
N89-16359
The "Computerization" of Programming:

Ada(tm)-Lessons Learned

Dennis D. Struble
Intermetrics, Inc.
733 Concord Ave.

Cambridge, MA 02138

1.0 Introduction

During the past four years, Intermetrics has constructed
one of the largest systems yet written in Ada.
the Intermetrics Ada compiler. As you might imagine,
Intermetrics has learned many lessons during the implementation
of its Ada compiler. This paper describes some of these
lessons, concentrating on those lessons relevant to large system
implementations.

This system is

As I considered what lessons to discuss an amusing thought
occured to me. Four years ago I gave a briefing at the Johnson
Spacecraft Center entitled "Ada: A Management Overview." At
that time, I was an ardent Ada proselytizer but one who had
never laid hands on an Ada compiler. In that briefing four
years ago I made several predictions about what it would be like
to manage an Ada project. Having spent the last two years
managing an Ada implementation, I thought I ought to determine
how accurate my predictions had been. (As you might guess, my
predictions turned out to be correct. If they hadn't, there
certainly would have been no point in admitting to them in this
paper. 1

Before I identify
the characteristics of
at Intermetrics. Then
describe some specific
predictions.

these predictions, I'll first describe
the Ada compiler implementation project
after listing the predictions I will
experiences which verify these

2.0 Project Description

The Intermetrics Ada compiler and linker comprise 400,000
lines of Ada code. The compiler is augmented by a program
library manager and by a set of tools which are together another
100,000 lines of Ada. The tool set includes a source lister
which optionally includes the generated assembly code, a
completeness checker, a body generator, the ByrOn(tm) design
language processor, a debugger, and a set of static and dynamic
program analyzers.

Ada'(tm) is a registered trademark of the U.S. Government (Ada
Joint Program Office).
Byron(tm) is a trademark of Intermetrics, Inc.

F.3.2.1

Intermetrics is currently completing a total of six
compilers under two government contracts and four commercial
contracts. The compilers generate code for the IBM 370, the
Sperry 1100, and the MIL-STD-17SOA instruction sets; this
generated code executes in six different run-time environments:
IBM MVS(tm), IBM CMS(tm1, Rmdahl UTS(tm1, Sperry 1100, and bare
1750A. The compilers are hosted under four different operating
systems: IBM MVS, IBM CMS, Amdahl UTS, Sperry 1100, and VAX
VMS (tm) .

All of these compilers have been developed in parallel and
all of the compilers share the same source code.
code is maintained under a configuration management system
designed specifically to support a multi-hosted and multi-
targeted compiler development environment.
staff at its peak included fifty software engineers.

The source

The development

The development environment for the Ada compilers is an IBM
3083 Model BX, running the Amdahl UTS operating system hosted
under VM.
developed using an Ada-subset compiler Intermetrics wrote in
Pascal.
December 1985 and was bootstrapped through itself in February
1986.

The production-quality compiler was initially

The production-quality compiler was validated in

3.0 The Predictions

Figures 3-1 and 3-2 are extracted from the four-year old
briefing I described above. The predictions contained in these
figures are self-explanatory. Of these predictions, the ones
concerning multi-tasking are, of course, not relevant to our
compiler. (Not yet at least: Intermetrics is anxious to modify
our compiler to become the first Ada compiler to take advantage
of the new generation of multi-micro machines.)

All the other predictions have turned out to be more or
less correct. One theme that runs through these predictions is
that with the introduction of Ada, the DoD is attempting to take
a major step forward in the "computerization of programming." I
use the term computerization of programming, rather than
"automatic programming" because I believe that for completely
new applications, such as Ada compilers and Space Station
software, automatic programming will never occur. On the other
hand, many of the tasks required in the programming of new
systems are amenable to much greater computerization. In
particular, Ada requires much more "bookkeeping" to be performed
by the compiler than do other languages.

IBM(tm), MVS(tm) and CMS(tm) are trademarks of the International
Business Machines Corporation.
UTS(tm) is a trademark of the Amdahl Corporation.
VAX(tm) and VMS(tm) are trademarks of the Digital Equipment
Corporation.

