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A simple trajectory model has been developed and is presented. The particle trajectory path is
estimated by computing the vertical position as a function of the horizontal position using a constant
horizontal velocity and a vertical acceleration approximated as a power law. The vertical particle
position is then found by solving the differential equation of motion using a double integral of vertical
acceleration divided by the square of the horizontal velocity, integrated over the horizontal position.
The input parameters are: xo and yo, the initial particle starting point; the derivative of the trajectory at
xoand yo, so = s(xo)= dx(y)/dyl yyou; and b where bxolyo is the final trajectory angle before gravity pulls
the particle down. The final parameter vo is an approximation to a constant horizontal velocity. This
model is time independent, providing vertical position x as a function of horizontal distance y:

x(Y)=(xo+so(y—Yo)) +(bx.—soy.) Y Yo — ln y — g(Y — Yo)

Yo	 Yo	 2v.
The first term on the right in the above equation is due to simple ballistics and a spherically expanding
gas so that the trajectory is a straight line intersecting (0,0), which is the point at the center of the gas
impingement on the surface. The second term on the right is due to vertical acceleration, which may be
positive or negative. The last term on the right is the gravity term, which for a particle with velocities
less than escape velocity will eventually bring the particle back to the ground. The parameters b, so,
and in some cases vo, are taken from an interpolation of similar parameters determined from a CFD
simulation matrix, coupled with complete particle trajectory simulations.
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Introduction

In preparation for the Apollo program, Leonard Roberts of the NASA Langley Research Center
developed a remarkable analytical theory that predicts the blowing of lunar soil and dust beneath a rocket
exhaust plume. Roberts assumed that the erosion rate was determined by the excess shear stress in the gas
(the amount of shear stress greater than what causes grains to roll). The acceleration of particles to their
final velocity in the gas consumes a portion of the shear stress. The erosion rate continues to increase until
the excess shear stress is exactly consumed, thus determining the erosion rate. Roberts calculated the
largest and smallest particles that could be eroded based on forces at the particle scale, but the erosion rate
equation assumed that only one particle size existed in the soil. He assumed that particle ejection angles
were determined entirely by the shape of the terrain, which acts like a ballistic ramp, with the particle
aerodynamics being negligible. The predicted erosion rate and the upper limit of particle size appeared to
be within an order of magnitude of small-scale terrestrial experiments but could not be tested more
quantitatively at the time. The lower limit of particle size and the predictions of ejection angle were not
tested.

We observed in the Apollo landing videos that the ejection angles of particles streaming out from
individual craters were time-varying and correlated to the Lunar Module thrust, thus implying that
particle aerodynamics dominate. We modified Roberts' theory in two ways. First, we used ad hoc the



ejection angles measured in the Apollo landing videos, in lieu of developing a more sophisticated method.
Second, we integrated Roberts' equations over the lunar-particle size distribution and obtained a compact
expression that could be implemented in a numerical code. We also added a material damage model that
predicts the number and size of divots which the impinging particles will cause in hardware surrounding
the landing rocket. Then, we performed a long-range ballistic analysis for the ejected particulates.

An ongoing activity since that time has been the development of particle trajectory simulations in order to
improve estimates of trajectory angle and speed as a function of particle size and initial starting point on
the ground relative to the engine nozzle. Four distinct models have been used to attack this problem:

1. Computational Fluid Dynamics (CFD) code (FluenP) — the simulation is set up to characterize
the gas flow from a rocket engine impinging vertically on a rigid horizontal surface. The surface
may have other specific features that replicate shallow circular craters or vertical berms to stop
the high velocity spray of regolith from the surface.

2. Particle Trajectory with Quadratic Shepard's Interpolation (PTQ) — a stepped integration method
to solve a single particle's differential equations of motion. The CFD computed gas properties,
temperature, density, and vector velocity, are the input to this model, where the gas provides the
force to propel a single particle of diameter D from the ground at an initial starting point, ro.

