

AboutMars Pathfinder on the Surface in Ares Vailis Region of MarstheIn this first color panorama mosaic, the Sojourner rover sits on a solarcover:panel of the Sagan Memorial Station (the lander) waiting for the command
to roll off onto the Martian surface.Pathfinder landed July 4, 1997.

POCKET STATISTICS is published by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). Included in each edition is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, Aeronautics and Space Transportation and NASA Procurement, Financial and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch
and one payload, where free flying payloads are not involved. All Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload. For a yearly breakdown of charts shown by decade, refer to the issues of POCKET STATISTICS published prior to 1995. Changes to this book may be made to Ron Hoffman at, (202) 358-1596, or E-mail; rhoffman@hq.nasa.gov
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION HEADQUARTERS FACILITIES AND LOGISTICS MANAGEMENT Washington, DC 20546
For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328 ISBN 0-16-054675-3

Distribution To NASA Installations

Following is a list of individuals who control the distribution of the NASA Pocket Statistics at their respective NASA installations. Requests for additional copies should be made through the controlling office shown below.

NASA Headquarters Dr. Roger D. Launius NASA History Office, Code ZH

Ames Research Center Ms. Lynda L. Haines, MS 200-4 Staff Assistant to the Deputy Director

Dryden Filght Research Center Mr. Dennis Ragsdale Research Librarian, MS D-2149

Goddard Institute For Space Studies Dr. James E. Hansen Division Chief, Code 940

Goddard Space Flight Center Ms. Beth Booker Code 239

Jet Propulsion Laboratory Mr. Frank O'Donald Mail Stop 186-120 Johnson Space Center Ms. Mary Ann Miley Printing Management Branch, Code PS-5

JSC White Sands Test Facility Mr. Grady E. McCright Code RA

Kennedy Space Center and KSC/WLOD Mr. Hugh W. Harris Public Affairs Office, MS-PA

KSC VLS Resident Office (Vandenberg AFB) Ms. Roylan Damwyk

Langley Research Center Ms. Margaret W. Hunt Mail Stop 154

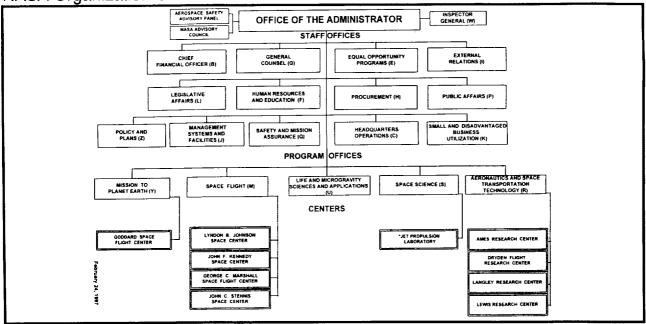
Lewis Research Center Ms. Linda Dukes-Campbell, Chief Office of Community and Media Relations MS-13 Marshall Space Flight Center Mrs. Ginger Martin, CN31S Management Operations Office

NASA Michoud Assembly Facility P O Box 29300, Mr John White, Mgr New Orleans, LA. 70189, MS-SA39

NASA Management Office -- JPL Mr. Kurt L. Lindstrom, Manager MS-180-801

John C. Stennis Space Center Ms. Myron L. Webb, PAOO Director of Public Affairs

Wallops Flight Facility Mr. Arnold Torres, Director Management and Operations MS-800


Contents

Section A - Administration and Organization		EW Section C - Aeronautics & Space Transpo	ertation Technology
NASA Organization NASA Administrators National Aeronautics and Space Act NASA Installations The Year in Review	A-2 A-3 A-4 A-6	NASA Aeronautical Programs Summary of "X" Experimental Aircraft Aero Res & Tech Budget Plans Aero Res & Tech Funding	C-2 C-3 C-9 Secti C-10
Section B - Space Flight Activity	A- 13	Section D - Procurement, Funding and Wo	rkforce
Launch History Current Worldwide Launch Vehicles Summary of Announced Launches NASA Launches by Vehicle Summary of USA Payloads Shuttle Approach and Landing Tests Soviet Spacecraft Designations NASA Astronauts United States Human Space Flight Shuttle Payloads and Experiments The Planets The Planets Planetary Exploration Lunar Exploration Lunar Exploration Unofficial Tabulation of CIS (USSR) Payloads NASA Major Launch Record	B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-7 B-8 B-10 B-18 B-10 B-18 B-21 B-58 B-70 B-78 B-85 B-87	Contract Awards by State Distribution of NASA Prime Contract Awards Procurement Activity Contract Awards by Type of Effort Distribution of NASA Procurements Educational and Nonprofit Institutions Principal Contractors NASA's Budget Authority in 1996 Dollars Financial Summary R&D Funding by Program Space Flight, Control & Data Funding by Prog R&D Funding by Location Mission Support Funding by Program/Locatio Sci, Aero, & Tech Funding by Program/Locati Human Space Flight Funding by Program/Locati C of F Funding Personnel Summary NASA Civil Service Workforce Employment T Occupational Summary Women Employees/Minority Employees Workforce Diversity	D- 4 D- 5 D- 6 D- 8 D-10 D-12 D-13 D-16 ram D-19 D-20 Sectiv n D-21 sation D-23 D-24 D-26

Section A

Administration and Organization

NASA Organization Chart

	58	59	60	61	62	63	64	65	66	67	68	69	70	71	- 74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	80	9	01	02	93 -	06
																						-		-		~				05	50	91	92	33 .	
resident	Eis	enh	owe	r Ki	 	 		Ja	hns	on			N	 xon		Fo	rd	1	Ca	rter					Rea	igan				1	Bu	ish		Clin	ton
ASA Iministrator		lenr					We													osch															
cting	9	Ienr	an				we	OD				Pai	ne		FI	etch	ler		Fre	osch				Begi	js		FÌ	etch	ier		Tru	ly		Gol	din
dministrator			Dry	der							Pai	ne	La	w			Lov	 ela: 	ce		Lov	elac	.0			Gra	ihan I	n	Tru	Jiy					
eputy iministrator														_															į						
			1	Dr	ydei 	י		s	•am	ans	Pal	ne			Low			Lo\ 	/ela	ce			Ma	rk		raha 	m	√ Nyei 	rs i	Tho 	mps 	ion			

NASA Administrators

Excerpts From The National Aeronautics And Space Act Of 1958, As Amended

AN ACT To provide for research into problems of flight within and outside the Earth's atmosphere, and for other purposes.

Declaration Of Policy And Purpose

- Sec. 102 (a) The Congress hereby declares that it is the policy of the United States that activities in space should be devoted to peaceful purposes for the benefit of all mankind.
 - (b) The Congress declares that the general welfare and security of the United States require that adequate provision be made for aeronautical and space activities. The Congress further declares that such activities shall be the responsibility of, and shall be directed by, a civilian agency exercising control over aeronautical and space activities sponsored by the United States, except that activities peculiar to or primarily associated with the development of weapons systems, military operations, or the defense of the United States (including the research and development necessary to make effective provision for the defense of the United States) shall be the responsibility of, and shall be directed by, the Department of Defense; and that determination as to which such agency has responsibility for and direction of any such activity shall be made by the President in conformity with section 201(e).
 - (c) The Congress declares that the general welfare of the United States requires that the National Aeronautics and Space Administration (as established by title II of this act) seek and encourage to the maximum extent possible the fullest commercial use of space.

- (d) The aeronautical and space activities of the United States shall be conducted so as to contribute materially to one or more of the following objectives:
 - (1) The expansion of human knowledge of the Earth and of phenomena in the atmosphere and space;
 - (2) The improvement of the usefulness, performance, speed, safety, and efficiency of aeronautical and space vehicles;
 - (3) The development and operation of vehicles capable of carrying instruments, equipment, supplies, and living organisms through space;
 - (4) The establishment of long-range studies of the potential benefits to be gained from, the opportunities for, and the problems involved in the utilization of aeronautical and space activities for peaceful and scientific purposes;
 - (5) The preservation of the role of the United States as a leader in aeronautical and space science and technology and in the application thereof to the conduct of peaceful activities within and outside the atmosphere;
 - (6) The making available to agencies directly concerned with national defense of discoveries that have military value or significance, and the furnishing by such agencies, to the civilian agency established to direct and control nonmilitary aeronautical and space activities, of information as to discoveries which have value or significance to that agency;

Excerpts From The National Aeronautics And Space Act Of 1958, As Amended


Declaration Of Policy And Purpose (Continued)

- (7) Cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results thereof; and
- (8) The most effective utilization of the scientific and engineering resources of the United States, with close cooperation among all interested agencies of the United States in order to avoid unnecessary duplication of effort, facilities, and equipment.
- (e) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed toward ground propulsion systems research and development.
- (f) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed toward the development of advanced automobile propulsion systems.
- (g) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed to assisting in bioengineering research, development, and demonstration programs designed to alleviate and minimize the effects of disability.
- (h) It is the purpose of this Act to carry out and effectuate the policies declared in subsections (a), (b), (c), (d), (e), (f), and (g).

Functions Of The Administration

- Sec. 203 (a) The Administration, in order to carry out the purpose of this Act, shall --
 - (1) plan, direct, and conduct aeronautical and space activities;
 - (2) arrange for participation by the scientific community in planning scientific measurements and observations to be made through use of aeronautical and space vehicles, and conduct or arrange for the conduct of such measurements and observations; and
 - (3) provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.
 - (b) (1) The Administration shall, to the extent of appropriated funds, initiate, support, and carry out such research, development, demonstration, and other related activities in ground propulsion technologies as are provided for in sections 4 through 10 of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976.
 - (2) The Administration shall initiate, support, and carry out such research, development, demonstration, and other related activities in solar heating and cooling technologies (to the extent that funds are appropriated therefor) as are provided for in sections 5, 6 and 9 of the Solar Heating and Cooling Demonstration Act of 1974.

A-5

NASA HEADQUARTERS	Through its research efforts, the center supports military programs, the Space
Washington, DC 20546	Shuttle and various civil aviation projects. These projects and responsibilities will
NASA Headquarters exercises management over the space flight centers,	continue to evolve as NASA's needs change and Ames' capabilities develop.
research centers, and other installations that constitute the National Aeronautics	HUGH L. DRYDEN FLIGHT RESEARCH CENTER
and Space Administration.	Edwards, CA 93523
Responsibilities of Headquarters cover the determination of programs and	The Dryden Flight Research Center was named after Hugh L. Dryden, an
projects; establishment of management policies; procedures and performance	internationally known aeronautical scientist. In 1946, he was appointed NACA's
criteria; evaluation of progress; and the review and analysis of all phases of the	Director of Aeronautical Research, and was responsible for making the center
aerospace program.	a permanent facility in 1947. His vision was "to separate the real from the
Management of NASA's research and development programs is the responsibility	imagined problems and to make known the overlooked and the unexpected
of program offices which report to and receive overall guidance and direction from	problems."
an associate administrator.	Dryden acts as the flight arm of NASA's aeronautics enterprise. Dryden is the
AMES RESEARCH CENTER Moffett Field, CA 94035	"Center of Excellence" for atmospheric flight operations and its primary mission is flight research. Dryden's charter is to research, develop, verify and transfer advanced aeronautics, space, and related technologies.
Ames Research Center's responsibilities are concentrated in computer science	Dryden's primary research tools are research aircraft. The center operates
and applications, computational and experimental aerodynamics, flight simulation,	approximately 20 flight research aircraft consisting of SR-71s, F-15s, F-16s,
flight research, hypersonic aircraft, rotorcraft and powered-lift-technology, aero-	F-18s and a B-52. Experimental aircraft types vary greatly, ranging from the
nautical and space human factors, life sciences, solar systems exploration, air-	SR-71s that fly at speeds of Mach 3 to the Pathfinder solar powered Remotely
borne science and applications and infrared astronomy.	Powered Aircraft (RPA) that flies at 25mph.
Ames is home to more than a dozen major wind tunnels, including the world's	The center's ground-based facilities complement Dryden's flight research
largest; several advanced flight simulators, a variety of supercomputers, including	mission and include a highly-developed aircraft flight instrumentation capability;
some of the world's fastest, and several unique aircraft both fixed-wing and roto-	a data analysis facility for processing of flight research data; flight simulators and
craft used for aeronautical flight research and for flying laboratories. It also	a test range communications and data transmission capability that links NASA's
includes a variety of unique facilities for life sciences research.	Western Aeronautical Test Range facilities.

A-7

Dryden continues to serve as the "back-up" landing site for the Space Shuttle Orbiters as well as processing the vehicles for ferry flights back to the Kennedy Space Center.

GODDARD SPACE FLIGHT CENTER Greenbeit, MD 20771

This NASA field center, 10 miles northeast of Washington, DC, has one of the worlds leading groups of scientists, engineers and administrative managers. It has the largest scientific staff of all the NASA centers.

With its more than 12,000 civil service and contract employees, including its facility at Wallops Island, VA, the center's work includes research in the Earth and space sciences and the design, fabrication and testing of scientific satellites that survey the Earth and the universe. Goddard also has a leading role in tracking satellites and suborbital space vehicles.

Controllers in the Payload Operations Control Center maintain a 24-hour vigil every day of the year for more than a dozen orbiting spacecraft. Spacecraft being watched include Tracking and Data Relay Satellites which serve as vital communications links between orbiting spacecraft and Earth through a Goddard managed ground terminal in White Sands, NM. One of those spacecraft is the world renowned Hubble Space Telescope which was launched in 1990. Other more recent payloads which remain under the watchful eyes of Goddard controllers include: Polar, Rossie X-ray Timing Explorer and the Solar and Helicospheric Observatory.

The Compton Gamma Ray Observatory, launched in April 1991, also is managed by Goddard. Compton's mission is to study gamma ray emitting objects in the Milky Way galaxy and beyond. Within its first three months of operation, the

Energetic Gamma Ray Experiment Telescope, one of four instruments aboard Compton, detected one of the most luminous gamma-ray sources ever seen. The source of this radiation was identified with the variable Quasar 3C279 located in the constellation Virgo, approximately seven billion light years from Earth.

JET PROPULSION LABORATORY Pasadena, CA 91109

The laboratory is engaged in exploring the Earth and the solar system with automated spacecraft. In addition to the Pasadena site, JPL manages the Deep Space Communications Complex, a station of the Worldwide Deep Space Network (DSN) located at Goldstone, CA, on 40,000 acres of land occupied under permit from the U.S. Army. The DSN allows for spacecraft communications, data aquisition and mission control, and for the study of space with radio science.

Current NASA flight projects under JPL management include Galileo, Mars Pathfinder and Mars Global Surveyor, New Millennium, Stardust, TOPEX/ Poseidon, Ulysses, Voyager and the planned Cassini mission. Major space science instruments include the second-generation Wide Field and Planetary Camera-2 for the Hubble Space Telescope, the NASA Scattometer and the Spaceborne Imaging Radar. The laboratory designs flight systems, including complete spaceoraft and provides technical direction to contractor organizations

The laboratory conducts research in a variety of fields, including microelectronics, biomedical and communications technologies, information and advanced computer systems.

A-8

LYNDON B. JOHNSON SPACE CENTER Houston, TX 77058 JSC manages the selection and training of astronauts for Space Shuttle and future Space Station missions. All U.S. human space flights, from launch to landing, are controlled from the Mission Control Center at JSC, a new flight control Center at JSC. A new flight control facility came on line in 1995 and will replace the historic control rooms used since the Gemini program. JSC manages a fleet of specialized aircraft at Ellington Field, located about seven miles north of the Center, used in training Shuttle pilot astronauts and for microgravity research. JSC also operates the White Sands Missile Range at Las Cruces, NM. WSTF tests Shuttle propulsion systems, powers systems and materials. JSC is NASA's lead center for life science research, working with medical researchers around the country to study the effects of spaceflight on astronauts and to develop countermeasures that also have applications on Earth. JSC is teaming with researchers from academia and the private sector to form a Biomedical Science Institute, a world class life science research center for human space flight located in the Houston area. Many of the facilities at JSC contain equipment unique to human space flight programs. Astronauts use the Mockup and Integration Laboratory to become familiar with the Shuttle and Space Station crew environments, to practice emergency procedures, and to rehearse on-orbit tasks. The Manipulator Development Facility employs a hydraulic robotic arm to allow astronauts to practice the precise on-orbit movements required of Shuttle's robotic arm during	Space Shuttle simulators provide realistic training for all phases of flight. The motion base simulator, a duplicate of the Orbiter flight deck, recreates the sights, sounds and feel of launch and entry. The fixed base simulator provides training for on-orbit activities. The Weightless Environment Training Facility is a large water tank that uses neutral buoyancy to help astronauts practice for spacewalks. This facility will soon be augmented by a much larger Neutral Buoyancy Laboratory which will hold major Space Station components. JOHN F. KENNEDY SPACE CENTER Kennedy Space Center, FL 32899 The Kennedy Space Center was established in the early 1960s as the launch technique in which space vehicles are built up inside protective structures and moved to their launch pads a short time before launch, reducing their exposure to the corrosive sea shore environment to a minimum. After the Apollo program was concluded in 1972, KSC's Complex 39 was used for the launch of four Skylab missions and for the Apollo spacecraft used in the Apollo-Soyuz Test Project. The center's facilities were modified for the Space Shuttle program during the 1970s. The shuttle era began with the launch of the STS-1 mission on April 12, 1981. Since then, more than 75 Shuttle missions have been launched and the current forecast calls for the launch of approximately seven missions per year from KSC's twin pads.
payload deployment and spacewalks.	
	1

INAOA INStallations	
KSC is NASA's prime center for the test, checkout and launch of payloads and space vehicles. This includes launch of manned vehicles at KSC and oversight of NASA missions launched on unmanned vehicles from Cape Canaveral Air Station, FL, and Vandenberg Air Force Base (VAFB) in California. The Center is responsible for the assembly, checkout and launch of Space Shuttle vehicles and their payloads, landing operations and turn-around of Shuttle Orbiters between missions. KSC also is responsible for the operation of the KSC Vandenberg Launch Site Resident Office located at VAFB.	Langley is lead center for management of the agency's technology development program for the future High Speed Civil Transport program. Langley will manage high-speed technology in areas of aerodynamic performance, airframe materials and structures, the flight deck and airframe systems integration. Improvements in supersonic (Mach 1-5) engine performance, fabrication of composite materials and laminar flow airfoil technology are spawning a new era in long-distance air travel. Passengers in the next century will benefit from current research programs at Langley.
LANGLEY RESEARCH CENTER Hampton, VA 23665-5225	LEWIS RESEARCH CENTER Cleveland, OH 44135
Langley's primary mission is basic research in aeronautics and space technology. Major research fields include aerodynamics, materials, structures, flight controls, information systems, acoustics, aeroelasticity, atmospheric sciences and non-destructive evaluation.	In 1941 the National Advisory Committee for Aeronautics (NACA) established the NASA Lewis Research Center as a flight propulsion laboratory. The Center, which was named for George W. Lewis, NACA's Director of Research from 1924 to 1947, developed an international reputation for its research on jet propulsion systems.
Approximately 60 percent of Langley's efforts are in aeronautics, working to improve today's aircraft and to develop concepts and technology for future flight. Over 40 wind tunnels, other unique research facilities and testing techniques aid in the investigation of the full range-from general aviation and transport aircraft through hypersonic vehicles.	Lewis mission involves aeropropulsion, space power, space communications, electric propulsion and microgravity science, including fluid physics, combustion and materials. In addition, Lewis is a supporting Center for chemical propulsion and expendable launch vehicles.
Langley's goal is to develop technologies to enable aircraft to fly faster, farther, safer and to be more maneuverable, quieter, less expensive to manufacture and more energy efficient.	The Center conducts research for NASA's High-Speed Research Program in the areas of combustor design and enabling propulsion materials; for the Advanced Subsonic Technology Program and is advancing technologies to support advance short take-off and vertical landing aircraft; is managing the Advanced Communications Technology Satellite; and is playing a role in NASA's program
Researchers are studying improved flight control systems to aid aircraft in operating more efficiently in all kinds of weather and in crowded terminal airways.	to enable more effective access to Earth orbit and geosynchronous orbit.

The Center has been advancing propulsion technology to enable aircraft to fly	advanced technology demonstrator, the X-34 small technology vehicle, and the
faster, farther and higher, and has also focused its research on fuel economy, noise abatement, reliability and reduced pollution.	Delta Clipper-Experimental Advanced (DC-XA) single-stage rocket.
Facilities at Lewis include a Space Experiments Lab, Zero-Gravity Drop Tower, Aero-Acoustic Propulsion Laboratory, an Icing Research Tunnel, four (4) unique wind tunnels, space tanks, chemical rocket thrust stands, and chambers for testing jet engine efficiency.	Marshall is NASA's host center for the Reusable Launch Vehicle (RLV) technology program, a partnership among NASA, the United States Air Force and private industry to conduct cutting-edge research needed to develop a new generation of single-stage-to-orbit launch vehicles. It includes the X-33 advanced technology demonstrator, the X-34 small technology vehicle, and the Delta Clipper-
MARSHALL SPACE FLIGHT CENTER	Experimental Advanced (DC-XA) single-stage rocket.
Marshall Space Flight Center, AL 35812	Marshall is a manager of scientific payloads and experiments to be flown aboard the Shuttle. Many of these payloads to be flown in Spacelab, a reusable, modular
Marshall is NASA's lead center for space transportation systems development and is the agency's center of excellence for space propulsion. Marshall is also	research facility carried in the Shuttle's cargo bay. The center also operates NASA's Spacelab Mission Operations Control Center, from which all NASA
NASA's lead center for microgravity, specializing in materials science and biotechnology research.	Spacelab missions are controlled.
Marshall led the development of the main propulsion system for the Space Shuttle and for each flight provides the main engines, the external tank that carries liquid oxygen and liquid hydrogen for those engines, and the solid rocket	To prepare astronauts for Spacelab missions, the center also operates a Payload Crew Training Complex. Here, science astronauts train in Shuttle an Spacelab simulators to conduct the research they will perform in space.
boosters that, together with the engines, lift the Shuttle into orbit.	A designated NASA center of excellence in space optical systems, Marshall is
Additionally, Marshall is managing development of the super light-weight External Tank, planned to replace the current external tank in 1997. It is being fabricated of aluminum alloys and incorporates an orthogrid design for the panels that together make the tank 8,000 pounds lighter than the current configuration.	managing the Advanced X-ray Astrophysics Facility, a major astronomy observatory that will provide scientists with roughly a ten-fold improvements in resolving power over previous X-ray telescopes. The center previously managed development and initial checkout of the Hubble Space Telescope which is now relaying a wealth of new knowledge about the universe from distant galaxies to neighboring planets.
Marshall is NASA's host center for the Reusable Launch Vehicle (RLV) technology program, a partnership among NASA, the United States Air Force and private industry to conduct cutting-edge research needed to develop a new generation of single-stage-to-orbit launch vehicles. It includes the X-33	Other work assigned to Marshall includes the International Space Welding Experiment being jointly developed with Ukraine. Scheduled to fly aboard the Space Shuttle, the experiment will test a Ukranian Universal hand Tool electron beam welding system as a potential technology for contingency space repairs.

A-11

MICHOUD ASSEMBLY FACILITY New Orleans, LA 70189

The primary mission of the Michoud Assembly Facility is the systems engineering, engineering design, manufacture, fabrication, assembly, and related work for the Space Shuttle external tank. Marshall Space Flight Center exercises overall management control of the facility.

JOHN C. STENNIS SPACE CENTER Stennis Space Center, MS 39529

NASA's John C. Stennis Space Center (SSC), located near the Mississippi Gulf Coast, is NASA's primary center for testing and flight certifying large rocket propulsion systems for the Space Shuttle and future generations of space vehicles. Because of its important role in engine testing for more than three decades, Stennis Space Center has been designated NASA's Center of Excellence for rocket propulsion testing. SSC will be responsible for the Agency's rocket propulsion test programs. The center is a unique test facility and is available to support the national interest in propulsion systems development testing. Additionally, the center has developed into a scientific community actively engages in research and development programs involving space, oceans and Earth.

Since 1975, SSC's primary mission has been the testing of Space Shuttle Main Engines to include research and development testing and flight acceptance testing, Static testing is conducted on the same concrete and steel stands used from 1966 to 1970 to captive-fire all first and second stages of the Saturn V rocket used in the Apolio manned lunar landing and Skylab programs.

Stennis Space Center is working toward testing advances space propulsion hardware for future vehicles. Preparations are under way at Stennis for testing associated with the Reusable Launch Vehicle and Evolved Expendable Launch Vehicle programs. These two new programs are being designed by the aerospace industry, which is working with NASA and the Department of Defense to make space launch more accessible and affordable.

WALLOPS FLIGHT FACILITY Wallops Island, VA 23337

Wallops Flight Facility, a part of the Goddard Space Flight Center, is one of the oldest launch sites in the world. Established in 1945, the facility covers 6,166 acres, including about 1,100 acres of marshland, in three separate areas of marshland, in three separate areas of Virginia's Eastern Shore.

Wallops manages and implements NASA's sounding rocket program which uses solid-fueled launch vehicles to accomplish approximately 30 scientific, suborbital missions each year. Launches are conducted at Wallops and other ranges worldwide.

Wallops manages and coordinates NASA's Scientific Balloon Program using thin-film, helium-filled balloons to provide approximately 30 scientific missions each year. Launches are conducted at Palestine, TX, Ft. Sumner, NM, and sites throughout the world.

Wallops supports NASA, the Department of Defense and other agencies in aeronautical research. Approximately 150-200 test operations, concentrating on aircraft/airport interface and aircraft operating problems research, are conducted each year at the research airport.

The Year in Review

DISCOVERIES AND NEW CHALLENGES FOR NASA

A rock, a record, a rover and a new rocket were among the top NASA stories for 1996. Background material, video and still images are available to news media to illustrate these stories, with supporting material also available via the Internet and the World Wide Web.

LIFE ON MARS? TANTALIZING CLUES FROM AN ANCIENT ROCK

In an announcement that caused all humankind to take pause, NASA Administrator Daniel S. Goldin and a team of scientists revealed in August that a meteorite from Mars strongly suggested that primitive life may have existed on that planet more than 3 billion years ago. In a press conference at NASA Headquarters, a research team showed the world pictures of the first organic molecules thought to be of Martian origin; several features characteristic of biological activity, and possible microscopic fossils of primitive, bacteria-like organisms inside the ancient meteorite. In vowing to pursue the investigation of this historic discovery, Goldin said "The evidence is exciting, even compelling, but not conclusive. It is discovery that demands further scientific investigation. NASA is ready to assist the process of rigorous scientific investigation and lively scientific debate that will follow this discovery." Goldin invited governments from around the globe to participate in the continuing investigation of the meteorite.

LUCID SETS U.S. RECORD FOR STAY IN SPACE

Astronaut Dr. Shannon Lucid set a new record for an American living in space and broke the world's record for a woman living in space by spending 181 days aboard the Russian Mir Space Station. Lucid, who conducted microgravity and life sciences experiments aboard the Mir with two Russian cosmonauts, returned to Earth aboard Space Shuttle Atlantis in November. President Clinton presented Lucid with the Congressional Space Medal of Honor in an early December ceremony, citing Lucid "for her contributions to international cooperation in space ... Shannon Lucid is an explorer in the best tradition of those who dare to challenge the unknown." Lucid's stay on Mir was part of continuing U.S. - Russian space cooperation, which is setting the foundation for the International Space Station.

TWO PROBES LAUNCHED TO STUDY THE RED PLANET

In a continuing effort to learn more about Mars, the United States launched two new spacecraft to the Red Planet in 1996. The Mars Global Surveyor and the Mars Pathfinder missions were both successfully launched from NASA's Kennedy Space Center, FL. Mars Global Surveyor, due to rendezvous with Mars in September 1997, will spend four months dipping into Mars' atmosphere using a technique called "aerobraking." Starting in 1998, the Surveyor will begin compiling a systematic database as it surveys the Martian landscape and photographs unique features, such as polar caps and Mars' network of sinuous, interwining river channels. Mars Pathfinder, set to land on Mars July 4, 1997, is designed to test the feasibility of a new low-cost method of delivering a spacecraft, science payload and free-ranging rover to the surface of the Red Planet. Once deployed, the lander will transmit back to Earth science data collected during descent through Mars' atmosphere. The rover, named Sojourner, will then activate an onboard camera and send back images to Earth, signifying the start of its exploration.

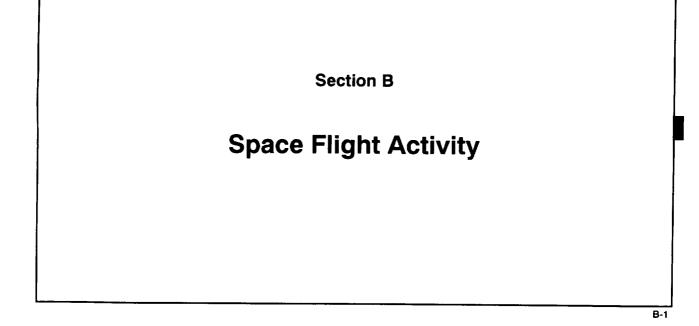
A-13

The Year in Review

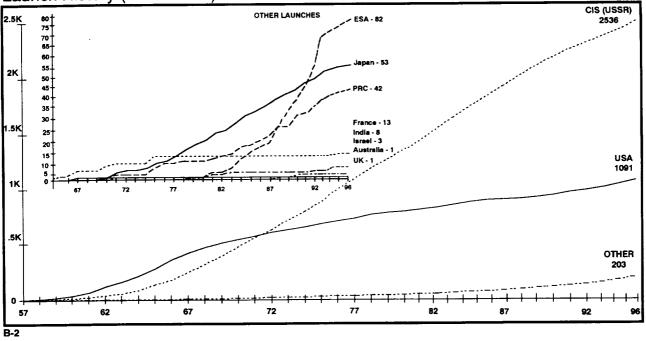
GALILEO UNRAVELS MYSTERIES OF JUPITER AND ITS MOONS

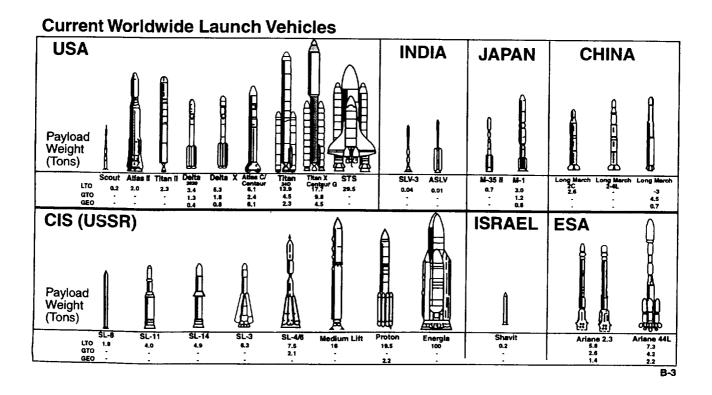
Mars was not the only planet to reveal startling new secrets in 1996. NASA's Galileo spacecraft, in its flyby and probe deploy at Jupiter, revealed many previously unknown facts about our Solar System's largest planet. Galileo's Probe, which was successfully sent into Jupiter's violet atmosphere in December 1995, provided new discoveries for NASA scientists. New information on the extent of water, clouds, and the chemical composition of Jupiter's atmosphere was revealed. As Galileo sped by Jupiter's moons, new details of the satellittes began to emerge. On Ganymede, Jupiter's largest moon, scientists were intrigued by three-dimensional pictures of giant, icy fissures and evidence of a magnetic field. Galileo also reported that 'warm ice' or even liquid water may have existed, and perhaps still exists, beneath the cracked icy crust of the moon Europa. Galileo found that the volcanicallyactive moon to had noticeably changed since it was last observed 17 years ago by the Voyager spacecraft. In November, Galileo flew by Jupiter's moon Callisto, investigating the strange, pockmarked fourth moon, so different from its other active siblings.

HUBBLE SPACE TELESCOPE CONTINUES TO AMAZE ASTRONOMERS


Living up to its role as one of the "Great Observatories," the Hubble Space Telescope showed images of galaxies colliding, the surface of Pluto, and the birth of stars during 1996. In April, Hubble sent back dramatic of gigantic tadpole-shaped objects surrounding a dying star. The "cometary knots" are probably the result of a dying star 's final outbursts, seen in the Helix nebula. The Space Telescope continues on track for measuring the expansion of the universe, sending back information that fine-tunes the Hubble Constant. Scientists are using the telescope to try and place the Hubble Constant to within a ten percent accuracy. Compiling a "cosmic Movie" of the Crab Nebula, Hubble found the Nebula even more dynamic than previously understood. Hubble measured the diameters of a special class of pulsating star called Mira variables, which rhythmically change size.

A-14


At 11 billion light-years away, they existed during the epoch when it is commonly believed galaxies started to form. Hubble concluded the gigantic, old stars are not round but rather egg-shaped. That discovery may preview the fate of our Sun five billion years from now. Hubble also surveyed the "homes" of quasars, showing that they live in a remarkable variety of galaxies, many of which are violently colliding. The complicated image Hubble sent back suggests there may be a variety of mechanisms for "turning on " quasars, the universe's most energetic objects. Hubble introduced us to images of what may be galaxies under construction in the early universe, being made out of a long sought ancient population of "galactic building blocks." Those images show a grouping of 18 gigantic star clusters that appear to be the same distance from Earth, and close enough to each other that they will eventually merge into a few galaxy-sized objects. In October, Hubble followed the spectacular dance of Jupiter's aurora, allowing astronomers to map Jupiter's immense magnetic field and better understand how it generates such observemena.


NEXT GENERATION LAUNCH VEHICLE CHOSEN FOR DEVELOPMENT

In a quest for a faster, better, cheaper access to space in the 21st Century, Vice President Al Gore and Administrator Goldin announced that Lockheed Martin was selected to build the X-33 technology demonstrate vehicle, a one-half scale prototype of the Reusable Launch Vehicle which will be used to demonstrate advanced technologies that will dramatically increase reliability and lower the costs of putting payloads into space. Lockheed Martin will design, build and conduct the first test flight of the X-33 test vehicle by March 1999, and conduct up to fitteen flights by December 1999. NASA has budgeted \$941 million for the project through 1999, with Lockheed Martin contributing over \$200 million. Called "VentureStar," the unpiloted vehicle will launch vertically like a rocket and land horizontally like an airplane.

Launch History (Cumulative)

Summary of Announced Launches

			Work	dwide Launches								
	1957-1959	1960-1969	1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	1996	TOTAL
Australia		1	0	0	0	0	0	0	0	0	0	1
CIS (USSR)	6	378	866	931	75	59	54	49	48	45	25	2536
DOD	11	284	114	54	10	8	10	8	12	10	10	524
ESA			1	29	5	7	9	9	5	5	10	
France		4	6	0	0	0	0	0	0	0	0	
India			-	3	0	0	1	0	2	1	1	6
srael				1	1	0	0	0	0	1	0	
			15	23	3	2	3	1	2	3	1	53
Japan	7	187	151	96	8	8	13	12	11	8	12	
NÁSA			8	15	5	1	Э	1	5	1	2	
PRC			1	ō	ŏ	ò	ò	0	0	0	C	
United Kingdom				1	9	1	2	3	4	4	12	2 24
US Commercial	24	854	1162	1155	116	86	95	83	89	78	73	3 381
TOTAL	24	654										
			NA	SA Launches								
	1957-1959	1960-1969	1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	1996	ΤΟΤΑ
	7	149	57	37	6	6	11	11	10	9	9	31:
NASA	1	13	17	2	1	ō	1	1	1	1	3	40
Cooperative		2	9	17	1	Ť	1	0	0	0	0	3
DOD		20	37	35	ò	1	ò	ō	Ō	0	0	9
USA		20	31	5	ŏ	ò	ŏ	ō	Ō	0	0	3
Foreign		3										
TOTAL	7	187	151	96	8	8	13	12	11	10	12	51

B-4

-

NASA Launches By Vehicle

		1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	1996	TOTA
	7	0	0	0	0						
	29	Ō	-					-			7
••		3			1			-	-	0	29
	17			1	0				-	1	17
								-	-		61
	49						1	-	-	-	8
3					-		1		-	•	166
			-	•	-		-	-	•	-	5
		•	-	-	-		-	-	-	-	6
		-	-	•			-	•	-	0	7
				0	0		0	-	-	0	13
				1	1		1	0	0	0	68
				-	-		'	7	7	7	79
			-	-	-	-		0	0	0	4
			0	•	•		0	0	0	0	12
			1	-	-	0	0	0	0	0	21
		0	0	0	0	0	0	0	0	0	11
						1	0	0	0	0	1
				0	0	0	0	0	0	0	7
2	0	0	0	0	0	0	0	0	0	ō	2
7	181	151	- 96	8	8	13	12	11	17	45	525
											020
	 3 2 -	29 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								

Summary of Announced Payloads

Summary o	1967-1959	1960-1969	1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	1996	TOTAL
A	190/-1909	1000-1000			1	0	0	0	0	0	0	1
Argentina					1	0	0	0	0	0	0	1
AsiaSat				2	0	0	0	0	0	0	0	2
ASCO			4	3	ŏ	Ō	2	0	1	0	0	8
Australia		1	1	ĩ	ĩ	ō	ō	1	1	0	0	5
Brazil				2	ċ	Š	ĭ	ò	ò	1	0	13
Canada			4	16	Ę.	-	2	ĭ	š	1	3	42
China		-	8		96	101	77	59	64	45	25	3032
CIS(USSR)	6	399	1028	1132	90		~~~	- 59	~~~		0	55
Cooperative *		14	23	4	3	5	0	ö		4	ň	3
Czechoslovakia		0	1	1	0	0	0	-	1	2	9	32
ESA		2	5	14	1	4	1	2		2	9	39
France		4	14	5	2	6	3	2	0	3	0	16
Germany			3	7	1	1	1	0	2	1	0	19
ndia			1	9	1	1	2	1	2	1	1	19
ndonesia			1	з	1	0	1	0	0	0	0	-
InMarSat			2		1	0	1	0	0	0	0	2
Israel				1	1	0	0	0	0	1	0	4
		••	1	••	0	1	0	2	0	0	0	4
Italy	-		18	26	7	2	3	1	4	2	1	64
Japan		-					1	1	0	1	0	3
Korea								1	0	1	0	2
Luxembourg	-			2	0	0	0	1	1	0	0	4
Mexico				1	ň	1	õ	1	0	0	0	8
NATO			5		1	ó	õ	Ó	ō	0	0	1
Pakistan					Å	ŏ	ň	ň	Ő	Ō	Ó	1
PanAmSat				1	U		1	ň	, n	õ	ō	1
Saudi Arabia				••				1	ň	1	õ	3
Spain			**			0			õ	4	ň	4
Sweden				2	0	-		0	ő		ŏ	18
United Kingdom		1	6	4	5	2	0	29	27	24	34	1272
United States *	18	_614	247	. 191	31		27			<u>24</u> 87	73	4673
TOTAL	24	1035	1366	1431	159	157	128	104	109	87	73	4673
t Constato Br	eakdown Follows											

* Separate Breakdown Follows

Summary of USA Payloads

	1957-1959	1960-1969	U.S. Payloads 1970-1979	1980-1969	1990	1991	1992	1993	1994	1995	1996	ΤΟΤΑ
AMSAT			3	0	2	0	0	0	0	0	0	5
AT&T	••	4	0	1	ō	ō	ō	1	ō	õ	ō	6
ASC				1	ō	1	ō	ò	ō	ō	Ō	2
COMSAT		9	21	15	2	1	3	1	1	õ	õ	53
DOD	11	437	140	86	16	15	11	10	11	10	10	757
GTE				6	1	1	0	ō	0	ō	0	8
Hughes				7	1	ò	2	1	ō	ō	ō	13
NAŠA	7	155	67	49	7	11	11	11	11	10	12	351
NOAA		9	10	11	ò	1	ō	1	1	1	6	34
N. Utah Univ				1	ō	ò	ō	ò	ō	ò	ň	1
RCA			3	7	1	ō	ō	ō	ō	ō	ō	11
SBS				4	1	ō	ō	ō	ō	õ	Ō	5
WU			3	3	Ó	ō	ō	ō	ō	ō	ŏ	6
TOTAL	18	614	247	191	31	30	27	25	24	21	22	1252
	1 <u>957-1959</u>	1960-1969	Cooperative Payloads 1970-1979	1960-1989	1990	1991	1992	1993	1994	1995	1996	ΤΟΤΑ
NASA/Canada		3	2	0	0	0	0	0	0	0	0	5
NASA/DOD					2	2	õ	õ	1	õ	ŏ	5
NASA/ESA		2	4	0	0	1	Ó	2	Ó	1	1	11
NASA/France		1	3	2	ō	Ó	1	ō	õ	ò	ó	
France/Germany			2	0	0	ò	0	ò	ō	ō	ō	2
NASA/Germany		1	3	Ō	1	ō	ō	ō	1	ō	õ	6
NASA/Italy		2	2	1	ò	õ	1	ō	ò	ŏ	1	7
NASA/Japan							1	ō	õ	1	1	3
NASA/Netherlands			1	1	0	0	Ó	ō	ō	ò	ò	2
NASA/NOAA			2	0	0	1	0	1	1	1	ō	6
NASA/NRL		2	1	Ö	0	Ó	0	Ó	Ó	ò	õ	3
NASA/SKorea										1	1	1
NASA/Spain			1	0	0	0	0	0	0	ò	o	1
NASAUK		9	2	Ň	ñ	ĩ	ñ	1	ŏ	ñ	ň	6
NASAVUK												

Shuttle Approach and Landing Tests

Flight	Flight Date	Weight (kg)	Description of Filght
Captive inert Flight 1	Feb 18, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to Shuttle Carrier Aircraft (SCA) to evaluate low speed performance and handling qualities of Orbiter/SCA combination. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 10 minutes.
Captive Inert Flight 2	Feb 22, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to demonstrate flutter free envelope. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMuntry, Vic Horton, and Skip Guidry. Flight Time: 3 hours 15 minutes.
Captive Inert Flight 3	Feb 25, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to complete flutter and stability testing. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 30 minutes.
Captive Inert Flight 4	Feb 28, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to evaluate configuration variables. SCA Crew: Fitzhugh L. Futton, Jr., Thomas C. McMurthy, Vic Horton, and Skip Guidry. Flight Time: 2 hours 11 minutes.
Captive Inert Flight 5	Mar 2, 1977	65,142.0	Unmanned inert Orbiter (Enterprise) mated to SCA to evaluate maneuver performance and procedures. SCA Crew: Fitzhugh L. Futton, Jr., A. J. Roy, Vic Horton, and Skip Guidry. Flight Time: 1 hour 40 minutes.
Captive Active Flight 1A	Jun 18, 1977	68,462.3	First manned captive active flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned active Orbiter (Enterprise) mated to SCA for initial performance checks of Orbiter Flight Control System. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMuttry, Vic Horton, and Skip Guidry. Flight Time: 56 minutes.
Captive Active Flight 1	Jun 28, 1977	68,462.3	Manned captive active flight with Joe H. Engle and Richard H. Truly. Manned active Orbiter (Enterprise) mated to SCA to verify conditions in preparation for free flight. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 1 hour 3 minutes.
Captive Active Flight 3	Jul 26, 1977	68,462.3	Manned captive active flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned active Orbiter (Enterprise) mated to SCA to verify conditions in preparation for free flight. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMuntry. Flight Time: 59 minutes.
Free Flight 1	Aug 12, 1977	68,039.6	First manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned Orbiter (Enterprise) with tailcone on, released from SCA to verify handling qualities of Orbiter. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 53 minutes 51 seconds.
Free Flight 2	Sep 13, 1977	68,039.6	Manned free flight with Joe H. Engle and Richard H. Truly. Manned Orbiter (Enterprise) released from SCA to verify characteristics of Orbiter. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 54 minutes 55 seconds
Free Flight 3	Sep 23, 1977	68,402.4	Manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned Orbiter (Enterprise) released from SCA to evaluate Orbiter handling characteristics. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 51 minutes 12 seconds.
Free Flight 4	Oct 12, 1977	68,817.5	Manned free flight with Joe H. Engle and Richard H. Truty. Manned Orbiter (Enterprise) with tailcone off and three simulated engine bells installed, released from SCA to evaluate Orbiter handling characteristics. SCA Crew: Fitzhugh L. Futton, Jr. and Thomas C. McMurtry. Flight Time: 1 hour 7 minutes 48 seconds.
Free Flight 5	Oct 26, 1977	68,825.2	Manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned Orbiter (Enterprise) with tailcone off, released from SCA to evaluate performance of landing gear on paved runway. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMuntry. Flight Time: 54 minutes 42 seconds.

CIS (USSR) Spacecraft Designations

The Union of Soviet Socialist Republics (USSR) became the Confederation of In	dependent States (CIS) on December 25, 1001
ALMAZ: Study geology, cartography, oceanography, ecology, and agriculture.	MOLNIYA (Lightning): Part of the domestic communications satellite system.
BURAN (Snowstorm): Reusable orbital space shuttle.	NADEZHDA: Navigation satellite.
COSMOS: Designation given to many different activities in space.	OKEAN: Oceanographic satellite to monitor ice conditions.
EKRAN (Screen): Geosynchronous comsat for TV services.	PHOBOS: International project to study Mars and its moon Phobos.
ELECTRO: Geosynchronous meteorological satellite	PION: Scientific satellite for research of the upper atmosphere.
ELEKTRON: Dual satellites to study the radiation belts.	POLYOT: Maneuverable satellite capable of changing orbits.
FOTON: Scientific satellite to continue space materials studies.	PROGNOZ (Forecast): Scientific interplanetary satellite.
GALS: Geosynchronous Direct Broadcast TV satellite.	PROGRESS: Unmanned cargo flight to resupply manned space stations.
GAMMA: Radiation detection satellite.	PROTON: Scientific satellite to investigate the nature of Cosmic Rays.
GORIZONT (Horizon): Geosynchronous comsat for international relay.	RADIO: Small radio relay satellite for use by amateurs.
GRANAT: Astrophysical orbital observatory.	RADUGA: Geosynchronous comsat for telephone, telegraph, and domestic TV.
INFORMATOR: Collect and transmit information for the Ministry of Geology.	RESURS: Earth resources satellite.
INTERCOSMOS: International scientific satellite.	SALYUT: Manned scientific space station in Earth orbit.
ISKRA: Amateur radio satellite.	SOYUZ (Union): Manned spacecraft for flight in Earth orbit.
KORONAS: Earth orbiting satellite for scientific study of the sun.	SPUTNIK: Early series of satellites to develop manned spaceflight.
KRISTALL: Module carrying technical and biomedical instruments to MIR.	VEGA: Two spacecraft international project to study Venus and Halley's Comet.
KVANT: MIR space station astrophysics module.	VENERA: Spacecraft to explore the planet Venus.
LUNA: Lunar exploration spacecraft.	VOSKHOD: Modified Vostok capsule for two and three Cosmonauts.
MARS: Spacecraft to explore the planet Mars.	VOSTOK (East): First manned capsule; placed six Cosmonauts in orbit.
METEOR: Polar orbiting meteorological satellite.	ZOND: Automatic spacecraft development tests. Zond 5 was the first
MIR (Peace): Advanced manned scientific space station in Earth orbit.	spacecraft to make a circumlunar flight and return safely to Earth.

NASA ASTIO			Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flighttime (hr:min:sec)	Name	Service	Mission	Position	Flight Time (hr:min:aec)	EVA (hr:min)	
		CTC	PS	190:45:26	(11	190:45:26	Baudry, Patrick, Lt. Col.	FAF	STS-51G	PS	169:38:52		169:38:52
Acton, Loren W., PhD	Civ	STS-51F STS-28	MS	121:00:08		334:22:35	Bean, Alan F., Capt	USN Ret	Apollo 12	LMP	244:36:24	*07:45	1666:47:33
Adamson, James C. Lt.Col	USA	STS-28 STS-43	MS	213:22:27		JJ4.22.33			Skylab 3	Cdr	1416:11:09	02:45	
		STS-43 STS-41	MS	98:10:03		914:44:42	Blaha, John E., Col	USAF	STS-29	Pit	119:38:52		789:20:37
Akers, Thomas D. Maj	USAF	STS-49	MS	213:17:38	16:14				STS-33	Plt	120:06:46		
			MS	259:58:35	13:2				STS-43	Cdr	213:22:27		
		STS-61 STS-79	MS	243:18:26	1.2.2	,			STS-58	Cdr	336:12:32		
				94:34:31	05:37	289:53:06	Bluford, Guion S., Col	USAF	STS-8	MS	145:08:43		688:36:38
Aldrin, Edwin E., Jr., Col.	USAF Re	C Gemins (Abolio 1		195:18:35	*02:1				STS-61A	MS	168:44:51		
		STS-46	Plt	191:16:07	02.11	904:13:09			STS-39	MS	199:23:17		
Allen, Andrew M., Maj.	USAF	STS-62	Pit	335:16:41		501.10.05	1		STS-53	MS	175:19:47		
		STS-75	CDR	377:40:21			Bobko, Karol J., Col	USAF	STS-6	Plt	120:23:42		386:03:43
			MS	122:14:26		313:59:22			STS-51D	Cdr	167:55:23		
Allen, Joseph P. PhD	Civ	STS-5		191:44:56					STS-51J	Cdr	97:44:38		
		STS-51A		169:38:52		169:38:52	Bolden, Charles F., Col	USMC	STS 61-C	Pit	146:03:51		680:39:23
Al-Saud, Salman	Civ	STS-51G		147:00:42		206:00:01			STS-31	Pit	121:16:06		
Anders, William A., B. Gen.	USAF	Apollo 8	MS	143:32:45					STS-45	Cdr	214:10:24		
Apt, Jerome PhD	Civ	STS-37	MS	190:30:23		5 040.11.54	1		STS-60	Cdr	199:09:02		
		5TS-47	MS	269:49:30			Bondar, Roberta L., PhD	Civ	STS-42	₽S	193:15:43		193:15:43
		STS-59	MS	243:18:46			Borman, Frank, Col.	USAF Ret	Gemini 7	Cdr	330:35:01		477:36:13
	-	STS-79		10:41:26		206:00:01	1		Apoilo 8	Cdr	147:00:42		
Armstrong, Neil	Civ	Gemini 8		195:18:35			Bowersox, Kenneth D., Lt. Co	fr.USN	STS-50	Plt	331:30:04		973:21:50
		Apollo 1	MS	119:38:52		337:54:06	1		STS-61	Plt	259:58:35		
Bagian, James P. MD	Civ	STS-29	MS	218:15:14		337.34.00			STS-73	CDR	381:53:17		
		STS-40	MS	119:39:20		664:32:33	Brady, Charles E. Jr., MD	USN	STS-78	MS	405:47:45		405:47:4
Baker, Ellen S., MD	Civ	STS-34	MS	331:30:04		004.52.55	Brand, Vance D.	Civ	Apollo So	yuz CMP	217:28:23		746:03:5
		STS-50	MS	235:23:09					STS-5	Cdr	122:14:26		
		STS-71	Plt	213:22:27		720:04:48			STS-418	Çdir	191:15:55		
Baker, Michael A. Capt	USN	5TS-43	Pft	236:56:13		, 20.04.40			STS-35	Cdr	215:05:07		
•		STS-52		269:46:08			Brandenstein, Daniel C., Capi	LUSN	STS-8	Plt	145:08:43		789:05:5
		STS-68	Cdr	214:01:47		214:01:47			STS-51G	Cdr	169:38:52		
Barry, Daniel T., PhD	Ċiv	STS-72	MS			190:45:26			STS-32	Cdr	261:00:37		
Bartoe, John-David F., PhD	Civ	STS-51	F PS	190:45:26	,	1 50:45:20			STS-49	Cdr	213:17:38		
1			Surface EV				1		** Subort	oital Flight			

Name	Service	Mission	Position	Flight Time (hr:min:sec)		Total Flighttime (hr:min:sec)	Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:mli	Totai Flighttime n) (hr:min:sec)
Bridges, Roy D., Col	USAF	STS-51-F		190:45:26		190:45:26	Chang-Diaz, Franklin R., PhD.	Civ	STS-61C	MS	146:03:51		1033:49:01
Brown, Curtis L.		STS-47	Pit	190:30:23		693:41:43			STS-34	MS	119:39:20		
		STS-66	Pit	262:32:02					STS-46	MS	191:16:07		
Proven Mark 5 15 Cal		STS-77	Plt	240:39:18					STS-60	MS	199:09:22		
Brown, Mark F., Lt. Col	USAF	STS-28	MS	121:00:08		249:27:51			STS-75	MS	377:40:21		
Bushli Januar C. Cal		STS-48	MS	128:27:51			Cheli, Maurizio., Lt Col	IAF	STS-75	MS	377:40:21		377:40:21
Buchli, James F., Col	USMC	STS-51C	MS	73:33:23		490:24:57	Chiao, Leroy, PhD	Civ	STS-65	MS	353:55:00		571:55:41
		STS-61A	MS	168:44:51					STS-72	MS	218:00:41		
		STS-29	MS	119:38:52			Chilton, Kevin P., Lt. Col.	USAF	STS-49	Plt	213:17:38		703:50:01
Budarin.Nikolai M.	CS	STS-48 STS-71	MS	128:27:51					STS-59	Pit	269:49:30		
Bursch, Daniel W. Cdr	USN	STS-51	FE MS	235:23:09		235:23:09			STS-76	Cdr	221:15:53		
bursen, baner W. cur USN	USN	STS-68		236:11:11		746:00:37	Cleave, Mary L., PhD	Civ	STS-618	MS	165:04:49		262:00:52
		STS-77	MS MS	269:46:08					STS-30	MS	96:56:28		
Cabana, Robert D., Lt. Col. U	USMC	STS-41	Pht	240:39:18			Clervoy, Jean Francois, MD	Civ	STS-66	MS	262:32:02		262:32:02
Cabana, Robert D., Et. Col.	U.J.M.	STS-53	Pit	98:10:03		626:57:14	Clifford, M. Richard Lt. Col.	USA	STS-53	MS	175:19:47		666:25:10
		STS-65	Cdir	175:19:47					STS-59	MS	269:49:30		
Cameron, Kenneth D. Col.	USMC	STS-37	Pit	353:55:00					STS-76	MS	221:15:53		
Carner on, Reinfeltr D. Col.	OBMC	STS-56	Cdr	143:32:45 222:08:16		562:12:43	Coats, Michael L., Capt.	USN	STS-41D	Pit	144:56:04		463:58:13
		STS-74	Cdr	196:31:42					STS-29	Cdr	119:38:52		
Carpenter, M. Scott, Cdr.	USN Ret	Aurora 7	Cdr	4:56:05			Contractil IX	-	STS-39	Cdr	199:23:17		
Carr, Gerald P., Col	USMC Ret		Cdr	2016:01:16	15.40	4:56:05 2016:01:16	Cockrell, Kenneth	Civ	STS-56	MS	222:08:16		646:0134
Carter, Manley, Cdr.	USN	STS-33	MS	120:06:46	13.40				STS-80	Cdr	423:53:18		
Casper, John H., Col	USAF	STS-36	Pit	106:18:22		120:06:46	Coleman, Catherine, CaptPhD	USAF	STS-73	MS	381:53:17		381:53:17
	001	STS-54	Cdr	143:38:19		825:52:40	Collins, Michael, M. Gen	USAF	Gemini 10	Plt	70:46:39	01:30	266:05:14
		STS-62	Cdir	335:16:41			Collins, Eileen M., Lt Col		Apollo 11	CMP	195:18:35		
		STS-77	Cdr	240:39:18			Conrad, Charles (Pete), Capt	USAF	STS-63	Pit	196:29:36		196:29:36
Cenker, Robert J.	Civ	STS-61C	PS	146:03:51		146:03:51	contau, charles (Pete), Capt	USN Ret	Gemini 5	Plt	190:55:14		1179:38:35
Cernan, Eugene A., Capt.	USN Ret	Gemini 9A		72:20:50	2:08	566:16:12			Gemini 11	Cdr	71:17:08		
		Apolo 10	LMP	192:03:23	2.00	500.70.12			Apolio 12	Cdr		*07:45	
		Apollo 17	Cdr	301:51:59	*22:04		Cooper, L. Gordon, Jr., Col.		Skylab 2	Cdr	672:49:49	05:51	
				551.51.33	22.04		cooper, L. dordon, Jr., Col.	USAF Ret	Faith 7 Gemini 5	Pit Cdr	34:19:49		225:15:03
		*Lunar Sur	face FVA						** Suborbi		190:55:14		

NASA ASIF		Mission	Position	Filght Time	EVA	Totai Flight Time	Name Se	irvice	Mission	Position	Flight Time (Hr:min:sec)(EVA hr:min)	Total Flight Time (hr:min:sec)
				(Hriminisec)	(hr:min)	(hr:min:eec)	C. L.L. John M. Cal	USAF	STS-7	MS	146:23:59		316:02:51
Covey, Richard O., Col	USAF	STS-511	Pit	170:17:42		645:10:05	Fablan, John M. Col.	UJAF	STS-51G		169:38:52		
-		STS-26	Pft	97:00:11			Carden Jacob Jacob Phi) Civ	STS-78	PS	405:47:45		405:47:45
		STS-38	Cdr	117:54:27			Favier, Jean-Jacques, Phi Fettman, Martin J., Dr.	Civ	STS-58	PŠ	336:12:32		336:12:32
		STS-61	Cdr	259:58:35				Civ	STS-51A		191:44:56		191:44:56
Creighton, John O., Capt	USN	STS-51G		169:38:52		404:24:05	Fisher, Anna L., MD	Chv	STS-511	MS	170:17:42	11:51	170:17:42
-		STS-36	Cdr	106:18:22			Fisher, William F., MD	Civ	STS-45	MS	214:10:24		632:48:16
		STS-48	Cdr	128:27:51			Foale, C. Michael, PhD	CIV	STS-56	MS	222:08:16		
Crippen, Robert L, Capt	USN	STS-1	Plt	54:20:53		565:48:32			STS-63	MS	196:29:36		
•• • • •		STS-7	Cdr	146:23:59				Civ	STS-45	PS	214:10:24		214:10:24
		STS-41C		167:40:07			Frimout, Dirk D., PhD			Plt	192:04:46		382:50:12
		STS-41G		197:23:33			Fullerton, C. Gordon, Col.	USAF	STS-51F		190:45:26		
Culbertson, Frank L., Cap	ot. USN	STS-38	Pit	117:54:27		354:05:38	a behavior and	Civ	STS-61A		168:44:51		168:44:51
		STS-51	Cdr	236:11:11			Furrer, Reinhard, PhD		STS-40	PS	218:15:14		218:15:14
Cunningham, Walter	Civ	Apolla 7	LMP	260:09:03		260:09:03	Gaffney, F. Drew Dr.	Civ USN	STS-8	MS	145:08:43		336:53:39
Currie, Nancy J. Maf	USA	STS-70	MS	214:21:09		214:21:09	Gardner, Dale A.,	USN	STS-51/		191:44:56	12:14	
Davis, N. Jan, PhD	Civ	ST5-47	MS	190:30:23		389:39:45		USAF		Plt	105:05:37		320:10:44
		STS-60	MS	199:09:22			Gardner, Guy S., Col.	USAF	STS-35	Plt	215::05:07		320.7011
Delucas, Lawrence J., Ph	D Civ	STS-50	PS	331:30:04		331:30:04		Civ	STS-55		167:55:23		167:55:23
Duffy, Brian K., Lt. Coi.	USAF	STS-45	Pit	214:10:24		671:55:59	Garn, E. J. "Jake"		STS-410		197:23:33		438:02:51
•		STS-57	Płt	239:44:54			Garneau, Marc, PhD	Civ	STS-77	MS	240:39:18		150.0215
		STS-72	Cdr	218:00:41				C 1.			1416:11:09	13.4	4 1663:58:33
Duke, Charles M., B. Gen	USAF	Apolla 16		265:51:05	*20:14*		Garriott, Owen K., PhD	Civ	Skylab 3 STS-9	MS	247:47:24	13.4	+ 1000.00.00
Dunbar, Bonnie J., PhD	Civ	STS-61A		168:44:51		976:40:04			STS-38	MS	117:54:27		781:38:59
		STS-32	MS	261:00:37			Gemar, Charles D., Lt. Co	N USA	STS-48	MS	128:27:51		101.50.55
		STS-50	MS	331:30:04					STS-62	MS	335:16:41		
		STS-271		235:23:09				-	STS-62 STS-69	MS	260:29:56		260:29:56
Durrance, Samuel T., Ph	iD Civ	STS-35	PS	215:05:07		614:14:54	Gernhardt, Michael L, Ph				2016:01:16	15:2	
		STS-67	PS	399:09:47			Gibson, Edward G., PhD	Civ	Skylab 4			13.2	868:18:65
Eisele, Donn F., Coi.	USAF Re	t Apolio 7	CMP	260:09:03		260:09:03	Gibson, Robert L., Cdr.	USN	STS-41		191:15:55		000.10.03
England, Anthony W., P		STS-51	F MS	190:45:26		190:45:26			STS-61		146:03:51		
Engle, Joe H., Col	USAF	STS-2	Cdr	54:13:12		244:30:54	1		STS-27	Cdr	105:05:37		
English see hit ool		STS-511	Cdr	170:17:42			1		STS-47	Cdr	190:30:23		
Evans, Ronald R., Capt	USN Ret	Apollo 17	CMP	301:51:59	01:06	301:51:59			STS-71	Cdr	235:23:09		
Lyana, nonald hi, cape	0011101		rface EVA						** Sub	orbital Flig	ht		

Gordon, Richard F., Jr., Capt. Grabe, Ronald J., Col Gregory, Frederick D., Col Gregory, William G. Lt Col Griggs, S. David Grisson, Virgil (, Lt Col. *U: Grunsfeld, John M. PhD Guidoni, Umberto, PhD	Civ	Friendship STS-37 STS-59 STS-76	MS	4:55:23		(hr:min:sec)	İ				Flight Time (hr:min:sec)	(hr:min)	Flighttime (hr:min:sec)
Gordon, Richard F., Jr., Capt. Grabe, Ronald J., Col Gregory, Frederick D., Col Gregory, William G. Lt Col Griggs, S. David Grisson, Virgil (, Lt Col. *U: Grunsfeld, John M. PhD Guidoni, Umberto, PhD		STS-59				4:55:23	Harbaugh, Gregory J.	Civ	STS-39	MS	199:26:17	04:27	578:27:45
Grabe, Ronald J., Col Gregory, Frederick D., Col Gregory, William G. Lt Col Griggs, S. David Grunsfeld, John M. PhD Guidoni, Umberto, PhD				143:32:45		634:38:08	narodogi, cregory s.	0.0	STS-54	MS	143:38:19		510.27.45
Grabe, Ronald J., Col Gregory, Frederick D., Col Gregory, William G. Lt Col Griggs, S. David Grunsfeld, John M. PhD Guidoni, Umberto, PhD		STS-76	PC	269:49:30					STS-71	MS	235:23:09		
Grabe, Ronald J., Col Gregory, Frederick D., Col Gregory, William G. Lt Col Griggs, S. David Grunsfeld, John M. PhD Guidoni, Umberto, PhD	USNRet		MS	221:15:53			Harris, Bernard, Jr., Dr.	Civ	STS-55	MS	239:39:59		439:09:35
Gregory, Frederick D., Col Gregory, William G. Lt Col Griggs, S. David Grissom, Virgil (., Lt Col. *U: Grunsfeld, John M. PhD G Guidoni, Umberto, PhD G		Gemini 11	Plt	71:17:08	01:5	7 315:53:32			STS-63	MS	196:29:36		
Gregory, Frederick D., Col Gregory, William G. Lt Col Griggs, S. David Grissom, Virgil (., Lt Col. *U: Grunsfeld, John M. PhD G Guidoni, Umberto, PhD G		Apollo 12	CMP	244:36:24			Hart, Terry J	Civ	STS-41C	MS	167:40:07		167:40:07
Gregory, William G. Lt Col I Griggs, S. David Grissom, Virgil I., Lt Col. *U: Grunsfeld, John M. PhD (Guidoni, Umberto, PhD (STS-51J	Pit	97:44:38		627:41:40	Hartsfield, Henry W.	USAFRet		Plt	169:09:31		482:50:26
Gregory, William G. Lt Col I Griggs, S. David Grissom, Virgil I., Lt Col. *U: Grunsfeld, John M. PhD (Guidoni, Umberto, PhD (STS-30	Pit	96:56:28				our a nec	STS-41D	Cdr	144:56:04		402.50.20
Gregory, William G. Lt Col I Griggs, S. David Grissom, Virgil I., Lt Col. *U: Grunsfeld, John M. PhD (Guidoni, Umberto, PhD (STS-42	Cdr	193:15:43					STS-61A	Cdr	168:44:51		
Gregory, William G. Lt Col I Griggs, S. David Grissom, Virgil I., Lt Col. *U: Grunsfeld, John M. PhD (Guidoni, Umberto, PhD (STS-57	Cdr	239:44:54			Hauck, Frederick H., Capt	USN	STS-7	Pit	146:23:59		435:09:06
Griggs, S. David Grissom, Virgil I., Lt Col. *U Grunsfeld, John M. PhD Guidoni, Umberto, PhD		STS-51B	Plt	168:08:46		455:07:59		••••	STS-51A	Cdr	191:44:56		
Griggs, S. David Grissom, Virgil I., Lt Col. *U Grunsfeld, John M. PhD Guidoni, Umberto, PhD		STS-33	Cdr	120:06:46					STS-26	Cdr	97:00:11		
Griggs, S. David Grissom, Virgil I., Lt Col. *U Grunsfeld, John M. PhD Guidoni, Umberto, PhD		STS-44	Cdr	166:52:27			Hawley, Steven A., Ph	Civ	STS-41D	MS	144:56:04		412:16:01
Grissom, Virgil I., Lt Col. *U Grunsfeld, John M. PhD G Guidoni, Umberto, PhD G		STS-67	Pit	399:09:47		399:09:47		0.0	STS-61C	MS	146:03:51		412.10.01
Grunsfeld, John M. PhD Guidoni, Umberto, PhD	Civ	STS-51D	MS	167:55:23		167:55:23			ST5-31	MS	121:16:06		
Guidoni, Umberto, PhD		berty Beil	Pit	15:37		5:08:08	Helms, Susan, Maj.	USAF	STS-54	MS	143:38:19		812:16:01
Guidoni, Umberto, PhD		Gemini 3	Cdr	4:52:31					STS-64	MS	262:49:57		0.5.000
		STS-67	MS	399:09:47		399:09:47			STS-78	MS	405:47:45		
		STS-75	PS	377:40:21		370:40:21	Henize, Karl G., PhD	Civ	STS-51F	MS	190:45:26		190:45:26
Gutierrez, Sidney M. Lt. Col. I		STS-40	Pit	218:15:14		488:04:44	Hennen, Thomas J.	USA	STS-44	PS	166:52:27		166:52:27
		STS-59	Cdr	269:49:30			Henricks, Terence T. Col.	USAF	STS-44	Pft	166:52:27		812:20:11
		STS-74	MS	196:31:42		196:31:42			STS-55	Pft	239:39:59		
Halsell, James D, Jr., Lt Co. I		STS-65	Pit	353:55:00		549:26:4			STS-78	Cdir	405:47:45		
		STS-74	Plt	196:31:42			Hieb, Richard J	Civ	STS-39	MS	199:26:17		766:38:55
		Apollo 13	LMP	142:54:41		142:54:41			STS-49	MS	213:17:38	17:42	
Hammond, L. Blaine, Jr. Col I		STS-39	Ptt	199:26:17		462:16:14			STS-65	MS	353:55:00		
		STS-64	Plt	262:49:57			Hilmers, David C., Lt. Col.	USMC	STS-51J	MS	97:44:38		494:18:54
									STS-26	MS	97:00:11		
									STS-36	MS	106:18:22		
									STS-42	MS	193:15:43		
	*Lu	nar Surface	EVA					** Suborbi	al Flight				

