SOFTWARE ENGINEERING LABORATORY SERIES . SEL-89-001

SOFTWARE ENGINEERING
LABORATORY (SEL)
DATABASE ORGANIZATION
AND USER'S GUIDE

MAY 1989

NNAS

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

.

L

mil

=
=

,\""” ,,,
i ..

m

[

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion/Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has
three primary organizational members:

NASA/GSFC, Systems Development Branch
The University of Maryland, Computer Sciences Department
Computer Sciences Corporation, Systems Development

Operation

The goals of the SEL are (1) to understand the software
development process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to jdentify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing series of re-
‘ports that includes this document.

The majdr contributors to this document are

Maria So (Computer Sciences Corporation)
Gerard Heller (Computer Sciences Corporation)
Sandra Steinberg (Computer Sciences Corporation)
Douglas Spiegel (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

iii
5063

PRECEDING PAGE BLANK NOT FILMED ;o mg. i '] __INTENTIONALLY BLANK

I om

{

P4

e

NS

H

i

I

PRECEDING PAGE BLANK NOT FILMED

BSTRACT

The organization of the Software Engineering Laboratory (SEL)
database is presented. Included are definitions and detailed
descriptions of the database tables and views, the SEL data,
and system support data. The mapping from the SEL and system
support data to the base tables is described. 1In addition,
techniques for accessing the database, through the Database
Access Manager for the SEL (DAMSEL) system and via the

ORACLE structured query language (SQL), are discussed.

5063

Y,
“E__LL_IN TENTIQNALLY BLANK

1niime

fim i

v

Ir

”!‘H !

” Pt

|

ion -

TABL F NTENT

n ion. + .« .+ o« . 4 e

1.1 Basic Relational Database Concepts .

ign -

nceptual View of SEL D .

2.1 Project Data

NN N NN
R R
NG S W N

2.2 Project-Independent Data

2.2.1
2.2.2

Schedules

Estimates ¢« « « .+ .+ &

Resource Use. . « « « « .
Product Characteristics .
Changes . . « « « & « « =

Subjective Evaluations. . « .

Final Statistics.

People and Services

Computers . . + +« « « « + & =

3.1 Data Collection Forms. . . . ;'. . e e

....
S
FNFARNYS

wWwwww

ion -

o b
N

4.2.1
4.2.2
4.2.3

4,3 Mapping the Conceptual View to the Logical View.

Schedule and Estimates Forms.
Weekly Rate Data Forms. .
Product Data Forms. . .
Project Completion Forms.

View he SEL

Database Table and View Definitions. .
Relationships and Constraints Among Database
Tables . e .

Relationships Among Tables. .

Descriptions of Support Data, Tables

Database Constraints.

ion - in h EL D
5.1 Database Access Requirements
5.2 DAMSEL System.

5063

- PRECEDING PAGE BLANK NOT FILMED

vii

PAGE 1 4
‘i‘L“JN“"“OMM*'

n

ABLE OF CONTENT nt'

Ad Hoc Database Queries. . . .« + « « + &

Secti

5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5'3.7
5.3.8
5.3.9

ndix

5063

Connecting to the Database. .
Basic SELECT Statement.
Ordering the Retrieved Data
Limiting the Number of Rows Retrleved
Group Functions
Retrieving From More Than One Table-—
Joins v e .
Retrieving From More Than One Table-—
Subqueries. . . ¢ § v o v e e e
Views--A Shortcut for Commonly Used
Joins ., . . e e e e .
Spooling Output and Saving Querles

N Val

viii

| L. |

T

Wi s

B

A3

y T

WM

ST TR 11

0l

Wil |

"o
‘m i
il

i

5063

T QF ILL ION

Basic Relational Database Organization
Conceptual View of SEL Data. . .
Relationships Among Project- Related Tables
Relationships Among Support Data Tables.
Relationships Involving the COMPUTER and
PERSONNEL Tables . « . « + « « « ¢ « & &

LIST OF TABLES

SEL Database Tables and Views——Table-and

Column Descriptions.
SEL Database Tables and V1ews——Techn1ca1
Specifications e v e e e
Constraints on Database Tables . v e s s
SEL Database Access Paths.
ix

4-12
4-32
4-41

=
-

i

ECTION 1 — INTRODUCTION

The Software Englneerlng Laboratory (SEL) was established in
1977 to support research in the measurement and evaluation
of the software development process. Under its sponsorship,
numerous experiments have been de51gned and executed to
study the effects of applying various tools, methodologies,
and models to software development efforts in flight dynam-
ics applications. The SEL is a cooperative effort of the
National Aeronautics and Space Administration/Goddard Space
Flight Center (NASA/GSFC), Computer Sciences Corporation
(CSC), and the University of Maryland.

To support the research activities it sponsors, one of the
major functions of the SEL is the collection of detailed
software engineering data, describing all facets of the de-
velopment process, and the archival of this data for future
use. To this end, the SEL has created and maintained an
online database for the storage and retrieval of software
engineering data. The SEL database has been designed and
implemented as a relational database under the ORACLE rela-
tional database management system (RDBMS) on the Systems
Technology Laboratory (STL) VAX 11/780 at GSFC. Since
ORACLE provides the facilities for organizing, storing,
maintaining, and retrieving data, SEL database users do not
have to understand the physical organization of the data.
They need only understand the logical structure of the data-
base in order to query, calculate, and manipulate a variety
of information. SEL database users include those involved
in software engineering research, managers of current flight
dynamics development efforts, and those involved in the col-
lection of SEL data and maintenance of the database.

This document is intended as a reference guide for all SEL
database users. Its purpose is to provide general users
with high-level information about data collected by the SEL
and how they are stored in the database. Information on how
to access the data via various access paths is also provided.
For database maintenance personnel, this document provides
in-depth information about the structure of the database,
including table and field definitions, indexes and clusters
used, and constraints among data items.

Since this document is intended to be referenced by a broad
spectrum of users, it is organized in increasing levels of
specification. Section 1.1 describes general relational
database concepts and terminology for readers who are not
familiar with relational database systems. Section 2 of the
document presents an introduction to the types of data that
are stored from a conceptual point of view (i.e., without

1-1
5063

regard to physical or logical storage characteristics).
Section 3 discusses the organization of the data with respect
to their sources and the form in which they are collected.
The conceptual view in Section 2 and the data collection
view in Section 3 are then mapped into a logical view of the
database design. This design is presented in Section 4.

The logical design of the database is the lowest level of
detail required to understand how to access the database.
Details of the physical implementation are hidden from the
user via the ORACLE DBMS. Section 5 discusses various ways
to actually access the SEL database. Appendix A lists all
codes used in the database; Appendix B presents sample data-
base queries; Appendix C is a glossary of database-specific
terms and abbreviations; Appendix D presents the SEL data
collection forms; and Appendix E contains the data defini-
tion language (DDL) that specifies the definitions of tables,
views, and all the constraints needed to maintain data in-

tegrity in the SEL database environment.

1.1 BASIC RELATIONAL DATABASE CONCEPTS

In relational database terminology, the basic structure for
storing items of data is the table, or relation. A table
‘consists of a variable number of rows. Each row consists of
a fizxed number of columns, or fields. Columns are identi-
fied by column names and may contain values of a particular
data type (e.g., character, number, date). The columns con-
tain both the actual data being stdred and data that define
the relationship of a given row to rows in other tables. If
the values in a column from one table are drawn from the
same domain as the values in a column from another table,
the data in the two tables are related where rows in each
table share a common value. There is no predefined order in
which the rows of a table are stored. 1In most tables, a
particular column or group of columns is defined as the pri-
mary key of the table. This means that the values of those
columns will be unique for every row in the table. There
may also be columns other than the primary key that must be
unique across all rows. This basic organization is illus-

trated in Figure 1-1.

Figure 1-1 contains two tables, PROJECT and PROJ_SUB. The
row in the PROJECT table for the project named XYZ is re-
lated, via common values in the project number columns
(PROJ_NO), to a group of rows in the PROJ_SUB table repre-
senting XYZ's subsystems. The primary key in the PROJECT
table might be the project name column (PROJ_NAME), while

the primary key in the PROJ_SUB table might be the combina-
tion of the project number (PROJ_NO) and the subsystem prefix
(SUB_PRE) columns. For more details, Reference 6 provides a

good overview of relational database concepts. For

1-2
5063

w o oW

M I WL W

Gl

iy

Wil

i

N

B

bl |

TABLE: PROJECT

COLUMNS -
COLUMN\'(' \
NAMES PROJ_NAME PROJ_NO PROJ_TYPE ACTIVE_STATUS
4 XYZ 101 _ SIMULATOR ACT_DEV
ROW <
\.
TABLE: PROJ_SUB
PROJ_NO SUB_PRE SUB_DATE -
101
101
102

Figure 1-1. Basic Relational Database Organization

5063

5063G(1)-11

ORACLE-specific information, References 4 and 5 provide an
overview of the ORACLE RDBMS as well as a detailed
description of the ORACLE structured query language (SQL).

«

(1]

Hll

.

WG

I

|

i

W

41

Il

[
i

i

Rilall

et
|

1N

i

5063

L

(
|

.

SECTION 2 — A CONCEPTUAL VIEW OF SEL DATA

This section presents an overview of the types of software
engineering data that are stored in the SEL database from a.
conceptual point of view. The fundamental entity about
which SEL data are collected and stored is the project.
Project data compose the bulk of the data in the database
and are presented in Section 2.1. A relatively small por-
tion of the database is allocated to the storage of support
data, such as computer names, services name, and _personnel
names. These data, which are not associated exclusively
with individual projects, are referred to as project-
independent data throughout this document. Section 2.2 con-
tains detailed descriptions of these data. The data elements
described in this section are tagged with the reference
identifiers used to refer to them in Sections 3 and 4.

Figure 2-1 shows the major data items that make up both the
project data and the project-independent data. This concep-
tual view of the data is later mapped into the logical view
of the SEL database discussed in Section 4.

2.1 PROJECT DATA

Software development in the area of flight dynamics at GSFC
is performed in distinct units referred to by the SEL as
projects. A project exists for a specified period of time
that spans the life of a particular software product. The
life of a project comprises two primary stages: the devel-
opment stage and the operations and maintenance stage. The
majority of the data collected by the SEL cover the develop-
ment stage of the lifespan, although some data are also col-
lected during the maintenance stage. The following sections
describe data types that characterize the development stage.
In addition, each project has associated with it the follow-
ing general information that defines and identifies the
project: ’

Pl - Name of the project; a unique identifier distin-
guishing it from other projects

P2 - Type of project; indicator used to describe the
nature of the application and to identify projects
with similar applications for the purpose of com-
parison

P3 - Current status of the project; whether it is in

the development stage or the maintenance stage or
whether its life cycle has been completed

5063

m y e mie Im Ui IMm (UDe B

Wil

e 1m DR] it U RSN FR | B |

ejeq ‘TdS JO MOTIA Tenjidaduo) °1-zZ 2inbig

14 | ,
2 SANVN sawvN || sanwn
& HALNANOD s30IAH3S | | 73NNOSHad
.n.l& .
8 _]
¥ .
3 viva
ANIONI4ION
-103roHd
| 3
o~
HIMOHD 321S NV 30VSN 3ovsn 3oVsn
FUNLONHLS | | HALNAWOO SI0IAHIS HIMOINVI
! | I [
| | SolL
SOLSUVIS | | SNOILYNTVAS 3ovsN | ,
w1 | Bnioarens SIONVHO | |-sialovuvHol | oot e | | sauwwusa || s3inaaHos
19na0Hd
_ I] _ I]
viva
103rOHd

5063

P4 - Miscellaneous descriptive information; this is op-
tional data and may include any of the following:

General notes on project or data peculiarities
Contacts for the project

Name of the project controlled source library
SEL forms collected for the project

Computer on which project is being developed
Project task numbers '

Tools used for collecting project data

2.1.1 SCHEDULES

Pro;ect schedules divide the lifespan of a project into a
series of nonoverlapping, contiguous time periods referred
to by the SEL as phases. During the development stage, the
phases correspond closely to the—prlmany type of development
activity being performed at any given time. The transition
from one phase to the next is signaled by project mile-
stones, such as the critical design review (CDR). The
schedules stored in the database are supplied by personnel
involved in managing the projects being monitored. An ini-
tial schedule is submitted at the start of the project and
updated every 6 to 8 weeks thereafter until the completion
of the project's development stage. All schedules submitted
are stored in the database along with their submission dates
to provide a historical trace of schedule changes. When a
project completes the development stage, a final schedule is
submitted that reflects the actual schedule that was fol-
lowed by the project. Schedule data exist in sets that in-
clude the following: :

Pl - Project name

P5 - Submission date of the current schedule

P6 - Requirements definition phase start and end dates

P7 - Design phase start and end dates_

P8 - Code and test (implementation) phase étart and end
dates

P9 - System test phase start and end dates

P10 - Acceptance test phase start and end dates

P11l - Cleanup phase start and end dates

P12 - Maintenance stage start and end dates

5063

Phase dates are subject to certain constraints, such as the
requirement that they always fall on a Saturday. Also, de-
pending upon the life-cycle model followed, the size and
level of formality of the project, and the SEL's research
needs, some of the phase dates may not be supplied for
particular projects. Reference 1 presents a more thorough
discussion of the SEL definition of phase dates and the con-
straints to which they must adhere.

2.1.2 ESTIMATES

At various points in the life of a project, estimates are
made of certain project characteristics whose actual values
do not become available until the end of the development
phase. These estimates are made as part of the process of
planning the project and monitoring its progress. As the
project proceeds, the estimates are updated regularly to
reflect such factors as system growth and changes in staff-
ing patterns. Thus, toward the end of the development
phase, the at-completion estimates converge on the actual
final project characteristics. The sets of estimates col-
lected by the SEL and stored in the database include the
following:

Pl Project name

P13 - Submission date of the current set of estimates
P14 - Number of subsystems in the software product
P15 - Number of components in the software product
P16 - Total lines of code in the software product
P17 - 01d lines of code in the software product

P18 - Modified lines of code in the software product
P19 - New lines of code in the software product

P20 - Programmer hours spent on the project

P21 - Management hours spent on the project

P22 - Services hours spent on the project

The terms "subsystem” and "component,” used above and else-
where in this document, have specific definitions in the SEL
environment. In general, subsystems are a mutually exclu-
sive partitioning of the components that constitute a soft-
ware system. Components are individual routines or modules
that are maintained in separate files. (See Reference 1 for
a more detailed description of these concepts.)

The lines-of-code estimates collected refer to total lines
of source code, including executable and nonexecutable
statements, comments, and blank lines. The total lines es-
timate is expected to be the sum of the o0ld, modified, and
new lines estimates. Programmer hours is the estimate of
the total technical effort spent on the project. Similarly,
management hours is the estimate of the total hours spent

2-4
5063

i

I

B

&l

Ui & @ 4

(A

o]

g

o

ML |

i1t
Jil

{l

directly managing the project. Services hours refers to the
estimated hours spent by support personnel on the project.
This includes secretaries, technical editors, word proces-
sors, data librarians, couriers, and indirect levels of
project management.

2.1.3 RESOURCE USE

Throughout the development stage of a project, the use of
personnel and computer resources is measured and stored on a
weekly basis. o _

2.1.3.1 Manpower

Each week, the staff resources expended on a given project
are recorded and stored in the database.. Hours are stored
for each person who does technical work or directly manages
the project during the particular week in question. These
hours are categorized by the type of development activity
being performed.

In addition, for projects that began before June 1987, the
manpower resource hours may be further classified by the
subsystem on which the work was performed. Thus, for any
given project, week, and programmer, the following data are
stored:

Pl - Project name -
P23 - Week ending date; this date is always a Friday

P24 - Programmer name; name of the person performing
technical or management work on the project

P25 - Predesign hours; hours worked on the project before
commencement of actual design work (requirements
definition, requirements analysis, etc.)

P26 - Create design hours; hours spent performing soft-
ware design activities (creating structure charts,
writing program design language (PDL), etc.)

P27 - Read/review design hours; hours spent reading and
reviewing design materials (peer reviews, design
walk-throughs, etc.)

P28 - Write code hours; hours spent developing source

code from design materials (coding at desk, en-
tering code at terminal, etc.)

5063

P29 - Read/review code hours; hours spent reading code
for any purpose except isolation of errors (peer
review, code walk-throughs, desk checks, etc.) '

P30 - Test code unit hours; hours spent testing individ-
ual code units (planning and executing test cases,
writing test drivers and stubs, etc.)

P31 - Debug hours; hours spent isolating errors and
planning corrections (does not include actually
correcting errors) , . _

P32 - Integration test hours; hours spent planning tests
that integrate system components (writing and exe-
cuting system tests, etc.)

P33 - Acceptance test'hOurs;~hours;sgent running and sup-
porting acceptance testing of the software

P34 - Other hours; hours that do not fall into any of the
above activities (management, training, documenta-
tion, etc.) -

The hours that are recorded in the various activities for a

given programmer during a given week add up to the total

hours worked on the project during that week by that pro-
grammer. Manpower hours are recorded to the nearest tenth
of an hour. For projects that began before June 1987, the
activity hour items P25 through P34 may be further classi-
fied as being associated with a particular subsystem of the
project. In this case, the sum of the hours recorded in the
various activities and associated with particular subsystems
plus the hours charged to various activities and not associ-
ated with particular subsystems represents the total hours
worked during that week by that programmer. An example of
the latter case is as follows:

" Programmer: J. Doe Week ending: 30-Nov-87

Integration test hours (P32) for subsystem XYZ: 5.0
Integration test hours (P32) for subsystem ABC: 10.0

Write code hours (P28) for subsystem ABC: 15.0

Other hours (P34) (no subsystem): 10.0

Total hours worked: 40.0
2-6

5063

ni

€

&

[i

|

L'

L [HiN

i |

]
ik

il

| e

¥

L

ml |
oy

|

i

ol

|
w
i

In addition to and independent of these weekly activity
hours, programmer hours are recorded categorized by the fol-
lowing activities:

P35 - Rework hours; hours spent reworking any part of the
system due to errors or other unplanned changes
(includes rework of code, design, testing, and all
hours spent debugging)

P36 - Enhancing/refining/optimizing hours; hours spent
improving efficiency or clarity of design, code, or
documentation (not due to unplanned changes)

P37 - Documenting hours; hours spent creating any form
of documentation on the system (system descrip-
tions, user's guides, in-line comments, etc.)

P38 - Reuse hours; hours spent’attéﬁﬁting to reuse com-
ponents of this or other systems

The hours recorded in the above categories do not adhere to
the constraint that their sum represents the total hours
worked by a given programmer during a given week.

Reference 1 presents a more detailed discussion of the vari-
ous activities that categorize manpower effort hours.

2.1.3.2 Services

Each week during the development stage of a project, service
hours are recorded and stored in the database. These are
hours spent by support personnel who are not directly in-
volved in the technical aspects of the project. The cate-
gories of service hours recorded each week for a given
project are as follows:

Pl - Project name

P23 - Week ending date

P39 - Technical publications hours; hours spent by tech--
nical editors, word processors, graphics artists,
etc., in preparing technical documentation for the
project :

P40 - Secretary hours; hours spent by secretaries in sup-

port of technical and management-related project
paperwork

5063

P41 - Librarians; hours spent by data librarians in sup-
port of the project (includes data entry, tape gen-
eration, etc.)

P42 - Program management; hours spent by persons perform-
ing management activities in support of the proj-
ect, but who are not directly responsible for the
project's management

P43 - Other; hours spent in support of the project by
personnel who do not qualify in one of .the support
service categories above

Service hours are not recorded for individuals. Rather, the
sum of the hours reported by all persons performing a par-
ticular support activity during a given week is recorded.

2.1.3.3 Computer)

Computer resources are the third type of resource data re-
corded and stored in the database on a weekly basis. During
the portion of the development stage when programmers are
using computer resources to create the resulting software
product, the number of computer runs and central processing
unit (CPU) hours used are monitored. 1If different portions
of the development effort are performed on different ma-
chines, hours and runs are recorded for each of them. Thus,
for each week of a given project, the following computer
resource data are stored:

Pl - Project name
P23 - Week ending date
and for each computer being used at the current time:

P44 - Computer name; name uniquely identifying the de-
velopment computer

.P45 - CPU hours used
P46 - Number of runs executed

The number of runs recorded is measured as either the number
of interactive log-ons by project members, the number of
batch jobs submitted by project members, or both. On some
development computers, the accounting reports used for ob-
taining the resource data show separate CPU time and number
of run statistics for interactive sessions and batch jobs.
In these cases, the two are recorded separately under dis-

tinct computer names. On other machines, the accounting

2-8
5063

1

& m 1. N8

K

L ki

i

gl

il

k)

aL

W o

i

I

L

reports show total CPU time and number of runs without dis-
tinquishing between batch jobs and interactive sessions. 1In
these cases, only the single combined figures are recorded.

2.1.4 PRODUCT CHARACTERISTICS

A fourth class of project-related data characterizes the
software product that is generated during the development
stage. There are two primary types of product data: that
which captures the static composition of the system at any
given point in time, and that which captures the-dynamic
properties of system growth and change.

2.1.4.1 §Structure and Size

The static composition of the system is recorded as the sys-
tem is produced. This consists of the .partitioning of the
system into subsystems and components, along with descrip-
tive information about each. As mentioned earlier, the SEL
defines subsystems as a mutually exclusive partitioning of
the system components. For each subsystem in a project, the
following data items are stored:

Pl - Project name

P47 - Subsystem prefix; mnemonic prefix used in naming
components that belong to. the subsystem

P48 - Subsystem name; descriptive name describing the
purpose of the subsystem

P49 - Subsystem function; indicator used to describe the
nature of the subsystem and also to identify simi-
lar subsystems for the purpose of comparison

P50 - Subsystem date; date on which the subsystem infor-
mation was entered into the database

Subsystem prefixes are unique within a given project. Each
subsystem comprises multiple components. Components are de-
fined as modules or routines that are maintained in separate
files as individual configuration items. Each component is
associated with exactly one subsystem. The following de-
scriptive information is stored for each component of the
system:

Pl - Project name
P47 - Subsystem prefix; prefix identifying the subsystem

to which the component belongs

2-9
5063

P51 - Component name; mnemonic name used in identifying
the component

P52 - Component date; date on which the component 1nfor—
mation was entered into the database

P53 - Creation date; date on which the component first
became part of the system configuration (i.e., was
moved into the controlled source library)

P54 - Submission date; date on which the component infor-
mation was recorded by the programmer

P55 - Programmer name; name of programmer who created
the component

P56 - Origin; source of the ¢omponent (i.e., old code,
modified old code, new code)

P57 - Difficulty; discrete rating on a scale of 1
(easiest) to 5 (most difficult) of the difficulty
in creating the component

P58 - Type; indicator used to classify components of
similar nature for comparison

Pééf- Purpose; indicator of the component's purpose

2.1.4.2 Growth

Growth data recorded in the SEL database capture the dynamic
nature of the evolving software product. These data are
obtained by taking snapshots of the controlled source 1li-
brary of the project at regular intervals (weekly). The
data elements captured each week provide a historical per-
spective on system size through the development stage of the
life cycle. The information recorded is as follows:

P1

Project name
P23 - Week ending date

P60 - Lines of code; count of the total lines of code
in the project controlled source library

P61l - Components; count of the number of components in
the project controlled source library

P62 - Changes; count of the number of changes that have
occurred in the project controlled library (each
time a new component is added to the library, it is

2-10
5063

g B OE I

[

Gl

‘ g

Wi

T

'

.
‘
4l

i

L

al

(]

counted as one change; each time a component 1is up-
dated in the library, it is counted as another
change)

2.1.5 CHANGES

Detailed information is recorded in the database for each
change that takes place in a project's configured software.
A change is viewed by the SEL as an update to one or more
system components for a particular specific purpose. Typl-
cal purposes for changes include correcting an error, im-
proving the efficiency of a particular operation, or
implementing an enhancement. The following data items are
stored for each change:

Pl

P63

P64

P65

P66

P67

P68

P69

P70

P71

P72

5063

Project name

Change number; number uniqueifhidentifying each
change in the database

Programmer name; name of the programmer implement-
ing the change

Submission date; date on which the change informa-
tion was recorded

Effort required to isolate the change; time spent
determining what was necessary to make the change

Effort required to implement the change; time spent
actually designing, coding, and testing the change

One component affected; flag indicating whether
the change involved updating only one component

Involved Ada; flag indicating whether the change
resulted from using the Ada language

Examined other components; flag indicating whether
components other than those changed were examined
when performing the change : .

Parameters passed; flag indicating whether the
change required awareness of data communicated be-
tween components

Date change determined; date on which the need for
the change was initially determined

5063

P73

P74

P75

P76

P77

P78

P79

P80

P81
P82
P83

P84

P85

P86

Date change completed; date on which the change was
implemented into the system

Number of components changed; count of the changed
components » -

Number of components examined; count of the compo-
nents examined in the change process that were not
changed themselves

Change type; indicator used to classify changes by
particular types

Error source; 1nd1cator of the source of the error
for changes where the change type (P76) 1is error
correction

Error class; indicator of the class of error for
changes where the change type (P76) is error cor-
rection

Commission error; for changes where the change type
(P76) is error correction, flag indicating whether
something incorrect was included in the code

Omission error; for changes where the change type
(P76) is error correction, flag indicating whether
something was left out of the code

Typographical error; flag indicating whether an
error was typographical in nature for changes where
the change type (P76) is error correction

Ada documentation; flag indicating whether the Ada
documentation clearly explained the features that
contributed to an error (P76) attributed to the use
of Ada (P69)

Ada cause; indicator of the cause of an error (P76)

attributed to the use of Ada (P69)

Changed components; list of the names of the compo-
nents that were changed

Ada features, list of the Ada features that were
involved in an error (P76) in which the use of Ada
was a contributing factor (P69)

Ada resources; list of resources used in resolving
an Ada-related error (P69,P76)

2-12

i

Bl

Hl

G Wi ww

i

i

|

il

' .
il

i

i

i

i

i

P87 - Ada tools; list of software tbols used in resolving
an Ada-related error (P69,P76)

2.1.6 SUBJECTIVE EVALUATIONS

When a project completes its development stage, the retro-
spective subjective opinions of personnel involved in the
management of the project are collected and stored in the
database. This includes rating a set of project char-
acteristics on a scale of 1 to 5 and indicating what
software engineering tools were used on the project. Unless
otherwise specified, the scale on the measures ranges from

1 = low to 5 = high. The subjective data items recorded are
as follows:

Pl - Project name

P88 - Problem complexity S s

P89 - Schedule constraints (loose = 1, tight = 5)

P90 - Stability of requirements (unstable = 1,
stable = 5)

P91 - Quality of requirements

P92 - Documentatioh requirements

P93 - Rigor of reqﬁirements réviewé

P94 - Development team ability

P95 - Development team application experience

P96 - Development team environment experience

P97 - Stability of development team (unstable = 1,
stable = 5)

P98 - Management performance

P99 - Management application experience

P100 - Stability of management team (unstable = 1,
stable = 5)

P101 - Project planning discipline

P102 - Degree to which plans were followed

P103 - Use of modern programming practices

2-13
5063

Pl04
P1l05
P1l06
P107

P108

P109
P110
P11l
Pl12

P113

P114
P115
P116

' P117
P118
P119
P120
P121
P122

P123

Discipline in formal communication
Discipline in requireﬁéﬂfs methodology
Disciplipe in design methodology
Discipline in testing méthodoiogy‘

List of tools used on project (not a numerical
rating, but an actual list of tool names)

Use of test plans B
Discipline in quality assurance
Discipline in configuration management
Access to developmené'systeﬁ“‘

Ratio of developers to terminals (low = 5,
high = 1)

Memory constraints

System response time (poor = 1, very good = 5)
Stability of hardware and support software
Effectiveness of tools used

Agreement of software with requirements
Quality of software

Quality of design

Quality of documentation

Timeliness of delivery

Smoothness of acceptance testing

2.1.7 FINAL STATISTICS

When the development stage of a project is complete, meas-
urements are recorded of the actual values of parameters
that were estimated earlier and of additional parameters
that were not estimated. In addition, the project source
code is run through a static analysis tool, and statistics
are recorded for each component of the system. The data

5063

2-14

I i

i

W sl e

wig

1

il

@ i

S

i0 |

o et

'
i

[|

Bl
W
vy 11

I

|

Wit

Camenim

items that constitute final project statistics are as fol-
lows:

Pl - Project name
P124 - Submission date of final statistics

P125 - Actual requirements definition phase start and
end dates :

P126 - Actual design phase start and end dates

P127 - Actual code and test (implementation) phase start
and end dates

P128 - Actual system test phase start and end dates
P129 - Actual aéceptance teéﬁ phasé start and end dates
P130 - Actual cleanup phase start and end dates

P131 - Maintenance stage start and end dates

P132 - Total technical and management hours expended on
the project

P133 - Total service hours expended on the project
P134 - Computer name
P135 - CPU hours used

P136 - Number of runs executed, for each computer used
on the project

P137 - Number of subsystems in the system
P138 - Number of components in the system
P139 - Number of changes made to the system

P140 - Number of pages of documentation produced for the
system

P141 - Total source lines of code in the system
P142 - Total newly created lines of code in the system
P143 - Total lines of code in the system that were modi-

fications to existing code from other systems

2-15
5063

P144 - Total lines of code in the system that were used
from other systems without modification

P145 - Total number of comment lines in the source code
P146 - Total number of executable modules in the system

P147 - Total newly created executable modules in the sys-
tem .

P148 - Total executable modules in the system that were
modified from other systems

P149 - Total executable modules in the system that were
used from other systems without modification

P150 - Total number of executable 11nes of code in the
system -

P151 - Total newly created executable lines of code in
the system

P152 - Total executable lines of code in the system that
were modified from other systems

P153 - Total executable lines of code in the system that
were used from other systems w1thout modification

and for each executable component in the system:
P154 - Number of executable statements in the component
P155 - Total number of source lines in the component

P156 - Total number of comment lines in the component

2.2 EBQQEQZ_IEDEREEDEEILD_IA

This section describes two types of data stored in the data-
base that represent real-world entities, yet are not di-
rectly related to a particular project, as were the items in
the previous section. The data stored about these items are
not extensive. Rather, their primary function is to iden-
tify specific instances of resources when recording project
data.

2.2.1 PEOPLE AND SERVICES
The first class of support entities consists of people and

services. Each person for whom resource hours are recorded

2-16
5063

IR

|

L

aiil

BT

I

w;ii

Rk

€ i

I

0 i

1158

i

I

or who submits component or change information is repre-
sented in the database by the following data items:

M1 - Form name; abbreviated version of the programmer's
name used on data collection forms (see Section 3)

M2 - Full name; programmer's qompleté fifstfand last
name

M3 - Entry date; date on which programmer information
was entered into the database _

Service personnel are stored in the database as generic pro-
grammers; that is, the same information listed above is
stored as only one generic entry for a given class of serv-
ice personnel. Thus, for example,. the personnel entry for
secretary refers collectively to anyone performing secretar-
ial work on a monitored project. s

2.2.2 COMPUTERS

The other class of support entity is computers. Each com-
puter for which resource hours and runs are recorded is rep-
resented in the database by the following data items:

M4 - CPU—name; abbreviated version of the computer name
used on data collection forms (see Section 3)

M5 - Computer full name; longer, more descriptive name
for the computer

5063

e

ECTION — SEL DATA | A _DATA LE N VIEWPOIN

This section describes the data collection forms in their
role as sources for the data items described in Section 2. -
Many data items entered on the forms map directly to items
described in Section 2. Other items are unique to the data
collection process and therefore do not appear in Sec-

tion 2. This section maps the software engineering items in
Section 2 to their sources on data collection forms and de-
scribes the data items that are peculiar to the data collec-
tion process.

The following subsections present descriptions for the SEL
data collection forms. The data items described are tagged
with reference identifiers corresponding to the identifiers
in the forms that are presented in Appendix D. The identi-
fiers are also used as cross references in the SEL database
access paths (Table 4-4 in Section 4). 1If an item maps
directly to an item in Section 2, the description consists
of the item name followed by the Section 2 identifier for
that item (in parentheses). Otherwise, a more complete de-
scription is presented.

3.1 DATA COLLECTION FORMS
3.1.1 SCHEDULE AND ESTIMATES FORMS

The Project Estimates Form (PEF) (Figure D-1 in Appendix D)
provides periodic estimates of the development process and
the software product and estimates of the project schedule.
The estimates of the development process consist of staffing
projections. The estimates of the software product involve
various estimates of the size of the delivered software.

The schedule information consists of a set of dates on which
the various life-cycle phases of the project are scheduled
to start, along with a projected project end date. These
estimates reflect the project size and resource expenditure
as of the completion of the cleanup phase.

The PEF is completed by the project leader. It is submitted
at the initial entry of the project into the database and
every 6 to 8 weeks thereafter through the development life
cycle. The PEF data fields are described below.

Note that the phase date fields contain the start dates of
each of the listed life-cycle phases that apply to the
project. The end date for a given phase is the next phase
start date entered on the form, or the project end date if
there are no start dates for subsequent phases.

5063

PEF FIELDS
D1l -
D2 -

D3 -

D4 -

D5 -

D6 -

D7 -

D8 -
D9 -
D10 -
D11 -
D12 -
D13 -
D14 -
D15 -
D16 -
D17 -
D18 -
D19 -
D20 -

5063

Project name (P1l)
Form date (P1l3)

Requirements; estimated‘requiréments definition
phase start date : ;

Design; estimated design phase start date

Code and test; estimated code and test (implementa-
tion) phase start date '

System test; estimated system test phase start date

Acceptance test; estimétéd aqcéptance test phase
start date - T

Cleanup;'esiiméted'cieanup phase start date
Maintenance; estimated maintenance stage start date
Project end; estimated project end date
Prbgrammer hours _(P20)

Management hours (P21)

Service hours (P22)

Number of subsystems (P14)

Number of components (P15)

Total lines (P16)

New lines (P19)

Modified lines (P18)

014 lines (P17)

PEF form number; unique identifier distinguishing
this form from other PEFs

e
\H\WHI

G ©

Wil

Nl

I

il

U

WiC

e wli

oW

o

T 1

o

K

{

3.1.2 WEEKLY RATE DATA FORMS

The Personnel Resource Form (PRF) and the Services/Products
Form (SPF) provide weekly rate information for the proj-
ects. The PRF, Figure D-2, captures the actual technical/--
management expenditure history on the project. This form
also contains information on the type of activity on which
the manpower hours were spent during the week. A separate
section of the form is used to record hours spent performing
specific activities that are of current interest to the SEL.

The PRF is submitted by every person performing either tech-
nical or management activities on the project. This form is
completed every Friday for the duration of the project de-
velopment life cycle.

PRF FIELDS

D21

Programmer name (P24)

D1 - Project name (Pl)

D22 - Week ending date (P23)

D23 - Predesign hours (P25)

D24 - Create design hours (P26i

D25 - Read/review design hours (P27)
D26 - Write code hours (P28)

D27 - Read/review code hours (P29)
D28 - Test code unit hours (P30)

D29 - Debug hours (P31)

D30 - Integration test hours (P32)
D31 - Acceptance test hours (P33)
D32 - Other hours (P34)

D33 - Rework hours (P35)

D34 - Enhancing/refining/optimizing hours (P36)

D35 - Documenting hours (P37)

5063

D36 - Reuse hours (P38)

D37 - PRF form number; unique identifier distinguishing
this form from other PRFs

The SPF, Figure D-3, measures resource expend1ture in sup—'
port personnel hours and computer resource utilization and

is used to create a historical record of product growth over
the course of the project. The SPF is completed by SEL data

collection personnel. The form contains three distinct
types of data; the growth history data are obtained by run-
ning growth history monitoring programs on the IBM 4341 and
the VAX 11/780. The computer information is taken from com-
puter accounting reports from these computers. Service
hours are obtained from task accounting reports. This form
is submitted every week in which support service or computer
resources are used or in which product growth data are
available.