F.3.2.2

ORIGINAL PAGE OS
OF POOR QUALITY

I

U
U
T

*
U = W

II)

0
l! t

W V
R *
2

VI a w
-1 .
0 U

-

t
0
U

-
I -
r

a
a

I I
W

la
t

c
VI w
-1

C .

t * I

w o II

0

a m *

- w
a x
w m

d r
d
- Y s o

U
W

I I) C

I O
W 2 2
- *
0
U

r

- 0 t
0 0 0
- 0

n
cu
ce
0
4
v

v,
I
0
Y

..
4

I m

F.3.2.3

ORIGINAL PAGE IS
OF POOR QUALiTY

&
f z s
n 0 0 m 0 2

- 0
- I

m r
.* -u
a 2
0 * -
I K m
O W
rn - 0

u * r m -
I m x

*
2 c
L
V

h

I

- -
-
m

I 0

-1 W

Y 0

2
o m W Y

W I
2 3

-1U 2 W

c

-c
m -
m u
-.I W *

U K - w m e

u m O F
m

W C - 1

m w > - m y

(L -lU
0 -
1 0 e

I
0 u

1
. I

BB]

c
I
L -
c
t e
U

Y

I U

.1

a

- -
-
m
W .1

3
0
W I

0

-

. a

I Y O
0 X I
c w u zc
w o v
-1 w a W . 1

0

-
0

- r
0.1

Z B

W W 1-

e*.
m K c o u
v c w --
W . 1

c w u 0

c-

r m o

m o c
c i u a m

I t -
-I I- c
u -
W
x . Y
U Y -
.1 -*a

w c s
R . i . 1
- 0

w *
e Y I
o m 0
U I I -I
-a
o w e .1 c c

0 0 -
u u a
Y
X

-

m ~ =

u m L

I a a

- m a

'

Y

Y W

R

.1
0

r a
a I

* a.

F. 3.2.4

h

(u

re
0
cu
Y

..
cu
I
0

A more significant computerization of programming arises
because Ada fosters, if not requires, a database management
approach to the handling of software. That is, each Ada package
should be treated as a valuable, complex, and evolving piece of
data; database management facilities and procedures should be
provided that are commensurate with the value and complexity of
this data.

As Intermetrics has further computerized its software
implementation procedures through the use of Ada, Intermetrics
has learned several lessons which confirm those four-year-old
predictions, as well as some lessons that could not have been
anticipated four years ago. These lessons are described below.

4.0 Ada-Lessons Learned

The lessons Intermetrics has learned may be split into the
following categories: Ada Training, Ada Tools, and Ada Language
Use.

4.1 Ada Training

One of the predictions states that the use of Ada would
required well-educated software engineers. Implied by this
prediction is a possible short-fall in software engineers
trained in Ada and trained in the software engineering
principles that Ada encourages.

In fact, availability of trained Ada engineers has not been
a problem at Intermetrics. This is because the Intermetrics
Software Systems Group employees computer scientists who
specialize in support software. Most of our new employees
already know Ada and already know the system design principals
associated with Ada software engineering.

Ironically, in some cases this broad knowledge of modern
language technology has actually caused problems. Some
engineers who have worked with university-developed, state-of-
the-art languages expect Ada to behave the same way. Many of
these state-of-the-art languages emphasize expressability,
perhaps at the expense of run-time efficiency, whereas run-time
efficiency was a key criteria in the design of Ada (and has been
a key criteria in the development of the Intermetrics Ada
compilers.)

L

An example of the problems caused by an orientation to
state-of-the-art languages arises from the CLU programming style
which advocates regular use of "signals" to return status from
subprograms. Several new Intermetrics employees have assumed
that in a corresponding way, exceptions should be used in Ada
programming to return subprogram completion status. In fact,
Ada exceptions are intended for truly "exceptional"

F.3.2.5

I

circumstances. Efficient Ada compilers attempt to generate code
in such a way that exceptions require no processing time unless,
and until, the exception is signalled. However, when the
exception is signalled, substantially more processing is
required than simply returning an output parameter. Thus, use
of Ada exceptions is not analogous to use of CLU signals.
Through coding standards and code reviews, Intermetrics educates
its programmers into efficient use Ada programming.