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min) (Total Flighttime hr:min:sec)	Name	Service	Mission	Position	Flight Time (hr:min:eec)		Total Flighttime (hr:min:sec)
Hoffman, Jeffery A., PhD	Civ	STS-51D	MS	167:55:23	03:10	1211:55:33	Lenoir, William B., PhD	Civ	STS-5	MS	122:14:26		122:14:26
		STS-35	MS	215:05:07			Lichtenberg, Bryon K., PhD	Civ	STS-9	PS	247:47:24		461:57:48
		STS-46	MS	91:16:07					STS-45	PS	214:10:24		
		STS-61	MS	259:58:35	22:03		Lind, Don Leslie, PhD	CIV	STS-51B	MS	168:08:46		168:08:46
		STS-75	MS	377:40:21			Linenger, Jerry, MD, PhD	USN	STS-64	MS	262:49:57		
Horowitz, Scott J. Lt Col	USAF	STS-75	Pit	377:40:21		377:40:21	Lounge, John M.	Civ	STS-51I	MS	170:17:42		482:23:00
Hughes-Fulford, Millie Dr.	Civ	STS-40	PS	218:15:14	ł	218:15:14	-		STS-26	MS	97:00:11		
Irwin, James B., Col	USAFRet	Apollo 15	LMP	295:11:53	*18:35	295:11:53			STS-35	MS	215:05:07		
lvins, Marsha S.	Civ	STS-32	MS	261:00:37		787:33:25	Lousma, Jack R., Col	USMC	Skylab 3	Pit	1416:11:09		1608:15:55
		ST5-46	MS	191:16:07					ST5-3	Cdr	192:04:46		
		STS-62	MS	335:16:41			Loveli, James A., Jr., Capt	USN Ret	Gemini 7	Pit	330:35:01		715:04:55
Jarvis, Gregory B	Civ	STS-51L	PS	N/A		N/A			Gemini 12		94:34:31		
Jemison, Mae C., MD	Civ	STS-47	MS	190:30:23		190:30:23			Apollo 8	CMP	147:00:42		
Jernigan, Tamara E. PhD	Civ	STS-40	MS	218:15:14	1	879:04:45			Apollo 13	Cdr	142:54:41		
Jernigan, Tamata L. Filo		STS-52	MS	236:56:13	1		Low, G. David	Civ	STS-32	MS	261:00:37		714:07:58
		STS-80	MS	423:53:18	\$				5TS-43	MS	213:22:27		
Jett, Brent W. Cdr	USN	STS-72	Pit	214:01:47	7	214:01:47			STS-57	PC	239:44:54	05:50	
Jones, Thomas D. PhD	Civ	STS-59	MS	269:49:30		963:33:56	Lucid, Shannon W., PhD	Civ	STS-51G	M5	169:38:52		838:53:11
		STS-68	PC	269:46:08	3		, .		STS-34	M5	119:39:20		
		STS-80	MS	423:58:18	3				STS-43	MS	213:22:27		
Kerwin, Joseph P., Capt	USN Ret	Skylab 2	Pit	672:49:4	9 03:30	672:49:49			STS-58	MS	336:12:32		
Kregel, Kevin R.		STS-70	Plt	214:21:09		887:08:54	Malerba, Franco, PhD	Civ	STS-46	PS	191:16:07		191:16:07
		STS-78	Pit	405:47:45			Mattingly, Thomas K., Capt	USN	Apollo 16	CMP	265:51:05	01:24	508:33:59
Krikalev, Sergei	CIS	STS-60	MS	199:09:22	2	199:09:22	-		STS-4	Cdir	169:09:31		
Lawrence, Wendy, Cdr	USN	STS-67	MS	399:09:4	7	399:09:47			ST5-51C	Cdr	73:33:23		
Lee, Mark C. Maj	USAF	STS-30	MS	96:56:28	3	550:16:48			STS-58	MS	336:12:32		336:12:32
		STS-47	MS	190:30:23	3		McAuliffe, S. Christa	Civ	STS-51L	PS	N/A		N/A
		STS-64	MS	262:49:5	7		McBride, Jon A., Cdr	USN	STS-41G	Plt	197:23:33		197:23:33
Leetsma, David C. Cdr	USN	STS-41G	MS	197:23:33	03:29	532:34:05	McCandless, Bruce, Capt	USN	ST541-B	MS	191:15:55	11:37	191:15:55
		STS-28	MS	121:00:08	3		McCulley, Michael, Cdr	USN	STS-34	Plt	119:39:20		119:39:20
		STS-45	MS	214:10:24	1		McDivitt, James A., B. Gen	USAF Ret	Gemini 4 Apollo 9	Cdir Cdir	97:56:12 241:00:54		338:57:06
		*Lunar Su	rface EVA				1		** Suborb	ital Flight			

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flighttime (hr:mln:sec)	Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flighttime (hr:min:sec)
McMonagle, Donaid R. Lt.Col.	USAF	STS-39	MS	199:23:17		605:36:38	Neri Vela, Rodolpho, PhD	Civ	STS-61B	PS	165:04:09		165:04:09
		STS-54	Plt	143:38:1			Newman, James H., Dr.	Civ	STS-51	MS	236:11:11	07:05	236:11:11
	_	STS-66	Cdr	262:32:02			Nicollier, Claude, PhD	Civ	STS-46	MS	191:16:07		828:55:03
McNair,Ronald E., PhD	Civ	STS-41B	MS	191:15:55		191:15:55			STS-61	ESA	259:58:35		020.33.03
		STS-51L	MS	N/A					STS-75	MS	377:40:2		
Meade, Carl J., Col.	USAF	STS-38	MS	117:54:27		712:13:28	Ochoa, Ellen, Dr.	Civ	STS-56	MS	222:08:16		484:40:18
		STS-50	MS	331:30:04					STS-66	MS	262:32:02		404.40.10
		STS-64	MS	262:49:5			Ockels, Wubbo J., PhD	Civ	STS-61A	PS	168:44:51		168:44:51
Melnick, Bruce E., Cdr	USCG	STS-41	MS	98:10:03		311:27:41	O'Connor, Bryan O., Col	USMC	STS-61B	Pit	165:04:49		383:20:03
	-	STS-49	MS	213:17:38					STS-40	Cdr	218:15:14		555.20.05
Merbold, Ulf, PhD	Civ	STS-9	PS	247:47:24		441:03:07	Onizuka, Ellison S., Lt. Col	USAF	STS-51C	MS	73:33:23		73:33:23
	-	STS-42	PS	193:15:43					STS-51L	MS	N/A		73.33.ES
Messerschmid, Ernest, PhD	Civ	STS-61A	PS	168:44:51		168:44:51	Oswald, Steven S.	Civ	STS-42	Pit	193:15:43		415:23:59
Mitchell, Edger D., Capt		Apollo 14		216:01:58		2 216:01:58	}		STS-56	Plt	222:08:16		10.20.00
Mohri, Mamoru, PhD	Civ	STS-47	PS	190:30:23		190:30:23	Overmyer, Robert F., Col	USMC	STS-5	Plt	122:14:26		290:23:12
Mullane, Richard M., Col	USAF	STS-41D	MS	144:56:04		571:25:10			STS-518	Cdr	168:08:46		230.23.12
		STS-27	MS	105:05:37			Pailes, William A., Mai	USAF	STS-51J	PS	97:44:38		97:44:38
Mukai, Chiaki, MD, PhD		STS-36 STS-65	MS	106:18:22			Parazynski, Scott, MD	Civ	STS-66	MS	262:32:02		262:32:02
Musgrave, F. Story, MD, PhD	C		PS	353:55:00		353:55:00	Parise, Ronald A., PhD	Civ	STS-35	PS	215:05:07		215:05:07
Musgrave, F. Story, MD, PhD	Civ	STS-6	MS	120:23:42	03:54	1281:00:14	Parker, Robert A., PhD	Civ	STS-9	MS	247:47:24		462:52:31
		STS-51F	MS	190:45:26					STS-35	MS	215:05:07		902.92.91
		STS-33	MS	120:06:46			Payton, Gary E., Mai	USAF	STS-51C	PS	73:33:23		73:33:23
		STS-44	MS	166:52:27			Peterson, Donald H.	USAF Ret		MS	120:23:42	2 03:54	
		STS-61	MS	259:58:35			Poque, William R., Col.		t Skylab 4	Pit	2016:01:16		2016:01:16
Nagel, Steven R., Col.	USAF	STS-80	MS	423:53:18			Precourt, Charles, Lt Col.		STS-55	MS	239:39:59	13.34	239:39:59
hagel, steven K., Col.	USAF	STS-51G	MS	169:38:52		721:36:27	Readdy, William F.	Civ	STS-42	MS	193:15:43		
		STS-61A	Plt	168:44:51			ficularly, ministry -	CIV	STS-51	Pit	236:11:11		672:45:20
		STS-37	Cdr	143:32:45					STS-79	Cdr	236:11:11		
Nelson, Bill	C	STS-55	Cdr	239:39:59			Reightler, Kenneth S., Jr.	CdrUSN	STS-48	Pit	128:27:51		227.26.52
	Civ	STS-61C	PS	146:03:51		146:03:51	neigheidt, heimeth 3., 31.	Curoan	STS-60	Plt	199:09:02		327:36:53
Nelson, George D., PhD	Civ	STS-41C	MS	167:40:07	10:06	410:44:09			313700	Pft	199:09:02		
		STS-61C	MS	146:03:51									
		STS-26	MS	97:00:11									
							1	**	Suborbital F	liaht			

Name	Service	Mission	Position	Flight Time (hr:min:sec) (i	EVA	Total Flighttime (hr:min:sec)	Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flighttime (hr:min:sec)
a 11 1 41th A 050	Civ	STS-41D	MS	144:56:04		144:56:04	Seddon, M. Rhea, MD	Civ	STS-51D	MS	167:55:23		722:23:09
Resnik, Judith A., PhD	CIV	STS-51L	MS	N/A					STS-40	MS	218:15:14		
Distante Richard M. Cdr	USN	STS-28	Plt	121:00:08		813:30:12			STS-58	PC	336:12:32		
Richards, Richard N., Cdr	Uan	STS-41	Cdr	98:10:03			Sega, Ronald M,	Civ	STS-60	MS	199:09:22		420:25:15
		STS-50	Cdr	331:30:04					STS-76	MS	221:15:53		
		STS-64	Cdr	262:49:57			Shaw, Brewster H., Col	USAF	STS-9	Pit	247:47:24		533:52:21
	Civ	STS-7	MS	146:23:59		343:47:32	1		STS-61B	Cdr	165:04:49		
Ride, Sally K., PhD	CIV	STS-41G	MS	197:23:33		• • • • • • • • • • •			STS-28	Çdir	121:00:08		
n i Kint Ch	USN	STS-73	Pit	381:53:1		805:47:35	Shepard, Alan B., Jr., R. Adm	USN Ret*	*Freedom 7	Pit	15:22		216:17:20
Rominger, Kent, Cdr	USN	STS-80	Pit	423:53:18					Apoilo 14	Cdr	216:01:5	*09:23	
a	LICACO	etApolio14	CMP			216:01:58	Shepherd, William M., Capt	USN	STS-27	MS	105:05:37		440:11:53
Roosa, Stuart A., Col	USAF	STS-61B	MS	165:04:4		20 413:43:11			STS-41	MS	98:10:03		
Ross, Jerry L., Lt Col	USHr	STS-27	MS	105:05:3					STS-52	MS	236:56:13		
		STS-37	MS	143:32:45		9	Sherlock, Nancy J., Capt.	USA	STS-57	MS	239:44:54		239:44:54
Runco, Mario Jr., Lt. Cdr	USN	STS-44	MS	166:52:2		551:10:04	Shriver, Loren J., Col	USAF	STS-51C	Pit	73:33:23		386:05:36
Runco, Mano Jr., et Cor	0.544	STS-54	MS	143:38:19		7			STS-31	Cdr	121:16:06		
		STS-77	MS	240:39:18					STS-46	Cdr	191:16:07		
Sacco, Albert, Lt Cdr	USN	STS-73	PS	381:53:17		381:53:17	Slayton, Donald K. Maj	USAF F	ETApolio Sayı		217:28:23		217:28 :23
Schirra, Walter M., Jr., Capt		Sigma 7	Pit	9:13:11		295,13.11	Smith, Michael J, Cdr	USN	STS-51L	Plt	N/A		N/A
Schirta, Walter M., Jil, Capit	0311 161	Gemini 6A		25:51:24			Smith, Steven L	Civ	STS-68	MS	269:46:08		269:46:08
		Apolla 7	Cdr	260:09:03			Spring, Sherwood C., Lt Col	USA	STS-61B	MS	165:04:49	12:20	
Schlegel, Hans (German)	Civ	STS-55	PS	239:39:59		239:39:59	Springer, Robert C., Col	USMC	STS-29	MS	119:38:52		237:33:19
Schmitt, Harrison H., PhD	Civ	Apolio 17				4 301:51:59			STS-38	MS	117:54:27		
Schweickart, Russell	Civ	Apollo 9	LME			7 241:00:54	Stafford, Thomas P., Lt. Ger	n USAF R	etGemini 6A	Plt	25:51:24		507:44:00
Scobee, Francis R. (Dick)		STS-41C	Plt	167:40:07		167:40:07			Gernini 9A	Cdr	72:20:50		
Scopee, Francis R. (Dick)	USA NOL	STS-51L	Cdir	N/A					Apollo 10	Cdr	192:03:23		
Scott, David R., Col	USAF Ret		Plt	10:41:26		546:54:13			Apollo Soy	uz Cdr	217:28:23		
Scott, David K., Col		Apolio 9	CM			1	Stewart, Robert L., Col	USA	STS-418	MS	191:15:55	11:37	289:00:33
		Apolio 15		-		1	Stewart, Robert C., Cor	00.1	STS-51J	MS	97:44:38		
Scott, Winston, Cpt	USN	STS-72	MS	214:01:47		214:01:47	Strekalov, Gennady, FE	RUS	STS-71	FE	235:23:09		235:23:09
Scully-Power, Paul D	Civ	STS-41G	PS	197:23:33		197:33:23	Swigert, John L., Jr.	Civ	Apollo 13	S CMP	142:54:41		152:54:41
Searfoss, Richard, Maj	USAF	STS-58	Plt	336:12:32		557:28:25	angere, some citor.	2.17					
uranusa, nunaru, maj		STS-76	Pit	221:15:53					** Suborb	ital Flight			

NASA Astronauts

Name	Service	Mission	Position		EVA <u>hr:min</u>)	Total Flighttime (hr:min:sec)	Name	Service	Mission	Pasition	Flight Time (hr:min:sec)		Total Flighttime
Tanner, Joseph, R. Thagard, Norman E., MD	USN	STS-66	MS	262:32:02		262:32:02	Walker, Charles D.	Civ	STS-41D	PS		(in .mail)	
magaru, Norman E., MU	Civ	STS-7	MS	168:08:46		672:42:06		CIV	STS-51D	PS	144:56:04		477:56:16
		STS-30	MS	96:56:28					STS-61B		167:55:23		
		STS-42	MS	193:15:43			Walker, David M., Capt	USN	STS-518	PS	165:04:49		
Thirsk, Robert B., MD	-	STS-71	MS	214:21:09			in a set of the set of	031	STS-31A	Plt	191:44:56		724:31:07
	Civ	STS-78	PS	405:47:45		405:47:45			STS-50	Cdr	96:56:28		
Thomas, Andrew S.W., PhD	Civ	STS-77	MS	240:39:18		240:39:18				Cdr	175:19:47		
Thomas. Donald A, PhD	Civ	STS-65	MS	353:55:00		568:16:09	Walter, Ulrich (Germany)	C	STS-69	Cdr	260:29:56		
-		STS-70	MS	214:21:09			Walz, Carl E., Maj	Civ	STS-55	PS	239:39:59		239:39:59
Thornton, Kathryn	Civ	STS-33	MS	120:06:46		975:16:17	Walz, Carre, Maj	USAF	STS-51	MS	236:11:11	07:05	864:01:57
		STS-49	MS	213:17:38	7:45	31 3.10.17			STS-65	MS	353:55:00		
		STS-61	MS	259:58:35	13:25	•	Wang, Taylor G., PhD		STS-79	MS	243:18:46		
		STS-73	MS	381:53:17	13.23			Civ	STS-51B	PS	168:08:46		168:08:46
Thornton, William E., MD	Civ	STS-8	MS	145:08:43		313:17:29	Weber, Mary, PhD	Civ	STS-70	MS	214:01:46		214:01:46
		STS-51B	MS	168:08:46		313.17.29	Weitz, Paul J., Capt	USN Ret		Plt	672:49:49	01:44	793:13:31
Thuot, Pierre J., Lt. Cdr	USG	STS-36	MS	106:18:22		654:52:41			STS-6	Cdr	120:23:42		
		ST5-49	MS	213:17:38		034:32:41	Wetherbee, James, Cdr	USN	STS-32	Pit	261:00:37		694:36:36
		STS-62	MS	335:16:41	17:42				STS-52	Cdr	236:56:13		00 100.00
Titov,Vladimir Georgievich	RUS	STS-63	MS	196:29:36			1		STS-63	Cdr	196:29:36		
Trinh, Eugene H., PhD,	Civ	STS-50	PS	331:30:04		196:29:36	White, Edward H., Lt. Col	USAF	Gemini 4	Plt	97:56:12	00:23	97:56:12
Truly, Richard H., Capt	USN	STS-2	Pit			331:30:04	Wilcutt, Terrence, Maj	USMC	STS-68	Pit	269:46:08		513:06:54
the second second	0.514	STS-8	Cđr	54:13:12		199:21:55			STS-79	Pit	243:18:46		515.00.34
van den Berg, Lodewijk, PhD	Civ	STS-51B	PS	145:08:43			Williams, Donald E., Capt	USN	STS-51D	Pit	167:55:23		287:34:43
an Hoften, James D., PhD	Civ	STS-41C		168:08:46		168:08:46			STS-34	Cdr	119:39:20		207.34.43
	CIV	STS-511	MS	167:40:07	10:06	337:57:49	Wisoff, Peter J. K., Dr.	Civ	ST5-57	MS	239:44:54	05:50	509:31:02
each, Charles Lacy	USAF	STS-39	MS	170:17:41	1:51				ST5-68	MS	269:46:08	03.50	509:31:02
	USAP		MS	199:23:17		436:19:30	Wolf, David A., Dr	Civ	STS-58		336:12:32		336:12:32
oss, James S. Lt.Col.		STS-52	MS	236:56:13			Worden, Alfred M., Col	USAF Ret	Apollo 15		295:11:53	00:39	
USS, Sames S. ELCOL	USA	STS-44	MS	166:52:27		602:42:10	Young, John W., Capt	USN Ret	Gemini 3	Pit	4:52:31	00:39	295:11:53
		STS-53	MS	175:1 9 :47			- · ·		Gemini 10	Cdr	70:46:39		835:41:55
oss, Janice E., Dr.	~	STS-69	MS	260:29:56					Apollo 10		92:03:23		
usa, Janice E., Ur.	Civ	STS-57	MS	239:44:54		436:14:30			Apollo 16			*20.14	
akata, Koichi	_	STS-63	MS	196:29:36					STS-1	Cdr		*20:14	
anala, NUICH	Civ	STS-72	MS	214:01:47		214:01:47			STS-9		54:20:53		
		Lunar Surfa	Ce EVA							orbital Fli	247:47:24		

Summary of United States Human Space Flight

ission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min:sec)	Mission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min:sec)
MERCURY REDSTON	iF (Suborbital)			APOLLO SATURN I			
MERCORT REDOTOR				Apollo 7	Schirra, Eisele, Cunningham	260:09:03	780:27:09
Freedom 7	Shepard	15:22	15:22	Ароно 7	Senna, ciscler outsing in		
Liberty Bell 7	Grissom		<u>15:37</u> 30:59	APOLLO SATURN V			
Total Flights - 2		30:59	30.59	APOLLO SATORIT			
-				Apolio 8	Borman, Lovell, Anders	147:00:42	
MERCURY ATLAS (Orbitai)			Apollo 9	McDivitt, Scott, Schweickart	241:00:54	
		4:55:23	4:55:23	Apollo 10	Stafford, Young, Cernan	192:03:23	576:10:09
Friendship 7	Glenn	4:55:25	4:56:05	Apolio 11	Armstrong, Collins, Aldrin	195:18:35	
Aurora 7	Carpenter	9:13:11	9:13:11	Apollo 12	Conrad, Gordon, Bean	244:36:24	733:49:12 428:44:03
Sigma 7	Schirra	34:19:49_	34:19:49	Apollo 13	Lovell, Swigert, Haise	142:54:41	
Faith 7	Cooper	53:24:28	53:24:28	Apolio 14	Shepard, Roosa, Mitchell	216:01:58	
Total Flights - 4		55.24.20		Apollo 15	Scott, Worden, Inwin	295:11:53	
				Apollo 16	Young, Mattingly, Duke	265:51:05 301:51:59	
TOTAL MERCURY F		53:55:27	53:55:27	Apollo 17	Cernan, Evans, Schmitt	2241:51:34	
TOTAL MERCURT P	LIGHTS - D			Total Flights - 10		2241.31.34	0723:31:1
				TOTAL APOLLO FLIG	HTS - 11	2502:00:37	7506:01:5
GEMINI TITAN							
	Grissom, Young	4:52:30	9:45:02	SKYLAB SATURN IB			
Gemini 3	McDivitt, White	97:56:12	195:52:24	1		672:49:49	2018:29:23
Gemini 4	Cooper, Conrad	190:55:14	381:50:28	Skylab 2	Conrad, Kerwin, Weitz		4248:33:2
Gemini 5	Schirra, Stafford	25:51:24	51:42:48	Skylab 3	Bean, Garriott, Lousma		6048:03:4
Gemini 6A	Sorman, Lovell	330:35:01	661:10:02	Skylab 4	Carr, E. Gibson, Pogue	2010.10.10	,
Gemini 7	Armstrong, Scott	10:41:26	21:22:52			4105-02-14	4 12315:06:4
Gemini 8 Gemini 9A	Stafford, Cernan	72:20:50	144:41:40	TOTAL SKYLAB FL	JGHTS - 3	4103.02.1	, .23.310017
Gemini 10	Young, Collins	70:46:39	141:33:18				
Gemini 10 Gemini 11	Conrad, Gordon	71:17:08	142:34:16	APOLLO SATURN IB			
Gemini 12	Lovell, Aldrin	94:34:31	189:09:02		Stafford, Brand, Slayton	217:28:2	3 652:25:0
Gennin 12				ASTP	Statioru, Brand, Slayton	27112012	_
	GHTS - 10	969:50:56	1939:41:52				

Summary of United States Human Space Flight

STS-1 - ColumbiaYoung, Crippen54:20:53108:41:46STS-511 - DiscoveryEngle, Covey, van Hoften, Lounge, W. Fisher170:17STS-2 - ColumbiaEngle, Truly54:13:12108:26:24STS-51J - AtlantisBobko, Grabe, Hilmers, Stewart, Pales97:44STS-3 - ColumbiaLousma, Fullerton192:04:46384:09:32STS-61A - ChallengerHartsfield, Nagel, Buchi, Bluford, Ounbar,168:44STS-5 - ColumbiaBrand, Overnyer, Allen, Lenoir122:14:26488:57:44STS-61B - AtlantisShaw, O'Connor, Cleave, Spring, Ross,165:04STS-6 - ChallengerWeitz, Bobko, Peterson, Musgrave120:23:42481:34:48STS-61C - ColumbiaR. Gibson, Bolden, Chang-Diaz, Hawley,146:03STS-9 - ColumbiaTruly, Brandenstein, D. Gardner, Bluford,145:08:43725:43:35STS-61C - ColumbiaR. Gibson, Bolden, Chang-Diaz, Hawley,146:03STS-9 - ColumbiaYoung, Shaw, Garriott, Parker,247:47:241486:44:24STS-26 - DiscoverySTS-26 - DiscoverySTS-26 - DiscoverySTS-26 - DiscoverySTS-27 - AtlantisSTS-30 - AtlantisSTS-30 - AtlantisStaha, Bagian, Buch, Springer119:38:STS-418 - ChallengerCrippen, Scobee, van Hoften, G. Nelson, Hart167:40:07838:20:33STS-30 - AtlantisStaha, Bagian, Buch, Springer119:38:STS-416 - ChallengerCrippen, McBride, Ride, Sullivan, Leetsma, Garneau, Scully-Power197:23:331381:44:51STS-32 - ColumbiaShaw, Richards, Leetsma, Adamson, Brown121:00:STS-516 - DiscoveryHauck, D. Walker, Gardner, A. Fisher, Al
STS-51B - Challenger Oversy, Springer, Meade, Culbertson, Gemar 117:54: STS-51B - Challenger Oversy, Springer, Meade, Culbertson, Gemar 117:54: STS-51G - Discovery Brandenstein, Creighton, Lucid, Fabian, 169:38:52 1187:32:04 STS-51F - Challenger Nagel, Baudry, Al-Saud 169:38:52 1187:32:04 STS-51F - Challenger Fulleton, Bridges, Musgrave, England, 190:45:26 1335:18:02

Summary of United States Human Space Flight

Mission	Crew Members	Mission Duration	Crew Hours (hr:min:sec)	Mission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min:sec)
				STS-62 - Columbia	Casper, Allen, Thout, Gemar, Ivins	335:16:41	1686:12:25
STS-40 - Columbia	Gutierrez, Seddon, Bagian, Jernigan,	218:15:14	1527:46:38	STS-59 - Endeavour	Gutierrez, Chilton, Godwin, Apt, Clifford, Jones	269:49:30	1618:57:00
313-40 000000	Gaffney, Hughes-Fulford, O'Connor			STS-65 - Columbia	Cabana, Halsell, Hieb, Walz, Chiao, Thomas,	353:55:00	2477:25:00
STS-43 - Atlantis	Blaha, Baker, Lucid, Low, Adamson	213:22:27	1066:52:15	510 00 000	Naito-Mukai		
STS-48 - Discovery	Creighton, Reightler, Buchli, Brown, Gemar	128:27:51	642:19:15	STS-68 - Endeavour	Baker, Wilcutt, Jones, Smith, Bursch, Wisoff	269:46:08	1618:36:48
STS-44 - Atlantis	Gregory, Henricks, Musgrave, Runco, Voss,	166:52:27	1001:14:42	STS-64 - Discovery	Richards, Hammond, Linenger, Heims, Meade,	262:49:57	1576:59:42
J1J 44 /104/00	Hennen			313-04 - Discovery	Lee		
STS-42 - Discovery	Grabe, Oswald, Thagard, Readdy, Hilmers	193:15:43	1352:50:01	STS-66 - Atlantis	McMonagle, Brown, Ochoa, Tanner, Clervoy,	262:32:02	1575:12:12
31342 Discorciy	Bondar, Merbold			515-66 - Atlantis	Parazynski		
STS-45 - Atlantis	Boiden, Duffy, Sullivan, Leestma, Foale,	214:10:24	1499:12:48		Wetherbee, Collins, Harris, Foale, Voss, Titov	196:29:36	1179:03:36
313-43 Additio	Frimout, Lichtenburg			STS-63 - Discovery	Oswald, Gregory, Grunsfeld, Lawrence, Parise	399:09:47	2794:06:29
STS-49 - Endeavour	Brandenstein, Chilton, Hieb, Melnick, Thout,	213:30:04	1493:03:26	STS-67 - Endeavour	Jerrigan, Durrance		
515 15 Endteres	Thornton, Akers				Gibson, Precourt, Baker, Harbaugh, Dunbar,	235:23:09	2353:51:30
STS-50 - Columbia	Richards, Bowersox, Dunbar, Meade, Baker	331:30:04	1989:00:24	STS-71 - Atlantis	Sofovyev, Budarin, Dezhurow, Strekakov,		
010 00 0000000	Delucas						
STS-46 - Atlantis	Shriver, Allen, Hoffman, Chang-Diaz,	191:16.07	1338:52:49	1	Thagard	214:21:09	1071:45:45
310 10 1112	Nicollier, Ivins, Malerba		1000.00.41	STS-70 - Discovery	Herricks, Kregel, Thomas, Currie, Webber	21.02.000	
STS-47 - Endeavour	Gibson, Brown, Lee, Davis, Jemison, Apt,	190:30:23	1333:32:41		and the second combordt	260:29:56	1302:29:40
0.0	Mohri		1 471 27.19	STS-69 - Endeavour	Walker, Cockrell, Voss, Newman, Gernhardt	381:53:17	
STS-52 - Columbia	Weatherbee, Baker, Shepherd, Jernigan,	236:56:13	1421:37:18	STS-73 - Columbia	Bowersox, Rorringer, Coleman, Thornton,	501.5011	
0.00	Veach, MacLean		070.20.55		Lopez-Alegria, Leslie, Sacco	196:31:42	982:38:30
STS-53 - Discovery	Walker, Cabana, Bluford, Voss, Clifford	175:19:47		STS-74 - Atlantis	Cameron, Halsel, Hadfield, Ross, McArthur	218:00:41	
STS-54 - Endeavour	Casper, McMonagle, Runco, Harbaugh	143:38:19	718:11:35	STS-72 - Endeavour	Duffy, Jett, Chiao, Scott, Barry, Wakata	377:40:21	2643:42:27
	Helms			STS-75 - Columbia	Alien, Horowitz, Hoffman, Cheli, Nicollier,	377:40:21	2045.46.67
STS-56 - Discovery	Cameron, Oswald, Foale, Cockrell, Ochoa	222:08:24			Chang-Diaz, Guidoni		1106:17:25
STS-55 - Columbia	Nagel, Henricks, Precourt, Harris, Walter,	239:39:59	1437:59:54	STS-76 - Atlantis	Chilton, Searfoss, Sega, Clifford, Godwin,	221:15:53	1100.17.2.
313 33 60.000	Schlegel				Lucid		1441:55:4
STS-57 - Endeavour	Grabe, Duffy, Low, Sherlock, Wisoff, Voss		4 1438:16:36	STS-77 - Endeavour	Casper, Brown, Thomas, Bursch, Runco,	240:39:16	441:55:44
STS-51 - Discovery	Culbertson, Readdy, Newman, Bursch, Walz		1186:41:50	0.0	Garneau		
STS-58 - Columbia	Blaha, Searfoss, Seddon, Lucid, Wolf,	336:12:3	2 2023:27:42	STS-78 - Columbia	Henricks, Kregel, Linnehan, Helms, Brady, 405	:47:45	2840:34:1
	McArthur, Fettman		1071-57.05	3,5.0 Columbia	Favler, Thirsk		
STS-61 - Endeavour	Covey, Bowersox, Musgrave, Akers,	259:58:35	5 1971:57:05	STS-79 - Atlantis	Readdy, Wilcutt, Apt, Akers, Walz, Blaha, Lucid	243:18:20	
	Hoffman, Thornton, Nicollier			STS-80 - Coumbia	Cockrell, Rominger, Jerrigan, Jones, Musgrave	423:53:18	
STS-60 - Discovery	Bolden, Reightler, Chang-Diaz, Davis,	199:09:2	2 1195:56:12	TOTAL SHUTTLE FLIG		15825:54:0	8 92302:34:6
	Sega, Krikalev			TOTAL SHUTTLE FUG	51113 - rJ		

-

Flight	Launch Date	Landing Date		Crew		
STS-1	Apr 12, 1981	Apr 14, 1981	Cdr	John W. Young		and Experiments
	KSC ration: 54 hrs 20	DFRF	Ptt:	Robert L. Crippen	Deployable Payloads: None Attached PLB Payloads: 1. Passive Sample Array 2. DFI (Development Flight Instrumentation) Pallet 3. ACIP (Aerodynamic Coefficient Identification Package)	GAS (Getaway Special): None Crew Compartment Payloads: None Special Payload Mission Kits: None
STS-3 Columbia	Nov 12, 1981 KSC ration: 54 hrs 13 Mar 22, 1982 KSC ation: 192 hrs 4	Mar 30, 1982 White Sands		Joe Henry Engle Richard H. Truly Jack R. Lousma Charles G. Fullerton	e. Thermal Canister f. Solar Flare X-ray Polarimeter	 IECM (Induced Environment Contamination Monitor) OSTA-1 (Office of Space and Terrestrial Applications) GAS (Getaway Special): None Crew Compartment Payloads: None Special Payload Mission Kits: RMS (Remote Manipulator System (S/N 201) DFI (Development Flight Instrument) Pailet ACIP (Aerodynamic Coefficient Identification Package) GAS (Getaway Special): Verification Canister Crew Compartment Payloads: MLR (Monodisperse Latex Reactor) HBT (Heflex Bioengineering Test) Special Payload Mission Kits: RMS (Remote Manipulator System (S/N 201)

	Laurah Data	Landing Date		Crew	Payloads an	nd Experiments
Flight STS-4 Columbia Mission D	Launch Date Jun 27, 1982 KSC uration: 169 hrs 9	Jul 4, 1982 DFRF	Cdr: Ptt:	Thomas K. Mattingty. II Henry W. Hartsfield, Jr.	IECM (Induced Environment Contamination Monitor) deployed/reberthed by RMS Attached PLB Payloads I. DFI (Development Flight Instrument) Pallet Department of Defense I. DOD 82-1 GAS (Getaway Special): Utah State University a. Drosophila Melanogaster (fruit fty) Growth Experiment b. Antemia (Brine Shrimp) Growth Experiment c. Surface Tension Experiments d. Composite Curing Experiment e. Thermal Conductivity Experiment f. Microgravity Soldering Experiment	g. Root growth of Lemna Minor L. (Duckweed) in Microgravity h. Homogeneous Alloy Experiment i. Algai Microgravity Bioassay Experiment Crew Compartment Payloads: MLR (Monodisperse Latex Reactor) CFES (Continuous Flow Electrophoresis System) SSIP (Shuttle Student Involvement Program) S404: Effect of Prolonged Space Travel on Levels of Trivalent Chromium in the Body S405: Effect of Diet, Exercise, and Zero Gravity on Lipoprotein Profiles VPCF (Vapor Phase Compression Freezer) Special Payload Mission Kits: RMS (Remote Manipulator System (S/N 201)) [GAS (Getaway Special):
STS-5 Columbia Mission D	Nov 11, 1982 KSC Duration: 122 hrs	Nov 16, 1982 DFRF 14 mins 26 secs	Cdr: Pit: MS: MS:	Vance DeVoe Brand Robert F. Overmyer Joseph P. Allen William B. Lenoir	Deployable Payloads: None 1. SBS-C/PAM-D (Satellite Business Systems/Payload Assist Module) 2. ANIK-C/PAM-D (Telesal Canada, Ltd/Payload Assist Module) Attached PLB Payloads 1. DFI (Development Flight Instrument) Pallet a. EIOM (Effects of Interaction of Oxygen with Materials) b. ISAL (Investigation of STS Atmospheric Luminosities)	G-026: ERNO/Stability of Metallic Dispersions (JSC PIP 14021) Crew Compartment Payloads: SSIP (Shuttle Student Involvement Program) a. SE81-5 - Crystal Formation in Zero Gravity b. SE81-9 - Convection in Zero Gravity c. SE81-2 - Growth of Porifera Special Payload Mission Kits: 1. Mission Specialits Seats (2)
STS-6 Challeng Mission I	Apr 4, 1983 Per KSC Duration: 120 hrs	Apr 9, 1983 DFRF s 23 mins 42 secs	Cdr Plt: MS: MS:	Karol J. Bobko Donald H. Peterson	Deployable Payloads: None 1. TDRS-A/IUS (Tracking and Data Relay Satellite/Inertial Upper Stage) Attached PLB Payloads 1. CBSA (Cargo Bay Stowage Assembly) CAS (Getaway Special): 1. G-005: Asahi Shimban, Japan 2. G-049: U.S. Air Force Academy 3. G-381: Park Seed Company	Crew Compartment Payloads: 1. CFES (Continuous Flow Electrophoresis System) 2. MLR (Mondoisperse Latex Reactor) 3. RME (Radiation Monitoring Experiment) 4. NOSL (Night/Day Optical Survey of Lightning) Special Payload Mission Kits: 1. Mini-MADS (Modular Auxiliary Data System) 2. EMU (Extravehicular Mobility Unit)

Flight	Launch Date	Landing Date		Crew		
STS-7 Columbia	Jun 18, 1983 KSC ration: 146 hrs 2	Jun 24, 1983 DFRF	Cdr: Pit: MS: MS: MS:		Payloads Deployable Payloads: None 1. ANIK-C/PAM-D (Telesat Canada Satellite) 2. Palapa-B1/PAM-D (Indonesian Satellite) 3. SPAS (Shuttle Pallet Satellite)-01 Unberthing/Berthing Tests Attached PLB Payloads: 1. OSTA (Office of Space and Terrestrial Applications)-2 2. CBSA (Cargo Bay Stowage Assembly)	And Experiments G-009: Purdue University - Geotropism Fluid Dynamics and Nuclear Particle Velocity G-305: U.S. Air Force and National Research Labs - Ultraviolet Spectrometer G-012: RCA, Camden, NJ Schools - Ant Colony G-345: Goddard Space Flight Center and National Research Labs - Payload Bay Environment
		Sep 5, 1983	Cdr:	Richard H. Truly	GAS (Gatway Special): 1. G-03: California Institute of Tech - Plant Gravireception and Liquid Dispersion 2. G-08: Edsyn, Inc Soldering of Material 3. G-002: Kayser Threde, W. Germany - Youth Fair Experiment Deployable Payloads:	Crew Compartment Payloads: CFES (Continuous Flow Electrophoresis System) CHER (Monodisperse Latex Reactor) SSIP (Shuttle Student Involvement Program) Special Payload Mission Kits: RMS (Remote Manipulator System) S/N 201 TAGS (Text and Graphics System) Mini-MADS (Modular Auxiliary Data System)
hallenger fission Dura	KSC ation: 145 hrs 8	DFRF mins 43 secs	Pit: MS: MS:	Daniel C. Brandenstein Dale A. Gardner Guion S. Bluford, Jr. William E. Thornton	Insat/PAM-D: Indian National Satellite PFTA (Payload Flight Test Article) Unberthing/ Berthing Tests Attached PLB Payloads: I. DFI (Development Flight Instrumentation) a. Oxygen Interaction and Heat Pipe Experiment b. Postal Covers (2 boxes) CBSA (Cargo Bay Stowage Assembly) SPAS (Shuttle Pallet Satellite)-01 Umbilical Disconnect GAS (Getaway Special): U. S. Postal Service - 8 cans of philatelic covers G-475: Asahi Shimban - Artificial Snow Crystal Experiment	 G-346: Goddard Space Flight Center - Cosmic Ray Upset Experiment CFES (Continuous Flow Electrophoresis System) ICAT (Incubator-Cell Attachment Test) ISAL (Investigation of STS Atmospheric Luminosities) AEM (Animal Enclosure Module) - Evaluation of AEM using rate RME (Radiation Monitoring Experiment) SSIP (Shuttle Student Involvement Program) - Biofeedback Special Payload Mission Kits: RME (Remote Manipulator System) S/N 201
					G-348: Office of Space Science - Atomic Oxygen Erosion G-347: Navy Research Lab - Ultraviolet PhotoFilm Test	MADS (Modular Auxiliary Data System) II COMSEC (Communication Security) TAGS (Text and Graphics System)

_			Crew	Payloads and Experiments			
F light STS-9 Columbia Mission D	Launch Date Nov 28, 1983 KSC uration: 247 hrs-	Landing Date Dec 8, 1983 DFRF 47 mins 24 secs	Cdr: John W. Young Pit: Brewster W. Shaw MS: Owen K. Garriott MS: Robert A. R. Parker PS: Byron K. Lichtenber PS: Ulf Merbold	Deployable Payloads: None Attached PLB Payloads: 1. Spacelab Long Module b. Spacelab Long Module b. Spacelab Pallet c. Tunnel d. Tunnel Extension e. Tunnel Adapter 2. Experiments a. Astronomy and Physics (6) b. Astronomy and Physics (4) c. Earth Observations (2)	d. Life Sciences (16) e. Materials Sciences (39) f. Space Plasma Physics (5) g. Technology (1) GAS (Getaway Special): None Crew Compartment Payloads: None Special Payload Mission Kits: 1. Cryogenic sets 4 and 5 2. Spacelab Utility Kit 3. TAGS (Text and Graphics System) 4. Galley		
STS-41B Challeng Mission I		Feb 11, 1984 KSC 15 mins 55 secs	Cdr: Vance D. Brand Pit: Robert L. Gibson MS: Bruce McCandless MS: Robert L. Stewart MS: Ronald E. McNair	Deployable Payloads: 1. Westar VI/PAM-D - Western Union Communications Satellite/Payload Assist Module 2. Palapa-B/PAM-D - Indonesian Communications Satellite/Payload Assist Module 3. SPAS (Shuttle Pallet Satellite)-01 - Not Deployed due to RMS anomaly 4. IRT (Integrated Rendezvous Target) - Failed to inflate due to internal failure Attached PLB Payloads: 1. MFR (Manipulator Foot Restraint) 2. SESA (Special Equipment Stowage Assembly) 3. Cinema 360 - High Quality Motion Picture Camera GAS (Getaway Special): 1. G-004: Utah State University/Aberdeen University 2. G-008: Utah State University/University of Utah/ Brighton High School	 G-051: General Telephone Labs G-309: U.S. Air Force G-349: Goddard Space Flight Center (re: flight STS-8) Crew Compartment Payloads: ACES (Acoustic Containerless Experiment System) IEF (Isoelectric Focusing) Cinema 360 Camera Student Experiment SE81-10 - Effects of Zero g on Antritis MLR (Monodisperse Latex Reactor) RME (Radiation Monitoring Experiment) Special Payload Mission Kits: RMMC (Remote Manipulator System) S/N 201 MMU (Manned Maneuvering Unit) - 2 Mini-MADS (Modular Auxiliary Data System) Galley 		

1

B-24

Flight Launch Date	Landing Date	Crew	Bautaada	For all the second s
STS-41C Apr 6, 1984 Challenger KSC Mission Duration: 167 hr	Apr 13, 1984 DFRF	Cdr: Robert L. Crippen Pit: Francis R. Scobee MS: Terry J. Hart MS: James D. Van Hofte MS: George D. Nelson	Deployable Payloads: 1. LDEF (Long Duration Exposure Facility) - Office of Aeronautics and Space Technology	and Experiments Crew Compartment Payloads: RME (Radiation Monitoring Experiment) IMAX Camera - Canadian Commercial Company color film camera using 70mm x 280mm film SSIP (Shuttle Student Involvement Program) - Comparison of honeycomb structure of bees in low g and bees in 1g Special Payload Mission Kits: MMU (Manned Maneuvering Units) - 2 EMU (Extravehicular Mobility Units) - 3 RMS (Remote Manipulator System) S/N 302
STS-41D Aug 30, 1984 Discovery KSC Mission Duration: 144 hrs	Sep 5, 1984 EAFB 56 mins 4 secs	Cdr: Henry W. Hartsfield Pft: Michael L. Coats MS: Richard M. Mullane MS: Steven A. Hawley MS: Judith A. Resnik PS: Charles D. Walker	Deployable Payloads: 1. SBS/PAM-D (Satellite Business System/Payload Assist Module) 2. Syncom IV-2 (Leased to DOD for UHF and SHF communications, also called Leasat) 3. Telstar/PAM-D (American Telephone and Telegraph/Payload Assist Module) Attached PLB Payloads: 1. OAST-1 (Office of Aeronautics and Space Technology) a. SAE (Solar Array Experiment) b. DAE (Dynamic Augmentation Experiment) c. SCCF (Solar Cell Calibration Facility) GAS (Getaway Special): None	Crew Compartment Payloads: CrES III (Continuous Flow Electrophoresis System) MAX Camera - IMAX System Corporation (Canadian Company) 70mm x 280mm film RME (Radiation Monitoring Experiment) USAF Space Division Clouds - USAF Mikon F 3/T with 105mm lens SSIP - (Shuttle Student Involvement Program) - Grow single crystal of Indium, Shawn Murphy, Hiram, OH; Rockwell Intl, Sponsor Special Payload Mission Kits: RMS (Remote Manipulator System) S/N 301 MADS (Modular Auxiliary Data System)

Flight Launch Date Lan	ding Date	Crew	Payloaus a	nd Experiments
STS-41G Oct 5, 1984 Oct	t 13, 1984 Cdr KSC Pit: MS MS MS PS PS	r: Robert L. Crippen ; Jon A. McBride 5: Kathryn D. Sullivan 5: Sally K. Ride 6: David D. Leetsma 6: Marc D. Garneau	 Deployable Payloads: 1. ERBS (Earth Radiation Budget Satellite) Attached PLB Payloads: 1. OSTA-3 (Office of Space and Terrestrial Applications) a. SIR-B (Shuttle Imaging Radar) b. FiLE (Feature Identification and Location Experiment) c. MAPS (Measurement of Air Pollution from Satellite) 2. LFC (Large Format Camera) 3. ORS (Orbital Refueling System Crew Compartment Payloads: APE (Auroral Photography Experiment) CANEX (Canadian Experiments) a. VISET b. ACOMEX c. OGLOW (Orbital Glow and Atmospheric Emissions) d. SPEAM (Sun Photometer Earth Atmosphere Measurement) e. SASSE (Space Adaptation Syndrome Stidoes Exp) IMAX Carnera 4. RME (Radiation Monitoring Experiment) 5. TLD (Thermoluminescent Dosimeter) 	 GAS (Getaway Special): GO7: Alabama Space and Rocket Center - Solidification of lead-antimorry; and aluminum-copper student experiment G032: ASAHI National Broadcasting Corp. Japan - Surface tension and viscosity; and materials experiment G305: Air Force and U.S. Naval Research Lab - Low Energy Heavy Ions Search in the Inner Magnetosphere G469: Goddard Space Flight Center - Cosmic Ray Upset Experiment (CRUX) G038: Marshall-McShane - Vapor Deposition of Metals And Non-Metals G074: McDonnell Douglas Company - Study Proposed Propellant Acquisition System G013: Kayset Threde, West Germany - Verify Transport Mechanism in Halogen Lamps Performance in Extended Micro-g G518: Utah State University - Study Solar Flux Separation, Capillary Hove in Liquid Columns Special Payload Mission Kits: RMS (Remote Manipulator System) S/N 302 Galley MMU (Manned Maneuvering Units) - 2 EW (Provisions Stowage Assembly)

Flight	Launch Date	Landing Date		Crew	Pavioarts	and Experiments
STS-51A Discovery Mission Du STS-51C	uration: 191 hrs a		Cdr: Pit: MS: MS:	David M. Walker Joseph P. Allen Anna L. Fisher Dale A. Gardner	Deployable Payloads: 1. Telesat-H (ANIK) - D2/PAM-D - Canadian 24 channel communications satellite. 2. Syncom IV-1 - Synchronous Communications satellite, also called Leasat, leased to U.S. Navy Retrieved Payloads: 1. Palapa-B2 - Deployed during mission STS 41-B, failed to achieve proper transfer orbit due to PAM-D failure 2. Westar-VI - Deployed during mission 41-B, failed to achieve proper transfer orbit due to PAM-D failure Attached PLB Payloads: None Crew Compartment Payloads: 1. DMOS (Diffusive Mixing of Organic Solutions) 3M Corp 2. RME (Radiation Montoring Exceriment)	GAS (Getaway Special): None Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 301 2. MMU (Manned Maneuvering Units) (2) 3. EMU (Extravelicutar Mobility Units) (3) 4. PSA (Provisions Stowage Assembly) (2) 5. Satellite Retrieval Hardware: a. Modified Spacelab Pallet (2) b. MFR (Manipulator Foor Restraint) (2) c. Stinger Adapter (2) d. Satellite Adapter Trunnion (2) e. Berthing A Frame
Discovery Mission Du	Jan 24, 1985 KSC <u>ration: 73 hrs 33</u> Apr 12, 1985	Jan 27, 1985 KSC	Cdr: Pit: MS: MS: PS:	Thomas K. Mattingly Loren J. Shriver Ellison S. Onizuka James F. Buchli Gary E. Payton	Deployable Payloads: Data not available, DOD Classified Mission Attached PLB Payloads: Data not available, DOD Classified Mission GAS (Getaway Special): Data not available, DOD Classified Mission	Crew Compartment Payloads: Data not available, DOD Classified Mission Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 301 2. Other data not available, DOD Classified Mission
Discovery	ration: 167 hrs 5	Apr 19, 1985 KSC 5 mins 23 secs	Pit: MS: MS: MS: PS:	Karol J. Bobko Donald E. Williams M. Rhea Seddon S. David Griggs Jeffrey A. Hoffman Charles D. Walker E. J. Garn	 Deployable Payloads: Syncom IV-3 - Synchronous Communications Satellite, built by Hughes, third in a series of 4, leased to the Navy. Failed to activate after nominal deploy from Orbiter. Telesat I (Anik C-1)/PAM-D - Canadian communications satellite. Placed in 3 year storage orbit. Attached PLB Payloads: None GAS (Getaway Special): G035 - Asahi National Broadcasting Corp, Japan a. Surface tension and viscosity Alloy, lead oxide and carbon fiber 	G471 - Goddard Space Flight Center, Thermal Engineering Branch. Capillary Pump Loop (CPU) Priming Experiment Crew Compartment Payloads: CFES III (Continuous Flow Electrophoresis System) AFE (American Flight Echocardiograph) PPE (Phase Partitioning Experiment) SIP (Shuttle Student Involvement Program) (2) a. Corn Statolith b. Brain Cell Special Payload Mission Kits: RMS (Remote Manipulator System) S/N 301 PSA (Provision Stowage Assembly) MADS III (Modular Auxliary Data System)

Flight Launch	Date Landing Date		Crew	Payloads and Experiments			
Fight Caulton STS-51B Apr 29, 1 Challenger KSC	985 May 6, 1985 DFRF	Cdr: Plt:	R. F. Overmyer F. D. Gregory Don L. Lind Norman E. Thagard William E. Thornton Lodewijk Vandenberg Taylor Wang	 Deployable Payloads: Refer to GAS Section Attached PLB Payloads: Spacelab 3 1. Materials Processing in Space a. Solution Growth of Crystal Growth, Vapor Crystal Growth System (VCGS) c. Mercury lodide Crystal Growth (MICG) 2. Technology a. Dynamics of Rotating and Oscillating Free Drops (DROP) 3. Environmental Observations a. Geophysical Fluid Flow Cell Experiment (GFFC) b. Aurora Observation c. Yory Wide Field Galactic Camera (VWFGC) d. Aurora Observation 4. Asto Physics a. Studies of the Ionization States of Solar and Galactic Cosmic Ray Heavy Nuclei (ION) 5. Life Sciences a. Research Animal Holding Facility (RAHF) b. Urine Monitoring Investigation (UMI) c. Autogenic Feedback Training (AFT) 	 GAS (Getaway Special): 1. GO10 - NUSAT, Northern Utah Satellite. Weber State College, Utah, Utah State University, and New Mexico State University. First successful payload ejection from a GAS canister. 2. G303 - GLOMR, Global Low Orbiting Message Relay Satellite. Defense Systems, Inc., McLean, VA. Failed to eject from GAS canister. Crew Compartment Payloads: UMS: Urine Monitoring System Special Payload Mission Kits: Airlock Long Transfer Tunnel Galley MPESS - Mission Peculiar Equipment Support Structure, carried ATMOS and ION. 		

Flight	Launch Date	Landing Date	Crew	I Destat	
STS-51G	Jun 17, 1985				and Experiments
Discovery	KSC	Jun 24, 1985 EDW 38 mins 52 secs	Daniel Brandenstein John O. Creighton John M. Fabian Steven R. Nagel Shannon W. Lucid Patrick Baudry Prince Suttan Salman Al-Saud	 Deployable Payloads: Teistar-3D/PAM-D: Hughes 376 Communications Satellite with McDac Payload Assist Module Booster. Owned by AT&T Co. ARABSAT-A/PAM-D: Aerospatiale Communication Satellite with McDac Payload Assist Module Booster. Owned by Saudi Arabian Communications Organization MORELOS-A/PAM-D: Hughes 376 Communications Satellite with McDac Payload Assist Module Booster. Owned by Mexican Communications and Transportation Agency Spartan-1: Shuttle Pointed Autonomous Research Tool for Astronomy SPSS: Spartan Flight Support Structure REM: Release/Engage Mechanism SEC: Scientific Experiment Carrier The SEC was released and retrieved using REM and RMS (Remote Manipulator System) Attached PLB Payloads: None 	GAS (Getaway Special); 1. G007 - Alabama Space and Rocket Center/Marshall Amateur Radio Cub - a. Solidification of Metals b. Crystal Growth c. Radish Seed Root Study d. Radio Transmission Experiment 2. G025 - ERNO - Dynamic Behavior of Liquid Propellants in low-g 3. G027: DFVLR of West Germany - Slipcasting in micro-g. 4. G028: DFVLR of West Germany - Manganese - Bismuth production in micro-g. 5. G034: Dickshire Coors, Texas High School Students a. 12 Biological/physical science experiments b. 1 Microprocessor controller 6 G314: USAF and USNRL - SURE (Space Ultraviolet Radiation Experiment) Crew Compartment Payloads: 1. ADSF - Automated Directional Solidification Furnace 2. FEE - French Echocardiograph Experiment 3. FPE - French Postural Experiment 4. HPTE - High Precision Tracking Experiment 5. HOLS - High Precision Tracking Experiment 3. FPE - Rench Enhold Mission Kits: 1. RMS (Remote Manipulator System) S/N 301 2. Galley

Flight Launch Date	Landing Date		Crew	Payloads and Experiments
Mission Duration: 190 hrs	Aug 6, 1985 EDW	Cdr: Ptt: MS: MS: PS: PS:	Charles Fullerton Roy D. Bridges F. Story Musgrave Anthony W. England Karl G. Henize Loren W. Acton John-David Bartoe	 Deployable Payloads: 1. Ejectable Plasma Diagnostic Package, Exp No 3, second flight of PDP (STS-3 first flight). First flight as free flyer to sample plasma away from Shuttle Attached PLB Payloads: Spacelab 2 1. Plasma Physics a. Deployable/Retrievable Plasma Diagnostic Package (PDP) (Exp 3) b. Plasma Depletion Experiments for lonospheric and Radio astronomical Studies (Exp 4) 2. Astrophysical Research a. Small Helium Cooled Infrared Telescope (IRT) (Exp 5) b. Hard X-ray Imaging of Cluster of Galaxies and Other Extended X-ray Sources (XRT) (Exp 7) c. Elemental Composition and Energy Spectra of Cosmic Ray Nuclei (CRNE) (Exp 4) Solar Astronomy a. Solar Magnetic and Velocity Field Measurement System (SOUP) (Exp 8) b. Coronal Helium Abundance Spacelab Experiment (CHASE) (Exp 9) c. High Resolution Telescope and Spectrograph (HRTS) (Exp 10) d. Solar Utraviolet Spectral Irradiance Monitor (SUSIM) (Exp 11) Technology a. Properties of Superfluid Helium Zero-g (SFHe) (Exp 13)

Flight	Launch Date	Landing Date		Crew	Pavloade	s and Experiments
STS-511 Discovery Mission Du	Aug 27, 1985 KSC iration: 170 hrs	Sep 3, 1985 EDW 17 mins 42 secs	Cdr: Plt: MS: MS: MS:	Joe H. Engle Richard O. Covey James van Hoften John M. Lounge William F. Fisher	 Deployable Payloads: ASC-1/PAM-D: American Satellite Company, first of two satellites built by RCA and owned by a partnership between Fairchild Industries and Continental Telecon Inc. PAM-D Payload Assist Module built by McDonnel Douglas. "D' indicates used for lightweight satellites, less than 2,250 lbs. AUSSAT-1/PAM-D: Australian Communications Satellite, owned by Aussat Proprietary Ltd., built by Hughes Communications International, Model HS376. SYNCOM IV-4: Synchronous Communications Satellite. Last in a series of four satellites built by Hughes Communication Services and leased to the Navy. Referred to as LEASAT when deployed. Failed to function after reaching correct geosynchronous orbit. 	Attached PLB Payloads: None GAS (Getaway Special): None Crew Compartment Payloads: 1. PVTOS - Physical Vapor Transport Organic Solid Experiment, 3M Corporation. Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 301 2. Galley 3. Leasat-3 Salvage Equipment. Leasat-3 was successfully retrieved, repaired, and redeployed.
Atlantis	Oct 3, 1985 KSC ation: 97 hrs 44	Oct 7, 1985 EDW mins 38 secs	Pit: MS: MS:	Karol Bobko Ronald J. Grabe Robert C. Stewart David C. Hilmers William A. Pailes	Deployable Payloads: Data not available, DOD Classified Mission Attached PLB Payloads: Data not available, DOD Classified Mission GAS (Getaway Special): Data not available, DOD Classified Mission	Crew Compartment Payloads: Data not available, DOD Classified Mission Special Payload Mission Kits: Data not available, DOD Classified Mission

Fliabl	Launch Date	Landing Date	Crew	Payloada	s and Experiments
Flight STS-61B Atlantis Mission D	Vov 26, 1985 KSC	Dec 3, 1985 EAFB	Cir: Brewster H. Shaw Pft: Bryan D. O'Connor MS: Mary L. Cleave MS: Sherwood C. Spring MS: Jerry L. Ross PS: Rudo#o Neri Vela PS: Charles Walker	 Deployable Payloads: MORELOS-B/PAM-D: Hughes 376 Comm Satellite with McDAC Payload Assist Module booster. Owned by Mexican Communications and Transportation Agency. AUSSAT-2/PAM-D: Hughes 376 Comm Satellite with McDAC Payload Assist Module booster. Owned by Aussat Proprietary Ltd SYNCOM KU-2/PAM-D: RCA built/owned 16 channel Ku-band communication satellite. First of four satellites. McDAC Payload Assist Module D2 is an uprated version of the PAM-D used for heavier payloads. Attached PLB Payloads: EASE (Experiment Assembly of Structures in Extravehicular Activity): A study of EVA dynamics and human factors in construction of structures in space. An inverted tetrahedron consisting of six 12-feet beams was constructed by EV-1 and EV-2. ACCESS (Assembly Cocept for Construction of Erectable Space Structures): A validation of ground based timelines based on simulations. A 45-feet truss was assembled/disassembled by the two EV crew members. ICBC (IMAX Cargo Bay Camera): A joint effort between the Canadian IMAX Corp and NASA, consists of a 70mm film camera in pressurized container used to document EASE/ACCESS experiments. 	 GAS (Getaway Special): G-479 - Telesat-Canada Primary surface mirror production Metallic crystal production Crew Compartment Payloads: CFES (Continuous Flow Electrophoresis System): Owned by McDonnell Douglas, separates biological samples using electrophoretic process. Third flight of this experiment. DMOS (Diffusive Mixing of Organic Solutions); Sponsored by 3M Corporation, used to study organic crystal growth/kinetics, test molecular orbital model, and produce new materials for electro-optical applications. MPSE (Morelos Payload Specialist Experiments): includes experiments in transportation of nutrients inside bean plants, inoculation of group bacteria viruses, germination of three seed types, and medical experiments they guilbitum and volume change of the leg due to fluid shifts in zero-g. OEX (Orbiter Experiments): An onboard experimental digital autopild software package designed to provide precise stationkeeping capabilities between space vehicles. Special Payload Mission Kits: Food Warmers (2), galley not flown. RMS (Provision Stowage Assembly)

Flight	Launch Date	Landing Date		Crew	Payloads ar	nd Experiments
Columbia	Jan 12, 1986 KSC	Jan 18, 1986 KSC	Cdr: Pit: MS: MS: PS: PS: PS:	Robert L. Gibson C. F. Bolden, Jr. F. R. Chang-Diaz George D. Nelson Steven A. Hawley Robert J. Cenker C. William Nelson	 Deployable Payloads: SATCOM KU 1/PAM D-2: RCA built/owned 16 channel Ku-band communications satelite. Second of four satelites McDAC Payload Assist Module D2 is an uprated version of the PAM-D which is used for heavier payloads. Attached PLB Payloads: MSL-2 (Materials Science Laboratory) consisting of MSL carrier; MPE (Mission Peculiar Equipment), and 3 experiments:	 G494: PHOTONS (Photometric Thermospheric Oxygen Nightglow Study): Canada Centre for Space Science, National Research Council of Canada. Not Numbered: EMP (Environmental Monitoring Package measures the environment for GSFC. G481: Unprimed, Prepared linen and painted canvas reactions to space travel. Vertical Horizons G662: 4 part experiment from PA State University/GE. G449: JULIE (Joint Utilization of Laser Integrated Experiments) 4 part experiment from St. Mary's Hospital, Miwaukee, WI. G332: 2 part experiment from Booker T. Washington Senior High School and High School for Engineering, Houston, TX G310: USAF Academy experiment. Note: Above 12 listed GAS canisters mounted on GAS Bridge Carrier G470: Experiment from GSFC and US Dept of Agriculture Crew Compartment Payloads: CHAMP (Comet Halley Active Monitoring Program) uses cameras, spectroscopic grating, and filters to observe comet through att flight deck overheat window

Flight Launch Date	Landing Date		Crew	Payloads a	nd Experiments
Flight Leunch Date STS-51L Jan 28, 1986 Challenger KSC	Landing Date Jan 28, 1986	Pit:	Crew Francis R. Scobee Michael J. Smith Judith A. Resnik Ellison S. Onizuka Ronald E. McNair Gregory Jarvis S. Christa McAuliffe (Teacher)	Payloads a Deployable Payloads: Deployable Payloads: Tracking and Data Relay Satellite/ Inertial Upper Stage. SPARTAN-203/Haley: Shuttle pointed Autonomous Research Tool for Astronomy/Halley's Cornet Experiment Deployable/retrieval packages using RMS: a. SPARTAN experiment package: 1) 2 UV Spectrometers from Univ of Colorado 2) 2 Nikon F-3 Cameras 3) Optic Bench b. Halley's Cornet Experiment; measure Halley's Cornet composition/activity Attached PLB Payloads: None GAS (Getaway Special): None Crew Compartment Payloads: 1. Fluid Dynamics Experiment (FDE) - Hughes Aircraft Company Experiment composed of 6 experiments: a. Fluid position and ullage b. Fluid motion due to spin c. Fluid motion due to payload deployment e. Energy dissipation due to fluid motion	 Ind Experiments Phase Partitioning Experiment (PPE) dissolves two polymer solutions in water to observe their separation Teacher in Space: Six experiments including hydrophonics, magnetism, Newton's laws, effervescence, chromatography, and simple machines. SSIP (Shuttle Student Involvement Program) packages: a. SE82-4: "The effects of weightlessness on grain formation and strength in metals" - L. Bruce, St. Louis, MO - Sponsor: McDonnell Douglas SE82-5: "Utilizing a semi-permeable membrane to direct crystal growth in zero gravity" - S. Cavou, Mariboro, NY - Sponsor: Union College "Chicken Embryo Development in Space" - J. Veilinger, Lafayette, IN - Sponsor: Kentucky Fried Chicken Corporation Special Payload Mission Kits: RMS (Remote Manipulator System) Galley MADS
				energy insistation due to flux inclusion . Fluid transfer Comet Halley Active Monitoring Program (CHAMP), second flight.	

Flight	Launch Date	Landing Date		Crew	Payloads	and Experiments
STS-26 Discovery Mission Du	Sep 29, 1988 KSC uration: 97 hrs 0	Oct 3, 1988 EAFB	Pit: MS: MS:	Frederick H. Hauck Richard O. Covey John M. Lounge David C. Hilmers George D. Nelson	Deployable Payloads: 1. TDRS-C/IUS: Tracking and Data Relay Satellite/ Inertial Upper Stage. Attached PLB Payloads: 1. OASIS-1: Orbiter Experiment Autonomous Supporting Instrumentation System measures and records payload bay environmental data. Crew Compartment Payloads: 1. PVTOS - Physical Vapor Transport of Organic Solids, 3M Corporation. Second flight 2. ADSF - Automated Directional Solidification in zero g. 3. IRCFE - Infrared Communication Flight Experiment, JSC, first flight. Test infrared transmitting crew headsets. 4. PCG - Protein Crystal Growth, MSFC, flown four previous flights in less complicated configurations to examine growth of protein crystals in zero g. 5. IEF - Isoelectric Focusing, MSFC, second flight, test isoelectric transport through a permeable membrane in zero g.	 PPE - Phase Paritioning Experiment, MSFC, second flight, photograph fluid phase parititioning phenomena in zero g ARC - Aggregation of Red Blood Cells, MSFC and Australia, investigate aggregation characteristics of human red blood cells in zero g. MLE - Mesoscale Lightning Experiment, MSFC, first flight, photograph atmospheric lightning activity from orbit. ELRAD - Earth Limb Radiance Experiment, JSC, first flight, photograph atmospheric lightning activity from orbit. ELRAD - Earth Limb Radiance Experiment, JSC, first flight, photograph earth limb radiance pre-sunrise/ post-sunset. Student Experiment SE82-4 - "Effects of weightlessness: on Ti grain formation and strength." L. Bruce, St. Louis, MO, Sponsor: McDonnel Douglas Student Experiment SE82-5 - "Utilizing a semi-permeab membrane to direct crystal growth in zero gravity." S. Cavou, Martboro, NY, Sponsor: Union College GAS (Getaway Special): None Small Calley MADS
STS-27 Atlantis Mission Du	Dec 2, 1988 KSC aration: 105 hrs 5	Dec 6, 1988 EAFB mins 37 secs	Pht: (MS: I MS: .	Robert L. Gibson Guy S. Gardner Richard M. Mullane Jerry L. Ross William M. Shepherd	Deployable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads: Data not available, DOD Classified Mission. GAS (Getaway Special): None Data not available, DOD Classified Mission.	Crew Compartment Payloads: Data not available, DOD Classified Mission. Special Payload Mission Kits: Data not available, DOD Classified Mission.

