

Thermal Protection Materials: Development, Characterization and Evaluation

Sylvia M. Johnson Entry Systems and Technology Division NASA Ames Research Center

Sylvia.m.johnson@nasa.gov

Presented at HiTemp2012, Munich, Germany September, 2012

Acknowledgements

- NASA: Thomas Squire, Robin Beck, Don Ellerby, Matt Gasch, Mairead Stackpoole, Helen Hwang, Deepak Bose, Frank Milos, Joe Conley, Dan Leiser, David Stewart, Ethiraj Venkatapathy, Bernie Laub
- ERC: Jay Feldman

Everyone who works in the field of TPS.

Outline

- Introduction
- Thermal Protection Materials and Systems (TPS)
 - Reusable materials
 - Sharp leading edges (Ultra high temperature ceramics (UHTCs))
 - Ablative materials
 - New materials under development
- Characterization of TPS for Performance and Design
- A Tale of Two Heat Shields

 Recent Uses and Development of Heat Shields and Materials Issues

Introduction

- NASA Ames focused on:
 - Qualifying and certifying TPS for current missions
 - Developing new TPS for upcoming missions
- Approaches to TPS development differ with risk crewed vs. robotic missions:
 - Crewed
 - Loss of life must be avoided
 - What must be done to qualify and certify TPS?
 - Robotic missions
 - Can take more risk
 - But scientific knowledge can be lost too
- Goal for all TPS is efficient and reliable performance
- Need to understand materials to enable design and use

Thermal Protection Systems

- Protect vehicle structure and contents (people and things) from the heat of entry through an atmosphere
- Rely on materials response to environment
- Response depends on
 - Material properties
 - Configuration of the system
 - Specific conditions (heat flux, pressure, flow)

One size does not fit all!

Different TPS for different vehicles, location on vehicles, and mission conditions

Reusable vs. Ablative TPS

Insulative TPS

Energy management through storage and re-radiation — material unchanged

When exposed to atmospheric entry heating conditions, surface material will heat up and reject heat in the following ways:

- •Re-radiation from the surface and internal storage during high heating condition
- Re-radiation and convective cooling under post-flight conditions

Ames-Developed Thermal Protection Materials Used on Shuttle

Reusable TPS: Tiles

- Effort started in 1970's by ARC to provide NASA with TPS materials and processing expertise
- Insulation materials used to protect the aluminum sub-structure of the shuttle.
- High purity silica, aluminoborosilicate, and alumina fibers
- LI-900, FRCI-12, AETB-8
- Open porous structure

Tiles are heterogeneous with regions of low density and clumps of fibers with some nonfibrous inclusions

Reusable TPS: Coatings

RCG: Reaction Cured

Glass

TUFI: Toughened Unipiece Fibrous

Insulation

- Silica-based fibers
- Mostly empty space->90%porosity

- RCG is a thin dense high emittance glass coating on the surface of shuttle tiles
- Poor impact resistance

- TUFI coatings penetrate into the sample
- Porous but much more impact resistant system

Shuttle Flight Testing of LI-900/RCG vs AETB-8/TUFI in Base Heatshield

TUFI/AETB-8 Tiles Undamaged After Three Flights

Development of Advanced TUFROC TPS

(Toughened Unipiece Fibrous Oxidation Resistant Ceramic)

- Developed TUFROC for X-37 application
- Advanced TUFROC developed recently
- Currently transferring technology to Boeing
- System parameters:
 - Lightweight (similar to LI-2200)
 - Dimensionally stable at surface temperatures up to 1922 K
 - High total hemispherical emittance (0.9)
 - Low catalytic efficiency
 - In-depth thermal response is similar to single piece Shuttle-type fibrous insulation.

