
S t r u c t u r i n g t h e Formal D e f i n i t i o n of Ada@

Kurt W. Hansen
Dansk Datamatik Center
Lundtofteve j 1C
DK-2800 Lyngby (Copenhagen)
Denmark

Abstract :

The structures of the formal definition of Ada are described in view c - f
the work done so far in the project. At present, a 'difficult' subset r ,f
Ada has been defined and the experience gained so far by this work ir:

reported on here,

Currently, the work continues towards the formal definition of the fc::
Ada language.

____-_-----_--
e Ada is a registered trademark of the U.S. government

(Ada Joint Program Off ice) . _______________-_---
This work has been partly supported by the CEC MAP project on 'The E r d f c '
Formal Definition of Ada'. Dansk Datamatik Center - Prime contrac:pr,
CUI - contractor, CNR/IEI - subcontractor, consultants: University c f
Genoa (Dept. of Mathematics), Tech. University of Denmark (Dept of C ~ . n , p .
Science), and University of Pisa (Dept. of Informatics).

C.3.1

Introduction.

Since the final requirements of Ada (the STEELMAN document) and up to
the present Reference Manual for the Ada Programming Language -
ANSI/MIL-STD 1815A (RM) the language has been subject to a great deal of
discussion, Comments, suggestions, and shear critisism.

All of this evaluation has been done on the basis of natural language
descriptions, since they are the only ones available. Natural language
descriptions Of a certain size have a tedency to be ambiguous and
contradictory and the RM is no exception to that rule. This has caused
some trouble to users, mainly conpiler writers.

It is our belief, that having had a formal (mathematical) definition Of
the language developed together with the natural language description
would to a large extent have had avoided these errors in the language
design. Not only would it have helped in analysing the complexities Of
the language which may have altered the design, but it would also have
provided an unambiguous definition.

As this was not done, the second best thing is to give a formal
definition of the language as it now stands. The number of projects
which have attempted this so far [ref INRIA 1982, Bjr~rner and Oest 1 9 8 2 1
strengthen the belief that this work is important, and the fact that.
none has succeeded in formally defining full Ada also indicates that it
is a very difficult task.

In order to gain confidence, and actually prove, that the project is
able to formally define the full language Ada, the project has selected
two sets of difficult aspects of Ada, in order to show that the
expirience and the new methods used are adequate for the task. The
reason for having two sets of aspects is, that Ada aspects which are
statically difficult are not necessarily dynamically difficult, and vice
versa so both modelling static and dynamic semantics were tried out.

A t =he present stage the project has succesfully finished the trial
definition of the Ada subsets, and is now proceeding to formally define
f u l l Ada.

^. , r L ~ s presents the work done, and experience gained in the trial
definition of the difficult Ada subsets.

C . 3 . 2

.._-.. - .. - . .

The Overall Structure of the Formal Definition of Ada.

The draft formal definition of Ada has adopted the scheme for defining
progzamming languages as found in VDM [ref Bjtarner and Jones 1 9 8 2 1 . This
means dividing the Semantics of the language into two parts: static
semantics and dynamic semantics. This gives a good overview of the
language features and in this case at the same time complies with the
semantics of Ada. As described in the RM two types of rules a r e
identified: rules which describe compile time checks to be performed,
and rules describing the dynamic (run time) behaviour of an Ada prograrr,.
Hence, the static semantics may be seen as the precondition f o r t h e
dynamic semantics of Ada.

Both static and dynamic semantic definitions are written using tr.e
syntax directed approach in a compositional style. Compositional means,
that the semantics of a construct is given as a function of tb:e
semantics of its subcomponents. Here semantics is understood as a
homomorphism (function) from the algebra of syntax into some semantic
algebra.

Not only does the compositional style make the writing of the formulae
of the semantics of Ada easier as the semantics of each construct 1 5

defined in terms of the semantics of its subconstructs, but it b l ~ -
enhances readability as you do not have to remember the semantics of 31-
preceeding constructs in order to understand the semantics of a g l v r '
construct.

Of course for example in the static semantics you have to use ::...
history to some extent, you have to know the names and types of deflnc-:
variables in order to perform the type check, but this informatlo:.. 1 s
modelled in a separate abstract data type in order not to confuse t : i e

overall syntax directed approach.

