weight to water weight. So, given X, we can calculate Xb and Xf, the

mass ratio of free water to total water, as:

X, = 1 - (_)X. (5.9)

Volume-Fraction Calculations

1. Dissolve S(grn) of sucrose into W(gm) of distilled water. Hence,

S

x = (5.10)

2. A, the concentration (per cent), is given by:

100S

A - S + W' %" (5.11)

3. Use a Chemistry Handbook to read p(the density in g/cm s) corresponding

to A.

4. The total volume of solid sucrose is:

.

V, = iS- W(p- 1)],cms
P

The total volume of water is:

(5.12)

V_ -- W, cm $ (5.13)

6. The volume fraction of solid sucrose is:

1_$ --

v,+vw
(5.14)
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7. The volume fraction of water is:

v.
v. -- IF, + Vw (5.15)

8. The volume fraction of bound water is:

9. The volume fraction of free water ks:

vy = v,_(1 - 6X).

(5.16)

(5.17)

Table 5.8 gives the volume fractions of some of the sucrose solutions measured

in the course of this work.

i Isucrose#IX
water 0 0 0 I 79.1 4.1

A .5 .239 .120 .641 65 I0

B I .385 .194 .421 51.9 14

C 1.5 .485 .244 .271 40.2 15.4

D 2 .559 .279 .162 31.1 14.4

E 2.5 .613 .306 .081 23.4 12.1

F 3 .655 .327 .018 18.5 9.9

G 3.17 .667 .333 0 17.4 9.3

foCGHz)

.052 18

.154 8.4

.270 3.9

.383 2.2

.463 1.1

.517 .44

.535 .21

.534 .178

Table 5.8: Volume fractions and dielectric constants of sucrose solutions at 1

GHz.
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Samples A though G were prepared such that they cover a wide range of the

bound-water volume fractions that may exist in a plant material. A peculiar,

yet useful, observation is that the ratio v,/Vb is always equal to 2. In Chapter

six, this feature will be used to calculate the volume fractions for vegetation

samples. The dielectric properties of these samples were measured as a function

of frequency at two different frequency bands:

1. Low band .2-2 GHz using the .25" probe, and

2. High band .5-20.4 GHz using the .141" probe.

A sample of the results is shown in Figs. 5.14 to 5.17 for sucrose solutions

A, D and G. The dielectric loss factor e" is relatively small for distilled water at

.2 GHz, but it increases rapidly as Vb is increased. Conductivity measurements

were carried out on these samples to test their ionic contents and the results

showed no dissolved ionic concentrations. It is clear that these high losses are

caused by a dipolar relaxation mechanism and not by conductivity effects. Table

5.8 shows the measured e' and e" at 1 GHz for different sucrose concentrations.

Also given is the relaxation frequency f0 corresponding to each concentration,

calculated using an optimization program (BMDP) that fits the spectral data to

a Cole-Cole equation of the form:

e = coo-F e, - coo (5.18)
1 + (jf/fo) 1-a

For sucrose solution #G, which contains no free water,
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56

-- 2.9 + 1 + (jf/.178)'5 (5.19)

where f is in GHz and the relaxation parameters a is .5. Figure 5.18 shows Eq.

(5.19) plotted with the measured data points. This type of frequency response

is rarely observed in plants because salinity effects are present also, and what

we observe is the result of the combined spectra of both, especially in frequency

range below 5 GHz.

The observed spectrum of sucrose solutions is not really unique; a similar

type of behavior was observed for the following materials:

1. Deztrose Fig.5.19 shows the spectrum of a dextrose solution of concentra-

tion )6 = 2. This curve, when compared to sucrose solution D (Fig. 5.15),

is found to bear strong resemblence in shape, although the two are slightly

different in magnitude.

2. Silica gel, Fig. 5.20 shows the spectrum for silica gel of concentration

X = .5. This curve is to be compared to that of sucrose A. Again they

are similar but vary slightly in level and in the frequency at which e' and

e" intersect (silica gel at 20 GHz and sucrose A at 13 GHz).

3. Gelatin, Fig. 5.21 shows the spectrum for gelatin at a concentration of

X = 1. Comparing this figure to that for sucrose B shows large differences

indicating that sucrose and gelatin have different binding properties.
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Figure 5.18. Spectra for the sucrose solution (G) with x=3.17. The data points

are measured and the solid lines aJre calculated using Equation 2.18 in the

text.
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4. Starch, Fig. 5.22 shows the spectrum of a starch mixture at X = 1. This

figure is to be compared to sucrose B. It can be observed that starch can

bind more water than sucrose can (for the same concentration).

5. Accaeia, Fig. 5.23 shows the behavior of accacia (arabic gum) mixture with

water at X = .8. Similar to starch, accacia shows a larger binding capacity

compared to sucrose solutions.

6. Natural honey, Fig. 5.24 shows the spectrum of natural honey. If we

compare this spectrum to sucrose G, we note that E, at e.g. f = .5 GHz,

drops from about (26-j11) for sucrose G to about (14 - j7) for honey. This

behavior is governed by the molecular arrangement by which water binds

itself to the host molecule.

7. Miscellaneous materials including egg white, egg yolk, and human skin (fin-

ger tips) as shown in Figs. 5.25 to 5.27, respectively. Table 5.12 summarizes

these measurements at f = 1 GHz.
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material

distilledwater

sucrose#A

sucrose#B

dextrose#X3

dextrose#X1

gelatin#X3

gelatin#X1

starch_X3

_tareh#Xl

accacia

natural honey

egg white

egg yalk

skin

_ tan(6) I

II 5

70 20

31 I0

23 12.5

.052

.154

.270

.112

.093

.218

.273

.158

.268

.290

.455

.286

.323

.543

Table 5.9: Measured d and _n of various materials (some with known water-

binding capacity, X=solid weight/water weight)at 1 GHz.
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5.6 Temperature Effects

A temperature experiment was devised and conducted to study:

1. the dielectric properties of plants at temperatures above, below, and at the

freezing-point discontinuity, and

2. the properties of bound water as a function of temperature.

A.Free Water

Before we start discussing the data measured for plants, it is useful to first

review the dielectric properties of liquid water because the latter govern the

behavior of the former. Figures 5.28 to 5.30 show the dielectric properties of

liquid water as a function of temperature (above freezing) for different frequencies

(1, 4, 8 and 20 GHz) and salinities (0, 4 and 8 ppt). The following observations

may be made:

1. _ (at 1 and 4 GHz ) is, in general, small in magnitude and negative in

sign.

2. _ (at 8 and 20 GHz ) is large and positive in sign.

3. ae°_-g is small and negative (S is salinity in ppt).

4. The relaxation frequency, f0, decreases with T.
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5. c'(at 4, 8, and 20 GHz) is driven mainly by the free-water relaxation pro-

_4[ tl

tess; it has a negative temperature-coefficient, _-, below resonance and a

positive one above resonance.

a_" (at f=l GHz and S:O)6. e" is very sensitive to conductivity at 1 GHz, -_-

a," (at f=l GHz and S=4 and 8 ppt ) isis negative because f _< f0, while _-

positive due to conductivity effects.

Table 5.10 summarizes the temperature properties of water in its different

forn]s'.

I

free-water relaxation conductivity I bound-water relaxation

¢_(11

a"T f <-fo f = fo f >_fo f_<4GHz f <_fo f = fo f >-fo

(fo _- 18 GHz) (fo _-.178GHz)

-re +ve/ in GHz

1 GHz

zero +ve

small -ve

-_-ve

large +ve

-re zero

large +ve

4 GHz medium-ve medium +ve medium +ve

10 GHz large -ve neglegible small +ve

20 GHz small +ve neglegible small +ve

Table 5.10: Liquid water temperature coefficients.
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B.Bound Water

As shown in Table 5.10, the dielectric properties of free-water and bound-water

as a function of temperature are similar, except in that the relaxation frequency

is a 100 times smaller and the spectrum is more fiat for bound water(_z -- .5). The

dielectric behavior of bound water is studied through the study of concentrated

sucrose solutions. Figures 5.49 to 5.51 show the measured dielectric properties

of a concentrated sucrose solution as a function of temperature. The general

behavior of bound water agrees with that expected in Table 5.10.

C.Vegetation Material

ezperiment # 1

Fatshedera leaves were used for the first temperature experiment. The tempera-

ture inside the environmental chamber was measured accurately but the stability

of the temperature sensing circuit is only ±.5°C. The temperature sensing de-

vices, i.e. the thermistor and the thermocouple, were placed as close as possible

to the sample under test, and sufficient time was allowed so that the chamber

may reach equilibrium before e is measured. The steady state condition is hard

to identify, since there is no way by which we can check the temperature differ-

ence between the sample and the surrounding air. An air blower was used for

this purpose, but blowing air, especially hot air, increases evaporation from the

sample. The longer we wait, to attain steady-state conditions, the larger is the

moisture loss from the sample and of course the more tedious the experiment be-

comes. It was found that waiting for 30 minutes, after resetting the temperature,
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before taking the dielectric measurement is an acceptable compromise.

Figures 5.31 to 5.34 show plots of e versus 2" at 1, 4, 8, and 20 GHz. The

gravimetric moisture of the sample was .745 before the experiment started and

.711 after the measurements were completed. The sample lost 5% of its original

Mg during the experiment. The following observations may be made:

1. The freezing-point discontinuity takes place at well below 0°C. Freezing

actually happens at around -7°G ', which is attributed to a super-cooling

(or under-cooling) effect (Levitt, 1956). Figure 5.35 shows reported data

on corn plants with and without Pseudornonas Syringae (Bacteria that

act like ice nuclei between -2 and -5o(7). The untreated plants were able

to withstand temperatures as low as -8°C before significant damage was

observed.

2. a-_c'tl GHz) is small and negative,OT _

3. a"(4 GHz) is smal] and positive,

4. ac'(R and 20 GHz) is large and positive,_T _v

5. Tf(1 GHz) is large and positive,

0e" -
6. _-(4 and 8 GHz) is small and negative, and

7. d(20 GHz) has a minimum around 20°C.

Comparing these properties to liquid water shows great similarity, except for

the imaginary part at 20 GHz. The imaginary part e" at 20 GHz is not similar to
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that of liquid water. Figures 5.36 to 5.38 show the frequency response of c, both

real and imaginary, at different temperatures (-40°G _< T _< +30o0). Note the

sudden change in level between the spectra measured at T _> -5°G and those

measured at T _< -10°G.