Empirical Trajectory Path (ETP) model — an empirical time independent function is used to
estimate a 2D trajectory path of a single particle, including path shape and angle. The horizontal
velocity vy , initial starting point (xo, yo), and two shape parameters b and c constitute the model's
input parameters.. The shape parameters are determined by fitting the empirical function to
associated PTQ trajectories from step 2. A matrix of ETP shape parameters and horizontal
velocities are generated from a matrix of particle variables, such as of particle size, starting
locations, engine height, and engine thrust, and by fitting the ETP model to the PTQ generated
trajectories. Using a simple N-dimensional interpolation algorithm, ETP model parameters can
then be estimated for any particle size, starting point, as well as engine height above the ground.

4. Physical Trajectory Path (PTP) model - The same overall procedure to obtain parameter
interpolations used in step 3 is used in this case, but the empirical function is replaced with a
special solution to the differential equations of motion. This solution is based on an estimate of
vertical particle acceleration and particle horizontal velocity. This model uses two shape factors,
so and b, as well as horizontal velocity vo and initial starting point (xo, yo). The only difference in
the parameter definitions between ETP and PTP is the parameter c vesus so.

Empirical Model

In previous work (Lane, 2010), an empirical trajectory path model was investigated to describe the
trajectory path of particles on the Lunar surface under a rocket plume:

I 1x(Y)=bxo y +b^	 y-1	
- 2 

(y — Yo) Vz
	

( )
Yo

with a gravity free (g = 0) trajectory angle:

9 = tan -' b xo	 (2)
Yo



The model of Equation (1) mimics the general trajectory path behavior of particles on a smooth horizontal
surface propelled by a vertically impinging rarefied gas jet. Figure 1 shows a plot of Equation (1) where x
is the vertical direction (direction of gravity), y is the horizontal direction, and (xo, yo) is the initial starting
point of the particle. When b = 1, with gravity g = 0, the resulting path is that of a straight line which
intersects the points (0, 0) and (xo, yo). The trajectory angle in this case is tan - '(xo/yo). In most cases the
parameter b # 0 so that the final gravity free trajectory angle is tan - '(b xo/yo). The parameter c in Equation
(1) adjusts the curvature ofx(y).

The "gravity free" region in this context is determined by the last term on the right hand side of Equation
(1). When this term is much smaller than the first term on the right hand side, the trajectory angle will be
a constant value equal to tan - '(b xo/yo). The trajectory path model parameter v,, of Equation (1) is the
horizontal velocity of the particle. When this value is very large, from 100 to 2400 (escape velocity) m/s,
the gravity term (g = 1.622 m s

_2 
on the lunar surface) has minimal effect within a radius of 20 to 30 m for

smaller particles less than 100 µm in diameter. However, regardless of the values of g or vy the straight
trajectory path defined by tan - '(b xo/yo) will eventually lose out to the gravity term and the path will curve
back to intersect the surface (unless the particle velocity exceeds escape velocity).
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Figure 1. Solid thick line: example trajectory path from Equation (1) with xo = 0.02 [m], yo = 1.0 [m], b =
10, c = 1, vy = 10 [m/s]; solid line: gravity term (last term on right hand side of Equation (1); dashed line:
tan- '(xo/yo) slope line; dotted line: tan - '(b xo/yo) line; thick dashed line: gravity free version of Equation

(1), with g = 0.

CFD Trajectories Interpolation Matrix

Table 1 shows a matrix of N particle values (size and starting location), P i = (Di, xo;, yo;) T, with the
corresponding of fit of Equation (1) to the final CFD based trajectories. The fitted model parameters are
Xi = (bi, ci> vy,)

T

D b A bi

P = xo X= c P, = xo; Xi = c1 (3)

Yo vy Yo Vy;



The values in Table 1 are found by first computing a matrix of full particle trajectories generated by post-
processing CFD output data using the equations of motion, Equation (1.0) and considering the details of
particle drag and lift (Lane, 2010). Figure 2 shows trajectories generated by fitting the model of Equation
(1) CFD based trajectories. The result of the fit for N trajectories is shown in Table 1.

