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ABSTRACT 

 

The objective of this research by NextGen AeroSciences, LLC is twofold: 1) to deliver an initial 

“toolbox” of algorithms, agent-based structures, and method descriptions for introducing 

trajectory agency as a methodology for simulating and analyzing airspace states, including bulk 

properties of large numbers of heterogeneous 4D aircraft trajectories in a test airspace – while 

maintaining or increasing system safety; and 2) to use these tools in a test airspace to identify 

possible phase transition structure to predict when an airspace will approach the limits of its 

capacity.  These 4D trajectories continuously replan their paths in the presence of noise and 

uncertainty while optimizing performance measures and performing conflict detection and 

resolution.  In this approach, trajectories are represented as extended objects endowed with 

pseudopotential, maintaining time and fuel-efficient paths by bending just enough to 

accommodate separation while remaining inside of performance envelopes.  This trajectory-

centric approach differs from previous aircraft-centric distributed approaches to deconfliction. 

 

The results of this project are the following: 1) we delivered a toolbox of algorithms, agent-based 

structures and method descriptions as pseudocode; and 2) we corroborated the existence of phase 

transition structure in simulation with the addition of "early warning" detected prior to “full” 

airspace.  This research suggests that airspace “fullness” can be anticipated and remedied before 

the airspace becomes unsafe.   

 

Keywords:  

Traffic physics; phase state; phase transition; aircraft trajectory optimization; airspace capacity; 

optimal control; real-time optimization; air traffic conflict resolution; 4D trajectory; 5D 

trajectory; pseudopotential method; separation; deconfliction; Trajectory Based Operations 

(TBO); NextGen. 
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1. INTRODUCTION 

 

1.1  Objectives 

 

The objectives of this research and results delivered are the following: 

 

1. Deliver a “toolbox” of algorithms, agent-based structures and method descriptions for 

simulating and analyzing airspace states, while maintaining or increasing safety, 

involving large numbers of heterogeneous 4D aircraft trajectories in a test airspace; 

 

2a. Use these tools in a test airspace to identify effective approaches for separation assurance 

for 4D aircraft trajectories in the test airspace; and 

 

2b. Develop a traffic physics/phase transition description and algorithmic measures to        

predict when an airspace will approach the limits of its capacity. 

 

In achieving the results described herein, we employed an approach to airspace research 

involving an up-leveling of the dynamics of aircraft and aircraft trajectories to fully dynamical 

trajectories (employing continuous replanning), and managing the airspace in terms of its bulk 

properties as generated by replanning    

 

Furthermore, we characterized entire airspaces as solvable (or not)–within the limits of available 

computational resources—while accounting for the physical constraints of aircraft using the 

airspace as well as short-lived constraints such as simulated weather events. 

 

In the abstract, the airspace can be thought of as containing a gas of trajectories, continuously 

interacting and replanning as they interact with each other via a repulsive pseudopotential and 

incorporate internal (discrepancy between forecast and flown trajectories) and external (wind 

field and weather objects) influences. At low density the interaction is minimal and all the 

trajectories are easily separated from each other with each trajectory being very close to optimal. 

At higher density, the airspace may exhibit emergent collective properties analogous to road or 

pedestrian traffic exhibiting various kinds of crowding phenomena (traffic jams) as a result of 

cascading interactions between trajectory pairs.    

 

This approach enables a better understanding of the overall properties of the airspace, by 

characterizing capacity limits, and forecasting congestion and other suboptimal behaviors before 

they occur.  We examine the phase structure of the airspace using tools drawn from the science 

of traffic physics, in search of possible phase transition structure, as well as precursors to these 

phase transitions in space or time that could be used as part of a mitigation methodology.   

 

1.2  5DT Dynamical Trajectories 

 

At the most elementary physical level, the airspace consists of air, aircraft and obstacles (weather 

cells, closed airspace, etc.).  In general, there are two overarching objectives involved in the 

management of the airspace.  The first objective is always safety.  Given the first, the second 
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objective is efficiency.  Efficiency is measured in terms of resource usage by the system, most 

commonly fuel burn and time aloft associated with all of the aircraft in the airspace.  

Safety is generally thought of in terms of aircraft position and heading.  At a given time, no two 

aircraft can be too close nor on a path that will incur a separation violation.  Furthermore, 

heading information gives predictive power and allows evasive action to take place so as to 

avoid predicted future conflicts, either mediated by ground control or between the aircraft 

themselves if they have the necessary technology to do so.   When one seeks to measure the 

efficiency of airspace usage, it is apparent that the most important questions of time and fuel are 

associated with trajectories, not with aircraft positions and headings.  If one is given a 4DT 

trajectory of an aircraft plus ancillary information such as initial weight, aircraft type, and wind 

field, it is possible to accurately predict time aloft and fuel burn.. Similarly, an optimization 

procedure can produce a 4DT trajectory given an objective function and initial conditions in the 

airspace. We desire a problem definition that can naturally address the issues of both safety and 

efficiency using the same formalism.  

 

In order to accomplish this result, we introduce the notion of a collection of 4DT trajectories, 

continuously replanning so as to stay optimal and to adapt to new information as it arrives. We 

call this “5DT,” as two time dimensions are required to specify a state of the airspace.  For 

instance, at noontime the predicted positions and future trajectories of the aircraft at 2 pm and 

beyond will in general be different from the same positions and future trajectories as seen from 1 

pm.  One needs both a “from” time (when the prediction is being made) and a “to” time (the 

positions and trajectories at a future time).  Our 4DT trajectories themselves change over time, 

and we keep track of future trajectory information because we seek to continuously maintain the 

entire airspace in a deconflicted state. This continuous deconfliction is made essential by the 

combination of an interacting system of trajectories combined with an evolving system of 

information. (Constraints, such as weather or unforeseen flight alterations, can emerge over 

time.)  

 

Figure 1-1 shows an artist’s rendition of a 5DT trajectory.  Over time, the trajectory itself is 

deformed according to pseudopotential effects exerting pressure on the trajectory, thus changing 

its shape.  The deformation might be to achieve minimum separation or to avoid weather.  The 

actual deformation is constrained to occur in such a way as to minimize curvature and 

acceleration along the trajectory. 

 

 

 

 
 

Figure 1-1.  5DT Trajectory. 
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1.3  Bulk Properties of the Airspace 

 

In addition to endowing the airspace with dynamical trajectories, we also considered very large 

numbers of dynamical trajectories in the airspace and analyzed all of the dynamical trajectories 

en masse – more like an airspace filled with an interacting gas of dynamical trajectories rather 

than with individual aircraft.  The aircraft interactions occurred in a randomized manner so as to 

generate results that were not specific to a particular configuration. 

 

This inspiration from statistical physics and its modern traffic physics offshoot provided us with 

tools for investigating the bulk properties of the entire airspace.  In particular, we have created 

the necessary simulation and modeling tools to examine the phase transition structure of the test 

airspace as described in this report.  It should be noted that phase transitions have been observed 

in the past in super-dense airspace simulations using a number of different deconfliction 

techniques, but not in such a way as to generate predictive information that could be used to 

mitigate undesirable effects. 

 

1.4  Computational Issues 

 

In deconflicting a congested airspace, it is not enough for a solution to exist.  A solution must 

both exist and be discoverable in time to use it.  Hence, the amount of computation required to 

find a solution is as important as the existence of a solution. As we will demonstrate, the 

approach to phase transition of airspace capacity is manifested in two ways.  First, a gradual 

increase in computational difficulty (computer iterations) can be measured as the phase transition 

is approached. This measure is one form of the predictive utility of our method for understanding 

airspace phase state and onset of phase transition. Second, the lead-time available between the 

present time and future time must be sufficient for mitigating actions to be taken to achieve a 

conflict-free solution.  If the conflicted airspace cannot be deconflicted as that future time is 

approached, then this decreasing lead-time becomes a second form of predictive utility regarding 

phase transition. Conceptually, both of these computational issues, computational cycles required 

to find a solution, and the lead-time required to implement mitigating actions, will be sensitive to 

airspace scenarios (involving factors of weather, trajectory densities and geometries, airspace 

architectures and others).  These two manifestations of phase transition form the basis for our 

method’s predictive utility.  

 

1.5  Visualizations of Trajectories and Airspace 

 

As a heuristic aid to our research and a help to communicate our research more vividly, our 

simulation implementations show visualizations of airspaces with their associated trajectories.  

There are a few differences from previous research visualizations due to the 5DT nature of our 

work. 

 

The portion of each trajectory in front of each aircraft is the projected future at a given system 

time. This future trajectory can move around continuously with replanning and does not 

necessarily return to a fixed preplanned trajectory. The notion of a “reference trajectory” is no 

longer applicable in a continuously replanned and dynamically deconflicted airspace.  Examples 
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of trajectories are shown in the next subsection and throughout this report.  Trajectories shown in 

red are portions of trajectories that are in conflict with other trajectories and are not yet 

deconfllicted.  In general, red occurs both rarely and well into the future except in cases where 

we drive the simulation to failure.   

 

1.6  Storms (Obstructions) 

 

Our algorithms and implementations can also represent weather cells (storms) as dynamical 

obstructions in the airspace.  Trajectories automatically separate from these storms – as well as 

other aircraft.  Figure 1-2 shows an airspace with three storms and a number of aircraft avoiding 

each other and the storms.  Most of the trajectories are deconflicted, but the computation is 

interrupted to show a few remaining conflicting trajectories indicated by the portions of 

trajectories drawn in red.  

 

Storms are specifically designed to have unpredictable trajectories.  A set of trajectories may be 

fully deconflicted at one point in the simulation.  As a storm moves, however, new conflicts may 

suddenly arise – either directly from being too near the storm, or indirectly by the effects of 

aircraft moving away from storms, creating new conflicts with other nearby aircraft as shown 

below: 

 

 

 
 

Figure 1-2.  High resolution screenshot of conflicted trajectories 

 
 

1.7  Fundamental Questions 

 

Our experiments enabled the investigation of a suite of fundamental research questions 

concerning the properties of the test airspace. In this project, we are looking at three key 

questions: 
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 Does test airspace exhibit phase behaviors? 

 Is it possible to predict phase behaviors in the test airspace? 

 Is it plausible to control the test airspace phase state through management of bulk 
properties (of many trajectories simultaneously)? 

 

In order to accomplish our objectives, we ran experiments in the form of computational 

simulations in a test airspace.  Hence, we designed appropriate algorithms to perform 

simultaneous trajectory deconfliction and optimization (delivered in the form of pseudocode).  

We then implemented these algorithms on our own high-performance software platform, 

generated necessary data, and analyzed the data for phase structure. 

 

We found that our experiments in test airspace not only exhibited phase behaviors (as expected 

and as shown using different methodologies in the past) but that phase behaviors in our 

experiments also had predictive “signatures” of phase behavior that could be utilized in a pre-

emptive fashion to control the test airspace phase state through management of its bulk 

properties.  

 

The following chapters provide a scientific background, followed by a description of our 

approach and the initial algorithm toolbox in the form of pseudocode is detailed in Chapter 4, 

and listed as an integrated corpus of code in Appendix A.  Next we describe our experiments, 

results, recommendations and conclusions.   
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2. SCIENCE BACKGROUND 

 

This chapter outlines the motivation and development of trajectory modeling and simulation 

algorithms based on Agent-Based Modeling (ABM) and traffic physics concepts. We seek to 

observe and understand collective phenomena arising from many “agents” representing aircraft 

trajectories that optimize their individual fitness functions in parallel 

 

In addition, trajectory replanning comprises part of the dynamic trajectory management process. 

In this project, the continual replanning of trajectories incorporates objective functions for the 

separation and the business case considerations, as well as a pseudopotential “charged string” 

concept for trajectory separation coupled with trajectory elasticity.  The outcome desired is to 

produce the algorithms that support the testing of concepts of the collective dynamics of large 

numbers of heterogeneous aircraft (thousands to tens of thousands) in the National Airspace 

System (NAS) undergoing continuous 4DT trajectory replanning in the presence of noise and 

uncertainty, while optimizing performance measures and the conflicting trajectories.   

 

In addition to the benefits of powerful simulation capabilities, the nascent science of “traffic 

physics” [2] provides analytical rigor through insights derived from long-established principles 

of statistical physics dating back to the late 1800s.  It does so by changing the question of 

trajectory planning from “What is the deconflicted solution to this particular traffic situation?” to 

“Is there a very high probability that a solution will exist and be computable in this class of 

traffic situations?”  The usefulness of a statistical approach is in the understanding of traffic 

phenomena that are robust across a broad range of initial airspace configurations and trajectory 

interaction geometries.  Insights based on a traffic physics approach have already proved useful 

in ground traffic analyses, particularly on European freeways [3].  

 

2.1  Traffic Physics 
 
The science of traffic physics is a new field emerging at the boundary of agent-based modeling 
and statistical physics.  It addresses the statistical properties of large numbers of self-propelled 
objects acting on their own behalf. To date, the science has largely been applied to roadway 
vehicle dynamics because of the significant societal and financial import and because the problem 
is simplified by geometrical constraints.  In addition, road traffic systems offer ready access to 
large amounts of data [3]. This research has applicability to other many-agent systems in addition 
to roadways [2, 4].  The utility of the science is the ability to define systemic measures that are 
independent of the particular behaviors of each agent in a traffic system and independent of 
details of the system itself (such as geometric characteristics), much as the pressure exerted by a 
gas on its container is independent of the details of motion of each individual molecule in the gas 
and independent of the shape of the container.  

2.1.1  Phases and Phase Transitions    

Physical systems consisting of many particles are often characterized in terms of phase, such as 
liquid, solid, or gaseous. The phase is a property of an entire system, rather than of any of its 
particular components. Systems of interacting agents in freeway traffic have been shown both 
theoretically and empirically to exhibit phases that correspond to free-flowing (“liquid”) or 
jammed (“solid”) traffic. Traffic also has phases that do not have analogues in common physical 
systems, such as backwards-flowing waves of stalled traffic mixed with moving traffic.  
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If a system has more than one phase, it will have boundaries between phases.  Varying a control 
parameter (such as temperature moving water from ice to liquid) can generate a phase transition.  
In purely physical systems, control parameters are usually external, though in engineered or 
biological systems they can be internal and adaptive.  The set of phenomena around phase 
transitions are called critical phenomena, and include the divergence of the correlation length, 
ergodicity breaking (not all possible states of the system reachable from a given configuration), 
and other phenomena.  The divergence of the correlation length is of particular interest in traffic 
systems because it means that a perturbation in one part of a system can affect another part at a 
large distance, with implications for controlling methodologies. 

Just as molecules obey certain laws (conservation of energy and momentum and the equipartition 

of energy), the traffic “molecules” (agents representing vehicles with drivers) obey simple laws 

implemented in a fully distributed fashion – attempting to get where they are going as quickly as 

possible (with an upper limit) and interacting with other vehicles, such as avoiding collisions and 

following at a safe distance. Even though systems of self-propelled entities do not obey the same 

conservation laws as traditional equilibrium statistical systems do, many of the traffic physics 

systems that have been recently proposed have mappings onto well-studied equilibrium systems.   

 

2.1.2  Traffic Physics and Phase Behavior   

An example of  phase behavior is the highly simplified collective motion model of Vicsek et. al. 

[5], inspired by the computer graphics work of Reynolds [6]. Their model consists of a collection 

of entities all traveling at the same invariant speed in two dimensions but whose headings are 

allowed to vary.  At each update cycle of the model, the directions of the particles are updated by 

the following rule: The direction is updated by taking the average of the directions of the 

neighboring particles in a radius r and adding a noise term.                     The end 

result is a textbook phase transition as depicted below in Figure 2-1. 
 

Figure 2-1.  Phase Transitions and Noise. 
 

The y-axis denotes average alignment of particles, the x-axis denotes noise. 

 

At low noise values ( ), the entire system tends to align.  As noise increases, uncorrelated 

motion results.  As the system size becomes larger (the multiple curves shown), the curves 

asymptote to a single curve, another classic indicator of phase transition behavior.  If one 

approaches the phase boundary from the high-noise side (large values of  ), then there is a 
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sudden emergence of preferred direction in the model; this is the phase transition boundary.  As 

the system size approaches infinity, the onset of preferred direction becomes infinitely sharp. 

