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Abstract

Deciding on an appropriate population size for a given GA application can often be critical to the
algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its
search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA
populations, much of this advice involves theoretical aspects that are not accessible to the novice user.
This paper suggests an algorithm for adaptively resizing GA populations. This algorithm is based on
recent theoretical developments that relate population size to schema fitness variance. The suggested
algorithm is developed theoretically, and simulated with expected value equations. The algorithm is
then tested on a problem where population sizing can mislead the GA. The work presented suggests
that the population sizing algorithm may be a viable way to eliminate the population sizing decision
from the application of GAs.
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1 Introduction

A novice GA user who sets out to apply a GA to an optimization problem faces a series of decisions. First,
the user discovers that the problem must be encoded into a GA amenable representation. Next, the user
must choose selection, recombination and mutation operators. Finally, the user must choose a set of GA
parameters, typically a crossover probability (pc) , mutation probability (pm), and population size (N).

For the purpose of this discussion, one can make the assumption that, for a given set of parameters, a
GA with a given set of operators is sufficiently robust to cope with a variety of problem encodings. This,
of course, ignores the possible dilemma of deception in certain encodings, the relative merits of various
encoding alphabets, and the different effects of various operators. However, GAs are generally robust, and
this assumption allows us to focus on tunable aspects of a given GA, rather than the wide variations of
GA implimentations.

Given these assumptions, the user's key decisions are those parameter settings. For setting pc and pm,
some heuristic guidance exists. Crossover probabilities between 0.6 and 0.9 are recommended. Mutation
rates should be between 1/./V, and I/1 (where t is the encoding length). In practice, GAs are typically
robust enough to cope with some variation in the settings of these two parameters. That is, experience
shows that, within the bounds of these heuristics, variations in these parameters result in relatively small
changes in GA performance. However, variations in population size can have substantial effects on GA
performance on many problems. Too small a population, and the GA can fall prey to sampling error. Too
large a population, and one wastes computational effort on extra fitness evaluations.

Some advice exists for sizing populations. In early papers on this topic, Goldberg develops formulae and
indicative plots for population sizing (1985; 1989b). These results are based on some limiting assumptions
about the necessary levels of schemata sampling in the GA. A more recent paper (Goldberg, Deb, & Clark,
1991), presents a formula for sizing populations that is directly based on schemata fitness variance. This
formula directly indicates the necessary schema sampling for given schema statistics.

These formulae are useful, but they do present a difficulty for the novice. Without an understanding of
the GA theoretic concepts of schemata and their statistics, the developments are inaccessible. Therefore,-
from the novice user's point-of-view, the GA may not seem robust at all. Novice users may comment,"!
want to use the GA, but I don't want to have to understand it." Thus, what appears to be a robust
algorithm to the experienced GA user may not be robust at all to the world at large.

One might comment that all optimization schemes suffer from this difficulty. To use them adequately in
a broad range of problems, the user must understand some of the interactions of the algorithm's parameters,
and thus, must understand the algorithm to some extent. However, parameters used in traditional search
algorithms are often easy for a novice user to access and understand. These parameters are typically a
desired accuracy for the search process or its end result, and a constraint on the computational resources
(time and memory) that the user is willing to expend. In other words, the user need only answer,"How
good do I want my answer to be, how long do I want to spend, and how much memory do I have in which
to work?" The GA suffers from the difficulty of having parameters (like population size) that are much
more difficult to relate to the user's needs.

This paper is the first outcome of a project to develop a GA whose parameters are more user accessible.
Currently, the project's efforts are concentrated on the population sizing decision. This seems a logical first
step, since population sizing is a decision the user must make in any GA, and it is a decision on which the
novice has little accessible advice. The desired end result of this project is the development of a GA where
the user need only specify a desired accuracy parameter, a computational time constraint, and a memory
constraint. When the desired GA is developed, it will adaptively resize the population in an effort to meet
the user's requirements. The remainder of this paper will present a suggested technique for dynamically



resizing populations given these parameters. The technique is first developed theoretically, then simulated
in expectation, then tested on a problem where population sizing is critical to GA performance.

2 Algorithm Development

To design an algorithm for adaptively resizing populations, one must form a basis for resizing, and design
a procedure that exploits that basis. The following sections undertake that task.

2.1 Population Sizing Theory

The technique presented here is based on recent suggestions on population sizing from the literature
(Goldberg et al., 1991). Thus, a brief summary of these developments is provided.

Theory suggests that GAs search by implicitly evaluating the mean fitness of various schemata based
on a series of population samples, and then recombining highly fit schemata. Since the schemata average
fitness values are based on samples, they typically have a non-zero variance. Consider the competing
schemata:

HI — * * * * 1 1 0 * * 0
# 2 = * * * * 0 1 0 * * 0

Assuming a deterministic fitness function, variance of average fitness values of these schemata exists
due to the various combinations of bits that can be placed in the don't-care (*) positions. This variance
has been called collateral noise (Goldberg & Rudnick, 1991). Let f(H\) and f(H2) represent the average
fitness values for schemata HI and HI, respectively, taken over all possible strings in each schema. Also
let a\ and a\ represent the variances taken over all corresponding schemata members.

The GA does not make its selection decisions based on /(.Hi) and f(H2). Instead, it makes these
decisions based on a sample of a given size for each schema. Let's call these observed fitness values f0(Hi)
and f0(Hi). Observed fitness values are a function of n(H\) and n(H2), the numbers of copies of schemata
HI and HI in the population, respectively. Given moderate sample sizes, the central limit theorem tells
us that /0values will be distributed normally, with mean f(H) and variance cr2/n(H).

Due to the sampling process and the related variance, it is possible for the GA to err in its selection
decisions on schema HI versus H2. In other words, if one assumes /(-Hi) > f(H-z), there is a probability
that fo(Hi) < f0(H-z). If such mean fitness values are observed the GA will incorrectly select H?. over
.Hi. Given the /(-H) and cr2 values, one can calculate the probability of such an error based on the
convolution of the two normals. This convolution is itself normal with mean /(-Hi) — f(Hi) and variance

) + (cr2/n(JH2))- Thus, the probability that f0(Hi) < f0(H2) is a, where

and z(a) is the ordinate of the unit, one-sided, normal deviate. Note that z(a) is, in effect, a signal-to-noise
ratio, where the signal in question is a selective advantage, and the noise is the collateral noise for the
given schemata competition.

For a given z, a can be found in standard tables, or approximated. For values of |z| > 2 (two standard
deviations from the mean), one can use the Gaussian tail approximation:



For values of \z\ < 2, one can use the sigmoidal approximation suggested by Valenzuela (1989):

1
a =

+exp(-1.6z)'

Given this calculation, one can match a desired maximum level of error in selection to a desired
population size. This is accomplished by setting n(H\) and n(Hi) such that the error probability is
lowered below the desired level. In effect, raising either of the n(H) values "sharpens" (lowers the variance
of) the associated normal distribution, thus reducing the convolution of the two distributions.

Goldberg et al. (1991) suggest that if the largest value of 2°(H)<72/|/(#i) - /(#2)| is known for
competitive schemata of order o(IT), one can conservatively size the population by assuming the n(H)
values are the expected values for a random population of size N. This gives the sizing formula:

Goldberg et al. (1991) goes on to consider particular versions of this formula for various problem
configurations and levels of deception. These developments are not considered here, but they may have
implications for later developments of the suggested adaptive resizing algorithm.

The formula presented above is a thorough compilation of the concepts of schemata variance and its
relationship to population sizing. However, it does present some difficulties from the point of view of
robustness for the novice. The values and ranges of f(H) are not known beforehand for any schemata,
although these values are implicitly estimated in the GA process. Moreover, the values of a2 are neither
known nor estimated in the usual GA process.

In addition, the formula does not consider the relative importance of schemata competitions. If two
competing schemata have fitness values that are nearly equal, the overlap in the distributions will be great,
thus suggesting a large population. However, if the fitness values of these schemata are very nearly equal,
their importance to the overall search may be minimal, thus precluding the need for a large population
on their account. To compensate for this effect, one could consider the absolute expected selection loss,

#2), due to an error in selection, as opposed to the probability of such an error:

The technique suggested here will attempt to dynamically size a population based on matching the
selection loss L to a desired target for this loss Lt provided by the user. To do so, one must estimate
schemata variance, a topic taken up in the next section.

2.2 Estimating Variance and Selection Loss

The standard GA estimates schema mean fitness values through repeated, probabilistic selection and
recombination of strings, based on each single string's fitness value. The fitness of a single string that
belongs to a schema is clearly the smallest sample possible for evaluating a meaningful average fitness
value for that schema. Clearly, this minimal sample cannot be relied upon to deliver an adequate average
fitness. However, the GA uses a population of strings to implicitly deliver the schema average fitness
for a larger sample, while never explicitly evaluating this sample's average. Also, under many selection
schemes, the GA makes selection decisions over competing schemata in small increments (small changes
in population proportions), thus distributing the evaluation of schemata averages fitness values over time.
This spatially and temporally distributed evaluation is key to a GA's implicit parallelism (Holland, 1975),



as well as its easy explicit use on parallel computers. The distributed approach also maintains the GA's
naturally-inspired character. In developing a method for estimating variance, it would be desirable to
maintain a similar approach.

Clearly, one can't evaluate an estimate of schema variance based on a single member of that schema.
To evaluate a variance, one must consider at least two points. Consider the fitness variance of a pair of
strings, in particular, the variance of mates. What schemata variances does one learn about by observing
the variance in fitness between two strings? In a deterministic problem, any variance is caused by the bits
where the two strings differ. Thus, the variance in fitness of two strings gives an estimate of the fitness
variance of the schemata that the strings have in common. For example, consider the following strings and
fitness values:

Si
82

string
0 1 0 1 0 0 1 1 1 0 1 0
1 0 0 1 0 1 1 0 0 1 0 1

fitness
100
50

The strings Si and 62 share schema

HI $ = * * 010 *!*****,

and indicate that an estimate of its average fitness is
variance is given by

^) = (/(Si) + /(S2))/2 = 75. The indicated

_
~

Although this is a very crude estimate of schema fitness variance, it is no more crude than the estimate of
schema average fitness implicit in the usual GA.