Flight	Launch Date	Landing Date		Crew	Payloads	and Experiments
STS-29 N Discovery Mission Dura	Mar 13, 1989 KSC	Mar 17, 1989 EAFB	Cdr: Plt: MS: MS: MS:	Michael L. Coats John E. Blaha James P. Bagian James F. Buchli Robert C. Springer	Deployable Payloads: 1. TDRS-D/IUS: Tracking and Data Relay Satellite/ Inertial Upper Stage. One of four identical communications satellites providing support for STS and other customers. Attached PLB Payloads: 1. SHARE (Space Station Heat Pipe Advanced Radiator Element) 2. OASIS-1 (Orbiter Experiments Autonomous Supporting Instrumentation System	GAS (Getaway Special): None Crew Compartment Payloads: 1. Protein Crystal Growth (PCG-111-1) 2. Chromosome and Plant Cell Division in Space (CHROMEX) 3. IMAX Camera 4. Air Force Maui Optical Site Calibration Test (AMOS) 5. Chicken Embryo Development (CHIX) in space. 6. Effects of Weightlessness of Bones (SSIP 62-08) Special Payload Mission Kits: None
STS-30 Atlantis	May 4, 1989 KSC	May 8, 1989 EAFB	Cdr: Plt: MS: MS: MS:	David M. Walker Ronald J. Grabe Norman E. Thagard Mary L. Cleave Mark C. Lee	Deployable Payloads: 1. Magellan/IUS - Unmanned three-axis attitude- controlled exploration spacecraft containing systems required to achieve orbit of Venus and map its surface. Attached PLB Payloads: None	GAS (Getaway Special): None Crew Compartment Payloads: 1. Fluids Experiment Apparatus (FEA) 2. Mesoscale Lightning Experiment (MLE) 3. Air Force Maui Optical Site Calibration Test (AMOS) Special Payload Mission Kits: None
STS-28 Columbia	uration: <u>96 hrs 5</u> Aug 8, 1989 KSC uration: 121 hrs	Aug 13, 1989 EAFB	Cdr: Ptt: MS: MS: MS:	Brewster H. Shaw Richard N. Richards David C. Leetsma James C. Adamson Mark N. Brown	Deployable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads: Data not available, DOD Classified Mission. GAS (Getaway Special): Data not available, DOD Classified Mission.	Crew Compartment Payloads: Data not available, DOD Classified Mission. Special Payload Mission Kits; Data not available, DOD Classified Mission.
STS-34 Atlantis	Oct 18, 1989 KSC uration: 119 hrs	Oct 23, 1989 EAF8	Cdr: Pit: MS: MS: MS:	Donald E. Williams Michael McCulley Ellen S. Baker Franklin R. Chang-Diaz Shannon W. Lucid	Deployable Payloads: 1. Galileo/IUS - Unmanned spin-stabilized exploration spacecraft comprising a Jupiter orbiter and a Jupiter	Crew Compartment Payloads: 1. Polymer Morphology 2. Growth Hormone Concentration & Distribution in Plant 3. Sensor Technology Experiment 4. IMAX Camera 5. Mesoscale Lightning Experiment 6. Air Force Maui Optical Ste Calibration Test (AMOS) Special Payload Mission Kits: None

Flight	Launch Date	Landing Date		Crew	Baylande a	Ind Experiments
STS-33 Discovery <u>Mission D</u>	uration: 120 hrs	Nov 27, 1989 EAFB 5 mins 46 secs	Cdr: Pit: MS: MS: MS:	John E. Blaha Manley L. Carter Franklin Musgrave Kathryn C. Thornton	Deployable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads: Data not available, DOD Classified Mission. GAS (Getaway Special): Data not available DOD Classified Mission	Crew Compartment Payloads: Data not available, DOD Classified Mission. Special Payload Mission Kits: Data not available, DOD Classified Mission.
	Jan 9, 1990 KSC uration: 261 hrs (Jan 20, 1990 EAFB) mins 37 secs	Cdr: Pit: MS: MS: MS:	Daniel C. Brandenstein James D. Wetherbee Bonnie J. Dunbar Marsha S. Ivins G. David Low	Deployable Payloads: 1. Syncom IV-5, a geostationary communications satellite also known as Leasat; leased to U.S. Navy Attached PLB Payloads: None Returned Cargo: 1. LDEF, a non-powered space vehicle containing experiments - Deployed on STS-41C. Crew Compartment Payloads: 1. American Flight Echocardiograph (AFE) 2. Air Force Mail Optical Site Calibration Test (AMOS) 3. Characterization of Neurosopra Circadian Rhythms (CNCFI)	4. Fluids Experiment Apparatus 5. IMAX Camera 6. Latitude/Longitude Locator (L3) 7. Mesoscale Lightning Experiment (MLE) 8. Protein Crystal Growth (PCG) GAS (Getaway Special): None Special Payload Mission Kits: 1. Remote Manipulator System (RMS) 2. Galley 3. MADS
STS-36 Atlantis <u>Mission Du</u> STS-31	Feb 28, 1990 KSC ration: 106 hrs 1 Apr 24, 1990		Pit: MS: MS: MS:	John D. Creighton John H. Casper David C. Hilmers Richard M. Mullane Pierre J. Thuot	Deproyable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads: Data not available, DOD Classified Mission. GAS (Getaway Special): Data not available, DOD Classified Mission	Crew Compartment Payloads: Data not available, DOD Classified Mission. Special Payload Mission Kits: Data not available, DOD Classified Mission.
Discovery	Apr 24, 1990 KSC ration: 121 hrs 1	ÉAFB	Pit: MS: MS:	Loren J. Shriver Charles F. Boklen Bruce McCandless Steven A. Hawley Kathryn D. Sullivan	Deployable Payloads: 1. Hubble Space Telescope (HST), a large aperture optical telescope. Attached PLB Payloads: 1. IMAX Cargo Bay Camera (ICBC) 2. Ascent Particle Monitor (APM) GAS (Getaway Special): None Crew Compartment Payloads: 1. Air Force Maui Optical Site Calibration Test (AMOS)	IMAX Camera Investigation into Polymer Membrane Processing (IPMP) Protein Crystal Growth (PCG) Radiation Monitoring Experiment (RME) Investigation of Arc and Ion Behavior in Microgravity (Student Experiment 82-16) Special Payload Mission Kits: I. Remote Manipulator System (RMS) Galley HST EVA Tools

Flight	Launch Date	Landing Date		Crew	Payloads an	d Experiments
STS-41 Discovery	Oct 6, 1990 KSC	Oct 10, 1990 DFRF	Pil: MS:	Richard N. Richards Robert D. Cabana Bruce E. Melnick William M. Shepherd Thomas D. Akers	Deployable Payloads: 1. Ulysses/IUS/PAM-S Attached PLB Payloads: 1. Shuttle Solar Backscatter Ultraviolet (SSBUV) 2. Intelsat Solar Array Coupon (ISAC) - Attached to RMS arm GAS (Getaway Special): None Crew Compartment Payloads: 1. Chromosome and Plant Cell Division in Space (CHROMEX) 2. Solid Surface Combustion Experiment (SSCE)	
STS-38 Atlantis	Nov 15, 1990 KSC	Nov 20, 1990 KSC	Cdr: Pit: MS: MS: MS:	Richard O. Covey Frank L. Culbertson Robert C. Springer Carl J. Meade Charles D. Gemar	Deployable Payloads: Deployable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads: Data not available, DOD Classified Mission. GAS (Getaway Special): Data not available, DOD Classified Mission.	Crew Compartment Payloads Data not available, DOD Classified Mission. Special Payload Mission Kits: Data not available, DOD Classified Mission.
STS-35 Columbia	<u>uration: 117 hrs.</u> Dec 2, 1990 KSC uration: 215 hrs	54 mins 27 secs Dec 11, 1990 DFRF 5 mins 7 secs	Cdr: Plt: MS: MS: PS: PS:	Vance Brand Guy S. Gardner John M. Lounge Jeffrey A. Hoffman Robert A. R. Parker Ronald A. Parise Samuel T. Durrance	Data full available. CoD Chassing information Deployable Payloads: 1. Astro-1 - Three ultraviolet telescopes attached to an Instrument Pointing System (IPS): a. Wisconsin UV Photopolarimeter Experiment (WUPPE) b. UV Imaging Telescope (IUT) c. Hopkins UV Telescope (HUT) 2. BBXRT - Broad Band X-ray Telescope. Attached to its own two-axis pointing system (TAPS)	GAS (Getaway Special): None Crew Compartment Payloads: 1. Shuttle Amateur Radio Experiment (SAREX) 2. Air Force Maui Optical Site (AMOS) Special Payload Mission Kits: 1. Galley 2. Aerodynamic Coefficient Identification Package (ACIP)
STS-37 Atlantis Mission D	Apr 5, 1991 KSC Juration: 143 hrs	Apr 11, 1991 EAFB 22 mins 45 secs	Cdr: Pit: MS: MS: MS:	Kenneth D. Cameron Linda M. Godwin Jerome Apt	By Other Revision Control of Statement of the Strength Statement of Statement Translation Aids (CETA) - designed to evaluate candidate techniques/equipment for EVA crewmember translation Sacement Particle Monitor (APM) - designed to assess the particulate contamination in the Orbiter PLB during ascent.	GAS (Getaway Special): None Crew Compartment Payloads: 1. Protein Crystal Growth (PCG)-II 2. Air Force Maui Optical Ste (AMOS) 3. Radiation Monitoring Equipment (RME)-III 4. Shuttle Amateur Radio Experiment (SAREX)-II 5. Bioserve/Instrumentation Technology 6. Associates Materials Dispersion Apparatus (BIMDA) Special Payload Mission Kits: 1. Remote Manipulator System (RMS) S/N 301

B-38

-

	Launch Date	Landing Date		Crew	Payloads a	and Experiments
Discovery	Apr 28, 1991 KSC ation: 199 hrs 2	May 6, 1991 EAFB 23 mins 17 secs	Cdr: Plt: MS: MS: MS: MS:		 Deployable Payloads: Shuttle Payload Autonomous Satellite (SPAS)-II/ Infrared Background Signature Survey (IBSS) - SPAS-II/IBSS was designed to observe rocket plume firings at infrared wavelengths. Attrached PLB Payloads: Air Force Program (AFP)-675 - The objective of AFP-675 was to observe near-Earth space and celestial objects at infrared & ultraviolet wavelengths. Space Test Payload (STP)-1 - Five USAF experiments mounted on a Hitchhiker-M carrier. 	Multi-Purpose Experiment Container (MPEC) - An additional USAF experiment mounted on STP-1. GAS (Getaway Special): None Crew Compartment Payloads: Cloud Logic to Optimize Use of Defense Systems (CLOUDS)-1A Radiation Monitoring Equipment (RME)-III Special Payload Mission Kits: Remote Manipulator System (RMS) S/N 301
Columbia	Jun 5, 1991 KSC	Jun 14, 1991 DFRF 5 mins 14 secs	Cdr: Pit: MS: MS: MS: PS: PS:	Bryan O. O'Connor Sidnøy M. Gutierrez James P. Bagian Tamara E. Jernigan M. Rhea Seddon Drew F. Gaffney Millie Hughes-Fulford	Beparation in the off a micromitter -M carrier. Deployable Payloads: Spacelab Life Sciences (SLS)-1 a. Spacelab Long Module b. Tunnel c. Tunnel Extension d. Tunnel Adapter Experiments a. 6 Body Systems b. 6 Cardiovascular/Cardiopulmonary c. 3 Blood System d. 6 Musculoskeletal e. 3 Neurovestibular f. 1 Immune System g. 1 RenaVEndocrine System Gas Bridge Assembly (GBA)- 12 GAS experiments mounted on a truss structure in the PLB. GAS (Getaway Special): 12 Experiments on GBA Solid State Microaccelerometer Experiment	Experiment in Crystal Growth Cribital Ball Bearing Experiment In-Space Commercial Processing Foamed Ultralight Metals Chemical Precipitate Formation Microgravity Experiments Flower and vegetable seeds exposure to Space Semiconductor Crystal Growth Experiment Active Soldering Experiments Crotter Stability Experiment Cribiter Stability Experiment Cribiter Stability Experiment Crew Compartment Payloads: In Physiological Monitoring System (PMS) Urine Monitoring System (UMS) Animal Enclosure Modules (AEM) Middec Zero-Gravity Experiment Animal Enclosure Modules (AEM) Middec Zero-Gravity Experiment Animal Enclosure Modules (AEM) Middec Zero-Gravity Experiment Airlock Transfer Tunnel

Flight	Launch Date	Landing Date	Crew	Payloads	and Experiments
STS-43 Atlantis	Aug 2, 1991 KSC Juration: 213 hrs 2	Aug 11, 1991 KSC 22 mins 27 secs	Cdr: John E. Blaha Pft: Michael A. Baker MS: James C. Adamson MS: G. David Low MS: Shannon E. Lucid	Deployable Payloads: 1. TDRS-E/IUS: Tracking and Data Relay Satellite/ Inertial Upper Stage. One of four identical communications satellites providing support for STS and other customers. Attached PLB Payloads: 1. Space Station Heatpipe Advanced Radiator Element (SHARE-II) 2. Shuttle Solar Backscatter Uttraviolet (SSBUV) 3. Optical Communications Through the Window (OCTW) Experiments 1. Gas Bridge Assembly (GBA).	GAS (Getaway Special): 1. Tank Pressure Control Experiment (TPCE) Crew Compartment Payloada: 1. Air Force Maui Optical Site (AMOS) 2. Auroral Photography Experiment (APE) 3. Bioserve/Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA) 4. Investigations into Polymer Membrane Processing (IPMI 5. Protein Crystal Growth (PCG) 6. Space Acceleration Measurement System (SAMS) 7. Solid Surface Combustion System (SSCS) 8. Ultraviolet Plume Instrument Special Payload Mission Kits: None
STS-48 Discovery Mission [Sep 12, 1991 V KSC Duration: 128 hrs (Sep 18, 1991 EAFB 27 mins 51 secs	Cdr: John O. Creighton Pit: Kenneth S. Reightler MS: Mark F. Brown MS: James F. Buchli MS: Charles D. Gemar	Deployable Payloads: 1. Upper Atmosphere Research Satellite (UARS) Attached PLB Payloads: Experiments 1. Gas Bridge Assembly (GBA) Crew Compartment Payloads: 1. Ascent Particle Monitor (APM) 2. Cosmic Radiation Effects and Activation Monitor (CREAM)	Radiation Monitoring Experiment (RME) Investigations into Polymer Membrane Processing (IPMI Protein Crystal Growth (PCG) Middeck 0-Gravity Dynamics Experiment (MODE) Shuttle Activation Monitor (SAM) Physiological and Anatomical Rodent Experiment (PARI GAS (Getaway Special): None Special Payload Mission Kits: None
STS-44 Atlantis Mission [Nov 14, 1991 KSC Duration: 166 hrs	Dec 1, 1991 EAFB 52 mins 27 secs	Cdr: Frederick D. Gregory Ptt: Terence T. Henricks MS: F. Story Musgrave MS: Mario Runco, Jr. MS: James S. Voss PS: Thomas J. Hennen	CHCAM Deployable Payloads: Deployable Payloads: Defloyable Payloads: Satellite (DSP/IUS) Attached PLB Payloads: I. interim Operational Contamination Monitor (IOCM) Experiments Gas Bridge Assembly (GBA) Crew Compartment Payloads: Terra Scout Military Man in Space (M88-1)	 Air Force Maui Optical Site (AMOS) Cosmic Radiation Effects and Activation Monitor (CREAM) Shuttle Activation Monitor (SAM) Radiation Monitoring Experiment (RME-III) Visual Function Monitor (VFT-1) Uthraviolet Plume Instrument (UVPI) GAS (Getaway Special): None Special Payload Mission Kits: None

			_			
Flight	Launch Date	Landing Date		Crew	Payloads a	nd Experiments
STS-42 Discovery Mission Du	Jan 22, 1992 KSC	Jan 30, 1992 EAFB	Cdr: Ph: MS: MS: PS: PS:	Ronald J. Grabe Steven S. Oswald Norman E. Thagard William F. Readdy David C. Hilmers Roberta L. Bondar Ulf D. Merbold	 (Middeck) Organic Crystal Growth Facility - Crystal growth Cryostat-Crystal growth Space Acceleration Monitoring System - Measure on-orbit shuttle acceleration to support other microgravity experiments Critical Point Facility - Measure material properties at the critical point Gravitational Plant Physiology Facility - Biological Investigation of plants during spaceflight Biorack - Biological investigation of various life forms during spaceflight Space Physiology Experiments - Investigate human space adaptation and motion sickness Microgravity Vestibular Investigations - Study space motion sickness Biostack - Investigate space radiation effects on biological materials Mental Workload and Performance Evaluation - Test human performance of computer tasks in Zero-G Radiation Monitoring Container/Dosimeter - Measure 	2. G-140 - Marangoni convection in a floating zone 3. G-143 - Glass bulbles in class mate

Flight	Launch Date	Landing Date		Crew	Payloads a	nd Experiments
STS-45 Atlantis	Mar 24, 1992 KSC	Apr 2, 1992 KSC	Cdr: Pit: MS: MS: PS: PS:	Charles F. Bolden Brian K. Duffy Kathryn D. Sullivan David C. Leestma C. Michael Foale Dirk D. Frimout Bryon K. Lichtenburg	Deployable Payloads: None Attached PLB Payloads: ATLAS-1 (2 Spacelab Pallet and Igloo) - Objective: Study the composition of the middle atmosphere and its variations over an 11 year solar cycle. This is the first of 10 planned ATLAS missions over the next 11 years. Atmosphere Physics: 1. Atmosphere Trace Molecule Spectroscopy (ATMOS) - Previously flown on Spacelab 1, Reflight from Spacetab 32. Millimeter Wave Atmospheric Sounder (MAS) - First flight 3. Atmospheric Lyman Alpha Emissions (ALAE) - Previously flown on Spacelab 1 3. Grille Spectrometric Observatory (ISO) - Previously flown on Spacelab 1 5. Imaging Spectrometric Observatory (ISO) - Previously flown on Spacelab 1 Solar Science: 1. Active Cavity Radiometer Irradiance Monitor (ACRIM) - ACRIM 1 flown on the solar maximum satellite 2. Solar Spectrum Measurement from 180 to 3200 Nanometers (SOLSPEC) - Previously flow on Spacelab 1 3. Solar Spectrum Measurement from 180 to 3200 Nanometers (SOLSPEC) - Previously flown on Spacelab 1 4. Solar Spectrum Measurement from 180 to 3200 Nanometers (SOLSPEC) - Previously flown on Spacelab 1 5. Space Hessarch Satellite (UARS) Space Experiments with Particle Accelerators (SEPAC) - Previously flown on Spacelab 1 5. Solar Spectrum Measurement from 180 to 3200 Nanometers (SOLSPEC) - Previously flown on Spacelab 1 5. Space Plasma Physics: 1. Atmospheric Emissions Ph	Ultraviolet Astronomy: 1. Far Ultraviolet Space Telescope (FAUST) - Previously flown on Spacelab 1 2. Shuttle Solar Backscatter Ultraviolet/A (SSBU//A) - Objective: To provide more accurate and reliable readings of global acone to aid in the calibration of backscatter ultraviolet instruments being flown on free-flying satellites CAS (Getaway Special): 1. 1. Getaway Special): 1. 1. Getaway Special): 1. 1. Investigation into Polymer Membranes Processing (IPMP Objective: To flash evaporate mixed solvent systems in the absence of convection to control the porosity of the polymer membrane in microgravity 2. Space Tissue Loss-01 (STL-01) - Objective: To monitor the activities of tissue samples at the cellular level under the influence of microgravity 3. Radiation Monitoring Equipment-III (RME-III) - Objective: To measure ionizing radiation over repeated time interva and digitally store the resulting data 4. Visual Function Tester-2 (VFT-2) - Objective: To measure basic vision performance parameters in an orbital space flight environment 5. Cloud Logic to Optimize Use of Defense System - Objective: To detain photographic sequences of cloud fields of interest as targets of opportunity 6. Shuttle Amateur Radio Experiment (SAREX II) - Objective: To demonstrate voice, slow-scan television (SSTV), and pocket radio. All transmitted on 2 meter capabilities and fast scan television (FSTV) transmitted on 7 or capabilities and fast scan television (FSTV) transmitted on 7 or capabilities and

Flight	Launch Date	Landing Date		Crew	Payloads	and Experiments
STS-49 Endeavour Mission Du		May 16, 1992 EAFB 17 mins 38 secs	Cdr: Plt: MS: MS: MS: MS: MS:	Daniel C. Brandenstein Kevin P. Chilton Richard J. Hieb Bruce E. Melnick Pierre J. Thout Kathryn C. Thornton Thomas D. Akers	 Intelsal VI F3 (International Telecommunications Satellite)/perigee kick motor (PKM) Attached PLB Payloads: Assembly of station by EVA methods 	Crew Compartment Payloads: 1. Commercial protein crystal growth (CPGC) 2. Air Force Maui Optical Site Calibration (AMOS) 3. Uttraviolet Plume Instrument (UVPI) Special Payload Mission Kits: None
STS-50 Columbia	Jun 25, 1992 KSC ration: 331 hrs 3	Jul 9, 1992 KSC	Cdr: Plt: MS: MS: MS: PS:	Richard N. Richards Keneth D. Bowersox Bonnie J. Dunbar Carl J. Meade Ellen S. Baker Lawrence J. DeLucas	GAS (Getaway Special): None Deployable Payloads: None Attached PLB Payloads: 1. U.S. Microgravity Laboratory (USML-1) 2. Investigation into Polymer Membrane Processing (IPMP) 3. Shuttle Amateur Radio Experiment-II (SAREX-II) 4. Ultraviolet Plume Instrument (UVPI) 5. Orbital Acceleration Research Experiment (OARE) 6. Zeolite Crystal Growth (ZCG) 7. Astroculture 8. Generic Bioprocessing Apparatus (GBA) 9. Protein Crystal Growth (PCG) Block 1	GAS (Getaway Special): None Crew Compartment Payloads: 1. Zeolite Crystal Growth 2. Generic Bioprocessing Apparatus with 1 Refrigerator/Incubator Module (R/IM) 3. Astroculture (ASC) 4. Protein Crystal Growth (PCG) Block 1 with 3 R/IMs 5. Investigation into Polymer Membrane Processing (IPMP) 6. Shuttle Arnateur Radio Experiment-II (SAREX-II) 7. Ultraviolel Plume Instrument (UVPI) Served Moded Mission With Nore
Atlantis	Jul 31, 1992 KSC ation: 191 hrs 1	Aug 8, 1992 KSC 6 mins 07 secs	Cdr: Plt: MS: MS: MS: PS:	Loren J. Shriver Andrew M. Allen Jeffrey A. Hoffman Franklin R. Chang-Diaz Claude Nicollier Martha S. tvins Franco Malerba	Deployable Payloads: 1. EURECA Attached PLB Payloads	Special Payload Mission Kits: None GAS (Getaway Special): None Crew Compartment Payloads: 1. Gas Autonomous Payload Controller (GAPC) for Use in ICBC Operations 2. Pituitary Growth Hormone Cell Function (PHCF) 3. Air Force Maui Optical Site Calibration (AMOS) (Passive Requirements Only) 4. Ultraviolet Plume Instrument (UVPI) Special Payload Mission Kits: None

Flight	Launch Date	Landing Date	Crew	Payload	s and Experiments
STS-47 Endeavour Mission Du STS-52 Columbia	rration: 190 hrs ; Oct 22, 1992 KSC	Sep 20, 1992 KSC 30 mins 23 secs Nov 1, 1992 KSC 56 mins 13 secs	Cdr: Robert L. Gibson Ptt: Curtis L. Brown MS: Mark C. Lee MS: N. Jan Davis MS: Mae C. Jemison MS: Jerome Apt PS: Mamoru Mohri Cdr: James D. Wetherbee Ptt: Michael A. Baker MS: Viliam M. Sheperd MS: Tamara E. Jernigan MS: Charles L. Veach	Deployable Payloads: Attached PLB Payloads: 1. Japanese Spacelab (Spacelab-J) Long Module Gas Bridge Assembly (GBA) with 12 Gas Canisters GAS (Getaway Special): None Deployable Payloads: None 1. Laser Geodynamics Satellite (LAGEOS) Attached PLB Payloads 1. United Stated Microgravity Payload (USMP-1) GAS (Getaway Special): None Crew Compartment Payloads 1. Queens University Experiment in Liquid Metal Diffusion (QUELD) 2. Phase Partition in Liquid (PARLIO) 3. Sun Photo Spectrometer Earth Atmosphere 3. Sun Photo Spectrometer Earth Atmosphere 3. Sun Photo Spectrometer Earth Atmosphere	Crew Compartment Payloads: 1. Israeli Space Agency Investigation about Hornets (ISAIAH) 2. Shuttle Amateur Radio Experiment (SAREX) 3. Solid Surface Combustion Experiment (SSCE) 4. Ultraviolet Plume instrument (UVPI) - Payload of Opportunity Special Payload Mission Kits: None 4. Orbiter Glov-2 5. Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX) 6. Crystal by Vapor Transport Experiment (CVTE) 7. Heat Pipe Performance (HPP) (CMIX) 8. Commercial Protein Crystal Growth (CPCG) 9. Shuttle Plume Impingement Experiment (SPIE) 10. Physiological System Experiment (PSE) Special Payload Mission Kits: None
STS-53 Discovery Mission Di	Jul 31, 1992 KSC uration: 175 hrs	Aug 8, 1992 EAFB 19 mins 47 secs	Cdr: Loren J. Shriver Ph: Andrew M. Allen MS: Jeffrey A. Hoffman MS: Franklin R. Chang-Dia MS: Claude Nicollier	Deployable Payloads: Attached PLB Payloads IZ	GAS (Getaway Special): None Crew Compartment Payloads: Special Payload Mission Kits: None

Flight	Launch Date	Landing Date		Crew	Payloads ar	nd Experiments
Endeavour		93 Jan 19, 1993 KSC hrs 38 mins 19 secs	Cdr: Pit: MS: MS: MS	John H. Casper Donald R McMonagle Mario Runco, Jr Gregory Harbaugh Susan Helms	Deployable Payloads: None 1. Tracking and Data Relay Satellite/Inertial Upper Stage(TDRS/IUS) Attached PLB Payload: 1. Diffuse X-Ray Spectrometer(DXS) GAS(Getaway Special): None Crew Compartment Payloads: 1. Chromosome and Plant Cell Division in Space(CHROMEX)	Commercial Generic Bioprocessing Apparataus(CGBA) Physiological and Anatomical Rodent Experiment(PARE) Solid Surface Combustioin Experiment(SSCE) Special Payload Mission Kits: None
STS-56 Discovery Mission Du	Apr 6, 1993 KSC aration: 222 hrs	Apr 17, 1993 KSC 08 mins 24 secs	Cdr: Pit: MS: MS: MS:	Kenneth Cameron Steven S. Oswald C. Michael Foale Kenneth Cockrell Ellen Ochoa	Deployable Payloads: 1. Shuttle Point Autonomous Research Tool for Astronomy - 201 (SPARTAN-201) Attached PILB Payloads: 1. Atmospheric Laboratory for Applications and Science (ATLAS-2) GAS (Getaway Special): None Crew Compartment Payloads: 1. Solar Ultraviolet Spectrometer(SUVE) 2. Hand-Held, Earth-Oriented, RealTime, Cooperative, User-Friendly, Location Targeting, and Environmental System(HERCULES) 3. Radiation Monitoring Equipment II(RME-III)	 Cosmic Radiatiion Effects and Activation Monitor(CREAM) Shuttle Amateur Radio Experiment II(SAREX II) Commercial Materials Dispersion Apparatus ITA Experiments(CMIX) Space Tissue Loss Experiment(STL) Physiological and Anatomical Rodent Experiment(PARE) Special Payload Mission Kits Remote Manipulator System
STS-55 Columbia Missioin D	Apr 26, 1993 KSC Huration: 239 hrs	May 6, 1993 EAFB : 39 mins 59 secs	Cdr. Pit. MS. MS. PS. PS	Steven R. Nagel Terence T. Hendricks Charles Precourt Bernard Harris, Jr. Ulrich Watter Hans Schlegel	Depicyable Payload: None Attached PLB Payload: 1. D2 payload user support structure: German(SPACELAB) 2. Material Science Autonomous Payload(MAUS) 3. Atomic Oxygen Exposure Tray(AOET) 4. Galactic Ultrawide Angle Schmidt System Camera(GAUSS) 5. Modular Opto-Electronic Multispectral Stereo Scanner (MOMS)	GAS (Gateway Special): 1. Reaction Kinetics in Glass Metts(RKGM) Crew Compartment Payload: 1. Crew Telesupport Experiment 2. Shuttle Amateur Radio Experiment(SARAX) Special Payload Mission Kits: None

Flight La	unch Date	Landing Date		Crew	Payloads	and Experiments
	n 21, 1993 KSC n: 239 hrs 4	Jul 1, 1993 KSC 4 mins 54 secs	Cdr: Plt: PC: MS: MS: MS:	Ronald J. Grabe Brian J. Duffy G. David Low Nancy J. Sherlock Peter J. K. Wisoff Janice E. Voss	Deployable Payloads: 1. EURECA Attached PLB Paylaods 1. Spacehab-1 a. Experiments(22) GAS (Getaway Special): 1. G-022: Pedriodic Volume Stimulus 2. G-324: Earth Photographs 3. G-399: Insulin/Artemia/Ion Expts 4. G-450: Crystal Growth 6. G-453: Semiconductor/Boiling Expts	 G-454: Crystal Growth G-535: Pool Boiling G-661: High Frequency Variations G-647: Liquid Phase Electroepitaxy Crew Compartment Payloads: SAREX-II (Shuttle Amateur Radio Experiment -II) FARE (Fluid Acquisition and Resupply Experiment) AMOS (Air Force Maui Optical Site Calibration Test) Special Payload Mission Klts: SHOOT: (Superfluid Helium On-Orbit Transfer) CONCAP-IV: (Consortium for Materials Development in Space Complex Autonomous Payload IV)
	n: 236 hrs 1	Sept 22, 1993 KSC 1 mins 11 secs	Cdr: Pit: MS: MS: MS	Frank Culbertson, Jr. William F. Readdy James H. Newman Daniel W. Bursch Carl E. Walz	Deployable Payloads: 1. ACTS: (Advanced Communication Technology Satellite) 2. TOS: (Transfer Orbit Stage) 3. ORFEUS/SPAS: (Orbiting Retrievable Far and Extreme Ultraviotel Spectrometer-Shuttle Pallet Satellite) 4. LDCE: (Limited Duration Space Environment Candidate Materials Exposure) Attached PLB Payloads: 1. IMAX: Camera 2. CPCG: (Commercial Protein Crystal Growth) 3. CHROMEX:(Chromosome and Plant Cell Division in Space) 4. HRSGS-A: (High Resolution Shuttle Glow Spectroscopy) 5. APE-B: (Auiroral Photography Experiment) 6. RIME-III: (Radiation Monitoring Experiment-IIII) 7. IPMP: (Investigations into Polymer Membrane Processing) 8. AMOS: (Air Force Maui Optical Site Calibration Test) GAS (Getaway Special): None	Crew Compartment Payloads: Special Payload Mission Kits:

Flight	Launch Date	Landing Date		Crew	Payloads	and Experiments
STS-58 Columbia Mission Du	Oct 18, 1993 KSC	Nov 1, 1993 EAFB 12 mins 32 secs	Pit: PC: MS: MS: MS:	John E. Biaha Richard Searfoss Margaret Rhea Seddon Shannon W. Lucid David A. Wolf William McArthur, Jr. Martin J. Fettman	Deployable Payloads: None Attached PLB Payloads: 1. Spacelab Life Sciences-2(SLS-2) a. Spacelab Long Module b. Spacelab Pallet c. Tunnel d. Tunnel Extension GAS (Getaway Special): None	Crew Compartment Payloads: 1. Urine Monitoring System (UMS 2. Shuttle Amateur Radio Experiment (SAREX Special Payload Mission Kits:
STS-61 Endeavour Mission Du	Dec 2, 1993 KSC ration: 259 hrs 5	Dec 13, 1993 KSC 58 mins 35 secs	Ph: MS: MS: MS: MS:	Richard O. Covey Kenneth D. Bowersox F. Story Musgrave Thomas D. Akers Jeffery A. Hoffman Kathryn C. Thomton Claude Nicollier	Deployable Payloads: 1. Hubble Space Telescope (HST) Service Mission - 01 a. Solar Array (SA) b. Wide Field/Planetary Camera (WFPC) c. Corrective Optics Space Telescope Axial Replacement (COSTAR)	Crew Compartment Payloads 1. Hubble Space Telescope Special Tools 2. Shuttle Orbiter Repackaged Galley (SORG) 3. Electronic Still Camera Photography Test 4. Global Positioning System (GYS)
					Attached PLB Payloads: 1. MFR (Manipulator Foot Restraint) 2. SESA (Special Equipment Stowage Assembly) 3. IMAX Cargo Bay Camera (ICBC-04) 4. Air Force Maui Optical Site Calibration Test (AMOS)	Special Payload Mission Kits: None
					GAS (Getaway Special): None	

Flight	Launch Date	Landing Date	Cre	w	Payloads	and Experiments
STS-60 Discovery Mission Dr	Feb 3, 1994 KSC	Feb 11, 1994 KSC 09 mins 22 secs	MS: Frank MS: Jan (MS: Rona	Reightler klin Chang-Diaz Davis ald Sega lei Krikalev	Deployable Payloads: 1. Wake Shield Facility-1 (WSF-1) Attached PLB Payloads: 1. SPACEHAB-2 a. Experiments-12 2. Capillary Pump Loop (CAPL) GAS (Getaway Special): 1. Oribital Debris Radar Calibration Spheres (ODERACS) 2. BREMAN Satellite (BREMSAT) 3. G-071 (Ball Bearing Experiment) 4. G-514 (Orbiter Stability Exper.& Medicines in Microgravity) 5. G-536 (Heat Flux) 6. G-557 (Capillary Pumped Loop Experiment)	Crew Compartment Payloads: 1. Shuttle Amateur Radio Experiment-II (SAREX-2) 2. Aurora Photography Experiment-B (APE-B) Special Payload Mission Kits: None
STS-62 Columbia Mission D	Mar 9, 1994 KSC uration: 335 hrs	Mar 18, 1994 KSC 16 mins 41 ses	MS: Pier MS Chai	n Casper Irew Allen re Thuot ries Gemar sha Ivins	Deployable Payloads: None Attached PLB Payloads: 1. United States Microgravity Payload-2 (USMP-2) a. Experiments-5 2. Office of Aeronautics & Space Technology-2 (OAST-2) 3. Dexterous End Effector (DEE) 4. Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) 5. Limited Duration Space Environment Candidate Materials Exposure (LDCE) GAS (Getaway Special): None	Crew Compartment Payloads 1. Protein Crystal Growth Experiments (PCG) 2. Physiological System Experiment (PSE) 3. Commercial Protein Crystal Growth (CPCG) 4. Commercial Generic Bioprocessing Apparatus (CGBA) 5. Middeck O-Gravity Dynamics Experiments (MODE) 6. Bioreactor Demonstration System (BDS): Biotechnology Speciment Temperature Controller (BSTC) SpecIal Payload Mission Kits: 1. Air Force Maui Optical Site Calibration Test (AMOS)

Flight Launch D	ate Landing Date	Crew	Payloads	and Experiments
STS-59 Apr 9, 199- Endeavour KSC Mission Duration: 269h	KSC	Cdr: Skiney M. Gutlerrez Pit: Kevin P. Chilton MS: Linda M. Godwin MS: Jay Apt MS: M.R. Clifford MS: Thomas D. Jones	Deployable Payloads: None Attached PLB Payloads: 1. Space Radar Laboratory-1 (SRL-1) 2. Consortium for Materials Development in Space Complex Autonomous Payload-IV (CONCAP-IV) GAS (Getaway Special): 1. G-203, New Mexico State University 2. G-300, Matra Marconi Space 3. G-458, The Society of Japanese Aerospec Companies, Inc.	Crew Compartment Payloads: 1. Space Tissue Loss (STL) 2. Shutle Amateur Radio Experiment -II (SAREX-II) 3. Toughened Uni-Piece Fibrous Insulation (TUFI) 4. Visual Function Tester-4 (VFT-4) Special Payload Mission Kits: None
STS-65 Jul 8, 1994 Columbia KSC Mission Duration: 353h	Jul 23, 1994 KSC	Cdr: Robert D. Cabana Plt: James D. Halaell MS: Richard J. Hieb MS: Carl E. Walz MS: Leroy Chiao MS: Donald A. Thomas PS: Chiaki Naito-Mukai	Deployable Payloads: None Attached PLB Payloads: 1. International Microgravity Lab-2 (IML-2) a. Large Isothermal Furnace b. Electromagnetic Containerless Processing Facility c. Bubble, Drop and Particle Unit d. Critical Point Facility e. Space Acceleration Measurement System f. Quasi-Steady Acceleration Measurement g. Vibration Isolation Box Experiment System h. Advanced Protein Crystallization Facility i. Applied Research on Separation Methods Using Space Electrophoresis j. Free Flow Electrophoresis Unit k. Aquatic Animal Experiment Unit 1. Thermoelectric Incubator/Cell Culture Kit m. Biorack n. Slov Rotating Centifuge Microscope o. Spinal Changes in Microgravity p. Extended Duration Orbiter Medical Project	 q. Performance Assessment Workstation r. Biostack s. Real-Time Radiation Monitoring Device 2. Orbital Acceleration Research Experiment (OARE) CAS (Getaway Special): None Crew Comparitment Payloads: 1. Commercial Protein Crystal Growth (CPCG) 2. Shuftle Amateur Radio Experiment-II (SAREX-II) 3. Military Applications of Ship Tracks (MAST) Special Payload Mission Kits: 1. Air Force Maul Optical Site (AMOS)

Flight	Launch Date	Landing Date	Crew	Payloads	and Experiments
STS-64 Discovery Mission D	Sep 9, 1994 KSC uration: 262 hrs	EDW	Cdr: Richard N. Richards Ptt: L. Blaine Hammond MS: Jerry M. Linenger MS: Susan J. Helms MS: Carl J. Meade MS: Mark C. Lee	Deployable Payloads: 1. Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN 201) Attached PLB Payloads: 1. Lidar in Space Technology Experiment (LITE) 2. Robotic Operated Materials Processing System (ROMPS) 3. Shuttle Plume Impingement Flight Experiment (SPIFEX) GAS (Getaway Special): 1. G-178, Charge Coupled Device (CCD) 2. G-254, Utah State University; Spacepak 1-4 3. G-325, Norfolk Public Schools Science & Technology Advanced Research (NORSTAR) 4. G-417, Beijing Institute of Environmental Testing 5. G-453, The Society of Japanese Aerospace Companies (SJAC), Superconducting and Bubble Formation	 G454, The Society of Japanese Aerospace Companies (SJAC), Crystal Growth Experiments G456, The Society of Japanese Aerospace Companies (SJAC). Electrophoresis and Microgravity Tests G465, European Space Agency/ESTEC FTD G562, Canadian Space Agency, OUESTS-2 Crew Compariment Payloade Air Force Maui Optical Site (AMOS) Biological Research in Caristers (BRIC) Military Application of Ship Tracks (MAST) Radiation Monitoring Experiment-III (SMEX-II) Suttle Amateur Radio Experiment (ISCE) Sold Surface Combustion Experiment (SACE) Special Peyload Mission Kits: None
STS-68 Endeavou	Sep 30, 1994 r KSC uration: 269 hrs	Oct 11, 1994 EDW 46 mins 08 secs	Cdr Michael A. Baker: Pit Terrence W. Wikoutt MS: Steven L. Smith MS Daniel W. Bursch MS Peter J. K. Wisoff MS Thomas D. Jones	Deployable Payloads: None Attached PLB Payloads: 1. Space Radar Laboratory-2 (SRL-2) GAS (Getaway Special): 1. G-316, Student Space Shuttle Program (SSSP) 2. G-503, Microgravity & Cosmic Radiation Effects on Diatoms (MCRED) Concrete Curing in Microgravity (ConCIM) Root Growth in Space (RGIS) Microgravity Corrosion Experiment (COMET) 3. G-541, Study breakdown of a planar solid/liquid interface during crystal growth Special Payload Mission Kits: None	Crew Compartment Payloads 1. Commercial Protein Crystal Growth (CPCG) 2. Biological Research in Canisters (BRIC) 3. Chromosomes & Plant Cell Division in Space Experiment (CHROMEX) 4. Cosmic Radiation Effects and Activation Monitor (CREAN 5. Military Applications of Ship Tracks (MAST)

Flight Launc	h Date	Landing Date	Crew	Payloads :	and Experiments
STS-65 Feb. 2 Discovery KS		KSC	Ptt: Eileen M. Collens MS: Bernard A. Harris, Jr. MS: Michael C. Roale MS: Janice Voss MS: Vladimir Georgievich Titov	Deployable Payloads: 1. Shuttle Mir Rendezvous and Fly Around 2. SPARTAN 204 Science 3. Extravhicular Activities (EVA) Attached PLB Payloads: 1. SPACEHAB-3	2. Solid Surface Combustion Experiment (SSCE) 3. Ar Force Maui Optical Site (AMOS) GAS (Gateaway Special): None Special Payload Mission Kits: None
Endeavour	3, 1995 ion: 399		Cdr: Steven S Oswald Pt: William G. Gregory MS: John M Grunsfeld MS: Wendy B. Lawrence MS: Tamara E. Jerrigan MS: Samuel T. Durrance MS: Ronald Parise	Deployable Paloeds: None Attached PLB Payloads: 1. ASTRO 2 Spacelab 2. Ultraviolet Telescope of the Johns Hopkins Univ. (HUT) 3. Ultraviolet Imaging Telescope of NASA/GSFC (UT) 4. Photo-Polarimeter Telescope of the Univ of Wisconsin (WUPPE)	GAS (Getaway Special): 1. ASTRO-2 Getaway Special Canisters Crew Compartment Payloads: 1. Commercial MDA ITA Experiments (CMIX) 2. Protein Crystal Growth (PCG) Experiments 3. Middeck Active Control Experiment (MACE) 4. Shuttle Amateur Radio Experiment (SAREX-II)
STS-71 June Atlantis	ļ	-	Cdr: Robert L. Gibson Ph: Charles J. Precourt MS: Ellen S. Baker MS: Gregory J. Harbaugh MS: Bonnie Dunbar Cdr: Anatoly Y. Solovyev FE: Nikolal M. Budarin Cdr:/Vladmir Dezhurov FE: Gennady Strekalov Norm Thagard	Deployable Payloads: None Attached PLB Payloads: 1. Shuttle-Mir Rendezvous and Docking 2. Orbiter Docking System Crew Compartment Payloads 1. Shuttle-MiR Science 2. Protein Crystal Growth Experiment 3. Protocol Activities 4. IMAX 5. Shuttle Amateur Radio Experiment-II (SAREX)	GAS(Getaway Specials): None Special Payload Mission Kits: None
Mission Dura	tion: 235	hrs 23 mins 09 sec	3		

Flight Leunch Date L	anding Date	Craw	Payloads	and Experiments
STS-70 July 13, 1995 Discovery KSC Mission Duration: 214 hrs	July 22, 1995 KSC 21 mins 09 seca	Cdr: Terren T. Hendricks Pit: Kevin R. Kregel MS: Mary E. Weber MS: Donald A. Thomas MS: Nancy J. Curie	Deployable Payloads: 1. Tracking and Data Relay Satellite (TDRS-7) 2. Inertial Upper Stage (IUS) Attached PLB Payloads: 1. Biological Research in Canisters (BRIC) 2. Bioreactor Development Systems (BDS) 3. Commercial Protein Crystal Growth (CPCG) 4. National Institues of Health R-2 (NIR R-2) 5. Space Tissue Loss-B (STL-B) 6. Midcourse Space Experiment (MSX) GAS (Getaway Special): None	Crew Compartment Payloads: 1. Hand-Held, Earth-Oriented, Cooperative, Real-Time, Use Friendly, Location Targeting and Environmental Systems (HERCULES) 2. Microencapsulation in Space-B (MIS-B) 3. Military Application of Ship Tracks (MAST) 4. Radiation Monitoring Equipment-III (RME-III) 5. Shuttle Amateur Radio Equipment (SAREX) 6. Window Experiment (WINDEX) 7. Visual Function Tester-4 m(VFT-4) Special Payload Mission Kits: None
STS-69 Sept. 7, 1995 Endeevour KSC	KSC P	Cdr: David M. Walker Pit: Kenneth D. Cockrell LC: Jarnes S. Voss MS Jim Newman MS Michael L. Gernhardt	Deployable Payloads: 1. Wake Shield Facility-2 (WSF-2) 2. SPARTAN 201-03 Attached PLB Payloads 1. International Extreme Ultraviolet Hitchhiker (IEU) 2. Solar Extreme Ultraviolet Hitchhiker (SEH) 3. Capillary Pumped Loop-1/Gas Bridge Assembly (CAPL-2/(GBA) GAS (Gateway Special): 1. G-515, European Space Agency, Noordwijk, The Nethertands Control Flexibility Interaction Experiment 2. G-445, Miltcreek Township School District, Erie, PA McDowell High School, LORD Corp. 3. G-702, The Microgravity Smoldering Combustion Experiment (MSC) NASA Lewis Research Center 4. G-728, The Joint Damping Experiment (JDX) NASA Langley Research Center	Crew Compartment Payloads: 1. Space Tissue Loss/National Institutes of Health-Cells (STL/NH-C) 2. Commercial Generic Bioprocessing Apparatus-7 (CCBA) 3. Biological Research In Canister (BRIC 4. Electrolysis Performance Improvement Concept Study (EPICS) 5. Commercial MDA ITA Experiments (CMIX)
Mission Duration: 260 hrs : 3-52	29 mins 56 ses			Special Payload Mission Kits: None

_

Flight Launch Date	Landing Date	Crew	Payloads	and Experiments
STS-73 Oct. 20, 1995 Columbia KSC Mission Duration: 381 hrs 5:	Nov. 5, 1995 KSC 3 mins 17 secs	Cdr: Kenneth D. Bowersox Pt: Kent Rominger MS: Kathryn Thornton MS: Catherine Coleman MS: Michael Lopez-Alegria PS: Fred Lesile PS: Albert Sacco	Deployable Payloads: None Attached PLB Payloads: 1. United States Microgravity Laboratory-2 (USML-2) a. Surface Tension Driven Convection Experiment b. Drop Dynamics Experiment c. Geophysical Fluid Flow Cell Experiment d. Crystal Growth Furnace e. Protein Crystal Growth Experiments 1. Astroculture Facility and Experiment 2. Orbital Acceleration Research Experiment (OARE) GAS (Getaway Special): None	Crew Compartment Psyloads: 1. Education Experiments Special Psyload Mission Kits: None
STS-74 Nov. 12, 1995 Atlantis KSC Mission Duration: 196 hre 3	Nov. 20, 1995 KSC 11 mins 42 seca	Cdr: Ken Carneron Ph: Jim Halsell MS: Chris Hadfield MS: Jerry Ross MS: William McArthur	Deployable Payloada: None Attached PLB Payloada: 1. Docking Module w/Solar Arrays 2. Orbital Docking System 3. IMAX Cargo Bay Camera 4. GLOW-4. (GPP) 5. Photogrammetric Appeodage Structural Dynamics Experiment (PASDE) 6. Shuttle Gio Experiment (GLO-4)	GAS (Gatesway Special: None Crew Compartment Payloads: 1. Shuttle Amateur Radio Experiment-II (SAREX-II) 2. Detailed Test/Supplementary Objectives (DTOs/DSOs) Special Payload Mission Kits: None

Flight Launch Date	Landing Date	Crew	Payload	s and Experiments
Mission Duration: 214 hrs	Jan 20, 1996 KSC	Cdr: Brian Duffy Pit: Brent W. Jett MS: Leroy Chiao MS: Daniel T. Barry MS: Winston E. Scott MS: Koichi Wekata	Deployable Payloads: 1. Deployed and retrieved SPARTAN 206 Flyer 2. Retreived Japanese Space Flyer Unit Attached PLB Payloads 1. Shuttle Solar Backscatter Untraviolet (SSBUV-8) 2. Shuttle Laser Altimeter Payload (SLA-1/GAS(5)) GAS (Getaway Special): 1. G-342, USAF Academy FLEXBEAM-2 2. G-459, Protein Crystal Growth Experiment and Ballast Can with Sample Return Experiment	Crew Compartment Payloads: 1. Space Tissue Loss (STL/NIH-C) 2. Pool Boiling Experiment (PBE) 3. Thermal Energy Storage (STE-2) Special Payload Mission Kits: None
STS-75 Feb. 22, 1996 Columbia KSC Mission Duration: 377 hrs		Cdr: Andrew M. Alien Pft: Scott J. Horowitz -CDR: Franklin Chang-Diaz MS: Jeffrey A. Hoffman MS: Claude Nicollier MS: Maurizio Cheli PS: Umberto Guidoni	Deployable Payloads: None Attached PLB Payloads: 1. Tethered Satelline System Reflight (TSS-1R) 2. United States Microgravity Payload (USMP-3) a. Advanced Automated Directional Solidification Furnace (AADSF) b. Space Acceleration Measurement System (SAMS) c. Orbital Accertation Research Experiment (OARE) d. Isothermal Dendritic Growth Experimet. (IDGE)	GAS (Gatesway Special: None Crew Compartment Payloads: Special Payload Mission Kits: None

Mission Duration: 221 hrs 15 mins 52 STS-77 May 19, 1996 May 29,	1996 Cdr: Kevin P. Chilton B Pt: Richard A Seaffoss MS: Linda Godwin MS: Ronald Sega MS: Michael R Clifford MS: Shannon Lucid 3 secs 1996 Cdr: John H Casper	Deployable Payloads: 1. MIR Environmental Effects Payload Attached PLB Payloads: 1. Orbiter Docking System 2. SPACEHAB Module a. Russian Logistics b. EVA Tools c. American Logistics d. Science or Technology Exceriments e. Risk Mitigationa Experiments GAS (Getaway Special): 1. Trapped Ions inSpace (TRIS) Deployable Payloads: None	Crew Compertment Payloads: 1. Shuttle Amateur Radio Experiment(SAREX) 2. KidSat Special Payload Mission Kits: None GAS (Gateaway Special: None
Mission Duration: 240 hrs 39 mi	MS: Daniel W Bursch MS: Mario Runco, Jr. MS: Marc Garmeau MS: Andrew S.W. Thomas	SPARTAN 207/1AE Passive Aerodynamically Stablized Magnetically Damped Satellite (PAMS) Satellite Test Unit (STU) Attached PLB Payloads: SPACEHAB Module /Experiments Advnaced Seperation Process for Organic Materials Commercial Generic Bioprocessing Apparatus AlMUNE-3 Commercial Protein Crystal Growth Space Experiment Faculity TEAMS-01	1. CAG-056: Gamma-ray Astrophysics Mission 2. G-142, G-144: Autonomous Material SG Experiment 3. Detailed Test/Supplementary Objectives (DTOs/DSOs) 4. G-163 Diffusion Coefficient Measurment Facility Special Payload Mission Kits: None

Flight Laur			Crew	Payloads	and Experiments
Columbia	20, 1996 KSC on: 405 hrs	Jul. 7, 1996 KSC 9 47 mins 45 secs	Cdr: Terence T. Henricks Pit: Kevin R. Kregel MS: Susan J. Heims MS: Richard M. Linnehan MS: Charles E. Brady, Jr. PS: Jean-Jacques Faviacques PS: Robert Brent Thirsk	Deployable Payloads: None Attached PLB Payloads: 1. Life and Microgravity Spacelab (LMS) a. Musculoskeletal Investigations b. Metabolic Investigations c. Pulmonary Investigation d. Human Behavior and Performance Investigations e. Neuroscience Investigations f. Space Biology Experiments g. Bibble, Drop and Particle Unit h. Advanced Gradient Heating Facility i. Advanced Friedein Crystallization Facility j. Accelermeters	GAS (Getaway Special): None Crew Compartment Payloads: 1. Shuttle Amateur Radio Experiment-II Special Payload Mission Kits: None
	N N	IIR-22, Desent Only:	Cdr: William F. Readdy PR: Terence W. Wilcutt MS: Thomas D. Akers MS: Jerome Apt MS: Carl E. Walz MS: John Blaha MS: Shannon Lucid Cdr: Valery Korzum FE: Alexandrer Kaleri	Deployable Payloads: None Attached PLB Payloads: 1. Spacehab Module 2. Orbital Docking System 3. IMAX Cargo Bay Camera	GAS (Gateaway Special: None Crew Compartment Payloads: 1. Extreme Temperature Translation Furnace (ETTF) 2. Commercial Protein Crystal Growth (CPCG) Experiments 3. Mechanics of Granular Materials 4. Shuttle Amateur Radio Experiment (SAREX)
Mission Duratio	on: 243 hrs	18 mins 26 secs			Special Payload Mission Kits: None
3-56			· · · · · · · · · · · · · · · · · · ·		<u> </u>

Flight Launch Date	Landing Date	Crew	Payloads	and Experiments
STS-80 Nov 19, 1996 Columbia KSC Mission Duration: 423 hrs	KSC	Cdr: Kenneth D. Cockrell Ptt: Kent V. Rominger MS: Tamara E. Jernigan MS: Thomas D. Jones MS: F. Story Musgrave	Deployable Payloads: 1. Orbiting and Retrievable Far and Extreme Ultraviolet Spectrograph-Shuttle Pallet Sattelite II(ORFEUS-SPAS II) 2. Wake Shield Facility-3 (WSF-3) Attached PLB Payloads: 1. Visualization in an experimental Water Capitary Pumped Loop (VIEW-CPL) GAS (Getaway Special): 1. Space Experiment Module (SEM)	Crew Compartment Payloads: 1. NIH-R4 2. CCM-A 3. Biological Research in Canister (BRIC)) 4. Commercial MDA ITA Experiment (CMIX-5) Speciel Payloed Mission Kits: None
				De

The Planets

Hercury Verue Farth H			Jupte			Saure	Uranu	⁴ ⁶	pure Puro
· · · · · · · · · · · · · · · · · · ·	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune	Pluto
Mean Distance from Sun Millions of Kilometers Millions of Miles	57.9 36	108.2	149.6 93	227.9 141.6	778.3 483.6	1,429	2,875 1,786	4,504	5,900 3,666
Period of Revolution (in Earth time)	87.97 days	224.7 days	365.26 days	686.98 days	11.86 years	29.46 years	84.07 years	164.82 years	248.6 years
Period of Rotation (in Earth time)	58.65 days	243.01 days, Retrograde		24 hrs 37 mins	9 hrs 56 mins	10 hrs 40 mins	17 hrs 14 mins	16 hrs 6 mins	6.39 days, Retrograde
Inclination of Axis (Degrees)	0.0	177.3	23.5	25.2	3.08	26.7	97.9	29.6	122
Inclination of Orbit to Ecliptic (Deg)	7.0	3.39	0.0	1.85	1.31	2.49	0.77	1.77	17.15
Eccentricity (Degrees)	0.206	0.007	0.017	0.093	0.048	0.056	0.046	0.010	0.248
Equatorial Diameter Kilometers Miles	4,878 3,031	12,104 7,521	12,755 7,926	6,790 4,219	142,796 88,729	120,660 74,975	51,118 31,763	49,528 30,775	2,300 Appx. 1,429 Appx.
Atmosphere	Essentially None	Carbon Dioxide	Nitrogen, Oxygen	Carbon Dioxide	Hydrogen, Helium	Hydrogen, Helium	Hydrogen, Helium	Hydrogen, Helium	Methane
Satellites	None	None	1	2	16	18	15	8	1
Rings	None	None	None	None	1	Thousands	11	5	Probably None

Our automated spacecraft have traveled to the Moon and to all the planets beyond our world except Pluto; they have observed moons as large as small planets, flown by comets, and sampled the solar environment. The knowledge gained from our journeys through the solar system has reddinied traditional Earth sciences like geology and meteorology and spawned an entirely new discipline called comparative planetology. By studying the geology of planets, moons, asteroids, and comparing differences and similarities, we are learning more about the origin and history of these bodies and the solar system as a whole. We are also gaining insight into Earth's complex weather systems. By seeing how weather is shaped on other worlds and by investigating the Sun's activity and its influence through the solar system, we can better understand climatic conditions and processes on Earth.

The Sur

Many spacecraft have explored the Sun's environment, but none have gotten any closer to its surface than approximately two-thirds of the distance from Earth to the Sun. Pioneers 5-11, the Pioneer Venus Orbiter, Voyagers 1 and 2, and other spacecraft have all sampled the solar environment. The Ulysses spacecraft, launched Oc 6, 1990, is a joint solar mission of NASA and the Europeen Space Agency. After using Jupiter's gravity to change its trajectory. Ulysses will fly over the Sun's polar regions during 1994 and 1995 and will perform a wide range of studies using nine onboard scientific instruments.

The Sun dwarfs the other bodies in the solar system, representing approximately 99.86 percent of all the mass in the solar system. All of the planets, moons, asteroids, comets, dust, and gas add up to only about 0.14 percent. This 0.14 percent represents the material left over from the Sun's formation. One hundred and nine Earths would be required to fit across the Sun's disk, and its interjor could hold 700.000 Earths.

As a star, the Sun generates energy by the process of fusion. The temperature at the Sun's core is 15 million degrees Celsius (27 million degrees Fahrenheit), and the pressure there is 340 billion times Earth's air pressure at see level. The Sun's surface temperature of 5,500 degrees Celsius (10,000 degrees Fahrenheit) seems almost chilly compared to its core temperature. At the solar core, hydrogen can fuse into helium, producing energy. The Sun produces a strong magnetic field and streams of charged particles, extending far beyond the planets.

The Sun appears to have been active for 4.6 billion years and has enough fuel for another 5 billion years or so. At the end of its life, the Sun will start to fuse helium into heavier elements and begin to swell up, ultimately growing so large that it will swallow Earth. After a billion years as a "red giant," it will suddenly collapse into a "white dwarf" -- the final end product of a star like ours. It may take a trillion years to cool off completely.

Mercury

Obtaining the first close-up views of Mercury was the primary objective of the Mariner 10 spacecraft, launched Nov 3, 1973. After a journey of nearly 5 months, including a flyby of Venus, the spacecraft passed within 703 km (437 mi) of the solar system's innermost planet on Mar 29, 1974. Until Mariner 10, little was known about Mercury. Even the best telescopic views from Earth showed Mercury as an indistinct object lacking any surface detail. The planet is so close to the Sun that it is usually lost in solar glare. When the planet is visible on Earth's horizon just after sunset or before dawn, it is obscured by the haze and dust in our atmosphere. Only radar telescopes gave any hint of Mercury's surface conditions prior to the voyage of Mariner 10.

Mariner 10 photographs revealed an ancient, heavily cratered surface, closely resembling our Moon. The pictures also showed high citifs crisscrossing the planet, apparently created when Mercury's interior cooled and shrank, buckling the planet's crust. The clifts are as high as 3 km (2 m) and as long as 500 km (310 m).

Instruments on Mariner 10 discovered that Mercury has a weak magnetic field and a trace of atmosphere -- a trillionth the density of Earth's atmosphere and composed chiefly of argon, neon, and helium. When the planet's orbit takes it closest to the Sun, surface temperatures range from 467 degrees Celsius (872 degrees Fahrenheit) on Mercury's sunfit side to -183 degrees Celsius (-288 degrees Fahrenheit) on the dark side. This range in surface temperature is the largest for a single body in the solar system. Mercury literally bakes and freezes at the same time.

Days and nights are long on Mercury. The combination of a slow rotation relative to the stars (59 Earth days) and a rapid revolution around the Sun (88 Earth days) means that one Mercury solar day takes 176 Earth days or two Mercury years, the time it takes Mercury to complete two orbits around the Sun.

Mercury appears to have a crust of light silicate rock like that of Earth. Scientists believe Mercury has a heavy iron-rich core making up slightly less than half of its volume. That would make Mercury's core larger, proportionally, than the Moon's core or those of any of the planets.

After the initial Mercury encounter, Mariner 10 made two additional flybys -- on Sep 21, 1974, and Mar 16, 1975 -- before control gas used to orient the spacecraft was exhausted and the mission was concluded. Each flyby took place at the same local Mercury time when the identical half of the planet was illuminated; as a result, we still have not seen one-half of the planet's surface.

Venus

Veiled by dense cloud cover, Venus -- our nearest planetary neighbor -- was the first planet to be explored. The Mariner 2 spacecraft, launched Aug 27, 1962, was the first of more than a dozen successful American and Soviet missions to study the mysterious planet. On December 14, 1962, Mariner 2 passed within 34,839 kilometers (21,648 miles) of Venus and became the first spacecraft to scan another planet; onboard instruments measured Venus for 42 minutes. Mariner 5, launched in June 1967, flew much closer to the planet. Passing within 4,094 kilometers (2,544 miles) of Venus on the second American fibyly, Mariner 5's instruments measured the planet's magnetic field, ionosphere, radiation belts, and temperatures. On its way to Mercury, Mariner 10 flew by Venus and transmitted ultraviolet pictures to Earth showing cloud circulation patterns in the Venusian atmosphere.

On Dec 4, 1978, the Pioneer Venus Orbiter became the first spacecraft to orbit the planet. Five days later, the five separate components making up a second spacecraft, the Pioneer Venus Multiprobe, entered the Venusian atmosphere at different locations above the planet. The four small probes and the main body radioed atmospheric data back to Earth during their descent toward the surface. Although designed to examine the atmosphere, one of the probes survived its impact with the surface and continued to transmit data for another hour.

Venus resembles Earth in size, physical composition, and density more closely than any other known planet. However, significant differences have been discovered. For example, Venus' rotation (west to east) is retrograde (backward) compared to the east-to-west spin of Earth and most of the other planets. Approximately 96.5 percent of Venus' atmosphere (95 times as dense as Earth's) is carbon dioxide. The principal constituent of Earth's atmosphere is nitrogen. Venus' atmosphere acts like a greenhouse, permitting solar radiation to reach the surface but trapping the heat that would ordinarily be radiated back into space. As a result, the planet's average surface temperature is 482 degrees Celsius (900 degrees Fahrenheit), hot enough to melt lead.

A radio altimeter on the Pioneer Venus Orbiter provided the first means of seeing through the planet's dense cloud cover and determining surface features over almost the entire planet. NASA's Magellan spacecraft, launched on May 5, 1989, has orbited Venus since August 10, 1990. The spacecraft used radar-mapping techniques to provide ultrahigh-resolution images of the surface.

Magelian has revealed a landscape dominated by volcanic features, faults, and impact craters. Hugh areas of the surface show evidence of multiple periods of lavs flooding with flows lying on top of previous ones. An elevated region named lahter Terra is a lavs-filed basin as large as the United States. At one end of this plateau sits Maxwell Montes, a mountain the size of Mount Everest. Scarring the mountain's flank is a 100-km (62-mi) wide .2.5-km (1.5 m) deep impact crater named Cleopatra. (Almost all features on Venus are named for women: Maxwell Montes, Alpha Regio, and Beta Regio are the exceptions.) Craters survive on Venus for perhaps 400 million years because there is no water and very little wind ercsion.

The successful Magelian mission ended on October 12, 1994, when the spacecraft was commanded to drop lower into the fringes of the Venusian atmosphere during an aerodynamic experiment and it burned up, as expected. Magelian mapped 98 percent of the planet's surface with radar and compiled a high-resolution gravity map of 95 percent of the planet.

Extensive fault-line networks cover the planet, probably the result of the same crustal flexing that produces plate tectonics on Earth. But on Venus the surface temperature is sufficient to weaken the rock, which cracks just about everywhere, preventing the formation of major plates and large earthquake faults like the San Andreas Fault in California.

 Venue' predominant weather pattern is a high-attitude, high-speed circulation of douds that contais suffur, cald. At speeds reaching as high as 360 km (223 mi) per hour, the clouds circle the plant of the start, and sets as formality clouds above the start. Wender, and the start have the start are average as implified laboratory for the study of our weather. Earth As viewed from space, Earth's distinguishing characteristics are its blue waters, brown and green hand masses, and white douds. We are enveloped by an ocean of air consisting of 78 percent nitrogon, 21 percent oxygen, and 1 percent of the oxygen, and 1 percent of the source of the source of the hard/or clouds in the sum of the distory of the source source in the sum of the distory of the source source in the sum of the distory of the source source in the sum of the distory of the source source in the sum of the distory of the source source in the sum of the distory of the source source in the sum of the distory of the source source in the source is the so			
	suffuric scid. At speeds reaching as high as 360 km (225 mi) per hour, the clouds circle the planet in only 4 Earth days. The circulation is in the same direction west to east was Venus' slow obtain of 243 Earth days, whereas Earth's winds blow in both directions west to east and east o west in abx alternating bands. Venus' atmosphere serves as a simplified laboratory for the study of our weather. Earth As viewed from space, Earth's distinguishing characteristics are its blue waters, brown and green land masses, and white clouds. We are enveloped by an ocean of air consisting of 78 percent nitrogen, 21 percent oxygen, and 1 percent other consitiuents. The only planet in the solar system known to harbor life, Earth orbits the Sun at an average distance of 150 million km (93 million mi). Earth is the third planet from the Sun at an average distance of 150 million km (93 million mi). Earth is the third planet from the Sun at an average distance of 150 million km (93 million mi). Earth is the third planet from the Sun at an average distance of 150 million km (93 million mi). Earth is the third planet from the Sun at the fifth largest in the solar system, with a diameter a few hundred kilometers larger than that of Venus. Our planet's rapid spin and molten nickel-iron core give rise to an extensive magnetic field, which, along with the atmosphere, shields us from meetry all of the harmful radiation coming from the Sun and other stars. Earth's atmosphere protects us from metors as well, most of which burn up before they can strike the surface. Active geological processes have left no evidence of the petting Earth almost certainly received soon after if formed about 4.6 billion years ago. From our journeys into space, we have learned much about our home planet. The first American satelitie Explorer 1 launched Jan 31, 1959, discovered an intense radiation zone, called the Van Allen radiation belts, surrounding Earth. Other research satelities revealed that oury planet* magnet	atmosphere. When charged particles from the solar wind become trapped in Earth's magnetic field, they collide with air molecules above our planet's magnetic poles. These air molecules then begin to glow and are known as the auroras or the northern and southern lights. Satellites 36,000km (22,000 mi) out in space play a major role in daily local weather forecasting. These watchful electronic eyes warn us of dangerous storms. Continuous global monitoring provides a vast amount of useful data and contributes to a better understanding of Earth's complex weather systems. The TOPEX/POSEIDON satellite, a joint NASA/French mission and part of the Missior to Planet Earth, is providing information of unprecedented accuracy about global ocean circulation. Radar attimeter measurements of sea height level in the mid Pacific, accurate within 5 cm. (2 m.), demonstrate the presence of a strong El Nino current in the 1994-59 winter. This has great importance for long range weather forecasting. Another element of the Mission to Planet Earth, is total Ozone Monitoring Satellite (TOMS), stopped transmitting in Dec. 94 after exceeding its design lifetime by a year. This joint NASA/Russin effort provide essential data on ozone density and global distributioin for the past 3 years. TOMS data are showing us how human activities can alter Earth's global environment. Two more TOMS satellites are to be flown by February, 1996. The Moon The Moon is Earth's single natural satellite. The first human footsteps on an alien world were made by American astronauts on the dusty surface of our airless, lifeless companion. In preparation for the Apolio expeditions, NASA dispetched the automated Ranger, Surveyor, and Lunar Orbiter spacecraft to study the Moon between 1964 and 1968. NASA's Apolio program left a large legacy of lunar materials and data. Six 2-astronaut crews landed on and explored the lunar surface between 1969 and 1972, carrying beck a collection of rocks and soil weighing a total of 382 km (642 lb) and consisting of more than 2.000	

Rocks collected from the lunar highlands date to about 4.0-4.3 billion years old. The first few million years of the Moon's existence were so violent that few traces of this period remain. As a molten outer layer gradually cooled and solidified into different kinds of rock, the Moon was bombarded by huge asteroids and smaller objects. Some of the asteroids were as large as Rhode island or Delaware, and their collisions with the Moon created basins hundreds of kilometers across.

This catastrophic bombardment tapered off approximately 4 billion years ago, leaving the lunar highlands covered with huge, overtapping craters and a deep layer of shattered and broken rock. Heat produced by the decay of radioactive elements began to melt the interior at depths of about 200 km (125 m) below the surface. For the next 700 million years, lava rose from inside the Moon and gradually spread out over the surface, flooding the large impact besins to form the dark areas that Galileo Galilei, an astronomer of the Italian Renaissance, called maria, meaning seas. As far as we can tell, there has been no significant vokanic activity on the Moon for more than 3 billion years. Since then, the lunar surface has been altered only by micrometeorites, atomic particles from the Sun and stars, rare impacts of large meteorites, and spacecraft and astronauts.

The origin of the Moon is still a mystery. Four theories attempt an explanation: The Moon formed near Earth as a separate body; it was torn from Earth, it formed somewhere else and was captured by our planet's gravity, or it was the result of a collision between Earth and an asteroid about the size of Mars. The last theory has some good support but is far from certain.