 

A somewhat more realistic model than the previous one has been developed by Helbing and 

others [3] and corroborated with simulation and empirical data.  In vehicle traffic, throughput (or 

capacity) of a roadway increases with density to a certain point after which a marked decrease is 

observed; hence, the emergence of a traffic jam. In this model the driving parameter is vehicle 

density per length of roadway, not noise.  The two are related:  The higher the density the greater 

the frequency of correcting behavior (speeding up, slowing down).  Each incidence of correcting 

behavior is associated with uncertainty (noise).  Instead of the noise being applied externally, it 

is endogenously generated by adaptive agent behavior. When density is low, overshoots and 

undershoots do not propagate very far because of the “slack” in the system.   

 

At a certain critical point, these perturbations ricochet throughout the system, generating a 

cascade of corrections and pushing the system into a radically different configuration (the 

“traffic jam” phase).  The noise generated with each speed correction creates an equal or greater 

number of other speed corrections, and the system cannot stably return to the initial 

configuration.  This dynamic generates a phase transition.  Figure 2-2 shows the results: 

 

 
Figure 2-2.  Freeway Traffic Phase Diagram [7]. 

 
Plot showing theory, simulation, and observation for freeway traffic.  Dotted line 
represents theoretical prediction for pure truck traffic, solid line pure automobile 
traffic.  Black crosses show simulation results for mixed traffic; grey boxes show 
actual freeway measurements. 

 

2.1.3  Traffic Physics and Airspace  

Extending the traffic physics paradigm to the airspace problem requires some modifications and 

extensions to the current models in the literature.  For the most part, aircraft have intent, and this 

fact needs to be reflected in any realistic model of the airspace.  The Helbing model discussed 

above effectively incorporates intent, as the particles are constrained to move in one dimension, 

and it is assumed they wouldn’t be there and going in that direction unless they wished to do so..  
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The Vicsek model, though it has similarities to flight models, does not incorporate intent because 

there is no preferred direction of motion.  Because of iterated directional corrections and the 

influence of noise, the initial direction of a particle may change by a large amount over time, and 

there is no notion of the initial (or any a priori) direction being “preferred” or “optimal,” though 

the model spontaneously generates preferred direction under the right parameter settings.  One of 

the principal challenges of our research has been to incorporate intent in a natural and 

computationally efficient way.  We believe we have done this, with help from yet another subfield 

of physics (string theory) . Our approach is discussed in more detail in Section 3. 

 
2.2  Bulk Properties of Airspace and Computation 
 
2.2.1  Hard Problems   

Kirkpatrick and Selman [10] have shown that all computationally NP-hard problems (such as the 
generalized deconfliction problem involving N aircraft [7, 8]) can be reduced to a construct 
known as 3SAT, short for “satisfiability” [9], which displays a standard form: 

     (1) 

where   represents Boolean “And,”   represents Boolean “Or,” and the xij are Boolean variables 

taking on the values {True,  False}, isomorphic to {1,0}.  A statement is said to be “satisfied” if 

the truth value of the entire expression is “True.” 

An example of such a problem involving a mapping to trajectory deconfliction is the following:  

Imagine an “airspace” with only two aircraft, A and B, on a head-on collision course.  Each 

aircraft has a set of actions available to it:  turn left, turn right, climb, descend, do nothing.  This 

set can be encoded in shorthand as an “alphabet” of behaviors:  {L,R,C,D,N}  A separation 

violation is only averted if both aircraft act symmetrically from the ownship point of view in the 

horizontal plane, or if one aircraft descends and the other does anything else but descend.  

Satisfiable airspace for this highly simplified two aircraft system is therefore:  

                                                        
  

One can see that twelve of the possible 25 collective behaviors (an alphabet of five squared 

because of two aircraft) result in a satisfied airspace.  This simplified airspace resolution problem 

statement can then be transformed into a substantially longer expression in standard form above.  

Solving general 3SAT problems requires an amount of time exponential or greater in the 

problem size, which in the deconfliction problem would be the number of aircraft impinging on a 

particular volume of space and time.  This solution procedure rapidly becomes impractical in full 

generality for congested airspace without incorporating information (such as intent or optimality 

measures) that constrain the space of possible solutions and order the deconfliction process. 

2.2.2  Satisfiability 

In addition to finding a good solution, we wish to characterize and exploit the entire space of 
solutions.  This characterization is required by the 5DT nature of our trajectories: Not only must 
the current solution suffice, but it must be able to deform smoothly to nearby good solutions as 
the system evolves.  The existence of other system solutions has no benefit unless they can be 
reached smoothly (without violating any constraints) from a given solution. In recent years, this 

  

(x11 Ú x12 Ú x13)Ù (x21 Ú x22 Ú x23)Ù (x31 Ú x32 Ú x33)Ù ...
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concept of a good solution space has been formalized, and like traffic physics, it maps onto the 
physics of phase transitions.  Statistical ensembles of random 3SAT problems display a phase 
transition between soluble and insoluble that maps onto typical physical phase transitions [10].    

Figure 2-3.  Satisfiability Phase Transition [10]. 

Figure 2-3 shows the probability of satisfying a randomly chosen 3SAT 
expression for different ratios of clauses to variables (c/v).  As the ratio 
increases, many variables appear in multiple clauses, effecting constraints.  
Eventually most expressions are unsatisfiable when            

The driving parameter for the phase transition in a logical system is the density of constraints – 
the x-axis in Figure 2-3.  In an airspace environment, increasing density of aircraft means more 
constraints on the motion of individual aircraft. At high enough densities no viable solution can be 
found for the system as a whole.  Naturally one would desire deconfliction problems to be 
certifiably on the satisfiable side of the Satisfiability Phase Transition graph, or failing that, have a 
prescribed mechanism for mitigating unsatisfiable configurations in advance of any separation 
violations.  

2.2.3  Solution Spaces, Robustness, and Flexibility   

The logical and physical realizations of phase transitions are formally connected in the work of 
Kirkpatrick and Selman [10], but can also be intuitively connected if one takes the agent’s point 
of view:  If a molecule (or car or aircraft) has no options as to where to go next in space, then the 
system freezes up, or the traffic jams, or the system is “full.” Other attempts to address this 
question have used dynamic programming [1], vector field divergence [11], Lyapunov exponents 
[7], genetic algorithms [12], ray-tracing with diffraction [13], and others.  Each one of these 
studies addresses the satisfiability question of airspace fullness from a different perspective, and 
like NP-hard problems in general, should in principle be unifiable under the rubric of 
satisfiability.  

We chose our formalism not because it offers anything different from a computational complexity 
point of view, but because it unifies the concepts of safety and efficiency in a concise manner, and 
it is tailored to solving this particular NP-hard problem.  The utilization of a trajectory-based 
formalism makes the problem easier, not harder, as it constrains and orders the solution search 
space by providing a smooth cost function, namely the flight time and fuel burn associated with a 
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given trajectory configuration.  In addition, our approach lends itself to parallel computation, 
which makes the problem significantly easier from an engineering implementation perspective. 

Early satisfiability research addressed the existence of a phase transition, but did not address the 
nature of solutions near the phase transition.  Later research identified that it becomes increasingly 
difficult near the boundary to either find a solution or prove that one does not exist.  This finding 
has practical implications for airspace science.  Knowing that a solution probably exists is of no 
utility unless the solution can actually be found in time for the airspace participants to make use of 
the information.   

The statistical nature of the phase transition identified in our experiments has a unique benefit that 
is not available using conventional deterministic conflict resolution methods.  By localizing 
regions of airspace-time that are approaching a phase transition, based on the computational 
difficulty associated with finding a satisfactory solution, we were able to predict the existence of 
conflicts within those regions much further in advance of conflicts than may be possible using 
conventional deterministic methods.  Though it may not be possible to predict a particular conflict 
using conventional deterministic methods more than approximately 20 minutes in advance of the 
predicted conflict (primarily due to uncertainties in the wind field), by localizing regions of 
airspace using our statistical methods, we were able to look farther ahead in our experiments.  It is 
a separate claim to state that a region of airspace is likely to be rich in conflicts than to say two 
particular aircraft will have a conflict.  Though the airspace region claim is less specific than a 
deterministic prediction, it still provides useful information, and our simulations have shown that 
this computational difficulty property is more persistent than individual conflicts.  Therefore it 
holds the promise of long-range intervention with air traffic controls much further in advance of 
potential conflicts than the current 20-minute conflict detection capability using conventional deterministic 

methods.  The computational difficulty property in an airspace region is shown below in Figure 2-
4. 

Figure 2-4.  Snell Graph 

The x-axis is proportional to the density of constraints on the system (c/v in 
Figure 2-3). The blue points indicate randomly generated satisfied expressions, 
the red dots indicate solutions shown to be unsatisfiable. The y-axis is 
proportional to the time it took to compute either case.  The center of the phase 

transition (see Figure 2-3) is where the number of blue and red dots are equal. 
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Far to the left and far to the right of this point, it is easy either to find a solution or to show that it 

is impossible to find one.  In an engineered system, not only does one want to avoid the phase 

transition, one wants to stay far enough away to be able to compute solutions readily. 

Flexibility can be interpreted as the presence of many solutions to a problem, and flexibility has 

been interpreted in the aeronautical literature as the set of solutions reachable from a given 

airspace configuration in the presence of disturbance [1]. The detailed analysis of general SAT 

systems provides compelling insight and analytical rigor [8,14] for these abstract concepts. See 

Figure 2-5 below: 

Figure 2-5.  Solution Space of SAT Problems – Near Phase Transition [14] 

As the satisfiability phase transition is approached from the left, the nature of the 
solution space begins to change.  Below a well-defined c/v value (less than and 
different from the phase transition value) the solution space shows flexibility in 
the form of many connected solutions.  This flexibility disappears above that 
value, even though satisfiability remains. 

In Figure 2-5, the solution space for a generalized 3SAT problem transforms from connected to 

disconnected as the phase transition boundary is approached. The near-phase-transition 

phenomenon is also appealing because it means that there is general evidence of an advance 

warning of the onset of a phase transition, something extremely useful in systems where humans 

might intervene to avoid undesirable dynamics, such as air traffic management systems. 

To summarize the reasoning of this chapter:  The generalized airspace deconfliction problem 

meets the definition of a computationally complex problem.  Computationally complex problems 

of this class (NP-hard) have been shown to display phase transition behavior.  Phase transition 

behavior has, in turn, been shown to display precursory evidence to the less constrained side of 

the phase transition graph (Figure 2-3).  We wish to discover evidence of the approach to a phase 

transition by modeling and simulation and eventually use the evidence  in our explanation of 

airspace dynamics.  
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3. APPROACH 
 

3.1  Idealized Automated Airspace and Trajectories 

 

In the interest of investigating general phase transition structure in airspaces, we have shed many 

of the variables in our test airspace which characterize actual real-world airspaces.  In particular, 

we have idealized the airspace to a simple cylinder, focused exclusively on enroute trajectories, 

and simplified aircraft performance to specified limits on speeds and accelerations as set forth in 

detail in Sections 3.2, 3.3 and 5.1 below. 

 

In addition, we have endowed our dynamical trajectories with agency, acting in concert to 

deform themselves according to separation and performance requirements, with no human 

intervention or guidance.  For research purposes, our system as simulated is fully automated, 

thus enabling the simulation and analysis of multiple airspaces, driven exclusively from a well- 

defined set of parameters.  We have used the guidance of previous research in traffic physics to 

create a model of airspace dynamics with detail sufficient to generate complex emergent 

behavior, but have avoided any additional model fidelity at this point. 

 

3.2  Formal Problem Statement 

 

We represent the continuous airspace replanning and deconfliction problem as follows: 

 

Definitions: 

 

1.  5DT Trajectory Definition 

A trajectory                    is a continuous one-dimensional curve of finite 

length embedded in five-dimensional space-time characterized by three spatial 

dimensions and two time dimensions T:(         .  Position along a trajectory 

is parametrized by t and the current state of all trajectories (see Def. 2) is parametrized by 

 .  Because of the extra time parameter associated with the current state of the system, 

these are known as “5DT” trajectories. 

 

2. Airspace Definition 

An airspace   is a set of      trajectories                                 
embedded in five-dimensional space-time (        where t parametrizes position 

along each trajectory    and   is system (“global”) time.  This time is also referred to as 

“Meta Time” in the code appendices.   

 

3. 5DT Time Relations Definitions 

                                                     
 

4. Aircraft Position Definition 

                                                                        
 

5. Finite-Range Pseudopotential between Trajectory Elements    : 
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Where D = distance between trajectory elements 

 

Problem Statement: 

 

Minimize total path length   of all trajectories for each           

               
           

  
 

 

    

subject to the following constraints:  

 

Constraints: 

 

1. 4DT Fixed Endpoints of 5DT Trajectories (Endpoints and Flight Duration fixed): 

                                                 
   

 

2. Continuous Deconflicted Airspace State Requirement 

If                                                                                 for 

all     and all     such that      .  z is the vertical coordinate of trajectory 

coordinate          , x and y are the horizontal coordinates of          . The 
airspace exists in a deconflicted state as well as a planned deconflicted state at all 
system times  .  This separation specification is a statement of the typical  
separation criterion. 

 
3. Bounded Speed and Acceleration along    

      
           

  
                   

 
            

   
                   

4. Constants: {vsep, hsep, vmin, vmax, amax, A,     } are all user specified constants 

 

Assumptions: 

 

1. Planning: The Evolution of Trajectories: 

a. As global time   increases,      changes as trajectories enter or leave the airspace 

system because of initiation or termination. 

b. As   increases, the parts of trajectories characterized by     become “past” and can no 

longer change.   

c. The parts of trajectories characterized by     are “future” and are subject to continuous 

replanning until they become “past.” 

2.  Acceleration 

Acceleration bounds are only considered along the trajectory, perpendicular forces are 

not considered explicitly. 

3.  Test Airspace 
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a.   The test airspace is a circular region of diameter 1000 km.   

b.   Only the cruise portion of flight is modeled and simulated. 

 

Instantiation of Optimization Problem 

 

1. Trajectories are approximated by a set of cubic splines 

  :                
       

     
          where each spline is defined over a time 

interval     
       

     
  such that the union of the time intervals describes the entire 

trajectory and the intersection of the splines is a set of control points. 

a. Positions and velocities are matched at each intersection of splines, accelerations 

are discontinuous at intersections and functions of form      otherwise. 

b. Positions and velocities are independent variables at each spline intersection 

point, accelerations are dependent variables.   

2. Path integrals over the length of each trajectory are replaced by cost functions of the form 

                       

   

   

 

   

 

where the a’s are accelerations along the trajectory as defined in Constraints.3.   This approach 

minimizes a discrete form of the first derivative of acceleration, also known as “jerk.”  A cost 

function of this form is amenable to a local “smoothing” procedure that is simple and rapid to 

implement and is incorporated below in the conflictadapt procedure. 

 

      3.  The pseudocode shown below is specific to the cubic spline instantiation of the trajectory 

deconfliction/optimization problem. 