Schematic of TUFROC TPS

X-37 Reentry Vehicle

ROCCI Cap

Substrate

TUFROC Concept

X-37B after Landing

TUROC is on Leading Edges

http://www.popsci.com/technology/article/2012-06/air-forces-mysterious-x-37b-space-plane-returns-earth-after-15-months-orbit

Sharp Leading Edge Energy Balance

- Insulators and UHTCs manage energy in different ways:
 - Insulators store energy until it can be eliminated in the same way as it entered

 UHTCs conduct energy through the material and reradiate it through cooler surfaces

Sharp Nose

UHTC

High Thermal
$$\dot{q}_{conv} = \dot{q}_{rad} + \dot{q}_{cond}$$
 Vity

Dean Kontinos, Ken Gee and Dinesh Prabhu. "Temperature Constraints at the Sharp Leading Edge of a Crew Transfer Vehicle." AIAA 2001-2886 35th AIAA Thermophysics Conference, 11-14 June 2001, Anaheim CA

Ultra High Temperature Ceramics (UHTCs): A Family of Materials

- Borides, carbides and nitrides of transition elements such as hafnium, zirconium, tantalum and titanium
- Some of highest known melting points
- High hardness, good wear resistance, good mechanical strength
- Good chemical and thermal stability under certain conditions
 - High thermal conductivity
 - Good thermal shock resistance
- The microstructure of UHTCs clearly shows their composite nature
 - Distribution of material phases
 - Flaw size and distribution

Hf-B Phase Diagram

Ablative TPS

Energy management through material consumption

When exposed to atmospheric entry heating conditions, material will pyrolyze (char), and reject heat in the following ways:

- Pyrolysis of polymer
- Blowing in boundary layer
- Formation of char layer and re-radiation

PICA Processing

 $\textbf{Fiberform}^{^{\text{\tiny{TM}}}} \textbf{ before impregnation}$

PICA: Fiberform[™] with phenolic resin

PICA Background

- Phenolic Impregnated Carbon Ablator (PICA) was an enabling TPS material for the Stardust mission where it was used as a single piece heatshield
- PICA has the advantages of low density (~0.27g/cm³) coupled with efficient ablative capability at high heat fluxes
- PICA is the primary heatshield for Mars Science Lab (MSL) and SpaceX's Dragon vehicle in a tiled configuration

Image of the sample return capsule post flight with PICA as the forebody TPS. (0.8m diameter)

MSL Heat Shield (4.5m diameter)

Carbon Phenolic TPS

- Carbon Phenolic TPS
 - 1960s: fully dense (1.45-1.5 g/cm3) carbon phenolics were optimized
 - only materials available for use at very high heat fluxes and high pressure conditions, yet the least favorable in terms of density
- Carbon phenolic material made from carbon fiber weaves fully infiltrated with phenolic resin
- Current effort to investigate approaches to fabricating carbon phenolic materials
 - Issues with fiber supplies
- Carbon phenolic TPS was used on Gallileo heat shield for very demanding entry into Jupiter's atmosphere

What are Rigid, Conformable and Flexible Ablative Materials?

- Rigid fabricated in a rigid form and usually applied in a tiled configuration to a rigid substructure
- Conformable fabricated in a flexible form and shaped to a rigid substructure; final form may be rigid or compliant
- Flexible fabricated and used in a flexible form, where flexibility is an essential component of the heatshield, e.g., deployable systems, stowable systems
- Woven can be any of the above

Conformable/Flexible Ablators

- Fibrous substrate, such as felt, woven cloth
- Matrix of various resins and fillers
- Flexible/conformable ablators have significant design, system integration, and performance advantages compared to rigid ablators
 - Manufacturability
 - Reduction in piece-parts
 - Ease of assembly
 - Enables larger diameter aeroshells
 - Eliminates gap and seam issues (thermomechanical, aero-physics phenomena)

Families of Ablators Under Development

Rigid Ablators

Advanced PICA -like ablators

Graded Ablators

Conformable Ablators

Conformable PICA

Flexible Ablators

Flexible PICA

Flexible SIRCA

Woven TPS

Mid density TPS

Carbon phenolic replacement

What is the 3D Woven TPS concept?