Note at this point that almost all children of a pair of strings will share the same common schemata
as their parents. Only children who mutate in the defined bits of the shared schema will fail to share this
schema with their parents. This fact will prove useful in the algorithm suggested here.

To size populations based on the developments of Goldberg et al. (1991), one must consider competing
schemata as a basis for calculating a. To do so, let's consider a competition of pairs of schemata. Recall that
each pair can be used to gain variance information on their common schemata. When one compares two
such pairs, one obtains information about fitness differences that result from any bits that are common
within each pair, and are in common bit positions in the competing pairs. These are the competitive
schemata indicated by a competition of pairs. For instance, consider the strings Si and S2 listed above,
competing as a mating pair against the following strings, arranged as another mating pair:

S3

84
string

1 1 1 0 0 0 1 1 1 1 1 0
1 0 0 0 0 1 1 0 0 0 0 1

fitness
152
68

Strings 83 and 84 share the following schema:

#3,4 = 1 * *00 *l*****,

and indicate that f(H3t4) = 110 and 0-f)4 = 7056. The schemata #li2 and #3,4 share defined positions 4,
5, and 7. Thus, the competition of string pair Si and 82 against string pair 83 and 84 gives information
about the following two competitive schemata

H'l2 = * * *10 *!*****



H'34 = * * *00 * l*****

both of which are in partition
^1,2,3,4 == * * *f f * f *****.

Thus, from this information, one can begin to obtain an estimate of a, and thus £, for the schemata
indicated by this competition of pairs. To complete this calculation, one must determine the numbers of
copies in the current populations for each of the two competing schemata under consideration, n(H( 2)
and n(#3)4). Discussion of methods for obtaining these counts and their computational expense will be
deferred to the conclusions of this paper. For the time being, assume that such a count can be obtained
at reasonable computational expense.

Given these factors, one can use a competition of two pairs to calculate an estimated selection loss:

where #(#1,2, .#3,4) is calculated using either the sigmoidal or Gaussian tail approximations, and an esti-
mated z value, given by

The following section will show how this estimated selection loss can be used to adaptively resize
populations.

2.3 An Adaptive Population Sizing Algorithm

Consider the following steps to adaptively resize populations. Assume that the user has supplied a desired
target value for acceptable selection loss, Lt. Start with a small, randomly initialized population, and
repeat the following steps until population size and distribution stabilizes:

1. Randomly put population members together in mating pairs.

2. Determine the shared schemata in each mating pair.

3. Put together competitions of mating pairs.

4. Determine the competitive schemata for each mating-pair competition.

5. Obtain a count of each competitive schema.

6. Calculate L for each mating-pair competition.

7. Use L/Lt as a basis for assigning more (or fewer) population members (see below for details).

8. Construct new population members by crossover and mutation of selected mating pairs.

As was previously noted, almost all of the children of a given mating pair will have the common schema
from that pair. Thus, one can expect the schema survival relationships of the typical GA will extend to
the common schemata in the suggested algorithm.



It is desired that the suggested process converge to a population where expected selection losses match
the target value Lt. Consider the following use of L/Lt values. Each L/Lt value is mapped to an expected
one-step growth rate for the associated mating-pair competition, via a sigmoid function:

1 + exp (-/3 (^ -

where 7 is a desired, maximum, expected percentage increase (or decrease) per generation, and f3 is a
parameter. This growth factor can be mapped to any one of a variety of selection schemes (Goldberg &:
Deb, 1990).

Of course, this represents the introduction of two new parameters, which may defeat the original
purpose of this work: to increase ease of GA use. However, if robust heuristics can be determined for these
parameters, ease of use will not be affected. In the simulations presented below, (3 = 1 and 7 = 0.9 work
well.

The G factor listed above is associated with all four strings in the mating pair competition. One should
ask how this factor should be divided between the two competing mating pairs. L gives us no information
on which schemata's numbers should be increased in the given competitive partition. For lack of a better
strategy, one can inject a degree of selection by dividing the change in number of the schemata under
consideration based on relative fitness. For instance, if (^1,2,3,4 reflects a competition of mating pair Si, 82
against 83,84, then

where GI^ and (73,4 are respective growth factors for the two mating pairs.
Given a one-step growth rate for each mating pair, one can use a selection scheme to assign new copies.

The L/Lt values for each mating pair competition will effect population growth through this selective
process. When Lj Lt is greater than one (for a given mating pair competition), population size will increase
(with respect to that competition). When L/Lt is less than one, population size will decrease. When L/Lt

values are equal to one, population growth will cease. When population growth ceases, or population size
becomes relatively stable, the regular genetic algorithm can begin to select purely based on fitness. This
divides the GA selective process into two distinct phases. First is a selection based on variance, with
variable population size. Next is selection based on fitness, with a fixed population size. This is a clear
division of exploration and exploitation phases. Later revisions of the algorithm will require a gradual
transition between these phases. Viewed in this light, the suggested algorithm bears some resemblance to
the exploration-exploitation strategies for reinforcement learning problems suggested by Thrun (1992).

When population size adjustment ceases in the suggested scheme, the proportions of various schemata
will not be evenly distributed in any given partition. However, the fitness biasing used to divide growth
factors should help to insure that high fitness schemata in any given partition will be likely to have higher
numbers of copies.

3 Analytical Simulation

One can simulate the suggested algorithm's behavior by considering a single partition of competitive
schemata. Before doing so, it is useful to illustrate the sampling error effects that can occur due to finite



population size. This can be accomplished in simulation by considering eight competing schemata in an
order three partition. Consider f(H) and a values for the following eight schemata:

schema
1
2
3
4
5
6
7
8

f(H)
1.00
0.90
0.80
0.70
0.65
0.95
0.80
0.72

a
6.4

13.2
3.2

10.0
16.4
2.0

20.0
0.4

These values were selected to show a variety of combinations of fitness and variance for simulating the
population resizing scheme.

Iterating proportion equations (Goldberg, 1987) will show the expected performance of fitness propor-
tionate selection on these schemata:

f-P?pt+i _ •M-' t
' V • Pi f2-ij r] J]

for all i and j in the competitive partition. However, this expected value model does not consider variance
effects. As an abstraction of actual fitness proportionate selection under sampling noise, consider iteration
of a noisy proportion equation:

i t
pt+i _~

where the /' values are given by the / values with zero-mean Gaussian noise added. The variance of this
noise is given by the previously listed a values, divided by appropriate counts of the corresponding schema.
To simulate a count of each schema, assume a population size N, and let n(#,-) = P^N. The proportion
values will also be rounded to reflect the simulated finite population size.

Figure 1 shows typical results of iterating the noisy proportion equations with N = 1024. The highest
fitness schema quickly takes over the population. This result occurs consistently with this population size.
However, with N = 64, the results are quite different. Figure 2 shows a typical run. As shown in this
example, the population often diverges from the highest fitness schema. The propensity of the proportion
equations to diverge increases with decreasing population size. Figure 3 shows a convergence histogram for
25 runs for N = 64. This histogram shows the proportion of each schema at the end of 100 generations,
averaged over the 25 runs. In all 25 runs, some schema overtakes nearly the entire population (well over
98%). The histogram indicates the schema that overtakes the population is often not the most fit schema.
Figures 4 and 5 show similar histograms for JV = 128 and N = 32, respectively. Clearly, sampling error
can cause selection error, and associated divergence from the highest fitness schemata in a partition. Since
selection error is a function of population size, the population resizing algorithm should reduce selection
error to a point where correct convergence occurs.

The / and a values listed above are used in an expected value model to simulate the action of the
suggested population resizing algorithm. Note that this simulation considers the probability of any two
schemata i and j coming into competition as P{Pj.

Given a starting population size of N = 64, with equal initial numbers of each schema in the competitive
partition, Figure 6 shows the results of simulating the population resizing scheme. The final population
size from this simulation is 2048.
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Figure 1: Simulated evolution of schema proportions under selection with noisy fitness values (N — 1024).
Symbols are as follows: -o=Hi, -x=H2, - +=H3, -*=H4, o-x=#s, o—\-=H6, o-x=H7, —=H%.
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Figure 2: Simulated evolution of schema proportions under selection with noisy fitness values (N = 64).
Symbols are as in the previous figure.
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Figure 3: Histogram indicating the final schema converged to in 25 simulations under selection with noisy
fitness values (N = 64).
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Figure 4: Histogram indicating the final schema converged to in 25 simulations under selection with noisy
fitness values (N = 128).
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Figure 5: Histogram indicating the final schema converged to in 25 simulations under selection with noisy
fitness values (N = 32).
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Figure 6: Evolution of numbers of schemata in simulation of the population resizing scheme. Symbols are
as in previous figures.
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Figure 7: Evolution of population proportions starting from the resulting population size and proportions
from the population resizing scheme, under selection with noisy fitness values. Symbols are as in previous
figures.

Given the resulting proportions and population size at cycle 500 in Figure 6, one can iterate the
noisy proportion equations to simulate selection after population resizing. Figure 7 shows the results of
these iterations. Note the simulation quickly converges to the highest fitness schemata. Figure 8 shows a
histogram of the convergence of 25 similar runs. In all of these runs, the most fit schema overtakes the
population.

4 Implementation

The results presented above are only those of simulations. They certainly do not reflect the complexities
of a live GA run with the suggested population sizing scheme. In particular, the schema fitness and
variance values used in the simulation are assumed to be explicitly given, as opposed to estimated from
the stochastic process inherent to a real GA. However, such expected value simulations have been useful in
past GA studies (Goldberg, 1987; Smith & Goldberg, 1992). The simulations only consider the competitive
schemata in a single partition. In a real GA, there will be an interplay of many partitions of schemata,
some of which indicate that the population should be larger, some of which indicate that the population
should be smaller. The results of the simulations used here indicate that the suggested scheme may be
an effective method for automatically resizing populations. This section presents the next phase of testing
the method: its implementation in a real GA.