 

Pseudocode 

 

procedure trajectory optimization/deconfliction() 

begin 

 initialize system time:         
 initialize airspace   with          trajectories 

 repeat 

  initialize trajectory time     

  repeat 

   for all          

    if conflictdetect                   

     then             

    else if conflictdetect                 

     then conflictadapt          

     if conflictadapt                 

      then  

       return adaptfailure   
       next (i,j) 

      else next (i,j) 

     end if 
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    end if 

   end for 

   increment trajectory time         
  until (           

  increment system time        

 until             

end 

 

procedure conflictdetect          

begin 

 initialize current state of trajectories         

 compute time endpoint for trajectory pair            
        

       

 initialize     

 repeat 

  if Distance                 

   return {distance, t} 

  end if 

  increment planned trajectory time         
 until            
end 

 

procedure conflictadapt          

begin  

 compute vector between desired and current closest spatial approach      
           

 compute vector between desired and current velocity:      
          

 initialize adjustmentcycle = 0; 

 initialize adjust() = FALSE  

 while (adjustmentcycle   max || adjust() !=TRUE) do 

  begin 

  compute exponential damping factor  

  
                 

                     
 

 

  increment trajectory closest spatial approach by       
         

  increment velocity at closest approach by       
         

  adjust trajectory velocity and position with smoothing vector 

            
               

          

  if ( accelconstraintsatisfy == TRUE &&  

   velocityconstraintsatisfy == TRUE && 

   separationdistancesatisfy ==TRUE) 

  then adjust() = TRUE 

 end 
 if adjustmentcycle == max && adjust()==FALSE 

  return adaptfailure() 

end 
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3.3   Details of our Approach 

 

3.3.1  Trajectory Generation and Deconfliction   

Typical optimal long-range vertical profiles for commercial jet transport aircraft consist of 

optimal ascent and descent segments connected by a long cruise-climb or step-climb segment. 

Optimal horizontal routes are not as easy to compute because the variations in the wind field lead 

to a non-convex nonlinear optimization problem with potentially many regions of local minima.  

As a result, approximate optimization solution approaches must often be considered even before 

the added complexity of deconfliction is factored in.  

 

A variety of different heuristics have been applied in the literature, including virtual wind fields 

that “blow the aircraft out of each other’s way” [15], genetic algorithms acting on a discrete 

decision space [12, 16], dynamic programming [1, 17], path-planning by analogy with optics 

using refractive indices combined with pseudopotential methods to reduce the search space size 

[13], and others. 

 

In order to generate dynamic optimization (continuous replanning) and deconfliction of thousands 

of trajectories and observe realistic emergent collective phenomena, a number of algorithmic 

accelerations were employed. We utilized scalable heuristics based on pseudopotential methods to 

achieve rapid systemic deconfliction.  To incorporate intent and optimize path dependent 

measures such as time and fuel burn, we borrow a concept from theoretical particle physics, the 

notion of an ensemble of interacting extended objects (“strings”). We identify these extended 

objects with candidate 4D aircraft trajectories, depicted in Figure 3-1. Trajectories as represented 

by one-dimensional extended objects are endowed with a distributed pseudopotential so that they 

repel each other, an extension of traditional pseudopotential methods where point objects 

representing aircraft themselves repel each other, and the charge is sufficient such that required 

separation is maintained.  

 

Fig. 3-1.  Charged string concept. 

Two aircraft trajectories endowed with repulsive pseudopotentials.  The circles 
represent time slices in the predicted future.  Separation is maintained by the 
pseudopotential deforming the strings, which distribute the deformation along 
their length so as to reduce curvature to acceptable levels. 
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3.3.2 Replanning and Agency  

Approximately once per second in the simulation, all known trajectories are recalculated; thus, 

we assume there is implicit renegotiation.  Therefore, all trajectories are “closed” in the sense of 

always having a current flight plan, and we do not need to make a distinction between tactical 

and strategic planning.  

 

The agents in the simulation are the trajectories, not the individual aircraft.  The cockpit avionics 

and pilot, the ANSP (ground based automation, controllers, flow control specialists), and the user 

operations control centers are not currently modeled.  Because we do not model these elements 

of the system (and their interactions), we take no position about how and where trajectory 

negotiation, trajectory control, and aircraft separation occur. This position applies also to the 

specific structure and details of communication required to effect the dynamics of the model in a 

real system. 

 
Our trajectory paths in the model are fully dynamical, meaning the paths are dynamically 
recomputed (replanned) throughout the flight at regular intervals, while continuously maintaining 
deconfliction.  This concept is what we mean by “trajectory agency.”  Since the trajectory 
description subsumes the aircraft’s position, additional information is incorporated compared to 
an aircraft-centric approach. The replanning interval, or “heartbeat” of the simulation, is a 
constant that is chosen to be small compared to the characteristic time scale of changing external 
conditions-in our case, moving weather and other external inputs (such as an airport being closed) 
and the consequent changing trajectories of other aircraft. This time relationship would 
correspond to a time interval of about a minute in the real world.   

3.3.3 Assumptions and Caveats  

No safety net such as TCAS (Traffic Collision Alerting System) is included.  We assume that the 

simulation will handle all potential conflicts by proper trajectory planning and de-confliction in 

our test airspace.  This assumption is a gross simplification for the purpose of our experiments.  

 

No current airspace architectural components are included.  Our simulation optimized all the 

trajectories for the entire test airspace without any administrative divisions. 

 

In our simulations we used a rudimentary hierarchy of objective functions: First, trajectories 

must avoid each other.  Given separation, trajectory curvature and acceleration along the 

trajectory are minimized. This generates a trajectory of a certain length.  Since flight duration is 

specified in advance to be a constant, path length is related to average aircraft speed.  A solution 

is acceptable if flight speed remains within a defined band after all of the above deformations.. 

 

3.3.4  Test Airspace   

The following approach taken in the construction and operation of our experiments in the test 

airspace:  

 

 Generic Airspace Cylinder:  For purposes of developing the algorithms, applying them to 

the airspace phase state concept, exploring the parameters affecting phase state, and 

evaluating phase state control, a generic airspace cylinder of 1,000 km in diameter and 

10,000 feet in height was employed.  The test airspace was borrowed from previous 
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studies by NASA [Consiglio][18]. Weather:  Weather objects have dynamical behavior, 

with uncertainty created by randomness in its path.  

 Enroute trajectories:  The climb and descent are computed for entry into the generic 

airspace cylinder, but not included in trajectory separation calculations. 

 Dynamic replanning: Trajectories are dynamically replanned over their full length, from 

top-of-climb to top-of-descent. 

 Proxy representation of aircraft performance and related trajectory control and 

maneuvering limitations:  Maneuvering is allowed within “policy” limits derived from 

representative airline policies for maximum bank angles, accelerations, and pitch 

changes.  

3.3.5  Data Collection   

Most centrally to our research, our model kept track of the "amount" of computation required 
during the dynamical replanning process (per time instant and geographical location).  We used 
the compute cycles required in the trajectory replanning process as an indicator of a possible 
phase transition as the airspace "heated up" as the density of the airspace utilization (trajectories) 
increased.   This phenomenon has been observed in other super dense simulations of dynamic 
deconfliction [Erzberger][19].  Such data may aid in estimating the overall capacity of the 
airspace. 

Another feature of this approach to modeling dynamical trajectories is the ability to generate data 
that are a measure of the correlations of nearby flight trajectories.   If found, these data may 
indicate "flocking" [6] or other emergent activity in certain phases of the airspace phase space, 
similar to the emergent directional correlation discussed in the Vicsek model in Chapter 2 
[Vicsek][5].  We believe this behavior should remain as simulations become more realistic and 
agents more complex. 
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4. TOOLBOX 

 

4.1  Introduction 

 

Our work on this project included preparation of an initial toolbox of algorithms, agent-based 

structures and method descriptions for introducing agency as a methodology for analyzing and 

managing the complexity of airspaces states while maintaining or increasing system safety.  

Appendix A contains the complete toolbox.  Each of the algorithms is described conceptually 

and explicated in technical detail in the form of pseudocode.  The pseudocode is intended to 

contain sufficient technical detail to enable implementation in a language of choice on the user’s 

hardware platform.  In this Chapter, we provide an overview of the central ideas contained in the 

toolbox algorithms, and leave the finer details to Appendix A. 

 

4.1.1  Airspaces 

The toolbox was prepared for the experiments we conducted on cylindrical enroute test 

airspaces.  Aircraft enter and exit the test airspace at the perimeter of the cylinder in such a way 

that all their trajectories pass through the central region of the cylinder.   

 

The test airspace provided the platform for generating trajectories that were separated and 

flyable, if possible.  We characterized an airspace as “successful” if all trajectories were 

separated and flyable.  If any of the trajectories violated minimum separation distances, or was 

not flyable, we characterized the airspace as a “failed” airspace.  A flyable trajectory was defined 

as one where all the points along the trajectory lie within some specified range of speeds and 

accelerations of the aircraft.  This definition is a proxy for the laws of physics, aircraft 

specifications, and airline policies. 

 

4.1.2  Trajectories 

Conceptually, dynamical trajectories are abstractions spanning both space and time.  Hence, 

trajectories are 4DT, i.e. three dimensions of location and one time dimension.  However, due to 

the exigencies of airspace, trajectories may need to be replanned dynamically after a flight has 

begun.  In our algorithms, at every delta t time increment, all the trajectories were replanned (re-

calculated) according to current conditions.  Trajectories managed by these algorithms were seen 

to sometimes vary a large amount in space and time, depending on the density of other 

trajectories and external influences from simulated weather. 

 

We considered every 4DT Trajectory itself a dynamical entity, replanned every delta t, which 

produced two types of time.  There is the flight time embedded into every instance of a 

trajectory.  Every trajectory also changes itself over time so, as indicated in the Introduction, we 

used an additional Meta Time variable (also called “system time”), which gave each trajectory 5 

dimensions (3 dimensional location plus 2 time dimensions—Flight Time and Meta Time.  

 

Intuitively, a single trajectory instance is like a hard strand of spaghetti lying still on a cold plate 

– whatever curve it has is statically fixed in place.  A collection of dynamical (suite of changing) 

trajectories is like a soft strand of spaghetti curling, stretching, and moving away from other 

strands of spaghetti in a pot of boiling water.  Over the course of its flight time, an aircraft might 

fly parts of many dynamically replanned trajectories.  An actual flown flight path is, in effect, 
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pieced together from many instances of trajectories as the dynamical replanning process re-

shapes the trajectory in Meta Time, responding to maintain separation or avoid weather.  

 

The concept of 5DT is illustrated in Figure 4-1 where a trajectory itself is modified.   The future 

of any particular trajectory has a Flight Time associated with it.  In addition, trajectories are 

modified at some time t in Meta Time as well.   

 

 
 

Figure 4-1.  Trajectory dynamics. 

 

4.2  Deforming Trajectories 

 

Trajectories would remain unchanged if there were no pressures to change their paths.  In a 

sparse airspace, initial trajectories can be quite stable with no need to change an optimal 

trajectory.  However, in more dense airspaces, separation may force changes in paths, which 

typically involved lengthening the paths to go around some obstacle.  On the other hand, 

economic pressures forced the path to be more evenly curved to save fuel or fly more smoothly.  

In addition, physical limits on velocity and acceleration tended to force the trajectory into more 

flyable shapes as well.  The shortest possible path may not be flyable.  In principle, our 

algorithms searched for the shortest flyable de-conflicted paths. 

 

These practical requirements for trajectories can be conceptualized and implemented as a 

deforming influence generated by a pseudoforce (to implement separation) interacting with 

influences that maintain physically realistic (“flyable”) trajectories thus simplifying the problem, 

as well as simplifying the algorithms used to deform the trajectories. 

 

4.2.1  Three Influences on Trajectories 

Our Toolbox of algorithms supports three types of influences that act to deform trajectories and 

implement the constraints: 

 

 Repulsion – is a pseudoforce to maintain minimum separation.  

 Elasticity – keeps trajectories gently curved to minimize distance, fuel consumption, etc. 

 Bounding – keeps trajectory velocities and accelerations within physical and policy 

limits 
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These influences are described more formally as part of the pseudocode procedure 

conflictadapt                                                             

 

4.2.2  Repulsion 

Rather than doing conflict detection and resolution per se, our trajectory strings or tubes were 

designed to repel each other in a manner that always maintains required separation.  This method 

of separation was possible because entire trajectories were separated (throughout their entire 

length), as opposed to separating individual aircraft.  In effect, no surprises were postponed into 

the future, unless new conditions arise, for example, changing weather conditions.  Even then, 

entire trajectories were again immediately and fully separated through the operation of repulsion.     

 

New conflicts may arise for a trajectory resulting from de-conflicting some other pair of 

trajectories.  In addition, weather cells may move between one re-calculation cycle and another, 

generating new conflicts with the storm, reverberating to new conflicts between other previously 

deconflicted pairs of trajectories. 

 

4.2.3  Elasticity  

The application of a separation pseudoforce alone was insufficient to generate stable trajectories.  

Such paths were under-specified, causing instability of path locations, or “Brownian Motion,” as 

paths remain unresolved.    In these algorithms, we also applied an internal force of elasticity on 

each trajectory.  This elasticity caused the trajectories to find shorter paths, conserving fuel, 

while still maintaining separation via the repulsive inter-trajectory force.  This elasticity was 

implemented by a spline algorithm that minimized acceleration discontinuities along the 

trajectories. 

 

4.2.4  Bounding 

The third influence applied to implement a constraint, in addition to repulsion and elasticity, was 

bounding.  This force was necessary to assure that the trajectories were flyable.  In the simplified 

abstracted world of these algorithms and simulations, aircraft speeds were limited to a specified 

minimum-maximum range.  Without this influence in the extreme case, aircraft could stop in the 

simulation and wait for other aircraft to pass by as a means of avoiding a conflict.  Thus, 

bounding requires each aircraft to maintain a minimum speed in the test airspace.   

 

Note that accelerations along each trajectory are limited as well, and this acceleration constraint 

is handled by the influence of elasticity on the trajectories as described in 4.2.3. 

 

4.3  Visualizations 

 

4.3.1  Successful Deconfliction and Resolution of Airspaces 

We described above how the test airspaces were initialized, and then later described how to 

deform flyable trajectories to enforce minimum separation.  Some airspaces were too congested 

to allow for successful deconfliction, while less congested airspaces had all of their trajectories 

successfully separated from each other. 
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The following Figures 4-2 and 4-3 illustrate the result of deforming the trajectories.  In both of 

these cases, the deconfliction process was successful. 

 

 
 

Figure 4-2.  Deconflicting trajectories in an airspace – small number of trajectories. 

 

 
 

Figure 4-3.  Deconflicting trajectories in an airspace – larger number of trajectories. 

 

In the right hand screen shot in Figure 4-3, the detailed trajectories in the conjested center of the 

test airspace might be hard to see.  Figure 4-4 shows the central portion of the airspace at a 

higher resolution, which makes the individual trajectories visible. 
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Figure 4-4.   Close up of center of airspace shown in Figure 4.3 on right. 

 

4.3.2  Failed Deconfliction and Resolution of Airspaces 

The screen shots above show successful deconfliction and resolution of all the trajectories in 

these airspaces.  In order to investigate the possible phase transitions at the limits of airspace 

capacity, it was necessary to generate conditions where airspaces could not be fully deconflicted. 

 

When the density of the airspace became too great, resolving of some conflicts led to more new 

conflicts with other trajectories.  Under these conditions, conflicts will persist in the test airspace, 

although not necessarily the same conflicts.  Regardless of how many deformation cycles are 

executed in these conditions, the airspace will fail to converge to a solution. 

 

Figure 4.5 shows two failed airspaces.  Of the 200 trajectories (and aircraft) pictured here, in the 

left screen shot 55 of them are still in a state of conflict, shown by the portions of the trajectories 

drawn in red. In the screenshot on the right, there are 723 conflicts – more than one conflict per 

trajectory.  The increase in conflicts was due to increasing the minimum separation from 4 nm to 

5 nm. 

 

Although additional processing resolved some of these conflicts, new ones appeared, keeping the 

airspace in a continued roiling unresolved state. 
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Figure 4-5.   Screenshots of two failed airspaces. 

 

At the resolution of the entire airspace, it can be difficult to see the fine structure of the trajectory 

conflicts.  Figure 4-6 shows the central portion of both of the screenshots in Figure 4-5 at a 

higher resolution. 

 

 
 

Figure 4-6.  Higher resolution of screenshots of same failed airspaces. 
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5. EXPERIMENTS 

 

This chapter outlines the experimental set up used to generate the data for analyses. 

Table 5-1 summarizes the experiments that were conducted. 