An approach to the design and manufacturing of **ablative** TPS by the combination of weaving precise placement of fibers in an optimized 3D woven manner and then resin transfer molding

when needed

- Ability to design TPS for a specific mission
- Tailor material composition by weaving together different types of fibers (e.g. carbon, ceramic, glass, polymeric)
- One-step process for making a mid-density dry woven TPS
- Ability to infiltrate woven structure with a polymeric resin to meet more demanding thermal requirements

Characterization of TPS

- Why characterize materials so extensively?
 - Evaluate performance
 - Select appropriate materials
 - Verify manufacturing reliability
 - Enable modeling of behavior
 - Design system/heatshield
 - Correlate processing and properties to improve materials

Manufacturing Variability

- Real-world manufacturing processes have inherent variability.
 - These variations can lead to scatter in the material properties.
- Necessary to quantify allowable lot-to-lot and in-lot variability of properties.
 - This may also include acceptable flaw and inclusion size.

Example: Ablator Properties

- Evaluating:
 - Virgin/char strength
 - Recession rate
 - Thermal conductivity
- Evaluating the interconnection between properties
 - Tradeoffs
 - Greater density = greater strength, but generally increased thermal conductivity

Material Properties

- Thermal properties
 - Thermal conductivity, specific heat, thermal expansion
- Physical properties
 - Density, hardness, emissivity
- Mechanical properties
 - Strength, elastic modulus, toughness
- Properties may vary with temperature and/or pressure (porous materials)
- Microstructure depends on processing and composition

Properties for Modeling and Design of Ablators

Thermal Response Model

Density (virgin/char)

Thermal Conductivity (virgin/char)

Specific Heat (virgin/char)

Emissivity & Solar Absorptivity (virgin/char)

Elemental Composition (virgin/char)

Thermal Gravimetric Analysis

Porosity & Gas Permeability

Heat of Combustion (virgin/char)

Heat of Pyrolysis

Thermal Structural Analysis

Tensile:

strength, modulus, strain to failure

Compressive:

strength, modulus, strain to failure

Shear:

strength, modulus, strain to failure

Poisson's Ratio

Thermal Expansion (virgin/char)

TPS/Carrier System Tests Tensile strength Shear strength

Process for Characterizing Ablators

Produce Material

Flight-like production, not model material Consider mission environments

Determine Appropriate Testing Techniques

May depend on material's density and construction

4 cm honeycomb not represented by a 1 cm coupon

Evaluate Material's Variability

NDE recommended
Insight into construction is critical to
determine likely challenges

Determine Quantity and Sampling Scheme

Influenced by material variability & project scope

Execute Testing & Evaluate Data

Selection of Appropriate Material

- Historical approach:
 - Use heritage materials: "It's worked before..."
 - Risk-reduction strategy
 - Limited number of flight-qualified ablative materials
 - Different vehicle configurations and reentry conditions (need to qualify materials in relevant environments)
- As missions become more demanding, we need higher capability materials — necessary to have a robust research and development program
- Reusable and ablative materials are both needed
- Must test materials in relevant environments
- Provide path for insertion/use of new materials

Technology Readiness Levels

A Tale of Two Heatshields

- 2 Vehicles
 - CEV/Orion/MPCV
 - Mars Science Lab (MSL)
- 2 destinations
 - Earth from the moon
 - Mars from Earth
- 2 materials
 - PICA
 - Avcoat

MPCV (Orion) TPS Requirements

- Multi-purpose Crew Vehicle (MPCV) Lunar Direct Return (LDR) conditions:
 - 11 km/s atmospheric entry
 - peak heat rate > 1000 W/cm²
- MPCV Low Earth Orbit (LEO) return conditions:
 - 8 km/s atmospheric entry
 - peak heat rate > 150 W/cm²
- Early TPS development work focused on PICA for this application

PICA Background

- Phenolic Impregnated Carbon Ablator (PICA) was an enabling TPS material for the Stardust mission (sample return from a comet) where it was used as a single piece heatshield
- PICA reached TRL9 for this application and configuration
- PICA has the advantages of low density (~0.27g/cm³) coupled with efficient ablative capability at high heat fluxes
- As-flown PICA was characterized and compared to model predictions

Sample return capsule post-flight with PICA as the forebody TPS. (0.8m diameter)

From PICA

- PICA had heritage...for Stardust
 - Needed development effort for new applications
- PICA was to be used in a tiled configuration
 - Tiles require gap fillers or a way to deal with gaps
 - PICA is a rigid material with a relatively low strength and strain to failure
 - Risk analysis and design indicated that many small tiles would be required, increasing the number of gaps.
- PICA was extensively characterized and considerable effort was put into scale-up and manufacturing