The interplay of multiple schemata competitions in the real GA led to somewhat different dynamics
than those of the simulations. In particular, the variations in population size were broader than desired.
Often the population would expand to a much larger value than was necessary for a given test problem
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Figure 8: Histogram of final schema converged to in 25 simulations starting from the resulting population
size and proportions from the population resizing scheme, under selection with noisy fitness values.

(see below). This expansion seems to be due to the conservative nature of the loss measure. Recall that
expansion is based on the estimated expect loss,

The system must obtain the given level of target loss for every schemata competition, which is difficult in the
real GA, and introduces broad, sustained oscillations in the population size. To reduce these oscillations,
the criteria is relaxed:

t i f f ff \£(#1,2, #3,4) =

In effect, this weights the importance on any one selection loss less severely for larger population sizes.
This seems logical in connection with the real GA, since is is less critical for the GA to select correctly
every time in a given competition if that competition occurs several times in the population.

In implementing the algorithm simulated in previous sections, one must more seriously consider the
transition from population sizing to actual selection. In the simulations, the transition was made abruptly,
after the population size had obviously stabilized. While this is easy in an expected value simulation,
it is difficult in an actual GA, where the complex interplay of various schemata make the convergence
of population size less obvious. Although the population size may converge in expectation, it will still
vary around the mean in the real GA. This effect makes the decision to switch to pure selection difficult.
Rather than attempting to use some statistical measure to make this decision (and possibly introducing
more tunable parameters), the implementation presented here folds selection and population resizing into
one continuous operation. Details are as follows.

In the implementation presented here, growth or decay is accomplished by a procedure that is similar
to stochastic remainder selection (Goldberg, 1989a; Wetzel, 1983). First, the growth rate is multiplied

13



by two. If the growth rate for a mating pair is 2 • £1,2, the pair is given the integer part of 2 • £1,2
children deterministically, and an extra copy with probability equal to the fractional part of 2 • G\^. If the
growth rate for a particular competition £1,2,3,4 is greater than or equal to one, the growth rate is divided
between the two mating pairs based on relative fitness, as was suggested earlier. If f(H\^) = f(H^i),
and £1,2,3,4 < 1, the growth rate is also divided as was indicated in previous sections. However, if the
growth rate £1,2,3,4 is less than one, all of losses are assigned to the less fit mating pair. In other words, if
f(Hi,i) > /(-#3,4)> and £1,2,3,4 < 1, the growth rate is divided as follows:

£1,2 = 1,

£3,4 = £1,2,3,4-

The motivation for this method is based on the population sizing theory discussed previously. A growth
rate of less than one indicates that the variance level of the schemata competition at hand is such that
selection can be performed with some confidence in the results. If the algorithm is started with a small
population size, this condition will not occur frequently until late in the run, when the population size is
corrected downward. Thus, the algorithm should have two distinct phases, with population expansion and
little selection early on, and population contraction with selection later.

In an actual implementation of the algorithm, another important decision is how to set the mutation
rate. Since mutation rate is usually tied to population size in a GA, there is no clear way to set a fixed
value for the mutation rate in a GA where population size varies. In this implementation, the mutation
rate is held at 1/./V, where N is population size, throughout the run.

Since the algorithm suggested is based on competitions of four strings at a time, it is helpful for the
population size to remain a multiple of four. In the implementation presented here, this is accomplished as
follows. If the new population size is not a multiple of four, a random decision is made as to whether to add
or subtract individuals. This prevents a bias towards population expansion or reduction. If subtraction is
selected, the last few individuals are deleted from the population. If addition is selected, individuals are
randomly created. In either case, the resulting population size is the nearest multiple of four.

In addition to the previously discussed details, one must also consider that small values of Lt are likely to
dictate population sizes that are larger than are practical. Thus, user dictated memory and computational
time limitations must be added to the algorithm. In the implementation given here, individuals are
randomly deleted when a maximum population size is exceeded. There may be better strategies for such
deletion, including deletion based on fitness. Such strategies are an avenue for future study. Another
important extension of this implementation is a user-specified limitation based on computational time.
Implementing such a limitation will require online estimates of GA convergence time for a given population
size, and corresponding adjustments of the maximum population size. Previous studies of convergence
times for GA selection schemes may be helpful in this extension (Goldberg & Deb, 1990).

An implementation of the algorithm is included in the appendix. The main body of the algorithm is
included in the subroutine adaptpopQ. The remainder of the code is a slight variation of the SGA-C
package (Smith et al., 1991). Note that the schema comparison procedures are implemented in fast-
executing binary operations. The expense of these operations, and alternatives to them, are discussed in
the final comments section of this paper.

5 Testing

This section formulates a test problem for the resizing technique, and demonstrates the technique's effects
on this problem. It will be useful to employ a test problem where one can demonstrate that the results

14
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Figure 9: A partially deceptive function that the GA can solve.

of a fixed-population size GA vary with the selection of the population size. To do this, it is necessary
to insure that mutation alone is not sufficient to (eventually) locate the problems optima. If mutation is
sufficient, then the eventual convergence of the GA to the optima is assured. Population size may effect
transient response of the GA, but this will be insufficient for the desired illustration of the population
sizing scheme's effects. Because of this, it is necessary to have at least a partial degree of deception in the
problem (Goldberg, 1989a), so that order one building blocks alone cannot lead to the optima.

Consider the following problem:

fitness = /(x) =
m\x + bi
m2x + b<i

if xi < F-2
otherwise

where x is the interpretation of the GA bit string as an integer, scaled to a real number between zero
and one, and mi — —0.533, b\ = 0.5, m2 = 16, 62 = —15, and F? = 15/16. This function is plotted
in Figure 9. The function is partially deceptive, which can be shown by considering the four order-one
schemata competitions represented by the four most-significant bits in x, shown in Table 1. The function
is partially deceptive, since the first two schemata competitions have selective pressure towards the false
optima (x = 0), while the last two have selective pressure towards the true optima (x = 1). Moreover,
the order four competitive partition in the most-significant bits is not deceptive, as is shown in Table 1.
If disruption of the schema 1111 ... *** is low, one would expect that the GA would select this schema
over others in its partition, and the process would converge to the correct optima.

However, it is easy to imagine the GA being misled by the problem shown in Figure 9. If high order
bits are set to zeros (through disruption of the high-order schema or selection error), the remainder of the
string will improve overall performance by moving away from the true optima at x = 1. However, the
linkage in the high order building blocks is tight, and the GA is not usually not misled by this function,
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schema
0*** . . .
1*** . . .
*0** . . .
*!** . . .
**0* . . .
**1* . . .
***0 . . .
***! ...

H.
***
***
***
**#
***
***
***
***

approximate average
0.3672
0.1679
0.2987
0.2359
0.2668
0.2683
0.2501
0.2683

fitness /(#)

Table 1: Approximate order-1 schema average fitness values for the partially deceptive function.

schema
0000 ...
0001 ...
0010 ...
0011 ...
0100 ...
0101 ...
0110 ...
0111 ...
1000 ...
1001 ...
1010 ...
1011 ...
1100 ...
1101 ...
1110 ...
1111 ...

H
***
***
***
***
***
***
***
***
***
***
***
***
***
***
***
***

approximate average fitness f(H}
0.4843
0.4509
0.4174
0.3840
0.3506
0.3171
0.2837
0.2502
0.2168
0.1833
0.1499
0.1164
0.0830
0.0496
0.0161
0.5241

Table 2: Approximate order-4 schema average fitness values for the partially deceptive function.
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Figure 10: Average results for ten simple GA runs with population size 50 on the partially deceptive
problem. The best fitness individual located thus far is shown with a solid line, maximum fitness in the
current generation is shown with a dashed line, and average fitness in the current generation is shown with
a dotted line.
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Figure 11: Average results for ten simple GA runs with population size 100 on the partially deceptive
problem. The best fitness individual located thus far is shown with a solid line, maximum fitness in the
current generation is shown with a dashed line, and average fitness in the current generation is shown with
a dotted line.

18



0.95

0.9

£0.85
If

0.8

0.75

0.7
100 200 300

Generation
400 500

Figure 12: Plots show the best individual found up to the current generation for various population sizes
on the modified partially deceptive problem. Plots represent an average of ten runs. Population size 50 is
shown with a solid line, 100 with a dashed line, 200 with a dotted line, 500 with a dashed-dotted line, and
1000 with a large-dotted line.

even with relatively small population sizes, as Figures 10 and 11 illustrate. These figures show GA results
for populations of size 50 and 100 (respectively), with bit strings of length 21, crossover rate pc = 0.6,
mutation rate pm = 0.001, and tournament selection with tournaments of size two (Goldberg & Deb, 1990).
The results shown are averaged over ten independent runs. For a population size of 50, the GA converges
to the true optima nine out of ten times. For the population size of 100, the GA consistently converges to
the true optima. Qualitatively similar results were obtained with other parameter settings.

Given a partially deceptive problem that the GA can solve (with appropriately linked building blocks),
consider decreasing the selective signal-to-noise ratio. Consider the previously demonstrated problem,
concatenated with a 21-bit, bitwise linear problem. In other words, consider interpreting the first 21 bits
of the string as x in the previous problem, and each of the remaining bits as a separate variable x,-. The
suggested fitness function is

0.9 21

fitness = 0.1 • /(x) + —'— • 2_Jx,.