Table 1. Empirical model parameters found by fitting Equation (1) to a
matrix of CFD trajectory solutions for a range of particle sizes D and

initial starting points xo, yo.

D 1p	 Vp 	 )	 C	
1y

1 0.01 0.88779 5.061 0.6445 1997
1 0.01 1.08699 4.715 0.7719 177C
1 0.01 1.33089 -99 -99 -99
1 0.01 1.62951 -99 -99 -99
1 0.01 1.99514 8.221 0.58 640.4
1 0.01 2-4428 -99 -99 -99
1 0.01 2.99091 -99 -99 -99
1 0.01 3.662 2438 0.7374 414.4
1 0.01 4.48367 312.7 1.163 480.
1 0.01 5.4897 -99 -99 .99
1 0.01 6.72146 49.69 1.269 346.1
1 0.1 0.88779 1.953 0.5507 238_
1 0.1 1.08699 -99 -99 -99
1 0.1 1.33089 2.254 03018 2228
1 0.1 1.62951 -99 -99 -99
1 0.1 1.99514 2-402 0.7626 1872
1 0.1 2.4428 -99 -99 -99
1 0.1 2.99091 2-42 0.8279 1098
1 0.1 3.662 -99 -99 .99
1 0.1 4.48367 3.123 0.7227 494.'
1 0.1 5.4897 -99 -99 -99
1 0.1 6.72146 5-356 0.8368 31i.

1000 0.01 0.88779 3.177 0.7301 34.87
1000 0.01 1.08699 -99 -99 -99
1000 0.01 133089 -99 -99 -99
1000 0.01 1.62951 4.057 0.8624 41.21
1000 0.01 1.99514 4.296 0.7009 26.22
1000 0.01 2.4428 10.75 0.5 17.12-
1000 0.01 2.99091 -99 -99 .99
1000 0.01 3.662 1.739 2 4.296
1000 0.01 4.48367 -99 -99 -99
1000 0.01 5.4897 -99 -99 -99
1000 0.01 632146 1 0.5 0
1000 0.1 0.88779 1.591 3.4195 133.6
1000 0.1 1.08699 -99 -99 -99
1000 0.1 1.33089 2.136 0.7379 116.
1000 0.1 1.62951 -99 -99 -99
1000 0.1 1.99514 2.289 0.8039 88.7
1000 0.1 2.4428 -99 -99 -99
1000 0.1_'M% 2.239 0.8885 43.09
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Figure 2. Solid lines: Full particle trajectories generated from post-processing of CFD simulations; dashed
lines: trajectories generated by fitting the model of Equation (1) to solid lines. Top: D = 1 µm and xo =

0.01 m; bottom: D = 1000 µm and xo = 0.1 m.

Note that an entry of "-99" in Table 1 corresponds to no fit data available. Each entry in Table 1 is the
result of a full CFD based trajectory, but not all of those entries were fitted to Equation (1). The number
of useable entries N from Table 1 is therefore 21, in this example.



Once a matrix of model parameter values has been determined, an estimated set of parameters P can be
computed for any arbitrary set of input values X using an application of Shepard's interpolation algorithm
(Shepard, 1968) to the matrix defined by Table 1:

N

YWipi

	

P — `=N
	

(4)
w^

Z=1

where,

w _
	 1	 (5)

((X — X 1 )•(X — Xl))1'

where ,u = 3 seems to be a good choice for this application.