One may consider the static semantics as the first part of the f o r r z :
semantics of Ada. Static semantics takes as its input an algebra 2 :

syntax which is as ambiguous as the grammar found in the RM. Amb:;>~,~.>
means, that you cannot tell the meaning of a construct wlthcut ts:::
into account the context in which it is found. An example 1 s :

a :- f(x);

This is obviously an assignment statement, but the expression f (x) : 7 . : ,

denote:

- an element of an array
- a function call with one positional parameter

- a type conversion of the expression 'x' to the type If'

The ambiguous grammar found in the RM, is translated directly into the
algebra of syntax used in the static semantics. The idea is, that only
essential information is retained. AS an example, in the assignment
Statement the essential information is the fact that you have a
left-hand side name and a right-hand side expression.

The syntactic
metalanguage written as:

construct of the assignment statement is therefore in o u r

Assignment-stmt :: Name x Expr

Static semantics now performs the compile time check on the syntactic
constructs found. In the case of f(x), operations on the data type
reflecting declarations are used to look up 'f' in order to disambiguate
the term f(x). Next overloading is resolved, the static checks for the
left-hand side and right-hand side are done, and at last the validity of
the assignment statement is tested using the knowledge gained trying to
statically check its components (compositionallity). The knowledge
could be the fact, that for example the right-hand side is not well-
formed at all, and therefore the static check of the whole construct
must also fail.

In principle there is no reason why the dynamic semantic should not be
able to perform its run time check of and execution on an Ada program
on the same abstract syntax the one as used by the static semantics.
9owever in practice this would impose on the dynamic semantics to do
most of the work already done in the static semantics over again - like
disambiguating syntactic constructs. This would complicate the dynamic
semantics considerably, destroying the readability of the final formal
definition of the dynamic semantics.

The approach taken in this project, is to impose a transformation on the
algebra of syntax used in the static semantics (A S 1) . This trans-
formation transforms AS1 into an equivalent algebra of syntax (A S 2) ,
where the static problems to a large extent have been resolved, and some
statically availabIe informatizq is distributed more conveniently (e.g.
an aggregate is always given a type).

Resolving the static problems of the syntax means, resolving o f
syntactic ambiguities, giving unique names to identifiers (apply
visibility rules and resolve overloading), adding derived infcrn:at 1 c . n
(attach a type to an aggregate), and removing information not necessary
for the dynamic semantics (e . g . the order in which compilation units
a p p e a r) .

The A S 2 is then t h e starting point of the dynamic semantics. In order to
improve readability, the AS2 is kept as close to the original Ada
program as possible; a user should be able to recognize his program.
t'urt-hermore, if a user wants to know some facts about the run time
bet,a.,icur of h i s program, he should be able to see the AS2 program

c . 3 . 4

without having to first write an Ada program and then impose the AS1 to
AS2 transformation. This of course implies, that the program given to
the dynamic semantics must be statically correct, since the successful1
application of the static semantics is a prerequisite for the dynamic
semantics.

Human Aspects of Structuring.

The writing of formal definitions is still an exercise mostly done in
the academic environment since the writing of formal definitions has n o t
yet matured into an engineering practice.

As a reflection of this, most papers found on structuring of formal
definitions are aimed at getting the right mathematical structuring,
making sure that the whole formula system is correct and consistent. The
issue of readability has not been addressed to any large extent. This is
one of the facets of structuring that has been studied in this project.

It is our belief, that formally defining Ada is only a worthwhile t l a s i .
to perform, if a large group of people is able to use the definition.

Our good luck has been, that through the last years many more peopie
have become familiar with the notion and uses of formal definiticrt-.
Some of the driving force has been the complex problems found r n t!.7-

development of large sofware systems and the users' needs for prcven
programs, as software move into more and more vital positions of c u r
society. Formal methods provide a tool for analyzing and buildlng s u c h
complex systems and some industrial expirience has a l ready b e e n r e p a r c e d
on.

Therefore some of the studies laid down in the task of structurlcg : n z
formal definition of Ada have been in the area of finding out how hurr.a-7.~
read the formal definition, and what may be done in order to make si:^^'

that the reader gets the easiest access to the definition.