In effect, the previously discussed partially deceptive function is added to the simplest of all problems for
the GA. However, the results are not what one might expect. Figures 12 and 13 illustrate the effects of
GAs with various population sizes on this problem. Figure 12 shows the best individual found up to the
current generation, and Figure 13 shows the maximum individual in the current population. Parameters
are otherwise as in the previous example. Each line on these plots represents an average of ten GA runs.
Note that the function /(x) represents the final 10% of fitness in these experiments, and that if the GA
is misled to x = 0, the maximum fitness is 0.95. With small population sizes, this happens often. As

19



0.95-

, 0.85 •;
I
IT

0.75'

0.65.
100 200 300

Generation
400 500

Figure 13: Plots show the maximum individual in the current generation for various population sizes on
the modified partially deceptive problem. Plots represent an average of ten runs. Population size 50 is
shown with a solid line, 100 with a dashed line, 200 with a dotted line, 500 with a dashed-dotted line, and
1000 with a large-dotted line.

20



1600

1400

1200

g 1000
55

I 800
.2

S. 600

400

200

50 100 150
Generation

200 250 300

Figure 14: Population size versus generation for the adaptive population sizing GA applied to the modified
partially deceptive function.

the population size is increased, the GA more frequently finds the correct solution. Qualitatively similar
results were obtained for other parameter settings.

The failures in these runs are caused by the low signal-to-noise ratios for the critical, higher order
bits of parameter x. In effect, for small populations the GA initially concentrates its selective decisions
on the most important bits. These bits are the 21 x;s. The higher order bits of x are carried along in
these selective decisions, often with incorrect values. These bits are what have been called hitchhikers in
the GA theoretic literature (Forrest & Mitchell, 1993). In effect, hitchhikers are the result of insufficient
population size.

Given a problem where population sizing can be seen as critical to overall performance, one can examine
the effects of adaptive population sizing, with a foundation for interpreting effects. Figures 14 and 15 show
the results of a representative run of the adaptive population sizing code. This run used the parameters
shown in Table 3. Results of similar, independent runs were qualitatively similar. The GA consistently sized
the population in a similar range, and found the true optima. Note that the population size first increases,
lowering variances and spreading a population over the search space. Then, as the population size drops,
and selection is applied to the individuals deleted, recombination assembles the correct solution. This can
be seen in the jump from the false optima to the true optima when overall population size decreases. Near
the end of the run, the population size remains steady at a value lower than its maximum. This is because
selection has lowered the diversity of the population, thus lowering the variance of population members,
and lowering the adequate population size needed to match the target loss.
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Figure 15: Fitness versus generation for the adaptive population sizing GA applied to the modified partially
deceptive function. Best individual found up to the current generation is shown with a solid line, maximum
individual in the current population is shown with a dashed line, and the current population average is
shown with a dotted line.

Initial Population Size
Maximum Population Size

Crossover Rate
Mutation Rate
Target Loss Lt

Sigmoid Slope fi
Maximum Growth Rate 7

100
5000
0.6

0.001
0.0001

10
1.0

Table 3: Parameters used in the representative run of the adaptive population sizing GA.
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6 Final Comments

The theoretical developments, simulations, and experiments presented in this paper indicate that the
suggested technique for adaptive population size adjustment is viable. Further experimentation will be
necessary to fully confirm the effectiveness of the algorithm. The fundamental framework of the algorithm
is firmly founded. That is, that schemata variances effect the accuracy of selection, and that population
sizes effect variances. Therefore, population size adjustment should be based on variances. The suggested
procedure uses mating pairs to estimate schemata fitness variances, in much the same way that the tra-
ditional GA uses individuals to estimate schemata average fitness values. This keeps with the notion of
implicit parallelism in the GA, and allows for explicit parallelism as well.

There are aspects of the suggested algorithm that could be altered while staying within the same
conceptual framework. In particular, it may be useful to explore alternatives to the use of the sigmoidal
mapping to determine the growth rate £1,2,3,4, and the division of L by n(H[^} + n(H^4) to control
population over-expansion. In effect, these features are a control strategy over population growth. Other
stochastic control strategies may be effective. Exploration of a variety of such methods will be an important
area for future research. However, the direct or indirect use of estimated variance and loss as a basis seems
appropriate for any adaptive population sizing scheme.

Parts of the suggested algorithm have much in common with fitness sharing (Deb, 1989). Fitness sharing
spreads the population over high-fitness niches in the search space. The population resizing algorithm
spreads the population across niches of variance. Like sharing, the population resizing algorithm uses
a count of similar strings to control reproduction. A word must be said about the expense of counting
the number of competitive schema in the suggested algorithm. Like the comparisons required in fitness
sharing, this is an 0(N2) operation. However, in considering this expense, one must compare it to the
0(N) operation of calculating string fitness values. In many GA applications, the expense of calculating
fitness values far exceeds the cost of O(N2) masked, binary comparisons. Therefore, this expense may be
negligible. Also, it may be possible to estimate the schema counts. Oei, Goldberg, and Chang (1991) have
suggested using samples to evaluate approximate counts in fitness sharing, and a similar technique may
be useful in the population resizing scheme. It may also be possible to abstract a method of estimation
from recent work on sharing-like behavior in GA immune system simulations (Smith et al., 1993). Another
method for estimating counts may be to periodically gather strings into families, that share common schema.
The resulting family sizes could be used as estimated counts. Since the results of a mating usually preserve
common schema between parents, adding children strings to a family would simply result in an increment
of the estimated count. As mutations occurs, so would new families. Periodic creation of hybrid families
could help to insure accurate count estimates.

The algorithm presented here is a logical, practical, extension of the traditional GA, but one with
extensive potential. If GAs can control their search by automatically adjusting population sizes, they
can effectively expand and contract to accommodate variations in problem complexity, and variations
in available computational resources. A class of adaptive algorithms of this sort could extend the GAs
applicability, and extend its usability beyond the GA expert, to the novice user.
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8 Appendix

This appendix includes the complete code of the population resizing code used in this paper.
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Sep 914:441993 adaptpop.c 1

/* */
/* adaptpop.c - adaptively resizes GA population */
/* */

#include "external.h"

static int *matelist, matepos;
/* tournament list, position in list */

mate_memory()
{
unsigned nbytes;
int j;

nbytes = maxpop*sizeof(int);
if((matelist = (int *) malloc(nbytes)) == NULL)

nomemory(stderr,"matelist");

makematelist ( )
(1

i

reset ();
matepos = 0;

reset ()
/* Shuffles the matelist at random */

{
int i, randl, rand2, temp;

for(i=0; i<popsize; i++) matelist [i]

for(i=0; i < popsize; i++)
{
randl=rnd(i,popsize-l) ;
rand2=rnd(i,popsize-l) ;
temp = matelist [randl] ;
matelist [randl ]=matelist [rand2] ;
matelist [rand2]=temp;

}

i;

10

o
£
o>

_
oj
S

20
-ÔQ

co

i
M

03

40

getmate ( )
/* sets up random list of pop members */

(
int index;

index = matelist [matepos] ;
matepos++;

return (index) ;

tuo

50

mate f ree(), —{
free (matelist) ;

adaptpopO

for (gen=0;gen<maxgen;gen++)
;{

fprintf (outfp, "\nRUN %d of %d: GENERATION %d->%d\n"
CO

/*application dependent routines*/
application () ;
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70

/* shuffle the indicies of population to random order */
/* so that mating pairs can be assigned randomly */

makematelist () ;

Gtotal = 0;
j = 0;

while ( j<popsize) 80
{

/* select the first mating pair */
matel = getmateO;
mate2 = getmate ( ) ;

/* determine the shared schemata in the mating pair */
f or (i=0; i<=chromsize; i

J12[i] = (oldpop [matel] .chrom[i] & oldpop[mate2] .chrom[i] ) |
( (-oldpop [matel] .chrom[i] ) & ( -oldpop [mate2 ] .chrom[i] )); 90

/* determine the fitnesses of the two strings and use */
/* them to evaluate the fitness and sigma of H12 */
fmatel = oldpop[matel].fitness;
fmate2 = oldpop[mate2].fitness;
fH12 = (fmatel+fmate2)/2;
temp = fmatel-fmate2;
sigH12 = (temp*temp)/4; 100

/* select the second mating pair */
mate3 = getmateO;
mate4 = getmateO;

/* determine the shared schemata in the mating pair */
for(i=0;i<=chromsize;.

J34[i] = (oldpop [mateS] .chrom[i] & oldpop [mate4] .chrom[i] ) |
( (-oldpop [mate3] .chrom[i] ) & (-oldpop [mate4] .chrom[i] ) ) ; 110

/* determine the fitnesses of the two strings and use */
/* them to evaluate the fitness of H34 */
fmateS = oldpop [mateS] .fitness ;
fmate4 = oldpop [mate4] .fitness;
fH34 = (fmate3+fmate4) 12;
temp = fmate3-fmate4;
sigH34 = (temp*temp) /4; 120

/* determine the competitive schemata for each */
/* mating pair competition */
f or (i=0 ; i<=chromsize;

J1234[i] = J12[i] & J34[i];
}

/* check if H12 = H34 */
flag-0; 130
for (i=0;i<chromsize;i++)

{
if

(0 == ( (oldpop [matel] .chrom[i] '"oldpop [mateS] .chrom[i] ) &J1234 [i] ) )
flag++;

if (flag == chromsize)
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{ 139
G12=l; 140
G34=l;

)
else

{
/* otherwise */
/* obtain a count of each competitive schemata */
n!2 = 0;
for (k=0 ; k<popsize; k++)

{
flag = 0; 150
for (i=0;i<chromsize;i++)

{
if

(0 != ( (oldpop[k] .chrom[i] A oldpoptmatel] .chrom[i] ) & J1234[i]))
{
flag = 1;
continue;

}
}

if (flag ==0)
{ 160

n34 = 0;
f or (k=0 ; k<popsize ; k++)
{
flag = 0;
f or (i=0 ; Kchromsize;

{ 170
if

(0 != ( (oldpop[k] .chrom[i] ~ oldpop [mate3] .chromfi] ) & J1234[i]))
{
flag = 1;
continue;