SPF FIELDS
D1 - Project name (Pl)
D22 - Week endingrdate (P23)
D38 - Cohputer name (P44)
D39 - CPU hours (P45) -
D40 - Number of runs (P46)
D41 - Number of modules (P61)
D42 - Number of changes (P62)
D43 - Lines of code (P60)
D44 - Technical publications hours (P39)
D45 - Secretary hours (P40)
D46 - Librarians' hours (P41)
D47 - Other hours (P43)
D48 - Project management hours (P42)

D49 - SPF form number; unique identifier distinguishing
this form from other SPFs

5063

/A [INTA. Y

EEL

Wi

]

®ii

@il

& @

[

Rl

Rii WU &0 W

WWM u
|y o

3.1.3 PRODUCT DATA FORMS

The Component Origination Form (COF), the Change Report Form
(CRF), and the Subsystem Information Form (SIF) provide
product data information for the project. The COF, Fig-

ure D-4, records information about the components in the
system. Some of the information collected is the origin of
the component, difficulty of developing the component, type
of component, and purpose of component.

The COF is completed by personnel who code new system compo-
nents, modify old components for reuse, or transfer reused
components to the project controlled library. A form is
completed for each component in the system at the time when
the component is ready to be moved into the project con-
trolled source library. -
COF FIELDS B =

D1 - Project name (P1l)

D50 - Programmer name (P55)

D51 - Subsystem prefix (P47)

D52 - Form date (P54)

D53 - Component name (P51) -

D54 - Date entered into controlled library (P53)

D55 - Relative difficulty of developing component (P57)

D56 - Origin (P56)

D57 - Type of component (P58)

D58 - Purpose of executable component (P59)

D59 - COF form number; unique identifier distinguishing
this form from other COFs

The CRF, Figure D-5, contains information about the type of
change that was made, the components that were changed, er-
ror information if applicable, and Ada-specific information
if applicable. The CRF is completed by personnel who imple-
ment changes to the system that involve modifying components
in the project-controlled source library. A form is submit-
ted for each change to the system at the time the changed
components are updated in the project-controlled source 1li-
brary.

5063

I
i

|

CRF FIELDS
D1 - Project name (Pl) z
D60 - Current date (P65) .
D61 - Programmer name (P64) C
D62 - Components changed (P84) =
D63 - Date on which need for change was dete;mined (P72) -
D64 - Date chani;”éi was completed (P73) %
D65 - Effort to isolate change (P66) o
D66 - Effort to implement change (P67) =
D67 - Type of change (P76) 7 &
D68 - Change to one component (P76'8') .
D69 - Look at any other components (P70) %

D70 - Aware of parameters (P71)

W

D71 - Source of error (P77)

D72 - Class of error (P78) -
D73 - Omission error (P80) §
D74 - Commission error (P79) =
D75 - Transcription error (P81) -
D76 - Did Ada contribute to the change (P69) ;gi:-
D77 - Ada features used (P85)] 7;7;
D78 - Documentation understandable (P82) -
D79 - Which statements are true (P83) =
D80 - Which resources provided the information needed to -
correct the error (P86) —
D81 - Which tools provided aided in correction of Ehe -
error (P87) .
D82 - CRF form number (P63) =
3-6 =

5063

The SIF, Figure D-6, contains information about the high-
level partitioning of the system into subsystems. A subsys-
tem prefix, a descriptive name, and a subsystem function
should be specified for each subsystem. The SIF is com-
pleted by the project leader. A form is submitted at the
time of the preliminary design review (PDR) and any time
thereafter when a new subsystem is introduced into the
design of the system. '

'SIF FIELDS

D1 - Project name (P1l)

D151 - Subsystem date (P50)
D152 - Subsystem prefix (P47)
D153 - Subsystem name (P48)
D154 - Subsystem function (P49)

3.1.4 PROJECT COMPLETION FORMS s

The Project Completion Statistics Form (PCSF) and the Sub-
jective Evaluation Form (SEF) provide project completion
information for completed projects. The PCSF, Figure D-7,
is used to record the final statistics for the project.

This information includes the actual project resources ex-
penditures, project schedule, and the software product size.

"The PCSF is completed by the project leader. It is submit-
ted when the final system products -have been delivered. The
PCSF data fields are described below.

Note that, as in the PEF, the phase date fields contain the
start dates of each of the listed life-cycle phases that
apply to the project. The end date for a given phase is the
next phase start date entered on the form, or the project
end date if there are no start dates for subsequent phases.

PCSF FIELDS

D1 - Project name (P1l)
D83 -~ Form date (P124)
D84 - Requirements; actual requirements definition

phase start date
D85 - Design; actual design phase start date

D86 - Code and test; actual code and test (implementa-
tion) phase start date

5063

D87
D88

D89
D90
D91
D92
D93
D38
D94
D95
D96
D97
D98
D997
D100
D101

D102

D103
D104
D105
D106
D107
D108
D109

D110

5063

System test; actual system test phase start date

Acceptance test; actual acceptance test phase
start date

Cleanup; actual cleanup phase_start date
Maintenance; actual maintenance stage start date
Project end; actual project'end date
Technical and management hours (P132)"
Service hours (P133) | |
Computer name (P134)

CPU hours (P135) DR

Number of runs (P136)

Number ofrsubsystems (P137)

Number of components (P138)

Number of changes (P139)

Pages of documentation (P140)

Total source lines of code (P141)

New source lines of code (P142)
Modified source lines of codé'(éi43)
0l1d source lines of code (P144)
Comments (P145)

Total executable modules (P146)

New executable modules (P147)

Modified executable modules (P148)

01d executable modules (P149)

Total executable statements (P150)

New executable statements (P151)

3-8

1

£ ® Wil o«

i

WO W

gl m

i

| A 1 i

i

gl B

m
M

D111 - Modified executable statements (P152)
D112 - 013 executable statements (P153)

D113 - PCSF form number; unique identifier distinguishing
this form from other PCSFs

The SEF, Figure D-8, consists of subjective perceptions of
persons who were involved in managing the project with re-
spect to such factors as the use of methodologies, the de-
velopment environment, and the complexity of the problem.
The SEF is completed by the project leader and selected per-
sonnel involved in managing the project. The responses from
each of the completed forms are combined and reported on one
form. The SEF is submitted when the final system products
have been delivered (end of cleanup phase).

SEF FIELDS ' o s
D1 - Project name (P1l)
D2 - Submission date (P13)
D21 - Project personnel name (P24)

D114 - Problem difficulty/complexity (P88)

D115 - Tightness of schedule constraints (P89)

D116 - Stability of requirements (P90)

D117 - Quality of specification documents (P91)

D118 - Requirements for documentation (P92)

D119 - Rigor of formal reviews (P93)

D120 - Ability of development team (P94)

D121 - Development team experience with application (P95)
D122 - Development team experience with environment (P96)
D123 - Stability of development team cpmposition (P97)
D124 - Project management performance (P98)

D125 - Project management experience (PS9)

D126 - Stability of project management-team (P100)

5063

5063

D127
D128
D129
D130
D131
D132
D133
D134

D135

D136
D137
D138
D139
D140
D141

D142

D143
D144
D145
D146

D147

D148
D149
D150

Project planning discipline (P101)

Degree pro}ect plans followed (P102)

Modern programming practices (P103)

Disciplined éﬁange/que;tion tfackingf(P104)

Use of requirements analysis methodology (P105)
Use of disciplined design methqdology‘(Plos)
Use of disciplined testing methodology (P107)
Use of tgq;s (Ploa)

Use ofwéégt plans (P109) ‘ '

Use of quality assuranéef{?}lézr

Use of configuration managément procedures (P11l1)
Degree of access to development system (P112)
Programmers per terminal (P113)

Development maqhine resource constraints (P114)
Syétem response time (PilS) |

System hardware and support software stability
(P1lle)

Software tool effectiveness (P117)
Delivered software supports requirements (P118)
Quality of delivered software (P119)

Quality of design present in delivered software
(P120)

Quality/completeness of software documentation
(p121) '

Timely software delivery (P122)
Smoothness of acceptance testing (P123)
SEF form number; unique identifier distinguishing

this form from other SEFs

3-10

i

Wil

1 — I

Eil |

0l

1

ui

ECTION 4 - A LOGT VIEW OF EL DATABASE

This section presents the logical schema of the SEL data-
base. The introduction to relational databases in Sec-

tion 1, together with the table descriptions in the following
sections, allow the reader to understand where the data items
described in Sections 2 and 3 may be found in the database.
This section also presents some additional information about
the way the data are stored and describes the tables con-
taining database support data. These latter discussions are
intended for the reader who needs to understand the database
at a deeper level, such as a database maintenance programmer.

Section 4.1 defines each table in the SEL database. Sec-
tion 4.2 describes how the tables are related to one another
and constraints that are imposed on the tables by the seman-
tics of the SEL data. Section 4.3 maps the data items as
defined conceptually in Sections 2 and 3 to each item's lo-
cation in a database table. This section also describes the
access path to follow to reach each end data item.

4.1 BA ABL i N

The SEL database contains a total of 48 base tables (rela-
tions) and 30 views. Base tables are defined independently
of other tables in the sense that no base table is com-
pletely derivable from any other base table. On the other
hand, views are virtual tables that are completely derived
from base tables and contain no data of their own. With
some restrictions, they can be treated as base tables. 1In
the SEL database environment, views are used to provide
users or application programmers with a more convenient way
to access data items that spread across more than one base
table.

Tables 4-1 and 4-2 present the tables and views in the data-
base and their component fields. Table 4-1, which contains
32 tables and 3 views, is intended for all database users.
The additional tables and views that are not included in
this table are mainly used for data entry and system main-
tenance. Table 4-1 presents, for each table and view, the
table or view name; the name of each column; a description
of each table and column; the type of each column and its
length; a list of valid values for columns where coded
values are used; and one or more reference IDs for most
columns, that cross-reference the column to data item de-
scriptions in Sections 2 and 3. A translation of the codes
used in Table 4-1 can be found in Appendix A. Columns that
are part of the primary key are underlined, columns that do
not have reference IDs are generally internal identifiers

4-1
5063

used for relating tables to one another. The data types for
columns may be one of the following: char, number, and date.
A char column that may contain a sequence of alphanumeric is
followed by the maximum length of the field. A number column
that may contain numerals is followed by the width of the
field and the number of decimal places, if applicable. A
date column may contain a date formatted as DD-MMM-YY. Ref-
erence 4 presents a more detailed description of various data
types.

Table 4-2 is intended for users, such as maintenance pro-
grammers, who need to know more of the technical specifica-
tions for all 43 base tables and 27 views. Provided for
each field are its name; its data type; its length and the
number of decimal places if it is a numeric field; an indi-
cation of whether it is part of thé primary key; and a spec-
ification of whether it can contain null.values, whether it
is indexed, and whether it is clustered with another table.
The last column in theftable is for the view entries. It
specifies the underlylng table from which a particular col-
umn within a view is derived. Fields that are identified as
being 1ndexed are those to be used frequently in join opera-
tions, in comparison, or in specifying search conditions.
Unique indices are created for all the fields that must have
unique values within a particular table. All the primary
keys are also uniquely indexed.

4.2 RELATIONSHIPS AND CONSTRAINTS AMONG DATABASE TABLES

The SEL database is composed of two classes of information:
the software engineering data itself, and the information
defining that data and describing its organization within
the database. The software engineering data are discussed
in Sections 2 and 3. The descriptive and organizational
information stored in various tables and referred to from
here on as system support data are further described in this
section. :

4.2.1 RELATIONSHIPS AMONG TABLES

In the SEL relational database environment, tables are
stored without predefined orders. Due to the semantics of

the data itself, however,’ tables do have relational depend-
encies among them.f ‘These dependencies among tables are im-
portant and need to be observed, especially when insert,
update, or delete operations are performed. 1In a relation-
ship, tables share common values existing in one or more
columns of each table. For example, table PROJECT and table
PROJ_SUB both share the same values of project number. When

project data are first entered in the database, a record

4-2
5063

L ui Wi wi | W w. N

&l

al

[l

Qi

eIl o Wi

Table 4-1. SEL Database Tables and Views--Table and Column
Descriptions (1 of 9)
TABLE OR COLUMN B REFEFENCé)
VIEW NAME NAME DESCRIPTION TYPE VALID CODE/NVALUE)
CHANGE TABLE CONTAINING CRF INFOR-
MATION FOR ALL CHANGES
CHANGE NO FORM NUMBER OF CRF CHAR (6) P83, D82
PR(X}_ID 1D UNIQUELY IDENT FYING EACH NUMBER (5, 0)
PROGRAMMER —
SUB_DATE SUBMISSION DATE OF CRF DATE P65, D60
EFF_ONE YESNO FLAG TO INDICATE CHAR (1) YN Fes, D8
WHETHER CHANGE WAS MADE TO N
ONE AND ONLY ONE COMPONENT
EFF_ADA YES/NO FLAG TO NDICATE CHAR (1) - Y.N . Peg, D76
WHETHER USE OF ADA
CONTRIBUTED TO THIS CHANGE o PR
EFF_ISO_CH PROGRAMMER'S EFFORT TO CHAR (10} 1HR, 1DAY, 3DAY, NDAY, NOTDET Ps6, D5
. ISOLATE CHANGE
EFF_COM_CH PROGRAMMER'S EFFORT TO CHAR (10) 1HR, 1DAY, 3DAY, NDAY, NOTDET P87, Ds8
IMPLEMENT CHANGE
EFF_PARPA YES/NO FLAG TO INDICATE CHAR (1) Y,.N P71,070
.. | WHETHER PROGRAMMER HAD TO
BE AWARE OF PARAMETERS
PASSED OR NOT
EFF_OTHER YES/NO FLAG TO NDICATE CHAR (1) Y.N P70, D68
WHETHER PROGRAMMER LOOKED
AT ANY OTHER COMPONENTS
DATE_DETER | DATEON WHICH NEED FOR CHANGE | DATE P72, D83
WAS DETERMINED - l
DATE_COMP DATE ON WHICH CHANGE WAS DATE P73, D84
COMPLETED
NUM_COM_CH | TOTAL NUMBER OF COMPONENTS NUMBER (2, 0) P74
CHANGED
NUM_COM_EX | TOTAL NUMBER OF COMPONENTS NUMBER (2, 0) P75
EXAMINED
CH_TYPE TYPE OF CHANGE CHAR (10) ERRCO, PLANE, IMPRE, IMPCM, pre, D87
IMPUS, INOE, OPTSA, ADENC, OTHCH,
FORM_TYPE TYPE OF DATA COLLECTION FORM CHAR (8) CRF
STATUS STATUS OF CRF CHAR (10) UNCHK, HCCORRECT,
HCERROR, VERAP
CHANGE_COM
TABLE CONTAINING CHANGED
COMPONENTS ASSOCIATED WITH
PARTICULAR CRFs
P83, D82
CHANGE_NO FORM NUMBER OF CRF CHAR (8)
COM_NO 1D OF CHANGED COMPONENT NUMBER (7, 0)
CH_ADAFEAT
TABLE CONTAINING ADA FEATURES
THAT WERE INVOLVED N OR CON-
TRIBUTED TO PARTICULAR CHMGE$
Pe3, D82
CHANGE_NO | FORM NUMBER OF CRF CHAR (8)
. pes, D77
ADA FEATURE | FEATURE(S) INVOLVED IN CHANGE CHAR {10) DATATYPE, SUBPROG, EXCEPT, GEN,
F ADA IS USED AS DESIGN AND PACK, TASK, SYSDEPF, OTHER
IMPLEMENTATION LANGUAGE

5063

5063G-(6)-24

7fahie 4—

1. SEL Database Tables and Views--Table

Descriptions (2 of 9)

and Column

TABLE OR
VIEW NAME

COLUMN
NAME

DESCRIPTION

REFERENCE
D

CH_ERR_ARES

CHANGE_NC
ERR_ARES
e —

TABLE CONTAINING RESOURCES
USED IN CORRECTING ERRORS FOR
PARTICULAR CHANGES INVOLVING
ADA

FORM NUMBER OF CRF

RESOURCES USED TO CORRECT
ERROR CAUSED BY USE OF ADA

CHAR (8)
CHAR (10)

Pe3, D82
Pasg, D80

CH_ERR_GEN

ERR_ADOC

ERR_ACAUSE

TABLE CONTAINING ERROR
CHARACTERISTICS FOR PARTICULAR
CHANGES IDENTIFIED AS ERROR
CORRECTIONS

FORM NUMBER OF CRF
SOURCE OF ERROR

CLASS OF ERROR

YES/NO FLAQG TO INDICATE
WHETHER ERROR WAS ONE OF
COMMISSION

YES/NO RLAG TO INDICATE WHETHER
ERROR WAS TYPOGRAPHICAL

YES/NO FLAG TO INDICATE
WHETHER ERAOR WAS ONE OF
OMISSION

YES/NO FLAG TO INDICATE
WHETHER ADA COMPLER

TATION OR ADA LANGUAGE REFER-
ENCE MANUAL EXPLAINS
INVOLVED FEATURES CLEARLY

CAUSE OF ERROR INVOLVING ADA

CHAR(8)
CHAR (10}

CHAR (10)

CHAR (1)

CHAR (1)

CHAR (1)

CHAR (1)

CHAR (10)

REQMT, FUNSPEC, DESIGN, CODE,
PRECH, NOTDET

INIT, LOGIC, INTERIL INTERE,
DATAVAL, COMPUTE, NOTOET

Y,N

Y.N

Y.N

INTERACT, INCOF, FEATUREM,
FEATUREC

Pe3, D82

PT77,071

P78,D72

P79,074

P81, D75

P80, 073

P82, D78

P83, D7

CH_ERR_TOOLS

TABLE CONTAINING TOOLS USED iN
CORRECTING ERRORS FOR PAR-
TICULAR CHANGES INVOLVING ADA

FORM NUMBER OF CRF
ADA TOOLS USED THAT AIDED N

DETECTION OR CORRECTION OF
ERROR

CHAR (8)
CHAR (10}

COMP!, SYMDEB, LSE, CMS, SCA,
PCA, DECTM, OTHER

P83, D82
P87, Dét

COMPUTER

C_FULL_NAME

TABLE CONTAINING INFORMATION
VARIOUS PROJECTS

SHORT, UNIQUE NAME IDENTIFYING
A PARTICULAR COMPUTER

COMPUTER FULL NAME

CHAR (10)

CHAR (20)

COM_PURPOSE

COM_NO

S———

TABLE CONTAINING PURPOSES
REPORTED ON COFs FOR
PARTICULAR COMPONENTS

1D UNKQUELY IDENTIFYING EACH
COMPONENT

MAJOR PURPOSE(S) OF COMPONENT

NUMBER (7, 0)

CHAR (10)

IOPRO, ALCOMP, DATRA, LODEC,
CNTROMOD, INTOP, ADAPR, ADADA

5063

5063(A)G-(6)-25

B

i §

P
‘

E

Il

[

Bl =

I
I

EL

[|

]

Table 4-1.

SEL Database Tables and Views--Table

Descriptions (3 of 9)

TABLE OR COLUMN
VEEW NAME NAME

DESCRIPTION

TYPE

VALID CODEVALUE

REFERENCE
2]

COM_SOURCE
COM_NO
PROG_ID

FORM_NOC
FORM_TYPE
STATUS
CREATE_DATE

ORI_TYPE
COM_TYPE

DFFICULTY

SUB_DATE

TABLE CONTAINING COF NFORMA-
TION FOR ALL COMPONENTS

10 UNKQUELY IDENTIFYING EACH
COMPONENT

1D UNIQUELY DENTIFYING EACH
PROGRAMMER

FORM NUMBER OF COF
TYPE OF DATA COLLECTION FORM
STATUS OF COF

DATE ON WHICH COMPONENT WAS
ENTERED INTO CONTROLLED LIBRARY

ORIGIN OF COMPONENT
TYPE OF COMPONENT

DEGREE OF DIFFICULTY IN CREATING
PARTICULAR COMPONENT

SUBMISSION DATE OF COF

NUMBER (7,0)
NUMBER (5, 0)

CHAR (€)
CHAR (8)
CHAR (10)

DATE

CHAR (10}
CHAR (10)

NUMBER (2, 0)

DATE

COF

UNCHK, HCCORRECT, HCERFOR,
VERAP

NEW, EXTMO, SLMOD, OLDUC

INCL, JCL, ALC, FORTRAN, PASCAL,
NAMELT, DISPLAY, MENDEF,
REFDATA, BLOCKDA, ADASUBS,
ADASUBB, ADAPACKS, ADAPACKB,
ADATASKS, ADATASKB, ADAGENS,
ADAGENSB, OTHER

1TOS

PS3, D54

Pse, D56
PS8, D57

Ps7, D55

PS4, D52

COM_STAT

0
2
z
[+]

|

C_LINE

C EXE_S

C_C_LINE

TABLE CONTAINING COMPONENT
STATISTICS FOR ALL COMPONENTS

1D UNKQUELY IDENTIFYING EACH
COMPONENT

TOTAL NUMBER OF LINES OF CODE
(WITH COMMENTS) IN COMPONENT

TOTAL NUMBER OF EXECUTABLE
SQURCE CODE STATEMENTS N
COMPONENT

TOTAL NUMBER OF COMMENT LINES
IN COMPONENT

NUMBER 7, 0)
NUMBER 8, 0)

NUMBER (8, 0)

NUMBER (6.0}

P55

Pi54

P158

EFF_ACT

EFF_ID

ACT_HR

TABLE CONTAINING PROGRAMMER
ACTNITY HOURS FROM PRFs AND
SERVICE PERSONNEL HOURS FROM
S5PFs FOR ALL PROUECT, PROGRAM-
MER, AND WEEK COMBINATIONS

VALUES FROM P_ID (EFF_PRQJ) OR
PS_ID (EFF_SUB)

ACTNITY TO WHICH PROGRAMMER
OR SERVICE PERSONNEL IS
CHARGING TIME ON PRF OR SPF

ACTUAL HOURS SPENT N
PARTICULAR ACTIVITY

NUMBER
(10,0

CHAR (10)

NUMBER
10,2)

PREDES, CREDES, RDREVDES, -
WRCODE, RDREVCOD, TSTCODUN,
DEBUG, INTTEST, ACCTEST, OTHER,
SUPPORT

P25 TOP3M
D23 TO D32
P2 TO P4
D44 TO D48

EFF_FORM

TABLE CONTAINING FORM IDENTH
FICATION AND STATUS INFORMATION
FOR EACH PROJECT, PROGRAMMER
AND WEEK COMBINATION; ENTERED
FROM PRFs OR SPFs

and Column_

5063

5063G-(5)-26

Table 4-1. SEL Database Tables and Views--Table and Column
Descriptions (4 of 9)

-
TABLE OR COLUMN REFERENCE -
VIEW NAME NAME DESCRIPTION TYPE VALID CODEVALUE p =
EFF.FORM |P_D P_ID VALUE FROM TABLE EFF_PRQJ NUMBER
(CONTD) (10, 0) B
FORM_NO | FORM NUMBER OF PRF OR SPF CHAR (8) PRF, SPF D37, D49)
FORM_TYPE | TYPE OF DATA COLLECTION FORM CHAR (8)
STRIUS STATUS OF PRF OR SPF CHAR (10) UNCHK, HCCORRECT,
HCERROR, VERAP —
EFF_PROJ TABLE ASSOCIATING GIVEN PROJECT, -
PROGRAMMER, AND WEEK COM-
BINATION WITH SURROGATE KEY (P_ID)
FOR USE IN OTHER TABLES
PROJ_NO 1D UNIQUELY IDENTFYING EACH NUMBER (3, 0}}
_— PROGRAMMER t
SUB DATE | SUBMISSION DATE OF PRF OR SPF DATE P23, D22
PROG_D 10 UNIQUELY IDENTFYING EACH NUMBER (5, 0)|
I PROJECT -
P_ID SURROGATE KEY REPRESENTING UNIQUE] NUMBER
PACJ_NO, PROG_ID, AND SUB_DATE (10.0) -
COMBINATION -
EFF_SUB TABLE ASSOCIATING P_ID FROM &
| EFF_PROJ AND SUBSYSTEM PREFIX
.| WITH SURROGATE KEY (PS_ID} FOR
USE IN OTHER TABLES
) P_IO VALUE FROM TABLE EFF_PROJ NUMBER
SUB_PRE SUBSYSTEM PREFIX CHAR(S) ~ ’ P47, D51, D182
PS_ID SURROGATE KEY REPRESENTING NUMBER ’ —
: UNIQUE P_ID AND SUB_PRE COMBINA- (10,0
TION
EFF_SUPER TABLE CONTAINING PERCENTAGE
OF TIME SPENT DOING SUPERVISORY
WORK FOR A PARTICULAR PROJECT,
PROGRAMMER, AND WEEK
COMBINATION
P_ID P_ID VALUE FROM TABLE EFF_PRQJ NUMBER
(10,0 —
b
PER_SUP PERCENTAGE OF SUPERVISORY TIME NUMBER (8, 2) ﬁ
FOR THIS PROGRAMMER, PROJECT,
AND WEEK _
PERSONNEL TABLE CONTAINING INFORMATION
ABOUT PERSONNEL FOR WHOM
HOURS ARE RECORDED ON VARIOUS
PROJECTS
PROG_ID 1D UNIQUELY IDENTFYING EACH NUMBER (5, 0)
| PROGRAMMER
FORM_NAME | PROGRAMMER NAME AS IT APPEARS ON | CHAR (15) THIS FIELD ALSO INCLUDES THE M1, P24, D21, ;
VARIOUS FORMS FOLLOWING "SERVICES® PROGRAM- | PS5, DS0, Pé4
MER NAMES D81
LIBARIAN -~ LIBRARIANS == .
OTHSUPP - OTHER SUPPORT E
PERSONNEL 5 :
PROGMGMT - PROGRAM MANAGE- 2
MENT PERSONNEL e
SECRTARY - SECRETARES g.
TECHPUBS - TECHNICAL PUBLICA- B3 =
TIONS PERSONNEL g =
ek 2 ? H
4-6 =

5063

! |

5063(A)G-(6)-28

Table 4-1. SEL Database Tables and Views--Table and Column
Descriptions (5 of 9)
TABLE OR COLUMN . < REFERENCE
VIEW NAME NAME DESCRIPTION TYPE VALID CODE/VALUE 1
PERSONNEL FULL_NAME FULL DESCRIPTIVE NAME OF CHAR (30) M2
(CONTD) PROGRAMMER
DATE_ENTRY DATE ON WHICH PROGRAMMER WAS DATE M3
ENTERED INTO SYSTEM
PROJECT TABLE CONTAINNING iINFORMATION -
ABOUT ALL PROJECTS IN THE
DATABASE
PROJ_NAME PROJECT NAME CHAR (8) Pi, Dt
PROJ_NO 10 UNIQUELY IDENTFYING EACH NUMBER (3, 0)
PROJECT -
PROJ_TYPE PROJECT CATEGORY CHAR (10) ATTITUDE, AGSS, SIM, ORBIT, P2
- SCIENTFIC, DATABASE,
REALTIME, TOOL, OTHER
ACTNVE_STATUS{ CURRENT STATUS OF PROJECT CHAR (10) ACT_DEV, ACT_MAINT, P3
INACTIVE, DISCONT
PROJ_CPU_STAT TABLE CONTAINING AT-COMPLETION
COMPUTER RESOURCE STATISTICS
FOR ALL PROJECTS IN DATABASE
PROJ_NO 1D UNIQUELY IDENTFYING EACH NUMBER (3, 0)
PROJECT
SUB_DATE SUBMISSION DATE OF PCSF ODATE P124, D83
CPU_NAME SHORT NAME IDENTIFYING COMPUTER | CHAR{10} P134, D38
USED ON PRQUECT (FROM COMPUTER
TABLE) -
TOTAL_HRS TOTAL COMPUTER HOURS USED FOR | NUMBER P135, Do4
PARTICULAR COMPUTER ON PROJECT | (10,2)
T_RUN TOTAL NUMBER OF RUNS FOR PARTIC- | NUMBER (8, 0) P136, D95
ULAR COMPUTER ON PROJECT
PROJ_EST TABLE CONTANNING ESTIMATED
STATISTICS FOR ALL PRQJECTS N
DATABASE
PROJ_NC 1D UNIQUELY IDENTFYING EACH NUMBER (3,0} P13, D2
- PROJECT
SUB_DATE SUBMISSION DATE OF PEF DATE P14, Did
T_SYS ESTIMATED TOTAL NUMBER OF NUMBER (4, 0) P15, D15
SUBSYSTEMS
T_COM ESTIMATED TOTAL NUMBER OF NUMBER (4, 0) P16, D16
COMPONENTS
T_LINE ESTIMATED TOTAL NUMBER OF LINES | NUMBER (7, 0) P18, D17
OF CODE
T_NEW_LINE ESTIMATED TOTAL NUMBER OF NEW NUMSBER (6, 0) e, D17
LINES OF CODE
T_MOD_LINE ESTIMATED TOTAL NUMBER OF MODI | NUMBER (8, 0) P18, D18
FIED LINES OF CODE
T_OLD_LINE ESTIMATED TOTAL NUMBER OF OLD NUMBER (8, 0) P17, D18
LINES OF CODE
PRO_HR ESTIMATED TOTAL PROGRAMMER NUMBER (10, 2) P20, Dlw‘l
HOURS
MAN_HR ESTIMATED TOTAL MANAGEMENT NUMBER (10, 2) P21, D12
HOURS
4-7

5063

S063G-(5)-29

Table 4-1. SEL Database Tables and Views--Table and Column
Descriptions (6 of 9)
TABLE OR COLUMN - : REFERENCE
VIEW NAME NAME DESCAIPTION TYPE VALID CODEVALUE 0
PROJ_EST SER_HR | ESTIMATED TOTAL SERVICES HOURS | NUMBER (10, 2) P23, D13
(CONTD)
PROJ_EST_PHASE TABLE CONTAINING ESTIMATED AND
AT-COMPLETION PHASE DATES FOR
ALL PROJECTS IN THE DATABASE
PROJ NO | 1D UNIQUELY IDENTIFYING EACH NUMEER (3, 0)
== |prouecT
SUB DATE | SUBMISSION DATE OF PEF OR PCSF | DATE PS5, D2, P124, D83
PHASE CO | PHASE CODE IDENTIFYING DIFFERENT | CHAR (10) REGNT, DESGN, CODET, SYSTE,
=== | PHASES IN UFE OF PROJECT ACCTE, CLEAN, MAINT
START_DATE| START DATE OF A PARTICULAR PHASE | DATE ’ D3 TO D10,
- . Dé4 TO D91,
2 PSTO P12,
P12STO P13
END_DATE | END DATE OF APARTICULARPHASE | DATE D3 TO D10,
D84 TO DB,
P8TO P12,
P125 TOP131
PROJ_FORM TABLE CONTAINING FORM IDENTIFICA-
TION AND STATUS INFORMATION FOR
PEF, PCSF, SEF, AND SPF DATA
PROJNO | IDUNIQUELY IDENTIFYING EACH NUMBER (3, 0)
PROJECT
SUB_DATE | SUBMISSION DATE OF SPF, PEF, PCSF, | DATE D83, D22, D2
OR SEF
FORM NO | FORM NUMBER OF SPF, PEF, PCSF, OR | CHAR (8) SPF, PEF, PCSF, SEF D150, 020, D4$,
— lser D113
FORM_TYPE | TYPE OF DATA COLLECTION FORM CHAA (8)
STATUS | STATUS CODE FOR FORM DATA CHAR (10) UNCHK, HCGCORRECT, HCERROR,
VERAP
PROJ_GRH TABLE CONTAINING GROWTH HISTORY
INFORMATION FOR ALL PROJECTS IN
DATABASE
PROJNO |IDUNIGUELY IDENTIFYING EACH NUMBER (3, 0)
SUB DATE | SUBMISSION DATE OF SPF DATE D22
GRUNE | TOTAL NUMBER OF UNESOF CODE | NUMBER (7, 0) P80, D42
(WITH COMMENTS) IN PROJECT CON-
TROLLED SOURGE LIBRARY
GA_MOD | TOTAL NUMBER OF MODULES IN PROJ- | NUMBER 4, &) P81, D4y
ECT CONTROLLED LIBRARY
GR_CH TOTAL NUMBER OF CHANGES NUMBER (8, 0) P82, D42
RECORDED IN PROJECT CONTROLLED
UBRARY
PROJ_MESS TABLE CONTAINING GENERAL PROJECT
DESCRIPTION INFORMATION FOR ALL
PROJECTS IN DATABASE
PROJNO | 1D UNIQUELY IDENTIFYING EACH NUMBER (3, 0)
—— | pROvECT
MESS_TYPE | GENERAL PROJECT DESCRIPTION CHAR (10) COMPACC, CONLIB, CSCP, CURPH,
CODES DEVMA, GHTOOL, GSFCP, SELF,
TASKNO, TEXTY, TEXT2, TEXT3,
TEXT4, TEXTS, TEXTS, TEXT?,
TEXTS, TEXTS, TEXT10
4-8
5063

[

L

N

=
-

B

T
i

i

m

Wil

il 11

H

e 0

e

b e

"
I

[

il
{1

5063G-{6)-30

Table 4-1. SEL Database Tables and Views—--Table and Column
Descriptions (7 of 9)
TABLE OR COLUMN REFERENCE
VIEW NAME NAME DESCRIPTION TYPE VALID CODEIVALUE [
PROJ_MESS MESSAGE GENERAL PROJECT DESCRIPTION CHAR (85) P4
(CONT'D)
DATE_ENTRY| ENTRY DATE OF EACH MESSAGE DATE
PROJ_PRCD TABLE CONTAINING WEEKLY COMPUTER
RESOURCE USE INFORMATION FOR ALL -
PROJECTS IN DATABASE
PROJ_NO 1D UNIQUELY IDENTIFYING EACH NUMBER (3, 0)
- PROJECT
SUB_DATE | SUBMISSION DATE OF SPF DATE P23, D22
RES_NAME | SHORT NAME IDENTIFYING COMPUTER | CHAR (10Y P44, D38
USED ON A PROJECT (FROM COMPUTER .
TABLE)) P
RES_HA TOTAL CPU HOURS USED IN CURRENT | NUMBER) P45, D39
WEEK (10,2
RES_RUN TOTAL RUNS MADE IN CURRENT WEEK | NUMBER (5, 0) P48, D40
PROJ_SEF TABLE CONTAINING SUBJECTIVE MEA-
SURES FROM SEFs FOR ALL PRQJECTS
W DATABASE
PROJ_NO 10 UNIQUELY IDENTIFYING EACH NUMBER (3, 0}
PROJECT
EVALUATE |INTEGER INDICATING THE VALUE OF NUMBER (1,0}{ 1 TOS P88 TO P107
PARTICULAR MEAS_TYPE POS TOP123
MEAS_TYPE |CODES IDENTIFYING PROJECT SUB- CHAR (10} PMO1, PMO2, PMO3, PMO4, PMOS,
JECTWE CHARACTERISTICS © | PMOS, 8T07, STO08, STOS, ST10, TM11,
TM1I2, TM13, TM14, TM15, PC18, PC17,
PC18, PC18, PC20, PC21, PC22, PC23,
PC24, EN2S, EN28, EN27, EN28, EN29,
EN3D, PT31, PT92, PTA3, PT34, PTIS,
PTSS
PROJ_SEF_SEC TABLE CONTAINING SECONDARY-
LEVEL INFO, AS RECORDED ON SEFs,
FOR ALL PROJECTS N DA'lfA BASE
PROJ_NO 1D UNIQUELY IDENTIFYING EACH NUMBER (3, 0}
- PROJECT
MEAS_TYPE |CODE IDENTIFYING PROJECT CHARAC- 1CHAR (10) PC21
TERISTICS AND TOOLS USED
SECOND_L |SECONOCARY LEVEL INFORMATION FOR | CHAR (10} COMPt, LINK, EDIT, GRADIS, REPLP, M 0.6, D134
== | PARTICULAR MEAS_TYPE. AT PRE- STRANT, PDLPR, ISPF, SAP, CAT,
SENT, ALL THE CODES STORED HERE PANVAL, TESTCO, INTERF, LSE,
ARE FOR "SE OF TOOLS" (PC21) SYMDEB, CMTOOL, SDE, OTHER
PROJ_STAT TABLE CONTAINING AT-COMPLETION)
STATISTICS FOR ALL PROJECTS IN
DATABASE
PRQJ_NO 10 UNIQUELY IDENTIFYING EACH NUMBER (3, 0)
PROJECT
SUB_DATE | SUBMISSION DATE OF PCSF DATE P124, D83
TECH_MAN | TOTAL TECHNICAL AND MANAGEMENT | NUMBER P132, D82
_HR HOURS USED ON PROJECT {10, 2)
SER_HR TOTAL SERVICE HOURS EXPENDED NUMBER P133, D93
ON PROJECT (10,2
T_SYS TOTAL NUMBER OF SUBSYSTEMS NUMBER (4, 0) P137, Do
T_COM TOTAL NUMBER OF COMPONENTS NUMBER (4, 0} P138, D97
4-9