....to Avcoat

- Avcoat was used on the Apollo vehicles: "heritage" material
- Consists of a honeycomb filled with an ablative mixture
- Reduces gaps
- Complex material requiring hand assembly
- Not made for many years

Before and after Avcoat arc jet models

Heatshield Comparison

PICA Acreage TPS

Layout:

- •440 tiles
- •133 Unique Tile Planforms
- •832 Gap Fillers

RTV-SIP-RTV attachment to carrier structure

Avcoat Acreage TPS

Layout

- •18 Gore Honeycomb Panels
- •18 Shoulder Panels
- 1 Center Panel

Bond honeycomb to carrier structure and ablator filled-in and cured.

AVCOAT Process Steps

- 9 stages in AVCOAT process
- Complex processes require extensive characterization and understanding to
 - Ensure reliability/reproducibility
 - Prepare/maintain meaningful process specifications

Avcoat for MPCV Heatshield

- Avcoat construction schematic showing the various steps and processes involved in building the honeycombed ablator
- Red arrows indicate areas were process changes were implemented

Issues with "Heritage" Materials

- Know-how may be lost over time
- Materials/components may no longer be available
- Environmental/safety regulations may not allow the use of certain processes
- Recreation of materials can be time and money-consuming
 - \$25+million and 5 years has been spent on recreating Avcoat
- Is it really "Avcoat"?

Meanwhile, Mars Science Lab in Development

- MSL was being fabricated simultaneously with CEV/Orion (MPCV)
- Initial choice for a heatshield TPS was SLA-561V, a heritage honeycombbased material from Lockheed
- SLA-561V was used on all previous NASA Mars entry missions
- However, MSL was much larger

Change of TPS Late in the Game

- Original choice of TPS did not pass shear tests
- Needed to use a more capable TPS
- PICA was chosen
- Previous/ongoing development of PICA for CEV/Orion

Availability of data/processes critical in enabling the heat shield material to be qualified, certified and fabricated in time (18 months)

The Mars Science Laboratory

Launch Date: 11/26/2011

Arrival Date: 08/05/2012

Mars Science Lab (MSL) Spacecraft

Heatshield Fabrication in Process

Heatshield Fabricated (gaps filled)

RASB: 46

Spacecraft Assembled

RASB: 47

MSL/Curiosity Landed Successfully on August 5, 2012 (PDST)

Landing sequence

Picture of capsule on parachute descending towards Mars

MSL Heatshield on Mars

Heat shield about 50 feet (16 meters) from the spacecraft. Image credit: NASA/JPL-Caltech/MSSS

Space-X Dragon Capsule 2nd Successful Flight May 2012

Before: capsule is painted

After landing: note charring on heatshield

Space-X used their own version of PICA known as PICA-X www.spacex.com

Instrumentation

- All atmospheric entries are essentially "experiments" from which we should gather data
- Data used to validate models and understand materials behavior better
- MSL was instrumented
 - MEDLI: Mars Entry Descent Landing Instrumentation

Importance of MSL Instrumentation

- MEDLI is the most extensive ablative heat shield instrumentation suite since Apollo
 - 7 pressure sensors, 26 near surface and in-depth thermocouples, 6 isotherm sensors
- Data will be used to validate and improve Mars entry aerothermodynamic and TPS response models
- Better models mean TPS safety margin can be reduced and science payload increased

Conclusions

- Two main classes plus specialized materials
 - Insulating, e.g. space shuttle tiles
 - Ablators for higher heat fluxes
 - High temperature materials and composites
 - New materials under development for new missions woven, conformable, etc.
- TPS needs to fit the application—location on vehicle, expected environment
- Heritage materials may not always be heritage
- Need to gain full data value from flights/experiments: instrumentation is key
- Critical to characterize materials and archive data
 - For selecting appropriate material
 - To ensure material demonstrates desired behavior
 - To have materials ready for new missions

Goal of all TPS is reliable and efficient performance!