Ezperiment # 2

The fact that the Fatshedera leaves freeze at around -10°O poses a question:

Do other plants have similar freezing behavior?. To answer this question, a leaf

sample from the plant (a tropical banana-like plant) with M0=.839 was tested.

This time, care was excercised to allow more time for the chamber to reach steady

state and, also, _ was sampled more frequently at temperatures around freezing

(25 times). Figure 5.39 shows _ versus T (-45°C < T < 50°C) at 10 GHz.

Since, for this experiment, we really do not care about the frequency response,

only the 1 GHz data is shown. The rest of the data is given in Appendix B.

Figure 5.39 shows the usual above-freezing behavior of e at low frequencies; a,'

a("
is small and negative and _- is large and positive. The freezing temperature is

below -8°C and the change in level, as shown in Fig. 5.39, is very steep. Below

freezing, however, _" continues to have a non-zero value down to -25o0. Below

-30°C, d_ is almost zero (indeed we should always bear in mind that the data

processing procedure has a 5:.1 accuracy due to rounding error alone ). But,

in spite of the poor overall system accuracy at low _ values, conclusive evidence

shows the existence of unfrozen water in plants below the freezing temperature of

free water. Figure 5.40 shows an example of _ versus f at T = -15°O, it is clear
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that e" has a much larger value than that of ice. Figure 5.39 also shows that the

terminal value of e below -40°C is about (5-j0). Since e of dry vegetation (bulk

vegetation + air ) is _ 1.7 - 3"0, and e of ice is _ 3.15 - 3"0, e of the mixture can

not be larger than that of ice unless liquid water is present. The observed value

of e' _ 5 is attributed to c' of bound-water ice. It has, probably, a value much

higher than that of free-water ice (- 10 !).

gzperiment # 8

In the previous two experiments we have shown the similarity between the

dielectric spectra of liquid water and plant materials. Also, the low freezing

temperature of plant samples, the super-cooling effects, was briefly discussed.

The third experiment was designed to test a plant sample undergoing two cycles

of freezing and thawing. Again, we chose Fatshedera leaves with high moisture

content (Mg=.736 before and =.718 after the experiment). Figures 5.41 and 5.42

show the general behavior of e versus T at 1, 4, and 8 GHz. Above freezing,

the temperature dependence of e" is consistent with that of free water. Below

freezing, e"(l GHz)> e"(8 GHz)> e"(4 GHz), but the levels are too close to

the lower limit of the system's measurement capability to make quantitative

comparisons.

Figures 5.43 and 5.44 show a freezing cycle side by side with a thawing cycle.

The hystresis behavior was completely unexpected because it implies a different

freezing temperature for water in the two directions. Hence, another experiment
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was conducted with particular concentration on the freezing region.

gzperiment #

During this experiment, freezing, thawing, and refreezing cycles were con-

ducted very slowly on corn leaves with high moisture, Mg (before) =.835 and

Me(after)--.781. The dielectric constant behavior versus temperature for f=l,

4, and 8 GHz is plotted in Figs. 5.45 and 5.46. The following observations may

be made:

1. Above and below freezing, the behavior is close to that observed for Fat-

shedera.

2. The freezing point discontinuity occurs between (-5.3°Canal- 7.7°C), sim-

Uar to Fatshedera leaves.

Figures 5.47 and 5.48 show the freezing, thawing, and refreezing cycles at

1 GHz. The hystresis pattern observed earlier in Figs. 5.43 and 5.44 were

apparently real but exagerated. The difference in level is, probably, due to loss

of moisture during the experiment.

Ezperiment # 5

As mentioned earlier, the behavior of bound water in biological tissues is not

well understood. This shortcoming is attributed, at least in part, to the following

reasons:

201



m

T
m

o

I

202



ii

Z

m

m
.,,I

!

203



W

204



a.
{:)
z

T

_+_

.._

,..I

205



1. It is impossible to isolate or obtain pure bound water (otherwise it would

not be bound ), so we usually measure the combined properties of bound

water, the binding surface material (e.g. sucrose), and other materials (e.g.

free water) at the same time.

2. We do not know for sure whether bound water has unique properties, Jr-

respect of the binding material, or not. So, measured properties for one

material may not be generalized to others. For example, compare the spec-

trum of sucrose solution #B to that of starch sloution #X1 (Table 5.9).

3. Bound water relaxation takes place at frequencies well below 1 GHz. Un-

fortunately, in this band losses due to ionic conductivity are very large,

which makes it difficult to separate the two processes.

Our approach, as will become evident in Chapter 6, is to study the dielectric

properties of bound water in sucrose solutions and assume that these properties

represent bound water in plant materials. In order to study the temperature

behavior of sucrose solutions, a concentrated solution was prepared (with vF=0,

vv=.33, and vs=.67) and it will be referred to as sucrose #9 (it is similar to

sucrose #G that was reported in previous sections). Figures 5.49 and 5.50 show

the temperature behavior of sucrose #9 as a function of T (-15°C __ T __ 55°C)

for f= .2, .6, 1, and 1.9 GHz. The reason bound water was measured at these

low frequencies is to be able to study its relaxation properties. Figure 5.49 shows

that the real part has a monotonic increase with T. On the other hand, Fig. 5.50
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shows that the imaginary part has a peak at a frequency-dependent temperature,

e.g. c"(.2 CHz) peaks at 0°C, E"(.6 GHz) peaks at +15°C, E"(1 GHz) peaks at

+25°C, and t_'(1.g GHz) peaks at +55°C. In order to study the effects of deep

freezing on sucrose solutions, another experiment was performed on sucrose #9

over the range -80°C _< T _< +30°C, and the results are shown in Fig. 5.51. It

is interesting to note that there is no sharp freezing point discontinuity and that

e(T ---- -80°C) ----6 - j0.

5.7 Density Effects

A quantitative definition of density will be given in Chapter 6, and for the

time being, the term density will be used in the qualitative sense. In order to

compare the effects of density variations, we will need to compare either different

parts of the same species (e.g. corn leaves and corn stalks) or the same parts

from different species (e.g. corn stalks and Black Spruce tree wood). Comparison

between corn leaves and corn stalks, at 1 GHz, is shown in Fig. 5.3. These two

parts have similar dielectric properties except, perhaps, at the dry end. When

M'e=0, corn stalks have a higher dielectric constant than corn leaves. Comparison

between the dielectric constants of corn stalks and the trunk of a Black Spruce

tree at 2 GHz are shown in Fig. 5.53. There are obvious differences in the

general trend, but again e_ at Me--0 is larger for the tree sample, which has a

higher density. The density effects are not well understood because it is very

hard to measure the density, especially that of a leaf, accurately.
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Measurements conducted on a poplar tree trunk showed large variations be-

tween measured _ at various parts on the trunk cross section. It was observed

that E increases inwardly while the moisture content 0VIg) was found to be con-

stant. The only explanation of this phenomena is density variations of wood

from one ring to the other, increasing in density inwardly. Table 5.11 shows a

summary of the results at 1 and 5 GHz, respectively.

f(GHz) location

1 bark(side)

1 bark(section)

1 first ring

1 second ring

1 central ring

1 average

5 bark(side)

5 bark(section)

5 first ring

5 second ring

5 central ring

5 average

E0 _"

7.5 1.3

17.73 5.07

23.17 4.7

21.95 6.01

32.8 8.3

20.6: 5.08

7.1 1.5

14.4 5.5

20.3 6.9

19 6.7

29.2 10

18 6.1

ta_n(6)

.173

.286

.203

.274

.253

.246

.211

.382

.340

.353

.343

.339

.48

.48

.49

.50

.50

.49

.48

.48

.49

.50

.50

.49

Table (5.11): Measured data for Poplar tree trunk at 1 and 5 GHz.
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Chapter 6

Modeling Efforts

In order to model the dielectric properties of vegetation parts, e.g. leaves, we

must first examine: (i) the dielectric properties of the vegetation constituents,

(ii) their volume fractious, and (iii) the proper mixing formula by which the

information from (i) and (ii) may be combined to calculate the dielectric of the

mixture E. These pieces of information will be discussed separately in Sections

6.1 to 6.3.

Section 6.3 contains the results of different physical, semi-empirical, and em-

pirical models. Also, the use of statistical regression to model the dielectric be-

havior of vegetation independent of plant type or part is considered. No attempt

will be made to model the temperature dependence of the dielectric constant of

vegetation; such a development would require further work, both experimentally

and analytically.
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Liquid Water Dielectric Properties

Distilled Water

For pure water, it is assumed that the ionic conductivity is zero which means

that there are no free ions to contribute to the total loss (especially at low

frequencies). The frequency dependence is given by the Debye equations (2.13)-

(2.15):

c_ : Ewc¢ + E_.- E._ (6.1)
1 + jwr

where E_, and E_oo are the static and optical limit of the dielectric constant of

liquid water, reBpectively, and r is the relaxation time constant.

The importance of liquid water at microwave frequencies stems from the fact

that its relaxation frequency (f_

example,

and

6.1.2 Saline Water

= 1/2_rr) lies in the microwave band. For

f,_(O°C) _- 9GHz (6.2)

f_(20°C) _- 17GHz (6.3)

A saline solution is defined as a solution that contains free ions, whether or

not these ions are organic in nature. The salinity, S, of a solution is defined as

the total mass of dissolved solid salts in grams in one kilogram of solution. An

equivalent Debye-like equation could be used to represent saline solutions in the
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following modified form

, e,_. - e,,joo (6.4)
e,_ = eowoo + 1 + (_Z__2

lwwo !

and

,,
Es_ = +(J__2 27rEof (6.5)

1 + _f.,, j

where the subscript sw refers to saline water, Gi is the ionic conductivity in

Siemens�m, and Eo is the free space dielectric constant (Eo = 8.854 x lO-12f/m).

6.1.3 Temperature Effects

For any relaxation process, temperature affects Eo, Eoo, and fo. However, the

change in Eoo is negligible, that in E, is small, and that in f0 is of major importance.