}
}

if (flag == 0)
{
n34++;

} 180
}

/* calculate Lhat for each mating pair competition */
temp = sigH12/n!2 + sigH34/n34;

if (temp == 0)
{
Lhat = 0;
zabs = 0;
alpha = 0; 190

else

z = (fH12 - fH34)/pow(temp, .5) ;
zabs = fabs (z) ;
if (zabs > 2)

{
temp = zabs*pow(2*pi, .5) ;
alpha = (exp(- (zabs* zabs) /2) ) /temp;

} 200
else

{
alpha =!/(!+ exp(-l . 6*zabs) ) ;

}

temp = fH12 - fH34;
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Lhat = (fabs(temp) ) *alpha; "" 207
}

210

/* use Lhat/Lt as a basis for assigning more population members */
Lhat = Lhat/ (n!2 + n34) ;
G1234 = (1-groma) + ( (2*gmma) / (1 + exp (-beta* (Lhat/Lt - 1) ) ) ) ;

if (G1234 > 1)
{
p!2 = fH12/(fH12+fH34) ;
p34 = fH34/ (fH12+fH34) ; 220

}
else
if(fH12 > fH34)
{
p!2 = 0;
p34 = 1;

}
else
if(fH12 < fH34)

{ 230
p!2 = 1;
p34 = 0;

else

240

p!2 = 0.5;
p34 = 0.5;

G12 = (G1234-l)*pl2 + 1;
G34 = (G1234-l)*p34 + 1;

Gratel2 =0; '
G12 = 2*G12;

while (G12>1) 250
{
Gratel2++;
G12 = G12 - 1;

}
if (flip(G12) )

{
Gratel2++;

}

Grate34 = 0; 260
G34 = 2*G34;

while (G34>1)
{
Grate34++;
G34 = G34 - 1;

}
if (flip(G34) )
{
Grate34++; 270

>

/* confirm that popsize < maxpop */
if((Gtotal + Gratel2 + Grate34) >= maxpop)

break;
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/* update population */ 277
f or (k=l ; k<=Grate!2 ; k++)

{
i = Gtotal - 1 + k; 280

jcross = crossover (oldpop [matel] .chrom, oldpop tmate2] .chrom,
newpopti] .chrom, newpop[i+l] .chrom) ;

mutation (newpop [i] .chrom) ;

objfunc (& (newpop [i] ) ) ;
newpop [i] .parent [0] = matel + 1;
newpop [i] .xsite = jcross;
newpopti] .parent [1] = mate2 + 1;

290
}

for (k=l ; k<=Grate34 ; k++)
{
i = Gtotal - 1 + Gratel2 + k;

jcross = crossover (oldpop [mate3] .chrom, oldpop [mate4] . chrom,
newpopti] .chrom, newpop [i+1] .chrom) ;

mutation (newpop [i] .chrom) ;
300

objfunc (& (newpopti] ));
newpop [i] .parent [0] = mate3 + 1;
newpop [i] .xsite = jcross;
newpop [i] .parent [1] = mate4 + 1;

/* sum the growth rates */
Gtotal = Gtotal + Gratel2 + Grate34;

310
/* increment population index */ «
j = j + 4;

if(Gtotal < maxpop)
popsize = Gtotal;

else
popsize = maxpop; 320

/* increment the population size */
/* check popsize */
if(popsize < 4)

{
tempm = pmutation;
pmutation = 0.5;
for(i=0;i<=4;i++)

{ 330
for(cnt=0;cnt<chromsize;cnt++)
newpop[i].chromtent] = newpop[0].chrom[cnt];

mutation(newpopti].chrom);
}

popsize = 4;
pmutation = tempm;

}
else

{
if(popsize%4 != 0) 340

{
if((popsize - (popsize%4)) < 4)

{
tempm = pmutation;
pmutation = 0.5;
for(i=l; i<=(4-popsize%4);i
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{ 347
for(cnt=0;cnt<chromsize;cnt++)
newpop[popsize-1+i].chromfcnt] = newpop[0].chromfcnt];

mutation(newpop[popsize-l+i]); 350
}

popsize = popsize + (4 - popsize%4) ;
pmutation = tempm;

}
else
if((popsize + (4 - popsize%4)) > maxpop)

{
popsize = popsize - (popsize%4);

}
else 360
if(flip(0.5)>

{
popsize = popsize - (popsize%4) ;

}
else

{
tempm = pmutation;
pmutation = 0.5;
for(i=l;i<=(4-popsize%4);i++)

{ 370
for(cnt=0;cnt<chromsize;cnt++)

newpop[popsize-1+i].chromfcnt] = newpop[0].chromfcnt];
mutation(newpop[popsize-l+i]);

}
popsize = popsize + (4 - popsize%4);
pmutation = tempm;

J;
};

};
380

/* report on results */
report();

/* compute fitness statistics on new population */
statistics (newpop);

I* advance the generation */
temp2 = oldpop; 390
oldpop = newpop;
newpop = temp2;

I* change mutation rate */
pmutation=(1.0)/(float)popsize;

} /* end generation */

} 400



Aug 30 15:24 1993 sga.h 1
/* */
/* sga.h - global declarations for mainO, all variable declared herein must */
/* also be defined as extern variables in external.h !!! */
/* */

tfdefine LINELENGTH 80 /* width of printout */
#def ine BITS_PER_BYTE 8 /* number of bits per byte on this machine */
#define UINTSIZE (BITS_PER_BYTE*sizeof (unsigned) ) /*# of bits in unsigned */
#include <stdio.h>

/* file pointers */
FILE *outfp, *infp;

/* Global structures and variables */
struct individual

unsigned
double
int
int
int

*chrom;
fitness;
xsite;
parent[2],
*utility;

/* chromosome string for the individual */
/* fitness of the individual */

/* crossover site at mating */
/* who the parents of offspring were */

/* utility field can be used as pointer to a */
/* dynamically allocated, application-specific data structure */

struct bestever

unsigned *chrom;
double fitness;
int node ;
int generation;

struct individual *oldpop;
struct individual *newpop;
struct bestever bestfit;
double sumfitness;
double max;
double x avg ;
double min;
float pcross;
float pmutation;
float Lt ;
int maxpop ;
int tourneysize;
int numfiles;
int popsize;
int Ichrom;
int chromsize;
int gen ;
int maxgen ;
int run ;
int maxruns ;
int printst rings
int nmutation;
int ncross;

1;

/* chromosome string for the best-ever individual */
/* fitness of the best-ever individual */

/* node from whence came best-ever */
/* generation which produced it */

/* last generation of individuals */
/* next generation of individuals */

/* fittest individual so far */
/* summed fitness for entire population */

/* maximum fitness of population */
/* average fitness of population */
/* minumum fitness of population */

/* probability of crossover */
/* probability of mutation */

/* desired target selection loss */
/* maximum population size */

/* tournament selection size */
/* number of open files */

/* population size */
/* length of the chromosome per individual */

/* number of bytes needed to store Ichrom string */
/* current generation number */
/* maximum generation number */

/* current run number */
/* maximum number of runs to make */

I* flag to print chromosome strings (default on) */

/* number of crossovers per node */

10

20

30

40

50

float beta,gmma;

/* Variables added for adaptive population sizing */
struct individual *temp2;
float fmatel,fmate2,fmateS,fmate4,fH12,fH34,temp,sigH12,sigH34;
float z,zabs,alpha,Lhat,pi=3.14159,p!2,p34;
float G1234,G12,G34;
int cnt,i,j=0,k,n!2,n34,flag,matel,mate2,mate3,mate4;
int Gtotal,Gratel2,Grate34,jcross;
unsigned *J12,*J34,*J1234;
int tempm;

60

/* Application-dependent declarations go after here... */
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/* */
/* external.h - external global declarations from sga.h. *//* */

#define LINELENGTH 80 /* width of printout */
#define BITS_PER_BYTE 8 /* number of bits per byte on this machine */
^define UINTSIZE (BITS_PER_BYTE*sizeof (unsigned) ) /*# of bits in unsigned */
#include <stdio.h>
^include <math.h>
#include <stdlib.h> 10
extern float randomperc() ;

/* file pointers */
extern FILE *outfp, *infp;

/* Global structures and variables */
struct individual
{

unsigned *chrom; /* chromosome string for the individual */
double fitness; /* fitness of the individual */ 20
int xsite; /* crossover site at mating */
int parent [2 ] ; /* who the parents of offspring were */
int *utility; /* utility field can be used as pointer to a */

/* dynamically allocated, application-specific data structure */
J ;
struct bestever
{

unsigned *chrom; /* chromosome string for the best-ever individual */
double fitness; /* fitness of the best-ever individual */
int , node; /* node from whence came best-ever */ 30
int generation; /* generation which produced it */

> ;

extern struct individual *oldpop; /* last generation of individuals */
extern struct individual *newpop; /* next generation of individuals */
extern struct bestever bestfit; /* fittest individual so far */
extern double sumfitness; /* summed fitness for entire population */
extern double max; /* maximum fitness of population */
extern double avg; /* average fitness of population */
extern double min; /* minumum fitness of population */ 40
extern float pcross; /* probability of crossover */
extern float pmutation; /* probability of mutation */
extern float Lt; /* desired target selection loss */
extern int maxpop; /* maximum popualtion size */
extern int tourneysize; /* tournament selection size */
extern int numfiles; /* number of open files */
extern int popsize; /* population size */
extern int Ichrom; /* length of the chromosome per individual */
extern int chromsize; /* number of bytes needed to store Ichrom string */
extern int gen; /* current generation number */ 50
extern int maxgen; /* maximum generation number */
extern int run; /* current run number */
extern int maxruns; /* maximum number of runs to make */
extern int printstrings; /* flag to print chromosome strings (default on) */
extern int nmutation; /* number of mutations per node */
extern int ncross; /* number of crossovers per node */
extern float beta,gmma;