5063

Table 4-1. SEL Database Tables and Views--Table and Column
Descriptions (8 of 9)

TABLE OR COLUMN REFERENCE
VIEW NAME NAME DESCRIPTION TYPE VALID CODENVALUE i
PROJ_STAT | T_CH TOTAL NUMBER OF CHANGES NUMBER (¢, 0) P139, 098
(CONTD)
T_DOC TOTAL PAGES OF DOCUMENTATION NUMEER (8, 0)) P140, D99 _
T_UNE TOTAL NUMBER OF LINES OF CODE NUMBER (7, 0) P141, D100 %
T_NEW_LINE | TOTAL NUMBER OF NEW LINES OF CODE | Numaer 8,0y | o _ P142, D101
T_MOD_LINE | TOTAL NUMBER OF MODFIED LINES OF | NUMBER (8, 0) P143, D102 =
COOE =
T_OLD_LINE | TOTAL NUMBER OF OLD LINES OF CODE | NUMBER (8, 0) P44, D103
T_COMMENT | TOTAL NUMBER OF COMMENT NUMEER (8, 0) P145, D104
STATEMENTS I) —
T_EXE_MOO | TOTAL NUMBER OF EXECUTABLE NUMBER (4, 0) P148, D105 -
MODULES) L
T_NEW_MOD | TOTAL NUMBER OF NEW MODULES NUMBER (4,0)| P147, D106 —
T_MOD_MOD | TOTAL NUMBER OF MODIFIED MODULES | NUMBER (4, 0) ' P148, D107 %
T_OLD_MOD | TOTAL NUMBER OF OLD MODULES NUMBER (4, 0) P149, D108
T_EXE_STAT | TOTAL NUMBER OF EXECUTABLE NUMEER (8, 0) P150, D109
STATEMENTS =
T_NEW_STAT] TOTAL NUMBER OF NEW EXECUTABLE | NUMBER (8, 0) P151, D110
STATEMENTS
T_MOD_STAT| TOTAL NUMBER OF MODIFIED NUMBER (¢, 0) P152, D111 =
EXECUTABLE STATEMENTS E
|
T_OLD_STAT | TOTAL NUMBER OF OLD EXECUTABLE | NUMBER (8, 0) - P153, D112
STATEMENTS
PROJ_SUB TABLE ASSOCIATING PROJECT AND
SUBSYSTEM WITH SURROGATE KEY
THAT UNIQUELY IDENTFES THE SUB-
SYSTEM FOR USE IN OTHER TABLES
PROJNO | ID UNIQUELY IDENTIFYING EACH NUMEBER (3, 0)
= | PROJECT
SUB_PRE | SUBSYSTEM PREFIX CHAR (5) P47, D51, D152
SUBSY_ID | SURROGATE KEY REPRESENTING NUMBER (5, 0)
UNIGUE PROJ_NO AND SUB_PRE S
COMBINATION =
SUB_DATE | DATE SUBSYSTEM WAS ENTERED DATE . Pso, D151 -
SPECIAL_ACT TABLE CONTAINING PROGRAMMER REWORK, ENHANCE, DOCUMENT,
ACTIVITY HOURS FROM PRFs (PART C) REUSE
FOR ALL PROJECT, PROGRAMMER, AND
WEEK COMBINATIONS
EFF_D VALUES FROM P_ID (EFF_PROJ) OR NUMBER
e PS_ID (EFF_SUB) {10,0)
SP_ACTIVITY | SPECIAL ACTIVITY TO WHICH PRO- CHAR (10)
—=———| GRAMMER IS CHARGING TIME ON PRF ‘ -
ACT_HR ACTUAL HOURS SPENT N A NUMBER P35 TO P38,
PARTICULAR ACTNVITY (10,3 D33 TOD36 -
SUBSYSTEM TABLE CONTAINING INFORMATION FOR —
PARTICULAR SUBSYSTEMS, AS USERINT, DPDC, REALTIME, GRAPH, i
RECORDED ON SIFs CPEXEC, SYSSERV, MATHCOMP
SUBSY_ID | 1D UNIQUELY IDENTFYING EACH NUMBER (5, 0) 2 :
= | suBSYSTEM &
NAME SUBSYSTEM DESCRIPTVENAME | CHAR 40) . P48, D153 2
4-10 §

5063

5063G~(6)-32

Table 4-1. SEIL Database Tables and Views--Table and Column
Descriptions (9 of 9)
TABLE OR COLUMN REFERENCE
VIEW NAME NAME DESCRIPTION TYPE VALID CODENALUE)
SUBSYSTEM FUNCTION SPECIFIC FUNCTION THAT SUBSYSTEM| CHAR (10) P49, D154
(CONTD) PERFORMS
SUB_COM TABLE ASSOCIATING SUBSYSTEM AND
COMPONENT NAME WITH
SURROGATE KEY THAT UNIQUELY
IDENTIFIES THE COMPONENT FOR USE
IN OTHER TABLES
SUBSY 1D ID UNIQUELY IDENTIFYING EACH NUMBER (3, 0)
SUBSYSTEM
COM _NAME | COMPONENT DESCRIPTIVE NAME CHAR (40) PS1,053
COM_NO SURROGATE KEY REPRESENTING NUMBER (7,0
UNIQUE SUBSY_ID AND COM_NAME i
COMBINATION .
COM_DATE | DATE ON WHICH COMPONENT I8 DATE e Ps2
ENTERED INTO DATABASE
VALIDATION® TABLE THAT IDENTIFIES VALID
CODES USED IN VARIOUS FIELDS IN
DATABASE AND PROVIDES
DESCRIPTIONS FOR THEM
F_NAME FIELD NAME FOR WHICH CODE IS VALID| CHAR (20)
CODE ABBREVIATED CODE CHAR (10)
- VALUE FULL DESCRIPTION OF CODE CHAR(75)
V_PROJ_COM VIEW THAT JOINS THE PROJECT,
PROJ_SUB, AND SUB_COM TABLES
PROJ_NAME | SAME AS PROJ_NAME IN PROJECT CHAR -
8SUB_PRE SAME AS SUB_PRE IN PROJ_SUB CHAR
COM_NAME | SAME AS COM_NAME IN SUB_COM\ CHAR
COM_NO SAME AS COM_NO IN SUB_COM NUMBER
V_PROJ_SUB_ACT VIEW THAT JOINS THE PRQJECT,
€FF_PRQJ, EFF_SUB, AND EFF_ACT
TABLES
PROJ_NAME | SAME A8 PROJ_NAME IN PROJECT CHAR
SUB_PRE SAME AS SUB_PRE IN EFF_SUB CHAR
ACTWVITY SAME AS ACTIVITY IN EFF_ACT CHAR
ACT_HR SAME AS ACT_HR IN EFFACT NUMBER
V_SUBSYSTEM_INFO VIEW THAT JOINS THE PROJECT,
PROJ_SUB, AND SUBSYSTEM TABLES
PROJ_NAME | SAME AS PROJ_NAME IN PROJECT CHAR
SUB_PRE SAME A8 SUB_PRE IN PROJ-5UB CHAR
NAME SAME AS NAME A8 IN SUBSYSTEM CHAR
FUNCTION | SAME AS FUNCTION IN SUBSYSTEM CHAR
SUB_DATE SAME AS 8UB_DATE IN PROJECT DATE
*NOTE: SEE APPENDIX A FOR A DESCRIPTION OF ALL CODES AND VALUES.
4-11

5063

I i I D B mm MM M mm Wp

moevp o re pom i T | R

TINION=TIONN ¢
X3GN 3NOINN XIANI'N Z
 ADI AUV id |

OdAL 1t
30HN0S ti3
SING H43
simoo w3 |

{1905

=

-

SSV10 Wl
200V 3
Isnvov A |- _
ON JONVHD NI I3 HO

-

X3IONI N

o DO~ QvwvrQ ~

X3 N
X3 N

aRn

1 x3aamn
X3IOM N

-

SIHY 3 - _
ON 39NVHO SIHY HHI HO
ON JONVHO _

NIV VY LV34VaV HO

E¥ XX X ¥
oo 90 ©

AN

_ON OO _
ON IDNVHD WOD FONVHO

4-12

A1v0 8ns
SIUVLS

_ aI'ooud
X3 NOD INNN
HO OO N
3dAL WHOA
VVd 343
HIRIO 43
3NO "3

HO oSl 43
HO WO 443
vay A
Y3130 31va

_SSV10_H3sN
SS300V SSVI0 HISN

:
| 2 Ggmranentast® B H 8 L

£ 53 seeespsssssiiler 5] 55 93 panpnEm

INYN

TavioMAmaoNn | TRERISTI0 |Z03X30M

| A3 MIAHO TVL

5063

(ot 30 1)
SuoTjedrjIdadg TeoTIuydd]--SMOTA pue So1qe], 9seqejeq 'TIS °Z-¥ °219el

2-(1)e90s

TNNION=TNIN'N ¢

X3ON 3NDINN X30NE N 2

AT AHVWIHG Hd |

| X3GNI N TNN'N oL 12 2] SNUViS
X3ONI N TIN'N M4 |00t | w3ennN _ad
X3ON1 N TNN'N 9 BVHD 3dAL WHO4 _
X3ONI ‘N TINN'N 9 HVHD ON WHOH NHOS 443
pE TONN | % 001 | w3awnN a9 |
X30NI'N TYNN | |20t | usewn uH 1w B
TYN'N Nd | oL U AUALLOY v 43
. TN 1 HvHD NIOOH ANNNQ
X30N1 N _
TINN L HEONNN ON"HNOO
X30N1 ' TNN'N Nd | oF HVHD - 3AVN NOD
, TON'N X S HvHD HdEans | _ _ oo
TON'N Nd HIONNN ary3sn FONVHO dWaL 34D
TN 0'9 HIONON AN
TINN 0’9 HIONNN $3X3 D
) TN 0% HITNIN INTOD _
"} xaonn TN N M |oL HIGNNN ON NOD 1VISTHWOD
' xaon TN) ETL avaans
XIONS TYN N oL U SNLVIS
TWN 0's H3ENON Qi "906d
TN oL HVHD 3dALTTHO
TIN N 9 HvHD 3dAL WHO4
X3IONI N TINN N 9 HVHO ON WO+
TN 0% HIBNN ALNOIAHG
XIONI TN |e alva ETLJETLE 25)
TIN oL oD 3dAL_WOD : N
X3ANI N TN N Md |02 HIBNON ONNOD FOHNOS NOD
X30NI N TINN N Nd | o HVHD *350dHNd _
X3aNI N TWIN N M |02 HISNNN ON NOD JSOdHNd WOD
TN N 0z HVHO INYN TIH O
X3IONI N TN N Md | Ok HvHO INVN NdO HALNANOD
XN n TONN | '¥d |01 HVHD sooL M | -
X3AN N TION N Nd 19 HVHD ONTIONVHD SI001 HHI HO
IMYN INVN
TIGYL SNATIIONN a342USMO | AIXIONI ¢STIYN (AD | HIaWM | 3dAL YN NWOD MIA B0 VL
(ot 30 2T)
SUOT31edTITO9dS TeDTUYDIL-—-SMITA pue sSa1qe] 9seqejed 'IdS °Z-F d1qel

4-13

5063

PI'm i

g-{t)e905

Bt | BN B s i

(1 D BT Y | (11 Sl
TINNLON=TIN'N ¢
X30N 3NOINN X30N N 7
. ADI AHYNIH d |
TN 0's | H39NON NHL
TYN 2'0L | HIONON SHH TY10L
X3aN N TYNN |)d |8 va 31va 8ns
XIONI N TONN | 3d |0t | tEOWN ON 1OHd o
30N N TONN | Xd ol HVHO INVN IO IvISTNdO TOUd
TN oL HVHOD 3dAL MOWd
X30M N TONN 0't | HIGNN ON_1OUd
_ X30M N TONN [d |8 HYHO INVN OB :
8nsrodd | TYN o O SNUYIS ALY 193006
X30N N TINN | %d |0's | u3anwnN 01"90Md
TYN ot HVHO INVN TV
1 xaown TIN'N St HWHO INVN KOS
: TYNN 6 aiva AHINT 3IVa TINNOSY3d
X3AM N TIONN 0’01 | UIBNON " ON_LUOS
XIANN TONN | d jo2 HVHO INVN LdMOS
TIN'N 02 HHO BNUNOY_LNO
TWN @ HVHO FN4_LNO _
X30M N TONN | d oz HWHO H3SN VO AKH05 WI3d
X308 N TWONN | dd jo'0l | u3anON ON™1dMOS o
X3aMN TONN | d |6 atva Avalys | AvaTLYSTIUYVHINAD
X30M N TONN | d |o‘or | u3anoN ad _
TONN 2'9 | Y3ONN dNSu3d H3INS 443
X30NI N TONN | dd |S HWHO Fd 80S
X3aM N TWINN | X Jo'or | uaewON ad _
X30M N TINNN 00l | HIWON a’sd 8ns™443
TONN | XM |6 va a1va B8ns
TINNN 0°0L | UZBNON _ad
TNN | dd Jo't | 3NN ON MObd B
NN | d |o's | u3anwN Q" o0ud roud 443
INVN INVN
| 3wvionamaoen | RIS [ADAN | STIN (AN | HIGM | 3dAL INVNNWTIOD MIA HO TIVL
(o1 30 €)
SuOT31edTIT0ads TedTuyddL——-SMOTIA pue sSaiqe], aseqeljeq TIS °*Z-F 9I1qel

I
|

4-14

5063

v-(1)£905

TINNION=TINN'N ¢
X3ON 3NOINN X3ANI ' z
A AHVNTDd Hd

X3IONt N TINN'N % |8 3iva 3iva’ens
TION 0's HIANNN NAY S
X3ONI N TNN'N wd o HVHO 3INVN S3Y
TN Z'0L | YIEINON HH S QOHd MOHd
X3IONI N TNN'N »d jo'e HIBNN ON"rOBd
! X30M N TONN | X |o'e | u3ann ON FOtd
X30M N TIN'N W |or HVHO DAL SSAN _
TINN'N 59 HYHD IDVSSIN SSIN MOUd
" TON'N 6 ava AHINT 31va
X3IONI N TION'N I |8 . 3va 3uvg ans
X3ICNI N TINN'N w4 jo'e HIGNNN ON TOHd
co TN 0'y HITNON QON 1O _
TN 10°L HIONNN 3NN O HYO TOHd
TN [0'9 HIONNN HO O
X30NI N TINN'N |6 , 1va 31va ans
X3aM TINN'N oL o] SNUVIS
X3ONI N TINN'N M |o'e HIANON ON_OHd N
X3IONITN TN'N M |9 | HYHO 3dAL WHOA MU0+ TOUd
| X3ONI N TINN'N W |9 HvHO ON W04
X30N N TINN'N M4 |6 va 31va ans
TION'N 6 iva 31vQ IMVIS
X3IONI N TINN'N M [0'E HIAWON ON robd o
XIONI N TINN'N Nd jol UvHO 00 3SVHd 3SVHA 1S3 roud
TN 6 31va AUV ON3
TN o'y HIONNN SAS L
TN 0'9 HIONON INT A0 L
TION 0'9 | .UINNN NI M3N L
TN 0'9 HIONN 3INNTQON"L
TN 0’z HIBNON 3INTL
TN o'y HIONNN WO L
TINNN] Uva 3uva 8ns
X30M N TN N4 |20 | u3enON HH HIS
TWN 201 | uIennN HH Obd
X3ONI N TINN'N wd Jo'e HIBWN ON robd _
TN Z'ot | yasN HH NYW is3roud
INVN INVN
1YL ONATHIAND @343LSMD | ,A3X3aM ¢STNN (AN |HIGM| 3dAL INVYN NWMIOD MIA HO TIVL
(o1 30 %)
SUOT]edTITO0ds TedTuyddl——-SMIOTA pue sIafqe] aseqejed 'TES "Z-¥ arqel

4-15

5063

1 m 0F rmoowe mw Ao me o e m Mo (W iR 18|

TINNION=TINN'N ¢
X30N 3NOINN “X30N N z
AT AUV Hid |

m TONN St UvHO NOLLONN
= TNINN oe HVHD SINTVA _
o TYNN | N |0l HWHO 3000 53000 d34
X30M N TONN | Nd |S HvHO Fdd_9ns
TYN N] 3iva alva ans
X30M N TYNN 0's | tBaNN a~Asens -
103r0dd | X30MTN |1 TINNN | Md o' | t3annN ONTOUd 8ns Toud
TN 0'v | t3aNNN _SASTL
TN 0’9 | HIGWN lvisTaioL
TN o'r | HIOWNN qon_ oL
TN 0'9 | u3annN INT A0 L
TN 0'9 | HIBANN 1VISTMaNTL
TN 0'v | HIBNN QON_M3IN L
TN 0’9 , | H3ONN INTM3INTL
TN 0’9 ' | HIEWN lvisTon1
TN o'y | L3N QOW QoW L
TN 0’9 | u3annN INTAON_L 0
TYN 0°L | HIGWN INTL —
TN 09 | HIBWN 1visTaxa L !
TN o'v | u3oWN aow E L -
TN 0°'9 | HIGNN 00d_ 1
TN 0’9 | H3IONN NSO
TN o'r | tEEWN noo L
TN 0'9 | wzeWN W
TN Z'0b | u3aMnN BH NVWHOAL
TN N 6 va aiva’ens
TN 2'0L | u3BNN HH H3S _
30N T TONN | ud |0 | u3smnn ON NObid 1v1STroHd
X30M N TIONN | Xd joOI HVHO ONOD3S
X3aM N TONN | Xd |oO HIEWIN ON rold o
X3aM N TEONN | Nd HYHO 3dALTSVIN 035435 oud
X3ANI N TONN | d HIN ON_rOud
X30N M TONN | d : HYHO 3dALSVIN _
TN 0°'F | L3N AUVNVAI | 335 TOud
INVN , E]
TNV SNATIONN GRAUSND | ADAANE | ¢STIN AN |HIOM | 3dAL YN NWITIOD M3 HO TEVL

(0T 30 G)
suotjedtytroads TedTUyodl-—-SMOTA pue sajqel aseqejedq TAS °Z-p OIqel

5063

9-(1)e905

TN LION=TINN N ¢
X3GN 3NOINN X3ANE'N Z
AT ALVIIEC d |

X30N1 N TNN | dd o's | U3ennN al_Asans
' X30N1'N TINN'N 0°Z | HIBWN ON"NOD
X30NI N TINN | Nd |ov BVHO INVN_NOD

TONN 8 3iva Alva noO noo ans
X30M N TINN | Md |o's | U30WN Qi ASENS
TNN'N or . HVHO INVN

TN oL - HVHO NOLLONNA WALSASENS
X30M N TIN'N M |ot HVHD ALALOV dS
X30M N TYNN | xd jo'or | H3IBNN o 443

TINN'N Z'0t | HFEeNN HH 1OV 1OV™MO3dS
X30N N TONN | Nd |0€ HVHO INVN T1EVL
TIN'N 0'0L | HIGNN ONOISXYN

*30NI N TIONN | xd |06 HWHO INVN AN ONOD3S
X30M N TN N Wd [0'0L | HZENNN _ ON 14i40s
TN | oL HYHO | NOLLOI TS 3dAL 1HOJ3Y
TINN'N 0z HVYHO 3dAL_IHOJFH
X3ONI N TINN | dd |o'c | uFanN 035”1504

TIN'N oL HVHO 30092 1HOd 1HOJ3 1dHOS
X30M N TINNN | dd |00l | HEBNNN ON 1diHOS

X3ONI N TONN | dd [0'c | U3OWNN 035 1HOdTH ,

X30M N TONN | X |8 HVHO INVN nodd SLONOHA 1AHIS
TN 6 va 31vQ IKVIS
X30N1 N TONN | %d ool | U3BANN ON 1dIHOS
X3ONI N TINN | dd Jo'e | H3EwoN D3S™1HOdIY
TN ol HWHO 3dAL TOHd
TN 05 | HIWN OO NN
TN 0's | UIOWN 3000740 S3M1

TN 6 atva 31vd aN3 SNOLLGNOD d3d

INVN INVN
SEIVL ONIATIIOND Q3L3USMO | AIXAON | ¢STN (AR [HIGM | 3dAL 3WYN NWMIOD MIIAHO TNVL
(o1 30 9)
“Z-v O1qel

SUOT3eDTJITOedS T[eOTUYOSL—-SMOTA pue sSITqel aseqejeq 'TIAS

4-17

5063

1m 1

2-{1)es05

il (7 B} B B T ST B R NN rinE Vm I

TONION"TINNN ¢
X30M 3NOINN *X30NI N 5
ADI AHYNIEA i |

X30M N % [o‘ol

fi:t5

22
e

z'ot

:

z'ol

il

-

X3IaN N TN

2
E

-4

X3A0N N

PEFEF

z

1HE

FHEH

HIBNN

ik

. Uva

3Uva

va

SMUVIS AT | LduosTawal

Ava 1VS LONHOS dnelL

AVQ VS AUNLOV dW3L

AlBd YLV IDI WG TavL

1P
|-
:

INVN

TGV ONIAIONN G343USNTO | OIXION

(85353838

NNIOD INVYN
I M3IAHO TEvL

(ot 30 L)

SuoT3edr3JT0ads TeOTUYODSL--SMOTA pue SIaIqe] aseqejed TS °Z-¥ 9Iqel

w0

r—~
1

-

5063

8-(9)e908

TION LON=TIN'N ¢
XIONI INOINN X3ION N Z
AN AHVINISD id |

NOLLYG VA TIN'N St HVHO INWA ||
NOLLYQITVA TION'N ol HVHO 3000 STV HHI VA
NOLLYQIVA TION'N st HYHO 3NWA o
NOLLYGITVA TIONN ol HvHO 3000 ISNVOY HH3 VA
NoLvarva | TIN'N sz HYHO 3NVA o

' NOILLYGIIVA TION'N ot HYHO 3009 AL WO TVA
NOLLYQITVA . TIONN s¢ HVHO VA o
" NOLLVQITYA TIONN ok HVHO 3000 3S0dUNd OO VA
NOLLYQIVA | TION'N sz HYHO 3NWVA o
 NOUVAIVA TIN'N ol HYHO 3000 HO NOO VA
NOILYQIVA TIONN sz HVHO INTVA o
NOLLYGIVA TON'N ot HYHD 3009 3dALHO VA
NOLLYQIVA TIN'N sz HvHO INVA o
NOLLYOITYA TION'N ol HVHO 23000 JNLYIS VAV VA
NOLLYGIVA TIONN sz HVHO INVA ~
NOLLYQI'VA TON'N ot HYHO 3000 ALIALLOY VA
NOLLYGITVA TION'N 5L HVHO VA _ _
NOILYQITVA TION'N ol HYHO 3009 SNLVIS SALLOV VA
TIONN ¢ HVHO 3INWA
X30N N TONN | > | = HVHO VN 4
X30M N ToNN | 3w | o HVHO 3000 NOLLYGITVA
$3000 d3d oe HYHD SOWA | VHALYO S3A0D dM A
LdIHOS W3d ot HYHO INVN ™ LIRIOS ¢ LAYOIS WY A
X3aM N NN | o | 2 HVHO SSVI0 HISN _ ~
X30M N TONN | w | o1 HVHO 3dALSSIOOV SS300V SSVIO HISN
TION'N "1 o HVHO e _
X30N N TONN | e | o2 HVHO O 43sn VO SSY07H3SN
NN agavusnd |.aaxaon | LsTew A |Hiom| 3dac INVN NNN10D NN
31VL ONIATHIONN A ¢ { MIAHO F1aVL
(o1 30 8)
suotjedTjroads [edOTUYOdL--SMITA pue s9[qe] aseqejed TIAS "Z-F 9Iqel

4-19

5063

) I i I M= e mew v NN® ws I my e ouAMm o Bolm lne W T

TIINION=TIN N¢
X3IONE INOINN -X3AN N 2
ADI AUVt Hd

m NOLLYGN VA TINN'N SL UV INA
£ NOLLYOI VA TYIN'N ot HvHO 3000 _ SNLY1IS VA
& NOLLYQAIVA TON'N 72 HVHO INVA
NOLLYOITVA TINN'N ol HVHD 3000 | ALUALLOY dS VA
NOILYOINVA TYN'N SL HYHD ANVA .
. NOLLYGATVA |t . TAN'N DL %) 3000 TONODIS VA
NOLLYOrivA TON'N 7] HvHO INTVA
NOLLYOI'VA : TIONN ot HVYHD 3000 3000 KO VA
NOLLYOIVA | TON'N SI HYHD INWVA
NOLLYOI'VA TON'N oL HYHD 3000 SNLYLS VO WA
NOILYOI' VA . ..,., TION'N 7] HYHO ANIVA
NOLLYQI'WA TION'N oL YO 3000 IdAL TOHd YA
NOLLVOI VA . TON'N 7] HVHO 3INVA
NOLLYOITVA | . TNN o' HVHO 3000 00"3SVHd YA
NOLLYOINVA Ly TINN'N St HVHD 30VA o
NOLLVGETVA TIN'N oL HVHD 3000 SdALTHO VA ™~
|
NOLLYOIVA TIN'N (7] HwH 3NVA <
NOLLYOITVA TOWN'N oL HVHO 3000 3dAL SSAN VA
NOLLYOFIVA TN'N SL HVHD INA
NOLLYQITVA TON'N oL 1377) 3000 IMALTSVINTIVA
NOLLYQITVA TNN 72 HVHO ANVA
NOLLYOI VA TINNN ol HvHD 3000 HO™OSIT VA
NOLLVOITVA TINN'N 72 HVHD ANTVA
NOWLYQOIVA TINN'N oL v 3000 7001 HHI VA
NOLLYQAI' WA TWN'N 172 U 3NTVA
NOLLYQITVA TINN'N oL HYHO 3000 30HNOS HHA VA
NOLLYOI VA TN'N (7] HYHO INTVA B
NOLLVArIVA TNN'N o1) 3000 , SSYIO b3 TIVA
INVN INYN
F18VL ONIATIIANN GRBUSOD | OGN | gSTINN - | (ADI | HIGM| 3dAL FNVNNAIOO M3 HO TIEVL
(0T 30 6)

5063

SUOT1eDTITOSdS [eDTUYDIL--SMITA Due Sa[qel aseqejeq ‘TS °Z-F o1qel

oi-(1)e905

TN ION=TNN N g
X20M 3NOINN :X30M Nz
ADI AHYINE i |

ans rodd

X TONN S HYHO 3dd 8ns
805 TOHd TINN z 3iva 3tvg ans
103r0dd TIN'N 8 HHYO INVN MOUd
NILSASENS TN N or HVHO INVN N _
W2LSASENS TYN oL HYHO NOULONNS | OJINITWALSASENS A
ans 343 TINNN s . HVHO 34d 8ns
193rodd TN'N 8 HVHO 3NVN TOHd
10V 443 TN N 2’0l | b3ENON BH LoV o
1oV 443 TN N ol HVHO ALNLOV 10V 8NS TOHd A
B8NS TOHd TINN S HVHO [d ans
193rodd TINNN 8 HVHO 3NVN TOHd
WOo 8ns TUNN 04 | UBEWN ON_NOD o
noo 8ns TVNN or HWHO INVNNOD OO MOUd A
NOLLYQI YA TN'N s¢ HVHO ANVA _
NOLLYQINVA TYINN ot HVHO 3000 NOLLONNS S VA
E INVN
T8V ONARIIGNN Q3dAUSM |,03x3aN | ¢STINN ADE | Huowm] 3dAL 3NVN NRMIOD MIA HO TVL
(o1 30 0T)
SUOT3edIJTOOdg TeOTUYDS9]-—SMOTA pue saiqel aseqejeq 'TAS °“¢-¥ 9a1qel

4-21

5063

conta1n1ng the pro;ect name, project type, and project sta-
tus is created. A unique project number is also assigned
and stored in the same record. The rest of the project data
are stored in various tables. The relationship between
tables PROJECT and PROJ_SUB is defined through the project .
number column.

Figures 4-1 through 4-3 depict these relationships and rep-
resent them as tree structures. Figure 4-1 shows the rela-
tionships among project related data. Fiqure 4-2 shows the
relationships among system support tables. Figure 4-3 shows
all the tables that are related to the tables containing
computer, manpower, and services data.

In these figures, each tree is a logical entlty of related
tables. The name shown within each block is a table name.
The top node in each tree is the parent node, and the others
are dependent nodes. Each dependent nodé occurrence in the
tree must have a record in its parent. For example, each
record existing in table SUBSYSTEM that contains detailed
subsystem information must first have been created in the
PROJ_SUB table, since the record in the PROJ_SUB table con-
tains the vital information--the project number and the sub-
system prefix. The name(s) shown at the upper left corner
of each block corresponds to the field name that links these
tables together and can be used as a joinlng column. For
example, field COM_NO can be specified in a WHERE clause for
301n1ng tables SUB_COM and COM_PURPOSE. If the common col-
umns in both the parent and child tables have the same name,
only one name is shown. Otherwise, both column names from
these tables are shown and the notation "=" is used to show
that they share common values. The left-hand side of the
equality is the column name from the parent table; the
right-hand side is the column name from the child table.

For example, to join tables EFF_PROJ and EFF_ACT in a SQL
SELECT statement, the joining columns are P_ID from EFF_PROJ
and EFF_ID from EFF_ACT.

The relatlonshlps between data elements and tables are de-
scribed in detail in Reference 2. However, some of these
relationships are worth mentioning here so that the reader
can understand how the data are logically divided and stored

in the database. Observe that the data elements that make
up each of the major data groups presented in Section 2 may
reside in one or more tables, depending on the number of
occurrences of a particular data elements. For example,
consider the component information within the structure and
size data group. For each component of a project, all
component-related data, such as origin, creation date, type,
etc., reside in the COM_SOURCE table, with the exception of

the component purposes. These reside_in the COM_PURPOSE

4-22
5063

| (1M

AN

SlEi W, &l

QL

N

i
\‘\

Qi

wi

I

==

o

1

Wil

np\u | N
—

[e-s] gg-wr1-co05 P

so1qel paojela2y-3ooloig buowy sdiysuorjelay °*T1-v 2inbig

[51004 HHI HO | | NID-HHI-HO || S3dv HHI HO | [Lv3dvav HO |
) _ozdazs._o _ozlmozio _ozdczsé _oz JONYHO

N JONVHO

ON JONVHD

O 33-Q Sd

[woo 3oNvHO| | Lvis woo | [3ounosTwoo] [3sodund woo |

— ON W02 _ ON WO _ ON OO

_ ON OO

o d

| woo'ans | [waLsasans |

|o3s 435 roud | | rowd ai3 |

3dALTSYIAN O d ~ ON TOWd

Q1 SAS8NS QI sASENS

[1visroud |[43sroud][aoud roud Ji[ss3w roud | [Huo rodd | [weod rond | Bsvid 153 roud [ens rowd | [153 roud | [Ivis ndd roud]

_ ON rOHd

_ ON rodd _ oz,_dE_ _ ON NOHd _ ON MOHd _ ON™ MOtd _ ON rObid _ ON road

_ ON rodd

_ ON fOHd

103rOHd

4-23

5063

PERM_SCRIPT

TEMP_SCRIPT |

SCRIPT_NO
| GENERATE_SAT_DAY

SCRIPTNO | ==

SCRIPT_REPORT

REPORT_TYPE_SELECT!ONL

REPORT_TYPE_SELECTION

| REP_CONDITIONS |

| SCRIPT_PROJECTS |

[USER_CLASS ACCESS |

USER_CLASS
| User cLass |

USER_CLASS

| TABLE_PRIVILEGE |

SCRIPT_NO SCRIPT_NO

SCRIPT_NO

SCRIPT_NG

[TEMP_MANHRS] [TEMP_SERVHRS| [TEMP_ACTIVITY

[FEMP_FORMCT|

Figure 4-2. Relationships Among Support Data Tables

5063

& 5063-2/4-88 [5-7]

i i

i

I

Qi M wpn ommg

VI |

i

‘
L

Wil

[IR

L

-

i

i

{]

CPU_NAME

COMPUTER- | -

|_PROJ_CPU_STAT |

CPU_NAME = RES_NAME

PROG_ID

PROJ_PROD

[PERSONNEL |

PROG_ID

PROG_ID

|__EFF_PROJ | [COM_SOURCE| | CHANGE

S—

Figure 4-3.

5063

& 5063-3/4-88 [5-3]

Relationships Involving the COMPUTER and
PERSONNEL Tables

{

table because one component can have multiple purposes.
This logical partitioning of data is performed during the
database design process to ensure data integrity and mini-
mize data redundancy.

Ui

For the same reasons, staff hours information within the
resource usage data group resides in different tables. Reg-
ular activity hours for all projects reside in the EFF_ACT
table. The data elements required for retrieving project-
related act1v1ty hours, such as project and programmer IDs,
are stored in the EFF_PROJ table. Additional data elements
required for retrieving subsystem-related ‘hours, such as
subsystem prefixes, are stored in the EFF_SUB table. Using ==
this arrangement can minimize data redundancy. As mentioned
in Section 2, some projects may not have subsystem-related
activity hours. Thus, the activity hours may be retrieved

g

1l

[}

I

from the EFF_ACT table by directly joining it with the EFF_
PROJ table, or via the EFF_SUB table. °‘These relationships
are depicted as connected lines in Figure 4-1.

i)

"
]

gl

In addition, some of the tables are used as connectors to
relate data items together that reside in different tables.
For example, consider the CHANGE_COM table within the change =
data group. It does not contain any SEL forms data. It
only contains two surrogate key fields, change number and
component number. The fields in this table can be used to =
connect the change data with the size and structure data,
specifically project and subsystem data items that are stored
in various tables. Other tables, such as PROJ_SUB and SUB_
COM, have a functionality similar to the CHANGE_COM table. E

/I

b

i

!