Referring to Sec. 2.1.1, we can write Eq. (2.18) to (2.20) as

AH (6.6)r = Aexp(-_--_)

0(ln r) AH- (6.7)
a(_) R

h -AS AH

'r = _-'_ exp(_)exp(-_---_-) (6.8)

where the notation used here is the same as elsewhere in this text. Referring to

(Ulaby et al, 1986), we can write the equations for liquid water as a function of

temperature (°C) and salinity (ppt) as:

Coo = 4.9(--_ independent of temperature and salinity), (6.9)
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2_r%(T) = 1.1109 x 10 -1° - 3.824 x 10-12T + 6.938 x 10-14T 2 -5.096 x 10-16T s,

(6.1o)

e_o(T) = 88.045 - 0.4147T + 6.295 x 10-4T 2 + 1.075 x 10-ST s, (6.11)

e.,.o(T,So.) = e.,,,o(T,O)a(T, Sn,), (6.12)

e,,o(T, 0) - 87.134 - 1.949 x 10-1T - 1.276 × 10-_T 2 + 2.491 x 10-4T s, (6.13)

a(T, S,,) - 1.0+ 1.613 x IO-STS,,, -3.656 x lO-SS,, +3.210 x lO-SS, 2. -4.232 x lO-'S,sw,

(6.14)

ro.(T,So,.)= ro.,(T,O)b(T,So._), (6.15)

b(T,S°,) = 1.0+2.282 x I0-STS°,,-7.638 x I0-'S°,-7.760 x lO-eS,2,+ I.105 x lO-SS,Sw,

(6.16)

ai(T,S°.,)-- ai(25,S.) exp -¢, (6.17)
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ai(25, Sew) = Sow[0.18252 - 1.4619 × 10 -s Sow + 2.093 × 10 -5 S_w - 1.282 × 10 -_S_,_ ],

(6.18)

= 25 - T,

and

= A[2.033 x 10-2 -I- 1.266 x 10-4_ + 2.464 x 10 -6A2

(6.19)

-- S°,j(1.849 x 10 -5 - 2.551 x 10-7Z1 -t- 2.551 x 10-8_2)]. (6.20)

6.1.4 Bound Water

According to the results presented in Chapter 5, the Cole-Cole equation pro-

vides a reasonable fit to the dielectric data measured for sucrose. The Cole-Cole

equation is given by

e,b -- eoob (6.21)
eb = eoob -{- 1 + (if/fob)(1-a')

where ab is a Cole-Cole relaxation parameter. For the volume fractions vb =.33,

v! =0, and v, =.67, the relaxation parameter was found to be <_b =.5, fob =.178,

eoo_ =2.9, and e°b =59, in which case (6.21) may be rewritten in the following

form:

_oob) (1 +m

e_ = e_b + v _]ob" (6.22)
2--/--1+2 _V/_/ob+ (,!_)
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_, = (_sb -- _oob, V Zlob (6.23)
2 _I_ 2_L"1+ 2V_I_ob+ ('f0,)

The assumption made in this chapter is that the dielectric properties of the

sucrose solutions may be generalized to other materials, e.g., other carbohydrates

and starches. As discussed earlier in Chapter 5, this assumption is not always

valid, but in the absence of detailed information about the dielectric properties

of a|l of the major organic and inorganic constituents of vegetation material, the

assumption shall be considered adequate for the time being.

6.1.5 Temperature Effects (Bound Water)

The temperature measurements conducted for sucrose solutions were dis-

cussed in Sec. 5.6 (experiment#5) and the results were shown in Fig. (5.49)

to (5.50) . This data will now be used to model the temperature-dependence of

the parameters in the Cole-Cole equation. From fob = 1/271"T arid Eq.(6.8),

h -AS AH

r = _-_ exp(--R--) exp(-_-_) , (6.24)

we can write

fob = AITexp -By
T ' (6.25)

where AI = K exp --_, By = (Aft), and T is in K.

A linear model was assumed for e,, (¢_, and a b as follows:
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eo = A° + BoT, (6.26)

co. = A.. + BooT, (6.27)

and

ab = A,, + B,.,T. (6.28)

Using regression techniques (BMDP software library), the constants were

estimated and the model can be represented by:

e_(f,T) = e_b(T) +
E°bCT) --E,,,,bCT)

1 + [jf/fobCT)]l-'_d T)'
(6.29)

Eob(T) = 35.461 4- 0.262T(°C), (6.30)

eoob(T) = 6.457 -- 0.146T(°C), (6.31)

ab(T) = 0.207 4- O.O07T(°C), and (6.32)

fob(T) = 1.296T(K)exp
--1882.238

T(K)
(6.33)

An evaluation of the overall accuracy of this model was performed and the

results are given in Table 6.1.
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The quantities in the table are:

RSS =- Residual sum of squares,

EMSE =_ Estimated Mean Square Error,

N -- number of data points,

p =- correlation coefficient,

b =- intercept(scatter plot),

a = slope(scatter plot),

where, for a given variable X, a and b have the following meaning:

X(predicted) = aX(observed) + b. (6.34)

For sucrose solution #9, the frequency range was .2GHz< f < 2GI-Iz, the

temperature range wan -6°C < T < 30°C, and the volume fractions were:

v, = .67, vt = .33, and v! = 0.

I IR,,I_,_INIv I b I o I
I,,13,o.111.,,712371.08,1-.=11.o001

Table (6.1) Statistics associated with the regression fits given by (6.30) to

(6.33).
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The strategy used in this optimization procedure, similar to that used else-

where in this chapter, was to rely on the fact that the model is more sensitive

to e' than it is to e_. Six parameters were optimized using the E" data; they are

AI_BI, A,, B,, Aa, and Ba. Then, Aoo and Boo were optimized using the En data

and the other six parameter values already determined. The relaxation param-

eters calculated from the equations given in this section at room temperature

should match those for sucrose#9. The fact that they do not quite match may

be due to a slight change in the sucrose solution concentration.

The overall fit is reasonably adequate for our purposes but a more elaborate

model may be needed for future work.

6.2 Volume Fraction Calculations

6.2.1 Assumptions and Definitions

The density measurement of plant materials is, in general, tedious and in-

accurate. Furthermore, the density of the bulk vegetation material with no air

present is not known. So, certain assumptions have to be made in order to model

the vegetation medium. The most important assumption is the one related to

the question of whether or not vegetation material shrinks in volume when it

loses water. For a material like a corn leaf, the assumption is made that the vol-

ume occupied by the bulk vegetation and by air is independent of the moisture

content of the leaf, and that when a leaf loses moisture, its volume shrinks by

the volume of the lost water.
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Some of the terms used in this chapter need to be defined, although some of

them were used in earlier chapters with or without proper definition.

The gravimetric moisture (wet basis) _lr 0 may be determined from knowledge

of the wet weight of the plant sample W_ and its dry weight Hid,

Me = (Wu - Wd) (6.35)
w,

The vegetation density (wet basis) p_ can be determined by measuring the

weight W_ and the volume Vu of the vegetation sample, p,, = W,,/V,,. The volume

may be determined using a displacement technique in which the leaf is inserted

in an oil bath and the increase in volume is measured (McKinley, 1983).

The volumetric moisture (wet basis) M_ is given by

Mu "- Mop,. (6.36)

The dry vegetation density PDV is the density of the dry material and is

usually less than 1 g/crn s.

The bulk vegetation density pBv is the bulk density of the vegetation material

without air.

In the next section, we shall derive expressions for the various volume fractions

used in the dielectric models in Sections 6.3. These and related quantities are

defined as follows:

r/-- £a1_
PBv" '

v, (Maz) - volume fraction of solid vegetation,
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vb(Maz) _-- maximum volume fraction that bound water can occupy,

vu _- volume fraction of solid vegetation that actually binds some water,

vur ----volume fraction of solid vegetation that does not bind any water 0 _

v_ < v_(Ma=),

vb ------volume fraction of bound water,

v/---- volume fraction of free water,

% _= volume fraction of air, and

%b --- volume fraction of the total vegetation-bound water mixture(= Vb+ vv).

6.2.2 Volume Fractions For a Sample That Shrinks

Volumetric moisture can be derived for a vegetation sample with known AI_

and PDV as follows:

water weight water weight (6.37)
M° = total weight = water weight + dry vegetation weight

Since the density of water isIg/em s,

water volume

Me = water volume + pDv(total volume -- water volume)

or,

(6.38)

m_

from which we can obtain:

M.

M. + PDV(1 -- Mu)'
(6.39)
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j_lr= M0

PDV

This expression was used throughout this text to calculate ._.

relevant expressions are:

v_CMaz ) = r/C1.- M,,),

(6.40)

The other

vb(Ma:r,) ..(_a.) where x = 2 for sucrose solutions and may vary for dif-

ferent materials(see Sec. 6.2.4); this formulation implies that water exists only

as bound water for gravimetric moisture equal to or less than .2 and that bound

water can not exceed this value,

,,b= ,,_(M,=) if M, _>,,_(Max),

vb = M, if Mo <_vb(Maz),

V! = Mu -- lib,

V. = 1 -- V,, (Maz) - M,,, and
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v_, = v,_(Maz) - v,,.

Figures (6.1) to (6.3) were calculated assuming PDV = .33 g/em s, PBv =

1.60 g/cm s, and z = 2. Figure (6.1) shows va, v I, Vb, and vv plotted versus Mg;

 gure (6.2) showsM ,vs, v ,and plotted Me;and Fig. (6.3) shows

M_, v_,v_,, and v,,(Max) plotted versus M e.

6.2.3 Volume Fractions For a Sample That Does Not Shrink

In this case, when the sample loses water (due to evapotranspiration), an

equal volume of air is acquired (may be through the pores). The volume of

the sample stays constant throughout the drying process. This situation does

not seem realistic,but the shrinking assumption may not be exact either,and

the actual case probably liessomewhere between these two limits. Again the

volumetric moisture can be derived from M e and PDV as follows:

water weight water weight (6.41)
Me = total weight : water weight + dry vegetation weight

but the weight of dry vegetation isconstant (independent of moisture, since

the volume fraction of the bulk vegetation, v,,, does not change), and dry vege-

tation weight = PBvVv = PDV hence,

water volume

Me = water volume + pBv(bulk vegetation volume) (6.42)

Again, by dividing by the total volume, we will get

224



C
,m

I.

v

I

--*-- VA
--k_W

I

//'

o_

0.4-

0.0 0.2 0.4 0.6 0.8

Graviometric moisture

1.0

Figure 6.1. Calculated volume fractions for a vegetation sample that shrinks.

V,, V/, _, and V, are the volume fractions of air, free, bound water, and

bulk vegetation material that binds water, respectively.
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Figure 6.2. Calculated volume fractions for a vegetation sample that shrinks.