4.2 Tool-Use Lessons

In using high-order languagas, Intermetrics of ten has found
that the quality of the compiler is more important than the
quality of the language. Certainly in the initial years of Ada
use, this will be the case. Three characteristics of Ada tool
usage are discussed below: the importance of the library
manager, the unfortunate variability among Ada compilers, and
the substantial computing resources required by Ada tools.

4.2.1 A Sophisticated Library Manager is Critical

During the parallel construction of the six compilers, all
of which share the same Ada program library, the necessity for a
database management approach to Ada software configuration
management became clear. It is the Ada program library manager
that provides this database management. This database manager
must provide the following services:

Separate development areas for projects and sub-
projects along with a facility to share formally
"released" packages among projects and sub-projects.

Management of variants of subsystems, where these
variants support rehosting or retargeting the overall
system.

Formal configuration management of successive versions
of subsystems.

An interactive facility that can answer queries
concerning the status of packages in the library as
well as queries concerning dependencies among
packages.

An interactive facility which supports constructing a
system by choosing specific variants and versions for
each sub-system.

F.3.2.6

4.2.2 All Ada's are not the same

has used three different Ada compilers and attempted to use a
fourth. The three successfully used compilers are the two
Intermetrics compilers and the DEC (tm) compiler. (One
Intermetrics compiler and the DEC compiler are validated
compilers.) Not surprisingly, these compilers do exhibit enough
variation that rehosting a large system from one compiler to
another is a substantial undertaking. Some of the major
differences Intermetrics encountered are listed below.

During the developement of its Ada compilers, Intermetrics

Three classes of differences were experienced: functional,
capcity, and performance. Two functional differences were
noteworthy: the first arises because Ada does not specify a
default elaboration order. Thus, unless pragma elaborate is
used exhaustively to explicitly order the complete elaboration,
a complex system may elaborate correctly using one compiler and
yet fail to elaborate using another.

The more troublesome functional problem involved the
different handling of un-initialized records. It is, of course,
incorrect to rely on un-initialized variables. Nevertheless, it
is common in large systems developed using a compiler that does
initialize all variables to zero by default, that this large
system will work correctly even though some variables are not
explicitly initialized. When such a large system is rehosted to
a compiler with a different default initialization, it becomes
extremely costly to identify the un-initialized objects.

At times potential customers have asked us to rehost our
compiler front-end and Byron tool set to systems already having
an Ada compiler. In one case we were unable to respond to the
request because the existing compiler did not have the capacity
necessary to compile the largest units in the Intermetrics
compiler. (Generally, the Intermetrics compilation units are
from ten to several hundred lines; however, there are a few very
large packages in the compiler. These packages include the
parser tables, the code-generator tables, and the DIANA access
package. 1

The most serious difference we encountered was the speed of
our compiler'as compiled by different compilers. We, of
course,'expected variation in the code quality among the
different compilers; when we forecast the speed of our compiler
on the VAX as compiled by the DEC Ada compiler, we took into
account the difference in code quality and difference in machine
speed. Nevertheless, our I/O-intensive, host-interface package,
which conforms to the CAIS file model, ran much more slowly on
the VAX than anticipated. We eventually identified Ada file
open and close operations as the cause of this anomaly. The
lesson is that for extrapolating the performance of a systems-
level Ada program, a simple comparison of code-quality is not
sufficient.

F.3.2.7

There are straightforward procedures which may be used to
avoid these compiler variability problems. Foremost is the
identification of those aspects of Ada which may vary from
compiler to compiler and establishment of coding standards
addressing these variations. If you know in advance that your
system will be rehosted to several compilers, investment in a
standards checker will definitely pay off.

For a large project such as the Space Station which will
have the resources to modify its compilers, it would be
appropriate to enhance each compiler to flag possible sources of
incompatibilities and to generate code that conforms with the
anomalies of other compilers. Fo.r example, Intermetrics is
considering adding a DEC-Ada compatibility option to the
Intermetrics compiler so that we may minimize the recurring cost
of rehosting the Intermetrics compiler to the VAX.