Mare

Mars has long been considered the solar system's prime candidate for harboring extraterrestrial life. Astronomers studying the red planet through telescopes saw what appeared to be straight lines criss-crossing its surface. These observations, later determined to be optical illusions, led to the popular notion that intelligent beings had constructed a system of irrigation canals. Another reason for scientists to expect life on Mars was the apparent seasonal color changes on the planet's surface. This phenomenon led to speculation that conditions might support vegetation during the warmer months and cause plant life to become dormant during colder periods.

B-62

Seven American missions to Mars have been carried out. Four Mariner spacecraft, three flying by the planet and one placed into martian orbit, surveyed the planet extensively before the Viking Orbiters and Landers arrived. Mariner 4, launched in late 1964, flew past Mars on Jul 14, 1965, within 9,848 km (6,118 mi) of the surface. Transmitting to Earth 22 close-up platures of the planet, the spacecraft found many craters and naturally occurring channels but no evidence of artificial canals or flowing water. The Mariners 6 and 7 flybys, during the summer of 1969, returned 201 platures. Mariners 4, 6, and 7 showed a diversity of surface conditions as well as a thin, cold, dry atmosphere of carbon dioxide.

On May 30, 1971, the Mariner 9 Orbiter was launched to make a year-long study of the martian surface. The spacecraft arrived 5-1/2 months after liftoff, only to find Mars in the midst of a planet-wide dust storm that made surface photography impossible for several weeks. After the storm cleared, Mariner 9 began returning the first of 7,329 pictures that revealed previously unknown martian features, including evidence that large amounts of water once flowed across the surface, etching rev valleys and flood plains.

In Aug and Sep 1975, the Viking 1 and 2 spacecraft, each consisting of an orbiter and a lander, were leunched. The mission was designed to answer several questions about the red planet, including, Is there life there? Nobody expected the spacecraft to spot martian cities, but it was hoped that the biology experiments would at least find evidence of primitive life, past or present.

Viking Lander 1 became the first spacecraft to successfully touch down on another planet when it landed on ul 20, 1976. Photographs sent back from Chryse Plantia ("Plains of Gold") showed a bleak, rusty-red landscape. Panoramic images revealed a rolling plain, littered with rocks and marked by rippled sand dunes. Fine red dust from the martian soil gives the sky a salmon hue. When Viking Lander 2 touched down on Utopia Plantita on Sep 3, 1976, it viewed a more rolling landscape, one without visible dunes.

The results sent back by the laboratory on each Viking Lander were inconclusive. Small samples of the red martian soil were tested in three different experiments designed to detect biological processes. While some of the test results seemed to indicate biological activity, later analysis confirmed that this activity was inorganic in nature and related to the planet's soil chemistry. Is there life on Mars? No one knows for sure, but the Viking mission found no evidence that organic molecules exist there.

The Viking Landers became weather stations, recording wind velocity and direction as well as atmospheric temperature and pressure. The highest temperature recorded by either spacecraft was -14 degrees Celsius (7 degrees Fahrenheit) at the Viking Lander 1 site in midsummer. The lowest temperature, -120 degrees Celsius (-184 degrees Fahrenheit), was recorded in the more northerly Viking Lander 2 site during winter. Near-hurricane wind speeds were measured at the two martian weather stations during global dust storms, but because the atmosphere is so thin, wind force is minimal. Viking Lander 2 photographed light patches of frost, probably water-ice, during its second winter on the planet.

The martian atmosphere, like that of Venus, is primarily carbon dioxide. Nitrogen and oxygen are present only in small percentages. Martian air contains only about 1/1,000 as much water as our air, but this small amount can condense out, forming clouds that hide high in the atmosphere or swirl around the slopes of towering volcances. Patches of early morning fog can form in valleys. There is evidence that in the past a denser martian atmosphere may have allowed water to flow on the planet. Physical features closely resembling shorelines, gorges, riverbeds, and islands suggest that great rivers once marked the planet.

Mars has two moons, Phobos and Deimos. They are small and irregularly shaped and possess ancient, cratered surfaces. It is possible the moons were originally asteroids that ventured too close to Mars and were captured by its gravity. The Viking Orbiters and Landers exceeded their design lifetimes of 120 and 90 days, respectively. The first to fail was Viking Orbiter 2, which stopped operating on Jul 24, 1978, when a leak depleted flat attitude-control gas. Viking Urbiter 1 quit on Aug 7, 1980, when it was shut down due to battery degeneration. Viking Orbiter 1 quit on Aug 7, 1980, when the last of its attitude-control gas was used up. Viking Lander 1 ceased functioning on Nov 13, 1983 Despite the inconclusive results of the Viking biology experiments, we know more about Mars than any other planet except Earth. The Mars Observer mission, launched on Sept. 25, 1992, lost contact with Earth on April 21, 1993, just 3 days before it was to enter orbit around Mars.

NASA will continue to explore Mars, which a new exploration strategey called the Mars Surveyor program, calls for start of development of a small orbiter that will be launched in November 1996 to study the surface of the red planet.

The Mars Surveyor orbiter will lay the foundation for a series of missions to Mars in a decadelong program of Mars exploration. The missions will take advantage of launch opportunities about every 2 years as Mars comes into alignment with Earth.

The orbiter planned for launch in 1998 would be even smaller than the initial Mars Surveyor orbiter and carry the remainder of the Mars Observer science instruments. It would act as a communications relay satellite for a companion lander, launched the same year, and other landers in the future, such as the Russian Mars '96 lander. The U.S. Pathfinder lander, set to land on Mars in 1997, will operate independently of the Mars orbiter.

Asteroids

The solar system is populated by thousands of small planetesimals called asteroids that orbit the Sun in a broad belt between Mars and Jupiter. Some of these are of rocky composition, others are mainly iron and nickel; they are fragments and rocky splinters generated by the same processes that built the planets some four and a half billion years ago. Metallic asteriods are hought to be fragments of the central cores of small short-lived planets that were broken up soon

after they formed by massive collisions with other similar objects; some of the rocky splinters may be pieces of the outer layers of such exploded planets while others could be primitive planet-building materials accumulated into rocks but that was never used in planet building

The largest asteriod is called 1 Ceres (all asteriods have a number in their name) and is only 770km (480 mi) across; much smaller than the Moon. Most of the thousands of asteriods that are known are much smaller; in the 1 to 10 km size range. Innumerable, still small, fragments frequently collide with the Earth and, as they burn-up in the atmosphere, causing meteor trails. Some of the larger fragments reach the ground intact and become part of the meteorite collections in our museums. A few large asteriod collisions are recorded on the Earth's surface as craters. One of the best examples is the Baringer Meteor Crater near Winslow, Arizona. Some of the best preserved meteorites are found on the ice cap of Antarctica; however, not all of these come from asteriods, some may be debris from comets, and some pieces are thought to have originated on the surface of Mars.

The Galileo spacecraft passed twice through the asteriod belt on its six year journey from the Earth to Jupier. On each occasion it visited an asterioid and made scientific measurements impossible from the Earth. On October 29, 1991, Galileo encountered 951 Gaspra at a distance of 1600 km to reveal a conical shaped, scared and fractured, rock some 18 km long with a lightly cratered landscape, almost two years later, on August 28, 1993, Galileo passed by another larger asteroid, 243 da, at a distance of 2400 km to reveal an object of even more bizarre shape. In addition the data from the spacecraft showed that this asteroid has a satellife in orbit around it which has been named Dactyl. Ida itself is irregular in shape, some 56 km long and 24 km across its surface is covered by a deep layer of rubble on which many craters, fractures and boulders are superposed. Before the Galileo encounters it was expected that Ida, which its relatively young, that is, if formed as the result of a recent collision, while Gaspra was expected to be relatively journg. The Gasting crater distributions was to turn these ideas entirely around. Ida's densely craterd surface proved it to be very old, perhaps 1-2 billion years. Gaspra's lightly crated surface showed it to have been formed relatively recently, a mere 200 million years ago

NASA will send the Near Earth Asteriod Rendevous (NEAR) spacecraft to orbit the asteriod 433 EROS in January 1999. The density, rotation, composition, and topography of the silicate rock asteriod will be measured...

Jupiter

Beyond Mars and the asteroid belt, in the outer regions of our solar system, lie the giant planels of Jupiter, Saturn, Uranus and Neptune. In 1972, NASA sent the first of four spacecraft to conduct the initial surveys of these colossal works of gas and their moons of ice and rock.

Pioneer 10, launched in March 1972, was the first spacecraft to penetrate the asteroid belt and travel to the outer regions of the solar system. In December 1973, it returned the first close-up images of Jupter, flying within 132,252 km (82,178 mi) of the planet's banded cloud tops. Pioneer 11 followed a year later. Voyagers 1 and 2, launched in the summer of 1977, returned spectacular photographs of Jupiter and its family of satelites during flybys in 1979. These travelers found Jupiter to be a whiring ball of liquid hydrogen and helium, looped with a colorful atmosphere composed mostly of gaseous hydrogen and helium. Ammonia ice crystals form white Jovian clouds. Sulfur compounds (and perhaps phosphorus) may produce the brown and orange hues that characterize Jupiter's atmosphere.

It is likely that methane, ammonia, water and other gases react to form organic molecules in the regions between the planet's frigid cloud tops and the warmer hydrogen ocean lying below. Because of Jupiter's atmospheric dynamics, however, these organic compounds, if they exist, are probably short-lived.

The Great Red Spot has been observed for centuries through telescopes on Earth. This hurricane-like storm in Jupiter's atmosphere is more than twice the size of our planet. As a highpressure region, the Great Red Spot spins in a direction opposite to that of low-pressure storms on Jupiter; it is surrounded by swirling currents that rotate around the spot and are sometimes consumed by it. The Great Red Spot might be a million years old.

Our spacecraft detected lightning in Jupiter's upper atmosphere and observed auroral emissions similar to Earth's northern lights at the Jovian polar regions. Voyager 1 returned the first images of a faint, narrow ring encicing Jupiter. Largest of the solar system's planets, Jupiter rotates at a dizzying pace, once every 9 hours 55 minutes 30 seconds. The massive planet takes almost 12 Earth years to complete a journey around the Sun. With 16 known moons, Jupiter is something of a miniature solar system.

A new mission to Jupiter, the Galileo Project, is underway. After a 6-year cruise that so far has taken the Galileo Orbiter once past Venus, twice past Earth and the Moon, and once past two asteroids, the spacecraft will drop an atmospheric probe into Jupiter's cloud layers and relay data back to Earth. The Galileo Orbiter will spend 2 years circling the planet and flying close to Jupiter's large moons, exploring in detail what the two Pioneers and two Voyagers revealed.

"The year 1994 was one of great excitement in space science. In July some 20 fragments of the comet Shoemaker-Levy 9 crashed into Jupiter. An event of this magnitude occurs perhaps once in 1000 years. The knowledge that the comet would hit Jupiter came far too late to launch a spacecraft from earth that could arrive in the near vicinity in time for the event. The initial impacts were on the far side of the planet and went unobserved. However Jupiter's very rapid rolation (Iday = 10 hours) allowed the Hubble Space Telescope (HST) and other earth based and space based telescopes to observe the impact scars when they were only a few minutes old. Some of them were as large as Earth. The time evolution of the scars serves to test our understanding of energy deposition and fluid dynamics. The impacts briefly removed the curtain of hight clouds that normally obscure our view to reveal detaits about the composition of Jupiter's lower atmosphere. There is controversy about how much of the suffur and water observed arcse from Jupiter as opposed to the cometary matter. Our observations yielded a rich store of data that will keep scientists occupied for some time to come.

Gaillean Satellites

In 1610, Galileo Galilei aimed his telescope at Jupiter and Spotted four points of light orbiting the planet. For the first time, humans had seen the moons of another world. In honor of their discoverer, these four bodies would become known as the Galilean satellikes or moons. But Galileo might have happily traded this honor for one look at the dazzling photographs returned by the Voyager spacecraft as they flew past these planet-sized satellites.

One of the most remarkable findings of the Voyager mission was the presence of active volcances on the Galilean moon lo. Volcanic eruptions had never before been observed on a world other than Earth. The Voyager cameras identified at least nine active volcances on lo, with plumes of ejected material extending as far as 280 km (175 mi) above the moon's surface. Io's pitza-colore terrain, marked by orange and yellow hues, is probably the result of suffur-rich materials brought the surface by volcanic activity. Volcanic activity on this satellite is the result of tidal flexing caused by the gravitational tug-of-war between lo, Jupiter, and the other three Galilean moons

Galilean Sateliite

In 1610, Galileo Galilei aimed his telescope at Jupiter and Spotted four points of light orbiting the planet. For the first time, humans had seen the moons of another world. In honor of their discoverer, these four bodies would become known as the Galilean satellites or moons. But Galileo might have happily traded this honor for one look at the daziling photographs returned by the Voyager spacecraft as they flew past these planet-sized satellites.

One of the most remarkable findings of the Voyager mission was the presence of active volcances on the Galilean moon lo. Volcanic eruptions had never before been observed on a world other than Earth. The Voyager cameras identified at least nine active volcances on lo, with plumes of ejected material extending as far as 200 km (175 m) above the moon's surface. lo's pizza-colored terrain, marked by orange and yellow hues, is probably the result of sultur-rich materials brought to the surface by volcanic activity. Volcanic activity on this satellite is the result of tiddl flexing caused by the gravitational tug-of-war between lo, Jupiter, and the other three Galilean moons.

Europa, approximately the same size as our Moon, is the brightest Galilean satellite. The moon's surface displays an array of streaks, indicating the crust has been fractured. Caught in a gravitational tug-of-war like 10. Europa has been heated enough to cause its interior ice to melt, producing a liquid-water ocean. This ocean is covered by an ice crust that has formed where water is exposed to the cold of space. "Astronomers using NASAs Hubble Space Telescope (HST) have identified the presence of an extremely tenuous atmosphere of molecular oxygen around Europa. Is is so thin that the surface pressure is barely one hundred billion that of Europa's water. The greatest significance of the observation is the astonshing sensitivity afforded by the HST." Europa's core is made of rock that senk to its center. Like Europa, the other two Galilean moons -Ganymede and Calilato- are workds of ice and nock. Ganymede is the largest satellife in the solar system -- larger than the planets Mercury and Pluto The satellife is composed of about 50 percent water or ice and the rest rock. Ganymede's surface has areas of different brightness, indicating that, in the past, material oozed out of the moon's interior and was deposited at various locations on the surface.

Callisto, only slightly smaller than Ganymede, has the lowest density of any Galilean Satisfies, our engines many can be in the proven uses the owned usership or any callistor is the satellite, suggesting that large amounts of water are part of its composition. Callisto is the most heavily cratered object in the solar system; no activity during its history has erased old craters except more impacts Detailed studies of all the Galilean satellites will be performed by the Galileo Orbiter

Saturn

No planet in the solar system is adorned like Saturn. Its exquisite ring system is unrivated. Like Jupiter, Saturn is composed mostly of hydrogen. But in contrast to the vivid colors and wild turbulence found in Jovian clouds, Saturn's atmosphere has a more subtle, and with turbulence found in Jovian course, Seturn's etimose are invice source, buttersoche hue, and its markings are muted by high-atitude haze. Given Saturn's somewhat placid-looking appearance, scientists were surprised at the high-velocity equatorial jet stream that blows some 1,770 km (1,100 ml) per hour.

Three American spacecraft have visited Saturn. Pioneer 11 sped by the planet and its moon Titan in September 1979, returning the first close-up images. Voyager 1 followed in November 1980, sending back breathtaking photographs that revealed for the first time the complexities of Saturn's ring system and moons. Voyager 2 flew by the planet and its moons in August 1981.

The rings are composed of countless low-density particles orbiting individually around Saturds agricultor at progressive distances from the cloud tops. Analysis of spacecraft radio waves passing through the rings showed that the particles vary widely in size, ranging from dust to house-sized boulders. The rings are bright because they are mostly ice and frosted rock.

The rings might have resulted when a moon or a passing body ventured too close to Saturn. The object would have been torm apart by great tidal forces on its surface and in its interior. Or the object would have been found to the surface and in its interior. Or the object may not have been fully formed and disintegrated under the influence of Saturn's gravity. A third possibility is that the object was shattered by collisions with larger objects orbiting the planet

Unable either to form into a moon or to drift away from each other, individual ring particles appear to be held in place by the gravitational pull of Saturn and its satellites. These complex gravitational interactions form the thousands of ringlets that make up the major rings.

B-66

Radio emissions quite similar to the static heard on an AM car radio during an electrical storm werd detected by the Voyager spacecraft. These emissions are typical of lightning but are believed to be coming from Satum's ring system rather than its atmosphere, where no lightning was observed. As they had at Jupiter, the Voyagers saw a version of Earth's auroras near Saturn's poles.

The Voyagers discovered new moons and found several satellites that share the same orbit. We The voyagers uscovered new mounts and loans several setemics that share the sum of the form. For learned that some moons shepherd ring particles, maintaining Saturn's rings and the gaps in the rings. Saturn's 18th moon was discovered in 1990 from images taken by Voyager 2 in 1981.

Voyager 1 determined that Titan has a nitrogen-based atmosphere with r Voyage 1 user initiation that i han has a httrogen-based atmosphere with methane and argon -- one more like Earth's in composition than the carbon dixide atmosphere of Mars and Venus. Titan's surface temperature of -179 degrees Celsius (-290 degrees Fahrenheit) implies that there might be water-ice islands rising above oceans of ethane-methane liquid or sludge. Unfortunately, Voyager 1's cameras could not penetrate the moon's dense clouds. nd argon -- one

Continuing photochemistry from solar radiation may be converting Titan's methane to ethane, Commonly proceedings from some requestion may be converting transmission and a activities and, in combination with nitrogen, hydrogen cyanide. These conditions may be similar to the atmospheric conditions of primeval Earth between 3 and 4 billion years ago. However, Fitan's atmospheric temperature is believed to be too low to permit progress beyond this stage of organic chemistry.

A mission to Saturn, planned for launch in October 1997, may help answer many of the questions raised by the Voyager flybys about the Saturnian system. Called Cassini, the joint U.S. European Space Agency mission consists of an Orbiter and an instrumented probe call Huygens supplied by ESA. The mission is designed to complete an orbital surveillance of the planet and unreal Saturne larget mon. Taken by drapping the luminers probe theory that the limit is the survey of the planet and supplied by ESA. eil Saturn's largest moon, Titan, by dropping the Huygens probe through Titan's intriguingly Earth-like atmosphere.

Cassini will fly by Venus twice as well as by Earth and Jupiter before arriving at Saturn in November 2004 to begin a 4-year orbital tour of the ringed planet and its 18 moons. The Hurgens probe will descend to the surface of Titan in June 2005.

Uranus

In January 1986, 4-1/2 years after visiting Saturn, Voyager 2 completed the first close-up survey of the Uranian system. The brief flyby revealed more information about Uranus and its moons than had been gleaned from ground observations since its discovery over 2 centuries ago by English astronomer William Herschel.

Uranus, third largest of the planets, is an oddball of the solar system. Unlike the other planets (with the exception of Pluto), this giant lies tipped on its side with its north and south poles alternately facing the Sun during an 84-year swing around the solar system. During Voyager 2's fyby, the south pole faced the Sun. Uranus might have been knocked over when an Earth-sized object collided with it early in the life of the solar system.

Voyager 2 discovered that Uranus' magnetic field does not follow the usual north-south axis found on the other planets. Instead, the field is tilted 60 degrees and offset from the planet's center. a phenomenon that on Earth would be like having one magnetic pole in New York City and the other in the city of Djakarta, on the island of Java in Indonesia.

Uranus' atmosphere consists mainly of hydrogen, with some 12 percent helium and small amounts of ammonia, methane, and water vapor. The planet's blue color occurs because methane in its atmosphere absorbs all other colors. Wind speeds range up to 580 km (360 mi) per hour, and temperatures near the cloud tops average -221 degrees Celsius (-366 degrees Fahrenhet).

Uranus' sunlit south pole is shrouded in a kind of photochemical "smog" believed to be a combination of acetylene, ethane, and other sunlight-generated chemicals. Surrounding the planet's atmosphere and extending thousands of kilometers into space is a mysterious ultraviolet sheen known as "electroglow." Approximately 8,000 km (5,000 mi) below Uranus' cloud tops, there is thought to be a scaking ocean of water and dissolved ammonia some 10,000 km (6,200 mi) deep. Beneath this ocean is an Earth-sized core of heavier materials. Voyager 2 discovered 10 new moons, 16-169 km (10-105 m) in diameter, orbiting Uranus. The five previously known — Miranda, Ariel, Umbriel, Titania, and Oberon — range in size from 520 to 1,610 km (323 to 1,000 m) across. Representing a geological showcase, these five moons are half-ice, half-rock spheres that are cold and dark and show evidence of past activity, including faulting and ice flows.

The most remarkable of Uranus' moons is Miranda. Its surface features high cliffs as well as canyons, crater-pocked plains, and winding valleys. The sharp variations in terrain suggest hat, after the moon formed, it was smashed apart by a collision with another body -- an event not unusual in our solar system, which contains many objects that have impact craters or are fragments from large impacts. What is extraordinary is that Miranda apparently reformed with some of the material that had been in its interior exposed on its surface.

Uranus was thought to have nine dark rings, Voyager 2 imaged 11. In contract to Saturn's rings, composed of bright particles, Uranus' rings are primarily made up of dark, boulder-sized chunks.

Neptune

Voyager 2 completed its 12-year tour of the solar system with an investigation of Neptune and the planet's moons. On Aug 25, 1989, the spacecraft swept to within 4,850 km (3,010 mi) of Neptune and then flew on to the moon Triton. During the Neptune encounter, it became clear that the planet's almosphere was more active than Uranus'.

Voyager 2 observed the Great Dark Spot, a circular storm the size of Earth, in Neptune's atmosphere. Resembling Jupiter's Great Red Spot, the storm spins counter-clockwise and moves westward at almost 1,200 km (745 m) per hour. Voyager 2 also noted a smaller dark spot and a fast-moving cloud dubbed the "Scooter," as well as high-atitude clouds over the main hydrogen and helium cloud deck. The highest wind speeds of any planet were observed, up to 2,400 km (1,500 mi) per hour.

Like the other giant planets, Neptune has a gaseous hydrogen and helium upper layer over a liquid interior. The planet's core contains a higher percentage of rock and metal than those of the other gas giants. Neptune's distinctive blue appearance, like Uranus' blue color, is due to atmospheric methane.

Neptune's magnetic field is tilted relative to the planet's spin axis and is not centered at the core. This phenomenon is similar to Uranus' magnetic field and suggests that the field of the two giants are being generated in an area above the cores, where the pressure is so great that liquid hydrogen assumes the electrical properties of a metal. Earth's magnetic field, on the other hand, is produced by its spinning metallic core and is only slightly tilted and offset relative to its center.

Voyager 2 also shed light on the mystery of Neptune's rings. Observations from Earth indicated that there were arcs of material in orbit around the giant planet. It was not clear how Neptune could have arcs and how these could be kept from spreading out into even, unclumped rings. Voyager 2 detected these arcs, but they were, in pact, part of thin, complete rings. A number of small moons could explain the arcs, but such bodies were not spotted.

Astronomers had identified the Neptunian moons Triton in 1846 and Nereid in 1949. Voyager 2 found six more. One of the new moons -- Proteus -- is actually larger than Nereid, but since Proteus orbits close to Neptune, it was lost in the planet's glare for observers on Earth.

Triton circles Neptune in a retrograde orbit in under 6 days. Tidal forces on Triton are causing it to spiral slowly toward the planet. In 10-100 million years (a short time in astronomical terms), the moon will be so close that Neptunian gravity will tear it apart, forming a spectacular ring to accompany the planet's modest current rings.

Triton's landscape is as strange and unexpected as those of lo and Miranda. The moon has more rock than its counterparts at Saturn and Uranus. Triton's mantle is probably composed of water-ice, but its crust is a thin verneer of nitrogen and methane. The moon shows two dramatically different types of terrain: the so-called 'cantaloupe' terrain and a receding ice cap. Dark streaks appear on the ice cap. These streaks are the fallout from geyser-like volcanic vents that shoot nitrogen gas and dark, fine-grained particles to heights of 1-8 km (1-5 mi). Triton's thin atmosphere, only 1/70,000th as thick as Earth's, has winds that carry the dark particles and deposite them as streaks on the ice cap -- the coklest surface yet discovered in the solar system (-235 degrees Ceisus, -391 degrees Fahrenheit). Triton might be more like Pluto than any other object spacecraft have so far visited.

Pluto

Pluto is the most distant of the planets, yet the eccentricity of its orbit periodically carries it inside Neptune's orbit, where it has been since 1979 and where it will remain until March 1999. Pluto's orbit is also highly inclined -- tilted 17 degrees to the orbital plane of the other planets.

Discovered in 1930, Pluto appears to be little more than a celestial snowball. The planet's diameter is calculated to be approximately 2,300 km (1,430 mi), only 2/3 the size of our Moon. Ground-based observations indicate that Pluto's surface is covered with methane loe and that there is a thin atmosphere that may freeze and fail to the surface as the planet moves away from the Sun. Observations also show that Pluto's spin axis is tipped by 122 degrees.

The planet has one known satellite, Charon, discovered in 1978. Charon's surface composition is different from Pluto's: the moon appears to be covered with water-ice rather than methane ice. Its orbit is gravitationally locked with Pluto, so both bodies always keep the same hemisphere facing each other. Pluto's and Charon's rotational period and Charon's period of revolution are all 6.4 Earth days.

No spacecraft has ever visited Pluto, however, a Pluto Fast Flyby mission is being studied for a possible launch in 1999-2000.

Comete The outermost members of the solar system occasionally pay a visit to the inner planets. As asteroids are the rocky and metallic remnants of the formation of the solar system, comets are th icy debris from that dim beginning and can survive only far from the Sun. Most comet nuclei Halley's Comet is the most famous example of a relatively short period comet, returning on an Halley's Cornet is the most famous example or a relatively short period cornet, returning on an average of once every 76 years and orbiting from beyond Neptune to within Venus' orbit. Confirmed sightings of the cornet go back to 240 B C. This regular visitor to our solar system is named for Sir Edmund Halley, because he plotted the cornet's orbit and predicted its return, based on earlier sightings and Newtonian laws of motion. His name became part of astronomical iore when, in 1759, the cornet returned on schedule. Unfortunately, Sir Edmund did not live to the start of the sta reside in the Oort Cloud, a loose swarm of objects in a halo beyond the planets and reaching perhaps halfway to the nearest star. Comet nuclei orbit in this frozen abyss until they are gravitationally perturbed into new orbits that Comet nuclei orbit in this trozen abyss until they are gravitationally perturbed into new orbits that carry them close to the Sun. As a nucleus falls inside the orbits of the outer planets, the volatile elements of which it is made gradually warm; by the time the nucleus enters the region of the inner planets, these volatile elements are boiling. The nucleus itself is irregular and only a few miles across, and is made principally of water-ice with methane and ammonia. A comet can be very prominent in the sky if it passes comparatively close to Earth. Unfortunately, on its most recent appearance, Halley's Comet passed no closer than 62.4 million km (28.8 million of its insertedent appearance, ranky s comer passed no corser train 02.4 million Kh (20.8 million mil) from our world. The comet was visible to the naked eye, especially for viewers in the southern hemisphere, but it was not spectacular. Comets have been so bright, on rare occasions, that they were visible during daytime. Historically, comet sightings have been interpreted as bed omens and As these materials boil off of the nucleus, they form a coma or cloud-like "head" that can measure tens of thousands of kilometers across. The coma grows as the comet gets closer to the Sun. The stream of charged particles coming from the Sun pushes on this cloud, biowing it back and giving rise to the comet's "tails." Gases and ions are blown directly back from the nucleus, but dust particles are pushed more slowly. As the nucleus continues in its orbit, the dust particles are left behind in a curved arc. have been artistically rendered as daggers in the sky. Several spacecraft have flown by comets at high speed; the first was NASA's International Cometary Explorer in 1985. An armada of five spacecraft (two Japanese, two Soviet, and the Giotto spacecraft from the European Space Agency) flew by Halley's Comet in 1986. Both the gas and dust tails point away from the Sun; in effect, the comet chases its tails as it Both the gas and use tails point away norm the surf, in enext, the context bases to same as a recorder strom the Sun. The tails can reach 150 million km (34 million mi) in length, but the total amount of material contained i this dramatic display would fit in an ordinary sufficase. Comets -from the Latin cometa, meaning "long-haired" -- are essentially dramatic light shows. Some comets pass through the solar system only once, but others have their orbits gravitationally modified by a close encounter with one of the giant outer planets. These latter visitors can enter closed elliptical orbits and repeatedly return to the inner solar system.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera 1 USSR	Venus Probe	Feb 12, 1961		First Soviet planetary flight; launched from Sputnik 8. Radio contact was lost during flight; spacecraft was not operating when it passed Venus.
Mariner 1	Venus Flyby	Jul 22, 1962		Destroyed shortly after launch when vehicle veered off course.
USA Sputnik 19	Venus Probe	Aug 25, 1962		Unsuccessful Venus attempt.
USSR Mariner 2 USA	Venus Flyby	Aug 27, 1962	Dec 14, 1962	First successful planetary flyby. Provided instrument scanning data. Entered solar orbit.
Sputnik 20	Venus Probe	Sep 1, 1962		Unsuccessful Venus attempt.
USSR Sputnik 21	Venus Probe	Sep 12, 1962		Unsuccessful Venus attempt.
USSR Sputnik 22	Mars Probe	Oct 24, 1962		Spacecraft and final rocket stage blew up when accelerated to escape velocity.
USSR Mars 1 USSR	Mars Probe	Nov 1, 1962		Contact was lost when the spacecraft antenna could no longer be pointed towards Earth.
Sputnik 24	Mars Probe	Nov 4, 1962		Disintegrated during an attempt at Mars trajectory from Earth parking orbit.
USSR Zond 1	Venus Probe	Apr 2, 1964		Communications lost. Spacecraft went into solar orbit.
USSR Mariner 3 USA	Mars Flyby	Nov 5, 1964		Shroud failed to jettison properly; Sun and Canpous not acquired; spacecraft did not encounter Mars. Transmissions ceased 9 hours after launch. Entered solar orbit.
Mariner 4 USA	Mars Flyby	Nov 28, 1964	Jul 14, 1965	Provided first close-range images of Mars, confirming the existence of surface craters Entered solar orbit.
Zond 2 USSR	Mars Probe	Nov 30, 1964		Passed by Mars; failed to return data. Went into solar orbit.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera 2	Venus Probe	Nov 12, 1965	Feb 27, 1966	Passed by Venus, but failed to return data.
USSR Venera 3 USSR	Venus Probe	Nov 16, 1965	Mar 1, 1966	Impacted on Venus, becoming the first spacecraft to reach another planet. Failed to return data.
Venera 4 USSR	Venus Probe	Jun 12, 1967	Oct 18, 1967	Descent capsule transmitted data during parachute descent. Sent measurements of pressure, density, and chemical composition of the atmosphere before transmissions ceased.
Mariner 5 USA	Venus Flyby	Jun 14, 1967	Oct 19, 1967	Advanced instruments returned data on Venus' surface temperature, atmosphere, and magnetic field environment. Entered solar orbit.
Venera 5 USSR	Venus Probe	Jan 5, 1969	Mar 16, 1969	Entry velocity reduced by atmospheric braking before main parachute was deployed. Capsule entered atmosphere on planet's dark side; transmitted data for 53 minutes while traveling into the atmosphere before being crushed.
Venera 6 USSR	Venus Probe	Jan 10, 1969	Mar 17, 1969	Descent capsule entered the atmosphere on the planet's dark side; transmitted data for 51 minutes while traveling into the atmosphere before being crushed.
Mariner 6 USA	Mars Flyby	Feb 24, 1969	Jul 31, 1969	Provided high-resolution photos of Martian surface, concentrating on equatorial region. Entered solar orbit.
Mariner 7 USA	Mars Flyby	Mar 27, 1969	Aug 5, 1969	Provided high-resolution photos of Martian surface, concentrating on southern hemisphere. Entered solar orbit.
Venera 7 USSR	Venus Lander	Aug 17, 1970	Dec 15, 1970	Entry velocity was reduced aerodynamically before parachute deployed. After fast descent through upper layers, the parachute canpoy opened fully, slowing descent to allow fuller study of lower layers. Gradually increasing temperatures were transmitted. Returned data for 23 minutes after landing.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Cosmos 359 USSR	Venus Lander	Aug 22, 1970		Unsuccessful Venus attempt; failed to achieve escape velocity.
Mariner 8 USA	Mars Orbiter	May 8, 1971		Centaur stage malfunctioned shortly after launch.
Cosmos 419 USSR	Mars Probe	May 10, 1971		First use of Proton launcher for a planetary mission. Placed in Earth orbit but failed to separate from fourth stage.
Mars 2 USSR	Mars Orbiter and Lander	May 19, 1971	Nov 27, 1971	Landing capsule separated from spacecraft and made first, unsuccessful attempt to soft land. Lander carried USSR pennant. Orbiter continued to transmit data.
Mars 3 USSR	Mars Orbiter and Lander	May 28, 1971	Dec 2, 1971	Landing capsule separated from spacecraft and landed in the southern hemisphere. Onboard camera operated for only 20 seconds, transmitting a small panoramic view. Orbiter transmitted for 3 months.
Mariner 9 USA	Mars Orbiter	May 30, 1971	Nov 13, 1971	First interplanetary probe to orbit another planet. During nearly a year of operations, obtained detailed photographs of the Martian moons, Phobos and Deimos, and mapped 100 percent of the Martian surface. Spacecraft is inoperable in Mars orbit.
Pioneer 10 USA	Jupiter Flyby	Mar 2, 1972	Dec 3, 1973	First spacecraft to penetrate the Asteroid Belt. Obtained first close-up images of Jupiter, investigated its magnetosphere, atmosphere and internal structure. Still operating in the outer Solar System.
Venera 8 USSR	Venus Lander	Mar 27, 1972	Jul 22, 1972	As the spacecraft entered the upper atmosphere, the descent module separated while the service module burned up in the atmosphere. Entry speed was reduced by aerodynamic braking before parachute deployment. During descent, a refrigeration system was used to offset high temperatures. Returned data on temperature, pressure, light levels, and descent rates. Transmitted from surface for about 1 hour.
Cosmos 482 USSR	Venus Lander	Mar 31, 1972		Unsuccessful Venus probe; escape stage misfired leaving craft in Earth orbit.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Pioneer 11 USA	Jupiter/Saturn Flyby	Apr 5, 1973	Dec 2, 1974 (Jupiter) Sep 1, 1979 (Saturn)	The successful encounter of Jupiter by Pioneer 10 permitted Pioneer 11 to be retargeted in flight to fly by Jupiter and encounter Saturn. Still operating in the outer Solar System.
Mars 4 & 5 USSR	Mars Orbiters and Landers	Jul 21, 1973 Jul 25, 1973	Feb 10, 1974 Feb 12, 1974	Pair of spacecraft launched to Mars. Mars 4 retro rockets failed to fire, preventing orbit insertion. As it passed the planet, Mars 4 returned one swath of pictures and some radio occultation data. Mars 5 was successfully placed in orbit, but operated only a few days, returning photographs of a small portion of southern hemisphere of Mars.
Mars 6 & 7 USSR	Mars Orbiters and Landers	Aug 5, 1973 Aug 9, 1973	Mar 12, 1974 Mar 9, 1974	Second pair of spacecraft launched to Mars. Mars 6 lander module transmitted data during descent, but transmissions abruptly ceased when the landing rockets were fired. Mars 7 descent module was separated from the main spacecraft due to a problem in the operation of one of the onboard systems, and passed by the planet.
Mariner 10 USA	Venus/Mercury Flyby	Nov 3, 1973	Feb 5, 1974 (Venus) Mar 29, 1974 (Mercury) Sep 21, 1974 (Mercury) Mar 16, 1975 (Mercury)	First dual-planet mission. Used gravity of Venus to attain Mercury encounter. Provided first ultraviolet photographs of Venus; returned close-up photographs and detailed data of Mercury. Transmitter was turned off March 24, 1975, when attitude control gas was depleted. Spacecraft is inoperable in solar orbit.
Venera 9 USSR	Venus Orbiter and Lander	Jun 8, 1975	Oct 22, 1975	First spacecraft to transmit a picture from the surface of another planet. The lander's signals were transmitted to Earth via the orbiter. Utilized a new parachute system, consisting of six chutes. Signals continued from the surface for nearly 2 hrs 53 mins.
Venera 10 USSR	Venus Orbiter and Lander	Jun 14, 1975	Oct 25, 1975	During descent, atmospheric measurements and details of physical and chemical contents were transmitted via the orbiter. Transmitted pictures from the surface of Venus.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Viking 1 USA	Mars Orbiter and Lander	Aug 20, 1975	Jul 19, 1976 (in orbit) Jul 20, 1976 (landed)	First U.S. attempt to soft land a spacecraft on another planet. Landed on the Plain of Chryse. Photographs showed an orange-red plain strewn with rocks and sand dunes. Both Orbiters took a total of 52,000 images during their mission; approximately 97% percent of the surafce was imaged. Orbiter 1 operated until August 7, 1980, when it used the last of its attitude control gas. Lander 1 ceased operating on Nov 13, 1983.
Viking 2 USA	Mars Orbiter and Lander	Sep 9, 1975	Aug 7, 1976 (in orbit) Sep 3, 1976 (landed)	Landed on the Plain of Utopia. Discovered water frost on the surface at the end of the Martian winter. The two Landers took 4,500 images of the surface and provided over 3 million weather reports. Orbiter 2 stopped operating on July 24, 1978, when its attitude control gas was depleted because of a leak. Lander 2 operated until April 12, 1980, when it was shut down due to battery degeneration.
Voyager 2 USA	Tour of the Outer Planets	Aug 20, 1977	Jul 9, 1979 (Jupiter) Aug 25, 1981 (Satum) Jan 24, 1986 (Uranus) Aug 25, 1989 (Neptune)	Investigated the Jupiter, Saturn and Uranus planetary systems. Provided first close-up photographs of Uranus and its moons. Used gravity-assist at Uranus to continue on to Neptune. Swept within 1280 km of Neptune on August 25, 1989. The spacecraft will continue into interstellar space.
Voyager 1 USA	Tour of Jupiter and Satum	Sep 5, 1977	Mar 5, 1979 (Jupiter) Nov 12, 1980 (Saturn)	Investigated the Jupiter and Saturn planetary systems. Returned spectacular photographs and provided evidence of a ring encircling Jupiter. Continues to return data enroute toward interstellar space.
Pioneer Venus 11 USA	Venus Orbiter	May 20, 1978	Dec 4, 1978	Mapped Venus' surface by radar, imaged its cloud systems, explored its magnetic environment and observed interactions of the solar wind with a planet that has no intrinsic magnetic field. Provided radar altimetry maps for nearly all of the surface of Venus, resolving features down to about 50 miles across. Still operating in orbit around Venus.
Pioneer Venus 2 USA	Venus Probe	Aug 8, 1978	Dec 9, 1978	Dispatched heat-resisting probes to penetrate the atmosphere at widely separated locations and measured temperature, pressure, and density down to the planet's surface. Probes impacted on the surface.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera 11 USSR	Venus Orbiter and Lander	Sep 9, 1978	Dec 25, 1978	Arrived at Venus 4 days after Venera 12. The two landers took nine samples of the atmosphere at varying heights and confirmed the basic components. Imaging system failed; did not return photos. Operated for 95 minutes.
Venera 12 USSR	Venus Orbiter and Lander	Sep 14, 1978	Dec 21, 1978	A transit module was positioned to relay the lander's data from behind the planet. Returned data on atmospheric pressure and components. Did not return photos; imaging system failed. Operated for 110 minutes.
Venera 13 USSR	Venus Orbiter and Lander	Oct 31, 1981	Mar 1, 1982	Provided first soil analysis from Venusian surface. Transmitted eight color pictures via orbiter. Measured atmospheric chemical and isotopic composition, electric discharges, and cloud structure. Operated for 57 minutes.
Venera 14 USSR	Venus Orbiter and Lander	Nov 4, 1981	Mar 3, 1982	Transmitted details of the atmosphere and clouds during descent; soil sample taken. Operated for 57 minutes.
Venera 15 USSR	Venus Orbiter	Jun 2, 1983	Oct 10, 1983	Obtained first high-resolution pictures of polar area. Compiled thermal map of almost entire northern hemisphere.
Venera 16 USSR	Venus Orbiter	Jun 7, 1983	Oct 16, 1983	Provided computer mosiac images of a strip of the northern continent. Soviet and U.S. geologists cooperated in studying and interpreting these images.
Vega 1 & 2 USSR	Venus/Halley	Dec 15, 1984 Dec 21, 1984	Jun 11, 1985 (Venus) Mar 6, 1986 (Halley) Jun 15, 1985 (Venus) Mar 9, 1986 (Halley)	International two-spacecraft project using Venusian gravity to send them on to Halley's Comet after dropping the Venusian probes. The Venus landers studied the atmosphere and acquired a surface soil sample for analysis. Each lander released a helium-filled instrumented balloon to measure cloud properties. The other half of the Vega payloads carrying cameras and instruments, continued on to encounter Comet Halley.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Phobos 1 & 2 USSR	Mars/Phobos	Jul 7, 1988 Jul 12, 1988	Jan 1989 (Mars) Jan 1989 (Mars)	International two-spacecraft project to study Mars and its moon Phobos. Phobos 1 was disabled by a ground control error. Phobos 2 was successfully inserted into Martian orbit in January 1989 to study the Martian surface, atmosphere, and magnetic field. Or March 27, 1989, communications with Phobos 2 were lost and efforts to contact the spacecraft were unsuccessful.
Magellan USA	Venus Radar Mapping	May 4, 1989	Aug 1990	Returned radar images that showed geological features unlike anything seen on Earth. One area scientists called crater farms; another area was covered by a checkered pattern of closely spaced fault lines running at right angles. Most intriguing were indications that Venus still may be geologically active. Will continue to map the entire surface and observe evidence of volcanic eruption into 1991.
Galileo USA	Jupiter Orbiter and Probe	Oct 18, 1989	Dec 8, 1990 (Earth) Feb 1991 (Venus)	A sophisticated two-part spacecraft; an Orbiter will be inserted into orbit around Jupiter to remotely sense the planet, its satellites and the Jovian magnetosphere and a Probe will descend into the atmosphere of Jupiter to make in situ measurements of its nature. Galileo flew by Venus, conducting the first infrared imagery and spectroscopy below the planet's cloud deck and used the Earth's gravity to speed it on its way to Jupiter.
Mars Observer USA	Mars Orbiter	Sep 25, 1992		Communication was lost with the Mars Observer on August 21, 1993, 3 days before the orbit insertion burn.
Galileo Probe USA	Jupiter Orbiter	Oct 18, 1989	Dec 7, 1995	A Planetary Probe was released from the Galileo Spacecraft with seven instruments: a helium abundance detector, an atmospheric structure instrument, a neutral mass spectrometer, a radiometer, a nephelometer, a lightning detector and an energetic particle detector. When the probe enters the Jupiter atmosphere the Galileo spacecraft will have been maneuvered overhead to receive the telemetry signals.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Mars Global Surveyor (MGS)	Remote-sensin Orbiter	g Nov. 7, 1996		Provide mapping of soil and atmospheric composition from two different orbits. After 180 days of high apogee atmospheric mapping the Surveyor will be "aerobraking" into a lower orbit to map the surface features. The mapping will be done by a thermal emission spectrometer, a laser altimeter and three linescan cameras at visual wave-lengths. The telemetry signals from the spacecraft will enable estimation of Martian atmospheric profile.
Mars Pathfinder	Mars Lander	Dec. 4, 1996		Patherfinder along with a small rover named Sojourner on board, will land on the surface of Mars cushioned by baloons. The lander and rover are both solar powered with backup batteries. The lander has three instrument/Meteorology package (ASI/MET); the rover houses an Alpha, Proton, X-ray Spectrometer (APXS), and color cameras. The lander has one-gigabyte of memory to store and transmit data from its instruments as well as from the instruments on the rover.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Pioneer 1 USA	Lunar Orbit	Oct 11, 1958		Did not achieve lunar trajectory; launch vehicle second and third stages did not separate evenly. Returned data on Van Allen Belt and other phenomena before reentering on October 12, 1958.
Pioneer 2 USA	Lunar Orbit	Nov 8, 1958		Third stage of launch vehicle failed to ignite. Returned data that indicated the Earth's equatorial region has higher flux and energy levels than previously believed. Did not achieve orbit.
Pioneer 3 USA	Lunar Probe	Dec 6, 1958		First stage of launch vehicle cut off prematurely; transmitted data on dual bands of radiation around Earth. Reentered December 7, 1958.
Luna 1 USSR	Lunar Impact	Jan 2, 1959		Intended to impact the Moon; carried instruments to measure radiation. Passed the Moon and went into solar orbit.
Pioneer 4 USA	Lunar Probe	Mar 3, 1959	Mar 4, 1959	Passed within 37,300 miles from the Moon; returned excellent data on radiation. Entered solar orbit.
Luna 2 USSR	Lunar Impact	Sep 12, 1959	Sep 15, 1959	First spacecraft to reach another celestial body. Impacted east of the Sea of Serenity; carried USSR pennants.
Luna 3 USSR	Lunar Probe	Oct 4, 1959		First spacecraft to pass behind Moon and send back pictures of far side. Equipped with a TV processing and transmission system, returned pictures of far side including composite full view of far side. Reentered Apr 29, 1960.
Pioneer P-3 USSR	Lunar Orbit	Nov 26, 1959		Payload shroud broke away 45 seconds after liftoff. Did not achieve orbit.
Ranger 1 USA	Lunar Probe	Aug 23, 1961		Flight test of lunar spacecraft carrying experiments to collect data on solar plasma, particles, magnetic fields, and cosmic rays. Launch vehicle failed to restart resulting in low Earth Orbit. Reentered August 30, 1961.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Ranger 2 USA	Lunar Probe	Nov 18, 1961	· · · · · · · · · · · · · · · · · · ·	Flight test of spacecraft systems for future lunar and interplanetary missions. Launch vehicle altitude control system failed, resulting in low Earth orbit. Reentered November 20, 1961.
Ranger 3 USA	Lunar Landing	Jan 26, 1962		Launch vehicle malfunction resulted in spacecraft missing the Moon by 22,862 miles. Spectrometer data on radiation were received. Entered solar orbit.
Ranger 4 USA	Lunar Landing	Apr 23, 1962	Apr 26, 1962	Failure of central computer and sequencer system rendered experiments useless. N telemetry received. Impacted on far side of the Moon.
Ranger 5 USA	Lunar Landing	Oct 18, 1962		Power failure rendered all systems and experiments useless; 4 hours of data received from gamma ray experiment before battery depletion. Passed within 450 miles of the Moon. Entered solar orbit.
Sputnik 25 USSR	Lunar Probe	Jan 4, 1963		Unsuccessful lunar attempt.
Luna 4 USSR	Lunar Orbiter	Apr 2, 1963		Attempt to solve problems of landing instrument containers. Contact lost as it passed the Moon. Barycentric orbit.
Ranger 6 USA	Lunar Photo	Jan 30, 1964	Feb 2, 1964	TV cameras failed; no data returned. Impacted in the Sea of Tranquility area.
Ranger 7 USA	Lunar Photo	Jul 28, 1964	Jul 31, 1964	Transmitted high quality photographs, man's first close-up lunar views, before impactir in the Sea of Clouds area.
Ranger 8 USA	Lunar Photo	Feb 17, 1965	Feb 20, 1965	Transmitted high quality photographs before impacting in the Sea of Tranquility area.
Ranger 9 USA	Lunar Photo	Mar 21, 1965	Mar 24, 1965	Transmitted high quality photographs before impacting in the Crater of Alphonsus. Almost 200 pictures were shown live via commercial television in the first TV spectacular from the Moon.

B-79

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 5 USSR	Lunar Lander	May 9, 1965	May 12, 1965	First soft landing attempt. Retrorocket matfunctioned; spacecraft impacted in the Sea of Clouds.
Luna 6 USSR	Lunar Lander	Jun 8, 1965		During midcourse correction maneuver, engine failed to switch off. Spacecraft missed Moon and entered solar orbit.
Zond 3 USSR	Lunar Probe	Jul 18, 1965		Photographed lunar far side and transmitted photos to Earth 9 days later. Entered solar orbit.
Luna 7	Lunar Lander	Oct 4, 1965	Oct 7, 1965	Retrorockets fired early; crashed in Ocean of Storms.
USSR Luna 8	Lunar Lander	Dec 3, 1965	Dec 6, 1965	Retrorockets fired late; crashed in Ocean of Storms.
USSR Luna 9 USSR	Lunar Lander	Jan 31, 1966	Feb 3, 1966	First successful soft landing; first TV transmission from lunar surface. Three panoramat of the lunar landscape were transmitted from the eastern edge of the Ocean of Storms.
Cosmos 111	Lunar Probe	Mar 11, 1966		Unsuccessful lunar attempt. Reentered March 16, 1966.
USSR Luna 10 USSR	Lunar Orbiter	Mar 31, 1966		First lunar satellite. Studied lunar surface radiation and magnetic field intensity; monitored strength and variation of lunar gravitation. Selenocentric orbit.
Surveyor 1 USA	Lunar Lander	May 30, 1966	Jun 2, 1966	First U.S. spacecraft to make a fully controlled soft landing on the Moon; landed in the Ocean of Storms area. Returned high quality images, from horizon views of mountains to close-ups of its own mirrors, and selenological data.
Lunar Orbiter 1 USA	Lunar Orbiter	Aug 10, 1966	Aug 14, 1966	Photographed over 2 million square miles of the Moon's surface. Took first photo of Earth from lunar distance. Impacted on the far side of the Moon on October 29, 1966.
Luna 11 USSR	Lunar Orbiter	Aug 24, 1966		Second lunar satellite. Data received during 277 orbits. Selenocentric orbit.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Surveyor 2 USA	Lunar Lander	Sep 20, 1966	Sep 22, 1966	Spacecraft crashed onto the lunar surface southeast of the crater Copernicus when one of its three vernier engines failed to ignite during a mid-course maneuver.
Luna 12 USSR	Lunar Orbiter	Oct 22, 1966		TV system transmitted large-scale pictures of Sea of Rains and Crater Aristarchus areas. Tested electric motor for Lunokhod's wheels. Selenocentric orbit.
Lunar Orbiter 2 USA	Lunar Orbiter	Nov 6, 1966	Nov 10, 1966	Photographed landing sites, including the Ranger 8 landing point, and surface debris tossed out at impact. Impacted the Moon on October 11, 1967.
Luna 13 USSR	Lunar Lander	Dec 21, 1966	Dec 24, 1966	Soft landed in Ocean of Storms and sent back panoramic views. Two arms were extended to measure soil density and surface radioactivity.
Lunar Orbiter 3 USA	Lunar Orbiter	Feb 4, 1967	Feb 8, 1967	Photographed lunar landing sites; provided gravitational field and lunar environment data. Impacted the Moon on October 9, 1967.
Surveyor 3 USA	Lunar Lander	Apr 17, 1967	Apr 19, 1967	Vernier engines failed to cut off as planned and the spacecraft bounced twice before landing in the Ocean of Storms. Returned images, including a picture of the Earth during lunar eclipse, and used a scoop to make the first excavation and bearing test on an extraterrestrial body. Returned data on a soil sample. Visual range of TV carneras was extended by using two flat mirrors.
Lunar Orbiter 4 USA	Lunar Orbiter	May 4, 1967	May 8, 1967	Provided the first pictures of the lunar south pole. Impacted the Moon on Oct 6, 1967.
Surveyor 4 USA	Lunar Lander	Jul 14, 1967	Jul 17, 1967	Radio contact was lost 2-1/2 minutes before touchdown when the signal was abruptly lost. Impacted in Sinus Medii.
Lunar Orbiter 5 USA	Lunar Orbiter	Aug 1, 1967	Aug 5, 1967	Increased lunar photographic coverage to better than 99%. Used in orbit as a tracking target. Impacted the Moon on January 31, 1968.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Surveyor 5 USA	Lunar Lander	Sep 8, 1967	Sep 10, 1967	Technical problems were successfully solved by tests and maneuvers during flight. Soft-landed in the Sea of Tranquility. Returned images and obtained data on lunar surface radar and thermal reflectivity. Performed first on-site chemical soil analysis.
Surveyor 6 USA	Lunar Lander	Nov 7, 1967	Nov 9, 1967	Soft-landed in the Sinus Medii area. Returned images of the lunar surface, Earth, Jupiter, and several stars. Spacecraft engines were restarted, lifting the spacecraft about 10 feet from the surface and landing it 8 feet from the original site.
Surveyor 7 USA	Lunar Lander	Jan 7, 1968	Jan 9, 1968	Landed near the crater Tycho. Returned stereo pictures of the surface and of rocks that were of special interest. Provided first observation of artificial light from Earth.
Luna 14 USSR	Lunar Orbiter	Apr 7, 1968		Studied gravitational field and "stability of radio signals sent to spacecraft at different locations in respect to the Moon." Made further tests of geared electric motor for Lunokhod's wheels. Selenocentric orbit.
Zond 5 USSR	Circumlunar	Sep 15, 1968		First spacecraft to circumnavigate the Moon and return to Earth. Took photographs of the Earth. Capsule was recovered from the Indian Ocean on September 21, 1968. Russia's first sea recovery.
Zond 6 USSR	Circumlunar	Nov 10, 1968		Second spacecraft to circumnavigate the Moon and return to Earth "to perfect the automatic functioning of a manned spaceship that will be sent to the Moon." Photographed lunar far side. Reentry made by skip-glide technique; capsule was recovered on land inside the Soviet Union on November 17, 1968.
Luna 15 USSR	Lunar Sample Return	Jul 13, 1969	Jul 21, 1969	First lunar sample return attempt. Began descent maneuvers on its 52nd revolution. Spacecraft crashed at the end of a 4 minute descent in the Sea of Crises.
Zond 7 USSR	Circumlunar	Aug 7, 1969		Third circumlunar flight. Far side of Moon photographed. Color pictures of Earth and Moon brought back. Reentry by skip-glide technique on August 14, 1969.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Cosmos 300 USSR	Lunar Probe	Sep 23, 1969		Unsuccessful lunar attempt. Reentered September 27, 1969.
Cosmos 305 USSR	Lunar Probe	Oct 22, 1969		Unsuccessful lunar attempt. Reentered October 24, 1969.
Luna 16 USSR	Lunar Sample Return	Sep 12, 1970	Sep 20, 1970	First recovery of lunar soil by an automatic spacecraft. Controlled landing achieved in Sea of Fertility; automatic drilling rig deployed; samples collected from lunar surface and returned to Earth on September 24, 1970.
Zond 8 USSR	Circumlunar	Oct 20, 1970		Fourth circumlunar flight. Color pictures taken of Earth and Moon. Russia's second sea recovery occurred on October 27, 1970, in the Indian Ocean.
Luna 17 USSR	Lunar Rover	Nov 10, 1970	Nov 17, 1970	Carrying the first Moon robot, soft landed in Sea of Rains. Lunokhod 1, driven by 5-man team on Earth, traveled over the lunar surface for 11 days; transmitted photos and analyzed soil samples.
Luna 18 USSR	Lunar Lander	Sep 2, 1971		Attempted to land in Sea of Fertility on September 11, 1971. Communications ceased shortly after command was given to start descent engine.
Luna 19 USSR	Lunar Orbiter	Sep 28, 1971		From lunar orbit, studied Moon's gravitational field; transmitted TV pictures of the surface. Selenocentric orbit.
				8.8

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 20	Lunar Sample Return	Feb 14, 1972		Soft landed in Sea of Crises. Used "photo-telemetric device" to relay pictures of surface. A rotary-percussion drill was used to drill into rock; samples were lifted into a capsule on ascent stage and returned to Earth on Feb 25, 1972.
Luna 21	Lunar Rover	Jan 8, 1973	Jan 15, 1973	Carried improved equipment and additional instruments; second Lunokhod rover soft landed near the Sea of Serenity. Lunar surface pictures were transmitted and experiments were performed. Ceased operating on the 5th lunar day.
Luna 22	Lunar Orbiter	May 29, 1974	Jun 2, 1974	Placed in circular lunar orbit then lowered to obtain TV panoramas of high quality and good resolution. Altimeter readings were taken and chemical rock composition was determined by gamma radiation. Selenocentric orbit.
Luna 23	Lunar Sample Return	Oct 28, 1974		Landed on the southern part of the Sea of Crises on November 6, 1974. Device for taking samples was damaged; no drilling or sample collection possible.
Luna 24	Lunar Sample Return	Aug 9, 1976	Aug 14, 1976	Landed in Sea of Crises on August 18, 1976. Carried larger soil carrier. Core samples were drilled and returned. U.S. and British scientists were given samples for analyses.
Clementine USA	Lunar Flyby	Jan 25, 1994		Carrying ultraviolet/visible and near-infrared cameras, mineralogical mapping of the moon will enhance the scientific knowledge of the surface for future exploration. The mission failed in its attempt to flyby the asteroid Geographos.

Unofficial Tabulation of CIS (USSR) Payloads

	1957-1959	1960-1969	1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	1996	TOTAL
maz			-		-	- 1	0	0	0	0	0	1
Jran			_	1	o	0	0	0	0	0	0	1
					~~	54	55	38	37	27	11	2342
osmos		317	831	906	66							
kan			4	15	0	0	1	0	0	0	0	21
ectro									•	0	o	Å
lectron		4	0	0	0	0	0	0	0	-		
xpress		-			••				1			5
oton				2	1	1	1	0	0	0	0	5
									1	1	1	3
als				-		0	0	0	ດ່	ò	ò	1
amma					,				ĩ	Ō	Ö	1
ieo-1k					3	2	3	2	i	Ő	2	32
Borizont			з	16	3	2	ő	ō	ò	ŏ	ō	1
iranat				1	U	U	0	ŭ	U	Ŭ	0	
nformator		2	12	0	0	1	0	0	0	0	0	15
nterball Tail									•-	1	1	2
			6	3	0	1	0	0	0	0	0	10
ntercosmos	-			3	ō	0	0	0	0	0	0	3
skra	-			· ·	-					•	0	1
Koronas	-						0	0	0	0	o	1
Cristall				0	1	0			ŏ	ñ	ŏ	2
(vant				2	0	0	0	0	U	U	v	
Luch									1	1	0	2
_una	3	12	9	0	0	0	0	0	0	0	0	24
	-		_		0	0	0	0	0	0	1	8
Mars	••	1	6	0		2	ŏ		1	õ	Ó	58
Neteor		2	32	18	2	20	ŏ	ò	ò	ŏ	ŏ	1
Vir				1	0	5		5	2	ĭ	ž	155
Volniya		15	63	18	6	5	4	3	2		-	
Nadezhda				1	1	1	0	0	1	0	0	4
)kean				1	1	1	0	0	1	0	0	4
				1025	82	69	64	46	50	31	18	27
TOTAL	3	353	966	1025	02	03						В

Unofficial Tabulation of CIS (USSR) Payloads (cont'd)

· · · · · · · · · · · · · · · · · · ·	1957-1959	1900-1909	1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	1996	TOTAL
Phobos				•								
Photon-10				2	0	0	0	0	0	0	0	2
Pion										1	0	1
Polyot		2					2	0	0	0	0	2
Priroda			U	0	0	0	0	0	0	0	0	2
rognoz			-							-	1	1
Progress			<u>'</u>	3	0	0	0	0	0	0	0	10
Proton			7	36	4	4	5	5	5	5	3	74
NAUN		4	0	0	0	0	0	0	0	0	ō	4
Radio			2	6	•	•						
Radio Rusto					0	0	0	0	0	0	0	8
laduga			5						1	1	0	2
RusoF				20	3	2	0	2	3	1	1	37
100210			-	5	4	4	4	з	1	1	0	22
ialyut		·	6	1	o	0		_	_			
ioyuz		8	27	28	3		0	0	0	0	0	7
Speldr			-	20	-	2	2	2	Э	2	2	79
Sputnik	3	9	0	0	0	-	-			1	0	1
Start			-			0	0	0	0	0	0	12
			-				0	1	0	0	0	1
sikada	-				-					1	0	1
/ega					-						-	•
enera		5	6	2	0	0	0	0	0	0	0	2
oskhod		2	0	4	0	0	0	0	0	0	0	15
ostok		د ۸	U	0	0	0	0	0	0	0	0	2
	-	-		0	0	0	0	0	0	0	0	4
ond		9	1	o	0	0	0	o	0	0	0	10
lo Designation		6										6
eo Designation		6		-		-					-	
OTAL	3	49	61	107	14	12	13	13	13	13	7	305

NASA Major Launch Record

MISSION/ Inti Design	LAUNCH VEHICLE	LAUNCH DATE	PERIOD (Mins.)		Perigee (km) In		WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
1958			•					1958
Pioneer I (U) Eta I	Thor-Able I 130 (U)	Oct 11		DOW	VN OCT 12, 1958		34.2	Measure magnetic fields around Earth or Moon. Error in burnout velocity and angle; did not reach Moon. Returned 43 hours of data on extent of radiation band, hydromagnetic oscillations of magnetic field, density of micrometeors in interplanetary space, and interplanetary magnetic field.
Beacon I (U)	Jupiter C (U)	Oct 23			OT ACHIEVE ORBIT		4.2	atmosphere density at various levels. Upper stages and payload separated prior to first-stage burnout.
Pioneer II (U)	Thor-Able I 129 (U)	Nov 8		DID NK	OT ACHIEVE ORBIT		39.1	Measurement of magnetic fields around Earth or Moon. Third stage failed to ignite. Its brief data provided evidence that equatorial region about Earth has higher flux and higher energy radiation than previously considered.
Pioneer III (Ū)	Juno II (U)	Dec 6		DOW	VN DEC 7, 1958		5.9	Measurement of radiation in space. Error in burnout velocity and angle did not reach Moon. During its flight, discovered second radiation bek around Earth.
1959								1955
Vanguard II (U) Alpha 1	Vanguard (SLV-4) (U)	Feb 17	122.8	3054	557	32.9	9.4	Sphere (20 inches in diameter) to measure cloud cover. First Earth photo from satellite. Interpretation of data difficult because satellite developed precessing motion.
Pioneer IV (S) Nu 1	Juno II (S)	Mar 3		HELI	OCENTRIC ORBIT		6.1	Measurement of radiation in space. Achieved Earth-Moon trajectory; returned excellent radiation data. Passed within 37,300 miles of the Moon on March 4, 1959.
Vanguard (U)	Vanguard (SLV-5) (U)	Apr 13		DID NO	OT ACHIEVE ORBIT		10.6	precise magnetometer to map Earth's magnetic field, Sphere B was a 30-inch inflatable sphere for optical tracking. Second stage failed because of damage at stage separation.
Vanguard (U)	Vanguard (SLV-6) (U)	Jun 22		DID NO	OT ACHIEVE ORBIT		9.8	Magnesium alloy sphere (20 inches in diameter), to measure solar-Earth heating process which generates weather. Faulty second- stage pressure valve caused failure.
Explorer (S-1) (U)	Juno II (U)	Jul 16		DID N	OT ACHIEVE ORBIT		41.5	To measure Earth's radiation balance. Destroyed by Range Safety Officer 5-1/2 seconds after liftoff; failure of power supply to guidance system.

NASA Major Launch Record

MISSION/ Intl Design	VEHICLE	LAUNCH DATE	PERIOD (Mins.)	CURRENT ORBITAL PARAMETERS			WEIGHT	REMARKS
				Apogee (km)	Perigee (km) II	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 6 (S-2) (S) Delta 1	Thor-Able III 134 (S)	Aug 7		DÔWN P	PRIOR TO JULY 196	1	64.4	Carried instruments to study particles and meteorology. Helped in the discovery of three radiation levels, a ring of electric current circling the Earth, and obtained crude cloud cover images.
Beacon II (U)	Juno II (U)	Aug 14		DID NO	T ACHIEVE ORBIT		4.5	Thin plastic inflatable sphere (12-feet in diameter) to study atmosphere density at various levels. Premature fuel depletion in first stage caused upper stage matfunction.
Big Joe (Mercury) (S)	Atlas 10 (S)	Sep 9		SUBC	RBITAL FLIGHT			Suborbital test of the Mercury Capsule. Capsule recovered successfully after reentry test. (WFF
Vanguard III (S) Eta 1	Vanguard (SLV-7) (S)	Sep 18	127.4	3417	512	33.4	45.4	Solar-powered magnesium sphere with magnetometer boom; provided a comprehensive survey of the Earth's magnetic field, surveyed location location of lower edge of radiation belts, and provided an accurate count of micrometeorite impacts. Last transmission December 8, 1959
Little Joe 1 (S)	Little Joe (L/V#6) (S)	Oct 4		SUBC	RBITAL FLIGHT			Suborbital test of the Mercury Capsule to qualify the booster for use with the Mercury Test Program.
Explorer 7 (S-1a) (S) Iota 1	Juno II (S)	Oct 13		DOW	N JULY 16, 1989		41.5	Provided data on energetic particles, radiation, and magnetic storms. Also recorded the first micrometeorite penetration of a sensor.
Little Joe 2 (S)	Little Joe (L/V #1A) (S)	Nov 4		SUBC	RBITAL FLIGHT			Suborbital test of Mercury Capsule to test the escape system. Vehicle functioned perfectly, but escape rocket ignited several seconds too late.
Pioneer P-3 (U)	Atlas-Able 20 (U)	Nov 26		DID NOT ACHIEVE ORBIT			168.7	Lunar Orbiter Probe; payload shroud broke away after 45 seconds.
Little Joe 3 (S)	Little Joe (L/V #2)(S)	Dec 4		SUBORBITAL FLIGHT				Suborbital test of the Mercury Capsule, included escape system and biomedical tests with monkey (Sam) aboard, to demonstrate high altitude abort at max q. (WFF
1960								1960
Little Joe 4 (S)	Little Joe (L/V #1B)(S)	Jan 21		SUBC	RBITAL FLIGHT			Suborbital test of Mercury Capsule included escape system and biomedical test with monkey (Miss Sam) aboard. (WFF
Ploneer V (P-2) (S) Alpha 1	Thor-Able IV 219 (S)	Mar 11			CENTRIC ORBIT			Sphere, 26 inches in diameter, to investigate interplanetary space between orbits of Earth and Venus; test long-range communications; and determine strength of magnetic fields.
Ëxplorer (S-46) (U)	Juno II (U)	Mar 23		DID NO	T ACHIEVE ORBIT		16.0	Analyze electron and proton radiation energies in a highly elliptical orbit. Telemetry lost shortly after first stage burnout; one of the upper stages failed to fire.