M,, Vt, Vi, and V, are the volume fractions of water, free water, bound

water, and bulk vegetation material that binds water, respectively.
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Figure 0.3. Calculated volume fractions for a vegetation sample that shrinks.

A_u, I/u, If,,, and V'u_ are the volume fractions of water, bulk vegetation

material that binds water, remaining bulk material that does not bind wa-

ter, and the total or maximum bulk material, respectively.
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and M_ will be,

M.
M° -- M_ + PDv' (6.43)

M.- M°pDv (6.44)
l-M0"

The expressions given previously for vb(Max), Vb, vy, Vv, Vvb, va, and v_,

remain unchanged; the only changes are:

I. M o has an upper limit, Mo(Maz ) - 1 and
I+pDv _

2. v,,(Maz) = rl.

Figures (6.4) to (6.6) were calculated assuming pDv = .33 g/ern s, Pvv =

1.60 g/crn s, and z = 2. Figure (6.4) shows v,, vy, Vb,and v, plotted versus Mg;

figure (6.5) shows M_,vy, vb, and v_ plotted versus Mg; and Fig. (6.6) shows

Mu, %, v_r, and %(Max) plotted versus M 0.

6.2.4 Volume Fractions For Sucrose solutions

As discussed earlier in See. 5.5, the volume fractions for a sucrose solution of

S(g) sucrose and W(g) water are given by:

X--S_
W'

A% = loos wox= X+---T'

from The Chemistry Handbook (1986), the density p(g/ern s) is tabulated in

terms of A%,
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Figure 6.4. Calculated volume fractions for a vegetation sample that does not

shrink. Va, V/, Vt, and V, are the volume fractionl of air, free, bound water,
and bulk vegetation material that binds water, respectively.

229



0

---- HV

-_.w

0

0

0
0.0 0.2 0.4 0.6

Gravimetric moisture

0.8

Fi_Flre 6.5. Calculated volume fractions for a vegetation sample that does not
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hound water, and hulk veKetation material that hinds water, respectively.

230



0
,m

k.

v

>

,

o

°

.

,

0

----MY
-.4.- w
--e- WR
•-_-- WM

/

...... _) 0 0
0 0.2 0.4 0.6 0.8

Gravimetric moisture

I.C

Figure 6.6. Calculated volume fractions for a vegetation sample that does not

shrink. M,, V,, V,r, and Vu,_ are the volume fractions of water, bulk veg-

etation material that binds water, remaining bulk material that does not

bind water, and the total or maximum bulk material, respectively.

231



Vo= s-w(_-,) (crn3),
P

v,, = w(cm3),

?}j ._ V.v',+v. ,

vw _. v'.
v,+ v. ,

,,b= and

=

Table 5.8 shows these volume fractions for different solution concentrations.

We observe that the ratio "" is always a constant, approximately equal to 2.
tsb

6.3 Models

6.3.1 DeLoor's model, Discs, and e* = e_

As discussed in Sec. 2.2.1, DeLoor's mixing model depends on the following

parameters: (1) the depolarization factors, A_, of the included particles, and (2)

e°, the effective relative dielectric constant near an inclusion-host boundary.

According to Tan (1981), DeLoor's model with parameters e* = eh and

A_ = (0,0,1) provides a good fit when compared with the measured data for

grass samples. He treated vegetation as a two component mixture consisting of

dry vegetation and free water. "Fan's data set, however, was limited to single-

frequency measurements made at 9.5 GHz. For this study, we shall assume that

vegetation materials consist of four components: (1) air, (2) free water, (3) bound

water, and (4) bulk vegetation. Knowing that bound water is held by bulk veg-

etation materials (e.g. Carbohydrates and Starches) and assuming a constant
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ratio between v_ and vb (e.g. _" = 2 for sucrose solutions, as shown in Table 5.8),
_b

we can reduce the components into three:

1. If M_ >_ vb(Maz), the three volume fractions are: V,,V_b = V_ + vb,and v I,

2. If M_ < Vb(._[ax), the three volume fractions are: v_,v_b = v_ + Vb, and v_,.

As discussed earlier, v_, = v_(Maz) - v_ while v/= 0.

DeLoor's model for disc-shaped, randomly-oriented, and randomly-distributed

inclusions (Aj = 0, 0,1) and e* = _,, was found to fit our measured data bet-

ter than Deloor's other models. This model is known to give the upper limit

of _, while sphere-shaped inckmions with e* = eh gives the lower limit (refer to

Eq.2.34). The equation describing the upper limit is given by:

E,_= Eh + _ -_(_ --Eh)(2+ .) (6.45)
i----1

or for a three-component mixture:

, = (a -I-IV,_(,b -- ,.) Jr Iv!('/-- ca) (6.46)
c.A

1 - ,,)- ,I)- -

for M,, > vb(Max).

DeLoor's model is asymmetrical, and the choice of the host material is not

completely arbitrary. The host material should be the material with the largest

volume fraction among the constituent components. In Eq. (6.46), Eh was put

equal to c4 since air has the largest volume fraction. On the other hand, when

M,, < vb(Maz) we can use:
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2

, = '. + _Vvb(,_ -- ,.) + _Vv,('. -- '.) (6.47)
E_A

X--'iv.b(1-- ,,) -- Iv.,(1 -- ,.)

where e. = 1, e_ = 4.1 (this value was reported for solid sucrose and was

assumed for the bulk vegetation material), and the rest of the variables are as

defined earlier in this chapter.

A regression analysis on measured data for corn leaves was conducted to

optimize the model parameters. These parameters were PDV, PSV, z(-- _), S,_

(maximum salinity), and Sm (slope of salinity curve, s = ST, -- SmMo).

The optimized values are as follows:

PDV = .322,

Pay = .978,

z -- _ = 2.398,
vb

S._ = 30.307 ppt, and

S, = 34.417 ppt.

_l and eb were calculated for each sample given T, f, and s using the equations

listed in Sec. 6.1. Table 6.2 shows the model accuracy for the data measured on

corn leaves for M 0 < .7, .7GHz <_ f < 20.4 GHz, and at T = 22°C.
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U38838 15740
24 1130 10701970110710491

Table 6.2 Model accuracy for corn leaves,DeLoor's model with A t -- (0,0,I)

and E* = e,_ at T = 22°C.

It is obvious from this last table that the model fits e" much better than it

fits c_. Again, it was our strategy to use the model sensitivity to c_ to optimize

all the model parameters. The model was then evaluated for e'. Figures (6.7) to

(6.9) show frequency spectra of the model compared to the measured data for

three different moistures (M 0 =.681, .333, and .168).

6.3.2 Debye's model (two relaxation spectra)

Since the dielectric properties of plants are controlled by the dielectric prop-

erties of water, in its various forms, and since Debye's equations can adequately

model water properties, it was assumed that a Debye-like equation is suitable for

modeling the dielectric properties of vegetation.

The proposed model is:

Esb _ _b x

e,!-- e_! jo,.ff_ + (I * f;-L-_(x-_)]vUb
e = coo + (I'+?'/o--_I coe°'! --'J !o,'

(6.48)
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where Eoo - A -I- BJ4r_, E,I, _ool, [ol, and ae/! are free water relaxation pa-

rameters as defined in Sec.6.1.1, e,_, Eoo_,/06, and ab are bound water relaxation

parameters as defined in Se¢.6.1.4. This model was tested on data taken at

room temperature; from Section 6.1.3 and 6.1.4, (Eo! - _I) _-- 75, [0! _-- 18GHz,

(_°b -- E_b) _ 55, and fob _ .178 GHz. The conductivity term _ was written in

a slightly modified form, as

,7= (6.49)

Furthermore, the conductivity term, which is proportional to salinity, can be

expressed as:

a, = P - Qv! (6.50)

where P and Q are constants that depend on the plant type (or in general

depend on the ionic content of the sample). This conductivity term was found to

vary between different species and even for the same species grown in different

geographic locations, as discussed earlier in Sec. 5.4. This Debye-like model

was found to fit the data very well in terms of magnitudes and trends. The

optimized parameters for d' (i.e., Pvv, PSV, x, P, and Q) were used as constants

when optimizing the remaining parameters of d (A and B). The optimized values

are: Pov = .238, PBv = 1.255, x = 2, A = 1.861, B = 12.913, P - 53.506,

Q = 121.041, and ab = .501.

Hence, Eq. (6.48) becomes:
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75. _j53.506 -- 121.041v! 55.
e - (1.861+12.913/14,)+(1" +7-/--318.o i )'I+(1. -Jp(_._._o499,jo.1781 )'ub

(6.51)

Table 6.3 shows the model accuracy for the data measured on corn leaves

(M 0 _< .7, .7GHz_ f _< 20.4GHz), and at T = 22°C).

] RSS

l_' I1412.2

] c" ] 254.9

1.04716,61o9,1.2921.0001
3,9107019,810841.0081

Table 6.3 Model accuracy for corn leaves data, Debye-like model at T = 220C.

Comparing Table 6.3 (Debye'8 model) to 6.2 (DeLoor's model) shows that

Deloor's model provides a slightly better fit for E", whereas the Debye-like model

provides a much better fit for e'. Figures (6.10) to (6.12) show frequency spectra

of the measured data and the values calculated according to the Debye-like model.

Also, Fig. (6.13) to (6.16) show the dielectric properties of corn leaves (measured

and calculated) as a function of Mg for f -1, 4, 12, and 20 GHz. These plots,

indicate that the model is in good agreement with the data over the frequency
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and moisture ranges encountered. Two interesting features about this model are:

(1) it is symmetrical and (2) it is linear. The second feature was used to test the

effects of each of the water components separately:

' (air+  egetatio,,),a,,d (6.52)' = e_(free water) + ,_(bound water) -t- ,.,(t

,_' = ,_(free water) + (_(bound water) + ,','(conductivity). (6.53)

These terms were plotted separately and are shown in Fig.(6.17) to (6.22). It

is interesting to note the following:

1. At low frequencies (e.g., f < 5 GHz), e_! drops very slowly with increasing

frequency while _ drops sharply. This feature suggests a visual method to

inspect the existence of bound water in biological tissues and to estimate

its volume relative to free water (refer, e.g., to Fig. (5.27) for the dielectric

spectrum of human skin which shows how abundantly bound water may

exist in these tissues).

2. At higher frequencies, however, e_ drops fast while e_ stays essentially con-

stant (f >5 GHz).