Theoretical Model

The general equation of motion of a particle of mass m acted upon by a force F is:

	

mr=F .	 (6)

Since we are interested in the trajectory path P(y), the following substitution eliminates the time variable
from the differential equation of Equation (6):

.. 	 d
 =--r

dt dt

dy d dy d

dt dy dt dy

	

d	 d	
(7)

=v —•v —r
Y 
dy 

y 
dy

	

dv dr	 der
= vy dy 

dy 
+V Y  dy 2

Note that in Equation (7), the independent variable is y while the dependent variable is x = P(y). This
seemingly backwards convention comes about because the axis of the gas jet is defined to be along the
vertical x-axis while the ground plane lies along the y-axis. Considering only the 2D case (the following
result can be extended to 3D), Equation (7) can be expressed by two scalar equations:

(dv y d	 d2
x=v 	 .+v	 P(Y)	 (8)Y dy dy y dy2

and,

Y=vdvy.dy+v d2 Y
Y dy dy y dy2

dvy
=V

Y dy



Focusing on Equation (8), if the vertical acceleration ax and horizontal velocity v v as a function of y, can
be estimated, then Equation (8) can be solved for the path P(y) by defining s = dPIdy = dx/dy:

aX _ dv,d	 d z

— dy dy +vy dy2 P(Y)
vy 

= s dvy + v ds	 (10)
dy	 ' dy

_ ŷ (Vys)

Equation (10) can be integrated once to solve for s(y):

v s = f a
x (y) 

dy'+CI 	 (11)y	
yo vy(Y^)

Integrating once again yields the trajectory path function with two free boundary value constants, C l and
C2:

S(Y) = d dyy)

	

(	 (12)
_ 1 y ax 

(y") dy' +C
vy(Y) yo vy(Y,) 

P(Y) = f	 1 „ f aX(Y^) dy dyn +Cly+C2	 (13)
V

YO	 y (Y ) ,o ,,(Y )

The constants of integration can be found by specifying the initial starting point and the slope of the initial
starting point. Specify the slope and solve for Cl:

	

s (YO) = So
	

(14)

Then solve for C2 by specifying the initial starting value:

	

P(YO = Xo
	

(15)

Application to CFD (Fluent TM) Based Trajectories

If the vertical acceleration ax as a function of horizontal distance y is approximated as a power law of the
form:

	

ax (Y) = ay- 	a	 (16)

where g is gravity, and while approximating the horizontal velocity v,, as a constant vo , the double
integral of Equation (13) can be evaluated. If the power law exponent,8 is set equal to 2, then a further
simplified form of Equation (12) results:



I	 }
f 
aX(Y^) ds (Y) = v

y (Y) yo vy (y') Y + Cl
(17)

=C,— a +gy /vo
Y

Applying the boundary condition of Equation (14) results in

Cl = so +(gy(,+a /yo)/vo	 (18)

Finally, integrating Equation (13) gives the path P(y):

z

	

P(y)=C,y+C2— g2 +alny /V	 (19)(19)

Applying the boundary condition of Equation (15) results in the following:

z
gyo	 z

C2 = xo + 2 + aln yo / vo — C1Yo

	

2^	
(20)

= xo — so Yo + a (ln yo 	
2

gYo vo

Combining Equations (18), (19), and (20) gives a complete trajectory path equation:

	

o z	 2

P(Y) = ( so + ( gyo +a/yo) /vo) y+xo —so Yo+ a(lnyo -1)— °Y /vo— g^ +alny /vo

. (21)
a Y—Yo —In Y	 g(Y—Yo) 

2

vo	 Yo	 Yo	 2V 

Comparison of Equation (21) with the Equation (A-1) describing a previous empirical model
shows that most parameters are with the exception of a in this model and b in the empirical
model. In the empirical model, the quantity bxo/yo describes the tangent of the final trajectory
angle in the limiting case of g = 0, which is approximately the case for large horizontal velocities
within the CFD simulation domain:

B =tan -1 bxo

Yo

The parameter a in Equation (21) can be expressed in terms of b by taking the limit of the
derivative of the path function as y goes to infinity with g = 0:

bxo = ,in 
P(y)
	

=S 0  + a2

Yo	 dy	 g=o	 Yovo

(22)