MISSION/ Inti Design	LAUNCH VEHICLE	LAUNCH DATE	PERIOD (Mins.)		Perigee (km) Inc		WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
Tiros I (S) Beta 2	Thor-Able II 148 (S)	Apr 1	98.3	695	658	48.4	122.5	First successful weather-study satellite. Demonstrated that satellites could be used to survey global weather conditions and study other surface features from space. Transmitted 22,952 good-quality cloud- cover photographs.
Scout X (U)	Scout X (U)	Apr 18		SUB	ORBITAL FLIGHT			Suborbital Launch Vehicle Development Test with live first and third stages. Vehicles broke up after first-stage burnout.
Echo A-10 (U)	Thor-Deita (1) (U)	May 13		DID N	OT ACHIEVE ORBIT		75.3	100-foot passive reflector sphere to be used in a series of communications experiments. During coast period, attitude control jets on second stage failed.
Scout I (S)	Scout 1 (S)	Jul 1		ŚUB	ORBITAL FLIGHT			Launch Vehicle Development Test; first complete Scout vehicle. (WFF)
Mercury (MA-1) (U)	Atlas 50 (U)	Jul 29		DID N	OT ACHIEVE ORBIT			Suborbital test of Mercury Capsule Reentry. The Atlas exploded 65 seconds after launch.
Echo I (A-11) (S) Iota 1	Thor-Delta (2) (S)	Aug 12		DOV	VN MAY 24, 1968			First passive communications satellite (100-foot sphere). Reflected a pre-taped message from President Eisenhower across the Nation, demonstrating feasibility of global radio communications via satellite.
Pioneer (P-30) (U)	Atias-Able 80 (U)	Sep 25		DID N	OT ACHIEVE ORBIT		175.5	Highly instrumented probe, in lunar orbit, to investigate the environment between the Earth and the Moon. Second stage failed du to matiunciton in oxidizer system.
Scout II (S)	Scout 2 (S)	Oct 4		SUB	ORBITAL FLIGHT			Launch Vehicle Development Test; second complete Scout vehicle, reached an altitude of 3,500 mi. (WFF
Explorer 8 (S-30) (S) Xi 1	Juno II (S)	Nov 3	102.5	1361	395	49.9	40.8	Confirmed the existence of a helium layer in the upper atmosphere.
Little Joe 5 (U)	Little Joe (L/V #5) (S)	Nov 8		SUB	ORBITAL FLIGHT			Suborbital test of Mercury Capsule to quality capsule system. Capsule did not separate from booster. (WFI
Tiros II (S) Pi 1	Thor-Delta (3) (S)	Nov 23	96.3	614	549	48.5	127.0	Test of experimental television techniques and infrared equipment for global meteorological information system.
Explorer (S-56) (U)	Scout 3 (U)	Dec 4		DID N	OT ACHIEVE ORBIT		6.4	Second stage failed to ignite.
Pioneer (P-31) (U)	Atias-Able 91 (U)	Dec 15		DID N	OT ACHIEVE ORBIT		175.9	environment between the Earth and the Moon. Vehicle exploded about 70 seconds after launch due to malfunction in first stage.
Mercury (MR-1A) (S)	Redstone (S) Dec 19		SUB	ORBITAL FLIGHT			Unmanned Mercury spacecraft, in suborbital trajectory, impacted 235 miles down range after reaching an altitude of 135 miles and a speed of near 4,200 mph. Capsule recovered about 50 minutes after launch.

MISSION/		LAUNCH			ORBITAL PARAME		WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) In	ci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1961								1961
Mercury (MR-2) (S)	Redstone (S)	Jan 31		SUB	ORBITAL FLIGHT		1315.0	Suborbital test of Mercury Capsule; 16-minute flight included biomedical test with chimpanzee (Ham) aboard.
Explorer 9 (S) Delta 1	Scout 4 (S)	Feb 16		DO	WN APR 9, 1964		6.8	12-foot sphere to determine the density of the Earth's Atmosphere. First spacecraft orbited by an all-solid rocket. (WFF)
Mercury (MA-2) (S)	Atlas 67 (S)	Feb 21	_	SUB	ORBITAL FLIGHT		1315.0	Suborbital test of Mercury Capsule; upper part of Atlas strengthened by an 8-inch wide stainless steel band. Capsule recovered less than 1 hour after launch.
Explorer (S-45) (U)	Juno II (U)	Feb 24	-	DID N	OT ACHIEVE ORBIT		33.6	Investigate the shape of the ionosphere. A matfunction following booster separation resulted in loss of payload telemetry; third and forth stages failed to ignite.
Little Joe 5A (U)	Little Joe (L/V #5A) (U)				ORBITAL FLIGHT		1315.0	Suborbital test of Mercury Capsule. Escape rocket motor fired prematurely and prior to capsule release. (WFF)
Mercury (MR-BD) (S)	Redstone (S)	Mar 24		SUBORBITAL FLIGHT			1315.0	Suborbital test of launch vehicle for Mercury flight to acquire further experience with booster before manned flight was attempted.
Explorer 10 (S) Kappa 1	Thor-Delta (4) (S)	Mar 25		DC	DOWN JUN 1968			Injected into highly elliptical orbit. Provided information on solar winds, hydromagnetic shock waves, and reaction of the Earth's magnetic field to solar flares.
Mercury (MA-3) (U)	Atlas 100 (U)	Apr 25	<u>.</u>	DID N	OT ACHIEVE ORBIT			
Explorer 11 (S) Nu 1	Juno II (S) (4 stages)	Apr 27	14.5	1465	479	28.8	37.2	Placed in elliptical orbit to detect high energy gamma rays from cosmic sources and map their distribution in the sky.
Little Joe 58 (S)	Little Joe (L/V #58)(S)	Apr 28			DRBITAL FLIGHT		1315.0	Suborbital flight test to demonstrate the ability of the escape and sequence systems to function property at max q. (WFF)
Mercury (S) (Freedom 7)	Mercury- Redstone-3 (LANE	DRBITAL FLIGHT DED MAY 5, 1961		1315.0	First manned suborbital flight with Alan B. Shepard, Jr. Pilot and spacecraft recovered after 15 minute 22 second flight.
Explorer (S-45a) (U)	Juno II (U)	May 24		DID N	OT ACHIEVE ORBIT		33.6	Investigate the shape of the ionosphere. Second stage ignition system malfunctioned.
Meteoroid Sat A Explorer (S-55) (U)	Scout 5 (U)	Jun 30		DID N	OT ACHIEVE ORBIT		84.8	Evaluate launch vehicle; investigate micrometeoroid impact and penetration. Third stage failed to ignite. (WFF)
Tiros III (S) Rho 1	Thor-Delta (5) (S)	Jul 12	100.0	791	723	47.9	129.3	Development of meteorological satelitie system. Provided excellent photos and infrared data. Photographed many tropical storms during 1961 hurricane season; credited with discovering Hurricane Esther.

MISSION/	LAUNCH L	AUNCH	PERIOD	CURRENT	ORBITAL I	PARAN	IETERS	WEIGHT	REMARKS
Inti Design		DATE		Apogee (km	Perigee	(km) i	nci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Mercury (S) (Liberty Bell 7)	Mercury- Redstone-4 (S)	Jul 21		SU	BORBITAL FL NDED JUL 21,	IGHT		1470.0	Second manned suborbital flight with Virgil I. Grissom. After landing, spacecraft was lost but pilot was rescued from surface of water. Mission Duration 15 minutes 37 seconds.
Explorer 12 (S-3) (S) Upsilon 1	Thor-Delta (6) (S)	Aug 16			DOWN SEP 19	963		37.6	First of a series to investigate solar winds, interplanetary magnetic fields, and energetic particles. Identified the Van Allen Belts as a magnetosphere.
Ranger I (U) Phi 1	Atlas-Agena B 111 (U)	Aug 23		DC	WWN AUG 30,	1961		306.2	rays, magnetic fields, and energetic particles. Agena failed to restart, resulting in low Earth orbit.
Explorer 13 (U) Chi 1	Scout 6 (U)	Aug 25		DC	WN AUG 28,	1961		84.8	Evaluate launch vehicle; investigate micrometeoroid impact and penetration. Third stage failed to ignite. (WFF
Mercury (MA-4) (S) A-Alpha 1	Atlas 88 (S)	Sep 13		D	WN SEP 13,	1961		1224.7	Orbital test of Mercury capaule to test systems and ability to return capaule to predetermined recovery area after one orbit. All capaule, tracking, and recovery objectives met.
Probe A (P-21) (S)	Scout 7 (S)	Oct 19		SU	BORBITAL FL	.IGHT			Vehicle test/scientific Geoprobe. Reached altitude of 4,261 miles; provided electron density measurements. (WFF
Saturn Test (SA-1) (S)	Saturn I (S)	Oct 27		su	BORBITAL FL	IGHT			Suborbital launch vehicle development test of S-1 booster propulsion system; verification of aerodynamic/structural design of entire vehicle.
Mercury (MS-1) (U)	AF 609A Blue Scout (U)	Nov 1		DID	NOT ACHIEV	é orbn		97.1	Orbital test of the Mercury Tracking Network. First Stage exploded 26 seconds after liftoff; other three stages destroyed by Range Safety Officer 44 seconds after launch.
Ranger II (U) A-Theta 1	Atlas-Agena B 117 (U)	Nov 18		D	DWN NOV 20,	1961		306.2	Flight test of spacecraft systems designed for future lunar and interplanetary missions. Inoperative roll gyro prevented Agena restart resulting in a low Earth orbit.
Mercury (MA-5) (S) A-lota 1	Atlas 93 (S)	Nov 29		DC	WN NOV 29,	1961		1315.4	Final flight test of all Mercury systems prior to manned orbital flight; chimpanzee Encs on board. Spacecraft and chimpanzee recovered after two orbits.
1962									1963
Echo (AVT-1) (S)	Thor 338 (S)	Jan 15		SU	BORBITAL FL	IGHT		256.0	Suborbital Communications Test. Canister ejection and opening successful, but 135-foot sphere ruptured.
Ranger III (U) Alpha 1	Atlas-Agena B 121 (U)	Jan 26		HE	IOCENTRIC	ORBIT		329.8	Rough land instrumented capsule on the Moon. Booster malfunction resulted in the spacecraft missing the Moon by 22,862 miles and going into solar orbit. TV pictures were unusable.

MISSION/ Intl Design	VEHICLE	DATE	(Mins.)		RBITAL PARAN		WEIGHT	
	Thor-Delta	Feb 8		Apogee (Km)	Perigee (km) I		(kg)	(All Launches from ESMC, unless otherwise noted)
Tiros IV (S) Beta 1	(7) (S)	F80 8	99.9	812	694	48.3	129.3	Continued research and development of meteorological satellite system. U.S. Weather Bureau initiated international radio facsimile transmission of cloud maps based on data received.
Mercury (MA-6) (Friendship 7) (S) Gamma 1	Atlas 109 (S)	Feb 20		LAND	ED FEB 20, 1962		1354.9	First U.S. manned orbital flight. John H. Glenn, Jr. made three orbits of the Earth. Capsule and pilot recovered after 21 minutes in the water. Mission Duration 4 hours 55 minutes 23 seconds.
Reentry I (U)	Scout 8 (S)	Mar 1		SUBC	RBITAL FLIGHT			Launch vehicle development test/Reentry test. Desired speed was not achieved. (WFF
OSO-I (S) Zeta 1	Thor-Delta (8) (S)	Mar 7		DOV	VN OCT 8, 1981		207.7	Carried 13 instruments to study Sun-Earth relationships. Transmitted almost 1,000 hours of information on solar phenomena, including measurements of 75 solar flares.
Probe B (P-21a) (S)	Scout 9 (S)	Mar 29			RBITAL FLIGHT			Suborbital vehicle test/scientific geoprobe. Reached an attitude of 3,910 miles; provided electron density measurements. (WFF
Ranger 4 (U) Mu 1	Atlas-Agena B (S)	Apr 23		IMPACTED MOON ON APR 26, 1962				Second attempt to rough land instrumented capsule on Moon. Failure of central computer and sequencer system rendered experiments useless. Impacted on far side of Moon after flight of 64 hours.
Saturn Test (SA-2) (S)	Saturn I (S)	Apr 25	·	SUBC	RBITAL FLIGHT		86167.0	Suborbital launch vehicle test; carried 95 tons of ballast water in upper stages which was released at an altitude of 65 miles to observe the effect on the upper region of the atmosphere (Project High Water).
Ariel I (S) Omicron 1	Thor-Delta (9) (S)	Apr 26		DOW	N MAY 24, 1976	·	59.9	Carried six British experiments to study the ionosphere, solar radiation,
Centaur Test 1 (AC-1)(U)	Atlas-Centaur (F-1) (U)	May 8		SUBC	RBITAL FLIGHT			and cosmic rays. First International Satellite. Cooperative with UK. Launch vehicle development test. Centaur exploded before separation.
Mercury (MA-7) (Aurora 7) (S) Tau 1	Atias 107 (S)	May 24		LAND	ED MAY 24, 1962		1349.5	Second orbital Manned Flight with M. Scott Carpenter. Reentered under manual control after three orbits. Mission Duration 4 hours 56 minutes 5 seconds.
Tiros V (S) A-Alpha	Thor-Delta (S)	Jun 19	99.4	889	573	58.1	129.3	
Telstar 1 (S) A-Epsilon	Thor-Delta (10) (S)	Jul 10	157.8	5642	947	44.8		First privately built satellife to conduct communication experiments. First telephone and TV experiments transmitted. Reimbursable (AT&T).
Echo (AVT-2) (S)	Thor-Delta (11) (S)	Jul 18		SUBO	ABITAL FLIGHT		256.0	Suborbital communications test. Inflation successful; radar indicated that the sphere surface was not as smooth as planned.

MISSION/	LAUNCH L				ORBITAL PARAM		WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) In	ci (deg)] (kg)	(All Launches from ESMC, unless otherwise noted)
Mariner I (P-37) (U)	Atlas-Agena B 145 (U)	Jul 22		DID N	IOT ACHIEVE ORBIT		202.8	Venus Flyby. Vehicle destroyed by Range Safety Officer about 290 seconds after launch when it veered off course.
Mariner II (P-38) (S) A-Rho 1	Atlas-Agena B 179 (S)	Aug 27			OCENTRIC ORBIT		202.8	Second Venus flyby. First successful interplanetary probe. Passed Venus on December 14, 1962, at 21,648 miles; 109 days after launch. Provided data on solar wind, cosmic dust density, and particle and magnetic field variations.
Reentry II (U)	Scout 13 (U)	Aug 31		SUE	ORBITAL FLIGHT			Reentry test at 28,000 fps: late third stage ignition; desired speed was not achieved. (WFF
Tiros VI (S) A-Psi 1	Thor-Delta (12) (S)	Sep 18	97.6	652	635	58.3	127.5	Provide coverage of the 1962 hurricane season. Returned high quality cloud cover photographs.
Alouette I (S) B-Alpha 1	Thor-Agena B (S)	Sep 29	105.2	1022	987	80.5	145.2	Designed and built by Canada to measure variations in the ionosphere electron density distribution. Returned excellent data to 13 Canadian, British, and U.S. stations. Cooperative with Canada.
Explorer 14 (S-3a)(S) B-Gamma 1	Thor-Delta (13) (S)	Oct 2		DO	WN JULY 1, 1966		40.4	Monitor trapped corpuscular radiation, solar particles, cosmic radiation, and solar winds. Placed into a highly elliptical orbit; excellent data received.
Mercury(MA-8) (Sigma 7) (S) B-Delta 1	Atlas 113 (S)	Oct 3		LAN	DED OCT 3, 1962		1360.8	Manned Orbital Flight with Walter M. Schirra, Jr. Made six orbits of the Earth. Mission Duration 9 hours 13 minutes 11 seconds.
Ranger V (U) B-Eta 1	Atlas-Agena B 215 (S)	Oct 18		HEL	OCENTRIC ORBIT		342.5	Rough land instrumented capsule on the Moon. Malfunction caused power supply loss after 8 hours 44 minutes. Passed within 450 miles of the Moon.
Explorer 15 (S-3b) (S) B-Lambda	Thor-Delta (14) (S)	Oct 27			WN OCT 5, 1967		44.5	Study location, composition, and decay rate of artificial radiation belt created by high altitude nuclear explosion over the Pacific Ocean. Despin device failed; considerable useful data transmitted.
Saturn (SA-3) (S)	Saturn I (S)	Nov 16		SUE	ORBITAL FLIGHT		86167.0	Suborbital launch vehicle development flight. Second "Project High Water" using 95 tons of water released at an attitude of 90 n.mi.
Relay 1 (S) B-Upsilon 1	Thor-Delta (15) (S)	Dec 13	185.1	7436	1323	47.5	78.0	Test intercontinental microwave communication by low-altitude active repeater satellite. Initial power failure overcome. Over 500 communication tests and demonstrations conducted.
Explorer 16 (S-55b) (S) B-Chi 1	Scout 14 (S)	Dec 16	104.1	1159	745	52.0	100.7	Measure micrometeoroid puncture hazard to structural skin samples. First statistical sample; flux level found to lie between estimated extremes. (WFF)

MISSION/ Inti Design	LAUNCH	LAUNCH DATE			Perigee (km) I		WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
1963	TEINOLE	PATE	[(minile)/	Abodee (mil)	i engee (kin/1 i	ter (deg)	1 1.9/	196
Syncom I (U) 1963 04A	Thor-Delta (16) (S)	Feb 14		CURRENT EL	EMENTS NOT MAIN	TAINED	39.0	First test of a communication satellite in geosynchronous orbit. Initial communication tests successful; all contact was test 20 seconds after command to fire apogee motor.
Saturn Test (SA-4) (S)	Satum I (S)	Mar 28		SUB	ORBITAL FLIGHT			Suborbital launch vehicle development test. Programmed in-flight cutoff of one of eight engines; successfully demonstrated propellant utilization system function.
Explorer 17 (SA-4) (S) 1963 09A	Thor-Delta (17) (S)	Apr 3		DOV	VN NOV 24, 1966		183.7	Measure density, composition, pressure and temperature of the Earth' atmosphere. Discovered a belt of neutral helium around the Earth.
Telstar II (S) 1963 13A	Thor-Delta (18) (S)	May 7	225.3	10807	967	42.8		Conduct wideband communication experiments. Color and black and white television successfully transmitted to Great Britain and France. Reimbursable (AT&T).
Mercury (MA-9) (Faith 7) (S) 1963 15A	Atias 130 (S)	May 15		LAND	DED MAY 16, 1963		1360.8	Fourth Orbital Manned flight with L. Gordon Cooper, Jr. Various tests and experiments were performed. Capsule reentered after 22 orbits. Mission Duration 34 hours 19 minutes 49 seconds.
RFD-1 (S)	Scout 19 (S)	May 22		SUB	ORBITAL FLIGHT		217.6	Reimbursable (AEC). (WF
Tiros VII (S) 1963 24A	Thor-Delta (19) (S)	Jun 19	92.7	415	398	58.2	134.7	Continued meteorological satellite development. Furnished over 30,000 useful cloud cover photographs, including pictures of Hurricane Ginny in its early stages in mid-October.
CRL (USAF) (S) 1963 26A	Scout 21 (S)	Jun 28		DOV	VN DEC 14, 1983		99.8	Cambridge Research Lab geophysics experiment test. Reimbursable (DOD).
Reentry III (U)	Scout 22 (U)	Jul 20		SUB	ORBITAL FLIGHT			Suborbital reentry flight demonstration test of an ablation material at reentry speeds. Vehicle failed. (WFI
Syncom II (S) 1963 31A	Thor-Delta (20) (S)	Jul 26		CURRENT EL	EMENTS NOT MAIN	TAINED	39.0	Geosynchronous communication satellite test. Voice, teletype, facsimile, and data transmission tests were conducted.
Little Joe II Test (S)	Little Joe II #1 (S)	Aug 28		SUB	ORBITAL FLIGHT			Suborbital Apollo launch vehicle test. Booster qualification test with dummy payload. (White Sand
Explorer 18 (S) (IMP-A) 1963 46A	Thor-Delta (21) (S)	Nov 27		DO	VN DEC 30, 1965		62.6	First in a series of Interplanetary Monitoring Platforms to observe interplanetary space over an extended period of the solar cycle. Discovered a region of high-energy radiation beyond the Van Allen bel reported stationary shock wave created by the interaction of the solar wind and geomagnetic field.

B-94

1**963**

MISSION/	LAUNCH L	AUNCH	PERIOD	CURRENT	ORBITAL PARAN	IETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	nci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Centaur Test II (S) 1963 47A	Atlas-Centaur (AC-2) (S)	Nov 27	104.6	1485	468	30.4	4620.8	Launch vehicle development test. Instrumented with 2,000 pounds of sensors, equipment, and telemetry; performance and structural integrity test.
Explorer 19 (AD-A) (S) 1963 53A	Scout 24 (S)	Dec 19		DOV	VN MAY 10, 1981		7.7	Sphere, 12 feet in diameter, was optically tracked after tracking beacon failed, to obtain long-term atmospheric density data and study density changes.
Tiros VIII (S) 1963 54A	Delta 22 (S)	Dec 21	98.5	711	663	58.5	120.2	Continued meteorological satellite development, initial flight test of Automatic Picture Transmission camera system which made it possible to obtain local cloud cover pictures using inexpensive ground stations. 1964
1964								
Relay II (S) 1964 03A	Delta 23 (S)	Jan 21	194.7	7535	1966	46.4	85.3	Modified communication satellite with a capability of TV or 300 one-way voice transmissions or 12 two-way narrowband communication. Completed more than 230 demonstrations and tests; also obtained ove 600 hours of radiation data.
Echo II (S) 1964 04A	Thor-Agena B (S)	Jan 25		DO	WN JUN 7, 1969		348.4	Rigidized sphere, 135 feet in diameter, to conduct passive communication experiments (radio, teletype, facsimile tests). Good experiment results obtained; data exchanged with USSR. (WSMC
Saturn I (SA-5) (S) 1964 05A	Saturn I (S)	Jan 29		DOV	WN APR 30, 1966		17,554.2	Launch vehicle development test. Frith flight of Saturn, first Block II Saturn, first live flight of the LOX/LH2 fueled second stage (S-IV). 11,146 measurements taken.
Ranger VI (U) 1964 07A	Atlas-Agena B 199 (S)	Jan 30		IMPACTED	MOON ON FEB 2,	1964	364.7	Photograph lunar surface before hard impact. No video signals received. Impacted on west side of Sea of Tranquility, within 20 miles target, after 65.6 hour flight.
Beacon Explorer A (S-66) (U)	Delta 24 (U)	Mar 19		DID N	IOT ACHIEVE ORBIT		54.7	tracking experiments. Vehicle third stage malfunctioned
Ariel II (UK) (S) 1964 15A	Scout 25 (S)	Mar 27			WN NOV 18, 1967		74.8	Cooperative with UK. (WFF
Gemini I (S) 1964 18A	Titan II 1 (S)	Apr 8			WN APR 12, 1964		3175.2	combination in launch environment through orbital insertion phase.
Fire I (S)	Atlas-Antares 263 (S)	Apr 14			ORBITAL FLIGHT		1995.8	body entering the Earth's atmosphere at high speed.
Apolio Abort A-001 (S)	Little Joe II (S)	May 13		SUB	ORBITAL FLIGHT			Vehicle development test to demonstrate Apollo spacecraft atmospheric abort system capabilities. (White Sand

MISSION/	LAUNCH L				ORBITAL PARA		WEIGHT	REMARKS
inti Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km)	inci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Saturn I (SA-6) (S) 1964 25A	Saturn I (SA-6) (S)	May 28		D	OWN JUN 1, 1964		17644.9	Vehicle development test. First flight of unmanned model of the
Centaur Test III	Atlas-Centaur	Jun 30						Apollo spacecraft. 106 measurements obtained.
(S)	(AC-3) (S)				BORBITAL FLIGHT			Launch vehicle development test; performance and guidance evaluation.
SERT I (S)	Scout 28 (S)	Jul 20		SU	BORBITAL FLIGHT			Test ion engine performance in space. Confirmed that high prevalence ion beams could be neutralized in space. (WFF
Ranger VII (S) 1964 41A	Atlas-Agena B 250 (S)	Jul 28		IMPACTE	MOON ON JUL 31,	1964	364.7	prevalence ion beams could be neutralized in space. (WFF Photograph lunar surface before hard impact. Transmitted 4,316 high quality photographs showing amazing detail before impacting in Sea of Clouds; flight time 68 hours 35 minutes 55 seconds.
Reentry IV (S)	Scout 29 (S)	Aug 18		SU	BORBITAL FLIGHT			Reentry Test. Demonstrated the ability of the Apollo spacecraft to
								withstand reentry conditions at 27,950 fps.
Syncom III (S) 1964 47A	Della 25 (S)	Aug 19			LEMENTS NOT MAI	NTAINED	65.8	Experimental geosynchronous communications satellite. Provided live TV coverage of the Otympic games in Tokyo and conducted various communications tests.
Explorer 20 (S) 1964 51A	Scout 30 (S)	Aug 25	103.6	1001	855	79.9	44.5	lonosphere Explorer to obtain radio soundings of upper ionosphere as part of the Topside Sounder program.
Nimbus I (Š) 1964 52A	Thor-Agena B (S)			DO	WN MAY 16, 1974		376.5	Improved meteorological satellite; Earth oriented to provide complete global cloud cover images. Returned more than 27,000 excellent photographs; APT system supplied daytime photos to low-cost ground stations.
OGO I (U) 1964 54A	Atlas-Agena B 195 (S)	Sep 4		CURRENT E	LEMENTS NOT MAIN	NTAINED	487.2	Standardized spacecraft capable of conducting related experiments. Carried 20 instruments to investigate geophysical and solar phenomena Boom deployment anomaly obscured horizon scanner's view of Earth. Varying quality data received from all experiments.
Saturn I (SA-7) (S) 1964 57A	Saturn I (S)	Sep 18			WN SEP 22, 1964	- <u></u>		Demonstrate Launch Vehicle/spacecraft compatibility and test launch escape system. Telemetry obtained from 131 separate and continuous measurements.
Explorer 21 (U) 1964 60A	Delta 26 (U)	Oct 4		DO	WN JAN 30, 1966			Interplanetary Monitoring Platform to obtain magnetic fields, radiation.
RFD-2 (S)		Oct 9		SUE	ORBITAL FLIGHT		217.6	and solar wind data. Failed to reach planned apogee;provided good data Reentry flight carried AEC Reactor Mockup. Reimbursable (AEC).
Explorer 22 (S) 1964 64A	Scout 32 (S)	Oct 10	104.3	1054	872	79.7	52.6	Internetly impricantee AEC, Heardor Mockup, Heimbursable (AEC). Beacon Explorer to provide data on variations in the ionosphere's structure and relate ionospheric behavior to solar radiation. Low-cost ground stations throughout the world received uncoded radio signals. Laser fracking accompilshed on October 11, 1964. (WSMC)

MISSION/	LAUNCH L	AUNCH	PERIOD	CURRENT O	RBITAL PARAM Perigee (km) In	ETERS	WEIGHT (kg)	(All Launches from ESMC, unless otherwise noted)
nti Design		DATE	(Mins.)	Apogee (Km) [CENTRIC ORBIT	Ci (Gegl	0000	have the Elbergiess should tailed to jettison property, solar panels
ariner III (U)	Atlas-Agena D	Nov 5		HELIO	CENTRIC ONDIT			failed to extend, Sun and Canopus not acquired. Transmissions ceased
964 73A	289 (U)							9 hours after launch.
		Nov 6		DOW	N JUN 29, 1983		133.8	Provided data on meteoroid penetration and resistance of various
xplorer 23	Scout 33	NOV 0						materials to penetration.
S-55C) (S)	(S)							First dual payload (Air Density/Injun); two satellites provided detailed
964 74A	Scout 34	Nov 21		DOW	N OCT 18, 1968		8.6	First dual payload (Air Dersky)right), two satellitos provides the upper information on complex radiation-air density relationships in the upper
xplorer 24 (S) 964 76A	(S)							
964 / 64 xplorer 25 (S)	(0)		114.6	2354	522	81.3	34.0	atmospheres.
964 768							260.8	Second of two 1964 Mars flyby launches. Encounter occurred on
Aariner IV (S)	Atlas-Agena D	Nov 28		HELIO	CENTRIC ORBIT		200.0	July 14, 1965, with closest approach at 6,118 miles of the planet.
964 77A	288 (S)							Transmitted 22 pictures.
004777					RBITAL FLIGHT		42593.0	First test of Apollo emergency detection system at abort altitude.
pollo Abort	Little Joe II	Dec 8		SOBC	HBITAL FLIGHT		42300.0	(white Sands
-002 (S)	<u>(Ş)</u>			DOW	N DEC 12, 1964		2993.0	Vehicle development flight carried mass model of Surveyor spacecraft;
Centaur	Atlas-Centaur	Dec 11		001	NOLO 12, 1001			execution and stage separation test
964_82A	(AC-4) (S)			000	/N SEP 13, 1965		115.2	Flight test of satellite to furnish data on air density and ionosphere
San Marco 1 (S)	Scout 35	Dec 15		501				characteristics. Launch vehicle provided by NASA; launched by Italian (WFF
964 84A	(S)							
	Detta 27	Dec 21		CURRENT ELEP	MENTS NOT MAINT	AINED	45.8	Energetic Particles Explorer; carried five experiments to provide data
Explorer 26 (S)	(S)	00021						on high-energy particles. 196
1964 86A								
	Titan II 2	Jan 19		SUB	ORBITAL FLIGHT		3133.9	Demonstrate structural integrity of reentry module heat protection during maximum heating rate reentry and demonstrate variable lift on
Gemini II (S)	(S)	041110						reentry module.
	(0)							First "Cartwheel" configuration for Weather Bureau's Operational
Tiros IX (S)	Delta 28	Jan 22	118.9	2564	702	96.4	138.3	system. Provided increased coverage of global cloud cover with
1965 04A	(S)							nictures of excellent quality.
303 476	(-)						244.9	
0SO B-2 (S)	Delta 29	Feb 3		DO	WN AUG 9, 1989		244.3	electromagnetic radiation in the ultraviolet, X-ray and gamma-ray
1965 07A	(S)							regions of the specifium
					WN SEP 17, 1978		1451.5	Obtained scientific and engineering data on the magnitude and
Pegasus I (S)	Satum I	Feb 16		DU	WIN DEF 17, 1970			direction of meteoroids in near-Earth orbit.
1965 09A	(SA-9) (S)							B

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	196
Inti Design	VEHICLE	DATE			Perigee (km)	Incl (dea)	(kg)	
Ranger VIII (S)	Atlas-Agena E	3 Feb 17		MPA/	TED MOON ON FI			(All Launches from ESMC, unless otherwise noted)
1965 10A	196 (S)					20, 1965	364.7	Photograph lunar surface before hard impact. Transmitted 7,137 high
								quality photographs before impacting in the Sea of Tranquility flight time
Centaur Test	Atlas-Centaur	Mar 2		SUB	ORBITAL FLIGHT		2548.0	_64.54 hours.
(U)	(AC-5) (U)						2346.0	Vehicle development test; Atlas stage failed 4 seconds after liftoff.
Ranger IX (S)	Atlas-Agena E	3 Mar 21		IMPACTED N	OON ON MAR 24.	1965	364.7	Photograph lungs surface before bend in the T
1965 23A	204 (S)						004.7	Photograph lunar surface before hard impact. Transmitted 5,814
Comini III (O)	_							excellent quality pictures; about 200 pictures relayed live via commercia TV. Flight time 64.52 hours.
Gemini III (S) 1965 24A	Titan II 3	Mar 23		LANC	ED MAR 23, 1965		3236.9	First manned orbital flight of the Gemini program, with astronauts
1303 Z4A	(S)							Virgil I. Grissom and John W. Young. Manually controlled reentry after
Intelsat 1 (F-1) (S)	D							three orbits. Mission Duration 4 hours 52 minutes 31 seconds.
1965 28A	Delta 30 (S)	Apr 6		CURRENT ELE	MENTS NOT MAIN	TAINED	38.5	First operational satellite for Comsat Corp., to provide commercial
Explorer 27 (S)	(5) Scout 36	1 00				_		trans-Atlantic communications. Reimbursable (Comsat).
1965 32A	(S)	Apr 29	107.7	1312	929	41.2	60.8	Beacon Explorer; obtained data on Earth's gravitational field. Also
Apollo Abort	Little Joe (I	May 19						carried laser tracking experiments.
A-003 (U)	(U)	may 19		SUBC	DRBITAL FLIGHT			Demonstration of abort capability of Apollo spacecraft Launch escape
. ,	(0)							vehicle at high attitude not accomplished due to malfunction of Little los
Fire II (S)	Atlas-Antares	May 22		0.100				Il Booster. Albita Sanda)
.,	264 (S)	may 22		SUBC	RBITAL FLIGHT		2005.8	Second Heentry Test to study heating environment encountered by a
Pegasus II (S)	Saturn I	May 25			N NOV 3, 1979			body entering the Earth's atmosphere at high speed
1965 39A	(SA-8) (S)			DOV	IN NOV 3, 1979		1451.5	Micrometeoroid detection experiment confirmed lower meteoroid
Explorer 28 (S)	Delta 31	May 29			VN JUL 4, 1968			density than expected.
1965 42A	(S)	,		001	VN JUL 4, 1968		59.0	Third Interplanetary Monitoring Platform, carrying eight scientific
								instruments, to measure magnetic fields, cosmic rays, and solar wind
Germini IV (S)	Titan II 4	Jun 3			ED JUN 7, 1965			beyond the Earth's magnetosphere
965 43A	(S)			0410	20 00117, 1303			Second manned Gemini flight with James A. McDivitt and Edward H.
								Write. During flight, White performed a 22 minute EVA using the Zore
iros X (S)	Delta 32	Jul 1	100.1	807	722	98.8	127.0	G Integral Propulsion Unit. Mission Duration: 97 hrs 56 mins 12 secs.
965 51A	<u>(S)</u>					50.0	127.0	First U.S. Weather Bureau-funded Tiros; obtained maximum coverage
Pegasus III (S)	Saturn I	Jul 30		DOW	N AUG 4, 1969		1451.5	of 1965 hurricane and typhoon season.
965 60A	(SA-10) (S)						1401.0	Final micrometeoroid detection experiment. Results of Pegasus
								program indicated that the flux of small particles was less than expected,
								the flux of large particles was more than expected, and the flux of medium-sized particles was about as predicted.
and the second se								modulinazou paricles was about as bredicted

MISSION/ ntl Design	LAUNCH L		PERIOD (Mins.)		RBITAL PARAM Perigee (km) Ir		WEIGHT (kg)	(All Launches from ESMC, unless otherwise noted)
Scout Test (S) Secor (S)	Scout 37 (S)	Aug 10	122.2	2419	1134	69.2	20.0	Vehicle development test. Carried U.S. Army Secor geodetic satellite. Reimbursable (DOD).
965 63A Centaur Test (S)	Atlas-Centaur	Aug 11		BARY	CENTRIC ORBIT		952.6	Vehicle development test. Carried Surveyor dynamic model. Direct-ascent test for guidance evaluation.
965 64A Gemini V (S)	(AC-6) (S) Titan II 5	Aug 21		LANDED AUG 29, 1965				Third manned orbital flight with L. Gordon Cooper and Charles Conrad. In Flected Rendezvous Evaluation Pod (REP) for simulated
965 68A REP 1965 68C	(S)			DOWN AUG 27, 1965				rendezvous maneuvers experiment; participated in communications an other on-board experiments. Mission Duration: 190 hours 55 minutes
	Delta 33 (U)	Aug 25		DID NO	T ACHIEVE ORBIT		281.2	
DSO-C (U)	Dena 33 (0)	Aug 20		010110			507.1	activity cycle. Vehicle third stage ignited prematurely.
OGO II (U) 1965 81A	Thor-Agena D (S)	Oct 14		DOWN SEP 17, 1981				Carried 20 experiments to investigate near-Earth space phenomena or an interdisciplinary basis. Failure of primary launch vehicle guidance resulted in higher than planned orbit. Nineteen experiments returned useful data. (WSM
Gemini VI (U)	Atlas-Agena D 5301 (U)	Oct 25		DID NOT ACHIEVE ORBIT				Agena target vehicle. Simultaneous countdown of the Gemini spacecraft and Atlas-Agena Target Vehicle. Telemetry was lost 375 seconds after launch of the target vehicle; Gemini launch was terminated at T-42 minutes.
Explorer 29 (S)	Delta 34	Nov 6	120.3	2274	1113	59.4	174.6	GEOS-A, part of U.S. Geodetic Satellite Program to provide new readetic data about the Earth.
1965_89A Explorer 30 (S) 1965_93A	(S) Scout 38 (S)	Nov 18	100.4	881	664	59.7	56.7	IQSY. Data acquired by NRL and foreign stations in 13 countries.
Explorer 31 (S)	Thor-Agena B	Nov 29	120.0	2859	501	79.8	98.9	Make related studies of ionospheric composition and temperature variations. Provided excellent data from regions of the ionosphere
1965 988 Alouette II (S)	(S)		118.3	2708	501	79.8	146.5	
1965 98A Gemini VII (S) 1965 100A	Titan II 6 (S)	Dec 4		LÁNC	ED DEC 18, 1965		3628.8	Astronauts flew part of the mission without wearing pressure suits. Mission Duration: 330 hours 35 minutes 01 seconds.
French 1A (S) 1965 101A	Scout 39 (S)	Dec 6	98.6	708	696	75.9	71.7	Study VLF wave propagation in the ionosphere and magnetosphere and measure electron densities. Cooperative with France. (WSI

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)		Perigee (km)	Incl (dec)	(kg)	
Gemini VI-A (S)	Titan II 7	Dec 15			DED DEC 16, 1965	mer (deg)	3175.2	(All Launches from ESMC, unless otherwise noted)
1965 104A	(S)			U 11	DED DEO 10, 1965		31/5.2	Fifth manned mission with Walter M. Schirra, Jr. and Thomas P.
								Stafford. First rendezvous in space accomplished with Gemini VII
Pioneer VI (S)	Delta 35	Dec 16		HEL	IOCENTRIC ORBIT		63.5	spacecraft, Mission Duration 25 hours 51 minutes 24 seconds.
1965 105A	(S)						65.5	Operated in solar orbit to provide data on solar wind, interplanetary
								magnetic fields, solar physics, and high-energy charged particles and magnetic fields.
1966								19
Apollo Abort	Little Joe II	Jan 20		SUE	ORBITAL FLIGHT		4989.0	Apollo development flight to demonstrate launch escape vehicle
A-004 (S)	(S)						4000.0	
ESSA I (S)	Delta 36	Feb 3	99.7	806	684	97.8	138.3	performance. Last unmanned ballistic flight. (White Sand Sun-synchronous orbit permitted satellite to view weather in each area
1966 08A	(S)							of the globe each day, photographing a given area at the same local
								time every day. First Advanced Vidicon Camera System provided
								valuable information about weather patterns and conditions.
								Reimbursable (NOAA). (WSM
Reentry V (S)	Scout 42 (S)	Feb 9		SUE	SORBITAL FLIGHT		95.0	
								Earth's atmosphere at 27,000 fps. (WF
Apollo Saturn	Saturn IB	Feb 26		SUE	SORBITAL FLIGHT		20820.1	Launch Vehicle development flight; carried unmanned Apollo
(AS-201) (S) ESSA II (S)	(S)							spacecraft.
- 55A II (5) 1966 16A	Della 37	Feb 28	113.4	1412	1352	101.0	131.5	Provided direct readout of cloud cover photos to local users. Along
1900 104	(S)							with ESSA I, completed the initial global weather satellite system.
Gemini VIII (U)	Titon II O (C)	11						Reimbursable (NOAA).
1966 20A	Titan II 8 (S)	Mar 16		LAN	DED MAR 17, 1966		3788.0	Agena Target Vehicle launched from Complex 14 and manned Gemin
GATV (S)	Atlas-Agena D	1444.40						launched from Complex 19. Astronauts Neil A. Armstrong and David
966 19A	5302 (S)	Mario		DO	WN SEP 15, 1967			H. Scott accomplished rendezvous and docking. Attitude and
300 134	5502 (3)							maneuver thruster malfunction caused the docked spacecraft to tumbi
								Astronauts separated the vehicles and terminated the mission early:
								EVA was not accomplished. First Pacific Ocean landing. Mission
Centaur Test (U)	Atlas-Centaur	Apr 8	· · ·-		WALLAN E 1000			Duration 10 hours 41 minutes 26 seconds.
966 30A	(AC-8) (U)	~~ u		00	WN MAY 5, 1966		784.7	Launch vehicle development flight; carried Surveyor model. Second
	Atlas-Agena D	Apr 8	100.6	793	783			Centaur Engine firing unsuccessful.
966 31A	5002C (S)		100.0	193	/63	35.0	1769.0	Carried four experiments to study UV, X-ray and gamma-ray regions.
limbua II (S)	Thor-Agena D	May 14	108.0	1174	1001			Primary battery malfunctioned.
966 40A	D 5303 (S)	may 14	108.0	11/4	1091	100.6	413.7	Provided global weather photography on 24-hour basis for
								meteorological research and operational use. (WSM

MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN	T ORBITAL PAR	AMETERS	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (k	m) Perigee (km)	linci (aeg)	3252.0	Target vehicle for Gemini IX; vehicle failure caused by a short in the
Gemini IX (U)	Atlas-Agena [May 17		DI	D NOT ACHIEVE ORI	311		a sector circuit
	5303 (U)				DOWN FEB 22, 1985		224.5	Atmosphere Explorer; carried 8 experiments to measure temperatures,
Explorer 32 (S)	Deita 38	May 25			DOWN FEB 22, 1905			composition density and pressures in the upper atmosphere.
1966 44A	_(S)			LAN	DED ON MOON JUN 2	1966	995.2	Achieved soft lunar landing in Ocean of Storms. Performed
Surveyor I (S)	Atlas-Centau	May 30		DAINE		,		engineering tests and transmitted photography. Landing pads
1966 45A	(AC-10) (S)							penetrated the lunar surface to a maximum depth of 1 inch.
	Titan II 9	Jun 3			LANDED JUN 6, 1966		3705.3	Seventh manned mission with Thomas P. Stafford and Eugene A.
Gemini IXA (U)		30113						Cernan. Target vehicle shroud failed to separate; docking was not achieved. EVA was successful, but evaluation of AMU was not
1966 47A	(S) Atlas-Agena	D Jun 1			DOWN JUN 11, 1966			achieved. EVA was successful, but evaluation of the seconds. achieved. Mission Duration 72 hours 20 minutes 50 seconds.
GATV (U)	5304 (S)	0 0011						achieved. Mission Duration 72 hours 20 million or geophysical and Carried 21 experiments to obtain correlated data on geophysical and
1966 46A OGO III (S)	Atlas Agena	B Jun 7		CURREN	T ELEMENTS NOT M	AINTAINED	514.8	solar phenomena in the Earth's atmosphere. First 3-axis stabilization in
1966 49A	5601 (S)							highly allighted orbit
1900 49/1	0007 (-)					40.8	173.0	Padiation research satellite for the USAF. Reimbursable (DUD).
OV-3 (S)	Scout 46 (S)	Jun 9	142.9	4703	645	40.6	173.0	
1966 52A _					2533	84.5	56.7	Sphere, 100 feet in diameter, to determine the location of continents,
Pageos I (S)	Thor-Agena	D Jun 23	177.0	5599	2533	04.0		land masses, and other geographic points using a wond-wide
1966 56A	(S)							WSWC VSWC
		Jul 1		CUBBEN	IT ELEMENTS NOT M	AINTAINED	93.4	Interplanetary Monitoring Platform to study, at lunar distance, the
Explorer 33 (S)	Delta 39	JULI		CONTRER				Earth's magnetosphere and magnetic tail. Planned anchored lunar orbit
1966 58A	(S)							was not achieved; useful data obtained from Earth orbit. Launch vehicle development flight to evaluate the S-IVB stage vent
	Saturn IB (S	Jul 5			DOWN JUL 5, 1966		2635.4	Launch vehicle development night to evaluate the overblodge term
Apollo Saturn	Saturn in 10	,						and restart capability.
AS-203 (S)							0.200.0	Eighth manned mission with John W. Young and Michael Collins.
1966 59A Gemini X (S)	Titan II 10 (S	S) Jul 18			LANDED JUL 21, 196	6	3762.6	Dedermed first docked vehicle maneuvers; standup EVA of 69
1966 66A	1100111110	-,				-		minutes, umbilical EVA of 27 minutes. Mission duration 70 hours
1966 66A	Atlas-Agena	D Jul 18			DOWN DEC 29, 196	6		to i t 20 seconds
1966 65A	5305 (S)						385.6	Rhotograph landing sites for Apollo and Surveyor missions from lunar
Lunar Orbiter 1 (S)	Atlas-Agena	D Aug 10			DOWN OCT 29, 196	D	0.00.0	The month over 2 million square miles of the Moon's surace,
1966 73A	5801 (S)							took the first two photos of the Earth from the distance of the Moon.
								Demonstrated maneuverability in lunar orbit.
1								

MISSION/ Inti Design	LAUNCH				T ORBITAL PARA	METERS	WEIGHT	190
	VEHICLE	DATE	(Mins.)	Apogee (k	m) Perigee (km)	Incl (dea)	(kg)	DEMARAS
Pioneer VII (S) 1966 75A	Delta 40 (S)	Aug 17		—— н	ELIOCENTRIC ORBIT		63.5	(All Launches from ESMC, unless otherwise noted) Second in a series of interplanetary probes to provide data on solar when managin flaid the series of the second s
Apollo Saturn AS-202 (S)	Saturn IB (S)	Aug 25		s	UBORBITAL FLIGHT		25809.7	wind, magnetic fields, and cosmic rays. Apollo launch vehicle/spacecraft development flight to test Command
Gemini XI (S) 1966 81A	Titan II 11 (S)	Sep 12			NDED SEP 15, 1966		3798.4	Mounte near shield and obtain launch vehicle and encourage date
BATV (S) 1966-80A	Atlas-Agena D 5306 (S)	Sep 12		Ľ	OWN DEC 30, 1966			Jr. Rendezvous and docking achieved. Umblicat and standup EVA performed and as well as tethered spacecraft experiment. Mission
Surveyor II (U) 966 84A	Atlas-Centaur (AC-7) (S)	Sep 20		IMPACTE	D MOON ON SEP 23,	966	1000.2	Duration / I hours 1/ minutes 8 seconds
SSA III (S)	Delta 41							mucourse correction, sending the snececreft into a tumbling made
966 87A	(S)	Oct 2	114.5	1483	1384	100.9		Sophisticated cameras and sensors provided valuable information and
Centaur Test AC-9) (S) 966 95A	Atlas-Centaur (AC-9) (S)	Oct 26			OWN NOV 6, 1966		332.0	the world's weather patterns/conditions. Reimbursable (NOAA). (WSM Launch vehicle development flight; Surveyor model injected into simulated lunar transfer orbit. Demonstrated two-burn parking orbit
ntelsat II F-1 (U) 966 96A	Deita 42 (S)	Oct 26	717.7	37229	3123	16.9		operational capability. Comsat commercial communications satellite. Apogee monitor
unar Orbiter 2 (S) 966 100A	Atlas-Agena D 5802 (S)	Nov 6		Ð	OWN OCT 11, 1967		385.6	Photographed lunar landing sites from lunar orbit, provided any data
emini XII (S)	Titan II 12 (Š)	Nov 11			NDED NOV 15, 1966			surface debris tossed out at impact
966 104A ATV (S) 966 103A	Atlas-Agena D 				DWN DEC 23, 1966			Tenth and last manned Gemini flight with James A. Lovell, Jr. and Edwin E. Aklrin, Jr. Rendezvous and docking achieved. Two EVA's performed. Mission duration 94 hours 34 minutes 31 seconds.
TSI(S) 966 110A	Atlas-Agena D 5101 (S)	Dec 7	1436.0	35817	35750	14.3	703.1	Perform various communication, meteorology, and control technology experiments and carry out scientific measurements of other
osatellite I (U)	Delta 43	Dec 14						environment. Experiments results outstanding. Spin-scan cloud came photographed changing weather patterns; air-to-ground and air-to-air communications demonstrated for the first time.
966 114A	(S)	505 14		D	DWN FEB 15, 1967		426.4	Carried biological specimens to determine the effects of the space environment on life processes. Reentry vehicle separated but rocket tailed, leaving the capsule in orbit. No useful scientific data obtained.

MISSION/ Intl Design	LAUNCH L	AUNCH	PERIOD (Mins.)		ORBITAL PARA		WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted) 1967
1967								
Intelsat I F-2 (S) 1967 01A	Delta 44 (S)	Jan 11		CURRENT I	ELEMENTS NOT MAIN	TAINED	87.1	Comsat commercial communication satellite. Reached intended location on February 4, 1967. Reimbursable (Comsat).
ESSA IV (S) 1967 06A	Delta 45 (S)	Jan 26	113.4	1437	1323	102.0	131.5	Replaced ESSA II in TOS system. Provided daily coverage of local weather systems to APT receivers. Shutter malfunction rendered one camera inoperative. Reimbursable (NOAA). (WSMC)
Lunar Orbiter 3 (S) 1967 08A	Atlas-Agena D 5803 (S)	Feb 5		Ď	OWN OCT 9, 1967		385.6	Photographed lunar landing sites from lunar orbit; also returned 600,000 sq. mi. of front and 250,000 sq. mi. of back side lunar photography; provided gravitational field and lunar environment data.
OSO III (S) 1967 20A	Delta 46 (S)	Mar 8		C	OWN APR 4, 1982		284.4	Carried 9 experiments to study structure, dynamics and chemical composition of the outer solar atmosphere through X-ray, visible, and UV radiation measurements.
Intelsat II F-3 (S) 1967 26A	Delta 47 (S)	Mar 22		CURRENT	ELEMENTS NOT MAIL	NTAINED	87.1	Comsat commercial communication satellite. Completed Intelsat II system. Reimbursable (Comsat).
ATS II (U) 1967 31A	Atlas-Agena D 5102 (U)	Apr 6		C	XOWN SEP 2, 1969		324.3	Test of the gravity gradient control system; carried microwave communications, meteorological cameras, and eight scientific experiments. Second stage failed to restart, resulting in an elliptical orbit. Limited data obtained.
Surveyor III (S) 1967 35A	Atlas-Centaur (AC-12) (S)	Apr 17		LANDE	D ON MOON APR 20,	1967	1035.6	before landing. Surface sampler was used for pressing, digging, trenching, scooping, and depositing surface material in view of the camera. Returned over 6,300 photographs, including pictures of the Earth during lunar eclipse.
ESSA V (S) 1967 36A	Deita 48 (S)	Apr 20	113.5	1419	1352	102.0	147.4	weather systems, Reimbursable (NOAA). (WSMC
San Marco II (S) 1967 38A	Scout 52 (S)	Apr 26		D	OWN OCT 14, 1967		129.3	Indian Ocean; launched conducted by Italian crew. Provided continuou equatorial air density measurements. Cooperative with Italy. (SM
Lunar Orbiter IV (S) 1967 41A	Atlas-Agena D 5804 (S)	May 4		(DOWN OCT 6, 1967		385.6	additional back side areas.
Ariel III (S)	Scout 53 (S)	May 5		0	OWN DEC 14, 1970		102.5	investigations. Cooperative with UK (WSMC
1967 42A Explorer 34 (S) 1967 51A	(S) Delta 49 (S)	May 24			DOWN MAY 3, 1969		73.9	Fifth in Interplanetary Monitoring Platform series to study Sun-Earth relationships. Elliptical orbit achieved. Useful data returned. (WSMC

MISSION/	LAUNCH I	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS	WEIGHT	DEMADIKO
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Inci (dea)	(kg)	
ESRO II-A (U)	Scout 55 (U)	May 29		DID	IOT ACHIEVE ORE	DIT	89.1	(All Launches from ESMC, unless otherwise noted) Carried 7 experiments to study solar and cosmic radiation. Third stage
Mariner V (S) 1967 60A	Atlas-Agena D 5401 (S)			HEL	OCENTRIC ORBIT	Г	244.9	vehicle failure Cooperative with ESRO, (WSMC Venus flyby. Returned data on planet's atmosphere, radiation, and magnetic field environment.
Surveyor IV (U) 1967 68A	Atlas-Centaur (AC-11) (S)				D MOON ON JUL 1		1037.4	Lunar soft landing mission. All systems were normal until 2 seconds before retro rocket burnout (2-1/2 minutes before touchdown) when the signal was abruptly lost.
Explorer 35 (S) 1967 70A	Delta 50 (S)	Jul 19		SELE	NOCENTRIC ORB	ι τ	104.4	Interplanetary Monitoring Platform to study solar wind and interplanetary fields at lunar distances. Lunar orbit achieved. Results indicated no shock front precedes the Moon, no magnetic field, no radiation betts or evidence of lunar ionosphere.
OGO IV (S) 1967 73A	Thor-Agena D (S)			DÓ	WN AUG 16, 1972		551.6	Study relationship between Sun and Earth's environment. Near-polar
Lunar Orbiter V (S) 1967 75A	Atlas-Agena D 5805 (S)	Aug 1		DO	WN JAN 31, 1968		385.6	Fifth and final mission to photograph potential landing sites from lunar
Biosatellite II (Ŝ) 1967 83A	Delta 51 (S)	Sep 7		DO	WN SEP 9, 1967		425.4	orbit. Increased lunar photographic coverage to better than 99%. Carried 13 experiments to conduct biological experiments in low Earth orbit. Reentry initiated 17 orbits early because of communications
Surveyor V (S) 1987 84A	Atlas-Centaur (AC-13) (S)	Sep 8		LANDED C	N MOON SEP 11,	1967	1006.1	difficulties and storm in recovery area. Air recovery successful. Lunar soft landing accomplished; returned TV photos of lunar surface
Intelsat II (S) 1967 94A	Delta 52 (S)	Sep 28		CURRENT EL	EMENTS NOT MA	INTAINED	87.1	and data on chemical characteristics of lunar soil. Consat commercial communications satellite to provide 24-hour
OSO-IV (S) 1967 100A	Delta 53 (S)	Oct 18		DO	WN JAN 15, 1982		276.7	transoceanic service. Reimbursable (Comsat). Continuation of OSO program to better understand the Sun's structure and determine the solar influence upon the Earth. Obtained
RAM C-1 (S)	Scout 57 (S)	Oct 19		SUB	ORBITAL FLIGHT		116.6	the first pictures made of the Sun in extreme ultraviolet. Reentry test to investigate communications problems experienced
ATS III (S) 1967 111A	Atlas-Agena D 5103 (S)	Nov 5	1436.1	35844	35730	14.2	714.0	Auring reentry (WFF) Further development of experiments and concepts in useful applications of space technology to communications, meteorology,
Surveyor VI (S) 1967 112A	Atlas-Centaur (AC-14) (S)	Nov 7		LANDED	ON MOON NOV 10	, 1967	1008.3	navigation, and Earth resources management. Lunar soft landing achieved; pictures and soil analysis data transmitted. Vernier engines restarted, lifting spacecraft 10 feet from the surface and landing 8 feet from the original landing site, performing the first rocket- powered takeoff from the lunar surface.

MISSION/	LAUNCH L		PERIOD	CURRENT	ORBITAL PARAMI	ETERS	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
nti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) In	ci (avg)	45506.0	Launch vehicle/spacecraft development flight. First launch of the
pollo 4 (S)	Saturn V	Nov 9		DO	WN NOV 9, 1967		45506.0	Saturn V; carried unmanned Apolio Command/Service Module.
967 113A	AS-501 (S)					102.2	129.7	Replaced ESSA II and ESSA IV in the TOS system; used in central
SSA VI (S)	Delta 54	Nov 10	114.8	1482	1407	102.2	123.1	enclosed up at the set of the set
967 114A	(S)				OCENTRIC ORBIT		65.8	Third in a series of interplanetary probes to provide data on the solar
Pioneer VIII (S)	Delta 55	Dec 13		HELI	OCENTRIC ORDIT		00.0	wind, magnetic fields, and cosmic rays. Carried TETR-1, the first NAS
967 123A	(S)			00	WN APR 28, 1968		20.0	piggyback payload.
TETR-1 (S)				00	WN APH 20, 1300		2010	
967 1238								
1968					ON MOON JAN 9, 196	9	1040.1	Lunar soft landing achieved; provided pictures of lunar terrain, portions
Surveyor VII (S)	Atlas-Centaur	Jan 7		LANDED	UN MOUN JAN 3, 130	•		of energy experiment operations, stars, planets, crescent tarm as
1968 01A	(AC-15) (S)							shared observation of artificial light from the Earth.
				1572	1079	105.8	212.3	GEOS enecectation provide precise information about the size and
Explorer 36 (S)	Delta 56	Jan 11	112.2	15/2	10/3			shape of the Earth and strength of an variations in its gravitational field
1968 02A	(S)							and of the Mational Geodetic Program (WSMC
		Jan 22		00	WN JAN 24, 1968		42,506.0	First flight test of the Lunar Module; verified the ascent and descent
Apollo 5 (S)	Saturn 1B	Jan 22						stages, propulsion systems, and restart operations.
1968 07A	AS-204 (S) Atlas-Agena [Mard		CURRENT EL	EMENTS NOT MAINT	AINED	611.0	Provided measurements of energy characteristics in the Earth's
OGO V (S)		/ Mail 4		00111211122				radiation belts; first evidence of electric fields in the bow shock.
1968 14A	5602A (S) Scout 60	Mar 5		DO	WN NOV 16, 1990		89.8	
Explorer 37 (S)		Mar J		20				
1968 17A	(S) Saturn V	Apr 4		DC	OWN APR 4, 1968		42856.0	Launch vehicle and spacecraft development flight. Launch vehicle
Apolio 6 (U)	AS-502 (U)	Apr 4		-				engines malfunctioned; spacecraft systems performed normally.
1968 25A	Scout 61 (S)	Apr 27		SU	BORBITAL FLIGHT		272.0	Turbulent heating experiment to obtain heat transfer measurements at
Reentry VI (S)	Scoul 61 (3)	- the second sec						
ESRO IIB (S)	Scout 62 (S)	May 17		D	OWN MAY 8, 1971		89.1	Carried seven experiments to study solar and cosmic radiation in the
	50001 02 (0)	and y						
1968 41A	Thor-Agena [May 18		DID	NOT ACHIEVE ORBIT		571.5	Experimental meteorological satellite; also carried Secor 10 (DOD) as
Nimbus B (U)	(U)	, , . e				20.4		secondary payload. Booster matfunctioned; destruct signal sent by (WSM)
Secor 10 (U)								Range Safety Officer. (WSM) Radio Astronomy Explorer to monitor low-frequency radio signals
Explorer 38 (S)	Deita 57 (S)	Jul 4	224.2	5869	5825	120.8	275.4	Radio Astronomy Explorer to monitor low-frequency fault signals originating in our own solar system and the Earth's magnetosphere an
1968 55A	0014 07 (0)							
1900 390								radiation belts.

MISSION/	LAUNCH				ORBITAL PARAM	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	nci (dea)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 39 (S) 1968 66A	Scout 63 (S)	Aug 8		DO	WN JUN 22, 1981	<u> </u>		Dual payload (Air Density/Injun Explorers) to continue the detailed
Explorer 40 (S) 1968 668			117.9	2494	677	80.7	69.4	scientific study of the density and radiation characteristics of the Earth's upper atmosphere. (WCMC
ATS IV (U) 1968 68A	Atlas-Centaur (AC-17) (U)	Aug 10		DO	WN OCT 17, 1968		390.1	Evaluate gravity-gradient stabilization, simultaneous transmission of voice, TV, telegraph, and digital data. Centaur failed to reignite for
ESSA VII (S) 1968 69A	Deita 58 (S)	Aug 16	114.9	1471	1428	101.4	147.4	second burn; spacecraft remained in parking orbit attached to Centaur. Replaced ESSA V as the primary stored data satellite in the TOS
RAM CII (S)	Scout 64 (S)	Aug 22		SUF	ORBITAL FLIGHT		122.0	system. Reimbursable (NOAA). (WSMC
ntelsat III F-1 (U)	Delta 59 (U)	Sep 18			OT ACHIEVE ORBIT		286.7	Measure electron and ion concentrations during reentry. (WFF Comsat commercial communications satellite. Vehicle failure. Reimbursable (Comsat).
ESRO IA (S) 1968 84A	Scout 65 (S)	Öct 3		DO	WN JUN 26, 1970		85.8	Carried eight experiments to measure energies and pitch angles of particles impinging on the polar lonosphere during magnetic storms and
Apolio 7 (S) 1968 89A	Satum IB AS-205 (S)	Oct 11		LAN	DED OCT 22, 1968		51,655.0	quiet periods. Cooperative with ESRO. (WSMC First manned flight of the Apollo spacecraft with Walter M. Schirra, Jr., Donn F. Eisele, and Walter Cunningham. Performed Earth orbit
Ploneer IX (S) 968 100A TETR 2 (S) 968 100B	Delta 60 (S)	Nov 8			OCENTRIC ORBIT WN SEP 19, 1979			operations. Mission Duration 260 hours 9 minutes S seconds. Deep space probe to collect scientific data on the electromagnetic and plasma properties of interplanetary space. Carried TETR 2 as a secondary payload.
EOS A (S) 968 109A	Delta 61 (S)	Dec 5		DOV	WN OCT 28, 1975		108.8	Study interplanetary magnetic fields and solar cosmic ray particles. Reimbursable (ESA)
968 110A	Atlas-Centaur (AC-16) (S)		99.9	759	750	35.0	2016.7	Perform astronomy investigations of celestial objects in the ultraviolet region of the electromagnetic spectrum.
SSA VIII (S) 968 114A	Delta 62 (S)	Dec 15	114.6	1461	1411	101.8	136.1	Meteorological satellite for ESSA. Reimbursable (NOAA). (WFF)
telaat III F-2 (S) 968 1 16A	Delta 63 (S)	Dec 18		CURRENT EL	EMENTS NOT MAIN	TAINED	286.7	Initial increment of first global commercial communications satellite system for Comsat. Reimbursable (Comsat).
ypolio 8 (S) 968 118A	Satum V AS-504 (S)	Dec 21		LANC	DED DEC 27, 1968		51655.0	First manned Saturn V flight with Frank Borman, James A. Lovell, Jr., and William A. Anders. First manned lunar orbit mission; provided a close-up look at the Moon during 10 lunar orbits. Mission Duration 147 hours 0 minutes 42 seconds.

B-106

1968

MISSION/	LAUNCH		PERIOD	CURRENT O			WEIGHT	REMARKS (All Launches from ESMC, unless otherwise noted)
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	inci (deg)	(kg)	(All Launches from ESWC, unless otherwise noted)
1969								
050 V (S)	Delta 64	Jan 22		DOV	VN APR 2, 1984		288.5	Continuation of OSO program to study Sun's X-rays, gamma rays, and radio emissions.
1969 06A	(S)		107.7	3471	574	88.4	235.9	Satellite built by Canada: carried 10 experiments to study the
ISIS-A (S)	Delta 65	Jan 30	127.7	34/1	5/4	00.4	200.0	innormhere Cooperative with Canada (WSMU)
1969 09A	(S) Deita 66 (S)	Feb 5		CURRENT FLE	MENTS NOT MA	INTAINED	286.7	Second increment of Comsat's operational commercial communication
Intelsat III F-3 (S)	Dena 66 (5)	Feb 5		OOR TELEVITEEE				satellite system. Reimbursable (Comsat).
1969 11A Mariner VI (S)	Atlas-Centau	Feb 25		HELIC	CENTRIC ORBI	t T	411.8	Mars flyby; provided high resolution photographs of the Martian
1969 14A	(AC-20) (S)	10020						surface. Closest approach was 2.120 miles on July 31. 1969.
ESSA IX (S)	Delta 67	Feb 26	115.2	1503	1422	101.4	157.4	Ninth and last in the TOS series of meteorological satellites.
1969 16A	(S)							Reimbursable (NOAA).
Apollo 9 (S)	Saturn V	Mar 3		LAND	ED MAR 13, 196	9	51655.0	Earth orbital flight with James A. McDivitt, David R. Scott, and Russell
1969 18A	SA-504 (S)							Schweickart. First flight of the lunar module. Performed rendezvous,
1303 104	000(0)							docking, and EVA. Mission Duration 241 hours 0 minute 54 seconds.
Mariner VII (S)	Atlas-Centau	r Mar 27		HELIC	DCENTRIC ORBI	т	411.8	Mars flyby; provided high resolution photographs of the Martian
1969 30A	(AC-19) (S)							surface. Closest approach was 2,190 miles on August 5, 1969.
Nimbus III (S)	Thor-Agena	Apr 14	107.2	1128	1069	100.0	575.6	Provided night and day global meteorological measurements from space. Secor (DOD) provided geodetic position determination
1969 37A	(S)						~ .	measurements. (WSMC)
Secor 13 (S)	.,		107.2	1127	1067	100.0	20.4	measurements.
1969 37B							51655.0	Manned lunar orbital flight with Thomas P. Stafford, John W. Young,
Apollo 10 (S)	Saturn V	May 18		LAND	ED MAY 26, 196	9	51655.0	and Eugene A. Cernan to test all aspects of an actual manned lunar
1969 43A	SA-505 (S)							landing except the landing. Mission Duration 192 hrs 3 mins 23 secs.
					MENTS NOT MA	IN IT A IN ICO	143.8	
Intelsat III F-4 (S)	Delta 68	May 21		CURRENT ELE	MENTSNUT	AINED	140.0	satellite system. Reimbursable (Comsat).
<u>1969 45A</u>	<u>(S)</u>	Jun 5		DOV	VN OCT 12, 1979	1	631.8	Last in the OGO series to provide measurements of the energy
OGO VI (S)	Thor-Agena	Jun S		501				characteristics in the Earth's radiation belts; provided the first evidence
1969 51A	(S)							of electric fields in the bow shock. (WSMC)
Explorer 41 (S)	Delta 69	Jun 21		DOV	VN DEC 23, 1972	2	78.7	Seventh Interplanetary Monitoring Platform to continue study of the emicrometry within and beyond Earth's magnetosphere. (WSMC)
1969 53A	(S)							
Biosatellite III (U)	Delta 70	Jun 28		DO	WN JUL 7, 1969		696.3	Conduct intensive experiments to evaluate effects of weightlessness
1969 56A	(S)							with a pigtail monkey onboard. Spacecraft deorbited after 9 days
1909 900	\-/							because the monkey's metabolic condition was deteriorating rapidly.
								Monkey expired 8 hours after recovery, presumably from a massive
								heart attack brought on by dehydration.