3. ea_' (air+vegetation) is constant as a function of frequency and varies slightly

" is neglegible.with moisture While e,_

" drops drastically with frequency, and its effects are practically neglegible4. ec

above 5 GHz.
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5. e_ increases with frequency and it has a broad peak around 18 GHz.

" Since6. _ decreases with frequency but with a much slower rate than ec-

bound-water relaxation has a relaxation parameter a_ = .5, the spectrum

of E_ is very broad (the half-peak points are separated by about 80 decades!).

7. In general, free water dominates at high moistures, while bound water

dominates at low moistures.

6.3.3 Birchak model (Semi-empirical)

The Birchak model is one of the most attractive semi-empirical models be-

cause it is simple and symmetrical. It is given as:

= + + + (6.54)

where the variables are as defined earlier, and a is a free parameter. If a = .5, it

is called the refractive model. Again, we tested this model using the measured

dielectric data for corn leaves with the following assumptions: #Dr = .33, PSV =

1.60, and z(------,b ) = 2. Equation 5.5 was used for salinity, 8 = 37 - 46M r The

only parameter to be optimized in this case was a and it was found to be .873.

For these parameters, Table 6.4 shows the model accuracy when tested against

the measured data.
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I I Rs,I_M,_INI_ I b I°
I,11772.0_12.62,1076108_11821035I . .r

Table 6.4 Model accuracy for corn leaves, Birchak model (_ = .873) at T --

22°C.

The model accuracy in this case is very good especially if we remember that

only one free parameter was used to fit the data. Figures (6.23) to (6.25) show

examples of the frequency spectrum of the model compared to the measured

data.

6.3.4 Polynomial fit (empirical model)

Polynomial fits are usually very versatile, easy to use, and they can be made

to fit almost any set of data (provided that the order of the polynomial is suit-

able). On the other hand, these models have, in general, no physical significance

and they require that many coefficients be estimated. The following polynomial

expressions were found to fit the corn leaves data very well:

e'-- (.429 -t-.074f) -{- (14.620 --.834f)M 0 -}- (39.396- .616f)M_, (6.55)

and
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9.368
e" = (6.590 .977 .559f)M, + (.463 -I- --_ + 1.617f)M_. (6.56)/

The expression for E" was obtained after several trials to determine which

powers of f are the most appropriate. Table 6.5 shows the model accuracy for

the polynomial fit.

I IR''I_'_INI'I'I°I
1"1885.811322L6'6I0891210I.078I

Table 6.5 Model accuracy for corn-leaves data, Polynomial fit at T = 22°C.

It is surprising how well this model fits the measured data, albeit it includes

12 coefficients whose values were selected by regressing the model against the

data. Figures (6.26) to (6.28) compare spectra calculated using the polynomial

model with the measured data.
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6.3.5 Single-Phase Single-Relaxation Spectrum Debye Model

In the previous sections, a vegetation sample was considered as a heteroge-

neous mixture with four components: (1) vegetation bulk material, (2) air, (3)

free water, and (4) bound water. A different approach is adopted in this section

which assumes liquid water to have one phase which is neither free nor bound. It

is dii_icult to satisfactorily define what is meant by bound water. It is generally

agreed (Sayre, 1932) that bound water is that portion of the total water content

that does not show some of the common properties of liquid (bulk) water. Since

the binding forces generated by solid materials, like e.g. sucrose, are continuous

and decay with increasing distance from the surfaces of their molecules, bound

water actauly exists under various conditions of binding forces. The first layer of

water, being the closest to the solid molecules and consequently the most tightly

held by their surfaces, is considered to represent the "real _ bound water. The

further apart water molecules are from solid molecules, the weaker the attraction

forces become. At a sufficient distance (corresponding to a sparsely concentrated

solution), these attraction forces become small enough so as to consider all the

water as free.

In this section we will consider the liquid water in a plant tissue as having a

uniform single-phase spectrum with effective characteristics that are neither those

of free water nor those of bound water. The attraction forces exerted by solid

molecules on water molecules, in general, limit the mobility of the free dipoles

and their ability of alignment with a time-varying electric field. Consequently,
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the effective resonance frequency of a sucrose solution is less than that of free

water. This effect may be treated as if the solution has an effective temperature

lower than its physical temperature.

1. Sucrose Solutions

Let us choose a parameter that represents the concentration of a solution:

= (6.57)

where v, is the volume fraction of the solid material (solute) and M_ is that

of the solvent. We may assume, arbitrarily, that the effective temperature

depression AT caused by a concentation y is

AT = -AT (6.58)

where Ar is a constant that depends on the solute type but is independent

of concentration. The effective temperature, T,, of the solution is then

defined as

7", = Tp + AT (6.59)

where Tp is the physical temperature of the solution. Now, having the

effective temperature, we can calculate the resonance frequency fow(Te)
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using the formulation derived by Stogryn (1971) for freewater (seeSection

6.1.3).

The quantity A.(_---- e. -- coo) for liquid water is assumed to vary linearly

with effective temperature,

A. = Az_ - BATe (6.60)

where AA and BA are constants and T, is in Kelvins. The values of AA

and BA are derived from Equation 6.12 by considering only terms to first

order. Similarly,the Cole-Cole relaxation spread parameter a isassumed

to vary with y as:

a ----Aa(1 - exp -Bay) (6.61)

where Aa and Ba are constants. The Debye model for a single-phaseliquid

is given as:

A. ]Mu (6.62)
1 -I- (jflfow) 1-a

Using the data measured for sucrose solutions A through G, regression

analysis provided the following results:

AT = 67.290,

AA = 195.110,
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BA = .371,

Aa = .509,

Ba = 1.035,

_ = 2.442, and _oo, = 1.0. Table 6.6 lists the statistical measures of the

model fit to the data.

RSS EMSE N p b a

e" 741.4 2.463 302 .997 -.630 1.027

254.5 .857 302 .980 .454 .962

Table 6.6 Model accuracy of Single-Phase Debye Model as applied to the

sucrose solutions data at T = 22°C.

Figures (6.23)-(6.29), which show the measured and calculated data for

various sucrose solutions, indicate that the model is in very good agreement

with the measured data.

2. Corn/;e_ves

To test the single-relaxation Debye model for vegetation data, we shall use

the same parameter y to represent the tissue volume fractions, in exactly

the same manner it was used for sucrose solutions. Consequently, we shall

use the same expressions obtained from the sucrose-solutions optimization
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to model the data for corn leaves. These expressions are:

y = v./M_, (6.63)

AT = -67.290y, (6.64)

T, -- Tp + AT(K),

f0_(Te) is according to the expressions given in Stogryn (1971),

(6.65)

A,o -- 195.110 - .371Te(K), and (6.66)

a -- .509(1 - exp-1.035y). (6.67)

The Expressions for the volume fractions are:

and

Me (6.68)

Me + 1.=_M'
PDV

v, = v,,CMax.) = r/C1 - M,,). (6.69)

In order to calculate v, and ._r, we have to assume values for PDV and PBV.
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= PDV/PBV.

The model may be written in the following form:

_k W

E=E_ +[1 -.[- (jf /fow) 1-a -- ja/ f]M_ (6.71)

where Eoo = Aoo + Bo.Mu and _re = A_ - Ba_Vlv. Using corn leaves data

and regression analysis (BMDP), the following values were selected for the

unknown parameters:

PDV = .154 g/cm s,

PSV = 3.978 g/em 3,

Aoo = 1.656,

Boo = 24.374,

Ao = 37.396, and

B_, -- 18.892.

Table 6.7 gives the statistical parameters associated with fitting the model

to the data.

E 1

E n

RSS EMSE

1063.99 1.579

390.60 .580

N

676

676

P

.987

.969

b a

.230 .976

.439 .923
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Table 6.7 Model accuracy for corn leaves data, Single-Phase Debye Model,

T = 22°C.

Figure (6.30) shows a plot of the parameter y as a function of gravimetric

moisture, and Fig. (6.31) shows how the resonance frequency varies with

gravimetric moisture. When M e = 1 (pure water), f0 = 18 GHz while

when bf 0 = 0, f0 = 0. The volume fractions calculated using the optimized

values of #Dr and #BY are shown in Fig.(6.32). Figure (6.33)-(6.43) show

frequency spectra for corn leave, at selected moisture conditions, plotted

against the model. Similarly, Figs. (6.44)-(6.51) show dielectric plots for

corn leaves as a function of Mg. The model, in general, fits the measured

data very well Cat least as good as the two-phase Debye model does).

Tables 6.8 and 6.9 provide comparison of the overall performance of the five

models considered in thLs Chapter.
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model

parameters _,

DeLoor's Debye

2

Birchak

0

Polynomial Debye (Single)

2

RSS 3883.82 1412.2 1772.02 885.8 1063.99

EMSE 5.745 1.947 2.621 1.322 1.579

N 676 676 676 676 676

p .981 .983 .984 .989 .987

b .179 .292 -.182 .210 .230

.935 .978.821 .969 .976

Table 6.8 Comparison between different models for corn leaves data at 22°C

(real parts).

model DeLoor's Debye Birchak Polynomial Debye (Single)

_parameters_" 5 5 1 6 4

RSS 245.1 254.9 413 235.4 390.60

EMSE .365 .379 .612 .351 .580

N 676 676 676 676 676

p .979 .978 .975 .980 .969

b .197 .084 .264 .230 .439

a .949 .968 1.030 .943 .923
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Table 6.9 Comparison between dii_erentmodels for corn leavesdata at 22°C

(imaginary parts).
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Chapter 7

Conclusions and

Recommendations

This chapter provides a summary of the major conclusions reached during

the course of this study and proposes recommendations for future work.

Conclusions

Measurement System

Open-ended coaxial probes were found to be viable sensors for making dielec-

tric constant measurements at microwave frequencies. They have the following

features:

1. They can be operated over a wide frequency band ( e.g., .05-20.4 GHz for

the .141 _ probe).
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2. They are easy to use; no sample preparation, in general, is required.

3. They provide results in near real-time (when used with an automatic net-

work analyzer).

4. Non-destructive measurements of plant parts (or any living tissue) are pos-

sible.