4.2.2 DESCRIPTIONS OF SUPPORT DATA TABLES

The tables descrlbed in this sectlon do not contain software
engineering data. Rather, they are used to store data that
are internal to the database structure and to store data

that are used by the database operational software. ff
-

CRF_TEMP_CHANGE_COM L

This table is used for running the CRF menu screens -

(CRF_UPDATE, CRF_INSERT, CRF_QA). It contains the component

information associated with the current CRF form. The in- —

formation is uniquely identified with a USER_ID. This is =

actually the SESSIONID of the current user.

DUMMY =

This table is used by the data entry software. It is up-

dated with null values during data entry to invoke, or trig- =

ger, certain sequences of operations to be performed. = i
4-26 B

5063

{!

(

v

(!

I

GENERATE_SAT_DAY

This table is used in generating database reports. It
stores all the Saturday dates for reports that display
weekly information. Once the dates are used by a report,
the corresponding entries in this table are then deleted.

PERM_SCRIPT

This table is used in generating database reports. It
contains header information about the permanent report
scripts. A report script is built during interactive re-
port selection via the SEL user interface. The scripts are
identified by the script numbers and their owners.

REP CODES

This table is used as a look up table for the Report Inter-
face System. It contains all of the possible report titles,
report types, batch queues, and log printers. For each en-
try in the table there is a function and a unique code which
corresponds to a detailed value. These values have two pur-
poses. They are used to display information in a readable
form so that user will easily understand the contents of a
Teport script, and they are used to list available options
for queues, printers, etc.

REP_CONDITIONS -

This table is used in generating database reports. For each
record in table SCRIPT_REPORT that has a value in the field

REPORT_TYPE_SELECTION, there will be an entry in this table

to further specify the conditions to be applied in selecting
a set of projects within that particular report.

SCRIPT_PROJECTS

This table is used in generating database reports. It
stores the names of the projects that are selected for a
multiple-project report. The only entries stored in this
table permanently are for the permanent scripts that have a
REPORT_TYPE_SELECTION (in table SCRIPT_REPORT) of "LIST."
The entries that are created for temporary scripts are de-
leted once the report has been generated.

SCRIPT_REPORT

This table is used in generating database reports. It con-
tains the bodies of all scripts, including both temporary

4-27
5063

and permanent scripts. The type of reports within a script,
its sequence, and other report-related information are also

specified in this table.

SEQNO

This table is used by the data entry software. It contains
the maximum values of all the system-generated IDs in the
database. The system-generated IDs are used in the follow-
ing tables and columns:

-Table Name Column Name
PROJECT PROJ_NO
PROJ_SUB SUBSY_ID
SUB_COM S COM_NO
PERSONNEL - PROG_ID
EFF_PROJ . “P_ID
EFF_SUB PS_ID
PERM_SCRIPT SCRIPT_NO
TEMP_SCRIPT SCRIPT_NO

 TABLE_PRIVILEGE

ThlS table is used in enrolling database users. It defines
the access pr1v11eges that each user class may be granted
for each table in the database. The valid privileges are
select, insert, update, delete, alter table structure, and
create indices.

TEMP_ACTIVITY

This table is used for producing the Programmer Activity
Hours Reports. It contains all of the possible activities
for each week the project has been in a working phase. For
each activity and week, the total number of hours worked is
also stored. To populate this table the GENERATE_SAT_DAY
table must first be populated with the correct Saturday
dates,

TEMP_FORMCT

Thzs table is used for produc1ng the Pro;ect Form Counts
Reports. It contains thgwﬁotal number of CRFs, COFs, and
SPFs that have been entered since the project has been in a
working phase. For each form type and week, the total num-

ber of forms entered is also stored. To populate this table

the GENERATE_SAT_DAY table must first be populated with the

correct Saturday dates. .

5063

i wu owio |

&

N

=

i

(I

TEMP_MANHRS

This table is used for producing the Manpower Hours Re-
ports. It contains all of the programmer names for each
week the project has been in a working phase. For each pro-
grammer and week, the total number of hours worked is also
stored. To populate this table the GENERATE_SAT_DAY table
must first be populated with the correct Saturday dates.

TEMP_SCRIPT

This table is used in generating database reports. It con-
tains header information about the temporary report scripts
that are created by each user during an interactive ses-
sion. The script owner, his/her process ID, the script sta-
tus, and other script-related information are stored in this
table. The scripts are identified by the script numbers.

TEMP_SERVHRS

This table is used for producing the Services Hours Re-
ports. It contains all of the support names for each week
the project has been in a working phase. For each support
and week, the total number of hours worked is also stored.
To populate this table the GENERATE_SAT_DAY table must first
be populated with the correct Saturday dates.

USER_CLASS

This table is used in enrolling database users. It contains
all users' ORACLE user IDs and their user class specifica-
tions. Currently, there are five types of user classes:
general user, librarian, quality assurance, SEL database ad-
ministrator (DBA), and system maintenance user.

USER_CLASS_ACCESS

This table is used in enrolling database users. For each
user class specification, the types of functional access
permitted are stored in this table. The current valid types
of access are form, query, view, backup, delete, distape,
general, insert, update, QA, DBA, import, and restore.

VALIDATION
This table stores all the codes and their corresponding de-

tailed descriptions used by various tables throughout the
database. (Appendix A provides a complete list of all the

5063

codes and their descriptions.)
are listed below.

Table Name

that use coded values

_Field Name
ACTIVE_STATUS

PROJECT
PROJECT PROJ_TYPE
PROJ_FORM STATUS
PROJ_EST_PHASE " PHASE_CO
PROJ_MESS MESS_TYPE
PROJ_SEF MEAS_TYPE
PROJ_SEF_SEC SECOND_L
EFF_FORM STATUS
EFF_ACT ACTIVITY
SPECIAL_ACT SP_ACTIVITY
CHANGE STATUS
CHANGE . EFF_ISO_CH
CHANGE EFF_COM_CH
CHANGE CH_TYPE
CH_ADAFEAT ADA_FEATURE
CH_ERR_ARES ERR_ARES
CH_ERR_GEN ERR_SOURCE
CH_ERR_GEN ERR_CLASS
CH_ERR GEN ERR_ACAUSE
CH_ERR ERR_TOOLS
COM_PURPOSE PURPOSE
COM_SOURCE STATUS
COM_SOURCE ORI_TYPE
COM_SOURCE COM_TYPE
SUBSYSTEM FUNCTION
SCRIPT_REPORT REPORT_CODE
PROJ_TYPE

REP_CONDITIONS

4.2.3 DATABASE CONSTRAINTS

Various constraints are associated with the database. Con-
straints are defined to ensure that the database contains
only accurate and consistent data and to protect the data
against unauthorized or accidental alterations. 1In the SEL
database environment, constraints are identified as access
constraints or data integrity constraints. Access con- -
straints are associated with each user class and are defined

as follows: - :
® General user--Has read access to all data

® Data librarian--Has read, write, and update access
to the form—related'data

5063

i

M

rr
bi

Wil

0
!

1]

il

Uil

I

&l |

Wil

&l

ik

Qi

i

L

oy
Ik

1
I}

“V
it

! 1}

Ll

Wil

Wi

i

® QA--Has read, and update access to certain form-
related data

° DBA--Has read, write, and update access to all data

® System maintenance--Has read access to all data,
and read, write, and update access to system sup-
port data

Data integrity constraints are applied to all insertions to,
deletions from, and updates of the database. Table 4-3
describes these constraints. They are used not only in
structured query language (SQL) queries, but also in the
operational data entry software. Table 4-3 lists only the
database tables that have constraints. In addition to these
constraints, field EFF_ID in table EFF_ACT and table
SPECIAL_ACT contains values from both the P_ID field (in
table EFF_PROJ) and the PS_ID field (in table EFF_SUB).

This constraint is accommodated by assigning mutually
exclusive values for P_ID and PS_ID.

4.3 MAPPING THE CONCEPTUAL VIEW TO THE LOGICAL VIEW

This section presents a schema, shown in Table 4-4 (at the
end of the section), that maps both the conceptual and the
data collection views of the SEL data mentioned in Sections
2 and 3 to a unified logical view. The schema is intended
to provide general users who would .like to retrieve data
using SQL queries with more detailed information of how to
get to the desired data. By using this schema, along with
the specific instructions on how to access the SQL in the
SEL database environment provided in Section 5.3, general
users can set up their own queries to look at the data in
their own specific ways.

Table 4-4 lists all the IDs used in Sections 2 and 3 that
identify the data items in the database and gives the names
of the table and the column where that data item is stored.
This table is ordered by target table and target column.
Required access information, information needed to obtain a
particular piece of data, is also provided for each ID.
Under the columns "TARGET TABLE" and “TARGET COLUMN" arée the
field/table where data are being retrieved. For example, to
retrieve the activity hours for a particular programmer (see
page 7 of Table 4-4, under ACT_HR/EFF_ACT), the project
name, the programmer, the project name, the programmer name,
and the submission date of the PRF or the form number must
be provided before the appropriate activity hours can be
retrieved.

5063

Table 4-3. Constraints on Database Tables (1 of 6)

TABLE

CONSTRAINT -

CHANGE

CHANGE_COM

CH_ADAFEAT

CH_ERR_ARES

CH_ERR_GEN

" THE ADA FEATURE CODE (ADA_FEATURE) MUST EXIST IN THE

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.
THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

THE EFFORT TO IMPLEMENT CHANGES CODE (EFF_COM_CH) MUST EXIST
IN THE VAL_COM_CH VIEW.

THE EFFORT TO ISOLATE CHANGES CODE (EFF_ISO_CH) MUST EXIST IN
THE VAL_ISO_CH VIEW.

THE TYPE OF CHANGE (CH_TYPE) MUST E)'(]ST IN THE VAL_CH_TYPE VIEW.
THE FORM TYPE (FORM_TYPE) MUST EQUAL ‘CRF.

THE CRF FORM NUMBER (CHANGE_NO) MUST BE UNIQUE.

THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE SUB_COM TABLE.

THE CRF FORM NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE

VAL_ADA_FEATURE VIEW.

THE CHANGE NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE,
THE FLAG INDICATING WHETHER THE USE OF ADA CONTRIBUTED TO THE
CHANGE (EFF_ADA) IN THE CHANGE TABLE MUST EQUAL ' FOR THAT
CHANGE, AND CH_TYPE MUST BE 'ERRCO".

RESOURCE CODE NEEDED TO CORRECT ADA ERROR (ERR_ARES) MUST
EXIST IN THE VAL_ERR_ARES VIEW.

THE CHANGE NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE,
THE TYPE OF CHANGE (CH_TYPE) IN THE CHANGE TABLE MUST EQUAL
'ERRCC' FOR THAT CHANGE, AND EFF_ADA MUST EQUAL 'Y",

THE CHANGE NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE,
AND THE TYPE OF CHANGE (CH_TYPE) IN THE CHANGE TABLE MUST EQUAL
‘ERRCO' FOR THAT CHANGE.

THE SOURCE OF ERROR CODE (ERR_SOURCE) MUST EXIST IN THE
VAL_ERR_SOURCE VIEW.

CAUSE FOR AN ERROR INVOLVING ADA CODE (ERR_ACAUSE) MUST EXIST
IN THE VAL_ERR_ACAUSE VIEW,

CLASS OF ERROR CODE (ERR_CLASS) MUST EXIST IN THE
VAL_ERR_CLASS VIEW.

5063

5062G(1)-12

g Wm Wy mol W En s el

n‘ o
o

|

1 (P [TV

:

"
il

Table 4-3. Constraints on Database Tables (2 of 6)

TABLE

CONSTRAINT

CH_ERR_TOOLS

COM_PURPOSE

COM_SOURCE

COM_STAT

CRF_TEMP_CHANG
E_COM

EFF_ACT

EFF_FORM

ADA TOOLS AIDED IN THE DETECTION OR CORRECTION OF ERROR CODE
(ERR_TOOLS) MUST EXIST IN THE VAL_ERR_TOOLS VIEW.

THE CHANGE NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE

TABLE, THE TYPE OF CHANGE (CH_TYPE) IN THE CHANGE TABLE MUST
EQUAL 'ERRCO' FOR THAT CHANGE, AND ERR_ADA MUST EQUAL Y".

THE COMPONENT NUMBER (COM_NQ) MUST EXIST IN THE SUB_COM TABLE.

THE COMPONENT PURPOSE (P—l-JHPOSE) MUST EXIST IN
VAL_COM_PURPOSE VIEW.

THE COMPONENT NUMBER (COM_NO) MUST EXIST IN-THE SUB_COM TABLE.
THE COF NUMBER (FORM_NO) MUST BE UNIQUE WITHIN THIS TABLE.
THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

THE COMPONENT TYPE CODE (COM_TYPE) MUST EXIST IN THE
VAL_COM_TYPE VIEW.

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE ORIGIN OF A COMPONENT CODE (ORI_TYPE) MUST EXIST IN THE
VAL_ORI_TYPE VIEW.

THE FORM TYPE (FORM_TYPE) MUST EQUAL 'COF'.

THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE SUB_COM TABLE.
SUBSYSTEM PREFIX (SUB_PRE) MUST EXIST IN THE PROJ_SUB TABLE.
COMPONENT NAME (COM_NAME) MUST EXIST IN THE V_PROJ_COM VIEW.
COMPONENT NUMBER (COM_NO) MUST EXIST IN THE V_PROJ_COM VIEW.

THE EFF_ID MUST EXIST EITHER IN THE EFF_SUB (AS PS_ID) OR IN THE.
EFF_PROJ (AS P_ID) TABLE.

THE ACTIVITY CODE (ACTIVITY) MUST EXIST IN THE VAL_ACTIVITY VIEW.
THE P_ID MUST EXIST IN THE EFF_PROJ TABLE.
THE FORM TYPE MUST BE EITHER 'PRF' OR 'SPF".

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

5063

5062G(1)-13

Table 4-3. Constraints on Database Tables (3 of 6)

GENERATE_SAT_DAY

PERM_SCRIPT

PROJECT

PRCJ_CPU_STAT

PROJ_EST
PROJ_EST_PHASE

TABLE CONSTRAINT

EFF_PRCJ PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.
THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.
THE SUBMISSION DATE (SUB_DATE) MUST BE A VALID FRIDAY DATE.
THE P_ID MUST BE UNIQUE.

EFF_SUB THE P_ID MUST EXIST IN THE EFF_-PROJ TABLE.
THE SUBSYSTEM PREFIX (SUB';PHE) MUST EXIST IN THE PROJ_SUB TABLE.
THE PS_ID MUST BE UNIQUE.

EFF_SUPER THE P_ID MUST EXIST IN THE EFF_PROJ TABLE.

THE REPORT SCRIPT NUMBER (SCRIPT_NO) MUST EXIST IN THE
TEMP_SCRIPT TABLE.

THE DATE (SAT_DAY) MUST BE A VALID SATURDAY DATE.
THE SCRIPT NUMBER (SCRIPT_NO) MUST BE UNIQUE.

THE ORACLE USER ID (ORA_USER) MUST EXIST IN THE USER_CLASS TABLE.

THE VALID VALUES FOR FIELD OUT_ROUTING ARE 'P' FOR PRINTER, 'F' FOR
FILE.

THE OUTPUT FILE NAME (OUT_FILE) MUST BE ENTERED IF THE VALUE IN
FIELD OUT_ROUTING EQUALS 'F.

THE PROJECT NUMBER (PROJ_NO) MUST BE UNIQUE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.
THE COMPUTER NAME (CPU_NAME) MUST EXIST IN THE COMPUTER TABLE
THE PROJECT NUMBER (PROJ_NOQ) MUST EXIST IN THE PROJECT TABLE.
THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.
THE PHASE CODE (PHASE_CO) MUST EXIST IN THE VAL_PHASE VIEW.

THE PHASE START DATE (START_DATE) AND END DATE (END_DATE) MUST
BE VALID SATURDAY DATES.

5063

5062G(1)-14

I

||

1T 1N

Wl

ill .

i

't

ML

I

K

i
[

W

Al

a1 |

|

{r

Table 4-3.

Constraints on Database Tables (4 of 6)

TABLE

CONSTRAINT

PROJ_FORM

PROJ_GRH

PROJ_MESS

PROJ_PROD

PROJ_SEF

PROJ_SEF_SEC

PROJ_STAT
PROJ_SUB

REP_CONDITIONS

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.
THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.
THE FORM TYPE (FORM_TYPE) MUST EQUAL 'PEF', 'SPF', 'PCSF', OR 'SEF'.

THE FORM NUMBER (FORM_NO) MUST BE UNIQUE WITHIN A PARTICULAR
FORM TYPE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.
THE SUBMISSION DATE (SUB_DATE) MUST BE A VALID FRIDAY DATE.
THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE GENERAL PROJECT DESCRIPTION CODE (MESS_TYPE) MUST EXIST IN
THE VAL_MESS_TYPE VIEW.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE COMPUTER NAME (RES_NAME) MUST EXIST IN THE COMPUTER TABLE.

THE SUBMISSION DATE (SUB_DATE) MUST BE A VALID FRIDAY DATE.
THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBJECTIVE EVALUATION MEASUREMENT (MEAS_TYPE) MUST EXIST
IN THE VAL_MEAS_TYPE VIEW.

THE SUBJECTIVE EVALUATION MEASUREMENT (MEAS_TYPE) AND THE
PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJ_SEF TABLE.

THE SECONDARY-LEVEL INFORMATION OF VARIOUS MEASUREMENT
CODES (SECOND_L) MUST EXIST IN THE VAL_SECOND_L VIEW.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.
THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.
THE SUBSYSTEM ID (SUBSY_ID) MUST BE UNIQUE. |
THE SCRIPT NUMBER (SCRIPT_NO) MUST EXIST IN THE SCRIPT_REPORT
TABLE, THE REPORT_TYPE_SELECTION FIELD IN THE SCRIPT_REPORT

TABLE MUST EQUAL ‘SCONDITION', AND THE REPORT_SEQ MUST EXIST IN
THE SCRIPT_REPORT TABLE.

5063

5063G(1)-15

L

[t

Table 4-3. Constraints on Database Tables (5 of 6)

J

TABLE CONSTRAINT

SCRIPT_PROJECTS THE SCRIPT NUMBER (SCRIPT_NO) MUST EXIST IN THE SCRIPT_REPORT
TABLE AND THE REPORT SEQUENCE (REPORT_SEQ) MUST EXIST IN THE

SCRIPT_REPORT TABLE.
THE PROJECT NAME (PROJ_NAME) MUST EXIST IN THE PROJECT TABLE. f

Bl

il

SCRIPT_REPORT THE SCRIPT NUMBER (SCRIPT_NO) MUST EXIST IN EITHER THE PERM_SCRIPT
OR THE TEMP_SCRIPT TABLE.

IR

THE REPORT CODE (REPORT_CODE) MUST EXIST IN THE
VAL_REPORT_CODE TABLE. ~ i

THE TYPE OF REPORT CODE (REPORT_TYPE) MUST EQUAL 'S' FOR SINGLE
PROJECT REPORT, "M’ FOR MULTIPLE-PROJECT REPORT, OR 'O' FOR
MISCELLANEOUS REPORT. IF REPORT_TYPE EQUALS TO 'M', THE VALID
VALUES FOR REPORT_TYPE_SELECTION ARE 'ALL', 'ACTIVE', INACTIVE',
'SCONDITION', 'LIST. IF REPORT_TYPE EQUALS TO ‘0", THE
REPORT_TYPE_SELECTION IS NULL. IF REPORT_TYPE EQUALS TO 'S', THE
VALID VALUES FOR REPORT_TYPE_SELECTION IS A VALID PROJECT NAME
(PROJ_NAME) IN PROJECT.

i

"l

€]

il

SEQNO THE TABLE NAME (TABLE_NAME) MUST EXIST IN THE DATABASE.
THE FIELD NAME (FIELD_NAME) MUST EXIST IN THAT PARTICULAR TABLE.

l‘ i
il

SPECIAL_ACT THE EFF_ID MUST EXIST IN EITHER THE EFF_PROJ (AS P_ID) OR THE
EFF_SUB (AS PS_ID) TABLE.

THE SPECIAL ACTIVITY CODE (SP_ACTIVITY) MUST EXIST IN THE =
VAL_SP_ACTIVITY VIEW.

if

SUBSYSTEM THE SUBSYSTEM ID (SUBSY_ID) MUST EXIST IN THE PROJ_SUB TABLE.

i

THE SUBSYSTEM FUNCTION (FUNCTION) MUST EXIST IN THE
VAL_S_FUNCTION VIEW.

SUB_COM THE SUBSYSTEM ID (SUBSY_ID) MUST EXIST IN THE PROJ_SUB TABLE.

i

THE COMPONENT NUMBER (COM_NO) MUST BE UNIQUE.
TABLE_PRIVILEGE THE USER CLASS (USER_CLASS) MUST EXIST IN THE USER_CLASS TABLE.

= H

, BRI

THE TABLE NAME (TABLE_NAME) MUST EXIST IN THE DATABASE.
TEMP_SCRIPT THE SCRIPT NUMBER (SCRIPT_NO) MUST BE UNIQUE. .
THE ORACLE USER ID (ORA_USER) MUST EXIST IN THE USER_CLASS TABLE. -
THE VALID VALUES FOR FIELD OUT_ROUTING ARE P' FOR PRINTER, F FOR | © _
FILE. 2 =
S -
THE OUTPUT FILE NAME (OUT_FILE) MUST BE ENTERED IF THE VALUE IN S
FIELD OUT_ROUTING EQUALSF. 3 -
- i =
=

4-36
5063

o

Table 4-3. Constraints on Database Tables (6 of 6)

TABLE CONSTRAINT

USER_CLASS THE ORACLE USER ID (ORA_USER_ID) MUST BE A VALID ORACLE USER
ACCOUNT NAME. .

THE CLASS OF USER (USER_CLASS) MUST EXIST IN THE
- | USER_CLASS_ACCESS TABLE.

5063G(1)-17

TEMP_ACTIVTY THE SCRIPT_NO AND SAT_DAY MUST EXIST IN THE GENERATE_SAT_DAY
TABLE. oo) :
TEMP_FORMCT THE SCRIPT_NO AND SAT_DAY MUST EXIST IN THE GENERATE_SAT_DAY
TABLE. :
TEMP_MANHRS THE SCRIPT_NO AND SAT_DAY MUST EXIST IN THE GENERATE_SAT_DAY
TABLE.
TEMP_SERVHRS THE SCRIPT_NO AND SAT_DAY MUST EXIST IN THE GENERATE_SAT_DAY
TABLE.
4-37

5063

Under the heading "Access Path," there is a graph-like dia-
gram showing the access path tﬁat an SQL query may traverse
to retrieve the desired data. The path shown is just one of
the many possible ways to get toc the data; other paths can
be used to achieve the same result. In each access path,
the names within square brackets [] represent column names.
The names with no brackets around them represent table -
names. The arrows always point to either the intermediate
or the final target columns or tables. The name of each
target field that stores coded values is followed by the
keywords *“*CODED FIELD." The codes and their descriptions
are explained in Appendix A. In addition, symbol "!=" means
not equal to and MAX means the maximum value of the column
that follows.

Using the access paths in Table 4-4, the corresponding SQL
queries can be formulated easily. The following two exam-
ples demonstrate how to interpret the access path diagrams,
They also show that some of the access paths may retrieve
one record from a target table and others may retrieve mul-
tiple records. In the first example, the access path will
return one record if one subsystem exists for the specified
project, or multiple records if more than one subsystem ex-
ists. Otherwise, it will return null. In the second exam-
ple, the access path will return only one record that
contains the creation date for the component specified by
the user. However, this access path can be modified to re-
trieve all the creation dates for all components in a par-
ticular subsystem within a particular project. This can be
accomplished by not specifying the component name in the SQL
query.

Example 1

This example retrieves all the subsystem prefixes of a par-
ticular project. This access path is shown in Table 4-4 un-
der target table PROJ_SUB and target column SUB_PRE and is
as follows:

[PROJ_NAME] -+ PROJECT
+ [PROJ_NO]

PROJ_SUB
+
[SUB_PRE]

The first line in the access path shows that PROJ_NAME is
the qualified field of the PROJECT table. In other words,
the value of the field is specified by the user to identify
which project's data are to be retrieved. The down arrow

4-38
5063

|

Qi IR i

Bl

g ®iom

i

]

wil

|

w1

K

iAo

L

i

&0
e

between PROJECT and PROJ_SUB means that the two tables are
joined together by the common field, PROJ_NO in this case,
that is listed next to the arrow. The down arrow under
PROJ_SUB points to the target column SUB_PRE of PROJ_SUB,
which is where all the subsystem prefixes are stored.

S0L statement

SQL> SELECT SUB_PRE FROM PROJ_SUB, PROJECT
2 WHERE PROJ_SUB.PROJ_NO=PROJECT.PROJ_NO
3 AND PROJ_NAME = <user-supplied project name>;

Example 2

This example retrieves the date a component was entered into
the controlled library. The access path for this example 1is
shown in Table 4-4 under target table COM_SOURCE and target
column CREATE_DATE and is as follows: ° =

[PROJ_NAME] -~ - PROJECT

+
[SUB_PRE] -+ PROJ_SUB

[PROJ_NO]

[SUBSY_ID]
[COM_NAME] =+ suaicom
[COM_NO]
com_;ounéE)
[CREATE_DATE]

PROJ_NAME, SUB_PRE, and COM_NAME are the qualified fields of
tables PROJECT, PROJ_SUB, and SUB_COM, respectively. Tables
PROJECT and PROJ_SUB are joined on PROJ_NO; PROJ_SUB and
SUB_COM are joined on SUBSY_ID; and SUB_COM and COM_SOURCE
are joined on COM_NO. The result is from field CREATE_DATE
of the COM_SOURCE table.

SOL statement

SQL> SELECT CREATE_DATE

FROM COM_SOURCE, SUB_COM, PROJ_SUB, PROJECT

WHERE COM_SOURCE.COM_NO = SUB_COM.COM_NO

AND SUB_COM.SUBSYS_ID = PROJ_SUB.SUBSY_ID

AND PROJ_SUB.PROJ_NO = PROJECT.PROJ_NO

AND PROJ_NAME = <user-supplied project name>
AND SUB_PRE = <user-supplied subsystem prefix>
AND COM_NAME = <user-supplied component name>;

O~ b WN

5063

Example 3

This example uses a predefined view as an alternative of
example 2 to get the same data, i.e., the date a component
was entered into the controlled library. The access path
for using the view V_PROJ_COM to retrieve this data item is
as follows: .

[COM_NAME]

J, . . -
[PROJ_NAME] = V_PROJ_COM <« [PROJ_NO]

v [COM_NO]
COM_SOURCE

L . .
[CREATE_DATE]

In this example, view V_PROJ_COM replaces tables PROJECT,
PROJ_SUB, and SUB_COM used in the previous example joining
with the COM_SOURCE table. The result is from field CREATE_
DATE of the COM_SOURCE table.

SQL> SELECT CREATE_DATE N

FROM V_PROJ_COM, COM_SOURCE

WHERE V_PROJ_COM.COM_NO = COM_SOURCE.COM_NO
AND COM_NAME = <user-supplied component name>
AND SUB_PRE = <user-supplied subsystem prefix>
AND PROJ_NAME = <user-supplied project name>;

ULb W

The SQL statements in these examples are included for com-
pleteness. For a more detailed introduction to formulating
SQL queries, see Section 5.3.

5063

Rl W @E WE s W € i

il

i W

i

nl

wiil

i il

Wi

gi

Table 4-4.

SEL Database Access Paths (1 of 18)

REF.ID

TARGET
TABLE

TARGET
COLUMN

ACCESS
INFORMATION

ACCESS PATH

P85, D77

CH_ADAFEAT

ADA_FEATURE

CHANGE NUM-
BER; SEE P83
FOR THE
ACCESS PATH
THAT FINDS A
PARTICULAR
CHANGE
NUMBER

[CHANGE _NO] —> CHANGE
[CHANGE_NO]
v

CH_ADAFEAT
l -

v
[ADA_FEATURE]*CODED FIELD

P63, D82

CHANGE

CHANGE_NO

PROJECT NAME

[PROJ_NAME] —>V_ PROJ_COM
I [COM_NO]
\'4
CHANGE_COM
s I [CHANGE_NO]
v
CHANGE —> [CHANGE _NO|

P76, D67

CHANGE

CH_TYPE

CHANGE NUM-
BER; SEE P63
FOR THE
ACCESS PATH
THAT FINDS A
PARTICULAR
CHANGE
NUMBER

[CHANGE_NO] —> CHANGE

v
[CH_TYPE]"CODED FIELD

P73, D64

CHANGE

DATE_COMP

CHANGE NUM-
BER; SEE P83
FORTHE -
ACCESS PATH
THAT FINDS A
PARTICULAR
CHANGE
NUMBER

[CHANGE_NO] —> CHANGE

[DATE__'COW]

P72,D63

CHANGE

DATE_DETER

CHANGE NUM-
BER/ SEE P63
FOR THE
ACCESS PATH
THATFINDS A
PARTICULAR
CHANGE
NUMBER

[CHANGE _NO] —> CHANGE

v
{DATE_DETER]

P69,D 76

CHANGE

EFF_ADA

CHANGE NUM-
BER; SEE P63
FORTHE
ACCESS PATH
THAT FINDS A
PARTICULAR
CHANGE
NUMBER

[CHANGE_NO] —> CHANGE

v
[EFF_ADA]

P67, D68

CHANGE

EFF_COM_CH

CHANGE NUM-
BER; SEE P63
FOR THE
ACCESS PATH
THAT FINDS A
PARTICULAR
CHANGE
NUMBER

[CHANGE_NO] —> CHANGE
|

v
[EFF_COM_CH]* CODED FIELD

5063

5063-4/2-89{5-7]

Table 4-4.

SEL Database Access Paths (2

of 18)

REF. ID

TARGET
TABLE

TARGET
COLUMN

ACCESS
INFORMATION

ACCESS PATH

Pes,D8s

CHANGE

EFF_ISO_CH

CHANGE NUM-
BER; SEE P63
FOR THE
ACCESS PATH
THATFINDS A
PARTICULAR
CHANGE
NUMBER

[CHANGE_NOJ] —> CHANGE
' |

v

[EFF_I1SO_CH]'CODED FIELD

P68, Des

EFF_ONE

CHANGE NUM-
BER; SEE P63
FOR THE
ACCESS PATH
THAT FINDS A
PARTICULAR
CHANGE
NUMBER

[CHANGE_NO] —> CHANGE

|

[EFF_ONE]

CHANGE

EFF_OTHER

CHANGE NUM-
BER; SEE P83
FOR THE
ACCESS PATH
THAT FINDS A
PARTICULAR
CHANGE
NUMBER

[CHANGE_NO] —> CHANGE
|

v
{EFF_OTHER]

P71,D70

CHANGE

EFF_PARPA

CHANGE NUM-
BER; SEE P83
FOR THE
ACCESS PATH
THAT FINDS A
PARTICULAR
CHANGE
NUMBER

[GHANGE_NO] —> CHANGE
|

v
- [EFF_PARPA]

P74

CHANGE

NUM_COM _CH

CHANGE NUM-
BER; SEE P63
FORTHE
ACCESS PATH
THAT FINDS A
PARTICULAR
CHANGE
NUMBER

[CHANGE_NOJ —> CHANGE

v
[NUM_COM_CH]

NUM_COM_EX

CHANGE NUM-
BER; SEE P83
FORTHE
ACCESS PATH
THATFINDS A
PARTICULAR
CHANGE
NUMBER

[CHANGE_NO] —> CHANGE

[NUM_COM_EX]

P65, D80

CHANGE

SUB_DATE

CHANGE NUM-
BER; SEE P83
FOR THE
ACCESS PATH
THAT FINDS A
PARTICULAR
CHANGE
NUMBER

[CHANGE_NO] —> CHANGE
|

v
[SUB_DATE]

5063-5/2-89[5-7]

5063

i

v
1
it

(S

ny
Wi

Table 4-4. SEL

Database Access Paths (3 of 18)

TARGET TARGET ACCESS
REF. 10 TABLE COLUMN | INFORMATION ACCESS PATH
P86, D8O CH_ERR_ARES| ERR_ARES CHANGE NUM- | [CHANGE_NO] —> CHANGE
- | BER: SEE P63
FOR THE 1[CHANGE_NO]
ACCESS PATH
THAT FINDS A CH_ERR_ARES
PARTICULAR l
CHANGE I}
NUMBER [ERR_ARES]*CODED FIELD
P83, D79 CH_ERR_GEN | ERR_ACAUSE | CHANGE NUM- | [CHANGE_NO] —> CHANGE
BER; SEE P83
FOR THE | icHANGE_NO)
- ACCESS PATH v
THATFINDS A CH_ERR_GEN
PARTICULAR
CHANGE
NUMBER [ERR_ACAUSE]* CODED FIELD
P82, D78 CH_ERR_GEN | ERR_LADOC | CHANGE NUM- | [CHANGE_NO] —> CHANGE
BER; SEE P83
FORTHE l [CHANGE_NOJ
ACCESS PATH CH_ERR_GEN
THAT FINDS A |
PARTICULAR |
CHANGE [ERR_ADOC]
‘ NUMBER
P78,D72 CH_ERR_GEN | ERR_CLASS | CHANGE NUM- | [CHANGE_NO] —> CHANGE
BER; SEE P63
FOR THE | cHANGE_NO)
ACCESS PATH v
THAT FINDS A CH_ERR_GEN
PARTICULAR |
CHANGE !
NUMBER [ERR_CLASS]* CODED FIELD
P79, D74 CH_ERR_GEN | ERR_COMIS | CHANGE NUM- | [CHANGE_NO] —> CHANGE
BER; SEE P63
FOR THE | rcrance oy
ACCESS PATH
THAT FINDS A CH_ERR_GEN
PARTICULAR |
CHANGE J
NUMBER [ERR_COMIS]
P80, D73 CH_ERR_GEN | ERR_OMIS CHANGE NUM- | [CHANGE_NO] —> CHANGE
BER; SEE P83
FOR THE | [CHANGE_NO]
ACCESS PATH v
THAT FINDS A CH_ERR_GEN
PARTICULAR
CHANGE l
NUMBER [ERR_OMIS]
P77,0M CH_ERR_GEN | ERR_SOURCE | CHANGE NUM- | [CHANGE_NO] —> CHANGE
BER; SEE P83
FOR THE l [CHANGE_NO]
ACCESS PATH
THAT FINDS A CH_ERR_GEN
PARTICULAR
CHANGE
NUMBER [ERR_SOURCE]* CODED FIELD
4-43 :

5063

5063-6/2-89[5-7]