AETERS ncl (deg)	WEIGHT (kg) 51655.0	(All Launches from ESMC, unless otherwise noted)
ilei (deg)		(All Lauriches from ESMC, unless otherwise noted)
	51055.0	First manual lungs landing and the total states
		First manned lunar landing and return to Earth with Neil A. Armstrong, Michael Collins, and Edwin A. Aldrin. Landed in the Sea of Tranquility
		on July 20, 1969; deployed TV camera and EASEP experiments,
		performed lunar surface EVA, returned lunar soil samples. Mission
		Duration 195 hours 18 minutes 35 seconds.
	146.1	Fourth increment of Comsat's operational commercial communication
		satellite system. Third-stage malfunctioned; satellite did not achieve
	173.7	desired orbit. Reimbursable (Comsat).
	1/3./	Continuing study of Sun's X-rays, gamma rays, and radio emissions. Carried PAC experiment to stabilize spent Delta stage.
	117.9	earned i ne experiment to stabilize spent Dena stage.
13.9	432.7	Evaluate gravity-gradient stabilization for geosynchronous satellites.
		Anomaly after apogee motor firing resulted in counterclockwise spin:
		gravity-gradient booms could not be deployed. Nine of 13 experiments
	67.1	returned useful data.
18,1	07.1	Deep space probe to study magnetic disturbances in interplanetary space. Vehicle malfunctioned; destroyed 8 minutes 3 seconds into
		powered flight by Range Safety Officer.
	85.8	Fourth European-designed and built satellite to study ionospheric and
		auroral phenomena over the northern polar regions. Reimbursable
102.8		(ESA). WSMC
102.0	72.1	Study the inner Van Allen belt and auroral zones of the Northern
	51655.0	Hemisphere. Cooperative with Germany. (WSMC Second Manned lunar landing and return with Charles Conrad, Jr.,
		Richard F. Gordon, and Alan F. Bean. Landed in the Ocean of Storms
		on November 19, 1969; deployed TV camera and ALSEP experiments;
		two EVA's performed; collected core sample and lunar materials
		photographed and retrieved parts from Surveyor III spacecraft. Mission
F		duration 244 hours 36 minutes 24 seconds.
	242.1	Communication satellite for the United Kingdom. Reimbursable (UK).
L	LE	

NASA Ma	jor Launch I	Reco	rd
			CURRENT ORBITAL PARA

MISSION/	LAUNCH	AUNCH	_	CURRENT	ORBITAL PARA	METERS	WEIGHT (kg)	(All Launches from ESMC, unless otherwise noted)
nti Design	VEHICLE	DATE	(MIUR)	Abogee (kii	I Feliges (any	11.0.1		1970
970					LEMENTS NOT M		155.1	Part of Comsat's operational commercial communication satellite
telsat III F-6 (S)	Delta 75	Jan 14		CURRENT	ELEMENTS NOT MP			sustem Beimburgshie (Comsal)
970 03A	(S)				1431	101.3	306.2	Second generation meteorological satellite to provide daytime and
OSI(S)	Delta 76	Jan 23	115.0	1477	1431	101.0		-inhitime clourt cover pheervations in both direct and stored modes.
970 08A	(S)				1431	101.3	9.1	Occar (Australia) carried as a Diggyback, was used by radio annateurs
scar 5 (S)			115.0	1475	14-31	101.0		(WONO)
970 08B					4000	99.2	503.5	too opcine test. Fell short of mission duration objective by less than
ERT II (U)	Thor-Agena	Feb 3	106.0	1044	1038	55.e.	00010	1 month
970 09A	(S)				35779	12.9	242.7	Communications satellite for NATO, Reimbursable (NATO).
ATOSAT I (S)	Delta 77	Mar 20	1436.2	35798	35779	12.0		
970 21A	(S)				1086	99.9	619.6	Stabilized, Earth-oriented platform to test advanced systems for
Nimbus D (S)	Thor-Agena	Apr 8	107.1	1096	1000	33.5	0.0.0	collecting meteorological and geological data. TOPO, carried as a
970 25A	(S)					99.8	21.8	piggyback, performed triangulation exercises. (WSMC)
TOPO 1 (S)	• •		106.9	1084	1082	33.0	21.0	
970 25B					NDED APR 17, 197		51655.0	Third manned lunar landing attempt with James A. Lovell, Jr., John L.
Apollo 13 (U)	Saturn V	Apr 11		U U	NDED APR 17, 197	0	01000.0	Suident is and Fred W Haise, Jr. Pressure lost in Shi ukygen aystom
1970 29A	SA-508 (S)							mission aborted; LM used for life support. Mission Duration 142 hours
								E4 minutes 41 seconds
					ELEMENTS NOT M		290.3	
Intelsat III F-7 (S)	Delta 78	Apr 22		CURRENT	ELEMENTS NOT M		200.0	austam Reimburgebie (Comset)
1970 32A	(S)					13.9	290.3	Part of Comsat's operational commercial communication satellite
Intelsat III F-8 (U)	Delta 79	Jul 23	1408.2	36634	33842	13.5	200.0	system. Malfunction during apogee motor firing; failed to achieve
1970 55A	(S)							desired orbit Beimbursable (Comsat).
					ELEMENTS NOT		242.7	Communication satellite for the United Kingdom. Telemetry
Skynet 2 (U)	Delta 80	Aug 19		CURHENT	ELEMENTSNOT			terminated following apogee motor failure. Reimbursable (UK).
1970 62A	(S)					Ŧ	134.0	Reasts test of radio blackout
RAM CIII (S)	Scout 69 (S)	Sep 30			UBORBITAL FLIGH		132.9	Orbiting From Otolith (OEO) in which from were used to study the
OFO I (S)	Scout 70	Nov 9			DOWN MAY 9, 1971		102.0	effects of weightlessness on the inner ear, which controls balance.
1970 94A	(S)						21.0	Badiation Meteoroid Spacecraft (RMS) provided data on radiation
RMS (S)	• •				DOWN FEB 7, 1971		21.0	Lotto (VIII
1970 94B						DOIT	2122.8	Contaur pose fairing
OAO B (U)	Atlas-Centau	Nov 30		DI	D NOT ACHIEVE O	нын	2122.0	failed to separate; orbit not achieved.
01000	(AC-21) (U)							B-1

MISSION/ Intl Design		LAUNCH			ORBITAL PARAM	ETERS	WEIGHT	REMARKS
	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km) in	ci (dea)	(kg)	(All Launches from ESMC, unless otherwise noted
TOS A (S) 1970 106A	Della 81	Dec 11	114.8	1471	1421	101.5	306.2	To augment NOAA's astellia world i'd mess otherwise noted
Explorer 42 (S)	(S)							To augment NOAA's satellite world-wide weather observation capabilities, Reimbursable (NOAA). (WSN
970 107A	Scout 71	Dec 12		D	OWN APR 5, 1979		142.0	Small Astronomy Satellite to catella a classify M
1971	<u>(S)</u>							outside the Miller Man Einst V and State X-ray sources within an
ntelsat IV F-2 (S)	Atlas-Centaur	Jan 25		ELEI	MENTS NOT AVAILABL	E	1387.1	Equith reperation exterility to avoid
971 06A	(AC-25) (S)					-	1007.1	Fourth generation satellite to provide increased capacity for Comsat's
vpolio 14 (S) 971 06A	Saturn V	Jan 31		LA	NDED FEB 9, 1971		51655.0	global commercial communications network. Reimbursable (Comsat)
971064	SA-509 (S)						0.000.0	Third Manned lunar landing with Alan B. Shepard, Jr., Stuart A. Roos
								and Edgar D. Mitchell. Landed in the Fra Mauro area on February 5, 1971: performed EVA dealand in the Fra Mauro area on February 5,
ATOSAT 2 (S)								1971; performed EVA, deployed Junar experiments, returned lunar
971 09A	Deita 82	Feb 2	1436.1	35830	35744	13.7	242.7	samples. Mission duration 216 hours 1 minute 58 seconds.
xplorer 43 (S)	<u>(\$)</u>				_		2.72,.7	Second communications satellite for NATO. Reimbursable (NATO)
971 19A	Delta 83	Mar 13		DC	WN OCT 2, 1974		288.0	Second generation International
SIS B (S)	<u>(S)</u>						200.0	Second generation Interplanetary Monitoring Platform to extend man's knowledge of solar-lunar relationships.
971 24A	Delta 84 (S)	Mar 31	113.5	1421	1355	8.2	264.0	Study electron production and loss, and large scale transport of
an Marco C (S)	 Scout 72							
971 36A	Scout 72 (S)	Apr 24		DO	WN NOV 29, 1971		163.3	Study atmosphere drag, density, neutral composition, and
ariner H (U)	Atlas-Centaur							
		May 8		DID N	IOT ACHIEVE ORBIT		997.9	Mariner Mars 71 Orbiter mission to map the Martian surface. Centaur
ariner I (S)	(AC-24) (U) Atlas-Centaur							stage malfunctioned shortly after launch.
71 051A		May 30		AER	OCENTRIC ORBIT		997.9	Second Mariner Mars '71 Orbiter mission to map the Martian surface.
	(AC-23) (U)							Achieved orbit around Mars on November 13, 1971. Transmitted 6,87
AET (S)	Scout 73 (S)							pictures.
	3000173 (5)	Jun 20		SUB	ORBITAL FLIGHT		62.1	Test to determine the structure and composition of an atmosphere from
cplorer 44 (S)	Scout 74	tul 0						a probe entering at high speed.
971 58A	(S)	Jul 8		DOV	VN DEC 15, 1979		115.0	Solar radiation spacecraft to monitor the Sun's X-ray and ultraviolet
ollo 15 (S)	Saturn V	Jul 26						emissions. Cooperative with NRI
71 63A	SA-510 (S)	JUI 216		LAN	DED AUG 7, 1971		51655.0	Fourth manned lunar landing with David R. Scott, Alfred M. Worden,
F Subsat (S)	SM-510 (5)	A						and James B. Irwin. Landed at Hadley Rille on July 30, 1971;
71 63D		Aug 4		IMPACTE	D MOON JUL 30, 1971		36.3	performed EVA with Lunar Roving Vehicle; deployed experiments.
							i	P&F Subsatellite spring-launched from SM in lunar orbit. Mission
110							r	Duration 295 hours 11 minutes 53 seconds.

MISSION/	LAUNCH		PERIOD	CURRENT	ORBITAL PARAM	ETERS	WEIGHT (kg)	(All Launches from ESMC, unless otherwise noted)
AS/EOLE (S)	Scout 75	Aug 16	(Mins.) 99.7	837	652	50.2	85.0	Obtain data on winds, temperatures, and pressures using instrumented balloons launched from Argentina and a satellite.
971 71A	(S)						31.7	Cooperative with France.
IC (S)	Scout 76 (S)	Sep 20		SU	BORBITAL FLIGHT			Cooperative with Germany. (WFF Observe active physical processes on the Sun and how it influences
SO H (S)	Delta 85	Sep 29		D	OWN JUL 9, 1974		635.0	Observe active physical processes on the Guil and how www.concer- the Earth and its space environment.
971 83A	(S)			DC	WN SEP 21, 1978		20.4	
ETR4 (S) 971 838		Oct 21		D	OWN JUL 21, 1972		31.7	To augment NOAA's satellite world-wide weather observation capabilities. Second stage failed. Reimbursable (NOAA). (WSMC
TOSB (U) 971 91A	Delta 86 (U)				OWN JAN 10, 1992		50.0	Small Scientific Satellite to study magnetic atorms and acceleration of
xplorer 45 (S) 971 96A	Scout 77 (S)	Nov 15					102.4	charged particles within the interactions between plasma and charged particle streams in
K-4 (S)	Scout 78	Dec 11		D	OWN DEC 12, 1978			the atmosphere. Cooperative with UK.
971 109A ntelsat IV F-3 (S)	(S) Atlas-Centau	Dec 20	1445.5	36013	35928	10.3	1387.1	global commercial communications network. Reimbursable (Comsat)
971 116A	(AC-26) (S)					9.7	1387.1	Fourth generation satellite to provide increased capacity for Comsat's
ntelsat IV F-4 (S)	Atlas-Centau (AC-28) (S)	Jan 22	1442.4	35921	35896	9.7		<u>alobal commercial communications network. Reimpursuble (communications network)</u>
972 03A IEOS A-2 (S)	Detta 87	Jan 31		C	OWN AUG 2, 1974		117.0	organizations to investigate particles and micrometeorites in space.
1972 05A	(S)					0700V	258.0	Reimbursable (ESA).
Pioneer 10 (S)	Atlas-Centau	r Mar 2		SOLAR SYS	STEM ESCAPE TRAJE	CIOHY		which is the late on high energy emissions
1972 12A TD-1 (S)	(AC-27) (S) Delta 88	Mar 11			DOWN JAN 9, 1980		470.8	A A A A A A A A A A A A A A A A A A A
1972 14A	(S) Saturn V	Apr 16		v	NDED APR 27, 1972		5655.0	Fifth manned lunar landing mission with John W. Young, Karl Matting
Apollo 16 (S) 1972 31A P&F Subsat (S)	SA-511 (S) SM	Apr 16		IMPAC	TED MOON MAY 29, 1	972	36.3	camera and experiments; performed EVA with lunar rowing venue. Deployed P&F Subsatelikte in lunar orbit. Mission Duration 265 hours
1972 31D	Atlas-Centar	ur Jun 13	1438.6	35858	35811	10.7	1387.1	

MISSION/		LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS	WEIGHT	19
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Parinee /km	Inel (dee)		
ERTS-A (S)	Delta 89	Jul 23	103.0	908	896	99.3		(All Launches from ESMC, unless otherwise noted
1972 58A	(S)				000	99.3	941.0	Demonstrate remote sensing technology of the Earth's surface as a
Explorer 46 (S)	Scout 79	Aug 13		DO	WN NOV 2, 1979		206.4	
1972 61A	<u>(S)</u>						206.4	Meteoroid Technology Satellite to measure meteoroid penetration
OAO 3 (S) 1972 65A	Atlas-Centau	r Aug 21	99.2	725	713	35.0	2200.0	
	(AC-22) (S)					00.0	2200.0	Study interstellar absorption of common elements in the interstellar
Transit (S) 1972 69A	Scout 80	Sep 2	99.9	796	707	90.0	94.0	yas, and investigate unraviolet radiation emitted from using but
Explorer 47 (S)	(S) Deita 90						54.0	Navigation Satellite for the U.S. Navy. Reimbursable (DOD). (WSM
1972 73A	(S)	Sep 22		CURRENT EL	EMENTS NOT M		375.9	Interplacetory Man Bully Dr. V
ITOS D (S)	Delta 91						010.0	Interplanetary Monitoring Platform; an automated space physics lab t
1972 82A		Oct 15	114.9	1453	1446	102.0	34.5	
Oscar (S)	(S)	0.445					04.5	To augment NOAA's satellite world-wide weather observation
1972 82B		Oct 15	114.9	1452	1446	102.0	15.9	capabilities. Oscar, an amateur radio satellite, was carried as a
Telesat A (ANIK) (S)	Delta 92	Num					10.0	piggyback. Reimbursable (ITOS/NOAA; Oscar/AMSAT). (WSM
1972 90A	(S)	Nov 9	1457.1	36258	36136	10.8	544.3	First of a series of domentic and
Explorer 48 (S)	Scout 81	Nov 15						First of a series of domestic communications satellites for Canada. Reimbursable (Canada).
972 91A	(S)	NOV 15		DOW	N AUG 20, 1980		186.0	Small Astronomy Satellite; carried a gamma ray telescope in a bulbou dome to study agreement of the study agreemen
	(0)							dome to study gamma rays. Launched by an Italian crew from San
ESRO IV (S)	Scout 82	Nov 21						
1972 92A	(S)	1404 21		DOW	N APR 15, 1974			Carried five experiments to investigate the ionosphere, the near
	(0)							magnetosphere, surgral, and solar and the ionosphere, the near
Apollo 17 (S)	Saturn V	Dec 7					_	magnetosphere, auroral, and solar particles. Reimbursable (ESA).
AS-512/CSM-	SA-512 (S)			LANDI	D DEC 19, 1972		51655.0	Sixth and last manned lunar landing mission in the Apollo series with
14/LM-12)	0.1012 (0)							Eugene A. Cernan, Ronald E. Evans, and Harrison H. (Jack) Schmitt.
972 96A								Landed at Taurus-Littrow on Dec 11., 1972. Deployed camera and
								experiments; performed EVA with lunar roving vehicle. Returned luna.
limbus E (S)	Delta 93	Dec 11	107.1	1099				samples. Mission duration 301 hours 51 minutes 59 seconds.
972 97A	(S)		107.1	1099	1086	99.8	716.8	Stabilized, Earth-oriented platform to test advanced systems for
EROS (S)	Scout 83	Dec 16		DOW	1 11 10 10 10 10 10			Wilduling Inclopionical and geological data
972 100A	(S)			DOW	NAUG 22, 1973		125./	Study the state and behavior of the upper atmosphere and
973								
ioneer G (S)	Atlas-Centaur	Apr 5		SOLAD OVOT				107
973 19A	(AC-30) (S)			SULAH SYSTE	M ESCAPE TRA	JECTORY	259.0	Investigate the interplanetary medium beyond the orbit of Mars, the
	· · · · · · · · · · · · · · · · · · ·							Asteroid Belt, and the near-Jupiter environment.

MISSION/			PERIOD (Mins.)		Perigee (km) Inc		WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
Intl Design Telesat B (ANIK-2) (S)	Delta 94	Apr 20	1443.0	35970	35873	9.4	544.3	Second domestic communications satellite for Canada. Reimbursable (Canada)
1973 23A Skylab Workshop (S)	(S) Saturn V SA-513 (S)	May 14		DO	WN JUL 11, 1979		71500.0	Unmanned launch of the first U.S. Space Station. Workshop incurred damage during launch. Repaired during follow-on manned missions.
<u>1973 27A</u> Skylab 2 206/CSM-116 (S) 1973 32A	Saturn IB SA-206 (S)	May 25		LAN	DED JUN 22, 1973		29750.0	First manned visit to Skylab workshop with Charles (Pete) Conrad, Jr., Joseph P. Kerwin, and Paul J. Weitz. Deployed parasol-like thermal blanket to protect the hull and reduce temperatures within the worksho freed solar wing that was jammed with debris. Mission duration 672 hours 49 minutes 49 seconds.
Explorer 49 (S) 1973 39A	Delta 95 (S)	Jun 10		SELE	NOCENTRIC ORBIT		328.0	Radio Astronomy Explorer to measure low frequency radio noise from nelactic and extraoalactic sources and from the Sun. Earth and Jupiter
ITOS E (U)	Delta 96 (U)	Jul 16			NOT ACHIEVE ORBIT		333.8	Augment NOAA's satellike world-wide weather observation capabilities Vehicle second stage malfunctioned. Reimbursable (NOAA). (WSM)
Skylab 3 207/CSM-117 (S) 1973 50A	Saturn IB SA-207 (S)	Jul 28		LAN	DED SEP 25, 1973		29750.0	Second manned visit to Skylab Workshop with Alan L. Bean, Owen K. Garriott, and Jack R. Lousma. Performed systems and operational tests, conducted experiments, deployed thermal shield. Mission Duration 1416 hours 11 minutes 9 seconds.
Intelsat IV F-7 (S) 1973 58A	Atlas-Centaur (AC-31) (S)	Aug 23	1452.4	36138	36072	9.7	1387.1	Fourth generation satellite to provide increased capacity for Comsat's alobal commercial communications network. Reimbursable (Comsat)
Explorer 50 (S) 1973 78A	Delta 97 (S)	Oct 25		ELEME	INTS NOT AVAILABLE		397.2	Last interplanetary Monitoring Platform to investigate the Earth's radiation environment.
Transit (S)	Scout 84 (S)	Oct 30	105.2	1123	885	89.9	95.0	Navigation satellike for the 0.0, havy the the set of the 1.0, have
<u>1973 81A</u> Mariner 10 (Mariner/Venus/ Mercury) (S) 1973 85A	Atlas-Centaur (AC-34) (S)	Nov 3		HEL	IOCENTRIC ORBIT		504.0	Venus and Mercury flyby mission; first dual-planet mission Photographed the Earth and the Moon on its flight to Venus; Venus encounter (at 5,800 km) on February 5, 1973; Mercury encounter (at 704 km) on March 29, 1974; second Mercury encounter (at 48,069 km on September 21, 1974; third Mercury encounter (at 327 km) on March 16, 1975. Engineering tests conducted before attitude control gas was depleted and transmitter commanded off on March 24, 1975.
ITOS F (S)	Delta 98 (S)	Nov 6	116.1	1508	1499	116.1	345.0	To augment NOAA's satellite world-wide weather observation capabilities. Reimbursable (NOAA). (WSM
1973 86A Skylab 4 (S) 1973 90A	Satum IB SA-208 (S)	Nov 16		LĂ	NDED FEB 8, 1974		29,750.0	Capebulities - Memoralescore Visit to Skylab Workshop with Gerald P. Carr, Edward (Gibson, and William R. Pogue. Performed inflight experiments; obtain medical data on crew; performed four EVA's. Mission duration; 2016 hours 1 minute 16 seconds.

MISSION/		LAUNCH		CURRE	NT ORBITAL PARAMI	ETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (I	(m) Perigee (km) In	ci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 51 (S) 1973 101A	Delta 99 (S)	Dec 16			DOWN DEC 12, 1978		663.0	Atmosphere Explorer; carried 14 instruments to study energy transfer atomic and molecular processes, and chemical reactions in the
1974								atmosphere. (MCM
Skynet II-A (U)	Delta 100	Jan 18			DOWN JAN 25, 1974			19
1974 02A	(U)	out to			DOWN JAN 25, 1974		435.5	Communication satellite for the United Kingdom. Short circuit in
Centaur Proof Flight (U)	Titan IIIE Centaur (76) (Feb 11 U)		D	ID NOT ACHIEVE ORBIT			electronics package caused vehicle failure. Reimbursable (UK). Launch vehicle development test of the Titan IIIE/Centaur (TC-1); carried simulated Viking spacecraft and Sphinx. Liquid oxygen boost
	_							pump failed to operate during Centaur starts. Destruct command sent
San Marco C-2 (S) 1974 09A	Scout 85 (S)	Feb 18			DOWN MAY 4, 1976		170.0	748 seconds after liftoff. Measure variations of equatorial neutral atmosphere density,
UK-X4 (S)	Scout 86	Mar 8	100.3	867	677	97.9	91.6	composition, and temperature. Cooperative with Italy. (San Marc
974 13A	(S)				011	37.3	31.0	Three axis stabilized spacecraft to demonstrate the technology involved in the design and manufacture of this type platform for use on
Nestar A (S)	Delta 101	Apr 13	1441.6	35907	35907	9.1	571.5	small spacecraft. Reimbursable (UK). (WSM
1974 13A	<u>(S)</u>					v .,		Domestic communications satellite for Western Union. Reimbursable (WU).
SMS A (S)	Delta 102	May 17		ELE	MENTS NOT AVAILABLE			Geostationary environmental satellite to provide Earth imaging in
974 33A	(S)							visible and IR spectrum. First weather observer to operate in a fixed
ATS F (S)	Titan III C	May 30	1412.1	35440	35190	12.5	1403.0	geosynchronous orbit about the Equator. Cooperative with NOAA.
974 39A	Centaur 79 (S)	-						Applications Technology Satellite capable of providing good quality TV signals to small, inexpensive ground receivers. Carried over 20 technology and science experiments.
Diplorer 52 (S)	Scout 87	Jun 3			DOWN APR 28, 1978			
974 40A	<u>(S)</u>							"Hawkeye" spacecraft to investigate the interaction of the solar wind with the Earth's magnetic field. (WSM/
EROS B (S)	Scout 88	Jul 16			DOWN SEP 25, 1975		125.7	German-built satellite to study the state and behavior of the upper
974 55A	(S)							atmosphere and ionosphere. Reimbursable (Germany). (WSM)
NS A (S) 974 70A	Scout 89 (S)	Aug 30		1	DOWN JUN 14, 1977		129.8	Study the sky in ultraviolet and X-ray from above the atmosphere.
Vestar B (S) 974 75A	Delta 103 (S)	Oct 10	1442.2	35928	35883	8.9	571.5	Cooperative with the Netherlands. (WSMG Domestic communications satellike for Western Union. Reimbursable (WU).
K-5 (S)	Scout 90	Oct 15			OWN MAR 14, 1980			Measure the spectrum, polarization and pulsar features of non-solar
974 77A	(S)							X-ray sources. Cooperative with UK. (San Marco

1973

·-----

.....

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR/	AMETERS	WEIGHT	
inti Design	VEHICLE	DATE	(Mins.)		Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ITOS-G (S)	Deta 104	Nov 15	114.9	1457	1442	101.9	345.0	ITOS-G - To augment NOAA's satellite world-wide weather observation
1974 89A	(S)							capabilities. Reimbursable (NOAA).
Intasat (S)	(-)		114.8	1457	1439	101. 9	20.4	Intasat - Conduct worldwide observations of ionospheric total electron
1974 89B								counts. Cooperative with Spain.
Oscar (S)			114.8	1457	1437	101.9	28.6	Oscar - provide communications capability for amateur radio anthusiasts around the world. Reimbursable (AMSAT) (WSMC)
1974 89C							1007.1	Fourth generation satellite to provide increased capacity for Comsat's
Intelsat IV F-8 (S)	Atlas-Centaur	Nov 21	1443.0	35949	35894	8.1	1387.1	alobal commercial communications network. Reimbursable (Comsat).
1974 93A	(AC-32) (S)			35828	35775	11.6	435.0	Communication satellite for the United Kingdom. Reimbursable (UK).
Skynet II-B (S)	Delta 105	Nov 22	1436.9	35628	35775	11.0	430.0	Communication activity for the critical rangement internet (21)
1974 94A	(S)	Dec 10		HEI	OCENTRIC ORBI	r	370.0	Study the Sun from an orbit near the center of the solar system.
Helios A (S)	Titan IIIE Centaur 83 (S			neu	OCENTRIC ORDIN			Cooperative with West Germany.
1974 97A Symphonie A (S)	Deita 106	Dec 18	1440.6	35896	35853	11.9	402.0	Joint French-German communications satellite to serve North and
1974 101A	(S)	000 10	1440.0					South America, Europe, Africa and the Middle East. Reimbursable
19/4 10/A	(0)							(France/Germany).
1975								1975
Landsat 2 (S)	Delta 107	Jan 22	103.1	911	899	98.8	953.0	Second Earth Resources Technology Satellite to locate, map, and
1975 04A	(S)							measure Earth resources parameters from space and demonstrate the
	(-)							applicability of this approach to the management of the worlds resources (WSMC)
SMS-B (S)	Delta 108	Feb 6		ELEM	ENTS NOT AVAIL	ABLE	628.0	Together with SMS-A, provide cloud-cover pictures every 30 minutes
1975 1 1A	(S)							to weathermen at NOAA. Cooperative with NOAA. Fourth generation satellite to provide increased capacity for Comsat's
Intelsat IV F-6 (U)	Atlas-Centau	r Feb 20		DID	NOT ACHIEVE OR	BIT	1387.1	global commercial communications network. Launch vehicle
	(AC-33) (U)							malfunctioned. Reimbursable (Comset).
				851	815	115.0	340.0	
GEOS C (S)	Delta 109	Apr 9	101.6	851	615	115.0	040.0	sea state, and other features. (WSMC
1975 27A	(S) Scout 91	May 7			WN APR 9, 1979		196.7	
Explorer 53 (S)	(S)	May /						the Milky Way galaxy. (San Marco
<u>1975 37A</u> Telesat C (S)	Delta 110	May 7	1439.5	35872	35833	8.2	544.3	Third domestic communications satellite for Canada.
1975 38A	(S)	internal of the second se		23072				Reimbursable (Canada).
Intelsat IV F-1 (S)	Atlas-Centau	r May 22	1450.8	36133	36015	8.1	1387.1	Fourth generation satellite to provide increased capacity for Comsat's
1975 42A	(AC-35) (S)	,						commercial communications network. Last of the IV series.
1010 401	() (u)							Reimbursable (Comsat).

MISSION/	LAUNCH I				ORBITAL PARA		WEIGHT	
Inti Design		DATE	(Mins.)		Perigee (km)	inci (deg)	<u>(kg)</u>	(All Launches from ESMC, unless otherwise noted)
Nimbus F (S) 1975 52A	Delta 111 (S)	Jun 12	107.4	1111	1098	99.8	827.0	Stabilized, Earth-oriented platform to test advanced systems for collecting meteorological and geological data. (WSMC
OSO I (S) 1975 57A	Delta 112 (S)	Jun 21		DO	WN JUL 9, 1986		1088.4	Observe active physical processes on the Sun and how it influences the Earth and its space environment.
Apollo Soyuz Test Project (S) 1975 66A	Satum IB SA-210 (S)	Jul 15		DOV	VN JUL 24, 1975		14,856.0	Manned Apollo spacecraft with Thomas P. Stafford, Vance D. Brand an Donald K. Slayton Rendezvoused and docked with Soyuz 19 spacecra (also launched July 15, 1975) with Aleksey Leonov and Valeriy Kubaso on July 17, 1975. Mission Duration 217 hours 28 minutes 23 seconds.
COS B (S) 1975 72A	Delta 113 (S)	Aug 8		CURRENT ELE	MENTS NOT MAINT	AINED	277.5	Cosmic ray satellite to study extraterrestrial gamma radiation. Reimbursable (ESA). (WSMC
Viking A Orbiter(S) 1975 75A	Titan IIIE Centaur 88 (S)	Aug 20			CENTRIC ORBIT		2324.7	Mars Orbiter and Lander mission to conduct systematic investigation of Mars. U.S. first attempt to soft land a spacecraft on another planet
Viking A Lander (S) 1975 75C					ON MARS JUL 20, 1	976	571.5	achieved on July 20, 1976. First analysis of surface material on another planet.
Symphonie B (S) 1975 77A	Delta 114 (S)	Aug 29	1440.4	35880	35861	12.1	402.0	Second joint French-German communications satellite to serve North and South America, Europe, Africa and the Middle East. Reimbursable (France/Germany).
Viking B Orbiter(S) 1975 83A	Titan IIIE Centaur 89 (S)	Sep 9			CENTRIC ORBIT		2324.7	Second Mars Orbiter and Lander mission to conduct systematic investigation of Mars. Soft landed on Mars on September 3, 1976.
Viking B Lander 1975 83C				LAND	ED ON MARS SEP :	9, 1976	571.5	Returned excellent scientific data.
Intelsat IVA F-1 (S) 1975 91A	Atlas-Centaur (AC-36) (S)	Sept 25	1441.0	35914	35852	8.1	1515.0	Improved satellite with double the capacity of previous Intelsats for Comsat's global commercial communications network. Reimbursable (Comsat).
Explorer 54 (S) 1975 96A	Delta 115 (S)	Oct6			N MAR 12, 1976		675.0	Atmosphere Explorer to investigate chemical processes and energy transfer mechanisms which control the Earth's atmosphere. (WSMC
Transit (S) 1975 99A	Scout 92 (S)	Oct 12			N MAY 26, 1991		161.9	Second in a series of improved navigation satellite for the U.S. Navy. Reimbursable. (WSMC
SMS-C/GOES A (S) 1975 100A	Delta 116 (S)	Oct 16	1435.7	35801	35756	7.6		First operational satellite in NOAA's geosynchronous weather satellite system. Reimbursable (NOAA).
Explorer 55 (S) 1975 107A	Delta 117 (S)	Nov 20		DOW	N JUN 10, 1981		719.6	Atmosphere Explorer to investigate the chemical processes and energy transfer mechanisms which control Earth's atmosphere.

MISSION/	LAUNCH		PERIOD	CURRENT	ORBITAL PARAMI	ETERS	WEIGHT (kg)	(All Launches from ESMC, unless otherwise noted)
ntl Design Jual Air Density	Scout 93	Dec 5	(MIDS.)	DID	NOT ACHIEVE ORBIT		35.3	Measure global density of upper atmosphere and lower exosphere. Malfunction during third stage burn resulted in loss of vehicle control;
Explorer (U)	(U)							destroyed by Bange Safety Officer at 341 seconds. (WSMC
ICA A (S)	Delta 118	Dec 13	1445.8	36084	35873	8.2	867.7	First RCA domestic communications satellite. Reimbursable (RCA).
975 117A	(S)							1976
976	Titan IIIE	Jan 15		HE	LIOCENTRIC ORBIT		374.7	Carried 11 scientific instruments to study the Sun. Cooperative with
lelios B (S)	Centaur 93 (S)							Germany.
1976 03A CTS (S)	Delta 119	Jan 17	1437.1	35887	35726	12.2	347.0	Experimental high-powered communication satellite to provide communications in remote areas. Cooperative with Canada.
1976 04A Intelsat IVA F-2 (S) 1976 10A	(S) Atlas-Centaur (AC-37) (S)	Jan 29	1444.5	35968	35933	8.3	1515.0	Second improved satellite with double the capacity of previous intelsats for Comsat's global commercial communications network. Paimbureable (Comsat).
Marisat A (S)	Delta 120	Feb 19	1436.1	35797	35777	10.4	655.4	Comsat Maritime Satellite to provide rapid, high-quality communications between ships at sea and home offices. Reimbursable (Comsat).
<u>1976 17A</u> RCA B (S)	<u>(S)</u> Delta 121	Mar 26	1460.1	36501	36010	7.8	867.7	Second RCA domestic communications Satellite. Beimbursable (RCA).
1976 29A	<u>(S)</u> Delta 122	Apr 22	1442.3	36008	35806	10.1	670.0	Third-generation communications satellite for NATO.
1976 35A	(S) Delta 123	May 4	225.4	5945	5838	109.9	411.0	Solid, spherical passive satellite to provide a reference point for laser renging experiments. (WSMC
1976 39A Comstar 1A (S)	(S) Atlas-Centau	May 13	1442.6	35921	35905	8.0	1490.1	First domestic communications satellite for Comsat.
1976 42A Air Force P76-5 (S)	(AC-38) (S) Scout 94	May 22	105.4	1044	981	99.6	72.6	Evaluate propagation effects of disturbed plasmas on radar and communications systems. Reimbursable (DOD). (WSMC
1976 47A Marisat B (S)	(S) Delta 124	Jun 9	1436.1	35813	35760	9.5	655.4	Second Comsat Maritime Satellite to provide rapid, high-quality communications between ships at sea and home offices. Reimbursabl
1976 53A	(S)							(Comsat). (WFI
	Scout 95 (S)	Jun 18		s	UBORBITAL FLIGHT		102.5	
Gravity Probe A (S) Palapa A (S)	Delta 125	Jul 8	1439.1	35867	35821	8.0	573.8	
1976 66A Comstar B (S)	(S) Atlas-Centau	Ir Jul 22	1436.2	35791	35784	7.9	1490.1	Second domestic communications satellite for Comsat. Reimbursable (Comsat).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN	T ORBITAL PARA	METERS	WEIGHT		197
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (k	m) Perigee (km)	Inci (dea)	(kg)	REMARKS (All Launches from ESMC, unless otherwise n	
1705 H (S) 1976 77A	Delta 126	Jul 29	116.2	1518	1505	102.1		Second generation satellite for NOAA's world-wide weather	(Deto
TIP III (S)	(S)								
1976 89A	Scout 96	Sep 1		ī	DOWN MAY 30, 1981		166.0	Improved Transit Navigation Satellite for the U.S. Navy.	WSMC
Marisat C (S)	(S) Della 127								
1976 101A		Oct 14	1436.0	35791	35779	10.9	655.4	Third Comsat Maritime Satellite to provide rapid, high-quality	(WSMC
	(S)							communications between ships at sea and home offices. Reim	
1977								(Comsat).	Dursabi
NATO IIIB (S)	Delta 126								197
1977 05A	(S)	Jan 27	1436.2	35789	35788	9.9	670.0	Third-generation communications satellite for NATO.	10/
Palapa B (S)	Deita 129	Mar 10						Reimbursable (NATO).	
1977 18A	(S)	Mariu	1439.5	35873	35831	6.9	573.8	Second Communication Satellite for Indonesia.	
GEOS/ESA (U)	Delta 130	A 00						Reimbursable (Indonesia).	
977 29A	(U)	Apr 20	734.1	38283	2874	26.6	571.5	ESA scientific satellite; carried seven experiments to investigate	the
2011	(0)							Earth's magnetosphere. Malfunction during second stage/third s	ne dooo
ntelsat IVA F-4 (S)	Atlas-Centaur	May 26						spinup placed GEUS in unusable orbit. Reimburseble (ESA)	-
1977 41A	(AC-39) (S)	May 20	1448.1	36075	35966	7.0	1515.0	improved satellite with double the capacity of previous intelests	for
	(J) (J)							Comsars global commercial communications network Reimbur	reable
GOES/NOAA (S)	Delta 131	Jun 16	1435.8	35797				(Comsat).	
977 48A	(S)	001110	1433.0	35/9/	35762	10.2	635.0	Visible/infrared spin-scan radiometer provided day and night glo	bel
BMS (S)	Delta 132	Jul 14	1451.0	36152				weather pictures for NOAA. Reimbursable (NOAA)	
977 65A	(S)	00114	1451.0	30152	36001	10.4	669.5	Operational weather satellite; Japan's contribution to the Giobal	
EAO A (S)	Atlas-Centaur	Aug 12						Almosphere Research Program (GARP) Reimburgable (Japan)	
977 75A	(AC-45) (S)	ANY 12		U	OWN MAR 15, 1979		2001.9	high Energy Astronomy Observatory to study and map X-rays at	nd .
oyager 2 (S)	TITAN III E	Aug 20		201 40 000				gamma rays.	
977 76A	Centaur 106 (S			JULAH STS	TEM ESCAPE TRAJEC	TORY	2086.5	Investigate the Jupiter and Saturn planetary systems and the	· · · ·
		-,					•	merplanetary medium between the Earth and Saturn Juniter Bu	hu
								occurred on July 9, 1979; Saturn flyby occurred on August 25 to	0.01
							L L	Uranus tryby occurred on January 24, 1986; and Neptune flyby o	courred
IRIO (S)	Delta 133	Aug 25	1438.7	35925	06760			on August 25, 1989. Will continue into interstellar space	
977 80Å	(S)		1400.7	33325	35750	8.3	398.0 1	talian scientific satellite to study the propagation characteristics	of radio
	,						•	waves transmitted at super high frequencies during adverse week	ther.
							F	Reimbursable (Italy).	

.

-

-

MISSION/	LAUNCH L		PERIOD	CURRENT	ORBITAL PARAM	IETERS	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
nti Design		DATE	(Mins.)	Apogee (Km	LIOCENTRIC ORBIT	inci (Ged)	2086.5	Investigate the luniter and Saturn planetary systems and the
oyager 1 (S)	Titan III E	Sep 5		HE	LIQUENTRIC URBIT		2000.5	internienetery medium between the Earth and Saturn. Jupiler hypy
977 84A	Centaur 107 (S))						answind on March 5, 1979: Saturo flyby occurred on November 12.
								1000 departed Seturn at a high angle to the ecliptic plane to observe
								the large cloud-covered moon Titan. Will not be involved in any more
								eleveter, encounters
	D-b- 404 00	Sep 13		00	NOT ACHIEVE ORBIT		865.0	ESA experimental communications satellite. Vehicle exploded at 54
SA/OTS (U)	Delta 134 (U)	Sep 13		0.0				seconds after liftoff. Reimbursable (ESA).
	Atlas-Centaur	Sec. 20		DID	NOT ACHIEVE ORBI		1515.0	improved satellite with double the capacity of previous intelsats for
ntelsat IVA F-5 (U)	(AC-43) (U)	364 23						Comsat's global commercial communications network. Launch vehicle
	(0) (040)							failed. Reimbursable (Comsat). Dual payload International Sun Earth Explorer to the study interaction
SEE A/B	Delta 135 (S)	Oct 22						of the interplanetary medium with the Earth's immediate environment.
977 102A (S)	Dona 100 (0)				OWN SEP 26, 1987		329.0	Cooperative with ESA.
977 102B (S)					OWN SEP 26, 1987		<u>157.7</u> 93.9	Improved Transit navigation satellite for the U.S. Navy.
ransat (S)	Scout 97	Oct 27	106.8	1096	1060	69.7	93.9	Beimburgehie (DOD) (WSMC
977 106A	(S)				A## 44	11.3	695.3	ESA Meteorological satellite: Europe's contribution to the Global
Vieteosat (S)	Delta 136	Nov 22	1435.9	35815	35748	11.3	033.5	Atmospheric Research Program (GARP), Reimbursable (ESA).
1977 108A	(\$)				36162	9.8	677.0	Experimental communication satellite for Japan.
CS/Japan (S)	Deita 137	Dec 14	1455.8	36182	30102	3.0	077.0	Peimhursehia (Jacan)
1977 118A	(<u>S)</u>							19/0
1978				35901	35877	6.5	1515.0	Provide increased telecommunications capacity for intelsat's global
Intelsat IVA F-3 (S)	Atlas-Centaur	Jan 6	1441.4	35901	336/7	0.0	101010	
1978 02A	(AC-46) (S)		1435.6	41343	30210	33.8	698.5	International Ultraviolet Explorer to obtain high resolution data of stars
IUE-A (S)	Delta 138	Jan 26	1435.0	41343	00210			and shapete in the UV region of the spectrum. Cooperative with ESA.
1978 12A	(S) Atlas-Centaur	Feb 9	1436.1	35798	35776	10.5	1863.3	Provide communications capability for the USAF and the USAF for need
Fitsatcom-A (S)	(AC-44) (S)	reu 9	1430.1	00.00				relay and fleet broadcast. Reimbursable (DOD).
1978 16A	Delta 139	Mar 5	103.1	916	894	98.8	900.0	Third Earth Resources Technology Satellite to study the Earth's
Landsat-C (S) 1978 26A	(S)	Mar J	100.1					natural resources; measure water, agricultural fields, and mineral
0scar-8 (S)	(3)		103.0	904	893	99.2	27.3	deposits. Carried Lewis Research Center Plasma Interaction Experiment (PIX-I) and AMSAT Oscar Amateur Redio communications
1978 26B								relay satellite. Reimbursable (Oscar/AMSAT).
PIX-i (S)				CU	IRRENT ELEMENTS N	OT MAINTA	INED 34.0	relay satellite. nexticutedure (Oscal/AwiGht).
1978 26C							1515.0	Provide increased telecommunications capacity for Intelsat's global
Intelsat IVA F-6 (S)	Atlas-Centaur	Mar 31	1435.6	35801	35753	6.5	1515.0	network. Reimbursable (Comsat).
1978 35A	(AC-48) (S)							Hormon, I tom and a foot to a foot t

1977

MISSION/	LAUNCH		PERIOD	CURRENT	ORBITAL PAR	AMETERS	WEIGHT	197
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (dea)	(kg)	
BSE/Japan (S)	Delta 140	Apr 7	1435.2	35796	35740	11.0	665.0	(All Launches from ESMC, unless otherwise noted)
1978 39A							000.0	Japan's Broadcasting Satellite/Experimental for conducting TV broadcast experiments. Reimbursable (Japan).
HCMM/AEM-A (S)	Scout 98	Apr 26		DO	WN DEC 22, 1981		134.3	Heat Capacity Mapping Mission to test the feasibility of measuring
1978 41A	<u>(S)</u>							
OTS-B (S)	Delta 141	May 11	1452.6	36124	36092	8.5	865.0	Orbital Test Satellite to conduct communications experiments for ESA
1978 44A Pioneer Venus-A								Reimbursable (ESA).
	Atlas-Centaur	May 20		ELEN	ENTS NOT AVAIL	ABLE	582.0	One of two Pioneer flights to Venus in 1978; was placed in orbit
Orbiter) (S)	(AC-50) (S)						002.0	around Venus for remote papers divenus in 1978; was placed in orbit
978 51A								around Venus for remote sensing and direct measurements of the planet and its surrounding environment.
GOES-C/NOAA (S)	Delta 142	Jun 16	1436.0	35808	35761	9.1	635.0	Part of NOAA's global astusities at a
1978 62A	(S)						000.0	Part of NOAA's global network of geostationary environmental
								satellites to provide Earth imaging, monitor the space environment, and
Seasat-A (S)	Atlas-F	Jun 26	100.1	765	761	108.0	2300.0	relay meteorological data to users. Reimbursable (NOAA).
978 64A	(S)							Demonstrate techniques for global monitoring of oceanographic
								phenomena and features. After 106 days of returning data, contact wa
Comstar C (S)	Atlas-Centaur	Jun 29	1451.8	36181	36004	6,3	1516.0	lost when a short circuit drained all power from the batteries. (WSMC Third domestic communications satellite for Comsat.
1978 68A	(AC-41) (S)							Reimbursable (Comsat).
GEOS-B/ESA (S) 978 71A	Delta 143	Jul 14	1449.1	36056	36033	11.1	575.0	Positioned on magnetic field lines to study the magnetosphere and
9/8/1A	(S)							correlate data with ground station, balloon, and sounding rocket
ioneer/Venus-B								measurements. Reimbursable (ESA).
	Atlas-Centaur	Aug 8		PROB	ES LANDED DEC	9, 1978	904.0	Second Pioneer flight to Venus in 1978 to determine the nature and
Multiprobe)	(AC-51) (S)							composition of the streambers of Vision At the
978 78A								composition of the atmosphere of Venus. All four probes and the bus
								transmitted scientific data. The large probe, north probe, and night
	_	_						probe went dead upon impact; the day probe continued to transmit for <u>68 minutes after impact</u> .
SEE-C (S)	Delta 144	Aug 12		HELIC	CENTRIC ORBIT		479.0	Monitored the characteristics of a law -
978 79A	(S)							Monitored the characteristics of solar phenomena about 1 hour before
λΕ (S)								ISEE A and B to gain knowledge of how the Sun controls the Earth's
								near space environment. The spacecraft was renamed ICE in 1985 and
1								its orbit was changed to encounter the Comet Giacobini-Zinner on Sentember 11, 1985, Comparison of the Comet Giacobini-Zinner on
Iros-N (S)	Atlas-F	Oct 13	101.7	845	829	98.7	1405.0	September 11, 1985. Cooperative with ESA.
978 96A	(S)							Third generation polar orbiting environmental spacecraft to provide improved meteorological and environmental data. Operated by NOAA.
								improved meteorological and environmental data. Operated by NOAA

B-120

_____...

MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN	FORBITAL PA	RAMETERS	WEIGHT	
Intl Design	VEHICLE	DATE	(Mins.)		n) Perigee (ku		(kg)	(All Launches from ESMC, unless otherwise noted)
Nimbus-G (S) 1978 98A	Delta 145 (S)	Oct 24	104.0	955	940	99.1	987.0	Catried advanced sensors and technology to conduct experiments in pollution monitoring, oceanography, and meteorology. ESA received
Cameo 1978 98B	(5)		104.0	966	924	99.6		and processed data direct. After separation from Nimbus-G, the Defla vehicle released lithium over Northern Scandinavia and barium over Northern Alaska as part of Project CAMEO (Chemically Active Material Ejected in Orbit).
HEAO-B (S) 1978 103A	Atlas-Centau (AC-52) (S)	Nov 13		D	OWN MAR 25, 19	82	3152.0	Second High Energy Astronomical Observatory; carried a large X-ray telescope to study the high energy universe, pulsars, neutron stars, black holes, quasars, radio calaxies, and supermovas.
NATO IIIC (S)	Delta 146 (S)	Nov 18	1462.2	36307	36283	6.9	706.0	Third-generation communications satellite for NATO. Reimbursable (NATO).
1978 106A	Delta 147 (S)	Dec 15	1442.7	35943	35887	5.6	887.2	Fourth domestic communications satellite for Canada. Reimbursable (Canada).
1978 116A								1979
SCATHA (S) 1979 07A	Delta 148 (S)	Jan 30	1418.4	42737	28140	9.4	658.6	Spacecraft Charging at High Altitudes (SCATHA) carried 12 experiments to investigate electrical static discharges that affect patelities, Reimburgable (DOD).
SAGE/AEM-2 (S) 1979 13A	Scout 99 (S)	Feb 18		ī	OWN APR 11, 19	89	127.0	Mission, to map vertical profiles of ozone, aerosol, nitrogen dioxide, and Bayleight molecular extinction around the globe. (WFF)
Fitsatcom B (S) 1979 38A	Atlas-Centau (AC-47) (S)	r May 4	1461.3	36334	36222	9.2	1876.1	Provide communications capability for the USAF and the USN for fleet relay and fleet broadcast. Reimbursable (DOD). (WFF)
UK-6 (S) 1979 47A	Scout 100 (S)			(OWN SEP 23, 19		154.5	X-rays Reimbursable (UK). (WSMC)
NOAA-6 (S) 1979 57A	Atlas-F (S)	Jun 27	100.7	801	786	98.6	1405.0	world-wide meteorological data. Reimbursable (NOAA). (WSMC)
Westar C (S) 1979 72A	Deita 149 (S)	Aug 9	1441.0	35889	35874	4.6	571.5	Domestic communications satellite for Western Union. Reimbursable (WU).
HEAO 3 (S) 1979 82A	Atlas-Centau (AC-53) (S)	r Sep 20			DOWN DEC 7, 19	81	2898.5	High Energy Astronomy Observatory carried two cosmic ray experiments and one gamma ray spectrometer to obtain data on cosmic rays observed across the far reaches of space.
MAGSAT/AEM-3 (S) 1979 94A	Scout 101 (S)	Oct 30			DOWN JUN 11, 1	980	183.0	magnetic field of the Earth. (WSMC)
RCA-C (U) 1979 101A	Delta 150 (S)	Dec 6	788.9	35423	8385	8.2	895.4	Third RCA domestic communications satellite. Contact was lost shortly after apogee motor firing. Reimbursable (RCA).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN	IT ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (k	m) Perigee (km)	Inci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1960							· · · · ·	198
Fitsatcom C (S) 1960 04A	Atlas-Centaur (AC-49) (S)	Jan 17	1436.7	35885	35710	8.4	1864.7	Provide communications capability for the USAF and the USN for fleet relay and fleet broadcast. Reimbursable (DOD).
SMM-A (S) 1980 14A	Delta 151 (S)	Feb 14			DOWN DEC 2, 1989		2315.0	Solar Maximum Mission; first solar satellite designed to study specific solar phenomena using a coordinated set of instruments; performed a detailed study of solar flaree, active regions, sunspots, and other solar activity. Also measured the total output of radiation from the Sun.
NOAA-7 (U) 1980 43A	Atlas 19F (U)	May 29			DOWN MAY 3, 1981		1405.0	A companion the statuted the total output or relotation from the Sun. A companion to TIROS N to provide continuous coverage of the Earth and provide high-accuracy worldwide meteorological data. Launch vehicle malfunctioned; failed to place satellite into proper orbit. Reimbursable (NOAA).
GOES D (S) 1960 74A	Delta 152 (S)	Sep 9	1451.3	36713	35453	8.6	832.0	Part of NOAA's global network of geostationary environmental satellites to provide Earth imaging, monitor the space environment, and relay meteorological data. Reimbursable (NOAA).
Fitsatcom D (S) 1980 87A	Atlas-Centaur (AC-57) (S)		1436.1	35798	35775	8.5	1863.8	Provide communications capability for the USAF and the USN for fleet relay and fleet broadcast. Reimbursable (DOD).
SBS-A (S) 1980 91A	Delta 153 (S)	Nov 15	1442.5	35946	35878	5.3	1057.0	Satellite Business Systems (SBS) to provide fully switched private networks to businesses, government agencies, and other organizations with large, varied communications requirements. Reimbursable (SBS).
Intelsat V-A F-2 (S) 1980 98A	Atlas-Centaur (AC-54) (S)	Dec 6	1436.2	35806	35769	3.8	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Reimbursabl (Comsat).
1981								1981
Comstar D (S) 1981 18A	Atlas-Centaur (AC-42) (S)	Feb 21	1436.2	35791	35785	6.4	1484.0	Fourth domestic communications satellite for Comsat. Reimbursable (Comsat).
STS-1 (S) 1981 34A	Shuttle (S) (Columbia)	Apr 12			NDED AT DERF APR			First Manned orbital test flight of the Space Transportation System with John W. Young and Robert L. Crippen to verify the combined performance of the Space Shuttle Vehicle. Mission duration 54 hours 20 minutes 53 seconds.
NOVA-1 (Š) 1981 44A	Scout 102 (S)	May 15			LEMENTS NOT AVAIL		166.9	Improved Transit satellite for the Navy's operational navigation system. Reimbursable (DOD).
GOES E (S) 1981 49A	Delta 154 (S)	May 22	1436.6	35808	35785	5.7	837.0	Part of NOAA's Geostationary Operational Environmental Satellite system to provide near continual, high resolution visual and infrared imaging over large areas. Reimbursable (NOAA).

MISSION/	LAUNCH	AUNCH	PERIOD	CURREN	T ORBITAL PARAM	AETERS	WEIGHT	
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (k	m) Perigee (km)	nci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Intelsat V-8 F-1 (S)	Atlas-Centaur	May 23	1438.2	35856	35799	4.4	1928.2	Advanced series of spacecraft to provide increased telecommunications
1981 50A	(AC-56) (S)	-						capacity for Intelsat's global network. Reimbursable (Comsat).
NOAA-C (S)	Atlas 87F	Jun 23	101.7	847	629	98.9	1405.0	To provide continuous coverage of the Earth and provide high-accuracy workhuide meteorological data Reimburgable (NOAA) (WSMC
1981 59A	(S)							
DE A & B(S)	Delta 155	Aug 3						Dynamic Explorer (DE-A & B); dual spacecraft to study the Earth's electromegnetic fields (WSMC
1981 70A (S)			410.4	23286	505	88.8	424.0	electromagnetic fields. (WSMC
1981 70B (S)	-				DOWN FEB 19, 1983		420.0	
Fitsatcom E (U)	Atlas-Centaur	Aug 6	1460.4	36311	36209	8.1	1863.8	Provide communications capability for the USAF and the USN for fleet
1981 73A	(AC-59) (S)	-						relay and fleet broadcast. Reimbursable (DOD).
SBS-B	Delta 156	Sep 24	1436.2	35797	35778	4.4	1057.0	Satellite Business Systems (SBS) to provide fully switched private
1981 96A	(S)							networks to businesses, government agencies, and other organizations
	(-)							with large, varied communications requirements. Reimbursable (SBS).
SME (S)	Delta 157	Oct 6			DOWN MAR 5, 1991		437.0	Solar Mesosphere Explorer, an atmospheric research satellite to study
1981 100A	(S)							reactions between sunlight, ozone and other chemicals in the
UoSAT 1 (S)					DOWN OCT 13, 1989		52.0	atmosphere. Carried UoSat-Oscar 9 (UK) Amateur Radio Satellite as
1981 1008								secondary payload. Reimbursable (UoSat-Oscar 9)
STS 2 (S)	Shuttle (S)	Nov 12		LANDE	D AT DFRF NOV 14, 19	81		Second Manned orbital test flight of the Space Transportation System
1981 111A	(Columbia)							with Joe E. Engle and Richard H. Truly to verify the combined
100111111	(/							performance of the Space Shuttle vehicle. OSTA-1 payload
								demonstrated capability to conduct scientific research in the attached
								mode. Mission duration 54 hours 13 minutes 12 seconds.
RCA-D (S)	Delta 158	Nov 19	1438.6	35846	35826	1.8	1081.8	Fourth RCA domestic communications satellite.
1981 114A	(S)	1101 10						Reimbursable (RCA).
Intelsat V F-3 (S)	Atias-Centau	Dec 15	1436.1	35801	35770	3.4	1928.2	Advanced series of spacecraft to provide increased telecommunication
1981 119A	(AC-55) (S)	200.0						capacity for Intelsat's global network. Reimbursable (Comsat).
1962	10 00/10/							198/
	Deita 159	Jan 16	1446.0	35988	35970	1.1	1081.8	RCA domestic communications satellite.
RCA C' (S)		Jan 10	1446.0	33300	00010			Reimbursable (RCA).
1982 04A	(S) Delta 160	Feb 25	1443.4	35934	35923	1.1	1072.0	Second generation domestic communications satellite for Western
Westar IV (S)		F 60 25	1443.4	35364	00020			Union, Reimbursable (WU).
1982 14A	(S)	r Mar 4	1435.3	35791	35751	3.4	1928.2	Advanced series of spacecraft to provide increased telecommunication
Intelsat V-D F-4 (S)	Atlas-Centau	r mar4	1435.3	30/91	33731	0.4	1020.2	capacity for Intelsat's global network. Reimbursable (Comsat)
1982 17A	(AC-58) (S)							capacity for informatic ground internetia. How of our of the

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	METERS	WEIGHT	REMARKS
inti Design	VEHICLE	DATE	(Mins.)		Perigee (km)		(kg)	(All Launches from ESMC, unless otherwise noted)
STS 3 (S) 1982 22A	Shuttle (S) (Columbia)	Mar 22	<u> </u>	LANDED AT	WHITE SANDS MA	R 30, 1982	<u> </u>	Third Manned orbital test flight of the Space Transportation System with Jack R. Lousma and C. Gordon Fullerton to verify the combined performance of the Space Shuttle vehicle. OSS-1 scientific experiment conducted from the cargo bay. Mission duration 192 brs 4 mins 46 sec
insat 1-A (U) 1982 31A	Delta 161 (S)	Apr 10	1434.2	35936	35562	0.1	1152.1	Multipurpose telecommunications/meteorology spacecraft for India. Reimbursable (india).
Westar V (S) 1982 58A	Dełta 162 	Jun 8	1451.4	36149	36023	0.8	1105.0	Western Union domestic communications satellite. Reimbursable (WU)
STS 4 (S) 1982 65A	Shuttle (S) (Columbia)	Jun 27		LANDED AT DFRF JUL 4, 1982				Fourth and last manned orbital test flight of the Space Transportation System with Thomas K. (Ken) Mattingly II and Henry W. Hartsfield to verify the combined performance of the Space Shuttle vehicle. Carried first operational Getaway Special canister for Utah State University and payload DOD 82-1. Mission duration 169 hours 9 minutes 31 seconds.
Landsat D (S) 1982 72A	Delta 163 (S)	Jul 16	98.8	705	693	98.3	1942.0	Earth Resources Technology Satellite to provide a continuing Earth remote sensing data. Instruments included a multispectral scanner and thematic mapper. (WSMC
Telesat G (S) 1982 82A	Della 164 (S)	Aug 25	1438.5	35851	35814	1.5	1238.3	Commercial communications satellite for Canada. Reimbursable (Canada).
Intelsat V-E F-5 (S) 1982 97A	Atlas-Centaur (AC-60) (S)	Sep 28	1436.1	35819	35754	2.9	1928.2	Advanced series of spacecraft to provide increased telecommunication: capacity for Intelsat's global network. Carried Maritime Communication Services (MCS) package for INMARSAT. Reimburgable (Comsat).
RCA-E (S) 1982 105A	Delta 165 (S)	Oct 27	1436.2	35795	35779	1.7	1116.3	RCA domestic communications satellite. Reinbursable (RCA).
STS 5 (S) 1962 110A	Shuttle (S) (Columbia)	Nov 11	LANDED AT DFRF NOV 16, 1982					First operational flight of STS with Vance Brand, Robert Overmeyer, Joseph Allen and William Lenoir. Two satelikes deployed:
SBS-C (S) 1982 110B		Nov 11	1436.2	35799	35776	1.2	3344.8	SBS-C (Reimbursable - SBS) and Telesat-C (Reimbursable - Canada). Demonstrated ability to conduct routine space operations. Mission
Telesat-E (S) 1982 110C	· -	Nov 12	1436.1	35796	35796	01.3	4443.4	duration 122 hours 14 minutes 26 seconds.
1983								1983
IRAS (S) 1983 04A	Delta 166 (S)	Jan 25	102.9	903	884	99.0		Infrared Astronomical Satellite to make the first all-sky survey for objects that emit infrared radiation and to provide a catalog of infrared sky maps
PIX II (S) 1983 04B			102.3	882	851	100.0		Cooperative with the Netherlands. Lewis Research Center Plasma Interaction Experiment (PIX), to investigate interactions between high voltage systems and space environment, activated by Delta after IRAS secaration.

B-124

1982

MISSION/	LAUNCH I	AUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS	WEIGHT	REMARKS
inti Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
NOAA-8 (S) 1983 22A	Atlas 73E (S)	Mar 28	101.0	817	793	98.5	1712.0	Advanced Tiros spacecraft to provide continuous coverage of the Earth and provide high-accuracy worldwide meteorological data. (WSMC
	x- <i>i</i>							Reimbursable (NOAA). (WSMC Second operational flight of the STS with Paul Weitz, Karol Bobko,
STS 6 (S)	Shuttle (S)	Apr 4		LAN	DED AT DERF APP	9,1983		Donald Paterson, Story Muscrave, Deployed Tracking and Data Hela
1983 26A	(Challenger)					6.6	17014.0	Satellite (TDRS) to provide improved tracking and data acquisition
TDRS-A (S)		Apr 4	1436.1	35797	35777	0.0	17014.0	services to spacecraft in low Earth orbit; performed EVA. Mission
1983 26B								duration 120 hours 23 minutes 42 seconds.
					357847	0.1	1116.3	RCA domestic communications satellite. Reimbursable (RCA).
RCAF (S)	Delta 167	Apr 11	1442.0	35956	35/84/	0.1	1110.0	
1983 30A	(S)			35785	35758	4.5	838.0	Part of NOAA's Geostationary Operational Environmental Satellite
GOES 6 (S)	Delta 168	Apr 28	1435.4	30/80	33736	4.0		system to provide near continual, high resolution visual and intrared
1983 41A	(S)							imaging over large areas Reimbursable (NOAA).
			1436.2	35797	35779	1,9	1928.2	Advanced series of spacecraft to provide increased telecommunication
Intelsat V-F F-6 (S)	Atlas-Centaur	May 19	1436.2	33/9/	35773			capacity for inteleat's global network. Carried Maritime Communicate
1983 47A	(AC-61) (S)							Services (MCS) package for INMARSAT, Reimbursable (Comsat).
	Delta 169	May 26		D	OWN MAY 6, 1986		500.0	X-ray satellite to provide continuous observations of X-ray sources.
EXOSAT (S)		May 20		5				Reimbursable (ESA).
1983 51A	(S) Shuttle (S)	Jun 18	·	LAN	IDED AT DERF JUI	24, 1983		Third operational flight of STS with Robert L. Crippen, Frederick H.
STS 7 (S)	(Challenger)	Junio						Hauck, John M. Fabian, Sally K. Ride (first woman astronaut), and
1983 59A	(Crialienger)	Jun 18	1436.1	35793	35780	1.2	4443.4	Norman E. Thagard. Deployed two communications satellites. Teles
Telesat-F (S) 1983 598		oun to	1.0011					(Reimbursable - Canada) and Palapa (Reimbursable - Indonesia).
Palapa-B-1 (S)		Jun 18	1436.1	35790	35784	2.4	4521.5	Carried out experiments including launching and recovering SPAS 01
1983 59C								(Reimbursable - Germany). Mission duration 146 hours 23 minutes
SPAS-01 (S)		Jun 18		RE	TRIEVED JUN 24, 1	983		seconds.
1983 59F								the second se
AF P83-1 (S)	Scout 103	Jun 27	100.6	819	754	82.0	112.6	Air Force HILAT satellite to evaluate propagation effects of disturbed
1983 63A	(S)							plasmas on radar and communication systems. Reimbursable (DOI (WS)
1000 000	(-)							
Galaxy 1 (S)	Delta 170	Jun 28	1436.1	35791	35782	0.0	519.0	
1983 65A	(S)						000	Reimbursable (Hughes). AT&T communications satellite. Reimbursable (AT&T).
Telsat 3A (S)	Delta 171	Jul 28	1436.2	35796	35780	0.1	635.0	Atal communications satening. Reinbursable (Artar).
1983 77A	(S)							B-

D-123

MISSION/		LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Inci (dea)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 8 (S) 1983 89A	Shuttle (S)	Aug 30		LAND	ED AT DFRF SEP	5, 1983	<u> </u>	Fourth operational flight of STS with Richard H. Truly, Daniel C.
INSAT-B (S)	(Challenger)	• •						Brandenstein, Dale A. Gardner, Guion S. Bluford ffirst black astronaut
1963 898		Aug 31	1436.2	35811	35765	3.0	3391.0	and william E. Thornton, First night launch and landing Deployed
								satellite, INSAT (Reimbursable - India), performed tests and
RCAG (S)	Delta 172	Sep 8	1436.2	35803	35772	0.0		experiments. Mission duration 145 hours 8 minutes 43 seconds.
1963 94A	(S)		1400.2	33003	33/72	0.0	1121.3	RCA domestic communications Satellite. Reimbursable (RCA).
Galaxy 2 (S)	Delta 173	Sep 22	1436.2	35792	35783	0.0	579.0	Hushas Communications and the
1983 98A	(S)					0.0	575.0	Hughes Communications satellite. Reimbursable (Hughes).
STS-9 (S)	Shuttle (S)	Nov 28		LAND	ED AT DERF DEC	8, 1983		Fifth operational flight of STS with John W. Young, Brewster W. Shaw
Spacelab-1 1983 116A	(Cotumbia)							Jr., Owen K. Garriott, Robert A. R. Parker, Byron K. Lichtenberg, and
1963 116A								Ulf Meroold (ESA). Spacelab-1, a multi-discipline science period
								carried in Shuttle Cargo Bay. Cooperative with ESA. Mission Duration
964		<u> </u>						247 hours 47 minutes 24 seconds.
STS 41-B (S)	Shuttle (S)	C .t.o						196
984 11A	(Challenger)	Feb 3		LAND	ED AT KSC FEB 11	, 1984		Fourth Challenger flight with Vance D. Brand, Robert L. Gibson, Bruce
Vestar 6 (U)	(Outsite in Ser)	Feb 3		0.000				McCandless, Ronald E. McNair and Robert L. Stewart Deployed
984 11B		Feb 3		HEIH	IEVED NOV 16, 194	54 (51-A)	3309.0	Westar (Reimbursable - WU), and Palapa B-2 (Reimbursable
RT (S)		Feb 3		DOV	VN FEB 11, 1984			Indonesia). Both PAM's failed; both satellites retrieved on STS 51-A
984 11C					11112011,1904			mission. Rendezvous tests performed with IRT, using deflated target.
alapa B-2 (U)		Feb 6		RETRI	EVED NOV 16, 198	34 (51-A)	3419.0	Evaluated Manned Maneuvering Unit (MMU) and Manipulator Foot Bestraint (MED) Einst STS lenging at Kong Manipulator Foot
964 11D						- 101.14	3413.0	Restraint (MFR). First STS landing at KSC. Mission duration 191 hou 15 minutes 55 seconds.
andsat 5 (S)	Delta 174	Mar 1	98.8	703	695	98.2	1947.0	Earth resources technology satellite to provide continuing Earth remote
984 21A IoSAT (S)	(S)							sensing data. Instruments included a multispectral scanner and
964 21B			98.0	670	653	97.8	52.0	thematic mapper. Reimbursable (NOAA). UoSAT sponsored by
TS 41-C (S)	Shuttle (S)	Apr 6						AMSAT (Reimbursable - AMSAT).
984 34A	(Challenger)	Apr 6		LANDE	ED AT DERF APR 1	3, 1984		Fifth Challenger flight with Robert L. Crippen, Frances B. Scobee
DEF (S)	(Apr 6		PETRIC		(CTC 00)		Terry J. Hart, George D. Nelson and James D. Van Hoften Deployed
984 348		· •		RETRIEVED JAN 20, 1990 (STS-32)			9670.0	LDEF; SMM retrieved and repaired in Cargo Bay; redeployed April 12
telsal V-G F-9 (U)	Atlas-Centaur	Jun 9		DOM	N OCT 24, 1984			Mission duration 167 hours 40 minutes 7 seconds
964 57A	(AC-62) (U)			001	11 001 24, 1904		1928.2	Advanced series of spacecraft to provide increased telecommunication
								capacity for Intelsat's global network. Carried Maritime Communication
								Services (MCS) package for INMARSAT. Vehicle failed to place satelli in useful orbit. Reimbursable (Comsat).