/* Variables added for adaptive population sizing */
extern struct individual *temp2; 60
extern float fmatel,fmate2,fmate3,fmate4,fH12,fH34,temp,sigH12, sigHS4;
extern float z,zabs,alpha,Lhat,pi=3.14159,p!2,p34;
extern float G1234,G12,G34;
extern int cnt,i,j=0,k,n!2,n34,flag,matel,mate2,mate3,mate4;
extern int Gtotal,Gratel2,Grate34,jcross;
extern unsigned *J12,*J34,*J1234;
extern int tempm;
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/* Application-dependent external declarations go after here... */ 71
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/*******************************************/
/* Simple Genetic Algorithm - SGA */
/* Haploid Version */
/*(c) David Edward Goldberg 1986 */
/* All Rights Reserved */
/* C translation by R.E. Smith */
/* vl.l modifications by Jeff Earickson */
/*******************************************/

#include "sga.h" 10

main(argc,argv)
int argc; 3
char *argv[]; |

struct individual *temp;
FILE *fopen();
void copyright() ;
char *malloc();

20

/* determine input and output from program args */
numfiles = argc - 1;
switch(numfiles)

case 0:
infp = stdin;
outfp = stdout;
break;

case 1: 30
i f ( ( infp = fopen(argv[1],"r")) == NULL)

fprintf(stderr,"Input file %s not found\n", argv[1]) ;
exit(-1);

outfp = stdout;
break;

case 2:
i f ( ( in fp = fopen(argv[1],"r")) == NULL)

{ 40
fprintf (stderr, "Cannot open input file %s\/i",argv[l]) ;
exit(-1);

i f ( (ou t fp = fopen(argv[2] ,"w")) == NULL)

fprintf(stderr,"Cannot open output file %s\n" ,a rgv[2] ) ;
exit(-l);

break;
default: 50

fprintf (stderr, "C7sage is: sga [input file] [output file]\n");
exit(-l);

/* print the author/copyright notice */
copyright();

if(numfiles == 0)
fprintf(outfp, " Number of GA runs to be performed-> "); 60

fscanf(infp,"%d",&maxruns) ;

for(run=l; run<=maxruns; run++)
{

/* Set things up */
initialize();

/* adaptively resize population, perform main GA loop */
adaptpop();

70
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freealK); 7!
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/* */
/* app.c - application dependent routines, change these for different problem */
/* */

finclude <math.h>
#include "external.h"

FILE *appfp;
char appname[20];

application ()
/* this routine should contain any application-dependent computations */ §
/* that should be performed before each GA cycle, called by mainQ */ '•&

( 3
> ' 3&&

CO
app_data()

/* application dependent data input, called by init_data() */ £
/* ask your input questions here, and put output in global variables */ 42

{ I
fprintf (outfp, "Input application output filename ---- ->") ; pj
f scanf (infp, "%s", appname ); cO
if ( (appfp = f open (appname, "w") ) == NULL)

{
fprintf (stderr, "Application output file %s not found\n", appname) ;
exit (-1) ;

} 30

app_f ree ( )
/* application dependent freeO calls, called by freeallO */ cu

< &
> d

PH
CO

app_init ( ) 40

{

>

/* application dependent initialization routine called by intializeO */ .

CO

app_initreport () ^
/* Application-dependent initial report called by initializeO */ %

( S,
fprintf (appfp, "m=f") ; g

1 -a
'2

app_malloc () ft
/* application dependent mallocQ calls, called by initmallocO */ . *

{ w

/* char *mallocO; */ a

!
app_report() ft

/* Application-dependent report, called by reportO */
{ |

fprintf (appfp, "%d %g %g %g %g\/j",popsize,bestf it .fitness, max, min,avg) ; ^
1 <u

1a
app_stats (pop) *

/* Application-dependent statistics calculations called by statisticsO */ w
struct individual *pop; to

'I
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> 71

objfunc (critter)
/* objective function used in Goldberg's book */
/* fitness function is f(x) = x**n,

normalized to range between 0 and 1 ,
where x is the chromosome interpreted as an o
integer, and n = 1 0 */

80
struct individual *critter;

{
int i;
float Ix2,xl,x2;
float range, maxf, D=9;
float ml,bl,m2,b2;
float F1,F2,F3;

1x2= (float) lchrom/2.0;
90

x2=0;

100

f or (i=lx2+l ; i<=lchrom; i
x2 += (float) ithruj2int (i, i,critter->chrom) ;

xl = (float) ithruj2int (1, (int) 1x2, critter->chrom)

range = pow(2 . 0, 1x2) -1;

/* xl = (float)ithruj2int(l ,lchrom,critter->chrom);
range = pow(2.0,lchrom)-l:
*/
xl = xl /range ;
x2 = x2/lx2;

Fl = 0.5;
F2 = 15.0/16.0;
F3 = 1.0; 110

ml = -(F1/F2) ;
bl = Fl;
m2 = (F3/U.O-F2)) ;
b2 = -F2*m2;

if (xl < F2)
critter->fitness = ( (ml*xl) +bl) + (D*x2) ; 120

else
critter->fitness = ((m2*xl)+b2) + (D*x2) ;

maxf = ( (m2*1.0)+b2) + (D*1.0) ;

/* iflxl < F2)
critter->fitness =
else 130
critter->fitness = ((m2*xl)+b2);

maxf=((m2*1.0)+b2);
*/

critter->fitness = critter->fitness/maxf;

140
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/* ____________________________________________________________________ */
/* initial.c - functions to get things set up and initialized */
/* ________________________________________________________________________ */

tinclude "external . h "

initialize ()
/* Initialization Coordinator */ N

r •r-
{ • -3•43

int i,j; -g

/* get ba$ic problem values from input file */
initdata () ;

/* define chromosome size in terms of machine bytes, ie */
/* length of chromosome in bits (lchrom)/(bits-per-byte) */
/* chromsize must be known for mallocO of chrom pointer */
chromsize = (Ichrom/UINTSIZE) ; 20
if (lchrom%UINTSIZE) chromsize++;

/* malloc space for global data structures */
initmalloc ( ) ;

for (i=0;i<popsize;i++)
for ( j=0; j<chromsize; j

oldpop [ i ] . chrom [ j ] =0 ;
newpop [ i ] . chrom [ j ] =0 ; 30

/* initialize application dependent variables*/
app_init O ;

/* initialize random number generator */
randomize () ;

/* initialize global counters/values */ 40
nmutation = 0;
ncross = 0,-
bestf it .f itness = 0.01;
bestf it .generation = 0;

/* initialize the populations and report statistics */
initpop ( ) ;
statistics (oldpop) ;
initreport () ;

} 50

initdata ()
/* data inquiry and setup */ 3

I °5I PO
char answer [2]; .+•

_3
if (numfiles == 0)
{
fprintf (outfp, 60

...) ;
fprintf (outfp, " Enter the initial population size ------------ > ") ;

}
fscanf (infp, "%d", fipopsize) ;

if ( (popsize%4) != 0)
popsize = popsize+(popsize%4) ;

if (numfiles == 0)
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fprintf(outfp," Enter maximum population size > ") ; 70
fscanf(infp,"%d", Smaxpop);

if (numfiles == 0)
fprintf (outfp, " Enter chromosome length -------------- > ") ;

fscanf (infp, "%d", Slchrom) ;

if (numfiles == 0)
fprintf (outfp, " Print chromosome strings? (y/n) ------ > ") ; 80

fscanf (infp, "%s", answer) ;
if (strncmp (answer, "n", 1) == 0) printstrings = 0;

if (numfiles == 0)
fprintf (outfp, " Enter maximum number of generations — > ") ;

fscanf (infp, "%d", Smaxgen) ;

if (numfiles == 0)
fprintf (outfp, " Enter crossover probability ---------- > ") ;

fscanf (infp, "%£", spcross) ; 90

if (numfiles ==0)
fprintf (outfp, " Enter mutation probability ----------- > ") ;

fscanf (infp, "%f", Spmutation) ;

if (numfiles == 0)
fprintf (outfp, " Enter target loss ----------- > ") ;

fscanf (infp, "%f", &Lt) ;

if (numfiles == 0) 100
fprintf (outfp, " Enter beta (sigmoid slope) ----------- > ") ;

fscanf (infp, "%f", &beta) ;

if (numfiles == 0)
fprintf (outfp, " Enter maximum increase/decrease factor ----------- > ") ;

fscanf (infp, "%f", Sgrnma) ;

/* any application-dependent global input */
app_data () ; 110

initpop ( )
/* Initialize a population at random */ §<

{ £
int 3, 3!, k, stop; -g
unsigned mask =1; — <

f o r ( j =0; j < popsize; j++) 120
{

for(k =0; k < chromsize; k++)
{

oldpop [ j] .chrom[k] = 0;
if(k == (chromsize-1) )

Stop = Ichrom - (k*UINTSIZE) ;
else

Stop = UINTSIZE;

/* A fair coin toss */ 130
for(jl = 1; jl <= stop; j

if (flip (0.5))
oldpop [j] .chromfk] = oldpopt j] .ch'rom[k] Imask;

oldpop [j] .chrom[k] = oldpop [j] .chromfk] «1;

oldpop [ j ] . parent [ 0 ] = 0 ; /* Initialize parent info. */
oldpop[j] .parent [1] = 0;
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oldpoptj] .xsite =0; 140
ob jfunc (& (oldpop [ j] ) ) ; /* Evaluate initial fitness */

initreport ()
/* Initial report */ tl< a

void skipO; g
-u

skip(outfp,l) ; .g
/*fprintf(outfp," SGA ParametersXn");