In this work, many parameters have been looked into. Some a! t ! , <
parameters have been: what about the size of the reports? model o r l e r i t c > :
v s . axiomatic descriptions, direct semantics style vs. contlnuatlons.

The answer has not always been straiqhtforward, but we believe tha: L, '~ .

have made the tradeoffs in such a way, that most people wit!;
programming background and a little formal training added, shctAld k>2
able to read and understand the formal definition of Ada.

In the structuring of documents used in this project, each formula h a 5
beer1 put into a tixed framework giving the auxiliary information needed
j n o r d e r to read that particular formula. This information includes:

c.3.5

- Identification which directly relates the formula to the RM
thereby helping people to understand the formal definition in Ada
terms.

- Short description of the objective of the formula.
- The formula itself given either axiomatically or model oriented.
AS model oriented is believed to be the most readable for
computer programmers (it resembles a program) most of the
definition is described in a functional style. If a number of
concepts can be separated out into a selfcontained abstract data
type, it has been done and in many cases the operations performed
are described using axioms.

- Natural language explanations of how the formula is supposed to
perform its task, and correlation of the formula to the concepts
of the RM that the formula describes.

- An extensive cross referencing.

Examples of the above may be found in [ref DDC and CRAI 19861.

Structure of the Static Semantics of Ada.

The subset static semantics of Ada is a homomorphism from the algebra of
syntax into the algebra of booleans since separate compilation and hence
libraries are not part of the subset. This homomorphism makes heavy use
zf operations from abstract data types being able to extract information
from t h e program text taken into account until the current point of
interrest.

As a mean of breaking the static semantics into useable pieces,
the foundation is a hierarchy of abstract data types each aimed at
describing an essential Ada concept.

Splitting a definition into data types describing concepts which are
carefully highlighted in the RM seems to give the definition two
properties: one is that the definition gets broken into manageable size
definitions which may be combined, and the other is that breaking the
definition into data types which define Ada concepts will give the user
wtlo knows about programming languages (maybe even about Ada) a
conceptual framework within which to understand the formal definition -
facilitating familiarization with and enhancing readability of the
definition.

C . 3 . 6

.

The hierarchy of data types defined, has the following properties: a t
the bottom of the hierarchy: very basic data types describing integers,
identifiers etc. Next level describes types and the strong typlny
concepts of Ada. This includes operations for the handling of derived
types, subtypes, type matching etc. From this data type a new data t Y P c - '
is built describing the properties of all entities in Ada which you may
declare.

In the same fashion concepts like visibility, overloading, and g e n e r i c s
are described in abstract data types in further levels of the h i e r a r Z t . 7 .
The topmost data type is called SUR abbreviated from surroundings. Ttd7.s
data type describes the 'static history' of the compilation unit sa far,
by combining all information from lower level data types. This IS der.?,
in order to assemble all static semantics information in one place.

The data types are used in the formation of the homonorphism frcm t.'.::
algebras of syntax. This homomorphism is named the well-formed (wf)
function (9) .
In the subset the 'root construct' is the subprogram body. The c y p e : E
the function is-wf-Subprogram-body is:

Subprogram-body i SUR i BOOL

but often the check, that a given construct is well formed canr:ct L i .
performed if the only fact known about the subconstructs is whether t!.c;'
are wellformed Or not. Further retrieving of information dbout c t t c
Subconstructs is necessary. As an example take the assignment scacerr:er-.r :
the left-hand side has to be well formed, the right-hand side has t . 3 L::
well formed, but on top of that, the types of the two sides have te : z C .
t h e same. As an is-wf function only returns BOOL, data type o p e r a r : ' - ? s
and auxiliary functions have to be used in order to retrieve t h ? : \ ; . ; . I

information from both sides.

Structure of the Dynamic Semantics of Ada.

The dynamic semantics of Ada is modelled using the SMoLCS (5 t r u L - t : : : . :

Monitored Linear Concurrent Systems) method as descrlbed 11: i :, :
Astesiano et a1 19851.