4.2.3 For Ada, Don't Underestimate the Computes!

Sure enough, Ada compilers have turned out to be big and to
be slow. Despite what some may hope, an A d a compiler will
always be slower than an equivalent Pascal or C compiler: it's a
simple issue of algorithmic complexity. Again, Ada is
attempting to computerize software engineering substantially
more than have previous languages: this computerization
requires substantial computing resources.

4.2.3.1 Compile and Link Speed

All potential Ada users are aware that average compilation
speed is a critical compiler characteristic. Nevertheless, in
addition to the average lines-per-minute speed of Ada compilers
there are several other compilation speed issues that are unique
to Ada. These are start-up overhead, speed of separate
compilation, and up-to-dateness checking.

Ada compilers have a start-up overhead greater than
previous compilers. This arises from the size of the compiler
executable and from the requirement to interact with a large
database, namely, the program library. Consequently, the cost
of compiling very small modules is greater than with previous
compilers. This cost should be taken into account when
estimating computing resource requirements and perhaps when
partitioning your system into compilation units.

One Ada's most valueable characteristics is its requirement
that the compiler verify module interfaces. Once again, this
further computerization requires processing time. Each package
that a given package "with's" must be accessed and its interface
information made available to the current compilation. Extended
chains of "with" dependencies across packages add further
accessing cost. Thus, the hierarchical structure of large

F.3.2.8

systems must be designed carefully to avoid including extraneous
dependencies among packages. Further the dependency structure
should be periodically re-assessed during a long implementation
effort to determine if adjustments to this structure would
improve compilation time.

Ada compilers and linkers are required to check the "up-to-
dateness" of Ada packages. In a large system with a complex
library structure, the look-up required to verify up-to-dateness
will be significant. Again an understanding of this issue is
important when evaluating Ada compilers and when estimating
required computer resources.

4.2.3.2 Disk Storage Requirements

Systems written in Ada will require substantially more disk
storage than previous systems. This arises from two factors.
First Ada requires a program library that maintains interface
information from preceding compilations. Secondly, and more
importantly, some Ada compilers, including the Intermetrics Ada
compilers, provide an open interface into the internal data
structures that describe the packages of the compiled system.
The Intermetrics Ada compilers provide this open interface
through DIANA. A program library containing a DIANA description
of each package in the system enables the construction of a set
of tools that can analyze these packages. These tools include
static analyzers, dynamic analyzers, debuggers, package status
reporting tools, and package documentation tools. An advantage
of an open interface is that a given project, like the Space
Station, can readily implement whatever analysis tools the
project requires.

*\

This open interface facility does have a computer resource
cost, namely more disk storage than required by previous
languages. In evaluating this cost, managers must recall that
with the advent of Ada compilers which provide a DIANA-based
program library, we are taking a significant step toward a
database-oriented view of software systems. Such a methodology
does imply the disk storage resources required for a large
database.

Recognizing that a given project may not want to provide
the resources necessary for a complete DIANA database, the
Intermetrics Ada compilers will provide the option to retain
only enough DIANA to support Ada interface checking. Even
though Intermetrics will provide this option, we do anticipate
that most projects will find the benefit provided by the DIANA-
based toolset will substantially outweigh the cost of the disk
storage.

- It is interesting to note that the issue of program library
size and program library functionality is only slowing beginning
to appear in various Ada compiler evaluation criteria. This is

F.3.2.9

I

because a sophisticated program librarian and its disk storage
requirements were never an issue with Ada's predecessors. With
Ada, the characteristics of the program library may well become
one of the key distinguishing characteristics of Ada compilers.
The functionality of the library will determine how effectively
a large number of programmers will be supported and how
effectively parallel development efforts will be supported. The
size of the program library will be an important parameter when
a manager budgets for computer resources.

4.3 Language-Usage Lessons

Building one of the first large systems in Ada is like
attending a grand buffet banquet in a foreign country. There's
a table full of goodies that look incredibly delicious. The
problem is: some of the goodies may not agree with you and there
are so many goodies it would be very easy to overeat. Listed
below are some of the Ada features that in some case turned out
to be a little too rich.