 
Table 5-1.  Experimental Run Sets 

 Separation 

Dimensionality 5 nm 4 nm 3 nm 

2D X X X 

3D X X X 

 

For each of the six experiments, we generated 1755 instances of airspaces at varying trajectory 

densities by altering the rate of incoming aircraft into the test airspace and the radius of the test 

airspace.  In all 10,530 test airspaces were generated, each with a time series of the progress of 

dynamical trajectories up to 1000 cycles of deconfliction. 

 

5.1  Experimental Parameters 

 

The following four sections enumerate the parameters used in the algorithms described in 

Chapter 4.  The values shown were used in the experiments conducted in our investigation of 

phase transition structure.   

 

5.1.1  Aircraft and Airspace Parameters 

1. (aircraft type) Boeing 757 

2. vc = 530mph = cruising speed at cruising altitude 

3. vmin,vmax = 450mph, 550mph = speed range at cruising altitude 

4. zc = 30,000 feet = cruising altitude 

5. zmax = 42,000 feet = ceiling 

6. storm.rsep = 20nm = storm/aircraft separation 

7. n_endpoints = 24 = number of entry points in test airspace 

8. n_exit_spread = 8 = number of exit points to choose from for each entry point 

9. n_waves = 16 = number of waves of aircraft entering test space 

 

5.1.2  Data Structure Parameters 

1. fleet_path_width = 64 = number of control points per trajectory in simulation 

2. sim_interval = 30.0 = simulation heartbeat 

3. node_interval = 180.0 seconds = time between control points 

4. time_scale = 60.0 = visual simulation time compression factor (sim seconds per real 

second) 

 

5.1.3  Trajectory Meta-Forces Parameters 

1. conflict_buffer_zone = 6.0 km = width of zone outside of the conflict zone where 

repulsion is active and decreasing with distance 

2. repulsive_force = 0.5 = strength of force that increases separation at closest approach 

3. elastic_force = 8.0 = strength of force that smooths out trajectories 
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4. speed_limit_force = 2.9 = strength of force that moves speed toward cruising speed 

5. altitude_force = 0.55 = strength of force that moves aircraft toward cruising altitude 

6. momentum_decay = 0.8 = proportion of momentum that persists to the next cycle 

7. storm_randomness = 0.8 = strength of randomizing force that blows storms around 

 

5.1.4  Experiment Set-Up Variables 

1. radius = [500..150] km = entry point radius (variable, controls density) 

2. wave_interval = [400..50] seconds = time between waves (variable, controls density) 

3. wave_variance = [100..12.5] seconds = max random time to delay individual aircraft 

entry 

4. rsep = 3nm, 4nm, 5nm = aircraft separation (multiple experiments) 

 

5.2  Running Experiments 

 

5.2.1  Visualization 

With 10,530 test airspaces simulated and with the potential of over 10 million individual states of 

the airspaces, visualizations were essential to recognize the phenomena generated in our 

simulations. The following depictions indicate that, as the density increases for a given airspace 

configuration, the number of un-resolvable conflicts also eventually increases,very nonlinearly in 

the manner of a phase transition. 

 

Figure 5-1 shows the two co-planar airspaces with the same 5 nm minimum separation, but 

differing in the density of aircraft.  The airspace on the left has 100 trajectories and zero 

conflicts.  The airspace on the right has 200 aircraft with 723 unresolved conflicts.  These 

airspaces are on opposite sides of the phase transition of satisfiability of the airspace. 

 

 
 

Figure 5-1.  Both sides of a phase transition – 5 nm separation, varying densities. 
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For our experiment depicted in Figure 5-1, we varied the density of the test airspaces gradually 

to capture the region of density where a phase transition is located under these conditions. 

 

What would happen, however, if we changed the minimum separation distance from 5 nm to a 

different value?  Is the phase transition type behavior general?  Figure 5-2 shows an airspace 

similar to the right screenshot in Figure 5-1, same density of 200 aircraft, except the separation 

minimum is 4 nm (instead of 5 nm).  As we can see, there are only a few unresolved conflicts in 

this example.  Hence, we have captured an instance of an airspace nearing a phase transition. 

 

 
 

Figure 5-2.  Depiction of dynamical trajectories nearing a phase transition – 4 nm 
separation,200 trajectories. 

 

Quantitative Analysis is discussed in Chapter 6, Results. 

 

5.3  Data 

 

5.3.1  Data Format and Access 

The spreadsheet files are structured with one row per run (i.e. instance of an airspace).  Each row 

contains the radius of the airspace, the interval for sending aircraft into the airspace in successive 

waves, and two types of density: initial and final density.  The final density was used in the data 

analysis in Chapter 6.  As was mentioned earlier, the test airspace would in principle always 

deconflict by “thermal” expansion, given enough time.  We truncated the computation time and 

determined whether or not the dynamical trajectories in the test airspace were deconflicted by 

that final time, and we recorded the density at that moment. 
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5.3.2  Density Measurements 

Density is a metric used in our phase transition analysis.  However, since the test airspace is non-

uniform in its loci of trajectory interactions, we needed a more sophisticated method of 

determining overall density, other than calculating the number of aircraft per unit of test airspace. 

 

For the density computation, we use a Gaussian integral applied to the distance from each 

aircraft to the measurement point. This formula provided the probability density of finding an 

aircraft at the specified point if the aircraft positions are considered to have an uncertainty 

specified by a spread parameter. Alternatively, this approach measured the density of aircraft 

weighted more heavily near the measurement point, which provided a smooth, well-behaved 

density measure without discontinuities. Because we were measuring aircraft per unit area, the 

vertical axis was omitted for this computation. For the purpose of density measurements for our 

experiments, we measured density at the center of the test jig with a spread of 160 km, which 

defined a "reaction zone.” Density units were measured in aircraft per 10,000 km.  
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6.  RESULTS  

 

Test cases were selected to evaluate the principal tenets of the project regarding the existence, 

predictability, and manageability of phase behaviors in the airspace.  We ran a variety of test 

cases to test the following hypotheses: 

 

1. Is there a well-defined phase transition in solvability for the test airspace? 

2. If so, how does its location depend on a) separation requirements? b) dimensionality of 

spatial maneuvering permitted? (2D, in the x-y plane; or 3D, in x, y, and z) 

3. Can we efficiently predict whether or not an airspace configuration will be solvable 

(maintainable in a deconflicted state), resulting in no conflicts in a meaningfully short 

period of time (to allow for real-time decision-making)?   

 

The test configuration used a fixed number of aircraft and adjusted the interaction density by 

introducing aircraft into the test airspace in “waves,” all of which follow 18 radials toward a 

central intersection point.  We observed that decreased spacing of waves (limited by separation 

requirements) increased interaction density.   

 

6.1  Evidence of Phase Transitions 

 

We ran a matrix of six experimental configurations, each varying the density over 1755 values.   

In the first three runs, we constrained motion to occur at a constant altitude (the “2D” cases) and 

set the required horizontal separation to be three different values: {3nm, 4nm, and 5nm}.  In the 

second three cases, we permitted vertical maneuvering and varied the same horizontal separation 

requirements while limiting the vertical maneuvering to no greater than 1000 ft. of required 

vertical separation.   

 

We expected the results to differ between the 2D and 3D cases in a qualitative manner, because 

aircraft maneuver differently in horizontal and vertical planes.  Mixing these two different 

behaviors was likely to complicate the results away from pure phase transition behavior by 

mixing two fundamentally different sets of dynamics in the horizontal and vertical planes.  For 

instance, much larger maneuver-induced accelerations were permitted on the horizontal axes 

than the vertical axis, as the horizontal accelerations combined with the gravitational acceleration 

to produce a vector sum, the magnitude of which was constrained as a matter of policy.  Vertical 

accelerations add directly to gravity and are therefore more constrained. Nonetheless, allowing 

3D conflict detection and trajectory replanning should have had the effect of a relaxation of 

constraints and push the phase transition boundary to the right on the satisfiability graph. 

 

The 2D results are plotted below (Figure 6-1) for three different values of the separation 

parameter. The 3nm and 5nm runs were very close to the same shape (proportions of width to 

height were preserved on a log-linear plot), though the 4nm run was wider.  It was clear that the 

reduction of the separation requirement pushed the phase transition boundary towards higher 

density.   
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Figure 6-1.  Satisfiability Graph for three cases of trajectory separation, 3 nm, 4 nm, 5 nm. 

The ordinate is the ratio of unsatisfied to satisfied computational solutions for the 
condition of no conflicting trajectories; the abscissa is the planar density of 
aircraft in Aircraft per 104 km2 in the test airspace. 

 

The centroids and widths of the three cases are as follows: 

2D Dynamics 5 nm separation 4 nm separation 3 nm separation 

Sigmoid centroid c 10.83 +/- .035 15.74 +/- 0.166 23.292 +/- 0.245 

Sigmoid width w 0.532 +/- .031 1.250 +/- 0.146 1.113 +/- 0.216 

Relative width w/c 0.0491 0.0794 0.0478 

 

6.1.1  Phase Transition Dependencies 

 

The standard form of a phase transition (a sigmoid curve) fit the data acceptably well.  We fit the 

data with a sigmoid function of the form  where x is the final density of the 

aircraft at the point of solution (or timeout), c is the centroid of the sigmoid, and w is the width.  

The position of the centroid of the phase transition forms ratios close to 1/5
2 

: 1/4
2 

: 1/3
2
, as might 

be expected in the coplanar case based on “packing” separation requirement volumes. The 

measured critical densities were much lower than would have been obtained by simply packing 

such circles, as the curvature of aircraft trajectories was constrained to be operationally realistic, 

requiring extra space to effect separation.  Stacking would allow densities over ten times greater 

than what we found. This density could realistically occur only in the extremely unlikely case of 

all of the aircraft flying in formation in the same direction at the same speed, the opposite 

extreme from our test configuration of converging from all directions into a central interaction 

region.   

 

We found that the width or sharpness of a standard phase transition curve was a function of the 

size of the problem (the number of particles in the system).  As the number of particles 

approached infinity, a classic phase transition became infinitely sharp and occurred at a fixed 

value, rather than a distribution of values.  In our experimental setup, the number of aircraft was 

5nm 4nm 3nm
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held constant, but their spacing was manipulated, thereby controlling the density at the center of 

the test airspace volume over a certain time period. Our experimental setup was not a 

homogeneous setup in particle or interaction distribution;.  Instead, there was a preferred 

interaction point (the center of the test volume) which may affect finite-size scaling arguments 

and the interpretation of particle number.  We do not know whether or not that was the reason for 

the anomalous behavior of the 4 nm separation data as seen above, as the relative widths of the 3 

nm and 5 nm cases are very close to each other, but the 4 nm width was substantially larger.   

 

We also performed experiments in a non co-planar configuration (allowing aircraft to maneuver 

in x, y, and limited z), releasing the constraint that was implemented above for the co-planar case 

as described in the Experiments section.  As expected, the phase transition critical density moved 

towards higher values for the same values of separation, reflecting the increased degrees of 

freedom.  The data are summarized below. 

 

3D Dynamics 5nm separation 4 nm separation 3 nm separation 

Sigmoid centroid c 21.96 +/- 0.069 29.40 +/- 0.40 34.74 +/- 0.627 

Sigmoid width w 0.862 +/- 0.061 0.440 +/- 0.035 1.164 +/- 0.417 

Relative width w/c 0.039 0.015 0.034 

  

6.2  Dynamics of Solution Finding 

 

A time series was created for each run at each density, showing the number of unresolved 

conflicts remaining.  The time series terminated when zero conflicts remained or was terminated 

artificially at 1000 iterations and defined as “unsatisfiable” at that point.  We created an analogue 

of the Boolean satisfiability graph [10] by binning the data into 40 density slices (producing a 

good balance between horizontal resolution and statistics per bin) and plotting the fraction of 

cases satisfied versus the central density value of each slice. 

 

A typical time series for a solution is illustrated in Figure 6-2, as follows:   

 

 
 

Figure 6-2.  Deconfliction management. 
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The algorithm resolved conflicts as discussed in Chapter 3 on Approach.  When the number of 

conflicts was plotted as a function of time, they tended to display one or both of two patterns. 

The first pattern was a rapid (usually exponential) decay to a smaller number of conflicts.  When 

the system was far from the phase transition, the exponential behavior could persist all the way 

to the systemic deconfliction.  The second class of behavior was a much slower decay that was 

reminiscent of thermal expansion:  the conflicts that could be quickly removed were removed, 

but the remaining conflicts required expanding the envelope of the interaction region of the test 

airspace.  That required time, as the algorithm had to successively move all of the trajectories 

away from the center of the interaction region to create more space, which allowed a resolution.  

In principle, without any time or space constraints and removing the requirement of fixed flight 

duration that we used in our simulations, the algorithm could always find a solution by 

expanding the space and decreasing the interaction density to a level low enough to find a 

deconflicted solution.  We truncated this process at an arbitrary cutoff of 1000 iterations.   

 

The effects of the algorithm can be seen by creating an iterative plot showing the mapping of 

initial density onto final density for a sample dataset parameterized by 2D maneuvering, 4nm 

separation, 1755 data points.   

 

 
   

Figure 6-3.  Phase transition precursors (planar maneuvering, 4 nm separation 
minima). 
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Our experiments revealed that at first the initial density and final density were the same, 

producing a diagonal line.  As the density increased, the interaction volume began to expand, 

forcing the line to level off.  The centroid of the phase transition in the plot below occurred at a 

final density of 15.738.  As the phase transition was approached, the algorithm attempted more 

and more expansion of the space but was overwhelmed and could deconflict the trajectories in 

the allotted computation time.  In principle, the phase transition could also be moved to the right 

by allowing more compute cycles, but this process would involve diminishing returns and 

eventually halt as the remaining optimization headroom was squeezed out of the system.   

 

In practice, this freedom to find a solution by arbitrarily allowing the expansion of the interaction 

volume would not be possible.  Airspace and fuel are finite, and acceptable parameters would be 

established for the average amount of extra time, fuel, and distance required for conflict-free 

operation.  Our proxy for operational constraints in our problem constrained the number of 

solution cycles, which had the effect of constraining the size of the interaction region and the 

amount of extra distance traveled by the aircraft as deconfliction was performed.  

 

6.3  Satisfiability of Airspace 

 

If we wanted to construct the equivalent of a Snell plot, we must account for the fact that the 

problem statement was different from the statement in the original case.  In a Boolean KSAT 

problem, the computation can terminate based on two events:  (1) A solution is found, satisfying 

the entire expression; or (2) a logical construct of the form  is found as part of the 

process of simplifying the original expression, signifying categorical falsehood.  Either one of 

these events “stops the clock” and identifies the expression as definitely satisfiable or definitely 

non-satisfiable.  Even though highly simplified airspace interactions could permit a formal proof 

of solution existence or non-existence, they have not been extended to situations involving large 

numbers of aircraft, replanning because of weather and other sources of uncertainty, and variable 

speed and altitude.   

 

We propose a modified version of the Boolean KSAT solution methodology in which we ask, 

“What is the value of the solution iteration number at which we can either a) solve the current 

airspace configuration; and b) say with a given degree of certainty that a solution will not be 

found within our maximum allowed number of iterations?”   

 

We introduced the concept of “solution hulls” to frame this problem.  Consider the set of all 

solution paths (as shown in Figure 6-4) that result in a successful resolution before 1000 compute 

cycles.  For each value time step (compute cycle number), we computed the highest fraction of 

conflicts remaining.  If we connected all of these points, we had a “hull” composed of extrema 

values.  All successful computations were contained below this hull.  When we tested the 

converse for solution paths that failed to reach a solution, using the lowest fraction of conflicts 

remaining to create the hull, only failed solutions were above this hull. Because we constrained 

the computation to terminate at 1000 iterations, the blue and green lines were forced to meet as 

shown.  They also met in the first iteration, as all solution proportions were set to 1 as an initial 

value—this was off the left side of the plot.  When we plotted the two hulls, we obtained the 

following Phase Graph: 
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Figure 6-4.  Phase region graph. 