\O. / y I

/*fprintf(outfp," Total Population size = %d\n",popsize);*/
/*fprintfl[outfp," Chromosome length Gchrom) = %d\n",lchrom);*/
/*fprintf(outfp," Maximum # of generations (maxgen) = %d\n",maxgen);*/
/*fprintf(outfp," Crossover probability (pcross) = %f\n", pcross);*/
/*fprintftoutfp," Mutation probability (pmutation) = %f\n", pmutation);*/
skip (outfp, 1) ;

160

/* application dependant report */
app_init report () ;

f flush (outfp) ;
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/* */
/* generate.c - create a new generation of individuals */
/* */

#include "external.h"

generation()

f .°

int matel, mate2, jcross, j = 0; g

/* perform any preselection actions necessary before generation */ §J
preselect () ; &fl

/* select, crossover, and mutation */
do

/* pick a pair of mates */
matel = select();
mate2 = select(); 20

/* Crossover and mutation */
jcross = crossover(oldpop[matel].chrom, oldpop[mate2].chrom,

newpop[j].chrom, newpop[j+1].chrom);
mutation (newpop[j] .chrom);
mutation(newpop[j+1].chrom);

/* Decode string, evaluate fitness, & record */
/* parentage date on both children */
obj func(&(newpop[ j ] ) ) ; 30
newpop[j].parent[0] = matel+1;
newpop[j].xsite = jcross;
newpop[j].parent[1] = mate2+l;
ob j func (&(newpop[ j+1 ] ) ) ;
newpopfj+1].parent[0] = matel+1;
newpoptj+1].xsite = jcross;
newpopfj+1].parent[1] = mate2+l;

/* Increment population index */
j = j + 2; 40

while(j < (popsize-1));

}
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/* */
/* operators.c - Genetic Operators: Crossover and Mutation */
/* */

#include "external.h"

mutation(child)
unsigned *child; §
/* Mutate an allele w/ pmutation, count # of mutations */ VS
{ 3

int j, k, stop; 3
unsigned, mask, temp =1; 5

for(k =0; k < chromsize; k++)
{

mask = 0;
i f (k == (chromsize-1))

stop = Ichrom - {(k-1)*UINTSI2E);
else

Stop = UINTSIZE; 20
for(j =0; j < stop; j++)
{

if(flip(pmutation))
{

mask = mask | (temp«j) ;
nmutation++;

}
}
childfk] = child[k]Amask;

} 30

int crossover (parentl, parent2, childl, child2)
unsigned *parentl, *parent2, *childl, *child2;
/* Cross 2 parent strings, place in 2 child strings */
{

int j, jcross, k;
unsigned mask, temp;

/* Do crossover with probability pcross */
if (flip (pcross) )
{

jcross = rnd(l , (Ichrom - 1) );/* Cross between 1 and 1-1 */
ncross++;
for(k = 1; k <= chromsize; k++)
{

if (jcross >= (k*UINTSIZE) )
{

childl [k-1] = parentl [k-1]; 50
child2[k-l] = parent2[k-l];

}
else if ((jcross < (k*UINTSIZE) ) && (jcross > ( (k-1) *UINTSIZE) ) )
{

mask = 1;
for(j = 1; j <= (jcross-l-( (k-1) *UINTSIZE) ) ; j

temp = 1;
mask = mask«l;
mask = mask | temp; 60

}
childl [k-1] = (parentl [k-1] Smask) | (parent2 [k-1] & (-mask) ) ;
child2 [k-1] = (parentl [k-1] & (-mask) ) | (parent2 [k-1] Smask) ;

else

childl [k-1] = parent2[k-l] ;
child2[k-l] = parentl [k-1] ;

70
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} 71

else
{

for(k = 0; k < chromsize; k++)
{

childlfk] =parent l [k] ;
child2[k] = parent2[k];

}
jcross = 0;

} 80
return(jcross);
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/* ____________________________________________________________________ */
/* memory.c - memory management routines for sga code */
/* ______________________________________________________________________ */

#include "external. h"

initmalloc ()
/* memory allocation of space for global data structures */ o

{ ~~*
unsigned nbytes ; g
int j; |

/* memory for old and new populations of individuals */ "*
nbytes = maxpop*sizeof (struct individual);
if((oldpop = (struct individual *) malloc (nbytes) ) == NULL)

nomemory (stderr, "oldpop") ;

if((newpop = (struct individual *) malloc (nbytes) ) == NULL)
nomemory (stderr, "newpop") ;

20
/* memory for chromosome strings in populations */
nbytes = chromsize*sizeof (unsigned) ;
fo r ( j =0; j < maxpop;

if ( (oldpop [j] .chrom = (unsigned *) malloc (nbytes) ) == NULL)
nomemory (stderr, "oldpop chromosomes") ;

if ( (newpop[j] .chrom = (unsigned *) malloc (nbytes) ) == NULL)
nomemory (stderr, "nevpop chromosomes") ;

30
if ( (bestfit .chrom = (unsigned *) malloc (nbytes) ) == NULL)
nomemory (stderr, "bestfit chromosome") ;

}

if((J12 = (unsigned *) malloc (nbytes) ) == NULL)
nomemory (stderr, "J12") ;

if((J34 = (unsigned *) malloc (nbytes) ) == NULL)
nomemory (stderr, "J34") ;

if((J1234 = (unsigned *) malloc (nbytes) ) == NULL)
nomemory (stderr, "J1234") ;

I* allocate any auxiliary memory for population resizing */
mate_memory_

/* call to application-specific mallocQ routines */
/* can be used to malloc memory for utility pointer *
app_malloc () ;

/ 50

freeallO
/* A routine to free all the space dynamically allocated in initspaceO */

{
int i;

for(i =0; i < popsize; i
{ 60
free (oldpop [i] .chrom) ; r
free (newpop [i] .chrom) ;

)
free (oldpop) ;
free (newpop) ;

/* free any auxiliary memory needed for selection */
mate_f ree ( ) ;

/* call to application-specific freeO routines */ 70
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/* can be used to free memory for utility pointer */ 71
app_f ree ( ) ;

}

popsize_f ree ( )
/* A routine to free memory associated with adaptively resizing the population */ S
( £
int i; I

_N
for (i=0;i<maxpop;i++) S
{ o

free (oldpop[i] .chrom) ; ft

f ree (newpop[i] .chrom) ;
}
free (oldpop) ;
free (newpop) ;

mate_f ree () ;
app_f ree ( ) ;

nomemory (string)
char *string; ^

{ §
fprintf (outfp, "malloc: out or" memory making %s ! ! \n", string) ; §
exit(-l); g

} o
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/* _____________________________________________________________________ */
/* statistic.c - compute the fitness statistics *//* _____________________________________________________________________ */

finclude "external . h "

statistics (pop)
/* Calculate population statistics */ 3
struct individual *pop; '-3
{ -43

int i, j; &
m

sumfitness = 0 . 0 ;
min = pop[0] .fitness;
max = pop[0] .fitness;

/* Loop for max, min, sumfitness */
fo r ( j =0; j < popsize;

sumfitness = sumfitness + pop [j] .fitness; /* Accumulate */ 20
if (pop [j] .fitness > max) max = pop [j] .fitness; /* New maximum */
if (pop [j] .fitness < min) min = pop [j] .fitness; /* New minimum */

/* new global best-fit individual */
if (pop [j] .fitness > bestf it .fitness)

for(i =0; i < chromsize;
bestf it .chromfi] = pop[ j] .chromfi] ;

bestf it .fitness = pop [j] .fitness; 30
bestf it .generation = gen;

I* Calculate average */
avg = sumfitness /popsize;

/* get application dependent stats */
app_stats (pop) ;

} 40
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/* _ ___ . _______________ __ ______ */
/ —-———•—«-—————-- ---—-—.— »__«.»... ... f

/* reportc - generation report files */
/* _____________________________________________________________________ */

#include "external . h "

report ( ) ^
/* Write the population report */ £
( a

void repcharO, skip(); g
int writepopO, writestats () ;

repchar(outfp, "-",LINELENGTH) ;
skip(outfp, 1) ;

if (printstrings == 1)
{

repchar (outfp, " ", ( (LINELENGTH-17) /2) ) ;
fprintf (outfp, "Population Report \ n ");
fprintf (outfp, "Generation %3d", gen); 20
repchar (outfp, " ", (LINELENGTH-28) ) ;
fprintf (outfp, "Generation %3d Popsize=%d \n", (gen+1) , popsize) ;
fprintf (outfp, "num string ") ;
repchar (outfp, " ", lchrom-5) ;
fprintf (outfp, "fitness parents xsite ") ;
fprintf (outfp, "string ") ;
repchar (outfp, " ", lchrom-5);
fprintf (outfp, "fitness\n") ;
repchar (outfp, "-", LINELENGTH) ;
skip ( out f p, 1) ; 30

/* write out string info from all nodes */
/* in order from lowest to highest node number */
writepop (outfp) ;
repchar (outfp, "-", LINELENGTH) ;
skip (outfp, 1) ;

/* write the summary statistics in global mode */ 40
fprintf (outfp, "Generation %d Accumulated Statistics: \n",

gen) ;

fprintf (outfp, "Population size = %d\n", popsize);
fprintf (outfp, "Total Crossovers = %d, Total Mutations = %d\n",

ncross,nmutation) ;
fprintf (outfp, "min = %f max = %f avg = %f sum = %f\n",

min,max, avg, sumf itness) ;
fprintf (outfp, "Global Best Individual so far. Generation %d:\n",

bestf it .generation) ; 50
fprintf (outfp, "Fitness = %f: ", bestf it .fitness) ;
writechrom( (fibestfit) ->chrom) ;
skip (outfp, 1) ;
repchar (outfp, "-", LINELENGTH) ;
skip (outfp, 1) ;

/* application dependent report */
app_report () ;

writepop() _
{ W*H

o

struct individual *pind; g<
int j; -

>
for(j=0; j<popsize; ]++)
{ 70
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fprintf (outfp,"%3d) ", j+1); 71

/* Old string */
pind = &(o ldpop[ j ] ) ;
writechrom(pind->chrom) ;
fpr intf (outfp ," %8f I ", pind->fitness);