Using the SMoLCS method already imposes some structuring on the fJr .r .31
definition of the dynamic semantics. SMoLCS is a layered approa:h t o tt,?
description of concurrency. It Consists of four layers. At the bntt,.m
describing t h e basic states possible in the system we find a labelle..:
transition system similar to the ones found in for example 2 C S .

c . 3 . 7

ORIGINAL PAGE t?3
OF KX>R QUALITY

,-

In order to describe the behaviour of the concurrent system, some con-
straints are applied to the transition system. These constraints fall
into three types. First all actions which may result as synchronized
operations of processes are identified, next all synchronized actions
which may occur in parallel are identified, and the last step defines
which actions are possible in the system as a whole.

The above levels constitute what we call step 2 . Step 1 of the dynamic
Semantics, which is using a denotational style is the homomorphism from
the algebra of syntax into the semantic algebra defined by step 2 . As
the metalanguage makes it possible to axiomatically define operations
which closely match Ada concepts, the issue is what to define
denotationally.

The problem has been solved by structuring the definition of dynamic
semantics in such a way, that all concepts described in the RM are
defined in denotational clauses, so that no concept of Ada is hidden in
an abstract data type.

An argument for moving the concepts from the denotational part could be,
that a definition may be written more abstractly by moving some Ada
concept modelling out of the denotitional part, but for the reason of
understanding by the user, it seems more appropriate to split as
described above.

A further advantage of the SMoLCS method is the high degree of para-
meterization. This is used to describe some of the features that pre-
viously have been very difficult to describe. These sorts of concepts
include implementation dependent features. They may now be modelled by
including the appropriate parameters in the definition. A further con-
cept is context clauses. Also here the parameterization scheme helps
[ref DDC and CRAI 19861.

Cor,clusion and Further Work.

~ h n formal definition of the subsets mentioned has assured us, that t h e
task of formally defining the language Ada as described in t h e RM is

feasible and can be done.

During the work with the trial definition we have seen, that in the
static semantics the abstract data types had a tendency to become rather
large. The problem is overcome by splitting some of them into smaller
d a t a types. This is almost also a prerequisite for the second change:
the axiomatic modelling of the data types. Currently they are defined by
3i~ririg a specific model, but breaking the data types into smaller
,!r;flni t~ions makes an axiomatic definition feasible.

In the dynamic semantics the distinction between operations defined
axiomat.ica1ly and denotational formulae will be studied further. It
seems as if the optimal solution (whatever this may be) has not been
found yet.

Finally, fo r both sorts of semantics, some ways of modularizing formulae
is needed in order to enhance the readability. The static semantics
already to some extent is modularized, but more is needed and the
dynamic semantics need more modularizing in step 1. Furthermore, the
formal definition has to be updated w.r.t. the commentaries from t h e
Language Maintenance Committee, a task which is timeconsuming and nrit
always straightforward.

References.

Astesiano et a1 1985
E. Astesiano, G. F. Mascari, G. Reggio, M. Wirsinq
On the Parameterized Algebraic Specification of
Concurrent Systems.
TAPSOFT Conf. , Berlin
Springer Verlag
Lecture Notes in Computer Science, vol 185, 1585

B J ~ r n e r and Oest 1980
D. Bjorner, Ole N. OeSt
Towards a Formal Description of Ada
Springer Verlag
Lecture Notes in Computer Science, vol. 98, 1 - 8 G

Bjarner and Jones 1982
Dines Bj0rner and Cliff B. Jones
Formal Specification and Software Development
Series in Computer Science, Prentice H a l l 198,'

DDC and CRAI 1 9 8 6
E. Astesiano, C. Bendix Nielsen, N. B a t t a , A . F ~ I - : : ~ . ~ . ! . :
A. Giovini, K. W . Hansen, P. Inverardi, E. W. K a r l s . . : . ,
F. Mazzanti, G. Reggio, J. Storbank Pedersen, E. Z i : - , . i
Static Semantics of a 'Difficult' Example Ada St ; i>s<! : ,
and
Dynamic Semantics Of a 'Difficult' Example A d a : i : : t , : . , . -
1 9 8 6

I N R I A 1 9 8 2
Honeywell inc., Cii Honeywell Bull, a n d INKIA
Formal Definition of the Ada Programming Language
1982

c.3.9