Table 4-4., SEL Database Access Paths (4 of 18)
TARGET TARGET ACCESS
REF. 1D TABLE COLUMN | INFORMATION ACCESS PATH
P81, D75 CH_ERR_GEN | ERR_TYPO | CHANGE NUM- | [CHANGE_NO] —> CHANGE
- BER; SEE P63
D R THE | 1cHancE o
ACCESS PATH CH_ERR_GEN
THAT FINDS A l
PARTICULAR v
CHANGE [ERR_TYPO]
NUMBER
P87, D81 CH_ERR ERR_TOOLS | CHANGE NUM- | [CHANGE_NO] —> CHANGE
_TOOLS BER; SEE P83
PORTHE [CHANGE_NO]
ACCESS PATH CH_ERR_TOOLS
THAT FINDS A '
PARTICULAR v
CHANGE [ERR_TOOLS]'CODED FIELD °
NUMBER
PS0.D58 |COM_PURPOSEH PURPOSE |PROJECT NAME,| [PROJ_NAME] —>PROJECT
SUBSYSTEM
PREFIX, AND l[PHOJ_NOI
COMPONENT
NAME [SUB_PRE] —>PROJ_SUB
I [SUBSY_ID]
v
[COM_NAME] —> SUB_COM
[COM_NO]
COM_PURPOSE
[PURPOSE]" CODED FIELD
M6 COMPUTER | C_FULL_NAME | COMPUTER {CPU_NAME] —> COMPUTER —> [C_FULL_NAME]
SHORT NAME
A COMPUTER | CPULNAME | NONE —> COMPUTER —> [CPU_NAME]
P58, D57 COM_SOURCE| COM_TYPE | PROJECT NAME.| [PROU_NAME] —>PROJECT
SUBSYSTEM
PREFIX, AND [PROJ_NO]
COMPONENT .
NAME [SUB_PRE] —>PROJ_SUB
[SUBSY_ID]
Y
[COM_NAME] —> SUB_COM
[COM_NO]
COM_SOU
| .
A\
[COM_TYPE]* CODED FIELD
P53, D54 COM_SOURCE | CREATE_DATE|PROJECT NAME,| [PROJ_NAME] —>PROJECT '
SUBSYSTEM
PREFIX, AND | [PRQJ_NO]
COMPONENT v
NAME [SUB_PRE] —>PROJ_SUB
l
4-44 d
5063

5063-7/2-89(5-7]

Ky

|

N |

~

[

1]

I

£

Table 4-4. SEL Database Access Paths (5 of 18)
TARGET TARGET ACCESS
REF. 1D TABLE COLUMN | INFORMATION ACCESS PATH
P53, D54
(CONTD}) l {SUBSY_ID]
A’
[COM_NAME] —> SUB_COM
l {COM_NO]
v
COM_SOURCE
!
[CREATE_DATE]
P57, D55 COM_SOURCE | DIFFICULTY |PROJECT NAME,| [PROJ_NAME] —>PROJECT
SUBSYSTEM
PREFIX, AND I [PROJ_NO]
COMPONENT v
NAME [SUB_PRE] —>PROJ_SUB
l [SUBSY_ID]
v
[COM_NAME] —> SUB_COM
I [COM_NO]
v
com_jounce
v
[DIFFICULTY]
DS9 | coM_SOURCE| FORM_NO |PROJECT NAME | [PROJ_NAME] —> V_PROJ_COM
| [com_noy
v
COM_SOURCE
[FORM_NO]
P56. D56 COM_SOURCE | ORI_TYPE PROJECT NAME, | [PROJ_NAME] —>PROJECT
SUBSYSTEM
PREFIX, AND [PROJ_NO]
COMPONENT v
NAME [SUB_PRE] —>PROJ_SUB
I [SUBSY_ID]
v
[COM_NAME] —> SUB_COM
l [COM_NOJ
COM_SOURCE
v
[ORI_TYPE]* CODED FIELD
P54, D52 COM_SOURCE| SUB_DATE | PROJECT NAME,| [PAQJ_NAME] —>PROJECT -
SUBSYSTEM
PREFIX, AND l [PROJ_NO|
COMPONENT v
NAME [SUB PRE] —>PROJ_SUB
\'
4-45
5063

5063G-(6)-40

Table 4-4. SEL Database Access Paths (6 of 18)
TARGET TARGET ACCESS
REF. 1D TABLE COLUMN | INFORMATION ACCESS PATH
P54, D52
(CONTD) | suUBSY_ID]
v
[COM_NAME] —> SUB_COM
l [COM_NO]
COM_SOURCE
}
[SUB_DATE]
P156 COM_STAT | C.C.LINE | PROJECT NAME | [PROJ_NAME] —> V_PROJ_COM <— [COM_NAME]
AND
COMPONENT I {PROJ_NO|
NAME v
PROJ_STAT
|
\4
(C_C_LINE]
P154 COM_STAT | C.EXES | PROJECT NAME | [PROJ_NAME] —> V_PROJ_COM <— [COM_NAME]
, AND
COMPONENT [COM_NO]
NAME
COM_STAT
|
\'4
[C_EXE_S]
P18§ COM_STAT | C.LNE PROJECT NAME | [PROL_NAME] —> V_PROJ_COM <— [COM_NAME]
COMPONENT _NO|
NAME
COM_STAT
}
[C_LINE]
P25, P2e, P27, | EFF_ACT ACT_HR PROJECT NAME, [PROJ_NAME] —>PROJECT
P28, P29, P30, PROGRAMMER
P31, P32, P33, NAME, WEEK [PROJ_NO]
P34, D23 ENDING DATE,
THROUGH D32 AND [FORM_NAME] —> PERSONNEL
SUBSYSTEM |
PREFIX v !
(OPTIONAL) [PROG_ID] —>EFF_PROU < - [SUB_DATE]
[P_ID] —> EFF_SUB <— [SUB_PRE]
!
[ACTVITY] —> EFF_ACT < [PS_ID}
[ACT_HR]
WHERE
ACTIVITY FOR P25, D23 = PREDES
ACTIVITY FOR P26, D24 = CREDES
ACTIVITY FOR P27, D25 = RDREVCOD
ACTIVITY FOR P28, D26 = WRCODE
4-46
5063

5063G-(6)-41

hi| 1 i |

E N Ng Wi il

R

-1

T

il

[N

1}
il

I Pl

Table 4-4.

SEL Database Access Paths (7 of 18)

REF. 1D

TARGET
TABLE

TARGET
COLUMN

ACCESS
INFORMATION

ACCESS PATH

P25, P26, P27,
P28, P29, P30,
P31, P32, P33,

THROUGH D32
(CONTD)

WHERE
ACTIVITY FOR P29, D27 = RDREVDES
ACTIVITY FOR P30, D28 = TSTCODUN
ACTIVITY FOR P31, D29 = DEBUG
ACTIVITY FOR P32, D30 = INTTEST
ACTVITY FOR P33, D31 = ACCTEST
ACTIVITY FOR P34, D32 = OTHER

P39, P40, P41,
P42, P43,
D44 TO D48

EFF_ACT

ACT_HR

PROJECT NAME,
PROGRAMMER
NAME, AND
WEEK ENDING
DATE

[PROJ_NAME] —>PROJECT
[PROQJ_NQ]

[FORM_NAME] —>PERSONNEL
|
v v
[PROG_ID] —> EFF_PRQJ <— [SUB_DATE]

| (P10} = [EFF_ID]
EFF_ACT

(ACT_HRA]
WHERE
FORM_NAME FOR P39, D44 = TECHPUBS
FORM_NAME FOR P40, D45 = SECRETARY
FORM_NAME FOR P41, D46 = LIBRARIAN
FORM_NAME FOR P42, D47 « PROGMGMT
FORM_NAME FOR P43, D48 = OTHSUPP

D37,D48

EFF_FORM

FORM_NO

PROJECT NAME
AND FORM TYPE

[PROJ_NAME] —> PROJECT
| PrRou_NO)
v
EFF_PRQJ
| o)
v
[FORM_TYPE] —> EFF_FORM

!

[FORM_NO]

NOTE:
FORM_TYPE FOR D37 = PRF
FORM_TYPE FOR D48 = SPF

P23, D22

EFF_PROJ

SUB_DATE

[PROJ_NAME] —>PROJECT
[PROJ_NO]
v

EFF_PROJ

o ||

[SUB_DATE]

PERSONNEL

DATE_ENTRY

PROGRAMMER
FORM NAME

[FORM_NAME] —> PERSONNEL —> [DATE_ENTRY]

P24, D21

PERSONNEL

FORM_NAME

PROJECT NAME

[PROJ_NAME] —>PROJECT
[PRQJ_NOJ .
v
EFF_PRGJ
I

v

5063

5063-10/2-89[5-7]

Table 4-4. SEL Database Access Paths (8 of 18)
TARGET TARGET ACCESS
REF. ID TABLE COLUMN | INFORMATION ACCESS PATH
P24, D21 |
{CONTD) v
{[PROG_ID] —> PERSONNEL
!
[FORM_NAME]
WHERE
FORM_NAME | = TECHPUBS
FORM_NAME | = SECRETARY
FORM_NAME | = LIBRARIAN
FORM_NAME | = PROGMGMT
FORM_NAME | « OTHSUPP
P55, D50 PERSONNEL | FORM_NAME | PROJECT NAME.| [PROJ_NAME] —>PROJECT
SUBSYSTEM
PREFIX, AND [PROJ_NO]
COMPONENT
NAME [SUB_PRE] —>PROJ_SUB
(SUBSY_ID]
A
- {COM_NAME] —> SUB_COM
J [com_NOj
COM_SOURCE
i [PROG_ID] —> PERSONNEL
!
[FORM_NAME]
P4, D61 PERSONNEL |FORM_NAME | CHANGE NUM- | [CHANGE_NO] —> CHANGE —> [PROG_ID] —> PERSONNEL
BER; SEE P63 |
FOR THE v
ACCESS PATH [FORM_ NAME]
THAT FINDS A
PARTICULAR
CHANGE
NUMBER
M1 PERSONNEL | FORM_NAME | NONE —> PERSONNEL —> [FORM_NAME]
M2 PERSONNEL | FULL_NAME | PROGRAMMER | [FORM_NAME] —> PERSONNEL —> [FULL_NAME]
FORM NAME
P134, D38 PROJ_CPU CPU_NAME |PROUECT NAME | [PROJ_NAME]—> PROJECT
_STAT
l [PROJ_NO}
PROJ_CPU_STAT
!
[CPU_NAME]
P135,094 PROJ_CPU TOTAL_LHR |PROJECTNAME | [PROJ_NAME] —> PROJECT
_STAT
v
. 4-48
5063

5063-11/2-89{5-7)

1 |

1
i

| [1[

=
=3
==
-

R

| (]

Table 4-4. SEL Database Access Paths (9 of 18)
TARGET TARGET ACCESS
REF. 1D TABLE COLUMN | INFORMATION ACCESS PATH
P135,D94
(CONTD) [PROJ_NO]
\'
PROJ_CPU_STAT
!
[TOTAL_HRS] _
P138, D95 PROJ_CPU | T_AWN PROJECT NAME | [PROJ_NAME] —> PROJECT
_STAT
|[PROJ_NO]
PROJ_CPU_STAT
!
[T_RUN]
P3 PROJECT ACTIVE {PROJECT NAME | [PROJ_NAME] —>PROJECT
_STATUS |
v
i} [ACTIVE_STATUS]*CODED FIELD
P1,D1 PROJECT PROJ_NAME | NONE —> PROJECT
|
v
[PROJ_NAME]
P2 PROJECT PROJ_TYPE |PROJECT NAME | [PROJ_NAME]—>PRQJECT
!
[PROJ_TYPE]*CODED FIELD
P21, D12 PROJ_EST MAN_HR PROJECT NAME | {PROJ_NAME] —>PROJECT
AND SUBMIS-
SION DATE OF {PROJ_NO]
DESIRED SET OF v
ESTIMATES (SUB DATE] —> PROJ_EST
)
IMAN_HR]
P20, D11 PROJ_EST PRO_HR PROJECT NAME | [PROJ_NAME] —>PROJECT
AND SUBMIS-
SION DATE OF {PROJ_NO]
DESIRED SET v
OF ESTIMATES | [SUB_DATE] —> PROJ_EST
|
v
[PRO_HR]
P23,D13 PROJ_EST SER_HR PROJECT NAME | [PROJ_NAME] —>PROJECT
AND SUBMIS-
SION DATE OF [PROJ_NO)
DESIRED SET OF v
ESTIMATES [SUB_DATE] —> PROJ_EST
!
[SER_HR]

5063

- 5063-12/2-89[5-7)

Table 4-4. SEL Database Access Paths (10 of 18)

TARGET

TARGET

ACCESS

REF. 1D TABLE COLUMN | INFORMATION ACCESS PATH
P13,D2 PROJ_EST SUB DATE |PROJECT NAME | [PROJ_NAME} —>PROJECT
[PROJ_NO]
v
PROJ_EST
|
v
[SUB_DATE]
P15,D15 PROJ_EST T_COM PROJECT NAME | [PROJ_NAME] —>PROJECT
AND SUBMIS-
SION DATE OF 1 {PROJ_NO]
DESIRED SET OF
ESTIMATES [SUB_DATE]—> PRQU_EST
!
{T_COM]
P18, D18 PROJ_EST T_LINE PROJECT NAME | [PROJ_NAME] —>PROJECT
AND SUBMIS-
SION DATE OF | [PROJ_NO}
DESIRED SET OF v
. ESTIMATES {SUB_DATE] —> PROJ_EST
_ [T_LINE]
P18,D18 PROJ_EST T_MOD_LINE |{PROJECT NAME | [PROJ_NAME] —>PROJECT
AND SUBMIS-
SION DATE OF J [PROJ_NQ]
- DESIRED SET OF
ESTIMATES {SUB_DATE] —> PROJ_EST
[T_MOD_LINE]
P19,D17 PROJ_EST T_NEW_UNE [PROJECT NAME | [PROJ_NAME] —>PROJECT
AND SUBMIS-
SION DATE OF l {PRQJ_NOJ
DESIRED SET OF v
ESTIMATES [SUB_DATE] —> PROJ_EST
!
[T_NEW_LINE]
P17,D19 PROJ_EST T_OLD_LINE |PROJECT NAME | [PROJ_NAME] —>PROJECT
AND SUBMIS-
SION DATE OF [PROJ_NOJ
DESIRED SET OF v
ESTIMATES [SUB_DATE] —> PRQU_EST
!
[T_OLD_LINE]
P14,D14 PROJ_EST T_SYS PROJECT NAME | [PROJ_NAME] —>PROJECT
AND SUBMIS-
SION DATE OF [PROJ_NO}
DESIRED SET OF| v
ESTIMATES [SUB_DATE] —>PROJ_EST

v
[T_SYS)

5063

5063-13/2-89(5-7)

| W W W 8

Y

L 1l

SN

11l

[

i

Table 4-4. SEL Database Access Paths (11 of 18)
TARGET TARGET ACCESS
REF. ID TABLE COLUMN | INFORMATION ACCESS PATH
D10, D94 PROJ_EST | END_DATE | PROJECT NAME | [PROJ_NAME] —> PROJECT
_PHASE AND SUBMIS-
SION DATE OF | PROu_NO}
DESIRED v
SCHEDULE [SUB_DATE] —> PROJ_EST_PHASE
v
MAX [END_DATE]
D3, D4, D5, 06,] PROJ_EST START_DATE | PROJECT NAME,| [PROJ_NAME] —> PROJECT
D7, D8, D9, _PHASE PHASE CODE,
D84 TO D90 AND | ProuNoy
SUBMISSION
DATE [PHASE_CO] —> PROJ_EST_PHASE
[SUB_DATE]
[START_DATE]
NOTE: A
PHASE_CO FOR D3, D84 = REQNT
PHASE_CO FOR D4, D85 = DESGN
PHASE_CO FOR D5, D86 = CODET
PHASE_CO FOR D8, D87 = SYSTE
- PHASE_CO FOR D7, D88 = ACCTE
PHASE_CO FOR D8, D89 = CLEAN
PHASE_CO FOR D9, D90 = MAINT
SUB_DATE FOR D3 TO D9 IS THE SUBMISSION DATE OF
DESIRED SCHEDULE.
SUB_DATE FOR D84 TO D80 IS THE SUBMISSION DATE OF
B) FINAL STATISTICS.
Pe, P7, P8, PROJ_EST START_DATE, | PROJECT NAME,| (PROJ_NAME] —>PROJECT
P9, P10, _PHASE END_DATE | SUBMISSION
P11, P12, DATE OF lmnw_nol
P125 TO P131 DESIRED
SCHEDULE, AND| [SUB_DATE] —> PROJ_EST_PHASE <—[PHASE_CO]
PHASE CODE I
[START_DATE],
[END_DATE]
NOTE:
PHASE_CO FOR PS, P125 = REQNT
PHASE_CO FOR P7, P126 = DESGN
PHASE_CO FOR P8, P127 = CODET
PHASE_CO FOR P9, P128 = SYSTE
PHASE_CO FOR P10, P129 = ACCTE
PHASE_CO FOR P11, P130 = CLEAN
PHASE_CO FOR P12, P131 = MAINT
PS, P124, PROJ_EST SUB_DATE |PROJECT NAME | [PROJ_NAME] —>PROJECT
P13,D2 _PHASE
{PROJ_NO]
v
PROJ_EST_PHASE
!
[SUB_DATE]
D20, D49, PROJ_FORM |FORM_NO PROJECT NAME | [PROJ_NAME] —> PROJECT
D113, D150 . AND FORM TYPE |
v

5063

5063-14/2-89{5-7]

Table 4-4. SEL Database Access Paths (12 of 18)
TARGET TARGET ACCESS
REF. 1D TABLE COLUMN | INFORMATION ACCESS PATH
D20, D49,
D113, D150 | PrRou_NO)
(CONTD) v
[FORM_TYPE] —> PROJ_FORM
v
[FORM_NO]
FORM_TYPE FOR D150 = SEF
FORM_TYPE FOR D20 = PEF
FORM_TYPE FOR D49 = SPF
FORM_TYPE FOR D113 = PCSF
P82, D42 PROJGRH | GR_CH PROJECT NAME | [PROJ_NAME] —>PROJECT
AND WEEK END-
ING DATE | [PROJ_NO]
v
[SUB_DATE] —>PRi)J_GRH
[GR'CH]
P80, D43 PROJGRH | GRLLINE PROJECT NAME | [PROJ_NAME] —>PROJECT
AND WEEK END- I
ING DATE | PROUNOY
[SUB_DATE] —>PROJ_GRH
|
_— v
[GR_LINE]
P81, D41 PROJGRH | GR_MOD PROJECT NAME | [PROJ_NAME] —>PROJECT
AND WEEK END-
ING DATE l [PROJ_NO]
\'4
[SUB_ DATE] —>PF10J_GRH
v
[GR_MOD]
P4 PROJ_MESS | MESSAGE PROJECT NAME | [PROJ_NAME] —>PROJECT
! [PROJ_NO]
PROJ_MESS
|
v
[MESSAGE]
Pas, D39 PROJ_PROD | RES_HR PROJECT NAME, | (PROJ_NAME] —> PROJECT
COMPUTER
NAME, AND [PROJ_NO)
SUBMISSION . v
DATE [SUB_DATE] —> PROJ_PROD <— [RES_NAME]
!
[RES_HR]
4-52
5063

5063-15/2-89{5-7)

{

i

wl

N

l

TR

LT

|

il

20|

14

Y

Table 4-4. SEL Database Access Paths (13 of 18)
TARGET TARGET ACCESS
REF. 1D TABLE COLUMN | INFORMATION ACCESS PATH
- Pas, D38 PROJPROD | RES.NAME _ |PROJECT NAME | (PROJ_NAME] —> PROJECT
' {PROJ_NO]|
'V
_ PROJ_PROD
v
[RES_NAME]
= P4s, D40 PROJ.PRAOD | RES_RUN __|PROJECT NAME, | [PROJ_NAME] —> PROJECT
COMPUTER
NAME, AND [PROJ_NO]
SUBMISSION v
_ DATE {SUB_DATE] —> PROJ_PROD <— [RES_NAME]
—
!
[RES_RUN]
— P88 TOP107, |PROJ.SEF | EVALUATE |PROJECT NAME | [PROJ_NAME] —> PROJECT
P109 TOP123 AND MEASURE- l[PROJ NOY
MENT TYPE -
[MEAS_TYPE] —> PROJ_SEF
-~ ’ v
 [EVALUATE]
— NOTE: :
= MEAS_TYPE FOR P88, D14 IS ‘PMOT’
' MEAS_TYPE FOR P89, D115 IS ‘PM0Z
- MEAS_TYPE FOR P90, D116 IS 'PM0Z
MEAS_TYPE FOR P91, D117 IS ‘PMO4
MEAS_TYPE FOR P92, D118 IS ‘PMOS'
= MEAS_TYPE FOR P83, D119 IS ‘PMO6"
MEAS_TYPE FOR P94, D120 IS ‘STOT
MEAS_TYPE FOR PS5, D121 IS ‘STO8'
MEAS_TYPE FOR P96, D122 IS 'STO09'
MEAS_TYPE FOR P97, D123 IS ‘ST10’
- MEAS_TYPE FOR P98, D124 IS TM1 1"

dl

i

L

I

MEAS_TYPE FOR P99, D125 IS TM1Z

MEAS_TYPE FOR P100, D126 IS TM13
MEAS_TYPE FOR P101, D127 IS TM{4'
MEAS_TYPE FOR P102, D128 IS ‘TM15’
MEAS_TYPE FOR P103, D129 IS ‘PC16
MEAS_TYPE FOR P104, D130 IS 'PC17
MEAS_TYPE FOR P105, D131 IS'PC18'
MEAS_TYPE FOR P106, D132 1S 'PC19’
MEAS_TYPE FOR P107, D133 IS ‘PC20°
MEAS_TYPE FOR P108, D134 IS ‘PC21’
MEAS_TYPE FOR P109, D135 IS 'PC22
MEAS_TYPE FOR P110, D136 IS 'PC23
MEAS_TYPE FOR P111, D137 IS 'PC24’
MEAS_TYPE FOR P112, D138 IS 'EN25’
MEAS_TYPE FOR P113, D139 IS 'EN26’
MEAS_TYPE FOR P114, D140 IS 'EN27
MEAS_TYPE FOR P115, D141 IS 'EN28&
MEAS_TYPE FOR P116, D142 IS "EN29’
MEAS_TYPE FOR P117, D143 IS 'EN30’
MEAS_TYPE FOR P118, D144 IS ‘PT31'
MEAS_TYPE FOR P119, D145 1S 'PT32'
MEAS_TYPE FOR P120, D148 IS"PT33"
MEAS_TYPE FOR P121, D147 IS 'PT34'
MEAS_TYPE FOR P122, D148 1S 'PT35
MEAS_TYPE FOR P123, D149 1S 'PT36

5063

i

4-53

5063-35/2-89{5-7]

Table 4-4.

SEL. Database Access Paths (14 of 18)

REF. ID

TARGET

TARGET
COLUMN

ACCESS
INFORMATION

ACCESS PATH

P108,D134

PROJ_SEF
SEC

SECOND_L

PROJECT NAME
AND MEASURE-
MENT TYPE

[PROJ_NAME] —> PRQJECT
[PRQU_NC]
v

[MEAS_TYPE] —> PROJ_SEF_SEC
|

v
[SECOND_L}* CODED FIELD

NOTE: MEAS_TYPE IS PC21

P133, D83

PROJ_STAT

‘| ser_HR

PROJECT NAME

[PROJ_NAME] —> PROJECT
[PRQJ_NOJ}
v

PROJ_STAT
|

v
[SER_HR]

P139, D8

PROJ_STAT

T_CH

PROJECT NAME

[PROJ_NAME] —> PROVECT
[PROJ_NO]
v

PROJ_STAT

U
v

[T_CH]

P138, D87

PROJ_STAT

T_COM

PROJECT NAME

[PROJ_NAME] —> PROJECT
l [PROJ_NO]
PROJ_STAT

!

{T_COM]

P145,D104

PROJ_STAT

T_COMMENT

IPROJECT NAME

[PROJ_NAME] —> PROJECT
\l' [PROJ_NO]

PROJ_STAT
|

v
[T_COMMENT)]

P140, D99

PROJ_STAT

“|r_poc

PROJECT NAME

(PROJ_NAME] —> PROUECT
{PROJ_NQ]
v

PROJ_STAT
|
v
[T_DOC]

P132, D92

PROJ_STAT

TECH_MAN_HR

PROJECT NAME

[PROJ_NAME] —> PROJECT
I [PROJ_NO]
v

PROJ_STAT
|

v
[TECH_MAN_HR]|

5063

5063-17/2-89{5-7)

{

]

L i

fl

M

I

Table 4-4.

SEL Database Access Paths (15 of 18)

REF. 1D

TARGET
TABLE

TARGET
COLUMN

ACCESS
INFORMATION

ACCESS PATH

P148, D105

PROJ_STAT

T_EXE_MOD

PROJECT NAME

[PROJ_NAME] —> PROJECT
[PROJ_NOQ]
v

PROJ_STAT
|

v
[T_EXE_MOD]

P150, D109

PROJ_STAT

T_EXE_STAT

IPROJECT NAME

{PROJ_NAME] —> PROJECT
[PROJ_NQ]
v

PROJ_STAT
!
[T_EXE_STAT]

P141,D0100

[PROJ_STAT

T_LINE

IPROJECT NAME

[PROJ_NAME] —> PRQJECT
1 [PRQJ_NO]
PROJ_STAT

|

[T_LINE]

P143, D102

PROJ_STAT

T_MOD_LINE

PROJECT NAME

{PROJ_NAME] —> PROJECT
l {PROJ_NO]
PROJ_STAT
|

v
[T_MOD_LINE]

P148, D107

PROJ_STAT

T_MOD_MOD

IPROJECT NAME

{PROJ_NAME] —> PROJECT
[PROJ_NO]
v

PROJ_STAT
!

v
[T_MOD_MOD]

P152, D111

|PRQJ_STAT

T_MOD_STAT

IPROJECT NAME

{PROJ_NAME] —> PROJECT

l [PROJ_NO] -

PROJ_STAT
|

v
[T_MOD_STAT]

P142,D101

PROJ_STAT

T_NEW_LINE

PROJECT NAME

[PROJ_NAME] —> PROJECT
[PROJ_NQ]
v
PROJ_STAT

v
[T_NEW_LINE]

5063

5063-18/2-89[5-7]

Table 4-4.

SEL Database Access Paths (16 of 18)

TARGET
REF. ID TABLE

TARGET
COLUMN

ACCESS
INFORMATION

ACCESS PATH

P147,D1068 |PRQJ_STAT

T_NEW_MOD

PROJECT NAME

[PROJ_NAME] —> PROJECT
[PROJ_NO]
v

PROJ_STAT

I

v
[T_NEW_MOD]

P151,D110 PROJ_STAT

T_NEW_STAT

PROJECT NAME

{PROJ_NAME] —> PROJECT
1) [PROJ_NO]

PROJ_STAT
|

v
[T_NEW_STAT]

P144, D103 PRQJ_STAT

T_OLD_LINE

PROJECT NAME

[PROJ_NAME] —> PROJECT
{PROJ_NO]
v

PROJ_STAT
|

v
[T_OLD_LINE]

P149, D108 PROJ_STAT

T_OLD_MOD

PROJECT NAME

[PROJ_NAME] —> PROJECT
l {PROJ_NO]

PROJ_STAT
I

v
[T_OLD_MOD]

P153 PROQJ_STAT

T_OLD_STAT

PROJECT NAME

[PROJ_NAME] —> PROJECT
[PROJ_NO]
v

PROJ_STAT
|

v
[T_OLD_STAT]

P137, D96 PROJ_STAT

T_SYS

PROJECT NAME

[PROJ_NAME] —> PRQJECT
[PROJ_NO]
.V
PROJ_STAT

[T_SvYs]

< |

P150, D151 PROJ_SUB

SUB_DATE

PROJECT NAME
AND
SUBSYSTEM
PREFIX

[PROJ_NAME] —> PROJECT
[PRQJ_NO;}
v

[SUB_PRE] —> PROJ_SUB
|

v
[SUB_DATE]

5063

5063G-(6)-42

L

L B

"
I

==
-

=
-

ui

Wiy

Wil

=]
=1
=]
L]

1

i

!

Table 4-4. SEL Database Access Paths (17 of 18)
TARGET TARGET ACCESS
REF. 1D TABLE COLUMN | INFORMATION ACCESS PATH
P47,D51,0152 |PROJ_SUB SUB_PRE PROJECT NAME | [PROJ_NAME] —> PROJECT
l(PROJ_NO]
PROJ_SUB
|
v
[SUB_PRE]
P35, P38, P37, | SPECIAL_ACT | ACT_HR PROJECT NAME, [PROJ_NAME] —>PROJECT
P38, D33 PROGRAMMER -
THROUGH D38 NAME, AND [PRQJ_NO)
WEEK ENDING
DATE [FORM_NAME] —>PERSONNEL
!)
[PROG_ID} —> EFF_PROJ <— [SUB_DATE]
|
v [P_ID] = [EFF_ID]
JACTIVITY] —> SPECIAL_ACT
- !
WHERE UK?;HN
SP_ACTIVITY FCR P35, D33 = REWORK
SP_ACTIVITY FOR P36, D34 = ENHANCE
SP_ACTIVITY FOR P37, D35 = DOCUMENT
SP_ACTIVITY FOR P38, D36 = REUSE
P52 SUB_COM COM_DATE PROJECT NAME,| [PROJ_NAME] —>PROJECT
SUBSYSTEM
PREFIX, AND I (PROJ_NO]
COMPONENT v
NAME [SUB_PRE] —>PROJ_SUB
I[SUBSYJD]
v
[COM_NAME}—> SUB_COM
[COM_DATE]
P51, D53 SUB_COM COM_NAME | PROJECT NAME | [PROJ_NAME] —>PROJECT
AND 5UB-
SYSTEM l [PROJ_NO]
PREFIX
[SUB_PRE] —>PROJ_SUB
I [SUBSY_ID}
v
SUB_COM
|
v
[COM_NAME]
P49, D154 SUBSYSTEM | FUNCTION PROJECT (PROJ_NAME] —>PROJECT
NAME AND
SUBSYSTEM [PROJ_NO]
PREFIX
[SUB PRE} —>PRQJ_SUB
|
v

5063

5063G-(6)-43

Table 4-4. SEL Database Access Paths (18 of 18)
TARGET TARGET ACCESS
REF. 1D TABLE COLUMN | INFORMATION ACCESS PATH
P49, D154
(CONTD) J [suBsY_iD]
SUBSYSTEM
!
[FUNCTION]* CODED FIELD
P48,D153 | SUBSYSTEM ~ |NAME PROJECT NAME | [PROJ_NAME] —> PROJECT
AND SUB-
SYSTEM [PROJ_NO]
PREFIX
[SUB_PRE] —> PROJ_SUB
- J, [SUBSY_ID]
SUBSYSTEM
|
v
[NAME]
P84, D 62 V_PROJ_COM |COM_NAME |PROJECT NAME CHANGE_COM
l [COM_NO]
[PROJ_NAME] —> V_PROJ_COM
!
[COM_NAME]
4-58
5063

5063-21/2-89(5-7]

i a6 l

|

==
-

QR

1!

{

ECTION — ACCESSIN EL. DATABA

The database table definitions and relationships presented
in Section 4 provide a guide to finding a particular soft-
ware engineering data item in the database. This Section
discusses how to actually access a data item once its loca-
tion in the schema has been identified.

Section 5.1 discusses how a user initially gets access to
the SEL database. Section 5.2 provides an introduction to
the Database Access Manager for the SEL (DAMSEL) software
system: a menu-driven user interface that allows the user
to view data, enter data, generate reports, and perform var-
jous database support functions. Section 5.3 presents an
introduction to ad hoc database queries via the SQL language
provided by the ORACLE DBMS. This introduction covers the
basics of how to formulate an SQL query and provides several
illustrative examples.

5.1 DATABASE ACCESS REQUIREMENTS

To access the SEL database, a user must first have a user ID
on the STL VAX 11/780. Users can register for this account
by contacting STL systems personnel. Second, the user must
have an ORACLE user ID on the VAX. This may be obtained
from STL ORACLE systems personnel. Third, the user must be
enrolled as a database user. This may be accomplished by
contacting the CSC SEL DBA and supplying an ORACLE user ID,
password, and SEL database user class. User classes are
defined to give different types of users different levels of
database access. The user class determines the access priv-
ileges a user has with respect to individual database tables
and the functions that may be performed under the database
operational software. The following user classes have been
defined:

o General user--Users requiring read-only access to
the database, such as researchers and managers

] Librarian--SEL data entry personnel
® QA--SEL quality assurance personnel
® Maintenance--SEL database maintenénce programmers
® DBA--SEL database administrator
5-1

5063

Once a user has been enrolled in the SEL database environ-
ment and logs onto the STL VAX, the following command proce-
dure must be executed to create all of the logicals and
symbols requ1red to access the ORACLE RDBMS and the DAMSEL

system:
$ @STL_DISK1[TOOLS]SELINIT

To avoid having to type this command to access the database,

it is recommended that it be included in the user's LOGIN.COM

file to be executed automatically upon logging onto the VAX.
Then, after logging on, the user may execpte the DAMSEL sys-

tem by simply typing
$ DAMSEL

5.2 DAMSEL SYSTEM

The DAMSEL system is the primary facility that provides a
convenient way to access the SEL data for all classes of
users. This is a menu-driven user interface with five major
options at the top level:

o Forms function option--Users may view, insert, up-
date, delete, or quality assure SEL data interactively, one
SEL form at a time. The screens for performing these opera-
tions display data in a manner that resembles the data col-
lection forms presented in Section 3.

® Rggg;;_ﬁugg;lgn_gg;;gn——Th1s selection provides a
method for users to view large amounts of data on single
projects, or on multiple projects, within a single report.
Reports are available for viewing data that are not project
specific or related to SEL forms. Users select a sequence
of reports and options from the report menus and submit the
sequence to be executed. They may also save one or more
frequently used sequences of reports for future execution.
Reports are submitted as batch jobs, and the results may be
printed or routed to files for terminal display and future
printing.

® Query support function option--This selection pro-
vides a set of ad hoc SQL queries that would likely be used

by general users, such as researchers and managers.

) DBA function option--This selection provides data

entry screens for the SEL DBA to enter or modify projects,
personnel information, and computer information and to per-
form various database verification tasks.

5-2

)

5063

|

W]

g s W

I

Ll

Wil

1

I

Wi win W Wi

(

{

® General database support function option--This se-
lection provides commands to SEL database support personnel
to back up and restore the database and to generate distri-
bution tapes.

In the menu system, users, depending on their user class,
may access one or more of these functions. The menu system
has built-in security features to verify that each user has
the access privilege to the functions that he or she is at-
tempting to perform. The message “You do not have access to
this option®” will appear on the screen if the user tries to
perform a function that is not in his/her operational do-
main. Each user class has different access privileges in
the menu system. These are defined as follows:

° General user--This class of user can access all the
SEL form function viewing screens, all the report function
screens, and all the query support function screens.

® Librarian--This class of user can access all the
SEL form function viewing, insert, update, and delete
screens; all the report function screens; and the general
support function backup and distribution tape generation
screens.

e QA-;This class of user can access all the SEL form
function viewing and quality assurance screens, plus all the
report function screens. -

® Maintenance--This class of user can access all the
SEL form function viewing screens, all the report function
screens, all the query support function screens, and the
general support function backup and distribution tape gener-
ation screens. :

) DBA--This class of user can access all the SEL form
function viewing screens, all the report function screens,
all the query support function screens, all the general sup-
port function screens, and all the DBA function screens.

After the database access requirements, described in Sec-
tion 5.1, are satisfied, the user can access the menu system
as follows:

°® Log-on to the VAX under his/her VAX account.

° At the '$' prompt, type DAMSEL.

® Enter his/her ORACLE user name and password on the

first screen in the menu system.

5-3
5063

[] Select menu options.

e Terminate the meﬁu syétem session via the <Exit/
Cancel> key.

Refefence 3 presents a more detailed discussion on using the
operational software.