 

The space above the blue line was outside of the region circumscribed by the set of the extrema 

of the union of all of the satisfiable solutions, and was therefore definitely unsatisfiable.  The 

space below the red line was outside of the region circumscribed by the set of the extrema of the 

union of all of the unsatisfiable solutions, and was therefore definitely satisfiable.  An arbitrary 

solution process between the two lines would remain in an unknown state until it crossed either 

of the two lines.  If it crossed the red line, it would have been satisfiable in the time allotted and 

could have been computed to the end.  If the solution process crossed the blue line, it should 

have been abandoned at that point.  Applying this methodology to a sample dataset (2D 

maneuvering, 3nm separation, 1755 data points) generated the following analogue of a Snell 

Plot. 

 

 
 

Figure 6-5.  Snell-like graph. 
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6.4  Discussion 

 

There are two types of prediction associated with phase transitions.  The first occurs in the 

relation between density and satisfiability (ability to find a deconflicted solution) of the airspace.  

The approach to this phase transition has a clear signature in terms of computational complexity 

as demonstrated by our experiments and analysis.  This signature has strategic utility in that an 

authority in charge of managing airspace would not permit traffic flow on an ongoing basis that 

was known to produce problematic densities under a wide variety of conditions. 

 

The second type of prediction occurs in the predicted future of trajectories in the simulated 

airspace.  This form of prediction is manifest as the red lines (portions of trajectories that remain 

in projected conflict) as their projected conflict time is approached.  We did not quantify this 

phenomenon of persistent planned conflict, but it is evident that the presence of such conflicts is 

an important signal that could have utility in airspace management.  Since the environment is 

changing (due to updated information about other aircraft and weather), a tradeoff might well 

exist between the “look-ahead” time and the probability of taking mitigating action that turned 

out to be unnecessary and/or expensive.  This tradeoff is similar to the notion of “bounded 

rationality” in economics—In an uncertain environment with limited knowledge, it does not pay 

to plan arbitrarily far ahead. 

 

We believe that the results of our experiments described in this report provided evidence of the 

presence of phase transitions and the possibility of influencing phase transitions by modifying 

the degrees of freedom for maneuvering by either increasing the dimensionality allowed for 

deconfliction (allowing vertical maneuvers) or decreasing the separation standard.  The details of 

how the phase transitions would be moved in response to a system’s dynamics remain for future 

research.   

 

6.5  Comments on Uncertainty 

 

In our ABM, the negotiated set of trajectories at any point in time was based on the best 

available knowledge of all parameters affecting the difference between the original desired 

trajectory and the current trajectory parameters.  Rather than building “uncertainty” in the current 

ATM sense into the model, we introduced changes into the system that reflected changes in the 

knowledge that were previously available.  The effects of these changes were accounted for in 

the replanning and, once a new plan was selected, a new set of negotiated 4D trajectories was 

established.  In the initial simulation the only changes we introduced were new paths for the 

storm cells  

 

The most significant sources of uncertainty include the following: 

 Convective weather 

 Wind field predictions 

 Airport capacity dynamics (as affected, for example, by wind-field changes and the 

resulting airport configuration) 

 

We observed that maintenance of a system of conflict-free trajectories could be managed by 

managing the bulk properties (airspeed, direction, altitude, for example) of the sets of dynamical 
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trajectories in the test airspace, so that a “safe” time/distance was maintained away from the 

phase boundary.  Bulk property control in our experiments meant the maintenance of conflict-

free trajectories by keeping a “safe” distance between the current state of the system and a phase 

transition.  “Safe” in this context meant maintaining separation assurance, with conflict-free 

trajectories, throughout the test airspace. 

 

The presence of a continual flow of updated information implies that we must quantify our 

ignorance and allow for it.  We must define a safe distance from the phase boundary in the 

context of experience dictated by the best response to weather and other airspace disturbances.  It 

is possible to be ready for something, even if one does not know what it is. 
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7.  CONCLUSIONS AND RECOMMENDATIONS 

 

We set out to create an initial toolbox of algorithms, agent-based structures, and method 

descriptions for simulating and analyzing a test airspace, while maintaining or increasing system 

safety.  The following lines of investigation were followed in this effort: (1) development of 

agent structures, including effective approaches for separation assurance for 4D trajectories; and 

(2) developing a traffic physics/phase transition description and algorithmic measures from the 

standpoints of satisfiability and computability within representative scenarios.  Based on our 

experiments using an initial toolbox of algorithms, agent-based structures, and methods for 

introducing agency as described herein for analyzing and managing the complexity of test 

airspace states, we concluded the following: 

 

 Airspace exhibits phase behaviors, in response to increasing aircraft operations.  This 

behavior reproduces earlier work at NASA and elsewhere, as expected.  Phase transition 

behavior has been seen in systems modeled with either distributed and centralized 

deconfliction, in addition to our trajectory-centric modeling.  This behavior is as 

expected, as phase transitions are driven by the physics of flight, not by the 

computational framework used to describe flight. 

 

 The phase boundary between smoothly flowing traffic and “full” airspace has a gradual 

onset as measured by computational complexity and can therefore be detected and 

measured. 

 

 Using a trajectory-centric instead of an aircraft-centric approach allows for the prediction 

in space and time of phase transition type behavior (regions of unsatisfiable airspace).  

This occurs as a by-product of combined deconfliction and optimization of trajectories.  

Sufficient advance warning means that an airspace authority could use this information to 

implement measures that would allow efficient implementation of separation assurance 

well in advance of tactical considerations.  

 

 The location of the phase boundary in terms of aircraft densities can be changed using 

bulk properties such as separation standards, vertical maneuvering, and other control 

parameters such as speed.   

 

 Our model has a self-organizing characteristic to it that could be used as a design 

principle.  Dense trajectories created an outward pressure that expanded the interaction 

region until density was low enough to achieve deconfliction.  This expansion was 

limited by the combined constraints of fixed flight duration and a viable aircraft speed 

band.  Refining our deconfliction algorithm to include local constraint relaxation may 

produce a viable and efficient way to manage conflicted portions of airspace. 

 

The initial toolbox is suitable for the analyses of test airspace described in this report.    We 

propose comprehensive enhancements, as described in items 1-5 below, and expansion to include 

terminal and surface operations, thereby allowing full gate-to-gate ABM simulations.  All of the 

items below are of equal importance: 
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(1) Aircraft Physics: Add econometric models, fuel burn, maneuverability, BADA 

performance data for all aircraft of interest to NextGen concept evaluation. 

(2) Weather: Add current and predicted weather, wind fields and policies for separating 

aircraft from such weather phenomena. Provide forecasting model data feeds from 

Consolidated Storm Prediction for Aviation (CoSPA) or other probabilistic-based to 

incorporate uncertainties in weather into the analysis.  

(3) Exclusionary Airspace Dynamics:  Implement the ability to activate and deactivate 

special use airspace and Temporary Flight Restrictions (TFR). 

(4) Separation standards: Expand simulations to model a variety (including dynamic) of 

separation standards. 

(5) Objective functions: Expand the simulation to model individual objective functions for 

each aircraft that can be updated as the flight progresses with actual flight data. 

(6) Terminal Airspace with Airport Surface:  Implement sufficient structure in the terminal 

airspace and airport surface details to support dynamic trajectory optimization and 

management throughout gate-to-gate trajectories. 

(7) Model Validity: Conduct comparative assessments of the model performance (with the 

items above incorporated) against physics-and economics-based data (data from flight or 

other models that have been verified and produce data appropriate for such assessments). 

 

7.1  Research Topics 

 

We recommend that an enhanced toolset be used to advance the prediction and management of 

dynamic airspace phase states.  We also recommend the application of the enhanced toolset to 

study the Trajectory Based Operations (TBO) concept proposed below. The latter is described in 

order of priority with research on terminal and surface issues lower in priority, since we expect 

enroute enhancements to be added first under NextGen.  

 

7.2  Airspace Phase State Research 

 

 More Detailed Phase Diagrams: Apply the enhanced toolset to a more complete 

understanding the phase behavior of the current airspace architecture.  Current 

architectural features and procedures in the airspace represent additional constraints for 

4DT operations.  We recommend implementing these features and procedures in order to 

evaluate the use of our approach to phase behavior prediction.  These studies should 

include evaluation of human factors considerations associated with the work by E. 

Hollnagel and others on the phases of ATC workloads described as Strategic, Tactical, 

Opportunistic, and Scramble. 

 

 Bulk Property Controls: Evaluate the effectiveness of managing predicted phase 

boundary “closeness” using separation standards, PBN conformance requirements, speed 

changes, passing procedures, vertical maneuvering, and control structures (centralized 

versus distributed).  Analyze and evaluate the influence of various “look-ahead” times on 

the efficiency of airspace operations.  Is it possible to look too far ahead?  

  

 “Playbooks”:  Look at “a day in the life” of the US Airspace (for example) under a wide 

variety of weather days, using recorded historical weather data.  If it is possible to 
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characterize these types of weather days, then is it possible to bias trajectory planning 

algorithms in advance of the flown day to reduce inefficiencies associated with 

replanning and deconfliction?  This prospect falls under the rubric of “If I knew then 

what I know now” analysis. 

 

 Probabilistic Wx: Analyze the influence of incorporating probabilistic weather data and 

if that can produce efficiencies equal or better than “Playbooks”, above. 

 

 Mathematics and Algorithms for Computational Acceleration:  Explore approaches 

to accelerating computational convergence to the desired airspace phase state, including, 

for example, ellipsoidal versus cylinder-shaped separation zones, Differential Evolution, 

and additional heuristics that increase computational performance. 

 

7.3  NextGen TBO Research 

 

 TBO planning: We will have a flight plan, as currently defined for each aircraft; 

however, in a 4DT system, some or all of this flight plan will be translated into a 4D 

trajectory that becomes a contract between the ASNP and the aircraft with concurrence 

from the ATSP (AOC).  This concept provokes several questions listed below in 

descending order of priority: 

 

– How brittle is TBO with end-to-end contracts when it must replan because of major 

perturbations or significant changes in aircraft objective functions?  Currently, Traffic 

Flow Management (TFM) provides only a small reservoir of aircraft in the terminal 

area to make maximum use of arrival runways.  Are these reservoirs necessary?  If so, 

how large should they be?  These questions must be answered to predict how far into 

the future, based on uncertainties, a 4DT system can be managed. 

 

– How frequently should trajectories be re-negotiated under different conditions? 

Perhaps, one should generally leave options open as long as possible. There may be 

situations where downstream effects (hot spots, known perturbations, etc.) should be 

planned for as early as possible. The accuracy of our trajectory prediction will have 

an impact on the answers to all of these questions.  For example, if weather and winds 

are highly predictable, trajectory re-negotiation frequency can be very low. Also, for 

example, what pilot-controller-dispatcher workloads must be accounted for in re-

negotiation? 

 

– What is the sensitivity of the system performance the aircraft conformance to its 4D 

contract?  How far do we allow the aircraft to depart from its 4D trajectory before we 

declare it “out of conformance” and renegotiate the trajectory? 

 

 Game Theoretics and Economics: What system behaviors emerge under different policies 

for resolving competing objective functions?  This question is approachable through the 

implementation of game theory principals in the trajectory negotiation/replanning process.  

When scarce resources (primarily arrival runway availability, for example) must be allocated, 
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not all aircrafts’ objective functions can be met.   A number of different policies have been 

proposed to resolve such “conflicts.” 

 

 UAS and the NAS:  Integration of Uncrewed Aircraft Systems (UAS) in the National 

Airspace System (NAS) presents a set of challenges for which high-fidelity modeling, 

simulation, and experimentation can support technology strategies, policy analysis, and 

certification. Sense and avoid (SAA) capability is necessary to provide tactical separation 

assurance and collision avoidance. The prospect of TBO offers future potential strategic 

separation for certain types of UAS aircraft and airspace. Additionally, the potential numbers 

of UAS, the wide variety of performance characteristics, the various approaches to vehicle 

control, and different operational characteristics will introduce new challenges to the NAS.  

We recommend applying our toolset to agent-based trajectory models for UAS operational 

concepts in the near-term and the NextGen NAS. 

 

 Workloads and Communications Analyses:  By postulating alternatives for specific roles 

of the ATSP, ANSP, and Flight Deck (where decisions are made, what dispatchers’, pilots’, 

and controllers’ actions are required, what data has to be exchanged for negotiation, etc.), one 

can use these data to analyze workload and data communication loads. Research on the 

allocation of roles and responsibilities for these functions would logically be conducted in 

laboratories where Human-in-the-Loop (HITL) exploration could be conducted. 

 

 Dynamic Separation Standards: Investigate how sensitive airspace phase state 

(performance of a 4DT system) is in the presence of alternative, perhaps even dynamic, 

separation standards for trajectories.  These separation standards could be varied based on the 

complexity of trajectory interactions: for example, whether a group of trajectories are aligned 

in a common direction or whether they are intersecting or converging at fast rates.  The 

separation standards variables in the model that can be proposed for future research are based 

on the following considerations: 

 

Enroute Performance-Based Navigation (PBN) with 

 Lateral: RNP = 0.X nm (95% containment; 2 X RNP yields “safe containment”) 

o Proposal: Consider X=0.3 for en-route RNP in TBO; the value of X can also be a 

variable for future modeling 

 Vertical:  

o Climbing/Descending: Assume a fixed uncertainty in vertical profile flight 

management for future aircraft 

o Level flight: Existing RVSM altimetry 1000 ft above FL 290 

 Longitudinal: The concept of using time for separation sets the longitudinal 

performance requirement 

o Proposal: Consider using Required Time Performance (RTP) in en-route airspace 

of + 2 minutes; make RTP a variable in the modeling. 

 

 Mixed Equipage and Best-Equipped-Best-Served TBO: We recommend exploring TBO 

in environments of mixed aircraft performance and equipage for current and future aircraft 

types and capabilities, particularly in the terminal area.  An enhanced toolset could be used to 

implement variants of PBN, PBC, and PBS (or Total System Performance) variables for 
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studies of emergent behaviors in TBO airspace, including phase boundary behaviors.  Such 

experiments could help with policy evaluations related to Best-Equipped-Best-Served 

operational costs and benefits. 

 

 Environmental Constraints: Airport noise and enroute contrails present environmental 

constraints that can be incorporated into the 5DT management and optimization system. In 

the case of noise, time-of-day-sensitive approach and departure paths would become part of 

the constraint system for trajectories in the terminal airspace.  In the case of contrails, the 

altitude at which contrails form varies as a function of meteorological conditions. The effects 

of contrails on global heat balance varies between day and night. We recommend exploring 

the impact of TBO concepts for dealing with these environmental issues. 
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APPENDIX A.  ALGORITHMS, TECHNICAL DESCRIPTIONS AND PSEUDOCODE 

 

 

A.1  Airspaces, Pseudocode, and Visualizations 

 

A.1.1  Introduction 

The following algorithms are intended to enable simulations of the bulk properties of large 

numbers of enroute dynamical trajectories (and associated aircraft) in arbitrary airspaces.   

 

A.1.2  Successful and Failed Airspaces 

The airspace is a platform for generating trajectories that are separated and flyable – if possible.  

We call an airspace “successful” if all trajectories are separated and flyable.  If there is even one 

trajectory that violates minimum separation distances, or is not flyable, we call this a “failed” 

airspace.  A flyable trajectory is defined as one where all the points along the trajectory lie within 

some specified range of speeds and accelerations of the aircraft.  This definition is a proxy for 

the laws of physics, aircraft specifications, and airline policies. 

 

In our experiments, we will be looking for the conditions where airspaces transition from 

successful to failed – as well as the mathematical character of this phase transition boundary. 

 

A.1.3  Pseudocode 

One of the objectives of this project is to provide a toolbox of these airspace algorithms.  The 

algorithms will be described conceptually, as well as explicated in technical detail in the form of 

pseudocode.  The pseudocode is intended to contain adequate technical detail to enable 

implementation in a language of choice on a hardware platform of choice. 

 

The pseudocode is organized by six distinct tasks carried out by these algorithms.  These tasks 

are described separately, embedded in conceptual descriptions and commentary. 