4.3.1 Beware Abstraction Overdose!

From its inception, the Intermetrics compiler was designed
and coded fully utilizing Ada's excellent support for data
abstraction. Each of the compiler's major data structures is
designed as a data abstraction with an appropriate set of access
procedures. The compiler's heavy reliance on abstractions has

standpoints.
I worked out well from both the robustness and flexibility

For example, the compiler was designed with a software
paging system that would manage the storage for the various
intermediate languages. During the first year, while the paging
system was being the implemented, a simple, memory-resident
system was used as a substitute- When the time came to switch
over to the paging system, we anticipated a lengthy integration '

and debugging phase, However, because the underlying
implementation of the storage primitives had been hidden, the
switch-over phase proceded with almost no bugs.

Data abstraction does, however, have a negative side: data
abstraction, particularly if overused, can substantially degrade
a system's performance. Going through multiple levels of
abstraction, each one of which is a procedure call, is
expensive. As we complete our compiler, we find ourselves
having to "collapse" some of these levels, specifically, the
parser's access to the parse tables and the code generator's
access to the code tables-

. Having experienced both the benefits and costs of heavy use
of data abstraction, we believe the best approach is to start
out with those abstractions that best support initial

F. 3.2 -10

development and integration. However, a project manager must
definitely budget time and effort to measure the cost of
abstraction usage once the system has been integrated. And
unfortunately, a project staff probably will need to tune some
of the abstraction usage in order to meet the project's
performance requirements.

4.3.2 Don't Touch that Spec (and leave my body alone too!)

A key Ada design prinicipal is the physical separation of
package specification code from package implementation code. An
intended benefit of this separation is the avoidance of re-
compilation that could result from changes to the implementation
code. Intermetrics experience shows, however, that the simple
division into spec's & bodies does not guarantee minimal
compilation.

To assure minimal re-compilation, management diligence is
required. Ada's strong interface checking has its downside. In
C, Pascal, or FORTRAN, modules are not strongly connected and
hence modules may be recompiled readily. In Ada, packages are
very strongly connected and if changes to packages are not
managed, one can spend enormous amounts of computer dollars re-
compiling.

The strongly connected aspect of Ada necessitates a
software development approach that emphasizes bottom-up coding
and unit testing. The hierarchy of packages must be built in a
manner that freezes the interfaces and thereby prevents
undesired recompilations. This development approach is, of
course, a standard aspect of good software engineering and most
projects do attempt to adhere to this approach. Nevertheless,
when using Ada, the cost of not following this approach become
greater since Ada will force recompilations whenever the
interfaces appear to have changed (even if the programmer knows
they haven' t) .

Another aspect of interface management arises because Ada's
spec and body separation is not as strong as normally believed.
Changes to generic bodies and to in-lined procedures will cause
recompilation. Consequently, managers must make sure that the
staff is aware of these possible body dependencies and structure
their packages to minimize re-compilation necessitated by
changes to both spec's and bodies.

In addition to fostering a package partitioning that
minimizes recompilation, a manager should also make sure the
project's APSE includes a what-if analyzer. A what-if analyzer
answers the question: "What .recornpilation would result if I make
the following change to this spec or to this body.'' This tool
is 'particularly valuable during maintenance when a substantial
change, for example for performance reasons, is being
contemplated. It is likely that a maintainer would not fully

F. 3.2.11

understand the recompilation dependencies in a large system. A
what-if analyzer could guide the design toward one which avoids
substantial recompilation.

4.3.3 Lady Lovelace, she doth nag.

Ada's pervasive constraint checking is thought by many to
be a meddlesome annoyance best handled by liberal use of pragma
subpress.
inception of its Ada development and our experience has shown
our perception to be correct.

Intermetrics did not agree with this view at the

Constraint checking has been perhaps the most valuable Ada
feature we've enjoyed during the compiler's development. The
positive attributes of contraint checking include:

Bugs manifest themselves very close to their "time of
occurrence." In developing a compiler this is
critical, sipce the generation of incorrect code, when
undetected, produces the most difficult bugs.
Fortunately, ninety percent of the time, our compiler
failed with a constraint check rather than blithely
generating incorrect code.