5.3 , DATABASE I

The basic operations that may be performed on a database
table are retrieving rows and columns, inserting rows, delet-
ing rows, and updating existing rows. In the SEL database,
insertion, deletion, and update operations are all performed
via the operational software described in the previous sec-
tion. This is done to ensure that the semantic constraints
imposed by the nature of the software engineering data, as
discussed in Section 4.2, are enforced at all times. The
operation of retrieving data, however, may be done in any
context without risk of violating the integrity of the data-
base. This section discusses how to perform database re-
trievals in an ad hoc manner. Additional examples of
optimized SQL queries are presented in Appendix B. Although
an introduction to the SQL SELECT statement is included, the
coverage is not exhaustive. The reader is referred to Ref-
erence 4 for a more in-depth presentation of the SQL lan-

guage.

5.3.1 CONNECTING TO THE DATABASE

Once a user with database access (Section 5.1) has logged
onto the STL VAX, typing the following command at the system
prompt connects him/her to the SEL database:

$ SQLPLUS

After supplying an ORACLE user ID and password, the user is
placed in an interpretive environment from which he/she may
enter ad hoc SQL queries to retrieve database data. The
command line prompt

SQL>

is displayed, signaling that the system is waiting for an
SQL command. Upon entering an SQL command, terminated with
a semicolon (;), and pressing "return," SQL processes the
command, displays the result, and returns to the SQL>
prompt.

5063

| [T {1 (N |

ail

&l

&

Wi W

&ii

Wil

LI

LA

Qi

i

omm g

(

While in an SQL*Plus Session, the following online HELP com-
mand is available:

SQL> HELP;

This displays a list of SQL commands, clauses, and related
topics for which help is available.

To exit from an SQL*Plus session, the user types

SQL> EXIT
to disconnect from ORACLE and return to the system prompt.
5.3.2 BASIC SELECT STATEMENT
The SQL statement for retrieving database data from the
database is the SELECT statement. In its simplest form, the
SELECT statement has the following syntax:

SQL> SELECT * FROM <table-name>;

This statement displays to the terminal every row in the
table indicated, as in the following example:

SQL> SELECT * FROM PROJECT;

PROJ- NAME PROJ_NO PROJ_TYPE ACTIVE_STATUS
PROJ_101 101 SIM - ACT_DEV
PROJ_102 102 AGSS ACT_DEV
PROJ_103 103 SIM ACT_DEV
PROJ_104 104 SIM ACT_DEV
PROJ_105 105 AGSS ACT_DEV
PROJ_106 106 SIM ACT_DEV
PROJ_71 71 SIM : INACTIVE
PROJ_110 110 AGSS ACT_DEV
PROJ_108 108 SIM ACT_DEV
PROJ_96 96 ORBIT INACTIVE
PROJ_73 73 ATTITUDE ACT_MAINT
PROJ_72 72 - OTHER ACT_DEV

The '**' in this form of the SELECT statement indicates that
all columns of the table should be retrieved. To retrieve
only specific columns, the '*' should be replaced by a list
of the desired column names. The column names need not be

5063

specified in the order in which they are defined in the
table definition, as illustrated in the following example:

SQL> SELECT PROJ_NO, PROJ_NAME FROM PROJECT;

PROJ_NO PROJ_NAME

108 PROJ-108
96 PROJ_96
73 - PROJ_73

5.3.3 ORDERING THE RETRIEVED DATA

The SELECT statements seen thus far do not guarantee that

the rows retrieved from the table will be displayed in any
particular order. This may be ensured by specifying an
ORDER BY clause on the SELECT statement, as in the following:

SQL> SELECT PROJ_NAME, PROJ_NO
2 FROM PROJECT .
3 ORDER BY PROJ_NAME;

PROJ_NAME PROj

NO
~ PROJ_73 73
PROJ_101 101
PROJ_102 102
PROJ_110 110

This causes the retrieved rows to be d1sp1ayed in ascending
order sorted on the column specified in the ORDER BY clause.
CHARACTER columns are sorted alphabetically, NUMBER columns
are sorted numerically, and DATE columns are sorted chrono-
logically. The_default order in an ORDER BY clause is as-
cending. A display in descending order may be accomplished
by specifying DESC after the name of the ORDER BY column.

The ORDER BY clause also permlts sorting on more than one
field.

In the previous example, the SELECT statement was entered on
more than one line. This illustrates that the SQL inter-
preter does not execute the command until a semicolon is
entered. It should be noted that the command typed in is
stored in a buffer that is retained after the command is

5063 5-6

U mE €0 @ € U &) 1

8 0

i |

K

1

executed. This buffer may be edited to change the query
slightly without having to retype it completely. The cur-
rent command in the buffer may be executed by typing

SQL> /

followed by a carriage return. The command buffer may be
displayed by typing 'L', followed by a carriage return:

SQL> L
1 SELECT PROJ_NAME, PROJ_NO
2 FROM PROJECT
3 ORDER BY PROJ_NAME

Reference 4 provides details on editing the command buffer.

5.3.4 LIMITING THE NUMBER OF ROWS RETRIEVED

The queries presented thus far have all displayed every row

of the table specified. The WHERE clause allows constraints
to be defined that limit the number of rows retrieved, as in
the following example:

SQL> SELECT * FROM PROJECT WHERE PROJ_TYPE = 'SIM';

PROJ_NAME PROJ_NO PROJ_TYPE ACTIVE_STATUS
PROJ_101 101 SIM ACT_DEV
PROJ_71 ' 71 SIM INACTIVE
PROJ_108 108 . SIM ACT_DEV
PROJ_103 103 SIM ACT_DEV
PROJ_104 104 SIM ACT_DEV
PROJ_106 106 SIM ACT_DEV

This query selects only those records in which the PROJ_TYPE
column has a value of 'SIM'. It should be noted that, when
specifying a character constant (or a date constant), it
must be surrounded by single quotes. Date constants must be
specified as follows: 'dd-mmm-yy', as in '05-JAN-88'.
ORACLE character fields are case sensitive, and all the
character fields in the SEL database that are commonly used
in queries contain only uppercase characters.

Additional relational operators useful in specifying WHERE
conditions include the following:

= not equal to

greater than

greater than or equal to
less than

!
>
>
<

5063

. <= less than or equal to .
IN member of a list of items

The following example illustrates the use of the IN operator:

SQL> SELECT * FROM PROJECT
2 WHERE PROJ_NO IN (101,103,105,107);

PROJ_NAME PROJ_NO PROJ_TYPE ACTIVE_STATUS
PROJ_105 105 AGSS ACT_DEV
PROJ_103 103 SIM ACT_DEV
PROJ_101 101 SIM ACT_DEV

Conditions in a WHERE clause may be combined by the logical
connectives AND, OR, and NOT to build more complex condi-
tions, as follows: :

SQL> SELECT * FROM PROJECT
2 WHERE PROJ_TYPE = 'SIM’
3 AND PROJ_NO > 104;

PROJ_NAME = PROJ_NO PROJ_TYPE ACTIVE_STATUS
PROJ_106 106 SIM ACT_DEV

PROJ_108 108 SIM ACT_DEV

When multiple conditions are specified, parentheses () may
be used to clarify or override precedence of operators.

5.3.5 GROUP FUNCTIONS

A set of functions in SQL*Plus allows statistics to be cal-
culated on the results of a query. Some of the most common
of these are COUNT, AVG, MAX, MIN, SUM, STDDEV, and .

VARIANCE. The following example illustrates how these work:

SQL> SELECT COUNT(PROJ_NO)
2 FROM PROJECT;

COUNT (PROJ_NO)

90

This query returns the count of all rows in the PROJECT

table that have a non-null value in the PROJ_NO column.

Null values are entered into a particular column of a partic-
ular row to indicate that no data exist for that data item.
The table definitions in Section 4.1 indicate which columns
in the database will accept null values. Thus, in the case

5-8
5063

4 l

i

a

L

il

g

L

1]

i

al |

Ll

qi

il

n
!

l‘nL

(]

of the above query, since the PROJ_NO column does not accept
null values, the query always returns the count of all rows
in the table. Like COUNT, the statistical functions AVG,
STDDEV, and VARIANCE operate only on non-null values.
Another example is as follows: :

SQL> SELECT COUNT(RES_HR), SUM(RES_HR), AVG(RES_HR)
2 FROM PROJ_PROD
3 WHERE PROJ_NO = 151;

COUNT (RES_HR) SUM(RES_HR) AVG(RES_HR)

22 1.88 .085454545
5.3.6 RETRIEVING FROM MORE THAN ONE TABLE--JOINS

At this point, enough of the basic features of the SELECT
statement have been presented to allow the user to find a
particular piece of data in the database. Suppose, for ex-
ample, the user wishes to know the names of the subsystem
prefixes for project EXAMPLE. Consulting Section 4.3, the
first step is to find the PROJ_NO value for that project:

SQL> SELECT PROJ_NO
2 FROM PROJECT
3 WHERE PROJ_NAME = 'EXAMPLE';

PROJ_NO
135

The user can use this result to retrieve the subsystem pre-
fixes from PROJ_SUB:

SQL> SELECT SUB_PRE
2 FROM PROJ_SUB
3 WHERE PROJ_NO = 135;

SUB_PRE

PP .
SD
™
PG
cM
uT
AC

5063

This works, but rather than doing this in two steps every
time, the same result can be accomplished by a single query
that joins the two tables:

SQL> SELECT SUB_PRE
2 FROM PROJECT, PROJ_SUB
3 WHERE PROJ_NAME = 'EXAMPLE’
4 AND PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO;

SUB_PRE

PP
SD
™
PG
CM
UT
AC

In this query, ORACLE created a virtual table containing all
the columns in both the PROJECT and PROJ_SUB tables. If no
constraints had been specified, the virtual table would have
contained a row for each possible pairing of a row in
PROJECT with a row in PROJ_SUB. However, the WHERE clause
allowed it to create a virtual table in which the only row
selected from the PROJECT table was that in which the
PROJ_NAME was EXAMPLE; the only rows selected from the
PROJ_SUB table were thosé in which the PROJ_NO column had
the same value as the PROJ_NO column in the row selected
from PROJECT (the PROJ_NO value for EXAMPLE). A join is not
limited to two tables, and the columns displayed may come
from any of the tables specified, as in the following exam-
ple that displays the same subsystems as above, but includes
the name of the project and the descriptive name of the sub-

system:

SQL> SELECT PROJ_NAME, SUB_PRE, NAME
2 FROM PROJECT, PROJ_SUB, SUBSYSTEM
3 WHERE PROJ_NAME = 'EXAMPLE'
4 AND PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO
5 AND PROJ_SUB,SUBSY_ID = SUBSYSTEM.SUBSY_ID
6 ORDER'BY SUB_PRE;

PROJ_NAME SUB_PRE NAME
EXAMPLE AC ATTITUDE AND ORBIT CONTROL
EXAMPLE CM COMMON BLOCKS
EXAMPLE PG PLOT GENERATOR
5-10

5063

] g Wi e ENo4 1. &

L i

'

T
il

Wi @

L {HIS

mim

{

When the same column name occurs in more than one of the
tables selected, that name must be qualified with the table
name to refer to it within the query. Thus, PROJ_NO is
qualified to differentiate between its occurrences in the
PROJECT and PROJ_SUB tables, but PROJ_NAME need not be qual-
ified, since it occurs only in the PROJECT table.

5.3.7 RETRIEVING FROM MORE THAN ONE TABLE--SUBQUERIES

Suppose the user wants to know the most recently estimated
start and end dates for the design phase of project

EXAMPLE. The user could join PROJECT and PROJ_EST_PHASE on
the PROJ_NO field and get all of the estimated design phase
start and end dates for that project. To limit the re-
trieval to only one pair of dates, however, the concept of a
subquery is introduced. The most common use of a subquery
is in specifying conditions on a WHERE clause, as follows:

SQL> SELECT PROJ_NAME, PHASE_CO, START_DATE, END_DATE

2 FROM PROJECT, PROJ_EST_PHASE

3 WHERE PROJ_NAME = 'EXAMPLE'

4 AND PHASE_CO = 'DESGN’

5 AND _PROJECT.PROJ_NO = PROJ_EST_PHASE.PROJ_NO

6 AND SUB_DATE =

7 (SELECT MAX(SUB_DATE)

8 FROM PROJ_EST_PHASE

9 . WHERE PROJ_EST_PHASE.PROJ_NO = PROJECT.PROJ_NO);
PROJ_NAME PHASE_CO START_DATE END DATE
EXAMPLE DESGN 06-JUN-87 02-JAN-88

This query joins the PROJECT and PROJ_EST_PHASE tables on
the PROJ_NO field and further limits the retrieval by speci-
fying that only the PROJ_EST_PHASE row with the most recent
SUB_DATE for the specified project be selected. It should
be noted that subqueries are enclosed in parentheses, and
they must return a single value or a single column of val-
ues. The relational operator IN may be used to see if a
value is in a column of values returned by a subquery.

~Also, subqueries may be nested, as in the following example

that lists the names of all components under project EXAMPLE:

SQL> SELECT COM_NAME
FROM SUB_COM

3 WHERE SUBSY_ID IN

4 (SELECT SUBSY_ID
5 FROM PROJ_SUB
6
7

V)

WHERE PROJ_NO =
(SELECT PROJ_NO

.5-1
5063 >-11

8 FROM PROJECT
9 WHERE PROJ_NAME = 'EXAMPLE'));

COM_NAME

PROID
PROINI
PROINT
ACQINT
DELP
GETCAS

5.3.8 VIEWS--A SHORTCUT FOR COMMONLY USED JOINS

Several views have been defined in the SEL database to allow
users quick access to commonly used data items. A view is a
virtual table that consists of columns from one or more
tables selected by criteria specified in the definition of
the view. For example, to be able to retrieve all the com-
ponent names for a given project, the V_PROJ_COM view was
defined (refer to the table and view definitions in Sec-

tion 4.1). Thus, the following:

SQL> SELECT * FROM V_PROJ_COM
WHERE PROJ_NAME = <project name>;

is equivalent to’

SQL> SELECT PROJ_NAME, SUB_PRE, COM_NAME, COM_NO
FROM PROJECT, PROJ_SUB, SUB_COM
WHERE PROJ_NAME = <project name>
AND PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO

AND PROJ_SUB.SUBSY_ID = SUB_COM.SUBSY_1ID;

"Similarly, the view V_SUBSYSTEM_INFO allows subsystem infor-
mation to be selected using the following query:

SQL> SELECT * FROM V_SUBSYSTEM_INFO
WHERE PROJ_NAME = <project name>;

This is equivalent to

SQL> SELECT SUB_PRE, NAME, FUNCTION, SUB_DATE, PROJ_NAME
FROM PROJECT, PROJ_SUB, SUBSYSTEM
WHERE PROJ_NAME = <project name>
AND PROJECT .PROJ_NO = PROJ_SUB.PROJ_NO

AND PROJ_SUB.SUBSY_ID = SUBSYSTEM.SUBSY_ID;

5063

TORTR |

it n

i

1
]

i wioe

Uil

Gk

&

Ay

[}

iy

i

I

Qi

m

wu

{il

Finally, the view V_PROJ_SUB_ACT is a shortcut to retrieve
the activity hours charged to a particular subsystem. Thus,

SQL> SELECT * FROM V_PROJ_SUB_ACT
WHERE PROJ_NAME = <project name>
AND SUB_PRE = <subsystem prefix>;

is equivalent to

SQL> SELECT PROJ_NAME, SUB_PRE, ACTIVITY, ACT_HR
FROM PROJECT, EFF_PROJ, EFF_SUB, EFF_ACT
WHERE PROJ_NAME = <project name>
AND PROJECT.PROJ_NO = EFF_PROJ.PROJ_NO
AND EFF_PROJ.P_ID = EFF_SUB.P_ID
AND SUB_PRE = <subsystem prefix>
AND EFF_SUB.PS_ID = EFF_ACT.EFF_ID;

5.3.9 SPOOLING OUTPUT AND SAVING QUERIES

All the queries presented displayed their. results to the
terminal. To create a permanent copy of the query results,
it is necessary to spool the query session, or at least part
of it, to a-file. This can be accomplished with the fol-
lowing command: T

SQL> SPOOL <VMS file name>;

If no file extension is supplied as part of the file name, a
file is created in the current default directory with the
extension .LIS. After this is done, any commands entered
and the associated results displayed are spooled to this
file. Spooling can be turned off, with the following
command:

SQL> SPOOL OFF;

Another useful feature is to be able to save the contents of
the current command buffer and reload it at some future
time. The first step can be accomplished with the following
commands:

SQL> SAVE <VMS file name>;
If no file extension is supplied as part of the file name, a
file is created in the current default directory with the

extension .SQL. This query can be reloaded into the command
buffer by using the following command:

SQL> GET <VMS file name>;

This command searches the current default directory for the
file name specified. If no extension is supplied in the

5-13
5063

file name, it'searches for a file with extension .SQL. The
command may now be executed or listed with / or L as de-
scribed above.

This section has presented enough of an introduction to ad
hoc database queries to enable the user to access any partic-
ular item of software engineering data in which he/she is
interested. It has not, however, covered all of the features
present in SQL*Plus that facilitate data retrieval. Some
additional capabilities include displaying computed columns,
simple pattern matching in WHERE clauses, conversion between
data types, renaming columns and defining display formats,
parameterizing queries, and computing statistics on groups of
records and printing them on break points when the value of a
particular column changes. Readers who are interested in
these and other advanced features are referred to Reference 4.

5063

O T (TR 1" T MY “F N 1IN [T [T, 18 i

g

:

] i

i

Bl

qm el
i/

| [{

€|

N

APPENDIX A - ENCODED ELD

ALLOWABLE VAL

This appendix lists all the codes used throughout the SEL

database and their corresponding values.

Items are listed

alphabetically according to the field in which the code is

stored.

Field Where Used
ACTIVE_STATUS

ACTIVE_STATUS
ACTIVE_STATUS

ACTIVE_STATUS

ACTIVITY _
ACTIVITY
ACTIVITY
ACTIVITY
ACTIVITY
ACTIVITY
ACTIVITY
ACTIVITY
ACTIVITY
ACTIVITY
ACTIVITY
ADA_FEATURE
ADA_FEATURE
ADA_FEATURE
ADA_FEATURE
ADA_FEATURE
ADA_FEATURE
ADA_FEATURE
ADA_FEATURE
CH_TYPE
CH_TYPE

5063

Value (Description) Code
Data collection is active; ACT_DEV
project is in development
Data collection is active; ACT_MAINT
project is in maintenance
Data for the project are incom- DISCONT
plete; no plan to validate data
The project has been completed INACTIVE
and no more data are being col-
lected
Pre design PREDES
Create design CREDES
Read/review code RDREVCOD
Write code WRCODE
Read/review design RDREVDES
Test code units TSTCODUN
Debugging DEBUG
Integration test INTTEST
Acceptance test ACCTEST
Other OTHER
Support SUPPORT
Data typing DATATYPE
Subprograms SUBPROG
Exceptions EXCEPT
Generics GEN
Program structure and packaging PACK
Tasking) TASK
System dependent features SYSDEPF
Other OTHER
Error correction ERRCO
Planned enhancement PLANE

A-1

Field Where Used

CH_TYPE
CH_TYPE

CH_TYPE
CH_TYPE

CH_TYPE

CH_TYPE

CH_TYPE

COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
. COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE

EFF_COM_CH
EFF_COM_CH

5063

Value (Description)

Implementation of requirements
change

Improvement of clarity, main-
tainability, or documentation

Improvement of user services

Insertion/deletion of debug
code

Optimization of time/space/
accuracy

Adaptation to environment
change

Other change type

Include file

Job é&hfibirlanguage
Assembly language component
FORTRAN source code

Pascal source code

NAMELIST or parameter list
Display identification

Menu definition or help file
Referenc; data file

BLOCK DATA component

Ada subprogram specification
Ada subprogram body

Ada package specification
Ada package body

Ada task specification

Ada task body

Ada generic specification
Ada generic body

Other type of component

Ada source code (type unspeci-

fied)
1 hour or less
1 hour to 1 day

A-2

— Code

IMPRE
IMPCM

IMPUS
IN/DE

OPTSA
ADENC

OTHCH
INCL
JCL
ALC
FORTRAN
PASCAL
NAMELT

DISPLAY

MENDEF
REFDATA
BLOCKDA
ADASUBS
ADASUBB
ADAPACKS
ADAPACKB
ADATASKS
ADATASKB
ADAGENS
ADAGENB
OTHER
ADAUNSPEC

1HR
1DAY

il

Wil

Wi

@i

|

i

Mk

&

- B

L

B4

i

i

B

il

i

Ll

{

i

1d Wher

EFF_COM_CH
EFF_COM_CH
EFF_ISO_CH
EFF_ISO_CH
EFF_ISO_CH
EFF_ISO_CH
ERR_ACAUSE

ERR_ACAUSE
ERR_ACAUSE
ERR_ACAUSE
ERR_ARES
ERR_ARES
ERR_ARES
ERR_ARES
ERR_ARES
ERR_ARES
ERR_CLASS
ERR_CLASS
ERR_CLASS
ERR_CLASS
ERR_CLASS
ERR_CLASS
ERR_SOURCE
ERR_SOURCE
ERR_SOURCE
ERR_SOURCE
ERR_SOURCE
ERR_TOOLS
ERR_TOOLS
ERR_TOOLS
ERR_TOOLS
ERR_TOOLS

5063

Value (Description)

Code

1 day to 3 days

More than 3 days
1 hour or less

1 hour to 1 day

1 day to 3 days

More than 3 days

Misunderstood interaction of

features

Features applied incorrectly

Misunderstood features
Confused features

Class notes

Ada reference manual
Own project team member
Own memory

Someone not on project team

Other

Initialization
Logic/control structure
Interface (internal)
Interface (external)

Data value or structure
Computational
Requirements

Functional specifications
Design

Code

Previous change

Compiler

Symbolic debugger -
Language sensitive editor
CMS

Source code analyzer

3DAY
NDAY

IHR

1DAY
3DAY
NDAY
INTERACT

INCOF
FEATUREM
FEATUREC
NOTE
REFMAN
TEAM
MEMORY
NTEAM
OTHER
INIT-
LOGIC
INTERI
INTERE
DATAVAL
COMPUTE
REQMT
FUNSPEC
DESIGN
CODE
PRECH
COMPI
SYMDEB
LSE

CMS

SCA

Field Where Used

ERR_TOOLS

ERR_TOOLS
ERR_TOOLS
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

FUNCTION
FUNCTION

MEAS_TYPE
MEAS_TYPE

MEAS_TYPE
MEAS_TYPE -

MEAS_TYPE
MEAS_TYPE
MEAS_TYPE
MEAS_TYPE

MEAS_TYPE
MEAS_TYPE

MEAS_TYPE
MEAS_TYPE

MEAS_TYPE

MEAS_TYPE
MEAS_TYPE
MEAS_TYPE
MEAS_TYPE

5063

Code

Value (Description)

Performance and coverage
analyzer

DEC Test Manager

Other

User interface

Data processing/data conversion
Real-time control
Mathematical/computational

Graphics and special device
support

Control processing/executive
System services
Problem difficulty

Tightness of schedule con-
straints

Requirements stability

Quality of specification doc-
uments

Requirements for documentation
Rigor of formal reviews
Ability of development team

Development team experience
with application

Development team experience
with environment

Stébility of development team
composition

Project management performance

Project management experience
with application

Stability of project manage-
ment team

Project planning discipline
Degree project plans followed
Modern programming practices

Disciplined change/question
tracking

A-4

PCA

DECTM
OTHER
USERINT
DPDC
REALTIME
MATHCOMP
GRAPH

CPEXEC
SYSSERV
PMO1
PM02

PMO3
PM04

PM05
PMO6
STO07
STO08

STO09

ST10

™11
T™12.

TM13

TM14
TM15
PCl6
PC17

i

i
i

|

i

Wl

W |

i

@i

{9

i

0

Gl

[

bl

il

wlill

£

{

Field Where Used

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE
MEAS_TYPE
MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE_

MEAS_TYPE .

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE
MEAS_TYPE

MEAS_TYPE

MEAS_TYPE
MEAS_TYPE

MESS_TYPE
MESS_TYPE
MESS_TYPE
MESS_TYPE
MESS_TYPE

5063

Value (Description)

Code

Use of disciplined require-
ments analysis methodology

Use of disciplined design
methodology

Use of disciplined testing
methodology

Use of tools
Use of test plans

Use of quality assurance
procedures

Use of configuration manage-
ment procedures

Degree of access to develop-
ment system

Programmers per terminal

Development machine resource
constraints

System response time

System hardware and support
software stability

Software tool effectiveness

Delivered software supports
requirements

Quality of delivered software

Quality of design present in
delivered software ’

Quality/completeness of soft-
ware documentation

Timely software delivery

Smoothness of acceptance test-

ing

Computer accounts to monitor
Names of controlled libréries
CSC contact)

Current phase

Development machine

PC18

PC1l9

PC20

PC21
PC22
PC23

PC24

EN25
EN26
EN27

EN28
EN29

EN30
PT31

PT32
PT33

PT34

PT35
PT36

COMPACC
CONLIB
CSCPp
CURPH
DEVMA

Field Where Used

MESS_TYPE
MESS_TYPE
MESS_TYPE
MESS_TYPE

MESS_TYPE
MESS_TYPE
MESS_TYPE
MESS_TYPE
MESS_TYPE
MESS_TYPE
MESS_TYPE
MESS_TYPE
MESS_TYPE

MESS_TYPE - -

ORI_TYPE
ORI_TYPE
ORI_TYPE
ORI_TYPE
PHASE_CO
PHASE_CO
PHASE_CO
PHASE_CO
PHASE_CO
PHASE_CO
PHASE_CO
PROJ_TYPE
PROJ_TYPE
PROJ_TYPE
PROJ_TYPE
PROJ_TYPE
PROJ_TYPE

5063

Value (Description) Code
Growth history tool used GHTOOL
GSFC contact GSFCP
SEL forms required SELF
Task numbers and corresponding TASKNO
years
Text comment 1 TEXT1
Text comment 2 TEXT2
Text comment 3 TEXT3
Text comment 4 TEXT4
Text comment 5 TEXTS5
Text comment 6 TEXT6
Text comment 7 TEXT7
Text comment 8 i TEXTS
Text comment 9 TEXT9
Text comment 10 TEXT10
New NEW
Extensively modified EXTMO
Slightly modified SLMOD
0l1ld (unchanged) oLDUC
Requirements definition REQNT
Design DESGN
Code and test (implementation) CODET
System test SYSTE
Acceptance test ACCTE
Cleanup CLEAN
Maintenance MAINT
Attitude oriented ATTITUDE
Other OTHER
Attitude ground support system AGSS
Simulator - SIM
orbit oriented ORBIT
Scientific oriented SCIENTIFIC

Riilii

Wi o«

:
il

T

)

il

I

i
|

1
I

1l

|

i

ui

wl

B

Wil

i

|

Field Where Used

PROJ_TYPE
PROJ_TYPE
PROJ_TYPE
PURPOSE
PURPOSE
PURPOSE
PURPOSE
PURPOSE
PURPOSE
PURPOSE
PURPOSE
QA_STATUS
QA_STATUS
SECOND_L
SECOND_L
SECOND_L
SECOND L
SECOND_L
SECOND_L
SECOND_L
SECOND_L
SECOND_L
SECOND_L
SECOND_L
SECOND_L
SECOND_L

SECOND_L
SECOND_L
SECOND_L

SECOND_L
SECOND_L

5063

Value (Description) Code
Database DATABASE
Real time processing REALTIME
Software tool TOOL
I/0 processing IOPRO
Algorithmic/computational ALCOMP
Data transfer DATRA
Logic/decision LODEC
Control module CNTRMOD
Interface to operating system INTOP
Ada process abstraction ADAPR
Ada data abstraction ADADA
Hand-checked: errors found HCERROR
Hand-checked: correct HCCORRECT
Compiler COMPI
Linker LINK
Editor EDIT
Graphics display builder GRADIS
Requirements lénguage processor REPLP
Structured analysis tool STRANT
PDL processor PDLPR
ISPF ISPF
Source Code Analyzer Program SAP
Configuration Analysis Tool CAT
PANVALET PANVAL
Test coverage tool TESTCO
Interface checker (e.g., INTERF
RXVP80, - ANALYZ)

Language sensitive editor LSE
Symbolic debugger SYMDEB
Configuration management tool CMTOOL
(e.g., CMS, MMS)

Other tools OTHER
Software development en#iron— SDE

ment

Fi W
SP_ACTIVITY
SP_ACTIVITY
SP_ACTIVITY
SP_ACTIVITY
STATUS
STATUS
STATUS
STATUS

5063

Value (Description)

Code

Rework
Enhance/refine/optimize
Document

Reuse

Unchecked

Hand-checked: correct
Verified by application
Hand-checked: errors found

REWORK
ENHANCE
DOCUMENT
REUSE
UNCHK
HCCORRECT
VERAP
HCERROR

|

LI

BIIE

Ly

| RUT |

qlil

]

{

y
[

i

i

Wl

Wi

(I

P - PTIMIZE ATABASE QUERIE

This appendix contains additional examples of SQL queries to
augment those presented in Section 5.3. These are optimized
queries that are written specifically for an ORACLE DBMS
environment. In each example, the data desired from the
database are first expressed in an English statement. This
is followed by SQL statements to retrieve the desired data.
The user should remember that there is often more than one
way to formulate a particular query; only one realization is
presented here for each example. .

1. Retrieve the names of all Attitude Ground Support
Systems (AGSSs) with more than 100,000 total lines
of code.

SQL> SELECT PROJ_NAME
FROM PROJ_STAT, PROJECT
WHERE T_LINE > 100000
AND PROJ_TYPE = ‘AGSS'
AND PROJECT.PROJ_NO = PROJ_STAT.PROJ_NO;
2. Retrieve the names of all persons who have submit-
ted. PRF forms for project 'XYZ.'

SQL> SELECT DISTINCT FULL_NAME
- - FROM EFF_FORM, EFF_PROJ, PERSONNEL, PROJECT
WHERE FORM_TYPE = 'PRF’
AND EFF_PROJ.P_ID = EFF_FORM.P_ID
AND EFF_PROJ.PROG_ID = PERSONNEL.PROG_ID
AND EFF_PROJ.PROJ_NO PROJECT . PROJ_NO
AND PROJ_NAME = ‘'XYZ'

~ i

3. - For project 'XYZ,' list alphabetically all compo-
nent names (with subsystem prefixes) that do not
have COF data. .

SQL> SELECT SUB_PRE, COM_NAME
FROM V_PROJ_COM
WHERE PROJ_NAME = ‘XVYZ'
AND COM_NO NOT IN
(SELECT COM_NO FROM COM_SOURCE)
ORDER BY SUB_PRE,COM_NAME;

4, Retrieve the number of error correction changes for
project 'XYZ' that took more than 3 days to imple-
ment .

SQL> SELECT COUNT (CHANGE_NO)
FROM CHANGE

5063

WHERE CHANGE_NO IN

AND
AND

(SELECT DISTINCT CHANGE_NO

FROM CHANGE_COM,V_PROJ_COM

WHERE CHANGE_COM.COM_NO = V_PROJ_
COM.COM_NO

AND PROJ_NAME = 'XYZ')

EFF_COM_CH = 'NDAY'

CH_TYPE = 'ERRCO’;

5. Retrieve the total design hours for project 'XYZ.'
This query may be interpreted two ways.

a. Retrieve all hours charged to design activi-

ties.

SQL> SELECT SUM(ACT_HR)

FROM EFF_ACT
WHERE EFF_ID IN
(SELECT P_ID

FROM EFF_PROJ, PROJECT

WHERE EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO
AND PROJ_NAME = ‘'XYZ'

UNION

SELECT PS_ID

FROM EFF_SUB, EFF_PROJ, PROJECT

WHERE EFF_PROJ.P_ID = EFF_SUB.P_ID

AND EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO
AND = PROJ_NAME = 'XYZ')

AND ACTIVITY IN ('CREDES', 'RDREVDES');

b. Retrieves all manpower hours charged during
the design phase.

First, find the design phase start and end
dates.,

SQL> SELECT START_DATE,END_DATE

5063

FROM PROJ_EST_PHASE, PROJECT
WHERE SUB_DATE =

(SELECT MAX(SUB_DATE)

FROM PROJ_EST_PHASE

WHERE PROJ_NO = PROJECT.PROJ_NO)
AND PHASE_CO = °‘DESGN' -
AND PROJ_EST_PHASE.PROJ_NO = PROJECT.PROJ_NO
AND PROJ_NAME = 'XYZ°';

. W |

Bl w &

Ml

1
I,

Ll

[

il

(B

Ll

il
'

w

|

[l

L

Wi

Second, find all activity hours between these
dates.

SQL> SELECT SUM(ACT_HR)

FROM EFF_ACT

WHERE EFF_ID IN

(SELECT P_ID

FROM EFF_PROJ, PROJECT

WHERE SUB_DATE BETWEEN <start date>
AND <end date>

AND EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO
AND PROJ_NAME = 'XYZ'

UNION
SELECT PS_ID
FROM EFF_SUB,EFF_PROJ, PROJECT

WHERE SUB_DATE BETWEEN <start date>
AND <end date>

AND EFF_PROJ.P_ID = EFF_SUB.P_ID

AND EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO
AND PROJ_NAME = 'XYZ')
AND ACTIVITY != °'SUPPORT');

5063

I u 1
I
| A

il

I

|
[

lil

-l]

0l

il

I

L

b
I

i

Clause

Cluster

Column

Command
Field
Group

Function

Index

Join

Null

Primary Key

Query

Record

Relation

5063

" column of all rows in a query,

- GL ARY OF TERMS AND ABBR ATION

TERMS

A portion of an SQL command, starting with a
reserved word, that qualifies or constrains
the operation of the command.

An internal mechanism for storing together
groups of related columns from different
tables, or groups of like-valued column en-
tries from a single table, to improve effi-
ciency.

A particular class of data items within a
table. Each column has a single value in each
row of a table.

An instruction to the SQL*Pius interpreter.

Synonymous with column.

An SQL*Plus function that operates on a single
returning a
single value.

A mechanism for improving efficiency of data-
base access by enabling searches to be per-
formed without always examining an entire
table.

Retrieval of rows from two or more tables in a
single query.

for a column indicating that the
Null values do not use

A "value"
column has no value.
storage space.

One or more columns whose values unlquely
identify each row of a table.

An instruction to the SQL*Plus interpreter to
retrieve one or more rows and columns from one
or more tables or views.

Synonymous with row.

Synonymous with table.

Row

Subquery

Table

View

AGSS
CDR
COF
CPU
CRF
DBA
DBMS
DDL -
GSFC
ID
NASA
PCSF
PDL
PDR
PEF
PRF
SEF
SEL
SIF
SPF
SQL
STL

5063

A single entry in a table, containing one en-
try for each column in the table.

A query enclosed in parentheses that returns
values used in a condition of a SQL command.

The basic unit of data storage in a relational

"DBMS. Contains a variable number of rows,

each of which contains a fixed number of col-
umns.

A "virtual table" that consists of one or more
columns from underlying database tables.
Views do not actually store data.

ABBREVIATIONS

Attitude Ground Support System
critical design review

. Component Origination Form

central processing unit

- Change Report Form

database administrator

database management system

data definition language

Goddard Space Flight Center

identification

National Aeronautics and Space Administration
Project Completion Statistics Form

program design language

preliminary design review

Project Estimates Form

Personnel Resource Form

Subjective Evaluation Form
Software Engineering Laboratory
Subsystem Information Form
Services/Products Form
structured query language
Systems Technology Laboratory

1

' i i

il

i (I o & W u

o

7

NDIX D - L DA LLECTION FORM

This appendix contains all the SEL data collection forms.
These forms are completed by programmers and managers of
SEL-monitored projects, with the exception of one form, the
Service/Products form, that is completed by SEL personnel.