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT	ORBITAL PAP	AMETERS	WEIGHT	REMARKS
inti Desian	VEHICLE	DATE	(Mins.)	Apogee (km)			(kg)	(All Launches from ESMC, unless otherwise noted)
AMPTE CCE (S)	Delta 175 (S)	Aug 16	730.9	39217	1784	64.4	242.0	Three active magnetospheric particle tracer explorers: Charge Composition Explorer (CCE) provided by the U.S.; Ion Release Module (IRM) provided by the Federal Republic of Germany; and the United
1984 88A IRM (S) 1984 88B			2653.4	113818	402	27.0	605.0	(Inity provided by the Focking to the UK) provided by the UK; to study the transfer of mass from the solar wind to the magnetosphere. International Cooperative.
UKS (S)					1002	26.9	77.0	•
1984 88C	Shuttle (S)	Aug 30	2659.6	<u>113417</u>	ED AT EAFB SE	P 5 1984		First Discovery flight with Henry W. Hartsfield, Michael L. Coats, Richa
STS 41-D (S) 1984 93A SBS-4 (S)	(Discovery)	Aug 31	1436.2	35795	35780	. 0.0	3344.0	M. Mullane, Steven Hawley, Judith A. Resnik, and Charles D. Walker. Deployed SBS (Reimbursable - SBS), Leasat (Reimbursable - Hughes), and Telstar (Reimbursable - AT&T), carried out experiments
1984 938 Syncom IV-2 (S)		Aug 31	1463.0	35787	35779	04.1	6889.0	including OAST-1 solar array structural testing. Mission duration 144 hours 56 minutes 4 seconds.
1984 93C Telstar 3-C (S) 1984 93D		Sep 1	1436.2	35793	35783	0:0	3402.0	
Galaxy C (S) 1984 101A	Delta 176 (S)	Sep 21	1436.2	35793	35782	0.1	519.0	Hughes Communications Satellite. Reimbursable (Hughes).
STS 41-G (S) 1984 108A	Shuttle (S) (Challenger)	Oct 5		LANE	DED AT KSC OC			Sixth Challenger flight with Robert L. Crippen, Jon A. McBride, Kathryr D. Sullivan, Salty K. Ride, David C. Leestma, Paul D. Scully-Power, an
ERBS (S) 1984 108B	(,	Oct 5	96.4	590	578	57.0	2449.0	Marc Garneau (Canada). Deployed ERBS to provide global measurements of the Sun's radiation reflected and absorbed by the Earth; performed scientific experiments using OSTA-3 and other instruments. Mission duration 197 hours 23 minutes 33 seconds.
NOVA III (S) 1984 110A	Scout 104 (S)	Oct 11	108.9	1199	1149	89.9	173.7	Improved Transit Navigation Satellite for the U.S. Navy. Reimbursable (DOD).
STS 51-A (S) 1984 113A	Shuttle (S) (Discovery)	Nov 8		LAN	DED AT KSC NO	V 16, 1984		Second Discovery flight with Frederick H. Hauck, David M. Walker, Joseph P. Allen, Anna L. Fisher, Dale A. Gardner. Deployed Telesat
Telesat-H (S)	(Discovery)	Nov 9	1436.2	35796	35780	0.0	3420.0	Retrieved and returned Palapa B-2 and Westar 6 (Launched on 41-b)
1984 113B Syncom IV-1 (S)		Nov 10	1466.8	36427	36341	2.8	6889.0	Mission duration 191 hours 44 minutes 56 seconds.
1984 113C NATO III-D (S)	Delta 177	Nov 13	1436.2	35796	35780	1.4	761.0	Fourth in a series of communication satellites for NATO. Reimbursable (NATO).
1984 115A NOAA-9 (S) 1984 123A	(S) Atlas 39E (S)	Dec 12	101.8	854	834	99.1	1712.0	

MISSION/	LAUNCH			CURRENT	ORBITAL PAR	AMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km)	Inci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1985								198
STS 51-C (S)	Shuttle (S)	Jan 24	_	LÄN	DED AT KSC JAN 2	7, 1984		Third Discovery flight with Thomas K. Mattingly, Loren J. Shriver,
1985 10A	(Discovery)					•		Ellison S. Onizuka, James F. Buchli, and Gary E. Payton.
DOD (S)				ELI	EMENTS NOT AVAI	LABLE		Deployed unannounced payload for DOD. (Reimbursable - (DOD)).
1985 108								Mission duration 73 hours 33 minutes 23 seconds.
Intelsat V-A F-10 (S)	Atias-Centaur	Mar 22	1436.1	35807	35768	0.0	1996.7	First in a series of improved Commercial Communication satellites for
1985 25A STS 51-D (S)	(AC-63) (S)			_				Intelsat. Reimbursable (Comsat).
1985 28A	Shuttle (S)	Apr 12		LAN	DED AT KSC APR 1	9, 1985		Fourth Discovery flight with Karol K. Bobko, Donald F. Williams
Telesat-I (S)	(Discovery)	Apr 13						M. Rhea Seddon, S. David Griggs, Jeffrey A. Hoffman, Charles D
1985 288		Apr 13	1436.1	35796	35778	0.0	3550.0	Walker, and E. J. "Jake" Garn (U.S. Senator). Deployed Syncom
Syncom IV-3 (S)		Apr 12	1436.2	35803	05330			(Reimbursable - Hughes) and Telesat (Reimbursable - Canada)
1985 28C		Apr 12	1430.2	35803	35772	3.3	6889.0	Syncom Sequencer failed to start, despite attempts by crew; remained
								inoperable until restarted by crew of 51-1 (August 1985). Mission
STS 51-B (S)	Shuttle (S)	Apr 29		(AN	DED AT DERE MAY	6 1095		duration 167 hours 55 minutes 23 seconds.
Spacelab-3	(Challenger)			0.00	DED AT DI TIT MAT	0, 1905		Sixth Challenger flight with Robert F. Overmeyer, Frederick D.
1985 34A	• • •	• •		DC	WN DEC 15, 1986	-	47.6	Gregory, Don Lind, Norman E. Thagard, William E. Thornton, Lodewiji
							47.0	
								mission to conduct applications, science and technology experiments.
								Deployed Northern Utah Satellite (NUSAT) (Reimbursable - Northern
								Utah University). Global Low Orbiting Message Relay Satellite (GLOMR) (Reimbursable - DOD) failed to deploy and was returned.
								Mission duration 168 hours 8 minutes 46 seconds.
STS 51-G (S) 1985 48A	Shuttle (S)	Jun 17		LAN	DED AT EAFB JUN	24, 1985		Fifth Discovery flight with Daniel C. Brandenstein, John O. Creighton,
Morelos-A (S)	(Discovery)	h 4 *						Shannon W. Lucid, John M. Fabian, Steven R. Nanel Patrick Bauring
1985 48B		Jun 17	1436.1	35793	35781	0.0	3443.0	(France), and Prince Sultan Salman Al-Saud (Saudi Arabia) Deployer
ARABSAT-A (S)		Jun 18	1434.4					Morelos (Reimbursable - Mexico), Arabsat (Reimbursable - ASCO)
1965 48C		Jun 10	1434.4	35891	35614	1.0	3499.0	and Telstar (Reimbursable - AT&T). Deployed and retrieved Spartan 1
TELSTAR 3-D (S)		Jun 19	1436.1	35789	35783			Mission duration 169 hours 38 minutes 52 seconds.
1985 48D			1-100.1	30709	33763	0.0	3437.0	
SPARTAN 1 (S)		Jun 20		PETE	REVED JUN 24, 194	5	0054.0	
1985 48E				112.11	124, 190		2051.0	
ntelsat VA F-11 (S)	Atlas-Centaur	Jun 29	1436.1	35804	35769	0.1	1996.7	Second in a secies of improved Q
985 55A	(AC-64) (S)					V.1		Second in a series of improved Commercial Communications Satellites for Intelsat. Reimbursable (Comsat).

B-128

.....

NISSION/	LAUNCH		PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT (kg)	(Alt Launches from ESMC, unless otherwise noted)
nti Design TS 51-F (S) pacelab-2 985 63A DP (S) 985 63B	VEHICLE Shuttle (S) (Challenger)	Jul 29	(Mins.)		Perigee (km) ED AT EAFB AUG RIEVED JUL 29, 19	6, 1985		Seventh Challenger flight with Charles G. Fullerton, Roy D. Brages, vr. Karl G. Heinze, Anthony W. England, F. Story Musgrave, Loren W. Acton, and John-David F. Bartowi. Conducted experiments in Spacolab-2 (Cooperstive with ESA). Deployed Plasma Diagnostic Package (PDP) which was retrieved 6 hours later. Mission duration 190 hours 5 Excendes
lavy SOOS-1 985 66A (S)	Scout 105 (S)	Aug 2	107.9 107.9	1255	999 999	89.9 89.9	64.2 64.2	Nours 45 minutes 20 seconds
985 668 (S) STS 51-I (S) 1985 76A	Shuttle (S) (Discovery)	Aug 27		LAN	DED AT EAFB SEP	3, 1965	3445.5	VanHoften, William F. Fisher, John M. Lounge. Deployed Aussai (Reimburgable - Australia) ASC (Reimbursable - American Satellite
Aussat-1 (S) 1985 768	, .	Aug 27 Aug 27	1436.1 1436.1	35798	35777	0.0	3406.1	(neimbalised) - Walk (Reimbursable - Hughes). After reaching Goognachronous Orbit, Syncom IV-4 ceased functioning. Repaired Syncom IV-3 (launched by 51-D, April 1985). Mission duration 170
ASC (S) 1985 76C Syncom IV-4 (U)		Aug 29	1430.1	35843	35809	3.2	6894.7	hours 17 minutes 42 seconds.
985 76D ntelsat VA F-12 (S)	Atlas-Centau	ur Sep 28	1436.1	35801	35772	0.1	1996.7	Third in affectives of improved commercial Communications Satellites for Intelsat, Reimbursable (Comsat), Backing Ropert L Grabe Robert A
1985 87A STS 51-J (S) (DOD) 1985 92A	(AC-65) (S) Shuttle (S) (Atlantis)	Oct 3			DED AT EAFB OC			First Attentis flight with Karol J. Bobko, Ronald J. Grabe, Robert A. First Attentis flight with Karol J. Bobko, Ronald J. Grabe, Robert A. Stewen, David C. Himers, and William A. Pailes. DOD mission. Mission duration 97 hours 44 minutes 38 seconds. Eighth Challenger flight with Henry W. Hartsfield, Steven R. Nagel,
STS 61-A (S) Spacelab D-1 1985 104A	Shuttle (S) (Challenger)	Oct 30			DED AT EAFB NO		267.6	Bonnie J. Dunbar, James F. Buchli, Guion S. Blurord, Ernst Messerschmid (Germany), Reinhard Furrer (Germany), and Wubbo Osticle (Subt), Spaceleb D1 mission (Cooperative with ESA) Io
GLOMR (S) 1985 104B	(S)			DOWN DEC 26, 1986			267.0	Conduct scientific experiments. Deployed GLOMR (Reimbursable - DOD). Carried Materials Experiment Assembly (MEA) for on-orbit processing of materials science experiment specimens. Mission duration 168 hours 44 minutes 51 seconds.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERO	MERCHI	190
Inti Design	VEHICLE	DATE	(Mins.)) Perigee (km)	inel (des)	WEIGHT	
STS 61-B (S)	Shuttle (S)	Nov 26		I AN	DED AT EAFB DEC	a tone	(kg)	(All Launches from ESMC, unless otherwise noted)
1985 109A	(Atlantis)			2.00	DED AT DATO DEC	3, 1965		Second Atlantis Flight with Brewster H. Shew Boyan D. O'Connect
Morelos-B (S) 1985 109B		Nov 27	1436.1	35793	35780	0.0	4539.6	Mary L. Cleave, Sherwood C. Spring, Jerry L. Ross, Rudolfo Neri Vel (Morelos), Charles D. Walker (MDAC) Deployed Moreles
Aussal-2 (S) 1985 109C		Nov 27	1436.2	35796	35779	0.0	4569.1	(Reimbursable - Mexico), Aussat (Reimbursable - Australia), and Satcom (Reimbursable - RCA). Demonstrated construction is access
Satcom (S) 1985 109D		Nov 28	1436.2	35797	35779	0.0	7225.3	Station Keeping Target (OEX) to conduct advanced Station
DEX Target 985 109E								Tests. Mission duration 165 hours 4 minutes 49 seconds.
AF-16				DC	WN MAR 2, 1987			
985 114A (S) 985 114B (S)	Scout 106 (S)	Dec 12			WN MAY 11, 1989			Air Force instrumented test vehicle. (Dual Payload) Reimbursable (DOD).
986				DC	WN AUG 9, 1987			(WF
TS 61-C (S)	Chumter (C)							
986 03A ATCOM (S)	Shuttle (S) (Columbia)	Jan 12		LAND	DED AT EAFB JAN 1	8, 1986		Seventh Columbia flight with Robert L. Gibson, Charles F. Bolden, Jr. Franklin B. Charles F. Bolden, Jr.
986 038		Jan 12	1436.2	35796	35780	0.0	7225.3	J. Cenker (RCA), and C. William Nelson, Steven A. Hawley, Robert J. Cenker (RCA), and C. William Nelson (Congressman). Deployed Satcom (Reimbursable - RCA). Evaluated material science lab payloc carrier and processing facilities. Carrier HHG: the accompacing call
TS 51-L (U)	Shuttle (U)	Jan 28		DID N	OT ACHIEVE ORBIT	r		Puylogus, Mission duration 146 hours 3 minutes 51 seconds
DRS-B (U)	(Challenger)			_/_ /			2103.3	Tvinth Challenger flight with Francis R. Scobee, Michael J. Smith, Judith A. Resnik, Ellison S. Onizuka, Bonald F. McNair, Gragon, Isovi
OES-G (U)	Delta 178 (U)							(Hughes), S. Christie McAuliffe (Teacher). Approximately 73 seconds into flight, the Shuttle exploded.
(0)		May 5		DID N	OT ACHIEVE ORBIT	ſ	840.0	Provide systematic world-wide weather coverage for NOAA. Vehicle
DD (U)	Delta 180	Sep 5					1	failed. Reimbursable NOAA).
86 69A	(U)	Oop 5		DOV	WN SEP 28, 1986			Carried DOD experiment. Reimbursable (DOD).
DAA-G (S)	Atlas 52E	Sep 17	101.0	816	796	98.5		
					190	96.5	1	Operational environmental satellite for NOAA. Included ERBE instrument to complement data being acquired by ERBS, launched in 1984. Carried search and rescue instruments provided by Canada and France. Reimbursable (NOAA). (WSMC

MISSION/	LAUNCH			CURRENT	ORBITAL PAP	AMETERS	WEIGHT	REMARKS (All Launches from ESMC, unless otherwise n	oted)
nti Design	VEHICLE	DATE	(Mins.)) Perigee (km) inci (00g)	<u>(kg)</u>	Scientific satellite to study the atmospheric effect on electromag	gnetic
F P87-11 (S)	Scout 107	Nov 13	104.8	1014	954	89.6		propagation. Reimbursable (DOD).	(WSMC)
okarBear	(S)								
986 88A						0.4	1128.5	Provide communication between aircraft, ships, and ground sta	tions
Itsatcom (F-7) (S)	Atlas-Centaur	Dec 4	1436.2	35849	35728	0.4	1120.0	tor DOD. Reimbursable (DOD).	
986 96A	(AC-66) (S)								1987
967						0.4	840.0	Operational environmental satellite to provide systematic world	wide
OES-H (S)	Delta 179	Feb 26	1436.2	35800	35775	0.4	040.0	weather overage Beimbursable (NOAA)	
987 22A	(S)				35788	0.0	652.0	Provide communication coverage over Indonesia and the Asian	ר
alapa B2-P	Delta 182	Mar 20	1436.2	35788	35788	0.0	002.0	acumtrica Deimburgable (Indonesia)	
987 29A					NOT ACHIEVE O	PRIT	1038.7	Part of the worldwide communications system between aircraft	, shipe,
Itsatcom (F-6)	Atlas-Centaur	Mar 26		010	NUT AGRIEVE O			and mound stations for the DOD. Telemetry lost shortly allor a	BUNCH,
U)	(AC-67) (U)							destruct signal sent at 70.7 seconds into flight. An electrical tra	ansieni,
								caused by a lighting strike on the launch vehicle, most probable	e cause
								to an Delimburgehie (DOD)	
								Two Transit navigation satellites in a stacked configuration for	the U.S.
SOOS-2	Scout 108	Sep 16		1178	1011	90.4	64.5	Navy, Reimbursable (DOD).	(WSMC
1987 80A (S)	(S)		107.1	1180	1010	90.4	64.5		4000
1987 80B (S)			107.2	1100	1010				198
1968					OWN MAR 1, 198	9		Strategic Defense Initiative Organization (SDIO) Payload.	
DOD (SDI) (S)	Delta 181	Feb 8		L		•		Deimburgehle (DOD)	
1988 08A	<u>(S)</u>				OWN DEC 6, 198	8	273.0	Explore the relationship between solar activity and meteorolog	ical
San Marco D/L (S)	Scout 109	Mar 25		·	JOWIN DEC 0, 130	•		abasements Cooperative with italy	an marci
1988 26A	<u>(S)</u>						129.6	Two Transit navigation satellites in a stacked configuration for	the U.S.
3005-3	Scout 110	Apr 25		1302	1013	90.3		Navy, Reimbursable (DOD).	(WSM
1988 33A (S)	(S)		108.5	1302	1012	90.3			
1988 33B (S)			108.5	1199	1149	90.0	170.5	Improved Transit Navigation Satellite for the U.S. Navy.	
Nova II	Scout 111	Jun 16	108.9	1199	1140			Deimburgehie (DOD)	WSMC
988 52A	<u>(S)</u>						128.2		The U.S
SOOS-4	Scout 112	Aug 25	407.0	1175	1030	89.9		Navy. Reimbursable (DOD).	(WSM
1988 74A (S)	(S)		107.3	1173	1031	89.9			
1988 74B (S)			107.3	855	838	99.1	1712.0	Operational environmental satellite for NOAA. Carried Search	n aundi
NOAA-H (S)	Atlas 63E	Sep 24	101.9	000	000	••••		Reacue instruments provided by Canada and France.	
1988 89A	(S)							Reimbursable (NOAA).	(WSMC

MISSION/	LAUNCH			CURRENT	ORBITAL PARAM	ETERS	WEIGHT	REMARKS
inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) In	cl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS-26 (S)	Shuttle (S)	Sep 29		LAND	DED AT EAFB OCT 3.	968	<u> </u>	Sith Discourse fight with Enderich Li the second recent
1988 91A	(Discovery)	-						Sixth Discovery flight with Frederick H. Hauck, Richard O. Covey,
TDRS-3 (S)		Sep 29	1436.2	35804	35772	0.1	2224.9	John M. Lounge, David C. Hilmers, and George D. Nelson. Deployed TDRS-3. Performed experiment activities for commercial and scientific
1988 91B								middeck experiments. Mission Duration 97 hours 0 minutes 11 second
STS-27 (S) 1988 106A	Shuttle (S)	Sep 29		LANC	DED AT EAFB DEC 6, 1	988		Third Atlantis flight with Robert L. Gibson, Guy S. Gardner, Richard M.
DOD (S)	(Atlantis)							Multane, Jerry L. Ross and William M. Shepherd. DOD Mission.
1968 106B				ELE	MENTS NOT AVAILAB	ILE		Mission Duration 105 hours 05 minutes 37 seconds.
1989								motion behalter ros nouis 03 millioles 37 seconds.
	0							
STS-29 (S)	Shuttle (S)	Mar 13		LAND	ED AT EAFB MAR 18,	1989		Fighth Discovery flight with Mishael L. O
1989 21A	(Discovery)							Eighth Discovery flight with Michael L. Coats, John E. Blaha, James
TDRS-D (S)			1436.1	35808	35768	0.0	2224	Bagian, James F. Buchli, Robert Springer. Deployed a new Tracking
1989 21B						-	~~~ *	and Data Relay Satellite. Performed commercial and scientific
STS-30 (S)	Shuttle (S)	May 4		LAND	ED AT EAFB MAY 8, 1	989		experiments. Mission Duration 119 hours 38 minutes 52 seconds. Fourth Atlantis flight with David M. Walker, Ronald J. Grabe, Mary L.
1989 33A	(Atlantis)				,			Cleave Mark C. Les Norman E. Theraud, Dukid J. Grabe, Mary L.
Magellan (S) 1989 338				TRAM	S-VENUS TRAJECTO	RY		Cleave, Mark C. Lee, Norman E. Thagard. Deployed the Magellan spacecraft on a mission toward Venus. Performed commercial and
1909 330								scientific middeck experiments. Mission Duration: 96 hours 56 minutes
STS-28 (S)	01							28 seconds.
1969 61A	Shuttle (S)	Aug 8		LAND	ED AT EAFB AUG 13,	1989		Ninth Columbia flight with Brewster H. Shaw, Richard N. Richards,
1303 01A	(Columbia)							David C. Leetsma, James C. Adamson, and Mark N. Brown. DOD
Fitsatcom (S)	Atlas-Centaur			· · · · · · · · · · · · · · · · · · ·				Mission Mission Duration: 121 hours 0 minutes 08 seconds.
1989 77A	(AC-68) (S)	Sep 25	1436.1	35701	35774	2.9	1863	Navy Communications satellite to provide communications between
STS-34 (S)	Shuttle (S)	Oct 18						alf Craft, Ships and ground stations for DOD Reimburgeble (DOD)
989 84A	(Atlantis)	04.18		LAND	ED AT EAFB OCT 23,	1989	_	Fifth Atlantis flight with Donald E. Williams, Michael J. McCulley, Ellen
Salileo (S)	(Fusiting)							Daker, Shannon N. Lucid, and Franklin Chang-Dist. Deployed the
989 84B				ELE	MENTS NOT AVAILAB	LE		Called spacecraft on a mission toward Juniter Performed eventiment
								activities for commercial and scientific middleck experiments. Mission
COBE (S)	Delta 2	Nov 18	102.6			_		Duration: 119 hours 39 minutes 22 seconds
989 89A	(S)	1404 18	102.6	885	873	99.0	2206	Cosmic Background Explorer spacecraft to provide the most
STS-33 (S)	Shuttle (S)	Nov 23						comprehensive observations to data of radiative contact of the universe
989 90A	(Discovery)	1404 23		LAND	ED AT EAFB NOV 28,	989		Ninth Discovery flight with Frederick Gregory John E. Blaha, Manhy I.
DOD (S)	(2.0004019/							Carter, Franklin S. Musgrave and Kathryn C. Thornton DOD Mission
969 90B				ELEI	MENTS NOT AVAILAB	LE	1	Mission Duration: 120 hours 6 minutes 46 seconds.

MISSION/ Inti Design	LAUNCH I	AUNCH	PERIOD (Mins.)	CURRENT Apogee (km	ORBITAL PARA	METERS Incl (deg)	WEIGHT (kg)	(All Launches from ESMC, unless otherwise noted) 1990
1990 STS-32 (S) 1990 2A Syncom IV-5 (S) 1990 2B	Shuttle (S) (Columbia)	Jan 9	1436.2	LAN 35815	DED AT EAFB JAN 3 35759	20, 1990 2.7	6953.4	Tenth Columbia flight with Daniel C. Brandenstein, James D. Wetherbee, Bonnie J. Dunbar, Marsha S. bins and G. David Low. Deployed Syncom IV-5 (Reimbursable - DOD), a geostalionary communications satellite also known as Leasat, for the U.S. Navy. Also retrieved the Long Duration Exposures Facility (LDEF) deployed on STS-41C on April 6. 1984, Mission Duration; 261 hrs 0 mins 37 secs.
STS-36 (S) 1990 19A DOD (S)	Shuttle (S) (Atlantis)	Feb 28			IDED AT EAFB MAR			Std: Atlantis flight with John D. Creighton John H. Casper, David C. Bith Atlantis flight with John D. Creighton John H. Casper, David C. Hitmers, Richard M. Multane and Pierre J. Thuot. DOD Mission. Mission Duration: 106 hours 18 minutes 22 seconds.
1990 198 Pegsat (S) 1990 28A	Pegasus (S) (Orb Sci)	Apr 5	94.1	539	410	94.1		A 50-foot rocket (Pegasus), dropped from the wing of a B-52 aircraft flying over the Pacific Ocean, launched the Pegaat satellike in the first demonstration flight of the Pegasus launch vehicle. The Pegaat science investigations are part of the Combined Release and Radiation Effects Satellike (CRRES), a joint NASA/DOD program.
STS-31 (S) 1990 37A HST (S) 1990 37B	Shuttle (S) (Discovery)	Apr 24	96.6	598	NDED AT EAFB APR 591	29, 1990 28.5	11355.4	Tenth Discovery flight with Loren J. Shriver, Charles F. Bolden, Bruce McCandless, Steven A. Hawkey, and Kathryn D. Sullivan. Deployed the Edwin P. Hubble Space Telescope (HST) astronomical observatory. Designed to operate above the Earth's turbulent and obscuring atmosphere to observe celestial objects at ultraviolet, visible and near-infrared wavelengths. Joint NASA/ESA mission. Mission the second.
Macsat (S) 1990 43A	Scout 113 (S)	May 9	98.3 98.3	755 752	601 600	89.9 89.9	89.9 2421.1	global store-and-forward message relay capability for DOD Users. <u>Reimbursable (DOD)</u> . (VAFB) <u>Dependent Stability (ROSAT)</u> an Explorer class scientific satellite
1990 438 ROSAT (S) 1990 49A	Delta 2 (S)	Jun 1	95.6	557	542	53.0	2421.3	configured to accommodate a large X-ray telescope, to sudy X-ray emissions from non-solar celestial objects. International cooperative program with NASA, Germany, and the UK.
CRRES (S) 1990 65A	Atlas-Centau (AC-69) (S)	ir Jul 25	614.4	34781	345	18.0		uses chemical releases to study the Earth's magnetic fields and the plasmas, or ionized gases, that travel through them. Joint NASA/DOD program.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN			1	
Inti Design	VEHICLE	DATE	(Mins.)	Anonee (kr	T ORBITAL PA	HAMETERS	WEIGH	
STS-41 (S)	Shuttle (S)	Oct 6		I APOGOO (KI	NDED AT EAFB OC	i) inci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted
1990 90A	(Discovery)				UED AT EAFB U	1 10, 1990		Eleventh Discovery flight with Richard N Richards, Robert D. Cabos
Ulysses (S)					HELIOCENTRIC	0000		Didde E. Memick, William M. Shepherd, and Thomas D. Akara
1990 908					HELIOGENTRIC	UHBII	20079.5	Deployed the Ulysses spacecraft, a joint NASA/ESA mission to shuth
								the poles of the Sun and the interplanetary space above and below the
STS-38 (S)	Shuttle (S)	Nov 15			DED AT KSC NOV	/ 20 1000		
1990 97A	(Atlantis)					20, 1990		Seventh Atlantis flight with Richard O. Covey, Robert C. Springer, Ca
DOD (S)				FI	EMENTS NOT AV			meade, Frank L. Gulbertson and Charles D. Geman DOD Mission
990 978				_		AILADLE		Mission Duration: 117 hours 54 minutes 27 seconds.
STS-35 (S)	Shuttle (S)	Dec 2		LAN	DED AT EAFB DE	C 11 1000		
1990 106A	(Columbia)					0 11, 1990		Eleventh Columbia flight with Vance D. Brand, John M. Lounge,
								Jenney A. Hoffman, Robert A. Parker Guy S. Gardner, Rosald A. Dav
								and Sentuel I. Durtance. Carried Astro-1 a Space Shuttle starts of
								payload to acquire high priority astrophysical data on a variable of
991								celestial objects. Mission Duration: 215 hours 5 minutes 7 seconds.
STS-37 (S)	Shuttle (S)	Apr 5		LAN	DED AT EAFB API	2 11 1001		19
991 27A	(Atlantis)			5	DED AT LAFD AFT	11, 1991		Eighth Atlantis flight with Steven R. Nagel, Kenneth D. Cameron,
iro (s)			92.0	376	370	28.5		LINA M. GOOWIN, Jerome Apt, and Jerry L. Ross An unpleased EVA
991 27B					0.0	20.5	15900.0	took place to help with the deployment of GRO's high gain actions
TO as 10.								Also demonstrated were mobility aids which will be used on Space
TS-39 (S)	Shuttle (S)	Apr 28		LANI	DED AT KSC MAY	6 1001		Station Freedom. Mission Duration: 143 hrs 32 min 45 sec
991 31A	(Discovery)					0, 1391		I wenth Discovery flight with Michael L. Coats Blaine L. Hammond In
BSS (S)					DOWN MAY 6, 19	201		Guion S. Blutord, Gregory J. Harbaugh, Richard I. High Donald D
991 318					00000 Mirch 0, 13			MCMonagle, and Charles L. Veach. Discovery performed dozene of
								maneuvers, deploying canisters from the carro bay releasing and
								retrieving a payload with the RMS, allowing the Department of Defease
<u></u>								to gamer important plume observation data and information for the
0AA-12 (S)	Atlas-E (S)	May 14	101.2	824	806	98.7		SUIU. Mission Duration: 199 hrs 26 min 17 sec
991 32A						96.7	1418.0	Third-generation operational spacecraft to provide systematic global
								weather observations. Will replace NOAA, to as the morning actailing
								in NOAA's two polar satellite system. Joint NASA/NOAA effort. (WSM0
134								

MISSION/ Intl Design	LAUNCH		PERIOD (Mins.)		ORBITAL PA	RAMETERS	WEIGHT (kg)	(All Launches from ESMC, unless otherwise noted)
STS-40 (S) Spacelab (SLS-1) 1991 40A	Shuttle (S) (Columbia)	Jun 5		LAN	DED AT EAFB J	UN 14, 1991		Twelfth Columbia flight with Bryan D. O'Connor, Sidney M. Gutierrez, M. Rhea Seddon, James P. Bagian, Tamara E. Jerrigan, F. Drew Gaffney, and Millie Hughes-Fulford. The first mission since Skylab to do intensive investigations into the effects of weightlessness on humans. Data learned from this flight will be used in NASA's planning for longer Shuttle missions set for 1992, and in the planning of Space Station Freedom. Mission Duration: 218 hrs 15 mins 14 secs.
REX (S) 1991 45A	Scout (S)	Jun 29	101.3	867	769	89.6	96.7	Radiation Experiment to do further research to overcome and understand the physics of the electron density irregularities that cause disruptive acintillation effects on transionospheric radio signals. [VAFB]
STS-43 (S) 1991 54A TDRS-E (S) 1991 54B	Shuttle (S) (Atlantis)	Aug 2	1436.1	LAN 35793	DED AT KSC AL 35779	JG 11, 1991 0.0	2226.9	Ninth Atlantis flight with John E. Blaha, Michael A. Baker, James C. Adamson, G. David Low, and Shannon E. Lucid. A TDRS satelife was deployed, keeping the network which supports Shuttle missions and other spacecraft at full operational capability. Mission Duration: 213 hours 22 minutes 27 seconds.
STS-48 (S) 1991 63A UARS (S) 1991 63B	Shuttle (S) (Discovery)	Sep 12	96.2	LAN 580	DED AT EAFB S	EP 18, 1991 57.0	6532.2	processes acting within and upon the stratosphere, mesosphere, and lower thermosphere. Mission Duration: 128 hrs 27 mins 51 secs.
STS-44 (S) 1991 80A DSP (S) 1991 80B	Shuttle (S) (Atlantis)	Nov 24 Nov 25			IDED AT EAFB I			Tenth Allantis flight with Frederick D. Gregory, Terence T. Henricks, F. Story Musgrave, Mario Runco, Jr., James S. Voss, and Thomas J. Hennen. A dedicated mission for the Department of Defense to gather data for their programs. Deployed Defense Support Program satelitie (DSP). The mission was shortened when an inertial measurement unit failed on the skth day of the mission. Mission Duration: 168 hrs 52 mins 27 secs. 1992
1992 STS-42 (S) 1992 2A	Shuttle (S) (Discovery)	Jan 22		LAN	IDED AT EAFB	JAN 30, 1992		Fourteenth Discovery flight with Ronald J. Grabe, Steven S. Oswald, Norman E. Thagard, William F. Reeddy, David C. Hilmers, Roberta L. Bondar, and Ulf D. Merbold. The International Microgravity Laboratory (ML-1) studied the effects of microgravity on living organisms and materials processes. Mission duration: 193 hrs 15 mins 43 secs.

MISSION/ Inti Design	LAUNCH	LAUNCH DATE	PERIOD (Mins.)	CURRENT	ORBITAL PARA	METERS	WEIGHT				
STS-45 (S)	Shuttle (S)	Mar 24	(Mins.)	Apogee (km)	Perigee (km)	inci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)			
1992 15Å	(Atlantis)	Mai 24		LAND	ED AT KSC APR 2	, 1992		Eleventh Atlantis flight with Charles F. Bolden, Brian K. Duffy, Kathryn D Sullivan, David C. Leefsma, C. Michael Foale, Dirk D. Frimout and Bryo K. Lichtenburg. The Atmospheric Laboratory for Applications and Science (ATLAS 1) studied stmospheric science, solar science, space			
STS-49 (S) 1992 26A	Shuttle (S) (Endeavour)	May 2		LANDE	D AT EAFB MAY 1	6, 1992		<u>chrysics and astronomy. Mission Duration: 214 hrs 10 mins 24 sees.</u> First flight of Endeavour with Daniel C. Brandenstein, Kevin P. Chilton Richard J. Hieb, Bruce E. Melnick, Pierre J. Thout, Kathyn C. Thornt and Thomas D. Akers. On orbit repair of the Intelsat VI satellite and redeployment with new kick motor. Assembly of Station by Extravehicular Activity Methods (ASEM), while attached to the cargo			
EUVE (S) 1992 31A	Delta II (S)	Jun 7	95.1	529	514	28.4	3250	bay. Mission duration, 213 hrs 17 mins 38 secs. The Extreme Ultraviolet Explorer (EUVE), designed to study the extrem ultraviolet (EUV) portion of the electromagnetic spectrum as well as selected EUV targets, in order to create a definitive map and catalog of these sources.			
STS-50 (S) 1992 34A	Shuttle (S) (Columbia)	Jun 25		LANDE	ED AT KSC JUL 9,	1992		to lists sources. Twefth Columbia flight with Richard N. Richards, Kenneth D. Bowersox, Bonnie J. Dunbar, Carl J. Meade, Ellen S. Baker, and Lawrence J. Delucas. The First United States Microgravity Laboratory (USML-1) studied scientific and technical questions in materials science, fluid dynamics, biotechnology and combustion science. Mission duration: 331 hrs 30 mins 4 secs.			
SAMPEX (S) 1992 38A	Scout (S)	Jul 3	96.6	679	509	81.7		First of the Small Explorer (SMEX) fleet, carrying four cosmic ray monitoring instruments, to study solar energetic particles, anomalous cosmic rays, galactic cosmic rays, and magnetospheric electrons.			
GEOTAIL (S) 1992 44A	Delta II (S)	Jul 24	4750.6	508542	41363	22.4	1009	Joint mission between the United States and Japan to study the geomagnetic tail region of the magnetosphere. Geotail will also measure the physics of the magnetosphere, the plasma sheet, reconnection and neutral line formation to better understand fundamental magnetosphere processes.			
STS-46 (S) 1992 49A	Shuttle (S) (Atlantis)	Jul 31		LANDE	D AT AUG 8, 19	92		Tweifth Atlantis flight with Loren J. Shriver, Andrew M. Allen, Jeffrey A			
EURECA 1992 498			94.6	503	499	28.5		Hoffman, Franklin R. Chang-Diaz, Claude Nicollier, Marsha S. Ivins, Franco Malerba. Deployed ESA'S European Retrievable Carrier (EURECA), a platform placed in orbit for 6 months offering conventio services to experimenters. Tested Tethered Satellite System (TSS-1 a joint program between the United States and Italy. Mission duration 1911 hrs 16 mins 7 secs.			

MISSION/ ntl Design	LAUNCH L VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	WEIGHT (kg)	(All Launches from ESMC, unless otherwise noted)
STS-47 (S) Spacelab-J) 1992 61А	Shuttle (S) (Endeavour)	Sep 12		LANDE				C. Lee, N. Jan Davis, Mae C. Jemison, Jerome Apt, and Mamoru Mohri. The Spacelab J mission, a joint mission between the U.S. and Japan, performed a series of 43 extore the effects of producing new materials in the micogravity of space, and the study of living organisms in the organisms in the environisation duration: 190 hrs 30 mins 23 secs. U.S. French Satellite to help define the relationship between the Earth's
Topex/Poseidon (S) 1992 52A	Ariane 42P (S) Aug 10	112.4	1342	1330	66.0		U.S. French Satelline to help deline the build day of the second on commercial Ariane oceans and climate. NASA payload launched on commercial Ariane yehicle. Joint NASA/CNES mission. After an 11-month cruise, the Mars Observer (MO) will arrive at Mars
Mars Observer (S) 1992 63A	Titan III (S)	Sep 25		TRANS	S-MARTIAN TRAJE	ECTORY		and be inserted into orbit to examine the surface for elemental and mineralogical composition, global surface topography, gravity field and magnetic field determination and climatological conditions. The Mars Baltoon Relay (MBR), on the Mars Observer, will relay communications form Mars Index that will be sent by the Russians in 1995.
STS-52 (S) 1992 70A LAGEOS (S) 1992 70B	Shuttle (S) (Columbia)	Oct 22	222.5	LANDI 5950	ED AT KSC NOV 1 5616	52.7		Turtherate and the function of the set of th
MSTI-1 (S)	Scout (S)	Nov 21	91.2	378	292	96.7		DOD/SDIO payload. Fifteenth Discovery flight with David M. Walker, Robert Cabana, Guion
<u>1992 78A</u> STS-53 (S) 1992 86A	Shuttle (S) (Discovery)	Dec 2		LAND	ED AT EAFB DEC	9, 1992		Fifteenth Discovery flight with Devid M. Yanker, robert outdate, Califord S. Bluford, James Voss, and M. Richard Clifford. This was a DOD mission. Mission duration: 175 hrs 19 mins 47 secs. 199
1993								Third Endeavour flight with John H. Casper, Donald R. McMonagle,
STS-54(S) 1993 3A TDRS F	Shuttle(S) (Endeavour)	Jan 13	1432.0	LAND 35717	SED AT KSC JAN	19, 1993 0.5		Mario Endeavour night with out in the Sapon, but an ADRS satelike Mario Runco, Jr., Gregory Harbaugh, Susan Heims. A TDRS satelike was deployed to conlinue support of the Shuttle network systems. Mission duration: 143 hrs 38 mins 19 secs.

MISSION/ Inti Design	VEHICLE	LAUNCH DATE	PERIOD (Mins.)		ORBITAL PA	RAMETERS	WEIGHT	
1993		DATE	(101119.)	Apogee (kn) Perigee (kr	n) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS-56(S) 1993 23A	Shuttle (S) (Discovery)	Apr 8		LAN	DED AT KSC AP	R 17, 1993		Sixteenth Discovery flight with Kenneth Cameron Steven S. Council
SPARTAN-201 1993 238		Apr 8	90.3	311	295	57.0		C. Michael Foale, Kenneth Cockrell and Eleen Ochoa. A Spartan satellite was deployed to study the solar corona. The ATLAS-2 was used to measure upper atmospheric variations around the Earth. Mission Duration: 222 hs 08 min 24 secs.
STS-55 (S) 1993 27A STS-57(S)	Shuttle (S) (Columbia)	Apr 26		LAN	DED AT KSC MA	Y 6, 1993		Fourteenth Columbia flight with Steven R. Nagel, Terence T. Henricks, Charles Precourt, Bernard Harris, Jr., Ulrich Walter and Hans Schlegel The German, Spacelab D-2, was flown to study automation androbotic material and life sciences, the Earth and its atmosphere and astronomy Mission Duration: 239 hrs 39 min 59 secs
1993 37Å	Shuttle (S) (Endeavour)	Jun 21		LAN	DED AT EAFB Juł	1, 1993		Fourth Endeavour flight with Ronald J. Grabe, Brian J. Duffy, G. David Low, Nancy J. Sherlock, Peter J. K. Wisoff and Janice E. Voss. Retrieved ESA's European Retrievable Carrier (EURECA), a platform placed in orbit on STS-46. SPACEHAB-1 was carried in the cargo bay for experiments sponsored by NASA, the U.S. Commerce and ESA. Mission Duration: 23hrs 44 mins 54 secs.
RADCAL (S) 1993 41A	Scout (S)	Jun 25	101.3	885	750	89.3		Radar Calibration Satellite(RADCAL) will be used to calibrate U.S. radar tracking stations Expected life of this sattelite is 24 months.
NOAA-13(S) 993-50A	Atlas-G(S)	Aug 9	102.0	861	845	98.9		This weather observation satellite failed to function in orbit and was determined to be a failure.
TS-51 (S) 993 58A	Shuttle (S) (Discovery)	Sep 12		LAND	ED AT KSC Sep	22, 1993		Seventeenth Discovery flight with Frank Culbertson, Willian F. Readdy
CTS 993-588 PRFEUS-SPA			1437.8	35929	35709	0.2	Č	Communications Technology Satellite (ACTS) will be used to picease
-138	-SFA DOWN SEP 22, 1993 Retrievables in comm C System (0RFEUS-SPA very hot and cold matt		ew initiatives in communications technology. The Orbiting and letrievable Far and Extreme Ultraviiolet Spectrometer-Shuttle Pallet System(ORFEUS-SPA), is as astrophysics mission designed to study ery hot and cold matter in the universe filssion duration 236 hrs 11 mins 11 secs					

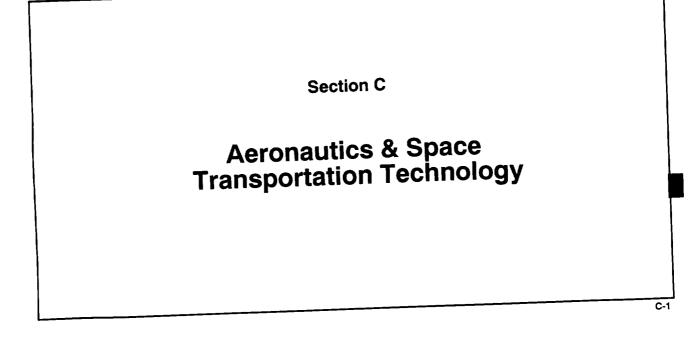
1993

MISSION/ Inti Design	LAUNCH VEHICLE	LAUNCH DATE	PERIOD (Mins.)	CURRENT Apogee (km)	ORBITAL PAR/ Perigee (km)	METERS Incl (deg)	WEIGHT (kg)	(All Launches from ESMC, unless otherwise noted) 1993
1 993 STŠ-58(S) 1993 65A	Shuttle (S) (Columbia)	Oct 18			ED AT EAFB NO			Fifteenth Columbia flight with John E. Blaha, Richard Seartoss, David A Wolf, Margaret Rhea Seddon, Shannon W. Lucid, William McArthur,J. and Martin J. Fettman. Spacelab Life Sciences-2(SLS-2) was a missio dedicated to the study of cardiovascular, regulatory, neurovestibular an musculoskaletal systems, to gain more knowledge on how the human body adapts to the space environment. Mission Duration: 336 hrs 12 min 32 sec.
STS-61(S) 1993 75A	Shuttle (S) (Endeavour)	Dec 2		LAND	ED AT KSC Dec 1	3, 1993		Fifth Endeevour flight with Richard O. Covey, Kenneth D. Bowersox, F. Story Musgrave, Thomas D. Akers, Jeffery A. Hoffman, Kathryn C. Thomton and Claude Nicollier. This light was the first on-orbit service of the Hubble Space Telescope(HST). The Solar Array(SA's), the Wide Field/Planetary Carmera(WFPC-II), and the Corrective Optics Space Telescope Axial Replacement(COSTAR) were some of the major units serviced. Mission duration: 259 hrs 58 mins 35 secs.
1994								1994
575-60(S) 1994 6A	Shuttle (S) (Discovery)	Feb 3		LAND	ED AT KSC FEB 1	I, 1 9 94		Eighteenth Discovery flight, with Charles Bolden, Ken Reightler, Ronai Sega, Franklin Chang-Diaz, Jan Davis and Sergei Krikalev as flight cre members. This was the first flight with a Russian cosmonaut on board. The Wake Shield Facility was unsuccessful when it failed to deploy its 3 meter shield. SPACEHAB-2 carried 12 payloads for experimentation in materials processing and biotechnology. Mission duration 199 hrs 09 mins 22 secs.
Gallexy 1R	Delta II (S)`	Feb 19	713.1	37253	2871	25.6	N	A geostationary satellite, Galaxy IR, was put into orbit to replace the aging Galaxy 1. It will operate with 24 C-band transponders.
STS-62(S) 1994 15A	Shuttle (S) (Columbia)	Mar 9		LAN	DED AT KSC MAR	18, 1994		Sixteenth Columbia flight, with John Gasper, Andrew Allen, Pieree Thu Charles Gemar and Marsha kins as flight crew members. The United States Microgravity Payload-2 (USMP-2) made its second flight to study microgravity on materials and fundamental science. Mission duration 335 hrs 16 mins 41 secs.

MISSION/ Inti Design	VEHICLE	LAUNCH DATE	PERIOD (Mins.)			ARAMETERS (m) Incl (deg)	WEIGHT	
1994			1 (wholles (w	ni) Feligee (um) inci (aeg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS-59 1994 20A	Shuttle (S) Endeavour	Apr 9		LA	NDED AT KSC /	APRIL 20, 1994		Soth Endeavour flight, with Sidney M. Gutierrez, Kevin P. Chilkon, M. R. Clifford, Linda M. Godwin, Jay Apt and Thomas D. Jones as flight crew members. The Space Radar Laboratory-1(SRL-1) payload in the cargo bay gave scientist detailed information on human-induced environmenta changes from the natural forms of global change. The Measurement of Air Pollution From Satellite(MAPS) was also in the cargo bay. It measured carbon monoxide in the troposphere and lower atmosphere. Mission duration: 269 hrs 49 mins 30 secs
GOES 8 994-22A	Attas 1	Apr 13	192.4	42687	191	27.4		The GOES-8 meteorological geostationary spacecraft has instruments on board for high resolution visible and UV imagers and "sounders" for temperature and moisture profiles
its-65 994 39A	Shuttle Columbia	Jul 8		LAN	IDED AT KSC JUI	_Y 23, 1 994		Seventeenth Columbia flight, with Robert D. Cabana, James D. Halsell Richard J. Hieb, Carl E. Walz, Leroy Chiao, Donald A. Thomas and Chiaki Naito-Mukai as crew members. The International Microgravity Laboratory-2(IML-2) will use furnaces and other facilities to produce a variety of material structures, from crystals to metal alloys. Over 80 investigations will be studied as prepared by over 200 scientist from six space agencies. Mission duration: 353 hrs 55 mins 00 secs
TS 64 994 59A PARTAN 1 994 59B	Shuttle Discovery	Sep 9		LAN	DED AT EDW SE	PTEMBER 20, 199		Nineteenth Discovery flight, with Richard N. Richards, Susan J. Helms, L. Blaine Hammond, Jerry M. Linenger, Carl J. Meade and Mark C. Lee as crew members. The Lidar in Space Technology Experiment(LITE) will be used to better explain our climate. LITE will help us understand the human impact on the atmosphere and enable us to improve our measurements of the clouds, particles in the atmosphere and the Earth. SPARTAN will be deployed from the Shuttle to study the acceleration and velocity of the solar wind and it will also measure the Sun's corona. Mission duration: .262 hrs 49 mins 57 secs

MISSION	LAUNCH	LAUNCH	DEDIOD	CUB	RENT ORBITAL PARAMETERS re (km) [Perigee (km)] Incl (deg)	WEIGHT (kg)	(All Launches from ESMC, unless otherwise noted)
1994 STS-68(S) 1994 62A	Shuttle (S) (Endeavour)	Sep 30			LANDED AT EDW OCT 11, 1994		Seventh Endeavour flight with, Michael A. Baker, Terence W. Wilcutt, Steven L. Smith, Daniel W. Bursch, Peter J.K. Wisoff and Thomas D Jones as flight crew members. The Space Radar Laboratory-2 is comprised of the Spaceborne Imaging Radar-C/X Band Synthic Aperture Radar (SIR-C/X-SAR), and the Measurement of Air Pollution from Satellite (MAPS). Mission Duration 269 hrs 46 mins 08 secs
	Delta II	Nov 1			VARIABLE ORBITAL PARAMETERS	1250 .0	Measure the solar wind plasma and magnetic field besides several instruments to measurevery energetic particles and gamma rays.
1994 71A					LANDED AT EDW NOV 14, 1994		Nineteenth Discovery flight with, Donald R. McMonagle, Ellen Ocho Curtis L. Brown, Joseph R. Tanner, Jean-Francois Clervoy and Sco Curtis L. Brown, Joseph R. Tanner, Jean-Francois Clervoy and Sco
STS-66 (S) 1994 73A CRISTA-SPAS 1994 73B	Shuttle (S) (Discovery)	Nov 3			DOWN NOV 14, 1994		Curtis L. Brown, Joseph R., Tahlet, courts L. Brown, Joseph R., Tahlet, Curtis L. Brown, Joseph R., Tahlet, Carl All Charles, Carl All Charles, Carl Carl All Charles, Carl Carl Carl Carl Carl Carl Carl Carl
NOAA-14 (S) 1994-89 A	Atlas-E	Dec 30)	472	468	1030.0	The primary objective is to acquire daily global information for short and long term forecasting. The satellite will be part of the operation polar satellite system.

MISSION/ Inti Design	LAUNCH	LAUNCH	PERIOD	CURRENT ORBITAL PARAMETERS	WEIGHT	199
INTELSAT 704	Atlas-2AS	Jan 10	(Mins.)	Apogee (km) Perigee (km) Incl (deg)	(kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
1995-001A STS-63						Geostationary communications spacecraft launched from Cape Canaveral. It is parked over the Indian Ocean to provide radio and TV coverage to the Middle East, Africa and parts of Europe.
1995-004A	Shuttle(S) (Discovery)	Feb 3		LANDED AS KSC FEB 11, 1995		Twentieth Discovery flight, with James D. Wetherbee, Eileen M. Collen, Bernard A. Harris, Jr., Michael C. Foale, Janice Voss and Vladimir Georglevich Titovas as flight crew members. The cargo bay deployable payloads were Shuttle-Mir Rendezvous and fly around, SPARTAN 204 Science, and EVA activities. In- cabin payloads were SPACEHAB-3 and AMOS. Mission Duration: 196 hrs 29 mins 36 secs
1995-007A	Shuttle(S) (Endeavour)			LANDED AT EDW MAR 18, 1995		Eighth Endeavour flight, with Steven S. Oswald, William G Gregory, John M. Grunsfeld, Wendy B. Lawrence, Tamare E. Jerrigan, Samuel T. Durrance, and Ronald Parise as flight crew members. Cargo Bay Payloads consisted of ASTRO-2 Spacelab with three UV telescopes. Crew cabin Payloads consisted of Commercial MDA ITA (CMIX), Protein Crystal Growth Experi- ments, Middeck Active Control Experiment (MACE), and Shuttle Amateur Radio Experiment (SAREX). Mission Duration: 339 hrs 09 mins 47 secs
995-025A	Atlas-1	May 23				Named GOES-9 after launch, this geostationary meterological spacecraft will first cover the central United States. Later the spacecraft will be moved to cover either the east or west coast. The instruments onboard will provide cloud cover images and monitor atmospheric temperatures and moisture at many altitudes.


NASA M	<u> </u>					Limour	199
MISSION/ Inti Design	LAUNCH VEHICLE	DATE	 	Perigee (km)		WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
STS-71 1995-30A	Shuttle (Allantis)	June 27	LANDED	DAT KSC JUL 7, 1	995		Fourteenth Atlantis flight, with Robert L. "Hoot" Gibson, Charles J. Precourt, Ellen S. Baker, Gregory J. Harbaugh, Bonnie Dunbar, Anatoly Y. Solovyev(MIR-19-Ascent Only), Gennady Strekalovas (MIR-18-Entry Only), Norm Thagard(MIR-18-Entry Only) crew members. Cargo Bay Payloads consisted of Shuttle-MIR rendezvous and docking, Orbit Docking system, and Shuttle-MIR Science. Cargo Bay Activities consisted of U.S./Russian Space Cooperation and STS-71/MIR Protocol Activities. In-Cabin Payloads consisted of IMAR and Shuttle Amateur Radio Experiment-II(SAREX-II). Mission Duration: 235 hrs 23 mins 09 secs
STS-70 1995-35A	Shuttle (Discovery)	July 13	LANDEL	DAT KSC JUL 22,	1995		Twenty-First Discovery flight, with Terrence T. "Tom" Hendricks, Kevin R. Kregel, Donald A. Thomas, Nancy J. Curkie and Mary E. Weber crew members. Cargo Bay Payloads consisted of Tracking and Data Relay Satellite and Inertial Upper Stage. Middeck Payloads consisted of Biological Research in Canisters(BRIC), Bioreector Development System(BDS), CPCG, NIH R-2, STL-B and MSX. Mission Duration: 214 hrs 21 mins 09 secs
TDRS-7 1995-35B	STS-70	July 13					An American Geostationary Tracking and Relay Satallite launched from STS-70. It relays data between spacecraft and between space- craft and ground stations in F and Ku bands. TDRS is parked on 150 W longitude for testing. After tests are completed TDRS will be moved to another latitude.
STS-69 1995-48A	Shuttle (Endeavour)	Sept 7	LANDE	D AT KSC SEP 18	1995		Ninth Endeavour flight with David M. Walker, Kenneth D. Cockrell, James S. Voss, James H. Newman and Michael L. Gernhardt as flight crew members. Cargo Bay payloads consisted of the second flight of the Walke Shielid Facility. The deployment and recapiture of the Spartan 201 and the International Extreme Hitchiker. Other payloads on the flight were the Capillary Pumped Loop-2 Gas Bridge Assembly, Electrolysis Performance Improvement Concept Study, National Institutes of Health-Cell-4 and the Thermal Energy Storage Experiment Mission Duration: 260hrs 28 min 56 secs

MISSION/	LAUNCH	LAUNCH DATE		WEIGHT	
Intl Design	VENICLE	DATE	(Mins.) Apogee (km) Perigee (km) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS-73 1995-56A	Shuttle Columbia	Oct 20	LANDED AT KSC NOV 5, 1995		Eighteenth Columbia flight with Kenneth D. Bowersox, Kent Rominger Kathryn Thornton, Catherine Coleman, Michael Lopez-Alegria, Albert Sacco and Fred Leslie as crew members. The United States Micro- gravity Laboratory -2 (USML-2) was the prime payload on this flight. Experiments on gravity in combustion flame spreading, semiconductor crystals and theoretical models of fluid physics were tested. The Orbital Acceleration Measurement System (SAMS), High-Packed Digital Television Demonstration and Three Dimensional Microgravity Accelerometer (3DMA) were on this flight. Mission Duration. 381 hrs 52 mins 21 secs
STS-74 1995-61A	Shuttle Atlantis	Nov 12	LANDED AT KSC NOV 20, 1995		Fifteenth Atlantis flight withKenneth Cameron, James Halseli, Jerry Ross, William McArthur and Chris Hadfield as crew members. This was the second mission to link up with the MIR space station. The Russian built Docking Module was attaced to the Kristall module of the MIR. This Docking module will be used in future docking between the Shuttle and MIR Space Station. The cargo bay also carried the Phologrammetric Appendage Structrual Dynamics Experiment (PASDE Mission Duration196 hrs 30 mins 54 secs
SOHO 1995-65A	Atlas-2AS	Dec 2		1,850 kg	An ESA-NASA spacecraft was launched from Cape Canaveral Air Station. It carried three American and nine European instruments to observe the sun and its corona. It was maneuvered to orbit around the first Lagrangian point(L-1) at 1,500 dook min the sunward direction. The instruments will measure the intensity and polarization of light scattered by the coronal electrons, and the composition of cold and hot plasma ejected by the Sun.
3ALAXY 3R 1995-69A	Atlas-2A	Dec 15			A Geostationary communications spacecraft launched from Cape Canaveral Air Station. After parking at 95 degrees W longitude the spacecraft provided 140 television channels to Mexico, the Caribbean, and Central American countries through its 24 C-band and 324 Ku- band transponders.

MISSION/ Intl Design	LAUNCH				ORBITAL PARA		WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
STS-72 1996 01A	Shuttle (Endeavour)	Jan 11			T KSC JAN 20, 1996		<u> </u>	Tenth Endeavour flight with Brian Duffy, Brent Jett, Winston Scott Daniel Barry and Kiochi Wakata as flight crew members. The Japanese Space Flyer Unit (SFU) was captured after being launched on March 17, 1995. The deployment and retrieval of the OAST-Flyer with four experiments on board. Also carried on the flight was the Shuttle Solar Backscatter Ultraviolet Experiment, Shuttle Laser Altimeter Payload, Space Tissue Loss Experiment and three Getaway Speciels. Mission Duration: 218hrs 00mins 41secs
NEAR 1996-008A	Detta 2	Feb 17					818kg	NEAR (Near Earth Astroid Rendezvous) will orbit around the Eros asteriod. This satellite will first pass by the asteriod 253-Mathild and return by Earth for a gravity boosted speed increase to make the final voyage to Eros. Once in orbit it will provide infrared images, x-ray, gamma-ray spectrometer and magnetomter data. Also on board is a laser range finder and a radioscience instrument.
STS-75 1996-012A	Shuttle (Columbia)	Feb 22		LANDED A	T KSC MAR 7, 1996			Nineteenth Columbia flight with Andrew Allen, Scott Horowitz, Jeff Hoffman, Maurizio Cheli, Claude Nicollier, Franklin Chang- Diaz and Umberto Guidoni as the crew members. The deployment of the Tether Satellite System (TSS) ended when the tether broke The satellite was lost when it reentered the atmosphere. As part of the USMP-3 cargo bay experiments where the Advanced Automated Directional Solidification Furnace (AADSF), Critical Fluid Light Scattering Experiment (Zeno) and the IDGE, OARE, MEPHISTO experiments. There were also three Middeck Giovebox Facility Combustion Investigations (MGBX). Missiona Duration: 328 hrs 14 mins 00 secs
Polar 1996-013A	Delta 2	Feb 24	938.1	50,551	5,100	85.9	1,300 kg	Last element of the International Solar-Terrestrial Program (ISTP/GGS). The satellite is in a polar orbit with eleven instruments to measure magnetospheric hot plasma, plasma waves, electric/magnetic fields, x-rays, energitic particles and visible light and UV cameras to map auroral displays.

MISSION/ Inti Design	LAUNCH VEHICLE				PARAMETERS (km) Incl (deg		REMARKS (All Launches from ESMC, unless otherwise noted
STS-76 1996-018A	Shuttle (Atlantis)	March 22		T KSC MAP		u	Sixteenth Atlantis flight with Kevin Chilton, Rick Searfoss, Ron Sega, Rich Clifford and Linda Godwin as crew members while Shannon Luckl, Yuri Onufriendo and Yuri Usachev were being taken to the Space Station MIR. The third docking with MIR included over1.900 lbs of supplies. The mission would include the SPACEHAB module, middeck experiments and a Get Away Special. Mission Duration: 221hrs 15 mins 53 secs
STS-77 1996-032A	Shuttle (Endeavour)	May 19	LANDED A	AT KSC MAY	Y 29, 1996		Eleventh Endeavour flight with John H Casper, Curis Brown, Daniel Bursch, Mario Runco, Marc Garneau and Andrew Thomas as crew members. A Spartan 207 platform was released from the shuttle, with the Inflatable Antenna Experiment (IAE). The PAMS-STU spacecraft was also released from the Shuttle to test attitude stabilization then re-enter the atmosphere. Mission Duration: 240 hrs 40 mins 10 secs
STS-78 1996-036A	Shuttle (Columbia)	June 20	LANDED A	IT KSC JUL	7, 1996		Twentesth Columbia flight with Terence Henricks, Kevin Kregel, Susan Helms, Richard Linneham, Charles Brady, Jean-Jacques Faver and Robert Thirsk as crew members. This flight carried the Life and Microgravity Spaceleb (LMS-1) in its cargo bay. There were 22 experiments conducted in the LMS involving fish embryos, rats, Bonzai plants, fluid dynamics, metallurgy and protein crystal growth. Thirteen of the life science experiments were devoted to the study of microgravity and its effects on the the human physiology. Mission Duration: 405 hrs 47 mins 30 secs

MISSION/	LAUNCH		PERIOD (Mins.)	CURRENT (Apogee (km)	Perigee	(km) Incl	(deg)	WEIGHT (kg)	(All Launches from ESMC, unless otherwise noted)
mi Design STS-79 1996-57A	Shuttle (Atlantis)	Sept 19			AT KSC SE				Seventeenth Atlantis flight with William Readdy, Terrence Wricutt, Thomas Akers, John Blaha, Jay Apt and Carl Walz as flight crew members. This flight will be the fourth to rendzvous and dock with the MIR space station. This was the fist exchange of astronaut when John Blaha replaced Shannon Lucid, who had been on the MIR since late March. This was the first Shuttle to carry a double SPACEHAB module. The forward portion of this module was used to conduct experiments while on orbit, while the aft portion was used to house tood, clothing, experimental supplies and spare equipment to be transferred to the MIR. Mission Duration: 243 hrs 18 mins 26 secs
MGS 1997-62A	Detta 2	Nov 7		DUE TO	ARRIVE AT	MARS SEP,	1997		The Mars Global Surveyor (MGS) is being sent to Mars to remote- sense the atmosphere and soil composition. After completing 180 days of high apoges senseing, an "serobraking orbit" will descend the MGS to a low circular "mapping orbit". The surface of Mars will be mapped by a thermal emmision spectrometer, a laser attimeter and three linescan cameras at visual wavelengths.
STS-80 1996-65A	Shuttle (Columbia)	Nov 19		LANDI	ED AT KSC I	DEC 7, 1996			Twenty first Columbia flight with Kenneth Cockrell, Kent Rominger, Tamara Jernigan, Thomas Jones and F. Story Musgrave as the fligh crew members. Two satellites, the Wake Shield Facility (WSF) and the Retrievable Far & Extreme Ultraviolet Spectrograph-Shuttle Palle Satellite II (ORFEUS-SPAS II) were both deployed and retrieved on this flight. The WSF was flown to test the growth of thin semi conduc films for advanced electronics. The ORFEUS-SPAS II will observe the evolution of stars, structure of galaxies and the nature of interstellar mediums. The astronauts will test a variety of tools and instruments for future station operations. Mission Duration: 426 hrs 53 mins 18 aecs
Mars Pathfinder 1996-68A	Delta 2	Dec 4		DUE TO A	RRIVE ON	MARS JUL 4	, 1997		The Pathfinder will land on Mars cushioned by inflatable airbags. Th Sojourner, Pathfinder microver, with Alpha, Proton, X-ray Spectrome and color cameras will transmit data to the Pathfinder Lander. The solar powered Lander will then transmit its research data and Sojour data from Mars. B-1

Office of Aeronautics & Space Transportation Technology (OASTT)

The OASTT directs the agency's aeronautics research and development programs, including the High-Speed Research Program which is creating and refining the technology and addressing the environmental challenges supporting the development of a future U.S. high speed civil transport aircraft.

The Transportation Technology efforts focus on NASA's Reusable Launch Vehicle (RLV) Program, a government/industry partnership aimed at demonstrating singlestage to-orbit technology required for reducing the cost of access to space. Through DC-XA, X-34 and X-33 demonstration flights, along with additional demonstration programs in flight- and ground-based, results will allow the country to proceed with full-scale commercial programs that will create new opportunities for space access while significantly improving U.S. economic competitiveness in the world-wide marketplace.

The office also researches advanced technology for subsonic aircraft, manages NASA's weather-related flight safety research, works to improve inspection methods for aging aircraft, propulsion research and development of advanced piloting and air traffic control aids. In addition, it directs numerous flight research programs using high-performance aircraft such as the SR-71, F/A-18, and F-16XL. It also manages fundamental aeronautics research in aerodynamics, fluid dynamics, structural mechanic, hypersonics and human factor issues such as the interaction of pilots with highly-automated cockpits.

The (OASTT) has institutional management responsibility for Ames Research Center, Mountain View, CA; Dryden Flight Research Center, Edwards, CA; Langley Research Center, Hampton, VA; and Lewis Research Center, Cleveland, OH.

Airpiane Program

The research Airplane Program, an effort by NASA and the Space Administration and the military services, was conceived near the end of World War II to perform flight studies with a series of specially-constructed research aircraft in the then unexplored transonic-low-supersonic characteristics of full-scale aircraft in flight.

Although supersonic flight was first achieved in 1947, further research in the program resulted in increases in knowledge about the dynamics of manned flight in winged aircraft at speeds up to and in excess of 4500 mph and at altitudes up to and greater than 350,000 feet. Two general categories of aircraft were obtained for the research airplane program: (1) those obtained to explore new areas of performance such as the X-1, D-558 I, X-2 AND X-15; and (2) those obtained to investigate the effects of different configurations, such as the X-3, X-4, X-5, XB-70 and the lifting bodies.

The outstanding contributions of this research program include providing important information on previously unexplored aircraft characteristics; validating the transonic-supersonic characteristics predicted by wind-tunnel tests and analytical techniques; and the intangible benefit of providing confidence in the achievement of safe, controllable transonic-supersonic flight.

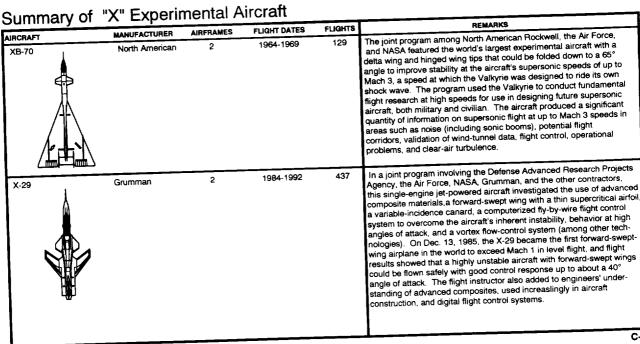
NACA/NASA X-PLANES

The "X" designation, originally "XS" for experimental Supersonic, applied to a family of experimental aircraft not intended for production beyond a limited number built solely for flight research. The D-558-1 and -2 did not bear the "X" label but were clearly intended for the same purpose. This was also true of the non-X-designated lifting bodies, whereas the XB-70 was originally intended to be a production bomber, and the XF-92A was expected to be a production fighter. Neither of the two latter aircraft actually went into production, and both models became significant research aircraft, hence their inclusion here.

Summary of "X" Experimental Aircraft

AIRCRAFT	FLIGHT DATES	NUMBER OF FLIGHTS	REMARKS
X-1	1946-1958 Manufactu Bell Aircrat plus an X-	214 rer and # of Airframes: t built three of the original X-1s, IA, an X-1B, an X-1D, and there n X-1E rebuilt from the X-1 #2.	Joint program among the NACA, the Air Force, and Bell Aircraft. The bullet-shaped, rocket-powered aircraft became the first airplane to break the sound barrier on Oct. 14, 1947. Flight research by the NACA continued through such advanced models as the X-1B and X-1E, providing a wealth of aerodynamic information for use in correlating wind-tunnel data with actual flight data and for designing later high-performance aircraft.
D-558-1 Manufacturer and Douglas, three	1947-1953 # of Airframes:	225	Joint program among the NACA, the Navy-Marine Corps., and Douglas Aircraft. The straight-winged, turbojet-powered "Skystreak" collected data in the transonic region and stability, control, loads buffeting, and handling qualities.
D-558-2 Manufacturer and Douglas, three	1948-1956 # of Airframes:	312	Joint program among the NACA, the Navy-Marine Corps., and Douglas Aircraft. The swept-wing aircraft flown with both turbo- jet and rocket power set an altitude record of 83,235 ft. on Aug. 21, 1953, and a speed record on Nov. 20, 1953, when it became the first aircraft to reach Mach 2. The "Skyrocket" collected data about handling qualities, wing loads, and stability and control, especially pitch-up.
			c

AIRCRAFT	MANUFACTURER	AIRFRAMES	FLIGHT DATES	FLIGHTS	REMARKS		
XF-92A	Convair	1	1948-1953 NACA fits.; others by Convair and the Air Force	25	Joint program among the NACA, the Air Force, and Convair to tes the country's first delta-wing air-craft. Stability and control, pitch-up, and lift-over drag measurements obtained from this program contributed to the technology used to develop the F-102, F-106, XF2Y-1 Sea Dart, and B-58 aircraft.		
X-2	Bell	2	1954-1956		Joint program with the Air Force, although the NACA never flew the swept-wing, rocket-powered aircraft designed to fly Mach 3. The NACA supported the Air Force with advice and data analysis The X-2 did become the first aircraft to reach Mach 3, recording Mach 3.2 speed on its last flight, which destroyed the aircraft an killed the Air Force pilot because of inertial coupling. It collected data on aerodynamic heating, stability and control effectiveness at high speeds and altitudes. The X-2 was also the first aircraft fly higher than 100,000 feet on Sept. 7, 1956, when it reached 126,200 feet 20 days before the aircraft reached Mach 3.2		
X3	Douglas	1	1952-1955		This slender, jet-powered aircraft tested such new materials as titanium and collected data on stability and control, pressure, distribution, and flight loads. The X-3 failed to achieve the high speeds for which it was designed but pioneered in the use of titanium and contributed to the development of aircraft tire technology.		