5. Temperature measurements are easy.

6. Measurement accuracy is fairly good (5% or better for liquids).

7. The sample thickness need only be comparable to the probe diameter.

8. It is possible to deduce e of a thin sheet of material from two independent

measurements made against two known background materials with infinite

electrical thicknesses.

g. The probe system is very sensitive to contact and pressure at the probe

tip. It is extremely accurate for liquids where contact and pressure are

not crucial problems. For semi-solids, like plant parts, it is possible to use

a pressure guage to control pressure and use care to insure good contact

between the sample and the probe. However, because of errors caused by

imperfect contact between the probe tip and the material under test, the

variability of the measured c was found to be about 10% (a/_ -- .10). By

designing the experiment to fit the required precision of the data, a choice

of N (number of independent measurements) can be made.
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7.1.2 Measurements

1. The measurements covered a variety of plant types; some of them were not

reported because of time and space limitations.

2. The overall frequency band of the measurement system was .05 to 20.4

GHz; however, most of the measurements on plant parts were performed

from .7 to 20.4 GHz. Higher-order mode propagation determined the upper

end of the frequency range while probe sensitivity governed the lower end

of the frequency range.

3. Plants were measured at various moisture levels from freshly cut to very

dry.

4. Also, the salinity of the fluids extracted from leaves and stalks was mea-

sured by a conductivity meter.

. Temperature measurements were conducted on different plant leaves be-

tween -40°C and -{-50°C. These samples were found to freeze at temper-

atures below 0°C ( between -5 and -10°C) due to supercooling effects.

Some of these temperature experiments involved exposing the sample to a

freezing-thawing-freezig cycle to investigate a hysteresis-like behavior.

6. In order to study bound water effects in plant materials, a series of dielec-

tric measurements were conducted on sucrose, dextrose, starch, and other

plant constituents known to form chemical bonds with water molecules.
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Various sucrose solutions of different concentrations were measured as a

function of frequency and temperature. The knowledge gained from these

measurements confirmed the existence and importance of bound water in

living tissues, and the technique made it possible to study this form of

water in the absence of the effects of salinity on the dielectric constant of

the water-vegetation mixture.

7.1.3 Modeling

The dielectric properties of liquid water in all its forms (free, bound, and

saline water) were summarized. The volume fraction models were established for

a vegetation sample that shrinks and for one that does not. Both models were

tested and we concluded that although the real situation lies between these two

extremes, the shrinking model is closer to reality. Given the dielectric constant

and the volume fractions of the sample constituents, various mixing models were

tested and compared to dielectric data measured for corn leaves at room tem-

perature (T = 220C). DeLoor's mixing model fits the data when _* = e,n and

(Aj = 0, 0,1) which is the model for randomly-oriented and randomly-distributed

disc-shaped inclusions (known as DeLoor's upper limit). Birchak model was

tested and found satisfactory. Debye's model was tested (with one and with two

relaxation spectra) and found to yield very good results. Also, a polynomial fit

was developed for easy calculations. Because our knowledge about the physical

properties of plants is still limited, we had to use free parameters in the models.

The fewer these free parameters are, the more useful the model becomes.
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Recommendations

Measurement System

7.2

7.2.1

i. The use of the HP8510 network analyzer will enhance the system capabil-

ities:

• Frequency band .01 to 20.4 GHz in one sweep.

• The time domain feature will help eliminate the reflections from the

various discontinuities (e.g., connectors and bends), while allowing the

measurement of the reflection from the probe tip (using FFT and a

time gate). Consequently, the system will have better overall accuracy.

• Similarly, measurement precision will improve because of the gen-

eral built-in high quality features of the HP8510 such as automatic

frequency-locking (no harmonic skip problem).

• Easy to program and fast data acquisition and processing.

2. The calibration algorithm can be modified by replacing the equivalent cir-

cuit model with an exact electromagnetic solution ( e.g., MOM), which will

improve the overall accuracy of the system.

3. The frequency range may be extended beyond 20.4 GHz by using .085"

probes with connectors that operate at millimeter wavelengths.

4. New probe tip configurations may be developed to better suit the measure-

ment of solid materials (e.g., rocks).
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5. The possibility of using open-ended waveguides to perform dielectric mea-

surements should be explored.

7.2.2 Measurements and modeling

Extensive measurements and modeling efforts need to be performed on plant

materials to:

1. Generate a database of plant dielectric properties as a function of:

• plant type, part, and location,

• plants with very high moisture contents,

• plants with low salinity (may be fresh water aquatic plants),

• plants with very high salinity content,

• temperature for -40°U _< T _< +50°U with freezing-thawing-freezing

cycles.

2. Develop a complete dielectricmodel for bound water (one or two relaxation

spectra) as a function of concentration, frequency, temperature, and the

binding material.

3. Investigate, more thoroughly, the freezing point discontinuity, the under

(super) cooled effects, and the hysteresis-like behavior observed in e - T

CUrVes o

4. Further investigate the single-phase model of liquid water (refer to Sec.

6.3.5). This model suggests that liquid water exists in solute and colloidal
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solutions as one continuous phase with an effective temperature lower than

room temperature by a value that is proportional to the type and con-

centration of the solid material. The effective temperature calculated for a

particular solution has a corresponding emand f0 for the liquid water phase.

The model fits the sucrose solutions and the corn leaves data (at least as

good as the two-phase model). Another approach to the single-phase model

can be suggested as follows: since, according to Debye's relaxation formula-

tion, the ability of the molecular dipole to orient itself with a time-varying

electromagnetic field depends on the viscosity of the medium, it is possible

to consider that solutions have viscosities that are different from that of

free water. Consequently, solutions have dielectric relaxation spectra that

are different from that for pure water.

5. Conduct experiments on pressure-volume curves:

Pressure-volume (P-V) curves can be generated on roots, shoots, or leaves

using two methods: (i) samples are dehydrated inside a pressure cham-

ber, and the sap is collected and weighed as the pressure is incremently

increased, or (ii) excised samples are allowed to dry outside the pressure

chamber by evapotranspiration, then they are weighed periodically to de-

termine sap loss, and their corresponding balance pressure is determined in

a pressure chamber. These two methods were compared in (Ritchie et al,

1984). Such an experiment is important because the extracted sap samples

may be used to determine:
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(a) the salinity distribution (by measuring ionic content of the extracted

fluids using a conductivity meter) as a function of pressure, and

(b) the bound water distribution (by measuring the dielectric constant of

the extracted liquids) as a function of pressure.

The two methods described earlier for generating (P-V) curves are tedious,

time consuming, and destructive. We can investigate the possibility of

using the probe dielectric measurement system to predict the (P-V) curves

without actually destroying the sample. The probe system, in this case, can

be used as a fast and non-destructive tool to monitor plant physiological

parameters such as volume-averaged osmotic potential at full turgor (tP_r0)

and volume-averaged water potential at zero turgor (tp=).

6. Study the dielectric constant profiles in plants as a function of height above

the ground surface. Also, more measurements should be conducted to study

the azimuthal profiles of the dielectric constant of tree trunks.

7. Study density effects by testing plants with high density (e.g., some tree

branches are very dense) and other plants with low density (e.g., Coleus

leaves).

8. Develop a general model for the dielectric properties of plant materials

that incorporates all their physical parameters. Special attention should

be given to the temperature effects in general and to the freezing point

discontinuity in particular. Freezing point discontinuity is a transitional
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state and the measured data showed a hysteresis behavior that has been

attributed to supercooling behavior. Also, the properties of bound water

at low temperatures should be considered.
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APPENDIX A

Dielectric Data at Room Temperature

This appendix contains the dielectric data for some vegetation materials at room

temperature. The set consists of eight parts:

1. Sucrose solutions (A.1 - A.8)

Seven sucrose solutions, with different concentrations, are reported. Some

of them were already given in Chapters 5 and 6, but the whole set is

presented here for the sake of completeness.

2. Comparison between corn leaves and soybean leaves (A.9 - A.13) at 1, 2,

4, 8, and 17 GHz.

3. Comparison between corn leaves and corn stalks (A.14 - A.20)

The measurements were taken on the inside part of the stalk (not on the

sheath) at .?, 1, 2, 4, 8, 17, and 20 GHz.

4. Compaxlson between the model developed in Sec. 6.3.2 (solid line) with

Pr_v = .52 and the Measured data for corn stalks at .7, 1, 2, 4, 8, 12, and

20 GHz (A.21 - A.27).

5. Measured dielectric spectra for Aspen leaves with M e as parameter for Mg

= .28, .57, and .86 (A.2S - A.29).

6. Measured dielectric spectra for Black Spruce tree trunk with M e as param-

eter for M e = 0, .136, .257, .38, and .52 ( A.30 - A.31).

Also, for the same samples, measured dielectric data versus M 0 for f = 1,

2, 4, and 8 GHz (A.32 - A.35).

7. Measured dielectric spectra for Balsam Fir trees (branches, trunk, and

leaves). Since the leaves are needle-like, a single needle was measured

against two different backgrounds (teflon and metal). {A.36 - A.45)

8. Comparison of measured dielectric data for corn stalks and corn leaves

between those reported in (Ulaby and Jedlicka, 1984) and those reported

in this work at different frequencies (A.46 - A.50). Differences are mainly

attributed to samples variability.
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APPENDIX B

Dielectric Data as a Function of Temperature

This appendix contains the temperature data collected during the course of this

work. The set consists of four parts:

1. Fatshedera temperature measurement (experiment _ 1 in Section 5.6).

(B.1- B.17)

2. Banana-like tropical tree temperature measurement (experiment _ 2 in

Section 5.6) (B.18- B.23)

3. Fatshedera temperature measurement (experiment _ 3 in Section 5.6).

(B.24- B.34)

4. Fresh corn leaves temperature measurement (experiment _ 4 in Section

5.6). (B.35- B.42)
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APPENDIX C

Probe Modeling Program Listing
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C

C

C

C
C

C

iii

112

73

PROGRAM TO CALIBRATE PROBE SYSTEM

O.C, S .C, SII,D .Wo ,METH. ,AND UNKNOWN MATERIAL
REFLECTION COEFFICIENTS ARE KNOWN

ON 5/23/1984 BY M.A.EL-RAYES

COMPLEX Z,RS,RO, RW, RM, SII,ROP,RSP,ROSP,EM, ZI, Z2,ECW
COMPLEX $22, RCW, RCM, $121, ROA, $121P, ZOC, ZW, ZM, EMM, EMW

COMPLEX ECB, RB, RCB, ZB, EMB, RCO, ZWC, RWA, Sill, SIll1

PI=4. *ATAN (i.)