‘5063

PROJECT ESTIMATES FORM
Project Name: D1
Form Date: D2
Phase Dates (Saturdays) Staff Resource Estimates
Phase Start Date Programmer Hours D11
Requirements D3 Management Hours D12
Design D4 Services Hours D13
Code & Test D5 . -
System Test Dé
Acceptance Test D7
Cleanup - = - - D8
Maintenance . D9
Project End D10
) - Project Size Estimates
Number of subsystems D14
Number of components D15
Source Lines of Code
Total D16
New D17
Modified D18
' Old D19
Note: All of the values on this form are to be For Librarian's Use Only
estimates of projected values at completion Number: D20
of the project. This form should be N
submitted with updated estimatesevery6to | °®*
8 weeks during the course of the project. Entered by:
Checked by:

JULY 1987

Figure D-1. Project Estimates Form

5063

6037-21

Wil

LTV]

l]

L

ML |

[

@l

&

I

LI

[N T

I

(]

ORIGINAL PAGE IS

OF POOR

QUALITY,

- Personnel Resources Form
Name:_ D21
Project:_D1 Friday Date: D22

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours In Section B should equal total hours in Section A)

Activity Activity Definitions Hours
Predesign Understanding the concepts of the system. Any work prior to the actual design (such
as requirements analysis). D23
Create Design Development of the system, subsystem, or components design. Inch:desdmbpmem 024
of PDL, design diagrams, etc.
Read/Review Design | Hours spent reading or reviewing design. includes design meetings, formal and informal
reviews, or walkthroughs. rr-]
Write Cods Actually coding system components. Inciudes both desk and terminal code development. | D26
Read/Review Code | Code reading for any purpose other than Isolation of errors. 0Z7
Test Code Units Testing individual components of the system. Includes writing test drivers. D28
Debuggng ~ | Hours spent finding a known error in the system and developing a sohstion. includes gen-

, eration and execution of tests assoclated with finding the error. D29
integration 'Tut Writing and exsciting tests that Integrate system components, inchuding systemtests. | D30
Acceptarlce Test Rumhg/wpponknawgpwm D3t

] Other Other hours spent on the project not covered above. includes management, meetings, 032
fraining hours, notabooks, system descriptions, user's guides, etc.

SECTION C: Effort On Specific Activities (Need not add to A)
'Some hours may be counted In more than one area; view each activity separately)
Rework: Estimate of total hours spent that were caused by unplanned changes or emrors. Includes Eﬂ
effort caused by unplanned changes to specifications, arroneous or changed design, arrors or
unplanned changaes 1o code, changes to documents. (This includes all hours spent debugging.)

Enhancing/Refining/Optimizing: Estimate of total hours spent improving the efficiency or clarfty of design, or
code, or documentation. munmlwmdbyuquhdchnguormhmosys

Documenting : Hours spent on any documentation of the system. includes development of design documents, -
prologs, in-line commentary, taslphns,syst«ndesaipﬁom.uur’swldes.ormyoﬂmsystern

RmHmWhmdmbmwmmdﬂnsymnmuﬂoﬂhbokhgatm ,
system(s) design, code, or documentation. Count total hours in searching, applying, and testing.

For Librarisn’s Use Only

Number: . 1737
Date:
“Entered by

Checked by:

5063

JULY 1987

Figure D-2. Personnel Resources Form

6037-23

-
SERVICES/PRODUCTS FORM _
| =
Project:_D1

Friday Date:_D22 -
=
Computer CPU-hours No. of runs _
D38 D39 D40 a
=
-
&
- a

Modules D41
Changes D42 _
Lines of Code D43 -
=
=
éewiw Hours - s
Tech Pubs D44 %
Secretary D45 —
Librarians D46 For Librarian's Use Only i%%
Other D47 Number: 049 -
Proj. Mgmt. D48 Date: g

Entered by: p
Chocl&d by: g =
JULY 1967 -
Figure D-3. Services/Products Form % :
D-4 -
5063

5063

COMPONENT ORIGINATION FORM

Project Name: D1 Programmer Name:_D50

Subsystem Prefix: _D51 Form Date:_D52

Component Name:_D53

Date entered into controlled library: D54
veloper rce Fi

Library or directory:

Member name:

Relative Difficulty of Developing Component
Please indicate your judgment by circling one of the numbers below.
Easy Medium Hard
1 2 3 4 5 DSS
Qrigin))

if the component was modified or derived from a different project, please indicate the
approximate amount of change and from where it was acquired; if it was coded new (from

detalled design) indicate NEW.

Extensively modified (more than 25% of Number: D59
statements changed) Daste:;
Slightly modified Entered by:
. _OId (unChanged)) Checked by:
If not new, what project or library Is it from?
Type of Component (Check one only) D57 :
INCLUDE" file (e.g., COMMON) Ada subprogram specification
JCL (or other control) Ada subprogram body
_____ ALC (assembler code) Ada package specification
FORTRAN executable source Ada package body
______ Pascal source Ada task specification
NAMELIST or parameter list Ada task body
Display identification (GESS) Ada generic specification
Menu definitionorhelp - Ada generic body
Reference data flies Other
BLOCK DATA file
Purpose of Execitable Component D58 .

For axecutable code, please identify the major purpose or purposes of this component.
{Check all that apply).

—__ VOprocessing ______ Control module
Algorithmic/computational Interface to operating system

_ Datatransfer —___. Adaprocess abstraction
Logic/decision Ada data abstraction

JULY 1987

Figure D-4. Component Origination Form

6063-27

ORIGINAL PAGE IS
OF POOR QUALITY

Project Name: o1

CHANGE REPORT FORM

Current Date;___ D®0

Programmer Name:___D6!

Approved by:

Section A - Identification

Describe the change: (What, why, how) __ _

Effect: What components (or documents) are

Effort: What additional components (o docurments)

Implsmentation
thrwm-\tddﬂly mdnhln&tlly [J Other (Explain on back)
demm

changed? (inciude version) wers examined In determining what change was
) D&2 needed?,
Locaﬂonofd:wlop‘r‘suumﬂbs .
D63 moch, dey yer Check here R projectisinAds []
Need for change determined on: (¥ 50, complete questions on
Change cumpieted (incorporated Iinto system): D84 reverse side)
1hless 1heitdy 1dyddye »>3dys
Eﬂu'thplrsonﬂrmbhohhﬂndw\go(am)- Des
Effort in parson time 1o implement the change (or correction): Dé&s
Secti on B - All Changes
Type of Change (Check one) Y N Eﬂodsgéscam
UDW—WMWMme
[] Eroroaection D67 Ewmamm . uwaumpu;:
UW-‘-N:_-._ DMN&W“"M“&W O Dﬂdmulmd‘IWT

070
a Dﬁdpuhwbbomdp-mn
passed sxplicitly or implicitly (e.g.,

oo mon blocks) to or from the changed
component? .
Section C - ForEnorCorrecﬁonsOnly '
Source of Error Class of Error Characteristics
(Check one) (Check most applicable)® (Check Y or N for all)
[Requirernants Inktiaitzation o72
gwm et ot bascrrec) oo mm(mmwhownm
Oecion Mhtﬂﬂll,mmh&m ao m-m(u.mmmm
g:hn DMZMW 078
change 0 o e OO Erorwas orssted by tranecription {clerical)
oAl D(cmm."% veecl) For Librarian’s Use Only
{e-g-, osor in math expression) Number: D82_
& applicable, check the | Dete__
——— Entrs Y
JULY 1967
Figure D-5. Change Report Form (1 of 2)
D-6
5063

5063G(6) 33

/] [Ll mun EO0 MR

I R N [T T

ml |

CRIGHAL PRAGE IS
OF POOR QUALITY.

CHANGE REPORT FORM
Ada Project Additional Information

1. Check which Ada feature(s) was involved in this change
{Check ail that apply)

O Data Typing O Program Structure and Packaging
o7 0 Subprograms O Tasking

O Exceptions O System dependent features

O Generics O Other, please specify

(e.g., 1/0, Ada statements)
2. For an grrar involving Ada:

a. Does the compiler documentation or the language

reference manual explain the featurs clearly? D78 (Y/N)

b. Which of the following is most true? (Check one)

O Understood features separately but not interaction

O Understood features, but did not apply correctly

O DId not understand features fully

O Confused feature with feature In another language

‘c. Which of the following resourcss provldod the information
needed to correct the error? (Check all that apply)

D79

[J Class notes O Own memory
D80 O Ada reference manual O Someone not on team
O Own project team member [] Other

d. Which tools, if any, aided in the detection or correction of this
error? (Check all that apply)

O Compller O Source Code Analyzer

O Symbolic debugger O P&CA (Performance and Coverage
D8t Analyzer)

[0 Language sensitive editor

O cms {0 DEC test manager

O Other, specity

3. Provide any other information about the interaction of Ada and this change
that you feel might aid in the evaluation of the change and the use of Ada

JULY 1988

Figure D-5. Change Report Form (2 of 2)

D-7
5063

SUBSYSTEM INFORMATION FORM

Project Name: D1
Date: D151
Subsystem Subsystem Subsystem
Prefix Name Function
D151 D153 D154

Subsystemn Prefix:
Subsystem Name:

Subsystemn Function:

This form Is to be completed by the time of the PrellmlnaryDeslgnRevlew(PDR). Anupdah
must be submitted sach time a new subsystem Is defined thereafter.

A prefix of 2 to 5 characters used to Identify the subsystem when

naming components

A descriptive name of up o 40 characters

Enter the most appropriate function code from the list of functions
below: .

USERINT: User interface

DPDC: Data Processing/Data Conversion
REALTIME: Reaktime Control

MATHCOMP: Mathematical/Computational
GRAPH: Graphics and Speclal Device Support
CPEXEC: Control Procassing/Executive
SYSSERV: System Setvices

JULY 1967

Figure D-6. Subsystem Information Form

5063

5063G(6)-34

mi mmE €W M. Wm0 WL EAN WL m

| 1l il Npil & W wm |

ul

Bl

l

!TI

i

PROJECT COMPLETION STATISTICS FORM

Project Name: D1
Form Date: D83
Phase Dates (Saturdays) Staff Resource Statistics
Phase Start Date Technical and 082
Requirements D84 Management Hours
Design D85 Services Hours D93
Code & Test D86
System Test D87 Computer Resource Statistics
Acceptance Test Dss Computer CPU-hours | No.ofruns
Cleanup D89 D38 D94 D95
Maintenance D90
Project End D91
Project Size Statistics
General Parameters Source Lines of Code
Number of subsystems D96 Total D100
Number of components D97 New D101
Number of changes D98 Modified D102
Pages of documentation D99 Old D103
Comments D104
Executable Modules Executable Statements
Total D105 Total D109
New D106 New D110
Modified D107 Modified D111
OKd D108 Old D112
Note: All of the values on this form are to be actual
values at the completion of the project. The For Librarian’s Use Only
values entered by hand by SEL personnel [yymber: D113)
reflect the data collected by the SEL during | ...
the course of the project. Update these Em; -
according to project records and supply y:
values for all blank fields. Checked by:

JULY 1987

5063

Figure D-7.

Project Completion Statistics Form

6037-34

Name P247
P1

Project Name

Submission Date P13

SUBJECTIVE EVALUATION FORM

Purpose: To obtain subjective assessments on recently com-

pleted software development projects.

Completed by: Personnel participating in management of the

I.

3!

project, within one month of project
completion.

PROBLEM CHARACTERISTICS

Assess the intrinsic difficulty or complexity of the
problem that was addressed by the development of the
software.

1 2 3 4 5
Easy Average D114 Difficult
How tight were the schedule constraints on the project?

1 2 3 4 5

Loose . Average D115 Tight

How stable were the requirements over the development

period?
1 2 3 4 5
Low Average D116 'High

FOR LIBRARIAN'S USE ONLY

Number: D150 Entered by:
Date: Checked by:

5063

Figure D-8. Subjective Evaluation Form (1 of 8)

L

i i 1 Ll &l i owim o oW om S s e (I (]

I

i

4. Assess the overall quality of the requirements specifi-
cation documents, including their clarity, accuracy,
consistency, and completeness. '

1 2 3 4 5
Low . Average D117 High

5. How extensive were the documentation requirements?

1 2 3 4 5
Low Average D118 High

6. How rigorous were the formal review requirements?

1 2 3 4 5
Low Average D119 High

IX. PERSONNEL CHARACTERISTICS: TECHNICAL STAPF

7. Assess the overall quality and ability of the develop-
ment team.

1 2 3 4 5
Low . Average D120 High

8. How would you characterize the development team's exper-
ience and familiarity with the application area of the
project?

1 2 3 4 5
Low Average D121 High

9. Assess the development team's experience and familiarity
with the development environment (hardware and support
software) «

1 2 3 4 5
Low Average D122 High
JULY 1987

Figure D-8. Subjective Evaluation Form (2 of 8)

5063

5063

10. How stable was the composition of the development team
over the duyration of the project?

1 2 3 4 5

Low Average D123 High

III. PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT

11, Assess the overall performance of project management.
1 "2 3 4 5 -
Low Average D124 High

1l2. Agsess project management's experience and familiarity
with the application.

1 2 3 4 5
Low Average D125 High

13. How stable was the project management over the duration
of the project?

1 2 3 . 4 5

Low . Average D126 High
1l4. What degree of disciplined project plannihg was used?
1 2 3 4 5

Low Average D127 High

15. To what degree were project plans followed?

1l 2 3 4 5
Low Average D128 High .
JULY 1887

Figure D-8. Subjective Evaluation Form (3 of 8)

q.

(] g (AT RN | s N amn shE

l‘ »ll .

{

Iv.

16.

18.

19.

20,

PROCESS CHARACTERISTICS

To what extent did the development team use modern pro-
gramming practices (PDL, top-down development, struc-
tured programming, and code reading)?

1 2 3 4 5

Low Average D129 High

17. To what extent did the development team use well-

defined or disciplined procedures to record specifica-
tion modifications, requirements questions and answers,
and interface agreements?

1 2 3 4 5
Low Average D130 High

To what extent did the development team use well-
defined or disciplined requirements analysis method-
ology?

1l 2 3 4 5
Low Average D131 High

To what extent did the development team use well-
defined or disciplined design methodology?

1 ' 2 3 4 5
Low Average D132 High

To what extent did the development team use well-

. defined or disciplined testing methodology?

1 2 3 4 S
Low Average D133 High

JULY 1987

Figure D-8. Subjective Evaluation Form (4 of 8)

5063

5063

21.

22.

23.

What software Eools were used by the development team?
Check all that apply from the list that follows and
identify any other tools that were used but are not
listed.

Compiler

Linker

Editor D134
Graphic display builder

Requirements language processor
Structured analysis support tool

PDL processor

ISPF

SAP

CAT

PANVALET

Test coverage tool

Interface checker (RXVP80, etc.)
Language sensitive editor

Symbolic debugger

Configuration Management Tool (CMS, etc.)

OO000O000000000040on

Others (identify by name and function)

To what extent did the ‘development team prepare and
follow test plans?

1 2 3 4 5
Low Average D135 High

To what extent did the development team use well-
defined and disciplined quality assurance procedures
(reviews, inspections, and walkthroughs)?

1 2 3 4 5
Low Average D136 High

Figure D-8.

Subjective Evaluation Form (5 of 8)

i

4i

il

i

Ll

4
‘\ 1

Wi

(

{

{

5063

24,

25.

26.

27,

28.

To what extent did the development team use well-
defined or disciplined configuration management proce-
dures?

1 2 3 4 . 5

Low Average D137 High

ENVIRONMENT CHARACTERISTICS

How would you characterize the development team's degree
of access to the development system?

1 2 3 4 5
Low Average D138 High
What was the ratio of programmers to terminals?

1 2 3 4 5
8:1 4:1 2:1 D139 1l:1 1:2

To what degree was the development team constrained by
the size of main memory or direct-access storage avail-
able on the development system?

1 2 3 4 5
Low Average D140 High

Assess the system response time: were the turnaround
times experienced by the team satisfactory in light of
the size and nature of the jobs?

1 2 3 4 : S

Poor _ Average D141 Very Good

JULY 1987

Figure D-8. Subjective Evaluation Form (6 of 8)

v
29. How stable was the hardware and system support software .
(including language processors) over the duration of the %%
project?
1 2 3 4 5 —
-
Low Average D142 High
30. Assess the effectiveness of the software tools., %%
‘ w
1 2 . 3 4 5
Low Average D143 High %g
. -
VI. PRODUCT CHARACTERISTICS =
—
31, To what degree does the delivered software provide the -
capabilities specified in the requirements? ii
1 2 3 4 -5
Low . Average D144 High %%
-
32. Assess the quality of the delivered software product.
1 2 3 4 5 =
: -l
Low Average D145 High
33. Assess the quality of the design that is present in the %?
software product. -
1 2 3 4 5 =
=
Low Average D146 High »
34, Assess the gquality and completeness of the delivered __
system documentation.]
1 2 3 4 5 . B
Low Average D147 High =
— JULY 1987 -

i

Figure D-8. Subjective Evaluation Form (7 of 8) =

?
}—l
[+
(T

5063

{i

5063

35,

36.

To what degree were the software products delivered on

time?
1 2 3 4 5
Low Average D148 High

Assess the smoothness or relative ease of acceptance
testing.

1 2 3 . 4 5
Low Average D149 High
JULY 1987

Figure D-8. Subjective Evaluation Form (8 of 8)

[

SN

41

4l

- Wil

N i

T

‘Hi L

6 o w0 Qn =g T |

{l

PPENDI — DATA IN N _LANGUA FOR THE SEL DATABASE

This appendix describes the data definition language (DDL)
that contains all the semantic rules of the SEL database.

In the DDL, each base relation is identified by the keyword
RELATION and each view is identified by the keyword VIEW.
Each field within a relation is identified by the keyword
FIELD followed by its name, its data type, and its length.
Char, which represents a character data type, is followed by
the maximum length of the field. Numeric, which represents
a numeric data type, is followed by the width of the field
and the number of decimal places, if any. Date represents
an ORACLE data type.

The primary key component(s) is identified by the keyword
KEY, and a unique index will be created for every primary
key in the database. The keyword UNIQUE identifies the
fields that are not part of the primary key but whose values
are unique within a relation. The keyword INDEX identifies
fields to be indexed in addition to the primary Kkey
field(s). CLUSTER identifies relations that are physically
stored together.

The constraints mentioned in Section 4.2.3 are represented
by mathematical expressions. The following constraint in
the DDL

CONSTRAINT
RANGE PROJECT P
RANGE PROJ_SUB S

vS 3P (P.PROJ_NO = S.PROJ_NO)

can be interpreted as follows: P is the range variable that
ranges over the PROJECT relation, and its permitted values
are records of PROJECT. &8 is the range variable that ranges
over the PROJ_SUB relation, and its permitted values are
records of PROJ_SUB. Here, range variables are used as a
simple shorthand. For all (v) S, there exists (3) P such
that PROJ_NO in P is equal to PROJ_NO in S. 1In other words,
for each project number that exists in the project-subsystem
relation, the same project number must exist in the project
relation. Besides "for all" (v) and "there exist"” (3) qual-
ifiers, the qualifier "or" (V) is used in the constraint
definition of relation EFF_ACT, and the qualifier "and" (A)

E-1
5063

is used in the constraint definitions of relations
CH_ERR_ARES, CH_ERR_TOOLS, CH_ADAFEAT, and CH_ERR_GEN. Each
field within a view is identified by the keyword FIELD fol-
lowed by its name and the base relation from which it is
derived. The field lengths are the same as in the base re-
lations.

5063

¥ W ag i ui g 1l

iy

|
L Bl

awi & o E ¥ al

LT

RELATION PROJECT
(FIELD PROJ_NAME char(8)

FIELD PROJ_NO numeric(3)
FIELD PROJ_TYPE char(10))
(FIELD ACTIVE_STATUS char(10))

KEY (PROJ_NAME)

UNIQUE (PROJ_NO)

INDEX (PROJ_NO)

CLUSTER (PROJ_SUB)

RELATION PROJ_PROD
(FIELD PROJ_NO numeric(3)

FIELD SUB_DATE date
FIELD RES_NAME char(10)
FIELD RES_HR numeric(l1l0,2)
FIELD RES_RUN numeric(5))
KEY (PROJ_NO, SUB_DATE, RES NAME)

RANGE PROJECT P
RANGE PROJ_PROD PR
RANGE COMPUTER CPU
vPR 3-P (P.PROJ_NO = PR.PROJ_NO)
VPR 3CPU (CPU.CPU_NAME = PR.RES_NAME)
- VPR, 3PR (PR.SUB_DATE = a valid Friday date)

RELATION PROJ_GRH
(FIELD PROJ_NO numeric(3)

FIELD SUB_DATE date
FIELD GR_LINE numeric(7)
FIELD GR_MOD numeric(4)
FIELD GR_CH numeric(é6))
KEY (PROJ_NO, SUB_DATE)
CONSTRAINT
RANGE PROJECT P
RANGE PROJ_GRH PG
vPG IP (P.PROJ_NO = PG.PROJ_NO)
VPG 3IPG (PG.SUB_DATE = a valid Friday date)

RELATION PROJ_SUB
(EIELD PROJ_NO numeric(3)

FIELD SUB_PRE char(5)
FIELD SUBSY_ID numeric(5))
KEY (PROJ_NO, SUB_PRE)
UNIQUE (SUBSY_ID)
INDEX (SUBSY_ID)
CLUSTER (PROJECT)
CONSTRAINT
RANGE PROJECT P
RANGE PROJ_SUB S
vS 3P (P.PROJ_NO = S.PROJ_NO)

E-3
5063

RELATION PROJ_FORM
(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date
FIELD FORM_NO char(6)
FIELD FORM_TYPE char(6)
FIELD STATUS char(10))
KEY (PROJ_NO, SUB_DATE, FORM_NO, FORM_TYPE)
UNIQUE (FORM_NO, FORM_TYPE)
INDEX (FORM_TYPE)
INDEX (STATUS)
CONSTRAINT
RANGE PROJECT P
RANGE PROJ_FORM PF
RANGE VAL_STATUS VS
vPF 3P (P.PROJ_NO = PF.PROJ_NO)
vPF 3VS (VS.COD = PF.STATUS)
vPF 3IPF (PF.FORM_TYPE = 'PEF' VPF.FORM_TYPE
= 'SPF' VPF.FORM_TYPE = 'PCSF'V
PF.FORM_TYPE = 'SEF')

RELATION PROJ_STAT
(EIELD PROJ_NO numeric(3)
FIELD SUB_DATE date -
FIELD T_SYS numeric(4)
FIELD T_COM numeric(4)
FIELD T_EXE_MOD numeric(4)
FIELD T_NEW_MOD numeric(4)
FIELD T_MOD_MOD numeric(4)
FIELD T_EXE_STAT numeric(6)
FIELD T_NEW_STAT numeric(é6)
FIELD T_CH numeric(6)
FIELD T_LINE numeric(7)
FIELD T_DOC numeric(6)
FIELD T_NEW_LINE numeric(6)
EIELD T_MOD_LINE numeric(6)
FIELD T_MOD_STAT numeric(6)
FIELD T _OLD_LINE numeric(6)
FIELD T_OLD_STAT numeric(6)
FIELD T_OLD_MOD numeric(4)
FIELD PRO_HR numeric(10,2)
FIELD TECH_MAN_HR numeric(10,2)
FIELD SER_HR numeric(10,2)
FIELD T_COMMENT numeric(6))
KEY (PROJ_NO, SUB_DATE)
CONSTRAINT
RANGE PROJECT P
RANGE PROJ_EST PES
¥YPES 3P (P.PROJ_NO = PES.PROJ_NO)

5063

i

I

i

mi & vl &l

(I

sl g0 am

Il

h
I‘\

i

t
I

€l

i

Y

RELATION PROJ_CPU_STAT
(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date
FIELD CPU_NAME char(10)
FIELD TOTAL_HRS numeric(10,2)
FIELD T_RUN numeric(6))
KEY (PROJ_NO, SUB_DATE, CPU_NAME)

CONSTRAINT
RANGE PROJECT P
RANGE PROJ_EST_CPU PESC
RANGE COMPUTER CPU
RANGE VAL_CPU_PURPOSE VCP
v PESC 3P (P.PROJ_NO = PESC.PROJ_NO)

VY PESC 3CPU (CPU.CPU_NAME = PESC.CPU_NAME)

RELATION PROJ_EST_PHASE
(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date
FIELD PHASE_CO char(10)
FIELD START_DATE date
FIELD END_DATE date)
KEY (PROJ_NO, SUB_DATE, PHASE_CO)

RANGE PROJECT P
RANGE PROJ_EST_PHASE PESP
RANGE VAL_PHASE_CO VPC
v PESP ‘iP (P.PROJ_NO = PESP.PROJ_NO)
'vPESP 3IVPC (VPC.CODE = PESP.PHASE_CO)
v PESP 3 PESP (PESP.START_DATE = a valid
T ' Saturday day)
v PESP 3JPESP (PESP.END_DATE = a valid
Saturday day)

RELATION PROJ_MESS
(FIELD PROJ_NO numeric(3)
FIELD MESS_TYPE char(10)
FIELD MESSAGE char(65)
FIELD DATE_ENTRY date)
KEY (PROJ_NO, MESS_TYPE)
CONSTRAINT
RANGE PROJECT P
RANGE PROJ_MESS PE
RANGE VAL_MESS_TYPE VMET
vPE 3P (P.PROJ_NO = PE.PROJ_NO)
VPE 3IVMET (VMET.CODE = PE.MESS_TYPE)

RELATION PROJ_SEF
(FIELD PROJ_NO numeric(3)
FIELD MEAS_TYPE char(10)
FIELD EVALUATE numeric(l))
KEY (PROJ_NO, MEAS_TYPE)

5063

CONSTRAINT
RANGE PROJECT P
RANGE PROJ_SEF PSE
RANGE VAL_MEAS_TYPE VMT
VvPSE 3P (P.PROJ_NO = PSE.PROJ_NO)
v'PSE 3IVMT (VMT.CODE = PSE.MEAS_TYPE)

RELATION PROJ_SEF_SEC
(FIELD PROJ_NO numeric(3)
FIELD MEAS_TYPE char(10)
FIELD SECOND_L char(10))
KEY (PROJ_NO, MEAS_TYPE, SECOND_L)

CONSTRAINT
RANGE PROJ_SEF_SEC PSES
RANGE PROJ_SEF PSE
RANGE VAL_SEC_L VSL

vPSES 3IPSE (PSE.MEAS_TYPE = PSES.MEAS_TYPE A
PSE.PROJ_NO = PSES.PROJ_NO)

vPSES 3IVSL (VSL.CODE = PSES.SECOND_L)

RELATION VALIDATION

(FIELD F_NAME char(20)
FIELD CODE char(10)
FIELD VALUE char(75))
KEY (F_NAME, CODE)

RELATION SUB_COM
(FIELD SUBSY_ID numeric(5)
FIELD COM_NAME char(40)
FIELD COM_NO numeric(7)
FIELD COM_DATE date)
KEY (SUBSY_ID, COM_NAME)
UNIQUE COM_NO
INDEX COM_NO
CONSTRAINT
RANGE PROJ_SUB S
RANGE SUB_COM C
vC 38 (8.SUBSY_ID = C.SUBSY_ID)

RELATION SUBSYSTEM
- (F1lELD SUBSY_ID numeric(5) o
FIELD NAME char(40) =
FIELD FUNCTION char(10))
KEY (SUBSY_ID)
CONSTRAINT
RANGE PROJ_SUB S
RANGE SUBSYSTEM SUB
RANGE VAL_S_FUNCTION VSF
ySUB 38 (S.SUBSY_ID
v SUB 3IVSF (VSF.CODE

SUB.SUBSY_1ID)
SUB.FUNCTION)

E-6
5063

mii Ql n Wy = & W = q i

i

il

!

g = @

§

RELATION COM_PURPOSE
(FIELD COM_NO numeric(7)
FIELD PURPOSE char(10))

KEY (COM_NO,
CONSTRAINT

PURPO

SE)

RANGE SUB_COM C
RANGE COM_PURPOSE CP
RANGE VAL_COM_PURPOSE VCOP

CP.PURPOSE)

vCP 3C (C.COM_NO = CP.COM_NO)
vCP 3IVCOP (VCOP.CODE =
RELATION COM_STAT
(FIELD COM_NO numeric(7)

FIELD C_EXE_S numeric(6)
FIELD C_LINE numeric(6)
FIELD C_C_LINE numeric(6))

KEY (COM_NO)
CONSTRAINT

RANGE SUB_COM C
RANGE COM_STAT CS
3C (C.COM_NO = CS.COM_NO)

vCS

RELATION COM_SOURCE
(FIELD COM_NO numeric(7)
FIELD PROG_ID numeric(5)
FIELD FORM_NO char(6)
FIELD FORM_TYPE char(6)
FIELD STATUS char(10)
FIELD CREATE_DATE date
FIELD ORI_TYPE char(10)
FIELD COM_TYPE char(10)
FIELD DIFFICULTY numeric(2)
FIELD SUB_DATE date)

KEY (COM_NO)

UNIQUE (FORM_NO)
INDEX (STATUS)
INDEX (CREATE_DATE)
INDEX (SUB_DATE)

CONSTRAINT

RANGE SUB_COM C

RANGE COM_SOURCE CSO
RANGE VAL_ORI_TYPE VOT
RANGE VAL_STATUS VS
RANGE VAL_COM_TYPE VCT
RANGE PERSONNEL PROG
3C (C.COM_NO = CSO.COM_NO)
JVOT (VOT.CODE = CSO.ORI_TYPE)
3vS (VS.CODE = CSO.STATUS)
3VCT (VCT.CODE = CSO.COM_TYPE)

5063

v CSO
v C80
v CSO
v CSO
v CS0
v CSO

3PROG (PROG.PROG_ID
3CSO (CSO.FORM_TYPE

E-7

CSO.PROG_ID)
"COF')

RELATION CHANGE_COM

(FIELD CHANGE_NO char(6)

FIELD COM_NO numeric(7))

KEY (CHANGE_NO, COM_NO)
N U
RANGE SUB_COM C
RANGE CHANGE_COM CHC
RANGE CHANGE CH

YCHC 3C (C.COM_NO = CHC.COM_NO)
VCHC 3CH (CH.CHANGE_NO = CHC.CHANGE_NO)

RELATION CHANGE
(FIELD CHANGE_NO char(6)

FIELD PROG_ID numeric(5)

FIELD SUB_DATE date
FIELD EFF_ONE char(l)
FIELD EFF_ADA char(1l)

FIELD EFF_ISO_CH char(10)
FIELD EFF_COM_CH char(10)

FIELD EFF_PARPA char(l)
FIELD EFF_OTHER char(1l)
FIELD DATE_DETER date

FIELD DATE_COMP date

FIELD NUM_COM_CH numeric(2)
FIELD NUM_COM_EX numeric(2)

FIELD CH_TYPE char(10)
FIELD FORM_TYPE char(6)
FIELD STATUS char(10))

KEY (CHANGE_NO)

INDEX (SUB_DATE)

INDEX (PROG_ID)

INDEX (CH_TYPE)

INDEX (STATUS)

CONSTRAINT
RANGE VAL_ISO_CH VEI
RANGE CHANGE CH
RANGE PERSONNEL PROG
RANGE VAL_STATUS VS
RANGE VAL_EFF_COM_CH
RANGE VAL_CH_TYPE VCHT

v CH 3IPROG (PROG.PROG_ID = CH.PROG_ID)
vCH 3VS (VS.CODE = CH.STATUS)

vCH 3IVEI (VEI.CODE = CH.EFF_ISO_CH)
vCH 3IVEC (VEC.CODE = CH.EFF_COM_CH)
vCH 3IVCHT (VCHT.CODE = CH.CH_TYPE)
vCH 3CH (CH.FORM_TYPE = 'CRF')

RELATION CH_ADAFEAT
(FIELD CHANGE_NO char(6)

FIELD ADA_FEATURE char(10))
KEY (CHANGE_NO, ADA_FEATURE)

5063

E-8

g W € = O« 8. & €0 € b

1l

gy =®=I Qg W

ai|

i

CONSTRAINT
RANGE CHANGE CH
RANGE CH_ADAFEAT CHA
RANGE VAL_ADA_FEATURE VAF
v CHA 3VAF (VAF.CODE = CHA.ADA_FEATURE)
v CHA 3CH (CH.EFF_ADA = 'Y'ACH.CHANGE_NO
= CHA,CHANGE_NOACH.CH_TYPE =
'ERRCO"')

RELATION CH_ERR_ARES
(FIELD CHANGE_NO char(6)
FIELD ERR_ARES char(10))
KEY (CHANGE_NO, ERR_ARES)
CONSTRAINT
RANGE CHANGE CH
RANGE CH_ERR_ARES CHEA
RANGE VAL_ERR_ARES VEA ~
vCHEA 3CH (CH.CH_TYPE = 'ERRCO'ACH.CHANGE_NO
= CHEA.CHANGE_NOACH.EFF_ADA = 'Y')
VYCHEA 3VEA (VEA.CODE = CHEA.ERR_ARES)

RELATION CH_ERR_TOOLS
(FIELD CHANGE_NO char(6)
FIELD ERR_TOOLS char(10))

KEY (CHANGE_NO, ERR_TOOLS)
CONSTRAINT

RANGE CHANGE CH
RANGE CH_ERR_TOOLS CHET
RANGE VAL_ERR_TOOLS VET)
VCHET 3CH (CH.CH_TYPE = 'ERRCO'ACH.CHANGE_NO
= CHET.CHANGE_NO)
vCHET 3VET (VET.CODE = CHET.ERR_TOOLS)

RELATION CH_ERR_GEN
(FIELD CHANGE_NO char(6)
FIELD ERR_SOURCE char(10)
FIELD ERR_CLASS char(10)
FIELD ERR_COMIS char(l)
FIELD ERR_TYPO char(l)
FIELD ERR_OMIS char(l)
FIELD ERR_ADOC char(1l)
FIELD ERR_ACAUSE char(10))
KEY (CHANGE_NO)
INDEX (ERR_ACAUSE)
CONSTRAINT
RANGE CHANGE CH
RANGE CH_ERR_GEN CHEG
RANGE VAL_ERR_SOURCE VES
RANGE VAL_ERR_CLASS VEC
RANGE VAL_ERR_ACAUSE VERA

E-9
5063

VCHEG 3CH (CH.CH_TYPE = ‘ERRCO'ACH.CHANGE_NO

= CHEG.CHANGE_NO)
VCHEG 3IVES (VES.CODE = CHEG.ERR_SOURCE)
Vv CHEG 3VERA (VERA.CODE = CHEG.ERR_ACAUSE)
v CHEG 3IVEC (VEC.CODE = CHEG.ERR_CLASS)

RELATION PERSONNEL

(EIELD PROG_ID numeric(5)
EIZLD FORM NAME char(15)
FIELD FULL_NAME char(30)
FIELD DATE_ENTRY date)

KEY (PROG_ID)

UNIQUE (FORM_NAME)

INDEX (FORM_NAME)

RELATION COMPUTER
(FIELD CPU_NAME char(10)
FIELD C_FULL_NAME char(20))
KEY (CPU_NAME)

RELATION EFF_PROJ
(FIELD PROJ_NO numeric(3)

FIELD SUB_DATE date
FIELD PROG_ID numeric(5)
FIELD P_ID numeric(l0))
KEY (PROJ_NO, SUB_DATE, PROG_ID)
UNIQUE (P_ID)
INDEX (P_ID)
CONSTRAINT
"RANGE PROJECT P
RANGE PERSONNEL PROG
RANGE EFF_PROJ EP] -
VEP 3P (P.PROJ_NO = EP.PROJ_NO)
vV EP 3PROG (PROG.PROG_ID = EP.PROG_ID)

vEP 3EP (EP.SUB_DATE = a valid Friday date)

RELATION EFF_SUB
(FIELD P_ID numeric(10)
FIELD SUB_PRE char(5)
FIELD PS_ID numeric(10))
KEY (P_ID, SUB_PRE)
UNIQUE (PS_1ID)
INDEX (PS_ID)
CONSTRAINT
RANGE EFF_PROJ EP
RANGE EFF_SUB ES
RANGE PROJ_SUB S
vES 3S (S.SUB_PRE = ES.SUB_PRE)
VES 3JIEP (EP.P_ID = ES.P_ID)

E-10
5063)

L

o oWl oaw Wl s o W sm o9

&l

g Wi sm s

I

1

i

RELATION EFF_FORM
(FIELD P_ID numeric(1l0)
FIELD FORM_NO char(6)
FIELD FORM_TYPE char(6)
FIELD STATUS char(10))
KEY (P_ID)
INDEX (STATUS)
CONSTRAINT
RANGE EFF_PROJ EP
RANGE EFF_FORM EFF
RANGE VAL_STATUS VS
v EFF 3EP (EP.P_ID EFF.P_1D)
v EFF 3VS (VS.CODE EFF.STATUS)
v EFF 3JEFF (EFF.FORM_TYPE = 'SPF'V
EFF.FORM_TYPE = 'PRF')

RELATION EFF_SUPER
(FIELD P_ID numeric(l10)
FIELD PER_SUPER numeric(6,2))

KEY (P_ID)
CONSTRAINT

RANGE EFF_PROJ EP
RANGE EFF_SUPER ESU
VESU 3IEP (EP.P_ID = ESU.P_ID)

RELATION EFF_ACT
(FIELD EFF_ID numeric(10)
FIELD ACTIVITY char(10)
FIELD ACT_HR numeric(10,2))
KEY (EFF_ID, ACTIVITY)
CONSTRAINT
RANGE EFF_PROJ EP
RANGE EFF_SUB ES
RANGE VAL_ACTIVITY VA
RANGE EFF_ACT EA
vEA 3VA (VA.CODE = EA.ACTIVITY)
vEA 3ES EP (ES.PS_ID = EA.EFF_IDVEP.P_ID
= EA.EFF_ID)

RELATION TEMP_MANHRS

(FIELD FORM_NAME char(1l5)
FIELD SAT_DAY date N
FIELD HOURS numeric(10,2)
FIELD PROJ_NO numeric(3)
FIELD PROG_ID numeric(5)
FIELD SUB_HR numeric(1l0,2)
FIELD FLAG char(4)
FIELD P_ID numeric(10)
FIELD SCRIPT_NO numeric(10))
KEY (SCRIPT_NO,SAT_DAY)
CONSTRAINT

5063

RANGE TEMP_MANHRS TEMP

RANGE GENERATE_SAT_DAY GSAT
VTEMP 3GSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT_NO
AGSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION TEMP_SERVHRS
(FIELD FORM_NAME char(15)
FIELD SAT_DAY date
FIELD HOURS numeric(10,2)
FIELD PROJ_NO numeric(3)
FIELD PROG_ID numer1c(5)
ELD FLAG char(4)
IELD P_ID numeric(10)

FIELD SCRIPT_NO numeric(10))
KEY (SCRIPT_NO,SAT.DAY)
TRAINT

- RANGE TEMP_SERVHRS TEMP
RANGE GENERATE_SAT_DAY GSAT)
YTEMP 3IGSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT_NO
AGSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION TEMP_ACTIVITY
(FIELD SAT_DAY date
FIELD ACTIVITY char(8)
FIELD HOURS numeric(10,2)
FIELD PROJ_NO numeric(3)
FIELD SUB_HR numeric(10,2)
FIELD FLAG char(4)
SCRIPT_NO numeric(10))
KEY (SCRIPT_NO,SAT_DAY)
QQNSTRAIN
RANGE TEMP_ACTIVITY TEMP
RANGE GENERATE_SAT_DAY GSAT :
" YTEMP 3IGSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT_NO
AGSAT.SAT_DAY = TEMP.SAT_DAY)

b

RELATION TEMP_FORMCT
(FIELD SUB_DAY date
FIELD PROJ_NO numeric(3)
FIELD PROG_ID numeric(5)
FIELD FORM_TYPE char(6)
FIELD SCRIPT_NO numerre(lO))
KEY (SCRIPT_NO,SAT_DAY)
CONSTRAINT
RANGE TEMP_FORMCT TEMP
RANGE GENERATE_SAT_DAY GSAT - e '
VTEMP 3JGSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT_NO
AGSAT.SAT_DAY = TEMP.SAT_DAY)

5063

L § .