/* New string */
pind = & ( n e w p o p f j ] ) ;
fprintf(outfp,"(%2d,%2d) %2d ", 80
pind->parent[0], pind->parent[1], pind->xsite);
writechrom(pind->chrom) ;
fprintf(outfp," %8f\n", pind->fitness);

writechrom(chrom)
/* Write a chromosome as a string of ones and zeroes */ S
/* note that the most significant bit of the chromosome is the */ 2
/* RIGHTMOST bit, not the leftmost bit, as would be expected... */ -g
unsigned *chrom; o>
< ' -c

int j, k, stop; £
unsigned mask = 1, tmp;

for(k = 0; k < chromsize; k++)
{

tmp = chrom[k];
if(k == (chromsize-1)) 100

stop = Ichrom - (k*UINTSIZE);
else

Stop = UINTSIZE;

for(j =0; j < stop; j++)
{

if(tmp&mask)
fprintf (outfp, "1") ;

else
fprintf (outfp, "0") ; 110

tmp = tmp»l;
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/* */
/* random.c - contains random number generator and related utilities, */
/* including advance_random, warmup_random, random, randomize, flip, and rnd */
/* _ _ *// ————™—«——————«"——"«——•—«—«— —™™™————•——•«..•—•—— ^

finclude <math.h>
finclude "external.h"

/* variables are declared static so that they cannot conflict with names of */
/* other global variables in other files. See K&R, p 80, for scope of static */ 10
static double oldrand [55] ; /* Array of 55 random numbers */
static int jrand; /* current random number */
static double rndx2; /* used with random normal deviate */
static int rndcalcf lag; /* used with random normal deviate */

advance_random()
/* Create next batch of 55 random numbers */ &
i °( ns

int jl; ti
double new_random; $

for(jl = 0; jl < 24; jl++) «
{ §

new_random = oldrand[jl] - oldrand[jl+31]; £
if(new_random < 0.0) new_random = new_random +1.0; cB
oldrand[jl] = new_random;

}
for(jl = 24; jl < 55; jl++)
{

new_random = oldrand [j l] - oldrand [jl-24]; 30
if(new_random < 0 . 0 ) new_random = new_random + 1.0;
oldrand [jl] = new__random;

int flip (prob)
/* Flip a biased coin - true if heads */
float prob;
{ 40

float randomperc ( ) ; ;

if (randomperc () <= prob)
return ( 1 ) ;

else
return ( 0 ) ;

initrandomnormaldeviate () 50
/* initialization routine for randomnormaldeviate */ ®
{ _ca

rndcalcf lag =1; £
} T3

'ci

double noise (mu ,sigma) g
/* normal noise with specified mean & std dev: mu & sigma */ fl
double mu, sigma; £
f -§

double randomnormaldeviate () ; C
s

return ( (randomnormaldeviate () *sigma) + mu) ; .t3

randomize ()
/* Get seed number for random and start it up */ NJ

float randomseed; o
Ĉ
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int jl; 71

for(jl=0; jl<=54; jl++) oldrand[jl] = 0.0;
jrand=0;

if (numfiles == 0)
{

do
{

if (numfiles ==0) 80
fprintf (outfp, " Enter random number seed, 0.0 to 1.0 -> ") ;

fscanf (infp, "%f", Srandomseed) ;
}
while ( (randomseed < 0.0) || (randomseed > 1.0));

}
else
{

fscanf (infp, "%f ", Srandomseed) ;
}

warmup_random( randomseed) ;

double randomnormaldeviate ()
/* random normal deviate after ACM algorithm 267 / Box-Muller Method */
{

float: randomperc ( ) ;
double t, rndxl;
/*double sqrtO.sinO.cosQ.logO;*/ 100

if (rndcalcf lag)
{

rndxl = sqrt(- 2 . 0*log ( (double) randomperc ( ) ) ) ;
t = 6.2831853072 * (double) randomperc ();
rndx2 = sin(t) ;
rndcalcf lag = 0;
return (rndxl * cos (t) ) ;

}
else 110
(

rndcalcf lag =1;
return ( rndx2 ) ;

float randomperc()
/* Fetch a single random number between 0.0 and 1.0 - Subtractive Method */
/* See Knuth, D. (1969), v. 2 for details */ 120
/* name changed from randomQ to avoid library conflicts on some machines*/
{

j rand++;
if(jrand >= 55)
{

jrand = 1;
advance_random();

}
return((float) oldrand[jrand]);

} 130

int rnddow, high) .
/* Pick a random integer between low and high */
int low,high;
{

int i;
float randomperc();

if(low >= high) 140
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i = low; 141
else

i = (randomperc () * (high - low + 1) ) + low;
if (i > high) i = high;

return ( i ) ;

float: rndrealdo ,hi)
/* real random number between specified limits */
float lo, hi;
{

return ( (randomperc () * (hi - lo) ) + lo) ;

warmup_random ( random_seed)
/* Get random off and running */
float random_seed;

S
int jl, ii; 2
double new_random, prev_random; —I

oldrand[54] = random_seed; 8
new_random =0.000000001; §
prev_random = random_seed; ^
for(jl = 1 ; jl <= 54; jl++)
{ 170

ii = (21*jl)%54;
oldrand[ii] = new_random;
new_random = prev_random-new_random;
if (new__random<0 . 0) new_random = new_random + 1.0;
prev_random = oldrand[ii] ;

}

advance_random ( ) ;
advance_random ( ) ;
advance_random() ; 180

jrand =0;
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/* __________________________________________________________________ */
/* utility.C - utility routines, contains copyright, repchar, skip */
/* ............. __________ ______ _ ___________________ *// ™— - — •__„______—__— ———•__——————___..____—————————————-———-_____ ^

#include "external. h"

void copyright ( )
{

void repchar (), skip();
int iskip; 10
int 11 = 59;

iskip = (LINELENGTH - 11) 12;
skip (outfp,!) ;

/* repcharCoutfp," ",iskip); repcharCoutfp,"-" ,11); skip(outfp.l); */
/* repcharCoutfp," ".iskip); */
/* fprintfloutfp," I SGA-C (vl.l) - A Simple Genetic Algorithm I \n"); */
/* repcharCoutfp," ".iskip); */
/* fprintfCoutfp," I (c) David E. Goldberg 1986, All Rights Reserved I \n"); */
/* repcharCoutfp," ",iskip); */ 20
/* fprintftoutfp," I C version by Robert E. Smith, U. of Alabama I \n"); */
/* repcharCoutfp," ",iskip); */
/* fprintfCoutfp," I vl.l modifications by Jeff Earickson, Boeing Company I \n"); */
/* repcharCoutfp," ",iskip); repchar(outfp,"-",ll); skip(outfp,2); */

void repchar (outfp,ch, repcount)
/* Repeatedly write a character to stdout */
FILE *outfp; 30
char *ch;
int repcount ;
{

int j;

for (j = 1; j <= repcount; j++) fprintf (outfp, "%s", ch) ;

void skip (outfp, skipcount) 40
/* Skip skipcount lines */
FILE *outfp;
int skipcount;
{

int j;

for (j = I/ j <= skipcount; j++) fprintf (outfp, "\n") ;

int ithruj2int (i, j,from)
/* interpret bits i thru j of a individual as an integer */
/*j MUST BE greater than or equal to i AND j-i < UINTSIZE-1 */
/* from is a chromosome, represented as an array of unsigneds */
int i,j;
int *from;
{

unsigned mask, temp;
int bound_flag;
int iisin, jisin; 60
int il, jl, out;

fprintf (stderr, "Error in ithruj2int: j < i\n") ;
exit(-l) ;

}
if (j-i+1 > UINTSIZE)
{

fprintf (stderr, "Error in ithruj2int: j-i+1 > UINTSIZE\n") ; 70
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exit(-l); 71
}

iisin = i/UINTSIZE;
jisin = j/UINTSIZE;

il = i - (iisin*UINTSIZE) ;
jl = j - ( jisin*UINTSIZE) ;

if (il == 0) 80
{

iisin = iisin-1;
il = i - (iisin*UINTSIZE) ;

};

if (jl == 0)
{

jisin = jisin-1;
jl = j - (jisin*UINTSIZE) ;

}; 90

/* check if bits fall across a word boundary */
if (iisin == jisin)

bound_flag = 0;
else

bound_flag = 1;

if (bound_f lag == 0)
{

mask = 1; 100
mask = (mask« ( jl-il+1) ) -1;
mask = mask« (il-1) ;
out = (f rom[iisin] Smask) » (il-1) ;
return (out) ;

else

mask = 1;
mask = (mask« jl+1) -1;
temp = from[ jisin] Smask; 110
mask = 1;
mask = (mask«(UINTSIZE-il+l) )-l;
mask = mask« (il-1) ;
out = ( (from[iisin]&mask)»(il-l) ) | temp« (UINTSIZE-il) ;
return (out) ;
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#

# Makefile for Simple Genetic Algorithm C code
# Adaptive population sizing version
#
#####################################
# Define implicit compilation rules #
###################################t#

# uncomment following lines for UNIX computers 10
# nominally tested on Sun, Cray UNICOS, and Vax Ultrix systems
CC=cc
LDLIBS= -1m

SRCCODE=main.c adaptpop.c app.c generate.c initial.c memory.c\
operators.c random.c report.c \
statistic.c utility.c

OBJECTS=main.o adaptpop.o app.o generate.o initial.o\ 20
memory.o operators.o random.o report.o\
statistic.o utility.o

sga: $(OBJECTS)
$(CC) $(CFLAGS) -o $@ $(OBJECTS) $(LDLIBS)
chmod 755 $@

$(OBJECTS): sga.h external.h

listing: 30
cat *.h > sga.list
cat $(SRCCODE) » sga.list

clean:
rm -f sga
rm -f *.on sga.sym
rm -f *.o