Z=(0.0, 1.0)

Z0--50.0
T=22.0
S=0.0

O P E N T H E I/P A N D O/P F I L

OPEN(I,ERR=99,FILE=,*PLEASE ENTER INPUT FILE NAME :

OPEN(2,ERR=99,FILE=,*PLEASE ENTER OUTPUT FILE NAME :
READ (01, *, END=99) F, AO, PO, AS, PS, AW, PW, AB, PB

READ (01, *, END=99) XSll, YSI1, AM, PM

IF (S. LE. 0.0 )CALL WATER (F, T, ECW)
IF (S .GT. 0 .0) CALL SWAT (F, T, S, ECW)

IF (S •GT. 20 .0 )CALL SWATH (F, T, S, ECW)

CALL METH (F, T, ECB)

PRINT *, 'D.W. CALC. == ' ,ECW

PRINT *,'METH. CALC.= ',ECB

WRITE (02, iii) ECW

WRITE (02,112 )ECB
FORMAT (IX, 'D .W. CALC.

FORMAT (IX, 'METH. CALC.
CFI=0 .006E-12

C01=0. 028E-12

BI==0.0

AI=0.5E-12

W=2 .E9*PI*F
WA-=2. *PI*F

AS=10.** (- (25. -AS)/20.)

AO=10. ** (- (25. -AO)/20. )

AW==I0. ** (- (25.-AW)/20. )
AB=10. ** (- (25.-AB)/20. )

AM=10. ** (- (25. -AM)/20. )
PS=PS*PI/180 •

pO=PO*PI/180.
PW=PW*PI/180.

PB=PB*PI/180.0

PM=PM*PI/180.

RS=AS*CEXP (Z*PS)

RO=AO*CEXP (Z*PO)
RW=AW*CEXP (Z *PW)

RB=AB*CEXP (Z*PB)

RM=AM*CEXP (Z*PM)
Sll==CMPLX (XSII, YSI1)

ROP=RO-SII
RSP=RS-S 11

ROSP=ROP/RSP

PRINT *,' FREQUENCY IN

WRITE (02,73) F
FORMAT (IX, '

' 2(IX, F9.3))

' 2 11X, F9.3) )

(GHZ) = ' ,F

FREQUENCY IN (GHZ) = ',F7.3)

E S

')

')

C.I
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74

2

75

C

C

C

C

C

C

76

PRINT *, ' "--'

WRITE (02,74)
FORMAT (IX, ' ....... ' )

II=0
CONTINUE

II=II+l

CF=CFI

C0=C01
B=BI

A=AI

ZOC=I. / (A* (WA**4) +Z'W* (CF+C0+B* (WA**2)) )

ROA = (ZOC-Z0) / (ZOC+Z0)

$22= (ROSP+ROA) / (ROA* (ROSP-I.) )
SI21=ROP* (i.-S22*ROA) /ROA

SI21P=-RSP* (I.+S22)

PRINT *,S121,S121P

WRITE (02,75) S121, SI21P

FORMAT (lX, '$121, $121P= ', 4 (1X, F12.5) )

CORRECTIONS

RCW- (RW-Sll) / (S121+ (RW-SII) *S22)
ZW=Z0 * (i. +RCW) / (i. -RCW)

RCB-(RB-S11) / ($121+ (RB-S11) *$22)

ZB-.Z0* (I. +RCB) / (I. -RCB)

RCM--(RM-S11) / (S121+ (RM-S11) *$22)

ZM=Z0 * (I. +RCM) / (i.-RCM)

EVALUATION OF EQUIVALENT CIRCUIT PARAMETERS

CALL FEQU IV (KCW, RCB, ECW, ECB, CF 1, C 01, B 1, A1, W, WA, Z 0 )
IF(II.GT.20)GO TO 9

IF (ABS (CF1-CF) .GE. I.E-15.0R.ABS (C01-C0) .GE. I.E-15.
OR.ABS (BI-B) .GE.I.E-20.OR.ABS (AI-A) .GE. 1 .E-15) GO TO

CALL ITER (ZM, CF, C0, B, A, W, WA, EM, DM)

CALL ITER (ZW, CF, C0, B, A, W, WA, EMW, DW)

CALL ITER (ZB, CF, C0, B, A, W, WA, EMB, DB)

PRINT *,' CALIBRATION USING 0.C.,S.C.,AND SII "'

WRITE (02,76)

FORMAT(IX,' CALIBRATION USING O.C.,S.C.,AND SII :')
PRINT *, ' "-'

WRITE (02, 77)

77 FORMAT (lX, ' ...... ' )

PRINT *,' # OF ITERATION = ',II

WRITE (02,78) II
78 FORMAT(IX,' # OF ITERATION ,, ',I3)

II=0

PRINT *,'D.W. = ',EMW

WRITE (02, 79) EMW
79 FORMAT(IX,' D.W. -- ',2(IX, F12.3))

PRINT *,'METH.-. ',EMB

WRITE (02, 80) EMB
80 FORMAT(IX,' METH. -. ',2(IX, F12.3))

PRINT *,'MATERIAL EPS " ',EM, DM

WRITE (02, 81) EM, DM
81 FORMAT(IX,' MATERIAL EPS " ',3(IX, F12.3))

EMR=REAL (EM)
EMI=-AIMAG (F/M)
PRINT *,'CF,C0,B,AND A = '

C.2
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82

83

84

700

99

91

C

C

c

c
C

c
C

lOO
C

C

C

WRITE (02, 82)

FORMAT(IX,' CF, C0,B,AND A -- ')

PRINT *,CF•C0• B,A

WRITE (02, 83) CF• C0, B• A
FORMAT (4 (lX, E12.5) )

PRINT *,'

WRITE (02• 84)

FORMAT (IX, ' ....................... ' )
CONTINUE

GO TO 1

PRINT *, 'ERROR IN WRITING TO OR READING FROM A FILE '

WRITE (02, 91)
FORMAT(IX,' ERROR IN READING FROM OR WRITING TO A FILE')
STOP

END

SUBROUTINE TO SOLVE THE INVERSE PROBLEM (GIVEN
REFLECTION COEFFICIENT CALCULATE THE UNKNOWN DIELECTRIC

CONSTANT OF THE MEDIUM) USING AN ITERATION ALGORITHM AS

OPPOSED TO SOLVING A 5TH ORDER EQUATION (ACCURACY IN

THIS CASE IS XX.XX).

SUBROUTINE ITER (ZM, CF, CO, B, A, W, WA, EMM, D1 )

THIS PROGRAM SOLVE THE EQUATION IN ZM

TO GET EM BY ITERATION
BY M.A.EL-RAYES ON 5/25/1984

COMPLEX ZM, EM, Z,EMI,EMM
Z=(0.0,1.0)

FIRST ITERATION

N=II

M=II

EPIII. 0
EDI-0.0

IF (EPI.LE. I. 0) EPI=I. 0
IF (EDI.LE. 0.0) EDI=0.0
D1-1 .E9

DO i00 I=I,N

EP=EPI+ (I-l.) *i0.

DO I00 J--1,M
ED=EDI+ (J-1.) "10.

EMI=CMP LX (EP, -ED )

D=CABS (ZM- (i./(Z'W* (CF+C0*EMI+B* (WA**2) *

(EMI**2)) +A* (WA**4) * (EMI**2.5)) ) )
IF (D .LE .DI) EM=EMI

IF (D.LE.D1) DI=D
CONTINUE

SECOND ITERATION

EP:REAL (EM)

ED=AIMAG (-EM)
N=22
M=22
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201

C

C

C

+

200

C
C

C

300

EP I=EP- 10.
EDI=ED-10.

IF (EPI.LE. i. 0) EPI-,1.0

IF (EDI.LE. 0.0) EDIt0.0
DI-1 .E9

DO 201 I-I,N
EP--EPI+I

DO 201 J-,I,M

ED=EDI+J

EMI=CMP LX (EP, -ED )

D=CABS (ZM- (i. / (Z'W* (CF+C0*EMI+B* (WA**2) *

(EMI**2)) +A* (WA**4) * (EMI**2.5)) ) )

IF (D. LE .D1) EM=EM1
IF (D.LE.D1) DI=D
CONTINUE

THIRD ITERATION

EP:REAL (EM)

ED=AIMAG (-EM)
N--22

M=22

EPI=EP-1.0
EDI=ED-1.0

IF (EPI.LE. i. 0) EPI=I. 0

IF (EDI.LE. 0.0) EDI=0.0
D1=1 .E5

DO 200 I--1,N
EP=EPI+I*0.1

DO 200 J=I,M
ED=EDI+J*0.1

EMI--C_ LX (EP, -ED )
D-CABS (ZM- (1. / (Z'W* (CF+C0*EMI+B* (WA**2) *

(EMI**2)) +A* (WA**4) * (EMI**2.5)) ) )
IF (D. LE. D1 )EM-,EMI

IF (D .LE .D1) DI=D
CONTINUE

FOURTH ITERATION

EP-REAL (EM)

ED-,AIMAG (-EM)
N-22

M-22

EPI=EP-0.1

EDI=ED-0.1

IF (EPI.LE. 1.0) EPI-,1.0

IF (EDI.LE. 0.0) EDI=0.0
DI-,I .E5

DO 300 I=I,N
EP-,EPI+I*0.01

DO 300 J-1,M
ED=EDI+J*0.01

EMI-,CMPLX (EP, -ED )
DmCABS (ZM-(1./(Z'W* (CF+C0*EMI+B* (WA**2) *

(EMI**2)) +A* (WA**4) * (EMI**2.5)) ) )

IF (D. LE .D1) EM=EM1

IF (D. LE .D1) DI=D
CONTINUE
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200

EMM=EM
RETURN

END

SUBROUTINE TO SOLVE 4 EQUATIONS IN 4 UNKNOWNS,
FOR THE COMPLETE EQUIVALENT CIRCUIT (CF, CO, B, AND A).