(23)

Solving for a and substituting into Equation (21) results in a trajectory path formula similar to the
previous empirical formula, but now based on a true physical model:
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Results and Discussion

The model described by Equation (24) is based on the assumption that the vertical acceleration ax as a
function of horizontal distance y is approximated by a power law as described by Equation (16), along
with a horizontal velocity vy that is described by a constant vo . For a practical application of this model,
it is not necessary to find a fit to the vertical acceleration since the method previously used in the
empirical model fitting can again be applied to this case. In this way, the particle trajectory path is
determined by two primary fitting parameters, so and b. For very small horizontal velocities, vo may also
become a fitting parameter.
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Figure 3. Application of the parameter matrix interpolation of Equation (4) using the Imperical Trajectory
Model of Equation (1), operating on the output of a Fluent CFD simulation of rocket with a nozzle height

of 5 ft and a thrust of 67 N. Top: particle D = 1 µm; bottom: particle D = 1000 µm.
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Figure 4. Solid lines: Full particle trajectories generated from post-processing of CFD simulations; dashed
lines: trajectories generated by fitting the model of Equation (24) to solid lines. Top: D = 1 µm and xo =

0.01 m; bottom: D = 1000 µm and xo = 0.01 m.

With the example parameter interpolation matrix of Table 1, Equations (4) and (5) define a procedure to
estimate the trajectory path of particles using either the empirical trajectory model of Equation (1) or the
physical trajectory model of Equation (24). The number and extent of model variables is determined by
the extent of the parameter interpolation matrix. In this example, only three particle variables were
considered for simplicity of description, D, xo, and yo. Figure 3 shows the application of the parameter
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matrix interpolation of Equation (4) using the ETP model of Equation (1), operating on the output of a
Fluent CFD simulation of a rocket with a nozzle height of 5 ft and a thrust of 67 N. The top set of plots
corresponds to a particle of D = 1 µm, while the bottom plot is for a D = 1000 W particle. The left plot
is the parameter vy, corresponding to a constant horizontal velocity. The right plot is the gravity free
trajectory angle, defined by Equation (2). The stair-stepped appearance of the plot is a consequnece of
the coarse matrix used (Table 1) with N = 21. A larger matrix would smooth out the plot. Also, the
simple Shepard's interpolation defined by Equation (4) is known to generate non-smooth surfaces since
the gradient at all reference points (all point defined by Pi) is equal to zero because of Equation (4). A
quadratic variation of Shepard's interpolation (Renka, 1988) corrects this problem, but at the expense of a
more complex algorithm.

Conclusions

In the process of verifying and characterizing the physical trajectory path model with Fluent test cases and
comparing it to the previous empirical trajectory path model, the PTP model can be characterized by the
following points:

• The PTP model has a physical basis, starting with simplified estimates of vertical acceleration
and horizontal velocity. The input parameters are xo and yo (initial starting point); so derivative of
trajectory dx(y)ldy, evaluated at y = yo; and b where bxolyo is the final trajectory angle before
gravity pulls the particle down. Note that so and b are the primary curve-fitting parameters. The
final parameter is vo, an assumed constant horizontal velocity and is a secondary curve fitting
parameter.

This model is time independent, showing vertical position x as a function of horizontal distance y,
by x(y) = f(y), as described by Equation (24). The first term on the right is due to simple ballistics
and a spherically expanding rarefied gas so that the trajectory is a straight line intersecting (0,0,0),
which is the point directly under the nozzle center on the surface. This term is generally the < 3°
trajectory angle. The second term on the right is due to vertical acceleration, which may be
positive or negative. The last term on the right is the gravity term, which for a particle with
velocities less than escape velocity will eventually bring the particle back to the ground.

• This model, even though it has the same number of parameters as the ETP model, seems to better
describe the particle trajectories, even though it is far from perfect. Perfection in this context is
traded for simplicity.
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