Summary of "X" Experimental Aircraft

Summary of "X" Experimental Aircraft REMARKS FLIGHTS AIRFRAMES FLIGHT DATES MANUFACTURER AIRCRAFT In a joint program with the Air Force and Northrop, the NACA In a joint program with the Air Force and Northrop, the NACA conducted most of the flights in this semi-tailless aircraft (which had no horizontal stabilizer). Powered by two turbojet engines and featuring swept wings, the X-4 helped demonstrate that tail surfaces are important for proper control effectiveness but that a properly configured semi-tailless airplane was a viable platform for research on dynamic stability and also provided data (from turts) on airflow anomalies 1948-1953 90 2 Northrop X-4 tufts) on airflow anomalies. The X-5 completed all of the research goals originally set for the first aircraft capable of variably sweeping its wings in flight. Demonstrating wing sweep from 20 to 60 degrees, the aircraft verified NACA wind-tunnel predictions of reduced drag and improved performance resulting from increased wing sweep as it approached Mach 1. Even the vicious spinning characteristics of the X-5 yielded a wealth of data for determining poor aircrafts spin dision. 133 1951-1953 2 Beil X-5 Air Force-NACA flights plus a few others by Bell and the Air Force spin disign. C-5

Summary of "X" Experimental Aircraft

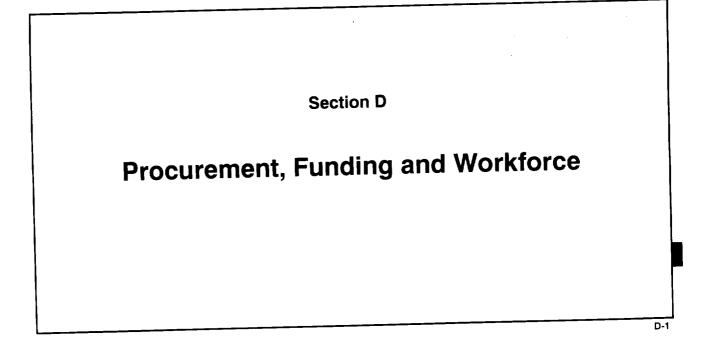
AIRCRAFT	MANUFACTURER	AIRFRAMES	FLIGHT DATES	FLIGHTS	REMARKS
X-15	North American Aviation	3	1959-1968	199	This joint program by NASA, the Air Force, and the Navy operated the most remarkable of all the rocket research aircraft. Composed of an internal structure of titanium and a skin surface of a chrome- nickel alloy known as Inconel X, the X-15 first set speed records in the Mach 4-6 range with Mach 4.43 on Mar 7, 1961; Mach 5.27 on June 23, 1961; Mach 6.04 on Nov. 9, 1961; and Mach 6.7 on Oct 3, 1967. The airplane set an altitude record of 354,200 feet (67 miles) on Aug. 22, 1963, and provided an enormous wealth of data on hypersonic air flow, aerodynamic heating, control and stability at hypersonic speeds, reaction controls for flight above the atmosphere, piloting techniques for reentry, human factors, and flight instrument- ation of relevance not only to aeronautics but to spaceflight.
M2-F1 M2-F1 M2-F3 HL-10 (-24A & 24B	DFRC Northrop Northrop Martin	1 of each	nearly 4	00 car the M2-F1	This joint program between the Air Force and NASA demonstrated the ability of pilots to maneuver and safely land a wingless vehicle de- signed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. The information generated by the lifting body program contributed to the data base led to the development of today's shuttle program, especially its approach and landing techniques The rocket-powered lifting bodies (all but the unpowered M2-F1) have have also contributed to the upcoming X-33 space technology demon- strator and the X-38.

C-7

Summary of "X" Experimental Aircraft

ARCRAFT	MANUFACTURER	AIRFRAMES	FLIGHT DATES	FLIGHTS	REMARKS
X-30			1986-1994 Only a 1/3 scale demonstrator wi "flown" only in a temperature tur	as built, high-	This joint effort by NASA, the Department of Defense, and five major contractors explored development of technologies for a new generation of aerospace vehicles for hypersonic cruise in the atmo phere or single-stage-to-orbit using airbreathing primary propulsion and horizontal takeoff and landing. Although a full-scale aircraft was never built because Congress ended funding in 1994, the pro- gram had expected such a vehicle to fly at Mach 25. The program developed significant advances in high-temperature, carbon-carbon materials, lightweight titanium and beryllium alloys, and high strenging corrosion-resistant titanium-alloy composites. These technologies and the program's work with supersonic-combustion ramjet propul- sion will all be useful to subsequent U.S. aerospace efforts in the hypersonic area.
×-31	Rockwell Aerospace North American Aircra Deutsche Aerospace	2 ht	1990-1995		In a joint program with the Defense Advanced Research Projects Agency, the U.S. Navy, the German Federal Ministry of Defense, Deutsche Aerospace, Rockwell International, the U.S. Air Force, an NASA, the Enhanced Fighter Maneuverability demonstrator showed the value of using thrust vectoring (by means of carbon-carbon paddles) coupled with advanced flight control systems to provide high maneuverability and controlled flight at high angles of attack. Featuring a delta-shaped, composite, twisted camber wing and strakes on the rear fuselage, the X-31 achieved stabilized flight at 70° angle of attack. With nose strakes added to increase stability, the aircraft exhibited remarkable "post-stall" maneuverability, such as a 180° turn at an extremely high angle of attack, known as the "Herbst maneuver."

Aeronautical Research and Technology Budget Plans

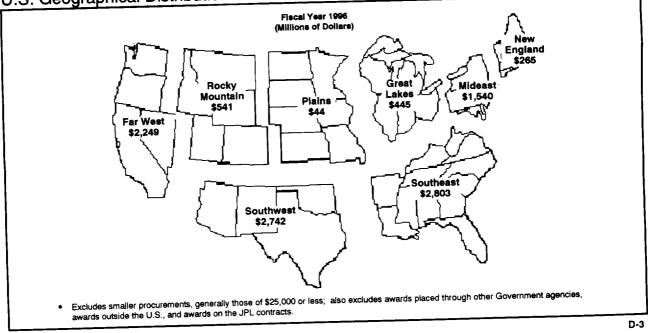

in Thousands of Dollars)	FY 96	FY 95	FY 94	FY 93	FY 92	FY91	FY 90	FY 89	FY 88	FY 87
Research and Technology Base	430,600	354,300	420,300	451,547	343,297	336,400	321,764	309,563	257,150	271,11
Systems Technology/Focused Programs										
Rotocraft systems technology High performance aircraft systems technology Advanced propulsion systems technology Numerical aerodynamic simulation Materials and structures systems technology High-speed research High performance computing and communications Advanced subsonic technology Hypersonic technology	233,300 32,200 169,800	46,200 24,300 221,300 51,600 125,800	48,100 25,700 197,200 63,600 89,300	47,930 24,388 116,995 30,359 12,425 33,118	4,900 10,700 15,180 45,400 37,562 76,400 16,980 5,000	5,100 10,500 15,000 44,100 39,900 44,000 17,000	3,556 9,691 13,152 41,798 28,143 24,494	4,800 11,000 13,952 39,685 19,200	4,529 5,430 17,955 39,018 8,818	18,700 25,985 28,220 29,984
Transatmospheric Research and Technology			20,000		4,136	95,000	59,027	69,400	52,500	45,00
Construction of Facilities		22,000	203,000	52,600	42,700	32,600	54,449	52,500	42,800	18,80
National Aeronautical Facilities		35,000								• •••
Total	865,900	880,500	1,067,200	769,362	602,255	639,600	556,074	520,100	428,200	437,8

C-9

Aeronautical Research and Technology Funding

Actoriadiloar moscare								As of September 30, 199
	FY 1996	FY1995	FY 1994	FY 1993	FY 1992	FY 1991	FY 1990	FY 1989 & Prior
Aeronautical Programs								
Aerodynamica	100,900	111,200	139,140					
Propulsion and power	58,300	64,600	72,475					
Materials and structures	42,500	37,800	49,075					
Controls, guidance, and human factors	98,900	46,300	65,640					
Flight systems	101,100	55,000	60,440					
Systems analysis	9,900	11,400	7,530					
Hypersonics/advanced research	19,000	20,000	26,000					
Total	430,600	354,000	420,300					- 10

C-10



NASA Contract Awards By State

(FY 1996)			Educational	T			
State	Total (Thousands)	Business (Thousands)	& Nonprofit (Thousands)	State	Total (Thousands)	Business	Educational & Nonprofit
Alabama	656,030	622,737	33,293	Nevada		(Thousands)	(Thousands
Alaska	9,244	••	9,244		1,707	787	920
Arizona	71,234	44,481	26,753	New Hampshire	19,013	6,064	12,949
Arkansas	731	204	527	New Jersey	179,687	171,543	8,144
California	2,133,903	1,916,072	217.831	New Mexico	55,132	45,375	9,757
Colorado	130,385	95,433		New York	44,908	21,126	23,782
Connecticut	94,447	92,255	34,952	North Carolina	12,498	1,282	11,216
Delaware	2,616	1,089	2,192	North Dakota	941	0	941
District of Columbia	67,092	30,970	1,527	Ohio	324,525	303,879	20,646
Florida	1,110,241	1,087,333	36,122	Oklahoma	9,282	932	8,350
Georgia	26,411	13,710	22,908	Oregon	8,584	3.935	4,649
lawaii	8,640	757	12,701	Pennsylvania	86,322	70,088	
daho	367	757	7,883	Rhode Island	2.807	257	16,234
llinois	19.665	7.584	291	South Carolina	2.757	286	2,550
ndiana	42,046		12,081	South Dakota	1,461	93	2,471
owa	9,081	38,283	3,763	Tennessee	22,271	15,996	1,368
Kansas	3,880	807	8,274	Texas	2,606,413	2,545,432	6,275
Centucky	2,251	1,619	2,261	Utah	402,849	398,186	60,978
ouisiana	362,358	1,118	1,133	Vermont	1,505	1,035	4,663
laine	1,285	357,532	4,826	Virginia	448.075	414,693	470
laryland		584	701	Washington	104,128		33,382
assachusetts	1,159,418	995,195	164,223	West Virginia	29.814	94,106	10,022
lichigan	145,492	34,770	110,722	Wisconsin	34,362	8,304	21,510
finnesota	24,377	7,612	16,765	Wyoming	829	22,046	12,316
lississippi	10,521	7,212	3,309	,	029	131	698
nississippi fissouri	129,255	123,009	6,246	TOTAL	\$10,644,887		
lontana	16,123	11,149	4,974			\$9,617,603	\$1,027,284
	6,380	241	6,139	Note: Excludes sm	aller procurements, ge	nerally those of \$25	000 or less: also
lebraska	1,544	192	1,352	UNCIDUOS AW	ards placed through oth J.S., and actions on the	In Government oge	Deles succed

D-2

U.S. Geographical Distribution of NASA Prime Contract Awards *

Procurement Activity

Installation	By Installation (FY 19		Awards Placed Outside The United State	EV 1996)
TOTAL	Awards (\$M)	Percent		(\$Thousands)
IOTAL	\$12,699.2	100.0	TOTAL	\$193,521*
Marshall Space Flight Center	2,234.9	17.6	Direct NACA	****,•**
Goddard Space Flight Center	2.381.7	18.8	Direct NASA Awards	\$192,427
Johnson Space Center	3.291.7	25.9	Australia	11,955
Kennedy Space Center	1.090.8	25.9	Bermuda	363
NASA Management Office/JPL	1,211.3		Brazil	25
Lewis Research Center	635.9	9.5	Canada	48,442
Headquarters	578.6	5.0	Chile	3,355
Ames Research Center	533.3	4.6	France	57
Langley Research Center	489.3	4.2	Germany	316
Stennis Space Center	143.3	3.9	Ireland	36
Dryden Flight Research Center	108.4	1.1	Israel	34
Awards Through Other G	100,4	0.8	Netherlands	1.041
Agency	overnment Agencies (Norway	42
	Awards (\$M)	Percent	New Zealand	19
TOTAL	\$484.7	100.0	Peru Busta Di	189
- .		100.0	Puerto Rico	3,006
Over \$25,000	390.5	80.6	Russia	104,992
Air Force	199.7	41.2	Spain	12,660
Navy	58.0	12.0	Sweden	1.250
Energy Department	35.8	7.4	Switzerland	685
Army	26.1	5.4	United Kingdom	3,471
National Science Foundation	17.3	3.6	Ukraine	489
nterior Department	18.7	3.8		
Commerce Department	13.7	2.8	Placed Through Other Government Agencies	<u>\$1.094</u>
Defense Department	6.7	2.0	Canada	15
Other Government Agencies	14.5	3.0	Guam	902
25,000 and Under	94.2	3.0 19.4	Puerto Rico	477
		17.4	*Excludes smaller procurements, generally those of	\$25,000 or less

Contract Awards by Type of Effort

Number of Contracts	Total		Contracts	
		Category		(Millions)
	(Millions)			
5,716	\$9, 617.6*			4 005 G
		Currenties & Equipment		1,825.6 338.7
1,756		Amountion & Explosives	-	
659		Ammunition a Explosives		1,132.4
339		Space venicies	-	16.7
71			93	14.5
21		Electrical/Electronic Equipment Radiation		
49				12.4
33		Equipment	360	24.4
456	527.6	Instruments & Laboratory Equiphies & Support		
128	62.9	ADP Equipment, Soliware, Supplied a same	1,460	211.0
		Equipment Oile P Maxes	26	13.0
1.435	4,268.7	Fuels, Lubricants, Olis a Waxes	411	62.5
	593.9	Other Supplies & Equipment		
	1,187.9			
37	167.2			
-				
275	1.423.8			
	153.9			
	225.0			
01				
306	154.7			
	362.3			
000				
		* Excludes smaller procurements, generally those	of \$25,000 or le	SS
	1,756 659 339 71 21 49 33 456	1,756 3,523.3 659 481.5 339 201.1 71 640.6 21 69.0 49 11.3 33 1,529.3 456 527.6 128 62.9 1,435 4,268.7 165 593.9 126 1,187.9 37 167.2 275 1,423.8 97 153.9 91 225.0 306 154.7	1,756 3,523.3 Supplies & Equipment 339 201.1 Ammunition & Explosives 71 640.6 Engines, Turbines & Components 21 69.0 Electrical/Electronic Equipment Components 33 1,529.3 Equipment 33 1,529.3 Equipment 456 527.6 Space Vahicles 128 62.9 Equipment 1,435 4,268.7 Instruments & Laboratory Equipment 165 593.9 Other Supplies & Equipment 126 1,187.9 Other Supplies & Equipment 37 167.2 275 1,423.8 97 153.9 91 225.0 306 154.7 338 362.3	1,756 3,523.3 Supplies & Equipment 2,525 39 201.1 Ammunition & Explosives 9 71 640.6 Engines, Turbines & Components 9 21 69.0 Electrical/Electronic Equipment Components 93 33 1,529.3 Communication, Detection & Coherent Radiation 113 33 1,529.3 Electrical/Electronic Equipment 360 456 527.6 ADP Equipment, Software, Supplies & Support 140 128 62.9 Fuels, Lubricants, Oils & Waxes 26 1435 4,268.7 Fuels, Lubricants, Oils & Waxes 26 126 1,187.9 Other Supplies & Equipment 411 37 167.2 275 1,423.8 411 97 153.9 225.0 306 154.7 306 154.7 154.7 153.9

Distribution of NASA Procurements

					FISCAL YOR	irs 1961 - 1:	963			*	Included in	Governm
Total Business (Small Business) Educational Nonprofit JPL Government Outside U.S. Total	FY 61 423.3 (63.5) 24.5 86.0 221.7 (*) 755.5	FY 62 1,030.1 (123.6) 50.2 148.5 321.8 (*) 1,550.6	FY 63 2,261.7 (191.3) 86.9 15.3 230.2 628.5 7.9 3,230.5	FY 64 3,521.1 (240.3) 112.9 29.1 226.2 692.6 12.0 4,593.9	FY 65 4,141.4 (286.3) 139.5 25.3 247.2 622.8 11.2 5,187.4	FY 66 4,087.7 (255.9) 150.0 27.7 230.3 512.5 23.4 5,031.6	FY 67 3,864.1 (216.9) 132.9 39.6 222.2 366.9 25.2 4,650.9	FY 68 3,446.7 (189.6) 131.5 33.6 207.2 287.0 26.7 4,132.7	FY 69 3,022.3 (162.8) 131.3 32.3 156.3 279.0 30.8 3,652.0	FY 70 2,759.2 (161.2) 134.3 33.0 179.8 265.8 33.5 3,405.6	FY 71 2,279.5 (178.1) 133.9 29.3 173.3 212.5 29.7 2,858.2	
Total Business (Small Business) Educational Nonprofit JPL Government <u>Qutside U.S.</u> Total	FY 73 2,063.8 (155.3) 111.7 26.4 202.3 235.2 34.0 2,673.4	FY 74 2,118.6 (181.2) 97.8 39.3 215.2 208.6 34.1 2,713.6	FY 75 2,255.0 (216.0) 111.4 33.0 234.5 198.3 34.2 2,866.4	FY 76 2,536.1 (218.3) 123.0 32.0 263.7 222.4 27.4 3,204.6	FY 7T 663.2 (68.4) 27.7 7.6 63.6 63.9 3.8 829.8	FY 77 2,838.1 (255.0) 125.5 32.0 289.0 289.0 223.2 24.5 3,532.3	FY 78 2,953.8 (281.5) 137.2 42.8 283.8 216.0 26.0 3,659.6	FY 79 3,416.4 (325.4) 147.2 50.8 338.6 221.4 37.4 4,211.8	FY 80 3,868.3 (384.6) 177.0 82.2 397.2 271.8 46.1 4,842.6	FY 81 4,272.8 (409.4) 192.5 155.1 410.8 321.9 55.2 5,408.3	FY 82 4,805.6 (430.1) 187.0 108.8 426.3 308.1 47.9 5,883.7	FY 83 5,586.0 (482.3) 211.3 102.5 454.9 394.2 47.9 6,796.8

Distribution of NASA Procurements

IN Millions of Dollars					Fiscal Year	s 1984 - 19	96			•	ncluded in Go	
Total Business (Small Business) Educational Nonprofit JPL Government Outside U.S. Total	FY 84 5.967.4 (556.2) 22.6 98.6 533.1 494.3 38.1 7,154.1	FY 85 6,652.9 (644.7) 256.9 103.1 724.6 535.1 35.4 8,308.0	FY 86 6,356.0 (671.3) 276.6 119.0 891.3 489.7 47.1 8,179.7	FY 87 6,540.5 (786.3) 315.4 1.005.6 594.9 34.3 8,609.8	FY 88 7,274.9 (801.4) 370.3 129.5 979.9 734.6 55.9 9,545.1	FY 89 8,567.6 (857.3) 464.2 180.0 1,058.1 543.2 63.3 10,876.4	FY 90 10,071.5 (924.3) 513.6 200.6 1,106.8 610.4 62.3 12,565.2	FY 91 10,417.3 (968.3) 592.0 244.0 1,139.6 693.4 72.7 13,159.0	FY 92 10,716.7 (1,010.6) 659.3 297.8 1,229.6 498.6 76.2 13,478.2	FY 93 10,497.9 (1,060.7) 707.8 336.6 1,029.8 508.4 79.9 13,160.4	FY 94 9,965.7 (1,150.2) 730.9 311.0 1,093.4 642.6 169.5 12,913.1	
Total Business (Small Business) Educational Nonprofit JPL Government Outside U.S. Total	FY 95 10,311.5 (1,171.2) 814.4 311.1 1,135.0 562.7 206.7 13,341.4	FY 96 9,801.6 (1,162.5) 745.7 287.9 1,188.3 484.7 191.8 12,699.2										

.7

Educational and Nonprofit Institutions

INSTITUTION	AWAR	2DS					
TOTAL AWARDS TO EDUCATIONAL & NONFROFT INSTITUTIONS 1. STANFORD UNIVERSITY 2. JOINS HOPKINS UNIVERSITY 3. ASSN UNIV RESEARCH & ASTRONOMY (N) 4. SMITHSONIAN UNIVERSITY INSTITUTION(N) 5. MASS INSTITUTE OF TECHNOLOGY 6. UNIVERSITI ARSTITUTE OF TECHNOLOGY 7. CALIFORNIA INSTITUTE OF TECHNOLOGY 8. UNIVERSITI OF ARIZONA 9. NEW MEXICO STATE UNIV LAS CRUCES 10. NATIONAL ACADEMY OF SCIENCES 11. UNIVERSITY OF CALIFORNIA BERKELEY 12. UNIVERSITY OF CALIFORNIA BERKELEY 13. WHEELING BESUTI COLLEGE 14. UNIVERSITY OF CALIFORNIA HUNTSVILLE 15. AMTECH INC. CALIFORNIA HUNTSVILLE 16. UNIVERSITY OF ALABAMA HUNTSVILLE 17. UNIV CORP ATMOSHERIC RESEARCH (N) 18. UNIVERSITY OF MICHIGAN ANN ARBOR 20. UNIVERSITY OF MISCONSIN MADISON 21. UNIVERSITY OF MISCONSIN ADDISON 21. UNIVERSITY OF ALABAMA BIRMINGHAM 22. UNIVERSITY OF CALIFORNIA SAN DIEGO 23. HARVARD UNIV 24. UNIVERSITY OF CALIFORNIA LOS ANGELES	(THOUSAND) 72,785 60,748 55,272 45,998 37,883 31,425 25,098 21,700 19,596 19,013 18,444 18,337 17,567 16,051 14,534 12,589 11,654 11,322 10,937 10,460 10,131 9,693 9,532		20. 27. 28. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 45. 48.	PENNSYLVANIA STATE UNIVERSITY I UNIVERSITY OF ALASKA FARBANKS UNIVERSITY OF TEAS AUSTIN OKLAHOMA STATE UNIVERSITY UNIVERSITY OF HEAS AUSTIN OKLAHOMA STATE UNIVERSITY UNIVERSITY OF HOUSTON CHARLES STARK DRAPER LABS UNIVERSITY OF HOUSTON CHARLES STARK DRAPER LABS UNIVERSITY OF HOUSTON GEORGIA INSTITUTE OF TECHNOLOG CORNELL UNIVERSITY SOUTHWEST RESEARCH INSTITUTE NOTORCRAFT INDUSTRY TECH. ASSN. OHIO AEROSPACE INSTITUTE UNIVERSITY OF VIGINIA OHIO STATE UNIVERSITY UNIVERSITY OF FURDA COLUMBIA UNIVERSITY UNIVERSITY OF CHICAGO RESEARCH TRIANCLE INSTITUTE PRINCETON UNIVERSITY SAN JOSE STATE UNIVERSITY SAN JOSE STATE UNIVERSITY UNIVERSITY OF CALIFORNIA SANTA B RESEARCH & DEVELOPMENT INSTITUT FLORIDA A & M UNIVERSITY	(N) (((((() (() () (() (() ((() ((((()) (()) (()) (()) (()) (()) ()) (())())	9,356 9,194 8,973 8,017 7,799 7,674 7,519 6,801 6,739 6,414 5,817 5,786 5,748 5,273 5,188 4,940 4,900 4,835 4,940 4,835 4,940 4,835 4,787 4,326 4,234 4,125 4,093 4,093 3,989	.9] .88 .87 .77 .74 .74 .76 .66 .55 .56 .56 .56 .56 .56 .56 .56 .5

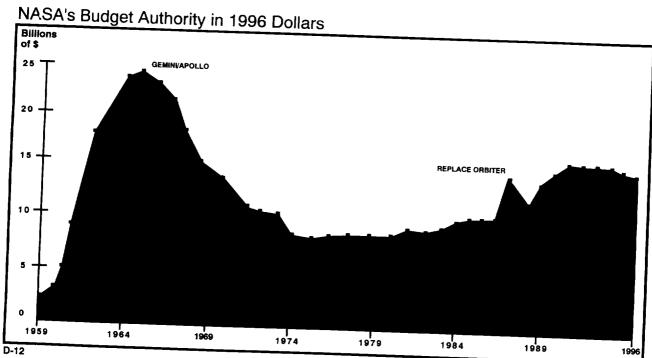
Educational and Nonprofit Institutions

.....

50 UNIVERSITY OF SOUTHERN CALIFORNIA 3,978 .38 75. UNIV MINNESOTA MINNEAPOLIS ST FACE 51 UNIVERSITY OF MIAMI 3,940 38 76. TENNESSEE STATE UNIVERSITY 51. UNIVERSITY OF MIAMI 3,940 38 76. TENNESSEE STATE UNIVERSITY 52. TEXAS A & M UNIVERSITY 3,922 38 77. NORTH CAROLINA A & M STATE UNIVERSITY 52. TEXAS A & M UNIVERSITY 3,853 37 78. NORTH CAROLINA A & M STATE UNIVERSITY	2,841 2,774 2,773	27 27 27
53. OREGON STATE UNIVERSITY3.8423779. UNIVERSITY54. OLD DOMINON UNIVERSITY3.7823755. CARNEGIE MELLON UNIVERSITY3.5713556. C LE S I N(N)3.5823557. C ASE WESTERN RESERVE UNIVERSITY3.5713558. UNIVERSITY OF CALIFORNIA RIVERSIDE3.5553459. AUBURN UNIVERSITY AUBURN3.5003460. LOMA LINDA UNIVERSITY3.5003461. RICE UNIVERSITY3.3643262. WASHINGTON UNIVERSITY3.2613263. HAMFTON UNIVERSITY3.2613264. S E T LINSTITUE3.0733.065. STATE UNIVERSITY3.0553066. UNIVERSITY3.0553067. CLARK ATLANTA UNIVERSITY3.0553068. BOSTON UNIVERSITY3.0422970. LOGISTICS MANAGEMENT INSTITUTE(N)3.0771. AEROSPACE CORP.(N)3.0422972. HOWARD UNIVERSITY2.8652873. NORTH CAROLINA STATE UNIVERSITY2.8652874. UNIVERSITY OF CALIFORNIA IRVINE2.8432875. NORTH CAROLINA STATE UNIVERSITY2.8432874. UNIVERSITY OF CALIFORNIA IRVINE2.84328	2.772 2.755 2.741 2.688 2.570 2.497 2.434 2.399 2.273 2.181 2.162 2.110 2.045 2.024 2.024 2.000 1.975 1.974 1.965 1.953 1.905 1.878 16.271	27 27 27 26 25 24 24 23 22 21 20 20 20 20 20 20 19 .19 .19 .19 .19 .19 .19 .18 .18 15.70

Principal Contractors (Business Firms)

CONTRACTOR TOTAL AWARDS TO BUSINESS FIRMS 1. BOEING CO. 2. LOCKHEED MARTIN CORP. 3. ROCKWELL INTERNATIONAL CORP. 4. UNITED SPACE ALLIANCE LLC 5. THIOKOL CORP. 6. MCDONNELL DOUGLAS CORP. 7. ROCKWELL SPACE OPERATIONS INC. 8. TR W INC. 9. ALLIED SIGNAL TECHNICAL SERVICES 10. COMPUTER SCIENCES CORP. 11. E G & G FLORIDA INC. 12. LOCKHEED MARTIN ENGRG & SCIENCE CO. 13. UNITED TECHNOLOGIES CORP. 14. LOCKHEED MARTIN AENGRG & SCIENCE CO. 15. USBI BOOSTER PRODUCTION CO. 16. HUGHES AIRCRAFT CO. 17. HUGHES INFORMATION TECH CORP. 18. BOEING COMMERCIAL AIRPLANE GROUP 19. JOHNSON CONTROLS WORLD SERVICES 20. BAMSI INC. 21. GENERAL ELECTRIC CO. 22. GRUEMAN AENGSPACE CORP. 23. ORBITAL SCIENCES CORP. 24. STERLING SOFTWARE US INC.	(THOUSANDS) \$9,800,819 1,607,774 833,387 756,319 544,424 396,184 396,184 396,184 292,423 287,339 285,084 213,543 175,147 165,571 162,456 160,630 152,864 133,486 83,045 68,806 59,322 58,383 57,729 56,204 55,433	PERCENT 100.00 16.40 8.50 7.72 5.55 4.64 3.96 2.93 2.91 2.18 1.79 1.69 1.66 1.64 1.66 1.56 1.36 85 .70 .61 .60 .59 .57 .57	1996) 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 36, 37, 38, 34, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49,	SANTA BARBARA RESEARCH CEN SPACE SYSTEMS LORAL INC. BALL AEROSPACE & TECH CORP. HUGHES ST X CORP. CORTEZ III SERVICE CORP. SPACELAB TRAINING INC. (S) HUGHES TRAINING INC. (S) HUGHES TRAINING INC. CALSPAN CORP. RAYTHEON SERVICE CO. TELEDYNE INDUSTRIES INC. AEROJET GENERAL CORP. LOCKHEED MARTIN SERVICES INC. LOCKHEED SPACE OPERATIONS CO. JACKSON & TULL INC. SWALES & ASSOCIATES INC. NYMA INC. CRAY RESEARCH INC. SLICON GRAPHICS INC. SCIENCE APPLICATION INTL CORP. KRUG LIFE SCIENCES INC. SCIENCE APPLICATION INTL CORP. KRUG LIFE SCIENCES INC. GENERAL ELECTRIC UTC JV C T A INC. GOVERNMENT MICRO RESOURCES	ĒR	53,707 50,018 47,347 46,966 45,527 44,831 43,629 39,939 35,988 35,988 35,988 35,988 35,988 35,262 33,825 33,450 31,787 30,925 30,426 30,387 29,900 28,331 28,319 28,058 27,989	.55 .51 .48 .46 .46 .46 .45 .41 .37 .36 .36 .36 .35 .34 .34 .32 .32 .32 .32 .31 .31 .31 .29 .29 .29
---	---	--	--	---	----	--	---



Principal Contractors (Business Firms)

71. GLCXEST ELECTRIC & SOPPT CO. 12,490 .13 97. 57. 57.00 57.0
--

11

·· — ·· · _- .

Einancial Summary

n Millions	Of Dollars)				0	utlays		Trust	Office Of
iscal	Total Appropriations	Total Direct Obligations	Total	Research & Development	Space Flight, Control & Data Communications	Construction Of Facilities	Research & Program Management	Funds	Inspector General
						24.80	86.70		
959	330.90	298.70	145.50	34.00		54.30	91.00		
960	523.90	486.90	401.00	255.70		98.20	159.10		
961	966.70	908.30	744.30	487.70		114.30	207.10		
962	1.825.30	1,691.70	1,257.00	935.60		225.30	18.70		
963	3.674.10	3,448.40	2,552.40	2.308.40		437.70	415.90		
964	5,100.00	4,864.80	4,171.00	3,317.40		530.90	577.50		
965	5,250.00	5,500.70	5,092.90	3,984.50		572.50	619.40		
966	5,175.00	5,350.50	5,933.00	4,741.10		288.60	649.90		
967	4,968.00	5,011.70	5,425.70	4,487.20	-	126.10	651.50		
968	4,588.90	4,520.40	4,723.70	3,946.10		65.30	656.20		-
969	3,995.30	4,045.20	4,251.70	3,530.20		54,30	707.20		
970	3,749.20	3,858.90	3,753.10	2,991.60		43.70	707.80		
1971	3,312.60	3,324.00	3,381.90	2,630.40		50.30	749.40		-*
1972	3,310.10	3,228.60	3,422.90	2,623.20		44.70	729.10	••	
1973	3,407.60	3,154.00	3,315.20	2,541.40		75.10	759.50		
1973	3,039.70	3,122.40	3,256.20	2,421.60		85.30	760.80		
1975	3,231,20	3,265.90	3,266.50	2,420.40		120.90	799.30		
1975	3,551.80	3,604.80	3,669.00	2,748.80		25.80	194.90		
	932.20	918.80	951.40	730.70		105.00	859.60		**
TQ	3.819.10	3,858.10	3,945.30	2,980.70		124.20	870.20		
1977 1978	4.063.70	4,000.30	3,983.10	2,988.70		132.70	925.00		
1978	4,558.80	4,557.50	4,196.50	3,138.80		140.30	1,009.90		
	5,243.40	5,098.10	4,851.60	3,701.40		140.30	1,051.40		
1980	5,522.70	5,606.20	5,421.20	4,223.00		146.80	1,130.00		-
1981 1982	6,020.00	5,946.70	6,035.40	4,796.40		109.00	.,		

Financial Summary

Fiscal Year	Total	Total Direct				Outlays			As Of S	eptember 30, 199
	Appropriations	Obligations	Total	Research & Development	Space Flight, Control & Data Communications	Construction Of Facilities	Research & Program Management	Trust Funds	Office of	GSA Building
1983 1984 1985 1986 1987 1988 1989 9990 9991 9992 9993 9994 9995	6,817.70 7,242.60 7,552.20 7,764.20 10,621.00 9,001.50 12,295.70 14,014.62 14,316.05 14,323.39 14,550.45 00,000.00	6,723.90 7,135.20 7,638.40 7,463.00 8,603.70 9,914.70 11,315.80 13,068.93 13,973.54 14,178,47 13,949.17 1500.30	6,663.90 7,047.60 7,317.70 7,403.50 7,591.40 9,091.60 11,051.50 12,428.83 13,961.42 14,306.23 13,695.89 5,114.26	5,316.20 2,791.80 2,118.20 2,614.80 2,436.20 2,915.80 3,922.40 5,094.30 5,765.48 6,578.85 7,086.12 6,758.00 3,286.34	2,914.60 3,707.00 3,267.40 3,597.30 4,362.20 5,136.52 5,030.20 5,116.52 5,590.28 5,117.51 5,025.16 4,899.24 1,408.87	108.10 108.80 170.00 189.90 149.00 165.90 190.10 218.42 326.31 463.03 556.77 371.16 305.09	1,239.60 1,232.40 1,322.50 1,332.40 1,408.90 1,647.70 1,908.30 1,991.09 2,185.06 1,788.05 1,621.64 1,650.15 98.38	Funds -	Inspector General	Delegation

-- ------

Financial Summary

(in Million	s of Dollars)			Ou	tlays			
iscal (ear	Total Approp	Total Direct Obligations	Total	Science, Aeronautics & Technology	Human Space Flight	Mission Support	Office Of Inspector General	1994 & Prior Appropriation
1995 1996	13,997.76 13,884.59	14,441.03 13,810.51	13,377.72 13,881.70	2,706.76 5,017.82	3,527.72 5,452.02	2,028.98 2,372.25	14.45 16.28	5.099.81 - 1,023.33

Research and Development Funding By Program

(In Millions of Dollars)	FY1994	FY1993	FY 1992	FY 1991	FY 1990	FY 1989 - FY 1980	-		As of September 30, 199
Space Station	1.864.27	2,077.08					FY 1979	FY 1978	FY 1977 & Prior
	1,004.27	2,077.08	1,976.71	1,875.39	1,723.70	2037.89			
Space Flight									
Space Shuttle									
Space Transp Cap Dev	584.70	496.98	559 49		••	7659.30	1,637.60	1,348.80	4,599.70
STS Oper Capability Dev	()	()		594.62	546.02	6,788.90	299.70	263.80	3.946.20
Spacelab	(132.60)	(113.89)	()	()	()	(816.70)	(89.90)	(65.40)	(65.40)
Upper Stage	()	((13.89)	(99.20)	(129.30)	(118.58)	(470.00)	()	()	()
Payload Oper & Support Eqt	(116.73)	(124.92)	(59 70)	(82.40)	(79 70)	(832.90)	()	()	()
Eng & Tech Base (ETB)/DTMS	(160.53)	(214.15)	(110.86)	(93.42)	(58.54)	(329.60)	()	()	()
Advanced Programs	(27.30)		(210.80)	(208.50)	(181.60)	(1341.30)	(177.20)	(171.90)	(1,050.70)
Advanced Launch Systems	(19.94)	(32.09)	(34.55)	(35.20)	(29.70)	(237.20)	(7.00)	(10.00)	(188.80)
Advanced Transportation Tech.	(13.34)	(9.60)	(27.96)	()	()	(144.70)	()	()	
Tethered Satellite Program	(7.40)	()	()	(23.90)	()	()	()	()	() ()
Orbital Maneuvering Veh (OMV)	(100.00)	(3.40)	(16.40)	(21.90)	(27.30)	(83.20)	()	()	()
STS Operations/Russian Coop	()	()	()	()	(50.60)	(206.80)	()	()	
Skylab	()	()	()	()	(…)	(2,368.60)	()	()	()
Apollo Soyuz Test Project	()	()	()	()	()	· ()	()	()	(~)
xpendable Launch Vehicles	(**)	()	()	()	()	()	()	()	(2,427.10) (214.20)
Completed Programs						235.80	73.60	136.50	2,274.60
Apolio	()					**		130.50	22,020.10
Gemini	()	(-)	()	()	()	()	()	()	(20,443.60)
Others		()	()	(~)	()	()	()	()	(20,443.60) (1,280,70)
	()	()	()	()	()	(-)	()	(~)	(1.280.70)
otal OSF	584.70	496.96	559,49	594.62			(*)	(**)	(295.60)
ommercial Programs		100.00	333.49	364.62	546.02	14,683 50	2,010.90	1,749.10	32,840.60
echnology Utilization									
ommercial Use of Space	••	28.91	32.08	24.05	23.40	117.20			
onimercial Use of Space		132.84	113.63	62.79	32.41	96.70	9.10	9.10	75.30
		161.75	145.75	86.84	55.81	253.00			
					35.01	253.00	9.10	9.10	75.30

Research and Development Funding By Program

. ____ .

lesearch and Devel	opinione			ogram			_	As of Septe FY 1978	mber 30, 1994 FY 1977
	FY1994	FY1993	FY 1992	FY 1991	FY 1990	FY 1989-1980	FY 1979	FT 1978	& Prio
eronautics and Space Technology					_				
arrent Programs				277.90	273.77	1522.40	98.30	88.70	432.3
pace Research & Technology		266.98	299.90	500.10	433.36	3130.30	264.10	228.00	1,021.4
eronautical Research & Tech	823.72	700.81	543.70		58.29				
ansatmospheric Res & Tech	19.68		4.08	93.79	56.25	4.90	5.00	7.50	20.8
ergy Tech. Applications						4.50			
ior Programs							-		1.00
for Programs				••					62.3
pollo Applications Expr									193.6
nemical & Solar Power			••						332.2
asic Research								_	272.0
pace Vehicle Systems									151.3
ectronic Systems							-		385.4
uman Factor Systems			_						512.8
pace Power & Elec Prop Sys									365
uclear Rockets									
eronautical Vehicles									451.20
hemical Propulsion								44.10	
luclear Power & Propulsin									16.00
Aission Analysis									4,261.
otal OAST	843.40	967.79	847.68	869.38	765.42	4832.40	367.40	324.20	4,201.
Space Tracking & Data Systems Tracking and Data Acquisition	19.27	22.93	21.73	19.75	19.08	1998.90	299.90	276.30	3,852.1
Safety, Reliability, Maintainability & Quality Assurance Standards & Practices	33.76	32.24	33.18	32.59	22.35	76.70	9.00	9.00	24
University Space Science &									
Technology Academic Program		co 15	44.24	37.43	Z3.00				
Academic Programs	53.45	69.15			14.03				
Minority University Res. Prog	30.72	22.36	21.73	10.30					
Total U.S.S.&T.A. P.	84.17	91.51	65.97	54.41	37.03				
									D

Research and Development Funding By Program

(In Millions of Dollars)									
	FY1994	FY1993	FY 1992	FY 1991	FY 1990	FY 1989-1980	FY 1979	FY 1978	
Space Science and Applications Current Programs Physics & Astronomy					<u> </u>				& Pric
Planetary Exploration	1,036.41 637.83	1,025.34 524.74	1,019.99	954.94	847.11	5059.30	281.80	223.10	2,196.3
life Sciences	459.83	145.00	527.35 155.75	469.91	380.85	2721.80	181.90	146.70	3,550.2
Space Applications	1,007,10	681.15	888,27	135.60	104.70	586.00	40.10	33.30	145.7
Prior Programs		001.10	000.27	835.07	632.05	3807.40	271.90	232.10	2,092.6
Manned Space Science	-								-,
aunch Vehicle Development Biosclerice		••							46.4
Space Flight Operations									614.4
Payload, Plan & Prog Integ									257.8
ayona i nan a ring mag	()	()	()	()	()	()	()	4.00	58.3
otal OSSA	3,141.17	2,591.36	2,591.36	2,395.52	1,964.71	12,449.50		(4.00)	
dvanced Concepts & Technology	429.01				1,001.71	12,449.00	775.70	639.20	8,961.7
xploration		3.46	3.46	3.50					
iniversity Affairs									
perating Account				-					229.20
porting Account	533 75	474.78	589.75	89.11	93.56	453.80			
otal Program	7.533.50				30.00	-53.60	5.20	4.70	79.70
pprop Trans & Adjustment	7,533.50 -4,20	7,094.30	6,827.61	6,023.52	5,227.69	36,464.90	3,477.20		
	-4.20	-5.00	0.00	0.00	-7.00	224.10	0.00	3,011.60 1.40	50,325.3
propriation	7,089.30	6.827.61	6,023.52	5,220.69			0.00	1.40	301.00
upse Unoblig Bal incl			0.020.02	5,220.69	36,734.00	3,477.20	3,013.00	50,626.30	50,626.30
	(1.12)	(1.12)	(1.16)	(1.32)	(1.68)	(7.4)			

Flight, Control And Data Communications Funding By Program S

					As of September 30, 1994
FY 1994	FY 1993	FY 1992	FY 1991	FY 1990	FY 1984 -1989
1,012.75 2,550.08	1,045.48 2,804.94	1,295.75 2,928.36	1,295.07 2,976.73	1,189.84 2,628.41	10,005.33 10,540.32
3,562.83	3,850.42	4,223.61	4,271.80	3,818.25	20,545.65
303.34		179.85			
734.05	820.70	869.73	973.91	897.97	4671 .75
234.98	207.83	258.76	10.13	9.39	
4,835.10	5,058.80	5,352.10 -195.03	5,255.84 1,063.29	4,725.61 -170.71	25,297.19 -286.53
	5,086.00	5,157.07	6,319.13	4,554.90	25,010.66
(0.30)	(1.21)	(0.43)	(0.41)	(0.82)	(2.6)
	FY 1994 1,012.75 2,550.08 3,562.83 303.34 734.05 234.98 4,835.10 18.40 4,853.50	FY 1994 FY 1993 1,012.75 1,045.48 2,550.08 2,804.94 3,562.83 3,850.42 303.34 734.05 820.70 234.98 207.83 4,835.10 5,058.80 18.40 27.20 4,853.50 5,086.00	FY 1994 FY 1993 FY 1992 1,012.75 1,045.48 1,295.75 2,550.08 2,804.94 2,928.36 3,562.83 3,850.42 4,223.61 303.34 179.85 734.05 820.70 869.73 234.98 207.83 258.76 4,835.10 5,058.80 5,352.10 18.40 27.20 -195.03 4,853.50 5,086.00 5,157.07	FY 1994 FY 1993 FY 1992 FY 1991 1,012.75 1,045.48 1,295.75 1,295.07 2,550.08 2,804.94 2,928.36 2,976.73 3,562.83 3,850.42 4,223.61 4,271.80 303.34 179.85 734.05 820.70 869.73 973.91 234.98 207.83 258.76 10.13 4,835.10 5,058.80 5,352.10 5,255.84 18.40 27.20 -195.03 1,063.29 4,853.50 5,086.00 5,157.07 6,319.13	FY 1994 FY 1993 FY 1992 FY 1952 FY 1551 1,012.75 1,045.48 1,295.75 1,295.07 1,189.84 2,550.08 2,804.94 2,928.36 2,976.73 2,628.41 3,562.83 3,850.42 4,223.61 4,271.80 3,818.25 303.34 179.85 734.05 820.70 869.73 973.91 897.97 234.98 207.83 258.76 10.13 9.39 4,835.10 5,058.80 5,352.10 5,255.84 4,725.61 18.40 27.20 -195.03 1,063.29 -170.71 4,853.50 5,086.00 5,157.07 6,319.13 4,554.90

Note: Unobligated Balances Lapsed at the end of the second year of accountability.

D-19

Research and Development Funding By Location

Headquarters Ames Research Center Dryden Flight Research Facility	729.07				FY 1990	FY 1989- 1980	FY 1979	C (1)	As of September 30, 199
Electronics Research Center Goddard Space Flight Center Jet Propulsion Laboratory Johnson Space Center Kennedy Space Center Langley Research Center Lawis Research Center	468.96 1,310.08 760.92 791.84 225.13 445.32	827.39 458.62 	767.42 431.64 	645.77 357.72 1.047.81 734.97 1.173.60 209.80 308.15	471.79 314.20 	2,101,90 2,141,70 46,90 5,753,50 3800,00 7,971,30 2,055,60	115.30 140.40 13.10 515.50 236.80 1.161.80 234.90	FY 1978 95.00 115.50 18.60 	FY 1977 <u>4 Prior</u> 2.253 90 1.183.10 242.00 82.50 6.400.10 3.017.90 15.423.30
Marshall Space Flight Center NASA Pasadena Office Pacific Launch Operations Space Nuclear Systems Office Space Station Project Office Station 17 Station 17 Stennis Space Cneter	547.99 880.08 1,012.94 	761.58 964.68 	681.66 974.43 	559.20 968.32 	260.81 500.26 959.89 	1,733,20 2,607 0 8,607.70	138.20 148.50 785.20	170.00 157.10 133.60 630.90 	2,503,20 2,322,90 2,864,60 13,293,10 4,40 0,30 436,50
Volumia Space Chefer Wallops Flight Facility Western Support Office Undistributed	21.73 	26.26 	24.93 	18.18	 14.80 	-506.80 124.10 28.00	-38.80 9.20 17.10	 10.00 15.90	 21.50 156.30
oprop Trans & Adjustment	7.533.50	7,094.30	6,827.61 0.00	6,023.52 0.00	5,227.69	36,064.90	3,477.20	3,011.60	119.70
	7,529.30	7,089.30	6,827.61	6,023.52	5,220.69	224.10 36,689.00	3,477.2	3,013.00	50,325.30 301.00 50,626,30
apse Unoblig Bat Incl lote: Unobligated Balances Lapsed at th	 le end of the seco	(1.12) nd year of accour	(1. 16) ntability	(1.32)	(1.68)	(26 0)	(0.3)	(1.8)	50,626.30 (0.3)

-

Mission Support Funding By Program/Location

-

lission Support Fundin	g by Pic	yram/L		As of Se	ptember 30, 1996
in Millions of Dollars)				FY 1996	FY 1995
By Program	FY 1996	FY 1995	By Location	232.82	261.79
Sy Plogram			Headquarters	170.84	210.99
Space Communication Services	269.40	206.60	Ames Research Center	42.22	12.92
space Communication Common			Dryden Flight Research Center	534.90	499.72
Space, Reliability & Quality Assurance	37.60	38.70	Goddard Space Flight Center	23.74	26.37
space, Henability & Guardy , Source -			Jet Propulsion Laboratory	371.16	380.45
			Johnson Space Center	246.19	276.05
Operating Account			Kennedy Space Center	214.95	225.53
	307.00	245.30	Langley Research Center	219.76	219.73
Mission Support (Programmatic)			Lewis Research Center	357.54	371.56
With Concert (Res Operations Support)	438.09	475.79	Marshall Space Flight Center		
Mission Support (Res Operations Support)			Space Station Project Office	37.28	34.54
	1,595.60	1,674.89	Stennis Space Center	31.69	11.35
Mission Support (Res & Program Managmt)	,,		Undistributed	31:05	
Mission Support (Construction of Facilities)	142.40	135.00		2,483.09	2,530.98
Mission Support (Construction of Facilities)			Total Program	2,405.00	
	2,483.09	2,530.98			41.92
Total Mission Support	-,		Approp. Trans. & Adjustment		
Approp. Trans. & Adjustment		41.92			2,572.90
			Appropriation		
Appropriation	2,483.09	2,572.90			
			Lapse Unoblig Bal Incl.		
Lapse Unoblig Bal Incl.		-	Lapse choosig can		

Science, Aeronautics and Technology Funding By Program/Location

(IT MILLIONS OF DOLLARS)			<u> </u>	Location	
By Program	FY 1995	1996	Desta set		s of September 30, 1996
Aeronautics Research and Technology	843.51	892.75	By Location	FY_1995	1996
Space Access and Technology	040.01	092.10	Headquarters	640.16	545.63
Space Access and Technology	603.25	673.64	Ames Research Center	441.97	425.35
Launch Services	333.80	37.52	Dryden Flight Research Center	31.43	103.14
Total S.A.T.	902.05	711.16	Goddard Space Flight Center	1,902.69	1,802.69
	002.00	111,10	Jet Propulsion Laboratory	1,058,16	1,028.56
Mission Communications Services	480.44	440.49	Johnson Space Center	149.09	177.10
Academic Programs	400,44	440.49	Kennedy Space Center	48.63	35.81
Education Programs	56.30	59.30	Langley Research Center	436.29	415.22
Minority University Research Programs	45.86	45.90	Lewis Research Center	535.17	538.84
Total A.P.	102.16	105.20	Marshall Space Flight Center	638,25	647.36
	102.10	105.20	Space Station Project Office		
Mission to Planet Earth	1,243.50	1.044.00	Stennis Space Center	16.75	66.47
Spece Science	1,243.50	1,241.60	Undistributed	0.00	142.73
Planetary Exploration	682.15				142.75
Physics and Astronomy	1.093.82	827.77	Total Program	5,898.59	5,928,90
Total S.S.	1,775.97	1.173.16	4	-1	3,320.30
	1,775.97	2,000.93	Approp. Trans. & Adjustment	-50.00	0.00
Ife & Microgravity Sci & Applications	465.35				0,00
Indistributed	400.35	437.94	Appropriation	5,848.59	5,928,90
Operating Account		56.00		-10.00	5,520.50
	11.61	12.03			
clence, Aero. & Tech. (Programmatic)	5,824.59	5 000 /0			
science, Aero. & Tech.		5,898.10	Expiring Unoblig Bat Incl.	.27	
Construction of Facilities)	39.00	30.80			
OTAL SCIENCE, AERO. AND TECH.	5000 50	- 000 00-			
ppropo. Trans. & Adjustment	5898.59	5,928.90			
opropriation	-50.00	0.00			
xpiring Unoblig Bal Incl.	5,848.59	5,928.90			
22	.91				

Human Space Flight Funding By Program/Location

furnan Space Flight F				As	s of September 30, 199
(In Millions of Dollars)	FY 1995	1996	By Location	FY 1995	1996
By Program	FT 1990		Headquarters	36.58	32.88
			Ames Research Center	5.25	0.35
Space Flight	3,137.61	3,123.37	Dryden Flight Research Center	2.75	6.21
Space Shuttle	1.869.30	1.848.68	Goddard Space Flight Center	13.96	13.68
Space Station	150.10	129.20	Jet Propulsion Laboratory	0.32	0.99
Russian Cooperative	319.95	314.86	Johnson Space Center	2,828.26	2,926.12
Payload and Utilization Operations	5,476.96	5,416.11	Kennedy Space Center	1,053.63	942.26
Total OSF	3,470.00	0,	Langley Research Center	2.10	1.78
	5.44	8.29	Lewis Research Center	17.61	9.77
Operating Account	3.44		Marshall Space Flight Center	1,497.77	1,452.30
n	5,482.40	5,424.40	Space Station Project Office	0.00	0.00
Human Space Flight (Programmatic)	32.50	32.20	Stennis Space Center	56.67	55.26
Human Space Flight (Const of Facilities)	32,00		Undistributed	0.00	15.00
			Total Program	5,514.90	5,456.60
TOTAL HUMAN SPACE FLIGHT	5,514.90	5,456.60	-		
			Approp. Trans. & Adjustment		
Approp. Trans. & Adjustment			Appropriation	5.514.90	5,456.60
			Appropriation	-,	
Appropriation	5,514.90	5,456.60	Expiring Unoblig Bal Incl.	.27	
Expiring Unoblig Bal Incl.	.27	**	Expiring Grobing Barmon		
Expiring Unoblig Bal Incl.					

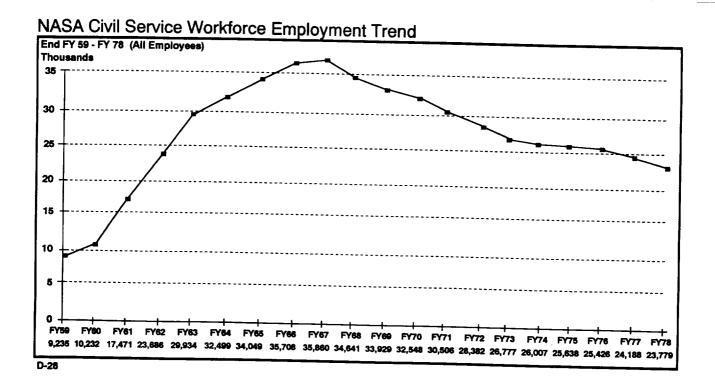
Construction of Facilities Funding

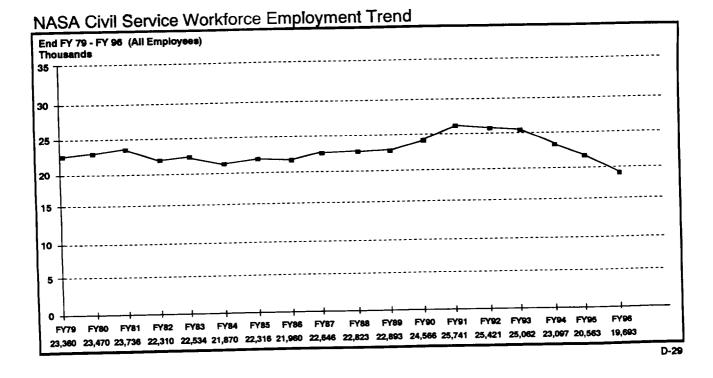
(In Millions of Dollars)	DV C:	5						As of September 30, 1
Ames Research Center	FY 94	FY 93	FY 92	FY 91	FY 90	FY 89-80	FY 79-70	FY69-59
	-				12.3	66.1	30.9	55.66
Dryden Flight Research Fac				4.0				
Goddard Space Flight Center				40		16.8	2.1	6.1
	25.6	19.8	23.5	16.6	16.0	31.1	16.7	83.8
Jet Propulsion Laboratory	2.9		4.3	30.2	4.9	44.6	20.6	42.2
Johnson Space Center	2.2	4.0	7.0	6.7	2.6	18.4	6.6	93.0
Kennedy Space Center	1.9	••	6.5		16.2	7.9	40.4	
angley Research Center	6.0						-40.4	911.0
ewis Research Center		••		4.6		93.4	32.3	72.1
	6.2			16.0		50.3	24.8	111.2
Aarshall Space Flight Center	2.6		5.2		-	24.5	5.1	140.2
Stennis Space Center	3.0	2.2	~	3.4			2.0	238.4
Vallops Flight Facility	5.2						2.0	230.4
arious Locations	15.6	33.8	3.5	5.5	••	3.2	3.1	38.1
acility Planning & Design	21.5	23.3	11.4	17.6	2.6	98.8	62.1	660.1
Arge Aero Fac	21.5		27.9	26.0	26.3	129.7	92.0	58.7
linor Construction	14.0					45.7	124.1	50.1
lepair	36.0	31.9	12.9	11.0	10.0	52.1	28.5	-
Envir Compi & Rest. Program	50.0		31.7	28.2	28.0	175.4		
lehab & Mods *	36.0	40.0	36.0	32.0	30.0	49.9		
pace Station Facilities	36.0	34.0 13.8	34.8	32.9	35.0	233.3	122.9	
huttle Facilities	54.7		35.0	25.0	49.4	12.4		
huttle Pavload	54.7	193.4	168.7	165.6	112.1	309.9	351.6	
nallocated Plans & Design		-	**	-	••	31.1	11.7	
ero. Facils Revitalization	203.0		-	-		0.4		-
Ivanced Launch System Fac	203.0	39.8	48.3	32.6	63.7	46.0	-	-
ust Fund			••			15.0		
Ake Shield Facility	-					15.0		
uture Software Program				3.0	2.2			-
arth Science Info Network	**	-	6.0	4.0			-	-
	•-	-	3.4	1.0				

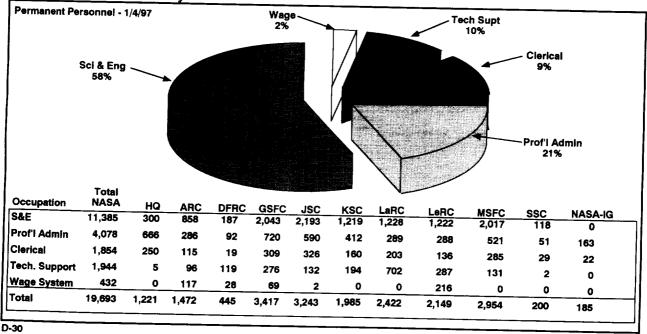
Construction of Facilities Funding (cont'd)

nstruction of Fa		unung					A	s of September 30, 199
	FY 94	FY 93	FY 92	FY 91	FY 90	FY 89-80	FY 79-70	FY 69-59
ions of Dollars)			-	10.0	-	-	-	-
JSC Visitor Center		-	11.8	20.0	-	-	-	-
Deferred Rehab & Major Maint.	-	-	13.5	-	-		-	-
National Tech. Transfer Center	-		20.0	_	-	-	-	-
Chris Columbus Center	-		10.0	-		-	-	-
Indip Software Valid/Verif	-	-			-	_	-	-
Space Dynamics Laboratory	-	-	10.0	-				-
Deita College, HQ	-	8	-	-	-	-		-
High Speed Civil Transport	-	-	-	-	-	-	-	24.6
Electronics Research Center	-	-	-	-	-	-	-	43.7
Michoud Assembly Facility	-	-	-	-	-	-		
Nuclear Rocket Dev Station	_	-	-	-	-	-	-	15.6
Pacific Launch Operations	_		-	-	-	-	-	2.4
	_	25		-	-	-	-	
Aeroacoustic Mod		-	_	-			1.7	
Other		483.0	531.4	497.9	411.3	1,592.1	979.2	2,596.8
TOTAL PROGRAM	488.4		-6.4	0.0	190.0	248.8	-10.3	-105.7
Approp Trans & Adjust	29.3	15.0	525.0	497.9	601.3	1,640.9	968.9	2,491.1
Approp & Availability	517.7	496.0	525.0		20110			
Included in Various Locations Prior	to FY 1972.							

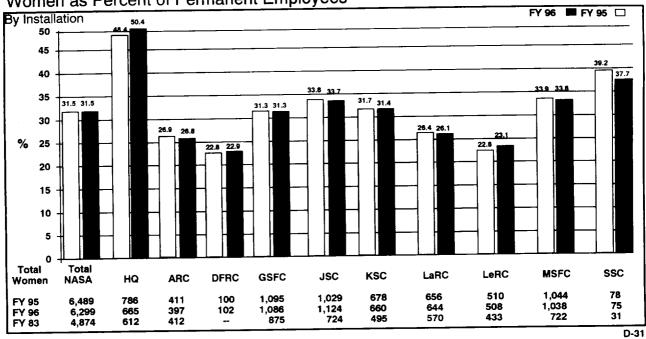
Personnel Summary

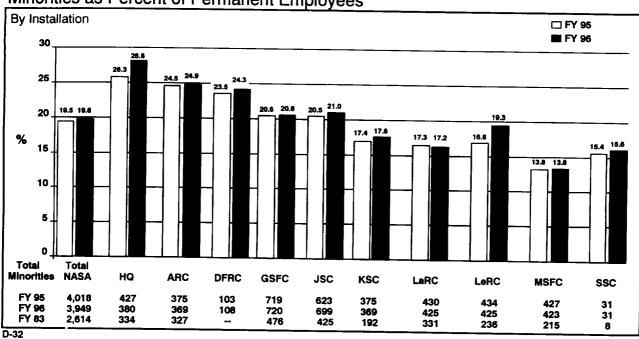

<u> </u>	FY59	FY60	FY61	FY62	FY63		FY65	5/44	-					
Headquarters	429	587	735	1.477	2,001	2.158	2.135	FY66	FY67	FY68	FY69	FY70	FY71	EY 1
Ames Research Center	1,464	1,421	1.471	1,658	2,116	2,138	2,135	2,336	2,373	2,310	2,293	2,187	1,895	1,7
Dryden Flight Research Facility(¹⁾ 340	408	447	538	616	619		2,310	2,264	2,197	2,117	2,033	1.968	1.84
Electronics Research Center					25 ^(a)) <u>33</u> (a)	669	662	642	622	601	583	579	53
Goddard Space Flight Center	398	1,255	1,599	2,755	3,487	00		555	791	950	951	592		
Johnson Space Center		in GSFC	794	1,786		3,675	3,774	3,958	3,997	4,073	4,295	4,487	4,459	4.17
Kennedy Space Center			/34	339	3,345	4,277	4,413	4,889	5,064	4,956	4.751	4,539	4,298	3.93
Langley Research Center	3.624	3.203	3.338		1,181	1,625	2,464	2,669	2,867	3.044	3.058	2,895	2,704	
Lewis Research Center	2,809	2,722	2,773	3,894	4,220	4,330	4,371	4,485	4.405	4,219	4.087	3,970	3,830	2,56
Marshall Space Flight Center	2,003	370		3,800	4,697	4,859	4,897	5.047	4,956	4,583	4.399	4,240		3,59
NASA Pasadena Office			5,948	6,843	7,332	7,679	7,719	7,740	7,602	6,935	6,639		4,083	3,86
Pacific Launch Operations Office			•-		••	(b)	19	85	91	79	80	6,325	6,060	5,55
Space Nuclear Systems Office					17	22	21	(c)				72	44	4(
Stennis Space Center			4	39	96	112	116	115	113	108				••
Mellona Elista Facilita (2)											104	103	89	4
Wallops Flight Facility (2)	171	229	302	421	493	530	554	563						
Vestern Support Office		37_	60	136	308	376	377		576	565 (d)	554	522	497	46
lotai	9,235	10,232	17.471	23,686	29,934	32,499	34,049	294	119					
					20,004	52,433	34,049	35,708	35,860	34,641	33,929	32,548	30,506	28,382
leadquarters	FY73	FY74	FY75	FY76	FY77	FY78	FY79	FY80	FY81	-				
	1,747	1,734	1,673	1,708	1.619	1,606	1.534	1.658		FY82	FY 83	FY 84	<u>FY 85</u>	FY 86
mes Research Center	1,740	1,776	1,754	1,724	1,645	1,691	1,713	1.713	1,638	1,431	1,492	1,396	1,383	1.362
Dryden Flight Research Facility	509	531	544	566	546	514	498		1,652	2,041	2,033	2,043	2.052	2,072
lectronics Research Center								499	491	434				
addard Space Flight Center	3,852	3.936	3.871	3,808	3.666									
ohnson Space Center	3,896	3,686	3.877	3,796	3,640	3,641	3,562	3,535	3,431	3,621	3,668	3.541	3.629	3.679
ennedy Space Center	2.516	2.408	2.377	2,404		3,617	3,563	3,616	3,498	3,268	3.325	3.227	3.330	3,269
angley Research Center	3.389	3.504	3.472	2,404	2,270	2,234	2,264	2,291	2,224	2,104	2,084	2.067	2.061	2.051
ewis Research Center	3.368	3,172	3,181		3,207	3,167	3,125	3,094	3,028	2.801	2,904	2,821	2,827	2,051
larshall Space Flight Center	5,287	4.574	4,337	3,168	3,061	2,964	2,907	2,901	2,782	2.485	2,632	2,624	2,027	
asadena Office	39	39		4,336	4,014	3,808	3,677	3,646	3,479	3,332	3,351	3,223		2,598
acific Launch Operations Office	35	-	35							-,	0,001	3,223	3,284	3,260
pace Nuclear Systems Office							••							
lennis Space Center										••				
allops Flight Facility			76	72	94	108	108	111	113					
Contern Duranet Off	434	447	441	437	426	429	409	406		103	105	108	122	123
estern Support Office						72.0		400	400					
	26,777	26,007	25,638	25,426	24,188	23,779	23,360	23,470	22,736					
										21,620	21.505	21,050	21.423	21,228

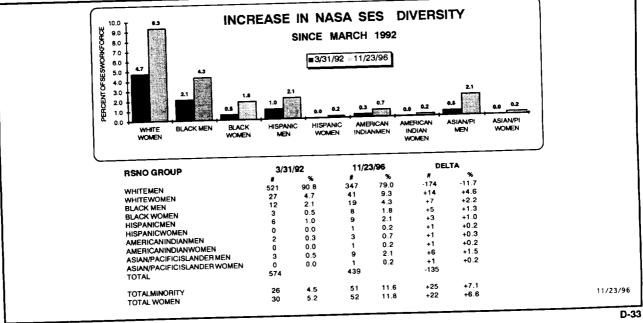

Personnel Summary



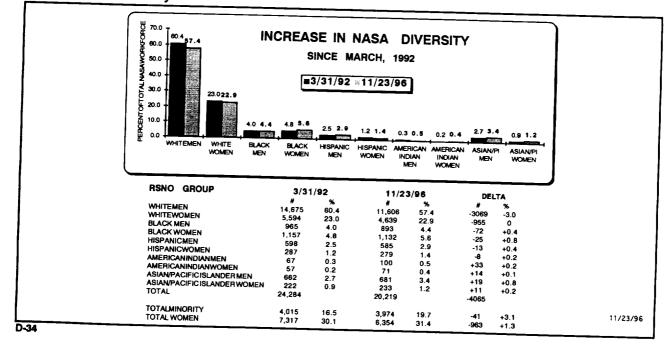
ear-End Strength										-	
-	FY87	FY88	FY89	FY90	FY91	FY92	FY93	FY94	FY 95	FY 96	
· · · · · · · · · · · · · · · · · · ·											
leadquarters	1,532	1,653	1,727	1,966	2,092	2,143	2,074	1,843	1,672	!,320	
mes Research Center	2,079	2,101	2,151	2,205	2,263	2,243	2,173	1,696	1,559	1,484	
Dryden Flight Research Facility								434	428	445	
Goddard Space Flight Center	3,648	3,626	3,735	3,873	3,999	3,964	3,910	3,824	3,544	3,469	
Johnson Space Center	3,349	3,399	3,578	3,615	3,677	3,631	3,609	3,205	3,081	3,331	
Kennedy Space Center	22,188	2,236	2,423	2,466	2,571	2,546	2,497	2,352	2,197	2,099	
angley Research Center	2,851	2,840	2,864	2,961	2,969	2,953	2,859	2,789	2,504	2,468	
Lewis Research Center	2,663	2,649	2,749	2,728	2,835	2,799	2,731	2,457	2,258	2,200	
Marshall Space Flight Center	3,384	3,340	3,609	3,619	3,788	3,715	3,627	3,311	3,111	3,074	
Space Station Program Office								301	316		
Stennis Space Center	137	147	183	192	222	216	200	205	204	199	<u> </u>
NASA Permanent	21,831	21,991	23,019	23,625	24,416	24,210	23,680	22,417	19,072	20,278	
Other Than Permanent	815	832	874	941	1,325	1,211	1,382	680	1,491	360	
	×										
NASA Total	22,646	22,823	23,893	24,566	25,741	25,421	25,062	23,097	20,563	20,638	




Occupational Summary



Women as Percent of Permanent Employees



Minorities as Percent of Permanent Employees

SES Workforce Diversity

Workforce Diversity