 

A.1.4  Organization of Pseudocode 

This section describes a higher-resolution version of the simulation pseudocode presented in 

Section 3. These algorithmic tasks are organized into two main high-level tasks, with task 

number two containing, among other steps, three important separately defined sub-tasks – five 

tasks in all, described in five separate sections of this chapter: 

 

1. Initialize the test airspace with an initialization script (see section A.2.6) 

2. Perform re-calculation cycles on trajectories (see section A.4.8), where three important 

sub-tasks: 

a. Apply repulsion/separation force to closest approach of conflicting trajectories (see 

section A.6.6) 

b. Apply elasticity/smoothing influence to all Control Points on all trajectories (see 

section A.7.2) 

c. Apply bounding/limits influence to all Control Points on all trajectories (see section 

A.8.2) 
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In addition to the toolbox of algorithms for performing experiments on test airspaces, the report 

describes the process of analyzing the output data from the experimental runs and present results 

as well. Although there is no pseudocode for this analysis step, we include it here as an 

“honorary” task 3: 

 

3. Perform post-run data analysis, successful/failed airspace, phase transition structure, etc. 

(no pseudo code per se, but see chapters 5 and 6 for methodology) 

 

Detailed pseudocode and commentary for each of these algorithms are provided in the 

appropriate sections below – and co-located in one consolidated listing in Appendix A. 

 

A.2  Initializing the Airspace 

 

A.2.1  Cylindrical Test Airspace 

The enroute airspace used for the simulations in this report is a cylinder up to 1000 kilometers in 

diameter (although the algorithms here have no such limit).   Aircraft trajectories enter and exit 

at precisely designated points on the perimeter of the cylinder, at the designated cruise altitude 

for the particular aircraft.    

 

Since the intent is to model large numbers of interactions between trajectories, the entry and exit 

points are positioned randomly across the cylinder from each other, thus forcing all trajectories 

to attempt to cross through the middle area of the cylinder where they can participate in multiple 

separation encounters. 

 

A.2.2  Entry and Exit Points of Trajectories 

The entry points for the trajectories on the cylinder are positioned at regular intervals around the 

full perimeter of the cylinder.  For example, for an initial parameter setting of 20 entry points 

(“pigeon holes”), these points are distributed regularly around the cylinder 18 degrees apart.  The 

same number of exit points is similarly regularly distributed, except offset midway between entry 

points (in this example 9 degrees away), thus avoiding head-on conflicts of comings and goings 

of aircraft at the edges of the airspace. 

 

Each trajectory is assigned entry and exit points on the perimeter of the cylinder.  There is an 

initial control parameter designating the range of possible exit points that are assignable for 

exiting.  For example, with parameters set at 20 total entry points and a range of six possible 

trajectory exit points, any of the six farthest (most opposite) exit points could be assigned for a 

trajectory’s exit point.   Mating between any particular entry point and allowable candidate exit 

points is chosen at random, with an ordinary shuffling algorithm used to enforce exactly one 

trajectory per exit point. 

 

A.2.3  Image of Simulated Airspace 

The Figure A-1 below shows two cylindrical airspaces with (different numbers of) trajectories 

and aircraft entering and exiting at the perimeter.  Once constructed, the airspace is rich with 

curved trajectories resulting from the geometry of the entry and exit points.  These initial 

trajectories have not yet been deconflicted, i.e. deformed to enforce minimum separation. 
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Figure A-1.  Top view of examples of a two initialized cylindrical airspaces. 

 

A.2.4  Pseudocode – Assumptions, Abstractions, Classes, Parameters, Visualizations 

As mentioned above, we are delivering the algorithms in the form of pseudocode – with the 

intent that software engineers can generate actual operational code in their language of choice for 

particular custom implementations.  The code below assumes the programmer has already 

created the necessary object-oriented classes to represent the central abstractions of this genre of 

simulation, namely a cylindrical test airspace, aircraft, and dynamical trajectories.   

 

As we will see below, these trajectories are represented using Control Points linked together by 

cubic splines.  Other abstractions are also described below including Target Points, and their 

associated physics-like “forces,”  momentum, etc. 

 

These classes need to be endowed with appropriate state as well as exogenous tuning parameters.  

Details on parameters and their particular values for our experiments are detailed below. 

 

Although visualizations are immensely valuable in understanding the complex dynamics of these 

algorithms, pseudocode here is confined to the calculation algorithms only.  No pseudocode for 

the visualizations is provided here.  In fact, there are many possible visualizations one could 

imagine and desire for this type of research. 

 

A.2.5  Pseudocode: ‘Flying’ Aircraft 

The algorithms delivered in the toolbox perform the dual function of 1) “flying” aircraft within 

any particular trajectory, and 2) every delta t of Flight Time, dynamically changing the 

trajectories themselves. 
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The primary clock of simulations (using these algorithms) is in Flight Time (seconds).   Flight 

Time moves forward (incrementally increases in value) as the simulation proceeds.   To “fly” an 

aircraft (forward), the location and velocity of an aircraft “flying” a trajectory are calculated by 

sampling the (appropriate cubic spline of the) trajectory at time Flight Time.  These values 

determine the current location, speed, and heading of aircraft displayed in visualizations. 

 

Most importantly, every delta t of Meta Time, the trajectories themselves are re-calculated 

(replanned) according to current conditions.  Naturally, only the future can be replanned.  The 

past is, by definition, frozen to whatever path the aircraft actually flew. 

 

A.2.6  Pseudocode – Initializing the Test Airspace 

The following listing is the 1
st
 of 5 fragments of pseudocode, corresponding to task 1 outlined in 

section A.1.4 above as “1. Initialize the test airspace with an initialization script”.   

 

1. Initialize parameters from an initialization script, including setting the following 

variables: 

a. Size of test airspace cylinder 

b. Number N of entry and exit point ‘pigeon holes’ for aircraft on perimeter of cylinder 

c. Range R of exit points on far side of cylinder from entry points 

d. Value of DeltaFlightT, delta time of Control Point time spacing defining and 

controlling trajectory shapes 

e. Value of DeltaMetaT, delta time for replanning (re-calculating) dynamical trajectories 

f. Specific profiles of N aircraft chosen to participate in this airspace simulation 

2. Divide the perimeter of the cylinder into N equal parts 

3. Choose N aircraft with designated default cruise altitude and speed 

4. Construct N entry points at degree positions: i * 360/N 

5. Construct N exit point at degree positions: i * 360/N + 360/N/2 

6. For each i-th trajectory of these N trajectories. 

a. Choose an aircraft 

b. Set the i-th entry point at position i * 360/N in degrees around the cylinder’s 

perimeter 

c. Set the velocity of the entry point to direction toward center at default aircraft speed 

d. Set the i-th exit point at some position around the cylinder’s perimeter, randomly 

chosen from the R exit points farthest from the entry point. 

e. Set the velocity of the exit point to direction from the center at default aircraft speed 

f. Construct the cubic spline from the entry point to the exit point 

g. Construct a set of Control Points, one per time t (see Control Point DeltaFlightT on 

line 1.d above) 

h. Sample the cubic spline constructed on line 6.f above at each time t, and fill in values 

of Control Points 

7. Initial trajectories are now constructed for each wave of aircraft entering test airspace 

8. Update the positions of the aircraft on the trajectories associated with each aircraft 

according to the time values of the points on the cubic splines.  Visually this is the 

process of ‘flying’ the aircraft to an updated location and heading.  Refer to section above 

“Pseudocode: ‘Flying’ Aircraft” for more detail on this process. 
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9. At a designated rate, construct new waves of a set of N trajectories, and ‘fly’ them 

similarly 

 

This pseudocode continues as line 10 in section A.4.8 below. 

 

A.2.7  Controlling Airspace Density 

Our experiments require recording and analyzing specified metrics of the behavior of the 

airspace as a function of aircraft density and separation minima.  Density is controlled by the rate 

at which aircraft are introduced into the airspace and the radius of the airspace.  Rate of aircraft 

entering the airspace is controlled by the number of entry points in the cylinder and the rate at 

which waves of aircraft enter through the entry points. 

 

Refer to chapter 5 for additional detail on simulation parameters, including controlling the 

geometry of the airspace and the flow of aircraft into the airspace affecting density. 

 

A.2.8  Heterogeneous Aircraft 

Although these algorithms focus on trajectories, each trajectory has a unique aircraft flying the 

trajectory for the duration of its flight.   These algorithms support multiple heterogeneous aircraft 

types, with varied flight characteristics, including default cruise altitude, speed, etc.  We 

recommend storing these aircraft profiles in a small (changeable) database in spreadsheet form, 

as we do in our implementations. 

 

A.3  Trajectories 

 

A.3.1  Initial Trajectories 

All trajectories in this simulated airspace are enroute only, beginning at top of climb, and ending 

at top of descent.  By convention, the altitude of the endpoints of every trajectory is the default 

cruise altitude of the particular aircraft flying the trajectory.   

 

The velocities of trajectories at the entry and exit points at the edge of the cylinder have direction 

towards the center of the cylinder (i.e. perpendicular to the tangent of the cylinder), and a 

magnitude equivalent to the default cruise speed of the associated aircraft. 

 

The initial trajectory path is the cubic spline connecting the entry and exit points of the cylinder.  

Since entry and exit points are slightly offset from one another, trajectory paths will never be a 

simple straight-line diameter across the cylinder.  Rather they will be curved, following the shape 

of the cubic spline. 

 

A.3.2  Note on Cubic Splines 

Cubic splines are used extensively in representing trajectories here, as well as in all of the 

calculations of forces applied to trajectories to move and modify them. 

 

A natural way of representing curves is with polynomials, which have the convenient property 

that they are easily differentiable for ease of inter-calculating locations, velocities, and 

accelerations.  In addition, polynomials are computationally efficient. 
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For trajectories, we want to specify both three-dimensional location and velocity of both end 

points of each spline into our polynomials.  Hence we need a third degree (cubic) polynomial in 

each spatial dimension to accomplish this, because a 3
rd

 degree-polynomial has four free 

variables which are uniquely specified by four constraints of position and velocity at both 

endpoints. Once defined, any point along a cubic spline can be quickly sampled for location, 

velocity, and acceleration.  

 

Many readers of this document may be familiar with control points for cubic splines used in 

graphics applications. These control points are somewhat different from the ones we use, in that 

graphics applications typically use four control points to define each segment.  

 

We use cubic Hermite splines, which are defined by two control points with velocity as well as 

position, and all control points are on the trajectory. A control point is simply the position and 

velocity of the desired trajectory, sampled at a specified time. This difference is due to our 

interest in time and velocity, which is not shared by graphics applications. 

 

A.3.3  Control Points – Representing Complex Trajectory Path Shapes 

Although trajectories are initialized as simple cubic splines connecting entry and exit points on 

the perimeter of the cylinder, as trajectories need to deform to maintain separation from other 

trajectories, they will need to take on more complex shapes. 

 

In order to represent arbitrary complex curved paths through the airspace, trajectories are 

endowed with “Control Points,” spaced regularly in time, one Control Point every delta t 

(DeltaFlightTime) along the entire trajectory path.  Control Points are connected together with 

cubic splines.   

 

Hence, trajectories are actually a set of many cubic splines, connected together via Control 

Points.  Although the initial trajectory is calculated as a single cubic spline connecting the entry 

and exit points of the cylinder in a single graceful curve, in fact, this single spline is sampled at 

each time t of each of the Control Points of the trajectory, and the full cubic spline trajectory is 

re-represented as a set of cubic splines.  Once represented in this compound spline fashion, it is 

still the same curve, but with much more flexibility to be deformed as forces are applied to it 

later in the process. 

 

Aelow Figure A-2 shows a single arced cubic spline represented as nine shorter (almost linear) 

cubic splines, connecting 10 Control Points.  (The yellow Control Point marks the beginning 

Control Node at the entry to the enroute airspace.) 

 
Figure A-2.  A trajectory represented by a set of Control Points connected by cubic splines. 
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A.3.4  Implementation Note 

Although in principle trajectories may have an arbitrary number of control points, in our 

implementations of these algorithms we limit the number of Control Points to 64 per trajectory.  

For example, with a 1000 km diameter test airspace cylinder, we can have about one Control 

Point per minute of Flight Time.    

 

A.3.5  4DT Trajectories 

Conceptually trajectories are abstractions embedded in both space and time.  Hence trajectories 

are four dimensional entities – one temporal and three spatial dimensions. 

 

However, due to the exigencies of airspace, trajectories may need to be replanned dynamically.  

In our algorithms, at every delta t time increment, all the trajectories are replanned (re-

calculated) according to current conditions.  The calculation may or may not actually result in 

changed paths.  If needed, trajectories will be re-shaped by altering one or more Control Points 

on the trajectories.  Trajectories managed by these algorithms described here are quite 

dynamical. 

 

A.3.6  5DT with Replanning 

Every 4DT Trajectory is itself a dynamical entity, replanned every delta t.  Hence, there are two 

types of time.  There is the Flight Time embedded into every instance of a trajectory, but a 

trajectory itself changes over time. Thus, there is an additional Meta Time as these 4DT 

trajectories themselves dynamically change over time. 

 

In this sense, dynamical trajectories are abstractions spanning space and two types of time.  

Hence these dynamical (suites of altered) trajectories are conceptually five dimensional entities – 

two temporal and three spatial dimensions.   

 

Intuitively, a single trajectory instance is like a hard strand of spaghetti lying still on a cold plate 

– whatever curve it has is statically fixed in place.  A collection of dynamical (suite of changing) 

trajectories is like a soft strand of spaghetti curling, stretching, and moving away from other 

strands of spaghetti in a pot of boiling water. 

 

Over the course of its Flight Time an aircraft might fly parts of many dynamically replanned 

trajectories.  An actual flown flight path is, in effect, pieced together from many instances of 

trajectories as the dynamical replanning process re-shapes the trajectory in Meta Time, 

responding to separation, etc. issues ‘du jour’.  

 

The concept of 5DT is illustrated in Figure A-3 where a trajectory itself is modified.   The future 

of any particular trajectory has a Flight Time associated with it.  In addition, trajectories are 

modified at some time t in Meta Time as well.  Hence, we simulate dynamical trajectories. 

 

In Figure A-3 an original trajectory (blue), possibly modified to detour around some obstacle at 

some time t in Meta Time, thus generating modified trajectories.  Each trajectory and its 
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associated Control Points have time variables in Flight Time.  In addition, these trajectory 

modifications occurred at some different flavor of time t in Meta Time. 

 

 
 

Figure A-3.  Trajectory dynamics. 

 

A.3.7  Control Points 

As described above, Control Points are used to represent and define the path of a trajectory.  A 

trajectory consists of one Control Point for each delta t of its path.   Control Points are connected 

together by cubic splines. 

 

Control Points are represented by 7 double-precision values:  

 

 Time, in seconds, in Flight Time – constant 

 3 x-y-z spatial coordinates, in kilometers 

 3 x-y-z velocities, in km/sec 

 

When a trajectory is altered (changed to a different trajectory), the values of one or more Control 

Points are changed.  In particular, a Control Point can be changed by revising the values of the 

spatial and/or velocities.  Note that the Flight Time associated with the Control Point is 

immutable, i.e. is a constant. 

 

A.4  Deforming Trajectories 

 

A.4.1  Target Goals 

The values of Control Points are informed by applying iterated influences to the trajectories, 

producing Target Points for moving Control Points.   

 

In the algorithms for applying specific influences detailed below, all of the influences calculate 

some Target Point goal (an influence vector)– regardless of how each influence makes its 

specific calculation.  The lingua franca for all influences is to calculate one or two Target Points 

per application of the influences, which then directs the universal deformation machinery, 

described below.  This process simplifies and reduces the process of generating deformations to 

only calculating Target Points.   
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Once a Target Point is calculated, it is handed off to the general dynamical machinery for actual 

movement of the Control Points (change their positions and velocities) according to multiple 

forces acting simultaneously on each Control Point. 

 

A.4.2  Moving Toward Target Points 

Rather, than wholesale moving Control Points to these Target Points, the Control Points are 

instead moved toward the target goals incrementally. More precisely, these influences act to 

change the acceleration of a Control Point in some specified direction, causing it to eventually 

arrive there (or even beyond) unless, of course, it is pulled in other directions by other 

influences. 