Ll

g Wl gu el ® 4B q

et

&L

|

it

f

RELATION REP_CODES
(FIELD CODE char(10)
FIELD VALUE char(30)
FIELD FUNCTION char(15))
KEY (CODE)

RELATIQN CRF_TEMP_CHANGE_COM
(FIELD USER_ID numeric
FIELD SUB_PRE char(5)
FIELD COM_NAME char(40)
FIELD COM_NO numeric(7))
KEY (USER_ID,SUB_PRE,COM_NAME)
CONSTRAINT
RANGE V_PROJ_COM VPROJ
RANGE CRF_TEMP_CHANGE_COM CRF
RANGE PROJ_SUB SUB
VYCRF 3SUB (SUB.SUB_PRE = CRF.SUB_PRE)
"YCRF 3IVPROJ (VPROJ.COM_NAME = CRF.COM_NAME)
vCRF 3IVPROJ (VPROJ.COM_NO = CRF.COM_NO)

RELATION DUMMY
(FIELD HIDDEN char(1l))

RELATION GENERATE_SAT_DAY
(FIELD SAT_DAY date
FIELD SCRIPT_NO numeric(10))
KEY (SCRIPT_NO, SAT_DAY)
CONSTRAINT :
RANGE TEMP_SCRIPT T
RANGE GENERATE_SAT_DAY SAT
vSAT 3T (T.SCRIPT_NO = SAT.SCRIPT_NO)
vSAT 3SAT (SAT.SAT DAY = a valid Saturday
date)

RELATION PERM_SCRIPT
(FIELD ORA_USER char(20)
FIELD OUT_FILE char(20)
FIELD OUT_ROUTING char(20)
FIELD SCRIPT_NAME char(20)
FIELD SCRIPT_NO numeric(10))
KEY (ORA_USER, SCRIPT_NAME)
UNIQUE SCRIPT_NO

CONSTRAINT
RANGE USER_CLASS U
RANGE PERM_SCRIPT P
vP 3U (U.ORA_USER = P.ORA_USER)
vP 3P ((P.OUT_ROUTING = 'P"')
A(P.OUT_FILE != nullA
P.OUT_ROUTING = 'F'))

E-13
5063

RELATION REP_CONDITIONS
(FIELD END DATE date
FIELD LINES_OF_CODE numeric(5)
FIELD NUM_COM numeric(5)
FIELD PROJ_TYPE char(10)
FIELD REPORT_SEQ numeric(3)
FIELD SCRIPT_NO numeric(10)
FIELD START_DATE date)
KEY (SCRIPT_NO, REPORT_SEQ)
CONSTRAINT
RANGE SCRIPT_REPCRT S
RANGE REP_CONDITIONS REP
YREP 38 (S.SCRIPT_NO = REP.SCRIPT_NO
S.REPORT_TYPE_SELECTION =
'SCONDITION' R
AS.REPORT_SEQ = REP.REPORT_SEQ)

RELATION SCRIPT_PROJECTS
(FIELD PROJ_NAME char(8)
EIELD REPORT_SEQ numeric(3)
EIE SCRIPT_NO numeric(10))
KEY (SCRIPT_NO,PROJ_NAME, REPORT _SEQ)
QQHSEBAINI
RANGE PROJECT PR
RANGE SCRIPT_REPORT R
RANGE SCRIPT_PROJECTS P B
vP 3R (R.SCRIPT_NO = P.SCRIPT_NO
: AR.REPORT_SEQ = P.REPORT_SEQ)
vP 3IPR (PR.PROJ_NAME = P.PROJ_NAME)

RELATION SCRIPT_REPORT
(FIELD REPORT_CODE char(10)
FIELD REPORT_SEQ numeric(3)
FIELD REPORT_TYPE char(20)
FIELD REPORT_TYPE_SELECTION char(10)
FIELD SCRIPT_NO numeric(10))
KEY (SCRIPT_NO,REPORT_SEQ)

CONSTRAINT
RANGE PROJECT PROJ
RANGE PERM_SCRIPT P
ANGE TEMP_SCRIPT T
RANGE SCRIPT_REPORT S
RANGE VAL_REPORT_CODE VAL
vS 3P VT (P.SCRIPT_NO = S.SCRIPT_NOV
T.SCRIPT_NO = S.SCRIPT_NO)

vS 3IVAL (VAL.REPORT_CODE = S.REPORT_CODE)

5063

{

]

TR]

\|1
I

Wi

"\H“

Wil

i

I

(i

il

R

mi Wi A

W'

RELATION SEQNO

CONSTRAINT

vSs

IPROJ ((S.REPORT_TYPE_SELECTION =

'INACTIVE'

V S.REPORT_TYPE_SELECTION =
'ACTIVE'

VS.REPORT_TYPE_SELECTION = 'ALL'

V S.REPORT_TYPE_SELECTION = 'LIST'

V S.REPORT_TYPE_SELECTION
'SCONDITION'
AS.REPORT_TYPE = 'M') V
(S.REPORT_TYPE_SELECTION = null
VS.REPORT_TYPE = '0') V
(S.REPORT_TYPE_SELECTION =
PROJ.PROJ_NAME A S.REPORT_TYPE =

lSl))

(FIELD FIELD_NAME char(30)

FIELD MAXSEQNO numeric(10)
FIELD TABLE_NAME char(30))
KEY (TABLE_NAME,FIELD_NAME)

RANGE SEQNO S

vS

3S (S.TABLE_NAME = a valid relation name
AS.FIELD_NAME = a valid field name
within that relation)

RELATION SPECIAL_ACT

(FIELD ACT_HR numeric(10,2)
FIELD EFF_ID numeric(10)
FIELD SP_ACTIVITY char(10))
KEY (EFF_ID,SP_ACTIVITY)

CONSTRAINT

RANGE SPECIAL_ACT SA
RANGE EFF_PROJ EP

RANGE EFF_SUB ES

RANGE VAL_SP_ACTIVITY VAL

VSA 3EP VES (EP.EFF_ID = SA.EFF_ID

VES.EFF_ID = SA.EFF_ID)

vSA 3IVAL (VAL.SP_ACTIVITY = SA.SP_ACTIVITY)

RELATION TABLE_PRIVILEGE
(FIELD ALTER_PRIV char(1l)
FIELD DELETE_PRIV char(l)
FIELD INDEX_PRIV char(l)
FIELD INSERT_PRIV char(l)
FIELD SELECT_PRIV char{(l)
FIELD TABLE_NAME char(40)
FIELD UPDATE_PRIV char(l)
FIELD USER_CLASS char(20))

5063

KEY (TABLE_NAME,USER_CLASS)
CONSTRAINT
RANGE TABLE_PRIVILEGE T
RANGE USER_CLASS U
vT 3U (U.USER_CLASS
vT 3T (T. TABLE NAME
database)
RELATION TEMP_SCRIPT . _
(FIELD DELETE_STATUS char(1l0)
FIELD ORA_USER char(20)
FIELD OUT_FILE char(20)
FIELD OUT_ROUTING char(20)
FIELD PROCESS ID char(20)
FIELD RUN_STATUS char(10)
FIELD SCRIPT_NO numeric(10))
KEY (SCRIPT_NO)
CONSTRAINT

T.USER_CLASS)

RANGE USER_CLASS U D
RANGE TEMP_SCRIPT T e ' N
VT 3U (U.ORA_ USER = T.ORA USER)

vT 3T ((T.OUT_ROUTING = 'P' V T.OUT_ROUTING

= 'F')V ,)
(T.OUT_FILE != null A T.OUT_ROUTING
= IFI))

RELATION USER_CLASS
(FIELD ORA_USER_ID char(20)
FIELD USER_CLASS char(20))
KEY (ORA_USER_ID)
CONSTRAINT
RANGE USER_CLASS_ACCESS UA
RANGE USER_CLASS U
vU 3U (U.ORA_USER_ID = a valid ORACLE user
ID)
VU 3JUA (UA.USER_CLASS = U.USER_CLASS)

RELATION USER_CLASS_ACCESS
(FIELD ACCESS_TYPE char(10)
FIELD USER_CLASS char(20))

KEY (USER_CLASS,ACCESS_TYPE)

RANGE USER_CLASS_ACCESS UA
RANGE USER_CLASS U
VU 3UA (UA.USER_CLASS = U.USER_CLASS)
VUA 3JUA (UA.ACCESS_TYPE = ('BACKUP' V 'DBA’
V'DELETE' V 'DISTAPE' V 'FORM'
V'GENERAL' V 'IMPORT' V 'INSERT®
V'QA' V 'QUERY' V 'REPORT'
V'RESTORE' V 'UPDATE' v 'VIEW'))

5063

a valid relation in the

‘-

|

ol

RELATION PROJ_EST

(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date
FIELD T_SYS numeric(4)
FIELD T_COM numeric(4)
FIELD T_LINE numeric(7)

- FIELD T_NEW_LINE numeric(6)
FIELD T_OLD_LINE numeric(6)
FIELD T_MOD_LINE numeric(6)
FIELD PRO_HR numeric(10,2)
FIELD MAN_HR numeric(l10,2)
FIELD SER_HR numeric(1l0,2)

KEY (PROJ_NO, SUB_DATE)
CONSTRAINT
RANGE PROJECT P
RANGE PROJ_EST PES
VPES 3P (P.PROJ_NO

VIEW V_PROJ_COM
(EIELD PROJ_NAME, SOURCE PROJECT
FIELD SUB_PRE,SQURCE PROJ_SUB
FIELD COM_NAME, SQURCE SUB_COM
FIELD COM_NO, SOQOURCE SUB_COM)

VIEW V_PROJ_SUB_ACT
(EIELD PROJ_NAME, SQURCE PROJECT
FIELD SUB_PRE, SOURCE EFF_SUB
FIELD ACTIVITY,SQURCE EFF_ACT
FIELD ACT_HR,SQURCE EFF_ACT)

VIEW VAL_MEAS_TYPE
(EIELD CODE,SOURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_SECOND_L
(FIELD CODE,SQURCE VALIDATION
FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_ACTIVE_STATUS

PES.PROJ_NO)

(FIELD CODE,SOURCE VALIDATION)
(FIELD CODE,SOURCE VALIDATION)

VIEW VAL_MESS_TYPE

(FIELD CODE,SQURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_STATUS

(EIELD CODE, SQURCE VALIDATION
FIELD VALUE,SQURCE VALIDATION)

5063

VIEW VAL_S_FUNCTION
(EIELD CODE,SQURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_COM_PURPOSE

(EIELD CODE, SQURCE VALIDATION
FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_ORI_TYPE

(EIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_COM_TYPE
(EIELD CODE, SQURCE VALIDATION
FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_ADA_FEATURE

(FIELD CODE, SQURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_ERR_CLASS

(FIELD CODE,SQURCE VALIDATION
FIELD VALUE,SQURCE VALIDATION)

VIEW VAL_CH_TYPE

(FIELD CODE,SQURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_ERR_ARES
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_ERR_SOURCE
(FIELD CODE, SQURCE VALIDATION
FIELD VALUE §QQE§E VALIDATION)

VIEW VAL_ERR ACAUSE
(EIELD CODE, SQURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_ERR_TOOLS

(EIELD CODE,SQURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_ACTIVITY

(FIELD CODE,SOURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

5063

at e/ w €0 @oon.

[l

Y

W

Wik

[

R

Wil

i

|

VIEW V_PROJ_TYPE
(FIELD PROJ NO,SQURCE PROJECT
FIELD PROJ TYPE,SQURCE PROJECT)

VIEW VAL_PHASE_CO
(FIELD CODE,SOURCE VALIDATION
FIELD VALUE,SQURCE VALIDATION)

VIEW V_PERM_SCRIPT

(FIELD SCRIPT_NAME,SQURCE PERM_SCRIPT)

VIEW V_REP_CODES_CRITERIA
(EIELD VALUE, SQURCE REP_CODES)

VIEW VAL_COM_CH

(EIELD CODE,SQOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_ISO_CH
(EIELD CODE, SQURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_QA_STATUS
(FIELD CODE,SQURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_REPORT_CODE
(EIELD CODE, SQURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_SP_ACTIVITY
(EIELD CODE, SQURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW V_SUBSYSTEM_INFO
(FIELD FUNCTION, SQURCE SUBSYSTEM
FIELD NAME, SQURCE SUBSYSTEM
FIELD PROJ_NAME, SQURCE PROJECT
FIELD SUB_DATE, SOURCE PROJ_SUB
FIELD SUB_PRE,SQURCE PROJ_SUB)

VIEW V_PERM_SCRIPT

(FIELD SCRIPT_NAME, SOURCE PERM_SCRIPT)

VIEW V_REP_CODES_LOG

(FIELD VALUE,SQURCE REP_CODES)

5063

I

€

5063

REFERENCES
Software Eng1neer1ng Laboratory, SEL-87-008, Data 1-
1 i for th h EL Da ’
G. Heller, October 1987

Computer Sciences Corporation, CSC/TM-87/6016, Design of

the Rehosted SEL Database, M. So and G. Heller, March
1987
--, CSC/SD-88/6019, r' r
Manager for the Software Englngggl o bg tgrx_LQAM EL),
S. Steinberg, April 1989
ORACLE Corporation, SQL*Plus User's Guide, J. Sachs
ORACLE Corporation, SQL*Plus Reference Guide, J. Sachs
C. J. Date, An Introduction to Database Systems, Addison
Wesley

R-1

i
[

min

e

T. ARD RAP F _SE ITERA

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

EL,—QORI NT
- SEL-76-001, Proceedings From the First Summer Software Engi

ngg;;ng,_gxhangg August 1976

- SEL-77-002, Proceedings From the Second Summer Software En-
g_geezlng_ﬂgskshga September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton
and S§S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Design Specifications Langquages
= Study, P. A. Scheffer and C. E Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engi-
- neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Ravleiqgh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analvzer Program

(SAP) User's Guide (Revision 3), W. J. Decker and

- W. A. Taylor, July 1986
SEL-79-002, The Software Engineering Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979
SEL-79-003, |

_3§QLLELLQ__Q_Q_H§Q=_§=QELQ§ C. E Goorev1ch A. L Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-

- ram Design Langua PDL) in th r a Flight Cen-
- r SF ftwar ign Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979
BL-1

5063

SEL-79-005, Pro ings From the Four mmer ftware En-
gineering Workshop, November 1979

SEL-80-002, Multi-Level Expression Design Lanquage-

Requirement Level (MEDL-R) System Evalugtlgn, W. J. Decker
and C. E. Goorevich, May 1980 -

SEL-80-003,
ftwar

Compatibility S;g vy, T. Welden, M. 'McC1e11an, and
P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M, Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-

tion Mode;§ for Software Systems, J. F. Cook and
F, E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, sgftwarg Engigeg;;gg Laboratory Programmer Work-

bench Phase 1 Evglugglgn, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluating ware Devel

Change Data, D. M. Weiss, November 1981
SEL-81-012, The Rayleigh Curve as a Model for Effort Distri-

bution QOver the Life of Medium Scale Software Systems, G. O.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering WQrksth December 1981

SEL-81-014, 'utg ated QQl gg; Q Qf SQfgwarg Eng1nee ing

a in th En ri L r SEL
A. L. Green, W. Jh Decker, and F. E. McGarry, September 1981
SEL-81-101, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-104, The § Engineering Laborat D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

BL-2
5063

L

il Wy w0 w0 Wl €00 WU Wm0 w8l

L [H)

SEL-81-107, Software Engineering ratory (SEL
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodologqy for Flight Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-205, mmen Appr h ftwar velopment,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Ev ion of Man ment M T ftwar
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-004, 11 ftwar ngi i P : Vol-
ume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software

Engineering Workshop, December 1982
SEL-82-008, Ev i w velopmen lysi

om the

V. R. Basili éﬁdrblwﬁZVWéiss} December 1982
SEL-82-102,

Revision , W. A. Taylor and
W. J. Decker, April 1985

SEL-82-105, G1 £ war nqgi i L r r
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-706, n ibliograph ftwar ngineeri
Laboratory Literature, G. Heller, January 1989
SEL-83-001, An Approach to Software Cost Estimation,

F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, 11 ftwar ngin ingq P IS: 1- -
ume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic
Variables, C. W. Doerflinger, November 1983

BL-3
5063

SEL-83-007, i

gineering Workshop, November 1983

SEL-84-001, Manaqger's Handbook for Software Development,

W. W. Agresti, F. E. McGarry, D. N. Card, et alt, April 1984
SEL-84-003, Invggglggtion of §ggg;f;gatlgn Mggsu es _for the
Software Engineering Laboratory (SE Y, W. W. Agresti,

V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, ings I ,
_EQLAQQ_Egskﬁhgg November 1984 ST

SEL-85- 001
niques, D. N, Card R. W. Selby, Jr., F. E. McGarry, et al.,
April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From
the Gamma Ray Observatory Ada Development Team, R. Murphy

and M. Stark, October 1985

SEL-85-003, Collected SQf:wa;g Engineering Papers: Vol-
ume III, November 1985 -

SEL-85-004, Evaluations of Software Technologies: Testing,
QLEAHEQQ_L_EDQ_MQLILQE R. W. Selby, Jr., May 1985

SEL-85-005, ftware Verifi ion and T ing, D. N. Card,
C. Antle, and E. Edwards, December 1985

SEL-85-006, Pr {
neering Workshop, December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Soft-
ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,
E. Seidewitz and M. Stark, Augqust 1986

SEL-86-003, i Dynam m ftware Developmen
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, 11
ume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card, October
1986

5063

i W W i W s win @ W = [| l

&

]

Wil |

SEL-86-006, Proceedings From the Eleventh Annual Software
Engineering Workshop, December 1986

SEL-87-001, Product Assurance Policies and Procedures for
Fligh nami ftware Development, S. Perry et al., March
1987

SEL-87-002, Ada Stvle Guide (Version 1.1), E. Seidewitz
et al., May 1987 '

SEL-87-003, i i i Comy
tion Model (CSM), W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada Design Process and Its Impli-

cations: A Case Study, S. Godfrey, C. Brophy, et al.,
July 1987

SEL-87-008, ion r r _the Reh
Database, G. Heller, October 1987

SEL-87-009, Collected Software Engineering Papers: Volume V,
S. DeLong, November 1987

SEL-87-010, P i rom th fth ftwar n-

gineering erksth December 1987

SEL-88-001, S1§L3EL_3§Ling_Qi_i_EIQdngtiQQ_AQQ_ELQjﬁsii__Ihﬁ

GRODY Study, J. Seigle and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Vol-

ume VI, November 1988

SEL 88-003, i Technol in the Flight Dynam-
ics Area: Qgglgn Phgsg A alysis, K. Quimby and L. Esker,

December 1988

SEL-89-001, Software Engineering Laboratory (SEL) Database

Organization and User's Guide, M. So, G. Heller,
S. Steinberg, and D. Spiegel, May 1989

EL-RELAT RA E

4pgresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"

Pr in f th irst In ional mposium on Ada £
the NASA Space Station, June 1986

2pgresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Program Transformation and Pro-

gramming Environments. New York: Springer-Verlag, 1984

BL-5
5063

lBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expendltures, Proceedings of the
if I rnational nferen ftwar ngineering.

New York: IEEE Computer Soc1ety Press, 1981

lBasili, V. R., "Models and Metrics for Software Manage-

ment and Engineering,"” ASME Advances in Computer Technology,
January 1980, vol., 1

Basili, V. R., T "'1 Vhrﬁ” el nd M ri'ﬁﬁf r Softw
Managemen nd Engineering. New York: IEEE Computer Society
Press, 1980 (also designated SEL-80-008) ...

3Basili, V. R., "Quant1tat1ve Evaluatlon of Software Meth-
odology,”
ference, September 1985

lgasili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-

lems?," Journal of Systems a nd Software, February 1981,

vol. 2, no. 1

lpasili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Pahlllio—Yap, "Finding Relation-
ships Between Effort and Other Varlables in the SEL,"
nal war Ap-—

p__Lc_a_t;_o__s_C_Q_fs__en_c_e October 1985
4Ba5111, V. R., and D. Patnalk A Stugz on Fault Prediction

ili , University
of Maryland, Technical Report TR 1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation,” Communications of
the ACM, January 1984, vol. 27, no. 1

1Basili, v. R., and T. Phillips, "Evaluating and Comparing
Software Metrlcs in the Software Englneerlng Laboratory,"

he A I TRI ium/Worksh ual-
ity Metri 'gs, March 1981
Basili, V. R., and J. Ramsey, r ral vera f Func-
tional Testing, University of Maryland, Technical Report

TR-1442, September 1984

BL-6
5063

Il

Wil W el

il

W&

Wi Wi

{1

Wil

L [0

Hu W w &

&l

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto—
type Expert System for Software Engineering Management
r n h 4 RE Ex ms vernmen

Symposium, October 1985)

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development,* E;Qgggd; ngs of the Workshop _

on Quantitative Software Models for Reliability, Complexity,
and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. and H. D. Rombach, "Tailoring the Software

Process to Project Goals and Environments," Proceedings of
h h In national ren ftwar ineerin
March 1987

5Basili, V. and H. D. Rombach, "T A M E: Tailoring an Ada
Measurement Environment,” in f th int A n-

ference,. March 1987

S5Basili, V. and H. D. Rombach, "T A M E: Integrating Meas-
urement Into Software Environments," University of Maryland,
Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project:
Towards Improvement-Oriented Software Environments," IEEE
:I‘_r_a_rxsa_c_t;_o_s_o_n_s_qim_a_ne_E_g;ne_umg June 1988

2Basili, V. R., R. W. Selby, and T. Phlllips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Engineering, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Env1ronments s Characterlst1c Software Metric Set,"

Basili, V. R., and R. W. Selby, Jr., mpari h £ ive-
f war ing ies, University of Maryland,
Technical Report TR-1501, May 1985

3Basili, V. R. and R. W. Selby "Four Applications of a
Software Data Collection and Ana1y51s Methodology, " Proceed-
ings of the NATO Advanced Study Institute, August 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-
perimentation in Software Engineering," IEEE Tran ion n
Software Engineering, July 1986

BL-7
5063

5Basili, V. and R. Selby, "Comparing the Effectiveness of

Software Testing Strategies," IEEE Tran ion n Software

Engineering, December 1987

28a5111, V. R., and D. M Weiss, A Methodol for Collectin
ftware Engin University of Maryland, Tech-

nical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data,* E ransaction n
war i j November 1984

1B35111, V R., and M V Zelkow1tz, "The ‘Software Engi-
neering Laboratory: Objectives," Proceedings of the Fif-

h_An. n _Com 1 rch,
August 1977) : .

Basili, V. R., and M, V., Zélkowitz, "Designing a Software
Measurement Experiment," Pr in he Softwar j

Cycle Management Workshop, September 1977

lpasili, V. R., and M. V., Zelkowitz, “"Operation of the Soft-
ware Engineering Laboratory,"” Proceedings of the Second Soft-
ware Life Cycle Management Workshop, August 1978

1Baeili, V. dﬁtfdand M. Vimieiiowitz, "Measuring Software
Development Characteristics in the Local Environment," Com-
nutgri_a_d_st_ngtnres August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Ana1y21ng Medium Scale
Software Development, in Interna-
£ i i New York: TIEEE

Computer”Soc1ety Press,'i§5éfﬁ

5Brophy, C., W. Agresti, and V. Basili, "Lessons Learned
in Use of Ada-Oriented Design Methods,“ Proceedings of the
Joint Ada gggfe;egge March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili,
“Lessons Learned 1n the Implementation Phase of a Large Ada
Project," Washin A hnical -
ference, March 1988

2Card, D N., "Early Estimation of Resource Expendltures and
Program Size," Computer Sciences Corporation, Technical Memo-
randum, June 1982

2card, D. N., "Comparison of Regression Modeling Techniques
for Resource Estimation," Computer Sciences Corporation,
Technical Memorandum, November 1982

. BL-8 .
5063

L AN B

e

I

|
|

Ll

|

s -l

i

L

W

Ly

i

3card, D. N., "A Software Technology Evaluation Program,"

Annai XVIII ngr Nacional nformatica, October
1985

Scard, D. and W. Agresti, "Resolving the Software Science
Anomaly," The Journal of Systems and Software, 1987

6Card, D. N., and W. Agresti, "Measuring Software Design
Complexity," The Journal of Systems and Software, June 1988

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan,
"A Software Engineering View of Flight Dynamics Analysis
System," Parts I and II, Computer Sciences Corporation,
Technical Memorandum, February 1984

4card, D. N., V. E. Church, and W. W. Agresti, "An Empiri-
cal Study of Software Design Practices," IEEE Transactions
on Software Engineering, February 1986

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteris-
tics of FORTRAN Modules, " Computer Sciences Corporation,
Technical Memorandum, June 1984

S5card, D., F. McGarry, and G. Page, "Evaluating Software
Engineering Technologies,” IEEE Transactions on Software
Engineering, July 1987

3card, D. N., G. T. Page, and F. E McGarry, “Cr1ter1a for
Software Modularization,” f th hth rna-
nal nferen war ineering. New York: IEEE

Computer Society Press, 1985

lchen, E., and M. V. Zelkowitz, "Use of Cluster Analysis

To Evaluate Software Englneer1ng Methodolog1es,“ E_ggggdiggﬁ
h h n nferen ftware En =

ing. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and
Q. L. Jordan, "An Approach for Assessing Software Proto-

types,"” ACM Software Engineering Notes, July 1986

2poerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables," Proceedings of the

Seventh International Computer Software and Applications
Conference. New York: IEEE Computer Society Press, 1983

5Doub1eday, D., "ASAP: An Ada Static Source Code Analyzer
Program, " University of Maryland, Technical Report TR-1895,
August 1987 (NOTE: 100 pages long)

BL-9
5063

6Godfrey, S. and C. Brophy, "Experiences in the Implementa-
tion of a Large Ada Project,” Proceedings of the 1988
Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, ig
NAVPAK, Higher Order Software, Inc., TR 9, September 1977
(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, “Characterizing Resource
Data: A Model for Logical Association of Software Data,"
University of Maryland, Technical Report TR-1848, May 1987

6Jeffery, D. R., and V. R. Basili, "validating the TAME
Resource Data Model," Pr edings he Ten n national

Conference on Software Engineering, April 1988

5Mark, L. and H. D. Rombach, "A Meta Information Base for
Software Engineering,® University of Maryland, Technical
Report TR-1765, July 1987

6éMark, L. and H. D. Rombach, "Generating Customized Soft-
ware Engineering Information Bases From Software Process and
Product Spe01f1cat10ns, 1n h n n

i January
1989

S5McGarry, F. and W. Agresti, "Measuring Ada for Software
Development in the Software Engineering Laboratory (SEL),"
' , waii ion n-
n n m i , January 1988

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-

ment Process and Product," in he Hawaiian Inter--
national ggnfgrgggg on §z§tg §g1gng§§ ~ January 1985

National Aeronautics and Space Administration (NASA), NASA

Software Research Technology Workshop (Proceedings), March
1980

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verlflcatlon and Valldatlon,"

in f he Eighth rnational ftware
1i , November 1984

SRamsey, C. and V. R. Basili, "An Evaluation of Expert Sys-
tems for Software Engineering Management,” University of
Maryland, Technical Report TR-1708, September 1986

BL-10
5063

Wi

i T]

i

iy @@«

|l

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process
Using Structural Coverage," Proceedings of the Eighth Inter-

nation ren n ftwar ngineering. New York:
IEEE Computer Society Press, 1985

S5Rombach, H. D., "A Controlled Experiment on the Impact of
Software Structure on Maintainability," IEEE Transactions on
Software Engineering, March 1987

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment
of Maintenance: An Industrial Case Study," Proceedings From
the Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Prod-
uct Specifications: A Basis for Generating Customized SE
Information Bases," in f the 22nd Ann Hawaii

International Conference on System Sciences, January 1989

S5seidewitz, E., "General Object-Oriented Software Develop-
ment: Background and Experience," Proceedings of the 21st

Hawaii International Conference on System Sciences, January
1988

6seidewitz, E., "General Object-Oriented Software Develop-
ment with Ada: A Life Cycle Approach," Pr ings h
CASE Technoloqy Conference, April 1988

6seidewitz, E., "Object-Oriented Programming in Smalltalk .
and Ada," Pr i f th n n j -

i mmin m Lan Appli ions,
October 1987

4seidewitz, E., and M. Stark, "Towards a General Object-
Oriented Software Development Methodology," Proceedings of
the First International Symposium on Ada for the NASA Space
Station, June 1986

Stark, M., and E. Seidewitz, "Towards a General Object-

Oriented Ada Lifecycle,” Proceedings of the Joint Ada Con-
ference, March 1987
Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL

Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

BL-11
5063

S5valett, J. and F. McGarry, "A Summary of Software Measure-
ment Experiences in the Software Engineering Laboratory,”
Proceedin f th 1 Ann Hawaii Internation nfer-

ence on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-
velopment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory,"” IEEE Tran ions on Software
Engineering, February 1985

5Wu, L., V. Basili, and K. Reed, "A Structure Coverage Tool
for Ada Software Systems," eedings of the int Ada Con-
ference, March 1987

lzelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects,* P

IEEE Computer Soc1eterress, 1979

2Ze1k0w1tz, M. V., *Data Collectlon and Evaluatlon for Ex-
perimental Computer Sc1ence Research " Em 1 F ion
(proceedings),

November 1982

6Ze1k0w1tz,”M v., 'Thergfﬁgg§ggeness of Software Proto-
typlng A Case Study,"

jum of the Washi n, D, C,, Cha r of the ACM, .

June 1987

6zelkowitz, M. V., "Resource Utilization During Software

Development, " Journal of Systems and Software, 1988

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility.," Proceedings of the Soft-
i ment Workshop, September 1977

NOTES:

1This article also appears in SEL-82-004, Collected Soft-

ware Engineering Papers: Volume I, July 1982, :

2This article also appears in SEL-83-003, 1 ft-
ware Engineering Papers: Volume ITI, November’1983

3This article also appears in SEL-85-003, Collected Soft-

ware Engineering Papers; Vglgmg,lII, November 1985.

4This article also appears in SEL-86-004, Collected Soft-

Engineeri Pa Volume IV, November 1986.

BL-12
5063

mii

|

p

mil Ell

il

&l € i &l o NE

)

min

s

SThis artlcle also appears in SEL-87-009,
lume 'V, November 1987.

war

6This article also appears in SEL-88-002,

in

in

r

11

11

d

ware Engineering Papers: Volume VI, November 1988.

5063

BL-13

f

il

s
| !

an o w8 wl 1 t l 0 « u