SUBROUTINE FEQUIV(RCW, RCB,ECW, ECB,CF1,C01,BI,AI,W, WA, Z0)

SUB. TO ESTIMATE EQUIVALENT CIRCUIT PARAMETERS

COMPLEX Z, RCW, RCB, ECW, ECB, RHW, RHB

DIMENSION A(4,5),B(4,5)
Z=(0.0, 1.0)
RHW= (i. -RCW) / (Z. +RCW) /Z0

RHB= (I.-RCB) / (I.+RCB) /Z0

A (1, 5) =AIMAG (RHW)

A(2,

A(3,
A(4,

A(1,

A(2,
A(3,

A(4,

A(I,
A(2,

A(3,

A(4,

A(I,

A(2,

A(3,
A(4,

A(1,

A(2,

A(3,

A(4,

5) =AIMAG (RHB)
5 )==REAL (RHW)

5) =REAL (RHB)

1 )=WA

1 )=WA
i)=0.0

i)=0.0

2 )=WA*REAL (ECW)
2 )=WA*REAL (ECB)

2 )=WA*AIMAG (-ECW)

2 )=WA*AIMAG (-ECB)

3 )= (WA* * 3 ) *REAL (ECW* *2 )

3) ==(WA**3) *REAL (ECB**2)

3) = (WA**3) *AIMAG (-(ECW**2) )
3) =.(WA**3) *AIMAG (- (ECB**2))

4) =-(WA**4) *AIMAG (ECW**2.5)

4) -=(WA**4) *AIMAG (ECB**2.5)

4) = (WA**4) *REAL (ECW**2.5)

4) = (WA** 4) *REAL (ECB**2.5)

PROCESS THE MATRIX USING DIAGONAL METHOD

DO iii I=i,4
DO iii J=l,5

B (I, J) -,A (I, J)
CONTINUE

PROCESS THE MATRIX USING DIAGONAL METHOD

DO i0 I'-l, 4

IF(ABS(A(I,I)) .LE.I.E-37)GO TO 20
CONTINUE

CHANGE DIAGONAL ELEMENTS TO UNITY

DO 100 J=l,4
X='A (J, J)

DO 200 L=I,5

A (J, L) ==A (J, L)/X
CONTINUE

DO I00 I=1,4
IF (I.EQ. J) GO TO i00
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700
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87

30

C
C

C

C

C

C
C

C

C

C
C
C

X=A(I, J)

DO 300 K=1,5

A(I,K)-A(I, K) -X*A (J, K)
CONTINUE
CONTINUE

CF1-A (1, 5) "1 .E-9

C01-A(2, 5) "1.E-9

B1-A(3, 5) "1.E-9

AI=A(4,5)

DO 700 I=1,4
D=B (I, 5)

DO 701 J=1,4

D=D-B (I, J) *A(J, 5)
CONTINUE

CONTINUE

GO TO 30

PRINT *, 'DIAGONAL ELEMENT/S WITH ZERO !! ! !'

WRITE (02, 87)

FORMAT(IX, 'DIGONAL ELEMENT/S WITH ZERO ! ! ! !!' )
RETURN

END

SUBROUTINE TO SOLVE 2 EQUATIONS IN 2 UNKNOWNS,

FOR THE SIMPLE EQUIVALENT CIRCUIT (ONLY C0 AND A).

SUBROUTINE EQ (RC, EC, AK, CO, A, W, WA, Z0 )

COMPLEX Z, RC, EC, Y

z=(0.0, 1.0)
Y= (I.-RC) / (I.+RC)/Z0
CF=AK*C0

XKImREAL (Y)

XK2 -AIMAG (Y)

A11--W*AIMAG (EC)

A12-- (WA**4) *REAL (EC**2.5)

A2 I-.W*AK+W*REAL (EC)

A22- (WA**4) *AIMAG (EC**2.5)

CO-, (XKI/AI2-XK2/A22 ) / (AII/AI2-A2 I/A22 )
A- (XK1-A11*C0)/A12
AP- (XK2-A21*C0)/A22
RETURN

END

+

+

DIELECTRIC CONSTANT OF DISTILLED WATER ( S - 0.0 PPT).

SUBROUTINE WATER(F,T, EDW)

THIS IS A PROGRAM TO CALCULATE THE COMPLEX DIELECTRIC
CONSTANT OF FRESH WATER.
BY M.A. EL-RAYES

OCT.15,1981 .
COMPLEX EDW

PI-4.*ATAN(I.0)
EPSWI-4.9

TAW-(1.1109E-10-3.824E-12*T+6.938E-14*(T**2)
-5.096E-16*(T**3))
TAW=TAW/(2*PI)

EPSWZ = 88.045-0.4147"T + 6.295E-4*(T**2)
+1.0735E-5 *(T**3)
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C
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EPSWP=EPSWI+ ((EPSWZ-EPSWI) / (I+ ((2*PI*F*IE9*TAW) **2) ) )

EPSWD-- (2*PI*F*lE9*TAW* (EPSWZ-EPSWI)
/ (I+((2*PI*F*IE9*TAW) **2) ) )

EDW=CMPL X (EP SWP, -EP SWD)
PRINT *,'EPS.D.W. -. ',F,EDW
RETURN
END

DIELECTRIC CONSTANT OF SALINE WATER WITH LOW SALINITIES

( S < 20 PPT ).

SUBROUTINE SWAT(F,T,S,ESW)
A PROGRAM TO CALCULATE SALINE WATER DIELECTRIC

CONSTANT AS A FUNCTION OF FREQUENCY , TEMPERATURE ,
AND SALINITY .

ON 4/22/1982 .

BY M.A.EL-RAYES

COMPLEX ESW

PI=4.*ATAN (i. 0)
ESWI=4.9

ESW0..87. 134-1. 949E-I*T-I.276E-2* (T**2) +2. 491E-4" (T**3)
A=-I. 0+1. 613E-5*T*S-3. 656E-3*S+3.21E-5* (S**2) -4.232E

+ -7" (S**3)

ESWOS=ESW0 *A

TAW0= (1. / (2. *PI) )* (i. II09E-I0-3. 824E-12*T+6. 938E

+ -14" (T**2) -5.016" (T**3))

B=I. 0+2.282E-5*T*S-7. 638E-4"S-7.76E-6" (S*'2)

+ +i. I05E-8" (S*'3)
TAWS=TAW0 *B

DELT=25.0-T

PHI-.DELT* (2. 033E-2+I. 266E-4*DELT+2. 464E-6" (DELT**2) -

+ S* (I. 849E-5-2. 551E-7*DELT+2. 551E-8" (DELT**2)) )

SIG25--S* (0. 18252-1. 4619E-3"S+2. 093E-5" (S**2) -1.282E
+ -7* (S**3))

SIG--SIG25*EXP (-PHI)

EPSO m (1.E-9) / (36.*PI)

ESWP=ESWI+ ((ESWOS-ESWI) / (i.+ ((2.*PI*F*I.E9*TAWS) *'2) ) )

ESWD--2. *PI*F*I. E9*TAWS* (ESWOS-ESWI)

+ /(I.+((2.*PI*F*I.E9*TAWS)
+ **2))+SIG/(2.*PI*EPS0*F*I.Eg)

ESW=CMP LX (ESWP, -ESWD)

PRINT *,'EPS.S.W. - ',F,ESW
RETURN

END

DIELECTRIC CONSTANT OF SALINE WATER WITH HIGH SALINITIES

( S > 20 PPT ).

SUBROUTINE SWATH(F,T,S,ESW)

A PROGRAM TO CALCULATE SALINE WATER DIELECTRIC

CONSTANT AS A FUNCTION OF FREQUENCY , TEMPERATURE ,
AND SALINITY .

ON 4/22/1982
BY M.A.EL-RAYES .

COMPLEX ESW
REAL N

AA=I. 0
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111

89

PI=4.*ATAN (i. 0)

N=AA* (i. 707E-2+I.205E-5*S+4. 058E-9"S*'2) *S
D=25. -T

CI-I. -i. 96E-2*D+8.08E-5*D**2-N*D* (3.02E-5+3.92E-5*D
+N* (i. 72E-5-6.58E-6*D) )

SB-N* (i0.39-2. 378"N+0. 683"N*'2-0. 135"N*'3+I. 0 IE-2*N**4)
BI--I. +0. 146E-2*T*N-4.89E-2*N-2.97E-2*N**2+5.64E-3*N**3

TB-I. 1109E-10-3. 824E-12*T+6. 938E-14*T**2-5. 096E-16*T**3

TB=TB/(2.*PI)
AI=I. -0. 255"N+5.15E-2*N**2- 6.89E-3*N**3

EW0--88. 045-0. 4147*T+6.295E-4*T**2+I. 075E-5*T**3
SB--SB*Cl

TB=TB*BI
EW0=EW0 *AI

EWI=4.9

E0 = (I.E-9) / (36.*PI)

EFP--EWI+ (EW0-EWI) / (I.+ (2 .*PI*F*I.E9*TB) **2)

EFD-. (2.*PI*F*I.E9*TB) * (EW0-EWI) / (i.+ (2 .*PI*F*I.E9*TB) **2)
EFDEEFD+SB/(2. *PI*E0*F*I .E9)

ESW=CMPLX (EFP, -EFD)

PRINT *,'EPS.S.W. .= ',F,ESW
RETURN
END

DIELECTRIC CONSTANT OF METHANOL.

SUBROUTINE METH(F,T,EMETH)

COMPLEX Z,EMETH

PI=4.*ATAN(I.0)

Z=(0.0,1.0)
W=2.E9*PI*F

IF(T.LT.10..OR.T.GT.40.)GO TO iii
ESm39.2-0.22"T

IF (T.LE.20..AND.T.GE.

IF (T.LE. 30..AND.T.GE

IF (T.LE. 40..AND.T.GE.

IF (T.LE.20..AND.T.GE.
IF (T.LE. 30..AND.T.GE.

IF (T.LE. 40..AND.T.GE.
TAU-TAU * 1. E- 12

IF (T.LE.20..AND.T.GE.

IF (T. LE. 30 • .AND. T .GE.

10.)EI=4.9-0.02*T

.20.)EI=4.7-0.01*T
30.)EI'5.6-0.04*T

10.)TAU-84.-1.4*T
20.)TAU'80.-1.2*T

30.)TAU'71.-0.9*T

10.)ALP'0.026+0.0009*T
20.)ALP=0.052-0.0004*T

IF (T.LE. 40..AND.T.GE. 30. )ALP=0. 082-0. 0014*T

EMETH=EI+ (ES-EI) / (1 .+ (Z*W*TAU)** (1.-ALP) )

PRINT *, 'F, T,EPS _" ' ,F, T, EMETH
RETURN

PRINT *,'TEMP. SELECTED BEYOND LIMITS ! !! ! ! '

WRITE (02, 89)

FORMAT(IX,' TEMP. SELECTED BEYOND LIMITS !!! !!')
RETURN

END
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