 

As we will see below, the actual effect of many of these influences acting in concert is to 

generate a constellation of effects on Control Points (more precisely accelerations on Control 

Points in Meta Time) toward various Target Points, which are summed and applied in aggregate 

to each Control Point.  Hence, the Control Points move in carefully coordinated ways, deforming 

the trajectories toward the macro goals of separation and efficient flyable flight paths. 

 

A.4.3  Magnitude of Influences 

Once a Target Point is identified by applying an influence, the effect of the influence is 

calculated as the difference between the current location of the point and the location of the 

Target Point.  Differences are calculated in all six spatial dimensions of the Control Point – x y z 

position and x y z velocity.  As we will see later these differences multiplied a constant are added 

to the Momentum Buffer. 

 

The effect here is to implement a dynamic similar to Hooke’s Law (F = -kx), where the farther 

away from the goal, the larger the influence (and acceleration) towards the goal.    

 

In our algorithms, in the case of separation, we depart slightly from Hooke’s Law by applying a 

sigmoid function to the otherwise linear response.  The sigmoid function is applied, centered at 

minimum separation.  Therefore, repulsion is applied up to the safety margin, but it is 

significantly stronger below minimum separation.  

 

This relationship is important so that even a single separation violation is given increased 

importance (and acceleration in Meta Time).  The result is a quick resolution of airspaces, which 

if solvable, converge to zero conflicts quickly. 

 

Figure A.4 shows a Control Point being moved according to current influences.  Note that both 

location and velocity can be affected.  Because of the trajectory representation as a series of 

cubic splines, these can be independently influenced. 
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Figure A-4.  Forces acting on location and/or velocity of trajectory Control Points. 

 

 

A.4.4  Re-calculation cycles  

The primary rhythm of the dynamical airspace described here is to generate dynamically 

changing trajectories, one cycle every delta t in Meta Time.  There can be arbitrarily re-

calculation event along a trajectory.   

 

From the point of view of an aircraft, limited only by available computation cycles, there can be 

one trajectory re-calculation (replanning) cycle carried out every few seconds of Flight Time.  

Hence, in practice, this process of many re-calculations per aircraft enroute flight is pretty close 

to continuous replanning of the aircraft’s trajectory while it is flying. 

 

The system attempts to carefully deform the trajectories such that separation is enforced, and the 

paths are always flyable (i.e. velocity and acceleration limits are maintained). 

 

A.4.5  Deformation (sub-) cycles 

A secondary rhythm occurs within each re-calculation cycle.  Many steps (sub-cycles) are 

required to properly deform the current trajectory so as to respond to current pressures and 

urgencies (e.g. separation exigencies). 

 

In each deformation cycle, the trajectories are gradually, incrementally changed a small amount 

at a time.  All the deformation cycles taken together within a single larger re-calculation cycle 

may have a very large impact on trajectories, depending on the pressures at that moment in the 

aircrafts’ journeys.  These “pressures” are the influences of repulsion, elasticity being applied to 

the trajectories. 

 

Before a re-calculation cycle, a trajectory has some set of Control Point values.  After the re-

calculation cycle, the Control Points may have new values (and in effect be a new trajectory).  At 

this level of detail, the seven values described above are necessary and sufficient for representing 

Control Nodes. 

 

However, during the re-calculation process itself, an additional state is required to coordinate the 

gradual deformation of the trajectories over many deformation cycles. 

 



    
  

 

A-11 

A.4.6  Momentum Buffer 

The additional state needed to coordinate deformation is stored in the Momentum Buffer.  

Momentum, as implemented here, enables continually maintaining near-optimal trajectories over 

the course of entire flights.  The purpose of deformation cycles is to iteratively calculate the 

underlying dynamics required to ‘glide’ or translate the trajectories into new positions in the 

airspace, like the wiggling strands of spaghetti described above.  This dynamic movement 

requires that the successive deformation cycles be tied together into one (apparently) continuous 

movement, guided by local pressures.  This dynamical “gliding” process is analogous to 

momentum (with friction) in physics. 

 

To link deformation cycles together to accomplish (apparently) continuous movement of 

trajectories, additional state is needed to augment the state already contained in the Control 

Points.  This additional state is captured in the Momentum Buffer, which stores the current state 

of dynamic movement of each Control Point.  Using the principle of inertia, if a Control Point is 

moving in a given direction, the Momentum Buffer will enable it to keep it moving in that way, 

modulo friction.  This has the effect of smoothing adaptive response of trajectories to each other 

and the environment and reducing numerical instabilities by introducing exponential damping to 

trajectory corrections.   

 

For every Control Point, there is exactly one Momentum Buffer.  It has the same structure as a 

Control Point with the exception of no need to repeat Flight Time (which is a constant in a 

Control Point).  A Momentum Buffer has the following structure: 

 

 3 x-y-z spatial coordinates in kilometers 

 3 x-y-z velocities in km/sec (seconds in Flight Time) 

 

As stated above, the purpose of the Momentum Buffer is to provide inertia to the trajectory 

Control Points during the deformation process, so influences on trajectories continue to have 

their effect over subsequent deformation cycles. 

 

For example, if part of a trajectory is being repelled by another entity (another trajectory, 

weather cell, etc.), the trajectory receives an initial push (acceleration in Meta Time) from the 

force of repulsion.  With momentum machinery built in to this process, the initial push continues 

to push on the trajectory, even after that deformation cycle, into subsequent deformation cycles.  

Visually, this has the effect of trajectories gracefully gliding away from each other.   

 

A.4.7  Momentum and Friction 

In addition to momentum, there is also a notion of friction.  Momentum is attenuated every 

deformation cycle, thus gradually reducing the effect of previous accelerations applied to Control 

Points.  Hence, trajectories glide to a stop in the absence of applications of new forces. 

 

Algorithmically, each Momentum Buffer accumulates the effects of the multiple forces acting on 

a Control Point, when they are then added to the values of the Control Point at the end of each 

deformation cycle.  The Momentum Buffer retains its values across deformation cycles although 

they are attenuated every cycle, resulting in an exponential decay of the original influence. 
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A.4.8  Pseudocode for Re-calculations of Trajectories 

The following listing is the 2
nd

 of 5 fragments of pseudocode, corresponding to task 2 outlined in 

section A.1.4 above as “2. Perform re-calculation cycles on trajectories”.   

 

The following is the high-level pseudocode for performing re-calculation cycles, continuing from 

line 9 of the pseudocode in section A.2.6 above. 

 

10. Run the trajectory initialization script 

11. Initialize all the Momentum Buffers to zero 

12. Repeat the following until the end of the simulation 

a. Repeat until deconflicted or maximum re-calculation cycles exceeded 

i. If maximum iterations exceeded: 

1. Note separation failure 

2. Either continue, or exit depending on preferences 

ii. Collect enumeration of all pairs of conflicting trajectories 

iii. Apply Influences to Momentum Buffers (generating Target Points) 

1. * Apply repulsion/separation force to closest approach of conflicting 

trajectories 

2. * Apply elasticity/smoothing influence to all Control Points on all trajectories 

3. * Apply bounding/limits influence to all Control Points on all trajectories 

iv. Add the effect of each force to its corresponding Momentum Buffer 

v. Apply Momentum to trajectories (according to target points) 

1. Add each Momentum Buffer to its corresponding Control Point, component 

by component 

2. Control points will have moved (changed location and/or velocity) some 

(small) amount where the Momentum Buffers were non-zero 

vi. Attenuate Momentum Buffers (analogous to applying friction) 

b. Fly aircraft forward one simulation time step (Note: this is not one Control Point) by 

adding delta-t to the time value of aircraft, and sampling each aircraft’s trajectory at 

this new time. (See section above on “Pseudocode: Flying Aircraft”) 

c. Record measurements (density, number of conflicts, etc.) 

d. Update visualization 

13. The simulation of this airspace is complete with data collected for later analysis 

14. ** Perform post-run data analysis, successful/failed airspace, phase transition structure, 

etc. 

 

Note that asterisk * starred lines refer to algorithms described in more detail in sections below.  

The last line14 marked with a double asterisk ** refers to the process described in chapters 5 and 

6 on analyzing data generated by airspace experiments.  There is no pseudocode associated with 

line 14 above. 

 

In the section above on the organization of pseudocode, we described the six tasks carried out by 

our algorithms.  So far we have provided the pseudocode for two main high-level processes of 

the airspace simulator: 
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1. Initialize the test airspace 

2. Perform re-calculation cycles (immediately above) 

 

At a high level, this pseudocode is a complete description of the simulation algorithms provided 

in the Toolbox. However, there is still additional pseudocode needed to explicate the deeper 

details of the simulation processes.  The starred lines in 12.a.iii above indicate the detail yet to 

come.  In particular, we will now describe and present the pseudocode applying these influences 

to the trajectories to deform them appropriately.  These (sub-) tasks are the following: 

 

a. Apply repulsion/separation force to closest approach of conflicting trajectories 

b. Apply elasticity/smoothing influence to all Control Points on all trajectories 

c. Apply bounding/limits influence to all Control Points on all trajectories 

 

A.5  Deforming Influences 

 

A.5.1  Three Influences 

Trajectories would remain unchanged if there were no pressures to change their paths.  In a 

sparse airspace, initial trajectories can be quite stable with no need to change already optimal 

trajectory paths. 

 

However, in more dense airspaces, separation may force changes in paths, typically lengthening 

the paths to go around some obstacle.  On the other hand, economic pressures will tend to force 

the path to be more evenly curved to save fuel, fly more smoothly, etc.  In addition, physical 

limits on velocity and acceleration will tend to force the path into more flyable shapes as well.  

The shortest possible path may not be flyable.  In principle, our algorithms search for shortest 

flyable de-conflicted paths (modulo issues around local minima, etc.). 

 

These practical requirements for trajectories can be conceptualized and implemented as three 

additive vector influences on trajectories thus simplifying the problem, as well as simplifying the 

algorithms used to deform the trajectories. 

 

Our Toolbox of algorithms supports these three types of influences that act to deform 

trajectories: 

 

 Repulsion – maintains minimum separation of nearby trajectories, generated by 

pseudopotential 

 Elasticity  – keeps trajectories gently curved to minimize distance, fuel consumption, etc. 

 Bounding – keeps trajectory velocities and accelerations within physical and policy 

limits 

 

A.5.2  Application of Influences 

For every deformation cycle, the three influences above are applied to some or all of the Control 

Points, depending on the type of force: 

 

 Repulsion – only on closest approach of pairs of conflicting trajectories 
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 Elasticity  – on every Control Point 

 Bounding – on every Control Point 

 

A.5.3  Deforming Trajectories 

As described above, the result of applying an influence is not to move a Control Point per se.  

The effect of an influence is simply to contribute effects (more precisely accelerations in Meta 

Time) to Control Points, implemented in our algorithms as adding values to the Momentum 

Buffers. 

 

A.5.4  Repulsion – Separation 

Maintaining minimum (safe) separation between trajectories is arguably the most important 

constraint of the trajectory replanning process.  Rather than doing conflict detection and 

resolution per se, the innate character of our trajectory strings or tubes is that they repel each 

other in such a way as to be always in a state of separation.  

 

This method of separation is possible because entire trajectories are separated (throughout their 

entire length), as opposed to separating aircraft per se.  In effect, there are no surprises postponed 

into the future except when new conditions arise, for example, changing weather conditions.  

Even then, entire trajectories are once again immediately and fully separated through the 

operation of repulsion.  We will present the details of the repulsion algorithm further below.   

 

The most complex influence to apply is repulsion, because it is only applied conditionally – that 

is, only when conflicts are detected among pairs of trajectories.   The process is additionally 

complex because conflicts themselves must be detected dynamically for each deformation cycle.   

 

New conflicts may arise for a trajectory resulting from de-conflicting some other pair of 

trajectories.  In addition, weather cells may move between one re-calculation cycle and another, 

generating new conflicts with the storm, reverberating to new conflicts between other previously 

deconflicted pairs of trajectories. 

 

A.5.5  Conflict Detection 

At the beginning of each deformation cycle, the repulsion algorithm requires an enumeration of 

the set of all pairs of trajectories that are currently in conflict – and if conflicting, the algorithm 

needs to know the precise points of closest approach for each trajectory. 

 

The simplest algorithm for this is to exhaustively search all possible pairs of trajectories, for 

those for which the closest approach is less than the minimum allowed separation.  There is no 

simple analytic expression for the closest approach of two cubic splines.  However, a numerical 

approximation is fast and practical.   Our algorithms sample the cubic splines at a granularity of 

32 samples between each pair of Control Points.  In practice, this works quite well. 

 

A.5.6  Scaling and Optimization of Conflict Detection 

The simple exhaustive algorithm for conflict detection described above scales as the square of 

the number of trajectories.  Hence, for large numbers of trajectories, optimizing the conflict 

detection algorithm becomes a priority.   
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There are a number of candidate optimization algorithms.  The most straightforward approach is 

to “tile” the 4DT space, and annotate the tiles with all the control points that fall within 

corresponding tile areas.  Since control nodes tend to move slowly, so the content of the tiles is 

fairly stable, this approach is quite efficient, scaling linearly with the number of trajectories  

 

However, since this is only an optimization and there are multiple candidates to accomplish this, 

and since this optimization is not focal to the central set of Toolbox algorithms, we have omitted 

details of such algorithms here. 

 

A.5.7  Elasticity 

Applying a repulsive influence for maintaining separation is a powerful technique.  However, 

this influence alone is insufficient for generating stable trajectories.  Such paths are under-

specified causing instability of path locations, or “Brownian Motion” as paths remain restless. 

 

In these algorithms, we also apply an internal influence of elasticity on each trajectory.  This 

influence causes the trajectories to follow ever more flyable, relatively shorter curved paths, 

conserving fuel, while still maintaining separation via the repulsive inter-trajectory force. 

 

Elasticity can be thought of the tendency for short sections of a trajectory to imitate the natural 

curve of longer sections of the trajectory.  With the removal of obstacles, elasticity will return the 

trajectory to its initial cubic spline connecting the entry and exit points in the space.  However, 

since obstacles are endemic to a crowded airspace, the force of elasticity will do its best under 

whatever circumstances and separation issues the trajectory finds itself within in any particular 

moment. 

 

A beneficial emergent property associated with elasticity is that all of the applied influences 

propagate throughout the airspace. "Pressure" from highly conflicted regions of the airspace 

cause outward expansion, thus reducing local density. Without elasticity, this emergent property 

of "pressure" is negligible. 

 

As we will see below, elasticity is applied by using the same cubic spline mathematical 

machinery that we use to generate trajectory paths from Control Nodes.  The effect of this 

algorithm is to reduce accelerations along the trajectories.  Reducing accelerations has the bonus 

of making trajectories more flyable. 

 

A.5.8  Bounding 

The third influence in addition to repulsion and elasticity is bounding.  This effect is necessary to 

assure that the trajectories are flyable.   In the simplified abstracted world of these algorithms 

and simulations, this means that speeds are limited to a specified minimum-maximum range.  

Without this influence, in the extreme case, flight conditions could violate speeds associated with 

drag divergence Mach numbers or stall.   

 

Note that accelerations (in Flight Time) must be limited as well, but this is handled by the 

influence of elasticity on the trajectories. 
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A.6  Repulsion / Separation Algorithm 

The purpose of applying the repulsion influence to a trajectory is to generate Target Points that 

can be turned into changes on Control Points as described in commentary and pseudocode above. 

 

In this section, we will describe how separation encounters generate associated Target Points. 

 

A.6.1  Minimum Separation Plus a Margin 

In our algorithms, we use the customary notion of minimum separation (e.g. 5 nm).  In addition, 

we add the notion of a “margin” of separation (e.g. 2 nm).  When a conflict is found, our 

algorithms use a separation goal of minimum separation plus an extra margin (e.g. 5+2 = 7 nm).  

This policy enforces extra safety while guarding against some potential oscillations at the 

boundary of the separation minimum.   

 

Therefore, the Target Point is constructed based on this more aggressive separation distance, 

including the margin. 