By providing appropriate exeception handlers, bug
occurrences can be made somewhat self-documenting.
That is, an exception handler can identify the context
in which the constraint error occured. For example,
when a contraint error occurs in our compiler, it
prints out the line number of the source line being
compiled and dumps the relevant internal data
structures. (This contrasts with the more
conventional, unadorned "memory exception" and
"operation exception". 1

Given self-documenting failures, contraint checking
allows an independent test group to play a much more
active and productive role in the checkout and debug
process.

Because of the value of constraint checking, Intermetrics
took special'care to design an optimizer that would remove all
unnecessary constraint checks. Unfortunately, with constraint
checking, the compiler can't do the whole job. Minimization of
constraint checking also requires good Ada programming. Precise
type definition is critical to avoid unnecessary constraint
checks. A carefully written Ada program compiled by a good Ada
compiler should result in no more checking-code than would an
equivalent C program containing that amount of assertion
checking mandated by good software engineering standards.

F. 3.2.12

I

While we were using our subset compiler for development, we
were concerned with the possibly unacceptable amount of
constraint checking that would exist in the completed compiler.
Fortunately, we were quite pleased with the contrast between no
constraint check elimination in the subset compiler and
excellent constraint check elimination in the production
compiler. In fact, Intermetrics currently plans to achieve its
performance requirements without resorting to pragma suppress.
Retaining the necessary constraint checks in the compiler will
markedly improve the maintainability of the compiler.

4.3.4 Look Ma - No Regressions!
The problem of regressions is indeed lessened in Ada.

Prior to Ada it was often the case that in fixing a bug in a
large, complex system other bugs were introduced into the
system. The strong structuring support and strong typing that
Ada provides make it more difficult to introduce incorrect fixes
into a large system.

This characteristic of a system written in Ada was clearly
indicated during both the validation and the bootstrap of our
compiler. We had expected, based on prior compiler experience,
that we would experience a two or three week "tail" at the end
of our pre-validation testing. This tail would occur as we
attempted to pass the final five percent of the ACVC suite. We
expected that a fix introduced to pass one of the last ACVC's
would cause one or two previously passing ACVC's to begin to
fail. In fact, this regression did not occur. Our rate of
getting new ACVC's to pass remained high right up through the
week in which the last ACVC's were passed.

A similar phenomenon occurred when we bootstrapped our
compiler. To manage the bootstrap process, we decided that we
would f irs t bootstrap the smallest compiler phase, using this
mini-bootstrap to expose the majority of compiler bugs we would
experience during the full bootstrap. This smallest phase is
the 70,000 line, global optimizer phase. Its bootstrap required
three months. During the three months 55 bugs were exposed and
fixed. This bug rate corresponds to 8 bugs for each new 10,000
lines of new code exposed to the compiler.

4

In forecasting the bootstrap of the remaining 330,000 lines
of the compiler, we estimated that these new lines would produce
bugs at 4 bugs per 10,000 lines, for a total of 130 bugs. Given
this number of bugs, we estimated it would require twelve weeks
to bootstrap the entire compiler. To our pleasant surprise, we
bootstrapped the compiler in five weeks and the additional
330,000 lines exposed only 10 new bugs!

F. 3.2.13

We attribute these two instances of fewer bugs than
expected to the "correctness" discipline which arises from
programming in Ada.
which have few "lingering" bugs and are readily maintainable.

Ada does indeed appear to result in systems

5.0 Conclusion

Intermetrics realized five years ago that writing a
production quality Ada compiler would be a tough job. Writing
the compiler in Ada itself made the job really tough.

This heightened difficulty arose not because Ada isn't an
excellent systems programming language. The difficulty arose
from a situation which occurs too often in our industry: the
dependence on a brand-new programing support environment for a
large systems programming effort.

Fortunately, this situation is behind us. Intermetrics has
a production quality, programming support environment that
efficiently supports continued development of the Intermetrics
Ada compilers. Intermetrics has also learned a great deal from
its 150 person-years of Ada development; hopefully, the lessons
described in this paper will benefit the planning and
implementation of the Space Station software.

F. 3 - 2 -14