 

A.6.2  The Null Separation (non-) Problem 

For thoroughness, we will begin with two trajectories that are adequately separated.  Figure A-5 

shows this situation.  The two trajectories are just at the minimum desired distance apart 

including the green margin. The trajectories are in blue with control nodes marked as points.  

Separation minimum (e.g. 5 nm) is displayed in red, with the extra margin displayed in green.  In 

this case, there is no separation issue,  so no repulsive force needs to be applied.. 

 

 

 
Figure A-5.  Two adequately separated trajectories 
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A.6.3  Separation Conflict 

However, in Figure A-6, we do have a separation conflict.  The trajectories are too close to each 

other, indicated by the red line segment, which is longer than the shortest distance between the 

two trajectories (at the same time t). The trajectories are in blue with control nodes marked as 

points.  Separation minimum (e.g. 5 miles) is displayed in red, with the extra margin displayed in 

green.  In this case, the two trajectories are too close in space-time, so separation will be 

attempted by applying a repulsive influence to both trajectories. 

 

 

 
Figure A-6.  Two trajectories in conflict, i.e. not adequately separated. 

 

In an attempt to resolve this conflict, a repulsive influence will be generated on both trajectories 

(or just one aircraft trajectory if the other is a weather cell, etc.).  Since the point of closest 

approach (and greatest conflict) is between Control Points, that point on each trajectory cannot 

be directly moved.  Instead, Target Points are calculated for adjacent Controls Points on each 

side of the conflict. 

 

The diagram in Figure A-7 shows the algorithm for calculating the Target Point B for current 

point b, and likewise, the Target Point C for current point c.  Target Points B and C are 

calculated by sampling the cubic spline a-P at time b, and cubic spline P-d at time c. 

 



    
  

 

A-18 

 
Figure A-7.  Deconfliction generating Target Points. 

 

Once Target Points B and C are calculated, the process of moving Control Points is handed off to 

the higher-level deformation algorithms described above. 

 

Figure A-8 provides another look at the process of at the generating Target Points from 

deconflicting two trajectories.  This figure uses P and P’ notation, but otherwise is similar.  The 

trajectories are suggestive of a wider range of shapes than figure A-7.  Otherwise, Figures A-7 

and A-8 describe similar dynamics. 

 
 

Figure A-8.  Spline-based trajectory physics. 

 

 

A.6.4  Postscript on Smoothing 

Note that repulsion alone will tend to result in separated trajectories, yet with unseemly bumps.  

However, the elastic influence will tend to smooth out any isolated bumps in trajectories, 

yielding smoother (and generally shorter) overall paths.  Figure A-9 shows the results of multiple 

repulsion and elastic iterations and the resulting separated and smooth trajectories.  After a few 
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repulsion and elastic iterations of deformation, the trajectories in figure A-9 are separated, 

including extra green margins, and smoothed as well. 

 

 

 
Figure A-9.  Successful deconfliction and resolution. 

 

 

A.6.5  Another Example 

The examples of trajectory conflicts above were visually compelling.  However, since the time 

dimension of the trajectories is not obvious, the point of closest approach at same time may not 

be where the trajectories appear to cross each other.   

 

Figure A-10 shows this situation. This diagram is similar to Figure A-7, except that the 

trajectories appear to intersect.  In fact the closest approach at the same time is where the red 

vertical line is shown.  Nevertheless, the process of determining the Target Points is the same as 

before. 
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Figure A-10.  Two conflicting trajectories in space-time. 

 

 

A.6.6  Pseudocode for Repulsion / Separation 

The following listing is the third of five fragments of pseudocode, corresponding to task 2a 

outlined in Section A.1.4 above as “2a.  Apply repulsion/separation force to closest approach of 

conflicting trajectories”.   

 

The following is the pseudocode for generating Target Points to implement repulsion/separation 

operations, expanding and filling in the details of line 12.a.iii.1 in section A.4.8 above. 

 

1. Begin with a pair of trajectories (or trajectory and a storm cell) that violate separation 

minima. 

2. For each of the two trajectories (or one trajectory if the other element is a storm cell, etc.) 

3. Find the point p of closest approach with the other trajectory (or storm cell) 

4. Draw the line segment connecting the two points of closest approach of these two 

trajectories 

5. Extend the line segment symmetrically to a distance of separation minimum plus margin 

6. Point P is as the far end of this line segment in the direction away from the other 

trajectory 

7. Point b is the nearest Control Point to point p in the downward time direction 

8. Point a is the Control Point which precedes point b 

9. Point c is the nearest Control Point to point p in the upward time direction 

10. Point d is the Control Point which succeeds point c 

11. Calculate the cubic splines a-P and P-d 

12. Calculate point B by sampling a-P at time b (i.e. at the time corresponding to point b) 

13. Calculate point C by sampling P-d at time c 

14. Point B is a new Target Point for point b 

15. Point C is a new Target Point for point c 

16. Hand these two points off to the pseudocode for the high-level re-calculation algorithm 

above 
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This pseudocode continues as line 17 in section A.7.2 below. 

 

A.7  Elasticity / Smoothing Algorithm 

Implementing the influence of elasticity is much simpler than implementing repulsion.   

Elasticity acts on trajectories internally.  In addition, this influence only acts on Control Points, 

and only uses neighboring Control Points for the calculation.   As with all influences in these 

algorithms, this influence produces a Target Point. 

 

A.7.1  Reducing Accelerations 

Elasticity is accomplished by reducing accelerations at Control Points, which has the effect of 

smoothing trajectories.  The process of reducing accelerations makes use of the theorem that 

maximum accelerations on a cubic spline occur at their end points.  Therefore, any point sampled 

on a cubic spline will have an acceleration less than or equal to the accelerations at the end 

points. 

 

For a Control Point b with an excessive accelerations, consider the Control Points a and c 

adjacent to b. Construct the cubic spline a-c.  Then generate point B by sampling a-c at time b.  

Figure A-11 shows the process of applying the influence of elasticity to Control Point b on a 

trajectory.  Construct the cubic spline a-c.  Then generate point B by sampling a-c at time b. 

 

 
 

Figure A-11.  Applying the influence of elasticity to Control Point. 

 
 

 

Point B is a Target Point for Control Point b, which can be used to guide deformation of the 

trajectory towards point B, as described above in the high-level re-calculation algorithms. 

 

A.7.2  Pseudocode for Elasticity / Smoothing 

The following listing is the fourth of five fragments of pseudocode, corresponding to task 2b 

outlined in section A.1.4 above as “2b. Apply elasticity/smoothing force to all Control Points on 

all trajectories”.   

 

The following is the pseudocode for generating Target Points to implement elasticity/smoothing 

operations, expanding and filling in the details of line 12.a.iii.2 in section A.4.8, and continuing 

from line 16 of section A.6.6 above. 
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17. Begin with a Control Point b on a trajectory 

18. Control Point a immediately precedes point b 

19. Control Point c immediately succeeds point b 

20. Construct cubic spline a-c 

21. Calculate point B by sampling a-c at time b (i.e. at the time corresponding to point b) 

22. Point B is a new Target Point for Control Point b 

23. Hand point B off to the pseudocode for the high-level re-calculation algorithm above 

 

This pseudocode continues as line 24 in section A.8.2 below. 

 

A.8  Bounding / Limits Algorithm 

 

A.8.1  Limiting Speed 

There are three influences which act on trajectories in our algorithms: repulsion, elasticity, and 

bounding.  The first two, repulsion and elasticity, deform the trajectories away from obstacles 

while maintaining smooth paths. 

 

However, without bounding aircraft speed within specified limits, the repulsion and elasticity 

algorithms might bring an aircraft to a full stop in the sky to wait out a conflict, or speed up 

excessively.   Without limits on speed, solving a congested airspace will always succeed simply 

by expanding the trajectory snarl like inflating a balloon.  In this fashion, some trajectories 

would go far out of their way to avoid conflicts, yet still arrive on time, by flying excessively fast 

to do so. 
 
The bounding influence acts on all trajectory Control Points to revise their trajectories towards 

the default cruising speed for the specific aircraft. 

 

Note that possible excessive accelerations of aircraft do not need to be handled by the 

Bounding/Limits algorithm.  Accelerations are addressed by the Elasticity/Smoothing algorithm 

above. 

 

The Bounding/Limits algorithm is quite simple.  For any Control Point, the default cruise speed 

for the aircraft (flying the trajectory) is the de facto Target Point.   

 

A.8.2  Pseudocode for Bounding / Limits 

The following listing is the fifth of five fragments of pseudocode, corresponding to task 2c 

outlined in section A.1.4 above as “2c. Apply bounding/limits force to all Control Points on all 

trajectories”  

 

The following is the pseudocode for generating Target Points to implement Bounding/Limits 

operations, expanding and filling in the details of line 12.a.iii.3 in section A.4.8, and continuing 

from line 23 of section A.7.2 above. 

 

24. Begin with a Control Point p on a trajectory 

25. Construct point P with same values as p 
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26. Change the velocity so its new magnitude is the default speed for the trajectory’s aircraft 

27. Point P is a new Target Point for Control Point p 

28. Hand point B off to the pseudocode for the high-level re-calculation algorithm above 

 

This pseudocode continues as line 12.a.iv in section A.4.8 above. 

 

Note that point p and point P have identical position – only the velocity may be different.  The 

positions of the Control Point and the Target Point are same.  Hence, the Bounding/Limits 

operation is harder to visualize. 

 
A.9  Consolidated Pseudocode – Algorithm Toolbox 

The text above describes the toolbox algorithms with pseudocode in 5 distinct tasks embedded in 

commentary.  For those researchers who wish to reproduce this code (and the associated results), 

below is the same pseudocode, except stitched together into one consolidated corpus of 

pseudocode. 

 

The six tasks, the first five of which are described in distinct sections above, are the following: 

 

1. Initialize the test airspace with an initialization script 

2. Perform re-calculation cycles on trajectories, where the 3 important sub-tasks are.. 

a. Apply repulsion/separation force to closest approach of conflicting trajectories 

b. Apply elasticity/smoothing force to all Control Points on all trajectories 

c. Apply bounding/limits force to all Control Points on all trajectories 

3. Perform post-run data analysis, successful/failed airspace, phase transition structure, etc. 

 

Detailed pseudocode as one integrated algorithm, annotated according to the above task structure 

follows: 

1. Initialize the test airspace with an initialization script (see section A.2.6) 

 

1. Initialize parameters from an initialization script, including setting the following 

variables: 

a. Size of test airspace cylinder 

b. Number N of entry and exit point ‘pigeon holes’ for aircraft on perimeter of cylinder 

c. Range R of exit points on far side of cylinder from entry points 

d. Value of DeltaFlightT, delta time of Control Point time spacing defining and 

controlling trajectory shapes 

e. Value of DeltaMetaT, delta time for replanning (re-calculating) dynamical trajectories 

f. Specific profiles of N aircraft chosen to participate in this airspace simulation 

2. Divide the perimeter of the cylinder into N equal parts 

3. Choose N aircraft with designated default cruise altitude and speed 

4. Construct N entry points at degree positions: i * 360/N 

5. Construct N exit point at degree positions: i * 360/N + 360/N/2 

6. For each i-th trajectory of these N trajectories. 

a. Choose an aircraft 



    
  

 

A-24 

b. Set the i-th entry point at position i * 360/N in degrees around the cylinder’s 

perimeter 

c. Set the velocity of the entry point to direction toward center at default aircraft speed 

d. Set the i-th exit point at some position around the cylinder’s perimeter, randomly 

chosen from the R exit points farthest from the entry point. 

e. Set the velocity of the exit point to direction from the center at default aircraft speed 

f. Construct the cubic spline from the entry point to the exit point 

g. Construct a set of Control Points, one per time t (see Control Point delta t on line 4 

above) 

h. Sample the cubic spline on line 15 above at each time t, and fill in values of Control 

Points 

7. Initial trajectories are now constructed for each wave of aircraft entering test airspace 

8. Update the positions of the aircraft on the trajectories associated with each aircraft 

according to the time values of the points on the cubic splines.  Visually this is the 

process of “flying” the aircraft to an updated location and heading.  Refer to section 

above “Pseudocode: “Flying’ Aircraft” in chapter 4 for more detail on this process. 

9. At a designated rate, construct new waves of a set of N trajectories, and fly them similarly 

 

2. Perform re-calculation cycles on trajectories (see section A.4.8) 

 

10. Run the trajectory initialization script 

11. Initialize all the Momentum Buffers to zero 

12. Repeat the following until the end of the simulation 

g. Repeat until deconflicted or maximum re-calculation cycles exceeded 

i. If maximum iterations exceeded: 

1. Note separation failure 

2. Either continue, or exit depending on preferences 

ii. Collect enumeration of all pairs of conflicting trajectories 

iii. Apply Forces to Momentum Buffers (generating Target Points) 

 

2.a. Apply repulsion/separation force to closest approach of conflicting trajectories (see 

section A.6.6) 

 

1. Begin with a pair of trajectories (or trajectory and a storm cell) that violate separation 

minima. 

2. For each of the two trajectories (or one trajectory if the other element is a storm cell, etc.) 

3. Find the point p of closest approach with the other trajectory (or storm cell) 

4. Draw the line segment connecting the two points of closest approach of these two 

trajectories 

5. Extend the line segment symmetrically to a distance of separation minimum plus margin 

6. Point P is as the far end of this line segment in the direction away from the other 

trajectory 

7. Point b is the nearest Control Point to point p in the downward time direction 

8. Point a is the Control Point which precedes point b 

9. Point c is the nearest Control Point to point p in the upward time direction 

10. Point d is the Control Point which succeeds point c 
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11. Calculate the cubic splines a-P and P-d 

12. Calculate point B by sampling a-P at time b (i.e. at the time corresponding to point b) 

13. Calculate point C by sampling P-d at time c 

14. Point B is a new Target Point for point b 

15. Point C is a new Target Point for point c 

16. Hand these two points off to the pseudocode for the high-level re-calculation algorithm 

above 

 

2.b. Apply elasticity/smoothing force to all Control Points on all trajectories (see section 

A.7.2) 

 

17. Begin with a Control Point b on a trajectory 

18. Control Point a immediately precedes point b 

19. Control Point c immediately succeeds point b 

20. Construct cubic spline a-c 

21. Calculate point B by sampling a-c at time b (i.e. at the time corresponding to point b) 

22. Point B is a new Target Point for Control Point b 

23. Hand point B off to the pseudocode for the high-level re-calculation algorithm above 

 

2.c. Apply bounding/limits influence to all Control Points on all trajectories (see section 

A.8.2) 

 

24. Begin with a Control Point p on a trajectory 

25. Construct point P with same values as p 

26. Change the velocity so its new magnitude is the default speed for the trajectory’s aircraft 

27. Point P is a new Target Point for Control Point p 

28. Hand point B off to the pseudocode for the high-level re-calculation algorithm above 

 

2. (Continued) Perform re-calculation cycles on trajectories (see section A.4.8) 

 

iv. Add the effect of each influence to its corresponding Momentum Buffer 

v. Apply Momentum to trajectories (according to target points) 

1. Add each Momentum Buffer to its corresponding Control Point, component 

by component 

2. Control points will have moved (changed location and/or velocity) some 

(small) amount where the Momentum Buffers were non-zero 

vi. Attenuate Momentum Buffers (analogous to applying friction) 

h. Fly aircraft forward one simulation time step (note: this is not one Control Point) by 

adding delta-t to the Flight Time value of aircraft, and sampling each aircraft’s 

trajectory at this new Flight Time. (See section in chapter 4 on “Pseudocode: Flying 

Aircraft”) 

i. Record measurements (density, number of conflicts, etc.) 

j. Update visualization 

13. The simulation of this airspace is complete, with data collected for later analysis 
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3. Perform post-run data analysis, successful/failed airspace, phase transition structure, 

etc. (No pseudocode for line 14.  See chapters 5 and 6 for details on the data analysis 

process.) 

 

14. Perform post-run data analysis, successful/failed airspace, phase transition structure, etc. 
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